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Chapter 20
Epilogue: So, What Is Math Cognition?

Marcel Danesi

 Introduction

A key 2005 collection of papers (Royer 2008) showed how complex the study of 
mathematical cognition (MC) had become already in the early 2000s, incorporating 
a broad range of scientific, educational, and humanistic perspectives into its modus 
operandi. Studies published in the journal Mathematical Cognition have also 
revealed how truly expansive the field is, bringing together researchers and scholars 
from diverse disciplines, from neuroscience to semiotics. This volume has aimed to 
provide a contemporary snapshot of how the study of MC is developing. In this final 
chapter, the objective is to provide a selective overview of different approaches from 
the past as a concluding historical assessment.

The interdisciplinary study of MC became a concrete plan of action after the 
publication of Lakoff and Núñez’s 2000 book, Where Mathematics Comes from, 
following on the coattails of intriguing works by Dehaene (1997) and Butterworth 
(1999). Lakoff and Núñez argued that MC is no different neurologically from lin-
guistic cognition, since both involve blending information from different parts of 
the brain to produce concepts. This is why we use language to learn math. The most 
salient manifestation of blending in both linguistic and mathematical cognition can 
be seen in metaphor (as studies in this volume have saliently shown). If metaphor is 
indeed at the core of MC then it brings mathematics directly into the sphere of lan-
guage and culture where it is shaped symbolically and textually. This was the con-
clusion deduced as well by American philosopher Max Black in his groundbreaking 
1962 book, Models and Metaphors, in which Black argued that the cognitive source 
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of science and mathematics was the same one that involved the same kind of meta-
phorical thinking that characterizes discourse. Indirectly, Black laid the foundations 
for a humanistic-linguistic study of MC with his radical idea for the era in which it 
was written.

The interdisciplinary study of MC has produced a huge database of findings, 
theories, and insights into how mathematics intersects with other neural faculties 
such as language and drawing. The field has not just produced significant findings 
about how math is processed in the brain, but also reopened long-standing philo-
sophical debates about the nature of mathematics. In this chapter a general charac-
terization of MC that extends the classic views will be discussed at first. Then, it will 
selectively discuss various works and findings that can be used to determine whether 
math is separate or not from language, neurologically and cognitively. Finally, it 
will revisit the Platonist-versus-constructivist debate on the basis of these patterns, 
which is intrinsically a cognitive debate.

 Mathematical Cognition: A Selective Historical Survey

Mathematical cognition is defined in two main ways—first, it is defined as the 
awareness of structural patterns among quantitative and spatial concepts; second, it 
is defined as the awareness of how symbols stand for these concepts and how they 
encode them (for example, Radford 2010).

A historical point of departure for investigating MC is Immanuel Kant’s (1790: 
278) assertion that thinking mathematically involves “combining and comparing 
given concepts of magnitudes, which are clear and certain, with a view to establish-
ing what can be inferred from them.” He argued further that the combination and 
comparison become explicit through the “visible signs” that we use to represent 
them—thus integrating the two definitions above predictively. So, a diagram of a 
triangle (a visible sign) compared to that of a square (another visible sign) will show 
the differentiation between the two concretely. As trivial as Kant’s definition might 
seem, upon further consideration it is obvious that the kind of visualization that he 
describes now falls under the rubric of spatial cognition, and the claim that visible 
signs guide it is consistent with various psychological and semiotic theories of MC 
(see, for example, Stjernfelt 2007, Danesi 2013). As we know today, mental visual-
ization stems from the brain’s ability to synthesize scattered bits of information into 
holistic entities that can be understood consciously through representations such as 
diagrams.

Kant’s main idea that diagrams reveal thought patterns was given a semiotic- 
theoretical formulation by Charles Peirce’s existential graph theory (Peirce 1931–
1958, vol. 2: 398–433, vol. 4: 347–584). An existential graph is a diagram that 
displays how the parts of some concept are visualized as related to each other. For 
example, a Venn diagram can be used to show how sets are related to each other in 
a holistic visual way. These do not portray information directly, but the process of 
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thinking about it (Peirce, vol. 4: 6). Peirce called his existential graphs “moving 
pictures of thought” (Peirce, vol. 4: 8–11). As Kiryuschenko (2012: 122) has aptly 
observed, for Peirce “graphic language allows us to experience a meaning visually 
as a set of transitional states, where the meaning is accessible in its entirety at any 
given ‘here and now’ during its transformation.”

The gist of the foregoing discussion is that diagrams and visual signs might mir-
ror the nature of MC itself—an idea that has been examined empirically in abun-
dance (Shin 1994; Chandrasekaran et al. 1995; Hammer 1995; Hammer and Shin 
1996, 1998; Allwein and Barwise 1996; Barker-Plummer and Bailin 1997, 2001; 
Kulpa 2004; Stjernfelt 2007; Roberts 2009). The main implication is that the study 
of MC must take semiotic notions, such as those by Peirce, into account in order to 
better explain the findings of neuroscientists in this domain. In effect, diagrams 
represent our intuitions about quantity, space, and relations in a visually expressive 
way that appears to mirror the actual imagery in the brain, or more specifically what 
Lakoff and Johnson (1980) call image schemata—mental outlines of abstractions. 
The intuitions are probably universal (first type of definition); the visual representa-
tions, which include numerals, are products of historical processes (second type of 
definition).

Algebraic notation, too, is a diagrammatic strategy for compressing information, 
much like pictography does in reproducing referents in compressed semiotic forms 
(Danesi and Bockarova 2013). An equation is an existential graph consisting of 
signs (letters, numbers, symbols) organized in such a way as to reflect the structure 
of events that it aims to represent. It may show that some parts are tied to a strict 
order, whereas others may be unconstrained as to sequential structure. As Kauffman 
(2001: 80) observes, Peirce’s existential graphs contain arithmetical information in 
an economical form:

Peirce’s Existential Graphs are an economical way to write first order logic in diagrams on 
a plane, by using a combination of alphabetical symbols and circles and ovals. Existential 
graphs grow from these beginnings and become a well-formed two dimensional algebra. It 
is a calculus about the properties of the distinction made by any circle or oval in the plane, 
and by abduction it is about the properties of any distinction.

An equation such as the Pythagorean one (c2 = a2 + b2) is an existential graph, 
since it is a visual representation of the relations among the variables (originally 
standing for the sides of the triangle). But, being a graph, it also tells us that the parts 
relate to each other in many ways other than in terms of the initial triangle referent. 
It reveals hidden structure, such as the fact that there are infinitely many Pythagorean 
triples, or sets of three  integers that satisfy the equation. Expressed in language 
(“the square on the hypotenuse is equal to the sum of the squares on the other two 
sides”), we would literally not be able to see this hidden implication. Once the equa-
tion exists as a graph, it becomes the source for further inferences and insights, 
which (as is well known) gave rise to a hypothesis, namely Fermat’s Last Theorem, 
whereby only when n = 2 does the general formula hold (cn = an + bn) (Taylor and 
Wiles 1995). This, in turn, has led to many other discoveries (Danesi 2013). To use 
Susan Langer’s (1948) distinction between discursive and presentational cognition, 
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the equation tells us much more than the statement (a discursive act) because it 
“presents” inherent structure holistically, as an abstract form. We do not read a dia-
gram, a melody, or an equation as individual bits and pieces (notes, shapes, sym-
bols), but presentationally, as a totality which encloses and reveals much more 
meaning. Mathematical notation is visually presentational, which as research has 
shown, may be the source for how abstract ideas emerge (Barwise and Etchemendy 
1994; Allwein and Barwise 1996; Cummins 1996; Chandrasekaran et al. 1995).

Needless to say, mathematicians have always used diagrams to carry out their 
craft. Some diagrammatic practices, such as Cartesian geometry, become actual 
fields of mathematics in themselves; set theory, for example, is an ipso facto theory 
of mathematics, based on Venn diagrams (1880, 1881) which were introduced so 
that mathematicians could literally see the logical implications of mathematical pat-
terns and laws. These are, as mentioned, externalized image schemata (Lakoff and 
Johnson 1980, 1999; Lakoff 1987; Johnson 1987; Lakoff and Núñez 2000) which 
allow us to gain direct cognitive access to hidden structure in mathematical phe-
nomena. Actually, the shift from sentential logic to diagram logic started with Euler, 
who was the first to represent categorical sentences as intersecting circles, embed-
ded circles, and so on (Hammer and Shin 1996, 1998). It actually does not matter 
whether the schema is a circle, a square, a rectangle, or a freely drawn form; it is the 
way it portrays pattern that cuts across language (and languages) and allows us to 
envision a relation or concept in outline form. The power of the diagrams over sen-
tences lies in the fact that no additional conventions, paraphrases, or elaborations 
are needed—the relationships holding among sets are shown by means of the same 
relationships holding among the schemata  representing them. Euler was aware, 
however, of both the strengths and weaknesses of visual representation. For instance, 
in the statement “No A is B. Some C is A. Therefore, Some C is not B,” no single 
diagram can be envisioned to represent the two premises, because the relationship 
between sets B and C cannot be fully specified in one single diagram. Venn (1881: 
510) tackled Euler’s dilemma by showing how partial information can be visualized 
(such as overlaps or intersections among circles). But Peirce pointed out that Venn’s 
system had no way of representing existential statements, disjunctive information, 
probabilities, and some specific kinds of logical relations. He argued that “All A are 
B or some A is B” cannot be represented by neither the Euler nor the Venn systems 
in a single diagram. 

Among the first to investigate the relation between imagery and mathematical 
reasoning was Jean Piaget, who sought to understand the development of number 
sense in relation to symbolism (summarized in Piaget 1952). In one experiment, he 
showed a 5-year-old child two matching sets of six eggs placed in six separate egg 
cups. He then asked the child whether there were as many eggs as egg cups (or 
not)—the child usually replied in the affirmative. Piaget then took the eggs out of 
the cups, bunching them together, leaving the egg cups in place. He then asked the 
child whether or not all the eggs could be put into the cups, one in each cup and none 
left over. The child answered negatively. Asked to count both eggs and cups, the 
child would correctly say that there was the same amount. But when asked if there 
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were as many eggs as cups, the child would again answer “no.” Piaget concluded 
that the child had not grasped the relational properties of numeration, which are not 
affected by changes in the positions of objects. Piaget showed, in effect, that 5-year- 
old children have not yet established in their minds the symbolic connection between 
numerals and number sense (Skemp 1971: 154).

A key study by Yancey et al. (1989) has shown that training students how to use 
visualization (diagrams, charts, etc.) to solve problems results in improved perfor-
mance. As Musser, Burger, and Peterson (2006: 20) have aptly put it: “All students 
should represent, analyze, and generalize a variety of patterns with tables, graphs, 
words, and, when possible, symbolic rules.” Another study by Ambrose (2002) sug-
gests, moreover, that students who are taught appropriately with concrete strategies, 
but not allowed to develop their own abstract representational grasp of arithmetic, 
are less likely to develop arithmetical fluency.

 Is Math Cognition Species Specific?

The study of MC has led to a whole series of existential-philosophical questions. 
For example: Intuitive number sense may be a cross-species faculty, but the use of 
symbols to represent numbers is specific human trait. As the philosopher Ernst 
Cassirer (1944) once put it, we are “a symbolic species,” incapable of establishing 
knowledge without symbols. So is math cognition specific to the human species?

Neuroscientist Brian Butterworth (1999) is well known for his investigation of 
this question. He starts with the premise that we all possess a fundamental number 
sense, which he calls “numerosity.” Numbers do not exist in the brain in the same 
way verbal signs such as words do; they constitute a separate kind of intelligence 
with its own brain module, located in the left parietal lobe. But this does not guar-
antee that mathematical competence will emerge homogeneously in all individuals. 
It is a phylogenetic trait that varies ontogenetically. Rather, the reason a person fal-
ters at math is not because of a “wrong gene” or “engine part” in the brain, but 
because the individual has not fully developed numerosity, and the reason is due to 
environmental and personal psychological factors.

Finding hard evidence to explain why numerosity emerged from the course of 
human evolution is a difficult venture. Nevertheless, there is a growing body of 
research that is supportive of Butterworth’s basic thesis—that number sense is 
instinctual and that it may be separate from language. In one study, Izard et  al. 
(2011) looked at Euclidean concepts in an indigenous Amazonian society, called the 
Mundurucu. The team tested the hypothesis that certain aspects of non-perceptible 
Euclidean geometry map onto intuitions of space that are present in all humans 
(such as intuitions of points, lines, and surfaces), even in the absence of formal 
mathematical training. The subjects included adults and age-matched children con-
trols from the United States and France as well as younger American children with-
out training in geometry. The responses of Mundurucu adults and children converged 
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with that of mathematically educated adults and children and revealed an intuitive 
understanding of essential properties of Euclidean geometry. For instance, on a sur-
face described to them as perfectly planar, the Mundurucu’s estimations of the 
 internal angles of triangles added up to ∼180 degrees, and when asked explicitly 
they stated that there exists one single parallel line to any given line through a given 
point. These intuitions were also present in the group of younger American partici-
pants. The researchers concluded that, during childhood, humans develop geometri-
cal intuitions that spontaneously accord with the principles of Euclidean geometry, 
even in the absence of training in such geometry. There is however contradictory 
evidence that geometric notions are not innate, but subject to cultural influences 
(Núñez et al. 1999). In one study, Lesh and Harel (2003) got students to develop 
their own models of a problem space, guided by prompts. Without the latter, they 
were incapable of coming up with them. It might be that Euclidean notions may be 
universal and that these are concretized in specific cultural ways. For now, there is 
no definitive answer to the issue one way or the other.

The emergence of abilities such as speaking and counting are a consequence of 
four critical evolutionary events—bipedalism, a brain enlargement unparalleled 
among species, an extraordinary capacity for toolmaking, and the advent of the tribe 
as a basic form of human collective life (Cartmill et al. 1986). Bipedalism liber-
ated the fingers to count and gesture. Although other species, including some non- 
primate ones, are capable of tool use, only in the human species did complete 
bipedalism free the hand sufficiently to allow it to become a supremely sensitive and 
precise manipulator and grasper, thus permitting proficient toolmaking and tool use 
in the species. Shortly after becoming bipedal, the neuro-paleontological evidence 
suggests that the human species underwent rapid brain expansion. The large brain 
of modern-day Homo is more than double that of early toolmakers. This increase 
was achieved by the process of neoteny, that is, by the prolongation of the juvenile 
stage of brain and skull development in neonates. Like most other species, humans 
have always lived in groups. Group life enhances survivability by providing a col-
lective form of life. The early tribal collectivities have left evidence that gesture (as 
inscribed on surfaces through pictography) and counting skills occurred in tandem. 
This supports the co-development of language and numerosity that Lakoff and 
Núñez (2000) suggest is part of brain structure.

Keith Devlin (2000, 2005) entered the debate with the notion of an innate “math 
instinct.” If there is some innate capacity for mathematical thinking, which there 
must be, otherwise no one could do it, why does it vary so widely, both among indi-
viduals in a specific culture and across cultures? Devlin connects the math ability to 
language, since both are used by humans to model the world symbolically. But this 
then raises another question: Why, then, can we speak easily, but not do math so 
easily (in many cases)? The answer, according to Devlin, is that we can and do, but 
we do not recognize that we are doing math when we do it. As he argues, our pre-
historic ancestors’ brains were essentially the same as ours, so they must have had 
the same underlying abilities. But those brains could hardly have imagined how to 
multiply 15 by 36 or prove Fermat’s Last Theorem.
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One can argue that there are four orders involved in learning how to go from 
counting to, say, equations. The first is the instinctive ability itself to count. This is 
probably innate. Using signs to stand for counting constitutes a second order. It is 
the level at which counting concepts are represented by numeral symbols. The third 
order is the level at which numerals are organized into a code of operations based on 
counting processes (adding, taking away, comparing, dividing, and so on). Finally, 
a fourth order inheres in the capacity to generalize the features and patterns of 
counting and numeral representations. This is where representations such as equa-
tions come into the developmental-evolutionary picture.

Stanislas Dehaene’s (1997) work brings forth experimental evidence to suggest 
that the human brain and that of some chimps come with a wired-in aptitude for 
math. The difference in the case of the latter is an inability to formalize this innate 
knowledge and then use it for invention and discovery. Dehaene has catalogued 
evidence that rats, pigeons, raccoons, and chimpanzees can perform simple calcula-
tions, describing ingenious experiments that show that human infants also show a 
parallel manifestation of number sense. This rudimentary number sense is as basic 
to the way the brain understands the world as is the perception of color. But how 
then did the brain leap from this ability to trigonometry, calculus, and beyond? 
Dehaene shows that it was the invention of symbolic systems that started us on the 
climb to higher mathematics. He argues this by tracing the history of numbers, from 
early times when people indicated a number by pointing to a part of their body (even 
today, in many societies in New Guinea, the word for six is “wrist”), to early abstract 
numbers such as Roman numerals (chosen for the ease with which they could be 
carved into wooden sticks), to modern numerals and number systems. Dehaene 
argues, finally, that the human brain does not work like a computer, and that the 
physical world is not based on mathematics—rather, mathematics evolved to explain 
the physical world the way that the eye evolved to provide sight.

Studies inspired by both Butterworth’s and Dehaene’s ideas have become wide-
spread in MC circles (for example, Ardila and Rosselli 2002; Dehaene 2004; Isaacs 
et al. 2001; Dehaene et al. 2003; Butterworth et al. 2011). Dehaene (1997) himself 
showed that when a rat is trained to press a bar 8 or 16 times to receive a food 
reward, the number of bar presses will approximate a Gaussian distribution with 
peak around 8 or 16  bar presses. When rats are more hungry, their bar-pressing 
behavior is more rapid, so by showing that the peak number of bar presses is the 
same for either well-fed or hungry rats, it is possible to disentangle time from num-
ber of bar presses. Similarly, researchers have set up hidden speakers in the African 
savannah to test natural (untrained) behavior in lions (McComb et al. 1994). The 
speakers play a number of lion calls, from 1 to 5. If a single lioness hears, for 
example, three calls from unknown lions, she will leave, but if she is with four of her 
sisters, they will go and explore. This suggests that not only can lions tell when they 
are “outnumbered” but also that they can do this on the basis of signals from differ-
ent sensory modalities, suggesting that numerosity involves a multisensory neural 
substratum.
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 Blending Theory

As mentioned above, the study of MC started proliferating and diversifying after 
Lakoff and Núñez (2000) claimed that the proofs and theorems of mathematics are 
arrived at via the same cognitive mechanisms that underlie language—analogy, 
metaphor, and metonymy. This claim has been largely substantiated with neurologi-
cal techniques such as fMRI and other scanning devices, which have led to adopting 
the notion of blending, whereby concepts in the brain are sensed as “informing” 
each other in a common neural substrate (Fauconnier and Turner 2002). Determining 
the characteristics of this substrate is an ongoing goal of research on MC (Danesi 
2016).

Blending can be used, for example, to explain negative numbers. These are 
derived from two basic metaphors, which Lakoff and Núñez call grounding and 
linking. Grounding metaphors encode basic ideas, being directly “grounded” in 
experience. For example, addition develops from the experience of counting objects 
and then inserting them in a collection. Linking metaphors connect concepts within 
mathematics that may or may not be based on physical experiences. Some examples 
of this are the number line, inequalities, and absolute value properties within an 
epsilon-delta proof of limit. Linking metaphors are the source of negative numbers, 
which emerge from a connective form of reasoning within the system of mathemat-
ics. They are linkage blends, as Alexander (2012: 28) elaborates:

Using the natural numbers, we made a much bigger set, way too big in fact. So we judi-
ciously collapsed the bigger set down. In this way, we collapse down to our original set of 
natural numbers, but we also picked up a whole new set of numbers, which we call the 
negative numbers, along with arithmetic operations, addition, multiplication, subtraction. 
And there is our payoff. With negative numbers, subtraction is always possible. This is but 
one example, but in it we can see a larger, and quite important, issue of cognition. The larger 
set of numbers, positive and negative, is a cognitive blend in mathematics … The numbers, 
now enlarged to include negative numbers, become an entity with its own identity. The col-
lapse in notation reflects this. One quickly abandons the (minuend, subtrahend) formula-
tion, so that rather than (6, 8) one uses -2. This is an essential feature of a cognitive blend; 
something new has emerged.

This kind of metaphorical (connective) thinking occurs because of gaps that are 
felt to inhere in the system. As Godino, Font, Wilhelmi, and Lurduy (2011: 250) 
cogently argue, notational systems are practical (experiential) solutions to the prob-
lem of counting:

As we have freedom to invent symbols and objects as a means to express the cardinality of 
sets, that is to say, to respond to the question, how many are there?, the collection of pos-
sible numeral systems is unlimited. In principle, any limitless collection of objects, what-
ever its nature may be, could be used as a numeral system: diverse cultures have used sets 
of little stones, or parts of the human body, etc., as numeral systems to solve this problem.

Fauconnier and Turner (2002) have proposed arguments along the same lines, 
giving substance to the notion that ideas in mathematics are based on blends deriv-
ing from experiences and associations within these experiences. Interestingly, the 
idea that metaphor plays a role in mathematical logic seems to have never been held 
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seriously until very recently, even though, as Marcus (2012: 124) observes, mathe-
matical terms are mainly metaphors:

For a long time, metaphor was considered incompatible with the requirements of rigor and 
preciseness of mathematics. This happened because it was seen only as a rhetorical device 
such as “this girl is a flower.” However, the largest part of mathematical terminology is the 
result of some metaphorical processes, using transfers from ordinary language. Mathematical 
terms such as function, union, inclusion, border, frontier, distance, bounded, open, closed, 
imaginary number, rational/irrational number are only a few examples in this respect. 
Similar metaphorical processes take place in the artificial component of the mathematical 
sign system.

Actually, already in the 1960s, a number of structuralist linguists prefigured 
blending theory, by suggesting that mathematics and language shared basic struc-
tural properties (Hockett 1967; Harris 1968). Their pioneering writings were essen-
tially exploratory investigations of structural analogies between mathematics and 
language. They argued, for example, that both possessed the feature of double artic-
ulation (the use of a limited set of units to make complex forms ad  infinitum), 
ordered rules for interrelating internal structures, among other things. Many inter-
esting comparisons emerged from these writings, which contained an important 
subtext—by exploring the structures of mathematics and language in correlative 
ways, we might hit upon deeper points of contact and thus at a common cognitive 
origin for both. Those points find their articulation in the work of Lakoff and Núñez 
and others working within the blending paradigm. Mathematics makes sense when 
it encodes concepts that fit our experiences of the world—experiences of quantity, 
space, motion, force, change, mass, shape, probability, self-regulating processes, 
and so on. The inspiration for new mathematics comes from these experiences as it 
does for new language.

A classic example of this was Gödel’s famous proof, which Lakoff has argued 
(see Bockarova and Danesi 2012: 4–5) was inspired by Cantor’s diagonal method. 
As is well known, Gödel proved that within any formal logical system there are 
results that can be neither proved nor disproved. Gödel found a statement in a set of 
statements that could be extracted by going through them in a diagonal fashion—
now called Gödel’s diagonal lemma. That produced a statement, S, like Cantor’s C, 
that does not exist in the set of statements. Cantor’s diagonal and one-to-one match-
ing proofs are mathematical metaphors—associations linking different domains in 
a specific way (one-to-one correspondences). This insight led Gödel to envision 
three metaphors of his own: (1) the “Gödel number of a symbol,” which is evident 
in the argument that a symbol in a system is the corresponding number in the 
Cantorian one-to-one matching system (whereby any two sets of symbols can be put 
into a one-to-one relation); (2) the “Gödel number of a symbol in a sequence,” 
which is manifest in the demonstration that the nth symbol in a sequence is the nth 
prime raised to the power of the Gödel number of the symbol; and (3) “Gödel’s 
central metaphor,” which was Gödel’s proof that a symbol sequence is the product 
of the Gödel numbers of the symbols in the sequence.

The proof exemplifies how blending works. When the brain identifies two dis-
tinct entities in different neural regions as the same entity in a third neural region, 
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they are blended together. Gödel’s metaphors come from neural circuits linking a 
number source to a symbol target. In each case, there is a blend, with a single entity 
composed of both a number and a symbol sequence. When the symbol sequence is 
a formal proof, a new mathematical entity appears—a “proof number.”

It is relevant to turn to the ideas of René Thom (1975, 2010) who called discover-
ies in mathematics “catastrophes,” that is, mental activities that subvert or overturn 
existing knowledge. He called the process “semiogenesis,” which he defined as the 
emergence of “pregnant” forms within symbol systems themselves, that is, as forms 
that emerge by happenstance through contemplation and manipulation of the previ-
ous forms. As this goes on, every so often, a catastrophe occurs that leads to new 
insights, disrupting the previous system. Discovery is indeed catastrophic, but why 
does the brain produces catastrophes in the first place? Perhaps the connection 
between the brain, the body, and the world is so intrinsic that the brain cannot really 
understand itself.

 Epilogue: Selected Themes

The chapters of this book span the interdisciplinary scope of MC study, from the 
empirical to the educational and speculative, as well as examining aspects of math-
ematical method, such as proof, and what this tells us about the nature of MC. The 
objective has been twofold: to show how this line of inquiry can be enlarged profit-
ably through an expanded pool of participating disciplines and to shed some new 
light on math cognition itself from within this pool. Only in this way can progress 
be made in grasping what math cognition truly is. Together, the chapters of this 
book constitute a mixture of views, findings, and theories that, when collated, do 
hopefully give us a better sense of what math cognition is.
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