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Preface

Although the life sciences and mathematics have historically been separate, the
applications of mathematics to solving scientific problems in the life sciences are
now experiencing dramatic successes. Complex systems of biological processes
on the microscale up to ecological scales can be understood using mathematical
models. These range from predicting dynamics of cancers to revealing neuronal
pathways used in brain function, to understanding infectious disease outbreaks, to
predator-prey dynamics, species extinctions, and foreign species invasions.

A major mathematical tool in this field are dynamical systems. The interplay
between dynamical systems and biology works in two directions. On the one
hand, mathematics is used to reveal biological structures. Mathematical models
for the biological processes are written as complex dynamical systems. The
analysis of these dynamical systems then reveals emergent properties which then
provide biological insight. On the other hand, the biological problems suggest
new mathematical problems, which stimulate new areas for mathematical analysis,
expanding the area of dynamical systems. Areas such as dynamic network theory,
multiscale analysis, nonlinear invasions, pattern formation, and bifurcation theory
have been enriched from exposure to biological problems. The design of appropriate
mathematical models is quite an art, and it is one purpose of this textbook to
introduce the reader to the mathematical modelling with dynamical systems.

The inspiration for this book came from a summer school, Dynamics of Biolog-
ical Systems, part of the esteemed Séminaire de Mathématiques Supérieures (SMS)
series of summer schools in mathematics. The goal of this summer school, held at
the University of Alberta in 2016, was to investigate connections between dynamical
and biological systems and to illuminate the rich interactions between science and
mathematics that have been so successful to date. The focus was to understand the
mathematical structures of dynamical systems that come from biological problems,
then, relating the mathematical structures back to the biology to provide scientific
insight. We were fortunate to have exceptional lecturers at the summer school, who
have made significant contributions to ecological and biological modelling. Each
was invited to write a chapter encapsulating the topic of his or her lectures. In this
book, you will see the results of these invited contributions, plus an introductory
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vi Preface

chapter written by some of the book editors. The methods and topics of many of
the chapters are directly relevant to global issues of ecosystems, such as extinctions,
invasions, biodiversity, epidemics, and climate change, and we are grateful for the
opportunity to contribute to the Mathematics of Planet Earth.

The purpose of the introductory chapter by T. Hillen and M.A. Lewis is to set
the stage for the forthcoming topics. It reviews basic principles from the theory
of dynamical systems such as stability, linearizations, and bifurcations. It also
discusses the use of survival times and transition rates in modelling with ordinary
and partial differential equations.

The area of systems biology aims to describe how the behavior of a biological
system arises from the dynamics of its constituents. A large area within systems
biology is the modelling of biochemical networks and food-web networks and
their various methods of analysis. In Chap. 2, G. Yang and R. Albert introduce
a topological description of networks, which allows the network dynamics to be
described by a Boolean network.This methodology is scalable in the sense that large
biochemical networks can be treated without much additional effort. The Boolean
networks have been used successfully in many biological and medical contexts.

With the advent of new disease outbreaks, the accurate modelling of an epidemic
is a modern-day challenge. Many models simplify disease dynamics so as to allow
for straightforward mathematical analysis. However, in Chap. 3, M.Y. Li takes
another approach. He considers epidemic models that can include heterogeneity
of the host population, spatial distributions of the hosts, and detailed life cycles
of the infectious agent. The resulting epidemic models are large scale, and new
methods for analysis are needed. One such method, introduced here, is a graph-
theoretical approach. This approach allows the construction of Lyapunov functions
and a computation of the basic reproductive number R0.

Another approach to consider epidemic models in heterogeneous landscapes is
given by metapopulation models, as presented in Chap. 4 by Z. Feng and J.W.
Glasser. Here, the host population is split into smaller groups (metapopulations)
according to certain criteria. These metapopulations could reside in different
locations (such as villages) or different social groups (such as parents, children,
co-workers, etc.). Z. Feng and J. Glasser show how epidemic dynamics depend on
disease transmission both within and between different groups. They analyze how
this information can be used to device vaccination strategies.

In Chap. 5 by J. Wu, we encounter differential delay equations. J. Wu considers
vector-borne infections, where the dynamics of the vector (e.g. mosquito or tick)
must be included in the modelling. In many situations, this leads to differential
equations with delay, and J. Wu explains how the resulting models can be analyzed
and be applied to tick transmission of Lyme disease and bird transport of the avian
flu virus.

In Chap. 6, authored by H. Qian, we enter the realm of stochastic population
modelling. We again encounter the survival times first introduced in Chap. 1. Here,
they are used to define discrete-time Markov processes for population dynamics
and their corresponding Kolmogorov forward and backward equations. The analogy
to classical thermodynamics is used to make a connection to stochastic biological
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modelling in the new framework of mathematicothermodynamics, which offers a
new biological modelling paradigm.

The Turing model is one of the workhorses of biological pattern formation.
Initially proposed by Alan Turing in 1957, the Turing model has now been used
to describe species distributions, animal coat patterns, and vegetation patterns
in landscapes. P.K. Maini and T.E. Wooley review this mechanism in Chap. 7,
including beautiful examples of animal skin patterns, bone structures, and seashells.
This is the first application of partial differential equations encountered in the book.

Chapter 8 takes the analysis of reaction-diffusion equations, which was started
in the previous chapter, to a new level. K.Y. Lam and Y. Lou showcase the
broad applicability of reaction-diffusion models for species competition, species
persistence, heterogeneous landscapes, drift-diffusion problems, and evolution of
dispersal. They carefully introduce the mathematical setting of eigenvalue problems,
variational principles, super- and sub-solutions, and Lyapunov functions as tools for
the analysis of reaction-diffusion models. Open problems for further research are
suggested.

Chapter 9 by B. Perthame exposes the reader to the modelling of species
movement by transport equations, also called kinetic equations. B. Perthame
emphasises the roots of these models in physics and shows how physical scaling
principles can be used in the biological context.The chapter includes the detailed
functional analytic setting and a proof of weak convergence to the parabolic limit.

The chapters of this book cover a wide range of mathematical methods and
biological applications. We are grateful to the high-quality contributions of leading
experts in this area, which inspire readers to get involved in active research. We hope
we were able to shine a bright light onto the beautiful tools that arise through the
modelling with dynamical systems. We would be thrilled if this book sparks new
ideas for the mathematics of planet earth.

Edmonton, AB, Canada/Siena, Italy Arianna Bianchi
Edmonton, AB, Canada Thomas Hillen
Edmonton, AB, Canada Mark A. Lewis
Edmonton, AB, Canada Yingfei Yi
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Chapter 1
Dynamical Systems in Biology: A Short
Introduction

Thomas Hillen and Mark A. Lewis

Abstract The contributions to this textbook are based on a summer school on
Dynamics of Biological Systems as part of the series “Séminaire de Mathématiques
Supérieures,” which was held at the University of Alberta in June 2016. The
lectures cover a wide variety of topics and it would be presumptuous to assume
that all readers are equally familiar with all the background material. Hence we use
this introduction to lay down basic concepts on mathematical modelling, stability
analysis, nondimensionalizations, partial and ordinary differential equations, basic
population and epidemic models, random walk models, travelling wave solutions,
and the critical domain size problem. Experienced researchers can easily skip this
chapter.

1.1 Essentials of Survival-Time Analysis

Survival time is the foundation to many models for planet earth. Although classi-
cally formulated as time until death, survival time can be generalized to denote time
until any event, whether earthquake, species extinction, passage of a protein through
a membrane, or change of infection state. We start our analysis of survival time from
the perspective of a dynamical system.

Mathematical models in the form of ordinary differential equations (ODEs) often
use simple rate transition terms such as ẋ = −μx. In this context people often refer
to a Poisson process or exponential distribution, and it is sometimes not clear what
they mean. We like to use this section to understand where such terms in differential
equations come from and what is really behind the assumption of a Poisson process.
This will also clarify the relationship between rates and probabilities and highlight

T. Hillen (�) · M. A. Lewis
University of Alberta, Edmonton, AB, Canada
e-mail: thillen@ualberta.ca; mark.lewis@ualberta.ca

© Springer Nature Switzerland AG 2019
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2 T. Hillen and M. A. Lewis

a common misunderstanding of this relation. Furthermore, the general framework
developed here allows us to make a connection to delay differential equations.1

1.1.1 Basic Notations

We are interested in individuals that can change their state. For example, susceptible
individuals can get infected, prey individuals can be hunted, juvenile individuals can
mature, mature individuals can reproduce, etc. We like to understand the expected
time that an individual stays in a given state (i.e., time to get infected, time to get
eaten, time to mature, etc.), and to use this survival time in our modelling. We
introduce notation from [33]:

• Let a be the time that an individual spends in a given state. This time a has many
different names, depending on the application. The most general formulation is
the sojourn time, but other names are waiting time, interevent time, survival time,
or residency time [1, 33, 35].

• Let F(a) denote the probability that an individual has not left the state before or at
time a. Often F(a) is simply called the survival probability, where here survival
must be understood as survival in a given state until the individual moves to the
next state. We call F the sojourn function or survival function and we assume
that F(a) is non-increasing and F(0) = 1. If lima→∞ F(a) = 0, then each
individual has to leave the state eventually. If F(a) = 0 for all a > c, then
there is a maximum state duration time c and all individuals will have left before
time c.

• If T denotes a random variable for the time to exit a given state, then

F(a) = P(T > a).

• The function G(a) = 1 − F(a) = P(T ≤ a) denotes the probability to have left
before time a.

1.1.2 Conditional Probabilities and Exit Rates

We are interested in the conditional probability to still remain in the state for h time
units longer, given that the individual stayed already up to time a. This conditional
probability is given by

1This section is based on the more detailed presentation in Thieme [33].
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F(h|a) = F(a + h)

F (a)
. (1.1)

The conditional probability to exit exactly between time a and a + h, given that the
individual was in the state at time a is then

F(a)− F(a + h)

F (a)
= 1 − F(h|a).

If F is differentiable, then we define the exit rate as

μ(a) = lim
h→0

F(a)− F(a + h)

hF(a)
= −F ′(a)

F (a)
. (1.2)

Note that since F is non-increasing the rate μ(a) is non-negative. If F is not
differentiable, then we still use (1.2) with the distributional derivative of F .

Example 1.1 (Exponential Distribution) The first and most important example is
the exponential distribution. That is, we assume that the exit time is exponentially
distributed and the sojourn function is given by

F(a) = e−γ a, γ > 0.

In this case we can easily compute the rate (1.2) as

μ(a) = γ,

and the conditional probability (1.1)

F(h|a) = e−γ h = F(h).

Hence the conditional probability of surviving h time units longer is independent of
the time spent in the state. In fact, the exponential distribution is the only distribution
with this property:

Theorem 1.1 (From Proposition 12.8 in Thieme [33]) F(h|a) is independent of
a if and only if F(a) = e−γ a , for some constant γ ≥ 0.

In case that the time increment h = �t is small, we can expand the exponential
and find the probability of leaving the state in the interval [t, t +�t] as

G(�t) = 1 − F(�t |t) = 1 − e−γ�t ≈ γ�t + o(�t).

In fact, the approximation

G(�t) ≈ γ�t (1.3)
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is often used to explain the relationship of a rate to a probability. We see here that
this relationship is an approximation of the exponential function for small time
increments �t .

We can consider a similar expansion for general (differentiable) survival proba-
bilities F(a) as

G(�t) = 1 − F(�t |t) ≈ F ′(0|t)�t + F ′′(0|t) (�t)
2

2
+ h.o.t.

Let us take a brief look at the use of the relation (1.3) as it is often found
in the literature. Consider recovery from a disease and let us assume that 2 out
of 20 individuals recover per day. Then the probability to recover in one day is
G(1) = 2/20 = 0.1. The corresponding rate according to (1.3) is γ = G(1)/1 =
0.1. The rate here has units day−1. The probability to recover in 1/2 a day equals
G(0.5) = 1/20 and the corresponding rate is γ = (1/20)/(1/2) = 0.1. Similarly,
the probability to recover in 2 days is G(2) = 4/20 and the rate is γ = (4/20)/2 =
0.1. We see that the rate remains constant, but the probability of change depends on
the time interval chosen. It should be noted, though, that the rate has units day−1

and if these units are changed, to weeks−1, for example, then the rate changes as
well.

Let us consider a simple probabilistic model for the recovery process. If I (t)
denotes a random variable for the number of infected individuals at time t , then

I (t +�t) = I (t)−G(�t)I (t).

We subtract I (t) and divide by �t to obtain

I (t +�t)− I (t)

�t
= −G(�t)

�t
I (t).

Passing to the limit �t → 0 and using (1.3), we arrive at an ODE

d

dt
I (t) = −γ I (t).

1.1.3 Age Structured Models

The survival time analyses from previous sections include age structure, as given by
the dependence of the exit rate μ on age a in Eq. (1.2). We now focus on the issue
of how to model age dependency in more detail via age structured models. These
models can be applied to biological processes ranging from cells to populations of
organisms.
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In the general case we found the rate

μ(a) = −F ′(a)
F (a)

.

In this case it can be shown that the population density satisfies an age structured
model (see Thieme [33] for details). The McKendrick model describes the popula-
tion density u(t, a) of the number of individuals with state-age a at time t :

ut + ua = −μ(a)u
u(t, 0) = B(t) (1.4)

u(0, a) = u0(t),

where the indices t and a describe partial derivatives. The function B(t) describes
the individuals that enter the state with state-age 0. In addition to (1.4) we also
assume that no individual stays forever, i.e., u(t,∞) = 0.

The total state contents are then

N(t) :=
∫ ∞

0
u(t, a)da.

Example (Exponential Exit Times) In the case of exponential exit times F(a) =
e−γ a we find μ(a) = γ and we can integrate (1.4) with respect to a:

∫ ∞

0
utda +

∫ ∞

0
uada = −μ

∫ ∞

0
uda

which gives a linear birth–death ODE for N :

Ṅ = B(t)− μN(t). (1.5)

For the general case of F(a) it was shown in Thieme [33] that we can derive also
an equation for N(t).

Theorem 1.2 (Thieme [33]) Assume B(t) is continuous and F(a) is continuously
differentiable with F ′(a) ≤ KF(a). Then

Ṅ(t) = B(t)− C(t) (1.6)

with

C(t) =
∫ t

0
μ(a)B(t − a)F (a)da +

∫ ∞

t

μ(a)F (a)
u0(a − t)

F (a − t)
da,
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where u0(a) is the age distribution at time t = 0. If F is not differentiable, we can
still write C(t) using the integral over the measure dF(a) as:

C(t) = −
∫ t

0
B(t − a)dF (a)−

∫ ∞

t

u0(a − t)

F (a − t)
dF (a). (1.7)

Example 1.2 (Fixed Stage Duration) Another interesting example is the case where
individuals stay in the state for exactly τ time units and then they leave immediately.
In that case

F(a) =
{

1 a ≤ τ

0 a > τ
. (1.8)

The sojourn function F is not differentiable, but we can take the distributional
derivative as

F ′(a) = −δτ (a),

which means the measure in (1.7) is

dF(a) = −δτ (a)da.

Then (1.7) becomes

C(t) =
∫ t

0
B(t − a)δτ (a)da +

∫ ∞

t

u0(a − t)

F (a − t)
δτ (a)da

=
{
B(t − τ) t > τ

u0(τ − t) t < τ
.

This leads for t > τ to a delay differential equation for N :

Ṅ(t) = B(t)− B(t − τ).

1.1.4 Summary of the Sojourn Time Analysis

• The time that individuals spend in a given state can have a general probability
distribution F(a).

• The most important case is the exponential distribution F(a) = e−γ a . In this
case the rate μ(a) = γ is constant and the conditional probabilities to live h time
units longer do not depend on the actual survival time a. Typical transition terms
in differential equation models are based on the exponential distribution. The
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understanding that the transition probability in a small time interval [t, t +�t] is
given by P�t ≈ γ�t is in fact an approximation to the true value of

P�t = 1 − e−γ�t .

• A fixed stage duration (1.8) leads to delay differential equations.

1.2 Dynamical Systems and Linear Stability

Nonlinear dynamical systems can describe a broad array of processes in planet
earth. Subcellular processes include enzyme kinetics, nerve impulses, and hormonal
cycles. Physiological processes include the immune system, as well as organs such
as the heart or kidney. At the level of populations, nonlinear dynamical systems
can describe population trends, disease outbreaks, and species interactions. At even
higher levels, planetary motion can be understood via nonlinear dynamical systems.

Linear stability analysis is the workhorse for the analysis of nonlinear dynamical
systems, in particular in biological and medical applications [15, 29]. This method is
explained in all standard textbooks of mathematical biology [4, 5, 26] and dynamical
systems [15, 29]; hence here, we simply summarize the essential methodology and
refer to the literature for details. We cannot resist, however, to include the two-
dimensional trace–determinant stability criterion for discrete systems, since this is
not included in standard texts (see [16]).

1.2.1 Linear Stability

For a differentiable function f : Rn → Rn consider continuous and discrete n-
dimensional population models of the form

ẋ = f (x), (1.9)

xk+1 = f (xk), (1.10)

respectively. A steady state (fixed point, equilibrium) of (1.9) satisfies f (x̂) = 0,
and for (1.10) f (x̂) = x̂. We denote the Jacobian matrix evaluated at an equilibrium
point as Df (x̂).

The linearization of the ODE model (1.9) at x̂ is

ẋ = Df (x̂)x,

while the linearization of the discrete model (1.10) at a steady state is

xk+1 = Df (x̂)xk.
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The linearization tells us something about growth and decay of small perturbations
around an equilibrium point. Hence here, x(t) and xk are no longer the solutions
of the full nonlinear problems, but rather, they are small perturbations around the
steady state x̂. To be precise we should have used a different symbol, rather than x,
but it is standard to keep the symbol x as in the original equation. If the perturbations
converge to zero, then we call a steady state locally asymptotically stable, otherwise
the equilibrium could be stable or unstable.

A well-known result on linear stability which is probably used in the majority of
Math-Biology publications is

Theorem 1.3 Consider a differentiable f : Rn → Rn and a dynamical system
of the form (1.9) or (1.10). Let x̂ denote an equilibrium point and Df (x̂) be the
Jacobian. Let λi , i = 1, . . . , n denote the eigenvalues of the Jacobian, counted with
their multiplicity.

1. If Re(λi) < 0 for all i = 1, . . . , n, then x̂ is locally asymptotically stable
for (1.9).

2. If there exists a λi such that Re(λi) > 0, then x̂ is unstable for (1.9).
3. If |λi | < 1 for all i = 1, . . . , n, then x̂ is locally asymptotically stable for (1.10).
4. If there exists an eigenvalue λi with |λi | > 1, then x̂ is unstable for (1.10).

The reverse conclusions are in general not correct. Also note that eigenvalues
with Reλi = 0 for (1.9) and |λi | = 1 for (1.10) need special attention (see
detailed bifurcation analysis in Perko [29], Hirsch and Smale [20], Guckenheimer
and Holmes [15], Devaney [6]).

1.2.2 Linearization in Two Dimensions

It is worthwhile to study the 2D case in more detail. Assume f : R2 → R2 be
differentiable and let A := Df (x̂) denote a linearization at x̂. In two dimensions
there is a relation between eigenvalues and trace and determinant of the form

detA = λ1λ2, trA = λ1 + λ2.

Written in terms of eigenvalues this gives the quadratic formula for eigenvalues or
the trace–determinant formula:

λ1,2 = trA

2
± 1

2

√
tr2A− 4 detA. (1.11)

In Theorem 1.3 we saw that the real part of this expression describes local stability.
If tr2A − 4 detA < 0, then the real part is trA/2, and if tr2A − 4 detA > 0, then
the real part is the whole expression in (1.11). A detailed analysis of the different
cases leads to the well-known Zoo of qualitative behavior of steady states in 2D as
illustrated in Fig. 1.1 (see [5, 9, 32]).
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Fig. 1.1 The Zoo of qualitative behavior for two-dimensional ODEs

For the two-dimensional discrete system, stability is given by |λ1,2| < 1.

• If λ1 = λ̄2 are complex, then tr2A − 4 detA < 0, which implies detA > 0.
Moreover

|λi |2 = λ1λ2 = detA.

Hence |λi | < 1 for complex eigenvalues is equivalent with

0 < detA < 1. (1.12)

• If λ1 and λ2 are real, then we study two cases. In case of trA > 0 we find |λi | < 1
for i = 1, 2 iff

trA

2
+ 1

2

√
tr2A− 4 detA < 1

which can be transformed into the condition

detA > trA− 1. (1.13)

If trA < 0, then |λi | < 1 for i = 1, 2 is equivalent with

− trA

2
− 1

2

√
tr2A− 4 detA < 1
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Fig. 1.2 Trace–determinant stability criterion for discrete maps in two dimensions

leading to the condition

detA > −trA− 1. (1.14)

• Conditions (1.12), (1.13), and (1.14) define a stability triangle as shown in
Fig. 1.2.

1.3 Basic Epidemic Models

Mathematical theory has contributed greatly to our understanding of the dynamics
of disease outbreaks and persistence. Whether focusing on human health threats,
agricultural pests, or impacts of global change on disease states, mathematical
epidemiology has provided a modelling structure and formalism to understand
disease dynamics.

In epidemic modelling the population is often divided into susceptible S(t),
infected I (t), and recovered R(t) [2, 7, 16, 21]. Depending on the disease at hand,
each of these classes can be further subdivided into classes of exposed, latent,
vaccinated, quarantined, etc. Here we focus on the simple SIR model of susceptible,
infected, and recovered and the simplified SI model of Kermack and McKendrick
[16, 21]. The basic SIR model reads

Ṡ = −βSI + γR

İ = βSI − αI (1.15)

Ṙ = αI − γR,
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where β > 0 denotes the disease transmission coefficient, α > 0 is the recovery
rate, and γ > 0 denotes the rate of loss of immunity. Notice that this model (1.15)
does not include birth or death terms and the total population N = S+I+R remains
constant during this epidemic.

If recovered individuals stay immune for all time, i.e., γ = 0, then we obtain the
basic Kermack–McKendrick SI-model [21]

Ṡ = −βSI
İ = βSI − αI. (1.16)

A phase-plane analysis of this simple SI-model gives us insight into how an
epidemic spreads and when it does spread. System (1.16) has a continuum of steady
states of the form

{(S∗, 0); S∗ ≥ 0}.

The linearization of (1.16) at such a steady state is

(
0 −βS∗
0 βS∗ − α

)

with eigenvalues λ1 = 0 and λ2 = βS∗ − α. The eigenvalue λ1 corresponds to the
direction of the continuum of steady states (S-axis), while λ2 describes the stability
in the orthogonal direction (I -direction). If S∗ < α/β, then λ2 < 0 and (S∗, 0) is
stable, whereas if S∗ > α/β, then λ2 > 0 and (S∗, 0) is unstable (see Fig. 1.3 on
the left).

We can visualize the orbits in the phase plane by assuming that they lie on a
graph (S, I (S)). Then

dI

dt
= dI

dS

DI

dt
,

which implies

dI

dS
= İ

Ṡ
= βSI − αI

−βSI = −1 + α

βS
.

Integrating this equation from S0 to S gives

I (S) = I (S0)− (S − S0)+ α

β
(ln S − ln S0). (1.17)

Orbits of (1.16) lie on these curves (1.17) and are visualized in Fig. 1.3 on the right.
If S0 > α/β, then an epidemic outbreak takes place. The remaining susceptible
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Fig. 1.3 Left: Stability of the equilibria along the S-axis. Right: Sketch of the orbits of the SI
epidemic model (1.16)

population, S1 after the epidemic has passed, can be computed by finding the second
solution of I (S) = 0. If S0 < α/β, then there is no outbreak.

1.3.1 Basic Reproduction Number

In the previous example it turned out that the ratio α
β

or its inverse R0 = β
α

is of
particular importance. If we consider a population that is normalized to S + I ≤
1 and we consider a fully susceptible population S∗ = 1, then the disease-free
equilibrium (S∗, 0) of (1.16) is unstable forR0 = β

α
> 1 and stable forR0 = β

α
< 1.

Hence R0 acts as a bifurcation parameter that distinguishes between outbreak (for
R0 > 1) and no outbreak (for R0 < 1). R0 is called the basic reproduction number
and it can be computed for many more general epidemic models [2, 7, 16]. A general
method to compute R0 was introduced by Diekmann [8] and van den Driessche
and Watmough [34]. In the general framework an epidemic model is split into two
processes: new infections, expressed through an operator F , and transition between
infected compartments, expressed by an operator V :

ẋ = F(x)− V (x).

If DF and DV denote the linearizations of these operators in the disease-free
equilibrium, then van den Driessche and Watmough [34] could show that they have
the general form

DF =
(
A 0
0 0

)
, DV =

(
B 0
	 	

)
,
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where A and B are matrices of dimension m×m, where m is the number of infected
compartments. We use 	 to denote entries that are not important for our argument.
The next generation matrix is then defined as A B−1. It roughly measures the new
infections that arise, while infected individuals have not yet recovered. Van den
Driessche and Watmough [34] could show that the basic reproduction number R0
arises as the spectral radius of the next generation matrix:

R0 = ρ(A B−1).

If we use this abstract framework in the context of the simple SI-model (1.16), we
notice that we have only one infected compartment I , hence the above matrices A
and B have dimension 1× 1, i.e., they are scalar. To compute them we simply study
the infected equation and linearize with respect to I :

İ = βSI − αI = FI − V I

with operators FI = βSI and V I = αI . Linearizing these operators at (S∗, 0) =
(1, 0) gives

A = β B = α,

and the next generation matrix becomes

AB−1 = β

α
.

Then

R0 = ρ(DFDV −1) = β

α
,

as we found before.

1.4 Bifurcations

Bifurcations arise in dynamical systems when a small variation of a model
parameter leads to qualitatively different behavior of the corresponding dynamical
system. Bifurcations can be local or global. In a local bifurcation the stability of an
equilibrium might change, or the number of equilibria might change as a parameter
changes [15, 29]. We will discuss the elementary local bifurcations in this section.
Global bifurcations arise as the global phase portrait changes as a parameter varies.
Global bifurcations arise near heteroclinic and homoclinic orbits and they can lead
to new periodic orbits, invariant tori, or chaotic behavior. We will not study global
bifurcations here and we refer the interested reader to the literature [13–15, 28].
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We consider a dynamical system in Rn of the form

ẋ = f (x, μ),

where μ is a parameter and f (., μ) : Rn → Rn is continuously differentiable. Of
course, f can depend on more than one parameter, but here, to explain the basic
bifurcation principles, we focus on one scalar parameter μ. We call the class of
continuously differentiable vector fields on Rn as C1(Rn), equipped with the usual
C1-norm.

To describe a bifurcation mathematically we need to formalize the understanding
that vector fields are “close” and also the notion of “qualitatively the same” (see
[13–15, 28]).

Definition 1.1

1. Two vector fields f, g ∈ C1(Rn) are topological equivalent if there exists a
homeomorphism H : Rn → Rn that maps orbits of ẋ = f (x) onto orbits of
ẏ = g(y) and keeps the orientation of these orbits.

2. A vector field f ∈ C1(Rn) is structurally stable if there exists a neighborhood
Nf of f in C1(Rn) such that each g ∈ Nf is topologically equivalent to f .

3. Let f (x, μ) depend continuously on the parameter μ and f (., μ) ∈ C1(Rn) for
each μ. The parameter value μ0 is a bifurcation value if for each ε > 0 there are
values μ1 < μ0, μ2 > μ0 with |μi − μ0| < ε for i = 1, 2, such that f (x, μ1)

and f (x, μ2) are not topologically equivalent.

If f (x, μ) depends continuously on μ, then the set {f (., μ); |μ− μ0|} < ε} for
ε small enough forms a subset of the neighborhood Nf from item 2.

A trivial example of a bifurcation arises in the model of linear growth and decay

ẋ = μx.

For μ > 0 we obtain exponential growth, for μ = 0 we have constant solutions, and
for μ < 0 solutions decay exponentially. The bifurcation value is μ0 = 0.

1.4.1 Elementary Local Bifurcations

Here we consider one-dimensional vector fields f (., μ) : R → R and

ẋ = f (x, μ). (1.18)

Local bifurcations in one dimension arise at non-hyperbolic fixed points. Remem-
ber, a fixed point is called hyperbolic, if the linearization has no eigenvalue with real
part equal to zero.
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Definition 1.2 x̄ is a bifurcation point and μ̄ a bifurcation value of (1.18) if

f (x̄, μ̄) = 0,
∂

∂x
f (x̄, μ̄) = 0.

Notice that f (x̄, μ̄) = 0 means that x̄ is an equilibrium and f ′(x̄, μ̄) means that
this equilibrium is not hyperbolic.

To consider the three elementary bifurcations in one dimension, we simply study
the corresponding normal forms. Normal forms are essentially the simplest explicit
form that has the desired behavior. There is a comprehensive normal form theory,
which we will not discuss here (see [15]).

1. Saddle-node bifurcation: The normal form of a saddle-node bifurcation is

ẋ = μ− x2. (1.19)

Here the vector field is f (x, μ) = μ− x2, the equilibria are x̄ = ±√μ, and they
exist only for μ ≥ 0. The fixed points have the linearization

∂

∂x
f (x̄, μ̄) = −2x̄ = ∓√μ.

Hence the non-hyperbolic fixed point is x̄ = 0 for μ = 0. In Fig. 1.4 we show
the phase line plots for three values of μ < 0, μ = 0, μ > 0. We see that for
μ < 0 we have no equilibrium, while at μ = 0 we have exactly one equilibrium,
which is non-hyperbolic and for μ > 0 we have two equilibria, where −√μ is
unstable and

√
μ is asymptotically stable. The lower figure in Fig. 1.4 shows the

corresponding bifurcation diagram. We plot the equilibrium points as function of
the bifurcation parameter μ where we indicate stable fixed points by a solid line
and unstable fixed points by a dashed line.

2. Transcritical bifurcation: The normal form of a transcritical bifurcation is

ẋ = μx − x2. (1.20)

Here the vector field is f (x, μ) = μx − x2, the equilibria are x̄ = 0 and x̄ = μ.
The fixed points have the linearization

∂

∂x
f (x̄, μ̄) =

{
μ for x̄ = 0

−μ for x̄ = μ.

Hence the non-hyperbolic fixed point is x̄ = 0 for μ = 0. In Fig. 1.5 we show the
phase line plots for three values of μ < 0, μ = 0, μ > 0. We see that for μ < 0
the fixed point x̄ = μ is unstable, while 0 is stable. At μ = 0 the fixed point 0
is non-hyperbolic and for μ > 0 the point 0 is unstable and μ is asymptotically
stable. The lower figure in Fig. 1.4 shows the corresponding bifurcation diagram.
The origin switches stability as the other fixed point transitions through 0.
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Fig. 1.4 Top row: qualitative different phase line plots. Bottom row: bifurcation diagram of a
saddle-node bifurcation

Fig. 1.5 Top row: qualitative different phase line plots. Bottom row: bifurcation diagram of a
transcritical bifurcation

3. Pitchfork bifurcation: The normal form of a pitchfork bifurcation is

ẋ = μx − x3. (1.21)

Here the vector field is f (x, μ) = μx − x3, the equilibria are x̄ = 0 and x̄ =
±√μ. The latter only exist for μ ≥ 0. The fixed points have the linearization
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Fig. 1.6 Top row: qualitative different phase line plots. Bottom row: bifurcation diagram of a
pitchfork bifurcation

∂

∂x
f (x̄, μ̄) =

⎧⎨
⎩
−2μ for x̄ = −√μ

μ for x̄ = 0
−2μ for x̄ = √

μ.

Hence the non-hyperbolic fixed point is x̄ = 0 for μ = 0. In Fig. 1.6 we show
the phase line plots for three values of μ < 0, μ = 0, μ > 0. We see that for
μ < 0 we have one stable equilibrium at x̄ = 0. At μ = 0 we still have a
stable equilibrium at x̄ = 0, but it is non-hyperbolic. For μ > 0 we have three
equilibria, where x̄ = 0 is unstable and x̄ = ±√μ are both asymptotically stable.
The lower figure in Fig. 1.6 shows the corresponding bifurcation diagram.

Bifurcations in one-dimensional vector fields cannot lead to periodic solutions.
However, this is possible in two dimensions and higher and the prototype of a
bifurcation that creates periodic orbits is the Hopf bifurcation. Again we look at
a normal form

ẋ = −y + x(μ− x2 − y2)

ẏ = x + y(μ− x2 − y2).

Using planar polar coordinates (r, θ) the above system can be written as

ṙ = μr − r3 (1.22)

θ̇ = 1. (1.23)
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Fig. 1.7 Top row: qualitative different phase plots. Bottom row: bifurcation diagram of a Hopf
bifurcation

The radial equation (1.22) has the normal form of a pitchfork bifurcation (1.21) and
the bifurcation point r̄ = 0 corresponds to the origin (x̄, ȳ) = (0, 0). The angular
equation (1.23) describes rotation around the origin with constant speed 1. Hence
the equilibrium point r̄ = √

μ becomes a periodic orbit for the system (1.22) and
(1.23). The point r̄ = −√μ does not exist, since r ≥ 0. The creation of a periodic
orbit from a pitchfork bifurcation is shown in Fig. 1.7.

1.5 Diffusion as a Random Walk

The idea of diffusion originates from the movement of pollen particles via Brownian
motion. However, in practice, diffusion can be used to model movement patterns
where there is a random component [3, 27]. Whether animals, cells, or even stock
prices, the underlying mathematical model is similar.

1.5.1 Diffusion Process

We define p(x, t) to be the probability density function for a particle moving
randomly on a lattice with lattice spacing λ and time step τ . At each time step the
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x+lx-l x

Fig. 1.8 A single step of the random walk process

particle jumps to the left with probability 1/2 and jumps to the right with probability
1/2. The master equation describes how p(x, t) changes during one step of the
random walk [1]. Master equation:

p(x, t + τ) = 1

2
p(x − λ, t)+ 1

2
p(x + λ, t). (1.24)

Here an individual at x at time t + τ can have arrived from either the left or from
the right (Fig. 1.8).

We consider the case where the space and time steps are small and approximate
p(x, t) in Eq. (1.24) using Taylor series expansions in x and t

p(x, t) + τ
∂p

∂t
(x, t)+ (τ )2

2

∂2p

∂t2
(x, t)+ h.o.t.

= 1
2

{
p(x, t)− λ

∂p

∂x
(x, t)+ (λ)2

2

∂2p

∂x2
(x, t)+ h.o.t.

+ p(x, t)+ λ
∂p

∂x
(x, t)+ (λ)2

2

∂2p

∂x2 (x, t)+ h.o.t.

}
. (1.25)

This simplifies to

∂p

∂t
+ τ

2

∂2p

∂t2
= (λ)2

2τ

∂2p

∂x2 + h.o.t. (1.26)

We consider the limit where the space and time steps approach zero. If we choose

the limit carefully so that λ, τ → 0 so that (λ)2

2τ → D, then Eq. (1.26) yields the
diffusion equation

∂p

∂t
= D

∂2p

∂x2 . (1.27)

The probability density function for the initial location of the particle gives the initial
condition p(x, 0) = p0(x) for Eq. (1.27).

The limit λ, τ → 0 so that (λ)2

2τ → D is referred to as the diffusion limit and
leads to the diffusion equation (1.27). See [27] for a discussion of alternative limits
and resulting models.
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Fig. 1.9 Fundamental
solution to the diffusion
equation (1.27)

p(x,t)

t = t1

t = t2

x

1.5.2 Fundamental Solution to the Heat Equation

If we consider an individual released at x = 0 at time t = 0, then p0(x) = δ(x).
The solution to (1.27) for this initial condition is called the fundamental solution to
the heat equation and is given by

p(x, t) = 1

2
√
πDt

e−
x2

4Dt . (1.28)

Figure 1.9 shows the solution (1.28) for different values of t > 0, and can be
interpreted as a Gaussian distribution with zero mean and variance 2Dt . The growth
in the variance over time represents increasing uncertainty regarding the location of
the particle as time progresses. This solution (1.28) can be found through Fourier
transform methods [19]. However, it is straightforward to verify that (1.28) satisfies
the diffusion equation (1.27) plus the point source initial condition.

1.5.3 Biased Random Walk

It may be that the probability of jumping to the left or right is not exactly 0.5,
as assumed above. For example, there could be drift in a given direction due to
underlying wind or water flow [25]. Alternatively, an individual may prefer one
direction over another because the environment is more favorable, or because there
is a stronger chemical cue in that direction. Regardless of the reason, a slight bias in
movement (R = 0.5 + γ λ, L = 0.5 − γ λ) yields an advection–diffusion equation

∂p

∂t
+ v

∂p

∂x
= D

∂2p

∂x2 , (1.29)
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where the limiting process is as described above, but with γ (λ)2

2τ → γD = v. A
point source initial condition p0(x) = δ(x) leads to the fundamental solution

p(x, t) = 1

2
√
πDt

e−
(x−vt)2

4Dt , (1.30)

which is a Gaussian with variance 2Dt , shifting to the right with velocity v.

1.5.4 Correlated Random Walk in One Dimension

We have seen already that there is a close connection between reaction–advection–
diffusion equations and random walks. Here we like to present the approach to
derive the RD equations from a correlated random walk. Since the scaling of the
parameters in this case is different than before, we encounter an intermediate partial
differential equation which is called the one-dimensional correlated random walk
(CRW). While these CRW equations can be scaled to become the standard diffusion
model, it is also useful to consider the CRW model in itself. In fact, we will show
here that the CRW system is a transport equation and whence prepare the chapter of
B. Perthame on transport equations in biology (see also [16, 18, 30]).

In the framework of a correlated random walk we want to keep track of
the correlations in movement directions. We introduce u±(x, t) for densities of
individuals who arrived at x at time t by moving right (left). The master equation
with step size τ and space step δ is

u+(x, t + τ) = pu+(x − δ, t)+ (1 − p)u−(x − δ, t), (1.31)

u−(x, t + τ) = pu−(x + δ, t)+ (1 − p)u+(x + δ, t), (1.32)

where p = 1 − λτ is the probability of persisting in the direction of movement and
λ is the turning rate.

In the limit

lim
τ,δ→0

δ

τ
= γ, (1.33)

one obtains the equations for a one-dimensional correlated random walk (CRW)

u+t + γ u+x = λ(u− − u+),
u−t − γ u−x = λ(u+ − u−). (1.34)

We can find an equivalent system by using the total population density u =
u+ + u− and the population flux v = γ (u+ − u−) to get to the system

ut + vx = 0, vt + γ 2ux = −2λv, (1.35)
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which is also known as Cattaneo system [17]. Then, dividing the equation for v by
2λ and letting λ, γ →∞ with the parabolic limit

lim
λ,γ→∞

γ 2

2λ
= D <∞, (1.36)

we obtain, again, the diffusion equation

ut = Duxx. (1.37)

We like to show now that the one-dimensional model for correlated random
walk (1.34) is also a transport equation as introduced in a later chapter by B.
Perthame. He considers the space and time evolution of a particle density f (x, ξ, t),
where ξ ∈ V ⊂ Rn denotes the actual velocity of this particle. The particle can
change direction and, as assumed by B. Perthame, it often chooses a new direction
that corresponds to a given equilibrium density, called the Maxwellian M(ξ). The
equations are

∂

∂t
f (x, ξ, t)+ ξ · ∇f (x, ξ, t) = k

(
n(x, t)M(ξ)− f (x, ξ, t)

)
, (1.38)

where k > 0 is a constant and

n(x, t) =
∫
V

f (x, ξ, t)dξ

is the total population density. The analysis and modelling with (1.38) will be
presented later. Here we only like to show that the one-dimensional correlated
random walk (1.34) has exactly the form (1.38). Let us go back to (1.34) and write
it in an equivalent form as

u+t + γ u+x = 2λ
(

1
2 (u

+ + u−)− u+
)
,

u−t − γ u−x = 2λ
(

1
2 (u

+ + u−)− u−
)
.

(1.39)

We have two speeds V = {−γ,+γ } and we can write

u−(x, t) = f (x,−γ, t), u+(x, t) = f (x,+γ, t).

The equilibrium distribution M(ξ) satisfies λ(u−−u+) = λ(M(−γ )−M(+γ )) =
0, hence M(−γ ) = M(+γ ). Furthermore, M is normalized, i.e.,

1 =
∫
V

M(ξ)dξ = M(−γ )+M(+γ )
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which implies

M(ξ) = 1

2
, ξ ∈ {−γ,+γ }.

The total population density is

n(x, t) =
∫
V

f (x, ξ, t)dξ = u+(x, t)+ u−(x, t).

Finally we set k = 2λ. In this case system (1.38) consists of exactly two equations
and these are given in (1.39).

1.6 Reaction–Diffusion Models

An alternative method for deriving advection–diffusion equations comes from
continuum modelling. This approach has the advantage that nonlinear reaction
terms, such as birth and death, are easy to include. The underlying variable is the
population density, u(x, t). Unlike p(x, t) above, this quantity is not considered
to be a probabilistic measure of the spatial location of an individual, but rather
is deterministic measure and is therefore applicable to the case where there are
many similar individuals in a population, and we are interested in the change
in population density over time. The population density could describe reacting
chemicals, interacting species, infective individuals, and range of other possibilities.

1.6.1 Balance Laws

A balance law describes the rate of change in number of individuals in a given
arbitrary region � with a smooth boundary. The flux in population density, J (x, t),
is a vector describing the flow of individuals with units of density times velocity.
The rate of change of individuals in � is given as a function of the flux across the
boundary of �, �, and the population growth rate, f (u(x, t)) (units density per unit
time) within � (Fig. 1.10). Mathematically, the balance law is written as

∂

∂t

∫
�

u(x, t)dV = −
∫
�

J (x, t) · n dS +
∫
�

f (u(x, t))dV . (1.40)

The divergence theorem, which states that

∫
�

J (x, t) · n dS =
∫
�

divJ (x, t)dV, (1.41)
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Fig. 1.10 The arbitrary
region � used in the
formulation of a conservation
law

u(x,t)

n J

can be used to rewrite Eq. (1.40) as

∫
�

(
∂u

∂t
+ divJ − f (u)

)
dV = 0. (1.42)

Equation (1.42) must hold for every arbitrary test region �. The only way that this
can occur is when the integrand is identically zero (almost everywhere), so

∂u

∂t
+ divJ = f (u). (1.43)

This is referred to as a balance law equation, it balances the change of the particle
density via flux J and growth or decay f . The final step needed to formulate a
reaction–advection–diffusion equation requires an explicit connection between the
flux vector J and the population density and/or its gradient. This connection is
developed in the next section.

1.6.2 Modelling the Flux

Typically there are two components to the flux: diffusive and advective. Diffusive
flux describes population density moving from high to low, with a magnitude
proportional to the gradient of the density so that J = −D∇u. Advective flux
describes population density moving via bulk transport with velocity v so that
J = vu. Both of these processes can act at the same time, so combining the two
terms gives

J = −D∇u+ vu, (1.44)

advection–diffusion flux. Substituting the advection–diffusion flux into the balance
law equation (1.43) yields the advection–diffusion–reaction equation
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∂u

∂t
+∇ · (vu) = ∇ · (D∇u)+ f (u), (1.45)

or in one dimension

∂u

∂t
+ ∂

∂x
(vu) = ∂

∂x

(
D
∂u

∂x

)
+ f (u). (1.46)

Note that the case where v and D are constant and the reaction term f is zero gives
an equation with the same terms as the probabilistic model of a random walk with
bias (1.29).

1.6.3 Modelling the Growth

The simplest spatio-temporal models in mathematical biology couple simple dif-
fusive flux with nonlinear growth in one spatial dimension. These models take the
form of 1D reaction–diffusion equations [3, 26, 27]

∂u

∂t
= D

∂2u

∂x2 + f (u). (1.47)

The best known examples choose the nonlinear growth function f (u) to be a
polynomial. For example, quadratic f ,

f (u) = ru
(

1 − u

K

)
(1.48)

gives rise to logistic growth, with r the intrinsic growth rate, and K the carrying
capacity. Here population is assumed to be positive. The growth rate f (u) is zero at
the extinction (u = 0) and carrying capacity (u = K) steady states, is positive below
the carrying capacity (0 < u < K), and is negative above the carrying capacity (u >
K). When this quadratic growth function is coupled to diffusion via Eq. (1.51) the
resulting model is referred to as Fisher’s equation or Fisher-KPP equation [11, 22].

A variant on the logistic growth function is given by the cubic function:

f (u) = ru
(

1 − u

K

)(
u− C

K

)
. (1.49)

As before, steady states are given by the extinction (u = 0) and carrying capacity
(u = K). However, an additional threshold steady state (u = C) is also included.
The growth rate is negative below this threshold steady state (0 < u < C), is
positive at intermediate densities (C < u < K), and is negative at high population
densities (u > K). This bistable equation describes the so-called Allee dynamics,
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dynamics which reflect the inability of populations to exhibit net growth until they
surpass the critical threshold for density, C [3, 27].

1.6.4 Systems of Reaction–Diffusion Equations

Often spatially distributed populations do not act in isolation, but interact with other
distinct populations. Examples are numerous and include populations of interacting
chemicals, competing species, and predator and prey populations [3, 24, 27, 31].
The simplest situation is that of two interacting species, each of which diffuses at a
different rate in one spatial dimension. In this case, the model for the two population
densities, u(x, t) and v(x, t), becomes

∂u

∂t
= D1

∂2u

∂x2 + f (u, v), (1.50)

∂v

∂t
= D2

∂2v

∂x2 + g(u, v). (1.51)

1.7 Travelling Waves

One of the key behaviors of scalar reaction–diffusion equations is that of spatial
spread. A population that grows locally may spread spatially into new environments
as it diffuses from one location to the next and then continues to grow in the new
location. Examples range from biological invaders to waves of chemicals across the
surface of cells.

In this case, a relevant mathematical structure to consider is that of a travelling
wave connecting the zero equilibrium (u = 0) to the carrying capacity (u = K).
A travelling wave moves across the spatial domain with a given speed, c, while
retaining a fixed shape (Fig. 1.11). In this case, the solution can be written in the
form u(x, t) = U(x−ct). The travelling wave speed can be interpreted biologically
as the rate at which the population invades a new environment.

Fig. 1.11 A travelling wave
moves across the domain with
speed c while retaining its
shape

u(x,t)

c

x
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The travelling wave ansatz, u(x, t) = U(x − ct), can be used to translate the
terms in Eq. (1.51) into ordinary derivates

∂

∂t
u(x, t) = −cU ′, ∂2

∂x2 u(x, t) = U ′′,

where ′ indicates differentiation with respect to the travelling wave variable z =
x − ct . With these substitutions Eq. (1.51) becomes

cU ′ +DU ′′ + f (U) = 0. (1.52)

Our requirement that the travelling wave connects the zero equilibrium to the
carrying capacity yields boundary conditions as U(−∞) = K, U(+∞) = 0.
The travelling wave problem can be stated in terms of a question: For what value(s)
of c does a non-negative travelling wave exist, satisfying

cU ′ +DU ′′ + f (U) = 0, U(−∞) = 1, U(+∞) = 0? (1.53)

We investigate the travelling wave problem (1.53) by means of introducing the
dummy variable V = U ′ and then analyzing the resulting system of ordinary
differential equations in the phase plane [10]. Equation (1.52) becomes

U ′ = V, (1.54)

V ′ = − 1

D
(cV + f (U)) . (1.55)

The boundary conditions in (1.53) define a heteroclinic orbit in the (U, V ) phase
plane going from (1, 0) to (0, 0). Thus the travelling wave problem can be rephrased
as asking whether there are values of c such that a heteroclinic orbit from (1, 0) to
(0, 0) exists for (1.54)–(1.55) where U ≥ 0 along the orbit.

For Fisher’s equation (1.48), linearization about the leading edge of the wave
(U = 0, V = 0) shows that (0, 0) is a stable spiral for 0 < c < c∗ = 2

√
rD

(Fig. 1.12), and is a stable node for c ≥ c∗ (Fig. 1.13). Linearization about the
trailing edge of the wave (U = 1, V = 0) shows that (1, 0) is always a saddle
(Figs. 1.12 and 1.13).

The fact that (0, 0) is a stable spiral for 0 < c < c∗ means that there exists a
neighborhood of (0, 0) where the associated travelling wave solution U(z) must go
negative (Fig. 1.12). The fact that (0, 0) is a stable node for c ≥ c∗ allows for the
possibility of a heteroclinic orbit with an associated travelling wave solution that
is non-negative (Fig. 1.13). The actual proof that c ≥ c∗ leads to a non-negative
travelling wave requires a little more work in the phase plane. Details of the proof
are given in [10]. The speed

c∗ = 2
√
rD (1.56)
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Fig. 1.12 When
c < c∗ = 2

√
rD the origin is

a stable spiral. This means
that U(z) goes negative and
there is no non-negative
travelling wave solution U(z)

V

U

c < c*

U(z)

z

Fig. 1.13 When
c ≥ c∗ = 2

√
rD the origin is

a stable node and there exists
a non-negative travelling
wave solution U(z)

V

U

U(z)

z
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is referred to as the minimum wave speed for Fisher’s equation. Any travelling wave
solution to Fisher’s equation must move at a speed which is at least c∗. It is possible
to use a dimensional analysis to show that the formula for c∗ makes sense from
the perspective of units. The quantity r has units of time−1, whereas D has units of
length 2× time−1. Thus 2

√
rD has the appropriate units for speed: length × time−1.

A similar type of analysis for the case with Allee dynamics (1.49) shows that
there is a saddle–saddle connection from (1, 0) to (0, 0), and in this case there is a
unique wave speed c which gives this heteroclinic orbit [10].

There is a large number of methods to find and analyze travelling waves and
invasion speeds and a specialized literature is available. For more details, see [3, 12,
26].

1.8 Critical Domain Size Problem

Consider a population that lives on a patch of habitat with hostile boundaries.
We may be interested in how large the patch needs to be in order to support the
population. This question arises in the analysis of terrestrial reserves and marine
protected areas, which are designed to help ensure the long-term persistence of
species at risk.

The mathematical formulation of the equation is given by

∂u

∂t
= D

∂2u

∂x2 + f (u) (1.57)

u(0, t) = 0, u(l, t) = 0

u(x, 0) = u0(x),

where u0(x) is non-negative and not identically zero. We again choose a simple
quadratic growth function (1.48), which yields Fisher’s equation in (1.57).

For the critical domain problem with Fisher’s equation, the following questions
are equivalent [3, 5, 23]:

1. How large must a patch be to support a population?
2. What is the critical domain size lc such that a nontrivial stationary solution

(steady state) exists for l > lc?
3. What is the critical domain size lc such that u ≡ 0 is stable for l < lc and unstable

for l > lc?

The formulation of each question takes a different perspective on the same problem.
Question 1 takes the biological perspective. Question 2 takes the perspective
of existence of a nontrivial steady-state solution U(x) (Fig. 1.14). This can be
understood through analysis of
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Fig. 1.14 A nontrivial
stationary solution to
Eq. (1.57)

0 l

Fig. 1.15 Bifurcation
diagram shows the maximum
height of the equilibrium
solution versus the domain
size l

1

lc l

DU ′′ + rU

(
1 − U

K

)
(1.58)

U(0) = 0, U(l) = 0,

which gives rise to a bifurcation diagram of the form given in Fig. 1.15. Details of
the analysis can be found in [23].

Question 3 takes the perspective of the stability of u ≡ 0. This can be understood
through analysis of the linearized model

∂u

∂t
= D

∂2u

∂x2 + ru (1.59)

u(0, t) = 0, u(l, t) = 0

u(x, 0) = u0(x).

Because (1.59) is a linear equation it can be solved by the method of separation of
variables [19]. This yields

u(x, t) =
∞∑
k=1

Bke

(
r−D

(
kπ
l

)2
)
t
sin

(
kπ

l
x

)
, (1.60)



1 Dynamical Systems in Biology: A Short Introduction 31

where the constants Bk are determined by initial condition u(x, 0). The population
will grow if r − D(kπ/l)2 > 0 for some wave number k and will not grow if
r −D(kπ/l)2 < 0 for all wave numbers k. The fastest growing mode is associated
with wave number k = 1, so the population grows if and only if l exceeds

lc = π

√
D

r
. (1.61)

This leads to an unstable trivial equilibrium u ≡ 0. Hence lc is referred to as the
critical domain size. The population will not grow if l < lc and will grow if l > lc.
As with the travelling wave problem, it is possible to check to make sure that the
units make sense. As before, the quantity r has units of time−1 whereas D has units
of length2×time−1. Thus π

√
D/r has the appropriate units for domain size: length.

1.9 Nondimensionalization

Nondimensionalization is one of the longest words used in biological dynamics
theory. This is why we have left it to the end of the chapter. Besides of being
an extraordinary word, it gives an important method for the analysis of biological
models. It makes the analysis independent of physical dimensions such as time,
space, size, etc. It reduces the number of independent parameters and it can often be
used to identify large and small quantities, indicating fast and slow time scales.

As an example for nondimensionalization we consider the standard Fisher’s
equation for a spatially distributed population u(x, t), given by Eqs. (1.51)
and (1.48), and reproduced here for the reader’s convenience:

∂u

∂t
= D

∂2u

∂x2
+ ru

(
1 − u

K

)
. (1.62)

The parameter r > 0 denotes the population growth rate, K > 0 denotes the
carrying capacity, and D > 0 is the diffusion coefficient. Hence this is a three
parameter model. The spatial domain is either an interval in R with appropriate
boundary conditions or the whole line R. We assume that the parameters have the
following units:

[D] = m2

s
, [r] = 1

s
, [K] = # cells, [u] = # cells.

We use the tilde˜ to indicate dimensionless quantities and we start by defining

ũ = u

K
with [ũ] = # cells

# cells
= 1.
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Then

ũt = D
uxx

K
+ r

u

K

(
1 − u

K

)
= Dũxx + rũ(1 − ũ). (1.63)

Next we scale time with the growth rate r:

t̃ = rt, [t̃] = s

s
= 1.

Then dt̃ = rdt such that ∂
∂t
= r ∂

∂t̃
and (1.63) becomes

∂ũ

∂t̃
= D

r
ũxx + ũ(1 − ũ). (1.64)

Finally, we rescale space x as

x̃ =
√

r

D
x, [x̃] =

√
1/s

m2/s
m = 1,

such that ∂
∂x̃

=
√

D
r

∂
∂x

. Then (1.64) becomes

∂ũ

∂t̃
= ũx̃x̃ + ũ(1 − ũ).

Finally, we remove the tilde ,̃ as is standard in most papers, and we get the
dimensionless Fisher’s equation

ut = uxx + u(1 − u). (1.65)

Notice that this model has no free parameter. Now we can analyze the nondi-
mensional model (1.65) and draw conclusions for the original model (1.62). For
example, it is known that (1.65) on R admits travelling wave solutions of the form
u(x, t) = φ(x − ct) for all speeds that are larger or equal to the minimal speed
c∗ = 2 [3, 26], i.e., formula (1.56) for r = 1,D = 1. Detailed travelling wave
analysis will be presented in one of the subsequent chapters. If we are interested
to compare this minimum speed to a given experiment or observation, we need to
know what the minimal speed is in dimensional parameters. Hence we use the tilde
˜again and start with

c̃∗ = 2.

In original coordinates this becomes

2 = c̃∗ = dx̃

dt̃
=

√
r/Ddx

rdt
= 1√

Dr
c∗.
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Hence

c∗ = 2
√
Dr,

the Fisher-speed (1.56) for general r,D > 0.

1.10 The Dynamical Systems Toolkit

In summary, the tools of biological dynamics are based heavily on the theory
of dynamical systems. Thus dynamical systems provide foundational models for
mathematical biology as well as for many other areas in the mathematics of
planet earth. While they can describe nonlinear interactions between individuals
in populations, dynamical systems can also arise from probabilistic concepts, such
as failure times and random walks. Models take the form of ordinary and partial
differential equations and discrete-time maps. Much of the qualitative theory for
these systems relates to equilibria and their stability. The stability of equilibria can
be investigated via linearization and bifurcation theory. This becomes particularly
simple for phase-plane analysis of two-dimensional systems of ordinary differential
equations. Alternatively, special solutions such as travelling waves can sometimes
give useful insight regarding long-term behaviors of biological populations, such as
population spread. Finally, nondimensionalization is a useful tool for reducing the
number of parameters in a model, thereby facilitating easier analysis.
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Chapter 2
Modeling of Molecular Networks

Gang Yang and Réka Albert

Abstract In biomolecular systems, various non-identical molecules interact in
diverse ways. The field of systems biology aims to understand how the components
and interactions of biological systems give rise to the system’s behavior and
phenotypes. Researchers have used molecular networks and dynamic models to rep-
resent and understand biological systems. In this chapter, we introduce the network
representation and the graph measures that quantify its topological properties. We
describe how to build a discrete dynamic (Boolean) model of a biological system
from experimental data, and how to use the model to provide insights into emergent
phenomena and make useful predictions. We also introduce methods to bridge the
network’s topological and dynamical properties. We use real biological system
involved in complex disease to demonstrate the theoretical framework. Discrete
dynamical models, especially Boolean networks, benefit from the current high-
throughput technologies and large amounts of qualitative data and provide insight
to large-scale systems, where continuous modeling is not possible yet.

2.1 Introduction

Decades of research in molecular biology established a large amount of information
about the structure and function of individual molecules in cells. It is now known
that various non-identical (macro)molecules such as DNA, RNA, proteins, small
molecules interact in diverse ways [9, 50]. The totality of interactions among
various molecular components gives rise to cellular functions such as movement
or proliferation. Thus, cells are an example of complex interacting systems, as are
organs, individuals, or populations. In order to understand such systems, researchers
are increasingly using networks to represent the components of the system and their
interactions [4, 10, 48, 50, 67].
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A network (or graph) is a mathematical abstraction, consisting of nodes, which
represent different elements, and edges, which specify the pairwise relationships
between the elements [10, 48]. In molecular networks, nodes are genes, RNA,
proteins, and small molecules; edges indicate interactions and regulatory relation-
ships [4, 67]. Edges can be symmetrical (representing a mutual relationship) or
directed (representing mass or information flow from a source to a target). The latter
type of edges can also have a sign, representing positive (activating) or negative
(inhibitory) influences. The network representation allows the use of graph measures
to characterize the organization of the molecular interaction networks. In Sect. 2.2
of this chapter, we will introduce different types of molecular networks and present
informative graph measures.

Complex systems exhibit several emergent dynamical properties, such as home-
ostasis, multi-stability, or synchronization [4, 50, 67]. To understand and explain
these emergent behaviors of the system, the network needs to be complemented by a
dynamical model. In Sect. 2.3, we describe how to build a discrete dynamical model
of a molecular network and how to use the model to make predictions. In Sect. 2.4,
we explore methods to connect the topological properties of the interaction network
with the emergent dynamics of the complex system.

2.2 The Structure of Biomolecular Networks

2.2.1 Introduction to Biomolecular Networks: Classifications
and Examples

Let us review the kinds of interactions possible inside a cell. Genes are transcribed
into mRNAs, which are translated into proteins. Proteins called transcription factors
can activate or inhibit the transcription (also called expression) of genes. Proteins
interact with each other and may form protein complexes. Proteins called enzymes
catalyze chemical reactions of the metabolism. Molecules from the environment
are metabolized or are sensed by receptor proteins [4, 50, 67]. Biologists usually
try to group these interactions and separately define four types of networks, namely
gene regulation, protein–protein interaction, signal transduction, and metabolic
networks, but they are in fact interconnected [4, 50, 67]. In the following we
exemplify three types of intracellular networks, in the order of increasing diversity.

Protein–protein interaction networks are formed by biochemical events and/or
electrostatic interactions between proteins. Several methods now exist to detect
such interactions on a large scale, such as two-hybrid screening [41], biomolecular
fluorescence complementation (BiFC) [34], and co-immunoprecipitation (Co-IP)
[44]. Such networks have been built for several organisms including S. cerevisiae,
Drosophila, C. elegans, and humans [23, 50, 51, 64]. For example, 1870 proteins
and 2240 identified direct physical interactions between them are mapped in the
S. cerevisiae protein–protein interaction network. The network is built through
studying combined, non-overlapping data, obtained by systematic two-hybrid
analyses [30, 64].
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Fig. 2.1 Drosophila segment polarity gene network model. Four cells with periodic boundary
conditions are considered and mainly the first cell is shown. The green line indicates a cell
boundary. Ellipses represent mRNAs and squares represent proteins. Positive edges terminate
in arrow-heads and negative edges terminate in blunt segments. Solid lines indicate intracellular
regulation and dashed lines indicate intercellular regulation. Figure is adapted from [3]

A gene regulatory network is a set of genes and gene products (mRNA and
proteins) that interact with each other and with other molecules in the cell to
regulate gene expression levels. For example, genes and their interactions involved
in embryonic pattern formation in the fruit fly Drosophila melanogaster are mapped
into the Drosophila segment polarity network, as shown in Fig. 2.1 [3]. Various
dynamical models have been built to understand the embryonic development
process [3, 65].

Signal transduction is the process through which living cells receive and respond
to various external stimuli. A diverse set of interacting (macro)molecules participate
in this process, such as enzymes, other types of proteins, and small molecules.
Signal transduction is crucial in the maintenance of cellular homeostasis, in a cell’s
communications with its surroundings, and in cell behavior such as growth, survival,
apoptosis, and movement [22]. Many complex diseases, such as developmental
disorders, diabetes, and cancer, arise from mutations or alterations in the expression
of signal transduction pathway components [28, 58]. Figure 2.2 depicts an example
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Fig. 2.2 A signal transduction network involved in activation-induced cell death of white blood
cells called cytotoxic T cells. The key signals are Stimuli (representing the presence of pathogens)
together with the external molecules interleukin 15 (IL15) and platelet derived growth factor
(PDGF). These signals correspond to source nodes, which only have outgoing edges. The key
output node of the network is Apoptosis, expressing programmed cell death. Nodes that, like
Apoptosis, have no outgoing edges are called sink nodes. The shape of the nodes indicates
their cellular location: rectangles indicate intracellular components, ellipses indicate extracellular
components, and diamonds indicate receptors. Conceptual nodes are represented by yellow
hexagons. The color of the nodes indicates the known status of these nodes in abnormally
surviving T-LGL cells as compared to normal T cells: red indicates abnormally high expression
or activity, green means abnormally low expression or activity, and blue indicates inconclusive or
contradictory evidence. An arrow-head or a short perpendicular bar at the end of an edge indicates
activation or inhibition, respectively. Details about the name of the nodes can be found in [53, 72].
Figure is reproduced from [53]
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of a real signal transduction network, describing the activation-induced cell death
of white blood cells called cytotoxic T cells [53, 72]. This network was used to
study the disruption of activation-induced cell death in the disease T-LGL leukemia,
causing the survival of a fraction of activated T cells, which later start attacking
healthy cells. The network has 60 nodes and 142 edges. In Fig. 2.2, cellular location
is indicated by the shape of the node: rectangles indicate intracellular components,
ellipses indicate extracellular components, and diamonds indicate receptors. In
addition, hexagonal nodes are conceptual nodes used to summarize connections
with other signal transduction mechanisms or cell behaviors [53, 72].

2.2.2 Network Topological Properties

The totality of the nodes and edges of a network is referred to as the network
structure or network topology. The structural (topological) analysis enables us to
trace the propagation of information in the network and determine the key medi-
ators. This initial analysis invokes graph theoretical measures, such as centrality
measures, shortest paths, and network motifs, to describe the organization of the
network [2, 10, 48].

Centrality measures were introduced to describe the importance of individual
nodes in the network. The simplest centrality measure is the node degree, which
is the number of edges connected to the node. For directed networks, the in- and
out-degree of a node is defined as the number of edges coming into or going
out of the node, respectively [2, 10, 48]. For example, in the T-LGL leukemia
network shown in Fig. 2.2, node CREB (bottom left corner) has in-degree 2 and
out-degree 2. In some molecular networks, especially signal transduction networks,
it is possible that nodes have an auto-regulatory loop, an edge that both starts and
ends at the same node. This loop usually represents a stabilizing, or on the contrary,
destabilizing, self-influence. For example, the conceptual node Apoptosis has a self-
loop, indicating that after commitment to apoptosis (programmed cell death) the
process is self-sustaining.

In directed networks, nodes with in- or out-degree of zero are given special
names. The nodes with only outgoing edges (with the potential exception of loops)
are called sources, and nodes with only incoming edges (again, with the potential
exception of loops) are sinks of the network. In signal transduction networks,
source nodes generally correspond to external signals, while sink nodes denote
responses or outcomes of the process [4]. For example, in Fig. 2.2, the nodes Stimuli,
IL15, and PDGF are source nodes and have no incoming edges, and indeed they
represent external signals acting on T cells. Proliferation, Cytoskeleton signaling,
and Apoptosis are sink nodes and have no outgoing edges except the loop of
Apoptosis, and indeed they represent outcomes of the signal transduction process:
the increase in the number of cells due to cell growth and division, the reorganization
of the cytoskeleton necessary for movement, and the genetically determined process
of cell destruction [53, 72].
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Statistical quantities, such as the degree distribution, can be formed to summarize
the information of all nodes in the network [2, 10, 48]. The node degree distribution
P(k) is a function that, for each degree k, gives the fraction of nodes that have k

edges. Similarly, we can define an in-degree and out-degree distribution for directed
networks. The degree distribution reveals a lot of information about the structure of
the network. For example, in a random network, where the probability of having an
edge between each pair of nodes is the same, the node degree distribution will be
close to a binomial distribution [2, 10, 48]. However, a variety of molecular networks
have a degree distribution that follows a power law, for example, the metabolites in
the E. coli metabolic network have an in-degree distribution P(k) ∼ kγin , where
γin = 2.2 [29]. The heterogeneity encompassed in this so-called scale-free degree
distribution has a significant impact on the network’s dynamical properties, such as
its controllability and stability with respect to perturbation [7, 42, 71].

The nodes whose degree is in the top 1–5% of the nodes are termed hubs [10, 48].
These hub nodes often play an important role in the network. For example, the node
representing the NFκB protein has an out-degree of 11 and an in-degree of 4, and is a
hub of the T-LGL network in Fig. 2.2. This is expected since NfκB is a transcription
factor that is known to be important in cellular responses to various stimuli and in
cell survival [21].

A path exists between two nodes if there is a sequence of adjacent edges
connecting them. In directed networks, the adjacency needs to be directional as
well [10, 48]. Thus in a directed network the existence of a path from A to B does
not imply that a path from B to A exists. For example, as shown in Fig. 2.2, there
is a path from Caspase to the conceptual node Apoptosis; however, there is no path
from Apoptosis to Caspase.

In networks that can have both positive and negative edges, the sign of a path
is positive if there is no or an even number of negative edges in the path and is
negative if there is an odd number of negative edges [4, 67]. For example, as shown
in Fig. 2.2, the path from Stimuli2 to P2 is negative and the path from Stimuli2 to
IFNG is positive since the path consists of two negative edges.

A path containing two or more edges that begins and ends at the same node is
called a circuit or cycle (if it does not repeat nodes or edges). The length of a path or
a cycle is defined to be the number of its edges (loops can be considered as cycles
of length one). A directed cycle is also called a feedback loop. The sign of a cycle
is defined the same way as the sign of a path. For example, as shown in Fig. 2.2,
the cycle between S1P, PDGFR, and SPHK1 is a positive feedback loop, while the
cycle between TCR and CTLA4 is a negative feedback loop.

An undirected network is connected if there is a path between any two nodes.
A disconnected network is made up by two or more connected components (sub-
graphs). A directed network is strongly connected if for any two nodes u and v
in the network, there is a directed path both from u to v and from v to u. If a
network is not strongly connected, it is informative to identify strongly connected
components of the network. Having no strongly connected components (SCCs)
indicates that the network has an acyclic structure (i.e., it does not contain feedback
loops), while having a large SCC implies that the network has a central core. The
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core can be obtained by iteratively removing source and sink nodes until no nodes
can be removed from the network. A directed network is weakly connected if it is
connected when we disregard the edge directions. Signaling networks tend to have
a strongly connected core of considerable size[43]. For example, the network in
Fig. 2.2 has a strongly connected component of 44 nodes, which represents 75% of
all nodes.

We can define the in-component of an SCC as the nodes that can reach the SCC,
and the out-component of an SCC as the nodes that can be reached from the SCC.
In biological networks, nodes in each of these subsets tend to have a common
task. In signaling networks, the nodes of the in-component represent signals or
their receptors and the nodes of the out-component are usually responsible for the
transcription of target genes or for phenotypic changes [43]. For example, the in-
component of the T-LGL network on Fig. 2.2 includes six source nodes, while its
out-component consists of three sink nodes and P27.

Another useful centrality measure is betweenness centrality. The betweenness
centrality of node k is given by

gk =
∑
i �=j �=k

Ck(i, j)

C(i, j)
, (2.1)

where C(i, j) is the number of shortest paths between node i and j and Ck(i, j)

is how many of these pass through node k [20]. For example, one step of the
calculation of the betweenness centrality of CIA would have i as CI and j as wg,
thus CCIA(CI,wg) = 1 and C(CI,wg) = 2, the ratio of the two quantities is
1/2. The betweenness centrality is the sum of such ratios among all possible pairs.
Betweenness centrality tends to be a better importance measure than node degree.

A network module has many inside edges but few edges going outside the
module. There are several more specific definitions of modules, and many methods
to identify network modules [10, 48]. One method of module detection is based on
adjacent k-cliques, where a k-clique is a complete undirected network of k nodes
[49]. Two k-cliques are adjacent if they share k − 1 nodes. The k-clique module is
the union of all k-cliques that can be reached from each other through a series of
adjacent k-cliques. Palla et al. applied this method to detect modules in the protein–
protein interactions network of S. cerevisiae, and demonstrated that the proteins in
the detected modules have a shared functional classification [49].

Network motifs are recurring patterns of interconnection with well-defined
topologies [9]. Among these motifs are feed-forward loops (in which a pair of nodes
is connected by both an edge or short path and a longer path) and feedback loops
(directed cycles). For example, in the T-LGL leukemia network shown in Fig. 2.2,
nodes STAT3, P27, and Proliferation form an incoherent feed-forward loop, since
the two paths from STAT3 to Proliferation have different signs. Feed-forward loops
are more abundant in transcriptional regulatory and signaling networks of different
organisms compared to randomized networks that keep each node’s degree. They
were found to support several functions such as filtering of noisy input signals,
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pulse generation, and response acceleration [9]. Positive feedback loops were found
to support multi-stability, while negative feedback loops can cause pulse generation
or oscillations [62].

Software packages for network visualization and analysis include yEd Graph
Editor, Cytoscape [57], NetworkX [24], and Pajek [11].

2.3 Logical Modeling of the Dynamics of Biomolecular
Networks

2.3.1 Introduction

Network representation and analysis provide insight into the connectivity between
inputs and outputs and the importance of mediator nodes in the molecular system.
However, as each node represents a specific molecular species in the biomolecular
network, it also has an abundance associated with it and this abundance can change
in time. Thus we need a second, dynamic layer in addition to the static network
representation to model cell behavior. We assign each node a variable xi to represent
its state or abundance. The value of this state variable (or, simply said, the state of
the node) will depend on the state of the node’s regulators (which are specified by
the network). Then the states of the nodes (or of a subset) can be used to represent a
certain cell function or behavior [4, 67]. For example, in the T-LGL network a high
value for the state variable of Apoptosis indicates that the cell committed to the cell
death process, and a zero or low value of Apoptosis, coupled with abnormal values
of other nodes (shown as node colors in Fig. 2.2), indicates the abnormal survival
state of leukemic cells.

Dynamical models can be classified into continuous or discrete depending on
whether the state variables are continuous or discrete. In continuous dynamical
models, the rate of change (time derivative) of each node state xi is expressed
as a function of other variables in the molecular network. Thus the regulatory
relationships are described by a system of ordinary differential equations [32,
35]. Continuous models are optimal for well characterized systems, where the
mechanistic details for each interaction, the regulatory functions’ form, and their
parameters’ values are well known through collecting a sufficient amount of
quantitative information (usually through decades of experimental work). However,
this is usually not the case in biomolecular systems involving large numbers of
heterogeneous molecules; in most cases, not all interactions have been established,
the underlying mechanisms are not sufficiently known and the kinetic parameter
values are difficult to measure or estimate. Thus continuous modeling is not a good
fit for these types of systems.

Discrete dynamical models use discrete variables to represent logic categories
of node abundance and describe the future state of each node as a function of
the states of its regulators in the biomolecular network. The discrete models only
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require qualitative or relative measurements, use no or very few kinetic parameters,
and yet can provide a qualitative dynamic description of the system [67]. Also,
there is increasing evidence that the responses to signals in molecular networks (the
so-called dose–response curves) show sigmoidal functional forms, which provides
a rationale to describe the responses with discrete variables. For example, the
MAP kinase cascade has sigmoidal regulatory functions at each level, and overall
leads to a step-like input–output relationship [63]. Certain network motifs show
parameter-independent input–output characteristics or outcomes that are robust
to changes in parameter values [63, 65]. Taken together, this evidence makes it
possible for us to use discrete models to capture the characteristics of real molecular
systems. These discrete dynamical models including Boolean network models
[33], multi-valued logical models [8], and Petri nets [15] have been employed
to study various systems in unicellular organisms, plants, animals, and humans
[3, 14, 39, 53, 55, 56, 58, 61, 72].

Choosing the right dynamical model involves finding a balance between mod-
eling detail and scalability. The hypothesis behind discrete dynamical models is
that for certain classes of systems, the kinetic details of individual interactions are
less important than the organization of the regulatory network [3, 33, 63]. Boolean
networks are the simplest discrete dynamic models. In the following, we introduce
the definitions of a Boolean network, sketch the steps in constructing a Boolean
model of a molecular network, and discuss several obstacles and possible solutions.

In a Boolean network, each node state xi is a binary variable, either 0 or 1. The
value xi = 1 (ON) represents that the node (i.e., gene, protein, or molecule) is
active or expressed or is above a certain concentration threshold, while the value
xi = 0 represents that the node is inactive, not expressed, or is below a certain
concentration threshold. The threshold may not need to be specified as long as
it is clear that such threshold exists, above which the component will effectively
regulate the downstream nodes. The state of the entire system will be represented as
a vector (x1, . . . , xN). The regulation relationships are described by the governing
equations x∗i = fi , which means that the future node state x∗i is determined by
the Boolean regulatory function fi (also called Boolean rule) of its regulators.
There are two ways to specify the Boolean function. The first intuitive way is
to write it in terms of the logic operators AND, OR, and NOT. For example,
x∗4 = f4 = (x1 OR x2) AND (NOT x3) means that x4 will be ON when x3
is OFF and simultaneously at least one of x1 or x2 is ON. The implicit order of
precedence of logical operators may be used: NOT has higher precedence than
AND, and AND has higher precedence than OR. Thus the above Boolean rule
can also be written as f4 = (x1 OR x2) AND NOT x3, but it is different from
f4 = x1 OR x2 AND NOT x3. The second way to express a Boolean function
is through a truth table, where we specify the output value for each possible input
configuration. If node xi has k regulators, we will have 2k input configurations since
each regulator has two possible states. For example, the three basic logic operators,
NOT (third column), OR (fourth column), and AND (last column), can be written
as shown in Table 2.1.
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Table 2.1 Truth tables illustrating the NOT, OR, and AND operators

xA xB fC = NOT xA fD = xA OR xB fE = xA AND xB

0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1

The first two columns indicate all the possible configurations for the two input nodes A and B. The
third to fifth columns give the output value of the corresponding input configuration in the same
row for the three functions NOT xA, xA OR xB , xA AND xB , respectively

2.3.2 Procedures to Construct Boolean Dynamic Models

We first outline the whole procedure to develop a Boolean model of a biomolecular
network, then give the details in the following paragraphs. One starts to build the
Boolean model by establishing the list of nodes and of the known interactions
and regulatory relationships among these nodes. One then needs to determine
the Boolean regulatory function of each node. One also needs to determine the
relevant initial conditions and choose an updating scheme to model the passing of
time. Model construction is followed by model analysis, including determining the
long-term behavior of the model. The model’s results need to be compared with
established experimental results. If there are discrepancies, one needs to iteratively
revise the Boolean model, including the network topology or the Boolean regulatory
functions until the model is consistent with known behavior. Then one can use the
Boolean model to make novel predictions awaiting experimental confirmation.

The first step in constructing the Boolean network is to collect information
about the network nodes and interactions. The modeler needs to integrate and
assemble information from several experiments, for example, high-throughput gene
expression, proteomics and metabolomics data, or detailed studies of individual
interactions [52, 67]. High-throughput phosphoproteomics, protein–DNA interac-
tion, and genetic interaction studies can be used for two purposes: to determine the
meaning of the binary states of components in known conditions (in a comparative
manner or by using a threshold) or to infer casual relationships between compo-
nents. These casual relationships can be represented by a directed edge from one
node to another in the network. Often the sign of the edge, positive (activating) or
negative (inhibitory), can also be inferred. We can construct the molecular network
if the totality of relevant information is sufficient [52, 67]. The readers interested in
how to deal with incomplete information can refer to [5, 31, 40].

The next step is to determine the Boolean regulatory function for each node.
When there are multiple regulators for a node, we select the function that best
represents the existing knowledge about their action. The OR function is used if
the node can be activated by any of its regulators. The AND function is used if the
node needs all of its regulators to be activated. If the Boolean regulatory function
involving several regulators cannot be fully determined, one needs to take a trial and
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Fig. 2.3 A Boolean model of a simple signal transduction network. (a) The graphical represen-
tation of the network. The edges with arrow-heads represent positive regulation. Note that the
Boolean regulatory function for node C is not uniquely determined by the network representation.
(b) The Boolean regulatory functions for each node in the model. (c) The truth tables of the Boolean
regulatory functions given in (b)

error approach to select the function that can successfully reproduce the existing
experimental results (both at the node and at the whole network level).

For example, let us determine a compatible Boolean regulatory function for the
three-node feed-forward motif shown in Fig. 2.3. A natural choice for source node
A is x∗A = fA = xA as it represents that the signal of the system maintains a certain
state for a certain period of time. As A positively regulates B, x∗B = fB = xA.
Node A and B positively regulate C. Then there are two compatible choices for the
Boolean regulatory function of node C: fC = xA OR xB , and fC = xA AND xB .
The results of knockout experiments (wherein one node is set into the OFF state)
can help us determine which one is more appropriate. Let’s assume that providing A
and simultaneously knocking out B resulted in the activation of C. This means that
A alone can activate C, and thus fC = xA OR xB .

The next step is to determine the relevant initial condition for the system, e.g.,
the system’s natural resting state. When the relevant initial condition is not known,
one can sample from different initial conditions in the state space. We note that the
biologically relevant initial conditions may occupy a small region in the state space.

One also needs to choose a time implementation or updating regime for the
system to evolve. Time is often implemented as a discrete variable, that is, the
node states are updated at fixed time steps and their values are kept the same
between time steps [52, 67]. The timescale of the processes represented as edges
can vary from fractions of a second to several hours depending on the biological
process [9]. Mathematically, we use the vector (x1(t), . . . , xn(t)) to represent the
state of the system at time t. Then we determine the value of each node state
xi(t + τi) in the next time step based on the Boolean regulatory function, that is,
xi(t + τi) = fi(xk1(t), . . . , xki (t)), where the τi is the time step for node i and
k1, . . . , ki are the regulators of node i.
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As we need to update all the nodes to obtain the system’s trajectory, we also
need to specify the order of updating each node. The simplest updating regime is
synchronous updating, wherein all the nodes are updated simultaneously. This is
equivalent to setting τ1 = · · · = τn as a time step [52, 67]. Thus the synchronous
updating regime implicitly assumes that the timescales of all biological events are
approximately the same so that the state change of each node is synchronized.
In biological systems that include biological events of different timescales (e.g.,
include both transcriptional and post-translational regulation) it is not appropriate
to use synchronous updating.

In order to take into account variations in timescale, different asynchronous
updating regimes were developed. In deterministic asynchronous updating, a fixed
timescale or time delay is used for each node. In the stochastic asynchronous
regime, the system is updated in a random way. To be specific, in random order
asynchronous update, a random permutation of a sequence of all the nodes is
generated for each round and the nodes are updated in the order of the simulated
permutation; this process is repeated until convergence [52, 67]. Thus, in this
regime, every node will be updated once during each round.

Another popular stochastic asynchronous update method is general asynchronous
update, where a randomly selected node is updated in each time step [52, 67]. Thus,
in contrast with random order asynchronous regime, it is possible that one node
is updated several times before another node gets updated next. However, since the
node is randomly selected, the expected number of updates is the same for all nodes.
If we know that nodes should be updated with different frequencies, we can use an
update probability distribution.

Let us continue with the three-node motif in Fig. 2.3 to illustrate two deter-
ministic and two stochastic updating regimes. In synchronous updating, the state
transitions will be x∗A = xA(t + 1) = fA(t), x

∗
B = xB(t + 1) = fB(t), x

∗
C =

xC(t + 1) = fC(t), where the nodes’ future states (at time t + 1) are determined
simultaneously, using their current node state at time t . In a deterministic asyn-
chronous updating regime, say τA = 1, τB = 2, τC = 3, the system will be updated
in a pattern with period of 6: A alone, A and B together, A and C together, A
and B together, A alone, A, B, and C together. For random order asynchronous
updating, there are 3!=6 ways of ordering these three nodes, at each time one
ordering will be randomly selected. The order of update in our example can be
A,C,B;A,B,C;B,C,A;A,C,B; . . . , where semicolons indicate the end of a
time step. In general asynchronous update, a possible update order for the three
nodes system could be A,B,C,B,B,C,B,A . . . . Notice that node B has been
updated four times until A was updated again in this particular realization.

After the model is completely specified, we need to determine its long-term
behavior. Since the Boolean network is a finite system, the state of the system
will evolve into a single state (steady state) or a set of recurring states (a complex
attractor). These steady states or recurring states are collectively called attractors
[52, 67]. Attractors of molecular networks have corresponding biological meanings.
A steady state or a group of steady states with similar function can be associated
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Fig. 2.4 State transition graphs of the Boolean model presented in Fig. 2.3. A node represents a
state of system, written in the order A, B, C; thus, 111 represents xA = 1, xB = 1, xC = 1. A
directed edge between two states indicates a possible transition from the first state to the second
in one update specified in the updating scheme. A loop (an edge that starts and ends at the same
state) indicates that the state does not change during update. (a) The state transition graph under
synchronous update. The two states that have loops are the fixed points of the system. (b) The state
transition graph under general asynchronous update (update one random node at a time). Though
several states have loops, only the two states that have no outgoing edges are fixed points of the
system

with a cell state or phenotype. Complex attractors can be interpreted as cyclic or
oscillatory behavior such as the cell cycle, circadian rhythms, or Ca2+ oscillations
[1, 39, 40].

A compact visualization of all possible trajectories is given by the state transition
graph (STG), wherein each node is a possible state of the system, and each directed
edge represents a possible transition from one state to another state in one update
[52, 67]. The STG will contain 2N nodes for a Boolean network with N nodes as it
contains all the possible states in the state space. For example, the state transition
graph of the three node Boolean model in synchronous updating regime is shown in
Fig. 2.4.

In the state transition graph, a steady state will be a node with a loop and no other
outgoing edge; a complex attractor will be a strongly connected component without
an outgoing edge. For example, in Fig. 2.4, the state 111 and state 000 only have a
loop and no other outgoing edges, indeed they are the steady state of the three node
system in Fig. 2.4. Notice that this criterion can be used to identify steady states,
however, it won’t be an efficient way as it requires to map the entire state transition
graph first.

For each attractor, all the states that can reach the attractor in the state transition
graph are called its basin of attraction. For example, in Fig. 2.4, the basin of the
steady state of 111 includes state 100, 110, 101, and 111, while the basin of the
steady state of 000 includes state 000, 010, 001, and 011.

It is an interesting question whether a chosen updating regime will affect the
properties of attractors and of the state transition graph. Let us start with the
steady state (fixed point) type of attractor. In a steady state the future state, i.e.,
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the outcome of the Boolean regulatory function, equals the current state for each
node. This requirement is time independent; therefore, steady states are independent
of updating regimes. Indeed, in Fig. 2.4 the steady states of the Boolean model
under the two updating regimes are the same. However, based on the example
above, one can readily see that the state transition graph is different for the two
different updating regimes. In synchronous updating, since all nodes are updated
simultaneously, each state can only have one outgoing edge. Due to this, the
complex attractor in synchronous updating regime is also called a limit cycle as
the set of recurring states repeats in a fixed order [67]. Also, the basin of attraction
for each attractor will be separated as one state can only follow a unique path in the
STG (see Fig 2.4a). While in asynchronous updating, each node can have multiple
outgoing edges due to the different updating order, as illustrated in Fig 2.4b. Thus
states in the complex attractor can appear in an aperiodic manner.

Some limit cycles can only be observed under synchronous updating and any
perturbation of the updating timescales will eliminate the attractor [37]. One can
readily see this in the example shown in Fig. 2.5: the limit cycle between the
states 001 and 010 is not observed under general asynchronous update, where two
successive states can only differ in one node’s state. The figure also exemplifies that
the basin of attraction of the attractors may overlap due to the randomness in the
updating regime. The state transition graph can be seen as a graphical representation
of a corresponding Markov Chain model, where each node is a state in the Markov
chain and each edge corresponds to a transition with non-zero probability between
states. If complete randomness is guaranteed, the system is taking a random walk
on the state transition graph, which specifies a unique Markov Chain model [67].

At the end, one needs to compare the model’s results with established experimen-
tal results. If there are discrepancies, one needs to revise the Boolean network or
the Boolean regulatory function [12, 18, 67]. Boolean network should qualitatively

Fig. 2.5 A simple three node network. (a) The network representation and corresponding Boolean
rules. Node A and B form a positive feedback loop. Node B and source node I can independently
activate node A. (b) The network’s (partial) state transition graph under synchronous update when
the signal is set as OFF (xI = 0). The states are specified in the node order I , A, B. (c) The state
transition graph under general asynchronous update when the signal is set as OFF (xI = 0). The
figure is adapted from [4]



2 Modeling of Molecular Networks 49

reproduce properties demonstrated in biological systems including homeostasis or
multi-stability [9, 33]. In the next subsection, we use two biological examples to
illustrate this point.

Dynamical models can also be used to make novel predictions, such as pre-
dictions about the effect of perturbations and about network control strategies
[13, 67, 69, 70]. These predictions can provide insight about the biological system
and guide future experiments. In perturbation analysis, we determine the change in
the attractors induced by external or internal perturbations, including knockout or
constitutive expression/activity of a node. Node knockout can be modeled as fixing
the corresponding node in the OFF state, while constitutive expression/activity can
be modeled as fixing the node in the ON state. Transient perturbations can be
modeled as temporary changes in the node’s state and letting the system evolve
naturally [13]. The perturbation analysis can predict changes in the attractors and
their basin induced by each possible perturbation. Thus those perturbations that lead
to a dramatic cascading effect will be identified, which helps us identify components
key to maintaining a phenotype in a biological system. In a signal transduction
network involved in a disease, the identified key components could be targets of
therapeutic interventions [40, 53, 58].

Several software tools are available for Boolean dynamic modeling of biological
systems. The CoLoMoTo (Consortium for Logical Models and Tools) platform
provides resources for logical modeling, including software tools and biological
models [17]. Among them, SBML qual is an open-source model library, promoting
a standard format to analyze and exchange qualitative models [17]. GINsim is a free
Java software application for logical modeling of regulatory and signaling networks
[16, 47]. It allows users to define a model or import models in various formats. It
also supports simulations of logical models and generates state transition graphs
under various updating regimes. The R package BoolNet provides attractor search
and robustness analysis methods for synchronous, asynchronous, and probabilistic
Boolean models [46]. In addition, BooleanNet is a python package that can be used
to simulate synchronous and random order asynchronous models and to determine
their state transition graph [6]. There are other existing simulation and analysis
software tools for logical models, including ADAM [27], the Cell Collective [26],
CellNetAnalyzer [36], CellNOpt [60], ChemChains [25], Odefy [38], SimBoolNet
[73], and SQUAD [19].

2.3.3 Two Biological Network Examples

It has been shown that Boolean models can capture characteristic dynamic behavior,
such as excitation–adaptation behavior and multi-stability, as continuous models
do [63]. For example, positive feedback loops support multi-stability, coherent
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feed-forward loops support the filtering of noisy input signals, and incoherent
feed-forward loops support excitation–adaptation behaviors [9, 62, 63]. The reader
interested in the details of these examples can refer to [63].

Here we illustrate the capacity of Boolean network models to capture dynamic
behavior using two biological network examples. The first one is the T cell
large granular lymphocyte leukemia (T-LGL) network, which is mentioned in
Sect. 2.2.1 and shown in Fig. 2.2. T-LGL leukemia is a rare blood cancer. While
normal T cells undergo activation-induced cell death (apoptosis) after successfully
fighting a virus, leukemic T-LGL cells survive. Through an extensive literature
search, Zhang et al. constructed a Boolean network model of T-LGL leukemia,
which can reproduce the abnormal survival of T-LGL cells and other known
experimental results of the system [72]. The details of the T-LGL model, including
the Boolean regulatory functions, can be found in [72]. Zhang et al. chose a
stochastic asynchronous updating regime. The model has two steady states under
the relevant source node initial condition (Stimuli, IL15, and PDGF are ON and
Stimuli2, CD45, and TAX are OFF) [72]. The two steady states, respectively,
correspond to the apoptosis of T cells and survival of the abnormal T cells as seen in
T-LGL leukemia. This exemplifies that the Boolean model successfully reproduces
the qualitative experimental results and captures the multi-stability of a real system.
Full analysis of the state space was not possible due to the large size of the network;
thus, follow-up work employed network simplifications to reduce the network size
and the state space. Two kinds of network reductions were applied, both of which
have been shown to preserve the attractor repertoire of the system [54]. First, one
can determine and eliminate the nodes whose state stabilizes due to their regulation
by sustained signals. Second, one can iteratively collapse nodes with one incoming
and one outgoing edge, for example, node MCL1 could be removed in Fig. 2.6a. One
can obtain a reduced network with 18 nodes after applying the first kind of reduction
and a reduced network with six nodes after both reductions. Now it is much easier to
visualize the state space of the T-LGL leukemia network, which is shown in Fig. 2.7.
Perturbation analysis of the Boolean model in Fig. 2.6b reveals that permanently
reversing the node state of S1P, Ceramide, or DISC in the T-LGL leukemia steady
state can eliminate the T-LGL steady state and lead to apoptosis [53]. Nodes such as
S1P, Ceramide, or DISC can be called key mediators of the T-LGL state. These key
mediators are candidate therapeutic targets, which is supported by experiments (one
of which was performed to test this prediction). Similar analysis of the original 60-
node Boolean model in Fig. 2.2 identifies 15 key mediators in the original network,
which are also candidate therapeutic targets [53].

The second example is the epithelial-to-mesenchymal transition (EMT) net-
work. EMT is a cell fate change, during which epithelial cells lose their original
adhesive property, leave their primary site, invade neighboring tissue, and migrate to
distant sites as mesenchymal cells [58]. EMT plays an important role in pathological
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Fig. 2.6 Reduced T-LGL leukemia signaling network. An arrow-head indicates a positive edge,
and a blunt segment indicates a negative edge. (a) The 18-node network obtained by removing
stabilized nodes due to the sustained state of source nodes. (b) The 6-node subnetwork obtained by
merging mediator nodes from the bottom subgraph in part A. This figure is reproduced from [53]

processes, including the invasion process in hepatocellular carcinoma (HCC); thus,
it is important to understand this signaling process and design strategies to suppress
it. A hallmark of EMT is the loss of E-cadherin, a cell adhesion protein. EMT
can be induced by transforming growth factor-β (TGFβ), growth factors, and other
external signals [58]. Through extensive literature search, Steinway et al. built a
Boolean network model of EMT in the context of HCC invasion [58]. This network
contains 69 nodes and 134 edges. In this network, E-cadherin is the sole negative
regulator of the sink node, which is a conceptual node to represent the occurrence of
EMT. The model is updated in a ranked asynchronous updating regime to account
for the fact that the relevant signal transduction events occur substantially faster
than the involved transcriptional events [58]. Simulations of the Boolean model
can reproduce the EMT driven by TGFβ: starting from an epithelial state (which
is an attractor of the signal-free system), and activating the TGFβ signal, the system
will evolve and finally stabilize into a mesenchymal state [58]. With TGFβ fixed
to be ON, the model can be reduced to a network with 19 nodes and 70 edges
after applying similar network reduction techniques as in the T-LGL leukemia
network. The mesenchymal state is the only steady state of the reduced network,
which is confirmed by exploration of the state space of the reduced network. This
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Fig. 2.7 The state transition graph of the reduced 6-node subnetwork of T-LGL leukemia network
shown in Fig. 2.6b. There are 64 possible states in the state space. The dark blue node represents the
normal steady state (apoptosis of T cells) and the red node represents the T-LGL leukemia steady
state. The light blue states are transient states that will evolve into the normal steady state (dark
blue) and the pink states are transient states that will evolve into the leukemia steady state (red).
Gray states are transient states that can evolve into either steady state. This figure is reproduced
from [53]

suggests that the system will ultimately adopt a mesenchymal state in response to
TGFβ. A systematic search revealed that there are seven nodes, whose individual
knockout can prevent TGFβ driven EMT (i.e., inhibit the transition from the
epithelial state into the mesenchymal state in response to TGFβ). These seven nodes
are all transcription factors that directly regulate E-cadherin. The effectiveness of
the knockout of these transcription factors was already established experimentally,
but unfortunately currently it is not possible to target these transcription factors
by drugs. There are also six combinations of two node knockouts (not involving
any of the previous seven nodes) that can suppress TGFβ driven EMT. All these
six knockout pairs require the inhibition of the SMAD complex. If constitutive
activation is also considered, one new single-node intervention target, miR200, and
one new two-node combination are identified [58] (Fig. 2.8).
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Fig. 2.8 The EMT signaling network in HCC, which consists of 69 nodes and 134 edges. Signals
are in dark gray fill, transcriptional regulators of E-cadherin are in light gray fill. The output node
EMT is marked with black background. Positive edges are drawn with arrow-heads and negative
edges terminate in blunt segments. The figure is reproduced from [58]

2.4 Connecting the Structure and Dynamics of Molecular
Networks

There is increasing evidence that the dynamics of certain systems is not sensitive
to the details of the interactions and to the kinetic parameter values, which inspired
researchers to explore the effect of the underlying network topology on the network
dynamics [9, 33, 63]. Multiple lines of research have been devoted to shed light upon
this subject; we will introduce several tools developed to analyze this relationship
in this section [59, 66, 69, 70].

We first discuss network structural features that influence the attractor repertoire
of Boolean models. As hypothesized and later verified by researchers, feedback
loops play an important role in determining the network attractors [62]. René
Thomas conjectured that a necessary condition for a system to have multi-stability
is the existence of a positive feedback loop and a necessary condition for a system
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Fig. 2.9 Illustration of the expanded network of a simple network. (a) A hypothetical signal
transduction network similar to the reduced 6-node T-LGL leukemia network in Fig. 6b. (b) The
expanded network of the given network in (a). The composite node is denoted by a solid circle. (c)
The stable motif of the given network under a sustained signal input xI = 1. The figure is adapted
from [4]

to have sustained oscillations is the existence of a negative feedback loop [62].
This indicates that the sign of the cycles in the network determines the dynamical
behavior of a system. An additional important feature, which is not explicitly
represented by the interaction network, is the possible dependence or combinatorial
effect of multiple incoming edges to a node. This motivates us to integrate a network
representation with the Boolean regulatory functions of each node into a so-called
expanded network [66].

We introduce the concept of expanded network with the example in Fig. 2.9,
which consists of five nodes, the input I, and the regulated nodes O, A, B, and
C with the regulatory functions fA = xI , fB = xA AND (NOT xC), fC =
NOT xB, fO = xA OR xB. First, we introduce a complementary node for
each original node in the system to represent the negation (deactivation) of the
original node, denoted by the real node’s name preceded with ∼. In all the Boolean
regulatory functions, all the NOT functions are replaced by the negated state of the
respective node (i.e., its complementary node) since the NOT function is a unary
operator. The edges in the expanded network are redistributed according to the
updated rules. For example, fC = NOT xB = x∼B and thus a corresponding
edge is drawn from ∼B to C in the expanded network. The Boolean regulatory
function of a complementary (negated) node is the logical negation of the regulatory
function of the original node. For example, f∼C = NOT (NOT xB) = xB and thus
a corresponding edge is drawn from C to ∼B in the expanded network. Thus the
Boolean rules for all the complementary nodes in Fig. 2.9 are

f∼A = NOT xI = x∼I ,

f∼B = (NOT xA) OR xC = x∼AOR xC,

f∼C = xB,

f∼O = (NOT xA) AND (NOT xB) = x∼A AND x∼B.
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Second, to differentiate AND rules from OR rules when considering the rela-
tionship of edges pointing toward the same target node, we introduce a composite
node for each set of edges that are linked by an AND function. In order to uniquely
determine the edges in the expanded network, the regulatory functions need to be
specified in disjunctive normal format, that is, a disjunction of conjunctive clauses,
in other words, grouped AND clauses separated by OR clauses. For example, (A
AND B) OR (A AND C) is in a disjunctive normal form, while A AND (B OR
C) is not. Algorithmically, the desired disjunctive normal form can be formed
by a disjunction of all conditions that give output one in the Boolean table and
then simplified to the disjunction of prime implicants (Blake canonical form) by
the Quine–McCluskey algorithm [45]. Now we add a composite node for each
AND clause in the Boolean regulatory function, denoted by a solid black node in
Fig. 2.9. For example, the composite node in the left part of Fig. 2.9b represents the
expression xA AND (NOT xC), which activates node B; the composite node in the
right part of Fig. 2.9b represents the expression (NOT xA) AND (NOT xB ), which
induces the complementary node ∼O. Notice that one can read all the regulatory
functions from the topology of the expanded network. The AND rule is indicated
by a composite node with multiple regulators, while all the other edges represent
independent activation (parts of an OR function).

As the expanded network contains the essential information that determines the
network dynamics, the expanded network serves as a basis for network reduction
and attractor analysis, i.e., the dynamical information. One approach is through
analyzing the stable motifs of the expanded network [69]. A stable motif is defined
as the smallest strongly connected component (SCC) satisfying the following two
properties: (1) The SCC cannot contain both a node and its complementary node
and (2) If the SCC contains a composite node, it must also contain all of its input
nodes [69]. The first requirement guarantees that the SCC does not contain any
conflict in node states and the second requirement guarantees that all the conditional
dependence is satisfied and the SCC is self-sufficient in activating each node state
inside the stable motif. Thus the stable motif represents a group of nodes that can
sustain their states irrespective of other outside nodes’ states. The corresponding
node states implied by the stable motif can be directly read out: the original node
represents the ON (1) state and the complementary node represents the OFF (0) state
[69]. For example, in the top stable motif of Fig. 2.9c, the stable motif represents
that B is ON and C is OFF.

Once we find a stable motif, we can plug in these node states into the Boolean
regulatory functions and obtain a simplified network corresponding to this stable
motif. We can identify all the stable motifs of this simplified network and repeat
the process. The results of this iterative process can be represented as a stable motif
succession diagram [70]. For example, the stable motif succession diagram of the T-
LGL network is shown in Fig. 2.10 [70]. After iterative identification of stable motifs
and network reduction, we will obtain one of the two final outcomes: all the nodes
will be in a fixed state (either in a stable motif or fixed during network reduction) or
some nodes are not in a fixed state and will be expected to have oscillatory behavior.
In the first scenario, we obtained a fixed point (steady state). In the second scenario,
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Fig. 2.10 Stable motif succession diagram for the T-LGL leukemia network. Each colored
rectangle represents a different stable motif. Inside the box, gray shaded nodes indicate nodes
in the ON state and black shaded nodes indicate nodes in the OFF state. There are two possible
steady-state attractors: the normal state of cell death (apoptosis) and the diseased state (T-LGL
leukemia). The attractor to which the sequence of stable motifs leads is marked at the rightmost.
A dashed line pointing from a stable motif to a second stable motif means that the second stable
motif can be found in the reduced network due to stabilization of the first stable motif. A dashed
line pointing from a stable motif to an attractor means that applying network reduction with the
fixed stable motif will lead to the attractor. The figure is reproduced from [70]

we obtained a quasi-attractor, which tells us the fixed node states and potential
oscillatory nodes (which visit both of their states as part of a complex attractor)[70].
Thus stable motif analysis can be used as a preliminary analysis or substitute for
attractor analysis depending on the level of detail we care about. For example, in
the T-LGL network, successive stabilization of stable motif shown in Fig. 2.10 will
ultimately drive the system to one of the two steady states: the apoptosis steady state
or the T-LGL leukemia steady state [70].

We are not only interested in building the molecular network to understand the
underlying biological process, but also in designing interventions or therapeutic
strategies to drive the system from an initial state to a desired state or attractor.
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The stable motif succession diagram readily implies a control strategy called stable
motif control as the sequential stabilization of each stable motif in the stable motif
succession diagram guarantees that the system will reach the desired attractor. We
can control the system by controlling the corresponding stable motifs [70]. For
example, sequential stabilization of the three motifs in the first line in Fig. 2.10
will drive the system to the normal steady state (apoptosis). However, the control
strategy does not need control of all the nodes involved as two types of reductions
can be done [70]. First, not all stable motifs need to be controlled. If there is a
branch-free line of stable motifs after a particular stable motif, or if all the branches
lead to the same steady state in the succession diagram, then the stable motifs after
this particular stable motif do not need to be controlled. For example, in the first
sequence of stable motif in Fig. 2.10, one only need to control the first, cyan-colored
stable motif. Second, not all the nodes in the stable motif need to be controlled in
order to stabilize the stable motif. For example, forcing S1P in the OFF state is
enough to stabilize the cyan stable motif in Fig. 2.10. Thus after these two levels
of reduction in the control strategy, one would get a smaller set of nodes to drive
the system to the desired state; however, the intervention does not guarantee to be
minimum in size. The readers interested in more mathematical or practical details
can refer to [69, 70]. All these stable motif analysis and control strategies have
also been applied to the EMT network, yielding strategies to prevent the system’s
convergence to the mesenchymal state and to return the system to the epithelial state
[69, 70].

Another interesting scenario is when there is network damage (malfunction of a
specific node) that could potentially lead to a cascading effect. We need to design a
strategy to prevent the damage from propagating [13, 68]. There are various settings
for modeling network damage; here, we consider the situation that the damage is
permanent and can be modeled as forcing the node state to be ON (constitutive
expression/activity) or OFF (node knockout). We assume that the damage happens
after the system is in one of its attractors. The goal is to design immediate solutions
to stabilize the system to be as close as possible to the original attractor except
the damaged node. This can be accomplished by adding edges between nodes and
modifying the corresponding Boolean regulatory functions [13, 68]. To determine
the best placement of the repairs, one needs to first identify sensitive nodes, whose
node state will be affected by the network damage in the first time step. Then we
identify candidate nodes for the stabilization of each sensitive node by adding an
edge from the candidate node to the sensitive node. This strategy can be applied
to stabilize damage to multiple nodes and to stabilize multiple steady states under
single node damage. These strategies have been demonstrated in two biological
networks, namely T-LGL leukemia network and EMT network. More details can
be found in [68].

Another aspect of dynamical information about the network is to determine the
contribution of each node into the system’s outcomes. Consider a network with
a single source node (signal) and a single sink node that reflects the network’s
output. The expanded network serves as an important tool to characterize the
importance of intermediary (non-signal, non-output) nodes. One useful concept is
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called elementary signaling mode (ESM), which is defined as the minimal set of
components able to perform signal transduction (i.e., able to functionally connect
the signal to the output node) regardless of the rest of the network [66]. The
elementary signaling mode will be a path or a subgraph connecting from the
signal to the output node, which can be identified in the expanded network. For
example, there are two ESMs between node I and node O: the path I , A, O and
the subgraph consisting of I , A, the composite node, ∼C, B, and O. One can
show that they are both minimal, as taking a node from the ESM will obstruct the
signal from propagating. The elementary signaling modes can be used to rank the
importance of the nodes in mediating the signal through studying the reduction in
the number of ESMs due to the loss of the node (and of any other nodes that are
lost as a consequence) [66]. For example, node A appears in both ESMs found in
Fig. 2.9, and its loss eliminated both; however, node B only appears in one of the
ESMs and its loss does not affect the other ESM. This suggests that node A is
essential in the signal transduction process from node I to node O, while node B
is not. In several examples of biological networks it was shown that the ESM-based
analysis can identify essential nodes as effectively as a full dynamical analysis of
the corresponding perturbed system [66]. ESMs, or more specifically, the number
of node-independent ESMs, can also be used to quantify the system’s functional
redundancy [59].

2.5 Conclusions

The improvements in experimental technology and the large amounts of generated
data have brought us into an era where different types of dynamical models are
needed to provide system-wide insights in biological systems. Although Boolean
models are based on a series of assumptions and are limited in describing the
quantitative features of dynamic systems, we have shown that they can capture emer-
gent characteristics of real biological systems, demonstrate considerable dynamic
richness, and can predict successful intervention strategies in biological systems.
Boolean network models do not require detailed knowledge of the kinetic parame-
ters (as continuous models do), striking a balance between scale and realism. Their
parsimonious nature makes them a preferred choice for systems where detailed
quantitative experimental data is not available. Qualitative dynamical models,
including Boolean network models, exist as a complement to quantitative dynamical
models and will be often needed as we gradually develop our understanding of
biological systems. The success of Boolean networks also indicates that in certain
systems the behavior of the system is largely determined by the organization of the
network structure rather than the kinetic details of individual interactions, which
highlight the theoretical value of Boolean network models. In summary, Boolean
networks serve as a useful foundation for modeling molecular systems; they can
identify the network features (e.g., stable motifs) that are key determinants of the
dynamics and whose detailed modeling would be most fruitful.
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Chapter 3
Large-Scale Epidemic Models
and a Graph-Theoretic Method
for Constructing Lyapunov Functions

Michael Y. Li

Abstract The dynamics of the transmission and spread of infectious diseases are
known to be highly complex largely due to the heterogeneity of the host population
and the ecology of the pathogens that causes the disease. Factors contributing
to the heterogeneity of the host population include age distributions, social and
ethnical groups, and spatial distributions, all of which can create complex contact
patterns among hosts. Ecological factors for disease pathogens include life cycles,
disease vectors, multiple hosts, and environmental influences due to local seasonal
changes and large-scale climate changes. Mathematical models that incorporate
these factors of heterogeneity often result in a large-scale system of nonlinear
differential or difference equations that has a high dimension, multi-components and
multi-parameters. While these type of models are more realistic than the classical
SIR or SEIR models, its mathematical analysis is highly nontrivial because of the
high-dimensionality and their validation from data for reliable predictions is often
problematic because of the large number of model parameters. In this chapter, I
present a graph-theoretic approach to the construction of Lyapunov functions for
establishing the global dynamics of large-scale epidemic models. I will start in
Sect. 3.1 with an introduction to epidemic modeling and give two examples of
large-scale epidemic models. I will also show two methods for computing the basic
reproduction number R0: the method of van den Driessche and Watmough and the
method of using Lyapunov functions. Both methods are based on local stability
analysis of the disease-free equilibrium P0. In Sect. 3.2, I will introduce the notion
of dynamical systems on networks as a mathematical framework for large-scale
epidemic models and explain the graph-theoretic approach to constructing Lya-
punov functions in this general framework. In Sect. 3.3, I will present applications
of the graph-theoretic approach to various large-scale models in epidemiology and
ecology.
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3.1 Large-Scale Epidemic Models for Heterogeneous
Populations

We begin by a brief introduction of a simple SIR epidemic model and its mathemat-
ical analysis; we will then show how large-scale epidemic models can be built using
the simple SIR model as building blocks for two types of host populations: one with
a discrete group structure and another with a discrete spatial distribution.

3.1.1 A Simple SIR Epidemic Model

To model the spread of an infectious disease within a host population, we start
with a simplistic approach by assuming that the population is homogeneous in the
way how individuals interact. We then partition the population into subpopulations
(compartments) of susceptibles (S), infectious (I ), and recovered (R). We denote
the number of individuals in the respective compartment at time t by S(t), I (t),
and R(t). The model is depicted in the transfer diagram depicted in Fig. 3.1 In
the diagram, � denotes the influx of susceptible population either through birth
or immigration, whose unit is number of people per unit time, βIS the rate of new
infections (incidence), γ I the rate of recovery, and dS, dI , and dR are the removal
rate from each of the compartments. Parameter β is often called the transmission
coefficient, whose dimension is 1/people · time, γ and d are rate constants for
recovery and removal, respectively, whose units are percentage per unit time. Based
on the transfer diagram, we can derive the following system of differential equations
for S(t), I (t), and R(t):

S′ = � − β I S − d S (3.1)

I ′ = β I S − (γ + d) I (3.2)

R′ = γ I − d R. (3.3)

We consider this system with an initial condition (S0, I0, R0) ∈ R
3+. It can be

verified that the nonnegative cone R
3+ is positively invariant for system (3.1)–(3.3).

This means that solutions (S(t), I (t), R(t)) with nonnegative initial conditions will
remain nonnegative, and the model is well posed.

Fig. 3.1 Transfer diagram
for a simple SIR model
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Adding the three equations and letting N = S + I + R, we obtain:

N ′ = �− dN,

which leads to

lim sup
t→∞

N(t) ≤ �

d
.

It follows that the bounded region in R
3+:

{(S, I, R) ∈ R
3+ | S + I + R ≤ �/d}

is globally attracting and positively invariant. Noticing that the first two equations
do not contain the variable R, we can focus on the subsystem consisting of the first
two equations:

S′ = � − β I S − d S (3.4)

I ′ = β I S − (γ + d) I, (3.5)

where S, I are taken from the following two-dimensional feasible region:

� = {(S, I ) ∈ R
2+ | S + I ≤ �/d}. (3.6)

With the dynamics of (3.4)–(3.5) understood, the behaviors of R(t) can be obtained
from R′ = γ I − dR.

It can be verified that system (3.4)–(3.5) has two possible equilibria: the disease-
free equilibrium P0 = (�/d, 0) and a unique endemic (positive) equilibrium P ∗ =
(S∗, I ∗), where

S∗ = �

d

1

R0
, I ∗ = d

β
(R0 − 1),

and

R0 = β

γ + d

�

d
. (3.7)

Here, R0 is the basic reproduction number, which measures the average number of
direct infections caused by a single infectious individual in an entirely susceptible
population (�/d) during the average infectious period (1/(γ+d)) [1, 4, 6, 7, 32, 33].

It is clear from the expression of S∗, I ∗ that the endemic equilibrium P ∗ exists in
the feasible region � if and only if R0 > 1. In fact, using the standard phase-plane
analysis, we can show that an initial outbreak (I0 > 0) can only have two distinct
outcomes: either the infection dies out (the epidemic case) or the infection persists
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Fig. 3.2 Numerical illustrations of the Threshold Theorem. (a) Epidemic case (R0 ≤ 1). (b)
Endemic case (R0 > 1)

in the population at a constant level I ∗ (the endemic case), irrespective of the level
of I0. The threshold parameter that determines the outcome of an disease outbreak is
R0. The precise mathematical statement is given in the following threshold theorem.
The two distinct outcomes described in the theorem are illustrated using numerical
simulations in Fig. 3.2.

Theorem 3.1 (Threshold Theorem)

1. If R0 ≤ 1, then the disease-free equilibrium P0 = (Λ/d , 0) is stable and
attracts all solutions in Γ .

2. If R0 > 1, then P0 is unstable, and the unique endemic (positive) equilibrium
P ∗ = (S∗, I ∗) is stable and attracts all positive solutions in Γ.

The threshold theorem can also be interpreted in the context of bifurcation. As
the bifurcation parameter R0 increases across the bifurcation value 1, system (3.4)–
(3.5) undergo a transcritical bifurcation in which two branches of equilibria
exchange their stability. We note that for R0 < 1, I ∗ < 0 and the nonzero
equilibrium exists but not biological. This bifurcation is illustrated in the bifurcation
diagram in Fig. 3.3. In the birfurcation diagram, when the value of R0 is less than
one, system (3.4)–(3.5) has only the disease-free equilibrium P0 (I ∗ = 0) and it
attracts all solutions in �. When the value of R0 is greater than one, system (3.4)–
(3.5) has two equilibria: an unstable P0 (dashed line) and the stable P ∗, and P ∗
attracts all positive solutions. The global attractivity is illustrated numerically using
phase portraits in Fig. 3.4, in which orbits from different initial points are shown to
converge to P0 when R0 < 1 and to P ∗ when R0 > 1.

The biological significance of the threshold theorem is that controlling the spread
of an infectious disease translates into reducing the value of R0 to below 1. This can
be done for instance by:

• reducing the transmission rate β;
• treating infectious individuals to reduce the mean infectious period 1

γ+d ;
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Fig. 3.3 Bifurcation diagram

Fig. 3.4 Phase portraits. (a) R0 < 1. (b) R0 > 1

• vaccinating the population with a vaccine coverage rate 0 < p ≤ 1 to reduce the
size of susceptible population to (1 − p)�/d.

3.1.2 Disease Transmission Among Heterogeneous
Populations

A major shortcoming of the simple SIR model (3.1)–(3.3) is its assumption of
homogeneous mixing: individuals have an equal probability of making a contact
with one another. While this assumption can be a first approximation to the mixing
of individuals, it is far from adequate as a model for real-world epidemics. A major
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factor for the complexity of transmission dynamics of infectious diseases is the
heterogeneity, which may be caused by many factors:

• structured mixing: different mixing patterns among social, ethnical, and age
groups;

• spatial heterogeneity: disease spread across regions, cites, communities, villages;
• epidemiological heterogeneity: differential infectivity or susceptivity, stages of

infections, multiple pathogen strains, etc.;
• ecological heterogeneity: intermediate hosts (animals, rodents), disease vectors

(mosquitoes), life cycles of pathogens, and environmental influences.

To demonstrate how heterogeneity can be incorporated into an epidemic model,
we consider two types of heterogeneity: a group structure and a discrete spatial
structure.

3.1.2.1 Disease Transmission in Group-Structured Populations

To overcome the shortcoming of the homogeneous mixing in the simple epidemic
model (3.1)–(3.3), we assume that the population can be partitioned into n groups
and mixing within each group is homogeneous whereas cross-group mixing can be
less frequent than within-group mixing. For each 1 ≤ k ≤ n, we further partition
the k-th group into compartments Sk , Ik , and Rk of the susceptible, infectious, and
recovered individuals, respectively, and letNk = Sk+Ik+Rk be the total population
of the k-th group. Let βjk be the transmission coefficient for transmissions from Ij
to Sk , 1 ≤ k, j ≤ n. Then the rate of new infections in the k-th group can be
written as

n∑
j=1

βjkIjSk

and the simple SIR model (3.1)–(3.3) can be adapted to the k-th group as

S′k = �k −
n∑

j=1

βjkIjSk − dk Sk (3.8)

I ′k =
n∑

j=1

βjkIjSk − (γk + dk) Ik (3.9)

R′
k = γk Ik − dk Rk, (3.10)

for k = 1, · · · , n. Parameters in (3.8)–(3.10) have the same meaning as those
in (3.1)–(3.3) except for the group-specific subindices indicating heterogeneity
among groups. We also note that the transmission matrix
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B = {βjk} =
⎡
⎢⎣
β11 . . . β1n
...

. . .
...

βn1 . . . βnn

⎤
⎥⎦ (3.11)

indicates the within-group and inter-group transmissions. It is nonnegative and may
not be strictly positive or symmetric. A reasonable restriction on the transmission
matrix B is that it is irreducible. A nonnegative square matrix A is reducible if, for
some permutation matrix P , PAPT is block lower triangular, namely,

PAPT =
[
A1 0
A2 A3

]
,

and A1, A3 are square matrices. Otherwise, A is irreducible. Irreducibility of A can
be checked using the associated directed graphs. The weighted directed graph G (A)
associated with A = (ajk)n×n has vertices {1, 2, · · · , n}, and a directed arc (j, k)
from j to k exists if and only if ajk �= 0. Then, G (A) is strongly connected if any
two distinct vertices are joined by an oriented path. Then, the matrix A is irreducible
if and only if G (A) is strongly connected [3].

Example 3.1 Consider the matrices A, Ā and their respective digraphs G (A),
G (Ā) to their right in Figs. 3.5 and 3.6. We assume that all the aij in these
two matrices are positive. Matrix Ā is obtained from A by switching the (1, 2)
and (2, 1) entries. Correspondingly, in their respective weighted digraphs, the
direction of the arrow from vertex 2 to vertex 1 is reversed. By definition, A is a
reducible matrix. Correspondingly, G (A) is not strongly connected since there is
no oriented path from vertex 1 to any other vertex. In contrast, the digraph G (Ā)
is strongly connected since there is an oriented cycle linking all four vertices. As
a result, we know that Ā is irreducible without having to check for all possible
permutations.

Fig. 3.5 A reducible matrix A and non-strongly connected digraph G (A)
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Fig. 3.6 An irreducible matrix Ā and strongly connected digraph G (Ā)

For the multi-group model (3.8)–(3.10), the irreducibility of the transmission
matrix B = (βjk) means that infectious individuals in each group can infect the
susceptibles in any other group either directly or indirectly through intermediate
groups.

For an n-group SIR model (3.8)–(3.10), we can ask similar questions raised for
the simple SIR model, as well as questions that are related to heterogeneity.

Mathematical Questions

1. How to compute R0 for group-structured models?
2. Does the threshold theorem still hold for group-structured models? In particu-

lar:

(a) If R0 < 1, is P0 locally stable or globally stable?
(b) If R0 > 1, is P ∗ unique? is it locally stable?
(c) When P ∗ is unique, is it globally stable?
(d) What methods can we use to prove these results?

3. Can multiple endemic equilibria coexist? If so, what type of bifurcation can
occur?

Epidemiological Questions

1. What control strategies does R0 suggest?
2. When P ∗ = (S∗1 , I ∗1 , R∗

n, · · · , S∗n, I ∗n , R∗
n) is globally stable,

(a) are there any patterns among I ∗k , k = 1, 2, · · · , n?
(b) which I ∗k will be the largest?
(c) for which k will the corresponding group have the highest disease prevalence

I∗k
S∗k+I∗k+R∗

k
and why?
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3. If we want to target certain group for disease intervention such as antiviral
treatment or disease prevention such as vaccination, what will be the most
effective approach?

We will examine some of these questions in later sections.

3.1.2.2 Disease Spread in Spatially Heterogeneous Populations

In this section, we formulate a mathematical model for the spatial spread of
Dengue fever due to travel of infectious individuals. We first consider a spatially
homogeneous model for Dengue fever and then incorporate spatial heterogeneity
and travel between different regions into the simple model.

A Simple Model for Dengue Fever Dengue diseases are mosquito-borne viral
diseases that are prevalent in tropical regions of the world. Dengue virus is
transmitted by female mosquitoes of the species Aedes aegypti. A female mosquito
is infected by the virus from the blood meal drawn from an infectious human or
other mammals and can transmit the virus to a susceptible human by biting. Infected
mosquitoes are known not to recover from infection of Dengue viruses. Infected
humans can develop Dengue hemorrhagic fever which can lead to death. There
are four known strains of Dengue viruses. Recovery from infection of one strain
provides life-long immunity against the strain, but cross-immunity to other strains
after recovery is only partial and temporary.

To model the transmission of Dengue viruses within a homogeneous human
population, we need also to consider the mosquito population that serves as the
disease vector for Dengue transmission. We partition the human population into the
susceptible (Sh), infectious (Ih), and recovered and immune (Rh) compartments,
and let Nh = Sh + Ih + Rh be the total human population. For the mosquito
population, we consider only the susceptible (Sv) and infectious (Iv) compartment,
since infectious mosquitoes do not recover. Let Nv = Sv + Iv be the total mosquito
population. A simple Dengue model is depicted in the transfer diagram in Fig. 3.7.

In the model, it is assumed that the influx of susceptible humans is only through
birth and is given by bNh, and that the influx of susceptible mosquitoes is constant
and equal to A. The recovery and removal terms in the transfer diagram are similar
to those for the simple SIR model (see Fig. 3.2). The key differences between the
Dengue model and the SIR model (3.1)–(3.3) lie in the transmission terms, which
we explain in the next two paragraphs.

Let b be the average number of bites per day for a typical (female) mosquito
among all mammals, βh the probability of transmission from mosquito bites for
humans, and βv the probability of transmission for mosquitoes from biting an
infected mammal. Then the number of new Dengue infections per day in the human
population is given by:

βh · b ·Nv · Nh

Nh + a
· Iv
Nv

· Sh
Nh

= βhbIvSh

Nh + a
.
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Fig. 3.7 Transfer diagram for a simple Dengue model. The dashed lines indicate cross infections
between mosquitoes and human hosts. Parameters are described in the text

In fact, bNv denotes the total number of mosquito bites per day from all mammals,
Nh

Nh+a is the fraction of humans (Nh) among all mammals (Nh + a), Iv
Nv

is the

probability that a bite is from an infectious mosquito, and Sh
Nh

is the probability
that an infectious mosquito bite is on a susceptible human.

Similarly, the number of new Dengue infections per day in the mosquito
population is given by:

βv · b · Sv · Nh

Nh + a
· Ih
Nh

= βvbIhSv

Nh + a
.

Using the transfer diagram in Fig. 3.7, we derive the following model for Dengue
fever:

S′h = bNh − βhbIvSh

Nh + a
− dhSh (3.12)

I ′h = βhbIvSh

Nh + a
− (dh − γ )Ih (3.13)

S′v = A− βvbIhSv

Nh + a
− dvSv (3.14)

I ′v = βvbIhSv

Nh + a
− dvIv. (3.15)

Here, γ Ih represents the number of humans recovered from Dengue. Once recov-
ered, they are immune to reinfection and thus removed from the transmission
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process. For more details on the model derivation and its mathematical analysis,
we refer the reader to Esteva and Vargas [8]. Note that we have neglected the Rh

equation since Rh does not appear in the equations for Sh and Ih as in our treatment
of the simple SIR model.

A Multi-Region Model for the Spread of Dengue Fever The spread of Dengue
diseases over a large geographical area such as a city, province, or country can be
caused by the movements of infectious humans and mosquitoes among different
geographical regions. We focus on the impact of human movement on the spread of
Dengue diseases.

Consider a travel network of n geographical regions represented by a digraph,
for instance that as shown in Fig. 3.8. Here, each vertex represents a region, an
arrow indicates movement of humans between two regions/vertices, each weight
mij represents rate of movement, i.e. the fraction of humans moving from region
i to region j per unit time. The movement (arrow) between i and j exists if and
only if mij ,mji > 0, but rates in opposite directions may not be the same. We
also note that, because arcs representing movements are bidirectional, the digraph
G (M), M = (mij ) is strongly connected if each pair of vertices are connected by a
path.

Let Shi, Ihi, Rhi, Svi, Ivi denote the compartments of our simple Dengue
model (3.12)–(3.15) for the i-th region. Our interest is to investigate the impact
of regional movement of infected humans on the transmission dynamics of Dengue.
The net change in the infectious population in the i-th region due to movement is
given by

inflow rate − outflow rate =
∑
j �=i

mjiIhj − (
∑
j �=i

mij )Ihi .

Adding this change to the equation for the infectious human population to the simple
Dengue model (3.12)–(3.15), we arrive at the following n-region model for Dengue:

S′hi = biNhi − βhibIviShi

Nhi + ai
− dhiShi (3.16)

Fig. 3.8 A travel network
represented by a digraph
G (M), M = (mij )
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I ′hi = βhibiIviShi

Nhi + a
− (dhi − γi)Ihi +

∑
j �=i

mjiIhj −
(∑
j �=i

mij

)
Ihi (3.17)

S′vi = A− βvibiIhiSvi

Nhi + ai
− dviSvi (3.18)

I ′vi =
βvibiIhiSvi

Nhi + ai
− dviIvi , (3.19)

for i = 1, 2, · · · , n. Note that the whole system has dimension 4n.
Mathematical questions we can investigate for the n-region Dengue

model (3.16)–(3.19) are similar to those for the n-group SIR model (3.8)–(3.10),
and they include the computation of the basic reproduction number R0, number and
local stability of equilibria, and validity of the threshold theorem.

Biological questions we can investigate include how to use R0 to design effective
Dengue intervention measures, and how to use a complicated model of large
dimension to interpret disease data and make reliable predictions.

However, the complexity and high-dimensionality of these two large-scale
models pose serious challenges for our investigations.

3.1.3 Computation of R0 and Local Stability of P0

In this section, we discuss the computation of the basic reproduction number R0 for
complex epidemic models as done in [6, 33], and the relation between R0 and the
local stability of the disease-free equilibrium P0. The presentation in Sect. 3.1.3.1
follows that of van den Driessche and Watmough [33].

3.1.3.1 Computation of R0 Using the Next Generation Matrix

Let x = (x1, · · · , xp, xp+1, · · · , xq) denote the state variable in an epidemic model,
where x1, · · · , xp denote the variables for all the infected compartments. Then a
disease-free equilibrium P0 can be expressed as x̄ = (0, · · · , 0, x̄p+1, · · · , x̄q). We
rearrange the p equations for variables x1, · · · , xp in the model as:

x′i = Fi (x)− Vi (x), i = 1, 2, · · · , p, (3.20)

where, for each i, Fi and Vi are functions such that Fi (x) includes all the terms
representing new infections and Vi (x) are made of other terms which typically
represent transfers among compartments. Since P0 is an equilibrium of the epidemic
model, Fi and Vi satisfy the obvious conditions Fi (x̄) = 0 and Vi (x̄) = 0. We also
assume that Fi and Vi are smooth functions.
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We define the matrices:

F =
(∂Fi

∂xj
(x̄)

)
1≤i, j≤p, V =

(∂Vi
∂xj

(x̄)
)

1≤i, j≤p.

Linearizing the model around the disease-free equilibrium x̄ = (0, · · · , 0, x̄p+1,

· · · , x̄q) and restricting the linearized system to its first p equations, we obtain the
following p-dimensional linear system:

y′ = (F − V )y, y ∈ R
p, (3.21)

which is the linearization of system (3.21). The disease-free equilibrium x̄ is
locally asymptotically stable if the linear system (3.21) is asymptotically stable.
The following proposition, established in [33], gives a hint on how to determine the
stability of x̄.

Proposition 3.1 (van den Driessche and Watmough) The following statements
are equivalent:

1. the disease-free equilibrium x̄ is locally asymptotically stable;
2. all the eigenvalues of F − V have negative real parts;
3. all the eigenvalues of FV −1 − Im×m have negative real parts;
4. ρ(FV −1) < 1, where ρ(FV −1) denotes the spectral radius of FV −1.

The matrix FV −1 is called the second generation matrix, and its spectral radius
ρ(FV −1) is the largest modulus of all its eigenvalues. It turns out that ρ(FV −1) is
the basic reproduction number R0. For details, see [6, 33].

Example 3.2 (Computing R0 for the n-group SIR model) As an exercise, we apply
the method of van den Driessche and Watmough to compute the basic reproduction
number for the n-group SIR model (3.8)–(3.10).

Let x = (I1, · · · , In, S1, · · · , Sn, R1, · · · , Rn) represent the rearranged state
variables of system (3.8)–(3.10). Note that p = n and q = 3n. Then the disease-
free equilibrium P0 can be written as x̄ = (0, · · · , 0, S̄1, · · · , S̄n, R̄1, · · · , R̄n),

with S̄i = �i/di , i = 1, . . . , n. The equations for the infected variables I1, · · · , In
are:

I ′i =
n∑

j=1

βjiIj Si − (di + γi)Ii, i = 1, · · · , n.

They can be rewritten as,

x′i = Fi (x)− Vi (x), i = 1, · · · , n,
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where xi = Ii and

Fi (x) =
n∑

j=1

βjiIj Si, Vi (x) = (di + γi)Ii, i = 1, 2, · · · , n.

Computing the partial derivatives of Fi and Vi with respect to x1, · · · , xn at x̄, we
obtain:

F = (βji S̄i ), V = diag(d1 + γ1, · · · , dn + γn), (3.22)

and the basic reproduction number is given by:

R0 = ρ(FV −1) = ρ
( βji S̄i

dj + γj

)
1≤i,j≤n.

When parameters in the model are known, the spectral radius ρ(FV −1) can
be computed using a computer software package to verify if R0 < 1. For more
examples of computation of R0 for various epidemic models, we refer the reader
to [33].

3.1.3.2 Local Stability Analysis of P0 Using Lyapunov Functions

Another method for establishing local stability of an equilibrium is the method of
Lyapunov functions. An advantage of the method of Lyapunov functions is that it
is applicable even if real parts of some eigenvalues of the Jacobian matrix at the
equilibrium are zero, in which case the method of linearization is not applicable.
This is often the case for P0 when the basic reproduction number R0 = 1.
Another advantage is that Lyapunov functions can be constructed to show global
stability, whereas linearization can only determine properties of solutions near the
equilibrium.

We use the n-group SIR model (3.8)–(3.10) as an example to show how to use
a Lyapunov function and the LaSalle’s invariance principle to prove global stability
of the disease-free equilibrium P0 when R0 ≤ 1.

Let S = (S1, S2, · · · , Sn), I = (I1, I2, · · · , In), and S̄ = (S̄1, · · · , S̄n), S̄i =
�i/di , 1 ≤ i ≤ n. Define the matrix:

M(S) =
( βjiSi

di + γi

)
1≤i,j≤n.

Then the equations for I1, · · · , In in system (3.8)–(3.10) can be written in matrix
form:

I ′ = M(S)I − diag(d1 + γ1, · · · , dn + γn)I.
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Let M̄ = M(S̄). If the transmission matrix B = (βji) is irreducible, then the
nonnegative matrix M̄ is also irreducible, since Si

di+γi > 0 for all i. The following
Perron–Frobenius theorem is well known for nonnegative matrices [3].

Theorem 3.2 (Perron–Frobenius Theorem) Let A ≥ 0 be an irreducible square
matrix. Then, the spectral radius ρ(A) is a simple eigenvalue with a positive left
eigenvector (w1, w2, · · · , wn), i.e.

(w1, w2, · · · , wn)A = ρ(A)(w1, w2, · · · , wn).

We note that the matrix M̄ can be expressed using F, V in (3.22) as

M̄ =
( βji S̄i

di + γi

)
= V −1F = V −1(FV −1)V .

Therefore, M̄ has the same eigenvalues as the next generation matrix FV −1 and
thus the same spectral radius:

R0 = ρ(M(S̄)) = ρ(M̄) = ρ(FV −1).

We prove the following result.

Proposition 3.2

1. If R0 ≤ 1, then the disease-free equilibrium P0 of the n-group SIR model (3.8)–
(3.10) is globally stable in Γ .

2. If R0 > 1, then P0 is unstable.

Proof We use the following Lyapunov function:

V =
n∑
i=1

wi

di + γi
Ii .

Differentiating V along solutions of (3.8)–(3.10), we obtain:

dV

dt
=

n∑
i=1

wi

di + γi

dIi

dt
= (w1, w2, · · · , wn)[M(S) I − I ]

≤ (w1, w2, · · · , wn)[M(S̄) I − I ] (since S ≤ S̄)

= (ρ(M(S̄))− 1)
n∑

j=1

wjIj ≤ 0, if ρ(M(S̄)) ≤ 1.

Furthermore:

dV

dt
= 0 ⇐⇒ I = 0, S = S̄.
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LaSalle’s invariance principle [22] implies that P0 is globally stable if ρ(M(S̄)) ≤ 1.
If ρ(M(S̄)) > 1, then for I > 0,

(w1, w2, · · · , wn)[M(S̄) I − I ] = [ρ(M(S̄)) − 1]
n∑

j=1

wjIj > 0,

and thus

dV

dt
= (w1, w2, · · · , wn)[M(S) I − I ] > 0, for I > 0,

in a neighborhood of P0 by continuity. This implies that P0 is unstable. ��

3.1.3.3 Significance of the Basic Reproduction Number

The basic reproduction number R0 is an important concept in epidemiology of
infectious diseases, and we have seen that it plays a crucial role in determining
the dynamics of simple and complex epidemic models.

Mathematical Significance of R0 For many epidemic models, the basic repro-
duction number is a sharp threshold parameter that determines the model dynamics.
More specifically:

1. If R0 < 1, then the disease-free equilibrium P0 is locally stable [33], and the
disease dies out when the initial number of infected individuals is small.

2. If R0 > 1, then P0 is unstable, and the system is uniformly persistent, namely,
there exist positive constants c1, · · · , cn such that lim inft→∞ xi(t) > ci for all
positive solutions [13]; the disease persists in the population.

3. Uniform persistence and boundedness of solutions imply the existence of an
endemic (positive) equilibrium P ∗ [5, 34].

Important mathematical questions to be investigated include:

1. When R0 < 1, is P0 globally stable? Or will the disease die out even when there
are many infected individuals initially?

2. When R0 > 1, is P ∗ unique? Interesting bifurcations may occur when multiple
endemic equilibria coexist.

3. If P ∗ exists, is it unique and locally stable? Is it globally stable? This is often
quite challenging to establish.

We comment that there are important classes of epidemic models where R0 is
not a sharp threshold parameter. Endemic equilibria may exist even when R0 < 1.
This is the case when a backward bifurcation occurs. For discussions on backward
bifurcations in epidemic models, we refer the reader to [33] and references therein.
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Epidemiological Significance of R0 Lessons from epidemic modeling suggest
that a key objective of infectious disease control is to reduce the value of basic
reproduction number R0 to below 1. Expressions of R0 derived from epidemic
models can often help design effective control strategies, as we have seen in the
case of simple SIR models.

For large-scale epidemic models, the basic reproduction number is given as the
spectral radius of a high-dimensional matrix, and an explicit formula for R0 is
often not readily available. As a result, many interesting questions remain regarding
disease control and intervention:

1. How should we change parameter values in order to lower the spectral radius
ρ(FV −1)?

2. Can we identify key vertices on the network for targeted control and interven-
tion? For multi-group modeling of sexually transmitted diseases (STD), such a
question is related to the idea of “core groups” of Yorke, Hethcote, and Nold
[35].

3. Using multi-region models, how do we design an effective way of travel
restriction to stop the spread of local outbreaks to other regions?

4. For vector controls using genetically modified (GM) mosquitoes, how can
we identify key regions in the network for the release of GM mosquitoes to
effectively lower R0 while minimizing environmental risks?

These epidemiological questions can inspire many interesting mathematical studies
on complex modeling and complex systems.

3.2 Dynamical Systems on Networks

What common features do the multi-group SIR model (3.8)–(3.10) and the multi-
region Dengue model (3.16)–(3.19) share? First of all, they are both large-scale
systems with a large number of variables, which make them difficult to analyze
mathematically, and a large number of parameters, which make parameter esti-
mation and model identification from disease data difficult. However, a closer
examination shows that both systems share an important structure:

1. the equations for each group or region contain many terms from those of the
simple homogeneous model, together with interaction terms among groups or
regions;

2. if we remove the interactions among groups (cross infections) or regions
(movements), then each isolated group or region has a simple homogeneous
model, whose dynamics are well-understood;

3. the interactions can be encoded on a directed graph.

In fact, we will show later that such a structure is shared by many large-scale systems
in biology and epidemiology, as well as in physical sciences and engineering. It
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makes mathematical sense to have a common framework in which all such large-
scale systems can be investigated.

In this section, we describe the framework of dynamical systems on networks
under which we investigate large-scale epidemic models. We begin by introducing
some terminologies and results in graph theory including the Kirchhoff’s matrix-tree
theorem and a new Tree Cycle Identity. We then present a general graph-theoretic
approach to the construction of Lyapunov functions for dynamical systems on
networks that was developed in a series of papers by Guo et al. [11–14, 26, 27].
This approach makes it possible to systematically construct global Lyapunov
functions for large-scale models. We also present applications of the approach to
several models in ecology, epidemiology, and engineering. The development of the
materials in this section follows that in [26].

3.2.1 Preliminaries of Graph Theory

A directed graph or a digraph G = (V ,E) consists of a set V = {1, 2, . . . , n} of
vertices and a set E of directed arcs connecting pairs of vertices. We denote the
directed arc from vertex i to vertex j by (i, j). A digraph G is weighted if each
arc (i, j) is assigned a weight aij ≥ 0. When an arc (i, j) does not exist, we set
the corresponding weight aij = 0. The weight matrix A = (aij ) is a nonnegative
matrix. In general, matrix A may not be strictly positive or symmetric.

Conversely, each nonnegative n × n matrix A defines a weighted digraph G (A)
with n vertices, and a directed arc (i, j) exists if and only if aij > 0.

A digraph G is strongly connected if, for each pair of vertices i �= j , there exists
an oriented path from i to j . A nonnegative matrix A is reducible if there exists a
permutation matrix P such that PT AP is block lower triangular, and otherwise A is
irreducible. We have seen in Sect. 3.1.2.1 that a nonnegative matrix A is irreducible
if and only if the weighted digraph G (A) is strongly connected [3].

Let G be a weighted digraph with weight matrix A = (aij )n×n. A directed tree
is a connected subgraph containing no cycles, directed or undirected. The weight
w(T of a tree T is the product of the weights of its arcs. A tree T is rooted at
a vertex i if the remaining vertices of T are connected by directed paths from the
root i. A tree T is spanning if it contains all vertices of G . A subgraph H of G is
unicyclic if it contains a unique directed cycle. An illustration of a rooted spanning
tree is given in Fig. 3.9.

The Laplacian matrix L(A) of matrix A is defined as

L(A) = diag(d1, · · · , dn)− A
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Fig. 3.9 A spanning tree
rooted at vertex 4 is marked
using dashed arrows

where di = ∑n
j=1 aij , the sum of elements of the i-th row of A. Thus L(A) looks

like:

L(A) =

⎡
⎢⎢⎢⎢⎣

∑
k �=1 a1k −a12 · · · −a1n

−a21
∑

k �=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · · ∑k �=n ank

⎤
⎥⎥⎥⎥⎦ .

The following result is known as Kirchhoff’s matrix-tree theorem, which was
first published in 1847 [17]. An English translation appeared in 1958 [18]. For a
modern treatment, we refer the reader to [29].

Theorem 3.3 (Kirchhoff’s Matrix-Tree Theorem) Let Cii be the co-factor of the
i-th diagonal element of L(A), namely, the determinant of the submatrix obtained
by removing the i-th row and i-th column of L(A). Then

Cii =
∑
T ∈Ti

w(T ), i = 1, 2, · · · , n,

where Ti is the set of all spanning trees of G (A) rooted at vertex i.

Example 3.3 As an illustration of the matrix-tree theorem, we consider the case
n = 3. For a 3 × 3 matrix A = (aij ), direct calculation shows that

C11 = a32a21 + a21a31 + a23a31. (3.23)

All possible spanning trees rooted at vertex 1 are shown in Fig. 3.10. Adding the
sum of weights of the three digraphs in Fig. 3.10, we obtain the same expression for
C11 as in (3.23).
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Fig. 3.10 All possible
spanning trees of a 3-digraph
that are rooted at vertex 1

Fig. 3.11 A unicycle graph
Q is formed by adding an arc
(dashed) to a rooted tree T
(shown in solid lines)

Using the matrix-tree theorem, Li and Shuai proved the following Tree-Cycle
Identity [26], which is a regrouping of double sums according to unicyclic spanning
graphs.

Theorem 3.4 (Tree-Cycle Identity) Let ci = Cii be that given in the matrix-tree
theorem. Then the following identity holds:

n∑
i,j=1

ci aij Fij (x) =
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

Frs(x)

where Fij (x), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning
unicyclic subgraphs Q of G (A), w(Q) is the weight of Q, and CQ denotes the
oriented cycle of Q.

Proof For a detailed proof, we refer the reader to [26]. Here we note that
w(T ) aij = w(Q), where Q is the unicyclic graph obtained by adding an arc (j, i)
to T . See the illustration in Fig. 3.11. ��

3.2.2 Dynamical Systems on Networks

A network is defined as a digraph G such that at each vertex i, a system of
differential equations is defined:

x′i = fi(xi), xi ∈ R
di , fi : Rdi → R

di . (3.24)
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Such a vertex system (3.24) describes the dynamics on an isolated vertex. Influence
of vertex i on a vertex j is described by a function gij : Rdi × R

dj → R
di . An arc

from j to i in the digraph G is absent if and only if gij ≡ 0.
A dynamical system on a network G is defined as a coupled system of differential

equations:

x′i = fi(xi)+
n∑

j=1

gij (xi, xj ), i = 1, 2, . . . , n. (3.25)

The state variable of (3.25) is x = (x1, x2, · · · , xn) ∈ R
d1 × R

d2 × · · ·Rdn×, with
a total dimension N = d1 + d2 + · · · + dn.

The multi-group SIR model (3.8)–(3.10) can be regarded as a dynamical system
on the transmission network G (B) defined by the transmission matrix B = (βij ).
Each vertex represents a single group with vertex dynamics described by

S′k = �k − βkkIkSk − dk Sk

I ′k = βkkIkSk − (γk + dk) Ik

R′
k = γk Ik − dk Rk,

for k = 1, · · · , n. The influence from vertex j to vertex i is the cross infection
between Ij and Si :

gij (Si, Ii , Sj , Ij ) = (−βij SiIj , βij SiIj , 0)T .

Similarly, for the multi-region Dengue model (3.16)–(3.19), the network is the
travel network G (M) among regions defined by the matrix M = (mij ). Each vertex
is a region with vertex dynamics described a single region Dengue model:

S′hi = biNhi − βhibIviShi

Nhi + ai
− dhiShi (3.26)

I ′hi = βhibiIviShi

Nhi + a
− (dhi − γi)Ihi (3.27)

S′vi = A− βvibiIhiSvi

Nhi + ai
− dviSvi (3.28)

I ′vi =
βvibiIhiSvi

Nhi + ai
− dviIvi , (3.29)

for i = 1, 2, · · · , n. The influence from vertex j to vertex i is the net movement of
infected humans from region j to region i:

gij (Shi, Ihi, Svi, Ivi) = (0,mjiIhj −mij Ihi, 0, 0)T .
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In Sect. 3.3, we will describe more examples of complex models as dynamical
systems defined on a network.

3.2.3 Global Stability of Equilibria

Local stability of an equilibrium describes properties of solutions in a small
neighborhood of the equilibrium. Local stability can be established either by the
method of linearization (if the equilibrium is hyperbolic) or by the method of local
Lyapunov functions. In contrast, global stability of an equilibrium x̄ describes the
property that all solutions in a large region converge to the same equilibrium x̄.

For a system of differential equations defined in an open set D ⊂ R
N :

x′ = f (x), x ∈ D ⊂ R
N, (3.30)

where f : D → R
N is sufficiently smooth so that a solution to the initial value

problem exists and is unique.
An equilibrium x̄ of (3.30) is stable if for each ε-neighborhood N(x̄, ε) of x̄,

there exists a δ-neighborhoodN(x̄, δ) of x̄ such that x0 ∈ N(x̄, δ) implies x(t, x0) ∈
N(x̄, ε) for all t ≥ 0. The equilibrium x̄ is asymptotically stable if it is stable and if
there exists b-neighborhoodN(x̄, b) such that x0 ∈ N(x̄, b) implies x(t, x0)→ x̄ as
t →∞. In this case, the equilibrium x̄ is said to “attract points” in the neighborhood
N(x̄, b).

An equilibrium x̄ is globally stable with respect to a set G ⊂ R
N if (a) it is

locally stable and (b) it attracts points in G, namely, x0 ∈ G implies x(t, x0) → x̄

as t → ∞. The property (b) is often called global attractivity of x̄. We note that in
general global attractivity may not imply local stability.

The proof of global stability of an equilibrium is more challenging than that of
the local stability. General methods for proving global stability include:

1. constructing of global Lyapunov functions;
2. applying the theory of monotone dynamical systems (see [15, 31]);
3. applying the theory of autonomous convergence (see [23–25, 30]).

For complex and large-scale mathematical models, the most practical and effective
method is the construction of global Lyapunov functions.

Let U ⊂ R
N be a neighborhood of the equilibrium x̄ and V : U �→ R a C1

real-valued function. The gradient vector of V (x) is

grad V (x) =
(
∂V

∂x1
, · · · , ∂V

∂xn

)
.

The derivative of V in the direction of the vector field f of system (3.30) is defined
as

∗
V (x) = grad V (x) · f (x).
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This is also called the Lyapunov derivative with respect to system (3.30). The
function V (x) is called a Lyapunov function of system (3.30) near an equilibrium
x̄ if

∗
V (x) ≤ 0, for x in a neighborhood U of x̄. (3.31)

If the inequality (3.31) holds in an open set G ⊂ R
N , then V is said to be a global

Lyapunov functionLyapunov function!global Lyapunov function with respect to G.
Let x(t, x0) be a solution of system (3.30) that stays in G, then

d

dt
V (x(t)) = grad V (x(t)) · x′(t) = grad V (x(t)) · f (x(t)) = ∗

V (x(t)) ≤ 0.

Therefore, V (x(t)) decreases along a solution in G. As a consequence, the omega-
limit set of the solution, namely,

ω(x0) = {x ∈ G : there exists tn →∞ such that x(tn, x0)→ x1 as n→∞},

is contained in the set where
∗
V (x) = 0. Since omega-limit sets are invariant, we

know that ω(x0) must be contained in the largest invariant subset K of {x ∈ G :
∗
V (x) = 0}. This is the well-known LaSalle’s invariance principle [22], which is
often used with global Lyapunov functions to prove global stability.

Theorem 3.5 (LaSalle’s Invariance Principle) Let V be a Lyapunov function for
system (3.30) with respect to G. If a solution x(t, x0) stays entirely in G for t ≥ 0,
then ω(x0) ∩ G ⊂ K, where ω(x0) is the omega-limit set of x(t, x0) and K is the

largest invariant subset of {x ∈ G : ∗
V (x) = 0}.

3.2.4 Constructing Global Lyapunov Functions for
Heterogeneous Models

In this section, we describe a graph-theoretic method for constructing global
Lyapunov functions for dynamical systems on networks, which is a mathematical
framework for many large-scale heterogeneous models in biology.

The idea is quite simple: since each vertex system (3.24) is lower dimensional
and usually well studied, we assume that it has a global Lyapunov function Vi(xi)

with respect to xi ∈ Di ⊂ R
di , for i = 1, · · · , n. We consider a Lyapunov function

for the coupled system (3.25) in the form:

V (x) =
n∑
i=1

ciVi(xi), x = (x1, x2, · · · , xn) ∈ R
N, N = d1+· · ·+dn. (3.32)
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Key Question How to choose suitable constants ci ≥ 0 such that V is a global
Lyapunov function for the coupled system (3.25) with respect toD = D1×· · ·×Dn?

The following theorem of Li and Shuai [26] provides an answer to this question
and a general approach to construct Lyapunov functions of large-scale heteroge-
neous models.

Theorem 3.6 (Li and Shuai) Assume that:

1. there exists a family {Fij (x)} such that

∗
Vi(xi) ≤

n∑
j=1

aijFij (x), x ∈ D = D1 × · · · ×Dn, i = 1, · · · , n;

2. the family {Fij (x)} satisfies the Cycle Conditions, i.e. along each directed cycle
C of G (A), A = (aij ),

∑
(r,s)∈E(C )

Frs(x) ≤ 0, t > 0, x ∈ D.

Let ci = Cii as in the matrix-tree theorem for G (A). Then V (x) = ∑n
i=1 ciVi(x)

satisfies

∗
V (x) ≤ 0, x ∈ D.

Proof Let ci = Cii be given in the matrix-tree theorem for G (A). Then, for x ∈ D,

∗
V (x) =

n∑
i=1

ci
∗
Vi ≤

n∑
i,j=1

ciaijFij (x) (Assumption 1)

=
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

Frs(x) (Tree − Cycle Identity)

≤ 0. (Cycle Conditions)

��
We note that, from the matrix-tree theorem, if the matrix A = (aij ) is strongly
connected, then ci > 0 for all i.

Theorem 3.6 offers a systematic approach to the construction of global Lyapunov
functions for a coupled system, using individual Lyapunov functions for its vertex
systems. To demonstrate the applicability of the approach, we apply it to prove the
global stability of the endemic equilibrium of the multi-group SIR model (3.8)–
(3.10).

Example 3.4 Consider the multi-group SIR model (3.8)–(3.10). We ignore the
equation for Rk since Rk does not appear in the equations of Sk and Ik , and obtain
the following reduced system:
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S′k = �k −
n∑

j=1

βjkIjSk − dk Sk (3.33)

I ′k =
n∑

j=1

βjkIjSk − (γk + dk) Ik, (3.34)

for k = 1, · · · , n. We study solutions to (3.33)–(3.34) in the following feasible
region in R

2n+ :

�1 = {(S1, I1, · · · , Sn, In) ∈ E
2n | 0 ≤ Sk + Ik ≤ �k

dk
, k = 1, 2, · · · , n}.

From our discussions on the computation of R0 in Sect. 3.1.3.1, we know that
R0 of model (3.8)–(3.10) only depends on the Ik equations, which are preserved
in model (3.33)–(3.34). Therefore, the basic reproduction number of the reduced
model (3.33)–(3.34) is the same as that of model (3.33)–(3.34). Furthermore,
from Proposition 3.2 in Sect. 3.1.3.2, we know that if R0 > 1, the disease-free
equilibrium P0 is unstable, system (3.33)–(3.34) is uniformly persistent in �1, and

there exists an endemic equilibrium P ∗ in the interior
◦
�3. The next result of Guo et

al. [12, 13] establishes the uniqueness and global stability of P ∗.

Theorem 3.7 Assume that B = (βij ) is irreducible. If R0 > 1, then the endemic
equilibrium P ∗ is unique for system (3.33)–(3.34) and globally stable in the interior
◦
Γ 1 of Γ1.

Proof We use the Lyapunov function for a single-group SIR model discovered by
Korobeinikov [19, 20]:

Vi(Si, Ii) = (Si − S∗i + S∗i log
Si

S∗i
)+ (Ii − I ∗i − I ∗i log

Ii

I ∗i
),

and consider a Lyapunov function for the n-group model (3.33)–(3.34) of the form:

V (S1, I1, · · · , Sn, In) =
n∑
i=1

ciVi(Si, Ii).

Differentiating Vi along solutions of (3.33)–(3.34) and simplifying, we obtain

∗
Vi = −dSi

Si
(Si − S∗i )2 +

n∑
j=1

βijS
∗
i I

∗
j

(
2 − S∗i

Si
− Ii

I ∗i
+ Ij

I ∗j
− SiIj I

∗
i

S∗i I ∗j Ii

)
.
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Let aij = βijS
∗
i I

∗
j , Gi(Ii) = − Ii

I∗i
+ log Ii

I∗i
, φ(a) = 1 − a + log a, and

Fij (Si, Ii , Ij ) = 2 − S∗i
Si

− Ii

I ∗i
+ Ij

I ∗j
− SiIj I

∗
i

S∗i I ∗j Ii
.

Note that φ(a) = 1 − a + log a ≤ 0 for all a ∈ R and φ(1) = 0, then

∗
Vi ≤

∑
ij

aijFij (Si, Ii , Ij ).

This shows that Assumption 1 of Theorem 3.6 is satisfied. Furthermore,

Fij = Gi(Ii)−Gj(Ij )+ φ
(S∗i
Si

)
+ φ

(SiIj I ∗i
S∗i I ∗j Ii

)
≤ Gi(Ii)−Gj(Ij ),

and thus Fij satisfies the Cycle Conditions (Assumption 2 of Theorem 3.6).
Therefore, by Theorem 3.6, if we choose ci = Cii as in the matrix-tree

theorem, V satisfies
∗
V ≤ 0 for Sk > 0, Ik > 0, k = 1, · · · , n. By the

LaSalle’s invariance principle, the omega-limit set ω of each positive solution
(S1(t), I1(t), · · · , Sn(t), In(t)) to (3.33)–(3.34) belongs to the largest invariant
subset K of

G = {(S1, I1, · · · , Sn, In) ∈
◦
�3 |

∗
V = 0}.

To characterize the largest invariant set K , we first observe that irreducibility
of matrix B = (βij ) implies that A = (βij S

∗
i I

∗
j ) is irreducible, and thus ci =

Cii > 0 for i = 1, · · · , n, by the matrix-tree theorem. Therefore,
∗
V = 0 implies

Fij (Si, Ii , Ij ) = 0 for Si > 0, Ii > −0, i = 1, · · · , n. As a result, we know
that Si = S∗i , Ii = aI ∗i , i = 1, 2, . . . , n for some constant a > 0 independent i.
Substituting these relations into the first equation of system (3.33)–(3.34), we obtain

0 = �k − dSi S
∗
k − a

n∑
j=1

βkjS
∗
k I

∗
j . (3.35)

Since the right-hand side of (3.35) is strictly decreasing in a, we know (3.35) holds
if and only if a = 1. Therefore, the largest invariant subset K of the set G is the
singleton {P ∗}, and thus all omega-limit sets are the same as {P ∗}. This establishes
the global stability of P ∗. ��
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3.3 Further Applications

In this section, we provide further examples of large-scale mathematical models
whose analysis can be done using the approach described in Sect. 3.2. We provide a
detailed analysis of a multi-group SEIR epidemic model and give a brief description
on the global-stability analysis for a model for a network of coupled oscillators, a
multi-patch predator-prey model, and a multi-group SEIR model with time delays.

3.3.1 Application I: A Multi-Group SEIR Model with Bilinear
Incidence

Many infectious diseases have a latent period during which an infected individual is
not contagious. For instance, measles has a latent period of 14–20 days. To model
diseases with latency, we divide the infected subpopulation into two compartments:
the latent compartment E for those who are not infectious and an infectious
compartment I . We continue to use S to denote the susceptible compartment and
R for the recovered and immune compartment. We also assume that the recovery
from the infection causes a permanent immunity against reinfection, as in the case
of measles.

For a heterogeneous population with group structure, we partition the k-th group
into Sk , Ek , Ik , and Rk compartments, and the transmission of the disease and
transfer of individuals among compartments are illustrated in the transfer diagram in
Fig. 3.12, where only two groups are shown. Based on the transfer diagram, we can
derive the following system of differential equations for an n-group SEIR model:

S′k = �k − dSk Sk −
n∑

j=1

βkjSkIj (3.36)

Fig. 3.12 Transfer diagram for a 2-group SEIR model. Dashed arrows indicate cross-group
transmissions
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E′
k =

n∑
j=1

βkjSkIj − (dEk + εk)Ek (3.37)

I ′k = εkEk − (dIk + γk)Ik, k = 1, · · · , n. (3.38)

Here, we have neglected the equation for Rk since Rk does not appear in the
equations for Sk,Ek , and Ik . We investigate system (3.36)–(3.38) in the following
feasible region:

�2 =
{
(S1, E1, I1, · · · , Sn, En, In) ∈ R

3n+ | Sk ≤ �k

dSk

,

Sk + Ek + Ik ≤ �k

d∗k
, k = 1, 2, · · · , n

}
,

with d∗k = min{dSk , dEk , dIk + γk} > 0. Here, for each k, �k is the influx of
susceptible individuals in the k-th group.

3.3.1.1 Equilibria and the Basic Reproduction Number

System (3.36)–(3.38) always has a unique disease-free equilibrium P0 =
(S0

1 , 0, 0, · · · , S0
n, 0, 0), with S0

k = �k

dSk
, 1 ≤ k ≤ n. Using the method of van

den Driessche and Watmough, we can derive that the basic reproduction number is

R0 = ρ

⎡
⎢⎢⎢⎢⎣

β11ε1S
0
1

(dE1 +ε1)(d
I
1+γ1)

· · · β1nεnS
0
1

(dEn +εn)(dIn+γn)
...

. . .
...

βn1ε1S
0
n

(dE1 +ε1)(d
I
1+γ1)

· · · βnnεnS
0
n

(dEn +εn)(dIn+γn)

⎤
⎥⎥⎥⎥⎦ ,

where ρ(A) denotes the spectral radius of a matrix A.
As in the case of the n-group SIR model (3.8)–(3.10) in Sect. 3.2, we can prove

the following result. A detailed proof can be found in [12, 13].

Proposition 3.3 1. If R0 ≤ 1, then P0 is globally asymptotically stable in Γ.
2. If R0 > 1, then P0 is unstable and the system is uniformly persistent.

3. There exists P ∗ ∈ ◦
Γ2 when R0 > 1.

In the following, we show how the graph-theoretic approach to constructing
Lyapunov functions can be applied to model (3.36)–(3.38) to prove the uniqueness
and global stability of the endemic equilibrium. Let B = (βkj ) be the transmission
matrix.

Theorem 3.8 (Guo, Li, and Shuai) Assume that B is irreducible. If R0 > 1, then
there is a unique endemic equilibrium P ∗ and it is globally asymptotically stable

in
◦
Γ 4.
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We present a sketch of the proof in several steps. We first prove that any
endemic equilibrium P ∗ = (S∗1 , I ∗1 , . . . , S∗n, I ∗n ) is globally stable using a Lyapunov
function, then the uniqueness of P ∗ follows from the global stability.

Lyapunov Functions We use the class of Lyapunov functions:

V =
n∑

k=1

vk

[
(Sk − S∗k ln Sk)+ (Ek − E∗

k lnEk)+ dEk + εk

εk
(Ik − I ∗k ln Ik)

]

and choose a suitable set of constants vk > 0 so that dV
dt

≤ 0 in
◦
�4 with the help of

graph theory.
Differentiating V along solutions to (3.36)–(3.38), we obtain

V ′ =
n∑

k=1

vk

[
(S′k −

S∗k
Sk

S′k)+ (E′
k −

E∗
k

Ek

E′
k)+

dEk + εk

εk
(I ′k −

I ∗k
Ik
I ′k)

]

=
n∑

k=1

vk

[
dSk S

∗
k

(
2 − S∗k

Sk
− Sk

S∗k

)]

+
n∑

k=1

vk

[ n∑
j=1

βkjS
∗
k Ij −

(dEk + εk)(d
I
k + αk + γk)

εk
Ik

]

+
n∑

j,k=1

vk βkjS
∗
k I

∗
j

(
3 − S∗k

Sk
− Sk

S∗k
Ij

I ∗j

E∗
k

Ek

− I ∗k
Ik

Ek

E∗
k

)
.

We set

Hn :=
n∑

j,k=1

vk β̄kj

(
3 − S∗k

Sk
− Sk

S∗k
Ij

I ∗j

E∗
k

Ek

− I ∗k
Ik

Ek

E∗
k

)
.

Choosing Constants vk We choose vk so that

n∑
k=1

vk

[ n∑
j=1

βkjS
∗
k Ij −

(dEk + εk)(d
I
k + αk + γk)

εk
Ik

]
≡ 0

for all I1, · · · , In > 0. This is equivalent to

⎡
⎢⎣
β11S

∗
1 I

∗
1 · · · βn1S

∗
nI

∗
1

...
. . .

...

β1nS
∗
1 I

∗
n · · · βnnS∗nI ∗n

⎤
⎥⎦

⎡
⎢⎣
v1
...

vn

⎤
⎥⎦ =

⎡
⎢⎢⎣

∑n
j=1 β1j S

∗
1 I

∗
j v1

...∑n
j=1 βnjS

∗
nI

∗
j vn,

⎤
⎥⎥⎦ ,
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since, at P ∗:

(dEk + εk)(d
I
k + αk + γk)

εk
=

n∑
j=1

βkjS
∗
k I

∗
j .

Set β̄kj = βkjS
∗
k I

∗
j and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
l �=1 β̄1l −β̄21 · · · −β̄n1

−β̄12
∑

l �=2 β̄2l · · · −β̄n2

...
...

. . .
...

−β̄1n −β̄2n · · · ∑l �=n β̄nl

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then v = (v1, . . . , vk)
T satisfies the linear system

B v = 0.

Matrix B is the Laplacian matrix of (β̄ij ), and the column sums of B̄ are zero,
so that nontrivial solutions of v1, · · · , vk exist. The matrix-tree theorem and the
irreducibility of B̄ imply that

vk =
∑
T ∈Tk

∏
(j,h)∈E(T )

β̄jh.

Re-Grouping Terms in Hn According to Unicyclic Cycles Using the Tree-Cycle
Identity
We have

Hn =
n∑

j,k=1

vk β̄kj

(
3 − S∗k

Sk
− Sk

S∗k
Ij

I ∗j

E∗
k

Ek

− I ∗k
Ik

Ek

E∗
k

)

=
∑
Q

w(Q)
∑

(p,q)∈E(CQ)

[
3 − S∗p

Sp
− SpIqE

∗
p

S∗pI ∗q Ep

− EpI
∗
p

E∗
pIp

]
(Tree − Cycle Identity)

=
∑
Q

w(Q) ·
[
3r −

∑
(p,q)∈E(CQ)

(S∗p
Sp

+ SpIqE
∗
p

S∗pI ∗q Ep

+ EpI
∗
p

E∗
pIp

)]

Finally, because CQ is a cycle:

∏
(p,q)∈E(CQ)

S∗p
Sp

· SpIqE
∗
p

S∗pI ∗q Ep

· EpI
∗
p

E∗
pIp

=
∏

(p,q)∈E(CQ)

IqI
∗
p

I ∗q Ip
= 1.
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This implies that:

3r −
∑

(p,q)∈E(CQ)

(S∗p
Sp

+ SpIqE
∗
p

S∗pI ∗q Ep

+ EpI
∗
p

E∗
pIp

)
≤ 0,

and thus Hn ≤ 0. We have proved that V ′(t) ≤ 0.

Proving the Global Stability of P ∗ Using LaSalle’s Invariance Principle We
can use the same arguments as in the proof of Theorem 3.7 in Sect. 3.2.4 to show

that P ∗ is globally stable in
◦
�4, and thus is also unique. This completes the proof.

3.3.2 Application II: A Network of Coupled Oscillators

Consider a network of coupled oscillators described by the following system of
second-order differential equations:

x′′i + αx′i + fi(xi)+
n∑

j=1

εij (x
′
i − x′j ) = 0 (3.39)

where xi is the displacement of the i-th oscillator. The parameter α is the damping
coefficient, and fi(xi) is the restoring force for the i-th oscillator. Let yi = x′i be
the velocity, then we obtain the following equivalent coupled system of first-order
equations:

x′i = yi, (3.40)

y′i = −αiyi − fi(xi)−
n∑

j=1

εij (yi − yj ). (3.41)

System (3.40)–(3.41) can be naturally regarded as a dynamical system on a
network. The network is given by the digraph G (E), E = (εij ). Each vertex is
an oscillator, and the vertex dynamics are given by:

x′i = yi,

y′i = −αiyi − fi(xi).

Assume that αi ≥ 0 and that the potential energy Fi(xi) =
∫ xi fi(s)ds has a strictly

global minimum at xi = x∗i . Then E∗ = (x∗, 0, · · · , x∗n, 0) is an equilibrium
for system (3.40)–(3.41). The total energy of each isolated oscillator is a natural
Lyapunov function for the vertex system:
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Vi(xi, yi) = Fi(xi)+ y2
i

2
.

Direct calculation yields

∗
Vi = (xi − x∗i )

[
fi(xi)+

n∑
j=1

dij

(xj
xi

− αij

)]

= (xi − x∗i )
[
−

n∑
j=1

dij

(x∗j
x∗i

− αij

)
+ (f (xi)− f (x∗i ))+

n∑
j=1

dij

(xj
xi

− αij

)]

= (xi − x∗i )(f (xi)− f (x∗i ))+
n∑

j=1

dij x
∗
j

(xj
x∗j

− xi

x∗i
+ 1 − x∗i xj

xix
∗
j

)
.

Let aij = dij x
∗
j , Fij (xi, xj ) = xj

x∗j
− xi

x∗i
+ 1 − x∗i xj

xix
∗
j
, and Gi(xi) = − xi

x∗i
+ ln xi

x∗i
.

Then we have:

∗
Vi ≤

n∑
j=1

aijFij (xi, xj )

and

Fij (xi, xj ) = Gi(xi)−Gj(xj )+ 1 − x∗i xj
xix

∗
j

+ ln
x∗i xj
xix

∗
j

≤ Gi(xi)−Gj(xj ).

This shows that Vi and Fij satisfy the assumptions of Theorem 3.6, and thus

V (x1, y1, · · · , xn, yn) =
n∑
i=1

ciVi(xi, yi)

is a global Lyapunov function for the coupled system (3.40)–(3.41) if we choose
ci = Cii using the matrix-tree theorem with A = (dij x

∗
j ). The global stability of

E∗ = (x∗, 0, · · · , x∗n, 0) follows from an application of the LaSalle’s invariance
principle. This establishes the following result in [26].

Theorem 3.9 (Li and Shuai) Assume that the digraph G (E) is strongly con-
nected. Suppose that there exists k such that αk > 0. Then E∗ is globally
asymptotically stable in R

2n.
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3.3.3 Application III: An n-Patch Predator-Prey Model

Consider a predator-prey model in which preys disperse among n patches (n ≥ 2):

x′i = xi(ri − bixi − eiyi)+
n∑

j=1

dij (xj − xi), (3.42)

y′i = yi(−γi − δiyi + εixi), i = 1, 2, . . . , n. (3.43)

Here, xi, yi denote the densities of preys and predators on the i-th patch, respec-
tively. All parameters in the model are nonnegative constants, and ei, εi are positive.
The dispersal constants dij are nonnegative, and D = (dij ) is the dispersal matrix,
which defines the dispersal network G (D). We refer the reader to [9, 21] for
interpretations of predator-prey models and parameters.

System (3.42)–(3.43) is a dynamical system on the dispersal network defined
by the digraph G (D). Each vertex is a patch, and vertex dynamics is given by a
single-patch predator-prey model:

x′i = xi(ri − bixi − eiyi) (3.44)

y′i = yi(−γi − δiyi + εixi), (3.45)

i = 1, 2, . . . , n. We leave it to the reader to verify that the vertex Lyapunov function

Vi(xi, yi) = εi(xi − x∗i ln xi)+ ei(yi − y∗i ln yi)

satisfies the assumptions of Theorem 3.6. Details can be found in [26]. We comment
that this form of Lyapunov function was used in the ecological modeling literature
since the 1970s, see [10, 16].

Theorem 3.10 (Li and Shuai) Assume that the dispersal matrix D = (dij ) is
irreducible and that there exists k such that bkδk > 0. Then the positive equilibrium
E∗, whenever it exists, is unique and globally asymptotically stable in R

2n+ .

3.3.4 Application IV: A Multi-Group Epidemic Model with
Time Delays

In this section, we give an example to demonstrate that the graph-theoretic approach
is also applicable to large-scale models with time delays.

Consider a multi-group SIR model with discrete time delays:

S′i = �i − dSi Si −
n∑

j=1

βijSiIj (t − τj ), (3.46)
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I ′i =
n∑

j=1

βij SiIj (t − τj )− (dIi + γi)Ii, i = 1, 2, · · · , n. (3.47)

Model parameters have similar interpretations as in the multi-group SIR
model (3.8)–(3.10). The time delays τi are the result of disease latency. We
customarily omitted the equation for Ri since Ri does not appear in the equations
of Si and Ii .

Similar to the ODE case, delayed model (3.46)–(3.47) can be regarded as a
coupled system of differential equations on the transmission network G (B) defined
by the transmission matrix B = (βij ). The vertex dynamics at each vertex (group)
are defined by a system of delay differential equations describing a single-group
SIR model with latency (see [2]),

S′i = �i − dSi Si − βiiSiIi(t − τi), (3.48)

I ′i = βiiSiIi(t − τi)− (dIi + γi)Ii, (3.49)

i = 1, 2, · · · , n. The coupling between vertices i and j is provided by cross
infections βijSiIj (t − τj ) and βjiSj Ii(t − τi). For each vertex system (3.48–3.49),
we use a Lyapunov functional first constructed by McCluskey [28]:

Vi(Si, Ii(·)) =Si − S∗i + S∗i ln
Si

S∗i
+ Ii − I ∗i − I ∗i ln

Ii

I ∗i

+
n∑

j=1

βijS
∗
i

∫ τj

0

(
Ij (t − r)− I ∗j − I ∗j ln

Ij (t − r)

I ∗j

)
dr.

The reader can verify that Vi satisfies the assumptions of Theorem 3.6.

Theorem 3.11 (Li and Shuai) Assume that B = (βij ) is irreducible. If R0 >

1, then the unique endemic equilibrium P ∗ for system (3.46)–(3.47) is globally
asymptotically stable.
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Chapter 4
Mixing in Meta-Population Models

Zhilan Feng and John W. Glasser

Abstract Among the means by which heterogeneity can be modeled, Levins’
(Bull Entomol Soc Am 15:237–240, 1969) meta-population approach preserves
the most analytical tractability. When model populations are stratified, contacts
among their respective sub-populations must be described. Using a simple meta-
population model, Feng et al. (J Theor Biol 386:177–187, 2015) showed that mixing
among sub-populations, as well as heterogeneity in characteristics affecting sub-
population reproduction numbers, must be considered when evaluating public health
interventions to prevent or control infectious disease outbreaks. We employed the
convex combination of preferential within- and proportional among-group contacts
devised by Nold (Math Biosci 52:227–240, 1980) and generalized by Jacquez et
al. (Math Biosci 92:119–199, 1988). As the utility of meta-population modeling in
support of public policymaking depends on more realistic mixing functions, Glasser
et al. (Math Biosci 235:1–7, 2012) included preferential contacts between parents
and children and among co-workers as well as contemporaries. Feng et al. (Math
Biosci 287:93–104, 2017) omitted workplace contacts, but added those between
grandparents and grandchildren. We also devised a general scheme for multi-level
mixing that meets the conditions for mixing functions specified by Busenberg and
Castillo-Chavez (IMA J Math Appl Med Biol 8:1–29, 1991) and provided several
two-level examples.
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4.1 Introduction

Analysis of effective reproduction numbers from models of stratified populations,
to which Levins [1] referred as meta-populations (i.e. populations composed of
sub-populations), can identify targets for effective outbreak prevention or control
measures. Such models must specify how infectious members of one sub-population
contact susceptible members of others, to which we refer as mixing. Heterogeneity
in characteristics affecting sub-population reproduction numbers affects the magni-
tude of meta-population reproduction numbers, especially if mixing is non-random
[2]. In this chapter, we present several examples of mixing functions for meta-
population models appropriate for heterogeneous contacts in age, spatial location,
gender, etc.

4.2 Forces of Infection

If immunity following recovery from infection is lifelong, the probability of
remaining susceptible at age α is:

PS (α) = e−
∫ α

0λ(u)du

where λ(u) is the force or hazard rate of infection at age u. One can estimate the
λ(u) by fitting PI(α) = 1 − PS(α), the cumulative probability of infection at age α,
to histories of infection. From results from a cross-sectional (i.e. including all ages)
serological survey, for example, one can calculate the proportions infected by age:

−P ′
S (α) = λ (α) e−

∫ α
0λ(u)du.

To estimate the infection rates β ij required for age-structured transmission
modeling from such information when parameters are constant within age groups,
Anderson and Grenfell [3] defined

λi :=
n∑

j=1

βij
Ij

Nj

, i = 1, 2, . . . , n, (4.1)

where Ij/Nj is the proportion of infected/infectious individuals in age group j. They
coined the phrase Who Acquires Infection from Whom for the matrix consisting
of as many unique β ij values as age groups, and explored sensible alternative
arrangements. This approach was described as recently as 2012 by Hens et al. [4],
who also recount other essentially descriptive methods.
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Fig. 4.1 Age-specific susceptibility to infection on contact β i, estimated from (a) hazard rates of
infection λi and proportions infectious Ii/Ni, in turn from proportions with antibodies to pertussis
toxin above 150 Elisa Units per ml from a cross-sectional serological survey in Sweden, together
with (b) per capita contact rates ai and proportions with all age groups cij in Finland, in turn from
PolyMod as described under parameter estimation below. Given this information, we can solve for
the remaining unknown in the n Eq. (4.2). Source: Feng et al. [5]

We advocate a more mechanistic approach that requires information about the
intensity, ai, and pattern of inter-personal contacts, cij. Re-defining λi as

λi := aiβi

n∑
j=1

cij
Ij

Nj

, i = 1, 2, . . . , n, (4.2)

we are able to estimate the probability of infection on contact with an infectious
person, β i. Evidently, the equation β ij = aiβ icij describes the relationship between
parameters β in Eqs. (4.1) and (4.2). The requisite information about mixing may
be empirical, hypothetical (i.e. a model), or hybrid (i.e. a model whose parameters
have been estimated from observations).

The probabilities of infection on contact with infectious people are informative.
Fig. 4.1, for example, indicates increased susceptibility to pertussis among older
adolescents and young adults as well as children in Sweden during the 17-year
hiatus in vaccination.1 Some of those young adults were caring for infants, for

1Production problems, together with widespread concern about the safety of the whole-cell
pertussis vaccine, led Swedish health authorities to discontinue vaccination from 1979 to 1995.
Pertussis became endemic again in Sweden, permitting evaluation of several acellular vaccines
in clinical trials, upon whose successful conclusion those vaccines were licensed and vaccination
resumed.
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whom pertussis may be fatal. Previously infected or vaccinated adults are likely
to experience mild, immunity-modified disease, and may not realize that they are
infected or, in fact, be particularly infectious. Nonetheless, caregiver contacts with
infants may be sufficiently intimate and prolonged for transmission.

4.3 A Simple Mixing Model

In 1991, Busenberg and Castillo-Chavez described three conditions that mixing
functions should meet [6]:

1) cij ≥ 0,

2)
∑n

j=1cij = 1, i = 1, . . . , n,

3) aiNicij = ajNjcji,

(4.3)

where the ai’s are per capita contact rates (termed activities), cij is the proportion of
their contacts that members of group i have with members of group j, and the Ni’s
are group sizes. The first model meeting these conditions of which we are aware was
described by Jacquez et al. [7], who modified the model of Nold [8]. They defined
cij as:

cij := εiδij + (1 − εi) fj , fj =
(
1 − εj

)
ajNj∑

k (1 − εk) akNk

, (4.4)

where the εi’s are fractions of contacts reserved for one’s own group (termed
preferences), a constant in Nold’s [8] model, δij is the Kronecker delta (equals 1
when i = j and 0 otherwise), and aj and Nj are as previously defined. The function fj
describes mixing that is random (i.e. proportional to contacts not reserved for one’s
own group (1 − εj)aj Nj).

When n = 2 sub-populations, the mixing matrix C is

C =
[
c11 c12

c21 c22

]
=

[
ε1 + (1 − ε1) f1 (1 − ε1) f2

(1 − ε2) f1 ε2 + (1 − ε2) f2

]
.

Because 0 ≤ εi ≤ 1, this model is very flexible. The limiting conditions (i.e. all
εi = 0 or 0 < εi ≤ 1) are termed proportional and preferential mixing, respectively,
and preferential mixing may be heterogeneous (i.e. all εi need not be the same).
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4.3.1 Parameter Estimation

Empirical contact matrices have been described from proxies such as face-to-face
conversations or periods sharing spaces. Observed mean per capita numbers of
contacts Cij are typically summed over all groups j to yield ai and then the cij

are calculated by dividing the Cij by ai. While data may be collected by single
year of age, generally they are aggregated into 5-year or larger groups. Because
such matrices rarely meet Busenberg and Castillo-Chavez’ third condition in (4.3),
possibly because study populations are not closed, contacts may be averaged in
some way (see, e.g., [9]).

To illustrate these calculations, we collapse observations from the PolyMod
study—a survey of face-to-face conversations in eight European countries (that
Professor John Edmunds of the London School of Hygiene and Tropical Medicine
kindly shared)—into two groups, aged <20 and ≥20 years. There were 7221
participants, N1 = 2719 children and N2 = 4502 adults. They recorded

[
24, 284 17, 168
9, 166 46, 097

]

face-to-face conversations on an average day with members of their own and the
other group (i,j = 1,2). Dividing these daily numbers of conversations with children
and adults (the first row) by the number of child participants and those in the second
row by the number of adult participants, we obtain average daily per capita contacts,

(
Cij

) =
[

8.93122 6.31409
2.03598 10.2392

]

activities (row sums), a1 = 15.2453, a2 = 12.2752, and mixing matrix (quotients of
elements and row sums)

C = (
cij

) =
[

0.585834 0.414166
0.165861 0.834139

]
.

Finally, solving the equations c11 = ε1 + (1 − ε1) f1 and c22 = ε2 + (1 − ε2) f2
simultaneously, we obtain the preferences, ε1 = 0.28321 and ε2 = 0.607144.

4.4 Effect on Reproduction Numbers

Incorporating the mixing function (4.4) in the simplest transmission model capable
of informing vaccination policy, Feng et al. [2] illustrated the impact of hetero-
geneity in factors affecting sub-population reproduction numbers and non-random
mixing on meta-population reproduction numbers.
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Our model population comprises n sub-populations in which people in popula-
tion i (0 ≤ i ≤ n) are divided in susceptible (Si), infected and infectious (Ii), or
removed (Ri) from the infection process by virtue of immunization or immunity
following infection. In this model, μ is both the birth and death rate (introducing
susceptible people without changing population size), the pi’s are proportions
immunized at birth (i.e. products of proportions vaccinated and vaccine efficacy,
defined as the conditional probability of being immune given vaccination), the λi’s
are per capita forces (or hazard rates) of infection among susceptible people, and γ is
the recovery rate. (See Appendix 3 for a model that is better suited for age groups.)
The rates μ and γ are reciprocals of the mean age at death (or life expectancy at
birth) and infectious period, respectively. The full model is then:

dSi
dt

= μNi (1 − pi)− (λi + μ) Si

dIi
dt

= λiSi − (γ + μ) Ii,

dRi

dt
= μNipi + γ Ii − μRi,

Ni = Si + Ii + Ri, i = 1, . . . , n,

where λi is defined in (4.2). The basic and effective reproduction numbers for sub-
population i, denoted by �0i and �vi, respectively, are:

�0i = βai

γ + μ
, �vi = �0i (1 − pi) .

We used the approach of van den Driessche and Watmough [10] to derive
the next-generation matrix K for n = 2 (see Appendix 1 for details). The larger

eigenvalue of K =
[�v1c11 �v1c12

�v2c21 �v2c22

]
is �v = 1

2

[
A+D +

√
(A−D)2 + 4BC

]
,

where

A = �v1c11, B = �v1c12, C = �v2c21,D = �v2c22.

Dietz [11] was the first of many to show that, when mixing is proportional, �0
can be written as a function of the ratio of the variance and mean activity. Table 4.1
illustrates �0 from two meta-populations with the same mean activity, but different
variances. For the parameter values described, heterogeneity in sub-population
activities increases �0 from 3.5 to 3.72 for proportional mixing (ε1 = ε2 = 0).

Barbour [12] showed that �0 attains its maximum when individuals having
high average per capita contact rates mix exclusively with each other. Thus,
preferential mixing magnifies the effect of heterogeneity in activity. Moreover, while
homogeneous preferential mixing (e.g. ε1 = ε2 = 0.5) further increases �0 to
3.88, heterogeneous preferential mixing (e.g. ε1 = 0.25, ε2 = 0.75 or vice versa)
increases it to 3.92 or 3.98 (Fig. 4.2). Colizza and Vespignani [13] reported a similar
result, namely that heterogeneity in connectivity, by which they represent individual
movement in a network model, increases the reproduction number.
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Table 4.1 Preferential mixing magnifies the impact of heterogeneity in person-to-person contact
rates (activities) on �0

Scenario A Scenario B
Parameter a1 = 10 a2 = 10 a1 = 7.5 a2 = 12.5

�0i 3.5 3.5 2.62 4.37
�0 (ε1 = ε2 = 0) 3.5 3.72
�0 (ε1 = ε2 = 0.5) 3.5 3.88
�0 (ε1 = 0.25, ε2 = 0.75) 3.5 3.92
�0 (ε1 = 0.75, ε2 = 0.25) 3.5 3.98

The number of sub-populations and their sizes also affect these results, but here n = 2,
N1 = N2 = 500, so scenarios A and B have the same mean activity, but differ in the variance.
Other parameters: β = 0.05, γ = 1/7. Source: Feng et al. [2]
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Fig. 4.2 The meta-population �0 as a function of fractions of the contacts that members of two
sub-populations reserve for others within their own sub-populations (ε1, ε2) when their activities
(average contact rates) are more or less heterogeneous. �0 decreases from the top surface (a1 = 4,
a2 = 16), through the middle (a1 = 8, a2 = 12), to the bottom (a1 = a2 = 10). See Table 4.1 for
other parameter values. As heterogeneity in ε increases away from the line ε1 = ε2, heterogeneous
preferential mixing also increases �0. Source: Feng et al. [2]

Writing �0 as a function of (ε1, ε2), Feng et al. [2] showed that �0(ε1,ε2) is
an increasing function of ε1 and ε2. They also showed that, for ε1 = ε2 = 0 and
other parameters the same for both populations, �0(ε1, ε2) is minimized when
a1 = a2 = T/2, where T = a1 + a2, and is a monotonically increasing function
of the difference |a2 − a1| (i.e. �0 is maximized when heterogeneity in activity
is greatest). A similar result holds when either ε1 = 1 or ε2 = 1. That is, �0(ε1,
1) = �0(1, ε2) is minimized when a1 = a2 = T/2 and is a monotonically increasing
function of the difference |a2 − a1|. Therefore, �0(ε1, 1) = �0(1, ε2) is maximized
when heterogeneity in activity is greatest.
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Fig. 4.3 The function �v for scenario B of Table 4.1 with (a) proportional and (b) preferential
mixing. The dark blue planes represent �v = 1, and the lighter blue plane and curved (rainbow)
surface represent �v at all possible (p1, p2) pairs when a) ε1 = ε2 = 0 and b) ε1 = ε2 = 0.5,
respectively. �v ≤ 1 for all combinations of pi (i = 1, 2) at or below the dark blue plane. See the
legend to Table 4.1 for other parameter values. Source: Feng et al. [2]

Figure 4.3 illustrates the impact of heterogeneity in pi on �v in meta-populations
whose sub-populations differ in mean activity (scenario B in Table 4.1), mixing
proportionally and preferentially on the left and right, respectively. Heterogeneity
increases away from the line connecting the points at which (p1, p2) = 0 and (p1,
p2) = 1. Values of �v for all combinations of pi (i = 1, 2) form a plane when mixing
is proportional, but curve upward about the above-mentioned line when mixing is
preferential. Values at or below their intersection with the dark blue plane, �v = 1,
are combinations of pi (i = 1, 2) at which population immunity attains or exceeds
this threshold.

These figures explain May and Anderson’s [14] observation that “under a
uniformly applied immunization programme (i.e. p1 = p2), the overall fraction that
must be immunized is larger than would be estimated by (incorrectly) assuming the
population to be homogeneously mixed.” While the values of (p1, p2) yielding any
overall fraction form a straight line, the values of (p1, p2) at which �v = 1 are curved
when mixing is non-random.

A real-world application may be our study of the 2008 measles outbreak in San
Diego County [15], where preferential mixing (εi > 0) had a significant effect on
the basic reproduction number. When homogeneous mixing was assumed, measles’
�0 ≈ 10.7, whereas when proximity-preferential mixing was considered, the meta-
population �0 became 18.1 (i.e. 70% greater).

4.4.1 Vaccination Strategies

To demonstrate the influence of preferential mixing on the impact of vaccination
more explicitly, Chow et al. [16] considered �v = �v(ε1, ε2) as a function of
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ε1 and ε2. They defined � = {(p1, p2) | 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1}, whereupon
each point (p1, p2) ∈ � represents a vaccination strategy. Denoting by �2 the set of
all values of ε1 and ε2 in [0,1] except ε1 = ε2 = 1 (the case where members of the
two sub-populations do not interact), (i.e. �2 = {(ε1, ε2) | 0 ≤ εI ≤ 1, i = 1,2}\{(ε1,
ε2) | ε1 = ε2 = 1}), they showed that

∂�v

∂ε1
> 0,

∂�v

∂ε2
> 0 for all (ε1, ε2) ∈ �2.

For ease of presentation, they first considered the case where ε1 = ε2 = ε

and �v = �v(ε) is a function of ε. Then, for each fixed ε ∈ [0,1), the curve
�v(ε) = 1 divides the region � into �ε = {(p1, p2) | 0 ≤ �v(ε) < 1, (p1, p2)∈�,
0 ≤ ε < 1}, which includes all points above the curve corresponding to �v(ε) = 1,
and Dε = {(p1, p2) | �v(ε) > 1, (p1, p2)∈�, 0 ≤ ε < 1}, which includes all points
below the curve (Fig. 4.4). It can be shown that

�ε̃ ⊇ �ε̂, Dε̃ ⊆ Dε̂, if 0 < ε̃ < ε̂ < 1,

which implies that, if ε̃ < ε̂, the curve corresponding to �v (ε̃) = 1 is below that
corresponding to �v

(
ε̂
) = 1. All such curves intersect at a single point (p1c,p2c)

with p1c = 1 − 1
�01

, p2c = 1 − 1
�02

. Letting �∗ ⊆ ∩
0≤ε<1

�ε, D∗ ⊆ ∩
0≤ε<1

Dε,

we observe that the region �∗ (lighter shaded area in Fig. 4.4) is determined by
the two inequalities p1c < p1 < 1, p2c < p2 < 1. For region D∗ (darker shaded area
in Fig. 4.4), the upper bound is determined by the line p2 = − Ap1 + B, where

increases

Ω*

ℜv<1

ℜv>1

e

e

10
0

D*
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p2 c

p 2
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1

Fig. 4.4 Plot of �v as a function of sub-population immunities, p1 and p2. Several curves of
�v(ε) = 1 for different ε values are also shown, with the dashed curves corresponding to 0 < ε < 1,
the thin solid red lines (interior boundary of the region �∗) corresponding to ε = 1, and the thick
blue line corresponding to ε = 0 (interior boundary of the region D∗). The arrows indicate the
direction of change of the curve �v(ε) = 1 as ε increases from 0 to 1. All of the �v(ε) = 1 curves
intersect at the single point (p1c,p2c). Source: Chow et al. [16]
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A = �01a1N1�02a2N2
and B = (�01−1)a1N1+(�02−1)a2N2�02a2N2

. The two regions intersect at the
point (p1c,p2c).

Chow et al. [16] extended this analysis for ε1 = ε to the case where ε1 �= ε2 and
proved that: (1) if (p1, p2) ∈ �∗, then �v < 1 for all (ε1, ε2)∈�2, (2) if (p1, p2)
∈ D∗, then �v > 1 for all (ε1, ε2) ∈ �2, and (3) for every point (ε1,ε2) ∈ �2, the
curve determined by �v = 1 lies in the region �\(�∗∪D∗). All such curves intersect
at a single point, (p1c, p2c). Moreover, these curves have the property that the one
corresponding to (ε̃1, ε̃2) is lower than that corresponding to

(
ε̂1, ε̂2

)
if ε̃1 < ε̂ and

ε̃2 < ε̂2.
The first of these results indicates that there is a lower bound for vaccination

efforts (p1, p2) above which a pathogen can be eliminated regardless of mixing
pattern. Similarly, the second result indicates that there is an upper bound for
vaccination efforts (p1, p2) below which a pathogen cannot be eliminated regardless
of the mixing pattern. And the third result indicates that mixing patterns can
influence the effect of vaccination on �v. Thus, in the design of vaccination
programs, one must consider mixing within and between sub-populations.

4.5 Elaborations of the Mixing Model

Given the influence of mixing among heterogeneous sub-populations on meta-
population reproduction numbers and inspired by empirical observations [17–20],
Glasser et al. [21] further elaborated Nold’s model to include preferential contacts
between parents and children and among co-workers as well as contemporaries (i.e.
people similar in age) by defining:

cij = φij +
(

1 −
4∑
l=1

εli

)
fj , fj =

(
1 −∑4

l=1εlj

)
ajNj

∑n
k=1

(
1 −∑4

l=1εlk

)
akNk

.

Because the sub- and super-diagonals extend over ages i > G and i < L − G,
respectively, where G is the generation time (i.e. average age at which women bear
daughters), L is longevity (i.e. average age at death or expectation of life at birth),
and L > G, they define φij as

φij :=
{

δij ε1i + δi(j+G)ε2i + IWmin≤i,j≤Wmax
ε4i

Wmax−Wmin
, i > G

δij ε1i + δi(j−G)ε3i + IWmin≤i,j≤Wmax
ε4i

Wmax−Wmin
, i < L−G

.

If age classes are 0–4, 5–9, . . . and G = 25 years, i > G means i > class 5.
Wmin and Wmax (Wmin < Wmax) are the average ages at entry to and exit from the
workforce, ε1i, . . . , ε4i are the fractions of contacts reserved for contemporaries,
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children (j − G), parents (j + G), and co-workers (if Wmin ≤ i, j ≤ Wmax),
respectively,

δi(j±G) =
{

1 if i = j ±G

0 otherwise
and IWmin≤i,j≤Wmax =

{
1 if Wmin ≤ i, j ≤ Wmax

0 otherwise.

Because of the third condition in (4.3), the non-zero elements of ε2 and ε3 are
related. If G = 25 years, for example, then ai Ni ε2i = aj Nj ε3j, for i = 6, 7, . . . ,
j = i − 5. Accordingly, we can estimate ε3i by assuming that ε2i = ajNjε3j/aiNi.
Notice also that 0 ≤ ∑4

l=1εli < 1 and that mixing among co-workers does not
depend on age provided that i ≥ Wmin and j ≤ Wmax.

4.5.1 Gaussian Kernels

While delta formulations are undeniably heuristic, contemporaries need not be
exactly the same age [22], nor need the ages of parents and children differ by
exactly the generation time. Accordingly, we reformulated φij to incorporate this
more realistic feature. Let α and α′ denote the ages of susceptible and infected
individuals, respectively. Further, let a(α) denote the average number of contacts
per capita aged α per unit of time, N(α) denote the number of people aged α, and
I[Wmin,Wmax]

(
α, α′

)
denote the function

I[Wmin,Wmax]
(
α, α′

) =
{

1, if Wmin ≤ α, α′ ≤ Wmax

0, otherwise.

Then the continuous analogue of cij can be formulated as:

c
(
α, α′

) = φ
(
α, α′

)+ [
1 −∑4

l=1εl (α)
]
f

(
α′

)

f
(
α′

) =
[
1 −∑4

l=1εl
(
α′

)]
a
(
α′

)
N

(
α′

)
∫∞

0

[
1 −∑4

l=1εl(u)
]
a(u)N(u)du

,

where

φ
(
α, α′

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1
(
α, α′

)
ε1 (α)+ g2

(
α, α′

)
ε2 (α)

+ I[Wmin,Wmax]
(
α, α′

)
ε4(α)

Wmax−Wmin
,

α > G

g1
(
α, α′

)
ε1 (α)+ g3

(
α, α′

)
ε3 (α)

+ I[Wmin,Wmax]
(
α, α′

)
ε4(α)

Wmax−Wmin
,
α < L−G

,
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with

g1
(
α, α′

) = 1√
2πσ1(α)

e
− (α

′−α)2

2[σ1(α)]2
,

g2
(
α, α′

) = 1√
2πσ2(α)

e
− [α′−(α−G)]2

2[σ2(α)]2
,

g3
(
α, α′

) = 1√
2πσ3(α)

e
− [α′−(α+G)]2

2[σ3(α)]2
.

Here the gk(α,α
′
) (k = 1, 2, 3) are Gaussian kernels with standard deviations

σ k(α). Besides the above-mentioned relationship between ε2(α) and ε3(α − G), for
each α, we have that 0 ≤ ∑4

i=1εl (α) < 1.
We fit a hybrid of these formulations (i.e. the discrete formulation with Gaussian

kernels instead of deltas) to observations from the above-mentioned empirical
studies, which are discrete, using the FindMinimum function in Mathematica™.
This amounts to choosing εli and σ ki, as well as G, L, and the W’s, that minimize
an objective function, here the mean squared error. With one starting value for
each variable, FindMinimum uses BFGS quasi-Newton methods. When there are
constraints, FindMinimum uses interior point methods. It was necessary to constrain

the parameter vectors
⇀
ε l and

⇀
σ k so that the main diagonal does not dominate, and

to fix G, L, Wmin, and Wmax after convergence.
Figure 4.5 illustrates fits of this model with 5-year age classes (0–4, 5–9,

. . . , 70+ years) to weighted averages of casual and physical contacts from the
eight European countries involved in the PolyMod study. Feng et al. [23] added
preferential contacts between grandparents and grandchildren, but—to facilitate
parameter estimation—omitted workplace contacts (Fig. 4.6). Motivated by concern
about the net benefit of a proposed pandemic mitigation measure, prolonged school
closures, they fitted this model to gender-stratified observations from the same study.

4.5.2 A Spatial Model

To explore the impact of heterogeneity in vaccine coverage due to personal-belief
exemptions to vaccination on the potential for outbreaks of vaccine-preventable
childhood diseases, Glasser et al. [15] developed a spatial model.

Reasoning that, in spatially stratified populations, proximity must affect contacts,
we defined the average per capita contact rate or activity of children attending
elementary school i as a negative exponential function of inter-school distances;
that is:

ai :=
∑

j
exp

(−bdij ) , (4.5)



4 Mixing in Meta-Population Models 111

70
60

50
40

30
20

10

10

20

40
50

60
70

30

0

4

2

0

4

2

0

4

2
Contacts Contacts

Casual

Age(years)

Contacts

Age(years)

Age(years)

Age(years)

Contacts

Age(years)

Age(years)

Age(years)

Physical Modeled

Modeled

15
25

35
45

55
65

5

5

15
25

35
45

55
65

Age(years)

5

15
25

35
45

55
65

10
20

30
40

50
60

70

20
30

40
50

60
70

10

0

2

4

15
25

35
45

55
65

5

Fig. 4.5 Left: Average daily per capita numbers of physical and casual (all contacts less physical
ones) contacts (top and bottom, respectively) from Mossong et al. [18]. Right: The mixing function
introduced by Glasser et al. [21] fitted to the observations on the left. Values of the fitted parameters
(n = 15) are in Appendix 2. Source: Glasser et al. [21]
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Fig. 4.6 Generalizations of the function of Nold [8] and Jacquez et al. [7], which allows fractions
of contacts to be reserved for one’s own group and complements to be distributed proportionally
among groups. The age-specific function on the left [21] includes preferential contacts between
parents and children (sub- and super-diagonals) and among co-workers (dashed box) as well
as contemporaries (main diagonal) while that on the right includes preferential contacts with
grandparents and grandchildren (sub-sub- and super-super-diagonals) as well as parents, children,
and contemporaries. Source: Feng et al. [23]
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where b is the rate at which contacts diminish with distance and the dij’s are
distances between school i and all others.

Because most children attend elementary school in their own neighborhood,
elementary schools are proxies for neighborhoods. To obtain total contacts, we
multiplied these rates by school enrollments, N, and to obtain proportions of contacts
with children in any school, we divided by the sum of contacts over all schools:

cij := Nj exp
(−bdij )∑

k Nk exp (−bdik) , (4.6)

whereupon the cij are proportions of contacts that children in school i have
with children in all schools including their own. Consequently, complements of
the proportions of contacts that are intra-school (or neighborhood), 1–cii, are
interpretable as connectedness (sensu strength of connections with other locations).

Using this model (Fig. 4.7), together with information about vaccination from
school-entry surveys during 2008 in San Diego County, when and where a measles
outbreak occurred in a school having ~30% of children with personal-belief
exemptions to vaccination, we calculated the meta-population reproduction numbers
of measles, mumps, and rubella. As mentioned, these are the dominant eigenvalues
associated with next-generation matrices, in turn products of diagonal matrices,
whose elements are basic or effective sub-population reproduction numbers, and
the contact matrix.

For each of these eigenvalues �, the corresponding next-generation matrix K
has associated nonzero right and left eigenvectors −→v R and −→v L, respectively. That
is, K−→v R = λR

−→v R and −→v LK = λL
−→v L, where λR and λL are constants with

λR = �. Both −→v R and −→v L have biological interpretations: −→v R is the prevalence
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Fig. 4.7 Mixing among elementary schoolchildren in San Diego County (n = 638 schools).
The peaks and valleys of the activity surface (a) indicate the nearby or isolated schools or
neighborhoods characterizing the more and less densely populated coastal and eastern regions.
Because rows of the mixing matrix (b) sum to one, children in schools or neighborhoods with
larger diagonal elements (i.e. more of their contacts within schools) have smaller enrollments or are
more isolated while ones with smaller diagonal elements (i.e. greater proportions of their contacts
between schools) are larger or more highly interconnected. Source: Glasser et al. [15]
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of infection by sub-population and −→v L is their respective contributions to the
reproduction number [24]. Figures 4.8 and 4.9 plot neighborhood contributions to
measles reproduction numbers in space.

With appropriate parameter values for measles, but an arbitrary value of b,
Figs. 4.8a, b and 4.9 illustrate the left eigenvectors of the next-generation matrices
corresponding to reproduction numbers of 25.9, 2.8, and 1.5, respectively. Although
measles’�0 in San Diego County is unknown, evidently routine vaccination reduces

Fig. 4.8 Spatial plots of left eigenvectors associated with the dominant eigenvalues of next-
generation matrices whose elements are sub-population (a) basic and (b) effective reproduction
numbers. The school where the outbreak occurred, indicated by a red dot in (b), is surrounded by
schools with more highly vaccinated populations. Source: Glasser et al. [15]
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Fig. 4.9 The impact of vaccinating the same proportion of children with personal-belief exemp-
tions as others in each school (n = 638) on the residual outbreak potential illustrated in Fig. 4.8b.
Source: Glasser et al. [15]
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�v by an order of magnitude (cf. Fig. 4.8a, b). And eliminating personal-belief
exemptions, as has since been done in California, reduces �v even further (cf. Figs.
4.8b and 4.9).

4.6 Two-Level Mixing

Mixing may be a multi-dimensional phenomenon, but so far we have considered
only single dimensions (e.g. age, gender, or location). Based on fitting their
inter-generational mixing function to gender-stratified PolyMod observations, for
example, Feng et al. [23] argued that, in the event of prolonged school closures,
some working parents with young children would involve grandmothers in child-
care. As hospitalizations and mortality increase with age, they believe that this
proposed pandemic mitigation measure warrants more careful scrutiny to ensure
that it is consistent with public health policy goals.

Other applications also require models with multiple strata. Beginning with two,
consider a meta-population with m spatial locations (or other characteristics such as
gender) and n classes (e.g., age or activity groups). Let li denote the ith location (l
for location) and aj denote the jth age group (a for age), 1 ≤ i ≤ m and 1 ≤ j ≤ n.
We use this compound notation whenever indices might otherwise be confused.

In our first multi-level model, we combine the models of Glasser et al. [15] and
Nold [8], as modified by Jacquez et al. [7], defining

cliaj lpaq :=
c
(p)
aj aq e

−bdli lp
∑n

r=1
∑m

s=1c
(p)
aj ar e

−bdli ls
, 1 ≤ i, p ≤ m, and 1 ≤ j, q ≤ n,

where c
(p)
aj aq = εaj δaj aq +

(
1 − εaj

)
Flpaq and Flpaq =

(
1−εaq

)
Alpaq Nlpaq∑n

k=1
(
1−εak

)
Alpak

Nlpak

.

In these expressions, b and dli lp are as defined earlier, Flpaq corresponds to
proportional mixing (with respect to age) among persons in group q at location p,
εaq denotes the fraction of contacts that individuals aged q (at any location) reserve

for others in the same group (preference), and c
(p)
aj aq represents the fraction of their

contacts that individuals aged j have with individuals aged aq at location lp.
This two-level mixing function was employed by Feng et al. [23], who used

a meta-population model with spatial- and age-structure to compare the actual
monthly and optimal vaccination strategies (i.e. allocations of available vaccine
among seven age groups) in 51 locations in the United States (i.e. 50 states plus the
District of Columbia) during the 2009 H1N1 pandemic. Another example of using
meta-population model with the two-level mixing can be found in Hao et al. [25],
in which the model is used to identify optimal vaccination strategies for measles
elimination in China.
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4.6.1 Parameter Estimation

Given information about face-to-face conversations or other proxies for daily
contacts, we first calculate the activities Aaq = ∑

aj
Caqaj . Insofar as people are

mobile, however, these Aaq average over m locations, i.e. Aaq = 1
m

∑m
i=1Aliaq .

Assuming that the activity of an individual aged aj at location li, Aliaj , depends
not only on his/her age, but also on the distance, ease of travel, . . . to other
locations, Aliaj = ∑m

k=1e
−baj dli lk , whereupon Aaq = 1

m

∑m
r=1

∑m
k=1e

−baq dlr lk .
Thus, if Aaq and dli lj are known, the baq can be estimated for q = 1, 2, . . . , n.
Figure 4.10 shows that the rate at which contacts decline with distance is indeed
age-dependent. Mobility increases to a maximum during adolescence, plateaus at
a lower level during the reproductive years and declines increasingly afterwards.
Given those rates, we can obtain the Aliaj , from which we can obtain Fliaj , c

(p)
aj aq ,

and cliaj lpaq .

4.6.2 A General Scheme

In an effort to develop a template for multi-level mixing, Feng et al. [23] described
the probability of contact between persons in location li, age aj and location lp, age
aq by a matrix with entries
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Fig. 4.10 Initially, the spatial range of contacts is small, but it increases throughout childhood to
a maximum during adolescence, declines to a plateau during the childbearing and working years
and finally decreases further during old age. Source: Hao et al. [25]
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cliaj lpaq := εliaj δli lp δaj aq +
(
1 − εliaj

)
flpaq , 1 ≤ i, p ≤ m, 1 ≤ j, q ≤ n,

where

flpaq :=
(
1 − εlpaq

)
AlpaqNlpaq∑n

j=1
∑m

i=1

(
1 − εliaj

)
Aliaj Nliaj

.

In these expressions, εliaj represents preference for one’s own age/location
group, δrs is the Kronecker delta function, taking values of 1 (if r = s) or 0 (if
r �= s), and flpaq is random mixing (i.e. proportional to contacts not reserved for
others in one’s own group,

(
1 − εlpaq

)
AlpaqNlpaq ). For most applications, however,

mixing among ages and locations (or other strata) is independent (e.g. members of
an age class may contact others of the same age preferentially regardless of their
location, gender, or any other discrete characteristic).

Letting ε(l)liaj and ε(a)liaj
represent preferences for one’s own location and age class,

respectively, matrix entries become

cliaj lpaq := ε
(l)
li aj

δli lp

[
ε
(a)
li aj

δaj aq +
(

1 − ε
(a)
li aj

)
Fliaq

]

+
(

1 − ε
(l)
li aj

) [
ε
(a)
li aj

δaj aqGlpaq +
(

1 − ε
(a)
li aj

)
Hlpaq

]
, 1 ≤ i, p ≤ m, 1 ≤ j, q ≤ n,

where

Fliaq =
[
1 − ε

(a)
liaq

]
AliaqNliaq∑

k

[
1 − ε

(a)
liak

]
AliakNliak

, Glpaq =
[
1 − ε

(l)
lpaq

]
AlpaqNlpaq∑

r

[
1 − ε

(l)
lr aq

]
AlraqNlraq

,

and Hlpaq =
[
1 − ε

(a)
lpaq

] [
1 − ε

(l)
lpaq

]
AlpaqNlpaq∑

r

∑
k

[
1 − ε

(a)
lr ak

] [
1 − ε

(l)
lr ak

]
AlrakNlrak

.

In this expression for cliaj lpaq , the terms in square brackets represent age-
preferential mixing in one’s own and other locations, respectively, and Flpaq , Glpaq ,
and Hlpaq represent proportional mixing with respect to age, location, and both.

Checking to ensure that
m∑

p=1

n∑
q=1

cliaj lpaq = 1 for any given i and j, we find that

m∑
p=1

n∑
q=1

ε
(l)
li aj

δli lp

[
ε
(a)
li aj

δaj aq +
(

1 − ε
(a)
li aj

)
Fliaq

]
= ε

(l)
li aj

[
ε
(a)
li aj

+
(

1 − ε
(a)
li aj

)∑
q

Fliaq

]
= ε

(l)
li aj

,

m∑
p=1

n∑
q=1

[
ε
(a)
li aj

δaj aqGlpaq +
(

1 − ε
(a)
li aj

)
Hlpaq

]
=

m∑
p=1

ε
(a)
li aj

Glpaj +
m∑

p=1

n∑
q=1

(
1 − ε

(a)
li aj

)
Hlpaq = 1.

We can also verify that the balance condition

Aliaj Nliaj cliaj lpaq = AlpaqNlpaq clpaq liaj , i �= p, j �= q,
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is satisfied:

Aliaj Nliaj cliaj lpaq = Aliaj Nliaj

(
1 − ε

(l)
liaj

) (
1 − ε

(a)
liaj

)
Hlpaq

= Aliaj Nliaj

(
1 − ε

(l)
liaj

) (
1 − ε

(a)
liaj

) (
1−ε(a)lpaq

)(
1−ε(l)lpaq

)
Alpaq Nlpaq∑

r

∑
k

[
1−ε(a)lr ak

][
1−ε(l)lr ak

]
Alr ak

Nlr ak

and

AlpaqNlpaq clpaq liaj = AlpaqNlpaq

(
1 − ε

(a)
lpaq

) (
1 − ε

(l)
lpaq

)
Hliaj

= AlpaqNlpaq

(
1 − ε

(a)
lpaq

) (
1 − ε

(l)
lpaq

) (
1−ε(l)li aj

)(
1−ε(a)li aj

)
Aliaj

Nli aj∑
r

∑
k

[
1−ε(a)lr ak

][
1−ε(l)lr ak

]
Alr ak

Nlr ak

.

Once we have an expression for cliaj lpaq that is suitable for our application, we
can formulate the force or hazard rate of infection per susceptible person as

λliaj = Aliaj βliaj

m∑
p=1

n∑
q=1

cliaj lpaq

(
Ilpaq

Nlpaq

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

4.6.3 Two Examples

Feng et al. [23] provide examples to indicate the flexibility of this template. The
main advantage of using it, versus developing ad hoc mixing models, is that contacts
will balance (i.e. Cij = Cji, i,j = 1, . . . , n).

4.6.3.1 Immigrants and Natives

Consider the case of immigrant (l1 = 1) and native (l2 = 2) populations, a distinction
that may matter for models designed to evaluate interventions to mitigate diseases
whose prevalence differs at home and abroad (e.g. tuberculosis). The preference for
population 1 of individuals aged aj in population 1 is ε(l)1aj

; similarly, the preference

for population 2 of individuals in population 2 is ε(l)2aj
.

If there is no age preference
(
ε
(a)
liaj

= 0
)

, the probability that individuals aged

aj in population 1 contact persons aged aq in population 1 (note that, in this case,
δl1l1 = δ11 = 1) is:

c1aj 1aq = ε
(l)
1aj

F1aq +
(

1 − ε
(l)
1aj

)
H1aq

= ε
(l)
1aj

A1aq N1aq∑
k A1akN1ak

+
(

1 − ε
(l)
1aj

) [
1−ε(l)1aq

]
A1aq N1aq∑

r

∑
k

[
1−ε(l)lr ak

]
Alr ak

Nlr ak

.
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Similarly, the probability that individuals aged aj in population 1 contact persons
aged aq in population 2 (note that, in this case, δl1l2 = δ12 = 0) is:

c1aj 2aq =
(

1 − ε
(l)
1aj

)
H2aq =

(
1 − ε

(l)
1aj

) [
1 − ε

(l)
2aq

]
A2aqN2aq∑

r

∑
k

[
1 − ε

(l)
lr ak

]
AlrakNlrak

.

4.6.3.2 Sexual Contacts

Another case with m = 2 is the age- or activity-stratified mixing between females
(l1 = 1) and males (l2 = 2), most of whose contacts are reserved for members of
the other gender. (Replacing age with sexual activity, the groups could become sex
workers and their clients.)

If contacts are entirely heterosexual, ε(l)1aj
= ε

(l)
2aq

= 0, 0 ≤ ε
(a)
1aj

, ε
(a)
2aq

< 1, j,
q = 1, . . . , n. Thus, F is irrelevant. And, if there are no contacts within l1 and l2, the
denominator in G should not be a sum, whereupon G = 1. Similarly, the sum over r
in the denominator of H should be omitted. That is,

G1aq = G2aq = 1, and H2aq =
[
1 − ε

(a)
2aq

]
A2aqN2aq∑

k

[
1 − ε

(a)
2ak

]
A2akN2ak

,

whereupon c1aj 2aq = ε
(a)
1aj

δaj aq+
(

1 − ε
(a)
1aj

)
H2aq . Thus, the hazard rate of infection

for a female aged j is

λ1aj = β1aj A1aj

n∑
q=1

c1aj 2aq

(
I2aq

N2aq

)
.

4.7 Questions for Future Research

In no empirical dataset is mixing proportional, yet we often assume that it is to
reduce continuous formulations (of, e.g., forces of infection) to familiar discrete
ones or systems of PDEs to ODEs or to derive explicit formulae for reproduction
numbers.

Consider reducing the continuous formulation of the force of infection in the
model of Glasser et al. [21] to discrete. When mixing is proportional (i.e. ε(α) = 0),
c(α,α′) = f (α′). In this case, assuming that a(α) is piecewise constant in age group
i, then

∫ ∞

0
a(u)N(u)du =

n∑
k=1

ak

∫ αk

αk−1

N(u)du =
n∑

k=1

akNk,
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where Nk =
∫ ak
ak−1

N(u)du. Thus, the force of infection for age group i becomes:

λi = aiβi
∫ αmax

0 f
(
α′

) [
I
(
α′

)
/N

(
α′

)]
dα′

= aiβi
∫ αmax

0
a(α′)N(α′)∫∞

0 a(u)N(u)du

[
I
(
α′

)
/N

(
α′

)]
dα′

= aiβi
1

n∑
k=1

ak
∫ αk
αk−1

N(u)du

n∑
j=1

∫ αj
αj−1

ajN
(
α′

) [
I
(
α′

)
/N

(
α′

)]
dα′

= aiβi
1

n∑
k=1

akNk

n∑
j=1

aj
∫ αj
αj−1

I
(
α′

)
dα′ = aiβi

1
n∑

k=1
akNk

n∑
j=1

aj Ij

= aiβi
n∑

j=1

ajNj
n∑

k=1
akNk

(
Ij
Nj

)
= aiβi

n∑
j=1

cij

(
Ij
Nj

)
.

What is the problem when the mixing is not proportional? Note that, when σ (α)
is constant within age group i, the functions gk are also constant in those age groups.
Then, when ε(α) is piecewise constant, the function φ(α,α′) will also be piecewise
constant. That is, the φ(α,α′) does not include a factor N(α′), which cancels the
N(α′) in the denominator I(α′)/N(α′) in going from step 3 to step 4 above.

To obtain an explicit expression for the meta-population reproduction number
whose partial derivative could be calculated, in another example, Feng et al. [23]
assumed that mixing was proportional. Feng et al. [26] incorporate more realistic
mixing functions into these calculations. More work of that sort is needed.

In ongoing work on measles and rubella in China, our estimates of �0 are
greater from models with spatial as well as age structure than from models with age
structure alone. Is this a general phenomenon (i.e. the more kinds of heterogeneity,
the higher the basic reproduction number)?

Empirical contact matrices rarely balance. Assuming that this reflects open study
populations, various ad hoc averaging schemes have been used to adjust them. Is
that the explanation for such imbalance? If so, which scheme is best? If not, does
contact matrix asymmetry contain useful information? If so, what (e.g. that study
participants are more likely to record contacts that they initiated)?

If the negative exponential function of inter-location distances is weighted by
sub-population sizes [15], contacts won’t balance. Similarly, if the rate at which
contacts diminish with distance varies with age (Fig. 4.10), they won’t balance in
our two-level age/space model either. How can these realistic features be included
in spatial mixing models without violating the balance condition? One possible
improvement is to keep the same activity expression (4.5) but re-define the contact
matrix (4.6) as cij = ajNj∑

r arNr
, i.e.,

cij = Nj

∑
k exp

(−bdjk)∑
r Nr

∑
k exp (−bdrk) .
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Then the balance condition in (4.3) is satisfied. This can be verified by noticing
that:

aiNicij =
∑

k
exp (−bdik)Ni

Nj

∑
k exp

(−bdjk)∑
r Nr

∑
k exp (−bdrk) ,

ajNj cji =
∑

k
exp

(−bdjk)Nj

Ni

∑
k exp (−bdik)∑

r Nr

∑
k exp (−bdrk) .

Clearly, aiNicij = ajNjcji.
Another modification is to keep cij the same as in (4.6) but re-define the activity

(4.5) as ai = ξ
∑

kNk exp (−bdik) where ξ is a scaling constant. Then,

aiNicij = ξ
∑

k
Nk exp (−bdik) NiNj exp

(−bdij )∑
k Nk exp (−bdik) = ξNiNj exp

(−bdij ) ,

ajNj cji = ξ
∑

k
Nk exp

(−bdjk) NjNi exp
(−bdji)∑

k Nk exp
(−bdjk) = ξNiNj exp

(−bdji) .

Again, we have aiNicij = ajNjcji.

4.8 Summary

In this chapter, we have endeavored to explain why mixing is important in
meta-population models and to describe several formulations that meet specified
conditions and questions for further research. Meta-population models are used in
public health to identify interventions that will reduce the effective reproduction
number (number of secondary infections per infectious person) the most.
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Appendix 1

Using the approach of van den Driessche and Watmough [10], here we find the next-
generation matrix K. Given that N = S + I + R, first we eliminate one equation.
Letting xi = Si

Ni
, yi = Ii

Ni
, i = 1, 2, we have the equations for fractions:

x′1 = μ (1 − p1)− (λ1 + μ) x1

x′2 = μ (1 − p2)− (λ2 + μ) x2

y′1 = λ1x1 − (γ + μ) y1

y′1 = λ2x2 − (γ + μ) y2

λi = aiβ
∑

j cij yj .

At the disease-free equilibrium, xi = 1 − pi, i = 1, 2. Substituting 1 − pi for xi

in the yi equation,

y′1 = (a1c11βy1 + a1c12βy2) (1 − p1)− (γ + μ) y1

y′2 = (a2c21βy1 + a2c22βy2) (1 − p2)− (γ + μ) y2.

Denote the functions on the right-hand side of the y1 and y2 equations by f1(y1,y2)
and f1(y1,y2), respectively. Then the Jacobian matrix at the disease-free equilibrium
is:

J =
⎛
⎝

∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

⎞
⎠
(y1=0,y2=0)

=
(
a1c11β (1 − p1)− (γ + μ) a1c12β (1 − p1)

a2c21β (1 − p2) a2c22β (1 − p2)− (γ + μ)

)
.

We can rewrite J as F − V, where F includes infection terms and V other terms:

J =
(
a1c11β (1 − p1) a1c12β (1 − p1)

a2c21β (1 − p2) a2c22β (1 − p2)

)
−

(
(γ + μ) 0

0 (γ + μ)

)
.

The next-generation matrix is K=FV−1, i.e.,

K =
⎛
⎝a1c11β (1 − p1) a1c12β (1 − p1)

a2c21β (1 − p2) a2c22β (1 − p2)

⎞
⎠

⎛
⎝ (γ + μ)−1 0

0 (γ + μ)−1

⎞
⎠ =

(
a1c11β(1−p1)

(γ+μ)
a1c12β(1−p1)

(γ+μ)
a2c21β(1−p2)

(γ+μ)
a2c22β(1−p2)

(γ+μ)

)
=

(�01 (1 − p1) c11 �01 (1 − p1) c12

�02 (1 − p2) c21 �02 (1 − p2) c22

)

=
(�v1c11 �v1c12

�v2c21 �v2c22

)
.

The reproduction number is the dominant eigenvalue of K.
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Appendix 2

Values of parameters of the mixing function proposed by Glasser et al. [21] and
illustrated in Fig. 4.5 fitted to observations from the PolyMod study are provided in
Table 4.2 (physical contacts) and Table 4.3 (casual contacts).

Table 4.2 Values of parameters and vectors estimated from physical contacts

Fractions reserved for contemporaries, children, parents and co-workers
−→ε 1 (0.21, 0.4, 0.4, 0.32, 0.2, 0.07, 0.04, 0.05, 0.03, 0.03, 0.04, 0.08, 0.08, 0.11, 0.14)
−→ε 2 (0, 0, 0, 0, 0, 0.129, 0.198, 0.372, 0.175, 0.06, 0.014, 0, 0, 0.063, 0)
−→ε 3 (0.097, 0.093, 0.175, 0.087, 0.056, 0.012, 0, 0, 0.015, 0, 0, 0, 0, 0, 0)
−→ε 4 (0, 0. 0, 0.3, 0.073, 0, 0, 0, 0.003, 0.09, 0.06, 0.015, 0.012, 0, 0)
Variances of age-distributions of contemporaries, parents and children
−→σ 1 (0.38, 0.42, 0.33, 0.27, 0.31, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.25, 0.24, 0.27, 0.41)
−→σ 2 (1, 1, 1, 1, 1, 2.5, 1.54, 3.97, 3.06, 1, 1, 2.46, 2.49, 1.23, 2.68)
−→σ 3 (1, 1, 3.04, 1, 3.92, 1, 2.44, 2.49, 1, 2.5, 1, 1, 1, 1, 1)
Ages at entry and exit from workforce, generation time and longevity
Wmin = 25, Wmax = 55, G = 30, L = 75

Table 4.3 Values of parameters and vectors estimated from casual contacts

Fractions reserved for contemporaries, children, parents and co-workers
−→ε 1 (0.18, 0.4, 0.4, 0.31, 0.31, 0.15, 0.02, 0.02, 0.03, 0.02, 0.002, 0.03, 0.03, 0.15, 0.2)
−→ε 2 (0, 0, 0, 0, 0, 0.09, 0.14, 0.28, 0.12, 0.06, 0, 0, 0, 0.026, 0)
−→ε 3 (0.3, 0.17, 0.21, 0.08, 0.07, 0, 0, 0, 0.004, 0, 0, 0, 0, 0, 0)
−→ε 4 (0, 0. 0, 0.3, 0.06, 0.04, 0, 0, 0.1, 0.16, 0.0619, 0, 0, 0, 0)
Variances of age-distributions of contemporaries, parents and children
−→σ 1 (0.2, 0.34, 0.31, 0.29, 0.35, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24, 0.2, 0.2, 0.39, 0.53)
−→σ 2 (1, 1, 1, 1, 1, 2.5, 3, 4, 4, 1, 2.6, 2.5, 2.51, 1.56, 2.53)
−→σ 3 (3.62, 4, 4, 1, 3.95, 1, 2.49, 2.42, 1, 2.5, 1, 1, 1, 1, 1)
Ages at entry and exit from workforce, generation time and longevity
Wmin = 25, Wmax = 55, G = 30, L = 75
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Appendix 3

The model of Feng et al. [2] is not suitable for age groups, but several of those in
Feng et al. [5] are. Suppose, for example, that all newborn individuals are susceptible
and enter the first age group, and that people exit age groups at specific rate θ (i.e.
age from group i − 1 to i and die while in group n) and that susceptible ones get
vaccinated at rate χ . Then,

dS1
dt

= θNn − (λ1(t)+ χ + θ) S1,

dSi
dt

= θSi−1 − (λi(t)+ χ + θ) Si, 1 < i ≤ n,

dI1
dt

= λ1(t)S1 − (γ + θ) I1,

dIi
dt

= θIi−1 + λi(t)Si − (γ + θ) Ii, 1 < i ≤ n,

dR1
dt

= χS1 + γ I1 − θR1,

dRi

dt
= χSi + θRi−1 + γ Ii − θRi, 1 < i ≤ n,

where

Ni = Si + Ii + Ri, N =
∑

i
Ni,

and

λi(t) = aiβi
∑

j
cij

(
Ij

Nj

)
.

The θNn births enter the S1 class, the θ (Sn + In + Rn) = θNn deaths exit the nth
age class, and N is constant. At the stable age-distribution, Nn = N/n, 1 ≤ i ≤ n.
Consider the fractions

xi = Si

Ni

, yi = I i

Ni

, zi = Ri

Ni

, 1 ≤ i ≤ n.

The equations for yi have the same form as those for Ii except that the forces of
infection are λi(t) = aiβ i

∑
jcijyj. The disease-free equilibrium is xi = 1, yi = zi = 0,

1 ≤ i ≤ n. Note that τ = 1/(γ + θ ) is the infectious period for all age groups
i (1 ≤ i ≤ n), and that p = θ /(γ + θ ) denotes the probability that an infectious
person in age group i (1 ≤ i < n) enters infectious age group i + 1. Let
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Ai1 = ci1τ + ci2pτ + · · · + ci(n−1)p
n−2τ + cinp

n−1τ =
n∑

k=1
cikp

k−1τ

Ai2 = ci2τ + ci3pτ + · · · + ci(n−1)p
n−3τ + cinp

n−2τ =
n∑

k=2
cikp

k−2τ

· · · · · ·
Ai(n−1) = ci(n−1)τ + cinpτ, Ain = cinτ, i = 1, 2, · · · n.

The next-generation matrix is

K =

⎛
⎜⎜⎜⎝

a1β1A11 a1β1A12 · · · a1β1A1n

a2β2A21 a2β2A22 · · · a2β2A2n
...

...
. . .

...

anβnAn1 anβnAn2 · · · anβnAnn

⎞
⎟⎟⎟⎠ ,

and its dominant eigenvalue is �0. Define �0i = aiβ iτ for 1 ≤ i ≤ n. When mixing
is proportional, c1j = c2j = cnj for all j. Thus, A1j = A2j = · · ·Anj

.= Aj for all j.
Because K has rank 1, the dominant eigenvalue of K is given by its trace:

�0 =
n∑
i=1

aiβiAi =
n∑
i=1

n∑
k=i

cikp
k−i�0k.
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Chapter 5
Structured Population Models
for Vector-Borne Infection Dynamics

Jianhong Wu

Abstract Dynamical systems provide an appropriate framework to examine
whether, where and when a vector species and/or a vector-borne pathogen can
establish and spread. Such systems often contain time lags to reflect the transition
times from one physiological stage to the next, or from one geographic location to
others. We present a brief introduction to dynamical systems generated by delay
differential equations with varying delay. We focus on those delay differential
equations which are reduced from structured population partial differential equation
models, and we discuss the implicit assumption that needs to be made to permit
this reduction process. We demonstrate the model formulation from tick population
and tick-borne disease infection dynamics, and from bird migration and avian
influenza spread dynamics. We show how model parameters, especially time-
varying development delays, can be informed from laboratory experiments, field
studies and surveillance data, and how these parameters are integrated to a single
threshold parameter, the basic reproduction number, to quantify when population
establishment and disease persistence are likely.

5.1 Delay Differential Equations for Disease Infection
Dynamics

An introduction of mathematical modelling for vector-borne disease infection
dynamics often starts with a simplified assumption about the homogeneity in
the population in terms of reproduction, transmission contacts and environmental
conditions. This assumption yields compartmental systems of ordinary differential
equations.

Applications of dynamical systems-based modelling and analysis to informing
ecosystem management and disease intervention require however details about
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the heterogeneities in the physiological status of the vector species (such as ticks
in the context of tick-borne diseases such as Lyme disease) and/or geographical
location of the vector species (such as migratory birds in the context of avian
influenza spread). Associated with this requirement from applications is the grad-
ually improved surveillance and field observation about these physiological status
and/or geographical location. Incorporating these heterogeneities into an infection
dynamics model gives rise to structured population and epidemic models which,
under the assumption of homogeneity within a particular stage or a spatial segment,
can be reduced to a system of delay differential equations (DDEs).

Here we start with a short introduction to the basic model framework and some
fundamental results about systems of DDEs. We will then focus on the case of delays
which are variable due to climate change and environmental condition variations,
and focus on reduction from structured to staged models. We will discuss the
definition and calculation of the vector population establishment threshold, the
basic reproduction number in vector ecology, and show how this combined with
environmental and vector behavior data can be used to produce the vector population
establishment risk maps. We will then introduce the concept of monotone maps and
threshold dynamics and present two illustrative examples: Lyme tick population
dynamics with structured life cycles, and bird migration dynamics and spatially
structured models. We will finally touch on the persistence theory and illustrate
the theory with two examples: avian influenza spread through bird migration, and
Lyme disease dynamics through multi-stage systemic transmission.

5.2 Delay Differential Equations: Setting Up the Model

We start with the logistic equation

x′(t) = rx(t)[1 − x(t)/K], r,K > 0;

or generally,

x′(t) = −d(x)+ b(x)

with d(x) as the death rate and b(x) as the birth rate.
Examples are when d(x) = −rx2/K and b(x) = rx (logistic equation, when

K > 0 is the carrying capacity constant and r is the intrinsic growth rate); when
d(x) = dx with a constant d > 0 and b(x) = pxe−qx (the so-called Ricker function,
leading to a monostable system); and when b(x) = px2e−qx (modelling the Allee
effect and leading to a bistable system).

In this model formulation, homogeneity is implicitly assumed: every individual
can reproduce, and birth into the population is instantaneous. In most biological
populations, however, individuals can reproduce only after maturation. A more
realistic formulation posits two classes within the population: immature and mature
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(reproducing) individuals. If there is a uniform maturation time (τ ), then the
equation becomes

x′(t) = −dx(t)+ αb(x(t − τ)) (5.1)

with the second term being the maturation rate (birth rate at t − τ times the survival
probability α during the maturation). This gives a delay differential equation.

In what follows, we suggest the readers to keep the following reproduction
function in mind:

b(x) = pxe−qx.

To uniquely define a solution for all future time t ≥ 0, we need to specify the
initial condition x(s) = φ(s) for s ∈ [−τ, 0] with the initial function φ given from
the phase space C := C([−τ, 0]). The initial value problem of (5.1) subject to the
initial condition can then be solved using the method of steps that solves the initial
value problem consequently on the intervals [0, τ ], [τ, 2τ ], · · · , [nτ, (n + 1)τ ] for
any integer n > 1.

There are some important properties of DDEs, including the non-existence and
possible non-uniqueness of backward extensions from an initial condition, the
eventual compactness, non-negativeness and boundedness of the (forward) solutions
when the feedback function b is appropriately given. The solutions then give a
semiflow in C which has a global attractor. The standard notation xt is used to
denote the segment x on the interval [t − τ, t] translated into the initial interval
[−τ, 0], i.e.,

xt (s) = x(t + s), s ∈ [−τ, 0].

Fundamental results can be found in [15]; see also [6, 8, 9, 13, 14, 19, 21, 30, 37]
for a collection of textbooks and references.

The local stability of the model system at a given equilibrium x∗ is determined
by the stability of the zero solution of the linear system describing the perturbation
x(t) around x∗:

x′(t) = −dx(t)+ αb′(x∗)x(t − τ).

The linearization at the zero equilibrium x∗ = 0 generates a positive semigroup
(since b′(0) > 0) and hence the stability of this equilibrium is determined by the
real eigenvalue of the characteristic equation (Corollary 3.2 of [30])

λ = −d + αb′(x∗)e−λτ .

So if αb′(0) < d then x∗ = 0 is locally asymptotically stable. We can also easily
check that when αb′(0) < d the system has no positive equilibrium. On the other
hand, if αb′(0) > d then there is a positive equilibrium x∗ which maybe locally
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asymptotically stable or unstable, but the zero equilibrium becomes unstable. In
some cases, we can also make conclusions regarding the global attractivity of the
positive equilibrium using the monotone dynamical systems theory [30]. This is
particularly true when the positive equilibrium is within the interval where the
function b remains monotonically increasing. In the case where b′(x∗) < 0 at
the positive equilibrium x∗, we have the situation of a negative feedback around
this equilibrium and a Hopf bifurcation of periodic solutions may take place. This
is a typical example of delay-induced nonlinear oscillations. Figure 5.1 gives an
illustration of possible scenarios of model dynamics, depending on the location of
the intersections between the death rate dx and the maturation rate function αb(x).

Note also that the survival probability during the maturation period may depend
on the maturation delay τ , the stability analysis of the characteristic equation
involving delay-dependent coefficients is very complicated, and the global Hopf
bifurcation (the birth, death and global continuation of local Hopf bifurcation) has

= − ( ) + ( − )

Thieme & Smith
(SJMA  1990)

( )

Extinction

0

Monotone
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Röst & Wu (PRSL 2007,
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(FIM, 1996)

Periodic

0 0 0

Fig. 5.1 The global dynamics of the delay differential equation x′(t) = −dx(t) + αb(x(t − τ))

with a constant delay τ > 0. Depending on the relative value of αb′(0) and d, the model may have
one or two non-negative equilibria. The positive equilibrium, if it exists and is within the interval
where the function b is increasing, is the global attractor for all solutions of the equation with non-
trivial non-negative initial value (using the monotone dynamical system theory [29]). When this
positive equilibrium value is in the interval when the function b is decreasing and when the delay
is small, this equilibrium remains stable (using the dynamical system theory in [31] for semiflows
which are order-preserving with respect to the so-called exponential ordering). This equilibrium
however can lose its stability through the mechanism of Hopf bifurcations. Under certain technical
conditions, one can show that the bifurcated periodic solutions are stable [26], and the structure of
the global attractor can be described as in [18]
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been recently studied in [27, 28]. See also [40] for some further extensions when the
scalar equation is replaced by a system of delay differential equations.

A question arises: What happens if the delay is not a constant, but for example,
temporally periodic (maturation regulated by the seasonal variation of the environ-
ment)? If this delay is given by τ(t), would the model become

x′(t) = −dx(t)+ αb(x(t − τ(t)))?

A positive answer was suggested and used in a number of studies including [11].
However, this answer ignored a key factor as explained below.

To understand why the general answer to the above question should be negative,
we call attention to the warning statement in the textbook [8] that one should
appropriately start with the description of population dynamics at the individual
level or to derive from a probabilistic formulation the system for the matured
population dynamics with variable delay.

Let us take the approach using reduction by integration along characteristics of
individual-based models. We define u(t, a) as the population density at time t and
age a. The dynamics is described by the basic evolutional operator

(
∂

∂t
+ ∂

∂a

)
u(t, a) = −μ(a)u(t, a)

subject to boundary condition

u(t, 0) = b(M(t)),

where the reproductive population is given by

M(t) =
∫ ∞

τ(t)

u(t, a)da.

Under the assumption that μ(a) is stage-dependent (not age-dependent) (that is,
μ(a) = μm for a constant independent of the age variable a ≥ τ(t), and μ(a) = μi

for a < τ(t)), we can use integration along characteristics to obtain

M ′(t) = −μmM(t)+ (1 − τ ′(t))e−μiτ(t)b(M(t − τ(t))).

Note that a factor (1−τ ′(t)) appears, which is one only when the delay is a constant.
An interesting problem for future studies is whether we can transfer the above

model with variable delay to a periodic DDE model with a constant delay, with a
transformation that is guided by, and can provide with, biological insights into the
maturation process with variable maturation time.
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5.3 Lyme Tick Population Dynamics

An example to illustrate the importance of considering structured population mod-
elling and variable developmental delays is Lyme disease transmission dynamics.

Lyme disease spread involves complex interaction of a spirochete, multiple
vertebrate hosts, and a vector with a two (or three)-year life cycle strongly influenced
by the season rhythm. The black-legged tick, Ixodes scapularis Say, is the primary
vector of Borrelia burgdorferi, the bacterial agent of Lyme disease, in eastern and
mid-western United States. Northward invasive spread of the tick vectors from
United States endemic foci to non-endemic Canadian habitats has been a public
health concern. A mathematical model to faithfully describe the development of tick
populations and the pathogen spread dynamics is needed to understand the invasion
pattern and predict Lyme infection risk under projected environmental condition
variations.

In [38], a system of ordinary differential equations with periodic coefficients
was proposed for the tick population dynamics. Such a model implicitly makes
an assumption of exponentially distributed development delays. However, tick
development delay is normally concentrated around a particular value though this
value depends on the historical environment conditions up to the time of the
completion of the development. A more appropriate model would require the use
of time-varying development delay.

An attempt was made in [39] which carefully follows the development of tick
populations from one stage to another. In the formulated model, the development
delay is not a constant but rather a periodic function of the time due to seasonality
in the environmental conditions. The model parameters were estimated from many
years of surveillance, lab test and field data, and the theory of Floquet multipliers
of periodic systems was used to calculate the threshold condition for the tick
population dynamics. In the next subsections, we will introduce the model and some
relevant analyses.

5.3.1 Model Formulation and Objective

We now describe key ingredients in the aforementioned model study.

• Model formulation: a general dynamic population model where the development
time from one life stage to the next has considerable variation due to temperature
change.

• Key assumptions: the transition time between two consecutive stages is constant
when the temperature is fixed; the correlation between the fixed temperature
and the transition time can be determined from lab data; the temperature in a
considered region varies periodically (annually); and therefore the transition time
between two consecutive stages (in the considered region) is a temporally varying
periodic function (of the time).
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• Model variables: The life cycle of a population is divided into n stages, with each
stage embodying a specific point of the life of the individual. Let xj (1 ≤ j ≤ n)
be the size of subpopulations at the j th stage, with stages in order of increasing
maturity (e.g., egg, larvae, nymphs, adult. . . ), except x1 which is the size of the
mature subpopulation who are able to produce offspring (egg-laying females).

• Objective: To formulate a closed system for the dynamics of (x1(t), · · · , xn(t))
in order to predict the tick establishment risk.

Age-structured model, the starting point: We start with the population’s chrono-
logical age variable a (time since being produced as an egg), and describe the
evolution of ρ(t, a), the density of the female population, by

⎧⎨
⎩
( ∂
∂t
+ ∂

∂a
)ρ(t, a) = −μ(t, a)ρ(t, a),

ρ(0, a) = φ(a), a ≥ 0 (Initial Condition),
ρ(t, 0) = b(x1(t)), t ≥ 0 (Boundary Condition).

Here μ is the death rate. Integrating along characteristics yields

ρ(t, a) =
{
ρ(0, a − t)e−

∫ t
0 μ(r,a−t+r) dr , 0 ≤ t ≤ a,

ρ(t − a, 0)e−
∫ a

0 μ(t−a+r,r) dr , a < t.

A natural question then arises: What kind of homogeneity needs to be assumed to
permit the reduction from a structured population PDE model to a stage-structured
DDE model?

It turns out that the stage-homogeneity assumption about the mortality rate
μ(t, a) given below is (mathematically) sufficient and (practically) justified by how
the lab and field observation data is collected. This stage-homogeneity assumption
states that each mortality rate in a given stage is a constant independent of the ages
within the given stage, but the mortality rates can vary from one stage to another.
This is described by

μ(t, a) =
{
μ1(x1(t)), a ∈ [An(t),∞),

μi(xi(t)), a ∈ [Ai−1(t), Ai(t)], i = 2, · · · , n,

where Ai−1(t) and Ai(t) are the time-dependent minimum and maximum ages of
those individuals who are developing within the specific ith stage, and

{
x1(t) =

∫∞
An(t)

ρ(t, a) da

xi(t) =
∫ Ai(t)

Ai−1(t)
ρ(t, a) da, i = 2, · · · , n.
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Under this stage-homogeneity assumption, we have from the evolution equation
the following

x′1(t) =
∫∞
An(t)

{(∂t + ∂a)ρ(t, a)− ∂aρ(t, a)} da − ρ(t, An(t))A
′
n(t)

= ρ(t,∞)+ ρ(t, An(t))−
∫∞
An(t)

μ(t, a)ρ(t, a) da − ρ(t, An(t))A
′
n(t)

= ρ(t, An(t))(1 − A′
n(t))−

∫∞
An(t)

μ(t, a)ρ(t, a) da

= ρ(t, An(t))(1 − A′
n(t))− μ1(x1(t))x1(t).

Similarly, for i = 2, · · · , n, we have

x′i (t) = ρ(t, Ai−1(t))(1 − A′
i−1(t))− ρ(t, Ai(t))(1 − A′

i (t))− μi(xi(t))xi(t).

Therefore, we obtain the closed system:

{
x′1(t) = ρ(t, An(t))(1 − A′

n(t))− μ1(x1(t))x1(t),

x′i (t) = ρ(t, Ai−1(t))(1 − A′
i−1(t))− ρ(t, Ai(t))(1 − A′

i (t))− μi(xi(t))xi(t).

(5.2)

Note also that x1 is decoupled from other equations in system (2).
With appropriate assumptions on b and μi , we can obtain the non-negativeness,

boundedness and the existence of the global compact attractor.
We now address the practical problem: How to calculate Ai(t) and ρ(t, Ai(t))

from the available data? To answer this question, we let τi(t) represent the length of
time that a tick is developed at time t into the (i+1)-stage from a tick at the previous
i-stage at time t − τi(t). Much of the qualitative analysis requires the condition

1 − τ ′i (t) ≥ 0. (5.3)

It is important, for resolving the above practical problem, that we note τi(t) can be
approximated from lab data. An illustration is given in Fig. 5.2, see also [22–24] for
some of the lab data discussions.

Equally importantly, from the biological interpretations between maturation age
and chronological ages, we can calculate Ai(t) iteratively from τi(t) using the
following formula (formula (9) in [39]):

Ai(t) =
i∑

j=2

τj

⎛
⎝t −

i∑
k=j+1

τk

(
t −

i∑
l=k+1

τl (t − · · · τi−1(t − τi(t)))

)⎞
⎠ .

With the above discussions, we can then substitute

ρ(t, Ai(t)) = ρ(t − Ai(t), 0)αi(t, t − Ai(t))
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Fig. 5.2 Samples of time-varying development delays, using temperature data during 1971–2000,
in Port Stanley, Hanover and Wiarton Airport weather stations (Figure is taken from [39])

to the equation (5.2) coupled with the reproduction condition

ρ(t, 0) = b(xn(t))

to get a closed system. Here αi(t, t − Ai(t)) (i = 2, · · · , n) can now be calculated
and represents the density-dependent survival probability of an egg who was born
at time t − Ai(t) and is able to live until time t when the egg matures (fully) to the
ith stage.

5.3.2 The Ecological Threshold: Calculating Future
Generation of Egg-Laying Females

To answer the question whether the population can grow and establish in the
environment, we linearize the system at the zero solution to check if the population
will undergo exponential growth from a small population. This leads to the
introduction of the basic reproduction number R0.

In particular, the linearized system at the zero solution has a one-dimensional
decoupled subsystem

x′1(t) = a(t)x1(t − An(t))− μ1(0)x1(t),
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with a(t) = b′(0)αn(t, t − An(t))(1 − A′
n(t)) being the change rate of egg-laying

females at time t that depends on the number of egg-laying females at time t−An(t).
To define the basic reproduction number, we examine the future generation of

egg-laying female ticks. We assume that

h(t) := t − An(t) is a strictly increasing function of t.

Integration yields

x1(t) =
∫ t

−∞
e−μ1(0)(t−s)a(s)x1(s − An(s))ds.

This allows us to look at the number of newly generated egg-laying females per unit
time at time t , from an initial introduction of the egg-laying females with an initial
distribution of x(s), s ∈ R (Fig. 5.3).

More specifically, for a fixed time t , the cohort of egg-laying females will
produce some newborns who will eventually become egg-laying females at the
future time

h−1(t) := t̃ , where h(t̃) = t̃ − An(t̃).

Fig. 5.3 Calculation of Ai−1(t) and Ai(t), the time-dependent minimum and maximum ages of
those individuals who are developing within the specific ith stage. The calculations are based on the
time-varying development delays for the period 1971–2000, in Port Stanley, Hanover and Wiarton
Airport weather stations (Figure is taken from [39])
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At this future time, we have

d

dt
x1(t̃) = d

dt̃
x1(t̃)

dt̃

dt
= [a(t̃)x1(h(t̃))− μ1(0)x1(t̃)] 1

1 − A′
n(t̃)

.

We write

d

dt
x1(t̃) = [a(h−1(t))x1(t)− μ1(0)x1(h

−1(t))] 1

1 − A′
n(h

−1(t))
.

That is, the number of newly generated egg-laying females per unit time at time t is
given by y(t) = c(t)x1(t) with

c(t) := a(h−1(t))/(1 − A′
n(h

−1(t))).

Multiplying x1(t) =
∫ t

−∞ e−μ1(0)(t−s)a(s)x1(s − An(s))ds by c(t) gives

y(t) = c(t)

∫ t

−∞
e−μ1(0)(t−s) a(s)

c(s − An(s))
y(s − An(s)) ds

=
∫ ∞

An(t)

c(t)e−μ1(0)(t−h−1(t−r))y(t − r) dr

=
∫ ∞

0
K (t, r)y(t − r) dr

with

K (t, r) =
{
b′(0)α̂n(h−1(t))e−μ1(0)(t−h−1(t−r)) , r ≥ An(t),

0 , r < An(t).

Note that K (t, r) is a periodic function with respect to time t , i.e., K (t, r) =
K (t + ω, r). Biologically, this means that at time t , only the cohort of egg-laying
females who are still alive before time t − An(t) is capable of reproducing eggs
which will mature to new generation of egg-laying females.

It is now natural to introduce

Cω := {u : R → R is continuous , u(t + ω) = u(t)},
equipped with maximum norm ‖ · ‖, and let L : Cω → Cω be defined by

(L u)(t) =
∫ ∞

0
K (t, r)u(t − r) dr.

One can then show that L is strongly positive, continuous and compact on Cω. This
is called the next generation operator [7]. The basic reproductive number is defined
as the spectral radius of the linear integral operator
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R0 = ρ(L ).

In [39], it was proved that when R0 < 1, the zero solution is locally
asymptotically stable; when R0 > 1, the zero solution is unstable. The proof is
based on an application of the Krein–Rutman Theorem.1 We refer to [17, 33] for
some earlier results about the threshold R0 in our setting. The approach of [39]
follows more of [1, 2, 36].

5.3.3 Numerical Calculation of the Threshold: The
Mathematics Behind a Lyme Tick Risk Map

Not only the size of R0 relative to the unity is important to evaluate whether
the vector population can establish in the region, but also the value of this R0
is important to estimate the initial growth rate of population since near the zero
equilibrium the solution from a non-trivial initial value grows exponentially with
the rate lnR0 if R0 > 1. Therefore, if we are to apply the above theory in a practical
context, it is important to develop algorithms for calculating R0.

One such algorithm was developed in [39] using the most intuitive discretization
and integration. This algorithm links the calculation of R0 to the calculation of the
spectral radius of a Leslie matrix in a periodic environment. In particular, to compute
R0 numerically, we partition the interval [0, ω] into N (a large integer) subintervals
of equal length. Set ti = (i − 1)ω/N for i = 1, 2, · · · , N and let Wi = u(ti).
Then the problem of estimating R0 reduces to the calculation of the spectral radius
of a Leslie matrix. Namely, we have the matrix eigenvalue problem of the form
R̃0W = XW , where W = (W1,W2, · · · ,WN)

T , and R̃0 is the spectral radius of a
N × N positive matrix X. In this matrix, the (i, j) element is given explicitly and
with a clear biological interpretation for each metric element.

The calculated R0 values for different regions and under different observed and
predicted environmental conditions can then be used to depict the tick reproduction
map for I. scapularis, see [38, 39]. This can then be used to estimate the impact of
predicted climate change on tick population dynamics [25], as illustrated in Fig. 5.4.
We should mention a recent study [5] that shows how remote sensing data can be
further used to increase the spatial detail for this Lyme disease risk mapping. This

1In functional analysis, the Krein-Rutman theorem is a generalization of the Perron-Frobenius
theorem to infinite-dimensional Banach spaces. It was proved by Krein and Rutman in 1948. The
Krein-Rutman Theorem states that: Let X be a Banach space, and let K ⊂ X be a convex cone
such that K −K is dense in X. Let T : X → X be a non-zero compact operator which is positive,
meaning that T (K) ⊂ K , and assume that its spectral radius ρ(T ) is strictly positive. Then ρ(T )

is an eigenvalue of T with positive eigenvector, meaning that there exists u ∈ K \ {0} such that
T (u) = ρ(T )u.



Fig. 5.4 Maps of values of R0 in North America, estimated from climate observations (1971–
2000: upper panel), and projected climate for 2011 to 2040 (middle panel) and for 2041 to 2070
(bottom panel). The color scale indicates R0 values. Figure is taken from [25], and shows the
northward expansion of the tick establishment due to climate warming. See [10] for a recent
modelling study about the epidemic propagation speed and patterns in a wave-like environment
as illustrated in the above maps
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study also shows how well the risk map coincides with the number of ticks submitted
to the Public Health Ontario, in the study area.

As another remark, we note that the equation for x1 is de-coupled from the rest
due to the use of the delay. However, for the purpose of Lyme disease risk projection,
it is important to describe the density and variation of feeding nymphs and ticks in
other stages since ticks in these stages are more involved in sharing the host for the
Lyme pathogen transmission, and for human to get infection from the infected ticks.
These densities can be described, using the formulation derived from Eq. (5.2), for
i = 2, · · · , n, given below:

x′i = αi−1(t, t − Ai−1(t))b(x1(t − Ai−1(t)))(1 − A′
i−1(t))

−αi(t, t − Ai(t))b(x1(t − Ai(t)))(1 − A′
i (t))− μi(xi(t))xi(t).

5.4 Bird Migration Dynamics: Spatial Heterogeneity
and Transition Delay

Structured population dynamics arises not only from temporally structured pop-
ulations, but also spatially segregated populations. We illustrate this here with a
model for bird migration. The model described is taken from a series of studies
[3, 4, 12, 34] on avian influenza spread modelling. The central issue of this series of
studies is seasonal bird migration dynamics and spatial-temporal distribution, and
its implications for avian influenza spread patterns.

This series of studies has been guided by some satellite tracking data from the
U.S. Geological Survey which recorded the migration path of a dozen bar-headed
geese (from Mongolia to India). The data also shows that migration routes are often
one-dimensional, as they tend to be funnelled into narrow pathways, often following
coastlines or mountain ranges.

It is therefore natural that we start with the spatially explicit bird migration
model using advection equations. Let x be the arc length along the continuum.
Let x1 = 0 be the summer breeding site, xn be the winter feeding location and
xi, i = 2, 3, ..., n − 1 be the stopover locations where birds stop for short periods
to feed. Let li be the distance between the locations xi and xi+1 and Ui be the mean
flight velocity between these two locations, so that the time taken to fly between xi
and xi+1 will be

τi = li/Ui.

The density s(t, x) obeys the advection equation

( ∂
∂t

+ Ui

∂

∂x

)
s(t, x) = −μis(t, x).



5 Structured Population Models for Vector-Borne Infection Dynamics 141

Let Si(t) be the number of birds at location xi . Then at time t , the rate of birds
leaving patch xi is di(t)Si(t), with di(t) being the rate of outward migration from
patch i. The rate of birds arriving into patch xi+1 is

Uis(t, xi+1) = di(t − τi)Si(t − τi)αi(t).

Using integration along characteristics, one can obtain the following bird migration
patchy model:

⎧⎪⎨
⎪⎩

S′1(t) = p(t)b(S1(t))+ αndn(t − τn)Sn(t − τn)− d1(t)S1(t)− μ1(t)S1(t),
...

S′i (t) = αi−1di−1(t − τi−1)Si−1(t − τi−1)− di(t)Si(t)− μi(t)Si(t), 2 ≤ i ≤ n.

It is natural to choose the phase space C := �n
i=1C([−τi, 0]).

To describe the qualitative behaviors of the model equation, we will need the
following section on discrete dynamical systems.

5.4.1 Monotone Maps and Threshold Dynamics

We start with introducing a few concepts:

• Let E be an ordered Banach space with positive cone P such that int(P ) �= ∅.
For x, y ∈ E, we write x ≥ y if x−y ∈ P ; x > y if x−y ∈ P \{0} and x >> y

if x − y ∈ intP .
• Let U ⊂ E and f : U → U be a given continuous map. We say that f is

monotone if x ≥ y implies f (x) ≥ f (y); strongly monotone if x > y implies
f (x) >> f (y).

• f : U → U is said to be strictly subhomogeneous if f (λx) > λf (x) for any
x ∈ U with x >> 0 and λ ∈ (0, 1).

In terms of the bird migration model, we define f : �n
i=1C([−τi, 0]) →

�n
i=1C([−τi, 0]) by f (φ) = (Si(φ)ω)

n
i=1 for the period (ω)-operator of the model.

We also define P = �n
i=1C([−τi, 0];R+). Then we have

• E is an ordered Banach space with positive cone P ;
• f : P → P is monotone; Sm is strongly monotone when mω ≥ max τi ;
• Assume all p(t) and di(t) are positive and ω-periodic and positive (this assump-

tion can be weaken), and b(0) = 0 and b : [0,∞) → [0,∞) being C1 and
strictly monotone. Therefore for any integer m such that mω > τ , Sm : U → U

is strongly monotone and precompact (i.e., the image of a bounded set in U under
Sm is contained in a compact set).
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We then have the following general result on threshold dynamics of monotone
maps [41]:

Theorem 5.1 (Threshold Dynamics Theorem) Let f : P → P be given such
that

(H1) f is strongly monotone and strictly subhomogeneous;
(H2) f m is precompact for some positive integer m, and every positive orbit

{f n(x); n = 1, 2, · · · } is bounded;
(H3) f (0) = 0 and Df (0) is compact and strongly positive.

Then the following threshold dynamics holds:

(TD1) if ρ(Df (0)) ≤ 1, then every positive orbit in P converges to 0;
(TD2) if ρ(Df (0)) > 1, then there exists a unique fixed point u∗ >> 0 in P such

that every positive orbit in P \ {0} converges to u∗.

To apply this for the bird migration model, we define R0 as ρ(Df (0)) with f

defined as above, then we conclude that if R0 ≤ 1, then Si(φ) → 0 as t → ∞ for
all φ ∈ P ; if R0 > 1, then the system has a unique positive ω-periodic solution such
that every solution of the system starting from P \ {0} converges to this positive
periodic solution. Calculation of R0 was performed in [35].

Despite this straightforward application of a general threshold dynamics theo-
rem, the established global asymptotical stability of a unique positive solution is
significant for the purpose of modelling bird influenza infection dynamics since
this global stability result gives us the theoretical foundation to estimate the initial
condition for bird influenza epidemic models. Namely, the theoretical result ensures
that starting from an arbitrary initial condition, the solution is eventually stabilized
at a unique positive periodic solution (assuming the threshold is larger than 1).
This unique periodic solution, easily obtained through numerically simulating the
bird migration model with an arbitrarily given initial data of birds for a sufficient
period of time, gives the initial susceptible birds at the onset of a bird influenza
outbreak. The long-term Limiting behaviors of an ecological model (bird migration
dynamics) give the Initial Condition of the epidemic model for a considered bird flu
outbreak.

5.5 Global Spread and Disease Epidemiology

The spread of avian flu with a particular strain such as H5N1 combines inter-
actions between local and long-range dynamics. The local dynamics involve
interactions/cross-contamination of domesticated birds, local poultry industry and
temporary migratory birds. The nonlocal dynamics involve the long-range trans-
portation of industrial material and poultry, and the long-range bird migrations
(Fig. 5.5).
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Fig. 5.5 The study [3] chose to focus on bar-headed geese as example species due to their
vulnerability to the avian influenza H5N1, as highlighted by the death toll in the 2005 Qinghai
Lake outbreak. The study used some satellite tracking data of bar-headed geese to extract the
information of arrival, the length of stay and the date and time since deployment, as well as the
average distance and time of flight between the current and previous stop sites. This information
was then used to parameterize the model and to produce the simulation results showing here.
The simulation shows that over a simulation of 50 years, the bird population reaches positive
periodic solution. This periodic state is reached for all non-trivial initial conditions, illustrating
the theoretically established global asymptotic stability of a unique periodic solution of the model
equation

To model the interaction of migratory birds and domestic poultry we must stratify
the migratory birds by their disease status and need to add domestic poultry. We use
a patch model, where we consider four representative patches: breading ground (b),
wintering ground (w), spring onward migration stop over (o) and fall migration,
returning to the wintering ground, patch (r). Within each patch, we need to consider
the migratory bird (subindex m) and domestic poultry (subindex p) populations,
and both are needed to be stratified by their infection status, susceptible (s) and
infected (i). Within each patch, we have the standard mass action for the disease
transmission, and between patch we assume migration of the migratory birds. This
yields the systems of differential equations for Migratory Bird Dynamics:

Ṡbm = Bm(t, S
b
m)+ αsrbd

s
rbS

r
m(t − τ srb)− βbmS

b
mI

b
m − βbpmS

b
mI

b
p − dsboS

b
m − μb

msS
b
m,
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i
rbI
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İ rm = αiwrd
i
wrI

w
m (t − τ iwr )+ βrmS

r
mI

r
m + βrpmS

r
mI

r
p − dirbI

r
m − μr

miI
r
m



144 J. Wu

coupled with the system for Poultry Population Dynamics:

İ bp = βbp(N
b
p − I bp)I

b
p + βbmp(N

b
p − I bp)I

b
m − μb

pI
b
p,
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o
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o
p − I op)I

o
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pI
o
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w
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w
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w
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w
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p I
w
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İ rp = βrp(N
r
p − I rp)I

r
p + βrmp(N

r
p − I rp)I

r
m − μr

pI
r
p.

In [12], a threshold, given in terms of the spectral radius r(TI ) of the time T -
solution operator of the linearized periodic system of delay differential equations
at the disease-free equilibrium, was theoretically derived. A closed form in terms
of the model parameters is possible in some special cases. It was then shown that
this threshold determines whether disease persists or not: the non-trivial disease-
free equilibrium is globally asymptotically stable once the threshold is below 1; if
the threshold is larger than 1, then the disease is uniformly strongly persistent in
the sense that there exists some constant η > 0, which is independent of the initial
conditions, such that, for each c = b, o,w, r ,

lim inf
t→∞ I cm(t) ≥ η, lim inf

t→∞ I cp(t) ≥ η.

This result is based on the persistence theory discussed below: Let X be a
complete metric space with the metric d. LetX0 and ∂X0 be open and closed subsets
of X, respectively, such that X0 ∩ ∂X0 = ∅ and X = X0 ∪ ∂X0. Let S : X → X be
a continuous map with S(X0) ⊂ X0. We introduce a few concepts here:

• S is uniformly persistent with respect to (X0, ∂X0) if there exists η > 0 such that
for any x ∈ X0, lim infn→∞ d(Snx, ∂X0) ≥ η;

• A nonempty invariant set M ⊂ ∂X0 is isolated if it is the maximal invariant set
in some neighbourhood of itself;

• An isolated set A ⊂ ∂X0 is chained to an isolated set B ⊂ ∂X0, written as
A → B, if there exists a full orbit through some x /∈ A ∪ B such that ω(x) ⊂ B

and α(x) ⊂ A;
• A finite sequence {M1, · · · ,Mk} of invariant sets is called a chain if M1 →

M2 → · · ·Mk . The chain is called a cycle if Mk = M1

We refer to [16, 32, 41] for more systematic treatments of the persistence theory,
but the theorem below is what was used in [12]:

Theorem 5.2 Assume that

• S : X → X has a global attractor;
• LetAδ be the maximal compactor invariant set of S in ∂X0. Ãδ = ∪x∈Aδω(x) has

an isolated and acyclic covering ∪ki=1Mi in ∂X0 (that is, Aδ ⊂ ∪ki=1Mi , where
M1,M2, · · · ,Mk are pairwise disjoint and compact and isolated invariant sets
of S in ∂X0 such that each Mi is also an isolated invariant set in X, and no subset
of the Mi’s forms a cycle for Sδ = S|Aδ in Aδ).
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Then S is uniformly persistent if and only if for each Mi , we have Ws(Mi)∩X0 = ∅,
where Ws(Mi) = {x, x ∈ X,ω(x) �= ∅, ω(x) ⊂ Mi} is the stable set of Mi .

The persistence theory, when applied to the above avian influenza model,
concludes that the avian influenza spread persists in the sense that both infected
migratory and domestic poultry birds will remain strictly larger than a unspec-
ified constant. Numerical simulations have indicated that the pattern of disease
persistence can be quite complicated, and is not necessarily fluctuating regularly
as an annual cycle. This raises an issue about the estimation of inter-pandemic and
intra-pandemic intervals. There seems to be no theoretical framework that has been
applied to address this important practical issue.

Lyme disease dynamics was also considered in the study [20] with standard
stratification of tick populations by the infection status and by tick development
stages. The first such model is to assume the development rate is exponentially
distributed (and time-independent). This leads to an epidemic system of ordinary
differential equations with periodic coefficients. This formulation facilitates refined
persistence results about the periodicity of persistent disease spread patterns. It
remains to see whether the introduction of periodically varying delay will make
the model analysis much more complicated. From the public health prospective, it
would be desirable to establish not only the Lyme tick risk map, but Lyme disease
risk map—in terms of the threshold values of the epidemic models.

5.6 Summary

In this chapter, we consider modelling environment impact on vector-borne infec-
tion dynamics using delay differential equations. This is based on a series of
sections which introduce a general framework using delay differential equations,
and relevant results on global dynamics and persistence about the implication
of environment changes for the interplay of vector species ecology and vector-
borne disease epidemiology. General results are illustrated by applications to avian
influenza and Lyme disease spread.

We first consider spatiotemporal patterns of bird migration and seasonal stage-
activities of tick populations with focus on model formulation and parameterization.
Here, we derive, from first-order hyperbolic partial differential equations, prototype
delay differential equations describing the spatial dynamics of migratory birds and
stage-structured tick population dynamics. The periodicity in model coefficients and
delays arises due to seasonality. We illustrate how surveillance, laboratory, field
study and satellite/remote sensing data can be integrated to parameterize the models.

We then use the model to describe spatiotemporal patterns of bird migration
and seasonal stage-activities of tick populations: global dynamics. We describe the
phase space and general framework for the qualitative behaviors of delay differential
equations with periodic coefficients/delays and examine the global dynamics of
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the model systems using the monotone dynamical systems theory. We discuss the
impact of climate changes on vector establishment risks.

We finally consider avian influenza spread and Lyme disease epidemics: persis-
tence and irregular infection dynamics. Here we stratify the vector populations in
terms of their infection status (susceptible or infectious) and obtain corresponding
epidemic models. We introduce the concept and general results of infection
persistence and threshold phenomena, and we discuss further challenges depicting
the inter-epidemics and intra-epidemic intervals.

There are a number of challenging issues for the modelling, parameterization,
dynamic behavior analysis and numerics of structured population models arising
from vector-borne disease infection risk assessment consideration. Such a model
framework seems to be appropriate given the important role of the physiological
or geographical status of the vector species in defining the vector population
dynamics and the disease spread. The reduction from the structured population
models to delay differential equations is both mandated and facilitated by the fact
that surveillance data is normally collected for the vector in a certain physiological
stage or a geographic location, and this reduction also renders the well-established
dynamical systems theory of delay differential equations applicable to considering
some important ecological and epidemiological systems.
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Chapter 6
Stochastic Population Kinetics
and Its Underlying
Mathematicothermodynamics

Hong Qian

Abstract Based on differential calculus, classical mechanics represents the natural
world in terms of featureless point masses and their movements. Chemistry studies
molecules each of which has a large number of internal degrees of freedom in
terms of atoms, electrons, etc.; the behavior of even a single biomolecule like a
protein is often so complex that the foundation of chemical kinetics is essentially
based on stochastic mathematics. Stochastic population kinetics is a more powerful
and more realistic representation of the biological world. This chapter introduces
this new mathematical modeling paradigm and shows the existence of a hidden
thermodynamic structure underlying any stochastic nonlinear kinetic description of
a multi-population biological system. The mathematicothermodynamics presented
here is a generalization of J. W. Gibbs’ chemical thermodynamics for equilibrium
chemical reaction systems, as heterogeneous matters.

6.1 Introduction

Françis Jacob (1920–2013), one of the leading molecular biologists of the twentieth
century, stated in his book “The Possible and the Actual” [13] that Western art had
radically changed since the Renaissance from “symbolizing” to “represent” the real
world. One can in fact view pure versus applied mathematics as a change from the
former to the latter. The ultimate goal of mathematical science is to quantitatively
represent the real world in terms of mathematics.

Currently there is a sharp contrast between the mathematical models, or theories,
in physics and in biology. While we take Newton’s equation of motion as almost
the “Truth” under the appropriate conditions, one does not have such a level of
confidence for the mathematical models in biology.

H. Qian (�)
Department of Applied Mathematics, University of Washington, Seattle, WA, USA
e-mail: qian@amath.washington.edu

© Springer Nature Switzerland AG 2019
A. Bianchi et al. (eds.), The Dynamics of Biological Systems, Mathematics
of Planet Earth 4, https://doi.org/10.1007/978-3-030-22583-4_6

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22583-4_6&domain=pdf
mailto:qian@amath.washington.edu
https://doi.org/10.1007/978-3-030-22583-4_6


150 H. Qian

In Newtonian mechanics, the natural world is represented by point masses
and described by their movements. Each point mass, e.g., a Newtonian particle,
has a unique position and velocity. The natural world according to chemistry,
however, consists of “identical” molecules made of atoms. While each individual
molecule has intrinsic stochasticity, e.g., a molecular individualism [4] due to the
atomic motions within, population wise molecules follow statistical rate laws in
their syntheses (birth), degradations (death), spatial diffusion (migration), state
transitions (character switching), and interactions. Such a formal reaction kinetic
system in a small volume V , such as biochemical reaction kinetics in a single
cell, can be rigorously treated in terms of an integer-valued, continuous-time
Markov process describing its nonlinear behavior, counting the molecules and their
reactions, one at a time.

Population dynamics in biology has long been described in terms of nonlinear
differential equations [17]. Many of the equations are remarkably similar to the
kinetic equation for chemical reactions. In this chapter, we shall introduce in a
rigorous fashion the rate law of rare events in term of exponential waiting time
and the Poisson process. We shall show that the type of differential equations for
population dynamics has a mathematical foundation in the theory of probability and
Markov processes.

After introducing the stochastic mathematical representation of population kinet-
ics, in the Sect. 6.9 of the chapter, we present a recently discovered universal
mathematical structure that is inherent in any Markov population kinetics. This
structure has a remarkable resemblance to the theory of thermodynamics, first
developed in the nineteenth century by physicists dealing with heat—the stochastic
motions of atoms and molecules. To distinguish the mathematical structure in the
stochastic population kinetics from the subject from physics, we coined the term
mathematicothermodynamics, within which we axiomatically introduce notions
such as closed systems, open-driven systems, entropy production, free energy
dissipation, etc. We shall derive two “laws”: The first is concerned with the balance
of a free energy like function, and the second is concerned with certain monotonicity
in the dynamics.

Finally, phase transition in physics, conformational transition in biochemistry,
and phenotypic switching in cell biology are all nonlinear phenomena intrinsically
related to multi-stability and saddle-node bifurcation, in the limits of time t → ∞
and system’s size V →∞ [12, 26].

6.2 Probability and Stochastic Processes: A New Language
for Population Dynamics

There are fundamentally two types of mathematical modeling: (a) representing
scientific data in terms of mathematical formula or equations and (b) describing
a system’s behavior (natural or engineered, physical or biological, electronic,
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chemical, economical, social, . . . ) based on existing, established formula and
equations. For lack of better terminology, we shall call the former data-driven
modeling and the latter mechanistically derived modeling. Note, according to Karl
Popper (1902–1994) and his philosophy of science, the only legitimate scientific
activity is falsifying a hypothesis: that requires first to formulate a hypothesis,
which sometime is just looking for patterns in the data (e.g., numerical hypothesis)
and sometime is proposing a mechanism (e.g., modeling); and (b) to derive
rigorous predictions from a hypothesis, which is a form of logical, or mathematical,
deduction.

Let us revisit some of the key notions already discussed, or widely used, in many
of the other chapters—but let us try to be critical. In Chap. 1 Hillen and Lewis
introduced the growth rate through a limiting process: if a population grows two
person every 100 days, then it is “equivalent” to one person every 50 days, and half
a person every 25 days. In fact, the growth rate is

r = lim
�t→0

P(t +�t)− P(t)

�t
.

Instantaneous rate (fluxion) is one of the most important concepts of Newton’s
calculus! But does this make sense to quantify population growth? A half of a
person, one tenth of a person? Clearly this theory cannot be true when the �t is
too small: population change cannot have non-integer numbers.

Second, has anyone ever seen such a regular population growth with exactly two
person in the first 100 days, and another two in the next 100 days? I am sure some
of you will say “that is just an average”.

Indeed, discreteness and probability are two fundamental issues in any popula-
tion dynamics. Both have been ignored in the differential equation-based description
of population dynamics. We shall start discussing population kinetics anew below.
Most of the materials are taken from [1, 19, 20, 22, 23, 28, 31].

6.2.1 Brief Review of Elementary Probabilities

A random variable X taking a continuous real value has a probability density
function (pdf) fX(x):

∫ ∞

−∞
fX(x)dx = 1, fX(x) ≥ 0. (6.1)

The meaning of the fX(x) is this: for infinitesimal dx, the probability of observing
X ∈ (x, x + dx] is fX(s)dx:

Pr{x < X ≤ x + dx} = fX(x)dx. (6.2)
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Then, the cumulative probability distribution of X is defined as

FX(x) = Pr{X ≤ x} =
∫ x

−∞
fX(z)dz, and fX(x) = dFX(x)

dx
. (6.3)

The mean (or expected value) and variance of the random variable X then are

〈X〉 = E[X] =
∫ ∞

−∞
xfX(x)dx, (6.4)

Var[X] = E
[
(X − μ)2

] =
∫ ∞

−∞
(
x − μ

)2
fX(x)dx, (6.5)

in which we have denoted E[X] by μ. Two most important examples of random
variables taking real values are “exponential” and “normal”, also called Gaussian.
The former has the standard form

fX(x) = λe−λx, x ≥ 0, λ > 0, (6.6)

with mean and variance being λ−1 and λ−2; the latter has a standard form

fX(x) = 1√
2πσ

e−(x−μ)2/2σ 2
, (6.7)

with mean μ and variance σ 2.
Gaussian normal distribution is widely discussed; including in popular press

[11]. It is understood as a consequence of the central limit theorem. It is a
statistical law emerging from a large collection of identical, independent parts.
In the following sections, we shall show that for dynamical processes involving
populations, there is a much less known, but equally if not more important statistical
law: exponentially distributed time between “rare events”. In stochastic modeling of
population dynamics, one’s primary focus is not the random number of individuals
at a particular time; rather it is the random time of the next event that changes the
number of individuals by one.

The best known discrete, integer-valued random variables are Bernoulli, bino-
mial, Poisson, and geometric [30].

6.2.2 Radioactive Decay and Exponential Time

Let us revisit the simplest differential equation

dy

dt
= −λy, (6.8)
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where λ > 0. This equation has been introduced as a mathematical model for the
remaining fraction of a radioactive material at time t

y(t)

y(0)
= e−λt . (6.9)

If all the atomic nuclei are identical and independent, then

Pr
{
a nucleus remaining radioactive at time t

} = e−λt . (6.10)

However, if T is the random time at which the event of radioactive decay occurs,
then

Pr
{
a nucleus remaining radioactive at time t

} = Pr
{
T ≥ t

}
. (6.11)

T is a non-negative real-valued random variable with cumulative probability
distribution FT (t) = Pr{T ≤ t} = 1 − e−λt and probability density function
fT (t) = dF(t)/dt = λe−λt .

What types of problems, or more precisely “scenarios” and “mechanisms”, will
give rise to this exponentially distributed waiting time? Why is it so universal?
A good understanding of these questions will provide the reader a deeper under-
standing of the mathematical foundation of population dynamics, as emergent
statistical laws, in terms of seemingly random behavior of a large population of
individuals [15].

6.2.2.1 Rare Event

Let T be the random time at which a certain event occurs. If the occurrence of such
an event is independent in time intervals [t1, t2] and [t2, t3], and if its occurrence is
uniform in time (e.g., the system and its environment are stationary), then

Prob. of no event occurring in [0, t +�t] = (6.12)

Prob. of no event occurring in [0, t] × Prob. of no event occurring in [t, t +�t].

That is,

Pr
{
T > t +�t

} = Pr
{
T > t

}× Prob. of no event occurring in [t, t +�t].

Now if the probability of one such event occurring in the time interval [t, t +�t] is
proportional to �t , and the probability of more than one events is ∝ o(�t), then

Pr
{
T > t +�t

} = Pr
{
T > t

}× (
1 − λ�t + o(�t)

)
. (6.13)
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Then,

d

dt
Pr

{
T > t

} = −λPr
{
T > t

}
, =⇒ FT (t) = e−λt . (6.14)

Example: The waiting time for the first shopper coming in a store in the morning
on a regular day.

6.2.2.2 Memoryless

One of the most important, in fact defining, properties of exponential distributed
waiting time is

Pr
{
T ≥ t + τ

}
Pr

{
T ≥ t

} = e−λ(t+τ)

e−λt
= e−λτ . (6.15)

Example: You and your lazy brother doing experiments to observe the mean time of
an exponentially distributed event. Even though your brother starts counting time a
whole hour later than you, his resulting statistics will be exactly the same as yours!

More interestingly, the more individuals in a population, the faster the next event
to occur. In mathematical terms: if all Tk ∼ λke

−λkt and they are independently
distributed, then T ∗ = min(T1, T2, · · · , Tn) also has an exponential distribution

Pr
{
T ∗ > t

} = Pr
{
T1 > t, · · · , Tn > t

}
= Pr

{
T1 > t

}× Pr
{
T2 > t

}× · · · × Pr
{
Tn > t

} = e−μt , (6.16)

where μ = λ1 + λ2 + · · · + λn. Thus, fT ∗(t) = μe−μt .

6.2.2.3 Minimal Time of a Set of Non-Exponential i.i.d. Random Times

Now consider a set of random times {Tk}. They are identical, independently dis-
tributed (i.i.d.) random times with pdf fT (t) and cumulative probability distribution
FT (t). Then T ∗ = min(T1, T2, · · · , Tn) has its distribution

Pr
{
T ∗ > t

} = (
1 − FT (t)

)n
. (6.17)

Now, introducing scaled T̂ ∗ = nT ∗ and considering n to be very large, its
distribution is

Pr
{
T̂ ∗ > t

}
=

(
1 − FT

(
t

n

))n

$
(
−F ′

T (0)

n
t +O

(
n−2))n

→ e−F ′
T (0)t .

(6.18)
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Therefore, if F ′
T (0) = fT (0) is finite, one obtains an exponentially distributed time.

We note the mathematical condition fT (0) > 0: in an application, this implies
that the time scale involved in the mechanism for the occurrence of an event is
several orders of magnitude faster than the time scale in question.

6.2.3 Known Mechanisms That Yield an Exponential
Distribution

In the previous section, we have derived the exponentially distributed waiting time
based on some very elementary assumptions concerning (1) time homogeneous
and (2) independent. Furthermore, in Sect. 6.2.2.3, we have shown that for non-
exponential T , as long as fT (0) �= 0, the minimum of a large collection of i.i.d. T ’s
will be exponential. This is a strong argument for why one can use, on an appropriate
time scale, the equations like (6.8) to model population dynamics.

6.2.3.1 Khinchin’s Theorem

Let us consider a house that uses n light bulbs. One bought a large box of new light
bulbs, and let us assume all the bulbs having identical, independently distributed life
time X with pdf fX(x). For each light-bulb socket, one puts on a new bulb when
the old one is burnt. The time sequence 0, T1, T2, · · · , Tk, · · · is called a renewal
process, in which Tk = ∑k

�=1 X
(�), where the X(�) with different � are i.i.d. random

variables drawn from the distribution fX(x). Now for the entire house, there are n
identical, independent renewal processes. The time sequence of bulb changing form
a superposition of the n renewal processes [3], as illustrated in Fig. 6.1.

For a single renewal process with renewal time distribution fX(x), the corre-
sponding counting process, e.g., the number of renewals occurred before time t , Nt ,
has the distribution

Pr
{
Nt ≥ k

} = Pr
{
Tk ≤ t

} = FTk (t) =
∫ t

0
fTk (x)dx. (6.19)

Fig. 6.1 If the red, orange, and blue point processes represent the renewal events of light bulbs
for 3 different sockets, then the fourth row is the combined point process for all the bulb changes.
It is the superposition of the three individual processes. With more and sockets, a statistical law
emerges
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Therefore,

Pr
{
Nt = k

} = FTk (t)− FTk+1(t). (6.20)

Now if one randomly picks a time t , and let T ∗
t be the waiting time for the next

renewal, T ∗
t is known as residual time in renewal theory. Its distribution is different

from fX(x). In fact, one has

Pr{T ∗
t ≤ s} =

∞∑
�=0

Pr
{
Nt = �

}
Pr

{
T�+1 ≤ t + s

}

=
∞∑
�=0

(
FT�(t)− FT�+1(t)

)
FT�+1(t + s). (6.21)

Therefore, the probability density function for the stationary T ∗
t is

fT ∗
t
(s) = d

ds
Pr{T ∗

t ≤ s}. (6.22)

fT ∗
t
(0) =

∞∑
�=1

(
FT�(t)− FT�+1(t)

)
fT�(t) �= 0. (6.23)

Applying the result in Sect. 6.2.2.3, we then have the following theorem, which can
be found in [3].

Theorem If T (1)
k , T (2)

k · · · , T (n)
k are n i.i.d. renewal processes with waiting time

distribution fX(x), then the superposition of the n renewal processes has an
exponential waiting time for the next event in the limit of n → ∞, with rate
parameter nE−1[X].

6.2.3.2 Kramers’ Theory and Saddle-Crossing as a Rare Event

We have discussed the minimal time of a large collection of i.i.d. waiting times,
and we have discussed superposition of renewal processes. We now turn to a third
mechanisms: the emergence of discrete chemical reactions from a description of
atoms continuously moving in a molecule in an aqueous solution.

From a classical mechanics stand point, a molecule is a collection of atoms.
For a protein with N number of atoms, a Newtonian mechanical description of its
dynamics has 6N degrees of freedom, without even considering the atoms in the
solvent, which is at least an order of magnitude more. This is what one observes
from a molecular dynamics (MD) simulation. It is very complicated.

However, any such mechanical system has a potential energy function (its
gradient is called a force field of MD simulations). Treating the solvent as a viscous
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Fig. 6.2 The mathematical description of a chemical reaction of a single molecule. It is an
emergent statistical law of a large number of discrete, stochastic reactions. k1 ∝ e−�G‡/kBT , where
the �G‡ is called activation energy. Similarly, k2 has its own activation barrier height. According
to this description, the ratio k1/k2 becomes independent of the barrier

medium with frictional coefficient η, the dynamics of a protein is over damped
and spends most of the time at the bottom of an “energy well”, as illustrated in
Fig. 6.2. However, since the solvent is not truly continuous, but rather corpuscular,
the collisions with the solvent molecules constitute a random force. Therefore, the
dynamics can be described by a stochastic differential equation like

dY (t) = b(Y )dt + AdB(t), (6.24)

in which b(y) = −η−1∇yU(y), and A = √
2η−1kBT .

With the presence of random forcing term B(t), Y (t) will once a while move
against the deterministic force field and even cross the barrier (a saddle point in a
high-dimensional space). But this is a rare event. This randomly perturbed nonlinear
dynamical systems thus behaves, on a very long time scale, as A GGGBF GGG B, with only
two parameters k1 and k2. The rate constants are related to the height of the barrier.
H. A. Kramers first worked out the mathematical theory for this type of problems in
1940. The idea is not limited to chemical reactions; it is applicable to any nonlinear
dynamics with random perturbations [7].

With one line of mathematics from Kramers, k ∝ e−�G‡/kBT (Fig. 6.2), all
the detailed atomic motions are deemed irrelevant—only two parameters, called
forward and backward rate constants, are useful to a chemist. Furthermore, the
theory shows that the transition from A → B spends most of the time in the
waiting; the actual transition event is instantaneous! Indeed, one can mathematically
prove in the limit of �G‡/kBT → ∞, the waiting time distribution asymptotically
approaches to exponential. From a molecular biological function perspective, the
notion of discrete conformational states and the events of transitions among them
are fundamental.
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6.2.4 Population Growth

We have discussed dy
dt = −λy with positive λ: radioactive decay. And it does not

seem that a similar discussion can be applied to dx
dt = rx with a positive r , the other

half of a population dynamics.
The answer turns out to be simple but profound: one should treat the birth

as an event! The waiting time for the next birth is expected to be exponential.
Furthermore, the rate is expected to be proportional to the number of individuals
currently in the population (Exercise 1.2), say X(t). Therefore, on average the

growth is 1 additional person in
(
rE[X])−1

time:

d

dt
E
[
X(t)

] = rE
[
X(t)

]
. (6.25)

Death is an event, birth is an event, state transition is an event. Most biological
dynamics is about counting the populations, and about biological events that lead to
changing populations. Stochasticity is in the timings of the various events. This is
why J. D. Murray stated in [17] that continuous growth models for a species at time
t have the universal conservation equation:

dY

dt
= births − deaths + migration, (6.26)

where Y (t) is the population density.

6.2.5 Discrete State Continuous Time Markov (Q) Processes

Discrete state continuous time Markov processes are sometime called quasi Marko-
vian, or Q-processes, a terminology first introduced in Arne Jensen’s 1954 book A
Distribution Model, Applicable to Economics and then by David Freedman in his
1971 book Markov Chains. In terms of the probability of state k at time t , pk(t),
one has

pk(t + dt)− pk(t) =
(

N∑
�=1

p�(t)q�k

)
dt, (6.27)

where q�kdt is the transition probability from state � to k within the infinitesimal
time interval dt . Eq. (6.27) is called a master equation. Its fundamental solution is
P(t) = eQt , where the Q matrix has off-diagonal elements qij ≥ 0 and

qii = −
∑
j �=i

qij . (6.28)
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Therefore, Q has each and every row sums to zero. It is often referred to as
infinitesimal transition rate matrix. It is easy to show that in this case, the sum

N∑
k=1

pk(t)

is independent of time t . The total probability is conserved over time. Note several
important differences between Eqs. (6.26) and (6.27): The former is an equation
for population density Y (t) while the latter is an equation for the probability of
population size pk(t) ≡ Pr

{
N(t) = k

}
; the right-hand side of former usually is a

nonlinear function of Y while the latter is necessarily linear. The dimension of the
latter ODE system, however, is much higher than the former.

6.2.5.1 Kolmogorov Forward and Backward Equations

In matrix form, Eq. (6.27) can be expressed as d
dt p = pQ, where p = (p1, · · · , pN)

is a row vector. This equation is called Kolmogorov forward equation. Note strictly
speaking the forward equation is not about the probability distribution (a vector),
but about the transition probability matrix (fundamental solution) P(t) with initial
value P(0) = I. More interestingly,

d

dt
P = PQ =

(
eQt

)
Q = QP. (6.29)

This is a different differential equation:

duk
dt

=
N∑
�=1

qk�u�, (6.30)

which is called Kolmogorov backward equation. If {πk} is a stationary probability
distribution, e.g., the solution to

N∑
�=1

π�q�k = 0, k = 1, 2, · · · , N,

then the solution to the backward equation, uk(t) has the important property of

N∑
k=1

uk(t)πk

being independent of time t , e.g., it is a conserved quantity.
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The solutions to the Kolmogorov forward and backward equations also have
another important property. Let pk(t) and qk(t) be two solutions to a forward
equation with different initial distributions pk(0) and qk(0). Then

d

dt

N∑
k=1

pk(t) ln

(
pk(t)

qk(t)

)
≤ 0. (6.31)

One special case of this, which is widely known, is the choice of qk(t) = πk , if
πk > 0 ∀k.

Similarly, two positive solutions to a Kolmogorov backward equation, uk(t) and
vk(t) with different initial conditions uk(0) and vk(0), respectively, have

d

dt

N∑
k=1

(
πkuk(t)

)
ln

(
uk(t)

vk(t)

)
≤ 0. (6.32)

One special case of this is when choosing vk(t) ≡ 1. The quantity in Eq. (6.32)
is called an H -function; the quantity in Eq. (6.31) is called relative entropy, or
Kullback–Leibler divergence in information theory, or free energy in physical chem-
istry. These results have a deep implication for the second law of thermodynamics.

6.3 Theory of Chemical and Biochemical Reaction Systems

A general representation for complex chemical reaction systems is

νj1X1 + νj2X2 + · · · νjnXn

kj−→ κj1X1 + κj2X2 + · · · κjnXn. (6.33)

1 ≤ j ≤ m. There are n species andm reactions. (νji−κji) are called stoichiometric
coefficients, they relate a species i to the reaction j . In a broader sense, a “reaction”
is just a type of “events”.

6.3.1 Differential Equation and Nonlinear Dynamics

Because of the conservation of matter,

dxi
dt

=
m∑
j=1

(
κji − νji

)
ϕ̂j (x) (6.34)
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where xi is the concentration of chemical species Xi , 1 ≤ i ≤ n, and

ϕ̂j (x) = kjx
νj1
1 x

νj2
2 · · · xνjnn (6.35)

is called the instantaneous flux of the j th reaction. x = (x1, x2, · · · , xn). Eq. (6.34)
is called rate equations, and Eq. (6.35) is called the law of mass action (LMA).

6.3.2 Delbrück-Gillespie Process (DGP)

Let us now consider probabilistically the discrete, individual events of the m

possible reactions in Eq. (6.33), one at a time. The DGP assumes that the j th
reaction occurs following an exponentially distributed waiting time, with rate
parameter

ϕj (X) = kjV

n∏
�=1

(
X�!

(X� − νj�)!V νj�

)
, (6.36)

when the molecular numbers of ith chemical species being Xi . Note ϕj (X) has
the dimension of [time]−1. Clearly, the first reaction that occurs also follows an
exponential time, with the rate being the sum of the rates of the m reactions:

m∑
j=1

ϕj (X). (6.37)

Among the i.i.d. T1, T2, · · · , Tn, all exponentially distributed with respective rate
parameters λ1, λ2, · · · , λn, the probability of the smallest one being Tk is

Pr
{
T ∗ = Tk

} = Pr
{
Tk ≤ min

(
T1, · · · , Tk−1, Tk+1, · · · , Tn

)}

= λk

λ1 + · · · + λn
. (6.38)

More importantly,

Pr
{
T ∗ = Tk, T

∗ ≥ t
}

= Pr
{
T1 ≥ Tk, · · · , Tk−1 ≥ Tk, Tk ≥ t, Tk+1 ≥ Tk, Tn ≥ Tk,

}

=
∫ ∞

t

λke
−λktk

n∏
�=1,� �=k

(∫ ∞

tk

λ�e
−λ�t�dt�

)
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=
∫ ∞

t

λke
−λktk

n∏
�=1,� �=k

(∫ ∞

tk

λ�e
−λ�t�dt�

)

=
(

λk

λ1 + · · · + λn

)
e−(λ1+···+λn)t . (6.39)

This means the following important fact: the minimal time among {Tk} gives two
random variables: T ∗ ≡ mink{Tk} and k∗ ≡ arg mink{Tk}; the minimal time T ∗ and
the identity k∗ are statistically independent.

6.3.3 Integral Representations with Random Time Change

6.3.3.1 Poisson Process

A standard Poisson process Y (t) is an integer-valued, continuous-time Markov
process with distribution

Pr
{
Y (t) = k

}
= tk

k!e
−t . (6.40)

A Poisson process has both a point process representation, T1, T2, · · · , Tn, and a
counting process representation Y (t). The former is a positive real-valued, discrete-
time Markov process with independent increments, and Ti+1 − Ti is exponentially
distributed with rate 1.

6.3.3.2 Random Time Changed Poisson Representation

In terms of Poisson processes, the stochastic trajectory of a DGP representing the
integer number of the molecule Xi at time t ,

Xi(t) = Xi(0)+
m∑
j=1

(
κji − νji

)
Yj

(∫ t

0
ϕj

(
X(t)

)
dt

)
(6.41)

in which ϕj (X) is given in (6.36). We have abused the notation Xi as both the
symbol of a type of molecule, as in Eq. (6.33), and its number in the reaction system.

We see that in the limit of X →∞ and V →∞,

ϕj (X)→ kjV

n∏
�=1

(
X�

V

)νj�

= kjV

n∏
�=1

x
νj�
� = V ϕ̂j (x). (6.42)

ϕj (X) is also called the propensity of the j th reaction.
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6.3.4 Birth-and-Death Process with State-Dependent
Transition Rates

6.3.4.1 One-Dimensional System

Consider the stochastic population kinetics of a single species. Let pn(t) be the
probability of having n individuals in the population at time t . Then pn(t) satisfies
the master equation

dpn(t)

dt
= pn−1un−1 − pn

(
un + wn

)+ pn+1wn+1, (6.43)

in which uk and wk are the birth rate and death rate of the population with exactly k
individuals. The stationary distribution to Eq. (6.43) can be obtained:

pssn

pssn−1
= un−1

wn

. (6.44)

Therefore,

pssn = pss0

n∏
k=1

(
uk−1

wk

)
, (6.45)

in which pss0 is to be determined by normalization.
Eq. (6.43) is the DGP corresponding to the nonlinear population dynamics of a

single species with birth and death rates û(x) and ŵ(x), with x(t) ≡ X(t)
V

,

dx

dt
= û(x)− ŵ(x), (6.46)

where,

û(x) = lim
V→∞

uxV

V
, ŵ(x) = lim

V→∞
wxV

V
. (6.47)

It is easy to verify that the peaks and troughs of stationary probability distribution
pssn correspond nicely with the stable and unstable fixed points of Eq. (6.47). For the
rest of this chapter, this correspondence should be kept in mind.

6.4 Using Mathematics to Articulate a Fundamental
Idea in Biology

I want to use the following example to illustrate how to use mathematics, not only
as a tool for computation and for modeling, but also for representing fundamental
ideas.



164 H. Qian

Consider a population with many subpopulations x = (x1, x2, · · · , xn), all xi ≥
0. In the absence of migration, if we denote per capita growth rate ri = bi −di , then

dxi
dt

= xiri . (6.48)

For simplicity, we shall assume that both per capita birth rate bi and death rate di are
constants. Then the per capita growth rate for the entire population, which is also
the mean per capita growth rate,

r =

n∑
i=1

dxi
dt

n∑
i=1

xi

=

n∑
i=1

xiri

n∑
i=1

xi

, xi ≥ 0. (6.49)

Then,

dr(x)
dt

=
[∑n

i=1 xir
2
i∑n

i=1 xi
−

(∑n
i=1 xiri∑n
i=1 xi

)2
]
. (6.50)

We note that the term inside [· · · ] on the right-hand side is never negative:

∑n
i=1 xir

2
i∑n

i=1 xi
−

(∑n
i=1 xiri∑n
i=1 xi

)2

=
∑n

i=1 xi

(
ri − r

)2

∑n
i=1 xi

≥ 0. (6.51)

In fact, it is exactly the variance of ri among the different subpopulations. Therefore,
it is always positive if there are variations among ri . This mathematical result is a
part of the ideas of both Adam Smith, on economics, and Charles Darwin, on the
natural selection. In fact, the term [· · · ] in Eq. (6.50) has been identified by R. A.
Fisher, the British statistician and evolutionary biologist, as the “growth of fitness
due to natural selection” [6]. Here is a quote from Smith’s magnum opus “An Inquiry
into the Nature and Causes of the Wealth of Nations” (1776):

As every individual, therefore, endeavours as much as he can both to employ his capital
in the support of domestic industry, and so to direct that industry that its produce may be
of the greatest value; every individual necessarily labours to render the annual revenue of
the society as great as he can. He generally, indeed, neither intends to promote the public
interest, nor knows how much he is promoting it. By preferring the support of domestic to
that of foreign industry, he intends only his own security; and by directing that industry in
such a manner as its produce may be of the greatest value, he intends only his own gain, and
he is in this, as in many other eases, led by an invisible hand to promote an end which was
no part of his intention. Nor is it always the worse for the society that it was no part of it. By
pursuing his own interest he frequently promotes that of the society more effectually than
when he really intends to promote it. I have never known much good done by those who
affected to trade for the public good. It is an affectation, indeed, not very common among
merchants, and very few words need be employed in dissuading them from it.
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6.5 Ecological Dynamics and Nonlinear Chemical Reactions:
Two Examples

6.5.1 Predator and Prey System

Let z(t) be the population density of a predator at time t and x(t) be the population
density of a prey at the same time. Then the simplest predator-prey dynamics is [17]

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= αx − βxz,

dz

dt
= −γ z+ δxz.

(6.52)

The detailed analysis of the nonlinear dynamics can be found in many textbooks on
mathematical biology or differential equations [17].

Let us now consider the following chemical reaction system:

A+X
k1−→ 2X, X + Y

k2−→ 2Y, Y
k3−→ B. (6.53)

Then according to the LMA, the concentrations of X and Y , with fixed concentra-
tions of A and B being a and b:

dx

dt
= k1ax − k2xy,

dy

dt
= −k3y + k2xy. (6.54)

Therefore, we see that dynamics of an ecological predator-prey system is remark-
able similar to that of a chemical reaction system with autocatalysis [16]: the first
reaction in (6.53) requires an existing X serving as a catalyst for the reaction
A → X. A species that appears on the both sides of a chemical reaction is called a
catalyst.

6.5.2 A Competition Model

Let us now consider another widely studied ecological dynamics with competi-
tion [17]:

⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1 − a1N

2
1 − b21N1N2,

dN2

dt
= r2N2 − a2N

2
2 − b12N2N1.

(6.55)
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Can one “design” a system of chemical reactions that yields an identical system of
differential equation? Without loss of generality, let us assume that b12 > b21.

A+X
k1−→ 2X, X +X

k2−→ B, A+ Y
k3−→ 2Y,

(6.56)
Y + Y

k4−→ B, X + Y
k5−→ B, X + Y

k6−→ X + B,

which, according to the LMA,

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= (k1a)x − k2x

2 − k5xy,

dy

dt
= (k3a)y − k4y

2 − (k5 + k6)xy.

(6.57)

If we identify x, y with N1, N2, and

(k1a)↔ r1, k2 ↔ a1, k5 ↔ b21, (k3a)↔ r2, k4 ↔ a2, (k5 + k6)↔ b12,

then (6.57) is the same as (6.55). Note that the last reaction, X + Y → X + B, is
introduced to represent b12 > b21.

A close inspection of the system of chemical reactions in (6.56) indicates that the
overall reaction is 2A → B. Since each and every reaction is irreversible, there can
be no chemical equilibrium. Rather, the system eventually reaches a nonequilibrium
steady state in which there is a continuous, overall chemical flux converting 2A
to B.

6.5.3 Logistic Model and Keizer’s Paradox

We now turn to studying some issues more in-depth. Let us now consider a much
simpler chemical reaction system,

A+X
k1−→ 2X, X +X

k2−→ B. (6.58)

It is easy to see that the ODE according to the LMA,

dx

dt
= r

(
1 − x

K

)
x, r = k1a, K = r

k2
, (6.59)

is the celebrated logistic equation in population dynamics. In the ecological context,
r is known as the per capita growth rate in the absence of intra-species competition;
and K is known as carrying capacity.
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The DGP stochastic model has a chemical master equation (CME) for the
probability of n X molecules in a reaction volume of V :

dpn(t)

dt
= un−1pn−1 −

(
un + wn

)
pn + wn+1pn+1, (6.60a)

in which the state-dependent birth and death rates are

un = rn, wn = k2n(n− 1)

V
. (6.60b)

Then, according to Eq. (6.45),

p
eq

0 = 1 and p
eq
n = 0, n ≥ 1, (6.61)

since u0 = 0! In other words, according to this theory, the stationary probability
distribution is “population extinction with probability 1”. But the ODE in (6.59)
says that the stable steady state is x = K , with x = 0 being a unstable steady state
which is not “relevant”.

This seeming disagreement between the deterministic ODE in (6.59) and stochas-
tic dynamics described by (6.60) is known as Keizer’s paradox. We refer the readers
to [33] for the resolution of the paradox.

6.6 Chemical Thermodynamics and Entropy Production

6.6.1 Classical Chemical Thermodynamics

A single reversible chemical reaction

ν1X1 + ν2X2 + · · · νnXn

k+
GGGBF GGG

k−
κ1X1 + κ2X2 + · · · κnXn (6.62)

is said to be in a chemical equilibrium when

ϕ̂+k (xeq)
ϕ̂−k (xeq)

= 1 ⇔
(
x
ν1
1 x

ν2
2 · · · xνnn

x
κ1
1 x

κ2
2 · · · xκnn

)eq

= k−

k+
. (6.63)

(k−/k+) is known as the equilibrium constant of the reaction. The ratio on the lhs
is a constant independent of the total amount participating species.

Chemical thermodynamics introduces the notions of chemical energy and chem-
ical potential: for ideal solutions chemical species i has a chemical potential

μi = μo
i + kBT ln xi. (6.64)
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in which μo
i is determined by the atomic structure of a molecule, e.g., internal

energy. kB is Boltzmann’s constant, and T is temperature in Kelvin. Then the Gibbs
free energy of the lhs of (6.62) is the sum of the chemical potential

G =
n∑
i=1

νi

(
μo
i + kBT ln xi

)
. (6.65)

When the reaction reaches its equilibrium, one has the total chemical potentials
being equal on both sides:

n∑
i=1

(
νi − κi

)(
μo
i + kBT ln xeqi

)
= 0. (6.66)

This implies

n∏
i=1

(
x
eq
i

)νi−κi = e
− (νi−κi )μoi

kBT = k−

k+
, (6.67)

or

�Go =
(

n∑
i=1

κiμ
o
i

)
−

(
n∑
i=1

νiμ
o
i

)
= kBT ln

(
k−

k+

)
. (6.68)

This is a very well-known formula that can be found in every college chemistry
textbook.

6.6.2 Mass-Action Kinetics

Following Eqs. (6.34) and (6.35), we have

dxi
dt

=
m∑
j=1

(
κji − νji

)(
ϕ̂+j − ϕ̂−j

)

=
m∑
j=1

(
κji − νji

)
ϕ̂−j

{
exp

[
n∑

�=1

(
κj� − νj�

)
ln

(
x�

x
eq
�

)]
− 1

}

=
m∑
j=1

(
κji − νji

)
ϕ̂+j

{
1 − exp

[
n∑

�=1

(
νji − κji

)
ln

(
x�

x
eq
�

)]}
. (6.69)
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Equation (6.69) shows that when x� = x
eq
� , the term [· · · ] = 0 and the term {· · · } =

0 as well, for every j . Therefore, the kinetic equation in (6.69) is consistent with the
chemical equilibrium according to thermodynamics, e.g., Eqs. (6.66) and (6.67).
Interestingly, recent work has shown that both macroscopic kinetics as in (6.69) and
equilibrium thermodynamics in Sect. 6.6.1 are consequences of a stochastic kinetic
description of a reaction system [10].

6.6.3 Stochastic Chemical Kinetics

We now apply the above formalism to a nonlinear chemical reaction in a small
volume V with small number of molecules, nA, nB , and nC numbers ofA,B, andC:

A+ B
k+
GGGBF GGG

k−
C. (6.70)

We note that the nA + nC and nB + nC do not change in the reaction. Hence we
can denote nA + nC = noA and nB + nC = noB as the total amount of A and B,
including those in C, at the initial time. Now if we use nC as the non-negative
integer-valued random variable to describe the stochastic chemical kinetics, this
simple nonlinear chemical reaction, according to DGP, is a one-dimensional birth-
and-death process, with state-dependent birth and death rates un = k+nAnB and
wn = k−nC . Then, according to Eq. (6.45), we have an equilibrium distribution
peq(m) = Pr

{
n
eq
C = m

}
:

peq(m+ 1)

peq(m)
= k+(noA −m)(noB −m)

k−(m+ 1)V
, (6.71)

in which noA = nA(0)+ nC(0) and noB = nB(0)+ nC(0). Therefore,

peq(m) = !−1 noA!noB !
m!(noA −m)!(noB −m)!

(
k+

k−V

)m

, (6.72)

where ! is a normalization factor

!(λ) =
min(noA,n

o
B)∑

m=0

noA! noB ! λm
m!(noA −m)!(noB −m)! , λ =

(
k+

k−V

)
. (6.73)

More importantly, by noting nA + nB + nC = n0
A + n0

B − nC ,

− lnpeq(nC)

= − ln

[
λnC

nC !(noA − nC)!(noB − nC)!
]
+ const.
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= nA ln
(nA
V

)
− nA + nB ln

(nB
V

)
− nB + nC ln

(nC
V

)
− nC − nC ln

(
k+

k−

)

= nA ln xA + nB ln xB + nC ln xC + nC

(μo
C − μo

A − μ0
B

kBT

)
− (nA + nB + nC)

=
∑

σ=A,B,C
nσ

( μo
σ

kBT
+ ln xσ − 1

)
. (6.74)

This agrees with Eq. (6.65).
In classical chemical kinetics, for a given x(t), the Ideal function of the chemical

reaction system is

Geq [x(t)] =
n∑

σ=1

xσ

(
μo
σ + kBT ln xσ − kBT

)
. (6.75)

Then, following Eq. (6.34), assuming each and every reaction is reversible with rate
constants k+j and k−j ,

d

dt
Geq [x(t)] =

n∑
i=1

dxi
dt

(
μo
i + kBT ln xi

)

= kBT

n∑
i=1

m∑
j=1

ln

(
xi

x
eq
i

)(
κji − νji

)(
k+j

n∏
�=1

x
νj�
� − k−j

n∏
�=1

x
κj�
�

)

= −kBT
m∑
j=1

{
n∑
i=1

ln

(
xi

x
eq
i

)νji−κji}(
ϕ̂+j − ϕ̂−j

)

= −kBT
m∑
j=1

(
ϕ̂+j − ϕ̂−j

)
ln

(
ϕ̂+j
ϕ̂−j

)
(6.76)

≤ 0. (6.77)

The minus-log stationary probability distribution is a Lyapunov function for the
dynamics. The rhs of Eq. (6.76) is known as entropy production rate.

6.6.4 Nonequilibrium Steady-State and Driven Chemical
Systems

If a chemical reaction system reaches its chemical equilibrium, then each and
every reaction in the system is in detailed balance with zero net flux. This puts
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a very strong condition on the dynamics. When a chemical reaction system has
a sustained source and sink with different chemical potentials, it cannot reach a
chemical equilibrium. Rather, it reaches a nonequilibrium steady state (NESS).

Let us consider the following two examples, the Schlögl model for bistability
[34] and Schnakenberg model for nonlinear oscillation [17, 25, 35].

6.6.4.1 Schlögl Model

A+ 2X
k+1
GGGBF GGG

k−1
3X, X

k+2
GGGBF GGG

k−2
B, (6.78)

in which the concentrations (or chemical potentials) of A and B are sustained by
an external agent. This reaction is known as Schlögl model, whose dynamics can be
described by the differential equation

dx

dt
= k+1 ax

2 − k−1 x
3 − k+2 x + k−2 b = f (x), (6.79)

which is a third-order polynomial. It can exhibit bistability and saddle-node
bifurcation phenomenon. All of them only occur under driven condition, when
μA �= μB . Note in the chemical equilibrium:μA = μo

A+kBT ln a = μo
B+kBT ln b,

and

(
b

a

)eq

= k+1 k
+
2

k−1 k
−
2

. (6.80)

Differential equation (6.79), with its parameters ak+1 k
+
2 = bk−1 k

−
2 , has the right-

hand-side

f (x) = k+1 ax
2 − k−1 x

3 − k+2 x + k−2 b

= k+1 ax
2 − k−1 x

3 − k+2 x +
ak+1 k

+
2

k−1

=
(
x2 + k+2

k−1

)(
ak+1 − k−1 x

)
. (6.81)

Therefore, the f (x) has a unique fixed point at x = ak+1
k−1

, the chemical equilibrium.

In general, system (6.78) can exhibit chemical bistability; but this is only possible
when A and B have a sufficiently large chemical potential difference, e.g., a
chemostat.

More interestingly, when a and b satisfying (6.80), the DGP of the number of X,
nX(t), is again a one-dimensional birth-and-death process, with
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un = k+1 an(n− 1)

V
+ k−2 bV = k+1 a

V

(
n(n− 1)+ k+2 V 2

k−1

)
, (6.82)

wn+1 = k−1 (n+ 1)n(n− 1)

V 2
+ k+2 (n+ 1)

= k−1 (n+ 1)

V 2

(
n(n− 1)+ k+2 V 2

k−1

)
.

Therefore, the stationary distribution, according to Eq. (6.45),

p
eq
n = C

n−1∏
�=0

k+1 a/V
k−1 (�+ 1)/V 2

= λn

n! e
−λ, λ =

(
k+1 aV
k−1

)
. (6.83)

This is a Poisson distribution, with expected value being E
[
n
eq
X

] = λ. Therefore,
the expected concentration is (k+1 a/k

−
1 ).

6.6.4.2 Schnakenberg Model

Similarly,

A
k+1
GGGBF GGG

k−1
X, B

k2−→ Y, 2X + Y
k3−→ 3X, (6.84)

is known as Schnakenberg model, whose dynamics follow

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= k+1 a − k−1 x − k3x

2y = f (x, y),

dz

dt
= k2b − k3x

2y = g(x, y).

(6.85)

This system can exhibit limit cycle oscillation and Hopf bifurcation. In terms of
the DGP, it exhibits a rotational diffusion. We refer the readers to [25, 35] for an
in-depth analysis of the model.
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6.7 The Law of Large Numbers—Kurtz’s Theorem

6.7.1 Diffusion Approximation and Kramers–Moyal
Expansion

Starting with the master equation in (6.43), let us consider a partial differential
equation (PDE) for a continuous density function f (x, t)dx = pVx(t) where
x = n

V
, dx = 1

V
, then

∂f (x, t)

∂t
= V

dpVx(t)

dt

= 1

dx

(
f (x − dx, t)û(x − dx)− f (x, t)

(
û(x)+ ŵ(x)

)

+f (x + dx, t)ŵ(x + dx)
)

= ∂

∂x

(
f (x + dx/2, t)ŵ(x + dx/2)− f (x − dx/2, t)û(x − dx/2)

)

≈ ∂

∂x

{
∂

∂x

(
ŵ(x)+ û(x)

2V

)
f (x, t)−

(
û(x)− ŵ(x)

)
f (x, t)

}
+ · · ·

(6.86)

in which

V −1uV x = û(x), V −1wVx = ŵ(x), (6.87)

as V →∞.

6.7.2 Nonlinear Differential Equation, Law of Mass Action

Therefore, in the limit of V →∞,

∂f (x, t)

∂t
= − ∂

∂x

(
û(x)− ŵ(x)

)
f (x, t), (6.88)

which corresponds to the ordinary differential equation

dx

dt
= û(x)− ŵ(x), (6.89)

that defines the characteristic lines of (6.88).
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6.7.3 Central Limit Theorem, a Time-Inhomogeneous
Gaussian Process

Now consider the process

Y (t) = X(t)− V x(t)√
V

, (6.90)

which characterizes the “deviation” of X(t)
V

from x(t). In the limit of V → ∞, its
pdf fY (y, t) satisfies a linear PDE with time-varying coefficients

∂fY (y, t)

∂t
= ∂

∂y

{
∂

∂y

(
ŵ(x(t))+ û(x(t))

2

)
fY (y, t)

−
(
û′(x(t))− ŵ′(x(t))

)
yfY (y, t)

}
. (6.91)

Therefore, Y (t) is a continuous time, real-valued, time-inhomogeneous Markov
process. Note the PDE (6.91) is very different from PDE (6.86). They are known in
physics literature as the Kramers–Moyal expansion and van Kampen’s�-expansion,
respectively [32]. The former is not related to the central limit theorem.

6.7.4 Diffusion’s Dilemma

Truncating the Eq. (6.86) after the second order, it has a stationary distribution

− ln f̂ st
Y (y) = 2V

∫ (
ŵ(x)− û(x)

û(x)+ ŵ(x)

)
dx. (6.92)

On the other hand, the stationary solution given in (6.45),

pssn = pss0

n∏
k=1

(
uk−1

wk

)
,

in the limit of V → ∞ with V −1uV x = û(x), V −1wVx = ŵ(x), and V −1 = dx,
yields

− lnpssV x = −
n∑

k=1

ln

(
uk−1

wk

)
+ C ↔ − ln f ss(x) = V

∫
ln

(
ŵ(x)

û(x)

)
dx. (6.93)
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Is it possible Eqs. (6.92) and (6.93) are actually the same? We notice that both have
identical local extrema:

d

dx

(
− ln f st

Y (x)
)
= 2V

(
ŵ(x)− û(x)

ŵ(x)+ û(x)

)
= 0 =⇒ ŵ(x) = û(x). (6.94)

In fact, the curvature at a local extremum is identical:

[
d2

dx2

(
− ln f st

Y (x)
)]

û=ŵ
= 2V

(
ŵ′(x)− û′(x)
ŵ(x)+ û(x)

)
= V

(
ŵ′(x)− û′(x)

û(x)

)

=
[

d2

dx2

(
− ln f sss(x)

)]

û=ŵ
. (6.95)

However, it can be shown, via an example, that the global minimum can be different
[20, 37]! This implies that Kramers–Moyal expansion is not a valid approximation
for stochastic kinetics with multiple stability. Continuous time, real-valued Markov
processes are also called diffusion processes. The above result illustrates that there
is no globally valid diffusion approximation for stochastic population kinetics in
general.

6.8 The Logic of the Mechanical Theory of Heat
and Nonequilibrium Thermodynamics

In order to present some rather recent results in Sect. 6.9 and put those results
into a proper context, let us first revisit the celebrated work of L. Boltzmann
on the mechanical theory of heat [8], and the generally accepted macroscopic
nonequilibrium thermodynamics presented in the classic treatise of de Groot and
Mazur [5]. The readers will recognize the logical threads of both theories in
Sect. 6.9, as well as the finding of a missing link between the above two theories.

Boltzmann’s theory is based on the general Hamiltonian dynamics and starts with
a definition of an entropy function S = −kB ln�(E). Section 6.9 will be based on
the general Markov dynamics and starts with a definition of an entropy function
according to Shannon [29]. Note that Boltzmann’s entropy is a static quantity, the
entropy in Sect. 6.9, Eq. (6.110) below, is a function of time.

De Groot and Mazur’s theory is based on continuity equations for mass and
energy, relating time changes of the density of these quantities to transport processes
in three-dimensional space, and identifies entropy productions as “transport flux ×
driving force”, à la Onsager [18]. Section 6.9 is based on a continuity equation for
the probability in the state space, relating time change of probability to its transport,
and also identifies the entropy production as “probability flux × chemical potential
difference”.
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There is a missing link between Boltzmann’s theory and the nonequilibrium
thermodynamics. In addition to the continuity equations, the de Groot-Mazur
approach also requires the entropy balance equation [5],

dS

dt
= ep + JS, (6.96)

as one of its fundamental premises, where ep is the entropy production rate and
JS is the rate of entropy supplied to a system by its surroundings. The second law
of thermodynamics, e.g., Clausius inequality, dictates that ep ≥ 0. Unfortunately,
Boltzmann’s mechanical theory of heat is not able to derive an equation like (6.96)
from a Hamiltonian dynamics without resorting to additional assumptions based
on a stosszahlansatz.1 As one will see from Sect. 6.9, however, Markov dynamics
is able to provide nicely an equation like (6.96). A stochastic dynamic approach
to nonequilibrium thermodynamics is able to fill this logic gap, as was first
demonstrated by Bergmann and Lebowitz in 1955 [2].

6.8.1 Boltzmann’s Mechanical Theory of Heat

The entire world, as long as one is interested in phenomena that are at not too small a
scale (e.g., quantum) and not too close to the speed of light (e.g., relativity), follows
the Newtonian mechanics which can be represented mathematically in terms of a
Hamiltonian system

dx

dt
= ∂H(x, y)

∂y
,

dy

dt
= −∂H(x, y)

∂x
. (6.97)

One of the most important result concerning the Eq. (6.97) is the dynamics
invariance of H(x(t), y(t)):

d

dt
H

(
x(t), y(t)

) = ∂H

∂x

(
dx

dt

)
+ ∂H

∂y

(
dy

dt

)
= 0. (6.98)

1In the phase space, the Hamiltonian system has a Liouville equation

∂u(x, y, t)

∂t
= −

(
∂H

∂y

)
∂u

∂x
+

(
∂H

∂x

)
∂u

∂y
.

It is easy to show that

d

dt

∫∫
u(x, y, t) ln u(x, y, t)dxdy = 0.

Therefore, the information-entropy like quantity is time invariant under a deterministic diffeomor-
phism [36].
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Now, let us assume that the Hamiltonian function contains also several parameters,
H(x, y, V,N) where V is the box size of a mechanical system and N is the number
of particles in the box, then the next question which an applied mathematician might
ask, but interestingly which has not been extensively studied, is this: “What is the
long-time behavior of the system as a function of V , N , and other parameters?”

A Hamiltonian system, however, is fundamentally different from the earlier
systems we have studied, which have attractive fixed point(s). In fact, it is clear
that the long-time behavior is a function of the initial condition H

(
x(0), y(0)

) = E.
Helmholtz and Boltzmann (1884) realized that a “thermodynamic equilibrium state”
of a mechanical system is not a single point in the phase space, but rather, it is
an entire invariant manifold defined by the level set H(x, y, V,N) = E. It was
Boltzmann’s ingenuity to realize that one can define

S
(
E,V,N) = kB ln

{
phase volume contained by the surface H(x, y) = E

}

= kB ln
∫
H(x,y)≤E

dxdy. (6.99)

Since S(E) is monotonic, one has an implicit function E = E(S, V ). Then

dE =
(
∂E

∂S

)
V,N

dS +
(
∂E

∂V

)
S,N

dV +
(
∂E

∂N

)
S,V

dN

= T dS − pdV + μdN. (6.100)

What is the significance of Eq. (6.100)? First, it is completely based on the fact that
a Hamiltonian system has a conservation of mechanical energy H . Furthermore,
however, this conservation of energy is valid not only for a single Hamiltonian
system on a single invariant torus, but also the Hamiltonian system with multiple
level sets, and even among an entire class of Hamiltonian systems with varying V

and N , and other parameters. It becomes a universally valid equation, known as
the First Law of Thermodynamics. Note, according to this theory, thermodynamic
quantities like T , p, μ are mathematically defined via Eq. (6.100). They are
emergent phenomena.

T and p have mechanical interpretations, though not perfect, as mean kinetic
energy and mean momentum transfer to a wall. μ, however, has no interpretation
in terms of classical motion; rather, it has an interpretation in terms of Brownian
motion:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2 = −1

η

∂(F̂ ρ)

∂x
, (6.101)

where

F̂ = −∂μ

∂x
, and μ = Dη ln ρ(x, t) = kBT ln ρ(x, t). (6.102)

F̂ is known as entropic force in chemistry, and μ is known as chemical potential.
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6.8.2 Classical Macroscopic Nonequilibrium Thermodynamics

Equation (6.100) is valid only when the entire torus H(x, y) = E is visited in the
long time limit; this is known as ergodicity. In other words, with time t in mind, the
equation is valid only when the dS and dV are very slowly changing. What happens
if the changes are not slow? Then, the Second Law of Thermodynamics states that

T dS ≥d̄Q = dE −d̄W, (6.103)

in which d̄Q is the amount of heat that flows into the system, and d̄W is the
amount of work done to the system. Both are path dependent, as indicated by the d̄.
Eq. (6.103) is known as the Clausius inequality. The notion of entropy production is
introduced to account for the inequality:

dS

dt
= ep − hd

T
, ep ≥ 0, (6.104)

in which ep is called entropy production, which is never negative. hd = −d̄Q/dt is
called heat dissipation. In general, neither ep nor hd is a time derivative. Eq. (6.104)
is known as an entropy balance equation.

6.8.2.1 Local Equilibrium Assumption and Classical Derivation of
Entropy Production

If one assumes that Eq. (6.100) is valid locally in space and time, then one has

∂s(x, t)

∂t
= 1

T

∂u(x, t)

∂t
−

n∑
i=1

μi

∂ci(x, t)

∂t
, (6.105)

in which we have assumed imcompressibility dV = 0. s(x, t), u(x, t), and ci(x, t)

are entropy density, energy density, and concentration of the ith species.
Realizing that both energy and particles follow continuity equation in space-time,

one has

∂u(x, t)

∂t
= −∂Ju(x, t)

∂x
,
∂ci(x, t)

∂t
= −∂Ji(x, t)

∂x
. (6.106)

Then, substituting these into Eq. (6.105), and use a certain amount of physical
intuition, one arrives at

∂s(x, t)

∂t
= ep(x, t)+ JS(x, t) (6.107a)
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where entropy production rate per unit volume

ep(x, t) = Ju
∂

∂x

(
1

T

)
−

n∑
i=1

Ji
∂

∂x

(μi

T

)
−

m∑
j=1

�μj ϕ̂j

T
, (6.107b)

and entropy flux

JS(x, t) = ∂

∂x

(
Ju

T
−

n∑
i=1

μjJj

T

)
. (6.107c)

According to Onsager’s theory [18], each term in the entropy production ep is a

transport flux × driving force (6.108)

which should be non-negative. The theory of nonequilibrium thermodynamics
concerns with transport processes of various kinds: diffusion, heat, charge, chem-
ical, etc. More information on the various transport fluxes can only be obtained,
phenomenologically, from engineering.

6.9 Mathematicothermodynamics of Markov Dynamics

We now consider discrete-state Markov system with stochastic dynamics in terms
of “continuity equation for probability in state space”, e.g., Chapman–Kolmogorov
equation, or master equation

dpi(t)

dt
=

N∑
j=1

(
pjqji − piqij

)
, (6.109)

in which qij are the infinitesimal transition probability rate given in (6.27).
We shall now follow the same logic steps of Boltzmann, illustrated in Sect. 6.8.1,

to develop a “thermodynamic theory” based on the general dynamics by introducing
the notion of entropy. Eq. (6.109) replaces the Hamiltonian system (6.97), and in
the place of Boltzmann’s celebrated S = kB ln�(E) will be the Gibbs-Shannon
entropy:

S(t) = −
N∑
i=1

pi(t) lnpi(t). (6.110)

Then, one has

dS

dt
= ep + JS, (6.111a)
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where

ep(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pi(t)qij

pj (t)qji

)
, (6.111b)

JS(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
qji

qij

)
. (6.111c)

It is immediately obvious that ep ≥ 0 since for every pair of i, j in Eq. (6.111b), the
term has the form of (a− b) ln(a/b) ≥ 0. We also note the resemblance of (6.111b)
to Eq. (6.76).

Therefore, we have derived an entropy balance equation based on Markov
dynamics, without the assumption of local equilibrium. Equations (6.111b)
and (6.111c) further give explicit expressions, in terms of the {pi(t)}, for the
entropy flux JS the non-negative entropy production ep. As we shall show below,
there is a complete nonequilibrium thermodynamics on the mesoscopic scale, in
state space. This theory is effectively an isothermal theory with the “temperature”
being 1.

6.9.1 Non-Decreasing Entropy in Systems with Uniform
Stationary Distribution

If the master Eq. (6.109) has a stationary distribution pssn = 1 ∀n, then

N∑
j=1

(
qji − qij

)
=

N∑
j=1

qji = 0, ∀i.

In this case,

dS

dt
= −

N∑
i=1

(
dpi(t)

dt

)
lnpi = −

N∑
i,j=1

(
pjqji − piqij

)
lnpi

=
N∑

i,j=1

piqij ln

(
pi

pj

)
≥

N∑
i,j=1

piqij

(
pj

pi
− 1

)

=
N∑
j=1

pj

(
N∑
i=1

qij

)
= 0. (6.112)
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We therefore have a “theorem” stating that if the stationary probability distribution
is uniform, then the entropy S is non-decreasing function of time.

6.9.2 Q-Processes with Detailed Balance

If a Q process has a stationary distribution pssi qij = pssj qji , known as detailed
balance, then

JS(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
qji

qij

)

= 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pssi

pssj

)

=
N∑

i,j=1

(
pj (t)qji − pi(t)qij

)
lnpssj = −

N∑
j=1

dpj (t)

dt
lnpssj

= d

dt

⎛
⎝ N∑
j=1

pj (t)
(
− lnpssj

)⎞⎠ = 1

T

dE

dt
, (6.113)

in which

E =
N∑
j=1

pj (t)Ej , (6.114)

should be identified as the mean energy, with Ej = −T lnpssj as the “energy” of
the state i according to Boltzmann’s law. Then, Eq. (6.111a) becomes

d

dt

(
E

T
− S

)
= −ep ≤ 0. (6.115)

F = E − T S is known as the “free energy” of a thermodynamic system. It is
expected to monotonically decreases with time in an isothermal system approaching
to equilibrium. In an equilibrium steady state, the free energy reaches its minimum.
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6.9.3 Monotonicity of F Change in General Q-Processes

Encouraged by the above results, let us consider the Kullback–Leibler divergence,
also known as relative entropy:

F(t) =
N∑
i=1

pi(t)
(
− lnpssi + lnpi(t)

)
=

N∑
i=1

pi(t) ln

(
pi(t)

pssi

)
≥ 0. (6.116)

One can actually show that dF/dt ≤ 0 for general Q-process without the detailed
balance:

dF(t)

dt
=

N∑
i=1

(
dpi(t)

dt

)
ln

(
pi(t)

pssi

)
=

N∑
i,j=1

(
pjqji − piqij

)
ln

(
pi(t)

pssi

)

=
N∑

i,j=1

pjqji ln

(
pi(t)p

ss
j

pssi pj (t)

)
≤

N∑
i,j=1

pjqji

(
pi(t)p

ss
j

pssi pj (t)
− 1

)

=
N∑
i=1

pi

pssi

⎛
⎝ N∑
j=1

(
pssj qji − pssi qij

)⎞⎠ = 0. (6.117)

6.9.4 F Balance Equation of Markov Dynamics

More interestingly, we have a new, balance equation for the F(t):

dF(t)

dt
= Ein(t)− ep(t), (6.118a)

where ep(t) ≥ 0 is given in (6.111b), and

Ein(t) = 1

2

N∑
i,j=1

(
pi(t)qij − pj (t)qji

)
ln

(
pssi qij

pssj qji

)
≥ 0. (6.118b)

See [9] for the proof of this inequality. BothEin(t) and ep(t) are non-negative which
means that Eq. (6.118a) can be interpreted as “the F(t) has a source and a sink”, its
change equals to an input Ein(t), a source term, and dissipation ep(t), a sink term.
There is a mesoscopic conservation of the quantity F . Equation (6.118a) is more
meaningful than the Eq. (6.111a), in which JS does not have a definitive sign.

The balance Eq. (6.118a) and the monotonicity of dF/dt ≤ 0 have remarkable
resemblance to the first and the second laws of thermodynamics. But they are
really a part of a mathematical structure of any stochastic Markov dynamics.
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To emphasize this mathematical nature, we call all the results in this section,
collectively, mathematicothermodynamics [9, 10, 21, 24].

6.9.5 Driven System and Cycle Decomposition

The entropy production given in (6.111b) can be written as

ep =
N∑

all edge ij

(
ϕij − ϕji

)
ln

(
ϕij

ϕji

)
, (6.119)

where ϕij = pi(t)qij is the one-way probability flux from state i to j . It can be
proven that, in a stationary Q-process, the above expression can be expressed also
as [14]

ep =
N∑

all cycles �

(
ϕ+� − ϕ−�

)
ln

(
ϕ+�
ϕ−�

)
, (6.120)

in which ϕ±� is the number of � cycle completed in a unit time, in the forward and
backward direction. Most importantly, for cycle � = (i0, i1, · · · , in, i0)

ϕ+�
ϕ−�

= qi0i1qi1i2 · · · qin−1inqini0

qi1i0qi2i1 · · · qinin−1qi0in
, (6.121)

which is independent of the probabilities! Therefore, ln
(
ϕ+� /ϕ

−
�

)
can and should be

understood as the entropy production per cycle, and the term
(
ϕ+� − ϕ−�

)
is simply

a kinematic term that counts the number of cycle completed along a trajectory. All
the nonequilibrium thermodynamics is contained in the (6.121); it is about kinetic
cycles [27]. If a Markov process is detail balanced, then its entropy production is
zero on each and every kinetic cycle.

It is well known since the work of A. N. Kolmogorov that the quantity in (6.121)
equals unity for each and every cycle if and only if the Markov process is detailed
balanced. Therefore, the mathematical notion of detailed balance provides a fitting
description of a non-driven kinetic system whose steady state is an equilibrium. For
a driven kinetic system, at least one of the cycles in the state space � has unbalanced
circulation: ϕ+� �= ϕ−� .
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6.9.6 Macroscopic Thermodynamics in the Kurtz Limit

For a DGP with N species and M reactions, the F function introduced in Sect. 6.9.4
is a functional of the probability distribution pV (n, t) which is itself a function of
the reaction system’s volume V . Then one naturally asks what its macroscopic limit
is as V →∞ as in the Kurtz limit? It can be shown that [10]

lim
V→∞

F
[
pV (n, t)

]
V

= lim
V→∞

1

V

∑
n

pV (n, t) ln

[
pV (n, t)
pssV (n)

]

= − lim
V→∞

1

V

∑
n

pV (n, t) lnpssV (n)

= Gss
[
x(t)

]
, (6.122)

in which n = (n1, n2, · · · , nN), nk is the number of molecules of the kth species,
x = (x1, · · · , xN) is the corresponding number density x = n

V
. The Kurtz theorem

in Sect. 6.7 states that the stochastic trajectory of a DGP, nV (t),

lim
V→∞

nV (t)
V

= x(t), (6.123)

where x(t) is the solution to the deterministic, nonlinear rate equation (e.g.,
Eq. (6.89)). Most interestingly, according to the large deviation principle from the
theory of probability, when the steady state probability pssV (n) converges to a Dirac-
δ function, its tail probability has an asymptotic expression

− lim
V→∞

lnpssV (n)

V
= − lim

V→∞
lnpssV (V x)

V
= Gss(x). (6.124)

This steady state large deviation rate function Gss(x) can be identified as a
generalized Gibbs function for nonequilibrium chemical reaction systems. It can
be shown that

d

dt
Gss

[
x(t)

] =
(

dx(t)
dt

)
· ∇xG

ss(x) ≤ 0. (6.125)

This is a generalization of the inequality in Eq. (6.77). See [10] for the proof.

6.10 Summary and Conclusion

This chapter presents a new modeling paradigm for biological systems and pro-
cesses that consist of multiple populations of individuals, each with an infinite
many internal degrees of freedom. The individuals are grouped into subpopulations
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and mathematically represented by their statistical behaviors in terms of birth,
death, migration, and state switching. We show that the population kinetics in
terms of nonlinear ordinary differential equations (ODEs) widely employed in
mathematical biology is fundamentally a stochastic kinetic theory. This stochastic
population kinetic representation of biological reality can be introduced quite
rigorously, thus it provides one with confidence in the conclusions drawn from
mathematical analysis. We called this formalism Delbrück-Gillespie process. In
the large population limit, T. G. Kurtz’s theorem, a law of large numbers, yields
a system of nonlinear rate equations that is consistent with the traditional ODEs.
In Sect. 6.9, very recent results on mesoscopic nonequilibrium thermodynamics
and its corresponding macroscopic nonequilibrium thermodynamics are presented.
Together the three parts, (1) stochastic kinetics in terms of DGP, (2) deterministic
nonlinear dynamics in terms of ODEs, and (3) the mathematicothermodynamics,
provide a comprehensive mathematical theory for a wide range of biological
systems and processes from biochemistry to ecology.

6.11 Exercises: Simple and Challenging

6.11.1 Simple Exercises

1. Compute the expected value and the variance of an exponentially distributed
random variable X with rate λ.

2. Let X1, · · · , Xn be n i.i.d. exponential random variables with rate λ. Let X∗ =
min{X1, X2, · · · , Xn}. Show that fT ∗(t) = nλe−nλt .

3. If a set of n i.i.d. random times all with distribution fT (t), fT (0) = 0 but f ′
T (0) �=

0, what is the distribution for T ∗ = min{T1, T2, · · · , Tn} in the limit of n→∞?

6.11.2 More Challenging Exercises

4. Consider a population consisting of identical and independent individual organ-
isms, each with an exponentially distributed time for giving “birth”, with rate λ,
and going “death”, with rate μ.

(i) Now when the population has exactly n individuals, what is the probability
distribution for the waiting time to the next birth? What is the probability
distribution for the waiting time to the next death? What is the probability
distribution for the waiting time to the next birth or death event?
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(ii) Let pn(t) be the probability of having exactly n individuals in the population
at time t :

∞∑
n=0

pn(t) = 1.

What system of differential equations should pn(t) satisfy?
(iii) The mean population at time t is defined as

〈
n
〉
(t) =

∞∑
n=0

npn(t).

Based on the system of differential equations you obtained in (ii), show that

d

dt

〈
n
〉 = (

λ− μ
)〈
n
〉
.

5. The 3-state Markov system,

A
k1

GGGBF GGG

k−1

B
k2

GGGBF GGG

k−2

C
k3

GGGBF GGG

k−3

A, (6.126)

has been widely used in biochemistry to model the conformational changes of a
single protein molecule undergoing through its three different states A, B, and
C. For example, A is non-active, B is partially active, and C is fully active.

(a) The probabilities for the states, p = (pA, pB, pC), satisfies a differential
equation

d

dt
p(t) = p(t)Q,

where Q is a 3×3 matrix. Write the Q out in terms of the k’s. Show that the
sum of each and every row is zero. Discuss in probabilistic terms, what is the
meaning of this result?

(b) Compute the steady state probabilities pssA , pssB , and pssC , and show that, in
the steady state, the net (probabilistic) flux from state A to B,

J ssA→B = k1p
ss
A − k−1p

ss
B ,

is the same as the net flux from state B → state C, and also the net flux from
C → A. Since they are all the same, it is called the steady state flux J ss of
the biochemical reaction cycle in (6.126).

(c) What is the condition, in terms of all the k’s, for J ss = 0?
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6. Consider a single enzyme E in the sea of substrate molecule S. The Michaelis–
Menten kinetics is

E + S
k1
GGGBF GGG

k−1

ES
k2−→ E∗ + P. (6.127)

Because there is only a single enzyme molecule working, the concentration of S
can be assumed as always constant, at the value cS .

Write the differential equations for the probability of the enzyme being in
state E, ES, and E∗: pE(t), pES(t), and pE∗(t).

Given initial condition pE(0) = 1, pES(0) = 0, and pE∗(0) = 0, try to solve
pE∗(t).

It is clear that the time for the enzyme to move from stateE toE∗ is stochastic.
Let T be the random time. What is the probability distribution for T , fT (t)? How
is it related to pE∗(t)?

Compute expected value E[T ]. Compare your result with the Michaelis–
Menten formula.
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Chapter 7
The Turing Model for Biological Pattern
Formation

Philip K. Maini and Thomas E. Woolley

Abstract How spatial patterning arises in biological systems is still an unresolved
mystery. Here, we consider the first model for spatial pattern formation, proposed
by Alan Turing, which showed that structure could emerge from processes that, in
themselves, are non-patterning. He therefore went against the reductionist approach,
arguing that biological function arises from the integration of processes, rather than
being attributed to a single, unique, process. While still controversial, some 65 years
on, his model still inspires mathematical and experimental advances.

7.1 Biological Pattern Formation

Biological systems exhibit a diverse range of patterns, such as animal pigmentation
patterns, limb skeletal structures, etc. (Fig. 7.1). Despite decades of research, a
detailed understanding of how these patterns arise still eludes us. We know many
of the genes involved and can map out the spatiotemporal dynamics of some
of them, but how these dynamics arise is still largely a mystery. In 1952, the
logician, computer scientist, code breaker and mathematician Alan Turing proposed
a novel mathematical model for pattern formation [1]. He hypothesised that the
patterns we see arise due to cells responding to underlying pre-patterns of chemical
concentrations. He termed these chemicals morphogens and showed that spatially
heterogeneous patterns could arise in systems in which these chemicals reacted
with each other and also underwent diffusion—a phenomenon termed diffusion-
driven instability. Making the further assumption that cell fate was determined
in a morphogen concentration-dependent manner, the chemical pre-pattern would
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Fig. 7.1 Examples of biological pattern formation. Zebra stripes are shown in the background
and going from left to right: poison arrow frog labyrinthine pigmentation pattern; digit pattern of a
human; serval spots transitioning to stripes on the tail

manifest itself in a pattern composed of spatially heterogeneous cell fates. In
Sect. 7.2 we describe the phenomenon of diffusion-driven instability and deduce the
properties exhibited by the resultant patterns. We will also give some examples of
reaction-diffusion systems. In Sect. 7.3 we present some applications and in Sect. 7.4
we present conclusions and discussion.

7.2 Mathematical Model

7.2.1 Diffusion is Stabilising

Let us consider the case of a chemical, concentration u(x, t), diffusing in space x
(assumed to be in one dimension for simplicity), where t is time. Let us also assume
that the chemical is being produced at a rate f (u) where f is typically either a
polynomial, or rational, function of u. Then

∂u

∂t
= D

∂2u

∂x2
+ f (u), (7.1)

where D > 0 is the diffusion coefficient (assumed constant), is the reaction-
diffusion equation satisfied by u(x, t).

We will assume further that the spatial domain is [0, L] for some L > 0 and
that the chemical concentration at the edge of the domain is fixed at some value u0,
that is,

u(x, t) = u0 at x = 0, L and ∀ t. (7.2)
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This is often called a Dirichlet boundary condition. Furthermore, suppose that
f (u0) = 0. Then, u(x, t) = u0 satisfies Eq. (7.1) and the boundary conditions (7.2)
and is termed a spatially uniform steady state for u. To find the linear stability of this
state we wish to determine if a small perturbation û(x, t) from the steady state will
grow or decay in time. Substituting into Eq. (7.1), expanding f in a Taylor series
and keeping only the linear terms, we have:

∂û

∂t
= D

∂2û

∂x2
+ f ′(u0)û (7.3)

where f ′ = df/du and we have used the fact that f (u0) = 0. Furthermore, û
satisfies û(x, t) = 0 at x = 0, L.

In the case where D = 0, Eq. (7.3) has the solution

û(x, t) = û0 exp(f ′(x0)t) (7.4)

where û0 is the initial perturbation. Clearly, if f ′(u0) < 0 then the steady state is
linearly stable (as t tends to infinity, û(t) tends to zero) while if f ′(u0) > 0, then
the perturbation grows and the steady state is linearly unstable.

Now suppose that D > 0 in (7.3). Then, using the method of separation of
variables, and taking into account the boundary conditions (7.2), the solution for
û(t) is the Fourier sine series

û(x, t) =
n=∞∑
n=1

an sin
(nπx

L

)
exp(λnt) (7.5)

where λn = f ′(u0) − D(nπ/L)2, for n = 1, 2, . . . , and an are determined
by equating the solution to the Fourier sine series of the initial condition for the
perturbation. Now we see that even when f ′(u0) > 0, if D > f ′(u0)(L/π)

2, it
follows that λn < 0 ∀ n, that is, each term sin (nπx/L) in the Fourier expansion,
termed an admissible mode, will have either an exponentially decaying amplitude
(if an �= 0) or zero amplitude (if an = 0) and so û(x, t) tends to zero as t tends
to infinity. Therefore, the steady state u = u0, although unstable in the absence of
diffusion, is stabilised by the presence of diffusion. Hence, diffusion is stabilising.

Note that if the boundary conditions were instead zero flux (so-called homo-
geneous Neumann) boundary conditions (∂u/∂x = 0 at x = 0, L ∀ t) then the
solution to the linearized system would be a Fourier cosine series and so, in the
presence of diffusion, the zeroth mode (constant) term in the Fourier expansion
could still grow but every spatially heterogeneous (patterned) term, cos(nπx/L),
would have negative growth rate for sufficiently large D. For periodic boundary
conditions (u(0, t) = u(L, t) ∀ t), the Fourier series solution would now be a
combination of sines and cosines but the above arguments still hold.
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7.2.2 Diffusion is De-stabilising

The previous mathematical result, namely that diffusion is a stabilising process, also
agrees with our intuition, for example if we think of heat. The genius of Turing
was to show that this was not necessarily the case if there was more than one
chemical, that is, if we had a reaction-diffusion system. Let u(x, t) and v(x, t) be
two chemicals satisfying the equations:

∂u

∂t
= D1

∂2u

∂x2 + f (u, v),
∂v

∂t
= D2

∂2v

∂x2 + g(u, v), (7.6)

where f (u, v) and g(u, v) are functions describing the reaction kinetics of the
morphogens represented by u and v, and D1 and D2 are constant (positive) diffusion
coefficients. For simplicity, let us assume that once again x is the finite domain
[0, L] and that u and v satisfy homogeneous Neumann boundary conditions.

Now suppose there are positive values (u0, v0) such that f (u0, v0) =
g(u0, v0) = 0. Then (u0, v0) is spatially uniform steady state of the system (7.6). To
examine the linear stability of this steady state we extend the analysis in Sect. 7.2.1
by deriving equations for small perturbations (û(x, t), v̂(x, t)) to the steady state.
Substituting into Eq. (7.6), expanding f and g in Taylor series and recalling that
f (u0, v0) = g(u0, v0) = 0, we arrive (ignoring higher order terms) at the linearized
system:

∂û

∂t
= D1

∂2û

∂x2 + fuû+ fvv̂,
∂v̂

∂t
= D2

∂2v̂

∂x2 + guû+ gvv̂, (7.7)

where fu, fv , gu, gv denote the partial derivatives of f and g evaluated at the steady
state (u0, v0). We may re-write this in the more concise form:

∂û

∂t
= D

∂2û

∂x2 + J
(
û
)
, (7.8)

where

û =
(
û(x, t)

v̂(x, t)

)
, D =

(
D1 0
0 D2

)
and J =

(
fu fv

gu gv

)
. (7.9)

We generalise the analysis in Sect. 7.2.1 by looking for a solution of the form
û(x, t) = a exp(ikx+λ(k2)t) where, again, we are looking for a separable solution,
in this case with a a constant vector and the x component of the solution is written
as exp(ikx)—a convenient way to encompass the Fourier components. Substituting
this into Eq. (7.8), we arrive at the equation

(
J −Dk2 − λI

)
a = 0, (7.10)
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where I is the 2 × 2 unit matrix. For non-trivial solutions, we thus require that the
matrix multiplying the vector a is singular, that is,

Det
(
J −Dk2 − λI

)
= 0, (7.11)

where Det denotes the determinant. This is an eigenvalue problem, that is, the
temporal growth rate, λ, is the eigenvalue of the matrix J − Dk2 and is, in fact,
a function of the wave number, k.

Now, in the previous subsection, we showed that in the case of a single reaction-
diffusion equation, a spatially uniform steady state, linearly stable in the absence
of diffusion, could be stabilised in the present of diffusion. Here, Turing showed
the opposite. Let us consider the case when D1 = D2 = 0. Then λ is simply the
eigenvalue of the matrix J and satisfies the eigenvalue problem

λ2 − (fu + gv)λ+ (fugv − fvgu) = 0. (7.12)

For the spatially uniform steady state to be stable, we require both solutions to the
eigenvalue Eq. (7.12) to have negative real part, and this will be true if the following
two conditions hold:

fu + gv < 0, and fugv − fvgu > 0. (7.13)

Now, in the presence of diffusion (D1 and D2 both non-zero), the eigenvalue
problem, from Eq. (7.11), relating the growth rate, λ, to the wave number, k, is

λ2 − b(k2)λ+ c(k2) = 0, (7.14)

where

b(k2) = fu + gv − (D1 +D2)k
2 and c(k2) = D1D2k

4 − (D2fu +D1gv)k
2 + fugv − fvgu.

(7.15)

In this case, we wish diffusion to be de-stabilising and a necessary condition for
this to hold true is that at least one of the roots, λ(k2), of Eq. (7.14) must have a
positive real part for some non-zero (positive) k2. This can happen if either b(k2) >

0 or c(k2) < 0. However, the first condition in (7.13), and the fact that the diffusion
coefficients are non-negative, ensures that b(k2) < 0, so we require c(k2) < 0. For
this to occur, the second condition in (7.13) forces D2fu +D1gv to be positive as a
necessary condition. More precisely, we require

D2fu +D1gv > 2
√
D1D2(fugv − fvgu) > 0. (7.16)

Conditions (7.13) and (7.16) ensure that the uniform steady state is linearly stable
in the absence of diffusion but has at least one k for which λ(k2) has positive
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real part. However, to satisfy the zero flux boundary conditions, admissible modes
are restricted to k = nπ/L for at least one integer value n. This leads to the 4th
condition:

k2−<
(nπ
L

)2
< k2+ where k2± = fu + gv ±

√
(fu + gv)2 − 4D1D2(fugv − fvgu)

2D1D2
.

(7.17)

Hence, if these conditions are satisfied for at least one integer value, n > 0, we
see that a spatially uniform steady state, stable in the absence of diffusion, becomes
unstable in the presence of diffusion. This is termed diffusion-driven instability and
is an example of self-organisation (or sometimes termed an emergent phenomenon).

A number of key properties are immediately apparent from these conditions
[2]:

1. The diffusion coefficients must be unequal. This follows from the first inequality
in (7.13) and (7.16), because if D1 = D2 = D > 0 then we can divide
inequality (7.16) byD to obtain fu+gv > 0, which contradicts the first inequality
of (7.13).

2. The matrix of partial derivatives J must take one of the following two forms:

Jp =
(+ −
+ −

)
or Jc =

(− −
+ +

)
. (7.18)

This follows from the first inequality in (7.13) and (7.16) and observing that the
matrix forms

J
′
p =

(− +
− +

)
and J

′
c =

(+ +
− −

)
(7.19)

are in fact captured, respectively, by Jp and Jc, by appropriately re-defining
u and v or f and g. In detail, from the first inequality in (7.13) and (7.16) it
follows that fu and gv must have opposite signs. Hence fugv < 0, and the second
inequality of (7.13) forces fvgu to be less than zero, implying that fv and gu have
opposite signs.

3. There is a minimum domain size for pattern formation. This follows from
inequality (7.17). For fixed parameter values in the reaction-diffusion model, for
L sufficiently small, this inequality cannot be satisfied for non-zero n.

4. As the domain size increases, the pattern becomes more complicated for two
reasons: (1) the lower inequality of Eq. (7.17) means that the minimum allowable
wave mode increases. Explicitly, the pattern appearing on a larger domain will
have a larger number of peaks and troughs (i.e. larger n), when compared to the
pattern on a smaller domain; (2) the range of allowable modes increases. This
again follows from inequality (7.17) by observing that as L increases the number
of viable integers can also increase.
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5. The idea from point 4 can be extended to higher dimensions. For example, if
the spatial domain is the 2-dimensional rectangle [0, Lx] × [0, Ly] then the
admissible modes take the form (for zero flux boundary conditions)

cos (nπx/Lx) cos
(
mπy/Ly

)
,

where k2 = (nπ/Lx)
2 + (mπ/Ly)

2 and n = 0, 1, 2, . . . , m = 0, 1, 2, . . ..
Clearly, if Ly is very small, while Lx is large (that is, the domain is long and
thin), then from the obvious extension of condition (7.17) to this case, it follows
that m = 0 and so any spatially patterned structure will vary only in the x-
direction, that is, the system will exhibit stripes. However, if Lx and Ly are both
large, then (7.17) can hold for n and m both non-zero. In this case, we have
spots. Note that in 2 dimensions we have the issue of degeneracy. For example,
suppose Lx = Ly = 1 and (u0, v0) was unstable to a mode with k2 = 25π2,
then the admissible modes would have wave number pairs (5, 0), (0, 5) (both
corresponding to stripes) and (3, 4), (4, 3) (both corresponding to spots). In
this case, initial conditions and the form of the non-linear terms determine
which mode is selected (or indeed the solution could be a combination of all
possibilities). More recently, these results have been generalised using an energy
function to show that pattern selection can be determined by investigating the
stationary solutions of an associated Fokker–Planck equation [3].

It is important to point out that the above analysis, and properties derived, hold
for linear theory, while the original system is non-linear. The obvious question to ask
is, do the linear results hold for the non-linear system? While this can be answered
to some extent by carrying out a weakly non-linear analysis in the vicinity of a
primary bifurcation point [4, 5], we need to resort to numerical solution of the non-
linear system for a fuller answer. In Fig. 7.2 we show some results of numerical
simulations of the full non-linear system (see Sect. 7.2.3) to illustrate the properties
3–5.

In the above, if the linearized kinetics are represented at (u0, v0) by Jp, the
system is termed a pure activator-inhibitor system while, if they are represented
by Jc, the system is called a cross activator-inhibitor system or a substrate-depletion
system. We now explain this terminology. For the case Jp we see that at the spatially
uniform steady state, fu > 0 and fv < 0. Hence, at steady state, u is activating its
own production, but v is inhibiting the production of u. Moreover, gu > 0 and
gv < 0 which means that u activates the production of v. Hence, u is termed an
activator and v is termed an inhibitor. Note further that from the first inequality
in (7.13), and (7.16) it follows that D2 > D1. That is, the inhibitor diffuses more
rapidly than the activator. This leads to the self-organising patterning principle of
short-range activation long-range inhibition [6]. For the case Jc, u is a substrate
that produces v but is itself depleted. Note that if we calculate the eigenvector a in
the case of Jp then equating the second component to zero in the vector Eq. (7.8)
forces the components of u and v to have the same sign, that is, the solutions are in
phase. Conversely, for Jc, equating the first component to zero in the vector Eq. (7.8)



196 P. K. Maini and T. E. Woolley

Fig. 7.2 Turing pattern properties. (a) Schnakenberg kinetics D1 = 1, D2 = 40, a = 0.1 and
b = 0.9. (b) Gierer-Meinhardt kinetics D1 = 0.7, D2 = 70, a = 0.03 and b = 1. (c) If the
Schnakenberg kinetics are on a domain of length 3 no pattern emerges. However, a domain length
of 4 allows heterogeneity to appear. (d) Two-dimensional simulation of the Schnakenberg kinetics.
The top simulation shows a thin rectangle that is only able to support stripes across the domain.
However, when we increase the vertical height we see that the pattern can produce spots. Note that
only one chemical concentration is shown in (c) and (d), the other one will be 180◦ out of phase
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implies that u and v must have opposite signs and therefore the solutions are 180◦
out of phase (see Fig. 7.2a, b).

7.2.3 Defining the Reaction Kinetics

The functions f (u, v) and g(u, v) can take many forms, too numerous for us to
list them all, so we simply give a small sample here. Perhaps the best known is the
Gierer-Meinhardt model variant [6] that, when non-dimensionalised, takes the form

f (u, v) = a − bu+ u2

v
; g(u, v) = u2 − v, (7.20)

where a and b are positive constants. Here, the model has been constructed such that
v inhibits u but u activates v. Another model of this class presented by Gierer and
Meinhardt, but later derived from a hypothetical chemical reaction using the Law of
Mass Action, is the Schnakenberg model [7], which takes the form

f (u, v) = a − u+ u2v; g(u, v) = b − u2v, (7.21)

where a and b are constants. The Thomas model [8], on the other hand, describes
the interaction of uric acid, u, with oxygen, v, where both reactants diffuse from
a reservoir maintained at fixed concentrations, and interact via kinetics empirically
determined by data fitting:

f (u, v) = α(a − u)− uv

c + u+ du2 ; g(u, v) = β(b− v)− uv

c + u+ du2 , (7.22)

where a, b, c, d, α and β are positive constants. More recently, Barrio et al. [9]
proposed a caricature model (which we will denote as BVAM) for ease of analysis.
In this model, they simply postulated a system in which the linear, quadratic and
cubic terms are explicit:

f (u, v) = au+ v − r1uv
2 − r2uv; g(u, v) = bu+ cv + r1uv

2 + r2uv, (7.23)

where a, b, c, r1, and r2 are non-negative constants. The inclusion of non-linear
terms of this form allowed them to easily consider the case where the linear system
is degenerate and the non-linear terms then specify the pattern, with quadratic terms
favouring spots and cubic terms favouring stripes [10]. Of course, this model can
exhibit negative values of u and v which at first, appear unphysical, but u and
v should not be interpreted as concentrations, but rather as deviations from some
positive spatially uniform steady state. This seemingly simple model actually gives
rise to an incredibly large range of different types of patterns [11]. In Fig. 7.3,
we present a selection of stationary patterns while in Fig. 7.4 we illustrate some
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Fig. 7.3 Stationary patterns appearing in the BVAM model. We see that we can generate stripes,
labyrinthine patterns and spots, respectively

Fig. 7.4 Non-stationary patterns appearing in the BVAM model. The images illustrate snapshots
of non-stationary patterns, with time increasing to the right along each row. In (a) we see travelling
waves, whilst (b) shows scroll waves

temporally evolving patterns. The latter are non-stationary, and their analysis is
beyond the scope of this chapter.

7.3 Applications

The ability of the Turing model to produce patterning has meant that it has been
used in a bewildering array of applications, ranging from regeneration in Hydra, to
digit patterning, to animal pigmentation, shells, hair, teeth and feather patterns, etc.
(see [12–14] and Fig. 7.5). While the model can produce an astonishing array of
patterns, properties 3 and 4 suggest that the patterns that are formed are constricted
by domain size. Specifically, property 3 states that if the patterning region is too
small, then no pattern will form even if the reaction parameters are chosen to
produce a Turing pattern. Further, property 4 suggests that as the domain increases
in size, the derived linear theory predicts that patterns increase in complexity and,
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Fig. 7.5 Illustration of more complex Turing dynamics that can reproduce the patterns seen on
seashells. Taken from [13]

Fig. 7.6 Illustrating the robustness issue. All solutions are stationary. The simulations are of the
Schnakenberg model [7] and the parameters are the same for both simulations, the only difference
being that the initial conditions were two different randomly chosen states which were uniformly
distributed around their unique spatially uniform steady state

conversely, a decrease in domain dimensions would reduce patterning complexity.
This is an example of a developmental constraint [15].

One of the problems with Turing reaction-diffusion models is that the patterns
they produce can be very sensitive to small variations in parameter values and to
variations in initial conditions, questioning their applicability to situations where
robustness is essential—for example, we only want one head!—and this was first
pointed out by Bard and Lauder [16]. This sensitivity can either arise due to the fact
that the parameter space in which Turing patterns can form can be very small [17]
or because the system can exhibit multiple stable spatially heterogeneous solutions
(see, for example, Fig. 7.6).

This issue is still not fully resolved. Dillon et al. [18] showed that choosing
different types of boundary conditions could enhance the robustness of some modes
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Fig. 7.7 Deterministic simulations of the Schnakenberg model [7] on a domain growing (a)
exponentially uniformly everywhere, and (b) linearly, but only at the tip (apical growth)

while eliminating the admissibility of other modes. Crampin et al. [19] reformulated
the model on a growing domain, noting equations of the form (7.1) will transform
to

∂u

∂t
+ ∂su

∂x
= D

∂2u

∂x2 + f (u), (7.24)

where s is the velocity of flow induced by growth (in higher dimensions, this term
would take the form ∇.(su), see the original paper for the derivation of this form).
They showed that this system could robustly generate mode doubling for the case
of uniform domain growth as well as generating, in a robust fashion, a sequence of
consecutive modes for the case of apical growth (Fig. 7.7).

An obvious question to ask now is, if pattern complexity increases with domain
size under this theory, then shouldn’t we have a large number of heads? However,
cells can only respond to signals for a certain time window before they differentiate
and therefore can no longer respond to changing signals. One dramatic situation
in which this is not the case is pigmentation patterning in certain fishes where, as
the domain grows, the pattern continually changes to preserve wavelength, again
consistent with the Turing model [20].

Another key issue is the identification of the morphogens involved. While this
remains a controversial issue, there have been many potential activator-inhibitor
pairs identified (see, for example [21–23]). Moreover, it has been posited that
the activator-inhibitor system might actually be composed of cells—a particular
example being the interaction of melanophores and xanthophores in zebrafish
pigmentation patterning [24–27].

While in the above we have considered robustness in response to different initial
conditions or parameter values, none of these studies investigated the effect of
noise, which we would expect to be present in a biological system throughout the
patterning process. Woolley et al. [28] showed the presence of noise could disrupt
the robust period-doubling patterning sequence seen by Crampin et al. [19] (Fig. 7.7)
but robustness was preserved in the case of apical growth (Fig. 7.8).
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Fig. 7.8 Stochastic simulations of the Schnakenberg model [7] on a domain growing (a)
exponentially uniformly everywhere, and (b) linearly, but only at the tip (apical growth)

This offers a possible reason why, in biology, we usually see patterns forming
behind a propagating front, rather than simultaneously across the full domain. A
propagating front allows patterns to form in a sequentially controlled and robust
fashion.

The robustness issue has recently been tackled in a different way by Kurics et al.
[29] who showed that extending the Turing model to be more biologically realistic
by including receptor and feedback dynamics actually could greatly enhance the
parameter space in which patterns are predicted.

While still controversial biologically, Turing structures have been found in
chemistry—the first example being the chloride-iodide-malonic-acid (or CIMA)
reaction [30]. One of the reasons why it had been difficult to find Turing structures in
chemistry was due to property 1 in Sect. 7.2.2, namely that the diffusion coefficients
D1 and D2 must be different. While it is possible, theoretically, to obtain Turing
structures for D1 and D2 arbitrarily close to one another [31], for robust patterning
D1 and D2 have to be quite different from each other and, typically, when chemicals
react with each other the chemical molecules have similar sizes and therefore
quite similar diffusion coefficients. In the CIMA reaction, however, one of the
reactants was bound to starch (added as an indicator) and this changed its diffusion
coefficient significantly to move the system into the Turing patterning regime. This
was modelled by Lengyel and Epstein [32] in the following way:

∂u

∂t
= D1

∂2u

∂x2
+ f (u, v)− c0up+ + cp−, (7.25)

∂v

∂t
= D2

∂2v

∂x2 + g(u, v), (7.26)

∂c

∂t
= c0up+ − cp−. (7.27)

Here, u and v are the concentrations of the chemical species and u is assumed to be
interacting with the indicator (starch). Assuming that the starch is in excess we can
take its concentration to be fixed at c0. Then, by the Law of Mass Action, the rate
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at which u binds with starch to create the complex c is c0up+, where p+ is a rate
constant, while the rate at which u is recovered from the complex is cp−. Assuming
the indicator, and therefore the complex, is immobile, we obtain the equation for the
complex c.

Adding Eqs. (7.25) and (7.27) we obtain

∂(u+ c)

∂t
= D1

∂2u

∂x2 + f (u, v). (7.28)

The further assumption that the binding between u and the indicator is fast, allows
us to replace c in the Eq. (7.27) by Pu, where P = c0p+/p−, which essentially
rescales the diffusion coefficient D1 by a factor 1/(1+P) (recall that for diffusion-
driven instability D1 < D2 assuming u is the activator and v the inhibitor. Hence,
D1 is effectively lowered).

Turing’s original derivation of his reaction-diffusion model was on a discrete
array of “cells” or compartments in which reactions took place while the chemicals
were transported down chemical gradients to neighbouring compartments. He
essentially arrived at a spatially discretised version of the system described in
Sect. 7.2.2. Recently, Tompkins et al. [33] actually made a physical model of this
set up with compartments in which chemicals reacted and diffused to neighbouring
compartments. They showed that this system could produce patterns.

7.4 Conclusions and Discussion

We have shown how spatial patterning can arise from a coupled system of two
reaction-diffusion equations and given some examples of applications of the theory
of diffusion-driven instability in biology. We have only looked at the basic Turing
model but, since Turing’s original paper, there have been many extensions made of
the model. For example, in a series of papers Nagorcka and colleagues [34, 35]
proposed that the initial structures formed by a Turing model could serve as
sources or sinks of further Turing models, leading to very complex patterned
structures similar to those observed in hair follicles and feather primordia. Kondo
and colleagues have carried out extensive experimental studies on fish pattern
regeneration, patterns on fish mutants and addressed the issue of how one could
link the parameters in a Turing model with more refined genetic information (see
the review: [36]).

It is important to point out that there are many other self-organisation models
that can produce patterns. For example, in 1983, Oster, Murray and Harris [37, 38]
proposed that patterns arose due to cells mechanically interacting with each other,
leading to spatially heterogeneous patterns of cells themselves, which they then
assumed differentiated into structures. It is also known that cells can move in
response to gradients in chemicals (chemotaxis), and it has been shown that such
chemotaxis models can also lead to spatial pattern formation Keller and Segel [39].



7 The Turing Model for Biological Pattern Formation 203

Painter et al. [40, 41] showed how a Turing system combined with chemotaxis
could lead to patterns of varying wavelengths, consistent with those formed in
Pomacanthus and generalising the concept of positional information [42].

In summary the Turing model has generated a great deal of experimental and
mathematical interest, which continues to this day.
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Chapter 8
Persistence, Competition, and Evolution

King-Yeung Lam and Yuan Lou

Abstract In this chapter we discuss some reaction–diffusion models for single
and multiple populations in spatially heterogeneous environments and advective
environments. Our goal is to illustrate some interesting, and perhaps surprising,
effects of spatial heterogeneity and diffusion on the population dynamics. Specific
topics include the logistic model, linear eigenvalue problem with indefinite weight,
Lotka–Volterra competition models, reaction–diffusion models in advective envi-
ronments, and the evolution of dispersal. We will introduce some basic tools for
reaction–diffusion equations such as the super-sub solution method, the variational
principle for principal eigenvalues, Lyapunov functionals, comparison principles for
parabolic equations and systems, etc. Some recent developments will be discussed.
In addition, problems with various difficulties ranging from elementary exercises to
open research questions will be presented.

8.1 Introduction

Understanding the population dynamics of a single and multiple interacting species,
which disperse in spatially heterogeneous environments, is an important topic in
spatial ecology. Reaction–diffusion models have played a major role in the modeling
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and understanding of population dynamics in heterogeneous environments [8]. In
this chapter we will restrict ourselves to a few selected topics in spatial ecology
and discuss some reaction–diffusion models for the persistence of a single species,
the competition of two populations, and the evolution of dispersal in spatially
heterogeneous environments and advective environments.

Our first goal is to illustrate some interesting, and perhaps surprising, effects of
spatial heterogeneity on the population dynamics. In Sect. 8.2 we will discuss the
logistic model, including the derivation of the continuous-time logistic model from
the discrete-time counterpart, a linear eigenvalue problem with indefinite weight,
and the maximization of the biomass of a single species at equilibrium. In Sect. 8.3
we will discuss the classical two-species Lotka–Volterra competition models, in
both homogeneous and heterogeneous environments. Section 8.4 is devoted to the
evolution of random dispersal in heterogeneous environments, where it is shown that
the slower dispersal rate will be selected. In Sect. 8.5 we will study the persistence of
a single species and the competition of two populations in advective environments.
We show that the faster dispersal rate could be selected in advective environments.

Another goal of this chapter is to introduce some basic mathematical tools
for reaction–diffusion equations and systems. They include the super-solution and
sub-solution method, the variational principle for principal eigenvalues, Lyapunov
functionals, linear stability analysis, and the comparison principles for parabolic
equations and systems. These materials will be covered in Sects. 8.2–8.5.

Beyond our two main goals, in Sect. 8.6 we will discuss some recent works and
point interested readers to the related literature. In addition, some mathematical
problems with various degrees of difficulties, ranging from elementary exercises
to open research questions, will also be presented.

8.2 Diffusion Models for a Single Species

The dynamics of reaction–diffusion models for a single species are not only of
independent interest, they are also building blocks in studying the dynamics of
multiple interacting species, especially issues concerning the invasions of exotic
species. In this section we focus on logistic type population models with diffusion.
Many reaction–diffusion models for a single population are of the form

⎧⎨
⎩
ut = d�u+ uf (x, u) in �× (0,∞),

∇u · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x) in �.
(8.1)

Here u(x, t) is the population density, d > 0 is the diffusion coefficient, f (x, u)
represents the growth rate of the population and is differentiable in both x and u.
The habitat � is a bounded domain in Euclidean space R

N with smooth boundary
∂�, and n is the outward unit normal vector on ∂�. The zero Neumann boundary
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condition means that there is no net movement across the boundary. The initial
condition u0 is assumed to be non-negative and not identically zero.

We present two preliminary results on the dynamics of (8.1), adapted from [8].

Proposition 8.1 Suppose that f (x, u) ≤ g0(x) for some function g which is Hölder
continuous in Ω̄ . If the principal eigenvalue, denoted as σ1, of

{
dΔψ + g0ψ + σψ = 0 in Ω,

∇ψ · n = 0 on ∂Ω
(8.2)

is positive, then (8.1) has no positive steady state and all non-negative solutions of
(8.1) decay exponentially to zero as t →∞.

Proof Let ψ(x) > 0 be an eigenfunction to σ1. Set u(x, t) = Ce−σ1tψ(x). Then u
satisfies

ut − d�u− uf (x, u) = g0(x)u− uf (x, u) ≥ 0.

Choose C > 0 large such that u(x, 0) ≤ u(x, 0). By the comparison principle for
parabolic equations [48], u(x, t) ≤ u(x, t) ≤ C‖ψ‖∞e−σ1t . �
Proposition 8.2 Suppose that there exists some C > 0 such that f (x, u) < 0 for
u ≥ C. If the principal eigenvalue, denoted as σ1, of

{
dΔψ + f (x, 0)ψ + σψ = 0 in Ω,

∇ψ · n = 0 on ∂Ω
(8.3)

is negative, then (8.1) has at least one positive steady state.

Proof Consider the steady state problem of (8.1), i.e.,

{
d�u+ uf (x, u) = 0 in �,
∇u · n = 0 on ∂�.

(8.4)

Write f (x, u) = f (x, 0)+f1(x, u) so that f1(x, u) = O(u) for small u. Let ψ > 0
be an eigenfunction to σ1. For sufficiently small ε > 0,

d�(εψ)+ (εψ)f (x, εψ) = εψ[−σ1 + f1(x, εψ)] > 0,

i.e., u = εψ is a sub-solution of (8.4). Since u = C is a super-solution of (8.4) and
for small ε we have u ≥ u, by the super-solution and sub-solution method [48] we
see that (8.1) has a positive steady state u(x) such that u(x) ≤ u(x) ≤ u(x) for
x ∈ �. �
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A classic example of f (x, u) in (8.1) is the logistic growth model:

f (x, u) = r(x)

(
1 − u

K(x)

)
, (8.5)

where r(x),K(x) ∈ C(�) are positive functions.

Exercise Consider problem (8.1). If f (x, u) < g0(x) for x ∈ � and u > 0, and that
the principal eigenvalue σ1 of (8.2) is non-negative, then all non-negative solutions
of (8.1) decay to zero as t →∞ (albeit not necessarily exponentially).

8.2.1 Logistic Model: From Discrete to Continuous

In this subsection we present a derivation of the logistic model from discrete-time
models. The continuous-time logistic ODE model (Verhulst, 1838) is given by

dN

dt
= rN(1 − N

K
), t > 0. (8.6)

Here r and K are two positive constants: r is the intrinsic growth rate (1/time), and
K is the carrying capacity (same unit as population size).

One way to derive (8.6) is to start with discrete-time models. Let Nt denote the
population size at time t = 0, 1, 2, · · · . The general model is usually of the form
Nt+1 = f (Nt ), where f is the growth function.

The geometric growth model is given by Nt+1 = RNt , where the biological
meaning of parameter R can be seen from

R = Nt+1

Nt

= numbers of offsprings

numbers of parents
. (8.7)

For the geometric model, Nt/Nt+1 = 1/R, i.e., the parent vs offspring ratio is
constant. The next level of models in terms of modeling complexity is

Nt

Nt+1
= a linear function of Nt . (8.8)

When Nt ≈ 0 (Nt is rare), we expect the geometric model to be a good
approximation, so that Nt

Nt+1
= 1

R
. When Nt ≈ K (Nt is near the carrying capacity),

we expect the population to level off, so that Nt

Nt+1
= 1. Hence,

Nt

Nt+1
= the line passing through (0,

1

R
) and (K, 1) (8.9)

= 1

R
+ Nt

K

(
1 − 1

R

)
. (8.10)
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After simplification, one obtains the Beverton–Holt model

Nt+1 = RNt

1 + R−1
K

Nt

, t = 0, 1, 2, · · · , (8.11)

where the constant K is the population size at which the parent vs offspring ratio is
equal to one.

In the derivation above, the duration of each generation is 1. Now, if we let
the duration of each generation to be some small constant h > 0, then over the
(short) time interval h, the population multiplies by a factor of Rh, and thus we may
modify (8.11) as

Nt+h = RhNt

1 + Rh−1
K

Nt

, h > 0.

We can rewrite the above as

Nt+h −Nt

h
= 1

h

(
RhNt

1+Rh−1
K

Nt

−Nt

)
(8.12)

= 1
h
· (Rh−1)Nt−Rh−1

K
N2
t

1+Rh−1
K

Nt

(8.13)

= Rh−1
h

· (1−Nt
K
)Nt

1+Rh−1
K

Nt

. (8.14)

Letting h → 0, we obtain the continuous-time logistic model, which relates the
instantaneous rate of change of population at time t to the population at time t :

d

dt
Nt = rNt (1 − Nt

K
), t > 0, (8.15)

where r = logR.

Exercise Use the discrete-time two-species model

⎧⎨
⎩
N1(t + 1) = R1N1(t)

1+α1N1(t)+β1N2(t)

N2(t + 1) = R2N2(t)
1+α2N1(t)+β2N2(t)

(8.16)

to derive the corresponding continuous-time model

⎧⎨
⎩

dN1
dt

= r1N1(1 − C1N1 −D1N2)

dN2
dt

= r2N2(1 − C2N1 −D2N2)

. (8.17)
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8.2.2 Logistic PDE Model

We consider a special case of the reaction–diffusion model (8.1) with logistic
nonlinearity (8.5) and heterogeneous coefficients r(x) = m(x) and K(x) = m(x):

⎧⎨
⎩
ut = d�u+ u(m(x)− u) in �× (0,∞),

∇u · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x) in �.
(8.18)

Another example is to add spatially heterogeneous harvesting effect to the
logistic nonlinearity ru(1 − u

K
) with constant coefficients r,K , so that the growth

function of the population is given by

r(1 − u

K
)− h(x) = r − h(x)− r

K
u;

i.e., m(x) = r − h(x) in this example, where h(x) is the harvesting rate.
By Propositions 8.1 and 8.2, the problem of determining the existence and

non-existence of positive steady state is connected with the sign of the principal
eigenvalue σ1 (i.e., the unique eigenvalue possessing a positive eigenfunction) of

{
d�ψ +m(x)ψ + σψ = 0 in �,
∇ψ · n = 0 on ∂�.

(8.19)

By the variational characterization of elliptic eigenvalues, we have

σ1 = inf
ψ∈H 1(�),ψ �=0

∫
�
[d|∇ψ |2 −m(x)ψ2] dx∫

�
ψ2 dx

,

one can deduce the following result. (See, e.g., Proposition 4.4 of [47].)

Lemma 8.1 Suppose that m is non-constant. Then σ1 is a strictly monotone
increasing function of d. Moreover,

lim
d→0

σ1 = −maxΩ̄ m, (8.20)

lim
d→∞ σ1 = − 1

|Ω|
∫
Ω
m. (8.21)

Furthermore, the mapping d �→ σ1 is concave.

Exercise Prove Lemma 8.1.

By Lemma 8.1, we see that if
∫
�
m ≥ 0, then σ1 < 0 for any d > 0. Hence,

by Proposition 8.2, (8.18) has at least one positive steady state for any d > 0. If∫
�
m < 0 and max�̄ m > 0, by Lemma 8.1 there exists a unique d∗∈ (0,+∞) such

that σ1 < 0 for d < d∗; and σ1 > 0 when d > d∗. Again by Propositions 8.1 and 8.2
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we see that if d > d∗, then every non-negative solution of (8.18) converges to zero;
if d < d∗, then (8.18) has at least one positive steady state. These discussions lead
to the following result. (See, e.g., Proposition 3.3 of [8] or Theorem 4.1 of [47].)

Theorem 8.1 Suppose thatm is non-constant, positive somewhere inΩ and Hölder
continuous in Ω̄ .

(i) If
∫
Ω
m ≥ 0, then for d > 0, (8.18) has a unique positive steady state and

it is globally asymptotically stable among non-negative, not identically zero,
continuous initial data.

(ii) If
∫
Ω
m < 0 and maxΩ̄ m > 0, then there exists some d∗ > 0 such

that if d < d∗, (8.18) has a unique positive steady state which is globally
asymptotically stable; if d > d∗, all non-negative solutions of (8.18) converge
to zero as t → ∞.

The existence and non-existence results are addressed by the discussion preced-
ing Theorem 8.1. We now sketch the proof of the uniqueness of the positive steady
state, whenever it exists. The proof of the uniqueness of positive steady state is based
upon the super-solution and sub-solution method. For this purpose, we consider the
steady state problem of (8.18):

{
d�u+ u(m(x)− u) = 0 in �,
∇u · n = 0 on ∂�.

(8.22)

We say that u ∈ C2(�̄) is a super-solution of (8.22) if it satisfies
{
d�u+ u(m− u) ≤ 0 in �,
∇u · n ≥ 0 on ∂�.

(8.23)

We can similarly define the sub-solution of (8.22) by reversing the inequalities. The
following comparison principle is well known. (See, e.g., [50, 51].)

Theorem 8.2 Suppose that (8.22) has a pair of super-solution and sub-solution
such that u ≤ u in Ω . Then (8.18) has a minimal steady state um and a maximal
steady state uM , such that (i) u ≤ um ≤ uM ≤ u in Ω and (ii) for each solution v

of (8.22) satisfying u ≤ v ≤ u in Ω , then it must hold that um ≤ v ≤ uM in Ω .

We proceed to sketch the proof of the uniqueness result, as claimed in Theo-
rem 8.1. Suppose, for contradiction, that there are two distinct positive steady states
when σ1 < 0, denoted by ui , i = 1, 2. Since Eq. (8.22) has arbitrary large super-
solutions (e.g., any constant C larger than the maximum of function m) and arbitrary
small positive sub-solutions, e.g., εψ , where ε > 0 is small and ψ > 0 is an
eigenfunction of (8.19), we can choose ε and C such that εψ ≤ u1, u2 ≤ C. Hence,
by Theorem 8.2, there exists a minimal solution and a maximal solution, denoted
by um and uM , respectively, satisfying um ≤ u1, u2 ≤ uM in �. Since u1 �≡ u2, we
have uM ≥, �≡ um. Multiplying the equation of um by uM , the equation of uM by
um, subtracting and integrating the result in �, we see that
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∫
�

umuM(uM − um) = 0,

which is a contradiction to the fact that uM ≥ um and uM �≡ um. Hence it is
impossible for Eq. (8.22) to have two distinct positive solutions u1, u2. This proves
the uniqueness result.

8.2.3 An Eigenvalue Problem with Indefinite Weight

Recall that by Theorem 8.1, there exists a critical diffusion rate d∗ > 0 so
that the population as modeled by (8.18) persists if and only if d ∈ (0, d∗). In
this subsection, we will give a characterization of 1/d∗ via the following linear
eigenvalue problem with indefinite weight:

{
�ϕ + λm(x)ϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.24)

Problem (8.24) and its variants have been extensively investigated for the last two
decades, since they play crucial roles in studying nonlinear models from population
biology.

We call λ a principal eigenvalue of (8.24) if λ has a positive eigenfunction ϕ ∈
H 1(�). Clearly, λ = 0 is a principal eigenvalue of (8.24) with positive constants
as its eigenfunctions. Of particular importance is the existence of positive principal
eigenvalues.

If (8.24) has a positive eigenvalue, denoted by λ1(m), with corresponding
positive eigenfunction ϕ1, integrating the equation of ϕ1 we have

∫
�

mϕ1 = 0,

which implies that m(x) changes sign in �, i.e., that both �+ and �− have positive
Lebesgue measure, where

�+ = {x ∈ � : m(x) > 0} , �− = {x ∈ � : m(x) < 0} .

Dividing the equation of ϕ1 by ϕ1 and then integrating in �, we find

λ1(m)

∫
�

m =
∫
�

�ϕ

ϕ
= −

∫
�

|∇ϕ1|2
ϕ2

1

< 0

since ϕ1 is not equal to any positive constant (as m is not identically equal to any
constant). In summary, the condition
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(A1) The set �+ has positive Lebesgue measure, and
∫
�
m < 0

is necessary for the existence of a positive principal eigenvalue. This condition turns
out to be also sufficient as shown by the following result [3]:

Theorem 8.3 The eigenvalue problem (8.24) has a positive principal eigenvalue
(denoted by λ1(m)) if and only if (A1) holds. Moreover, λ1(m) is the only positive
principal eigenvalue and it is simple; it is also the smallest positive eigenvalue of
(8.24), and is given by

λ1(m) = inf
ϕ∈S (m)

∫
Ω
|∇ϕ|2∫

Ω
m(x)ϕ2

, (8.25)

where

S (m) :=
{
ϕ ∈ H 1(Ω) :

∫
Ω

m(x)ϕ2 > 0

}
.

By Theorem 8.3, one may observe that d∗ in Theorem 8.1 is characterized by
d∗ = 1/λ1(m). In fact, the following well-known and useful result holds.

Proposition 8.3 Suppose that (A1) holds. Let d∗ := 1/λ1(m), where λ1(m) is the
principal eigenvalue of (8.24). Then d∗ > 0. Furthermore, let σ1(d,m) be the
principal eigenvalue of (8.19). Then

(i) σ1(d,m) < 0 when 0 < d < d∗;
(ii) σ1(d,m) = 0 when d = d∗;

(iii) σ1(d,m) > 0 when d > d∗.

Exercise Prove Proposition 8.3 using the facts that (i) σ1(d,m) is concave in d; and
that (ii) σ1(d,m) = 0 if and only if d = d∗.

Consider the scenario where there is limited total resource in a bounded domain
�. What is the optimal way to distribute the resource, so as to maximize the
survivorship of the population?

Given μ ∈ (0, 1) and κ > 0, we define

M = {
m ∈ L∞(�) : m(x) satisfies (A1) and (A2)

}
, (8.26)

where (A2) is the constraint on the resource distribution:

(A2) −1 ≤ m(x) ≤ κ a.e. in �, and
∫
�
m ≤ −μ|�|.

Roughly speaking, (A2) says that the habitat is unfavorable on average. Also, the
resource distribution is bounded from above by κ , and below by −1. We aim to
determine the optimal arrangement of the resource so as to maximize d∗, which is
equivalent to minimizing λ1(m). Therefore, we set
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λinf := inf
m∈M

λ1(m).

The existence and the profile of global minimizers of λ1(m) in M with Dirichlet
boundary condition was first addressed in [4]. For Neumann boundary conditions,
we have the following result [40]:

Theorem 8.4 The infimum λinf is attained by some m ∈ M . Moreover, if λ1(m) =
λinf , then m can be represented as m(x) = κχE − χΩ\E a.e. in Ω for some
measurable set E ⊂ Ω .

Proof We only prove the second part of Theorem 8.4. Suppose that m ∈ M and
λ1(m) = λinf . Let ϕ be the eigenfunction of λ1(m)with the normalization sup� ϕ =
1. For every η ≥ 0, set Eη := {x ∈ � : ϕ(x) > η}. Note that |Eη|, the Lebesgue
measure of Eη, is a monotone decreasing function of η, |E0| = |�| and |Eη| = 0
for η > 1.

Case 1. There exists some η∗ > 0 such that

−μ|�| = κ|Eη∗ | − |� \ Eη∗ |, (8.27)

i.e., |Eη∗ | = (1 − μ)|�|/(1 + κ) > 0. For this case, define E∗ := Eη∗ .
Case 2. There is no η > 0 such that |Eη| = (1−μ)|�|/(1+κ). For this case, there

exists some η∗ > 0 such that limη→η∗+ |Eη| < (1 − μ)|�|/(1 + κ) ≤
limη→η∗− |Eη|. Therefore, there exists some measurable set E∗ such that
Eη∗ ⊂ E∗ ⊂ {x ∈ � : ϕ(x) ≥ η∗} and |E∗| = (1 − μ)|�|/(1 + κ).

Define m∗(x) = κχE∗ − χ�/E∗ . Equation (8.27) ensures that
∫
�
m∗ = −μ|�|.

Hence, we have m∗ ∈ M , which implies that λinf ≤ λ1(m
∗).

We claim that m(x) = m∗(x) a.e. in �. To establish our assertion, we first have

∫
�
(m∗ −m)ϕ2 = ∫

E∗(κ −m)ϕ2 − ∫
�\E∗(1 +m)ϕ2

≥ (η∗)2
∫
E∗(κ −m)− (η∗)2

∫
�\E∗(1 +m)

≥ 0,

(8.28)

where the last inequality follows from (8.27) and
∫
�
m ≤ −μ|�|. Since

∫
�
mϕ2 >

0, we have
∫
�
m∗ϕ2 > 0. Hence, ϕ ∈ S (m∗). Therefore, applying (8.25) we have

λ1(m
∗) ≤

∫
�
|∇ϕ|2∫

�
m∗ϕ2

≤
∫
�
|∇ϕ|2∫

�
mϕ2

= λ1(m). (8.29)
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Since λ1(m) = λinf ≤ λ1(m
∗), equalities must hold in (8.29). In particular,

λ1(m
∗) = λ1(m) and

λ1(m
∗) =

∫
�
|∇ϕ|2∫

�
m∗ϕ2

.

Therefore, from Theorem 8.3 we see that ϕ is also an eigenfunction of λ1(m
∗), and

it satisfies

�ϕ + λ1(m
∗)m∗ϕ = 0 in �, ∇ϕ · n = 0 on ∂�

in W 2,q (�) for every q > 1. Since ϕ > 0 in �, we have

m∗ = − �ϕ

λ1(m∗)ϕ
= − �ϕ

λ1(m)ϕ
= m

a.e. in �. This completes the proof of Theorem 8.4. �
Remark 8.1 Theorem 8.4 implies that the global minimizers of λ1(m) in M are of
“bang-bang” type, i.e., when the habitat is unfavorable on average, the survivorship
of the population is maximized when conservational effort and resources are
concentrated within a protection zone, even when the rest of the habitat is in
poor condition. The original proof of Theorem 8.4 in [40] requires the additional
assumption that Eη is continuous in η. The modified proof presented here does not
make use of this assumption; see also [46]. We refer to [30] for the case when � is
a rectangular domain in R

2.

8.2.4 Population Size

In this subsection we study the effects of dispersal and spatial heterogeneity of the
environment on the total population size of a single species. Such a consideration is
not only out of curiosity, but also useful in studying the invasion of species.

Consider the steady state problem of the diffusive logistic model:

⎧⎨
⎩
d�θ + θ

[
m(x)− θ

] = 0 in �,

θ > 0 in �,

∇θ · n = 0 on ∂�,

(8.30)

where the diffusion rate d is assumed to be a positive constant, m(x) is the habitat
quality at location x, and the function θ = θ(x, d) represents the density of the
species at location x. For the sake of clarity we posit

(A3) m(x) is non-constant, bounded, and measurable, and
∫
�
m(x) dx > 0.
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For solutions of (8.30), the following results are well known.

Theorem 8.5 Suppose that assumption (A3) holds.

(i) For d > 0, (8.30) has a unique positive solution θ(x, d) such that θ ∈
W 2,p(Ω) for every p ≥ 1.

(ii) As d → 0+, θ(x, d) → m+(x) in Lp(Ω) for every p ≥ 1, where m+(x) =
sup{m(x), 0}; as d → ∞, θ(x, d) → 1

|Ω|
∫
Ω
m(x) dx in W 2,p(Ω) for every

p ≥ 1.
(iii) If m(x) is Hölder continuous in Ω , then θ ∈ C2(Ω̄). Moreover, θ(x, d) →

m+(x) in L∞(Ω) as d → 0, and θ(x, d) → 1
|Ω|

∫
Ω
m(x) dx in C2(Ω) as

d →∞.

Proof We only illustrate that if m ∈ C(�̄) and m > 0, then θ(x, d) → m(x) in
L∞(�) as d → 0. Given any ε > 0, choose u ∈ C2(�̄) such that ∇u · n = 0 on
∂�, and

m+ ε

2
≤ u(x) ≤ m+ ε for x ∈ �̄.

Then,

d�u+ u(m− u) ≤ d�u+ u(m−m− ε

2
) = d�u− ε

2
u ≤ d�u− ε2

4
≤ 0

in �, where the last inequality holds if d is chosen sufficiently small. Hence, u is a
super-solution of (8.30). Similarly, choose u ∈ C2(�̄) such that m − ε ≤ u(x) ≤
m − ε

2 for any x ∈ �̄, and ∇u · n = 0 on ∂�. One can proceed similarly to show
that u is a sub-solution for small d. Hence by the super-solution and sub-solution
method [48],

m− ε ≤ u(x) ≤ lim inf
d→0+ θ(x, d) ≤ lim sup

d→0+
θ(x, d) ≤ u(x) ≤ m+ ε

holds in �. Finally, the conclusion follows from letting ε → 0+. �
Exercise If � = (0, 1) and mx > 0 in [0, 1], show that θx > 0 in (0, 1).

Exercise Suppose that m is non-constant and m ∈ C1(�̄). Show that
∫
�
|∇θ |2 dx

is a strictly decreasing function of d and for any d > 0,

∫
�

|∇θ |2 dx <
∫
�

|∇m|2 dx. (8.31)

Since |∇θ | measures the steepness of the population density distribution, we may
envision

∫
�
|∇θ |2 as the average steepness of the population distribution. Similarly,∫

�
|∇m|2 measures the average steepness of the environmental gradient. This result

suggests that the population distribution becomes flatter in average if we increase the
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dispersal rate. In particular, (8.31) shows that the population distribution is always
less steep than the environmental gradient, at least in some average sense.

Open Problem Is
∫
�
(θ−θ)2 dx monotone decreasing in d, where θ = |�|−1

∫
�
θ?

Are max�̄ θ and min�̄ θ also monotone in d? Is ‖θ‖Lp monotone decreasing in d

for large p?

Remark 8.2 For a fixed m ∈ Cα(�̄) where α ∈ (0, 1), is it true that there exists
some positive constant C, which is independent of d, such that ‖θ(·, d)‖Cα(�̄) ≤ C?

Averill et al. [1] showed that if m ∈ C2(�̄) and m ≥ 0 in �̄, then θd → m in
W 1,2(�).

In view of part (ii) of Theorem 8.5, it is natural to introduce the function

F(d) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
�
m+(x) dx, d = 0,∫

�
θ(x, d)dx, d > 0,∫

�
m(x) dx, d = ∞,

(8.32)

which can be interpreted as the total population size of the species. By assumption
(A2) and part (ii) of Theorem 8.5, F is a continuous, positive function in [0,∞].

If the spatial environment is homogeneous, i.e., m(x) is equal to some positive
constant m, then θ(x, d) ≡ m is the unique positive solution of (8.30) for every
d > 0. In this case, the total population size of the species is given by F(d) = |�|m,
which is independent of d. However, if the spatial environment is heterogeneous,
i.e., m(x) is a non-constant function, the story changes dramatically:

Theorem 8.6 ([37]) Suppose that assumption (A1) holds.

(i) F(d) > F(∞) for every d ∈ (0,∞);
(ii) If m(x) ≥ 0 in Ω , then for d ∈ (0,∞), F(d) satisfies

F(0) = F(∞) < F(d).

Proof Divide the equation of θx by θ ,

d
�θ

θ
+m− θ = 0.

Integrating the above in �, we have

∫
�

θ −
∫
�

m = d

∫
�

|∇θ |2
θ2

> 0;

i.e.,
∫
�
θ >

∫
�
m. The rest of the proof follows from the limiting behaviors of θ as

d → 0 and d →∞, as stated in Theorem 8.5. �
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Remark 8.3 Part (i) of Theorem 8.6 implies that spatial heterogeneity increases the
population size of species. To make this assertion precise, set m = ∫

�
m(x) dx/|�|,

and write F = F(d,m) instead of F(d) to indicate the dependence of F on the
function m. Part (a) implies that F(d,m) > F(d,m) for every d > 0. In other
words, given any d > 0 and any function g with

∫
�
g(x) dx = 0 and g �≡ 0, we

have F(d,m + λg) > F(d,m) for every λ �= 0. Hence, with the dispersal rate
being fixed, the population size F(d,m + λg), as a function of λ ∈ R, attains a
strict global minimum at λ = 0. We refer to [14] and the references therein for more
recent developments.

Exercise Compute F(d,m+ τg) for small τ . What conclusion can you draw from
it?

Part (ii) of Theorem 8.6 implies that when m(x) is non-negative, the total
population size is minimized at d = 0 and d = ∞, and maximized at some
intermediate value d∗. The value of d∗ is determined by the habitat � and m(x).

It will be of interest to understand the precise shape of F(d) due to its crucial
role in the invasion of species. A natural conjecture is that F(d) has a unique
local maximum (and thus it must be the global maximum) in (0,+∞). However,
this conjecture is false even for the case when m(x) is a perturbation of positive
constants.

Theorem 8.7 ([36]) There exists a smooth function g(x) with
∫
Ω
g = 0 such that

if m = 1 + εg, then for sufficiently small non-zero constant ε, the total population
F(d,m) = ∫

Ω
θ(x, d) dx, as a function of d, has at least two local maxima and one

local minimum in (0,∞).

An important issue in conservation biology is to determine how resource
allocation affects the population dynamics of species. As the population abundance
is often a good measurement of conservation effort, it is of interest to know how
resource allocation affects the total population size of species.

Assume that m is non-negative and not identically zero. Let θ(x) denote the
unique positive steady state of (8.18). Given any δ ∈ (0, 1), define

U =
{
m ∈ L∞(�) : 0 ≤ m ≤ 1,

∫
�

m(x) dx = δ|�|
}

and

J (m) =
∫
�

θ(x) dx. (8.33)

It is shown in [15] that there exists some m∗ ∈ U such that

J (m∗) = max
m∈U J (m).
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It seems that the shape of the optimal control m∗ depends upon the magnitude
of parameter δ. For instance, numerical simulations indicate that for rectangular
domains, the optimal control m∗ is concentrated at one of the corners of the
rectangle when δ is small; if δ is large, the optimal control concentrates at a
boundary edge of the rectangle. We refer to [15] for further discussions.

Recently Bai et al. [2] proved the following conjecture of W.-M. Ni:

Theorem 8.8 Suppose that Ω is an interval in R
1. Then

∫
Ω
θ(x) dx∫

Ω
m(x) dx

< 3. (8.34)

Furthermore, 3 is the optimal constant.

Proof Without loss of generality assume that � = (0, 1). For simplicity we only
prove (8.34) when mx ≥ 0. For this case, we have θx ≥ 0 (see exercise after
Theorem 8.5). Multiplying (8.30), the equation of θ , by θx and integrating the result
in (0, x) we obtain

d

2
θ2
x (x) =

∫ x

0
θxθ(θ −m) dx ≤

∫ x

0
θxθ

2 = 1

3
[θ3(x)− θ3(0)] < 1

3
θ3(x).

Hence,

dθ2
x (x) <

2

3
θ3(x), x ∈ [0, 1]. (8.35)

Next, dividing the equation of θ by θ we have

d
θxx

θ
+m− θ = 0.

Integrating the above equation in (0, 1) we have

∫ 1

0
θ dx −

∫ 1

0
mdx = d

∫ 1

0

θ2
x

θ2 dx <
2

3

∫ 1

0
θ dx,

where we applied (8.35) in the last inequality. Hence, (8.34) holds. �
Open Question (W.-M. Ni) Show that there exists some positive constant C =
C(N) > 1, which only depends on the spatial dimension N ≥ 2, such that for any
positive solution θ ,

∫
�

θ(x) dx < C(N)

∫
�

m(x) dx. (8.36)
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Exercise Let (u1, u2) be a positive solution of the two patch model

{
d(u2 − u1)+ u1(m1 − u1) = 0,
d(u1 − u2)+ u2(m2 − u2) = 0,

(8.37)

where m1,m2 > 0. Show that

1 ≤ u1 + u2

m1 +m2
< 2.

8.3 Lotka–Volterra Competition Models

For the last two decades there has been tremendous interest, from both math-
ematicians and ecologists, in two-species Lotka–Volterra competition models in
spatially heterogeneous environments; see [5–7, 9–11, 21–25, 27–29, 34, 47] and
the references therein. Our main goal here is to illustrate some differences between
the dynamics of Lotka–Volterra competition models in homogeneous environments
and that in heterogeneous environments.

8.3.1 Homogeneous Environments

We first consider the Lotka–Volterra competition–diffusion system in homogeneous
environments:

⎧⎪⎪⎨
⎪⎪⎩

ut = d1�u+ u(a1 − b1u− c1v) in �× (0,∞),

vt = d2�v + v(a2 − b2u− c2v) in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �.

(8.38)

Here u, v represent the population densities of two competing species; d1, d2 are
their diffusion rates; a1 and a2 are their intrinsic growth rates; b1 and c2 are the
intra-specific competition coefficients and b2, c1 are the inter-specific competition
coefficients. All constants are assumed to be positive, and u0(x), v0(x) are non-
negative functions that are not identically equal to zero.

Under the assumption

b1

b2
>

a1

a2
>

c1

c2
, (8.39)
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(8.38) has a unique positive steady state, given by

(u∗, v∗) =
(
a1c2 − a2c1

b1c2 − b2c1
,
b1a2 − b2a1

b1c2 − b2c1

)
. (8.40)

It turns out that (u∗, v∗) is globally asymptotically stable:

Theorem 8.9 Suppose that (8.39) holds. Then for any non-negative and not
identically zero initial data u(x, 0), v(x, 0) ∈ C(Ω̄),

lim
t→∞(u(x, t), v(x, t)) = (u∗, v∗)

in C(Ω̄)× C(Ω̄) norm.

Proof Consider the following system of ordinary differential equations:

⎧⎨
⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

Vt = V (a2 − b2U − c2V ) in (0,∞),

U(0) > 0, V (0) > 0.
(8.41)

We claim that for any initial data U(0) > 0, V (0) > 0,

lim
t→∞(U(t), V (t)) = (u∗, v∗). (8.42)

To establish our assertion, define

E(t) = b2

(
U − u∗ − u∗ ln

U

u∗

)
+ c1

(
V − v∗ − v∗ ln

V

v∗

)
. (8.43)

Then dE/dt ≤ 0 and dE/dt = 0 if and only if (U, V ) = (u∗, v∗). Since E(t) is
also bounded from below, by the LaSalle’s invariance principle, (8.42) holds.

By the maximum principle, we have u(x, t), v(x, t) > 0 for any x ∈ �̄ and
t > 0. Without loss of generality we assume that u(x, 0) > 0 and v(x, 0) > 0 in �̄.

Let (U, V ) be the solution of

⎧⎪⎪⎨
⎪⎪⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

V t = V (a2 − b2U − c2V ) in (0,∞),

U(0) = minx∈�̄ u(x, 0) > 0,
V (0) = maxx∈�̄ v(x, 0) > 0;

(8.44)
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and let (U, V ) be the solution of

⎧⎪⎪⎨
⎪⎪⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

V t = V (a2 − b2U − c2V ) in (0,∞),

U(0) = maxx∈�̄ u(x, 0) > 0,
V (0) = minx∈�̄ v(x, 0) > 0.

(8.45)

Note that (U, V ) and (U, V ) satisfy (8.38). Since

U(0) ≤ u(x, 0) ≤ U(0), V (0) ≤ v(x, 0) ≤ V (0)

by the comparison principle for two-species competition model (8.38) [50],

U(t) ≤ u(x, t) ≤ U(t), V (t) ≤ v(x, t) ≤ V (t)

hold for all x ∈ �̄ and t ≥ 0.
By (8.41) and (8.42),

lim
t→∞(U(t), V (t)) = lim

t→∞(U(t), V (t)) = (u∗, v∗). (8.46)

Therefore, (u(x, t), v(x, t)) → (u∗, v∗) uniformly in x as t →∞. �

8.3.2 Competition in Heterogeneous Environment

The semilinear parabolic system

⎧⎪⎪⎨
⎪⎪⎩

ut = d1�u+ u[m(x)− u− bv] in �× (0,∞),

vt = d2�v + v[m(x)− cu− v] in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �

(8.47)

models two species that are competing for the same resources, where u(x, t) and
v(x, t) represent the population densities of two competing species with respective
dispersal rates d1 and d2, the function m(x) represents their common intrinsic
growth rate, and b and c are inter-specific competition coefficients. We shall assume
that d1, d2, b, and c are positive constants, and u0(x), v0(x) are non-negative
functions that are not identically equal to zero.

We say that a steady state of (8.47) is a coexistence state if both components are
positive, and it is a semi-trivial state if one component is positive and the other is
zero. Under (A3), (8.47) has exactly two semi-trivial states, denoted by (θd1, 0) and
(0, θd2), where θd = θ(·, d) is the unique positive solution of (8.30).
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We assume that 0 < b, c < 1. If m(x) ≡ m for some positive constant m, by
Theorem 8.9, every solution (u, v) of (8.47) converges to ( 1−b

1−bcm,
1−c

1−bcm) for all
diffusion rates d1, d2 and any initial data. However, the dynamics of (8.47) is less
transparent when m is non-constant. To this end, we start by studying the stability
of the semi-trivial steady state (θd1, 0) of (8.47). For the rest of this subsection, we
focus on the case 0 < c < 1.

Theorem 8.10 ([37]) If (A3) holds andm(x) is non-negative, then there exists some
constant c∗ = c∗(m,Ω) ∈ (0, 1) such that the followings hold:

(a) For c ∈ (0, c∗), (θd1 , 0) is unstable for any d1, d2 > 0.
(b) For c ∈ (c∗, 1), there exists d∗ = d∗(c,m,Ω) > 0 such that (i) for d2 ∈ (0, d∗),

(θd1, 0) is unstable for any d1 > 0; (ii) for d2 > d∗, (θd1, 0) changes stability
at least twice as d1 increases from 0 to d2.

Note that the above theorem holds regardless of the specific value b > 0. The
most interesting case is where c∗ < c < 1 and d2 > d∗, where we have the following
implications:

(i) If b > 1, it is well known that without dispersal, species v always drives species
u to extinction. However, with dispersal, for some ranges of dispersal rates,
species v may fail to invade when rare.

(ii) If b < 1, it is well known that, without dispersal, species u and v always coexist.
Surprisingly, for certain dispersal rates, species u is able to drive species v to
extinction for arbitrary initial conditions. (See Theorem 1.9 of [37].)

Proof We sketch the main ideas in the proof of Theorem 8.10. The stability of
(θd1 , 0) is determined by the sign of the smallest eigenvalue, denoted by λ1, of the
problem

{
d2�ϕ + (m− cθd1)ϕ + λϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.48)

Note that λ1 = σ1(d2,m− cθd1). More specifically, (θd1, 0) is stable if λ1 > 0 and
unstable of λ1 < 0. To determine the sign of λ1, we observe that λ1 is a strictly
increasing function of d2, and that

lim
d2→0

λ1 = min
�̄
(cθd1 −m) ≤ min

�̄
(θd1 −m) < 0; (8.49)

lim
d2→+∞ λ1 =

∫
�
θd1

|�|
(
c −

∫
�
m∫

�
θd1

)
. (8.50)

Set

c∗ = inf
d1>0

∫
�
m∫

�
θd1

.

By Theorem 8.6, we see that c∗ ∈ (0, 1).
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For every c ∈ (0, c∗) and any d1 > 0, limd2→+∞ λ1 ≤ 0. Since λ1 is strictly
increasing in d2, we see that λ1 < 0 for any d1, d2 > 0. This proves part (a).

For every c ∈ (c∗, 1), for simplicity assume that there exist two positive constants
d < d such that c − ∫

�
m/

∫
�
θd1 > 0 for d1 ∈ (d, d), and c − ∫

�
m/

∫
�
θd1 < 0

for d1 ∈ (0, d) ∪ (d,+∞). Define d∗ = d∗(d1) := 1/λ1(m− cθd1), i.e.,

d∗ = sup
ϕ∈S

∫
�
(m− cθd1)ϕ

2∫
�
|∇ϕ|2 ,

where

S = {ϕ ∈ H 1(�) :
∫
�

(m− cθd1)ϕ
2 > 0}.

Now, d∗ = +∞ if and only if c− ∫
�
m/

∫
�
θd1 ≤ 0, i.e., d1 ∈ (0, d] ∪ [d,+∞). In

particular, d∗(d1) is finite when d1 ∈ (d, d), and that d∗(d1) → +∞ as d1 → d−
or d1 → d+. This allows us to define d∗ = infd1>0 d

∗(d1). For d2 < d∗, we have
d2 < d∗(d1) for all d1 > 0. In this case, Proposition 8.3(i) says that λ1 < 0 for all
d1 > 0, which implies that (θd1 , 0) is unstable for any d1 > 0 and d2 < d∗. For
d2 > d∗, we likewise have λ1 < 0 for d1 ∈ (0, d) ∪ (d,+∞); and λ1 > 0 in some
sub-interval of (d, d). Therefore λ1 changes sign at least twice as d1 increases from
0 to d2, i.e., part (b) is proved. �
Exercise Prove that λ1 < 0 whenever c < 1 and d1 ≥ d2. [Hint: Observe that λ1 is
monotone increasing in c as well as in d2, and that λ1 = 0 when c = 1 and when d2
is increased to d1.]

For every c > 0, define

%c =
{
(d1, d2) ∈ R

+ × R
+ : (θd1 , 0) is linearly stable

}
. (8.51)

Note that %c ⊂ {(d1, d2) ∈ R
+ ×R

+ : d1 < d2} since, by the comparison principle
for principal eigenvalues, λ1 < 0 for d1 ≥ d2. Clearly, %c is non-empty if and only
if c > c∗.

In a series of important works [21–24], He and Ni classified the dynamics of a
class of Lotka–Volterra competition–diffusion models which include system (8.47)
as a special case. One of their results can be stated as follows:

Theorem 8.11 ([24]) If assumption (A3) holds and m(x) is non-negative, c ∈
(c∗, 1) and 0 < b ≤ 1, then (θd1 , 0) is globally asymptotically stable for any
(d1, d2) ∈ Σc; if d2 ≥ d1 or (d1, d2) �∈ Σc, then system (8.47) has a unique
positive steady state which is globally asymptotically stable.
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One key ingredient in the proof of Theorem 8.11 is the following lemma:

Lemma 8.2 If bc ≤ 1, then any positive steady state of (8.47), if exists, is linearly
stable.

Proof Let (u, v) be any positive steady state of (8.47). The linear stability of (u, v)
is determined by the sign of the principal eigenvalue, denoted by λ1, of the problem

⎧⎨
⎩
d1�ϕ + ϕ(m− 2u− bv)− buψ + λ1ϕ = 0 in �,
d2�ψ − cvϕ + ψ(m− cu− 2v)+ λ1ψ = 0 in �,
∇ϕ · n = ∇ψ · n = 0 on ∂�.

(8.52)

As ϕ,ψ are eigenfunctions of λ1 and thus do not change sign in �, we may assume
without loss that ϕ > 0 and ψ < 0 in �̄. Set ϕ = uw and ψ = −vz. Thus w, z > 0
in �̄ and they satisfy

⎧⎨
⎩
d1∇(u2∇w)− u3w + bu2vz+ λ1 u

2w = 0 in �,
d2∇(v2∇z)+ cuv2w − v3z+ λ1v

2z = 0 in �,
∇w · n = ∇z · n = 0 on ∂�.

(8.53)

Multiplying the equation of w by w2 and integrating the result in �, we have

−2d1

∫
�

u2w|∇w|2 −
∫
�

(uw)3 + b

∫
�

(uw)2(vz)+ λ1

∫
�

u2w3 = 0.

If λ1 ≤ 0, then we have

∫
�

(uw)3 < b

∫
�

(uw)2(vz).

By Hölder inequality,

∫
�

(uw)3 < b

[∫
�

(uw)3
]2/3 [∫

�

(vz)3
]1/3

,

which implies that

∫
�

(uw)3 < b3
∫
�

(vz)3. (8.54)

Similarly, if λ1 ≤ 0, by the equation of v and similar argument we have

∫
�

(vz)3 < c3
∫
�

(uw)3, (8.55)

Clearly, (8.54) and (8.55) are in contradiction with bc ≤ 1. Hence, λ1 > 0. This
completes the proof. �
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By Theorem 8.11, the parameter region where species u wins is characterized by
the closure of the set %c. By a previous exercise, we have seen that, %c ⊂ {d1 ≤ d2},
i.e., species u may exclude species v only if u is the slower diffuser. Furthermore, by
Theorem 8.10, the set %c is non-empty for every c ∈ (c∗, 1). It is not difficult to see
that %c1 ⊂ %c2 for any c1 < c2 with c1, c2 ∈ (c∗, 1). In fact, the set %c converges
to the set {(d1, d2) : 0 < d1 < d2} as c → 1−, and this gives another perspective
upon why the slower diffuser wins the competition for the case when b = c = 1.
We refer to the next section for more details on the evolution of slow dispersal.

8.4 Evolution of Dispersal

It is an important question in spatial ecology to understand which patterns of dis-
persal can confer some selective or evolutionary advantage. Unconditional dispersal
refers to movement which does not depend on habitat quality or population density.
For the evolution of unconditional dispersal in the context of reaction–diffusion
models, it was shown that slower dispersal rate is selected when the environment
is spatially heterogeneous but temporally constant; see [16, 20]. In contrast, for
unconditional dispersal in spatially and temporally varying environments faster
dispersal rates may be selected in diffusion models [26]. In this section we focus on
the evolution of unconditional dispersal in spatially varying but temporally constant
environments.

Consider system (8.47) for the case when b = c = 1:

⎧⎪⎪⎨
⎪⎪⎩

ut = d1�u+ u[m(x)− u− v] in �× (0,∞),

vt = d2�v + v[m(x)− u− v] in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �.

(8.56)

The following result was established in [16]:

Theorem 8.12 Suppose that (A3) holds. If 0 < d1 < d2, then the semi-trivial
steady state (θd1, 0) of (8.56) is globally asymptotically stable among all solutions
with non-negative and non-trivial initial data.

Theorem 8.12 is surprising: when d1 = d2 = 0, two species will coexist since
they are identical. However, if the diffusion rates are positive for both species, the
slower diffuser always outcompetes the faster one. This also shows that the PDE
dynamics cannot be predicted by the ODE dynamics in this case.

Proof We first prove the instability of (0, θd2), which is determined by the sign of
the smallest eigenvalue, denoted by λ1 := λ1(d1, d2), of

{
d1�ϕ + (m− θd2)ϕ + λ1ϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.57)
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Note that λ1(d1, d2) = σ1(d1,m−θd2) and hence it is monotone increasing in d1. We
may normalize ϕ such that ϕ > 0 and

∫
�
ϕ2 = 1. Denote ϕ′ = ∂ϕ

∂d1
and λ′1 = ∂λ1

∂d1
.

Differentiating the equation of ϕ with respect to d1, multiplying the result by ϕ and
integrating in �, we have

∫
�

ϕ[�ϕ + d1�ϕ
′ + (m− θd2)ϕ

′ + λ′1ϕ + λ1ϕ
′] = 0,

from which we obtain λ′1 = ∫
�
|∇ϕ|2 > 0. Hence, λ1 is strictly increasing in d1.

Since λ1(d2, d2) = 0 (where ϕ = θd2/‖θd2‖L2(�)), we see that λ1 < 0 if and only if
d1 < d2.

Next, we claim that

lim sup
t→∞

v(x, t) ≤ θd2(x). (8.58)

To establish our assertion, note that

vt = d2�v + v(m(x)− u− v) ≤ d2�v + v(m(x)− v).

Consider

⎧⎨
⎩
Vt = d2�V + V (m− V ) in �× (0,∞),

∇V · n = 0 on ∂�× (0,∞),

V (x, 0) = v(x, 0) in �̄.
(8.59)

By the comparison principle of parabolic equations [48], v(x, t) ≤ V (x, t). Thus

lim sup
t→∞

v(x, t) ≤ lim sup
t→∞

V (x, t) = θd2(x).

Therefore, for each ε > 0, there exists T1 := T1(ε) such that for t ≥ T1 and x ∈ �̄,

v(x, t) ≤ (1 + ε)θd2(x).

Consider next the solution (U(x, t), V (x, t)) of

⎧⎪⎪⎨
⎪⎪⎩

Ut = d1�U + U(m(x)− U − V ) in �× [T1,∞),

Vt = d2�V + V (m(x)− U − V ) in �× [T1,∞),

∇U · n = ∇V · n = 0 on ∂�× [T1,∞),

U(x, T1) = δϕ, V (x, T1) = (1 + ε)θd2 in �̄.

(8.60)

We check that (δϕ, (1 + ε)θd2) is a pair of sub-super solution of (8.60) as follows:

d2�[(1 + ε)θd2 ] + (1 + ε)θd2(m− δϕ − (1 + ε)θd2)

= (1 + ε)[d2�θd2 + θd2(m− θd2)− (δϕ + εθd2)θd2 ] ≤ 0
(8.61)
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and

d1�(δϕ)+ δϕ
[
m− δϕ − (1 + ε)θd2

]
= δ

[
d1�ϕ + ϕ(m− θd2)+ ϕ(−δϕ − εθd2)

]
= δϕ

[−λ1 − δϕ − εθd2

] ≥ 0,
(8.62)

since λ1 < 0 and δ, ε are chosen small.
By the comparison principle for two-species competitive systems, we see that

U(x, t) is increasing in t and V (x, t) is decreasing in t . Therefore (U(x, t), V (x, t))
converges, as t → ∞, to some limit (U∗(x), V ∗(x)). By the elliptic regularity
theory we can show that (U∗(x), V ∗(x)) is a non-negative steady state of (8.56),
with U∗ > 0.

We claim that V ∗ ≡ 0. If not, then (U∗, V ∗) is a positive steady state of (8.56),
i.e., they satisfy

⎧⎨
⎩
d1�U

∗ + U∗(m(x)− U∗ − V ∗) = 0 in �,
d2�V

∗ + V ∗(m(x)− U∗ − V ∗) = 0 in �,
∇U∗ · n = ∇V ∗ · n = 0 on ∂�.

(8.63)

Consider the smallest eigenvalue, denoted by λ1(d), of the eigenvalue problem

d�ϕ + (m− U∗ − V ∗)+ λϕ = 0 in �, ∇ϕ · n = 0 in ∂�.

Sincem is non-constant, one can show thatm−U∗−V ∗ is also non-constant. Hence,
λ1(d) is strictly increasing in d. By the equation of U∗, we see that λ1(d1) = 0 with
corresponding ϕ = U∗. Similarly from the equation of V ∗ we get λ1(d2) = 0,
which is a contradiction, since d1 �= d2.

Hence, V ∗ = 0 andU∗ = θd1 , i.e., limt→∞(U(x, t), V (x, t)) = (θd1 , 0).Choose
δ, ε small such that U(x, T1) = δϕ ≤ u(x, T1) and v(x, T1) ≤ (1 + ε)θd2 =
V (x, T1). By the comparison principle for two-species competition systems, we
have U(x, t) ≤ u(x, t) and v(x, t) ≤ V (x, t). In particular, v(x, t) → 0 as
t → ∞ and lim inft→∞ u(x, t) ≥ θd1(x). Since, by repeating the previous
argument for (8.58), one can also show that lim supt→∞ u(x, t) ≤ θd1(x), we have
limt→∞ u(x, t) = θd1 . This completes the proof. �

Consider k-species competition model

{
ui,t = di�ui + ui(m−∑k

i=1 ui) in �× (0,∞),

∇ui · n = 0 on ∂�× (0,∞).
(8.64)

A challenging open problem is whether the slowest diffuser still wins the
competition in the context of k competing species with k ≥ 3.

Open Problem Suppose that m is positive, non-constant, and continuous in �̄. If
0 < d1 < d2 < . . . < dk and k ≥ 3, is (θd1 , 0, . . . , 0) globally asymptotically stable
among all positive initial data?
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The mathematical difficulty in solving this open problem is that competition
models for three or more species are not monotone dynamical systems.

8.5 Persistence and Competition in Advective Environments

In this section we consider the persistence of a single species and the competition of
two populations in advective environments. We will focus on the effects of advection
and boundary conditions on the persistence and competition of populations.

8.5.1 Single Species in Advective Environment

How can populations persist in streams when they are constantly washed down-
stream? This question, termed as the “drift paradox” in the literatures, has received
considerable attention. Speirs and Gurney [52] offered an explanation based upon
the diffusive movement of organisms, and they considered the following reaction–
diffusion model:

⎧⎪⎪⎨
⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
u(L, t) = 0, for t > 0,
u(x, 0) = u0(x), for 0 < x < L,

(8.65)

where u(x, t) denotes the population density at location x and time t , d is the
diffusion rate, L is the size of the habitat, and in the sequel, we call x = 0 the
upstream end and x = L the downstream end. The constant q is the effective
speed of the current (sometimes we also call q the advection speed/rate, and we
remark here that q is positive since x = L is defined to be the downstream end).
The constant r > 0 accounts for the intrinsic growth rate, which indicates the
spatial homogeneity of the environment. We assume that u0 is non-negative and
not identically zero, and d, r, q, L are all positive constants. In other words, the
spatial heterogeneity of the problem (8.65) is introduced solely by the drift and the
boundary conditions.

Speirs and Gurney [52] studied the local stability of steady state u = 0 and
concluded that it is unstable if and only if q <

√
4dr and L > L∗, where

L∗ = 2d
π − arctan

(√
4dr−q2

q

)
√

4dr − q2
.
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That is, the persistence is only possible when advection is slow relative to diffusion
and the stream is long enough. It is natural to inquire whether such predictions
still hold for other situations. To this end, Vasilyeva and Lutscher [53] considered
the following single species problem with a different boundary condition at the
downstream end x = L. Their model is given by

⎧⎪⎪⎨
⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
ux(L, t) = 0, for t > 0,
u(x, 0) = u0(x), for 0 < x < L.

(8.66)

The following result, which is similar in nature to the result of Speirs and Gurney,
was proved in [53]:

Theorem 8.13 The species can persist if and only if q <
√

4dr and L > L∗∗,
where

L∗∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2d
arctan

q

√
4dr−q2

2rd−q2√
4dr−q2

for 0 < q ≤ √
2dr,

2d
π+arctan

q

√
4dr−q2

2rd−q2√
4dr−q2

for
√

2dr < q <
√

4dr.

(8.67)

Proof The stability of u = 0 is determined by the sign of λ1, the smallest eigenvalue
of the eigenvalue problem

{
dϕxx − qϕx + rϕ + λ1ϕ = 0, for 0 < x < L,

dϕx(0)− qϕ(0) = ϕx(L) = 0.
(8.68)

Set ϕ = eqx/(2d)ψ . Then

{
dψxx + ψ(− q2

4d + r + λ1) = 0, for 0 < x < L,

ψx(0)− q
2d ψ(0) = ψx(L)+ q

2d ψ(L) = 0.
(8.69)

Thus

ψ(x) = A cos(

√
4d(r + λ1)− q2

2d
x)+ B sin(

√
4d(r + λ1)− q2

2d
x).

As a consequence of the boundary conditions of ψ , we have

A = B

√
4d(r + λ1)− q2

q
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and

A
−
√

4d(r+λ1)−q2

2d sin(
√

4d(r+λ1)−q2

2d L)+ B

√
4d(r+λ1)−q2

2d cos(
√

4d(r+λ1)−q2

2d L)

+ q
2d [A cos(

√
4d(r+λ1)−q2

2d L)+ B sin(
√

4d(r+λ1)−q2

2d L)] = 0.
(8.70)

Combining these two equations and using (A,B) �= (0, 0), we obtain

tan(

√
4d(r + λ1)− q2

2d
L)

[q
d
− 2(r + λ1)

q

]+
√

4d(r + λ1)− q2

d
= 0.

Set λ1 = 0, then

tan(

√
4dr − q2

2d
L∗∗) = q

√
4dr − q2

2rd − q2
,

where L∗∗ is the critical length given by (8.67) so that λ1 < 0 when L > L∗∗; and
λ1 > 0 when L < L∗∗. This finishes the proof. �

It is natural to consider more general boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
dux(L, t)− qu(L, t) = −bqu(L, t), for t > 0,
u(x, 0) = u0(x), for 0 < x < L.

(8.71)

Here the (non-negative) parameter b measures the rate of population loss at the
downstream end x = L caused by the drift [38].

It is shown in [41] that the species can persist if and only if q < q∗ andL > L∗∗∗,
where

q∗ =
⎧⎨
⎩

√
dr

b(1−b) 0 < b ≤ 1
2 ;

√
4dr b ≥ 1

2 ,

and L∗∗∗ is an explicit function of d, r, q, b. (See Lemmas 2.1 and 2.2 of [41] for
details.) It is interesting to see that the critical value q∗ depends on b only for b ≤ 1

2 ,
while for b ≥ 1

2 , q∗ = √
4rd is the minimal traveling wave speed for the Fisher-KPP

equation in the whole real line.

Exercise

(i) Show that L∗∗, given in (8.67), is a strictly decreasing function of d.
(ii) Prove that there exists some d∗ > 0 such that L∗ is decreasing for d < d∗ and

increasing for d > d∗. What is the biological interpretation of this result?
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8.5.2 Evolution of Faster Dispersal

When the movement of organisms is subject to external forces such as river flow,
how should species disperse to avoid the invasion of a mutant species with different
movement strategies? In this subsection we consider a two-species competition
model in an open advective environment: Individuals are exposed to unidirectional
flow, with a net loss of individuals at the downstream end. We assumed that two
species have the same advection rates but different dispersal rates. More specifically,
we consider
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = d1uxx − qux + u(1 − u− v), 0 < x < L, t > 0,
vt = d2vxx − qvx + v(1 − u− v), 0 < x < L, t > 0,
d1ux(0, t)− qu(0, t) = d2vx(0, t)− qv(0, t) = 0, t > 0,
ux(L, t) = vx(L, t) = 0, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < L.

(8.72)

Theorem 8.14 ([38]) If d1 > d2, then the semi-trivial steady state (u∗, 0),
whenever it exists, is globally asymptotically stable among non-negative and non-
trivial solutions of (8.72), where u∗ > 0 is the unique positive solution of

{
d1u

∗
xx − qu∗x + u∗(1 − u∗) = 0, 0 < x < L,

d1u
∗
x(0)− qu∗(0) = u∗x(L) = 0.

(8.73)

Theorem 8.14 implies that in an open advective environment, unidirectional
flow can put slow dispersers at a disadvantage and higher dispersal rates are being
selected. In particular, in a homogeneous advective environment with the free-flow
boundary condition at the downstream end, a population with higher dispersal rate
will always displace one with lower dispersal rate. We refer to [12, 13, 17, 33, 42–
45, 54–56] for recent developments.

In the following we illustrate that (u∗, 0) is stable for d1 ≈ d2, d1 > d2, and
unstable for d1 ≈ d2, d1 < d2. This implies that a mutant can invade when rare if
and only if it has the larger dispersal rate. In terms of the adaptive dynamics theory,
the joint effects of small mutation and selection will tend to increase the average
diffusion rate of the species.

The stability of (u∗, 0) is determined by the sign of the smallest eigenvalue,
denoted by λ1 = λ1(d1, d2), of the problem

⎧⎨
⎩

d2ϕxx − qϕx + (1 − u∗)ϕ + λ1ϕ = 0, 0 < x < L,

d2ϕx(0)− qϕ(0) = ϕx(L) = 0,
ϕ > 0 in (0, L).

(8.74)
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Lemma 8.3 Let λ1 be the principal eigenvalue of (8.74). Then

∂λ1

∂d2

∣∣∣∣
d2=d1

=
∫ L

0 (e
− q

d1
x
u∗)xu∗xdx∫ L

0 e
− q

d1
x
(u∗)2dx

< 0.

In particular, for d1 ≈ d2, (u∗, 0) is stable if d1 > d2, and unstable if d1 < d2.

Proof We first calculate ∂λ1
∂d2

. Denote ϕ′ = ∂ϕ
∂d2

and λ′1 = ∂λ1
∂d2

, and differentiate the
equation of ϕ with respect to d2, we obtain

{
d2ϕ

′
xx + ϕxx − qϕ′x + (1 − u∗)ϕ′ + λ′1ϕ + λ1ϕ

′ = 0, 0 < x < L,

d2ϕ
′
x(0)+ ϕx(0)− qϕ′(0) = ϕ′x(L) = 0.

(8.75)

Multiplying the first equation of (8.75) by e−(q/d2)xϕ, the first equation of (8.74) by
e−(q/d2)xϕ′, subtracting and integrating the result in (0, L), we have

λ′1
∫ L

0
e−(q/d2)xϕ2 −

∫ L

0

(
e−(q/d2)xϕ

)
x
ϕx = 0.

When d2 = d1, we have λ1 = 0 and ϕ = Cu∗ for some positive constant C. Thus

∂λ1

∂d2
|d2=d1 =

∫ L

0 (e
− q

d1
x
u∗)xu∗xdx∫ L

0 e
− q

d1
x
(u∗)2dx

. (8.76)

We claim that u∗ < 1 for 0 ≤ x ≤ L. This follows directly from the fact that, for
each constant C ≥ 1, u = C is a strict super-solution for the equation of u∗.

Next we show that u∗x > 0 for 0 ≤ x < L. Since u∗x(L) = 0 and u∗ < 1, by the
equation of u∗ we see that u∗xx(L) < 0. Hence, there exists some δ > 0 such that
u∗x > 0 in [L − δ, L). To prove u∗x > 0 in [0, L), we argue by the contradiction. If
not, we may assume that there exists some x1 < L − δ such that u∗x > 0 in [x1, L)

and u∗x(x1) = 0. Set w = u∗x/u∗. Then w satisfies

d1wxx + wx(2w − q) = u∗w (8.77)

in (0, L) and w(x1) = w(L) = 0, w > 0 in (x1, L). Therefore, there exists
some x2 ∈ (x1, L) such that w(x2) = maxx1≤x≤L w(x). Hence, wx(x2) = 0 and
wxx(x2) ≤ 0, which contradicts (8.77). This proves u∗x > 0 for x ∈ [0, L).

By the assertion u∗ < 1 we have d1u
∗
xx − qu∗x < 0 in (0, L). Hence, d1u

∗
x − qu∗

is strictly decreasing. Since d1u
∗
x(0) − qu∗(0) = 0, then d1u

∗
x − qu∗ < 0 for

0 < x ≤ L. Therefore, (e−(q/d1)xu∗)x = e−(q/d1)x(u∗x − q
d1
u∗) < 0. This, together

with u∗x > 0 in [0, L) and (8.76), shows that ∂λ1
∂d2

< 0 when d2 = d1. The proof is
complete. �
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The boundary condition appears to play an important role in the outcome of
evolution. In a homogeneous advective environment with the free-flow boundary
conditions, larger dispersal rates evolve. In contrast, numerical simulations sug-
gest that in a homogeneous advective environment with more hostile boundary
conditions, there seems to evolve a unique, intermediate dispersal rate, which is
evolutionarily stable. To be more specific, consider

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx − qux + u(1 − u− v), for 0 < x < L, t > 0,
vt = d2vxx − qvx + v(1 − u− v), for 0 < x < L, t > 0,
d1ux(0, t)− qu(0, t) = d2vx(0, t)− qv(0, t) = 0, for t > 0,
d1ux(L, t)− qu(L, t) = −bqu(L, t), for t > 0,
d2vx(L, t)− qv(L, t) = −bqv(L, t), for t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), for 0 < x < L.

(8.78)

For b ∈ [0, 1], it is shown in [38, 41] that if d1 > d2, then (u∗, 0), whenever
it exists, is globally asymptotically stable, i.e., the faster dispersal rate is always
selected. For b ≥ 3/2, we have the following conjecture:

Conjecture Suppose that b ∈ [ 3
2 ,+∞]. Then there exists some d∗ > 0 such that

if d2 < d1 ≤ d∗ or d∗ ≤ d1 < d2, then (u∗, 0), whenever it exists, is globally
asymptotically stable, where u∗ > 0 satisfies

⎧⎨
⎩
d1u

∗
xx − qu∗x + u∗(1 − u∗) = 0, for 0 < x < L,

d1u
∗
x(0)− qu∗(0) = 0,

d1u
∗
x(L)− qu∗(L) = −bqu∗(L).

(8.79)

The d∗ above is a special case of an evolutionarily stable strategy (ESS) in the
evolution game theory, i.e., an ESS is a strategy which, if adopted by a population
in a given environment, cannot be invaded by any alternative strategy that is initially
rare. When b ∈ [0, 1], we can regard d∗ = +∞, i.e., +∞ is an ESS.

8.6 Conclusion

In this chapter we studied some reaction–diffusion models in spatial ecology. Topics
covered include the logistic model for a single species and related issues, two-
species Lotka–Volterra competition models in homogeneous and heterogeneous
environments, the persistence and competition in advective environments, and the
evolution of dispersal in heterogeneous and advective environments. We introduced
some basic tools for reaction–diffusion equations and systems, including the super-
solution and sub-solution method, the variational principle for principal eigenvalues,
Lyapunov functionals, the comparison principles for parabolic equations and sys-
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tems. We also presented some mathematical problems, ranging from elementary
exercises to open research questions. In the following we discuss several recent
works and point interested readers to relevant references:

In [46] Nagahara and Yanagida proved that the optimal control m∗ of the
functional J (see (8.33) in subsection 2.4) is of the “bang-bang” type, i.e., there
exists a measurable set E ⊂ � such that m∗ = 1 in E and m∗ = 0 in the
complement of E. This answers a conjecture of Ding et al. [15] affirmatively.

We recall that θ(·, d) is the unique positive solution of (8.30). An open problem
is whether maxx∈�̄ θ(x, d) is monotone decreasing in d. Such question came from
the study of predator–prey systems in heterogeneous environments [39]. If � is an
interval and m is monotone, then maxx∈�̄ θ(x, d) is monotone decreasing in d; see
[35], which extended an earlier result in [39]. However, the question remains open
for general � and m.

In [49] Perthame and Souganidis considered an integro-PDE model for a
population structured by the spatial variables and a continuous trait variable which
is the diffusion rate. Such model can be viewed as the extension of the competition
model (8.56) from two-phenotypes to infinitely many phenotypes. It is shown in
[49], and independently in [32], that in the limit of small mutation rate, the unique
steady state solution forms a Dirac mass in the trait variable, supported at the
smallest possible diffusion rate. This echoes the result of Dockery et al. in [16], i.e.,
the slowest diffusion rate is favored. We refer to [19, 31] for further development.

For system (8.78), the species can persist if and only if q < q∗ and L > L∗∗∗
(Lemmas 2.1 and 2.2 of [41]). We proved in [18] that if 0 < b ≤ 3/2, then L∗∗∗ is
strictly decreasing in d; if b > 3/2, then L∗∗∗ decreases in d first and then increases
in d. This reveals a dramatic difference between b < 3/2 and b > 3/2. Our
preliminary analysis of system (8.78) suggests that the conclusion of Theorem 8.14,
which states that the faster diffuser can always competitively exclude the slower
diffuser, may fail for some 1 < b < 3/2, i.e., the faster dispersal rate may not
be selected. This is in strong contrast to the case 0 ≤ b ≤ 1 for which the faster
dispersal rate is always selected [38, 41].

In conclusion, the materials presented in this chapter illustrate some interesting
questions in spatial ecology and evolution. Such questions are, on the one hand, well
connected with important issues in biology, and on the other hand, deeply rooted in
mathematics and bringing new and exciting challenges.
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Chapter 9
Kinetic Equations and Cell Motion: An
Introduction

Benoît Perthame

Abstract Kinetic theory is an old subject which finds its motivations in the
description of fluids at the so-called mesoscopic scale where molecules interact but
are too numerous for describing the interacting particles individually. We present
several examples from physics, we give some mathematical background showing
that the kinetic-transport equation enjoys interesting functional analytic properties
as other partial differential equations. We also describe in full generality how
macroscopic models are derived from kinetic equations. This material gives us the
tools to introduce models for bacterial run and tumble motion. The subject has been
progressing quickly in the last decades, and a hierarchy of models are now available
up to the scale of molecular pathways describing the cell decision to tumble.

Keywords Kinetic equations · Run and tumble · Keller–Segel system ·
Asymptotic analysis · Diffusion limit · Biochemical pathways

9.1 Introduction

Kinetic physics is an old field which aims at describing natural phenomena in the
phase space, thanks to the position (denoted by x below) and velocity of particles
(denoted by ξ ∈ V below where V is the set of possible velocities). It goes back to
James C. Maxwell who wrote an essay On the Stability of the Motion of Saturn’s
Rings in 1859 explaining that Saturn rings are formed of colliding rocks. A few
years later (1872), Ludwig Boltzmann gave a description of a gas as the result
of collisions between molecules. He wrote the famous Boltzmann equation for

B. Perthame (�)
Sorbonne University, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, Paris, France

© Springer Nature Switzerland AG 2019
A. Bianchi et al. (eds.), The Dynamics of Biological Systems, Mathematics
of Planet Earth 4, https://doi.org/10.1007/978-3-030-22583-4_9

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22583-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-22583-4_9


240 B. Perthame

the density f (x, ξ, t) of molecules which at position x ∈ R
3 have the velocity

ξ ∈ V = R
3,

∂

∂t
f (x, ξ, t)+ ξ.∇xf︸ ︷︷ ︸

Transport with velocity ξ

= Q(f, f ).︸ ︷︷ ︸
Binary collisions

We refer to the textbooks [21, 22, 76] for this rich and deep subject.
A new chapter on kinetic physics was written 60 years after Boltzmann, with

the description of plasmas by Andrei Vlasov (1938). In physics, a plasma is matter
made of charged particles (ions, electrons) and the equations are written, again with
v ∈ R

3, as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t
f (x, ξ, t)+ ξ.∇xf +

Force of the electric field︷ ︸︸ ︷
E(x, t).∇ξ f = 0,

−�U = n(x, t) := ∫
R3 f (x, ξ, t)dξ, E = −∇xU,

where U denotes the electric potential and E the electric field.
In nuclear physics, X-ray imaging and radiotherapy [19], scattering (neutrons,

photons, radiative transfer), the equation is written for particles velocities ξ ∈ V =
S

2 as

∂

∂t
f (x, ξ, t)+ ξ.∇xf + σ(x, t)f︸ ︷︷ ︸

Absorbtion

=
∫
V

K(ξ, ξ ′)f (x, ξ ′, t)dξ ′
︸ ︷︷ ︸

Emmission

. (9.1)

The kernel K(ξ, ξ ′) describes the rate of change from velocity ξ ′ to velocity ξ

(usually under the effect of interaction with atoms or molecules).
The formalism of kinetic equation is well adapted to describe any phenomenon

for which the knowledge of positions is not enough to predict the dynamics. As
for planets in a solar system, the knowledge of the velocities is also necessary. The
same need occurs in several areas of biology. For instance, in neuron networks, the
density is about voltage and gating (ionic channels opening and closing) [15, 61].
Bacterial motion is also well described, at the cell scale by kinetic equations. This
is the specific subject we are going to treat here.

We organize our presentation as follows. We begin by some function analytic
tools for the kinetic-transport equation in order to show that, because space and
velocity interplay, several remarkable regularity estimates can be derived which
give tools for the mathematical analysis. Then we turn to asymptotic methods
which make the relation between kinetic equations and macroscopic equation (in
the space, ignoring individual velocities). This is one of the historical benefits from
kinetic theory: based on the knowledge of individual behavior, one can derive the
coefficients at the macro-scale. It is only in Sect. 9.5 that we introduce the models
of bacterial motion. We begin with the simplest model which allows to derive
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the Patlak/Keller–Segel model [47], this is the most classical system to describe
chemotactic movement. This paves the way for a more evolved class of equation
in Sect. 9.6 where cells decide of their tumbling rate through integration along
their path. The next section treats of the recent subject of molecular pathways
for tumbling decision. We conclude with some references and mentioning various
subjects that we do not have time to treat here.

9.2 Functional Analysis of Kinetic Equations

A deep mathematical theory has been developed about kinetic equations, with
several functional inequalities which are easy to describe on the simple kinetic-
transport equation

⎧⎨
⎩

∂
∂t
f (x, ξ, t)+ ξ.∇xf = 0, x ∈ R

d , ξ ∈ V, t ∈ R,

f (x, ξ, 0) = f 0(x, ξ).

(9.2)

Using the method of characteristics, the solution is

f (x, ξ, t) = f 0(x − ξ t, ξ), (9.3)

from which one directly concludes many useful consequences as non-negativity,
f 0 ≥ 0 implies f (x, ξ, t) ≥ 0 and several others, which we list, non-exhaustively,
now.

Lp Estimates Using Fubini’s theorem, we obtain from (9.3) mass conservation
∫
Rd×V

f (x, ξ, t)dxdξ =
∫
Rd×V

f 0(x, ξ)dxdξ.

More generally all Lp norms are conserved for all p ≥ 1

∫
Rd×V

|f (x, ξ, t)|pdxdξ =
∫
Rd×V

|f 0(x, ξ)|pdxdξ. (9.4)

Macroscopic Quantities More interesting conclusions can be drawn on the so-
called macroscopic quantities defined by

n(x, t) :=
∫
V

f (x, ξ, t)dξ, density,

n(x, t)u(x, t) :=
∫
V

ξf (x, ξ, t)dξ, momentum,

E(x, t) = n(x, t)
|u(x, t)|2

2
+ n(x, t)e(x, t) :=

∫
V

|ξ |2
2

f (x, ξ, t)dξ, energy,
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where e(x, t) denotes the internal energy (a function of temperature). These rep-
resent, usually speaking, the observables. One cannot easily access experimentally
to the molecular distribution f of molecules or ions, but quantities as the density,
velocity, temperature, electric field are measurable.

Dispersion Inequalities The simplest functional inequality is certainly the disper-
sion inequality which gives the time decay of the macroscopic density. Notice that in
the phase space there is no decay but conservation according to (9.4). The dispersion
inequality [5] reads

|n(x, t)| ≤ 1

td

∫
Rd

sup
ξ∈V

|f 0(x, ξ)|dx. (9.5)

This can be compared to the heat/Fourier equation for which the decay is as 1
td/2 .

Proof of (9.5). We have

|n(x, t)| ≤
∫
Rd

|f (x, ξ, t)|dξ =
∫
Rd

|f 0(x − ξ t, ξ)|dξ,

and thus

|n(x, t)| ≤
∫
Rd

sup
η∈V

|f 0(x − ξ t, η)|dξ =
∫
Rd

sup
η∈V

||f 0(x − y, η)|dy
td
,

and thus result follows directly. ��
Strichartz Inequalities for Kinetic Equations A consequence, by duality of the
above dispersive estimates, are the Strichartz inequalities for kinetic equations
which were discovered in [20], see also [58], F. Catsella’s PhD for the correct
general numbers and [46] for the endpoints. The Strichartz inequalities are

‖'‖Lq(Rt ;Lp(Rd
x ))

≤ C(d)‖f 0‖La(R2d ),

for any real numbers a, p, and q such that

1 ≤ p <
d

d − 1
,

2

q
= d(1 − 1

p
), 1 ≤ a = 2p

p + 1
<

2d

2d − 1
.

Kinetic Averaging Lemmas We begin with a very simple result, in fact the first
one obtained in the framework below in [33]:

Theorem 9.1 Let f, g ∈ L2(Rd × R
d) satisfy the stationary kinetic equation

ξ.∇xf = g,
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then, for measurable subsets V ⊂ R
d such that diam(V ) is finite, we have

∥∥
∫
V

f (x, ξ)dξ
∥∥
H 1/2(Rd )

≤ C‖f ‖1/2
L2 ‖g‖1/2

L2

for some constant C(diam(V ), d).

Proof We perform Fourier transform in x and set

f̂ (k, ξ) =
∫

e−ixkf (x, ξ)dx.

We have

ik.ξ f̂ (k, ξ) = ĝ(k, ξ).

Because we cannot invert globally the symbol ik.ξ , we introduce a parameter λ > 0
and write

(λ+ ik.ξ) f̂ (k, ξ) = ĝ(k, ξ)+ λf̂ (k, ξ).

Therefore, we may compute

f̂ (k, ξ) = ĝ(k, ξ)+ λf̂ (k, ξ)

λ+ ik.ξ
,

n̂(k, ξ) =
∫
V

ĝ(k, ξ)

λ+ ik.ξ
dξ + λ

∫
V

f̂ (k, ξ)

λ+ ik.ξ
dξ.

Consider the first term on the right-hand side, we may estimate it as

∣∣∣∣
∫
V

ĝ(k, ξ)

λ+ ik.ξ
dξ

∣∣∣∣
2

≤
∫
V

|̂g(k, ξ)|2dξ
∫
V

1

|λ+ ik.ξ |2 dξ

≤
∫
V

|̂g(k, ξ)|2dξ 1

λ2

∫
V

1

1 + | k
λ
.ξ |2 dξ

≤
∫
V

|̂g(k, ξ)|2dξ π

λ|k| diam(V )d−1.

Arguing similarly on the second term on the right-hand side, we conclude that

|̂n(k, ξ)|2 ≤ πdiam(V )d−1
[ ∫

V

|̂g(k, ξ)|2dξ 1

λ|k| +
∫
V

|f̂ (k, ξ)|2dξ λ

|k|
]
.
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Choosing the value of λ which minimizes the right-hand side, we find

|k| |̂n(k, ξ)|2 ≤ C

(∫
V

|̂g(k, ξ)|2dξ
∫
V

|f̂ (k, ξ)|2
)1/2

which is exactly the announced result. ��
A similar result can be proved for the evolution equation and reads:

Theorem 9.2 Let f, g ∈ L2(Rd × R
d × R) and

∂

∂t
f (x, ξ, t)+ ξ.∇xf = g.

Then, for measurable subsets V ⊂ R
d such that diam(V ) is finite, we have

‖
∫
V

f (x, ξ, t)dξ‖H 1/2(Rd×R) ≤ C‖f ‖1/2
L2 ‖g‖1/2

L2 .

A number of generalizations and improvements have been derived around
averaging lemmas and regularity gain in kinetic equations. The major reason is that
averaging lemmas show that macroscopic quantities are compact, and this is useful
for existence theory and for asymptotic results as described later. See [62] for a
general compactness result.

Further reading on these questions can be found in [30, 58].

Existence of Solutions to Nonlinear Kinetic Equations The functional analytic
framework presented above has been a major step towards proving existence for
solutions to the Boltzmann equation, the Vlasov-Maxwell equation, and many
others. We do not present this topic which is too far from our purpose here and
relies on an enormous literature.

9.3 Diffusion Limit

The derivation of macroscopic equations, that are written in the physical space using
only the variable x is an important chapter of kinetic theory. Indeed, to compute
numerically in the phase space is resource consuming because of the number of
variables, but the derivation of macroscopic coefficient from the knowledge of
particles properties is useful. We refer both to an early fundamental paper and a
recent survey for this topic [4, 32, 39]. In this section, to simplify the setting, we
assume that V = R

d .
We begin with several notations and assumptions. Let us introduce a function M ,

like Maxwellian which refers to the special case M(ξ) = 1
(2π)d/2 exp(−|ξ |2

2 ), with
the properties
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M(ξ) ≥ 0,
∫
Rd

M(ξ)dξ = 1,
∫
Rd

|ξ |2M(ξ)dξ <∞,

∫
Rd

ξM(ξ)dξ = 0,

(9.6)

and let the inhomogeneous collision intensity be denoted by k(x), and we assume
that

0 < k− ≤ k(x) ≤ k+, k(x) ∈ Lip(Rd). (9.7)

We consider the scattering type equation rescaled as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε ∂
∂t
fε(x, ξ, t)+ ξ · ∇xfε = k(x)

ε

[
nε(x, t)M(ξ)− fε],

nε(x, t) :=
∫
Rd fε(x, ξ, t)dξ,

fε(x, ξ, t = 0) = f 0(x, ξ).

(9.8)

We assume that the relative L2 norm (see [59] for a general introduction) of f 0 is
bounded, that is

∫
R2d

|f 0(x, ξ)|2
M(ξ)

dξdx := K0
2 <∞. (9.9)

Theorem 9.3 As ε →, there is a weak limit

fε(x, ξ, t) −→
ε→0

n(x, t)M(ξ),

⎧⎨
⎩

∂
∂t
n(x, t)− div

[
A
k(x)

∇n(x, t)] = 0,

n(x, t = 0) = n0(x) := ∫
Rd f

0(x, ξ)dξ,

(9.10)

with the matrix A ∈ Md×d given by

Aij =
∫
Rd

ξiξjM(ξ)dξ, 1 ≤ i, j ≤ d.

Proof We are going to use the method of moments which is based on the formula
obtained integrating in ξ the Eq. (9.8)

∂

∂t
nε + div Jε = 0, (9.11)
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with

Jε(x, t) =
∫
Rd

ξ

ε
fε(x, ξ, t)dξ. (9.12)

We are going to prove that both nε and Jε converge and identify the relation between
their limits as the Eq. (9.10). To do so, we proceed in several steps.

Step 1 (A Priori Estimates) We prove the bounds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R2d

fε(x, ξ, t)
2

M(ξ)
dxdξ ≤ K0

2 ,

∫
R2d

nε(x, t)
2dx ≤ K0

2 ,

∫ ∞

0

∫
R2d

∣∣fε(x, ξ, t)
M(ξ)

− nε
∣∣2M(ξ)dxdξdt ≤ ε2

2

K0
2

k−
,

∫ ∞

0

∫
R2d

|Jε(x, t)|2dxdt ≤ 1

2

K0
2

k−

∫
Rd

|ξ |2M(ξ)dξ.

(9.13)

These are obtained multiplying the Eq. (9.8) by fε
M

and integrating in x, ξ . We
obtain

ε

2

d

dt

∫
R2d

fε(x, ξ, t)
2

M(ξ)
dxdξ = 1

ε

∫
R2d

k(x)

[
nε(x, t)fε(x, ξ, t)− fε(x, ξ, t)

2

M(ξ)

]
dxdξ

= −1

ε

∫
R2d

k(x)

∣∣∣∣fε(x, ξ, t)M(ξ)
− nε

∣∣∣∣
2

M(ξ)dxdξ.

From this, we conclude the first three bounds, noticing that the Cauchy–Schwarz
inequality gives

nε(x, t)
2 =

(∫
Rd

fε(x, ξ, t)

M(ξ)1/2 M(ξ)1/2dξ

)2

≤
∫
Rd

fε(x, ξ, t)
2

M(ξ)
dξ.

For the last inequality, we use the assumption (9.6) to write

Jε(x, t) =
∫
Rd

ξ

ε
fε = 1

ε

∫
Rd

ξ [ fε

M(ξ)
− nε(x, t)]M(ξ)dξ.

Therefore, using the Cauchy–Schwarz inequality, we find

|Jε(x, t)|2 ≤ 1

ε2

∫
Rd

∣∣∣∣ fε

M(ξ)
− nε(x, t)

∣∣∣∣
2

M(ξ)dξ

∫
Rd

|ξ |2M(ξ)dξ.

Integrating in space and time, and using the second inequality in (9.13), we conclude
the last bound.
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Step 2 (Computing Jε) We may rewrite the Eq. (9.8) in the form

ξ

ε
fε = ξ

ε
nε(x, t)M(ξ)− ε

ξ

k(x)

∂

∂t
fε(x, ξ, t)− ξ

k(x)
ξ · ∇xfε,

Jε(x, t) =
∫
Rd

ξ

ε
fεdξ = −ε

∫
Rd

ξ

k(x)

∂

∂t
fε(x, ξ, t)−

∫
Rd

ξ

k(x)
ξ · ∇xfε.

In other words, we also have

Jε(x, t) = − ε2

k(x)

∂Jε(x, t)

∂t
−

∫
Rd

ξ ⊗ ξ

k(x)
∇x[fε − nεM(ξ)]dξ − A

k(x)
∇xnε.

And thus going back to the mass conservation equation (9.11), we find

∂

∂t
nε − div

[
A.

∇nε(x, t)
k(x)

] = ε2

k(x)

∂Jε(x, t)

∂t
+

∫
Rd

ξ ⊗ ξ

k(x)
∇x[fε − nεM(ξ)]dξ.

Step 3 (Weak Limit) From the bounds (9.13), we may extract subsequences such
that, in the weak limit

nε(x, t) ⇀
ε→0

n(x, t), Jε(x, t) ⇀
ε→0

J (x, t),

and the conclusion of step 2 is simply that, in the distributional sense (that means in
multiplying by smooth test functions with compact support) we have

∂

∂t
n+ divJ = 0 = ∂

∂t
n− div

[
A.

∇n(x, t)
k(x)

]
.

Notice that the initial condition is preserved in distributional sense (see [60] for
details). Therefore, there is a unique solution to the parabolic equation (9.10) and
thus the full family nε, Jε converges, which also implies that the full family fε
converges weakly thanks to the second line in (9.13). ��

It is possible to prove strong convergence of fε and nε, for instance using a
variant of the averaging lemma in Sect. 9.2, noticing that we may write, using the
bounds (9.13)

ε
∂

∂t
fε + ξ.∇fε = gε

with fε and gε bounded in L2. The method based on averaging lemma shows strong
convergence even when we generalize the initial data to a family f 0

ε (x, ξ) ⇀
ε→0

f (x, ξ, t) in the weighted L2(
dxdξ
M(ξ)

norm.
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9.4 The Drift-Diffusion Limit

Not only the parabolic equation (9.10) can be derived as a macroscopic limit of
kinetic equations but also the more general drift-diffusion equation (also called
Fokker–Planck equation)

⎧⎨
⎩

∂
∂t
n(x, t)− div

[ 1
k(x)

∇(
A(x)n(x, t)

)]+ div
[
n(x, t)U(x, t)

] = 0,

n(x, t = 0) = n0(x) := ∫
Rd f

0(x, ξ)dξ,

(9.14)

for a given symmetric positive matrix A(x) and a given drift U(x).
In this section, we do not try to give a rigorous derivation with a priori estimates

as we did before because the technical details are more complicated and we prefer
to concentrate on the mechanism at work. For the same reason, we choose a simple
kinetic equation to depart from

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε ∂
∂t
fε(x, ξ, t)+ ξ · ∇xfε = k(x)

ε

[
nε(x, t)Mε(x, ξ)− fε],

nε(x, t) :=
∫
Rd fε(x, ξ, t)dξ,

fε(x, ξ, t = 0) = f 0(x, ξ).

(9.15)

The assumptions on the ε-dependent Maxwellian distribution Mε(x, ξ) > 0 is

∫
Rd

Mε(x, ξ)dξ = 1,
∫
Rd

ξMε(x, ξ)dξ = εU(x),

∫
Rd

ξiξjMε(x, ξ)dξ = Aij (x).

(9.16)

and, as ε → 0, we assume the strong convergence in L1, with uniform bounds
in L∞,

Mε(x, ξ)→ M(x, ξ) |ξ |2Mε(x, ξ)→ |ξ |2M(x, ξ). (9.17)

Again, we can have in mind a Gaussian.

Theorem 9.4 With the assumptions (9.16)–(9.17), the limit n(x, t) of nε(x, t), of
solutions of (9.15), satisfies the drift-diffusion equation (9.14) and

fε(x, ξ, t) ⇀
ε→0

n(x, t)M(x, ξ).

We explain the derivation formally. As in the proof on Theorem 9.3, we observe
that

∂

∂t
nε + div Jε = 0, Jε(x, t) =

∫
Rd

ξ

ε
fε(x, ξ, t)dξ.



9 Kinetic Equations and Cell Motion: An Introduction 249

In order to compute Jε(x, t), we rewrite the Eq. (9.15) as

fε

ε
= 1

ε
nε(x, t)Mε(x, ξ)− ε

k(x)

∂

∂t
fε(x, ξ, t)− 1

k(x)
ξ · ∇xfε,

Jε(x, t) = nε(x, t)

∫
Rd

ξ

ε
Mε(x, ξ)dξ − ε

k(x)

∂

∂t
Jε(x, t)− 1

k(x)
∇x

∫
Rd

ξ ⊗ ξfεdξ

= nε(x, t)U(x)− 1

k(x)
∇x

∫
Rd

ξ ⊗ ξnεMε(x, ξ)dξ +O(ε)

= nε(x, t)U(x)− 1

k(x)
∇xA(x)nε +O(ε),

because fε = neMε +O(ε).
Therefore, when ε → 0, we find

∂

∂t
n(x, t)+ div J (x, t) = 0,

J (x, t) = − 1

k(x)
∇xA(x)[n(x, t)] + n(x, t)U(x).

This gives the result. ��

9.5 Bacterial Movement

Bacterial motion and bacterial population self-organization is a wide and fascinating
area of biology, which has generated an important literature with the progresses of
experimental observations. For instance, several examples are presented in Murray’s
book [53] showing mechanisms which underlie the pattern formation. The first
mechanism is due to interaction with the environment through nutrient or other
physical effects [31]. The second communication mechanism used by bacteria
is chemotaxis, i.e., the motion of cells directed by a chemical signal. It is the
central mechanism for Escherichia coli, which has raised an enormous interest since
Adler’s seminal paper [1], see also [13, 14, 51] and the book [7] for all biological
aspects of E. coli.

Since the 80’s, observations at the cell scale have shown that bacteria as E. Coli
or B. Subtilis move by run and tumble depending on the coordination of motors
that control the flagella. To give an idea of scales, the run time is about 1 s, the run
length is a few μm, and tumbling takes a much shorter time (1/10 s). To take into
account this phenomenon the kinetic formalism is needed and that was proposed,
early after the first observations, by Alt and his co-authors [3, 56]. Recent surveys
on the subject can be found in [16, 26, 37].
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The modeling goes as follows. Denote by f (x, ξ, t) the number density of cells
located at x ∈ R

d and moving with the velocity ξ ∈ V , usually it is admitted that
tumbles are always with the same speed and thus V = S

d−1. As in the physical
models presented before, we set

⎧⎪⎪⎨
⎪⎪⎩

∂
∂t
f (x, ξ, t)+

run︷ ︸︸ ︷
ξ · ∇xf =

tumble︷ ︸︸ ︷
K [c, f ] ,

f (x, ξ, t = 0) = f 0(x, ξ) ≥ 0, f 0 ∈ L1.

(9.18)

Compared to scattering equation (9.1), the novelty here is to take into account the
rules leading cells to tumble, which is described but the term

K [c, f ] =
∫
V

K(c; ξ, ξ ′)f (ξ ′)dξ ′
︸ ︷︷ ︸

cells of velocity ξ ′ turning to ξ

−
∫
V

K(c; ξ ′, ξ)dξ ′ f (x, ξ, t)
︸ ︷︷ ︸

cells of velocity ξ turning to another

.

(9.19)

Here c(x, t) describes a molecular environment which modulates cell responses. An
important issue is that K may depend functionally on c. For instance it may depend
in a non-local way on c, or on derivatives of c. For example, being given a function

* ∈ C1(R;R), 0 < min*(·) < max*(·) <∞,

we can take a kernel with memory

K(c; ξ, ξ ′) = *
(
c(x − εξ ′, t)

)
, (9.20)

which expresses that a cell responds using the average concentration during their
run of duration 2ε and using a middle rule for the integration. The function *(·)
takes into account possible response modulation to the signal. One may be more
accurate and use an integration rule

K(c; ξ, ξ ′) = *
(
ω ∗ c(x, t))

for an appropriate kernel ω and convolution along the path.
This chemical signal c(·) can be emitted by the cells themselves and diffused in

the media, then one writes

τ
∂c

∂t
−�c(x, t) = n(x, t) :=

∫
V

f (t, x, ξ)dξ, (9.21)

with τ ≥ 0 the diffusion time scale, usually small compared to cells dynamics. But
the function c(·) can also be imposed from outside and then, the Eq. (9.18) is linear.
Then, it is simply a variant of the scattering equation.
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Existence of Solutions Some general properties of solutions are

1. Non-negativity. We have for all times f (x, ξ, t) ≥ 0.
2. Mass conservation. We have for all times t ≥ 0

∫
Rd×V

f (x, ξ, t)dx dξ =
∫
Rd×V

f 0(x, ξ)dx dξ.

Notice that this property follows from the symmetric form of the tumbling kernel
where both K(c; ξ, ξ ′) and K(c; ξ ′, ξ) appear.

It is however difficult to draw more elaborate conclusions in terms of a priori
bounds, in particular when the kinetic equation and the diffusion equation for
chemoattractant are coupled. This difficulty opened the route to several existence
results, which are still not complete in full generality and in particular when the
tumbling kernel depends on ∇c, see [10, 12, 23, 41]. Blow-up of solutions, under
certain large mass conditions when the tumbling kernel depends on ∇c, has been
obtained in [11].

Here we state a result from [23] which proves global existence of locally (in time)
bounded solutions (thus extending a result in [36] in the linear case).

The existence theory for the nonlinear system (9.18)–(9.20) was settled in [23]
and yields the following:

Theorem 9.5 ([23]) In dimension d = 3, assume that V is bounded and that f0 ∈
L∞(Rd × V ), then there is a unique solution to the system (9.18)–(9.20), f ∈
C
([0,∞);L1(Rd × V )

)
, moreover we have for all T > 0 and 0 ≤ t ≤ T ,

0 ≤ f (t, x, ξ) ≤ C(T ),

‖∇c(t)‖Lp(Rd ) ≤ C(T ),
d

d − 1
< p ≤ ∞,

‖c(t)‖Lp(Rd ) ≤ C(T ), d < p ≤ ∞,

for some constant C(T ).

The proof is based on the dispersion estimates of Sect. 9.2.
This result provides global strong solutions and therefore shows a fundamental

difference with the macroscopic model Patlak/Keller–Segel equation (see below)
since the latter exhibits blow-up. This is rather counter-intuitive since we can expect
that solutions to a hyperbolic equation have weaker estimates than the related
parabolic equation.

The parabolic equation on c can be treated as well and several extensions
of Theorem 9.5 have been obtained. Also specific dependency upon ∇c in the
tumbling kernel have been used, see [10–12, 41] as well as various other extensions
[38, 49, 82].

The Patlak/Keller–Segel System Using the small memory parameter ε introduced
in the Eq. (9.20) for the tumbling rate, one can rescale space and time the kinetic
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equation while keeping the diffusion equation for the chemoattractant (this is
questionable and a more complete analysis should use the parameter range in the
chemoattractant equation to justify the reasoning). Under the symmetry assumption
on V that

∫
V

ξdξ = 0, (9.22)

we may use the diffusive rescaling as in Sect. 9.4. We arrive at

⎧⎨
⎩
ε ∂
∂t
fε(x, ξ, t)+ ξ · ∇xfε = 1

ε
K [cε, fε],

fε(x, ξ, t = 0) = f 0(x, ξ) ≥ 0, f 0 ∈ L1.

(9.23)

The same method allows to derive a macroscopic equation as ε → 0 and get the
nonlinear Fokker–Planck equation (see again [23])

∂

∂t
n(x, t)− div[D(c)∇n] + div[nχ(c)∇c] = 0, (9.24)

τ∂t c(x, t)−�c = n(x, t), (9.25)

with the transport coefficients

D(c) = 1

|V |2
∫
V×V ξ ⊗ ξdξ

*(c)
, χ(c) = 1

|V |2
∫
V×V

ξ ⊗ ξdξ
*′(c)
*(c)

.

This system is called the Patlak/Keller–Segel system. It has been widely studied
usually with D and χ constant . We refer to the Sect. 9.6 for further results around
this system.

Proof Let us show the formal derivation again, assuming convergence of all
functions. First, we identify

∫
V

[*(c(x−εξ ′, t))fε(x, ξ ′, t)−*(c(x−εξ, t))fε(x, ξ, t)]dξ ′ = ε2 ∂

∂t
fε(x, ξ, t)+εξ ·∇xfε,

therefore as ε → 0 we find
∫
V

[*(c(x, t))f (x, ξ ′, t)−*(c(x, t))f (x, ξ, t)]dξ ′ = 0

which means that the limit f of fε is independent of ξ and thus satisfies

f (x, ξ, t) = 1

|V |n(x, t), ξ ∈ V.
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As a second step we write as usual

∂

∂t
nε(x, t)+ divJε(x, t) = 0, Jε(x, t) = 1

ε

∫
V

ξf:e(x, ξ, t)dξ.

The third step is to compute Jε which we do in using the Eq. (9.23) as follows. After
multiplication by a component ξj and integrating in ξ , we have

1

ε

∫
V×V

[*(c(x − εξ ′, t))ξjfε(x, ξ ′, t)−*(c(x − εξ, t))ξjfε(x, ξ, t)]dξ ′dξ

= ε
∂

∂t

∫
V

ξjfε(x, ξ, t)dξ +
∫
V

ξξj · ∇xfεdξ.

We neglect the terms in ε and get, using (9.22),

−1

ε

∫
V×V

*(c(x − εξ, t))ξjfε(x, ξ, t)]dξ ′dξ = 1

|V |
∫
V

ξξj · ∇xndξ +O(ε)

and expansion of *(c(x − εξ, t)) gives

−*(c(x, t))|V |Jε(x, t)−|V |*′(c)∇xc(x, t)

∫
V×V

ξξj dξ = 1

|V |
∫
V

ξξj ·∇xndξ+O(ε).

This yields the result. ��
Blow-Up in the Keller–Segel System In order to present the major property
that solutions can blow-up in finite time, we consider the particular case of the
Patlak/Keller–Segel system (9.25), under the form

⎧⎪⎨
⎪⎩

∂
∂t
n(x, t)−�n(x, t)+ div(nχ∇c) = 0, x ∈ R

2,

−�c(x, t) = n(x, t).

(9.26)

We recall the following results, see for instance [8, 59] and the references therein:

Theorem 9.6 In dimension d = 2, for the Patlak/Keller–Segel system with initial
data satisfying

∫
R2 n

0[1 + |x|2 + | log(n0)|]dx <∞, we have

(i) for ‖n0‖L1(R2) <
8π
χ

there are smooth solutions of (9.26),

(ii) for ‖n0‖L1(R2) >
8π
χ

solutions blow-up in finite time (as a singular measure),
(iii) for radially symmetric solutions, blow-up means

n(t) ≈ 8π

χ
δ(x = 0)+ Remainder.
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A very important literature is devoted to these blow-up phenomena. Among
them, let us mention the blow-up result in the parabolic-parabolic case [52].

Both theoretical analysis and numerical simulations show that solutions exhibit
Dirac mass singularities. These are the most common patterns exhibited by the
Patlak/Keller–Segel system.

This blow-up phenomenon is compatible with observations of the amoeba
Dyctiostelium discoideum moving on a dish. Chemotaxis leads them to form highly
concentrated patterns, which we can interpret as a final stage before they change
their compartment and thus the model becomes wrong. At this stage, the cells
form a three-dimensional multicellular fruiting body which generates spores that
can disperse. But for E. coli, and for many other types of cells, such a final stage is
not observed and Dirac masses are not a desirable representation of the observations.

Keller–Segel System with Prevention of Overcrowding In order to circumvent
this difficulty, a limitation of the drift term can be imposed in order to take into
account volume effects, see [37, 67]. The system (9.26) is modified, for instance, as

⎧⎪⎨
⎪⎩

∂
∂t
n(x, t)−D�n(x, t)+ div(nψ(n)∇c) = 0, x ∈ R

2, t ≥ 0,

−�c(x, t)+ dc(x, t) = n(x, t),

with d > 0 a degradation rate, ψ(n) a switch for n large, for instance ψ(n) =
e−n/ns . Another example is ψ(n) = nS −n, then solutions remain bounded, n ≤ ns
when this is true for the initial data thanks to the maximum principle. The paper [67]
presents a complete analysis of the parameter range for unstability and for the
dynamics of patterns formed by this system.

Adapting [67], we can simply explain why patterns are formed based on the
unstability of the constant states n ≡ n̄, S ≡ n̄/d when the inequality is satisfied

n̄ψ(n̄) > Dd. (9.27)

To see that, we look for a growing perturbation n = n̄ + αeikxeλt , S = n̄
d
+

βeikxeλt . Inserting the expansion for α, β small in the equations, gives
{
λα +D|k|2α − n̄ψ(n̄)β|k|2 = 0,

(|k|2 + d)β = α,

that is also written (for α �= 0),

λ = −D|k|2 + n̄ψ(n̄)
|k|2

|k|2 + d
.

We find a growing mode λ > 0 under the stated condition.
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9.6 Modulation Along the Path

More realistic kinetic models use the modulation of signal by E. coli. It turns out that
bacteria increase the jump length when they feel an increasing chemotactic signal
and reduce their jumps when the signal decreases along their path, [25, 50]. This
leads to change the tumbling rule (9.20) to

K(c; ξ, ξ ′) = *
(∂c
∂t

+ ξ ′.∇c). (9.28)

See [25, 28, 29]. From these papers, we borrow the stiff response case, when

*(z) =
⎧⎨
⎩
k− for z < 0,

k+ < k− for z > 0.
(9.29)

More generally, *(·) is a (smooth) decreasing function but stiffness is definitively a
correct assumption

*(z) = *
(z
δ

)
, *(±∞) = k±, (9.30)

for a ‘small’ constant δ > 0.

Macroscopic Limit Using a tumbling kernel as (9.28) leads to a new class of
macroscopic limits.

In [25], the hyperbolic limit is proved, leading to the equation

∂

∂t
n(x, t)+ div

[
nχ(

∂c

∂t
, |∇c|)∇c] = 0,

where the sensitivity χ has the form (with some coefficient A and assuming V is
radially symmetric)

χ(
∂c

∂t
, |∇c|) = A

|∇c|)
∫
V

ξ1dξ

*
(
∂c
∂t
+ ξ1|∇c|

) .

The non-negativity of the chemotactic sensitivity is a consequence of the assumption
that * is decreasing.

An indetermination arises, because of the ratio ∇c
|∇c| when ∇c = 0, which leads

to a particularly subtle theory developed in [42, 43].
The first-order correction leads to a parabolic Fokker–Planck equation under the

form

∂

∂t
n(x, t)− div

[
D∇n(x, t)]+ div

[
nχ(

∂c

∂t
, |∇c|)∇c] = 0
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(see also [65] for another derivation). This type of equation is called Flux-Limited
Keller–Segel because U is bounded and has raised a large interest in the last few
years [6, 24, 69, 70]. An important property is that solutions do not blow-up because
the drift is bounded, generating patterns which are more relevant than the Dirac
concentrations mentioned before.

Traveling Bands It is commonly admitted that chemotaxis is one of the key
ingredients triggering the formation of traveling bands (pulses) as observed in
Adler’s famous experiment for E. Coli (1966), [1]. We refer to [74] for a complete
review of experimental assays.

Recently a mathematical and quantitative explanation has been developed in [69,
70], using the Flux-Limited Keller–Segel system with nutrient S in dimension d = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂t
n(x, t)−�n(x, t)+ div[n(Uc + US)] = 0,

Uc = χc
∇c
|∇c| , US = χS

∇S
|∇S| ,

∂c
∂t
−Dc�c + αc = βn, ∂S

∂t
−DS�S = −γ nS.

Traveling waves are defined as solutions of the form n(x − σ t) > 0, c(x − σ t),
S(x − σ t) for which n(±∞ = 0). The parameter σ ∈ R is called the traveling
speed and is due to the movement toward fresh nutrient S. If S is ignored, then
standing pulses are observed in accordance with the experimental observations in
[51].

In [69], in the case with stiff response, traveling pulses to this FLKS model
are built analytically and they exhibit an asymmetric profile as it is observed
experimentally. For a more general response function *, it is difficult to assert
the existence of pulses. Another important and difficult extension is to assert the
existence of traveling or standing bands (pulses) for the kinetic equation; we refer
to [9, 16, 18].

Instabilities Chemotaxis is a major phenomenon which produces patterns as
observed in nature. Parabolic models as the Patlak/Keller–Segel system have been
widely used for such purposes, cf. [37, 54, 67] and the references therein. As
mentioned before, the limitation of the drift is a possible mechanism in this
direction. Another direction is flux limitation as shown in [17].

There is only a limited literature on instabilities and pattern formation ability of
solutions to the kinetic equations of bacterial chemotaxis. We refer to [63] where
the stiffness parameter in the tumbling kernel with modulation along the path, that
is δ small in (9.30), appears to be a bifurcation parameter.

Biochemical Pathways Still more elaborated and physically more relevant
descriptions of bacterial run and tumble movement have been derived lately. These
models aim at explaining the cell decision to tumble by an intracellular process of
molecular nature [25, 28, 29, 34, 57, 64, 66, 68, 71, 73, 77, 79]. Indeed, bacteria
respond to extracellular signal changes through a sophisticated signal transduction
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pathway. It involves a rapid response of the cell to the external signal change
called ‘excitation’, and a ‘slow adaptation’ which allows the cell to subtract the
background signal.

For our presentation and in order to keep simplicity, we follow closely [64] and
consider a single intracellular variable, m ∈ R which represents a cell receptor
methylation level. We assume a reaction rate equation for the intracellular adaptation
dynamics

dm

dt
= R

(
m,M(x, t)

)
, (9.31)

where R describes the chemical reaction dynamics. We call M the equilibrium of
this reaction which is itself determined by a nonlinear processing of the external
signal, the chemoattractant c(x, t), for E. coli see [45]. Usually, a logarithmic rule
is used

M(x, t) ≡ M0 ln(c(x, t)).

A condition which ensures that Eq. (9.31) admits M(x, t) as an attractive equilib-
rium point is

R
(
m,M

)
> 0 for m < M, R

(
m,M

)
< 0 for m > M. (9.32)

In this section, we simplify again the formalism by assuming that M itself is
given. Then, we can write the kinetic-transport equation which governs the dynamic
of the number density function p(x, ξ,m, t) of bacteria at time t , position x ∈ R

d ,
moving at velocity ξ ∈ V and methylation level m ∈ R

⎧⎨
⎩

∂
∂t
p + ξ · ∇xp + ∂

∂m
[R(m,M)p] = Q[m,M](p),

p(x, ξ,m, t = 0) = p0(x, ξ,m) ≥ 0, p0(x, ξ,m) ∈ L1 ∩ L∞(Rd × V × R).

(9.33)

The tumbling term Q[m,M](p) describes the velocity jump process, it is given by

Q[m,M](p) =
∫
V

[
λ(m,M, ξ, ξ ′)p(t, x, ξ ′,m)− λ(m,M, ξ ′, ξ)p(t, x, ξ,m)

]
dξ ′,

(9.34)

where λ(m,M, ξ, ξ ′) denotes the methylation-dependent tumbling frequency from
ξ ′ to ξ , in other words the response of the cell depending on its environment and
internal state. We borrow this formalism from [44, 72] even though this type of
models, involving more general signal transduction, can be traced back to [25, 28,
29, 78].
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Notice that this kind of modeling does not relate to Vlasov type of equation as in
Sect. 9.1 but rather to variants of the Boltzmann equation where the particles radii
can vary (clouds of droplets arising in the design of various types of engines, from
diesel engines to rocket thrusters). As a consequence, the macroscopic density is
defined as

n(x, t) =
∫
R

∫
V

p(x, ξ,m, t)dξdm.

One can also define a density in the phase space as

f (x, ξ, t) =
∫
R

p(x, ξ,m, t)dm.

Fluid Limit A complete proof of existence for the nonlinear system where
Eq. (9.33) is coupled to a diffusion equation for the chemoattractant produced by
the cells is available in[48].

In the direction of deriving fluid equations, the authors in [25, 28, 29, 55, 72,
78, 79] developed the asymptotic theory which, departing from the kinetic level
of description, allows to recover, in the diffusion and in the hyperbolic limits,
macroscopic equations where the variables are only (x, t) as the Keller–Segel
system which governs the dynamics of the density of cells.

From Molecular Pathways to Modulation Along the Path The present for-
malism based on a molecular content can also be used to derive the tumbling
kernel (9.28) with modulation along the pathways. This is based on an asymptotic
analysis introduced in [64] which differs from the diffusive or hyperbolic rescaling.

According to [64], we consider the equation with a fast adaptation to the external
signal, which means a fast reaction rate R,

∂

∂t
pε(t, x, ξ,m)+ ξ · ∇xpε + 1

ε

∂

∂m

[
R
(
m,M(x, t)

)
pε

] = Qε[m,M][pε].

The other rescaling used in [64] arises in the tumbling kernel, which we also
simplify by ignoring the dependency in ξ , ξ ′, and writes

Qε[m,M][p] =
∫
ξ ′

[
λ
(m−M(x, t)

ε

)
p(t, x, ξ ′,m)− λ

(m−M(x, t)

ε

)
p(t, x, ξ,m

)]
dξ ′,

(9.35)

that can be interpreted as a stiff response.
The main result, in [64], is the following:

Theorem 9.7 As ε → 0, in the weak sense of measures,

pε(t, x, ξ,m)→ f (t, x, ξ) δ
(
m−M(x, t)

)
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and f satisfies the kinetic-transport equation (9.18) with the tumbling kernel

K(c(x, t); ξ, ξ ′) = λ
(∂M
∂t

+ ξ ′.∇M)
, (9.36)

and with initial data f 0(x, ξ) = ∫
R
p0(x, ξ,m)dm.

Notice that, surprisingly, even though we start from a tumbling kernel
λ
(
m−M(x,t)

ε

)
independent of the cell velocity, the outcome is ξ dependent.

Traditional models of kinetic theory in the introduction always undergo nice geo-
metrical structures inherited from physical invariants. The tumbling kernel (9.36)
is not of that type by opposition to the simple molecular dependent kernel (9.35).
Therefore, it is satisfactory that the form (9.36) can be derived rigorously.

A last observation is a discussion in [64] about the scales for E. coli which do
not necessarily correspond to measurements.

Proof We only indicate very roughly the method and difficulty.
In order to identify the limit, following [28, 29], we introduce a new variable

pε(t, x, ξ,m) = εq(t, x, ξ,
m−M(c)

ε
), y = m−M(x, t)

ε
.

To simplify the notations, we assume that R(m,M) = (m −M) G(m −M). The
Eq. (9.33) becomes

∂
∂t
q(t, x, ξ, y)+ ξ · ∇xq + 1

ε
∂
∂y
[yG(εy)q] = 1

ε
DtM∂yq

+
∫

λ(y)
[
q(t, x, ξ ′, y)− q(t, x, ξ, y)

]
dξ ′.

This can be further written

∂

∂y

[(
yG(εy)−DtM

)
q
] = O(ε).

Because G(·) > 0, a property inherited from the assumption (9.32), we infer that q
should converge to a Dirac mass at the equilibrium point, that is

q −→ f (x, ξ, t)δ(y − DtM

G(0)
),

for some weight f (x, ξ, t) we can identify by integrating the Eq. (9.33). However,
the resulting equation, there is a difficulty to identify the limit of Qε[m,M][pε]
which leads to another change of variables and motivates the scaling used. We refer
the interested reader to [64]. ��
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9.7 Conclusion

This presentation has been focused on some modeling and mathematical aspects
of chemotaxis at the mesoscale level with a special emphasis on the questions of
asymptotic analysis. It has been reduced to bacterial movement, more precisely E.
coli. Extensions to multispecies are treated in [2, 27]. Models for motion of cells in
the extracellular tissue also use the kinetic formalism, see [35, 40].

Several important subjects are not treated or are just mentioned vaguely. Among
them, the question of instabilities has been mentioned very roughly. The physical
approaches are also very important also and I have decided not to enter this field
because the number of references from the mathematical side was already too large.
Another subject of importance, which deserves be advocated, is numerical methods.
Some references are [75, 80, 81].

The understanding of detailed motion of cells and the behaviors of different cells
are so rich that we can expect many additional models and questions will still arise.
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