
Chapter 5
Structured Population Models
for Vector-Borne Infection Dynamics

Jianhong Wu

Abstract Dynamical systems provide an appropriate framework to examine
whether, where and when a vector species and/or a vector-borne pathogen can
establish and spread. Such systems often contain time lags to reflect the transition
times from one physiological stage to the next, or from one geographic location to
others. We present a brief introduction to dynamical systems generated by delay
differential equations with varying delay. We focus on those delay differential
equations which are reduced from structured population partial differential equation
models, and we discuss the implicit assumption that needs to be made to permit
this reduction process. We demonstrate the model formulation from tick population
and tick-borne disease infection dynamics, and from bird migration and avian
influenza spread dynamics. We show how model parameters, especially time-
varying development delays, can be informed from laboratory experiments, field
studies and surveillance data, and how these parameters are integrated to a single
threshold parameter, the basic reproduction number, to quantify when population
establishment and disease persistence are likely.

5.1 Delay Differential Equations for Disease Infection
Dynamics

An introduction of mathematical modelling for vector-borne disease infection
dynamics often starts with a simplified assumption about the homogeneity in
the population in terms of reproduction, transmission contacts and environmental
conditions. This assumption yields compartmental systems of ordinary differential
equations.

Applications of dynamical systems-based modelling and analysis to informing
ecosystem management and disease intervention require however details about
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the heterogeneities in the physiological status of the vector species (such as ticks
in the context of tick-borne diseases such as Lyme disease) and/or geographical
location of the vector species (such as migratory birds in the context of avian
influenza spread). Associated with this requirement from applications is the grad-
ually improved surveillance and field observation about these physiological status
and/or geographical location. Incorporating these heterogeneities into an infection
dynamics model gives rise to structured population and epidemic models which,
under the assumption of homogeneity within a particular stage or a spatial segment,
can be reduced to a system of delay differential equations (DDEs).

Here we start with a short introduction to the basic model framework and some
fundamental results about systems of DDEs. We will then focus on the case of delays
which are variable due to climate change and environmental condition variations,
and focus on reduction from structured to staged models. We will discuss the
definition and calculation of the vector population establishment threshold, the
basic reproduction number in vector ecology, and show how this combined with
environmental and vector behavior data can be used to produce the vector population
establishment risk maps. We will then introduce the concept of monotone maps and
threshold dynamics and present two illustrative examples: Lyme tick population
dynamics with structured life cycles, and bird migration dynamics and spatially
structured models. We will finally touch on the persistence theory and illustrate
the theory with two examples: avian influenza spread through bird migration, and
Lyme disease dynamics through multi-stage systemic transmission.

5.2 Delay Differential Equations: Setting Up the Model

We start with the logistic equation

x′(t) = rx(t)[1 − x(t)/K], r,K > 0;

or generally,

x′(t) = −d(x) + b(x)

with d(x) as the death rate and b(x) as the birth rate.
Examples are when d(x) = −rx2/K and b(x) = rx (logistic equation, when

K > 0 is the carrying capacity constant and r is the intrinsic growth rate); when
d(x) = dx with a constant d > 0 and b(x) = pxe−qx (the so-called Ricker function,
leading to a monostable system); and when b(x) = px2e−qx (modelling the Allee
effect and leading to a bistable system).

In this model formulation, homogeneity is implicitly assumed: every individual
can reproduce, and birth into the population is instantaneous. In most biological
populations, however, individuals can reproduce only after maturation. A more
realistic formulation posits two classes within the population: immature and mature
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(reproducing) individuals. If there is a uniform maturation time (τ ), then the
equation becomes

x′(t) = −dx(t) + αb(x(t − τ)) (5.1)

with the second term being the maturation rate (birth rate at t − τ times the survival
probability α during the maturation). This gives a delay differential equation.

In what follows, we suggest the readers to keep the following reproduction
function in mind:

b(x) = pxe−qx.

To uniquely define a solution for all future time t ≥ 0, we need to specify the
initial condition x(s) = φ(s) for s ∈ [−τ, 0] with the initial function φ given from
the phase space C := C([−τ, 0]). The initial value problem of (5.1) subject to the
initial condition can then be solved using the method of steps that solves the initial
value problem consequently on the intervals [0, τ ], [τ, 2τ ], · · · , [nτ, (n + 1)τ ] for
any integer n > 1.

There are some important properties of DDEs, including the non-existence and
possible non-uniqueness of backward extensions from an initial condition, the
eventual compactness, non-negativeness and boundedness of the (forward) solutions
when the feedback function b is appropriately given. The solutions then give a
semiflow in C which has a global attractor. The standard notation xt is used to
denote the segment x on the interval [t − τ, t] translated into the initial interval
[−τ, 0], i.e.,

xt (s) = x(t + s), s ∈ [−τ, 0].

Fundamental results can be found in [15]; see also [6, 8, 9, 13, 14, 19, 21, 30, 37]
for a collection of textbooks and references.

The local stability of the model system at a given equilibrium x∗ is determined
by the stability of the zero solution of the linear system describing the perturbation
x(t) around x∗:

x′(t) = −dx(t) + αb′(x∗)x(t − τ).

The linearization at the zero equilibrium x∗ = 0 generates a positive semigroup
(since b′(0) > 0) and hence the stability of this equilibrium is determined by the
real eigenvalue of the characteristic equation (Corollary 3.2 of [30])

λ = −d + αb′(x∗)e−λτ .

So if αb′(0) < d then x∗ = 0 is locally asymptotically stable. We can also easily
check that when αb′(0) < d the system has no positive equilibrium. On the other
hand, if αb′(0) > d then there is a positive equilibrium x∗ which maybe locally
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asymptotically stable or unstable, but the zero equilibrium becomes unstable. In
some cases, we can also make conclusions regarding the global attractivity of the
positive equilibrium using the monotone dynamical systems theory [30]. This is
particularly true when the positive equilibrium is within the interval where the
function b remains monotonically increasing. In the case where b′(x∗) < 0 at
the positive equilibrium x∗, we have the situation of a negative feedback around
this equilibrium and a Hopf bifurcation of periodic solutions may take place. This
is a typical example of delay-induced nonlinear oscillations. Figure 5.1 gives an
illustration of possible scenarios of model dynamics, depending on the location of
the intersections between the death rate dx and the maturation rate function αb(x).

Note also that the survival probability during the maturation period may depend
on the maturation delay τ , the stability analysis of the characteristic equation
involving delay-dependent coefficients is very complicated, and the global Hopf
bifurcation (the birth, death and global continuation of local Hopf bifurcation) has
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Fig. 5.1 The global dynamics of the delay differential equation x′(t) = −dx(t) + αb(x(t − τ))

with a constant delay τ > 0. Depending on the relative value of αb′(0) and d, the model may have
one or two non-negative equilibria. The positive equilibrium, if it exists and is within the interval
where the function b is increasing, is the global attractor for all solutions of the equation with non-
trivial non-negative initial value (using the monotone dynamical system theory [29]). When this
positive equilibrium value is in the interval when the function b is decreasing and when the delay
is small, this equilibrium remains stable (using the dynamical system theory in [31] for semiflows
which are order-preserving with respect to the so-called exponential ordering). This equilibrium
however can lose its stability through the mechanism of Hopf bifurcations. Under certain technical
conditions, one can show that the bifurcated periodic solutions are stable [26], and the structure of
the global attractor can be described as in [18]
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been recently studied in [27, 28]. See also [40] for some further extensions when the
scalar equation is replaced by a system of delay differential equations.

A question arises: What happens if the delay is not a constant, but for example,
temporally periodic (maturation regulated by the seasonal variation of the environ-
ment)? If this delay is given by τ(t), would the model become

x′(t) = −dx(t) + αb(x(t − τ(t)))?

A positive answer was suggested and used in a number of studies including [11].
However, this answer ignored a key factor as explained below.

To understand why the general answer to the above question should be negative,
we call attention to the warning statement in the textbook [8] that one should
appropriately start with the description of population dynamics at the individual
level or to derive from a probabilistic formulation the system for the matured
population dynamics with variable delay.

Let us take the approach using reduction by integration along characteristics of
individual-based models. We define u(t, a) as the population density at time t and
age a. The dynamics is described by the basic evolutional operator

(
∂

∂t
+ ∂

∂a

)
u(t, a) = −μ(a)u(t, a)

subject to boundary condition

u(t, 0) = b(M(t)),

where the reproductive population is given by

M(t) =
∫ ∞

τ(t)

u(t, a)da.

Under the assumption that μ(a) is stage-dependent (not age-dependent) (that is,
μ(a) = μm for a constant independent of the age variable a ≥ τ(t), and μ(a) = μi

for a < τ(t)), we can use integration along characteristics to obtain

M ′(t) = −μmM(t) + (1 − τ ′(t))e−μiτ(t)b(M(t − τ(t))).

Note that a factor (1−τ ′(t)) appears, which is one only when the delay is a constant.
An interesting problem for future studies is whether we can transfer the above

model with variable delay to a periodic DDE model with a constant delay, with a
transformation that is guided by, and can provide with, biological insights into the
maturation process with variable maturation time.
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5.3 Lyme Tick Population Dynamics

An example to illustrate the importance of considering structured population mod-
elling and variable developmental delays is Lyme disease transmission dynamics.

Lyme disease spread involves complex interaction of a spirochete, multiple
vertebrate hosts, and a vector with a two (or three)-year life cycle strongly influenced
by the season rhythm. The black-legged tick, Ixodes scapularis Say, is the primary
vector of Borrelia burgdorferi, the bacterial agent of Lyme disease, in eastern and
mid-western United States. Northward invasive spread of the tick vectors from
United States endemic foci to non-endemic Canadian habitats has been a public
health concern. A mathematical model to faithfully describe the development of tick
populations and the pathogen spread dynamics is needed to understand the invasion
pattern and predict Lyme infection risk under projected environmental condition
variations.

In [38], a system of ordinary differential equations with periodic coefficients
was proposed for the tick population dynamics. Such a model implicitly makes
an assumption of exponentially distributed development delays. However, tick
development delay is normally concentrated around a particular value though this
value depends on the historical environment conditions up to the time of the
completion of the development. A more appropriate model would require the use
of time-varying development delay.

An attempt was made in [39] which carefully follows the development of tick
populations from one stage to another. In the formulated model, the development
delay is not a constant but rather a periodic function of the time due to seasonality
in the environmental conditions. The model parameters were estimated from many
years of surveillance, lab test and field data, and the theory of Floquet multipliers
of periodic systems was used to calculate the threshold condition for the tick
population dynamics. In the next subsections, we will introduce the model and some
relevant analyses.

5.3.1 Model Formulation and Objective

We now describe key ingredients in the aforementioned model study.

• Model formulation: a general dynamic population model where the development
time from one life stage to the next has considerable variation due to temperature
change.

• Key assumptions: the transition time between two consecutive stages is constant
when the temperature is fixed; the correlation between the fixed temperature
and the transition time can be determined from lab data; the temperature in a
considered region varies periodically (annually); and therefore the transition time
between two consecutive stages (in the considered region) is a temporally varying
periodic function (of the time).
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• Model variables: The life cycle of a population is divided into n stages, with each
stage embodying a specific point of the life of the individual. Let xj (1 ≤ j ≤ n)
be the size of subpopulations at the j th stage, with stages in order of increasing
maturity (e.g., egg, larvae, nymphs, adult. . . ), except x1 which is the size of the
mature subpopulation who are able to produce offspring (egg-laying females).

• Objective: To formulate a closed system for the dynamics of (x1(t), · · · , xn(t))

in order to predict the tick establishment risk.

Age-structured model, the starting point: We start with the population’s chrono-
logical age variable a (time since being produced as an egg), and describe the
evolution of ρ(t, a), the density of the female population, by

⎧⎨
⎩

( ∂
∂t

+ ∂
∂a

)ρ(t, a) = −μ(t, a)ρ(t, a),

ρ(0, a) = φ(a), a ≥ 0 (Initial Condition),
ρ(t, 0) = b(x1(t)), t ≥ 0 (Boundary Condition).

Here μ is the death rate. Integrating along characteristics yields

ρ(t, a) =
{

ρ(0, a − t)e− ∫ t
0 μ(r,a−t+r) dr , 0 ≤ t ≤ a,

ρ(t − a, 0)e− ∫ a
0 μ(t−a+r,r) dr , a < t.

A natural question then arises: What kind of homogeneity needs to be assumed to
permit the reduction from a structured population PDE model to a stage-structured
DDE model?

It turns out that the stage-homogeneity assumption about the mortality rate
μ(t, a) given below is (mathematically) sufficient and (practically) justified by how
the lab and field observation data is collected. This stage-homogeneity assumption
states that each mortality rate in a given stage is a constant independent of the ages
within the given stage, but the mortality rates can vary from one stage to another.
This is described by

μ(t, a) =
{

μ1(x1(t)), a ∈ [An(t),∞),

μi(xi(t)), a ∈ [Ai−1(t), Ai(t)], i = 2, · · · , n,

where Ai−1(t) and Ai(t) are the time-dependent minimum and maximum ages of
those individuals who are developing within the specific ith stage, and

{
x1(t) = ∫ ∞

An(t)
ρ(t, a) da

xi(t) = ∫ Ai(t)

Ai−1(t)
ρ(t, a) da, i = 2, · · · , n.
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Under this stage-homogeneity assumption, we have from the evolution equation
the following

x′
1(t) = ∫ ∞

An(t)
{(∂t + ∂a)ρ(t, a) − ∂aρ(t, a)} da − ρ(t, An(t))A

′
n(t)

= ρ(t,∞) + ρ(t, An(t)) − ∫ ∞
An(t)

μ(t, a)ρ(t, a) da − ρ(t, An(t))A
′
n(t)

= ρ(t, An(t))(1 − A′
n(t)) − ∫ ∞

An(t)
μ(t, a)ρ(t, a) da

= ρ(t, An(t))(1 − A′
n(t)) − μ1(x1(t))x1(t).

Similarly, for i = 2, · · · , n, we have

x′
i (t) = ρ(t, Ai−1(t))(1 − A′

i−1(t)) − ρ(t, Ai(t))(1 − A′
i (t)) − μi(xi(t))xi(t).

Therefore, we obtain the closed system:

{
x′

1(t) = ρ(t, An(t))(1 − A′
n(t)) − μ1(x1(t))x1(t),

x′
i (t) = ρ(t, Ai−1(t))(1 − A′

i−1(t)) − ρ(t, Ai(t))(1 − A′
i (t)) − μi(xi(t))xi(t).

(5.2)

Note also that x1 is decoupled from other equations in system (2).
With appropriate assumptions on b and μi , we can obtain the non-negativeness,

boundedness and the existence of the global compact attractor.
We now address the practical problem: How to calculate Ai(t) and ρ(t, Ai(t))

from the available data? To answer this question, we let τi(t) represent the length of
time that a tick is developed at time t into the (i+1)-stage from a tick at the previous
i-stage at time t − τi(t). Much of the qualitative analysis requires the condition

1 − τ ′
i (t) ≥ 0. (5.3)

It is important, for resolving the above practical problem, that we note τi(t) can be
approximated from lab data. An illustration is given in Fig. 5.2, see also [22–24] for
some of the lab data discussions.

Equally importantly, from the biological interpretations between maturation age
and chronological ages, we can calculate Ai(t) iteratively from τi(t) using the
following formula (formula (9) in [39]):

Ai(t) =
i∑

j=2

τj

⎛
⎝t −

i∑
k=j+1

τk

(
t −

i∑
l=k+1

τl (t − · · · τi−1(t − τi(t)))

)⎞
⎠ .

With the above discussions, we can then substitute

ρ(t, Ai(t)) = ρ(t − Ai(t), 0)αi(t, t − Ai(t))
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Fig. 5.2 Samples of time-varying development delays, using temperature data during 1971–2000,
in Port Stanley, Hanover and Wiarton Airport weather stations (Figure is taken from [39])

to the equation (5.2) coupled with the reproduction condition

ρ(t, 0) = b(xn(t))

to get a closed system. Here αi(t, t − Ai(t)) (i = 2, · · · , n) can now be calculated
and represents the density-dependent survival probability of an egg who was born
at time t − Ai(t) and is able to live until time t when the egg matures (fully) to the
ith stage.

5.3.2 The Ecological Threshold: Calculating Future
Generation of Egg-Laying Females

To answer the question whether the population can grow and establish in the
environment, we linearize the system at the zero solution to check if the population
will undergo exponential growth from a small population. This leads to the
introduction of the basic reproduction number R0.

In particular, the linearized system at the zero solution has a one-dimensional
decoupled subsystem

x′
1(t) = a(t)x1(t − An(t)) − μ1(0)x1(t),
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with a(t) = b′(0)αn(t, t − An(t))(1 − A′
n(t)) being the change rate of egg-laying

females at time t that depends on the number of egg-laying females at time t−An(t).
To define the basic reproduction number, we examine the future generation of

egg-laying female ticks. We assume that

h(t) := t − An(t) is a strictly increasing function of t.

Integration yields

x1(t) =
∫ t

−∞
e−μ1(0)(t−s)a(s)x1(s − An(s))ds.

This allows us to look at the number of newly generated egg-laying females per unit
time at time t , from an initial introduction of the egg-laying females with an initial
distribution of x(s), s ∈ R (Fig. 5.3).

More specifically, for a fixed time t , the cohort of egg-laying females will
produce some newborns who will eventually become egg-laying females at the
future time

h−1(t) := t̃ , where h(t̃) = t̃ − An(t̃).

Fig. 5.3 Calculation of Ai−1(t) and Ai(t), the time-dependent minimum and maximum ages of
those individuals who are developing within the specific ith stage. The calculations are based on the
time-varying development delays for the period 1971–2000, in Port Stanley, Hanover and Wiarton
Airport weather stations (Figure is taken from [39])
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At this future time, we have

d

dt
x1(t̃) = d

dt̃
x1(t̃)

dt̃

dt
= [a(t̃)x1(h(t̃)) − μ1(0)x1(t̃)] 1

1 − A′
n(t̃)

.

We write

d

dt
x1(t̃) = [a(h−1(t))x1(t) − μ1(0)x1(h

−1(t))] 1

1 − A′
n(h

−1(t))
.

That is, the number of newly generated egg-laying females per unit time at time t is
given by y(t) = c(t)x1(t) with

c(t) := a(h−1(t))/(1 − A′
n(h

−1(t))).

Multiplying x1(t) = ∫ t

−∞ e−μ1(0)(t−s)a(s)x1(s − An(s))ds by c(t) gives

y(t) = c(t)

∫ t

−∞
e−μ1(0)(t−s) a(s)

c(s − An(s))
y(s − An(s)) ds

=
∫ ∞

An(t)

c(t)e−μ1(0)(t−h−1(t−r))y(t − r) dr

=
∫ ∞

0
K (t, r)y(t − r) dr

with

K (t, r) =
{

b′(0)α̂n(h
−1(t))e−μ1(0)(t−h−1(t−r)) , r ≥ An(t),

0 , r < An(t).

Note that K (t, r) is a periodic function with respect to time t , i.e., K (t, r) =
K (t + ω, r). Biologically, this means that at time t , only the cohort of egg-laying
females who are still alive before time t − An(t) is capable of reproducing eggs
which will mature to new generation of egg-laying females.

It is now natural to introduce

Cω := {u : R → R is continuous , u(t + ω) = u(t)},
equipped with maximum norm ‖ · ‖, and let L : Cω → Cω be defined by

(L u)(t) =
∫ ∞

0
K (t, r)u(t − r) dr.

One can then show that L is strongly positive, continuous and compact on Cω. This
is called the next generation operator [7]. The basic reproductive number is defined
as the spectral radius of the linear integral operator
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R0 = ρ(L ).

In [39], it was proved that when R0 < 1, the zero solution is locally
asymptotically stable; when R0 > 1, the zero solution is unstable. The proof is
based on an application of the Krein–Rutman Theorem.1 We refer to [17, 33] for
some earlier results about the threshold R0 in our setting. The approach of [39]
follows more of [1, 2, 36].

5.3.3 Numerical Calculation of the Threshold: The
Mathematics Behind a Lyme Tick Risk Map

Not only the size of R0 relative to the unity is important to evaluate whether
the vector population can establish in the region, but also the value of this R0
is important to estimate the initial growth rate of population since near the zero
equilibrium the solution from a non-trivial initial value grows exponentially with
the rate ln R0 if R0 > 1. Therefore, if we are to apply the above theory in a practical
context, it is important to develop algorithms for calculating R0.

One such algorithm was developed in [39] using the most intuitive discretization
and integration. This algorithm links the calculation of R0 to the calculation of the
spectral radius of a Leslie matrix in a periodic environment. In particular, to compute
R0 numerically, we partition the interval [0, ω] into N (a large integer) subintervals
of equal length. Set ti = (i − 1)ω/N for i = 1, 2, · · · , N and let Wi = u(ti).
Then the problem of estimating R0 reduces to the calculation of the spectral radius
of a Leslie matrix. Namely, we have the matrix eigenvalue problem of the form
R̃0W = XW , where W = (W1,W2, · · · ,WN)T , and R̃0 is the spectral radius of a
N × N positive matrix X. In this matrix, the (i, j) element is given explicitly and
with a clear biological interpretation for each metric element.

The calculated R0 values for different regions and under different observed and
predicted environmental conditions can then be used to depict the tick reproduction
map for I. scapularis, see [38, 39]. This can then be used to estimate the impact of
predicted climate change on tick population dynamics [25], as illustrated in Fig. 5.4.
We should mention a recent study [5] that shows how remote sensing data can be
further used to increase the spatial detail for this Lyme disease risk mapping. This

1In functional analysis, the Krein-Rutman theorem is a generalization of the Perron-Frobenius
theorem to infinite-dimensional Banach spaces. It was proved by Krein and Rutman in 1948. The
Krein-Rutman Theorem states that: Let X be a Banach space, and let K ⊂ X be a convex cone
such that K − K is dense in X. Let T : X → X be a non-zero compact operator which is positive,
meaning that T (K) ⊂ K , and assume that its spectral radius ρ(T ) is strictly positive. Then ρ(T )

is an eigenvalue of T with positive eigenvector, meaning that there exists u ∈ K \ {0} such that
T (u) = ρ(T )u.



Fig. 5.4 Maps of values of R0 in North America, estimated from climate observations (1971–
2000: upper panel), and projected climate for 2011 to 2040 (middle panel) and for 2041 to 2070
(bottom panel). The color scale indicates R0 values. Figure is taken from [25], and shows the
northward expansion of the tick establishment due to climate warming. See [10] for a recent
modelling study about the epidemic propagation speed and patterns in a wave-like environment
as illustrated in the above maps
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study also shows how well the risk map coincides with the number of ticks submitted
to the Public Health Ontario, in the study area.

As another remark, we note that the equation for x1 is de-coupled from the rest
due to the use of the delay. However, for the purpose of Lyme disease risk projection,
it is important to describe the density and variation of feeding nymphs and ticks in
other stages since ticks in these stages are more involved in sharing the host for the
Lyme pathogen transmission, and for human to get infection from the infected ticks.
These densities can be described, using the formulation derived from Eq. (5.2), for
i = 2, · · · , n, given below:

x′
i = αi−1(t, t − Ai−1(t))b(x1(t − Ai−1(t)))(1 − A′

i−1(t))

−αi(t, t − Ai(t))b(x1(t − Ai(t)))(1 − A′
i (t)) − μi(xi(t))xi(t).

5.4 Bird Migration Dynamics: Spatial Heterogeneity
and Transition Delay

Structured population dynamics arises not only from temporally structured pop-
ulations, but also spatially segregated populations. We illustrate this here with a
model for bird migration. The model described is taken from a series of studies
[3, 4, 12, 34] on avian influenza spread modelling. The central issue of this series of
studies is seasonal bird migration dynamics and spatial-temporal distribution, and
its implications for avian influenza spread patterns.

This series of studies has been guided by some satellite tracking data from the
U.S. Geological Survey which recorded the migration path of a dozen bar-headed
geese (from Mongolia to India). The data also shows that migration routes are often
one-dimensional, as they tend to be funnelled into narrow pathways, often following
coastlines or mountain ranges.

It is therefore natural that we start with the spatially explicit bird migration
model using advection equations. Let x be the arc length along the continuum.
Let x1 = 0 be the summer breeding site, xn be the winter feeding location and
xi, i = 2, 3, ..., n − 1 be the stopover locations where birds stop for short periods
to feed. Let li be the distance between the locations xi and xi+1 and Ui be the mean
flight velocity between these two locations, so that the time taken to fly between xi

and xi+1 will be

τi = li/Ui.

The density s(t, x) obeys the advection equation

( ∂

∂t
+ Ui

∂

∂x

)
s(t, x) = −μis(t, x).
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Let Si(t) be the number of birds at location xi . Then at time t , the rate of birds
leaving patch xi is di(t)Si(t), with di(t) being the rate of outward migration from
patch i. The rate of birds arriving into patch xi+1 is

Uis(t, xi+1) = di(t − τi)Si(t − τi)αi(t).

Using integration along characteristics, one can obtain the following bird migration
patchy model:

⎧⎪⎨
⎪⎩

S′
1(t) = p(t)b(S1(t)) + αndn(t − τn)Sn(t − τn) − d1(t)S1(t) − μ1(t)S1(t),

...

S′
i (t) = αi−1di−1(t − τi−1)Si−1(t − τi−1) − di(t)Si(t) − μi(t)Si(t), 2 ≤ i ≤ n.

It is natural to choose the phase space C := 	n
i=1C([−τi, 0]).

To describe the qualitative behaviors of the model equation, we will need the
following section on discrete dynamical systems.

5.4.1 Monotone Maps and Threshold Dynamics

We start with introducing a few concepts:

• Let E be an ordered Banach space with positive cone P such that int(P ) �= ∅.
For x, y ∈ E, we write x ≥ y if x −y ∈ P ; x > y if x −y ∈ P \{0} and x >> y

if x − y ∈ intP .
• Let U ⊂ E and f : U → U be a given continuous map. We say that f is

monotone if x ≥ y implies f (x) ≥ f (y); strongly monotone if x > y implies
f (x) >> f (y).

• f : U → U is said to be strictly subhomogeneous if f (λx) > λf (x) for any
x ∈ U with x >> 0 and λ ∈ (0, 1).

In terms of the bird migration model, we define f : 	n
i=1C([−τi, 0]) →

	n
i=1C([−τi, 0]) by f (φ) = (Si(φ)ω)ni=1 for the period (ω)-operator of the model.

We also define P = 	n
i=1C([−τi, 0];R+). Then we have

• E is an ordered Banach space with positive cone P ;
• f : P → P is monotone; Sm is strongly monotone when mω ≥ max τi ;
• Assume all p(t) and di(t) are positive and ω-periodic and positive (this assump-

tion can be weaken), and b(0) = 0 and b : [0,∞) → [0,∞) being C1 and
strictly monotone. Therefore for any integer m such that mω > τ , Sm : U → U

is strongly monotone and precompact (i.e., the image of a bounded set in U under
Sm is contained in a compact set).
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We then have the following general result on threshold dynamics of monotone
maps [41]:

Theorem 5.1 (Threshold Dynamics Theorem) Let f : P → P be given such
that

(H1) f is strongly monotone and strictly subhomogeneous;
(H2) f m is precompact for some positive integer m, and every positive orbit

{f n(x); n = 1, 2, · · · } is bounded;
(H3) f (0) = 0 and Df (0) is compact and strongly positive.

Then the following threshold dynamics holds:

(TD1) if ρ(Df (0)) ≤ 1, then every positive orbit in P converges to 0;
(TD2) if ρ(Df (0)) > 1, then there exists a unique fixed point u∗ >> 0 in P such

that every positive orbit in P \ {0} converges to u∗.

To apply this for the bird migration model, we define R0 as ρ(Df (0)) with f

defined as above, then we conclude that if R0 ≤ 1, then Si(φ) → 0 as t → ∞ for
all φ ∈ P ; if R0 > 1, then the system has a unique positive ω-periodic solution such
that every solution of the system starting from P \ {0} converges to this positive
periodic solution. Calculation of R0 was performed in [35].

Despite this straightforward application of a general threshold dynamics theo-
rem, the established global asymptotical stability of a unique positive solution is
significant for the purpose of modelling bird influenza infection dynamics since
this global stability result gives us the theoretical foundation to estimate the initial
condition for bird influenza epidemic models. Namely, the theoretical result ensures
that starting from an arbitrary initial condition, the solution is eventually stabilized
at a unique positive periodic solution (assuming the threshold is larger than 1).
This unique periodic solution, easily obtained through numerically simulating the
bird migration model with an arbitrarily given initial data of birds for a sufficient
period of time, gives the initial susceptible birds at the onset of a bird influenza
outbreak. The long-term Limiting behaviors of an ecological model (bird migration
dynamics) give the Initial Condition of the epidemic model for a considered bird flu
outbreak.

5.5 Global Spread and Disease Epidemiology

The spread of avian flu with a particular strain such as H5N1 combines inter-
actions between local and long-range dynamics. The local dynamics involve
interactions/cross-contamination of domesticated birds, local poultry industry and
temporary migratory birds. The nonlocal dynamics involve the long-range trans-
portation of industrial material and poultry, and the long-range bird migrations
(Fig. 5.5).
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Fig. 5.5 The study [3] chose to focus on bar-headed geese as example species due to their
vulnerability to the avian influenza H5N1, as highlighted by the death toll in the 2005 Qinghai
Lake outbreak. The study used some satellite tracking data of bar-headed geese to extract the
information of arrival, the length of stay and the date and time since deployment, as well as the
average distance and time of flight between the current and previous stop sites. This information
was then used to parameterize the model and to produce the simulation results showing here.
The simulation shows that over a simulation of 50 years, the bird population reaches positive
periodic solution. This periodic state is reached for all non-trivial initial conditions, illustrating
the theoretically established global asymptotic stability of a unique periodic solution of the model
equation

To model the interaction of migratory birds and domestic poultry we must stratify
the migratory birds by their disease status and need to add domestic poultry. We use
a patch model, where we consider four representative patches: breading ground (b),
wintering ground (w), spring onward migration stop over (o) and fall migration,
returning to the wintering ground, patch (r). Within each patch, we need to consider
the migratory bird (subindex m) and domestic poultry (subindex p) populations,
and both are needed to be stratified by their infection status, susceptible (s) and
infected (i). Within each patch, we have the standard mass action for the disease
transmission, and between patch we assume migration of the migratory birds. This
yields the systems of differential equations for Migratory Bird Dynamics:

Ṡb
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coupled with the system for Poultry Population Dynamics:

İ b
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p(Nb
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mp(Nb
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p)I b
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mp(No
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p)I o
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İw
p = βw

p (Nw
p − Iw

p )Iw
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p )Iw
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p Iw
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İ r
p = βr

p(Nr
p − I r

p)I r
p + βr

mp(Nr
p − I r

p)I r
m − μr

pI r
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In [12], a threshold, given in terms of the spectral radius r(TI ) of the time T -
solution operator of the linearized periodic system of delay differential equations
at the disease-free equilibrium, was theoretically derived. A closed form in terms
of the model parameters is possible in some special cases. It was then shown that
this threshold determines whether disease persists or not: the non-trivial disease-
free equilibrium is globally asymptotically stable once the threshold is below 1; if
the threshold is larger than 1, then the disease is uniformly strongly persistent in
the sense that there exists some constant η > 0, which is independent of the initial
conditions, such that, for each c = b, o,w, r ,

lim inf
t→∞ I c

m(t) ≥ η, lim inf
t→∞ I c

p(t) ≥ η.

This result is based on the persistence theory discussed below: Let X be a
complete metric space with the metric d. Let X0 and ∂X0 be open and closed subsets
of X, respectively, such that X0 ∩ ∂X0 = ∅ and X = X0 ∪ ∂X0. Let S : X → X be
a continuous map with S(X0) ⊂ X0. We introduce a few concepts here:

• S is uniformly persistent with respect to (X0, ∂X0) if there exists η > 0 such that
for any x ∈ X0, lim infn→∞ d(Snx, ∂X0) ≥ η;

• A nonempty invariant set M ⊂ ∂X0 is isolated if it is the maximal invariant set
in some neighbourhood of itself;

• An isolated set A ⊂ ∂X0 is chained to an isolated set B ⊂ ∂X0, written as
A → B, if there exists a full orbit through some x /∈ A ∪ B such that ω(x) ⊂ B

and α(x) ⊂ A;
• A finite sequence {M1, · · · ,Mk} of invariant sets is called a chain if M1 →

M2 → · · · Mk . The chain is called a cycle if Mk = M1

We refer to [16, 32, 41] for more systematic treatments of the persistence theory,
but the theorem below is what was used in [12]:

Theorem 5.2 Assume that

• S : X → X has a global attractor;
• Let Aδ be the maximal compactor invariant set of S in ∂X0. Ãδ = ∪x∈Aδω(x) has

an isolated and acyclic covering ∪k
i=1Mi in ∂X0 (that is, Aδ ⊂ ∪k

i=1Mi , where
M1,M2, · · · ,Mk are pairwise disjoint and compact and isolated invariant sets
of S in ∂X0 such that each Mi is also an isolated invariant set in X, and no subset
of the Mi’s forms a cycle for Sδ = S|Aδ in Aδ).
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Then S is uniformly persistent if and only if for each Mi , we have Ws(Mi)∩X0 = ∅,
where Ws(Mi) = {x, x ∈ X,ω(x) �= ∅, ω(x) ⊂ Mi} is the stable set of Mi .

The persistence theory, when applied to the above avian influenza model,
concludes that the avian influenza spread persists in the sense that both infected
migratory and domestic poultry birds will remain strictly larger than a unspec-
ified constant. Numerical simulations have indicated that the pattern of disease
persistence can be quite complicated, and is not necessarily fluctuating regularly
as an annual cycle. This raises an issue about the estimation of inter-pandemic and
intra-pandemic intervals. There seems to be no theoretical framework that has been
applied to address this important practical issue.

Lyme disease dynamics was also considered in the study [20] with standard
stratification of tick populations by the infection status and by tick development
stages. The first such model is to assume the development rate is exponentially
distributed (and time-independent). This leads to an epidemic system of ordinary
differential equations with periodic coefficients. This formulation facilitates refined
persistence results about the periodicity of persistent disease spread patterns. It
remains to see whether the introduction of periodically varying delay will make
the model analysis much more complicated. From the public health prospective, it
would be desirable to establish not only the Lyme tick risk map, but Lyme disease
risk map—in terms of the threshold values of the epidemic models.

5.6 Summary

In this chapter, we consider modelling environment impact on vector-borne infec-
tion dynamics using delay differential equations. This is based on a series of
sections which introduce a general framework using delay differential equations,
and relevant results on global dynamics and persistence about the implication
of environment changes for the interplay of vector species ecology and vector-
borne disease epidemiology. General results are illustrated by applications to avian
influenza and Lyme disease spread.

We first consider spatiotemporal patterns of bird migration and seasonal stage-
activities of tick populations with focus on model formulation and parameterization.
Here, we derive, from first-order hyperbolic partial differential equations, prototype
delay differential equations describing the spatial dynamics of migratory birds and
stage-structured tick population dynamics. The periodicity in model coefficients and
delays arises due to seasonality. We illustrate how surveillance, laboratory, field
study and satellite/remote sensing data can be integrated to parameterize the models.

We then use the model to describe spatiotemporal patterns of bird migration
and seasonal stage-activities of tick populations: global dynamics. We describe the
phase space and general framework for the qualitative behaviors of delay differential
equations with periodic coefficients/delays and examine the global dynamics of
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the model systems using the monotone dynamical systems theory. We discuss the
impact of climate changes on vector establishment risks.

We finally consider avian influenza spread and Lyme disease epidemics: persis-
tence and irregular infection dynamics. Here we stratify the vector populations in
terms of their infection status (susceptible or infectious) and obtain corresponding
epidemic models. We introduce the concept and general results of infection
persistence and threshold phenomena, and we discuss further challenges depicting
the inter-epidemics and intra-epidemic intervals.

There are a number of challenging issues for the modelling, parameterization,
dynamic behavior analysis and numerics of structured population models arising
from vector-borne disease infection risk assessment consideration. Such a model
framework seems to be appropriate given the important role of the physiological
or geographical status of the vector species in defining the vector population
dynamics and the disease spread. The reduction from the structured population
models to delay differential equations is both mandated and facilitated by the fact
that surveillance data is normally collected for the vector in a certain physiological
stage or a geographic location, and this reduction also renders the well-established
dynamical systems theory of delay differential equations applicable to considering
some important ecological and epidemiological systems.
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