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Preface

The study of mathematical cognition has become an ever-broadening interdisciplinary 
field of inquiry that aims to understand the neural basis of mathematics and, more 
specifically, how mathematical concepts emerge. Starting with the work of Brian 
Butterworth, Stanislas Dehaene, Keith Devlin, Lakoff, and Núñez, among others, the 
field started burgeoning in the early 2000s, having provided today a huge database of 
research findings, theories related to math learning, and insights into how mathemat-
ics intersects with other neural faculties, such as language and drawing. The field has 
not just produced significant findings about how math is processed in the brain but 
also reopened long-standing philosophical debates about the nature of mathematics.

The number of journals, book series, and monographs that is now devoted to the 
study of math cognition is enormous. The purpose of this volume aims not to add 
merely to the accumulation of studies but to show that math cognition is best 
approached from various disciplinary angles. The goal is to broaden the general 
understanding of mathematical cognition through the different theoretical threads 
that can be woven into an overall understanding. The groundwork for establishing an 
interdisciplinary approach was laid, in recent times, by George Lakoff and Rafael 
Núñez in their book Where Mathematics Comes From: How the Embodied Mind 
Brings Mathematics into Being, in which they discussed a coherent, albeit controver-
sial, view of how mathematicians come to use and invent their proofs and theorems 
through the use of analogies and metaphor. The idea that proofs and mathematical 
concepts stem from such “rhetorical thinking” certainly resonates with semioticians, 
linguists, literary critics, and other humanist and social scientists. In this framework, 
mathematics can be seen to be an offshoot of the same neural-conceptual system that 
leads to the processing of language and other human skills and faculties. Whether or 
not this tenet can be proven empirically, the point is that it is plausible and highly 
interesting and, thus, needs to be explored seriously if we are ever to come to an 
understanding of what mathematics is and why it leads to knowledge of the world.

The overall perspective that this volume aims to adopt can be called hermeneutic. 
Like the philosophy of mathematics, the hermeneutic approach must consider the onto-
logical source of mathematics; like psychology, it should try to understand the nature 
of mathematics as a product of brain and culture interacting in specific ways; like 
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semiotics, it must connect mathematics to signs and symbols and should look at the 
relationship of mathematics to other human faculties and how it connects to the outside 
world.

This anthology is hermeneutical in the interdisciplinary way that it explores how 
the math mind manifests itself in various ways and what implications for math 
learning and teaching it has. The theme woven throughout is that math cognition is 
interconnected with other processes, such as spatial reasoning and metaphor, which 
lead us to contemplate deeper structures hidden or implicit in mathematical 
creations. This book is part of a series of projects undertaken at the Fields Institute 
for Research in Mathematical Sciences under the aegis of its Cognitive Science 
Network: Empirical Study of Mathematics and How It Is Learned. The present 
series is published under this aegis as well. As a Co-director of the network, I would 
like to express my sincere gratitude to Dr. Edward Bierstone, the Director of the 
Fields, for allowing me to explore mathematics from an interdisciplinary perspective 
with the collaboration of colleagues from mathematics to neuroscience.

Overall, mathematicians, cognitive scientists, educators of mathematics, philoso-
phers of mathematics, semioticians, psychologists, linguists, anthropologists, and all 
the other kinds of scholars who are interested in the nature, origin, and development 
of mathematical cognition will hopefully find something of interest in this volume. 
The implicit claim in all the studies is that in order to penetrate the phenomenon of 
mathematics, it is necessary to utilize methods and theoretical frameworks derived 
from a variety of disciplines.

Toronto, ON, Canada� Marcel Danesi 

Preface
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Chapter 1
From Biological Brain to Mathematical 
Mind: The Long-Term Evolution 
of Mathematical Thinking

David Tall

�Introduction

In this chapter we consider how research into the operation of the brain can give 
practical advice to teachers and learners to assist them in their long-term development 
of mathematical thinking. At one level, there is extensive research in neurophysiology 
that gives some insights into the structure and operation of the brain; for example, 
magnetic resonance imagery (MRI) gives a three-dimensional picture of brain 
structure and fMRI (functional MRI) reveals changes in neural activity by measuring 
blood flow to reveal which parts of the brain are more active over a period of time. 
But this blood flow can only be measured to a resolution of 1 or 2 s and does not 
reveal the full subtlety of the underlying electrochemical activity involved in human 
thinking which operates over much shorter periods.

Here we use available information about the brain to consider aspects of 
mathematical thinking that can be observed by teachers and learners. For example, 
by understanding how the brain interprets written text and hears spoken words, it 
becomes possible not only to reveal why individuals have difficulty in making sense 
of expressions in arithmetic and algebra but also how sense-making can be improved 
at every level from the full range of young children to the varied needs of adults. 
One possibility involves noticing aspects that are intuitively grasped by more 
successful thinkers that give them advantage and introducing these insights explicitly 
to improve mathematical sense-making for the broader population.

Another aspect relates to the difference between the way that the eye reads text 
and follows moving objects. This offers fundamental insight into human perceptions 
of constants and variables that are foundational in the calculus. At a higher level of 
abstraction there is the manner in which a written proof may be scanned by someone 
attempting to make sense of it. These diverse insights are used to build a coherent 
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picture of how the biological brain can develop into a mathematical mind capable of 
contemplating and sharing increasingly subtle mathematical theories at all levels 
from newborn child to adult.

Building such a theory must take into account that different communities of 
practice may interpret situations in ways that may be in conflict with one another so 
that the conclusions in one community may not be appropriate for another. This 
applies to many different communities engaged in mathematical activity, including 
mathematicians in different specialisms, teachers in various educational contexts, 
philosophers, psychologists, neurophysiologists, curriculum designers, politicians 
and so on.

In addition to considering competing theories, the proposed framework seeks a 
higher level multi-contextual overview that takes account of the natural ways that 
mathematical thinking develops over the longer term, both in the individual and also 
corporately in different communities. The evidence presented here suggests that 
accepted approaches to teaching and learning mathematics by established 
communities of practice may be counterproductive in supporting the long-term 
development of mathematical thinking.

�Differing Conceptions of Mathematics and a Multi-Contextual 
Overview

The term “community of practice” was initially introduced by Lave and Wenger 
(1991) as “a group of people who share a craft or a profession”. In any community 
of practice, individuals may have differing personal viewpoints but, overall, they 
agree (or believe that they agree) to certain shared principles. Communities of 
practice incorporate a wide range of participants, including “experts” who are well 
versed in the practices and “novices” who are being introduced to the practices of 
the community in various contexts.

In the long-term learning of mathematics, the contexts encountered will change 
substantially. For the purposes of this chapter the term “mathematical context” will 
refer to a specific mathematical topic being experienced by a particular individual 
or group of individuals in a specific community of practice. The topic may relate to 
a single example or to a longer term sequence of activities.

As mathematics becomes more sophisticated, some ideas that worked well in a 
previous context may continue to be supportive in a new context, while others may 
become problematic (Tall 2013). For instance, simple number facts such as “2 + 2 
makes 4” encountered with whole numbers continue to be supportive when dealing 
with more general numbers, such as fractions or signed numbers. Other experi-
ences, such as the fact that the product of two whole numbers gives a bigger result 
but the product of two fractions can be smaller, may be problematic for many 
learners.

D. Tall
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Our main strategy is to seek fundamental principles that remain supportive 
through many contexts over the long term, so that they can be used as a stable basis 
for learning while identifying successive problematic aspects that arise as the 
context changes to help learners become aware of them and address changes 
appropriate to support long-term learning.

Problematic changes in context often occur as mathematical thinking evolves, 
both in history and in the individual. This can be seen in the language relating to 
new kinds of number—positive and negative, rational and irrational, and real and 
imaginary—which involve significant boundaries in the evolution of ideas that need 
to be addressed.

Crossing a boundary may be termed a “transgression” from the Latin for “going 
across”, which carries with it a sense of moving to previously unacceptable territory 
(Kozielecki 1987; Pieronkiewicz 2014). It is used not only in a religious context, but 
also in a geographic context such as when water flows across a flood plain. It is also 
appropriate in a historical or personal transition across a boundary in mathematics.

The changes in context may be interpreted in different ways by different 
communities. If a given community A has a particular belief that is problematic for 
community B, and an individual or a subgroup S in community A changes to adopt 
the beliefs of community B, then this change will be seen by community A as a 
transgression while community B will see it as an enlightenment (Tall 2019).

In historical development, such transitions from transgressions to enlighten-
ments occurred with the introduction of negative or complex numbers, or the use of 
infinitesimals in seventeenth-century calculus, which was criticised and later 
rejected by the introduction of epsilon-delta analysis at the beginning of the twenti-
eth century, and then reintroduced, subject to great dispute, in non-standard analysis 
in the 1960s.

Similar conflicts occur in individual learning as mathematics shifts to new 
contexts, say from whole number arithmetic to fractions, to signed numbers, to 
finite and infinite decimal expansions, and to real and complex numbers and from 
various contexts in arithmetic to algebra.

It is not simply a matter of shifting from one level of insight to a higher level. 
Often it is important to be aware that apparently conflicting possibilities can coexist 
in different contexts at the same time. For instance, in whole number arithmetic 
there is a theory of unique factorisation into prime numbers which can be extended 
to fractions and signed numbers by allowing the powers to be positive or negative, 
and to factorise polynomials in algebra. But, for highly technical reasons, it fails for 
certain more general algebraic numbers that mix whole numbers and square roots 
(Stewart and Tall 2015).

Why should the average reader care? The answer is that average readers are 
unlikely to encounter this particular problem in algebraic number theory, but they 
will encounter many examples where new experiences conflict with previous 
experiences that makes them feel uncomfortable, unwilling and even believing that 
they are incapable of thinking about mathematics. Matters are made worse when 
learners are subject to the beliefs of communities of experts that are at variance with 
their own current level of development.

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…
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The response to these conflicts is to identify their possible sources not only in the 
thinking of the student or the teacher, but also in the mathematics itself as it develops 
in sophistication. This offers new ways of addressing the problem of making 
long-term sense of mathematical thinking.

We begin by considering:

•	 How the biological brain operates as it encounters increasingly sophisticated 
mathematical constructs in successive contexts over the long term.

Then we consider:

•	 How the brain makes sense of space and number.
•	 How the eyes and brain interpret written text.
•	 How the brain interprets spoken and aural expressions.

This information will be used to formulate a framework for the long-term 
meaningful interpretation of expressions in arithmetic and algebra.

More generally, we will briefly consider:

•	 How the eye follows a moving object, giving meaning to constants and variables.
•	 How the eye reads through a written proof to make it meaningful.

This will be shown to be part of an overall framework for the long-term evolution 
of mathematical thinking in the individual (and in corporate society) that takes 
account of cognitive and affective growth through increasingly sophisticated 
mathematical contexts.

�The Biological Brain

The biological brain is far too complicated to describe in detail in a chapter such as 
this. It has evolved over many years where more successful variants in individuals 
are passed on to later generations without any overall grand design. The individual 
grows from a single fertilised cell and develops by successive cell subdivision 
guided by the genetic structure from the parents to construct an essentially symmetric 
brain in two halves with complex links between them.

Evolution works in unexpected ways. For example, the left side of the human 
brain receives signals and sends output to the right side of the body and the right 
side of the brain deals with the left side of the body. The two halves cooperate 
together: almost all right-handed individuals and most left-handers deal with 
sequential operations such as language, speech and calculation in the left brain 
while the right brain focuses on global aspects such as interpreting visual informa-
tion and estimating size.

Neuroscience studies the brain in a variety of ways. These include the use of 
electrodes on the scalp to detect electrical activity in the cortex (the “grey cells” on 
the surface where sophisticated thinking takes place). Magnetic resonance image 
scanners (MRI) take cross-sectional scans of the brain to give a three-dimensional 

D. Tall
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picture of brain structure including the internal connections. Functional MRI 
scanners (fMRI) trace blood flow over a period of 2 s or so, as the blood carries 
more oxygen to areas where the brain is more active. Both give valuable insight into 
brain structure and a broad view of its operation while being too coarse to trace the 
detail of human thinking occurring in milliseconds.

Initially fMRI studies of mathematical activity focused mainly on simple 
arithmetic tasks. More recent studies (e.g. Amalric and Dehaene 2016) suggest 
surprising possibilities in the relationship between language and mathematical 
thinking. They say that Chomsky (2006) declared that “the origin of the math-
ematical capacity [lies in] an abstraction from linguistic operations”, while 
Einstein insisted: “Words and language, whether written or spoken, do not 
seem to play any part in my thought processes” (quoted in Hadamard 1945: 
142–1433). Of course, different individuals may think in different ways and 
Einstein certainly used imaginative thought experiments in developing his the-
ories of relativity.

However, when Almaric and Dehaene studied mathematicians working in very 
different research areas (abstract algebra, analysis, geometry, topology), they found 
that all of them activated areas of the brain related to spatial sense and number 
which are present in young children before they develop language and are also 
found in many other non-human species.

Apart from linguistic memory for arithmetic facts, these areas rarely link to areas 
processing language (Dehaene et al. 1999; Shum et al. 2013; Monti et al. 2012). In 
addition, brain imaging studies of nested arithmetic expressions reveal little or no 
links with language areas (Maruyama et al. 2012; Nakai and Sakai 2014).

While language may be used as scaffolding to link different aspects of mathe-
matical thinking, deeper levels of mathematical thought link with spatial imagery 
and mathematical operations. In this chapter we seek to link the natural use of 
language to fundamental human ways of thinking flexibly about spatial imagery 
and number.

Brain activity, as a whole, deals not only with cognitive issues. The limbic 
system (Limbic System n.d.)1 in the centre of the brain handles a complex array 
of tasks including laying down and retrieving long-term memories; it also reacts 
immediately to threats in a primitive “fight or flight” mechanism. This suffuses 
the brain with biochemicals (neurotransmitters) that enhance or suppress connec-
tions that can affect mathematical thinking in emotional ways. These may be 
positive in terms of determination and resilience or negative in terms of anxiety 
or avoidance.

To make sense of how the human brain builds mathematical connections, it is 
therefore important to complement what is known about cognitive development 
with affective reactions to mathematical ideas.

1 Wikipedia: Limbic System: https://en.wikipedia.org/wiki/Limbic_system

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…
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�How the Brain Makes Sense of Spatial Information 
and Number

In the early years a young child develops the capabilities to recognise a given object 
seen from different viewpoints and in different orientations as being consistently the 
same. In mathematics, over a period of years, the child builds what Piaget (1952) 
called “conservation of number”. This means that a given collection of objects has 
a consistent number attached to it and that if the objects in the collection are rear-
ranged spatially or if they are counted in a different way, then the number of objects 
remains the same.

Mathematicians formulated the properties of number and arithmetic using rules 
such as the “commutative”, “associative” and “distributive” laws for addition and 
multiplication. This was taken as a foundation of the “New Math” of the 1960s, but 
failed to take account of the reality of the development of mathematical thinking in 
the learner. On the other hand, mathematics educators studied the difficulties 
encountered by learners and formulated more child-centred approaches including 
the elaboration of different methods of counting and whole number arithmetic, such 
as count all, count on, known facts and derived facts. International comparisons 
such as TIMSS (2015) and PISA (2015) brought politicians into the act as they 
sought to improve international competitiveness. Multiple communities of practice 
sought to influence the curriculum in very different ways that could be in conflict.

In this chapter we will not enter into a comparison between the practices of 
different communities. Instead we focus on the increasing sophistication of mathe-
matical structures and operations and how they develop from fundamental human 
ideas of time, spatial sense and number.

The concept of number does not start with rules of arithmetic. Instead it builds 
from a sense that when a collection is reorganised in space or counted in different 
ways, then some things remain the same. The most important of these, which is not 
immediately obvious to the child, is that the number of objects in a collection 
remains the same, no matter how it is rearranged or how it is counted. Figure 1.1 
(taken from Tall 2019) shows how a collection of six objects has the same number 
of objects no matter how it is arranged or counted. The number 6 is chosen because 
it is the smallest number that allows not only different methods of counting and 
addition, but also two different methods of multiplication.

Young children will have many life experiences that contribute to the develop-
ment of mathematical thinking, including shared singing and dancing with rhythmic 

4 + 2
count-on

5

6
(4)

2 + 4
count-on

3 4 (2)

5 6

2 lots of 3 3 lots of 2move around and
count in any order

3
4

5

6

1
2

1, 2, 3, 4, 5, 6
count-all

5 6

1 2 3

4

Fig. 1.1  Conservation of the number 6

D. Tall
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representations of the number sequence: “One, two, three, four five, once I caught a 
fish alive; six, seven, eight, nine, ten, then I let him go again”.

As children mature, they will have many experiences, playing games, practising 
arithmetic techniques and exploring patterns. Opportunities arise to focus on an increas-
ing awareness of the conservation of number. For example, in counting a collection of 
objects in different ways, the total number remains the same; in adding together two or 
more collections, the total number of items is the same, no matter how it is calculated:

	 3 4 6 15 4 15 6 3+ + + + + +gives the same result as . 	

This is a fundamentally important principle over the long term. It applies not 
only to whole numbers, but also to fractions, signed numbers, decimal notation, 
infinite decimal expansions, real numbers and even complex numbers. For instance:

	
7 1 414 5 1 414 7 5+ + + ( ) + + ( ) +¾ . – . – ¾.gives the same result as

	

This leads to a major underlying principle that is supportive throughout the num-
ber systems encountered in school mathematics:

The General Principle of Addition for Numbers: A finite sequence of additions of num-
bers is independent of the order of calculation

For individuals who attain more sophisticated levels of mathematical thinking, 
this can lead to a further generalisation in algebra and calculus:

The General Principle of Addition: The sum of a finite collection of constant or variable 
quantities is independent of the order of calculation

There are corresponding principles for multiplication, such as

The General Principle of Multiplication: The product of a finite collection of constant or 
variable quantities is independent of the order of calculation.

The multiplication principle works for most situations in school mathematics, 
though it fails in more sophisticated contexts such as matrix multiplication. Both 
principles can be extended to other operations, such as subtraction, division and 
powers and this will be addressed later.

To support meaningful learning of mathematics over the long term, the aim is for 
teachers and learners to become aware of properties that remain supportive through 
several changes in context to give a stable foundation for new learning. The plan is 
to use the sense of security in such general principles to encourage learners to 
address situations where the context changes and previously supportive ideas 
become problematic, to seek meaningful reasons why changes in meaning need to 
be incorporated into long-term thinking. This can be assisted by reflecting on how 
we humans make sense of our perceptions and actions.

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…
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�How the Eyes Read Text and Symbolic Expressions

When we read text on a page, we do not scan the lines smoothly. Instead the retina in the 
eye has a small area called the macula which registers much higher detail and takes in 
successive parts of the text in a succession of jumps (called “saccades”) that the brain 
puts together to build up the meaning of the text. Figure 1.2 (taken from Tall 2019) shows 
printed text on the left and a representation of how human vision focuses on a small part 
of the text on the right. Read the clear text on the left several times to sense how your eye 
jumps along the lines to make build the meaning of the text. Do this now ….

It transpires that when we speak words, we do so as a sequence in time, and when 
we read text, we do so in an ordered sequence in a direction dependent on the 
language concerned—usually left to right in Western languages (Tall 2019). This 
sets an implicit mode of thinking that can become problematic when interpreting 
expressions in arithmetic and algebra.

�How the Brain Interprets Spoken and Aural Symbolic 
Expressions

When a mathematical expression such as 1 + 2 × 3 is spoken or heard, it occurs in 
time, as “one plus two times three”. The traditional sequence of spoken and written 
language suggests that the operations should follow the sequence in time: first carry 
out the operation “1 + 2” which is “3”, and then “3 × 3” which gives 9.

Children are given a different convention in mathematics that contradicts this 
natural sequence with the rule “multiplication takes precedence over addition”. This 
requires first performing the second operation “3 × 3” to get “6” and then calculat-
ing “1 + 6” to get the “correct” answer, 7.

If children learn to follow the rule without reason, as expressions become more 
sophisticated and the rules more complicated, then, over the longer term, arithmetic, 
and subsequently algebra, becomes increasingly difficult. Simply learning by rote 
fails to take into account the subtle ways in which language is expressed. It is not 
just a matter of what we say, but how we say it.

Fig. 1.2  Reading text

D. Tall
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In written text we use punctuation to distinguish subtle differences in meaning. 
In spoken text, we can use tone of voice and articulation to express meaning. If we 
say mathematical expressions, by leaving gaps in different places, we can empha-
sise which operations are linked together. For example, saying

	
“ ”one plus gap two times three[ ] 	

emphasises that the words in the phrase “two times three” are to be taken together, 
suggesting that the result is “one” plus “two times three”, which is “one” plus “six”, 
which is “seven”.

In Tall (2019) I played with the idea of writing an ellipsis (…) to denote a gap, 
so that

	 1 2 3 3 3 9+ ¼´ ´means which is, , 	

while

	 1 2 3 1 6 7+¼ ´ +means which is, . 	

At this point it is helpful to speak the two expressions “1 + 2 … × 3” and “1 + … 
2 × 3” out loud to yourself and, if possible, to another person, to see how these two 
ways of speaking give two clearly different meanings, not only to the person speak-
ing, but also in communication with others.

Do this now before proceeding. It is essential that you experience this for 
yourself.

––––––––––––––––––––––––––
This reveals that the meaning of a sequence of operations in arithmetic, and also 

later in algebra, depends on the way it is spoken. It can be formulated as follows:

The Articulation Principle: The meaning of a sequence of operations can be expressed by 
the manner in which the sequence is articulated (Tall 2019).

It is essential to realise that this principle does not act like a definition in mathe-
matics that can be used to make a formal deduction or to prove a theorem. It makes 
us aware that we need to think very carefully how we interpret and communicate 
mathematical expressions.

The principle operates with other expressions. For instance, it clarifies the 
possible meanings of an expression such as 2 × 3 + 4 which could be interpreted as

	 2 3 4 6 4 10´ ¼+ +which gives which is, 	

or

	 2 3 4 2 7 14¼´ + ´which gives which is, . 	
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This makes it imperative to introduce suitable conventions to clarify the precise 
meaning, such as introducing brackets around operations that should be performed 
first. Thus 2 × 3… + 4 can be written as (2 × 3) + 4, which is 10 and

	
2 3 4 2 3 4 14¼´ + ´ +( )can be written as which is, .

	

It is then possible to introduce further conventions to reduce the length of expres-
sions. For instance, the convention “multiplication takes precedence over addition” 
allows us to remove brackets around a product, in the knowledge that the convention 
requires multiplication to be calculated before addition to rewrite

	
2 3 4 2 3 4´( ) + ´ +as

	

while retaining the notation for 2 × (3 + 4).
The principle of articulation is widely applicable throughout mathematics. For 

instance, my 11-year-old grandson surprised me one day when he asked me

	
“ ”?What is the square root of times9 9 	

Knowing that he was familiar with negative numbers, I replied that the answer 
could be “+9 or −9”. “No”, he replied, “it’s 27”. Then he explained that he meant

	
“ ”...the square root of times9 9 	

which gives 27 (Tall et al. 2017).
Subsequently, we found that the principle works not only for simple arithmetic 

expressions but also throughout the whole range of mathematical expressions used 
to specify mathematical operations as mental objects.

�Flexible Use of Symbolism Dually Representing Process  
or Concept

The idea of an operation becoming a mental object of thought has permeated 
research on mathematical thinking for many years. Piaget referred to this transi-
tion at “reflective abstraction” and many other authors have formulated similar 
ideas using different terminology. (See Tall et al. 2000 for a general discussion.) 
Broadly speaking, there are two essentially different mental constructs—a pro-
cess (or operation) which occurs in time, either as a procedure with a specific 
sequence of actions or as a more general input-output process, and a concept (or 
mental object) that can be conceived as a mental entity that can be manipulated 
in the mind. In what follows, when referring to mathematical expressions, the 
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terms “process” and “operation” will be used interchangeably as will the terms 
“concept” and “object”. Often the situation is seen as having two different 
states: one as process (or operation), and the other as concept (or object) with 
distinct acts of passing from one to the other.

Gray and Tall (1994) realised that an expression such as 2 + 8 can be conceived 
either as a process to be carried out, such as “add 2 and 8”, or as a concept, the “sum 
of 2 and 8”, which is 10. They responded to this dual and ambiguous use of the 
symbol by naming it a “procept”. This offers a major theoretical advance because it 
refers to the possible use of the symbol flexibly, either as a process that could be 
carried out in a variety of ways or as a single mental entity that can be manipulated 
as a mathematical object, whichever is more useful in a given context.

Sometimes it is important to distinguish between the two meanings. As opera-
tions, two different operations can give the same object, so we often speak of 
them as “equivalent operations”. For instance, when we speak of fractions, we 
say that 36  and 2

4
 are “equivalent fractions” because they are certainly different 

as operations, but they are the same rational number, represented on the number 
line by a single point.

This flexible duality of expressions as process or concept occurs throughout 
arithmetic, algebra, calculus and more sophisticated use of symbols. Often the 
curriculum is designed to start with examples of specific procedures to convert one 
expression to another. For instance, algebraic expressions such as (x + 1)(x − 1) can 
be multiplied out to get x2–1, and this can be factorised to return to (x + 1)(x − 1). 
Initially these two expressions may be seen as “equivalent” but they are also differ-
ent ways of representing the same underlying mathematical object which has a 
single graph.

This is not the only way in which sophisticated ideas evolve. It is also possible to 
begin with an intuitive sense of a concept and then seek ways of constructing and 
calculating it. Applied mathematicians do it all the time. They start with a situation 
that they seek to model and use mathematics to construct and test the model to see 
if it gives a good prediction.

�Making Sense of Mathematical Expressions Dually 
Representing Operation or Object

Given the way in which rules of precedence violate the directional way of reading 
text, Tall (2019) proposed a simple notation to use the distinction between process 
and concept to give a natural meaning to the rules of precedence. Starting with a 
single operation such as 2 + 8, simply put boxes around the objects:

	 2 8 2 8+ is the operation of adding the objects and . 	

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…



12

If the whole expression is conceived as an object, put the box around the whole 
expression:

	 2 8 2 8+ is the object which is the result of adding and . 	

This relates directly to the different ways we articulate an expression to indicate 
which operations should be performed first and then the result should be considered 
as an entity to be operated upon. For instance

	 2 3 4 2 3 4 6 4 10´ ¼+ ´ + +can be interpreted as which is giving, , 	

while

	 2 3 4 2 3 4 2 7 14¼´ + ´ + ´can be interpreted as which is giving, . 	

The general principle of addition tells us that if there are several additions in a 
box, then the order does not matter, so

	 2 3 4 5 2 4 5 3´ + + ´ + +is the same as . 	

There is a corresponding principle for a box containing several multiplications.
There are a few conventions that require individual treatment. For example, if 

letters are involved in an algebraic expression, such as 2 × a × b, then the convention 
is to omit the multiplication signs, writing it as 2ab. There is no problem here:

	
The operation can be written as and the object as2 2a b a b .

	

In dealing with the contraction 2½ for 2  +  ½, boxing the expression as an 
operation requires an explicit addition sign 2 1

2
+  as the symbol 2 1

2
 could be 

confused with the product.
The exponent notation for x2 can be written as x

2  as an operation and as x2  
as an object.

What is important for the human brain is to reduce the complication by not using 
unnecessary notation. What matters is the principle of seeing operational symbols 
flexibly as process or concept and to interpret the operations in an expression 
according to their precedence. For instance, in the quadratic expression

	 2 7 62x x+ + 	

it is not necessary to put boxes around the numbers. Visualising the terms x2, 2x2 and 
7x as single objects, the expression can be seen as

	 2 7 62x x+ + 	

D. Tall
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or, in the usual notation, as

	 2 7 62x x+ + 	

where now the reader can flexibly see x2 as an object and 2x2 and 7x as objects which 
are also the product of objects. The expression is now the sum of three terms and the 
general principle of addition allows them to be written in any order. Individual 
terms can be manipulated to see 5x as 3x + 2x and 6 as 3 × 2 and the expression 
2x2 + 7x + 6 can be factorised as (2x + 3)(x + 2).

To be able to manipulate expressions in this way requires considerable flexibility 
on the part of the individual. In a traditional algebraic curriculum, the reading of 
more complicated expressions is often guided by mnemonics such as PEMDAS in 
the USA or BIDMAS in the UK to specify successive levels of precedence.

PEMDAS, remembered as “Please Excuse My Dear Aunt Sally”, sets the order 
of precedence as “Parentheses, Exponents, Multiplication, Division, Addition, 
Subtraction”; BIDMAS gives “Brackets, Indexes, Division, Multiplication, Addition, 
Subtraction”. The situation is more complicated because the order is actually 
P > E > M = D > A = S or B > I > D = M > A = S where > denotes a higher level of 
precedence and = denotes an equal level. The rule states that higher precedence 
operations are performed first and equal precedence are performed left to right.

The use of this mnemonic proves to be highly problematic. Brain research 
reported earlier shows that merely learning the mnemonics by rote may link to lan-
guage areas in the brain but not to the areas involved in fundamental human sense 
of space, time and number. Our new view of understanding meaning through articu-
lation and flexible interpretation of symbol as process or concept now offers a new 
way of linking visual symbolism to fundamental human ideas of spatial layout and 
number.

There is also a further limitation of the mnemonics PEMDAS and BIDMAS 
because they only apply to binary operations a + b, a − b, a × b, a ÷ b and a ^ b 
(written as ab) and not to unary operations such as the additive inverse, −a and 
square root √a, nor to more sophisticated operations such as matrix multiplication, 
limits, differentiation, integration and other more advanced symbolisms that require 
new rules of operation.

The principle of articulation generalises naturally to give meaning to more 
advanced concepts. A typical instance is the square of a negative quantity −x2 which 
can be articulated as

	
“ ” “ ”, .minus gap squared or as minus gap squaredx x[ ] [ ] 	

These give the two different meanings:

	
– – .x x( ) ( )2 2and

	

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…



14

The same idea also clarifies the meaning of x2 when a negative number is 
substituted for x. College students may find difficulty in substituting “x equals 
minus 2” in “x squared”. Is it “minus two squared” as −4 or “minus two squared” as 
+4? (McGowen and Tall 2010). The articulation principle clarifies this distinction.

What becomes apparent in this long journey through sense-making in arithmetic 
and algebra is that it is possible to make sense of the conventions adopted in tradi-
tional algebraic notation by building from the principle of articulation, the general 
principles of addition and multiplication and the duality of expressions as process 
and concept. This approach links naturally to what has been discovered about the 
workings of the brain where mathematical thinking at all levels benefits from mak-
ing mental links between concepts in space, time and number.

What is even more remarkable is that this analysis generalises to more sophisti-
cated expressions written spatially using templates as laid out in modern digital 
software.

We have already seen a spatial layout when a power is written raised as a super-
script. Possibilities proliferate with symbolism for limits, summation, integrals, 
matrix layouts and so on. These can be written by hand or built up using software 
templates such as MathType or specified symbolically using languages such as 
TeX. Figure 1.3 shows the layout for the general solution of a quadratic equation.

Reading an expression involves scanning the spatial layout to make sense of it. 
By starting with the whole expression as an object, it is possible to see it as flexibly 
as a process with sub-expressions as objects in boxes, and then to dig hierarchically 
down into the objects re-imagined as processes to give flexible meaning for the 
whole expression (Fig. 1.4).

This successive focus on the whole as an object and then as a process, to see the 
constituent parts of the process as objects that can then be further broken down, is 
essentially how successful thinkers can intuitively see the hierarchical structure of 
the expression. Now it can be explained explicitly to encourage a broader range of 
the population to make sense of expressions.

Fig. 1.3  Spatial layout of an expression
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�Equations

Once teachers or learners have the insight afforded by the meaning of the principle 
of articulation and the flexibility of expressions as process or object, this can give 
meaningful new ways of interpreting equations. An equation consists of two expres-
sions with an equal sign between them. The new insight allows an equation to be 
seen in different ways, depending on whether either or both of the two expressions 
are process or concept.

For a young child, an equation in arithmetic such as

	 2 3 5+ = 	

is usually read from left to right as an operation in which 2 + 3 is seen to give the 
result 5. This is in the form “process = number”. An algebraic equation in the same 
form, such as

	 2 3 9x + = 	

can be seen as a process to produce the output object 9:

	 2 3 9x + = . 	

Seen as a succession of steps, the process can be written as

	 x x® ®
´ +2 4

2 10 	

The process can then be undone by reversing the steps:

	 3 6 10
2 4

¬ ¬
¸ -

	

which immediately tells us that the original input x must be 3.

b± ± ±±b2 4ac
2a

expression
as object

b b2 4ac

numerator
as object

expression
as process

b b2 4ac
2a

numerator
as process

b b2 4ac

term
as object

b2 4ac

term
as process

b2 4ac

sub-term
as process

4 a c

sub-term
as object

4ac

Fig. 1.4  Sub-expressions as operation or object
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However, an equation with an expression on both sides, for example,

	 3 2 2 1x x– = + 	

cannot be “undone” in the same way. This might be solved by guessing a value for 
x which works, or by seeing both sides as the same object, written as

	 3 2 2 1x x– .= + 	

We can then operate on the equation by “doing the same operation to both sides” 
which retains the equality of the new sides. Once the original equation can be 
imagined as having an object on either side, we can do this in standard notation, by 
adding 2 to both sides to get

	 3 2 2 2 1 2x x– .+ = + + 	

Using the general principle of addition, this simplifies to

	 3 2 3x x= + 	

and, taking 2x from both sides gives

	 x = 3. 	

A student who sees an expression only as a process and not as an object is more 
likely to be able to solve an equation of the form “expression = number” by “undo-
ing” than solve an equation with expressions on both sides. This is studied extensively 
in the literature and was named “the didactic cut” (Filloy and Rojano 1989).

A teacher who has given meaning to expressions using the principle of articula-
tion and has grasped the flexibility of expression as process or concept has a new 
way of giving meaning to equations. “Doing the same thing to both sides of an 
equation” in the form “object = object” ends up either with both sides always being 
the same (an “identity”) or with the equation only being satisfied by certain values 
of the unknown (an “equation”). The first case occurs with an equation such as

	
2 3 2 6x x+( ) = +

	

or

	
x y x y x y+( )( ) =– – .2 2

	

In our new way of thinking, this is a single object (a procept) with different 
processes to calculate it.

A teacher who belongs to a community of practice that makes sense of expressions 
in this way may offer enlightenment where others may only see many complications 
arising from the didactic cut. But whether this transition to a new way of thinking is 
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possible for teachers depends on their current beliefs and whether the transition, as 
seen from their current practice, is a transgression or an enlightenment.

The ability to see the equals sign used in a flexible way has further benefits as the 
mathematics evolves in sophistication. An equation in the form “variable = expres-
sion” may take the form of a definition of the variable (as a mental object) given by 
a process. For instance, the equation y = x2 defines the (dependent) variable y in 
terms of a process operating on the (independent) variable x.

This applies in more sophisticated theory, such as infinite sums in the calculus where

	
sin

! !
x x

x x
= - + +

3 5

3 5


	

which defines the mathematical expression sin x computed as a potentially infinite 
process. The left-hand side is now a mental object which can be calculated as 
accurately as required by adding enough terms.

Over the long term, making sense of expressions, initially through the principle 
of articulation and then through the flexibility of expressions as process or concept, 
offers a consistent approach that encourages the learner to build on supportive ideas 
with confidence and deal with problematic aspects as they arise. Whether this 
approach is successful or not will depend on how current communities of practice 
see it as a transgression from their accepted practices or an enlightenment to move 
forward into the future.

�Building a New Framework for Long Term of Mathematics

While various approaches to the curriculum have led to “Math Wars” arguing 
between approaches to mathematics learning, we can now shift to a higher 
multi-contextual level where learning “the basics of arithmetic” can be related 
flexibly to the meaning of expressions.

As children experience mathematical ideas in practical contexts, they will 
naturally pick up aspects related to each context. Making sense of different contexts 
to draw out common ideas is more complicated than having available simple 
principles that work in multiple contexts.

This is part of a much broader framework for making long-term sense in mathemat-
ics as a whole. In How Humans Learn to Think Mathematically (Tall 2013) I formulated 
a framework for long-term mathematical thinking beginning from the child’s percep-
tions and operations with the physical world and with others in society. One strand of 
development senses the properties of objects, initially physical, and then constructed 
mentally, which I termed conceptual embodiment. Another strand focuses on the 
properties of operations that I termed operational symbolism. Both of these develop in 
sophistication from practical mathematics based on the coherence of properties that 
occur in practice to theoretical mathematics where properties are defined and relation-
ships are deduced one from another in what may be termed consequence.
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At the turn of the twentieth century, a further strand developed based on properties 
defined using set theory or logic which I termed axiomatic formalism. For many 
mathematicians, formal mathematical proof starts with Euclidean geometry. But 
there is a huge difference between mathematics based on properties of pictures or on 
known calculations and mathematics based on formal definition and proof. Prior to 
the end of the nineteenth century, the study of mathematics and science based on 
naturally occurring phenomena was described as “natural philosophy”. I therefore 
distinguish “theoretical mathematics” based on “natural phenomena” from “axiom-
atic formal mathematics” based on set theory and logic (Fig. 1.5).

Figure 1.5 is a much simplified view of the theoretical framework developed in 
Tall (2013), based on the new information available from neuroscience. I termed the 
three main strands as “worlds of mathematics” because each world represents a 
fundamentally different way of thinking that evolves both in history and in the 
individual. Conceptual embodiment exists in many species and in human ancestors 
several hundred thousand years ago. Operational symbolism evolved in Homo 
sapiens in the last fifty thousand years, proliferating in various communities in 
Egypt, Babylon, India and China around five thousand years ago, becoming increas-
ingly theoretical in Greek mathematics with the first flowering of mathematical 
proof two and a half thousand years ago. Axiomatic formal mathematics has been 
around for little more than a century. Now new possibilities are emerging in our 
digital age enabling Homo sapiens to use new digital tools to enhance the possibili-
ties of enactive interface, dynamic visualisation, symbolic computation and 
emergence of new forms of artificial intelligence.

In this ongoing evolution, the biological brain evolves slowly. There is no 
reason to suppose that the biological brain of the ancient Greeks is substantially 
different from our own. In contrast, the technical evolution of digital tools 

Fig. 1.5  The long-term development of mathematical thinking
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available to support the mathematical mind that have occurred within a generation 
is immense. Although we now know that the biological brain is more complex 
than a simple duality between left and right brain, it still continues to support 
conceptual embodiment and operational symbolism with the forebrain taking an 
increasing role in integrating mathematical thinking in new forms of axiomatic 
formalism.

It is interesting to note that the diagram in Fig. 1.5 nowhere explicitly mentions the 
role of language. Instinctively, when I originally thought about the framework, I saw 
mathematical thinking to be related to the complementary roles of visual imagination, 
sequential symbolic operation and later logical deduction, with verbal language being 
used to describe connections between different parts of the framework.

The resulting two-dimensional picture gives only a partial idea of the broader 
complexity of the workings of the human brain. For example, it focuses on cognitive 
aspects that occur in the surface areas of the cortex and says little about the activity 
of the limbic system in the centre of the brain that not only performs many cognitive 
tasks relating to short- and long-term memory but also responds emotionally to 
supportive and problematic aspects of mathematical thinking.

Individuals do not operate in all areas of the framework. For everyday mathemat-
ics, as used by the vast majority of the population, all that is required is practical 
mathematics focusing on the coherence of spatial perception of the properties of 
objects and symbolic operation.

Those involved in mathematical applications including STEM subjects (science, 
technology, engineering, mathematics) usually only require practical and theoreti-
cal mathematics.

Only a small percentage of the population studying pure mathematics and logic 
use axiomatic formal mathematics.

�Extending the Framework

Although the picture places axiomatic formal mathematics at the top of the figure, 
this is by no means the end of the story. Among the properties proved in axiomatic 
systems, certain theorems called “structure theorems” prove properties that reveal 
new forms of conceptual embodiment and operational symbolism. Sometimes the 
structure is unique in the sense that any two structures satisfying the definition have 
the same properties (said to be “isomorphic”). We can now see that the two struc-
tures may not only be “essentially the same”, but they may also be conceived as a 
single entity that can be represented in different ways.

Two examples of such unique structures are “the natural numbers” and “the real 
numbers” which can be represented visually as points on a number line and 
symbolically using decimal notation. Other axiomatic systems may have many 
different examples, such as the concepts of “group” or “vector space”. These have 
structure theorems that allow them to be classified and represented as mental objects 
or as operational structures. For example, a “finite dimensional vector space” can be 
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proved to have a coordinate system, visualised as two- or three-dimensional space 
or imagined mentally in higher dimensions, where the coordinates allow the vectors 
to be manipulated symbolically (Tall 2013).

�How the Brain Makes Sense of More Sophisticated 
Mathematics

Knowledge of the workings of the brain can now explain in simple terms how the 
biological brain can make sense of sophisticated mathematical ideas that are consid-
ered to be problematic for some and enlightening to others. Again, this explains 
evolution of ideas corporately in history as well as in the growing individual.

�How the Eye Follows a Moving Object, Giving Meaning 
to Constants and Variables

When the eye follows a moving object, it starts using the same initial action as 
reading text, with a single jump to focus on the object, but then it follows the object 
smoothly as it moves. You can sense this by holding a finger in front of your eye at 
a comfortable distance away and move it sideways, keeping your gaze on the finger 
as it moves. The finger stays in focus while the background is blurred. In this way 
the eye is set up to follow moving objects smoothly. It is therefore natural to imag-
ine a point on a line which moves. It is also natural to distinguish between a fixed 
point on a line (a constant) or a moving point on a line (a variable) (Fig. 1.6).

This has profound implications for the historical and individual imagination for 
constant quantities and variable quantities, including variables that can become arbi-
trarily small. In history this gave rise to ideas of indivisible quantities that are small 
but no longer further divisible and infinitesimal quantities, either as potential never-
ending processes or as actual mental objects. This interpretation of infinitesimals as 
variable quantities offers a new way of considering the Greek arguments about 
potential and actual infinity. It sheds new light on the development of infinitesimal 
ideas in the calculus, in particular, how Leibniz may have imagined different orders 
of infinitesimality (Tall 2013, Chap. 13) or how Cauchy imagined infinitesimals as 
sequences that tend to zero (Katz and Tall 2012; Tall and Katz 2014).

fixed
point

(constant)

moving
point

(variable)

Fig. 1.6  Constant and 
variable points on a line
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�How Dynamic Movement Can Represent Infinitesimals 
as Process and Concept

An infinitesimal may be visualised as a variable point on a line. For example, 
consider a rational function f(x) = p(x)/q(x) where p and q are polynomials with q 
non-zero. Draw the graph of y = f(x) and the vertical line x = k. Figure 1.7 shows the 
vertical line intersecting the graphs of y = c, y = x, y = x2 at heights c, k, k2. For 
constant c > 0, as k decreases to zero, the points height k and k2 fall below the point 
height c and the variable points k and k2 are eventually less than any positive real 
number c. In this sense they are infinitesimal. Moreover, k2 is smaller than k. If we 
think of k as being of order 1, then k2 is of order 2 and, in general, as n increases, kn 
is an even smaller infinitesimal of order n. Using such a visual representation, we 
can imagine infinitesimals of any order.

Of course, this argument may be rejected as a transgression, as it was by many 
contemporary critics of the early calculus. But for others, it offers enlightenment.

Using axiomatic formal arguments, we can go even further. Consider any ordered 
field K that contains the real numbers as an ordered subfield. (Remember that the 
field of real numbers is unique as the one and only complete ordered field, in the 
sense that any non-empty subset of real numbers has a least upper bound.) Any 
element x in K can be compared with any real number c, so we know that either 
x > c or x = c or x < c. We can then separate the elements of K into three distinct 
categories:

	(1)	 Those x in K such that x > c for all real c
	(2)	 Those x in K such that x < c for all real c
	(3)	 Those x in K which lie between two real numbers, a < b < c.

We call those in (1) positive infinite elements, those in (2) negative infinite and 
those in (3) finite. If x is finite, then the set of real numbers less than x is non-empty 
(it contains a) and bounded above (by b); therefore, by the completeness axiom for 
the real numbers, it has a least upper bound c. It is then a straightforward deduction 

k2

x = k

k

cconstant

infinitesimals
as variables

y = x2

y = x

x

y

Fig. 1.7  Infinitesimals as variables tending to zero
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to prove a structure theorem that the element e = x − c is either a (positive or negative) 
infinitesimal or it is zero. This tells us that every finite element x is (uniquely) of the 
form x = c + e where c is a unique real number and e is an infinitesimal or zero. We 
call this number c the standard part of x.

This transition to the new axiomatic formal context transforms a transgression 
into an enlightenment. It opens the flood gates. The structure theorem enables us 
to visualise infinitesimals (and their multiplicative inverses which are infinite) 
using simple algebraic maps (which I term optical microscopes) mapping x onto 
the standard part of (x − c)/e. This maps c to 0 and c + e to 1, spreading out infini-
tesimal detail near c so that we can see it as a real picture! It also reveals that, seen 
through an optical microscope, the image of an infinitesimal part of a differentia-
ble function is a real straight line. This links the intuitive idea that a differentiable 
function is “locally straight” under high magnification to a perfect visualisation in 
the axiomatic formal world (see Tall 2013, Chap. 11 or Stewart and Tall 2014, 
Chap. 15, for details).

These ideas easily extend to see infinitesimal detail for complex functions 
(Stewart and Tall 2018, Chap. 15). They are part of a much bigger framework of 
multidimensional analysis including visualisations of analysis in higher dimensions 
and sensible meanings for partial derivatives (Tall 2013, Chaps. 11 and 13).

�How the Eye Reads Through a Written Proof to Make It 
Meaningful

In addition to the way the brain can interpret pictures, it can also scan a written 
proof, not just line by line, but also by looking back at significant steps and get-
ting an overall grasp of the proof structure. Using eye-tracking techniques, Inglis 
and Alcock (2012) confirmed that undergraduates devoted more of their atten-
tion to parts of proofs involving algebraic manipulation and less to logical state-
ments than expert mathematicians. Hodds et al. (2014) developed a technique of 
“self-explanation” in which students were encouraged to read a proof line by 
line, to identify the main ideas, get into the habit of explaining to themselves 
why the definitions are phrased as they are and how each line of a proof follows 
from previous lines. They were counselled not to simply paraphrase the lines of 
the proof by saying the same thing in different words, but to focus on making 
connections to grasp the main argument and explain how the given assumptions 
and definitions in previous lines led to the current line and contribute to the 
following lines. Students who had worked through these materials before read-
ing a proof scored 30% higher than a control group on a subsequent occasion.

Notice that, in this case, the explanations were expressed linguistically, but the 
focus once more is on the relationships between ideas. A focus on making personal 
links is more likely to give a more coherent personal knowledge structure in the 
longer term.
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�The Role of the Limbic System in Enhancing and Inhibiting 
Mathematical Thinking

Up to this point, the presentation has focused on:

•	 Cognitive aspects of how individuals think about mathematical structures.

To gain a broader understanding of the long-term development of mathematical 
thinking, it is also essential to consider:

•	 Affective aspects that enhance and suppress the making of mental connections.

Mathematics evokes a wide range of emotions in different individuals. Some 
experience great pleasure in solving a difficult problem, even relishing the 
challenge. Others suffer a sense of tension and anxiety that interferes with their 
ability to answer a mathematical question or manipulate numbers. The anxiety 
can range from a mild sense of insecurity to a full-blown fear and loathing of 
mathematics.

These emotions arise in the limbic system in the centre of the brain. This is a 
collection of structures that support a variety of functions, including cognitive links 
between short-term and long-term memory, but also gives rise to primitive emo-
tional responses of pleasure or pain. In particular, it responds to challenges or to 
danger with an immediate “fight or flight” reaction that suffuses the whole brain 
with neurotransmitters that excite or inhibit mental connections.

Confident students who rise to the challenge are placed on alert, ready to 
tackle the situation. Those who find the mathematics difficult or even impossi-
ble are likely to have their mental connections suppressed, causing them to 
freeze mentally and even be unable to respond. It is not just that students 
suffering from mathematics anxiety are unwilling to think mathematically. 
When their mental connections are depressed, they may not be able to think 
about mathematics at all.

Research identifies many diverse factors related to mathematics anxiety, includ-
ing negative experiences of mathematics, fear of being asked questions in front of 
others, social deprivation, poor self-image, poor memory and so on. Here we are 
only concerned with one aspect: the long-term relationship between the individual 
and mathematics. A biological brain which has rich flexible connections and an 
awareness of the need to deal with problematic aspects of new contexts is much 
more likely to succeed than one which has limited rote-learned knowledge. A 
brain suffused with neurotransmitters that enhance mental connections is better 
placed to construct new meanings than a brain with mental connections that are 
suppressed.

1  From Biological Brain to Mathematical Mind: The Long-Term Evolution…
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�Strategies for Enhancing Long-Term Mathematical Thinking

�Moving to the Future in Different Communities of Practice

Recent international comparisons in TIMSS (2015) and PISA (2015) reveal widespread 
differences in long-term mathematical competence. PISA shows East Asian countries 
scoring highly in the first seven places out of 65 participants, with the Netherlands 
(10th) among those above average, the UK (26th) being average and the USA (36th) 
slightly below average, with a long tail including Brazil (58th). I selected these countries 
because they include some of the areas where I have had direct research experience.

As a consultant in a project involving 20 economic communities around the 
Pacific Rim, it was my privilege to participate in a multicultural overview of differ-
ent communities developing Japanese Lesson Study and editing (but not writing) 
the English version of the first three volumes of the Japanese Junior High School 
mathematics (Isoda and Tall 2018). These books are written by mathematicians and 
teachers to encourage students to think for themselves, informed by research in 
mathematics education. The lesson sequence is organised to give the students 
experiences that will be useful for solving problems encountered later in the 
sequence. The sequence is then modified over successive implementations to build 
a stable version intended for general use.

The development of Lesson Study is broadly consistent with the framework 
formulated here with some differences. For example, mathematics education 
research distinguishes between “three twos” and “two threes” and the curriculum 
initially retains this difference as processes rather than seeking their unity as an 
object. Perhaps the next iteration of the curriculum will address this aspect.

The building of the long-term curriculum reveals a problematic transition from 
practical to theoretical mathematics. In the Netherlands, “realistic mathematics” 
introduces children to make sense of practical situations as active participants solv-
ing meaningful problems in imaginative ways (Van den Heuvel-Panhuizen and 
Drijvers 2014). This approach has spread internationally with widely acclaimed 
success. Yet it proved to lead to a situation where students in the Netherlands going 
to university were less well prepared.

Advocates of realistic mathematics investigated this phenomenon in three PhD 
studies involving “subtraction under 100”, “fractions” and “algebra”, to show that:

Dutch students “proficiency fell short of what might be expected of reform in mathematics 
education aiming at conceptual understanding. In all three cases, the disappointing results 
appeared to be caused by […] the textbooks’ focus on individual tasks […] with a lack of 
attention for more advanced conceptual mathematical goals, constitut[ing] a general barrier 
for mathematics education reform” (Gravemeijer et al. 2016: 25).

The authors came to the conclusion that it is not a weakness in the theory of 
realistic mathematics, but in the implementation of theory: that “realising” mathe-
matical ideas needs extending to grasp the underlying theoretical ideas in more 
advanced mathematics.
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An attempt to use Lesson Study in the Netherlands to address the problem for 
teenagers studying calculus proved initially to be problematic as the teachers 
followed their experience of Dutch culture including “following the textbook 
closely, the strict school guidelines and the pressure for high exam results” (Verhoef 
and Tall 2011). Only in the second year of the study did teachers begin to grasp the 
students’ personal ways of thinking to make sense of the relationship between 
dynamic visualisation and symbolism using Geogebra (Verhoef et al. 2014).

In the USA there is a vast quantity of research literature studying the complica-
tion of ideas in arithmetic, fractions and algebra. In general, this literature focuses 
more on the complications of mathematics and its implementation in the classroom. 
But where is the extended research to consider how to make sense of the simple idea 
of the principle of articulation and its resulting flexibility of symbolism as process 
or concept?

In the UK with a maximum political cycle of 5 years, politicians need results that 
vindicate their policies within such a period. Given the perceived lack of competi-
tiveness in international comparisons, they sought to find how the more successful 
countries operate, seeking insights from Singapore, Shanghai, Finland and 
elsewhere, finding that different social and cultural attitudes made it problematic to 
transfer the expertise. In Brazil, which scores low in PISA studies, research revealed 
teachers teaching students rote-learnt rules to pass tests which work in simple cases 
but fail in general: for example, solving a quadratic equation using the formula, 
when many students could not manipulate a quadratic into the form ax2 + bx + c = 0 
to use the formula (Tall et al. 2014).

In both high-scoring and low-scoring communities on the PISA scale outside 
East Asia, the desire to “teach to the test” may offer some short-term success, but 
over the long term, rote learning of a range of disconnected methods may act as a 
barrier to the development of more sophisticated long-term mathematical thinking.

�Reflections

This chapter has offered evidence relating to how the human brain makes sense of 
increasingly sophisticated mathematical ideas by referring to neurophysiological 
research and simple ideas that can be observed by teachers and learners in the 
classroom.

It acknowledges changes in meaning over the longer term as the learner encoun-
ters more sophisticated contexts. To offer positive support to address these changes, 
it focuses on fundamental aspects that remain supportive over several changes of 
context as a secure foundation to help learners make sense of problematic changes 
in meaning.

Focusing on how we articulate mathematical expressions can offer profound 
insight into the long-term learning of arithmetic and algebra. Other observations into 
the workings of the human brain offer insights into how we think about mathemati-
cal ideas at all levels from newborn children to the wide variety of adult thinking. 
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This is part of a broader theory of long-term mathematical development including 
both historical and individual growth that takes account of cognitive, affective and 
social aspects.

However, participants in different aspects of the enterprise will have their own 
views on how they should proceed. Different communities of practice may have 
radically different approaches that conflict with each other and one community may 
see a change in meaning as an enlightenment, while another community may see as 
a transgression. This has led to widespread differences involving “math wars” 
between different approaches and it is highly unlikely that a single approach will 
provide a universal solution.

The contribution of this chapter is to reflect on simple yet profound ideas that 
may enlighten different communities in ways that offer each community appropriate 
insight.

Difficulties encountered by young children in arithmetic may grow into 
mathematics phobia in adults. Mathematics educators often focus on creativity, 
encouraging young learners to see a specific pattern in many imaginative different 
ways. The framework recommended here uses the principle of articulation to clar-
ify the meanings of expressions and, by interpreting expressions flexibly as process 
or object, it goes on to show how equivalent, but different, processes can be 
conceived as a single object. This makes explicit a long-term implicit development 
in the curriculum, where equivalent fractions are later seen as the same rational 
number marked as a single point on the number line, and equivalent algebraic 
expressions are later seen as a single entity with the same graph. A parallel focus 
on specific examples and underlying structure offers the possibility of a closer 
relationship between arithmetic and algebra.

At a more sophisticated level, by realising how the human eye sees variable quan-
tities, the framework offers a new understanding of the use of infinitesimals in the 
calculus, linking together the different approaches in pure and applied mathematics.

At an even more advanced level of thought, the notion of “structure theorem” 
links set theoretic mathematics and logic back to visual intuition and meaningful 
symbol manipulation.

The possibilities are immense, especially at a time in history where new technol-
ogy enables the fundamental operation of Homo sapiens to function in new ways 
that not long ago would have been inconceivable. Digital technology offers enactive 
control of dynamic imagery to support visual intuition, and symbolic manipulation 
to support operational symbolism, together with the ongoing evolution of artificial 
intelligence that currently falls short of the full capacity of the human brain. It is an 
exciting time to see how the biological brain uses new facilities to operate evermore 
powerfully as a mathematical mind.
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Chapter 2
Compression and Decompression 
in Mathematics1

Mark Turner

The mathematician Hermann Weyl (1952) explained that a body in the world 
incorporates its environment, or rather, its ancestors’ environment of evolutionary 
adaptation. An unmoving minuscule organism that floats in the ocean at a depth 
where gravity and water pressure balance each other out is nearly spherical, 
because for such an organism all directions are functionally the same, and so 
selection produced a suitable body. Its experience has spherical symmetry and so 
does its body. A plant fixed to the ground—like a tree—is asymmetric top to bot-
tom because gravity creates an environment where all directions are not the same. 
The tree’s environment is characterized by a constant difference: the gravity vector 
points down; a tree’s form must deal with that. On the other hand, trees have 
mostly equivalent environments in any direction perpendicular to the vertical grav-
ity vector—“mostly equivalent” because there are variations in the relative path of 
the sun, the flow of water, a strong onshore wind, and so on. Accordingly, trees, 
ignoring these local differences, for the most part have bodies that are the same in 
all directions perpendicular to the vertical axis. An animal on the ground that 
moves has different experience in the direction it is headed than it has from the 
direction whence it came, and so has a body that is different front to back. We run 
into things we are moving toward, not things from which we are moving away. We 
experience gravity and we move. Accordingly, our bodies are, on the outside, ana-
tomically, pretty much different up-down and front-back, but not so much left-
right. What can happen from the left can happen from the right. What we can do to 
the right we can pretty much do to the left. We can mostly reverse our experience 
to the left versus right just by doing an about-face. We are set up for this: it would 
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be extremely inefficient if we had to learn everything twice, once to the left and 
once to the right. Instead, our brains are built to be able to map left to right and 
right to left and pick out the midline, the axis, about which the pattern is symmet-
ric. This kind of symmetry is called “bilateral symmetry,” or “heraldic symmetry” 
(Turner 1991).

We have several immediate, human-scale ideas that come from our bodily 
knowledge of bilateral symmetry. Most important, we know that when we are 
symmetrically positioned about the plane that separates the left side of our body 
from the right side of our body (called the “sagittal” plane), whether we are 
sitting or standing or even moving, then we are stable, balanced, able to deal with 
the world, and ready with power to engage what is in front of us. We know that 
the same is true of other people, because of course we can make an easy mental 
blend of our body and their bodies to have an idea of how their bodies work. We 
also know that we most easily attend to something by facing it, standing 
full-frontal to it, locating it in our sagittal plane directly ahead. And of course we 
know, by blending, that other people have this experience and behavior. Just by 
putting our two hands against each other and pressing with equal force, we 
understand the equilibrium and stability that come from equal opposing forces. 
And we understand that, along this lateral axis, there is a linear order from one 
side to the other that advances to our sagittal plane and then reverses to reach the 
other side. Like Leonardo’s Vitruvian Man, we can mark off from left to right—
fingernails, dactyls, palm, wrist, forearm, elbow, upper arm, shoulder, pectoral, 
neck and head, pectoral, shoulder, upper arm, elbow, forearm, wrist, palm, dac-
tyls, and fingernails. It is like a bodily palindrome. A palindrome is a piece of 
writing that reads the same backward and forward, like “able was I ere I saw 
Elba,” or “Madam, I’m Adam.” Whether you start on the left or the right of the 
human body, one side is the mirror image of the other.

This bodily knowledge of symmetry is used to make new, compressed ideas that 
go far beyond human scale. An institutional power, like a king, is frequently 
represented by bilateral symmetry, as we see in the Lion Gate at Mycenae, where 
two beasts (scholars debate whether these beasts are actually lions) in heraldic 
symmetry lean rampant against a central pillar. We understand immediately a “sta-
bility” and “power” that go a vast distance beyond our human-scale idea of 
symmetry, because we have blended a vast mental web of political and institutional 
power with that human-scale, bodily idea of symmetry.

Vast conceptions are often given an artistic or poetic or symbolic presentation 
that starts at the periphery, works toward the center, and then works back out toward 
the periphery. When Odysseus meets his mother Anticlea on a visit to the under-
world (Book XI of the Odyssey, lines170–203), he asks her six questions, which she 
answers in reverse order, something like this:

A. What killed you? (171)
 � B. A long sickness? (172)
 �   C. Or Artemis with her arrows? (172–173)
 �     D. How is my father? (174)
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 �       E. How is my son? (174)
 �         F. Are my possessions safe? (175–176)
 �           G. Has my wife been faithful? (177–79)
 �           G’. Your wife has been faithful. (181–83)
 �         F’. Your possessions are safe. (184)
 �       E’. Your son is thriving. (184–87)
 �     D’. Your father is alive but in poor condition. (187–96)
 �   C’. Artemis did not kill me with her arrows. (198–99)
 � B’. Nor did a sickness kill me. (200–201)
A’. But my longing for you killed me. (202–3)

What falls at the center of this orderly symmetry is the great theme of the Odyssey. 
Odysseus will fight his way back to Ithaka, discover that Penelope has been faithful, 
and, against the greatest odds, regain his position with her, their son, and his 
people.

This may seem at first to be the stuff of old epic, but a few minutes’ reflection 
will bring to mind many examples from current political rhetoric, advertising, and 
popular entertainment that use such heraldic bodily balance.

Much of the virtue of this blending is that, instead of having to think about many 
things simultaneously, we can think of one thing—a compressed blend—and use 
that one thing to help us key into this or that part of the decompressed mental web 
that is so vast. It is easier to use a compressed blend than a diffuse network. If we 
can place a compressed blend inside the decompressed network, the compressed 
blend can help us manage the decompressed network. Blending other ideas and 
concepts with bilateral symmetry creates a highly compressed, experientially 
grounded blend, likely to be highly intelligible, memorable, and tractable. It gives 
us one compressed, tractable thing instead of two or more, where some of those 
inputs are diffuse and mentally intractable.

Here is a demonstration of the power of thinking about one compressed thing 
instead of two. Consider the sequence 1, 3, 5, 7, 9 …. What is the next number? It’s 
easy: 11, followed by 13, 15, 17 …. Now consider a second sequence: 2, 4, 6, 8, 10 
… What is the next number? It’s easy: 12, 14, 16 …. Hold those two integer 
sequences in mind. Now alternate between them, starting with 1. That is, take the 
first element from the first sequence, then the first element from the second sequence, 
then the second element from the first sequence, then the second element from the 
second sequence, and so on, like this: 1, 2, 3, 4, 5, 6, 7 …. How does the sequence 
continue? It’s easy: 8, 9, 10, 11.

But now, using the same two sequences, combine them again, in just exactly the 
same way, but instead start with the second sequence rather than the first: 2, 1, 4, 3 
…. How does the sequence continue? Well, uh, 6, 5, … uh, uh, um, 8, 7 …. If you 
run this demonstration in a lecture hall full of extremely clever people, they are 
guaranteed to start laughing quickly at how they stumble over the sequence.

Why? Both tasks have the same input mental spaces, that is, the two different 
integer sequences. Both tasks have the same rule for constructing the third 
sequence—or rather, the same rule except for where you start. To that extent, the 
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tasks place identical demands on the mind. The obvious difference is that for the 
first task, there is a unified, compressed blend of the two sequences, a blend in 
which the sequence proceeds by taking one number, and adding one, and doing that 
again for the next number, and so on. That blend of the two sequences can be held 
in the mind all at once, and we can think about this one thing instead of having to 
alternate back and forth between two. But in the second task, it is much harder to get 
a single, unified, compressed blend that can be used to juggle and access the input 
mental spaces.

If we want to put some stuff into a room and it does not fit, there are in general 
two different ways to succeed: First, get a bigger room; second, change the stuff so 
that it will fit. These are very different, if complementary, strategies. Changing the 
stuff can include folding it, packing it, stacking it, filtering the stuff so as to throw 
away what we do not need to keep, and so on. Most interesting, changing the stuff 
can include adding things to it, like, say, stackable storage bins. If we want to stack 
a lot of fine wine in a small space, it might be best to build good racks for it. This 
may seem nonsensical, because adding racks increases the amount of stuff we must 
fit into the room. But that is often the right strategy. The specific details of the pack-
ing can vary. Here is an analogy: In Robert Crichton’s The Secret of Santa Vittoria, 
the Italian villagers have hidden very many bottles of local wine underground from 
the German army at the end of the Second World War. They stacked it tightly. To 
mislead the Germans, they also stacked a lot of wine above ground, in plain view, 
but stacked it using a method that requires a great deal of space per bottle. So you 
can store a lot more or a lot less, depending on how you arrange it. The same is true 
of numeric sequences. One way to arrange the combination of the two input 
sequences 1, 3, 5 … and 2, 4, 6, … is to create the blend 1, 2, 3, 4, 5 …. This is a 
compressed blend that can be held as a unified mental space in the mind: Instead of 
working in the mental web of inputs, you can work in the blend. The other way to 
arrange the combination of these two sequences is to create the blend 2, 1, 4, 3 …, 
but that attempt to blend is poor. It produces something that does not fit so well in 
the mind.

Of course, we have heard and memorized the sequence 1, 2, 3, 4 … many times, 
and never heard or memorized the sequence 2, 1, 4, 3 …. Accordingly, somebody 
might intelligently object: Does the difference in our ability to manage the two 
sequences stem from the fact that in the first we are reciting from long-term memory, 
but in the second we lack such assistance? Does this exercise merely demonstrate the 
obvious: that we know what we have memorized but do not know what we have not?

We can run a different demonstration to answer the question. We can show the 
same effect without calling on long-term memory, by working with sequences that 
we have never heard or memorized. Consider a sequence defined by this rule: Take 
every other even number, beginning at 256. So, 256, 260, 264 …. What is the next 
number? It is easy to generate it, because there is a unitary rule: Just add four to the 
last number. This rule makes the sequence seem like one thing. Now hold that 
sequence in mind. At the same time, consider a very similar sequence with the iden-
tical rule: Take every other even number beginning at 254. So, 254, 258, 262 …. 
What is the next number in this sequence? It is easy to generate it, because there is 
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a unitary rule, and it is the same unitary rule: Just add four to the last number. This 
rule makes this second sequence seem like one thing. Now hold that second sequence 
in mind along with the first. What is the sequence that consists of numbers taken 
sequentially in alternation from the two sequences, beginning with 256? So, 256, 
254, 260, 258, 264, 262 …. What is the next number? Keep going. Everyone finds 
it difficult not to stumble almost immediately. It is crucial to realize that a computer, 
doing the actual math and not needing the compressed blend, would have not the 
slightest difficulty.

Why is that? We have no difficulty holding each of the sequences in mind because 
for each we can make a simple blend: The blend has only two numbers, and the 
second is four more than the first. Wherever you want to be in the sequence, project 
it to the first number in the blend, and project the next number in the infinite sequence 
to the second number in the blend, which is four more. So just add 4, and you are 
done. That little blend gives you the entire sequence, or rather you can expand from 
the human-scale blend to any part of the infinite sequence you like. The mental web 
has an infinity of numbers, but the blend has only two elements, and it repeats. So 
there is no difficulty in keeping either one of these sequences in mind, because we 
can use the compressed blend. If we could hold both of the input sequences in mind 
and go back and forth between them, choosing at each turn the next number for the 
new sequence, we could answer the question and continue indefinitely, switching 
back and forth in working memory. But we stumble almost immediately.

But now, here is a similar question that is much easier to answer. This time, start 
the new sequence at 254 and switch back and forth. Then the resulting sequence is 
254, 256, 258, 260 …. What is the next number? Of course, the answer is 262, and 
then 264, and then 266, and so on forever. Everyone finds it very easy to continue 
this sequence indefinitely, even though we haven’t forgotten that the inputs are two 
separate sequences, the first one being 256, 260, 264 … and the second one being 
254, 258, 262 …. Why is it so difficult to run the sequence 256, 254, 260, 258, 264, 
262 … but so easy to run the sequence 254, 256, 258, 260 …? The answer is not that 
we have already heard one but not the other. It is not that in one case we are reciting 
from long-term memory but in the other case we are not. The answer is not that they 
are put together from different inputs. Again, a computer would not have the slight-
est difficulty running either of these sequences, and indeed a mathematical ranking 
of the two sequences would assign them equal computational complexity. How does 
our mind work so that running the two sequences feels so different?

Everyone knows the answer immediately. In both cases, we have the same two 
input sequences, and in both cases we have the same sequence rule: Take numbers 
sequentially in alternation between the two input sequences. Or at least, we have the 
same sequence rule except for where we start. The computer would easily generate 
the needed parts of the two sequences and just alternate between them. But that is 
not how we do it.

For a person, there is a big difference between the two tasks. Starting with one of 
the two inputs makes it very difficult to keep going, and starting with the other makes 
it very easy, because in the second case there is a single, compressed blend, namely 
a single, unitary integer sequence defined by a rule: Start at 254 and keep adding 2 to 
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the last number. We can use the tight blend to do our thinking, and expand it to the 
input sequences when we want to. (Of course, there is a rule for the sequence that 
starts with the other input, but the rule is more complicated and not everyone finds it, 
and even when they do they can have difficulty running it.) When we start with 254, 
there is a congenial, compressed, unitary blend, and running the blend makes imme-
diate sense. The blend serves the web of two different sequences, and lets us keep 
connected to not only the blend but also the two input sequences we started with. In 
that case, we run in working memory three things rather than two, but running three 
things is easier than running two because the third thing is a compact blend that con-
nects to and organizes the web involving the other two. Running the blend lets us run 
the input sequences by inference. More is easier, if the more is packed in a congenial 
way. More is easier if the more is a packed blend that lets us grasp and manipulate 
whatever we were trying to hold in mind. More is easier if the blend lets us generate 
most of the web on the fly instead of having to hold it explicitly in mind. For working 
memory, more is better if the more comes about by good blending. Blending changes 
the task; it leverages working memory. On the fly, blending and working memory are 
a much stronger tool than working memory alone.

Here is a much simpler visual exercise to demonstrate how blending helps us 
manage a diffuse mental web by creating a compressed, congenial, mathematical 
blend that serves the decompressed web and makes it possible for us to grasp it. The 
mental web we are about to look at is overarching, diffuse, and difficult. But the 
blend is compact and fun. Imagine a line of identical interlocking gears lying flat on 
a table that stretches for kilometers. If the first gear turns counterclockwise, which 
way does the 173rd gear turn? The 256th? It is not so easy to reach the right conclu-
sion for these big numbers. Any two gears separated by only one gear must turn in 
the same direction. So project all the odd-numbered gears in the infinite sequence to 
the same gear in the blend, the first gear. And project all the even-numbered gears in 
the infinite sequence to the same gear in the blend, the second gear. Now, in the 
blend, instead of an infinite number of gears, there are only two interlocking gears, 
the first turning counterclockwise and the second turning clockwise. In imagination, 
all the odd gears in the line are projected onto the first gear, and all the even gears 
are projected onto the second gear. The blend has only two gears, and two direc-
tions, but it can be expanded to help us deal with any part of the infinite sequence of 
gears. The blend organizes a mental web much too diffuse to be held in working 
memory. From the blend, we can manipulate the mental web of the infinite sequence, 
and even rebuild it. Now we know that the 173rd gear must turn just like the first 
gear, which is to say counterclockwise. Using the blend, we know that the 456,251st 
gear turns counterclockwise, too. And we know that the 256th gear must turn just 
like the second gear, which is to say clockwise. We know that the 12,345,678th gear 
turns clockwise, too. Blending leverages working memory. Blending makes work-
ing memory more powerful. It even saves us from having to carry the contents of 
working memory around with us all the time. Because of blending, we do not need 
to hold the entire mental web in working memory. We can reactivate parts of it on 
the fly as needed by working from the blend (Fig. 2.1).
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Compression through blending makes it possible for the human mind to go to 
places it has never gone before. We are living beings, in many ways very much like 
other living beings. Like plants, we are made of cells. Like mammals, we breathe 
air. Like primates, we have not only two arms and two legs, but also the common 
primate brain. In the big picture, what we share with other species is surely the larg-
est part of the human story.

But there are other things that we do not share with other living beings. We do 
not share photosynthesis with plants. We do not share echolocation with bats. We do 
not share flight with birds. And they do not seem to share advanced blending with 
us. Advanced blending provides us with extraordinary flexibility and a unique power 
for innovation. Mathematical compression and decompression through blending let 
us, for example, go to sea.

Land is the kind of place we are built to be able to understand. Imagine that something 
in our field of vision comes straight at us. That is, we look in its direction, keep our gaze 
fixed, and this object we see stays in the same place in our field of vision, but it keeps 
getting bigger. We know that we need to get out of the way. That understanding is at 
human scale; it requires no big thinking. It takes only basic cognition.

Next, suppose that whatever we are looking at on land stays in the same spot in 
our field of vision but gets smaller, or stays the same size. Put another way, its image 
subtends an ever-decreasing, or an invariant, angle of our visual field. We do not 
need to move, because it is either moving away from us or staying at the same dis-
tance from us. This understanding is at human scale; it requires no big thinking. It 
takes only basic cognition.

Since motion is relative—we, in relation to the thing we are looking at—there are 
actually two or three ways to understand what is going on when we see these objects 
getting bigger or getting smaller. In one way, the object is moving while we remain 
stationary. In the other way, the object remains stationary while we are moving. 

Odd Even

Fig. 2.1  A two-element blend of an indefinitely large mental web
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There is also the possibility that both we and the object are moving. Any of these 
three scenes might fit what we see when the object seems to get closer. No matter 
which of these three scenes you are imagining, suppose that the object is staying in 
the same spot in your field of vision and getting bigger. In that case, you know you 
are going to collide with the object. In any of the three scenes, we have the same little 
physical story: the story of a collision. We are going to collide with the object.

Landlubbers might find it difficult to imagine how ambiguous and uncertain a 
boat’s location can seem to be when one is on it out at sea. In our time, the problem 
of locating the boat relative to the Earth is solved by signals from global positioning 
satellites. But only a few decades ago, GPS was not available, and even now GPS 
can fail, requiring the sailor to use other methods. There are charts, but it can be a 
very hard job to establish the relationship of the boat’s location to the images on the 
chart, especially out of sight of land, at night, under overcast skies.

Suppose we see another object out on the water—a boat, a buoy, a board, or a 
green or red or white light. Is it moving? Will we collide with it? There can be a 
considerable lag between a pilot’s action and a vessel’s response. The larger the 
boat, the greater the lag, for the most part. And there is even more bad news: A great 
deal is going on while a boat sails along a bearing out at sea. Maybe it is not so easy 
for the sailor to change bearings. Maybe there are obstacles preventing the sailor 
from going some of those ways. Maybe the conditions are better over here than over 
there. It might not be so easy to make a course correction later. What should we do?

The sailor can try to compute in working memory all the relative positions of 
objects on the water and their futures, but that results in a diffuse, distended mental 
web, reaching over time, space, causation, and agency. Such a web is very hard to hold 
and manipulate in working memory. There is a lot at stake. A mistake could be fatal.

This at-sea mental web of possible actions and possible consequences stretches 
far beyond anything at normal human scale. The collision could be an hour away, or 
2 hours away. We have to think about it. How can we get a handle on this problem? 
First, there is the simplest case, in which something is close, straight ahead of us, and 
getting bigger fast. We have to get out of the way. Move that tiller or rotate that 
wheel. But suppose the object is not straight ahead of us, or is getting bigger only 
slowly. We are not moving directly toward it. It is off the port or starboard side of the 
boat. Now we have to do some blending.

We can start to think about this process by remembering what we know about 
basic mammalian movement on land. We are very good at understanding movement 
along a path—a skill we share with other mammals. We are good at picking out in 
our visual field something that moves fairly quickly along a path: a bird, a fly, or an 
ant. Often, the object leaves a trace along the path, as when a child rides a bicycle 
through the beach sand. Activate this idea of something moving along a path and 
leaving a trace of its movement. At the same time, activate the idea of a boat moving 
on the ocean. The movement of the boat will take a long time, and we do not see the 
trace made during all of that time. But if we blend these two ideas—the relatively 
quick movement along a path that leaves a trace, and the boat’s movement—then, in 
the blend, the boat has motion along a path, and we can see that path all at once. In 
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the blend, we now have a boat, its entire movement along a bearing from past 
through present to future, and its trace.

Notice what is happening here: In one of the input mental spaces, we see the 
entire movement and its trace in a very little bit of time—as when the bicycle goes 
through the sand—but in the other, the amount of time is immense. When we blend 
these together, we see in the blend something happen quickly that we know takes a 
long time. This is a compression of time. We perform such compressions routinely. 
When we look at the calendar, for example, the whole month is right there; the 
movement from day to day takes no more time than is required for our finger to go 
from one spot on the calendar to another. In the blend, the movement of the boat that 
might take hours takes only a few seconds. That is a time compression. And even 
though we see no lasting trace on the water, since the wake disappears, in the blend, 
we have the boat’s trace mentally available as something to be used.

We are not deluded: When we expand the blend, we realize that it contains a 
compressed mental representation of time. In the blend, the extended activity of the 
boat has been blended with our simple notion of quick movement along a path that 
leaves a trace. The blend uses something with a basic, at-home structure to let us 
conceive of a far-from-home mental web of ideas.

Now that we have this blend for our boat’s movement along its bearing, we can 
find a way of dealing with the question of whether we will collide with something 
else we see out there on the surface of the water. First, make not just one, but two of 
these boat-on-a-path-with-a-trace blends. In each, there is something moving along 
a course, both under severe time compression. One blend has our boat. The other 
has whatever object we are looking at, out there on the surface of the water. In fact, 
it could be that the “course” of the other object, or even our own course, is to stay 
motionless in one spot on the water. Either we or the other thing could be anchored, 
for example, or becalmed. But when we are out at sea, we cannot tell just by looking 
(this may surprise those who do not go to sea) whether one of us is not moving. So, 
imagine that what we see is a boat out on the water. Then in each of the two 
boat-on-a-path-with-a-trace blends, there is a boat and a course for the boat along a 
bearing, and in each blend there is a static line, a trace.

Now, blend again. Blend those two boat-on-a-path-with-a-trace blends into a 
hyper-blend, so that in the new blend we have two bearing lines. Do those bearing 
lines intersect? If so, do the two lines, or, more accurately, the two boats, arrive at 
the intersection at the same time? If so, then there is a collision coming. Move that 
tiller or rotate that wheel. But how can we think about whether the two boats arrive 
at the intersection at the same time? That point of intersection could be a long dis-
tance from where we are, and we do not know that distance. It could be a long time 
from now, and we do not know how long. Here, what we know about the human-
scale scene of colliding with something or someone comes to our aid. In our human-
scale scene, we know that if we keep our angle of vision just the same as we look at 
the other object, then the other object must move “forward” in our field of vision if 
it is going to get to the intersection before we do. That is, it must look as if it is 
“gaining” on us, shortening the distance to the intersection faster than we are. 
Alternatively (assuming, again, that we keep our angle of vision just the same as we 
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look at the other object), the other object must move “backward” in our field of 
vision if we are going to reach the intersection first. That is, the other object must 
look as if it is “losing” because we are shortening our distance to the intersection 
faster than the other object. If the other ship is moving “forward” in our field of 
vision, it is beating us to the intersection. If it is moving “backward” in our field of 
vision, we are beating it to the intersection. In either case, there is no problem, 
because the two objects will not arrive at the intersection simultaneously.

But if the other object stays in just the same spot in our field of vision and gets 
bigger, then we are going to reach the intersection at the same time. We are going to 
collide.

Baseball fielders use this “gaze heuristic” to catch a fly ball: They run toward 
where they think the ball might be headed, but keep looking at the ball flying through 
the air with the same angle of vision, and speed up or slow down so as to keep the 
ball in the same spot in the field of vision, neither advancing nor falling back. That 
way, they will intersect with the ball, and perhaps catch it.

By blending what we know from our human-scale experience of movement and 
collision with the vast at-sea web of objects in the distance, we can understand, in 
the blend, something that we cannot actually see. In the blend, there are intersecting 
lines and everything else we need to decide whether to deviate from our course. In 
the case of the gaze heuristic, it may be that instinct has built the right tool into lots 
of mammals. But what we are interested in here is the way in which advanced 
blending can make this kind of idea available for scenes far beyond the local area 
and moment.

For those who are interested in the mathematics, it can easily be shown that the 
same blending provides the mathematical understanding of the situation as it is usu-
ally taught in navigation classes for sailors. The geometry goes like this: We can 
mentally draw an imaginary triangle in the blend. One vertex is the position of boat 
A, the other vertex is the position of boat B, and the third vertex C is where the two 
bearing lines intersect. If both boats arrive simultaneously at C, then each boat, sail-
ing at a constant speed along an unchanging bearing, traverses its leg of the triangle 
in the same amount of time. In that case, boat A traverses x% of its course to C in 
the same amount of time that boat B traverses the same x% of its course to C, and 
therefore we have, at each moment, a triangle, ABC, and all these triangles are simi-
lar: They all have the same, unchanging interior angles, and the three sides always 
stand in the same proportions. So, for all these triangles, the angle—that is, the bear-
ing—from boat B to boat A stays the same. In other words, all these different static 
triangles can be packed to a blend in which there is one triangle that is shrinking 
over time. This blend is, in visual imagination, something direct and human scale. 
Of course, it is not something one can see in the visual field. The triangle in the 
blend changes in a manageable amount of time. It can be unpacked to the entire dif-
fuse web of locations in time for both boats.

Will we collide with the other boat? Now we can see the math that can be applied 
to the blend: As we stand on our boat, we gaze at the distant object and ensure that 
our gaze is constant relative to our boat, by, for example, picking a point on our 
gunwale and looking out over it at the object, and not moving our head or our eyes. 
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If the distant object remains in the same spot in our gaze and grows larger, we are 
going to hit it, so we should change course.

The “shrinking triangle” blend for determining whether we will collide uses an 
extremely common pattern of blending: In a big web, find the analogies and 
disanalogies across lots of mental spaces; compress the analogies and disanalogies 
into the blend, with the result that the blend has one thing that changes. There can be 
very many conceptual inputs in such a web, with analogies and disanalogies 
connecting them. The analogies are compressed to a single entity—in this case, the 
triangle. And the disanalogies are compressed to change for that one thing. In this 
case, the change for the one thing is that the triangle is shrinking. The triangle keeps 
its proportions as it shrinks, and shrinks down to a single point: the point of collision. 
So if there is a collision (in the blend), then the bearing from boat B to boat A stays 
the same and boat A gets closer to boat B because the leg of the triangle that connects 
them is shrinking. This implies that boat A subtends a larger angle in the visual field 
of the sailor on boat B.  This situation is called by sailors Constant Bearing, 
Decreasing Range. The mnemonic is Charter Boaters Detest Returning. To the 
sailor, it means: If there is a constant bearing to the other object, and the range to the 
other object is decreasing, alter course or the two of you are going to collide.

Of course, if what you want to do is collide with or meet the other object, then 
the shrinking triangle blend is exactly what you want.

By using this blending web, the sailor creates a manageable mental scene—the 
shrinking triangle of doom. It can be easily grasped. The shrinking triangle blend 
enables the sailor to make a human-scale decision. That decision can be expanded 
to manage a diffuse mental web that otherwise could not be mastered within work-
ing memory. This is new stuff, on a grand scale, and lets us boldly go where we were 
not adapted to go. Dogs, wonderfully talented as they are, so flexible that they can 
learn to work on a boat in blue water, seem to be equipped with the gaze heuristic: 
Some breeds are good at catching fly balls and Frisbees. But never expect a dog 
looking at a dot on the sea a long way off to start barking to alert you that you and 
the dot are going to collide.

The shrinking triangle blend lets us think far beyond human scale. It lets us think 
at web scale, about a future that is only slightly specified. But in all versions of that 
future, with different triangles, there is a collision if we have constant bearing, 
decreasing range, and no change of course. The blend organizes and serves the 
diffuse mental web. We conceive of the blend, and it allows us to grasp the mental 
web, to reason in the mental web, and to draw inferences for our present action.

The blend delivers new stuff that is amazing, once we think about it. To begin 
with, there is of course no triangle except in the blend. Imagining a single triangle 
on the water is already an impressive compression.

Moreover, this conception of the triangle on the water is not actually an idea of a 
specific triangle. Instead, the imagined triangle is a potential, generalized triangle, 
with some constraints. Why is it not a specific triangle? Because the sailor does not 
know the lengths of any of its legs. Therefore, what she knows is not a triangle, but 
rather a set of constraints on the relevant (but unknown) triangle. There is an 
uncountable infinity of triangles fitting those constraints, and an uncountable infinity 
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certainly cannot fit inside working memory, but that uncountable infinity of trian-
gles is all compressed into one triangle in the blend.

The next compression we achieve, a compression that is quite different from the 
compression of all the possible static triangles into one static triangle, is the shrink-
ing. Over time, there will be an uncountable infinity of such similar triangles. But 
each of them is static. There is no shrinking in reality. The shrinking is new stuff that 
arises in the blend. The new stuff in the blend is not itself shared by the ideas that 
we call into use to make the blend. In none of our ideas of reality is there a shrinking 
triangle. But we make one in the blend, and it helps us understand reality. The blend 
originates a new idea that helps us manage the vast mental web.

It is not even given that there is a triangle that results in a collision. The entire 
blending web for the collision triangle is held as potentially counterfactual with 
respect to another blending web in which the two lines that are the courses of the 
boats either do not intersect or have an intersection that is not a simultaneous loca-
tion for the boats. It is no problem if the courses intersect—this happens all the time. 
The only problem is if their intersection is a simultaneous location for both boats.

Managing the mental web of events on the water depends upon having a blend at 
human scale, one we can mentally grasp. From the mathematical blend of the 
shrinking triangle, we can manage the out-at-sea web it serves.

The evolution of an advanced blending capacity and the evolution of memory 
capacity could have bootstrapped each other in the evolution of human beings, in 
two different but related ways:

	1.	 An expansion in working memory—where by “working memory” we mean the 
capacity to hold information in mind for processing—would have made more 
mental stuff available to the process of advanced blending. So, other things being 
equal, an expansion in working memory would have been more useful, fitter, if 
that blending capacity was already strong enough to handle the new load and 
deal with the range of new material.

	2.	 Long-term memory might have evolved to provide some mental input spaces to 
the advanced blending mill that are not compatible with the present situation. 
That is, contents of long-term memory might be incompatible with the present 
situation, so long-term memory could be a great resource for blending if blend-
ing can work with incompatible input spaces. The present situation we inhabit 
has stuff that is pretty much compatible—after all, it is all right here right now 
together. So where would a capacity for advanced blending that is superb at 
blending incompatible ideas get the incompatible ideas? One answer is an 
evolved long-term memory that is freed from submission to the present situation. 
In cognitive science, a memory incompatible with the present situation is called 
“decoupled.” The more capacious the power of long-term memory, the greater 
the range of the conceptual material it can supply to blending.

In the cases of both working memory and long-term memory, we have an 
evolutionary bootstrap: An expansion of blending capacity makes it fitter for work-
ing memory to expand and for long-term memory to expand; and an expansion of 
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working memory or long-term memory makes it fitter for the blending capacity to 
expand.

One great difference between our species and all other species is our capacity to 
manage complex, diffuse mental webs that range far beyond the here and now. Our 
ability to manage these mental webs depends upon our ability to compress them into 
congenial, human-scale blends. Here is a snippet of a sequence of integers: 2 2 1 2 
2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 …. It can be quite difficult to grasp this 
sequence, but a first step is to recognize that it is a repetition of 2 2 1 2 2 2 1, like 
this (Fig. 2.2):

If one memorizes “2 2 1 2 2 2 1” in an auditory loop, it might be possible to write 
out a lot of this sequence by repeating it and writing as one repeats.

Musicians may recognize that this sequence defines the major diatonic scale: Its 
numbers give the number of steps (semitones) between notes in the major diatonic 
scale, beginning on any note. For example, the major scale beginning on C is C D E 
F G A B C D E F G A B…. (Fig. 2.3)

The number of semitones between C and D is 2; between D and E is 2; between 
E and F is 1; and so on. This is a spectacular mental compression not just of the 
major diatonic scale beginning on C, but of all major diatonic scales, regardless of 
the beginning note. For example, the major scale beginning on G is G A B C D E F# 
G A B C D E F # ….

Of course, this major diatonic scale has the same repeating pattern as any other: 
Beginning at G, take two steps to A, two steps to B, one step to C, two steps to D, 
two steps to E, two steps to F#, and one step to G, and then repeat indefinitely.

Children studying music chant, “Whole Whole Half Whole Whole Whole Half,” 
which is another way of saying “2 2 1 2 2 2 1.” This chant triggers a compressed 
blend that can be expanded to help us understand the major diatonic scale, any 
major diatonic scale.

On the piano keyboard, the sharp and flat notes are the black keys. The key of C 
major has no sharps or flats—so just white keys. If you start at C, you have to make 
two steps (first to the black key, second to the white key) to reach D. Then two steps 
to E, then only one step to F, then two steps to G, then two steps to A, then two steps 
to B, and then only one step to C: 2 2 1 2 2 2 1, or “Whole Whole Half Whole Whole 
Whole Half.” If you find the keyboard representation confusing, look at the neck of 
a guitar. Play a C, then move up 2 frets, play a D, and so on up the scale.

2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1{ { { { { { { {

2 2 1 2 2 2 1
Fig. 2.2  Blending an indefinite mental web to a seven-element cyclic blend
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But the 2 2 1 2 2 2 1 recurring sequence is good for any major scale. If we blend 
it with a specific beginning note (like C), then the new blend is a more specific 
compressed blend—compressed not least because it has only seven elements in a 
repeating sequence, whereas the actual scale itself goes on indefinitely in either 
direction. This new specific compressed blend can be expanded to give the entire 
major diatonic scale beginning on that note.

Inspection shows that the sequence that consists of repetitions of the period 2 2 
1 2 2 2 1 is the same as the sequence that consists of repetitions of the period 2 1 2 
2 1 2 2. And if one starts at the beginning of the period 2 1 2 2 1 2 2, one has the 
natural minor scale. Accordingly, every major scale has a relative minor scale that 
has the identical notes, but that begins on the sixth note of the major scale. The C 
major scale is C D E F G A B C D E F G A B … and its sixth note is A, so the A 
minor scale has the identical notes: A B C D E F G A B C D E F G …. The differ-
ence is only where one starts. Everyone hears and feels that musical difference 
immediately. Both scales have two steps between their first two notes, but where the 
major scale has two steps between its second and third notes, the natural minor scale 
has only one step between its second and third notes.

There is a further compression scheme that creates an effective blend: All the 
structure of all the major diatonic scales and their relations to all the natural minor 
diatonic scales can be conceived of as an expansion from a compressed blend known 
as the “circle of fifths” (Fig. 2.4).

A circle is very much at human scale, and the idea that you go from one spot on 
the circle to the next spot in the circle by repeating the identical operation is also at 
human scale. Of course, in music, the keys are not actually arranged in any physical 
circle, and one does not actually move from one physical location in the circle to 
another when one “changes keys,” but the blend can recruit both the idea of the 
circle with steps and the idea of moving from one spot of the circle to another.

Teachers of music create further compressed blends to help students reconstruct 
this blend. “Fat Cats Go Down Alleyways Eating Bread” gives, in the first letters of 
its words, enough of the structure of the circle to get the student rolling in generating 
the rest: F C G D A E B. If one remembers the mnemonic phrase, and remembers 
that the relative minor scale starts on the sixth note of the major scale, one can 
generate all the relative minors. There are even more powerful mnemonic blends: 
“BEAD Girls Can’t Fight BEAD Girls” provides the sequence of all the major 
scales all the way around: B E A D G C F B♭ E♭ A♭ D♭ G♭.

A professional musician with a solid formation no longer needs to do all this 
expansion from the circle of fifths on the fly, because so much has been entrenched 
in the musician’s long-term memory and muscle memory that the musician can call 
up any scale on its own. But even the professional musician was once unable to call 
to mind, much less hold in mind, the entire structure of tonality so as to work within 
it and manipulate it, and needed these compressed blends to get through the music. 
Blending and memory complement each other in human thought.

It might seem at first blush as if creating the compressed blend and adding it to 
the mental web for the scale would only increase the mental load and so make it 
even more difficult to work with the diffuse mental web. On the contrary, the 
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compressed blend can serve the mental web, allowing us to work in it and manipu-
late it much more powerfully and efficiently. The compressed blend can also serve 
as a tool of long-term memory, to be used for on-the-fly regeneration of the diffuse 
mental web. A familiar, comfortable blend almost never looks like a blend. Usually, 
blends become second nature, direct and familiar, obvious. New ideas quickly look 
as if they have been there all along.

Think of the number line. What could seem more natural than that the integers lie 
on a line? Start at 0, then take a step to 1, then a step to 2, then 3 …. Or go in the 
other direction. Start at 0, take a step backward to −1, then another backward to −2 
…. Teachers show schoolchildren “sliders” that move “back and forth” on the 
“number line” to help them get the blend. It is so natural to think of the number line 
that some researchers propose that there is a mental number line that is part of the 
genetic human endowment (Dehaene et al. 2008). But it is not so clear why having 
two beans in your hand can be thought of as a linear distance. What has 2 spaces 
along a path got to do with beans? It took culture a long time to invent the number 
0. It is not so clear why we would now think of 0 as a point on a line, a specific point, 
namely the beginning point for applying the metric that tells us that the integers are 
evenly spaced on the line. There seem to be many concepts floating around the idea 
of number: a container with objects in it (a container like your hand, holding a few 
beans), tallying (I, II, III, IV …), and distances along a line.

To be sure, we now connect these ideas immediately: We know the connection 
between two beans in the hand, the second point in a tally, a line segment of a 
certain distance, and two paces from our starting point. These different ideas cor-
respond to one another. But again, we do much more than simply connect these 
ideas. We blend them. In the blend, 2 is indeed that specific spot on the number line.

There is an emerging view in cognitive science that some capacities for numer-

osity are part of the human endowment and have been here for a long time, evo-
lutionarily. The main example is subitizing—our ability to make rapid, accurate, 
and confident judgments of the quantity of items in an array up to three or four. 
Is the mental number line something like subitizing, or is it a relatively new idea 
in our descent that originated by blending? Rafael Núñez (2011) argues that the 
neurobiological and psychological evidence for an abstract, hard-wired, innate 
mental number line is weak, that the hypothesis of an innate mental number line 
is implausible, and that Old Babylonian mathematics had no number line. Núñez 
writes:

Explicit characterizations of the number line seem to have emerged in Europe as late as the 
17th century, and only in the minds of a few pioneering mathematicians. It was apparently 
John Wallis in 1685 who, for the first time, introduced the concept of number line in his 
Treatise of Algebra. Earlier precursors may have paved the way, such as John Napier with 
his 1616 diagrams used to define the concept of logarithm. The number line mapping, 
however, was not a common idea among mathematicians …

Fig. 2.4  The circle of fifths
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It is important to point out that Wallis’s and Napier’s texts, intended for readers with 
advanced knowledge in mathematics, proceed with detailed and careful—almost 
redundant—explanations of how to generate and use a number line mapping. These 
explanations are not “formalizations” of the idea of a number line, but rather, they are 
elaborated presentations of a new meaningful and fruitful idea. The hand-holding narra-
tive, however, is similar to what we see in many elementary school classrooms today, 
showing just how unfamiliar the idea of a number line was to 17th century mathemati-
cians, let alone to the rest of the majority of illiterate citizens in Europe at that time. 
Taken together, these facts from the history of mathematics—from Old Babylonia to 
17th Century Europe—are simply at odds with the idea of a hard-wired MNL [mental 
number line] that would spontaneously manifest in all humans.

Can this be? Can it be that a concept that seems so natural as the number line is 
actually a relatively recent achievement of cultural innovation, through blending? 
Núñez argues that there are human beings alive today in remote indigenous groups 
who do not have a mental number line: “Uneducated Mundurukú adults dramatically 
failed to map even the simplest numerosity patterns—one, two, and three—with a 
line segment, and a high proportion of them only used the segment’s endpoints, 
failing to use the full extent of the response continuum” (Núñez 2011: 655–656).

How we grasp the number line is evidently an open question in cognitive science. 
I review it here to emphasize that our intuitions about the origins of a very clear 
idea—such as the idea of the number line—might be very far off base. Although the 
mental number line seems to us to be inevitable and inescapable, perhaps it originates 
in cultural time through blending.

Let us take one step further in looking at the ways in which we blend number and 
motion along a line. In particular, let us look at something that everybody knows 
arose only very recently, inventively, and among a select few thinkers: the concept 
of number as a limit. Brilliant high school students, for example, are often stumped, 
and argue, touchingly, about whether the infinite decimal .9999 … is a number, and 
if so which number.

We can think of .9999 … as a number by putting together a particular mental 
blending web. Imagine a conceptual web consisting, potentially, of an infinity of 
numbers, each with one more decimal place: .999, .9999, .99999, .999999 …. These 
are different finite decimal numbers, and there is an infinity of them. How shall we 
make sense of this web of numbers? It is obviously much too big for working mem-
ory to handle by listing all the elements and remembering individually their order. 
We must do something to compress all this stuff into a tight idea. There are analo-
gies across all the numbers, and disanalogies across all of them, too. If we compress 
the analogies to a unique element—a point—and compress all the disanalogies to 
change for that element—so the unique point moves—then we have in the blend a 
point that keeps hopping toward the integer 1 but never goes past it. This com-
pressed blend has one entity, a number point on a line, and that entity is changing—
it is moving along the number line toward 1. Now working memory is adequate to 
grasp what is going on. Working memory has now been provided with something 
that is compressed, manageable, familiar, at human scale, and congenial to the 
human mind. Working memory can now use that blend as a platform from which to 

2  Compression and Decompression in Mathematics



46

grasp, manipulate, and work on the full web, a little at a time. The job becomes 
tractable. It is like stacking all the wine bottles in a nice rack.

In the blend, we can now ask about the point that is moving toward a fixed point. 
Does it grow ever closer to that point and never go beyond it? If so, then we can 
think of it in the compressed blend as approaching a limit.

Advanced mathematics provides much more sophisticated tools for measuring 
whether something approaches a limit, but in this case we do not need those tools. 
In this case, we have the very simple compact blend in which each additional deci-
mal place advances the moving point closer to the fixed number point 1, and does so 
for an infinite number of steps. Because, in the blend, the infinite decimal approaches 
a limit that we already take to be a number, we can blend again to create an even 
greater compression: the infinite decimal can be fused with the limit it approaches. 
Then, in the blend, we can stipulate that .9999 … is indeed a number, and we know 
exactly which number it is: .9999 … = 1. In the blend, the infinite decimal is fused 
with the limit it approaches.

High school students confronted with such analyses sometimes feel that the 
analysis is just an arbitrary trick, a rabbit out of a hat. The effective but incomplete 
answer to the high school student is as follows: “Well, if you think .9999 … is less 
than 1, how much less than 1 do you think it is?” But the more fundamental explana-
tion we should offer to the resisting high school student is that in the discipline of 
mathematics we have chosen to call .9999 … a number and to fuse it in the blend 
with the limit “it” “approaches” because such fusions produce a mathematical 
system that is truly useful both in theory and in practice. Blending is the origin of 
the idea that .999 … = 1.

We take one last step in the mathematical blending that blends motion and number. 
This one last step is on the same path, but is known only to those who have studied 
calculus. Riemann sums and Riemann integrals provide examples of the ways in 
which blending to a compressed mental space helps us invent mathematical struc-
tures, operations, and knowledge. The blending that produces Riemann sums and 
integrals is clearly a matter of innovation, not of the genetic human endowment. 
Indeed, very few human beings alive today have the idea of a Riemann integral. 
Alexander (2011) argues that mathematics as a formal system routinely deploys 
blending, in an iterative manner, to develop the rich structures of “higher” 
mathematics, and that mathematics has developed strong controls on the use of 
blending so as to maintain the rigor of the innovations. His central point is that 
blending and other such mechanisms are incorporated into the formal structure of the 
discipline of mathematics.

So let us take a simple look at Riemann sums and integrals as an example of the 
origin of new mathematical ideas by blending. Riemann sums are sums of the areas 
of rectangles—that’s all. Take a curve in the Cartesian plane, like the one below. What 
is the area under the curve between two given points on the x-axis? We can approxi-
mate that area under the curve by fitting adjacent rectangles to the curve, where one 
side of each rectangle lies on the x-axis and each rectangle has the same width. The 
width is the “domain” of the rectangle. The height of the rectangle can be taken in any 
of several usual ways: The height can be the height on the leftmost point in the 
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domain, the height on the rightmost point in the domain, the average of those two 
heights, the maximum height over the domain, or the minimum height over the 
domain. For our purposes, it doesn’t matter. In the figure below, we choose the height 
of the rectangle to be the height on the leftmost point in the domain (Fig. 2.5).

When we divide the domain of the function into n equal subintervals like this, we 
have specific values for the endpoints of the subintervals, and a specific, invariant 
value for the width. All n rectangles under the curve have the same width. The 
formula for the summed area of the rectangles is then as given in Fig. 2.6.

This just says that the Riemann sum (S) is the sum of all the rectangles, computed 
as follows. We divide the horizontal distance on the x-axis under the curve into n 
equal widths. This gives us n + 1 equally spaced points along the x-axis: x0, x1 … xn. 
For the first rectangle, the one on the left, take its height, which is just the value of 
the function at x0. We write that f(x0). Now take its width, which is just x1−x0. 
Because the area of a rectangle is the height multiplied by the width, the area of the 
rectangle is the product f(x0)(x1−x0). Now move to the rectangle that sits between x1 
and x2, and take its area, and all the way down to the rectangle that sits between xn−1 
and xn. Now add up all the areas. That’s all there is to it. More technically, the invari-
ant width of the rectangles is (xi + 1 − xi). So the area of the rectangle sitting on the 
subinterval that starts at xi and ends at xi + 1 is just the width times the height of the 
rectangle, namely, the product of (xi + 1 − xi) and f(xi). The sum of all these rectangles 
is the Riemann sum, and it is our approximation of the area under the curve.

To obtain a more accurate approximation, we increase the number of subinter-
vals, that is, we make n larger, thereby shortening the width of the rectangles. When 
we do so, we have a second Riemann sum. But then we can repeat that process again 
and again. We can increase the number of the rectangles an infinite number of times, 
just by making n larger each time, each time narrowing the width of the rectangles. 

Fig. 2.5  A Riemann 
sum = the sum of the areas 
of rectangles under the 
curve

Fig. 2.6  Formula for a 
Riemann sum
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As we increase the number of rectangles so that it goes beyond just a few, we get a 
mental web of lots of rectangles much too big to manage in our thinking.

But now, we use standard mathematical blending, including the compression it 
provides. In fact, we use once again the very common general blending template we 
have already seen: Blend the analogies together into an identity and the disanalogies 
together into a change for that identity. In this case, take all those Riemann sums and 
compress them to one Riemann sum in the blend. In that way the analogies across 
all these input Riemann sums are compressed to uniqueness: We have one Riemann 
sum in the blend. And the disanalogies across all those input Riemann sums are 
compressed to change for that one unique entity in the blend: The Riemann sum 
changes; it approaches a limit. Note that we say “the Riemann sum”: language here 
marks that we have created a compressed blend, and we can refer directly to the 
compressed blend. When we say “the Riemann sum,” no one responds “What do 
you mean, ‘the’ Riemann sum? Every time you increase n by 1, you have a new and 
different Riemann sum, with a different number of rectangles, and probably a dif-
ferent value. Which one do you mean?” Instead, we know that “the Riemann sum” 
refers to the compressed entity in the blend, the one that “changes,” the one that 
“approaches a limit” by “moving” along “the number line.” We decompress this 
“one” Riemann sum in the blend to indefinitely many in the inputs. Analogy and 
disanalogy across the web are compressed to the blend, where we now have a unique 
element that changes. This general blending template is a strong tool of cognition, 
used widely, no matter what we are thinking about. That is why it is available to 
higher mathematics in the first place.

The blend has new stuff, that is, something that cannot be projected to it from any 
of the input mental spaces in the web. A blend is almost never just a cut-and-paste 
reassembly of elements from the inputs. We run and develop the blend mentally, 
creating new stuff in the blend. In this case, the crucial new stuff in the blend is the 
limit. This limit becomes a new mathematical structure: a Riemann integral. 
Blending provides us with the origin of this idea. If a and b are the endpoints of the 
domain for which we want to measure the area under the curve defined by the func-
tion f, we write the Riemann integral, like that in Fig. 2.7.

We say that “in the limit,” we get the exact area under the curve. This blending 
approach generalizes over any number of dimensions. We are already getting well 
beyond the general mathematical knowledge of even educated people, so we will 
stop with the Riemann integral. But mathematicians will be instantly able to rattle 
off hundreds of examples of such new stuff from blending, in algebra, geometry, 
analysis, set theory, and logic.

Blending is flexible, systematic, and principled. It is our essential mental tool of 
compression. But it can produce many different blending webs. They do not separate 
into just a few kinds. There is no taxonomy or partition of the products of blending. 

Fig. 2.7  Riemann integral
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Still, certain general patterns of blending arise so often that they have been given 
names. They are reference points in the theory of blending that stand out from the 
crowd. If we want to emphasize that one of the input mental spaces to a blend is 
already a blend, which is often the case, we call the resulting blend a hyper-blend. 
If we want to emphasize that what is being blended are a common mental frame and 
a mental space that has exactly the kind of stuff to which the frame is built to apply, 
we call it a simplex web. As an example of a simplex web, consider the statement 
“Paul is the father of Sally.” Obviously, the kinship frame is built to apply to people. 
In the blend, Paul is blended with father and Sally with daughter.

If we want to emphasize that the input mental spaces to the blend all share a 
mental frame, or more generally share the same organizing structure, we call it a 
mirror web. The name comes from the loose idea that the input spaces all mirror 
each other in their main organization. When we want to emphasize that the analogy 
and disanalogy relations across the input mental spaces are blended to change for a 
unique element in the blend, we call it a change web.

Some names for blending webs are more specific. If we want to emphasize that 
agents who do not interact in the input mental spaces are blended to interact in the 
blend, we call it a fictive interaction web (Pagán Cánovas and Turner 2016). An 
example of a fuller fictive interaction web, a fictive communication web, would be 
the web in which the woman has a conversation with her younger self. A blending 
web that creates something in the blend that repeats is called a cycle web. When two 
input mental spaces have strong conflicts in their organizing structure but one of 
them controls the organization of the blend, we have used the name single-scope 
web. This comes from the loose notion that in such a web, one is “looking” mentally 
mainly through one of the input mental spaces. That input mental space is a lens on 
the organizing structure of the blend. But single-scope webs very quickly and easily 
become what are called advanced blending webs, in which both of the organizing 
structures of the input mental spaces contribute to the organization of the blend, and 
the blend has new stuff of its own. Advanced blending webs have also been called 
double-scope or vortex webs.

There are particular general blending patterns that have achieved strong status in 
one culture or another. For example, Pagán Cánovas (2011) has shown, in “The 
Genesis of the Arrows of Love: Diachronic Conceptual Integration in Greek 
Mythology,” an article notable for its sensitivity to the role of historical context, 
how general blending templates underlie a new idea in Greek mythology. He writes, 
“No symbol from ancient Greek culture seems to have been more successful than 
the arrows of love.” There is a very common general blending pattern, the Event-
Action blending pattern, in which we blend an event with an action—the action 
being one that would have led to the event. The result is that something from the 
input mental space for the event becomes, in the blend, an actor performing an 
action that leads to the event. We say, “Time is the best doctor.” Time is causally 
related to the event of healing. In the blend, Time becomes an actor, a person, or a 
doctor, who performs an action that is causally related to the event of healing. This 
Event-Action blending pattern is at work in Death, the Grim Reaper. Death, the 
general cause of a category of events, becomes an actor, a person, or a reaper. Pagán 
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Cánovas explains that the Eros, the Archer blend, in which Eros shoots someone 
with an arrow to cause love, is another example of this Grim Reaper pattern. He 
calls this general blending pattern Abstract Cause Personification. He finds another 
general blending pattern in classical antiquity—the Erotic Emission blending pat-
tern. He locates another, specific blending web: Apollo the Archer, or, as he quips, 
“Death the Grim Archer.” His analysis shows how the general blending templates 
Abstract Cause Personification and Erotic Emission, the Greek archaic idea of love 
as a punishment, and the idea of Apollo the Archer all blend to create the arrows of 
love. He writes: “A process of conceptual integration, taking place probably through 
several centuries of Greek culture, shaped and refined the religious symbol … This 
magnificent blend … achieves human scale by compressing the multiple causes, 
effects, and participants of the erotic experience into a clear story of divine emis-
sion” (2011: 573–574).

Many such patterns have been located and analyzed, but it is important to remem-
ber that they overlap and can be used simultaneously and that blends constantly 
arise that do not fit into any of these particular boxes. Blending is an operation with 
principles and constraints, and it creates a great variety of blending webs. It produces 
compressions. Blending and compressions turn out to be fundamental tools for 
mathematics.

Since antiquity, it has been recognized that the human body and brain are small, 
local, and limited. So is working memory, for no matter how capacious our working 
memory, human thought outstrips it very quickly, requiring us to find some way to 
transform what we want to think about into something that can be managed within 
the limits of working memory.

It has also long been recognized that one of the great open scientific questions—
perhaps the greatest—is how people are able to transcend the limits of the body and 
the brain to achieve immense conceptual sweep, to attain a scope of thought so 
expansive that many observers have taken it as evidence of our connection to 
divinity. Philo of Alexandria (c. 20 BCE–40 CE) wrote:

How, then, is it natural that the human intellect, being as scanty as it is, and enclosed in no 
very ample space, in some membrane, or in the heart (truly very narrow bounds), should be 
able to embrace the vastness of the heaven and of the world, great as it is, if there were not 
in it some portion of a divine and happy soul, which cannot be separated from it? For noth-
ing which belongs to the divinity can be cut off from it so as to be separated from it, but it 
is only extended. On which account the being which has had imparted to it a share of the 
perfection which is in the universe, when it arrives at a proper comprehension of the world, 
is extended in width simultaneously with the boundaries of the universe, and is incapable of 
being broken or divided; for its power is ductile and capable of extension (Philo 1854–1890, 
section 90, pp. 264–265).

Like many others, Philo of Alexandria recognized the daunting scientific problem: 
A local human brain—which is what he means by “membrane”—in a local human 
body in a local human place manages to think with vast scope. Human thought runs 
over times, places, causes, agents, and every other sort of distributed meaning. Philo, 
again like many others, offers an explanation: Human beings are partly divine, having 
been touched by divinity. They retain something of this divinity. Since divinity spans 
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everything, we accordingly have a scope of thought that would otherwise lie beyond 
us. Plato proposed something a little different: The human soul lived and thought 
under supernatural conditions before birth. What we are doing when we think and 
learn with such vast scope is just remembering what we knew before birth. We remem-
ber, by gists and piths, some of the sweeping knowledge we had before being born.

Another range of proposals has it that this sweeping knowledge is given to us by 
awesome messengers—muses, oracles, ravens who circle the world, aliens, and 
ancient astronauts, all of which, of course, are products of blending.

In our scientific age, we have moved away from supernatural and divine explana-
tions of the sort Philo offers. We are the originators of our vast and new ideas, 
including mathematical ideas, and blending is the tool we mostly use.
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Chapter 3
How Technology Has Changed What It 
Means to Think Mathematically

Keith Devlin

�Early Mathematics

Assigning a start date to mathematics is an inescapably arbitrary act, as much as 
anything because there is considerable arbitrariness in declaring which particular 
activities are or are not counted as being mathematics.

Popular histories typically settle for the early development of counting systems. 
These are generally thought to have consisted of sticks or bones with tally marks 
etched into them. (Small piles of pebbles might have predated tally sticks, of course, 
but they would be impossible to identify confidently as such in an archeological 
dig.) The earliest tally stick that has been discovered is the Lebombo bone, found in 
Africa, which dates back to around 44,000 years ago. It has been hypothesized that 
the (evidently) human-carved tally marks on this bone were an early lunar calendar, 
since it has 29 tally marks (though it is missing one end, that had broken off, so the 
actual total could have been higher).

Whether the ability to keep track of sequential events by making tally marks 
deserves to be called mathematics is debatable. “Pre-numeric numeracy” might be 
a more appropriate term, though the seeming absurdity of that term does highlight 
the fact that you can count without having numbers, or even a sense of entities we 
might today call numbers.

Things become more definitive if you take the inventions of the positive counting 
numbers, as abstract entities in their own right, as the beginning of mathematics. 
The most current archeological evidence puts that development as occurring around 
8000  years ago, give or take a millennium, in Sumeria (roughly, southern Iraq). 
Various generations of clay object tally systems led eventually to sophisticated 
schemas of iconic markings on clay tablets that I (and others) suggest we would 
today call numerals.
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To be sure, such an interpretation imposes a modern lens on a much earlier soci-
ety, so it requires some justification. I recount the full story—pieced together from 
the archeological evidence—in my book The Math Gene (Devlin 2000: 48–49), but 
here is the general outline.

Initially, the Sumerians used small clay objects as tokens to represent goods, one 
shape of token for a jar of oil, another for a bale of wheat, another for a goat, and so 
on. A person’s wealth at any one time was represented by the collection of tokens 
they had, which were kept in sealed clay envelopes held by a village elder (an early 
form of banking). When two individuals traded, they would go to the elder who 
would break open their envelopes and transfer tokens according to the transfer of 
goods, and then seal their “accounts” in fresh envelopes. In time, to facilitate easy 
checking of accounts prior to a trade, the elders adopted the practice of pressing 
each token onto the wet clay before placing it inside and then sealing the contents. 
The outside of each envelope thus carried markings that recorded the contents. The 
system thus had three components: actual goods, clay tokens that represented those 
goods (and hence were in one-to-one correspondence with the goods), and markings 
impressed on the clay exterior that represented the tokens inside (and hence were in 
one-to-one correspondence with the tokens).

The next step was the realization that there was no need for the clay tokens. In 
this case, the clay sheet did not have to be folded into an envelope. All you needed 
was a sheet of clay and one token of each kind to make the markings on the clay. In 
today’s parlance, those markings would be called numerals (albeit, initially, one 
kind of numeral for each kind of good). Our present-day abstract numbers came into 
being as the mental ghosts of the tokens that used to be locked inside clay 
envelopes.

This perception definitely accords with our current concept of numbers, where 
numerals represent numbers and numbers count things in the world, though how the 
Sumerians thought of the process is not knowable to us. What we can say, however, 
is that if we look back in time to find a practice that accords with our current frame-
work of

	 NUMERALS represent ABSTRACT NUMBERS represent OBJECTS 	

then the earliest known example is the Sumerian system of

	 MARKINGS IN CLAY represent CLAY TOKENS represent OBJECTS 	

When the clay tokens were eliminated, you arrive at a situation where the two 
frameworks are essentially the same.

A Sumerian might have said, “There used to be clay tokens in the middle.” Today, 
we might say, “We postulate the existence of abstract entities called numbers in the 
middle.” This modern-day mental shift of regarding the absence of some entity as 
the presence of some abstraction would surely have made no sense to the Sumerians 
8000 years ago. So we cannot claim that the Sumerians had our modern concept of 
number. But from a functional perspective, that’s exactly what they had.

K. Devlin



55

Of course, having (counting) numbers is a far cry from having any form of arith-
metic beyond the simple addition and subtraction that was implicit in their earlier 
manipulations of the clay tokens. So it barely counts as mathematics. Nevertheless, 
it provides a meaningful time stamp when mathematics first arose and what the first 
math comprised. (In Devlin 2000, I argue that the brain’s capability to do mathemat-
ics was coevolved with the capacity for language, at least 70,000 years ago, but 
that’s not the same as having a mental activity we can classify as mathematics.)

If you look for arithmetic (counting numbers with addition and multiplication) as 
the earliest genuine mathematics, the best current archeological evidence is the 
Ishango bone, found in Africa and dating back to around 20,000 BCE. The mark-
ings on this tally stick suggest some knowledge of multiplication.

From around 2000 BCE onwards, there is clear evidence of mathematics, with 
the Egyptians, the Babylonians, the Chinese, the Indians and the Greeks all develop-
ing some form of arithmetic, leaving behind multiplication tables inscribed on clay 
tablets or written on papyrus.

Around the same time, those ancient societies also developed early forms of 
geometry, extending mathematics from the recognition and study of patterns of 
number to include also the recognition and study of patterns of shape. In both cases, 
the driving force for these new ways of thinking was the solution of practical prob-
lems: trade and commerce in the case of arithmetic and land apportionment for 
geometry. (The word “geometry” comes from the Greek geo metros, meaning earth 
measurement.) The focus was primarily on computation—numerical computation 
and geometric computation, respectively, though in the case of geometry we usually 
refer to it in terms such as “procedural execution” or “construction” rather than 
“computation.”

Then, starting with Thales of Miletus around 500 BCE, Greek mathematicians 
introduced the concept of mathematical proof, a process to establish the truth of a 
particular mathematical assertion, starting with a small collection of precisely stated 
assertions (called “axioms”) and proceeding by the step-by-step application of pre-
cisely formulated logical rules of deduction. During the period from around 500 to 
300 BCE, Greek mathematicians studied both arithmetic and geometry from this 
theoretical perspective, culminating in the publication of Euclid’s famous work 
Elements around 350 BCE.

This development resulted in a classification of the discipline of mathematics 
into two broad categories that continues to this day: pure mathematics, where the 
emphasis is on establishing mathematical truth by means of formal (or at least rigor-
ous) proofs, and applied mathematics, where the goal is to find answers to practical 
questions, those answers often, but by no means always, being numbers.

While that classification can be useful, it can also be misleading. For one thing, 
the two categories overlap massively. But more to the point, the distinction obscures 
the point that, whether or not the goal is to prove a theorem or to obtain an answer 
to a problem (say, solve an equation to obtain a numerical answer), what the math-
ematician actually does is compute—in the broader sense of that word mentioned 
earlier, which includes, in addition to step-by-step numerical calculation, processes 
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such as step-by-step geometrical construction, step-by-step algebraic derivations, 
and step-by-step construction of a logical proof.

�The Growth of Mathematics

By the time the nature of present-day mathematics was (essentially) established by 
the start of the Current Era, the scope of mathematics had already grown to encom-
pass fractional arithmetic (quotients of counting numbers), integer arithmetic (posi-
tive and negative whole numbers), rational arithmetic (positive and negative 
fractions), real arithmetic (the concept of “real number” coming from measurement 
rather than counting), and trigonometry (combining geometry and real arithmetic).

In the ensuing two millennia, mathematics continued to expand still further, with 
new branches of the discipline being developed: algebra, probability theory, differ-
ential and integral calculus, mathematical logic, real analysis, complex analysis, 
differential equations, algebraic number theory, analytic number theory, topology, 
differential geometry, and more. (Several of these “new” branches had their origins 
much earlier; for instance, although historians typically ascribe the birth of calculus 
to Isaac Newton and Gottfried Leibniz in the seventeenth century, some of the key 
ideas were known to Archimedes around 250 BCE.)

Some of these domains are highly abstract, dealing with mathematical entities 
well beyond everyday cognitive experience. Nevertheless, regardless of whether the 
goal was to prove a theorem or calculate (in some manner) an answer, what mathe-
maticians spent the bulk of their time doing was computation—developing and 
executing procedures of various kinds. Unless you were competent in executing 
computational procedures, you could not do mathematics. In fact, in the more recent 
times of systemic education, without mastery of calculation you could not obtain a 
credential in mathematics.

This dominance of computation was the case throughout the 2000-year develop-
ment of mathematics up until the 1960s (of which more in due course).

As more and more new branches of mathematics were introduced, it was not just 
that the objects mathematicians computed on that changed; there were also changes 
in the way those objects were represented and in the manner in which the computa-
tions were carried out.

The most familiar new representation, and arguably by far the most significant in 
terms of broad impact, is the place value, Hindu-Arabic system for representing and 
computing with positive whole numbers using just ten symbols 0, 1,…, 9. Developed 
in India in the first few centuries of the Current Era, it was adopted and extended by 
Arabic- and Persian-speaking traders, who extended the numerical procedural rules 
(algorithms) for performing arithmetical calculations to include logical procedures. 
One of those logical procedures they called al-jabr, the Arabic term from which we 
get the modern Western name for that form of procedural reasoning: “algebra.”

Today, we associate the word algebra with procedural, symbolic manipulation 
and reasoning, but that association is largely as a result of the invention of the 
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printing press in the fifteenth century. Although the use of abstract symbols is as old 
as anything we would today call mathematics, until the fifteenth century, when 
mathematicians wrote up their work to be copied and distributed (on parchment or 
later paper), they wrote everything in natural language, with the only abstract sym-
bols being numerals and symbols for the operations of basic arithmetic. This was 
the case for the many mathematics texts written in and around Baghdad in the ninth, 
tenth, and eleventh centuries, and the even greater number of books written in Italy 
(in particular) in the thirteenth and fourteenth centuries.

The reason why mathematics was written in prose was to ensure accuracy of any 
copies made. Books were duplicated by hand copying, by monks in monasteries in 
the case of the initial copies of a new work, thereafter by readers making their own 
copies. The most common way to learn mathematics or study a new mathematical 
technique was to borrow a copy of an appropriate book and slavishly make a copy 
of the manuscript, without pausing to understand it or work through the written 
examples. Then, after returning the original, the learner would slowly work through 
their newly created personal copy, writing symbolic expressions and drawing dia-
grams in the margins as they did so, in order to assist with their understanding. 
Since the 1960s, historians working in the archives in Italy have discovered hun-
dreds of fourteenth-century manuscripts that were evidently created in that way.

Clearly, if a book made use of symbolic mathematical expressions, which would 
likely be unfamiliar to the monk or the learner making the copy, there would be a 
high likelihood of copying errors. And as anyone learning mathematics quickly dis-
covers, just one symbolic error can cause a beginner significant difficulties. To avoid 
this, authors of mathematics books spelled out everything in words and numerals. 
Even the first ever algebra textbook, written by the Persian mathematician al-
Khwarizmi in the ninth century, contains no symbolic equations.

With the introduction of the printing press, however, the situation changed dra-
matically. Because of demand, mathematics texts were among the very first books 
to be put into print. With printed books, the process of learning mathematics from a 
text changed from writing symbolic expressions in the margin to help understand 
the prose as you progressed through the text, to writing prose remarks and short 
notes in the margin to elucidate the printed symbolic expressions.

In other words, the cognitive challenge of distilling a prose description of a prob-
lem and its solution down to the bare structure and logic (going from concrete to 
abstract) changed to be the very opposite: taking a symbolic representation of a 
problem and its solution and creating a mental image—turning the symbols into a 
story (going from abstract to concrete).

The ability to accurately reproduce symbolic mathematical expressions—and 
diagrams—that came with the printing press not only changed mathematics learn-
ing, it also greatly accelerated the growth of mathematics. The steady development 
of new branches of mathematics (the algebra, probability theory, differential and 
integral calculus, mathematical logic, real analysis, complex analysis, differential 
equations, algebraic number theory, analytic number theory, topology, differential 
geometry I listed earlier, and others) involved an overall increase in abstraction.
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For example, arithmetic and geometry begin with the abstraction of patterns in 
the world (number and shape, respectively); number theory studies patterns of num-
bers (patterns of mathematical abstractions); algebra (high school algebra, that is) 
looks at patterns of arithmetic (patterns across mathematical procedures); and so on.

Such is the complexity and the degree of abstraction of the majority of mathe-
matical patterns studied over the past several centuries that to use anything other 
than symbolic notation would be prohibitively cumbersome. And so the more recent 
development of mathematics has involved a steady increase in the use of abstract 
notations.

The introduction of symbolic mathematics in its modern form is generally cred-
ited to the French mathematician Francois Viète in the sixteenth century.

�The Nineteenth-Century Mathematical Revolution

During the nineteenth century, mathematicians tackled problems of ever greater 
complexity, and in so doing they occasionally found that their intuitions were inad-
equate to guide their work. Counterintuitive (and occasionally paradoxical) results 
made them realize that some of the methods they had developed to solve important, 
real-world problems—particularly where calculus was involved—had conse-
quences they could not explain. For instance, the Banach-Tarski theorem says that 
you can, in principle, take a sphere and cut it up in such a way that you can reas-
semble it to form two identical spheres each the same size as the original one. 
Because the mathematics is correct, the Banach-Tarski result had to be accepted as 
a fact, even though it defies our imagination.

Faced with such “paradoxes,” mathematicians had to accept that there are occa-
sions when certainty is achieved only through the mathematics itself. In order to 
have confidence in discoveries made by way of mathematics, but not verifiable by 
other means, they had to be sure that the definitions of the mathematical entities and 
concepts the reasoning depends on are sound and unambiguous, and that the math-
ematical reasoning itself is correct. To achieve this end, they turned the methods of 
mathematics inwards, and used them to examine the subject itself.

By the middle of the nineteenth century, this introspection culminated in the 
adoption of a new and different conception of mathematics, where the primary 
focus was no longer on performing calculations or computing answers, but formu-
lating and understanding abstract concepts and relationships.

Led by pioneering mathematicians such as Lejeune Dirichlet, Richard Dedekind, 
Bernhard Riemann, and David Hilbert, there was a shift in emphasis from doing to 
understanding. Mathematical objects were no longer thought of as given primarily 
by formulas, but rather as carriers of conceptual properties. Proving something was 
no longer a matter of transforming terms in accordance with rules—a form of cal-
culation—but a process of logical deduction from concepts. [To be sure, it is pos-
sible to view the process of logical deduction as another form of calculation. When 
you do so you arrive at the branch of mathematics known as formal logic. Indeed, 
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you can do it in using abstract symbols, which results in the subject known as sym-
bolic logic. But this is a side issue for another day.]

In terms of the mechanics of doing mathematics, things did not outwardly appear 
to have changed; indeed, the entire shift came about as a result of turning those very 
mechanics inwards onto the abstract entities of mathematics itself. But in the minds 
of mathematicians, things had changed. By the start of the twentieth century, math-
ematics was primarily about understanding, not calculation.

For example, prior to the nineteenth century, mathematicians were used to the 
fact that a formula such as y = x2 + 3x − 5 specifies a function that produces a new 
number y from any given number x. Then Dirichlet said to forget the formula and 
concentrate on what the function does in terms of input-output behavior. A function, 
according to Dirichlet, is any rule that produces new numbers from old. The rule 
does not have to be specified by an algebraic formula. In fact, there’s no reason to 
restrict attention to numbers. A function can be any rule that takes objects of one 
kind and produces new objects from them. This definition legitimizes functions 
such as the one defined on real numbers by the rule

	 If is rational set if is irrational setx f x x f x, ( ) ; , ( ) := =0 1 	

For such a function, the notion of “calculating values of the function” makes no 
sense. It is not possible to graph the function. The questions mathematicians asked 
about abstract functions, not specified by a formula, focused on their behavior. For 
example, does the function have the property that when you present it with different 
starting values it always produces different answers? (This property is called 
injectivity.)

This abstract, conceptual approach was particularly fruitful in the development 
of the new subject called real analysis—the rigorous underpinnings of calculus, 
which had been a mathematical Holy Grail since calculus was invented by Isaac 
Newton and Gottfried Leibniz in the seventeenth century. In real analysis, mathe-
maticians studied the properties of continuity and differentiability of functions as 
abstract concepts in their own right. French and German mathematicians developed 
the “epsilon-delta definitions” of continuity and differentiability,  that to this day 
cost each new generation of advanced calculus mathematics students considerable 
effort to master.

Again, in the 1850s, Riemann defined a complex function by its property of dif-
ferentiability, rather than a formula, which he regarded as secondary.

The residue classes defined by the Karl Friedrich Gauss were a forerunner of the 
approach, now standard, whereby a mathematical structure is defined as a set 
endowed with certain operations, whose behaviors are specified by axioms.

Taking his lead from Gauss, Dedekind examined the new concepts of ring, field, 
and ideal, each of which was defined as a collection of objects endowed with certain 
operations.

And so on, continuing to this day.
Like most revolutions, the nineteenth-century shift in focus had its origins in 

times long before the main protagonists came on the scene. The Greeks had certainly 
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shown an interest in mathematics as a conceptual endeavor, not just calculation; and 
in the seventeenth century, calculus co-inventor Gottfried Leibniz thought deeply 
about both approaches. But for the most part, until the nineteenth century, mathe-
matics was viewed primarily as a collection of procedures for solving problems. To 
twentieth-century (and today’s) mathematicians, however, brought up entirely with 
the postrevolutionary conception of mathematics, what in the nineteenth century 
was a revolutionary new conception of mathematics is simply taken to be what 
mathematics is. The revolution may have been quiet, and to a large extent forgotten, 
but it was complete and far reaching.

Outside the professional mathematical community, however, there were few 
signs of a revolution at all. For most scientists, engineers, and others who make use 
of mathematical methods in their daily work, things continued much as before, and 
that remains the same today. Computation (and getting the right answer) remains 
just as important as ever, and even more widely used than at any time in history.

�Mathematics in the Digital Age

If we view the development of Hindu-Arabic arithmetic as the first revolutionary 
change in the way mathematics is done, then the second change in mathematics 
praxis of comparable magnitude would be the introduction of symbolic mathemat-
ics in the sixteenth century—facilitated in large part by the introduction of the print-
ing press a century earlier.

I would argue that there has been just one further shift in praxis that qualifies as 
a major revolution. It began in the 1960s with the introduction of the electronic 
calculator followed by the graphing calculator, and culminated with the appearance 
of computer algebra systems (Mathematica, Maple, and others) running on personal 
computers, in the late 1980s.

For the entire history of mathematics up until the computer age, you had to be 
good at calculation to get into mathematics, including (in more recent times) acquir-
ing qualifications in the subject, and you had to be good at calculation in order to do 
or apply mathematics. [By calculation, I mean the execution of any procedure or 
algorithm.] Moreover, prior to the digital age, if you developed or used mathematics 
in your career, almost all your time was spent doing calculations.

That is why most people, even to this day, think that mathematics essentially is 
calculation. Yet it is not, and many mathematicians from the ancient Greeks onwards 
were aware of the distinction, though even they spent most of their time calculating. 
But the ready availability of first computers and then electronic calculators in the 
1960s removed the need for humans to perform numerical calculations.

Because of the electronic calculator, when I arrived at university to study math-
ematics in 1965, I did not need to make use of the fluency at arithmetic I had devel-
oped through many years of school education. (Indeed, over the ensuing decades 
my arithmetic prowess gradually lost its edge through under-use.) On the other 
hand, I did have to spend a great deal of my undergraduate career as a mathematics 
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major mastering a whole range of algorithms and techniques for performing a vari-
ety of different kinds of numerical and symbolic calculations, geometric reasoning, 
algebraic reasoning, and equation solving. I had to. In order to solve many prob-
lems, I had to be able to crank the algorithmic and procedural handles. There was no 
other way. There were no machines to do it for me the way the calculator in my 
pocket performed arithmetic calculations for me (faster, with virtually no errors, 
and for far more—and larger—numbers than I could handle in my head or with 
paper and pencil).

That remained the case for the early part of my career as a mathematician. But 
then, in October 1987, Steven Wolfram released the first version of his massive 
computer algebra package Mathematica. The name “computer algebra system” was 
an inherited baggage from early attempts to automate mathematical calculation, 
which totally under-represents what Wolfram’s program can do. Quite simply, it can 
execute pretty well any mathematical procedure, in any branch of mathematics.

Soon after, Canadian developers released Maple, and a number of other products 
came out that do similar things. These products did for almost all of mathematics 
what the electronic calculator did for arithmetic: they made it obsolete as a human 
skill (other than for educational purposes, of which more later).

For the first time in history, being able to perform calculations was no longer a 
necessary requirement for using mathematics. This highlighted the distinction, 
always there but invisible to most people, between the routine parts of using math-
ematics (executing procedures) and the creative parts. (I’ll discuss later the uses of 
systems like Mathematica in pure mathematics, i.e., the formulation and proof of 
theorems.)

For a few years, products like Mathematica and Maple were used mainly in uni-
versity departments of mathematics, physics, and engineering. They were expensive 
and challenging to use, and ran only on upper end personal computers. But with the 
release of Wolfram Alpha in 2009, the power of Mathematica became available in a 
cloud-based application that could be accessed (for free) from any PC, tablet, or 
smartphone. Moreover, Wolfram Alpha had a simple user interface that makes it 
possible to execute pretty well any mathematical procedure with as much ease as 
using an electronic calculator.

The simplest way to get a sense of how Alpha works is simply access it with a 
Web browser and explore for a while. The point relevant to this essay is that it makes 
it possible for people to use mathematics without having expertise in any particular 
topic or procedure. (I’ll come later to exactly what knowledge is required to do this.)

The arrival of Wolfram Alpha has changed forever the way people can use math-
ematics. More than that, it has made it possible for people who cannot (or believe 
they cannot) execute formal mathematical procedures—for example, solving a qua-
dratic equation, to take a particularly simple case—to make effective use of mathe-
matics. Today, having a mastery of calculation is no longer the price anyone has to 
pay to use mathematics.

To help people understand what it is like to use mathematics in today’s world, I 
often draw an analogy with the world of music. To be a mathematician in the pre-
Alpha era was akin to mastering many instruments in an orchestra. You had to 
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master the arithmetic instrument, the geometry instrument, the trigonometry instru-
ment, the algebra instrument, the calculus instrument, and so on. The more mathe-
matical instruments you mastered, the greater your power as a mathematician. But 
using mathematics today is more akin to being a conductor of the orchestra. To 
conduct that orchestra well, you have to know what all of those instruments are 
capable of, and you surely need to gain experience with a number of them, at least 
one of them fairly well (ideally more than one). But there is no need to be world 
class in any of them. The instruments are what “do all the work.” As conductor, you 
have to know how and when to make them work together, deciding which one(s) to 
use for each purpose as you progress through the symphony.

Actually, a symphony orchestra is too big for the analogy to work for any one 
math problem; it’s more like a small ensemble. But you get the picture. And for 
sure, there are enough different mathematical tools out there that they definitely 
constitute an orchestra, and a large one at that. Indeed, Wolfram Alpha alone is 
orchestra scaled, since it encompasses all the mathematical methods that are typi-
cally taught at universities at undergraduate and graduate levels—and a lot that are 
not.

Clearly, with mathematics being done that way, the experience of using mathe-
matics is very different than it was throughout the entire previous history of math-
ematics. And gone is the need to be good at any kind of calculation. Mathematicians 
today do not need to be able to calculate quickly or accurately; indeed, they never 
do that. The detailed execution of any formal procedure or algorithm is now done by 
machines. They do it considerably faster than humans ever could, and they make far 
fewer errors (essentially none). Moreover, they do it with far bigger data sets. For 
example, mathematics students of my generation learned how to solve linear equa-
tions and handle matrices and determinants for two, three, and maybe four vari-
ables, and if required could go beyond that to five or six or so, maybe a bit higher. 
But today, many optimization problems solved routinely by computer packages 
have thousands or millions of variables. No human could ever cope with that.

So does any mathematics student have to be able to handle any kind of linear 
equation, matrix, or determinant, and if so to what extent? Mathematics educators 
are still assessing the pedagogic implications of the digital revolution in mathemati-
cal praxis, but the general consensus for that particular example is that mastery of 2 
and 3 variables is sufficient, with the learner being able to get correct answers in the 
two-variable case and solve three-variable examples without worrying too much if 
they make slips. Of course, making an error when dealing with a real-world prob-
lem can be a big deal, sometimes having catastrophic consequences, but the com-
puter system that actually executes the procedure won’t make that mistake. The goal 
of mathematics teaching today is not execution; it is understanding. The conductor 
of any orchestra, musical or mathematical, has to have a deep understanding of what 
each instrument does, what it is capable of, and when and how to make use of it, but 
mastery of an instrument is not necessary.

Notice that it is not mathematics that has changed in the digital age, though there 
have been changes in the form of new branches of mathematics that resulted from 
the growth of computer technology (fractal geometry, for example). That caveat 
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aside, however, what has changed is the way people use it. Since mathematics itself 
is largely unchanged, to understand a new mathematical result is essentially the 
same challenge it always was. It is mathematical praxis that has changed. And with 
that change in praxis has come a change—or rather, there is an emerging process of 
change—in what it takes to become a mathematician.

Being able to calculate quickly, efficiently, and accurately used to be essential; 
now it is not required. In place of that skillset (which took most people considerable 
time and effort to master, with many dropping by the wayside in the process) is a 
new set of skills. Those new skills are in fact much closer to those in the humanities 
or the creative arts than most people yet realize (or in some cases are willing to 
contemplate). [In fact, my personal view is that they are now practically indistin-
guishable, but that’s for future generations to judge. Mathematics, I would argue, is 
no longer a special case. From the perspective of mathematical cognition, I believe 
that the modifier “mathematical” is no longer necessary; it’s just (human) cognition. 
What distinguishes mathematical praxis is the what to which human cognition is 
applied. That’s all.]

Whatever childhood (or adult) experiences arouse an individual’s interest in pur-
suing mathematics, being able to master the art of calculation (i.e., executing any 
formal procedure except in the rudimentary form required to gain sufficient under-
standing) is no longer a prerequisite. To be sure, you have to be intrigued by the very 
idea of formally specified abstractions and context-free reasoning. Not everyone 
will see mathematics as having appeal. But then, few among us can see the attrac-
tion in everything our fellow humans decide to pursue either. From the human per-
spective, it’s not so much that today’s digital mathematical tools have added 
something to the discipline; rather, they have removed what for many was an 
obstacle.

�Experimental Mathematics

So far, my focus has been on the use of mathematics in the world. That may be 
unusual in a mathematical commentary (which this essay is), but using mathematics 
to solve real-world problems is what the vast majority of mathematicians do. 
Admittedly, in many cases such individuals don’t call themselves mathematicians, 
since that word tends to be reserved for the few who focus on pure mathematics (as 
I did for the first 20 years of my career). The essence of pure mathematics was cap-
tured perfectly by Euclid in his famous geometry and number theory text Elements, 
written around 350 BCE: the formulation and proof of precise statements (theo-
rems) about mathematical abstractions.

By and large, it’s fair to say that, for most pure mathematicians, the core activi-
ties today are much the same as they have always been. The most important tool 
remains paper and pencil, or perhaps a blackboard. (Mathematicians overwhelm-
ingly prefer a chalkboard to a white board, for ease of frequent erasing—the out-
sider’s perception that mathematicians hardly ever make mistakes is as far from the 
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truth as could be; pure mathematicians engaged in research make errors all the time. 
Errors frequently lead to new ideas.)

In fact, paper-and-pencil math was the key even for the famous, first major inroad 
of computer technology into pure mathematics: Kenneth Appel and Wolfgang 
Haken’s 1976 proof of the four color theorem. (For any map drawn on a plane, four 
colors suffice to color the regions so no two with a stretch of common border are 
colored the same.) Their proof was obtained by familiar paper-and-pencil-assisted 
mental reasoning, with a twist that their argument left them having to check that 
1,936 different possible (specific) configurations of adjacent regions (mini-maps) 
could be so colored.

Had they been faced with just three or four special cases, or maybe even a dozen 
or so, Appel and Haken would surely have done everything by hand. But almost 
2,000 cases was far too big a task. (The problem of finding a coloring for each one 
was also time consuming; the method was simply to examine all possible combina-
tions of colors and see if one worked.) Instead, they wrote a computer program to 
go through all those configurations and find (by exhaustive search) an admissible 
coloring for each one. When, after over a thousand hours of computing (using 1976 
technology), the program had generated colorings of all the special mini-maps, the 
four color theorem, first conjectured 124 years earlier in 1852, was declared proven.

With the Appel and Haken case, the computer was not really doing any of the 
logical reasoning. The two mathematicians simply outsourced to a computer a mun-
dane task that could have done by hand, were it not for the number of cases involved. 
(The number of cases necessary to examine was later reduced to 1,476. A later proof 
by another team required only 633 special configurations to be examined; but that is 
still too many for a human to do.)

Well, that last paragraph is not entirely true; at least, it’s not the whole truth. 
There is another aspect to the story that should be included. Viewing their proof as 
a classical mental construction, with a computer being used only to cope with a 
large amount of data, is valid if you focus only on the final proof. In terms of pro-
cess, Appel and Haken actually used the computer as an experimental tool to help 
them arrive at the set of special configurations they used for the final search. That 
aspect of their work, often overlooked, proved to be an early instance of what is now 
regarded as a whole new area of mathematical research: experimental mathematics 
(Borwein and Devlin 2008).

Experimental mathematics is the name generally given to the use of a computer 
to run computations—sometimes no more than trial-and-error tests—to look for 
patterns, to identify particular numbers and sequences, and to gather evidence in 
support of specific mathematical assertions that may themselves arise by computa-
tional means, including search.

But the truth is mathematicians have always engaged in experimental activities. 
Had the early mathematicians in ancient Greece and elsewhere had access to com-
puters, it is likely that the word “experimental” in the phrase “experimental mathe-
matics” would be superfluous; the kinds of activities or processes that make a 
particular mathematical activity “experimental” would be viewed simply as 
mathematics.
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True, the carefully crafted image of mathematics presented in published papers 
and textbooks gives no indication of “experiments.” Mathematicians’ published 
works consist of precise statements of true facts, established by logical proofs, 
based upon axioms (which may be, but more often are not, stated in the work). But 
if you examine the private notebooks of practically any of the mathematical greats, 
you will find page after page of exploratory calculations, trial-and-error experimen-
tation (symbolic or numeric), guesses formulated, hypotheses examined, and so 
forth. Famous mathematicians such as Pierre De Fermat, Carl Friedrich Gauss, 
Leonhard Euler, and Bernhard Riemann spent many hours of their lives carrying out 
(mental) calculations in order to ascertain “possible truths,” many but not all of 
which they subsequently went on to prove.

Indeed, the experimental part of mathematics is precisely what mathematicians 
enjoy! As Gauss wrote to his colleague Janos Bolyai in 1808, “It is not knowledge, 
but the act of learning, not possession but the act of getting there, which grants the 
greatest enjoyment.”

Gauss was very clearly an “experimental mathematician” of the first order. For 
example, his numerical analysis—while still a child—of the density of prime num-
bers led him to formulate what is now known as the prime number theorem, a result 
not proved conclusively until 1896, more than 100 years after the young genius 
made his experimental discovery.

It was when mathematicians started using computers to carry out the exploratory 
work that the massive role played by calculation and experimentation came to the 
fore. What makes modern experimental mathematics different (as an enterprise) 
from the classical conception and practice of mathematics is that the experimental 
process is regarded not as a precursor to a proof, to be relegated to private notebooks 
and perhaps studied for historical purposes only after a proof has been obtained. 
Rather, experimentation is viewed as a significant part of the mathematical enter-
prise in its own right, to be published, considered by others, and (of particular 
importance) contributing to our overall mathematical knowledge.

In particular, this shift in perception gives an epistemological status to assertions 
that, while supported by a considerable body of experimental results, have not yet 
been formally proved, and in some cases may never be proved.

On the other hand it may also happen that an experimental process actually 
yields a formal proof. For example, if a computation determines that a certain 
parameter p, known to be an integer, lies between 2.5 and 3.784, that amounts to a 
rigorous proof that p  =  3. There have been instances of this. (See Borwein and 
Devlin (2008) cited earlier.) More common has been when insights gained by an 
experimental investigation have been sufficient for mathematicians to develop clas-
sical proofs. This has happened a number of times with proofs in number theory, 
theory of minimal surfaces, geometry, and other areas (op. cit.).

In terms of the topic of this essay, mathematical praxis, the acceptance of experi-
mental mathematics as a recognized branch of pure mathematics provides us a clear 
instance of an area of pure mathematics where praxis has been changed by com-
puter technology.
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Among the daily activities of an experimental mathematicians are:

•	 Symbolic computation using a computer algebra system such as Mathematica or 
Maple

•	 Data visualization methods
•	 Integer-relation methods, such as the PSLQ algorithm
•	 High-precision integer and floating-point arithmetic
•	 High-precision numerical evaluation of integrals and summation of infinite series
•	 Iterative approximations to continuous functions
•	 Identification of functions based on graph characteristics

In terms of my earlier orchestra analogy, where mathematicians in the past spent 
many hours carrying out hand calculations, the pure mathematician working in an 
experimental fashion today is simply a mathematician who conducts an ensemble of 
a particular set of computational instruments. In the case of experimental mathemat-
ics, the computer revolution certainly changed how some pure mathematicians 
work; moreover it did so in essentially the same way it did for applied 
mathematicians.

�Mathematics Education

Given the significant change to the way mathematics is done in the world today, 
how do math educators prepare their students for life in that world?

So far, many don’t. By and large, math classes around the world today operate in 
much the same way they did in medieval times, often using what are essentially the 
same textbooks, albeit with computers and other digital technologies sometimes 
playing an auxiliary role. To a large extent, this is because of resistance to change 
among some teachers, and (often strong) opposition to change from parents and 
education administrators who are not familiar with the degree to which the mathe-
matical landscape has been transformed.

This was illustrated dramatically in the United States by strong opposition to the 
Common Core State Standards, released in 2009 to provide guidelines as to what 
skills were required for today’s world. While poor implementation of the stan-
dards—by education boards and the developers and suppliers of textbooks and other 
educational materials—can fairly be blamed for some of the complaints, the push-
back went well beyond that, to opposition toward the basic principles of modern 
mathematics the standards are based on in order to prepare future citizens for life in 
the modern world. Why was this? What was being missed?

Once again, an everyday analogy might be helpful here. Florence Cathedral, com-
pleted in 1436, took 140 years to build. It is universally acknowledged to be one of 
the world’s most beautiful large buildings. So too is Sydney Opera House, completed 
in 1973. Yet, for all it has comparable size, it took a mere 14 years to build. How was 
it possible to build Sydney Opera House ten times faster than Florence Cathedral? 
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After all, the basic principles of large building construction are essentially the same. 
The laws of physics did not change. Aesthetic principles are broadly the same.

What changed, of course, are the tools available. Late-twentieth-century archi-
tects and construction engineers had very different tools at their disposal from their 
forebears in the thirteenth to fifteenth centuries. With different tools available, they 
needed very different skillsets. Whereas medieval builders had to do many things by 
hand—or at the very least using hand tools—modern builders “conduct an orchestra 
of different construction tools.” Different tools require different skillsets.

Analogously, until the final decade of the twentieth century, mathematics educa-
tors had to ensure that students graduated with basic number skills and the ability to 
perform mathematical reasoning using (in particular) those number skills. Using 
those basic number skills required good calculation skills, with a premium put on 
speed and accuracy. But with today’s digital tools, the need for calculation has been 
removed. Instead, today’s graduate needs to be able to make good, efficient, con-
structive, and accurate use of the vast array of mathematical tools now available. 
Different tools require different skillsets.

Being able to use those new mathematical tools does not require training in any 
particular one of them (which is just as well, since they evolve and change with 
considerable rapidity). Rather it requires understanding the basic concepts and prin-
ciples of mathematics that underpin them.

The key word in that last sentence is understanding. For example, in the days 
when only people could perform calculations, it was important that arithmetical 
algorithms were as efficient as possible. What are nowadays called the “classical 
algorithms” of arithmetic were developed and honed over many centuries to do just 
that. The brilliance of the Hindu-Arabic number representation is that it facilitated 
the creation of such algorithms. It was not necessary to understand numbers in any 
deep way—indeed, studies showed that few people really understood the place-
value system—or to understand how the algorithm works or why it was constructed 
the way it was. You just had to master the (few) basic rules and apply them carefully; 
something that practically anyone could achieve, given sufficient repetitive practice. 
It was, to all intents and purposes, mindless arithmetic—sometimes amusingly ren-
dered with intentional ambiguity as “meaningless arithmetic.” [ASIDE: In terms of 
computation, the shift from the use of an abacus (either the European marked board 
and pebbles or the Chinese beads-on-wires equivalent) to written Hindu-Arabic 
arithmetic was largely a wash; one learned mechanical procedure was replaced by 
another. The real benefit of the written system—and it was a huge benefit—was that 
the written algorithms left an audit trail, enabling anyone to check, and perhaps cor-
rect, a calculation after it was completed.]

In contrast to mindless arithmetic, the arithmetic algorithms used in the more 
progressive schools today have been designed to optimize not speed or accuracy, but 
understanding (of numbers, the place value system, and the basic ideas of arithme-
tic). Not surprisingly, those algorithms are, from a getting-the-answer perspective, 
nothing like as efficient as the classical algorithms that twentieth-century students 
had to master. That’s one of the reasons parents and education administrators 
opposed the Common Core, which supported the use of algorithms optimized for 
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understanding. But in so doing, they were missing the key point. Today, we have 
ubiquitous, cheap machines that do the calculations for us. In fact, we don’t need to 
buy specialized machines at all. The smartphone we carry around with us serves that 
purpose by way of cheap, if not cost-free, apps. A crucially important mathematical 
skill today is the ability to “conduct the orchestra of those calculation tools.”

One of the core skillsets that mathematics educators identified is number sense. 
The most frequently cited definition of this notion is due to Gersten and Chard 
(1999):

Number sense “refers to a child’s fluidity and flexibility with numbers, the sense of what 
numbers mean and an ability to perform mental mathematics and to look at the world and 
make comparisons.”

Interestingly, the notion of number sense was originally formulated as a way for 
educators to help students with special needs master the basic arithmetic that, at the 
time, still dominated mathematics instruction. With (belated) recognition that the 
need for calculation had faded away with the increasing availability of computa-
tional devices, however, educators began to recognize the relevance, and power, of 
the notion in navigating the world of twenty-first-century mathematics. [It may be 
instructive to recast Gersten and Chard’s definition in terms of music, to see what is 
required to be a good orchestral conductor.]

How do you acquire that high-level number sense? The answer is the same way 
people always did: through lots of practice. What is different is that instead of the 
practice being structured to achieve speed and accuracy, the goal is to produce 
understanding. That requires reflective practice, not the rote repetition that can, at 
least in some people, result in fast, accurate computation—albeit not remotely as 
fast or accurate as a free app on your smartphone!

The change from society’s need for calculation skill to the new need of the higher 
order number sense may seem revolutionary, and indeed it is. But it is at heart just 
today’s iteration of a series of revolutions that have occurred throughout mathemat-
ics’ history. Other skills that are essential for today’s mathematics developer or user 
are the ability to recognize and construct logically sound arguments (and recognize 
unsound ones); the ability to make smooth, efficient use of the digital tools that are 
available (conducting the orchestra); and increasingly the ability to work well in 
teams. Since mathematics began, mathematicians have calculated and reasoned 
logically with the basic building blocks of the time. Today’s procedures (that have 
to be executed) turn into tomorrow’s basic entities (on which you operate).

For instance, in the ninth century, the Arabic-Persian-speaking traders around 
Baghdad developed a new, and in many instances more efficient, way to do arithme-
tic calculations at scale, by using logical reasoning rather than arithmetic. Their new 
system quickly became known as al-jabr, after one of the techniques they devel-
oped to solve equations.

Whereas arithmetic operated on numbers, algebra (as we now call it) is a form of 
calculation that (essentially) operates on classes of numbers. (That’s where the vari-
ables come in.) When the sixteenth-century French mathematician François Viète 
introduced symbolic algebra, those classes of numbers were the new building 
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blocks, on which it was possible to study the operations of arithmetic, and more 
general forms of operations.

In each case, advances in mathematics were introduced to make mathematics 
more easy to use and to increase its application.

The rise of modern science (starting with Galileo in the seventeenth century) and 
later the Industrial Revolution in the nineteenth century led to still more impetus to 
develop new mathematical concepts and techniques, though some of those develop-
ments were geared more toward particular groups of professionals.

Calculus provides a good example. In differential calculus, functions are no lon-
ger viewed as rules that you execute to yield new numbers from old numbers, but 
higher level objects on which you operate to produce new functions from old func-
tions, new building blocks on which to reason.

Today, entire computations can be treated as mental building blocks. If and when 
those computations are run (on a machine), you may end up with a number, a graph, 
or some other output. But until then, the (human) mathematician reasons about 
them as entities in their own right. (It does not necessarily feel that way, but func-
tionally that’s what is going on.)

To conclude this section, I’ll present a simple arithmetical puzzle to illustrate the 
kind of mathematical thinking processes that today’s more progressive mathematics 
teachers sometimes use to help their students develop. Because of its simplicity, it’s 
easy to miss the key issues, but for all that simplicity it captures the spirit of how 
today’s mathematicians work.

The puzzle is of the kind you often find in cheap puzzle books or on puzzle web-
sites. In this case, however, my goal in presenting it is not for you to get the right 
answer. Rather, it is for you to solve it as quickly as you can—ideally instanta-
neously. The reason is to try to get some insight into what the human brain can do 
with ease, so that educational emphasis can be put on enhancing the brain’s capacity 
to do mathematics when working in the “orchestral conducting” fashion of today’s 
professionals (rather than wasting time trying to train the brain to perform calcula-
tions, which your smartphone app can do much faster and more accurately).

Here then is the puzzle:

PROBLEM: A bat and a ball cost $1.10. The bat costs $1 more than the ball. How much 
does the ball cost on its own? (There is no special pricing deal.)

How did you do? The most common answer people give instantly to this problem 
is that the ball costs 10¢. That answer is wrong (and many realize that is the case 
soon after their mind has jumped to that wrong number). What leads many astray is 
that the problem is carefully worded to run afoul of what under normal circum-
stances is an excellent strategy. [So if you got it wrong, you probably did so because 
you are a good thinker with some well-developed problem-solving strategies—
problem-solving “heuristics” is the official term, and I’ll get to those momentarily. 
So take heart. You are well placed to do just fine in twenty-first-century mathemati-
cal thinking. You simply need to develop your heuristics to the next level.]

Here is, most likely, what your mind did to get to that 10¢ answer. As you read 
through the problem statement and came to that key phrase “cost more,” your mind 
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said, “I will need to subtract.” You then took note of the data: those two figures 
$1.10 and $1. So, without hesitation, you subtracted $1 from $1.10 (the smaller 
from the larger, since you knew the answer has to be positive), getting 10¢.

Notice you did not really perform any calculation. The numbers are particularly 
simple ones. Almost certainly, you retrieved from memory the fact that if you take 
a dollar from a dollar-ten, you are left with 10¢. You might even have visualized 
those amounts of money in your hand. Notice too that you understood the mathe-
matical concepts involved. Indeed, that was why the wording of the problem led you 
astray! What you did is apply a heuristic you have acquired over many financial 
transactions and most likely a substantial number of arithmetic quiz questions in 
elementary school. In fact, the timed tests in schools actively encourage such a “pat-
tern recognition” approach. For the simple reason that it is fast and usually works!

We can, therefore, formulate a hypothesis as to why you “solved’ the problem 
the way you did. You had developed a heuristic (identify the arithmetic operation 
involved and then plug in the data) that is (a) fast, (b) requires no effort, and (c) usu-
ally works. This approach is a smart one in that it uses something the human brain 
is remarkably good at—pattern recognition—and avoids something our minds find 
difficult and requiring effort to master (namely, arithmetic calculation).

Of course, primed by the context in which I presented this particular problem, 
you probably expected there to be a catch. So, after letting your mind jump to the 
10¢ answer, you likely took a second stab at it (or, if you were anxious about “get-
ting a wrong answer,” made this your first solution) by applying an algorithm you 
had learned at school. Namely, you reasoned as follows:

Let x = cost of bat and y = cost of the ball. Then, we can translate the problem into 
symbolic form as the two equations: x + y = 1.10, x = y + 1.

Eliminate x from the two equations by algebra, to give 1.10 − y = y + 1.
Transform this by algebra to give 0.10 = 2y.
Thus, dividing both sides by 2, you conclude that y = 5¢.
And this time, you get the correct answer.

You may, in fact, have been able to carry out this procedure in your head. When 
I was at school, I could do algebraic manipulations far more complicated than this 
in my head, at speed. But, truth be told, since I started outsourcing arithmetic to 
machines over three decades ago, I have lost that skill, and now have to write down 
the equations and solve them on paper. (This is a confirmation, if any were needed, 
that arithmetic calculations do not come naturally to the human brain. Over the 
years, as my mental arithmetic skills have declined, my pattern recognition abilities 
have not diminished, but on the contrary have dramatically improved, as I learned—
automatically, through exposure—to recognize evermore fine-grained 
distinctions.)

Whether or not you can do the calculation in your head, it is of course entirely 
formulaic and routine. Unlike the first method I looked at (a heuristic that is fast and 
usually right), this method is an algorithmic procedure, it is slow (much slower than 
the first method, even when the algebraic reasoning is carried out in your head), but 
it always works. It is also an approach that can be executed by a machine. True, for 

K. Devlin



71

such a simple example, it’s quicker to do it by hand on the back of an envelope, but 
as a general rule it makes no sense to waste the time of a human brain following an 
algorithmic procedure, not least because even with simple examples it is familiarly 
easy to make a small error that leads to an incorrect answer.

But there is another way to solve the problem. It is typical of the ways profes-
sional mathematicians vocalize their solutions when asked to do so. Like the first 
method we looked at, it is a heuristic, hence instinctive and fast, but unlike the first 
heuristic method it always works.

This third method requires looking beyond the words, and beyond the symbols 
in the case of a problem presented symbolically, to the quantities represented. 
Though I (and likely other mathematicians) don’t visualize it quite this way (in my 
case it is more of a vague sense of size), Fig. 3.1 more or less captures what the pros 
do.

As we read the problem, we form a mental sense of the two quantities, the cost 
of the ball on its own and the cost of the bat plus ball, together with the stated rela-
tion between them, namely that the latter is $1 more than the former. From that 
mental image, where we see that the $1.10 total consists of three pieces, one of 
which has size $1 and the other two of which are equal, we simply “read off” the 
fact that the ball costs 5¢. No calculation, no algorithm. Pure pattern recognition.

This solution is an example of number sense in action, the critical twenty-first-
century arithmetic skill I discussed earlier. It’s hard to imagine how a computer 
system could solve the problem that way.

The acclaimed Australian (pure) mathematician Terrence Tao has called those 
three ways of solving the bat-and-ball problem, respectively, pre-rigorous thinking, 
rigorous thinking, and post-rigorous thinking. In a post in his blog What’s new 
(https://terrytao.wordpress.com), titled “There’s more to mathematics than rigour 
and proofs,” in which he introduced those terms, he was discussing the way profes-
sional mathematicians solve abstract problems in pure mathematics. The formal, 
symbolic, rigorous description you see in papers and books comes primarily at the 
end, he notes, to check that the solution is logically correct, or at various intermedi-
ate points to make those checks along the way. But the key thinking is 
post-rigorous.

In the case of solving real-world problems, the pros almost always turn to tech-
nology to handle any algebraic deductions. In contrast, though pure mathematicians 

Fig. 3.1  A 
“professional’s” mental 
representation of the 
bat-and-ball problem
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sometimes do use those technology products as well, they often find it much quicker, 
and perhaps more fruitful in terms of gaining key insights, to do the algebraic work 
by hand. But in all cases, they go beyond the numerals and the symbols and reason 
with the semantic entities those linguistic elements represent.

One of the big questions facing mathematics teachers today is how do we best 
teach students to be good post-rigorous mathematical thinkers.

In the days when the only way to acquire the ability to use mathematics to solve 
real-world problems involved mastering a wide range of algorithmic procedures, 
becoming a mathematical problem solver frequently resulted in becoming a post-
rigorous thinker automatically. But with the range of tools available to us today, 
there is a good reason to assume that, with the right kinds of educational experi-
ences, we can significantly shorten (though almost certainly not eliminate) the 
learning path from pre-rigorous, through rigorous thinking, to post-rigorous math-
ematical thinking. The goal is for learners to acquire enough effective heuristics.

To a considerable extent, those heuristics are not about “doing math” in the tra-
ditional sense. Rather, they are focused on making efficient and effective use of the 
many sources of information available to us today. But before anyone throws away 
their university-level textbooks, it’s important to be aware that the intermediate step 
of mastering some degree of rigorous thinking is probably essential.

Post-rigorous thinking is almost certainly something that emerges from repeated 
practice at rigorous thinking. (See, for example, Willingham 2010.) Any increased 
efficiency in the education process will undoubtedly come from teaching the formal 
methods in a manner optimized for understanding, as opposed to optimized for 
attaining procedural efficiency, as it was in the days when we had to do everything 
by hand. Stay tuned!

Figure 3.2 provides a graphical summary of Tao’s categorization of the three 
kinds of mathematical thinking we can bring to problem-solving.

In addition to providing a perspective on the three phases each one of us has to 
go through to become a proficient mathematical (real-world) problem solver, Tao’s 
classification also provides an excellent summary of three historical stages of math-
ematical thinking as it has evolved over the past 10,000 years or so, from the inven-
tion of numbers in Sumeria, where the mathematical thinking of the time was 
accessible to all, through three millennia of formal mathematics development, 
where many people were never able to understand it or make effective use of it, and 
now into the third phase, where, because of technology, mathematical thinking can 
once again, I believe, be accessible to all.

As noted above, we do not know the degree to which people have to master rigor-
ous thinking to become good post-rigorous thinkers, but Willingham (2010) and 
others present evidence to suggest that stage cannot be bypassed. Still, given today’s 
technological toolkit, including search, social media, online resources like Wolfram 
Alpha and Khan Academy, and a wide array of online courses, it is surely possible 
to master much of the rigorous thinking you need “on the job,” in the course of 
working on meaningful, and hence motivational and rewarding, real-world 
problems.
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This is not to say that there is no further need for teachers. Far from it. Very few 
people are able to become good mathematical thinkers on their own. Newtons and 
Ramanujans, both of whom achieved great things with just a few books to guide 
them, are extremely rare. The vast majority of us need the guidance and feedback of 
a good teacher.

But, whereas the process of doing mathematics was, until a quarter century ago, 
dependent on being able to perform calculations of various kinds, a skillset that the 
brain does not find naturally and requires considerable training and practice, given 
the readily accessible calculation tools at our disposal, mathematical praxis today 
consists largely of using the brain in a manner it finds far more natural: analogical 
reasoning, rather than the logical reasoning previously required.

�The Symbol Barrier

Heuristics-driven, post-rigorous thinking is—or at least, should be—the goal of 
today’s mathematics educators, in order for tomorrow’s mathematics users to be 
able to make full and good use of all the available technology tools. Perhaps then, 
digital technologies themselves can provide new ways to develop (or help develop) 
those new skillsets. That, in fact, has been the focus of much of my own research 
over the past few years. The approach I have taken goes back to some groundbreak-
ing social science research conducted almost 30 years ago.

In the early 1990s, three researchers, Terezinha Nunes (at the University of 
London, UK), Analucia Dias Schliemann, and David William Carraher (both of the 

Fig. 3.2  Tao’s categorization
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Federal University of Pernambuco in Recife, Brazil) embarked on an anthropological 
study in the street markets of Recife. With concealed tape recorders, they posed as 
ordinary market shoppers, seeking out stalls being staffed by young children 
(between 8 and 14 years of age, it turned out). At each stall, they presented the 
young stallholder with a transaction designed to test a particular arithmetical skill. 
The purpose of the research was to compare traditional instruction (which all the 
young market traders had been receiving in school since the age of 6) with learned 
practices in context. In many cases, they made purchases that presented the children 
with problems of considerable complexity.

What they found was that the children got the correct answer 98% of the time. 
“Obviously, these were not ordinary children,” you might imagine, but you’d be 
wrong. There was more to the study. Posing as shoppers and recording the transac-
tions was only the first part. About a week after they had “tested” the children at 
their stalls, the three researchers went back to the subjects and asked each of them 
to take a pencil-and-paper test that included exactly the same arithmetic problems 
that had been presented to them in the context of purchases the week before, but 
expressed in the familiar classroom form, using symbols.

The investigators were careful to give this second test in as nonthreatening a way 
as possible. It was administered in a one-on-one setting, either at the original loca-
tion or in the subject’s home, and the questions were presented in written form and 
verbally. The subjects were provided with paper and pencil, and were asked to write 
their answer and whatever working they wished to put down. They were also asked 
to speak their reasoning aloud as they went along. Although the children’s arithme-
tic had been close to flawless when they were at their market stalls—just over 98% 
correct despite doing the calculations in their heads, and despite all of the poten-
tially distracting noise and bustle of the street market—when presented with the 
same problems in the form of a straightforward symbolic arithmetic test, their aver-
age score plummeted to a staggeringly low 37%.

The children were absolute number wizards when they were at their market 
stalls, but virtual dunces when presented with the same arithmetic problems pre-
sented in a typical school format. The researchers were so impressed—and 
intrigued—by the children’s market stall performances that they gave it a special 
name: they called it “street mathematics.”

As you might imagine, when the three scholars published their findings (Nunes 
et al. 1993) it created a considerable stir. Many other teams of researchers around 
the world carried out similar investigations, with target groups of adults as well as 
children, and obtained comparable results. When ordinary people are faced with 
doing everyday math regularly as part of their everyday lives, they rapidly achieve 
a high level of proficiency (typically hitting that 98% mark). Yet their performance 
drops to the 35–40% range when presented with the same problems in symbolic 
form.

It is simply not the case that ordinary people cannot do everyday math. Rather, 
they cannot do symbolic everyday math. In fact, for most people, it’s not accurate to 
say that the problems they are presented in paper-and-pencil format are “the same 
as” the ones they solve fluently in a real-life setting. When you read the transcripts 
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of the ways they solve the problems in the two settings, you realize that they are 
doing completely different things. (Nunes and her colleagues present some of those 
transcripts in their book.) Only someone who has mastery of symbolic mathematics 
can recognize the problems encountered in the two contexts as being “the same.”

In my 2011 book Mathematics Education for a New Era (2011), I referred to the 
problem Nunes et al. discovered as the “symbol barrier.” Much of my work since 
that book was published has been to try to develop technological learning tools that 
set out to break the symbol barrier, by presenting mathematical puzzles (in mathe-
matics education language, they are complex performance tasks) in a manner simi-
lar to the kinds of mental representations that arose in my above discussion of 
post-rigorous thinking for the solution to the bat-and-ball puzzle.

To do that, I contacted some colleagues I had met while consulting for an educa-
tional technology company, and together we co-founded a small development stu-
dio (subsequently named BrainQuake) to design and build such tools.

Though each of BrainQuake’s puzzles (three have been released to date) is built 
around particular mathematical concepts (integer arithmetic, linear growth, and pro-
portional reasoning, respectively, for the first three puzzles we created), they are not 
designed to teach or provide practice in the basic skills on which they are built 
(though engaging with the tools undoubtedly does provide additional practice in 
those requisite skills). Rather, the goal is to develop number sense and general 
problem-solving ability.

Because the primary target audience is middle-school mathematics students, the 
mathematical puzzles we developed are presented as challenges in a video game 
(called Wuzzit Trouble), to maximize engagement, but that aspect is not relevant to 
this discussion. What is relevant is that they provide an alternative, more learner-
friendly interface to mathematical thinking and (multistep) problem-solving than do 
the traditional symbolic presentations.

The manipulable digital objects in BrainQuake’s learning products provide direct 
representations of mathematical concepts, breaking the symbol barrier. Students 
(players) solve puzzles entirely within the application itself, by manipulating digital 
objects, instead of writing and manipulating symbols on a page. The (multistep) 
solutions students have to develop to solve all but the most elementary puzzles are 
logically identical to the steps they would carry out to solve the puzzle in classical 
symbolic form. But the experience of doing so is dramatically different. So much 
so, that hundreds of thousands of children in the age range of 14–16 have, for 
instance, successfully solved systems of simultaneous linear equations in up to four 
unknowns, subject to optimizing their solution to meet various constraints on the 
solution. See Fig. 3.3.

Figure 3.3 shows two representations of the same problem. On the right is a clas-
sical symbolic representation of a problem requiring the student to solve a system 
of simultaneous linear equations in two unknowns, subject to various constraints. 
The student is also asked to try to find solutions that are optimal in two ways (parts 
2 and 3 to the question). On the left, the same problem is presented as a mechanical 
puzzle dressed up as a quest to free a caged creature (a Wuzzit) from a trap, by rotat-
ing, one at a time, two small cogs to turn the large wheel. When the player turns the 
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cogs to rotate wheel to bring one or more of the three items to land beneath the 
origin marker at the top, the player acquires the item. Acquisition of both keys frees 
the Wuzzit and the puzzle is solved. (The equations have been solved.) Maximum 
stars are awarded if the player solves it in the fewest possible number of turns (part 
2 of the question). Part 3 asks the player to collect the bonus item on the wheel 
before the last key is acquired.

To be sure, the system of equations on the right is not a standard one. Rather, it 
is precisely the system of equations that corresponds to solving the puzzle on the 
left. But the purpose of the puzzle is not to develop the ability to solve systems of 
symbolic linear equation; the goal is to develop number sense. In this case, the solu-
tion of systems of linear equations is simply the mathematical topic chosen as a 
vehicle to do that. [BrainQuake has produced another version of the puzzle that is 
stripped of the game features but carries the gears mechanism and the correspond-
ing symbolic equation representations side by side, so the student can see both 
develop in tandem, thereby explicitly linking the two representations.]

The Wuzzit Trouble puzzles have from one to four drive cogs, which means that 
the mechanism provides a mechanical representation of systems of linear equations 
in up to four unknowns. See Fig. 3.4.

Fig. 3.3  Breaking the symbol barrier
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Two independent university classroom studies (one in the United States, the 
other in Finland: Pope and Mangram 2015; Kiili et al. 2015) showed that use of the 
game Wuzzit Trouble for as little as 120 min of play spread over 4 weeks in 10-min 
bursts at the end of math class produced significant improvements in student num-
ber sense, as measured by a written pre- and post-test in the first study, and by both 
a written test and another digital math game as pre- and post-evaluations in the 
second. Thus, we know that this approach works.

[BrainQuake is one of a handful of educational technology developers that have 
adopted this approach. Other products of note are DragonBox Algebra, MotionMath, 
and MIND Research Institute’s ST Math.]

The use of alternative, nonsymbolic representations clearly provides an alterna-
tive approach to developing number sense, breaking the symbol barrier that can 
cause so many problems for learners. Of course, for students who wish to go on to 
further study or a career in STEM, number sense alone is not sufficient. There 
remains the problem of leveraging the problem-solving skills acquired in a nonsym-
bolic fashion to master the traditional symbolic representations, which is a neces-
sary skill for STEM areas. This process is known as “concreteness fading,” and has 
already been studied by others (e.g., Goldstone and Son 2005). It is a special case of 
education’s notorious transfer problem. Technology can help, and as already men-
tioned BrainQuake has started to develop such tools. But at present this is still work 
in progress, after completion of which efficacy studies will have to be conducted.
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Chapter 4
Machine Versus Structure of Language via 
Statistical Universals

Kumiko Tanaka-Ishii

�Introduction

Big data has revealed new facts about natural language, including that human 
language universally follows certain statistical properties. These properties are 
observed using methodologies developed in the statistical physics domain, with 
application to large-scale data. The particularity of the findings is that the properties 
hold unexceptionally for any texts across languages and time, and even beyond, 
including infant utterances, music performances, and programming languages.

The crucial problem of these properties is that the reasons why they hold remain 
unknown. There are mathematical approaches to this problem, as will be summarized 
later in this chapter, and they suggest a possible common nature underlying any 
linguistic sequence. These approaches provide explanations about what language 
could be and what it is not, through models of a linguistic sequence. They consider 
a linguistic sequence as a string of mathematical symbols, however, irrespective of 
the meaning conveyed, and therefore they have no grounding of what language is in 
a humanistic sense. The aim of this chapter is thus to provide a conjecture on the 
signification of the statistical properties of language from a more humanistic 
viewpoint, according to previous philosophical conjectures.

The most important understanding we gain from these properties is that linguistic 
sequences seem likely to be produced through a certain typical behavior, of which 
we all are unconscious. We produce language, typically trying to be meaningful, but 
consecutive acts in language production seem to be bound by a predefined 
mechanism. Because the outcome has a mathematical feature, one way to describe 
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this property underlying linguistic behavior would be the term machine, meaning 
that language production has some aspect of being mechanical. Putting it this way 
suggests considering the relation of the statistical universals with the philosophical 
notion of a machine, as developed in Deleuze and Guattari (1972) which was 
preceded by Guattari (1969). Examples of those concepts, however, have mainly 
been provided via analogy only, and the concepts have remained devoid of concrete 
forms of what exactly they could be.

This chapter thus attempts to bridge recent scientific findings about language and 
concepts of modern philosophy. Doing so contributes to grounding the scientific 
findings in the humanities. The chapter also provides scientific facts that correspond 
to the philosophical concepts of a structure and a machine. Trying to understand 
what the statistical universals are would lead us to consider what a machine and a 
structure could be in relation to language.

�Statistical Universals Underlying Human Language

The statistical universals observed in linguistic data appear as power laws, in which 
the logarithms of two statistical variables are related linearly. As the laws are only 
visible in log-log space, the properties are only observable with at least a certain 
large amount of data.

The most famous such property is Zipf’s law (Zipf 1965). Figure 4.1 shows a Zipf’s 
law plot of Wittgenstein’s Philosophical Investigations (PI). For every word kind in a 
given text, its frequency f is plotted (vertical axis) with respect to its rank r in order of 
frequency (horizontal axis). Then, f(r)∝ r−1, and it becomes apparent that the plot is 
aligned linearly, with a power-law exponent close to −1 in log-log space. Although this 
is an approximate result—at the beginning there is a curved region, and then the expo-
nent is almost but not quite −1—this global tendency with an exponent of almost −1 is 
shared across human texts, without exception. Moreover, this tendency appears in com-
mon for language data besides text: in speech, including child-directed speech; in any 
activities related to human language, such as music; and in computer program code.

Similarly to Zipf’s law, the other global statistical universals form power laws that 
take the form of y ∝ xa for a constant a, where x and y are two variables measured for 
a linguistic finite sample from a source such as text. A power function has the 
characteristic of being invariable with respect to the scale of the data, and it thus rep-
resents some degree of self-similarity underlying a phenomenon. This can be explained 
by extending x through multiplication by a constant value λ. Then, y∝ (λx)a ∝xa, so the 
relation between x and y is invariant with respect to the size transformation.

A power law thus signifies that a system is self-similar. The notion of self-similarity 
can be intuitively grasped from the Koch curve shown in Fig. 4.2. In the Koch curve, 
the whole includes itself as a part at a smaller scale. Because of this scale invariance, 
the power laws known to hold for a system are considered to possess the property of 
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being scale-free, and such power laws are also called scaling properties. These prop-
erties indicate that the system is statistically self-similar, meaning that the scale 
invariance holds almost but not quite as cleanly as in the case of the Koch curve. In 
the case of Zipf’s law, the self-similarity implies the fact that no matter how large a 
text is, a large part of the vocabulary occurs only once.

Several other power laws are known to hold for natural language, but they have 
relations with each other, and one law can often be derived (mathematically) from 
other laws. Among them, another important law that describes a different property 
than Zipf’s law is the fluctuation underlying word appearance.

Any word in a text has the tendency to occur in a clustered manner. For example, 
Fig.  4.3 represents part of Philosophical Investigations, with a bar indicating the 
occurrence of words included in a set S consisting of some of the rarest words occur-

Fig. 4.1  Zipf’s law plot of Wittgenstein’s Philosophical Investigations. [The dots plot the actual 
rank-frequency data, whereas the black line shows a theoretical Zipf’s law plot with an exponent 
of −1]

Fig. 4.2  Koch curve as an 
example of a self-similar 
shape
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ring in PI.1 The figure shows how the bars occur in a clustered, bursty manner: a 
certain region might have many bars, but another might have hardly any. Such bias in 
occurrence positions characterises language and cannot be expected for a uniformly 
random sequence. As such fluctuation can occur anywhere, for any word and for any 
set of words, the entire linguistic sequence makes the whole system self-similar.

There are various methods to measure the degree of fluctuation underlying language. 
Recently, by using Taylor’s law, another power law reported widely for natural and 
social phenomena (Taylor 1961; Smith 1938), such clustering behavior was shown to 
be universal also in language (Tanaka-Ishii and Kobayashi 2018). Figure 4.4 shows an 
example Taylor’s law plot for Philosophical Investigations. Here, one point corre-
sponds to a word kind, and the points are scattered around the diagonal regression line 
in the middle. The figure is in log-log space, with the horizontal axis indicating the 
mean, and the vertical axis indicating the standard deviation of word occurrences 
within a 5620-word chunk of the given text.2 Note that the standard deviation of word 
occurrences measures the degree of fluctuation, and the most fluctuating words—
which are often keywords—appear the furthest above the regression line: some exam-
ples are annotated in the figure, including keywords such as Spiel and Regel.

In Tanaka-Ishii and Kobayashi (2018), this property was examined for over 1350 
texts across 14 languages, including texts taken from Project Gutenberg, as well as 
news articles, child-directed speech utterances, music recordings, and program source 
code. Without exception, all texts showed the power-law behavior, with a different 
exponent from that of a uniformly random sequence. All the real data exhibited 
fluctuation phenomena of larger degrees, depending on the category. The clustering 
behavior underlying any text hence can be said to be a universal property.

1 The figure shows a sequence of 300 words starting from the 1200th word. The set of rare words 
here consists of the rarest words up to 1/512 of the document length.
2 This setting is arbitrary, and the result does not change for any chunk length.

Fig. 4.3  Bursty occurrences of rare words (1200th–1500th words of Philosophical Investigations)

Fig. 4.4  Taylor’s law plot 
of Philosophical 
Investigations
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The power laws of Zipf’s law and Taylor’s law, therefore, describe the universal 
nature underlying language. Similar laws are reported to hold in a wide variety of 
natural and social systems. For example, Zipf’s law holds for the rank of a village’s 
size and its population, the rank of income and the corresponding income amount, 
and many other phenomena.

Likewise, Taylor’s law holds for cases such as stock price data and phenomena 
related to crops, habitats, and meteorology (Eisler et al. 2007). Power laws are com-
mon to large-scale systems surrounding us, and one example of these is language. 
Despite this prevalence, the causes of such power laws are unknown, thus driving us 
to conjecture on what language is, given these scientific facts.

�Layers of Universals

A language universal is a common property that holds throughout all languages,3 and 
the question of what a language universal could be has been an important theme in 
the domain of linguistics. Comrie (1989) categorized approaches to studying such 
universals as either empiricist or rationalist; among representatives of the latter 
approach is the work of Chomsky. Chomsky’s universal grammar (Chomsky 2015) 
proposed a universal model of human grammar by elaborating his phrase structure 
grammar (Chomsky 1957). He considered the human linguistic faculty to be largely 
inborn, and thus he proposed rationalist models. Because his grammatical models 
are mathematical, they have influenced not only possible theories of language but 
also other fields, such as building computer program compilers. For language, 
however, Chomsky’s theories have been controversial, especially from the empiricist 
perspective. For example, Tomasello (2001, 2005) studied the nature of language via 
infant prelinguistic utterances and primatology and presented counterexamples to 
Chomsky’s theories.

Therefore, the main approaches to study language universals that have been 
widely accepted in linguistics are empiricist. As language is both syntactic and 
semantic, there are corresponding empiricist approaches of each kind. From the 
semantic viewpoint, Swadesh attempted to list the common words that exist in any 
language (Swadesh 1971). This resulted in various lists such as the Swadesh list. 
Unfortunately, the relevance of his intention has been undermined, because it is a 
difficult question to consider whether a word in one language corresponds with 
another word in a different language, given debates related to the meanings of 
words. In contrast, studies of syntactic universals have continued until today and 
were originated by American structural linguists. One representative is Harris 
(1970), who, for example, showed the mechanism that bridges between phonemes 
and morphemes (Harris 1955). As another example, Greenberg (1963) indicated a 
correlation tendency underlying word order: in particular, the basic word order of 

3 There are considered to be several thousand languages on the earth, with the exact range depending 
on how we define a language.
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SOV correlates strongly with the modifier-modified order. Many of these nontrivial 
laws, however, do exhibit large exceptions. Nevertheless, the findings show the 
range of variation among natural languages around the globe and have flourished 
into projects such as the World Atlas of Language Structures, in which all the fea-
tures of languages on the earth are collected by professional linguists.

Such variety of studies show that there are layers of granularity with respect to 
linguistic units in the quest for language universals. Figure  4.5 shows different 
layers, including Swadesh’s words, and phrases in the works of Greenberg and 
Harris. Roughly speaking, linguistics’ primary interests lie in these basic linguistic 
units such as words and phrases.

By extending the size of the target unit of language, the study of universals 
evolved beyond linguistics. For example, at the level of discourse, Foucault (1969) 
analyzed large archives across different fields and sought the common consequence 
of how thoughts evolve running through different fields. Interestingly, he empha-
sized the rarity and variation among utterances playing roles in the formation of a 
train of thought. Likewise, Zipf’s law describes how a large portion of words remains 
rare, while fluctuation is the property that concerns mathematical variance. Therefore, 
what Foucault noticed through rarity and variation not only might derive from human 
rationality but could also be more deeply rooted in the nature of language.

The statistical laws of natural language consider a target unit larger than 
Foucault’s, situated at the layer of a corpus. The difference between a corpus and 
Foucault’s field is that a corpus is an archive of texts that can range across fields. 
The statistical universals of language are investigated with large-scale archives of 
newspapers and texts that cover multiple fields. Such studies only became possi-
ble with big data and powerful computers, and therefore the statistical universals 
constitute a new, state-of-the-art understanding that we have become able to gain 
only recently.

At the level of linguistics, the universals characterize semantics and grammatical 
structures, but outside linguistics the distinction between semantics and syntax 
becomes obscure, and the universals have been denoted under the name of struc-
ture. For example, Foucault sought the structure underlying human knowledge, in 
which analysis is conducted within the sphere of meaning and signification. Later, 

Fig. 4.5  Different layers of universals with respect to language
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we will return to the philosophical notion of this structure. At the level of a corpus, 
words are analyzed even without considering the meaning. Every sign is compara-
ble to a molecule, and text is considered like a gaseous body. The methodology, 
therefore, is naturally that of physics, specifically statistical physics, or more pre-
cisely complex systems theory. Note that laws are primarily an important concept in 
the domain of physics, e.g., Kepler’s laws of planetary motion, the combined gas 
law, and so on. Power laws of language are closer to these kinds of physical laws 
than to Greenberg’s language universals, and therefore statistical universals of lan-
guage are discussed in the domain of physics rather than in linguistics.

Nevertheless, texts are written primarily for communication, and thus, by nature, 
to produce meaning. At the level of linguistics, universal findings would show the 
possible range of words and phrases. At the level of discourse, the resulting univer-
sals would show the range of the human symbolic sphere. At the level of the molec-
ular view of texts, however, the analysis itself is conducted beyond any meaning that 
a text would produce. What then would the universals underlying the corpus imply?

As mentioned at the end of the previous section, similar power laws have been 
reported for many other natural and social systems. For all these laws, the underlying 
reasons for them are unknown. The only understanding that we have gained from the 
statistical universals of language is that the linguistic system is possibly one of those 
systems. We have the tendency to consider that language is a human system, thus 
originating in intelligence and being exclusive to humankind, but the findings thus 
far suggest that language is yet another system spawned from natural systems.

When we perform linguistic acts, we are not aware that our language is seamless 
with social and natural systems. We never conduct linguistic actions by aiming to 
produce global statistical universals. Instead, what we do is to choose the next word 
or next sound, typically trying to be meaningful, and the accumulation of such 
actions inevitably leads to the global properties. The universals at the corpus level 
suggest that there is some behavior underlying human linguistic acts. Given the fact 
that the same statistical properties are apparent in language-related activities even 
beyond language, there is some behavior, or some mechanism, underlying human 
handling of a sequence of signs. There must be some particular acts that we perform 
that imply the statistical universals of language. The rest of the chapter considers 
this unsolved question of what kind of behavior we follow.

�Mathematical Reasoning on Statistical Universals

Because the appearance of the statistical universals is mathematical, a natural 
consequence is to also seek reasons for them in a mathematical way within the field. 
A mathematical cause would only remain a model, of course, and therefore unveiling 
the source of the behavior will require a leap in neuroscience. Still, a mathematical 
explanation might provide some conditions that would lead to power laws.

An explanation to deduce Zipf’s law is possible via optimization. Mandelbrot 
(1952) demonstrated how minimizing the cost per amount of information would 
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mathematically imply a linguistic sequence with the rank-frequency relation being 
the power law. By defining the cost to be linear with respect to the length of a word, 
the total cost C of a text is defined, given the probability of every word p(w). Letting 
the information amount (Shannon entropy) be H, minimization of C/H implies that 
p(w) should be proportional to the power of the word’s rank.

This formulation of Mandelbrot was constructed so that the problem could be 
mathematically solved. The optimization function considering the cost per 
information amount was already somewhat arbitrary. Moreover, the optimization 
scheme could only explain Zipf’s law and not the other laws related to fluctuation. 
An extension to include other conditions would have instantly made the problem 
intractable to solve.

Above all, Mandelbrot’s idea suggests that we optimize text globally throughout. 
In other words, for an entire given sequence, the probability of production is globally 
optimized. We wonder, however, whether this is the case. As mentioned above, the 
statistical properties roughly hold even for an infant’s utterances. Do we not choose 
which word to use at every moment? Instead, it seems more appropriate to seek a 
process that is more consecutive.

One such approach is a stochastic process. Miller (1957) demonstrated how mon-
key typing would generate Zipf’s law. Given a set of characters, consider a monkey 
that randomly types one character after another and then a space. Because a space 
separates words, let the space be hit with a certain probability, and otherwise let 
every character be hit uniformly. A monkey would type a sequence of characters and 
then a space, another sequence of characters and a space, and so on. Such a simple 
procedure is mathematically proven to result in a rank-frequency distribution exhib-
iting Zipf’s law. Miller’s argument suggests the possibility of underlying behavior 
caused by something random, even if it is not as simple as monkey typing.

Of course, examination of monkey typing in detail shows its limits, and it does 
not correspond to what we do in human language production. It requires further 
constraints to exhibit Zipf’s law. Moreover, monkey typing continues randomly, so 
it does not reproduce fluctuation.

One important another stochastic process is the Simon process, defined as 
follows (Simon 1955). The process generates one word after another along time t. 
The process initiates at t = 1 with one arbitrary word. Given the sequence already 
produced, a speaker chooses the next word by the following rule:

•	 With a constant probability α, choose a new word.
•	 Otherwise (i.e., with probability 1−α), choose a word randomly from the past 

sequence.

For example, suppose that, at t = 1, the sequence started with [a], and at t = 5, the 
sequence had developed into [a, a, b, a, b]. The above two rules stipulate what to do 
at t = 6. With probability α, a new word is chosen (such as c or z: any word besides 
a or b); otherwise, a word from [a, a, b, a, b] is chosen. Note that in this latter case, 
previous elements are chosen in proportion to their frequencies. In this example, a 
is chosen with probability 3/5, whereas b is chosen with probability 2/5. Therefore, 
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the more frequent an element is, the more it is chosen, leading to the phenomenon 
of the rich getting richer.

Mathematically, this process is proven to generate Zipf’s law (Barabási and 
Albert 1999; Mitzenmacher 2003) but not Taylor’s law, although it does reproduce 
another statistical universal of long memory, which has a relation with Taylor’s law 
(Eisler et  al. 2007). It therefore still has problems in reproducing fluctuation 
(Tanaka-Ishii and Kobayashi 2018).

Even if the Simon process itself cannot reproduce all the statistical universals, a 
stochastic process is far easier to study than optimization. Therefore, the search con-
tinues for a process that can generate a sequence exhibiting the statistical universals 
known for language. A further consequence will be summarized later, in terms of 
reproducing both laws presented above.

Overall, we have seen two different approaches in the scientific domain to 
understand the reason for production of the statistical universals of natural language: 
optimization and a stochastic process. Because of its formulation, optimization is 
limited to explaining a specific law. That study approach does not tell us that we 
optimize at every word production. In contrast, stochastic processes are flexible and 
have the potential to illuminate what lies behind our linguistic acts. Thus far, at 
least, we have seen that our linguistic actions are neither monkey typing nor a Simon 
process. As mentioned before, even if we obtain a process that reproduces all the 
statistical universals, it can never be said that such a process is the actual linguistic 
process. The quest could reveal, however, what qualities are necessary in consecutive 
linguistic acts.

These attempts towards reasoning on statistical universals suggest that behind 
our linguistic acts could lie a machine-like procedure. The stochastic process con-
sidered above is indeed mechanical, to the extent that a computer can produce it. A 
machine performs a defined task that does not require a moment of thought for 
every action. The consecutive actions of a machine are predefined, and it only ful-
fills its mission. Such action lacking a moment of thought is contradictory with 
respect to language production, because language production is about thinking. I am 
not suggesting that thought is absent in producing a meaningful sequence for com-
munication, of course. Rather, I would like to indicate that the statistical universals 
of language show that behind the production of a linguistic sequence lies some 
certain but unknown behavior, which can be compared to a machine.

This raises the philosophical term machine for a further conjecture on statistical 
universals. The term machine is a key notion in postmodernist philosophy, often 
contraposed to the notion of a structure. If a generative model were to correspond to 
a machine, then the notion of a structure would be deemed to correspond to the 
statistical properties. We are interested in how such correspondence would add to 
better interpretation of what statistical universals and their generative models are. 
Before proceeding further, the next section summarizes the philosophical notions of 
a machine and a structure. Then, the statistical properties are considered in the 
context of postmodernist philosophy.
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�Postmodernist Machine Versus Structure: A Brief Summary

In analyzing a humanistic phenomenon, such as “language,” “unconsciousness,” or 
even components such as “discourse,” briefly, a structure analyzes the phenomenon 
by describing underlying common properties, whereas a machine does so by 
describing the mechanism to produce the phenomenon.

Structuralism is a philosophical trend established by Saussure (1911) and 
intended to describe the characteristics of a phenomenon as a structure underlying 
interconnected elements within a holistic system. As Saussure was a linguist and 
applied his theory primarily to language, a typical structuralist analysis applies to a 
system of meaning, as shown at the right-hand side in Fig. 4.5. The target of analysis 
was soon extended to include phenomena in which the meanings of elements are not 
as clear as in typical texts. The first representative attempt was that of Lévi-Strauss 
(1962), who indicated that the relation among ethnic tribes interconnected via 
marriage can be formalized using a mathematical group. Later, Kristeva (1969) 
indicated the importance of structural analysis of semiotic systems in general, 
situating symbolic systems of meaning as a subset of semiotic systems. Since then, 
various semiotic systems have been analyzed structurally (Nöth 1990; Trifonas 
2015). In parallel to these semiotic approaches, Lacan (1998) introduced structural-
ism to psychoanalysis, advocating that our unconsciousness has a structure.

All these works attempted to extract the common nature of the target phenomenon 
in terms of structure. A structure is meant to describe the common characteristics 
behind phenomena, and in this sense it tends to presuppose the static appearance of 
a specific characteristic. If multiple samples of phenomena are characterized by 
some common feature, then this common feature is extracted as the structure. 
Because this analytical process is inductive, for natural and social phenomena, the 
universality of the structure is often a matter of degree, as in the case of a structural 
linguist’s universals, as mentioned above. The universals often depend on both the 
data and the methodology for observing the phenomena.

This presupposition of static, common properties underlying phenomena, 
however, led to criticism of structuralism, as the most important viewpoint in 
philosophy is that texts are singular. As an alternative, the notion of a machine was 
raised, because it highlights the singularity of a phenomenon and the dynamism 
behind it, as will be conjectured further in the following section. The notion of a 
machine as a contraposition of a structure became prevalent in Deleuze and Guattari 
(1972). The notion is fundamentally linked with physiology, as shown by the term 
desire machine. For example, we eat and then digest, and such a consecutive 
procedure works as if all the physiological parts with various functionalities all 
together perform a particular task, beyond our consciousness. Deleuze and Guattari 
described how such a machine-like mechanism is not only about physiology but 
could also be a social outcome.

This notion of a machine did not first appear in Deleuze and Guattari (1972). In a 
preceding short essay, Guattari (1969) contraposed the structure and machine in the 
title. It seems that human behavior driven by some mechanism, such as drumming 
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one’s fingers on a hard surface, has been a fundamental train of thought in the field 
of psychiatry. Guattari focused on the idea to understand various psychiatric 
pathologies and even extended it to broadly consider various phenomena. He 
indicated that, behind any structural system, there is a machine, and this is applicable 
also to language, as follows from Guattari (1969) [p.322]:

The voice, as speech machine, is the basis and determinant of the structural order of 
language, and not the other way round. The individual, in his bodiliness, accepts the 
consequences of the interaction of signifying chains of all kinds which cut across and tear 
him apart. The human being is caught where the machine and the structure meet.

This quote suggests that Guattari considered language as a machine that generates 
the structural order of language. Later, in Guattari (1979), he elaborated more 
extensively how language could be produced through a machine. Some ideas 
resonate with whatever underlies statistical universals, like comparing words to 
molecules. Guattari’s primary interest was psychiatry, and he mainly considered 
social factors with respect to machines. In the introduction, however, he referred to 
Thom (1974)4 and approved the possibility of the inevitable influence of physics 
and biological nature.

The concrete shape of a machine, as an outcome of the overall conjecture, is a rhi-
zome (Deleuze and Guattari 1998). A rhizome is a plant organ acting as a kind of stem 
and root at the same time, seen widely among plants such as weeds and forbs. Whereas 
a stem grows upwards and a root grows downwards, a rhizome extends horizontally 
close to the surface and grows by generating and connecting with other rhizomes. 
Rhizomes are known to connect easily to rhizomes of other individuals by grafting.

Deleuze and Guattari (1998) demonstrated how various social and natural systems 
can be analogically considered as rhizomes. They set out three principles of a rhi-
zome: connectivity, homogeneity, and multiplicity. Just as language and signs were 
discussed (Deleuze and Guattari 1998), language was situated as a kind of rhizome 
in their thoughts. Indeed, from the perspective of the three principles, the rhizomatic 
nature of language is apparent. For example, a technical term in the field of botany 
such as rhizome can easily be grafted onto the field of philosophy and transformed 
further into a daily term. Language therefore encompasses various words with differ-
ent roots, thus forming a system with multiplicity. Such a system can be achieved by 
the homogeneous nature of signs, flexible media that can easily be used with any 
other, and the system appears by representing the signification. Comparing language 
to a rhizome is therefore deemed reasonable, although it remains an analogy.

4 Thom, a mathematician, was a Fields Medal winner and the founder of catastrophe theory. He 
modeled language by using his theory.
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�Statistical Universals as the Structure of Singular Samples

In science, the contraposition of the structure and machine would seem to imply that 
descriptions via a structure and via a machine should ultimately be the same, as they 
describe the same phenomenon.

If a machine operates under a particular setting, and if it is a stochastic machine, 
then it will produce a set of samples with a static mean and variance. A machine thus 
describes how a sample space is produced. In contrast, a structure describes the 
property characterized by the machine, with a mean and variance of the property. 
This scientific view of structure versus machine is depicted in the upper panel of 
Fig. 4.6. The figure shows some samples observed at a given time (usually now), 
and a corresponding generative model. Here, a sample is reproducible by the 
machine, being replaceable with similar samples. If the machine changed, then the 
resulting structure would change, and this change would be observable through 
different sample spaces. Overall, the approaches from either a structure or a machine 
should thus ultimately be equivalent.

On the other hand, in philosophy, the most important aspect of the entire 
discussion is the singularity of a sample. Among many other possibilities, every 
sample is the sample, being irreplaceable, unreproducible, rare, unique, and singu-
lar. In contrast to a mathematical set of samples, in which all possible samples are 
readily projected to form a space, the sphere of possible reality is neither tractable 
nor existent. There are only some real samples, characterized as rare, that do not 
easily form the shape of a sphere. The interest of philosophy is to describe the nature 
that threads through these rare samples. This nature is called the structure in 

Fig. 4.6  Structure vs. machine in the fields of science (upper panel) and philosophy (lower panel)
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structuralism. The method of structural analysis is obliged to generate abstraction 
among samples, however, even though each sample is singular. The notion of 
singularity and the spirit of abstraction underlying the analysis are contradictory, 
and instead the alternative notion of a machine was proposed.

With the method of a machine, because a (stochastic) machine with the same 
settings can already generate different samples, with different settings, the outcome 
could be completely different. Moreover, when the nature of the phenomenon 
changes over time, the consequent phenomenon at a later time would become mixed 
of different nature, making it difficult to analyze. With a machine, the change can be 
analyzed as a change in the machine, which explains the dynamism of the phenom-
enon. A machine therefore is a generative view of a process, but in philosophy it is 
meant to highlight the singular dynamism necessary to reach a phenomenon. This 
view is depicted in the lower panel of Fig. 4.6.

The scientific and philosophical methods with respect to a structure and a 
machine are thus deemed to approach phenomena from the opposite extremes of 
abstraction and singularity, respectively. The scientific method considers the target 
through abstraction, typically in the form of mathematical tools, by disregarding the 
singularity of phenomena. This leads to the equivalent analysis results for approaches 
based on a structure and a machine. In contrast, the philosophical method considers 
primarily instances and is therefore limited in abstraction. Structuralism has been 
devoid of means to describe an abstract structure, probably in part because of this 
emphasis on singularity. Structuralist debates often rely on analogy, as criticized by 
Sokal and Bricmont (1998). The consequences of analysis in terms of a structure 
and a machine thus differ for this philosophical approach.

With this view, it could be conjectured that statistical universals show the struc-
ture underlying singularity. The singularity of a text is primarily formed by rare 
words. Zipf’s law shows the number of rare words that characterize a text. The 
vocabulary infinitely increases as the context evolves in a sample text, and this 
increase is described by Zipf’s law. Taylor’s law indicates how these words are 
assembled along the evolving sequence. The statistical universals show that there is 
an exclusive nature: a concrete, tractable structure among rare events. The laws 
indicate a self-similar structure among these rare words that results in the form of 
power laws.

It is important to note that, in this sense, the statistical universals provide an 
advanced understanding about language, at the meeting point of the two approaches 
of abstraction/science and singularity/philosophy. The statistical universals could be 
possible concrete evidence of what structuralism aimed to describe, namely, the 
universal structure underlying the singularity of texts. Unlike mathematical notions 
appearing in previous philosophical conjectures, the statistical universals are not 
analogies. Whereas other language “universals” often have exceptions, the statistical 
universals are strictly universal and apply to any text instance. The description is 
explicit, in the form of a power law, and not by analogy. To the best of my knowledge, 
thus far, the nature of the singularity underlying texts has been explicitly described 
in the form of a structure only via these statistical universals.
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The problem of fully understanding this nature, however, has not been solved, as 
mentioned previously. Mathematical generative models of language do not fulfill all 
the statistical universals. From a machine perspective, we want a model that fulfills 
all the statistical universals, thus explaining the singularity underlying language.

�Two Mechanisms that Almost Reproduce Statistical 
Universals

Several possibilities have been studied in the quest for procedures that reproduce the 
statistical universals of natural language. Different procedures have been tested 
using computers to verify whether the consequences of stochastic generation can 
lead to the statistical universals of natural language. For example, given a Simon 
process, a long sequence can be generated stochastically following the definition 
mentioned above. The resulting sequence can then be tested as to whether it follows 
the statistical universals of natural language, and in fact such sequences were found 
not to reproduce fluctuation (Takahashi and Tanaka-Ishii 2019). Similarly, it is 
possible to test whether a generative process fulfills the statistical universals. 
Currently, there are two mechanisms that almost reproduce the known statistical 
universals.

The first is a neural network. The scale of neural computing has greatly increased, 
and recent neural network systems have improved the mechanisms that handle 
memory and context over a longer term. Given a context consisting of a certain 
number of preceding words, the network structure as a whole predicts the subse-
quent word through vast, nonlinear computation of vectors by using multiple layers 
of matrices, whose parameters are estimated in order to match the input with the 
desired output. It is known that different nodes of the neural structure take respon-
sibility in representing different semantic targets (Le et  al. 2012), and thus the 
network learns to handle the given context. The resulting neural network can 
stochastically produce words after words. Before neural language models, no 
language model was capable of reproducing all the statistical universals, but 
state-of-the-art neural models do to some extent (Takahashi and Tanaka-Ishii 2019). 
Current neural networks are effective for various language engineering problems 
(such as automatic translation), partly because they are successful in assimilating 
language to reproduce statistical universals.

Compared with natural language texts, however, neural networks are still limited 
in two aspects, which are represented by the statistical universals: the capability to 
produce new instances, and the limitation of capturing fluctuation. Zipf’s law indi-
cates that the number of words should increase infinitely with respect to the data 
size. With current neural networks, however, the dimension is cut off to be finite. As 
for the degree of fluctuation, neural networks are still limited in handling context. 
Context represents that a sequence can change and evolve, and such behavior is not 
achieved in current architectures. Precisely, a text generated by a neural network 
cannot produce enough fluctuation. Furthermore, current neural networks lack ways 
to evolve after training.
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The second candidate mechanism is a stochastic procedure based on a complex net-
work (Tanaka-Ishii and Kobayashi 2018). Complex networks (Barabási 2016) are stud-
ied as a subfield of complex systems theory, and various power laws are known to hold 
for those networks, too. A linguistic word sequence also forms a complex network, for 
example, by considering every word to form a node; a branch between nodes is then 
formulated when one word appears following another word. One simple way to produce 
a sequence on such a network is by a random walk. Given a network structure, a proce-
dure stochastically conducts walks on the graph and produces an output at every node 
visited during a walk. Introduction of new instances is integrated naturally by visiting 
new nodes, or the network structure can even be extended during a walk. With this 
mechanism, Zipf’s law follows, if the network structure is readily constructed to exhibit 
the power law. Moreover, fluctuation is naturally implemented through the random 
walk, because it allows leaving and coming back to a node, and thus nodes in proximity 
have the possibility to be repeated. Therefore, a random walk on a complex network 
system can reproduce clustering phenomena (Tanaka-Ishii and Kobayashi 2018).

There are still two limitations related to this approach, too. Tanaka-Ishii and 
Kobayashi (2018) showed that Zipf’s and Taylor’s laws are met by some very spe-
cific kinds of random walks. As mentioned before, however, there are other laws 
related to fluctuation, and they are not so well met by these kinds of walks. It is 
nontrivial to construct a mechanism to readily reproduce all the statistical universals 
with this approach. The second limitation concerns the relevance of the random 
walk. A random walk can be controlled probabilistically, but we surely do not 
“randomly walk” to produce language. The notion seems to move back to a 
Markovian view of language. The alternative, however, is not trivial and remains an 
open question. Relatedly, this approach does not produce a language model that 
serves for language processing. It does not have the notion of input, nor does it have 
parameter tuning to learn a real text.

The neural language models have been mainly studied in the engineering domain, 
whereas the random walk on a complex network has been considered more in the 
physics domain. They are not, however, independent of each other. Neural networks 
are gigantic in scale, but the effective links of the network are considered limited 
after training. The structure of such a network is deemed to form a complex network, 
similar to the basis of a random walk. Attempts to tackle the problems of both 
methods could lead to a neural network using the structure of a complex network. 
Currently, the state of the art for both mechanisms is related to large-scale complex 
networks, and therefore the following section refers to both by the generic term 
complex network machines.

�Complex Network Machines Versus Rhizomes

Complex network machines are state-of-the-art forms that almost produce statistical 
universals. As discussed in the previous section, their limitations relate to statistical 
universals, which serve not only for understanding the nature of language but also 
for highlighting the weak points of language models.
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Because a machine is the source of a structure, this section conjectures on the 
nature of the limitations of these complex network machines with respect to singu-
larity, from a machine perspective. Again, note that the philosophical machine in this 
chapter is contraposed to the notion of a structure, which is deemed to correspond to 
the statistical universals. Above, it was conjectured that statistical universals describe 
the universal nature underlying the singularity of linguistic text samples.

The Simon process, as described previously, is a representative nonstationary 
mathematical process. Stationarity defines a property underlying a time sequence, to 
be unchanging, and that succeeding elements are stochastically predictable. A neural 
network is still limited in producing such nonstationary behavior despite its recurrent 
construction, and once its training converges it almost stops evolving. A random walk 
on a complex network that evolves, however, can be non-stationary. From this per-
spective, a future model that combines the two mechanisms is deemed important.

Moreover, the two mechanisms are far larger than the Simon process. They are 
based on large-scale networks, and the prediction performed is far more complex 
than that of a toy algorithm. Because of this scale, a sample generated by either of 
these mechanisms is rare, in the sense that the probability to produce a sample 
becomes very small. Singularity is thus partly secured by making the machine large 
in scale. Singularity is not only about being rare in terms of possibility, however, 
and a sample should be a necessary, inevitable choice excluding all other samples. 
Both complex network machines do not produce samples characterized by any 
necessity. In future models, however, one way to grant this necessity could be 
through optimality among other possibilities in a context.

In contrast in philosophy, a state-of-the-art machine proposed in philosophy is 
the rhizome, introduced previously. The outcome of a rhizome is a complex net-
work. Some works indeed studied the quantitative nature of plant rhizomes as a 
structure (Armstrong 1983; Majrashi et al. 2013) and showed how they form com-
plex networks. From this common structure of a complex network, the two complex 
network machines are deemed as becoming almost successful in fulfilling the statis-
tical universals partly because they have acquired rhizomatic characteristic. Even in 
a limited manner, the two mechanisms by nature possess the three rhizomatic 
principles of connectivity, homogeneity, and multiplicity. First, neural networks are 
connective, in the sense that neural network parameters determine the degree of 
connectivity among branches, until convergence through training. Neural networks 
are also homogeneous, because different aspects of the target are each represented 
by a node and are connected as a network. Lastly, they have multiplicity, to consider 
various targets. A random walk on a complex network also meets all the criteria, as 
the base structure is a complex network, i.e., a rhizome.

Nevertheless, the qualities of complex network machines are still limited, 
compared with the philosophical notion of a rhizome. One of a rhizome’s most 
important characteristics is that, although it was introduced as an example of a 
machine, it constructs a network structure via a mechanical procedure. In other 
words, a rhizome is a structure and a machine at the same time. In comparison, our 
complex network machines are almost machines and structures at the same time, but 
the structure and machine are still distant from each other. A neural network starts 
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from a predefined dense network structure and terminates by adjusting the structure 
in the form of a complex network. After this training, it functions as a machine. As 
for a random walk, the network is built as a structure via a mechanical process, but 
its overall mechanism is still premature, and how to put it to use still requires study. 
These limitations in attaining complete deconstruction characterize the state-of-the-
art scientific understanding about language.

�Concluding Remarks

An overview of the different concepts considered in this chapter appears in Fig. 4.7. 
The left panel shows the notions of the science of language. We first considered 
universals, with the focus on statistical universals. By comparing with other univer-
sals derived from structural linguistic thought, the characteristics of the statistical 
universals were highlighted. To tackle the problem of trying to understand why such 
properties hold, possible explanations were studied via stochastic processes. This 
included various simple mechanisms and recent larger scale procedures. The 
analysis thus far is characterized by means of abstraction in which samples are 
reproducible. The right panel shows the corresponding notions in postmodernist 
philosophy, characterized by the singularity and the dynamics behind it. The contra-
posed notions of a structure and a machine are summarized as shown in the figure. 
A structure corresponds to studies of universals that highlight the nature of singular-
ity. On the other hand, a machine represents possible dynamics that explain the 
appearance of the structure. The previous section argued to what extent complex 
network machines could correspond to the postmodernist notion of machines. A 
rhizome was situated as the form deconstructing a structure and a machine, and the 
comparison between a rhizome and the state-of-the-art mechanisms of language 
science was debated.

Deleuze and Guattari (1991) mentioned how science takes the place of philoso-
phy. Complex systems theory had already been studied in the 1970s, in parallel to 

Fig. 4.7  Correspondence between language science and philosophical notions
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those authors’ writings. Although the term rhizome remains an analogy, it provides 
a good prescientific philosophical insight to help reconsider the position of science 
and engineering. The question remains, however, as to what kind of machine/struc-
ture is a rhizome. Furthermore, how can it be implemented on computers as a 
language model? The domain of philosophy does not provide any concrete answers 
to these questions. To make a step forward, we need a detailed, concrete form of 
what kind of structure language has and what kind of machine can produce it. The 
methodology of mathematics and physics is a possible path to better understand 
language. To this end, it is important to study the structure underlying the nature of 
language, possibly characterized by singularity. In general, we do not know the 
basic properties of the linguistic data that we produce, nor do we have much science 
about big data. The quest is a possible path towards knowing what a rhizome as 
language is and how to implement it.
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Chapter 5
Number Work: Recovering the Original 
Complexity of Learning Arithmetic

Brent Davis

�Pedagogical Impasses

•	 “When I was brainstorming different ways of saying ‘subtract’ with my Grade 
2s, one of the children got angry that ‘make smaller’ was on the list. He argued 
that ‘making smaller can’t be subtracting since five will still be five no matter 
how small you make them’.”

•	 “I teach Grade 5. Last year, when we were looking at the formula for circumfer-
ence of a circle, C = 2πr, one student knocked everything sideways when she 
asked, ‘If π goes on forever, how can you times it by 2?’”

•	 “I found it difficult to get my 7th-graders to measure angles. They can’t seem to 
figure out how to use their protractors properly, no matter what I do.”

•	 “My students in Grade 8 struggle with subtracting integers. They can follow the 
rule, but no one seems to get why ‘adding the opposite’ makes sense.”

•	 “For me, the sticking point is algebra. Students can’t see the difference between 
an unknown and a variable. Let’s say, for example, we have ‘2x = 8’ and ‘2x = y,’ 
my kids would be confused what x as a symbol means and does. If I said ‘2x’ and 
‘2p,’ it wouldn’t occur to them that the x and p could be the same. Oh … and 
when they look at a graph, some students don’t seem to see the continuous lines, 
just the points that line up with the whole numbers.”

•	 “A Math 30-1 [Grade 12] student asked me why we can’t imagine imaginary 
numbers. I think that might a big part of the reason I decided to move to junior 
high this year.”

These brief descriptions of “pedagogical impasses” were offered by teachers in 
response to the prompt, “Tell us about a time you were teaching mathematics in 
which you found yourself stymied by something a student said or did.”
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Those teachers, all from the same school, are taking part in a longitudinal project 
aimed at improving the mathematics learning experiences of their students in grades 
1 through 8. Now in its 7th year, the project has multiple strands. The principal efforts 
are focused on enacting more consistent lesson formats across grades, developing 
reporting strategies that afford parents nuanced information on their children’s efforts 
and understanding, and attending to research from mathematics education and the 
cognitive sciences, especially research into teachers’ disciplinary knowledge of 
mathematics. Regarding the last of these goals, since the start of the project, each 
school year has begun with a professional learning session focused on some aspect of 
mathematics for teaching. Through most of the project, a committee comprising a few 
lead teachers and myself selected the specific topic and structured the session. During 
the latest phase of the project, we tried a different tack. Aiming for something more 
participatory and emergent, our planning consisted of nothing more than the invitation 
for narratives of pedagogical impasses, sent out a few days before the session.

The notion of “pedagogical impasse,” as developed here, isn’t entirely new. There 
have been rich examinations in the mathematics education research literature of 
moments in learning and teaching when momentum is lost. In the 1990s, the phrase 
“epistemological obstacles” rose to some prominence as a means to account for many 
such events. As Sierpinska (1994: xi) defined them, epistemological obstacles are:

ways of understanding based on some unconscious, culturally acquired schemes of thought 
and unquestioned beliefs about the nature of mathematics and fundamental categories such 
as number, space, cause, infinity, … inadequate with respect to the concept in history, and 
remained somehow “implicate,” to use Bohm’s term, in its meaning.

According to this description, and as will become evident in my analyses, all of 
the pedagogical impasses noted above appear to have been rooted in epistemologi-
cal obstacles. But, that said, I believe there to be an important difference between 
obstacles and impasses. Based on Sierpinska’s description, an epistemological 
obstacle is a cultural pothole for learners—a describable, identifiable aspect, a 
potential block to understanding that can be flagged and anticipated by teachers. By 
contrast, a pedagogical impasse is more amorphous. It arrives as a sensation of 
being lost, a feeling that something is amiss paired with an inability to home in a 
specific issue. Phrased differently, a pedagogical impasse typically raises questions 
for which the answers tend to be epistemological obstacles.

Certainly, that’s how most of the few dozen teachers who participated in the proj-
ect experienced the impasses they related. Every one of them arrived at the session 
with at least one tale of frustration. And, in every case, the telling of the impasse 
drew nods of familiarity and smiles (or sighs) of sympathy from the other teachers.

But at no time did these narratives trigger discussions of likely epistemological 
obstacles—which, in fact, prompted me to grow more and more uneasy as the 
session unfolded. Indeed, I couldn’t hold back from asserting something that I 
thought should be obvious to all: across multiple concepts and multiple grades, 
every incident had to do with the same obstacle: they all revolved constrained 
understandings of number. At least, to my ear, they did.
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�Mathematics for Teaching

Following Davis and Renert (2014: 9), mathematics for teaching is framed in our 
project as:

a way of being with mathematics knowledge that enables a teacher to structure learning 
situations, interpret student actions mindfully, and respond flexibly, in ways that enable 
learners to extend understandings and expand the range of their interpretive possibilities 
through access to powerful connections and appropriate practice.

Less formally, within the project, we talk about mathematics for teaching as 
“what an expert needs to know to think like a novice.” Dipping into the novice–
expert literature (Ericsson et al. 2006), this characterization is invoked to highlight 
a defining feature of expert knowledge across domains—namely, the expert’s ability 
to recognize immediately when a concept is appropriate, without conscious media-
tion, no matter the situation. Novice understanding, however, tends to be much more 
piecemeal, deliberate, and context bound. The differences arise in the fact that 
experts have had time and opportunity to integrate diverse instantiations, applica-
tions, and representations into consolidated, coherent wholes. For novices, concepts 
often lack such coherence, and so different instantiations of the same concept can be 
experienced as unconnected. Consequently, situations sometimes arise in which 
novices cannot reconcile instances fitted to a concept, whereas an expert might not 
be able to distinguish among them. I interpret the pedagogical impasses introduced 
at the start of this chapter in precisely such terms—that is, as moments in which 
teachers were unable to disentangle elements of their expert knowledge of “num-
ber” in order to make sense of learners’ inabilities to find coherence across not-yet-
connected experiences. Teachers’ consolidated understandings deafened them to 
the disconnects in their students’ interpretations.

That mathematical concepts are regular sites of pedagogic struggle is unsurpris-
ing. As has been argued and researched by phenomenologists and cognitive 
constructivists for more than a century, concepts are not static forms or unified wholes 
which can be shared among knowers. Rather, they evolve across experiences and 
interpretations that are specific to individuals. Hence, pedagogical impasses such as 
those presented above should not be met as mistakes, but as divergent construals.

Indeed, as signaled at the end of the previous section, I experienced my own 
pedagogical impasse as a session leader. For me, it seemed obvious that everyone 
was talking about number. However, when I artlessly said so, the shaking heads and 
hasty objections made it clear that few, if any, participants appreciated that my sum-
mative interpretation could be fitted to more than a few of the impasses. Recognizing 
the foolishness of my naked assertion—that is, noticing that I had occasioned a 
pedagogical impasse in a session devoted to making sense of pedagogical impasses—
I pulled it back. But I followed it up with the suggestion that the group might 
consider a “concept study” of number as one of the year’s major themes.

As developed by Davis and Renert (2014), concept study is a participatory meth-
odology that blends analytic foci of concept analysis (e.g., Usiskin et al. 2003) with 
the collaborative structure of lesson study (e.g., Fernandez and Yoshida 2004). Concept 

5  Number Work: Recovering the Original Complexity of Learning Arithmetic



102

studies are intended as “moments of collective didactical transformation—that is, 
opportunities to work together to re-form concepts in ways that render those concepts 
more accessible to learners” (Davis and Renert 2014: 39). In terms of experts and 
novices, concept studies are collaborations in which experts analyze their now-con-
solidated understandings of a concept with a view toward recovering the varied 
experiences and discrete instantiations associated with learning that concept. Among 
the documented additional benefits of such engagements, participants typically 
demonstrate enhanced awareness of how multiple mathematical concepts are 
interlinked within a single-grade level and how single concepts evolve across 
multiple-grade levels. In addition, such activities can support dispositions toward 
“open definitions,” that is, treatments of concepts that are sufficient to the needs of a 
specific level of understanding or application, but that anticipate possibilities of future 
elaboration. By way of immediately relevant illustration, “Numbers are for counting” 
would be a closed definition in the primary grades, whereas “Numbers can be used for 
counting” would be more open. One is locked to specific use; the other includes a hint 
of other possibilities.

As the focus here is on the insights gleaned through concept study rather than its 
actual processes, I end this section with only brief descriptions of some key activities 
of our yearlong examination of number. Our opening activity was reading and 
discussing the three opening chapters of Lakoff and Núñez’s (2000) Where mathe-
matics comes from, focusing in particular on their “four grounding metaphors of 
arithmetic”—namely, object collection, object construction, using a 
measuring stick, and motion along a path. These active, body-based notions, 
they argued and demonstrated, provide sufficient ground to derive and deploy 
increasingly complex mathematical constructs, ultimately rendering even the most 
abstract formulations comprehensible. Of course, our discussions stopped well 
short of such considerations, as we focused much more on the four grounding 
metaphors (discussed in the next section) than on mathematical logics.

Oriented by that reading, participants reviewed classroom resources such as text-
books, teachers’ guides, manipulatives, and games, aiming to identify the 
metaphor(s) that are foregrounded for learners. This work was accomplished in 
grade-based group settings. The teachers gathered for themselves the following 
questions as they examined the artifacts used to frame their classroom practice:

•	 How are numbers used? What matters are they used to address? What situations 
are they used to model? What are numbers used to interpret or denote in diagrams, 
models, and other spatial representations (e.g., as counts of discrete sets, as 
dimensions, as locations on number lines)?

•	 What vocabulary is used when using numbers to compare or calculate (e.g., are 
the concepts of “greater” and “addition” framed in terms of how many more, of 
how much more, of how much bigger)?

•	 What applications are used to illustrate and extend the concept at hand (e.g., 
when discussing “multiplication,” is it illustrated in terms of combining like sets, 
of making sequential leaps, of generating areas)?
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•	 Which number sets are being used and/or made available (e.g., counting numbers, 
fractions, rational numbers, integers)?

•	 Is the vocabulary consistent with the images and applications? Are multiple met-
aphors being invoked? Are there discontinuities or inconsistencies in meaning 
evident—that is, situations that might trip up a novice?

The teachers realized very quickly that answering these sorts of questions is not 
easy, as it involves constant interrogation of personal understandings and assump-
tions. Discussion of this demand prompted one additional question, which proved to 
be particularly effective in orienting and enabling their efforts:

•	 What, if any, pedagogical impasses come up when you teach this topic?

More than any of the others, this query enabled teachers’ noticing of diverse 
interpretations of number as it prompted them to pause and wonder about how 
manipulative materials and recommended lessons might have inadvertently exposed 
novices to multiple, unreconciled metaphors.

Once the teachers had sufficient time to generate preliminary analyses of the 
tools and resources in their classrooms, they provided grade-by-grade reports. 
Unsurprisingly, every group noted inconsistencies and slippages—that is, instances 
in which inappropriate metaphors were invoked through images or vocabularies, 
and thus opening possibilities for pedagogical impasses. At the same time, a clear 
pedagogical arc across Lakoff and Núñez’s four grounding metaphors came into 
focus.

The work just described occupied most of the professional learning time set 
aside for mathematics. Through the year, we revisited the pedagogical impasses that 
the teachers brought to the August session, looking to answer the question of just 
how useful more nuanced understanding of number might be for teachers. I return 
to those impasses presently.

�Resolving Some of the Impasses

Some more fine-grained detail of Lakoff and Núñez’s four grounding metaphors of 
arithmetic would be useful before getting into the teachers’ follow-up discussions 
about their reported teaching impasses.

Owing to my focus here on the concept of number within school mathematics, I 
limit the analysis to entailments for conceptions of number afforded by the ground-
ing metaphors. Some additional entailments for topics beyond number are presented 
later, but it’s important to note that the webs of association and the mathematical 
power that arises in these webs vastly exceed what is offered here.

In Table 5.1, I interpret the four grounding metaphors in terms of the sorts of 
number-related questions that learners might ask or be asked. Each is phenomeno-
logically distinct—that is, each invokes a specific cluster of experiences, gestures, 
and associations. In turn, each calls forward a distinct sense of number.
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As I develop through the analyses that follow, these metaphors proved sufficient for 
making sense of the pedagogical impasses presented at the start of the chapter. However, 
they aren’t sufficient to span every encounter with number in school mathematics.

�Grade 2, Making Smaller

•	 “When I was brainstorming different ways of saying ‘subtract’ with my Grade 
2s, one of the children got angry that ‘make smaller’ was on the list. He argued 
that ‘making smaller can’t be subtracting since five will still be five no matter 
how small you make them’.”

From the vantage point of different metaphors for number, there’s a fairly obvi-
ous and highly likely interpretation of this learner’s quandary. It would appear that 
the child was thinking about number strictly in terms of cardinality—number as 
count. Thus, when presented with a remark that was about size—that is, about 
something that can be made smaller—he applied it to an aspect of the situation that 
fitted the notion. For him, the actual count of things could not be subjected to the 
physical process of making things smaller, but the things that were counted could 
be. In terms of literal meanings, the child was using the entwined notions of size and 
make smaller consistently, and the teacher was not. That doesn’t mean that the 
teacher should have immediately perceived the inconsistency, however. Rather, as 
with most expert knowers, she was likely locked into what Rorty (1991) called a 
“literalized metaphor” or “dead metaphor—one that has lost its original figurative 
power by being subsumed into the grander web of associations. It was an instance 
of coherent expert knowledge that erased the rough inconsistencies of its roots.

Table 5.1  Four instantiations of number, associated with Lakoff and Núñez’s four grounding metaphors 
of arithmetic

Lakoff and Núñez’s 
grounding metaphor

Associated 
metaphor of number

Matter addressed 
(situation 
modeled) An instantiation of “5”

OBJECT COLLECTION NUMBER AS 
COUNT

How many?

OBJECT CONSTRUCTION NUMBER AS SIZE How big?

USING A MEASURING 
STICK

NUMBER AS 
LENGTH

How long?

MOTION ALONG A PATH NUMBER AS 
LOCATION

Where?
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In the moment of the teacher’s recounting of this pedagogical impasse, I couldn’t 
resist asking what she did next. She responded, “Oh, I just made things worse. I said 
something like, ‘We don’t reduce the size of the objects, we reduce the number of 
objects’.”

“How’d he respond to that?” I pressed.

“He said something like, ‘But if you make the five smaller, it’ll still be a five too.’ Other kids 
were starting to laugh, and I didn’t want to dig the hole any deeper, so I put a question mark 
beside ‘make smaller’ and promised to come back to it later. … I never did get back to it in 
that lesson. And it never came up again.”

What is of especial interest to me in this teacher’s follow-up remarks is the 
indication that, in fact, the child was not working with a rigid, singular interpreta-
tion of number. At least two meanings are evident, number as count and “number 
as numeral”—and both the things counted and the numeral, frustratingly, can be 
reduced in size without altering five-ness. However, only one is a metaphor (i.e., 
serves to link one category of experience to another) and so only one affords mean-
ing that might be mathematically useful.

The teacher also noticed that the student invoked two different interpretations of 
five in his final remark. As she explained in a later session, that realization was what 
prompted her to end the exchange. Ironically, an explicit invocation of a different 
interpretation of number compelled her to foreclose on an interaction that was trig-
gered by an implicit invocation of an alternative interpretation.

�Grade 5, Doubling π

•	 “I teach Grade 5. Last year, when we were looking at the formula for circumfer-
ence of a circle, C = 2πr, one student knocked everything sideways when she 
asked, ‘If π goes on forever, how can you times it by 2?’”

At first hearing, this child’s observation that “π goes on forever” might seem to 
be indicative of the metaphor, number as length. It isn’t an instance of this meta-
phor, however, because π in this interpretation would be the length of the interval 
between 0 and 3.14159… on a number line. That length can readily be doubled.

What the student was referring to, then, was not the number, but the symbolic 
representation of the number. While I can’t be certain, I would guess that she had 
applied a number-as-count metaphor to the digits in that representation and was 
troubled by the logical impossibility of applying a digit-by-digit algorithm for mul-
tiplication to a number with infinite digits. If correct, then this impasse underscores 
an issue that came up in the previous impasse. There seems to be a strong disposi-
tion among young learners to treat “number” and “numeral” as synonyms—a 
conceptual move that, I worry, renders number a meaningless operator far too soon 
in learners’ mathematical experiences. I return to this issue later, when I look at 
interpretations of number beyond those considered by Lakoff and Núñez.
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�Grade 7, Using Protractors

•	 “I found it difficult to get my 7th-graders to measure angles. They can’t seem to 
figure out how to use their protractors properly, no matter what I do.”

Not a single teacher in the group agreed with me when I first asserted that this 
impasse had to do with the concept of number. Several countered that the problem 
was simply that the tool was more complicated than it looked. The multistep process 
of placing a protractor properly onto an angle, coupled to the demand of choosing 
the correct scale, renders the skill more an impediment to inquiry than a route to 
deeper understanding (Fig. 5.1).

However, a key difference of this impasse from the previous two is that it involves 
a perennial problem—one every middle school teacher I know has encountered. 
Indeed, participants were confident that the issue would reappear when courses 
reached the measurement and geometry unit, affording us multiple, staggered 
opportunities to study the matter.

We thus devoted portions of several of our sessions to digging into the possible 
contributions of inappropriate interpretations of number to the protractor problem. 
We began by wondering together what the numbers on the device might mean to 
novices. When a few teachers took this question to their students, the responses 
were telling. A majority responded with something like “number of degrees an 
angle is,” and a minority with “how big an angle is.” This realization was bolstered 
by observations of student difficulties when measuring angles that didn’t perfectly 
align with markings on the protractor. Two errors were common. Firstly, students 
would sometimes count up from the wrong number (e.g., if the leg of an angle fell 
on 27°, it was not unusual for students to read 153° because they started counting 
upward from the nearer 150° mark). Secondly, if the leg of the angle felt between 
unit tick marks, students typically struggled with which whole-number value they 
should report.

Oriented by these observations, we surmised that students were likely leaning most 
heavily toward number as count, and perhaps somewhat toward number as size, 
rather than the more useful and appropriate number as length. We thus designed a 
few tasks in which the protractor was introduced in terms of a curved number line, a 

Fig. 5.1  An image of a 
protractor (included to 
assist with interpretation of 
the narrative)
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perspective that we hoped might avert the issues noted above highlighting, for 
example, a meaning of “0” as the starting point for measuring (vs. an interpretation of 
“nothing” in a count) and offering a more intuitive route into using decimals to 
estimate angle measures when legs didn’t align perfectly with marks. As well, flag-
ging the number-as-length metaphor sponsored an unexpected realization in one 
sixth-grade class, on the protractor itself. It is clearly a length-based notion.

It would be an exaggeration to claim that problems with using a protractor 
suddenly evaporated. But the tactics were effective. The two teachers who used 
number as length to frame their entire measurement and geometry units reported 
dramatic reductions with most of the usual procedural issues, and dramatic increases 
to the time and energy given to grappling with interesting mathematical issues.

�Grade 8, Subtracting Integers

•	 “My students [in Grade 8] struggle with subtracting integers. They can follow the 
rule, but no one seems to get why ‘adding the opposite’ makes sense.”

The middle school teachers in this school all made use of a common approach to 
teaching addition and subtraction of integers in Canadian middle schools, namely 
using different-colored counters to represent the amounts. For example, going with 
white for positive and black for negative, his addition statement “−3 + 2” could be 
interpreted as “3 black chips grouped with 2 white chips.” A white and black together 
make a zero (i.e., +1 + −1 = 0), so when all possible black–white pairs are made and 
removed, in this instance one black counter remains (i.e., −3 + 2 = −1). Simple.

Things are a tad more complicated for subtraction, however, where a metaphor 
of subtraction as taking away is forced onto the situation. That can create prob-
lems, especially when minuend and subtrahend have different signs. For example, 
to accomplish “–3 − 2” using counters, somehow 2 whites have to be extracted from 
a set of 3 blacks. The common solution is to “add zeroes” (i.e., black–white pairs) 
to the pile until there are enough of the opposing color to perform the takeaway 
action. (In the case mentioned, adding two black–white pairs to the original pile of 
3 blacks would give a pile with 5 blacks and 2 whites. Removing the 2 whites leaves 
5 blacks—or, symbolically, –3 − +2  = −3  +  2(−1 + +1) − +2  = −3  + −2 + 
+2 − +2 = −5 (Fig. 5.2).)

The link from that chip-based, number-as-count representation to an “add the 
opposite” rule isn’t immediately obvious to everyone. Indeed, most of the teachers in 
our group who were unfamiliar with this strategy saw it as obfuscating rather than 

Fig. 5.2  Using number as 
count to determine “−3 + 
2” (shown above) and “−3 
− 2” (below)
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illuminating. In stark contrast, when a number-line-based approach framing number 
as length (and, by modest extension, integer as directed length) was offered, 
the rule “just leaps out at you.”

As with the previously discussed impasse, this is one that teachers can typically 
rely on from one year to the next. Consequently, it was another that could be studied 
in action, and with similar results. Shifting to a more appropriate metaphor for 
number didn’t do away with the problem, but there were strong indications that a 
significantly greater portion of the students were able to appreciate the “subtract by 
adding the opposite” rule as justified and meaningful.

There was also an unanticipated benefit of this approach among the concept 
study participants. As Lakoff and Núñez highlighted, different grounding meta-
phors of arithmetic make new number systems available. Irrationals, for example, 
make no sense when number is count, but are readily appreciated when number 
is length. Our discussion of subtraction of integers helped to drive this point home 
for participants, with the realization that no modifications were required to accom-
modate signed rational numbers when addition and subtraction were interpreted as 
illustrated in Fig. 5.3.

�Grade 9, Introductory Algebra

•	 “For me, the sticking point is algebra. Students can’t see the difference between 
an unknown and a variable. Let’s say, for example, we have ‘2x = 8’ and ‘2x = y.’ 
My kids would be confused what x as a symbol means and does. If I said ‘2x’ and 
‘2p,’ it wouldn’t occur to them that the x and p could be the same. Oh … and 
when they look at a graph, some students don’t seem to see the continuous lines, 
just the points that line up with the whole numbers.”

I almost always cringe internally when someone asks me what I do for a living. 
When I answer honestly, it’s likely that most within hearing range will be eager to 
communicate their dislike of mathematics—and, worse, that a majority of hearers 
would have been “really good at math until 6th grade.”

Fig. 5.3  Using number as length to show “−3 + 2” (above) and “−3 − 2” (below)
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These sorts of encounters are so common that mathematics educators actually 
have a name for them: the “cocktail-party confession.” Several years ago, I made an 
effort to investigate the roots of the phenomenon. After much analysis, I concluded 
that there are likely two major contributing elements to being “really good at math 
until 6th grade” … and apparently not after. Firstly, the concept of number becomes 
much more complicated toward middle school, but learners are rarely made explic-
itly aware of this shift. As illustrated by the impasses discussed above, many learners 
enter middle school grades with deeply entrenched—but profoundly inadequate—
understanding of number as count. This complication becomes perhaps most 
evident when students are compelled to grapple with new number systems, where 
they encounter a virtual explosion of interpretations for arithmetic operations. (For 
instance, there are at least a few dozen instantiations of multiplication at play in a 
typical grade 6 mathematics curriculum; see Davis 2011.) Small wonder that some 
learners start to feel like they’re missing something.

The second major contributor to the sixth-grade drop-off, in my analysis, is the 
arrival of full-blown algebra. For learners whose arithmetic is still conditioned by 
number as count, algebra is simply not accessible—as hinted in the multiple 
elements noted in the above teaching impasse. For many students locked into the 
number-as-count metaphor, the sudden suggestion that letters not only substitute 
for numbers but are numbers is simply not a thinkable thought. Further, the presses 
of algebra toward generalizations and continuities are compromised for learners 
who dwell in the space of discrete counts. (See Fig. 5.4.) With those sorts of concep-
tual limitations, it’s not surprising that some learners engage with everything that 
comes after that as meaningless events of rule following.

As signaled in the teacher’s description of this impasse, other issues arise (e.g., the 
conflation of unknowns and variables). For the participants in our group, such issues 
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Fig. 5.4  Graphs of y = 2x, when x is constrained by number as count (left) and when x is con-
tinuous (right). (The above teaching impasse suggests that some learners see such graphs as com-
municating the same information)
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served to underscore that the critical question here has to do with identifying which 
interpretations of number facilitate or enable the leap to algebraic expressions, 
manipulations, representations, and generalizations. On this matter, the extensive use 
of number lines and Cartesian grids to represent and interpret algebraic expressions 
should provide a strong hint: number as length and number as location are 
clearly the integral elements of the flock of associations that play well together here.

�Grade 12, Imagining Imaginaries

•	 “A Math 30-1 (Grade 12) student asked me why we can’t imagine imaginary 
numbers.”

I will defer to Lakoff and Núñez’s more nuanced explication on this one, suffic-
ing here to highlight that the metaphor number as location offers a way through 
this common impasse. Briefly, one must first invoke the commonplace interpreta-
tion of “multiplication by −1” as a 180°-anticlockwise rotation of the number line 
about 0 (mapping a onto −a). From that it follows that the square root of −1 (i.e., 
(−1)½, or a half of a multiplication by −1) can be interpreted as a 90°-anticlockwise 
rotation. That rotation generates the complex plane, the horizontal axis of which 
comprises the real numbers and the vertical axis of which comprises the imaginary 
numbers. In other words, any imaginary number can be imagined as its location on 
the vertical axis of the complex plane.

�Minding the Gaps

As mentioned earlier, one of the activities in the concept study was a grade-by-grade 
inventory of the metaphors invoked within the classroom resources. In groups, 
according to the grades they taught, teachers looked across vocabulary, images, and 
applications to generate a rough mapping of how numbers were framed for learners 
at different levels. Their initial impressions are presented in Table  5.2—which, 
unsurprisingly, suggests an almost exclusive emphasis on number as count in the 
first years of school math, giving some way to a much more varied (and, arguably, 
conflicted) landscape dominated by number as count and number as length by 
the end of the middle grades.

The group was unsatisfied with this table, however. In fact, they started to express 
frustration almost immediately when the inventory was undertaken. By the time 
they were ready to give reports, every person in the room was convinced that the 
four metaphors we’d listed in the chart, based on Lakoff and Núñez’s four ground-
ing metaphors of arithmetic, were insufficient. Other interpretations of number 
seemed to be at play in school math. In particular, they noted that three frequent 
encounters with number didn’t seem to be included in Table  5.1’s categories—
namely instances addressing matters of “Which?”, “How much?”, and “What?”. 
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After much discussion, the group settled on metaphors of number as rank and 
number as amount for the first two instances, and a “metaform” (Danesi 2014) of 
number as reification for the third.

�Number as Rank

In our jurisdiction, students are formally introduced to the distinction between using 
whole numbers to count (“cardinal numbers”) and using them to order (“ordinal 
numbers”) early on. Mathematically, cardinal and ordinal numbers can be defined in 
terms of one another for finite numbers. Experientially, however, they are not the 
same—which is why the contrast is drawn in elementary school curriculum.

Our group had initially overlooked the ordinal numbers, owing to the naïve 
assumption of a one-to-one correspondence between our identified metaphors of 
number and Lakoff and Núñez’s grounding metaphors of arithmetic. However, that 
omission was immediately evident when we delved into curriculum materials. 
Many lessons in the first few grades were really on the distinction, and one of its 
primary markers was a shift from questions phrased in terms of “how many” to 
tasks requiring learners to attend to discrete ranks—involving, for example, levels, 
positions in groups, and ordered sequences.

We settled on metaphor number as rank to refer to this instantiation. Other 
options included place and s position, but we worried these were too similar in 
everyday meaning to the location. As well, we felt that the notion of rank better 
served to underscore the discrete character of ordinal numbers.

Grade

Metaphor of number

COUNT

(How many?)

SIZE

(How big?)

LENGTH

(How long?)

LOCATION

(Where?)

1

2

3

4

5

6

7

8

Table 5.2  Teachers’ initial impressions of relative emphases of varied interpretations of number 
in classroom resources

The clear-to-dark shadings indicate absent-to-heavy emphases
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�Number as Amount

In the early stages of our concept study, the discrete–continuous distinction emerged 
as a very useful and frequently invoked idea. While all participants would have 
encountered it somewhere in their histories with formal mathematics, it was received 
as new by most—and, in fact, was a site of struggle for many.

In an effort to render the distinction accessible, I sidestepped formal definitions 
and suggested two rules of thumb:

•	 If the situation involves counting, it’s discrete; if it involves measuring, it’s 
continuous.

•	 If it’s grammatically correct to say “fewer” in the situation, it’s discrete; other-
wise, it’s continuous.

While imperfect, those guidelines served us well across the analyses of number 
behind Tables 5.1 and 5.2. However, they’re inadequate around a few applications 
that are frequently encountered in grade school mathematics, especially ones involv-
ing money. As a fourth-grade teacher expressed the issue, during our grade-by-
grade inventory of interpretations:

They’re [i.e. situations involving quantities of money] discrete, right? We count money. But 
we don’t say, “How many does this cost?” We say, “How much?” … And we never use 
“fewer” when we’re talking about money.

Her colleague added:

We noticed kind of the same thing with the way fractions are introduced in the Grade-4 
book. Most of the exercises are based on counting—like [holding up the exercise book] this 
picture where five out of six balls are colored in that asks “What fraction is shaded?” That’s 
not a “How many?” or a “How big?” question, it’s a “How much?” question.

Much more time was given to mulling over the matter, but these teachers’ remarks 
seem to sum up an important experiential truth: In many contexts and occasions 
where questions of “How much?” are asked, number can be deployed as discrete but 
sensed as continuous. In our analyses, the most common of these situations involve 
large quantities and/or discrete fractions (including terminating decimals).

Since we were immersed in a discussion of orienting metaphors, it was no surprise 
that interests turned to identifying an analogy that fitted this situation. Suggestions 
immediately gravitated to notions of “piling up” and “clustering,” at which point some 
hasty googling of original word meanings prompted us to suspect that others had long 
ago grappled with a similar issue. It turns out that English has several terms that invoke 
precisely the same images that the teachers had suggested to address matters of “How 
much?” such as amassing (e.g., a fortune), amounts (e.g., owed), and accumulating 
(e.g., parts into a whole). According to the Online Etymology Dictionary (etymonline.
com), all three of these have to do with mounding bits into larger unities:

•	 Amass derives from the Old French à “to” + masse “lump, heap, pile.”
•	 Amount derives from the Latin ad “to” + monten “mountain.”
•	 Accumulate derives from the Latin ad “to” + cumulare “heap up.”

B. Davis
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The group thus settled on the metaphor number as amount for this new category.
Importantly, there is no suggestion here that number as amount has the same 

epistemic status as the metaphors for number presented in Tables 5.1 and 5.2. Rather, 
as hinted by the ambiguity experienced around the discrete–continuous distinction, 
this metaphor is better seen in phenomenological terms than mathematical terms. It 
is something encountered in day-to-day applications (mainly situations involving 
discrete fractions, such as money)—and so while it doesn’t appear to be integral to 
concepts in pure mathematics, it is certainly important in school mathematics. We 
also concluded that it likely plays an important conceptual role in bridging discrete, 
quantity-focused (number as count) and continuous, magnitude-focused (esp. 
number as size) conceptions of number.

�Number as Reification

A somewhat more surprising observation for the teachers was how early and how 
often classroom resources invoked numbers and posed questions in complete 
absence of interpretive referents—that is, asked “What?” questions in which num-
bers were presented as naked operators. Practice exercises devoid of metaphorical 
anchors were already evident in first grade, and they represented the most common 
variety by the middle school years. Indeed, the steady increase in proportion of 
“What?” questions was taken by the teachers as evidence of a systematic process to 
wean learners from specific, meaningful but necessarily limiting interpretations of 
number.

In some regards, this progression should have been expected, especially given 
that the group’s analyses of several pedagogical impasses homed in on children’s 
habits of equating “number” and “numeral” in even the lowest grades. Clearly, 
something is pressing learners toward seeing numbers and things in and of them-
selves. Nonetheless, we experienced the realization as disconcerting. As was 
evidenced multiple times in our concept study, a premature compulsion to treat num-
bers as only symbolic operators—or, worse, as symbols—can debilitate efforts to 
interpret and extend mathematical concepts. Conversely, failure to elaborate number 
into a symbolic operator might be similarly debilitating at higher grades, as illus-
trated by those pedagogical impasses in which learners’ interpretations of number 
didn’t keep pace with the increasingly abstract nature of the concepts under study.

There is no quandary here. Humans’ understandings of number are both embod-
ied (i.e., rooted in bodily based experiences) and embedded (i.e., called forward in 
culturally meaningful situations). It is entirely reasonable to expect school 
mathematics to be structured in a way that draws on and nurtures the former while 
anticipating and enabling the latter. The issue isn’t whether school mathematics 
should channel learners toward a consolidated concept of number, but how and 
when it should happen. Such matters, in turn, can only be settled through nuanced 
appreciations of how integrated concepts emerge and what the integrated concept 
is expected to do.
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Two ideas proved helpful around these concerns. Firstly, one of the participants 
called attention to Fauconnier and Turner’s (2003) research into conceptual blends. 
While not of immediate pragmatic value to the group, it was affirming to read their 
characterizations of the emergence of new and more powerful discursive objects 
through combinations and mash-ups of existing ones. In this regard, we found 
Danesi’s (2014) notion of metaform to be very useful. Contrasted with a metaphor, 
a metaform is an abstract distillation—a fusing that foregrounds common functional 
elements while suppressing idiosyncratic and potentially dysfunctional elements. In 
the process, the metaform can be experienced as nonspatial and acausal—as an idea 
that is unencumbered by the interpretive specificities of a metaphor or a cluster of 
metaphors. In this sense, a metaform of number would be what Hilbert (1928: 470) 
dubbed an “ideal object,” which “in themselves mean nothing but are merely things 
that are governed by our rules.”

“So basically we should be drawing attention to metaphors to teach a metaform 
so that students don’t have to rely on the metaphors,” one participant summed it up, 
to the general approval of the group. His thought prompted the suggestion from 
another participant that we should name the metaform under discussion, in order to 
distinguish it from the clutter of meanings for number than we’d encountered. 
Ultimately, we settled on number as reification—an imperfect choice, but one 
useful for underscoring why number is so often engaged as an object.

Three other choices figured prominently in our protracted discussion of what to 
call the metaform of number: numeral, object, and operator. The first two were 
rejected because although we aimed to flag the “thing-ness” of the metaform, we 
also wanted to signal its emergent character. The third, number as operator, was 
initially compelling because of its current prominence in efforts to incorporate com-
putational thinking into school curriculum. In computer-coding contexts, an opera-
tor is a logical symbol. That is, an operator is not simply a numeral; it represents an 
action or a process. While that particular meaning seemed fitting, we decided to set 
it aside because of the explicit and deliberate meaninglessness (in phenomenologi-
cal terms) of computer- and computation-based number usage.

�Revising the Maps

With the three addition interpretations of number distinguished and named, the 
group undertook to elaborate Table 5.1 into Table 5.3, the contents of which hint at 
considerably more discussion and debate than I have reported here. I’ll leave it to 
you to explore whatever bits you might find interesting, signaling here that I person-
ally disagree with some significant elements. But I present this evolving analysis in 
its “current” form, as an indication of participants’ ongoing efforts to interpret and 
represent number in manners that enable their classroom practice.

The group also redid their analysis of relative emphases of varied interpretations of 
number in classroom resources (Table 5.2) to include the three additional meanings 
(Table 5.4). Whereas adding of the “amount” and “rank” columns was uneventful, 
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compiling the “reification” column was especially fraught. As participants analyzed 
“What?” questions in classroom resources, they frequently struggled with the imagined 
intentions of textbook authors. Most often, they concluded that “What?” questions 
weren’t framed in a way that enabled and compelled learners to consolidate their evolv-
ing conceptions of number. Rather, they most often seemed to be presented as attempts 
to wean learners off physical referents by ignoring (rather than inviting) processes of 
differentiation, bridging, and consolidation of varied instantiations. Consequently, for 
participants, the final column of Table 5.4 points more to “opportunities to develop 
number as reification” than as actual attempts to prompt learning in that direction.

�And So …?

It goes without saying that one might expect a strong emphasis on pragmatics when 
engaging with educators in a concept study during the school year in one of their 
classrooms. While our inquiry reached into philosophy, mathematics, cognitive 
science, and other domains, the gravitational pull of classroom practice ensured that 
every one of our discussions included considerations of how to teach. Some of these 
considerations were broader, especially with regard to the arc of the K–12 school 
mathematics experience. But most were more immediate, ultimately being articu-
lated as seven principles to guide mathematics teaching:

•	 Whenever dealing with number-related topics, be explicit about what the 
numbers are being used to do/represent/model and the metaphor(s) at play.

Grade

Metaphor or metaform of number

COUNT

(How 
many?)

RANK

(Which?)

AMOUNT

(How 
much?)

SIZE

(How 
big?)

LENGTH

(How 
long?)

LOCATION

(Where?)

REIFICATION

(What?)

1

2

3

4

5

6

7

8

Table 5.4  Teachers’ elaborated impressions of relative emphases of varied interpretations of number 
in classroom resources

The clear-to-dark shadings indicate absent-to-heavy emphases

B. Davis
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•	 Phrase explicit statements about “what numbers are” as open definitions. Remind 
learners that almost all mathematical definitions will be elaborated as their 
understandings grow.

•	 When moving from one metaphor to another (e.g., when shifting from an appli-
cation involving counting to one involving measurement), signal the shift and 
provide interpretive bridging if appropriate.

•	 “Multiple representations” and “personal strategies”—two major emphases in 
the popular professional literature at the moment—should never be encouraged 
for their own sake. Treat them as opportunities to explore underlying metaphors, 
as well as obligations to locate varied representations and strategies in the grander 
matrix of interpretations.

•	 Explore clusters of association for each grounding metaphor separately. That is, 
rather than brainstorming synonyms for “subtract,” brainstorm synonyms for 
“subtract” that go along with number as count, with number as size, and so 
on—once again providing interpretive bridging if appropriate.

•	 Be mindful of—and draw attention to—how binary operations can introduce many 
more categories of interpretation (e.g., familiar interpretations of multiplication 
include “set of sets” [i.e., count  ×  count  =  count], “repeated hops” [i.e., 
count × length = length], and “dimension crossing dimension” [i.e., length 
× length = 2d size]; several other combinations will be encountered by all middle 
school students).

•	 Be cognizant that the ultimate goals are nimble, consolidated but flexible 
concepts that are enabled by the richness of diverse interpretations, but unen-
cumbered by the limitations of any singular interpretation.

Our group homed in on some of these principles early on. In fact, the first three 
were articulated during our discussion of Lakoff and Núñez, in the session that fol-
lowed our first foray into pedagogical impasses. The other principles arose one at a 
time, as different aspects of the concept study unfolded.

Not insignificantly, over the course of the concept study, there were also marked 
shifts in how participants talked about both mathematics and learning of mathemat-
ics. On the topic of disciplinary knowledge, an analysis of the year’s transcripts 
revealed that there was a decline in teachers’ use of object-based metaphors and a 
corresponding increase in growth-, evolution-, and systems-based notions to refer to 
mathematics. Regarding learning, acquisition- and journeying-based metaphors were 
dominant at the start of the year. While still prominent at the end, they had yielded 
considerable ground to notions of sense making, construal, and coherence seeking.

There was also a notable shift in teachers’ descriptions of their own work. 
Analyses of their self-references during the session devoted to teaching impasses 
revealed overriding desires to provide learners with “clear” explanations, “best” 
illustrations, and “correct” information to “facilitate” learning. Much in contrast, 
references to such concerns are virtually absent in the transcripts from the end of the 
year. Instead, as might be inferred from the above list of principles, direct references 
to teaching were couched in terms of responsiveness and adequacy, as notions of 
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teaching as facilitating (from French faciliter “to make easy”) gave way to a 
dominant sensibility of teaching as challenging.

As for the project’s focus on mathematics for teaching, our informal definition—that 
is, “what an expert needs to know to think like a novice”—proved particularly useful 
throughout the concept study. Evident in their shifts in thinking on the nature of math-
ematics and the processes of mathematics learning—and underscored by the realization 
that both phenomenology and mathematics must be consulted in quests for meanings 
and metaphors—our inquiry into number clearly and strongly demonstrated that math-
ematics knowledge and mathematics learning are not separate topics for educators.
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Chapter 6
The Body of/in Proof: An Embodied 
Analysis of Mathematical Reasoning

Laurie D. Edwards

Mathematics is a way of using the mind with the goal of knowing 
the truth, that is, of obtaining certainty

(William Byers)

Mathematics is, in part, a search for structure and certainty, and the primary prac-
tice of mathematicians toward that end consists of creating and communicating 
mathematical proofs. The purpose of this chapter is to examine mathematical 
proof and logical reasoning from the perspective of embodied cognition (Clark 
1998; Gibbs 2005; Johnson 1987, 2012; Lakoff and Johnson 1980; Shapiro 2010, 
2014; Varela et  al. 1991). Although there are multiple theoretical and method-
ological approaches to embodiment, Varela (1999: 11–12) characterized its essen-
tial aspects as follows:

Embodiment entails the following: (1) cognition dependent upon the kinds of experience 
that come from having a body with various sensorimotor capacities, and (2) individual 
sensorimotor capacities that are themselves embedded in a more encompassing biological 
and cultural context … sensory and motor process, perception and action, are fundamen-
tally inseparable in lived cognition.

In recent decades, researchers have investigated how the body is implicated in 
tasks ranging from remembering personal experiences to group collaboration, and 
in contexts including language learning, science, music, and emotions (Shapiro 
2014). This attention to the body has started to break down a long-standing para-
digm that viewed cognition as amodal and abstract, based solely “in the head.” The 
role of the body in mathematical thinking, learning, and teaching specifically has 
been addressed in a range of settings, from young children learning to count objects 
(Kiefer and Trumpp 2012) to adults teaching about differential equations (Rasmussen 
et al. 2004, see also Abrahamson and Lindgren 2014; Edwards 2009, 2010, 2011; 
Edwards et al. 2014; Hall and Nemirovsky 2012; Radford et al. 2009). This “turn to 
the corporeal” (Rotman 1993) has enriched and deepened our understanding of 

L. D. Edwards (*) 
St. Mary’s College of California, Moraga, CA, USA
e-mail: ledwards@stmarys-ca.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22537-7_6&domain=pdf
mailto:ledwards@stmarys-ca.edu


120

mathematical thinking, revealing that the body is thoroughly involved in the learn-
ing and doing of mathematics. In addition, attention to embodiment has broadened 
the focus within mathematics education research beyond written symbols, images, 
and oral speech to include modalities such as gesture and other bodily movements, 
eye gaze, rhythm, and prosody (Edwards et al. 2014; Hall and Nemirovsky 2012).

Within an embodied cognition framework, mathematics is not seen as a transcen-
dental, formal collection of rules and patterns, unrelated to everyday thinking and 
experience, but instead as a human intellectual product, one which develops both 
historically as a discipline over time and ontologically as it is constructed by an 
individual learner. It is socially constructed, but not in an arbitrary way, being both 
constrained and enabled by the biological capabilities and physical situatedness of 
human beings. Embodiment does not negate the influence of social interaction and 
culture; rather it grounds it in shared biological constants (Hall and Nemirovsky 
2012; Núñez et al. 1999). As stated by Hall and Nemirovsky (2012: 212), “We think 
of concepts (in mathematics but also in other domains) as forms of modal engage-
ment in which bodies incorporate and express culture.”

In the current analysis, we will investigate the possible conceptual roots or cog-
nitive precursors to mathematics and deduction, taking into account existing 
research about early cognitive development. In addition, we will examine multi-
modal interactions among emerging mathematical experts engaged in creating a 
new proof, with the goal of better understanding the relationship between the body 
and this essential area of mathematical practice.

Mathematics, or at least “advanced” mathematics such as proof, has at times 
been seen as very different from other kinds of thinking. For instance, Manin stated, 
“The gaping abyss between the habits of our everyday thinking and the norms of 
mathematical reflection must remain intact if we want mathematics to fulfill its 
function” (Manin et al. 2007: 36). A great deal has been made of the “abstract” and 
“formal” nature of advanced mathematics, with some scholars setting apart a sepa-
rate “world” of formalism, distinct from simpler mathematical worlds connected to 
either embodiment or symbolism (Tall 2008). While mathematics, as a form of dis-
course and practice, certainly has its own unique characteristics, including the non-
ostensive nature of its objects, one of the goals of this chapter is to highlight ways 
in which mathematical cognition and communication are closely connected to 
everyday, nonmathematical thinking and language.

One of the central principles of embodied cognition is that of continuity; under 
this principle, even complex thought such as mathematical proof is seen as arising 
from simpler conceptual mechanisms (Johnson 2012). Embodiment theory and the 
principle of cognitive continuity motivated the current work: to investigate how the 
specialized kind of thinking and communication involved in mathematical proof is 
related to other kinds of human thought and activity. Following scholars like 
Johnson (2012), we propose that deductive proof and logic are built from the same 
basic conceptual building blocks as are more mundane kinds of thought. An impor-
tant analytical tool used to explore this proposal is found in cognitive linguistics, 
which has identified many such building blocks, such as mental spaces, image sche-
mata, metaphors, and conceptual blends (Dancygier and Sweetser 2005; Evans and 
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Green 2006; Fauconnier and Turner 2002; Johnson 1987, 2012; Lakoff and Johnson 
1980). A central tenet of cognitive linguistics is that language is not a collection of 
formal rules and productions, where form is unrelated to content, but is based on 
primary embodied experiences as well as collections of unconscious mental map-
pings linking together familiar experiences and ideas in order to create new ones. 
These groupings of familiar concepts or experiences are known as mental spaces or 
input spaces (Fauconnier 1994; Fauconnier and Turner 2002). An important mecha-
nism within this framework is the blending or integration of input spaces. As defined 
by Fauconnier and Turner (2002: 89), “Conceptual integration … connects input 
spaces, projects selectively to a blended space, and develops emergent structure.”

Conceptual integration can be seen as a general mechanism that encompasses 
more specific mappings such as conceptual metaphor (Fauconnier and Lakoff 
2009). Whereas conceptual integration may link two or more input spaces to create 
blended space, conceptual metaphor projects the logical structure of a single input 
space (known as the source domain) onto a single target domain (Lakoff and 
Johnson 1980). Conceptual metaphors have been used in the analysis of mathemati-
cal ideas ranging from arithmetic to calculus (e.g., Bazzini 1991; Lakoff and Núñez 
2000; Núñez et al. 1999). Another important element of cognitive linguistics is the 
notion of image schemata. An image schema “is a condensed redescription of per-
ceptual experience for the purpose of mapping spatial structure onto conceptual 
structure” (Oakley 2007: 215). An example of an image schema that undergirds an 
important mathematical idea is that of a physical container. Containers have an 
inside that contains objects, an outside, and a boundary. It is unlikely that we could 
understand the idea of a mathematical set without having had many experiences 
with putting objects into, and taking them out of, physical containers, experiences 
that allowed us to build up this image schema (Lakoff and Núñez 2000; Mandler 
2004).

This analysis will examine proof using an embodied cognition framework as 
well as the tools of cognitive linguistics. Following Johnson, the goal is to demon-
strate that “we do not have two kinds of logic, one for spatial-bodily concepts and a 
wholly different one for abstract concepts. There is no disembodied logic at all. 
Instead, we recruit body-based, image-schematic logic to perform abstract reason-
ing” (Johnson 2012: 181).

This chapter utilizes existing research as well as newly analyzed data to sketch 
possible elements of a “body-based, image-schematic logic” underlying mathemati-
cal reasoning and proof. Framing questions include the following: In what ways is 
mathematical proof continuous with other kinds of thinking, both developmentally 
and cognitively? What are plausible conceptual underpinnings that help people 
understand the notion of mathematical proof? Can language and gesture provide 
evidence for continuity in the relationship between proof and the body?

I will argue that, indeed, there is continuity between the practice of mathematics 
and other kinds of socio-cognitive practices. In particular, I will argue for continuity 
at several levels. These include the following:
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•	 Continuity between the ways that proof is described and discussed and basic 
embodied physical experiences, as indicated by unconscious conceptual map-
pings or metaphors. The evidence for these foundational mappings for proof will 
also include nonverbal modes of communication such as gesture.

•	 Continuity between the notions of physical causality constructed in early infancy 
and childhood and the way that we think about inductive and deductive logic.

•	 Continuity in the way we express epistemic or logical conditionals, verbally and 
gesturally, between mathematical and nonmathematical discourse settings.

The overall goal is to demonstrate that, far from being an arcane form of thinking 
unrelated to everyday concerns, mathematical proof is grounded in very basic 
human experiences. Although the practice of proving has certainly been tested, 
refined, and constrained over time by the mathematical community, proof is as 
embodied as any other powerful concept utilized by human beings as they explore 
patterns, create new structures, and test regularities.

�Mathematical Proof and Logical Deduction

Mathematical proof has been characterized as an explanation accepted by a com-
munity of mathematicians (Balacheff, cited in Hanna 1990: 9); more formally, proof 
has been defined as:

[A] finite sequence of sentences such that the first sentence is an axiom, each of the follow-
ing sentences is either an axiom or has been derived from preceding sentences by applying 
rules of inference, and the last sentence is the one to be proved (Hanna 1990: 6).

There is a rich body of research within the field of mathematics education about 
proof (Lin et al. 2009), whether addressing how it is taught and learned (Balacheff 
1991; Nardi and Knuth 2017), the impact of interactive technologies (Chazan 1993; 
Laborde 2000; Roy et al. 2017), or differences in proof schemes and the use of logic 
(Harel and Sowder 2007). This chapter is concerned not with the teaching or learning 
of proof, but with how people conceptualize the process of proving, and the product 
of that process, a proof. The analysis will take a top-down approach, first examining 
ideas about proof as a whole, and then addressing the fundamental elements of proof, 
namely, logical deductions and conditional statements. At each level, we hope to dem-
onstrate continuity and connections between embodied human experience and what is 
often considered to be the most abstract of mathematical activities.

�How Is Proof Conceptualized?

In order to examine how people think about proof, we will look at how they 
express themselves about this subject, drawing on both written and oral lan-
guage, as well as examining physical gestures that occur in conjunction with 
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speech. This analysis is based on foundational work in cognitive linguistics 
(Evans and Green 2006) which holds that language reflects deep conceptual 
structures and mechanisms, including image schemas (Talmy 1988), metaphors 
(Johnson 1987, 2012; Lakoff and Johnson 1980), and conceptual blends between 
mental spaces (Fauconnier 1994; Fauconnier and Turner 2002). By examining 
the particular images, language, and gestures used to describe mathematical 
proof, we can infer the nature of these underlying structures.

Two examples of descriptions of proof in written texts are given below, the first 
by a mathematics educator and the second by a “working” mathematician:

Example 1:  A proof is a transparent argument, in which all the information used 
and all the rules of reasoning are clearly displayed and open to criticism. It is in the 
very nature of proof that the validity of the conclusion flows from the proof itself, 
not from any external authority (Hanna 1995: 46, emphasis added).

Example 2:  I’d like to spell out more what I mean when I say I proved this theo-
rem. It meant that I had a clear and complete flow of ideas, including details, that 
withstood a great deal of scrutiny by myself and by others (Thurston 1994: 175, 
emphasis added).

From the point of view of cognitive linguistics, the terms used to refer to the 
abstract process of proof are not accidental or arbitrary, but instead point to underly-
ing conceptual structures. Both of the texts above utilize a specific term, “flow.” 
Under the current analysis, the use of the term “flow” is evidence for an image 
schema based on a universal perceptual experience, the sight and feel of moving 
water. In the “flow” image schema, water moves in one direction, with a certain 
amount of force, in a continuous stream. This image schema is utilized by the writ-
ers above precisely because it contains elements that correspond to the way that they 
conceptualize mathematical proof: either as a unidirectional force that links the con-
clusion to the proof or as a “stream” of clear, complete, and convincing ideas, one 
following the next.

The image schema of “flow” is related to a conceptual metaphor that struc-
tures our understanding of thought in general. Sweetser identifies this meta-
phor as “THOUGHT (or REASONING) IS MOTION THROUGH SPACE,” 
and gives as an example the phrase “We don’t seem to be getting anywhere” 
(1998, paragraph 10). An example of this metaphor can be found in way the 
late mathematician Maryam Mirzakhani described what it is like to work on 
a difficult proof: “It is like being lost in a jungle and trying to use all the 
knowledge that you can gather to come up with some new tricks, and with 
some luck you might find a way out” (New York Times, July 18, 2017). In this 
example, she describes her reasoning process in finding a proof as motion 
through space, moving from a location in a confused, junglelike place to a 
place of more clarity outside the jungle. As we will see below, the metaphor 
of reasoning as motion through space can be seen expressed via speech, writ-
ten language, and gesture.
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�Evidence from Emerging Mathematicians

In addition to looking at extant written definitions and other texts addressing math-
ematical proof, data were gathered from a group of successful mathematics learners 
that have not received a great deal of attention within mathematics education 
research. These are doctoral students in mathematics; these students can be seen as 
emerging experts in mathematics who have gained a base of foundational knowl-
edge in the field and are in the process of learning to create original proofs of their 
own (Marghetis et al. 2014). As such, they are knowledgeable about the process of 
proving, as well as being familiar with different kinds of proof and even how to 
teach mathematical proof.

A total of 12 doctoral students in mathematics at a major research university in 
the United States participated in pairs in a qualitative study based on a 90-min clini-
cal interview (Edwards 2010). The interview consisted of three parts: an initial set 
of questions about their experiences with mathematical learning, teaching, and 
proof; a second part in which they had 40 min to work together to prove an unfamil-
iar conjecture; and a final segment in which they were asked to evaluate a visual 
“proof.”

During the second, proof-finding part, the students looked for a proof of the fol-
lowing conjecture:

Let f be a strictly increasing function from [0, 1] to [0, 1].
Prove that there exists a number a in the interval [0, 1] such that f(a) = a.

The sessions were videotaped (the interviewer left the room while the students 
were working together on the proof) and later transcribed and gestures annotated. 
As with this chapter, the goal was to investigate how the students conceptualized 
mathematical proof.

�Metaphors for Proof

When directly asked what a proof was, the doctoral students gave descriptions 
which were similar to those cited above by Hanna. For example:

•	 AC: It’s a set of logical reasoning that begins with a premise and leads to a 
conclusion.

•	 AW: I would say it’s just, you know, a well-thought-out sequence of steps that 
nobody would refute …. In practice, it’s just—it—a very, very solid argument in 
which each step proceeds logically from the last.

•	 AS: A rigorous proof would be based on the axioms of mathematics that we’ve 
set up …. Actually, following it step by step so that your conclusion always fol-
lows from some kind of logical steps.
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These definitions include elements of the metaphor that conceptualizes reason-
ing as motion through space, as shown in terms like “leads to,” “sequence of steps,” 
and “following it step by step” (although it could be argued that the “steps” of a 
proof that the students describe are a “fossilized” or dead metaphor that no longer 
have the connotation of movement, but instead refer to written lines on a page; see 
Edwards 2010).

In fact, the students’ more casual discourse about proof provides even clearer 
evidence of a motion-based metaphor grounding their understanding, as shown in 
the following phrases:

“the destination,” “the forward direction,” “walking it back,” “you want to end up over 
here,” “you get kind of bogged down,” “you get to a certain point,” “I don’t wanna go any 
further,” “we’ll try the other way,” “maybe I don’t know where I’m going,” “at some point, 
maybe I can, like you know, see the goal,” “there’s so many ways you could go,” “the better 
way to go”

These phrases reveal a more specific metaphor than the general REASONING IS 
MOTION THROUGH SPACE identified by Sweetser. The new metaphor incorpo-
rates an image schema called “source-path-goal” (Lakoff and Johnson 1980; 
Johnson 1987; Talmy 1988). This image schema is based on the universal embodied 
experience of moving oneself from a particular starting location to a specific desti-
nation, via a path. This metaphor for proof is called A PROOF IS A JOURNEY 
(Edwards 2010). In this metaphor, rather than an undefined motion through space, a 
proof has a specific source or starting point (a premise or set of givens), a goal (a 
conclusion or that which is to be proved), and a set of steps, each of which needs to 
be logically valid (and each of which should lead toward the goal). Thus, the defin-
ing elements of a mathematical proof are linked to elements with similar roles in a 
directed, physical journey. This mapping is illustrated in Fig. 6.1, which shows the 
source-path-goal schema as applied to mathematical proof, and Table 6.1, which 
spells out the conceptual mapping between the source and target domains in the 
PROOF IS A JOURNEY metaphor.

Fig. 6.1  The source-path-goal image schema applied to proof
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Hanna (2000) quotes two mathematicians who use this JOURNEY metaphor 
explicitly when discussing the nature of proof:

Rav suggests we think of proofs as “a network of roads in a public transportation system, 
and regard statements of theorems as bus stops.” A similar metaphor is used by Manin 
(1998) when he says that “Axioms, definitions and theorems are spots in a mathscape, local 
attractions and crossroads. Proofs are the roads themselves, the paths and highways. Every 
itinerary has its own sightseeing qualities, which may be more important than the fact that 
it leads from A to B” (Hanna 2000: 7).

In using the metaphor of proof as a journey, Manin elaborates it to include the 
notion of “sightseeing qualities,” that is, the idea that some proofs can explain and 
enlighten, rather than simply provide a technical justification of the given conjec-
ture, a thesis promoted by Hanna among others (Hanna 1990, 2000).

�Evidence from Gesture

In addition to the evidence from written and spoken language above, the use of co-
verbal gesture by one of the doctoral students also revealed the metaphor of PROOF 
IS A JOURNEY, as shown in Fig. 6.2, a still from one of the videos in the doctoral 
student study.

In the video, the student WG says the following, in conjunction with the indi-
cated gesture:

’cause you start figuring out, I’m starting at point A and ending up at point B. There’s gonna 
be some road - where does it go through? And can I show that I can get through there?

WG begins the gesture sequence by touching a location near the top of his thigh 
(“point A”), and then points as he moves his right finger away from his body (“point 
B”). He then returns to his initial location and traces a fairly straight path outwardly 
through the air with his finger, pausing briefly after saying, “some road.” He then 
makes a small horizontal circle with his outstretched hand, and finishes by retracing 
the path between the origin and end of the gesture a second time.

This gesture sequence clearly shows a physical motion through space as the stu-
dent discusses proof, but the student also marks, verbally and spatially, specific 

Table 6.1  The PROOF IS A JOURNEY metaphor

A PROOF IS A JOURNEY
Source domain: physical journey Target domain: mathematical proof

•	 Starting point (source)
•	 Destination (goal)
•	 Steps
•	 Possible sequences of steps (paths)
•	 “Dead ends” or wrong paths that don’t reach 

the destination
•	 Obstacles to finishing the journey

•	 Premises (source)
•	 Conclusion (goal)
•	 Logical statements (“If A then B”)
•	 Possible sequences of logical statements 

(paths)
•	 Sequences that don’t result in the desired 

conclusion
•	 Obstacles to completing the proof
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locations corresponding to the premises/start of the journey (“point A”), and to the 
conclusion/end of the journey (“point B”). His spoken words also refer to “where 
the road goes.” In the metaphor, the “road” is a sequence of logical statements, and 
the student also asks whether he can reach the desired conclusion (“get through 
there”). Thus, the gestures and speech both contribute to a multimodal expression of 
the “journey” metaphor for mathematical proof.

�Conceptual Roots of Logical Deduction

Given that proofs are defined, in part, as sequences of logical statements, in order to 
understand proof more deeply from an embodied perspective, the next question we 
address is this: What are the conceptual roots of logical deduction? That is, how is 
it that people are able to understand and create logical statements of the form, “If P 
is true, then Q is also true,” and use them in proofs?

There is a body of scholarship investigating the development and functioning of 
logical thinking, with notable early work by Piaget and Inhelder (1964) and includ-
ing more recent work based on cognitive science (e.g., Best 2005; Johnson-Laird 
1999; Kahneman e al. 1982). Although this research has identified changes in logi-
cal thinking within childhood and described errors in deductive reasoning, for the 
most part it was carried out with a view of reasoning as a purely mental facility, 
unconnected to the physical body.

Fig. 6.2  Gesture 
illustrating PROOF IS A 
JOURNEY metaphor
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From the point of view of embodied cognition, however, the concept of logical 
necessity, like other ideas, is ultimately founded on bodily/perceptual experiences 
(Mandler 2004; Talmy 1988). In addition, rather than seeing different kinds of 
reasoning as arising within age-demarcated phases, current research again identifies 
a continuity between the thinking of very young children and adults:

Right from the beginning, or at least from a few months of age, babies function in ways that 
merge continuously into those of older children and adults. They form concepts, they have 
notions of different kinds, they generalize from their experience on the basis of concepts 
they have already formed … (Mandler 2004: 11)

It is this capacity for generalization and pattern noticing in young children that, 
we argue, forms the basis for the development of logic. From an evolutionary per-
spective, the ability to learn from experience by noticing (creating) patterns and 
drawing conclusions was essential to human survival; here, we focus on its develop-
ment in children and later application to mathematics.

The argument is as follows: the development of an understanding of logic (where 
a premise necessarily “leads to” a conclusion) is based on the physical experience 
of causality (where one event causes the occurrence of a second). The concept of 
physical causality, constructed early in infancy, is itself based on the experience of 
contingency, where one event (usually) follows another. Thus, children’s embodied 
and perceptual experiences with causality provide the conceptual template for the 
later construction of logical necessity.

Research within the past few decades has demonstrated that infants are able 
to perceive and respond to the contingency of physical events; that is, they can 
notice that if they cry, a parent is likely to appear, or, in an early experiment 
with 2-month-old infants, if they press their heads on a pillow, a mobile above 
their crib will turn (Watson, cited in Mandler 2004). As Mandler states: 
“Responsivity to the contingency of events is present at least from birth and is 
one of the most powerful factors governing perceptual learning and controlling 
attention” (2004: 96). Noticing and reacting to contingencies is a first step 
toward seeing two events as causally linked:

An infant actively noticing that every time she drops something over the side of her high-
chair her mother picks it up is conceptualizing a kind of “if-then” relation (suggesting that 
this is one of the image-schemas on which intuitive understanding of logic rests) (Mandler 
2004: 98).

Further research has investigated infant understanding of physical causality, 
and evidence for awareness that one event can cause another is found even in 
very young infants (Gopnik and Schulz 2007; Leslie and Keeble 1987; Mandler 
2004; Sperber et al. 1996). Furthermore, the concept of causality constructed by 
preschoolers does not seem to be based purely on statistical covariation between 
events, but on “a causal mechanism view of causality, in which causation is 
understood ‘primarily in terms of generation transmission’ of force and energy” 
(Shultz, cited in Gopnik and Shulz 2007: 9). That is, young children do not sim-
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ply think that one event causes another because they occur together, but instead 
use early notions of transmitting force or energy between entities. This concep-
tualization of causation in terms of forces adds the characteristic of compulsion 
to the idea of contingency: not only does pushing the tower of blocks result in it 
falling over, but also the tower must fall because the push causes it to. As 
Mandler states, “It [the if-then notion] ‘paints’ force onto the object and kinetic 
information that the perceptual system provides, leading to the perception of 
causality” (2004: 99–100).

Thus, from a very early age, we are capable of building a schema for physical 
causality, such that if one event follows another in time, and physical contact or 
force exists between the entities involved, the first event is seen as causing the sec-
ond. Another way of putting this is that if the first event happens, then the second 
event must also happen. This structure or schema for force has also been identified 
within cognitive linguistics as an embodied source for many abstract concepts, from 
personal relationships to political actions (Talmy 1988). This image schema for 
force includes the following properties (Evans and Green 2006: 187):

•	 Force schemas involve a force vector, i.e., a directionality.
•	 Force schemas have sources for the force and targets that are acted upon.
•	 Forces involve a chain of causality.

These properties map to analogous properties for logical deductions and proofs:

•	 Logical deductions have directionality (“If A then B” is not the same as “If B 
then A”).

•	 Logical deductions have sources for the premises (previously proved proposi-
tions, postulates, and/or axioms) and the conclusions (the premise and its 
sources).

•	 Mathematical proofs involve a chain of logical deductions.

Thus, we propose that force/physical causality serves as a source domain for an 
unconscious conceptual metaphor underlying our understanding of logical deduc-
tion. In this metaphor, logical conclusion B “follows” premise A, with the conclu-
sion having the same sense of necessity as physical causation: just as a physical 
effect “must” be a consequence of its cause, given valid reasoning, a logical conclu-
sion “must” follow its premise. Table 6.2 spells out the metaphorical mapping from 
physical causation to logical deduction.

�Cognitive Continuity in Conditionals

The logical deductions that comprise the building blocks of mathematical proof, 
typically expressed using if-then statements, belong to a linguistic category known 
as conditionals. Conditionals have been analyzed within a cognitive linguistics 
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framework, seeing them as constructions within linked mental spaces (Dancygier 
and Sweetser 2005; Fauconnier 1994). Given the importance of if-then statements 
in mathematical reasoning, we will look at the relationship between conditionals 
used in everyday, nonmathematical settings, and those used in mathematics, to see 
whether this reveals another type of conceptual continuity.

There are several kinds of conditionals found in everyday discourse, typified by 
how the two clauses (premise and conclusion) are related (Dancygier and Sweetser 
2005; Sweetser 1996). The most common type is the content (or predictive) condi-
tional, in which the two clauses are semantically related, and in which the outcome 
or conclusion is contingent on the action in the premise taking place. An example 
would be the statement, “If you pet the cat, she will bite you.” A conditional like this 
is not taken to mean that the cat will bite 100% of the time when petted, or that she 
might not bite even if she is not petted. But in general, when the cat is petted, she 
does bite.

The conditional of most interest in the current context is called an epistemic 
conditional, in which the speaker carries out a more formal logical reasoning pro-
cess. Two examples are “If the car is in the driveway, he must be home” and “If x is 
even, then x/2 is an integer” (Dancygier and Sweetser 2005: 17). These kinds of 
conditionals go beyond contingency or a possible connection to what Dancygier and 
Sweetser call a “metaphoric ‘compulsion’ of the speaker’s reasoning process” 
(p. 20) in which the speaker is “forced” to draw the given conclusion, based on 
either inductive reasoning (“the car is almost always in the driveway when he is 
home”) or deductive logic (the mathematical definition of “even”). The conceptual 
roots of this metaphorical “compulsion” are spelled out in the previous section, 
where physical causality is seen as providing the source domain or conceptual tem-
plate for logical deduction.

Logical deductions as utilized in mathematics can be seen as a type of epistemic 
conditional; however, in order to reduce ambiguity, the mathematical community 
has added constraints to such statements that are not found in everyday discourse. 
In everyday discourse, a content conditional is typically biconditional; that is, “If P 

Table 6.2  Metaphorical mapping between physical causation and logical deduction

LOGICAL DEDUCTION IS PHYSICAL CAUSATION
Source domain: causation via physical 
forces: “This action causes that effect” Target domain: logical deduction: “If A then B”

•	 Two entities
•	 One is foregrounded or singled out (the 

“agonist” or effect)
•	 The other is considered in terms of the 

effect it has on the agonist (the 
“antagonist” or cause)

•	 Physical force
•	 If the force of the antagonist is 

sufficiently strong, the result is motion 
of the agonist

•	 Two declarative statements
•	 One is foregrounded as the “conclusion”
•	 The other (“premise”) is considered in terms of 

the implication that it has for the truth of the 
conclusion

•	 Logical necessity
•	 If the logical necessity connecting the premise 

to the conclusion is valid, then the truth of the 
conclusion is established
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then Q” also implies “If not P then not Q.” Using the example from above, “If you 
pet the cat, she will bite you” would also imply that if you don’t pet the cat, she 
won’t bite you. This biconditionality (also called alternativity, Dancygier and 
Sweetser 2005) is explicitly rejected when using logical if-then statements in math-
ematics: “If P then Q” does not imply “If not P then not Q.” This difference can 
cause difficulties for students when learning the more specialized discourse of 
mathematics, where students who first learn conditionals in everyday discourse may 
carry over the assumption of biconditionality into the more restricted setting of 
logical/mathematical deduction. When this happens, students are seen as making 
errors in logical thinking (Evans et al. 1993).

Within both everyday and mathematical discourse settings, the use of condition-
als is often accompanied by physical gestures, and these gestures can serve as a 
source of data about the underlying conceptualization of conditional statements. If 
we find that the kinds of gestures utilized with conditionals within mathematics are 
similar to those used outside of mathematics, this would be additional evidence for 
cognitive continuity between everyday and mathematical thinking. By examining 
an existing corpus of participants in televised talk shows, Sweetser and Smith 
(2015) identified a characteristic gesture that often accompanies conditional state-
ments uttered in nonmathematical discourse settings. In a study involving 402 video 
clips, the researchers found that conditionals used in this setting were generally 
accompanied by a particular hand motion: the speaker moved his or her hand along 
a transverse axis through space, starting on the speaker’s left and moving toward the 
speaker’s right, in parallel with the verbalization of an “if-then” statement. For 
example, this gesture was used by the author Michael Pollan on a talk show when 
saying, “If you’re not hungry enough to eat an apple, you’re not really hungry” 
(Sweetser and Smith 2015: 13).

We examine the use of epistemic conditionals, in the form of deductive state-
ments, among the participants in the proof study to see whether their gestures reflect 
a similar conceptual structure as epistemic conditionals in everyday discourse. 
There were, of course, numerous examples of epistemic conditionals in the form of 
logical if-then statements throughout the interview sessions. These were particu-
larly prominent during the section when the pairs of students were working together 
to find a proof for a conjecture. These epistemic conditionals included statements 
like the following:

	1.	 “Like if you start above the line, then you stay above the line”
	2.	 “If you compose f with itself a bunch, like, every time it’s gonna keep going up”
	3.	 “It’s kind of stupid but you like, can’t draw the picture if it, ’cause like, if you go 

right here, and like, you know …”

Although there are conditional statements in this corpus that did not begin with 
the word “if,” in the current analysis, we looked only at those that did. Some state-
ments were full conditionals, in that they included both premise and conclusion. 
Some of these conditional statements explicitly included the term “then” (Example 
1), while others did not, but still expressed the premise and conclusion in full 
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(Example 2). In addition, as is typical in unrehearsed dialog, there were fragmentary 
or partial statements that utilized  the word “if” but did not include a conclusion 
(Example 3, above). 

Epistemic conditionals accompanied by gesture were most common when the 
participants were talking to the interviewer. During the proof-finding part of the 
session, when the students were working together and the interviewer was out of the 
room, the students were usually facing the blackboard, holding chalk, and writing 
or drawing. With their hands thus occupied, there were fewer gestures associated 
with conditionals than when explaining their work or answering the interviewer’s 
questions.

Within the 12 interview sessions, there were a number of instances where the 
students, when uttering a conditional, demonstrated the same kind of transverse, 
left-to-right gestural movement found by Sweetser and Smith (2015). For example, 
in the first proof session, which involved two female graduate students, the students 
produced a total of 41 epistemic conditionals in their speech, including 11 that were 
incomplete. Of all the epistemic conditionals, four were accompanied by this typi-
cal transverse gesture (one sequence that included three instances of this gesture is 
analyzed below).

The similarities of these epistemic-accompanying gestures, which are found 
across mathematical and nonmathematical contexts, serve as evidence for a cogni-
tive continuity, in that the same gesture that accompanies an epistemic conditional 
in everyday discourse is also found in the more specialized discourse involved in 
doing and discussing mathematical proof.

Table 6.3 illustrates an example of an epistemic conditional spoken by a student, 
accompanied by a series of gestures. Stills from the videos of the gestures are shown 
in the middle column of the table, labeled as Fig. 6.3a–i. In this example, doctoral 
student AB is discussing an episode in which she was helping her undergraduate 
students understand a new mathematical concept/procedure.

In this example, the epistemic conditional that the student is expressing can be 
summarized as: “If you have a scalar function and a vector function, then the rule 
for finding their product is the same as the rule for finding the product of two scalar 
functions.” The sequence of gestures accompanying the student’s speech is very 
rich, when characteristics such as hand shape and orientation, hand location, and 
movement of the hands through space are considered. We’ll begin by looking at the 
direction of motion of the gestures.

Consistent with other epistemic conditionals, the sequence includes left-to-right 
motion along the transverse axis; in fact, this transverse motion occurs three differ-
ent times, as shown in the pairs of figures above:

	1.	 Figure 6.3a, b: A relatively small left-to-right transverse motion of the left hand, 
as AC begins by saying, “If you have some scalar function of T and some vector 
function of T.” This sequence also includes a change in orientation of the left 
hand: when holding it on the left, AC uses an upward-opening (horizontal) 
C-shape as if “bracketing” or “holding” a scalar function. As she moves her hand 
to the right, she rotates her wrist so that when she says, “vector function,” the 
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Table 6.3  Discourse segment by AC about scalar functions

AC: Well, I guess, so, the 
other day they were 
trying to prove that, um, 
if you have some scalar 
function of T
Int: Uh huh
AC: —and some vector 
function of T

Figure 6.3a

Figure 6.3b

Left hand starts in horizontal C-shape 
(“bracket”) facing upward on left side of 
body
Left-to-right motion with left hand along 
transverse axis, ending in middle of 
body, with C-shape turning vertical

Int: Uh huh
AC: —that the derivative 
of their product …

Figure 6.3c

Figure 6.3d

Left-to-right motion with left hand along 
transverse axis, with left hand open and 
facing outwards. Left hand begins on left 
side of body and ends in middle of body

(continued)
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Table 6.3  (continued)

is the same …

Figure 6.3e

Figure 6.3f

Rapid left-to-right motion with left hand 
along transverse axis. Left hand starts in 
loose horizontal C-shape (“bracket”) 
facing upward on left side of body and 
ends in pointing gesture to the right

AC: … product rule 
essentially that you know 
from just, you
Int (talking over): Uh 
huh

Figure 6.3g

Figure 6.3h

A complex motion in which the left hand 
begins by pointing downward, then is 
moved in a circle twice around the right 
hand while saying “you know,” ending 
up open and facing the speaker

AC: know from like 
scalar functions

Figure 6.3i

Left hand moves to right and finishes in 
horizontal C-shape (“bracket”) on left 
side of body
This is the same shape and location as 
when the phrase “scalar function” was 
initially uttered

Note: Italicized text indicates speech that is co-timed with gestures
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C-shape is now vertical. She thus uses both hand shape and hand location to 
gesturally distinguish the two different kinds of functions.

	2.	 Figure 6.3c, d: A wider left-to-right transverse motion of the left hand, as AC 
says, “the derivative of their product.” In this case, the hand shape stays the same 
throughout, open and facing outward.

	3.	 Figure 6.3e, f: After saying “derivative of their product,” AC pauses briefly, and 
then makes a very rapid left-to-right motion of her left hand while saying, “is the 
same,” starting with a horizontal C-shape and ending with a right-facing point.

As can be seen above, in addition to an overall left-to-right transverse movement 
that occurs three times during the sequence, gestures are also used to mark or indi-
cate specific mathematical objects, in a scheme that Calbris calls “two-entity oppo-
sition.” This happens when AC uses a horizontal “bracket” held to her left when 
saying “scalar functions” and then a vertical bracket held to her right when saying 
“vector functions.” As a second example, in Fig. 6.2c, the terms “derivative” and 
“product” have the same hand shape but are marked by left and right hand 
locations.

The discourse segment ends with AC discussing a “product rule” while using an 
iterative circular gesture during a pause in speech (possibly searching for her next 
words), and then verbally comparing it to the rule for scalar functions. Interestingly, 
the final gesture of the sequence, associated with the words “scalar function,” has an 
identical shape and location as the gesture used the first time these words were 
uttered. This is an example of using a specific hand shape and location in gesture 
space to “hold” a referent in discourse (Calbris 2008; McNeill 1992, 2005).

Overall, these gestures are consistent with prior research and theory related to 
gesture and if-then statements. Calbris (2008) has stated that in gesture space, the 
transverse axis can represent logico-temporal concepts, such as cause and effect, or 
before and after:

A path in space or time is depicted by a left-to-right movement. But give that body sym-
metry allows this axis to account for splitting in two as well as two-entity oppositions, it can 
be used to oppose past and future, or precedence and successor, by locating the past on the 
left side and the future on the right side (Calbris 2008: 43).

The transverse axis of the body has been also called “the axis of reading and 
writing, pointing to the right in the Western world” (Calbris 2008: 28). In this case, 
the motion of AC’s gestures is consistent both with the placement of the “cause” 
(premise) on the left and the “effect” (conclusion) on the right, as well as the left-to-
right order in which premise and conclusion are generally written in English.

�Discussion and Conclusions

In this chapter, we have presented three examples, utilizing several kinds of evi-
dence, that show how the processes and ideas associated with mathematical proof 
are embodied phenomena, rather than existing purely “in the head.” In addition, this 
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evidence helps to demonstrate conceptual continuity between mathematical proof 
and nonmathematical thinking and discourse. Whether looking at how seasoned and 
emerging mathematicians talk about proof, at the gestures of doctoral students, or at 
research on infant cognition, we find that proof and its building blocks, statements 
of logical deduction, are not abstract elements of disembodied rationality. Instead, 
we argue, these sophisticated forms of discourse make use of basic image schemata 
related to force and motion, and are supported by conceptual metaphors grounded 
in physical experiences.

One such experience is the perception or action of physical causality: it is claimed 
that our earliest experiences as infants who are able to perceive/conceive that one 
event physically causes another provide a template for later being able to say and 
understand that “A implies B” in a logical sense. Without the notion of physical 
causality, we would not be able to build more abstract notions of social and logical 
causality. Similarly, the experience of physical motion through space, beginning at 
one location, proceeding along a trajectory or path to a final destination, whether 
perceived or enacted, gives rise to the source-path-goal schema. And this everyday 
schema in turn is recruited when we build the notion of a proof that starts with a 
premise, proceeds through a number of “steps,” and finishes with a conclusion.

We acknowledge that mathematical proof is a specialized cultural product and a 
specific form of discourse, developed and formalized over centuries in order to 
become a powerful tool for both solving practical problems and exploring patterns 
and structures. However, we would claim that the form that this discourse takes is 
not arbitrary, but rather is grounded in particular kinds of embodied human experi-
ences. This chapter has attempted to illustrate several ways in which proof-related 
discourse is grounded in the body. In order to assist students of mathematics to suc-
ceed in participating in its most characteristic practice, deductive proof, it is hoped 
that an understanding of how this grounding can both facilitate and, in some cases, 
hinder the learning of proof will be of value.
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Chapter 7
Math Puzzles as Learning Devices

Marcel Danesi

�Introduction

As Polya (1957) cogently argued, the use of puzzles and games has always been 
part of doing and learning mathematics since its emergence as an autonomous dis-
cipline (see also Parker 1955; Gardner 1998). The reason for this long-standing 
pedagogical practice may be that puzzles stimulate the imagination more so than 
any other type of mental faculty and are thus likely to be highly effective devices at 
various stages of the learning process. The purpose of this chapter is to consider the 
cognitive reasons supporting this implicit pedagogical principle. The use of puzzles 
and games in math education can be called, for the sake of convenience, educational 
recreational mathematics (ERM).

A specific word for what we now call a puzzle did not exist in antiquity. 
Activities in mathematics that we would now label in this way were called propo-
sitions. From the beginnings of mathematical history, these have constituted not 
only teaching devices, but also explorations of ideas by mathematicians them-
selves, often leading to discoveries within the field (Danesi 2018). For instance, 
the Ahmes Papyrus (1650 BCE) contains puzzles that were likely intended for the 
schooling of Egyptian youth but which also exemplified emerging ideas within 
mathematics itself. Similar texts are found throughout the ancient world. In a 
phrase, the early mathematicians knew that puzzles were intrinsic to mathematics 
itself and to its learning in school.

Although puzzles are used as ancillary pedagogical devices in math classrooms, 
it is rare to find entire courses and textbooks, akin to the Ahmes Papyrus, that revolve 
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around them. Given the abundance of classic puzzles that have constituted the 
foundation of various branches of mathematics—for example, the Königsberg 
Bridges Puzzle, devised by Leonhard Euler, laid the groundwork for graph theory 
and the Rabbit Puzzle, invented by Leonardo Fibonacci, became the basis over time 
for the theory of sequences—the purpose of this chapter is to argue for the inte-
grated use of such puzzles and their variants as part of ERM. The underlying objec-
tive is to give students the opportunity to “relive” historically how a particular field 
of mathematics emerged through the puzzle that gave it birth. Math teachers are 
adept at producing materials, manuals, and textbooks that incorporate puzzles as part 
of pedagogy (see, for example, Caldwell-Landsittell 2005). But there are few curri-
cula that are based on puzzle-solving itself, as was the Ahmes Papyrus or the late-
ninth-century puzzle collection compiled by Alcuin, Propositiones ad acuendos 
juvenes (see Hadley and Singmaster 1992), both of which understood that puzzles 
formed the core of mathematical learning.

�Puzzles, Problems, and Games

As mentioned, an equivalent word for puzzle did not exist in any of the languages of 
the ancient world, although the concept that it encodes was implicit in early math 
textbooks such as the Ahmes Papyrus. So, labeling some ancient math activity as a 
“puzzle” today is a retrospective form of reference. The term proposition was used 
within geometry to refer to a problem in which some shape or figure had to be con-
structed in a certain way according to specific principles. The word problem was 
coined a little later with this sense, namely as a question or task that pertains to 
some geometrical situation. From this, the word was extended to cover any mathe-
matical question that required a specific kind of answer. The word proposition how-
ever remained as an alternative word for a challenging puzzle, as can be seen in the 
title of Alcuin’s famous collection—Propositiones ad acuendos juvenes.

A distinction between problem, puzzle, and game is of primary importance for 
the purposes of ERM. Generally speaking, a problem presents information that can 
be used unambiguously to reach a solution directly; a puzzle, on the other hand, 
presents information that appears to be incomplete or else conceals a twist or a 
clever trap, thus making it much more difficult to reach a solution. Both problems 
and puzzles are Q&A (question and answer) structures. The difference between the 
two can thus be shown graphically as follows:

Problem
Q → A (the question leads directly to an answer)
Puzzle
Q → (A) (the answer to the question is not immediately obvious)

A simple problem might be the following: “Given sides of length 15 and 23 in a 
right-angled triangle what is the length of the hypotenuse?” This has a straightforward 
solution because all the information that is needed to solve it is given to us, if we have 
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learned the Pythagorean theorem. Now, in contrast, consider the following puzzle 
from the pen of the Renaissance Venetian mathematician, Niccolò Tartaglia:

A man dies, leaving 17 camels to be divided among his heirs, in the proportions 1/2, 1/3, 
1/9. How can this be done?

Dividing up the camels in the manner decreed by the father would entail having 
to split up a camel. This would, of course, kill it. So, the wily Tartaglia suggested 
“borrowing an extra camel,” for the sake of mathematical argument, not to mention 
for humane purposes. With 18 camels, we arrive at a solution: one heir was given 
1/2 (of 18), or 9; another 1/3 (of 18), or 6; and the last one 1/9 (of 18), or 2. The 
9 + 6 + 2 camels given out in this way add up to the original 17. The extra camel 
could then be returned to its owner. Clearly, Tartaglia devised his puzzle as a ludic 
play on fractions, not as a realistic solution to a practical problem. As Petkovic 
(2009: 24) observes, this simple puzzle also offers up generalization possibilities—
the crux of mathematical method. Tartaglia himself did so by finding solutions to 
the n-camel version of the puzzle. If there are three brothers, a, b, and c, and the 
proportions are 1/a:1/b:1/c, then solutions are produced by the following Diophantine 
equation:

	 n n a b c/ / / /+( ) = + +1 1 1 1 	

The solutions are shown below:

	

n a b c

n a b c

n a b c

n a

= = = =( )
= = = =( )
= = = =( )
= =

7 2 4 8

11 2 4 6

11 2 3 12

17 2

, ,

, ,

, ,

,, ,

, ,

, ,

, ,

b c

n a b c

n a b c

n a b c

= =( )
= = = =( )
= = = =( )
= = =

3 9
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The key feature of Tartaglia’s puzzle is that, unlike the previous problem, its 
solution is not obvious. It is common to refer to the effect that puzzle solutions pro-
duce in us as the “Aha” effect, reflecting the unexpectedness of the answers. It is 
relevant to note that Aha thinking has been found to originate in the right hemi-
sphere of the brain—a fact that is especially critical in developing a cognitive theory 
of puzzles, as will be discussed (Bowden et al. 2005).

The concept of mathematical game is also of relevance to ERM. A game presents 
an initial state (I), asking us to reach an end state (E) via a set of rules. An example 
is Sudoku, which presents a grid with some numbers in it (I) and a set of rules (how 
to place numbers in the grid) in order to achieve an end state (E)—the completion 
of the grid. A mathematical game has the following structure:

Math Game
I → R → E (the initial state must be modified via rules to reach the end state)
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A classic chess-derived math game is the so-called knight’s tour, which asks the 
following (Conrad et al. 1994):

Place a knight on the chessboard so that it visits every square once and only once.

There are many solutions to the puzzle, with the earliest one dating back to the 
ninth century in the Kavyalankara, a Sanskrit work on the nature of poetry. These 
need not concern us here. Suffice it to say that games such as the knight’s tour 
require an abundant use of imagination to solve, even if we already know what is 
expected of us in the end, unlike Tartaglia’s puzzle where the answer was not ini-
tially obvious. So, since we know that there is a solution (E), the game produces a 
“Eureka” effect, rather than an Aha one. This results from working out a way (or 
ways) to reach the end state, which might seem intractable at first. It is an expression 
of satisfaction more than one of surprise.

Needless to say, the line between a puzzle and a game is a blurry one, and this is 
perhaps why the two terms are used interchangeably, despite the fact that they refer 
to different psychological processes. Both are to be incorporated systematically 
within ERM, as will be discussed. As Trigg (1978: 18) has aptly observed, the term 
“recreational” should be taken at face value—creating math in an imaginative way. 
The objective of ERM is to allow students to explore mathematics through puzzles 
and games. Determining which ones are to be included under this rubric is a subjec-
tive act. As Trigg (1978: 21) remarks: “Recreational tastes are highly individual-
ized, so no classification of particular mathematical topics as recreational or not is 
likely to gain universal acceptance.” The only pedagogical principle involved is to 
make sure that the choice of puzzles and games is synchronized to the overall flow 
of the curriculum. This topic will be discussed more concretely below.

�The Aha, Gotcha, and Eureka Effects

Aha thinking is the defining cognitive characteristic of puzzles. The classic example 
used to demonstrate this by psychologists is the so-called nine-dot puzzle (Fig. 7.1):

Without your pencil leaving the paper, can you draw four straight lines through the follow-
ing nine dots?

Fig. 7.1  Nine-dot puzzle

Many students attack this puzzle by joining up the dots as if they were located on 
the perimeter (boundary) of a square or flattened box. But this reading of the puzzle 
does not yield a solution, no matter how many times they try to draw four straight 
lines without lifting the pencil. A dot is always “left over.” At this point, Aha thinking 
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comes into play: “What would happen if the four lines were to be extended beyond 
the assumed imaginary box structure of the dots?” That hunch turns out to be the 
relevant Aha insight. One solution is as follows (Fig. 7.2):

Fig. 7.2  A solution to 
the nine-dot puzzle

The first appearance of a dot-joining puzzle is in Sam Loyd’s Cyclopedia of 5000 
puzzles, tricks, and conundrums with answers (1914). The puzzle is now used in 
psychology to study imaginative thinking (Kershaw and Ohlsson 2004). It requires 
solvers to literally look beyond the implied box figure of the puzzle. The term “lat-
eral thinking” was proposed by De Bono (1970) to refer to the Aha thinking involved 
in solving the nine-dot puzzle, because a solver must think beyond the boxlike 
structure that the puzzle initially suggests. In his intriguing book Aha! Insight! 
Gardner (1979) exemplifies how this type of thinking unfolds through actual puz-
zles, allowing us to engage in such imaginative thinking directly.

The key pedagogical aspect of this kind of thinking is that it can be generalized 
after the initial Aha solution. The above puzzle is a 3 × 3 version of a dot-joining 
puzzle. By solving 16-dot, 25-dot, and various other puzzles, is it possible to 
uncover some general principles hidden within it? Is there a correlation between 
number of dots and number of connecting lines? This line of “post-solution think-
ing” is the essence of recreational mathematics. After solving a number of more 
complex dot-joining versions, a chart emerges, which suggests a relation between 
the number of dots and the lines required to solve it:

Dots Lines required

3 × 3 (3 + 1) = 4
4 × 4 (4 + 2) = 6
5 × 5 (5 + 3) = 8
6 × 6 (6 + 4) = 10
… …
n × n n + (n − 2) = 2n − 2 = 2(n − 1)

Needless to say, research on this type of puzzle has revealed more complexity. 
The point here is that it allows students to explore a pattern that may be packed into 
it. Unpacking that pattern is the role of logical reasoning; discovering the pattern in 
the first place is the role of Aha thinking.
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Consider now the following classic puzzle that turned up for the first time in an 
arithmetic textbook written by Christoff Rudolf and published in Nuremberg in 
1561 (De Grazia 1981):

A snail is at the bottom of a 30-foot well. Each day it crawls up 3 feet and slips back 2 feet. 
At that rate, when will the snail be able to reach the top of the well?

This puzzle requires linking the counting process with the physical scenario 
to which it refers in an ingenious way. Since the snail crawls up 3 ft., but slips 
back 2 ft., its net distance gain at the end of every day is, of course, 1 foot up 
from the day before. To put it another way, the snail’s climbing rate is 1 foot up 
per day. At the end of the first day, therefore, the snail will have gone up 1 foot 
from the bottom of the well, and will have 29 ft. left to go to the top (remember-
ing that the well is 30 ft. in depth). If we conclude that the snail will get to the 
top of the well on the 29th day, as many students do (in my own teaching experi-
ence), we will have fallen into the puzzle’s hidden trap. On the second day it 
starts at 1 from the bottom; on the third it starts at 2 from the bottom; so, on 28th 
day it starts at 27 from the bottom. This means that the snail has 3 ft. to go to the 
top on that day. It goes up the 3 ft., reaches the top, and goes out, precluding its 
slippage back down. For the sake of historical accuracy, it should be mentioned 
that the original puzzle archetype is found in the third section of Fibonacci’s 
Liber Abaci (1202):

A lion trapped in a pit 50 feet deep tries to climb out of it. Each day he climbs up 1/7 of a 
foot: but each night slips back 1/9 of a foot. How many days will it take the lion to reach the 
top of the pit?

Students react to this puzzle with a sense of having being duped. So, rather than 
the Aha effect, it thus produces a “Gotcha” effect, as Gardner (1982b) aptly desig-
nated it. When we fall into the puzzle’s trap, we really do not like it. However, peda-
gogically, the Gotcha effect is still very important—it warns us to read information 
carefully and extract from it the required interpretation. Moreover, in this case, the 
puzzle can be used to illustrate the meaning and value of the “number line,” since 
the well can be envisioned as such a line and movements up and down that line as 
points on it.

As mentioned, rather than an Aha effect, math games produce a Eureka effect. 
“Eureka” means “I have found (it)” in Greek, and is famously connected to what 
Archimedes supposedly shouted when he envisioned a way to determine the purity 
of gold by applying the principle of specific gravity. Producing this effect is as 
important as producing the Aha and Gotcha effects—once a student reaches the 
point of exclaiming Eureka, then one can safely say that the student has grasped the 
hidden principle in a game and thus is well on the way to grasping the concept 
involved.

In sum, the overarching goal of ERM is to produce all three effects—Aha, 
Gotcha, and Eureka—through puzzles and games. The premise is that these stimu-
late the imagination and thus get learners to engage in the same kind of creative 
thinking that mathematicians have engaged in since the start of their discipline.
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�Objectives of ERM

The main pedagogical objective of ERM, as discussed above in the case of the nine-
dot puzzle, is to get students to model solutions, searching for any general principle 
embedded in them. Consider the eight queens puzzle, which is really a game as 
defined here, whereby eight queens must be placed on an 8-by-8 chessboard in such 
a way that none of the queens is able to capture any other queen (with the normal 
rules of chess). A solution (or end state) requires that no two queens share the same 
row, column, or diagonal. One solution is given in Fig. 7.3.

Fig. 7.3  A solution to the 
eight queens puzzle game

Now, students will invariably come up with different solutions. There are actu-
ally 92 distinct solutions; however if rotations and reflections of the board are taken 
into account, then it has 12 unique solutions. The puzzle game can now be used to 
get students to envision how to model an “n-by-n” solution. This need not concern 
us here. The point is that a simple game can lead to an engagement with fundamen-
tal mathematical method in the classroom and this is bound to enhance learning.

The puzzles and games that can be incorporated into ERM need to be, of course, 
tagged for their learning value. So, for example, cryptarithmetic puzzles can be 
identified as useful for the teaching of arithmetic. The topic of combinatorics can be 
presented and reinforced with puzzles and games involving sequential movement, 
such as the Towers of Hanoi Puzzle. The Monty Hall and Birthday Problems can be 
used profitably to impart basic notions of probability theory. Euler’s Königsberg 
Bridges Puzzle is effective for introducing modern graph theory. Many tiling, pack-
ing, arrangement, and dissection puzzles, such as tangrams and Soma Cubes, lend 
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themselves to the teaching of notions such as symmetry and impossibility. The list 
is actually endless and, as Trigg (1978) pointed out, the selection is really a subjec-
tive matter. The main thing to keep in mind is the didactic value of specific puzzles 
in a particular learning situation. So, the starting point for integrating puzzles and 
games into math education is developing an appropriate typology. Needless to say, 
there have been many proposals for classifying math puzzles. For example, the table 
of contents in Schuh’s (1968) classic collection contains 267 distinct puzzle types. 
And his typology comes before the many new placement and mechanical puzzles 
that now flood the market. So, it is more practicable to concentrate on how specific 
puzzles and games can become entry points into mathematical ideas, rather than 
simply developing a generic taxonomy.

Virtually any classic puzzle or game can be incorporated into ERM. Consider the 
game of tic-tac-toe. As trivial as it might seem, it actually raises key questions 
related to probability and symmetry: What is the likelihood of winning if the X or 
the O is inserted in a particular location? What placement makes sense at the start? 
Can we reconstruct the winning moves and explain them? Answering these ques-
tions entails inferential analysis and hypothesis thinking. As Moscovich (2015: 15) 
has perceptively remarked: “Despite its apparent simplicity, tic-tac-toe requires 
detailed analysis to determine even a few elementary combinatorial facts, like the 
number of possible positions.” Interestingly, all games should produce a draw; so, 
error and miscalculations, along with one opponent outwitting the other, are the 
only ways for winning to occur. Mathematics does not fail, but humans do, which is 
itself a significant pedagogical lesson to be imparted.

It is accurate to say that math educators, by and large, employ puzzles to illus-
trate or reinforce math notions or principles, complementing other materials. This 
constitutes an ancillary form of ERM. As far as can be told, an integrative use of 
puzzles and games in contemporary math education has been only occasionally 
contemplated. This topic will be broached below. At this point it is sufficient to 
outline the main pedagogical objectives of ERM in a general way:

	1.	 Puzzles and games stimulate imaginative thinking. They are, in a sense, math 
thought experiments.

	2.	 They challenge and motivate students to explore mathematical notions or prin-
ciples creatively.

	3.	 They allow students to explore how ideas in mathematics may have arisen.
	4.	 Some math games, such as the eight queens puzzle, help develop spatial reason-

ing skills naturally.
	5.	 Placement games, such as Sudoku, stimulate reasoning processes combined with 

spatial reasoning (what to place and where to place it).
	6.	 Number puzzles, probability puzzles, graph puzzles, and many more span the 

whole domain of mathematical analysis in creative and ingenious ways.

Alexander (2012) has identified three dimensions of math cognition that are rel-
evant to the present discussion—“pre-math,” “math,” and “mathematics.” “Pre-
math” is innate and intuitive, including a primitive sense of number and space. 
“Math” is what we learn as a set of formal skills, from elementary school to more 
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advanced levels of education. It is what educators, policy makers, mathematicians, 
and many businesses want everyone to be competent in. “Mathematics” is the disci-
pline itself, with its own professional culture, its research agendas and epistemolo-
gies, its own sense of correctness built around rigorous proofs, and so on. The 
boundaries among the dimensions are not clear-cut, and there are many cross-influ-
ences, but the distinctions are useful nonetheless. The goal of ERM is to transform 
“pre-math” into “math” and then to get the student to use the new knowledge to 
discover “mathematics” as a discipline.

�Psychological and Pedagogical Aspects

To use an analogical construct from foreign-language learning theory, a distinction 
can be made between the acquisition of mathematical ideas and the learning of 
these ideas in a more formal fashion. This distinction was articulated first by linguist 
Krashen (1982, 1985). It is worthwhile reviewing it schematically here and consid-
ering its implications for ERM.

Noting how children develop their native languages naturally and how students 
struggle instead to master a foreign language at school, Krashen characterized the 
difference as one between acquisition and learning. The former characterizes spon-
taneous development in context, including early classroom input. Learning, on the 
other hand, is a conscious mode of analyzing the input that is activated when stu-
dents know enough about the language to be able to reflect upon it formally. 
Krashen’s distinction encapsulates something that math teachers have also felt intu-
itively—namely that students pick up certain things spontaneously but require con-
scious effort and focus to grasp other things. Acquisition is dominant during the 
processing of early input, when students pick up many new skills unconsciously. 
Learning, on the other hand, is dominant during later stages, when students attempt 
to understand “what is going on,” so to speak.

Krashen derived his ideas from the work of the Russian psychologist Vygotsky 
(1961). For instance, his “i  +  1” characterization of acquisition is derived from 
Vygotsky’s notion of “zones of proximal development.” This implies that children 
progress through zones of learning that are extended spontaneously as soon as they 
are able to understand new input by themselves—hence “i (input) + 1.” Krashen 
claimed (1985: 1) that this “does not appear to be determined solely by formal sim-
plicity,” nor is it dependent on “the order in which rules are taught in language 
classes.” It is triggered by the acquisition mode. The primary implication is that to 
get acquisition to unfold naturally involves providing input that contains “a bit” of 
information that is beyond the student’s developing competence.

ERM aims to provide an “i + 1” learning environment throughout the course of 
the study. As Krashen argued, this type of environment will activate the modalities 
of the right hemisphere of the brain first, leading subsequently to the left hemi-
sphere’s ability to encode and formalize the ideas grasped naturally. In previous 
work, I have referred to this flow of learning as “bimodal” (Danesi 2003). The 
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essence of bimodality can be seen in Gardner’s (1982a: 74) statement: “Only when 
the brain’s two hemispheres are working together can we appreciate the moral of a 
story, the meaning of a metaphor, words describing emotion, and the punch lines of 
jokes.”

Bimodality theory is based on the observation that for the brain to grasp unfamil-
iar input it requires the experiential (probing) right-hemisphere functions to operate 
freely. These can be called R-Mode functions. When familiarity with the input 
becomes viable, then the analytical capacities of the left hemisphere, called L-Mode, 
come into play. Bimodality thus suggests a general principle of learning that can be 
called the modal flow principle:

New notions and structures are learned more efficiently when the brain is allowed to pro-
cess them in terms of an R-Mode (experiential) to L-Mode (analytical) flow.

So, during the initial acquisition stages, students need to assimilate input through 
creative R-Mode activities. This is where puzzles and games fit in—as R-Mode 
devices. But after this stage, students need to be exposed to formal explanations, 
practice drills, and other kinds of L-Mode techniques to reinforce what they have 
learned. The modal flow principle thus claims that: (1) experiential-creative forms 
of teaching belong to the initial acquisition stages; (2) teaching should become pro-
gressively more formal after these stages; and (3) the creative utilization of the new 
input belongs to the final reinforcement stages. Stage (1) is, as mentioned, an 
R-Mode stage, (2) an L-Mode stage, and (3) can be called simply a bimodal stage.

Needless to say, an advanced math student who is already in firm control of the 
required L-Mode skills through previous training will not have to spend as much 
time on the R-Mode phase as would a beginner. When students have mastered the 
L-Mode aspects of a concept, then they will be in a position to integrate them with 
the R-Mode ones as they are exposed to new mathematics. A consummate control 
of mathematics is, from a neuropsychological perspective, a bimodal feat, requiring 
the integrated contribution of both the R-Mode and the L-Mode to the understand-
ing of a task.

The modal flow principle makes one fundamental demand on teachers—it 
requires them to identify a specific learning task as being novel or not. Generally 
speaking, something is novel when it involves structures or concepts that are either 
different or absent from the point at which the curriculum finds itself. Suffice it to 
say at that any task or input can be considered to be novel if the students demon-
strate an inability to understand it or use it functionally. If that is so, instructional 
techniques that focus on analysis will be of little value, since the students have no 
preexisting L-Mode schemas for accommodating the new information directly. In 
order to make something accessible to the L-Mode, pedagogical experience dictates 
that the learner should be allowed to explore the new structures and concepts 
through R-Mode techniques. So, if graphs are to be discussed, an ideal R-Mode 
device to introduce them would be Alcuin’s River Crossing Puzzles or Euler’s 
Königsberg Bridges Puzzle. Once the initial R-Mode acquisition stage has been 
allowed to “run its course,” the teacher can then “shift modes” and put the students 
in a frame of mind that allows them to reflect on the new structural patterns in them-
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selves—namely the principles of critical path or graph theory. This implies the use 
of L-Mode techniques such as explanations, exercises, and the like. There is no way 
to predict when students will reach this stage, as Vygotsky maintained; but when 
they do it is obvious to teacher and learners alike.

From the foregoing discussion, the central question that applies to ERM is to 
determine whether puzzles should be used to maximum effect as ancillary or inte-
gral devices in a specific math classroom. The modal flow principle answers this 
question indirectly by suggesting that puzzles should be used during R-Mode stages, 
when they are integral to the acquisition process. During L-Mode stages the math 
concepts which they harbor should be taught formally.

To allow the R-Mode to process the novel input, students can be asked to provide 
variations to the puzzle given by extemporizing and adding their own versions to its 
basic format, no matter how many structural errors they might commit in the pro-
cess. The actual time it takes for this stage to run its course will depend on the learn-
ers themselves (that is, on the kind of math know-how they bring to the classroom, 
on their previous familiarity with the concept in question, and so on). However, in 
order for the new structures and concepts to become part of long-term memory, this 
R-Mode stage must be followed up by techniques that allow the students to reflect 
and analyze the new content. This secondary stage in the flow cannot be circum-
vented. L-Mode knowledge will not necessarily emerge on its own in a de facto 
manner. So, ERM is really part of an integrated pedagogical system, amalgamating 
traditional mathematics education with puzzles in a cohesive way. Obviously, some 
types of learners will need fewer formal explanations and exercise reinforcement 
practice than others. Moreover, the type of instruction to be used will vary according 
to both learner cognitive style and type of input—some tasks are best taught through 
puzzle devices, and others through more formal ones. The way to determine what 
modal technique is appropriate is simply to try one out. Clearly, if some puzzle 
doesn’t seem to work, then another one (or a different one within the same puzzle 
genre) must be considered. Similarly, the degree of utilization of the students’ back-
ground knowledge will depend on the level of math competence reached by them—
the more they are familiar with the concept the more the new material can be 
explained without ERM strategies. Commentaries on any pattern or feature related 
to, or derived from, the new content should be elaborated when required.

At various points in the learning process, individual students may manifest some 
persistent difficulty in utilizing a concept. At other points, they may show difficulty 
in using a certain concept in applications or in a mathematically appropriate fash-
ion. At such points, it is obvious that they will need to focus on the concept itself. 
This aspect can be called the modal focusing principle:

It is necessary from time to time in a course of study for the student to focus on some modal 
feature or pattern that is causing learning difficulty.

When a learner needs help in overcoming some error pattern that has become an 
obstacle to learning, then “L-Mode focusing” techniques should be used to allow 
that student an opportunity to relearn the feature in question. “R-Mode focusing” 
techniques, on the other hand, may be needed when a student shows the inability to 
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apply a certain concept or structure; this is when puzzle techniques become highly 
useful. In essence, this principle claims that there will be points when students may 
need to stop and focus on certain aspects of the material introduced.

In an important work, Meyer et al. (2014) argue cogently for developing an over-
all approach to math education that they call puzzle-based learning (PBL). For these 
math educators, puzzles should be selected or designed to motivate students to think 
about framing and solving unstructured problems. The main goal, which is in line 
with bimodality theory, is to turn the implicit math concept inherent in certain puz-
zles into theoretical knowledge. The PBL approach is, in a phrase, a concrete pro-
posal of how to teach mathematics bimodally. There is potentially an infinitude of 
others, allowing teachers to decide for themselves how to organize classroom input 
effectively.

�Concluding Remarks

The historical imagination of mathematicians is imprinted in the classic puzzles and 
games that they have devised. Immersing oneself in this imagination implies grasp-
ing their puzzles. ERM is an attempt to project students into the imaginations of the 
greatest mathematicians of all time through the puzzles they created. To be used 
practically, it only requires an adjustment in the organization and timing of input 
within the normal course of pedagogy, at any level of education. How this can be 
done has been discussed schematically in this chapter.

Math educator Picciotto (2012) characterizes the use of puzzles in the classroom 
as a form of energy:

Bottom line: the kind of energy the right puzzle brings into the classroom is phenomenal, 
with all types of kids. To get teachers to buy into this, the challenge is making the connec-
tion between puzzles and the core curriculum, rather than promote puzzles as something 
that just happens on the side.

It is that “energy” that ERM aims to harness. Without such energy, incidentally, 
it is unlikely that puzzles would have played such a key role in the history of math-
ematics itself. Puzzles are, as mentioned, explorations in the patterns that are inher-
ent in some situation. As the Estonian biologist von Uexküll (1909) claimed, the 
brain is programmed to “model” such patterns in the form of cognitive artifacts. 
Puzzles are such artifacts, revealing that the brain is tuned into the structure of the 
world (since it rises from it). Through the puzzles that it generates, we are given 
glimpses of that structure a little at a time.
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Chapter 8
Diagrams in Mathematics: On Visual 
Experience in Peirce

Vitaly Kiryushchenko

I think there could be a mathematical explanation of how bad 
your tie is (Russell Crowe as John Nash in Ron Howard’s “The 
Beautiful Mind”)

Just as we say that a body is in motion, and not that motion is in 
a body, we ought to say that we are in thought and not that 
thoughts are in us (Charles S. Peirce)

�Introduction

Mathematicians use diagrams in their work all the time, whether they want to make 
use of Euclid’s fifth postulate, to prove Fermat’s principle, or to extract an algorithm 
that defines the seemingly chaotic movement of pigeons picking bread crumps from 
the ground. Using diagrams helps mathematicians identify patterns that solve par-
ticular mathematical problems by making the force of necessary reasoning visually 
given. A mathematical diagram, a paradigmatic use of which is exemplified in 
Euclid’s Elements, is an individual image that instantiates necessary relations. As an 
observable entity, it allows a mathematician to experiment upon it and to visually 
demonstrate the necessity of a given conclusion. At the same time, it represents an 
abstract mathematical object. We do not use diagrams simply to facilitate our rea-
soning and then translate those diagrams into a formal calculus in order to make 
inferences. Diagrams themselves are immediate visualizations of the deductive pro-
cess as such. The necessary character of deductive arguments is thus internal to the 
diagrams mathematicians construct (Sloman 2002).

There has been a surge in research on the use of diagrams in mathematics in the 
last two decades, with subjects ranging from the general role diagrams play in math-
ematical proofs (Barker-Plummer 1997; Kulpa 2009; Mumma 2010; Sherry 2009) 
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to the role of analogical reasoning in scientific concept formation (Abrahamsen and 
Bechtel 2015; Nersessian 1992) and the use of diagrammatic tools in teaching 
mathematics (Bakker and Hoffmann 2005; Danesi 2016: 92–108; Hegarty and 
Kozhevnikov 1999; Legg 2017; Prusak 2012). The assumption shared by the 
majority of researchers is that studying diagrams may be seen as a way of bridging 
the gap between the purely platonic view of mathematics as a domain of abstract 
eternal forms, on the one hand, and theories that aspire to uncover the experiential 
basis of mathematical truths, on the other hand (Danesi 2016a: 15–18). This assump-
tion is epitomized in the claim that the cognitive structure of mathematics presup-
poses a strong connection between mathematical abstractions and metaphorical 
cognition, and that our ideas of quantity and number systems are linked to our 
bodily experiences through what is known as “conceptual blending” (Lakoff 1999; 
Lakoff and Núñez 2000). To unpack the metaphors that instantiate such blending is 
to reveal the cognitive schematism which is deeply ingrained in human conceptual 
capacities and which shows that both surface figurative language and mathematics 
“are implanted in a form of cognition that involves associative connection between 
experience and abstraction” (Danesi 2016: 4). It seems that mathematical diagrams, 
which combine spatial and algebraic characteristics, and which allow continuous 
manipulations—as opposed to discrete symbolizations within formal algebraic sys-
tems—actually embody this associative connection in the best way possible.

One of the thinkers who pioneered the research of the role diagrams play in logi-
cal and mathematical reasoning was a logician and a mathematician Charles Sanders 
Peirce. In fact, Peirce went as far as to claim that there is no mathematical reasoning 
proper that is not diagrammatic (Peirce 1931–1958, Vol. 1, para 54; CP 2.216, CP 
5.148). His system of diagrammatic logic, which he called “existential graphs,” 
shows that diagrams are iconic signs that represent a link between visual experi-
ence, necessary reasoning, and imaginative experimentation. Thus conceived, the 
iconicity of diagrams, Peirce believed, tells us something important about the 
homological relationship between the grammar of visual language and the very 
machinery of thought, or thinking in actu (Peirce 1976 [NEM], p. 239; CP 4.6). In 
light of the above, the goal of this chapter is to delve into the question of what the 
iconicity of diagrams actually amounts to, or, in other words, what a mathematician 
actually sees when he or she is involved in reasoning by means of diagrams. From 
the Peircean perspective, to address this question is to define what diagrams are as 
signs, which characteristics they share with other signs, and which characteristics 
are unique to them.

�Three Characteristics of Signs

According to Peirce, diagrams are iconic signs. By a “sign” Peirce broadly means 
anything (a thought, an emotion, a name, a mathematical formula, an existent physi-
cal object, a natural kind, a tool, the word “tool,” a musical concerto, an action, a 
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move in a chess game, a law of nature—anything at all) capable of standing for 
something else in some respect to someone who can interpret it (CP 2.228). Thus, 
“Santiago” in “Charles Santiago Sanders Peirce” stands for the name of a Biblical 
character to someone who can interpret it further as an expression of Peirce’s grati-
tude to his friend William James. “Qf4” stands for Bobby Fischer’s move in game 
six of the 1972 Spassky-Fischer World Chess Series, to Boris Spassky who, while 
pondering over his unfortunate situation, was preparing to resign. “Black Square” 
stands for a visual expression of the mathematical regularities that explain the basic 
relations between form and color in suprematism, to an art critic writing a book on 
Kazimir Malevich. “10” stands for tetractys, an equilateral triangle consisting of ten 
points arranged in four rows of 1, 2, 3, and 4, to a Pythagorean mathematician 
Eudoxus, who interpreted it as a mathematical expression of the universal cosmic 
harmony. The same number also stands for “impossible to be scratched by a piece 
of corundum” to a mineralogist as a description of diamond’s hardness according to 
Mohs’ scale, etc. (Peirce 1992–1998, Vol. 2, p. 326).

Three principal characteristics every sign possesses are important for under-
standing what Peirce actually means by a “diagram.” First, Peirce insists that every 
sign, even if it is not actually interpreted, in order to be a sign, should be capable of 
being interpreted. The meaning of any and every sign thus consists in its future 
interpret-ability. From this, it follows that a sign’s identity always lies in its refer-
ence to some other thing. Peirce was an idealist and, in his view, for anything at all 
to be is to stand for something else to a mind, that is—to be a sign. Given that every-
thing, thus, is a sign, and that every sign is addressed to its possible future interpre-
tations, an interpretation can result in nothing but the creation (or discovery) of a 
new sign. In Peirce’s semiotics novelty, therefore, appears to be a necessary charac-
teristic inherent in every act of interpretation. Second, although sign’s being 
addressed to the possible future implies that no finite number of interpretations is 
exhaustive of its meaning, any and every interpretation has a short-term goal. 
Believing a proposition (say, “Gödel’s Second Incompleteness Theorem shows that 
Peano arithmetic cannot prove its own consistency”) is true amounts to being pre-
pared to act habitually on this belief when the occasion presents itself (for instance, 
being prepared to employ a diagonal argument, or to clarify the idea of self-reference 
in Russell’s paradox). Accordingly, the meaning of a sign depends on what habits of 
conduct it is going to bring about (Peirce 1992–1998, p. 432). Combining the idea 
of future interpretation and the idea of sign’s being related to its object by means of 
possible conduct allows Peirce to define the meaning of a sign as the sum total of 
habits it would ultimately produce (Peirce 1992–1998, p. 346). This, in turn, brings 
about the definition of the ultimate aim of inquiry. In Peirce’s own words, this aim 
consists of:

the desire to get a settlement of opinion in some conclusion which shall be independent of 
all individual limitations, independent of caprice, of tyranny, of accidents of situation, of 
initial conditions, which does not confirm any belief but unsettles and then settles,—a con-
clusion to which every man would come who should pursue the same method and push it 
far enough (Peirce 1982, Vol. 3, p. 19).
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What underlies the idea of the end of inquiry is statistical reasoning. As Peirce 
explains, “judging of the statistical composition of a whole lot from a sample is 
judging by a method which will be right on the average in the long run, and, by the 
reasoning of the doctrine of chances, will be nearly right oftener than it will be far 
from right” (CP 1.93). No matter where different members of a community of 
inquirers may begin, as long as they follow a certain method, the results of their 
research should eventually converge toward the same outcome. The method is for-
mulated in Peirce’s maxim of pragmatism: “Consider what effects, that might con-
ceivably have practical bearings, we conceive the object of our conception to have. 
Then, our conception of these effects is the whole of our conception of the object” 
(Peirce 1982, Vol. 3, p. 266). This formulation echoes Peirce’s definition of sign as 
it suggests that meanings of our ideas depend on our capacity to predict outcomes 
of our experiments with the objects of those ideas, and to act on the outcomes. 
Because our capacity to interpret signs assumes our capacity to predict the out-
comes of our possible future actions, signs bring habits about but, at the same time, 
they are catalysts that cause those habits to be reinforced or abandoned. Consequently, 
interpretation that follows the method, as it is described in Peirce’s maxim, is self-
corrective, i.e., characterized by self-controlled, habit-driven action.

Now what any language—whether natural, such as English, or mathematical, 
such as algebra—prima facie does is it brings individual objects under general con-
cepts. Peircean signs refer to their objects through habitual action. According to the 
maxim quoted above, all our general idea of a thing amounts to is an account of our 
would-be responses to the changes resulting from our experiments with this thing. 
Signs, therefore, act like any language, with the only difference that they refer to 
their objects not through arbitrary convention, but through adaptive habitualized 
behavior. The relationship between the general and the particular through habits is 
the third characteristic of signs that is of importance for the idea of a mathematical 
diagram, to be discussed below.

�Iconicity and Habitual Action

As iconic signs, diagrams are related to their objects by means of likeness. But what 
does it mean? What does likeness, revealed in vision (and, more broadly, in percep-
tion), amount to? Peirce himself recognized that there is a quandary here: “I myself 
happen, in common with a small but select circle, to be a pragmatist, or ‘radical 
empiricist,’ and as such, do not believe in anything that I do not (I think) perceive. 
… Only, the question arises, What do we perceive?” (CP 7.617–618; emphasis 
added). If we confine iconicity to the domain of vision only, we face a problem. For 
instance, in comparing what we see in a portrait of a mathematician Christiaan 
Huygens by Caspar Netscher, with what we would see if we lived in the seventeenth 
century and actually met Huygens, we juxtapose a two-dimensional image and a 
real person. In none of its parts the portrait is “like” Huygens himself. No matter 
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how far we go into detail in trying to explain what particular feature serves as a 
ground for comparison, the “what” of similarity always escapes analysis (Eco 1992: 
191–216). It should be realized, therefore, that when we are talking about similarity, 
we are talking about some sort of perceptual schematism rather than vision simplic-
iter. Peirce’s principal suggestion is that what underlies this schematism is the iso-
morphism of not of substances, but of relations (Peirce 1992–1998, Vol. 2, p. 13; 
Stjernfelt 2007: 50–77; Paavola 2011); and he claims that maps, charts, geometric 
diagrams, and mathematical equations are primary examples of this isomorphism 
(NEM, p. xv; CP 4.530). Thus, for instance, the relation between points on a map of 
Toronto is isomorphic with the relation between the corresponding places on the 
Earth’s surface, just as the relation between candles on a NASDAQ chart is isomor-
phic with the moves of the index’s price over time. Similarly, the mathematical 
function “__is a square of__,” or f(x) = x2, is a mapping rule for a set of ordered 
pairs, in which one element is mapped onto the other, so that <2, 4> is followed by 
<3, 9>, etc. (Bradley 2004: 71–73). Imaging is no different. A feature, with respect 
to which a portrait is like its object, is always dynamic. It is a result of mapping of 
one set of relations onto another, revealing a character of the portrayed person based 
on the schematization of an imagined change. From this perspective, diagrams are 
iconic signs precisely because the similarity they convey reflects not the way their 
objects look, but the way they behave, their modus operandi: viewed relationally, 
diagrammatic iconicity is about how we read charts, use maps, do math, and decode 
a facial expression on a portrait. Diagrams copy the way their objects behave and, 
therefore, just like other signs, ultimately refer to habitual action.

A special case in this respect is represented by Peirce’s existential graphs. The 
graphs replace formalized linear successions of syllogistic structures with a set of 
diagrammatic pictures in a state of constant transformation; they are conceived as 
schematic visual expressions of relations inherent in the action of thinking itself. 
The proper object of the graphs is thus the very machinery of ratiocination:

It is requisite that the reader should fully understand the relation of thought in itself to think-
ing, on the one hand, and to graphs, on the other hand. Those relations being once magiste-
rially grasped, it will be seen that the graphs break to pieces all the really serious barriers, 
not only to the logical analysis of thought, but also to the digestion of a different lesson, by 
rendering literally visible before one’s very eyes the operation of thinking in actu (CP 4.6).

Graphic, nonlinear reading, as exhibited in the graphs, is important for a mathe-
matician in several respects. First, Peirce’s graphs are so designed as to show an 
immediate logical continuity of thinking in the form of a dialogue between two 
imaginary parties: the graphist and the interpreter. As Peirce puts it, “thinking 
always proceeds in the form of a dialogue—a dialogue between different phases of 
the ego” (ibid.). To this end, the graphs replace literal signification of functions, 
variables, and quantifiers with shapes mapped onto each other and composed of a 
variety of graphical conventions. The most basic conventions of the existential 
graphs are represented by the sheet of assertion (a blank sheet on which all graphs 
are being created); a cut, or negation (a linear separation that cuts whatever it 
encloses off from the sheet of assertion); a line of identity, asserting the existence of 
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the individuals denoted by its extremities; and a ligature (a connection of two or 
more lines of identity). The empty sheet of assertion assumes that the truth of what-
ever is stated on it is a matter of agreement between the graphist and the interpreter. 
The empty sheet of assertion is, therefore, itself a graph. A cut that encloses an area 
of the sheet of assertions that is empty, i.e., contains no statement, is the pseudo-
graph as it represents a statement that negates its own truth. In manipulating the 
graphs, a mathematician can actually observe a given argument visualized by a set 
of transformational rules as a number of continuously transforming pictures, and 
experience the meaning of the argument visually as a set of transitional states. It is 
for this reason that Peirce sometimes called his graphs the “moving pictures of 
thought” (CP 4.8), or “a portraiture of thought” (CP 4.11).

An important feature of the graphs is that the conventions and transformational 
rules, which constitute the grammar of the graphs, are devised as a surface structure 
that is not separated from what the graphs actually convey. In other words, the logi-
cal form of every graph appears to be an integral part of its overall message. Every 
graph thus conveys information and simultaneously provides a key to how this 
information is to be decoded. To use Marshall McLuhan’s catch phrase, in this case, 
truly, “the medium is the message” (1994: 7–21). Seeing something and under-
standing how it works, or what is stated and how the statement is constructed, is a 
matter of one and the same act. Because every graph (including the sheet of asser-
tions and the pseudograph) performs a visualization of the way its messages are 
encoded, using the graphs, or the moving pictures of thought, blurs the distinctions 
between the internal and the external, ratiocination and observation, and code and 
message. This feature of the graphs reflects a general characteristic Peirce ascribed 
to all iconic signs:

Icons are so completely substituted for their objects as hardly to be distinguished from 
them. Such are the diagrams of geometry. A diagram, indeed, so far as it has a general sig-
nification, is not a pure icon; but in the middle part of our reasonings we forget that abstract-
ness in great measure, and the diagram is for us the very thing. So in contemplating a 
painting, there is a moment when we lose the consciousness that it is not the thing, the 
distinction of the real and the copy disappears, and it is for the moment a pure dream,—not 
any particular existence, and yet not general. At that moment we are contemplating an icon 
(Peirce 1992–1998, Vol. 1, p. 226)

To rephrase, the likeness is neither in the sign, nor in the object, but in the way 
the two are brought together by an interpreting mind relative to some practical pur-
pose it has (Parker 2017, p. 68). Given this, it might be claimed that the graphs are 
diagrams par excellence. The ground for the iconicity of a graph is the isomorphism 
between an experimental change in the relations between the parts of the graph and 
the corresponding transformation in its object—as is the case with diagrams in gen-
eral. An important difference though is that the object of existential graphs is the 
thinking process, or the process of imaginative experimentation itself. The graphs 
do not simply show transitions from one thought to another so that we could further 
translate them into a formal language; they represent an identity between the action 
of thought and the continuity of movement in space exhibited in a graph (Paolucci 
2017: 84–85).
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�Iconicity and Novelty

Peirce treated visual perceptions (and perceptions in general for that matter) as 
results of unconscious inferences (Hull 2017: 150). In his view, any percept is 
essentially a product of a long history of gradually habitualized, piecemeal adjust-
ments to the ever-changing environment. If every visual experience is thus a read-
justment, it is, as Peirce puts it, “constructed at the suggestion of previous sensations” 
that “are quite inadequate to forming an image or representation absolutely determi-
nate” (Peirce 1982, Vol. 2, p. 235). Peirce’s overall conclusion is that “when we see, 
we are put in a condition in which we are able to get a very large and perhaps indefi-
nitely great amount of knowledge of the visible qualities of objects” (Peirce 1982, 
p. 236). This being the fact, according to Peirce, “either we perceive some indeter-
minate properties or we perceive nothing at all” (Wilson 2017: 16).

Peirce’s view on the indeterminacy of perception is important in two respects. 
One will be discussed in the next section with regard to the relationship between the 
general and the particular in diagrammatic reasoning. Another is that the indetermi-
nacy of perception implies that every act of visual experience—although what it 
delivers cannot be changed at will—presupposes interpretation and leaves space for 
errors, interpretive hypotheses, and imaginative musings about its object (Paavola 
2011: 305; Vargas 2017). Naturally, if all perception involves interpretation, and if 
iconicity is an integral part of all reasoning, then diagrammatic aspects of reasoning, 
according to Peirce, are responsible for the creativity not only of mathematical cog-
nition, but also of human cognition in general (Paavola 2011: 298). Peirce claims 
that, as far as knowledge is expressed in some language, “in the syntax of every 
language there are logical icons of the kind that are aided by conventional rules” 
(CP 2.280). Yet mathematical diagrams represent a unique case in this respect. On 
the one hand, they are deductions, and their primary goal is to represent patterns of 
deductive thinking, to express necessity. On the other hand, they are also capable of 
introducing new truths (CP 4.233). Peirce believed that this is explained by the fact 
that mathematical deductive reasoning, expressed diagrammatically, always 
involves observation:

It has long been a puzzle how it could be that, on the one hand, mathematics is purely 
deductive in its nature, and draws its conclusions apodictically, while on the other hand, it 
presents as rich and apparently unending a series of surprising discoveries as any observa-
tional science. Various have been the attempts to solve the paradox by breaking down one 
or other of these assertions … The truth, however, appears to be that all deductive reasoning 
… involves an element of observation; namely, deduction consists in constructing an icon 
or diagram the relations of whose parts shall present a complete analogy with those of the 
parts of the object of reasoning, of experimenting upon this image in the imagination, and 
of observing the result so as to discover unnoticed and hidden relations among the parts (CP 
3.363).

Peirce even admits that the kind of experimentation a mathematician performs 
with diagrams is analogous to the kind of experimentation that is implemented in 
physical sciences:
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[R]easoning of much power has, as a historical fact, never been performed by means of 
words, or other sounds, nor even to any great extent by means of pure retinal sensations, but 
by means of muscular sensations and visual images which have in the imagination been put 
in motion, so that a sort of imaginary experiment is made; and the result has been observed 
inwardly, as that of a physical experiment is outwardly (NEM, p. 378; cf. CP 4.530).

This is true, Peirce says, not only in the case of geometry, but also in the case of 
syllogistic structures and algebraic equations. In fact, Peirce claims that, in any 
particular instance of mathematical reasoning, “there must be something amounting 
to a diagram before the mind’s eye,” and that “the act of inference consists in observ-
ing a relation between parts of that diagram that had not entered into the design of 
its construction” (NEM 4:353; cf. CP 2:279). For example, a particular case of 
“Barbara,” written down correctly, represents a simple diagram that clearly shows 
the relationship between the three terms involved and actually exhibits the fact that 
the middle term occurs in both premises. Likewise, an algebraic equation is consid-
ered a rule that maps one relation between variables onto another in such a way that 
further manipulation could lead to the discovery of an unending series of new facts. 
A simple geometrical example would be Pythagoras’ theorem. There are numerous 
proofs of this theorem, but the majority of them require that, in order to explain the 
relation among the three sides of a right triangle, a geometer should make a certain 
rearrangement; in the initial, Pythagoras’s own version of the proof was the rear-
rangement of the four identical right triangles whose hypotenuses form a square. 
Based on these, as well as other, more complicated examples, Peirce shows that it is 
never the case that, in solving a mathematical problem, just thinking in general 
terms is enough. “It is necessary,” he says, “that something should be done. In 
geometry, subsidiary lines are drawn. In algebra, permissible transformations are 
made. Thereupon, the faculty of observation is called into play. Some relation 
between the parts of the schema is remarked” (CP 4:233; Hull 2017: 149; Joswick 
1988: 113).

Mathematics can discover new regularities due to the following two features that 
diagrams exhibit. First, because there is always an array of possible transformations 
that are implied by the very way a given diagram is constructed. Second, because 
we cannot predict in advance what particular transformations out of the array will 
be enacted, and what the ultimate result of those transformations will be (Stjernfelt 
2007: 81–83). What these two features imply is that mathematics essentially is an 
activity, a habit-driven, and yet creative practice rather than a static deductive gram-
mar that supplies rules for the contemplation of abstract mathematical forms 
(Campos 2009; Hull 2017). Within mathematical reasoning as a practice, imagina-
tion, in turn, has a threefold role to play. First, a mathematician forms a skeletonized 
iconic representation, a diagram, whether geometrical or algebraic, of the facts he 
or she is interested in considering. The principal purpose of the initial skeletoniza-
tion of the problem for a mathematician, Peirce says, “is to strip the significant rela-
tions of all disguise” (CP 3.359). Second, a mathematician observes this 
diagrammatic picture until, at some point, “a hypothesis suggests itself that there is 
a certain relation between some of its parts.” Third, he or she experiments upon the 
diagram in order to test his or her hypothesis, so that “it is seen that the conclusion 

V. Kiryushchenko



163

is compelled to be true by the conditions of the construction of the diagram” (CP 
2.278; cf. CP 3.560; Joswick 1988: 108–109).

To summarize, iconic signs in general, and diagrams in particular, show some 
relations that are constitutive of their objects and, at the same time, hide some others 
that may be discovered later. Consequently, on the one hand, a diagram connects us 
to inexhaustible possibilities of further interpretation. On the other hand, the way 
mathematicians construct their diagrams, together with the transformational rules 
implied by the construction, makes it the case that where the construction ultimately 
leads us is beyond our idiosyncrasies and individual whims. Diagrammatization, 
thus, may be understood as “a sort of self-controlled management of one’s own 
thoughts, because the clarity and exactitude that is realized eventually in diagrams, 
in turn furthers the exactness of cognitive activities” (Hoffmann 2004: 133). More 
importantly, in the process of manipulation with diagrams, spatial imagination and 
abstract reasoning are presented not as two distinct mental faculties, but as two 
aspects of the same activity put to work together. The point is aptly summarized by 
Kathleen Hull: “Peirce’s conception of a diagram is fundamentally and inseparably 
both conceptual and spatial insofar as reasoning by diagrams engages the contin-
uum of spatial extension in the reasoning process” (op. cit., p. 147). Mathematics, 
in other words, is a practice that makes use of a set of particular cognitive mecha-
nisms in order to creatively schematize together images and abstractions. This con-
clusion leads us to the third feature that diagrams share with other kinds of signs.

�The General and the Particular

A diagram, unlike a word or a sound, represents a relation as a kind of connection 
between certain elements in immediate perception. Every instance of such represen-
tation is a skeleton idea of relations between certain things either in the mind or out 
there in the world (CP 7.426). On the one hand, a visually represented relation car-
ries with it the full history of particular habitual responses that made it possible. On 
the other hand, the kind of connection it visually represents is an object of the gen-
eral nature. Consequently, it might be said that, in some sense, generality is—in the 
case of diagrams, visually—perceived. Peirce is aware that, for an empiricist, this 
claim might seem not just improbable, but utterly meaningless. As he puts it, 
“Bishop Berkeley and a great many clear thinkers laugh at the idea of our being able 
to imagine a triangle that is neither equilateral, isosceles, nor scalene. They seem to 
think the object of imagination must be precisely determinate in every respect” (CP 
5.371). But he still insists that some form of the realism about generality is 
indispensable.

Here is one way to describe the reasoning behind this belief. In any kind of 
observation, including mathematical, there is a uniformity in things we observe. 
This uniformity is due to the fact that any observation, in referring to its object, 
points at some general way to respond to its results every time certain conditions 
hold. But to be able to refer to an object in this way is to be a sign. Therefore, the 
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uniformity implied by observation is due to the fact that we are capable of interpret-
ing what we observe as a train of signs. As has been discussed above, any sign, as 
far as it is interpretable, is an esse in futuro. It is what it is going to become as inter-
preted in the future. Peirce’s early account in “Some Consequences of Four 
Incapacities” offers the following definition of thoughts as signs:

No present actual thought (which is a mere feeling) has any meaning, any intellectual value; 
for this lies not in what is actually thought, but in what this thought might be connected with 
in representation by subsequent thoughts … At no one instant in my state of mind is there 
cognition or representation, but in the relation of my states of different instants there is 
(Peirce 1992–1998, Vol. 1, p. 42).

There is nothing absolutely singular in thought, as what it is in the present 
moment amounts merely to a feeling, and anything of value lies in conditional 
expectations implied by its possible future interpretation. And, according to Peirce, 
the same is true of perception. What we are dealing with in perception amounts to 
“perceptual facts,” which already contain an inferential element, rather than mere 
“percepts:”

In place of the percept, which … is a construction with which my will has had nothing to 
do, and may, therefore, properly be called the “evidence of my senses,” the only thing I 
carry away with me is the perceptual facts, or the intellect’s description of the evidence of 
the senses, made by my endeavor. These perceptual facts are wholly unlike the percept, at 
best; and they may be downright untrue to the percept. But I have no means whatever of 
criticizing, correcting or recomparing them, except that I can collect new perceptual facts 
relating to new percepts, and on that basis may infer that there must have been some error 
in the former reports. … The perceptual facts are a very imperfect report of the percepts; but 
I cannot go behind that record. As for going back to the first impressions of sense, as some 
logicians recommend me to do, that would be the most chimerical of undertakings (CP 
2.141).

There is nothing, then, that is absolutely raw and singular in perception at any 
given moment, as anything that is absolutely singular in perception at any given 
moment is only a brute existence, a purely denotative “this.” The very immediacy of 
its presence does not allow us to say anything about it and, therefore, to treat it as a 
sign. Every visual perception proper contains something expected that is insepara-
ble from what this visual perception, allegedly, simply is (CP 2.146). This means 
that generality, in the form of a potential or conditional future, is given to us in 
visual experience.

The kind of generality that is involved in mathematical observation is necessity. 
Expressed in diagrams, the deductive must of a conclusion becomes visually evi-
dent. And the evidence of such conclusion “consists in the fact that the truth of the 
conclusion is perceived, in all its generality, and in the generality the how and the 
why of the truth is perceived” (NEM, p. 317). What underlies this perspective is 
that, on the one hand, it does not seem right to reduce mathematical perception to a 
psychological process, i.e., to resort to some sort of intuitionist understanding of 
mathematics, according to which the truth of a relation amounts to a subjective 
claim. On the other hand, although there are objective, mind-independent relations 
out there that represent necessity, mathematical thought is always embodied in 
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token signs. Just as it is impossible to get at the heart of an onion by peeling off all 
its skins, it is impossible to get at the heart of a necessary relation by stripping it off 
whatever particular symbols that happen to signify it (CP 4.6, 87). Peirce’s overall 
point is that mathematical necessity cannot be reduced to a description simply 
attached to an arrangement of individual objects; it should be considered a real 
characteristic of mathematical signs qua signs—a characteristic that is available in 
an act of observation. Only, according to Peirce, what distinguishes diagrammatic 
signs is that they achieve the fusion of the general and the particular most effec-
tively: by making this fusion visually available. As Catherine Legg (2012: 1) aptly 
puts it, in the case of diagrams, “[n]ecessary reasoning is in essence just a recogni-
tion that a certain structure has the particular structure that it in fact has.”

�Logic and Mathematics: The Perception of Totality

In “Some Amazing Mazes” (The Monist, 1908), Peirce writes:

But mathematicians are rather seldom logicians or much interested in logic; for the two 
habits of mind are directly the reverse of each other; and consequently a mathematician 
does not care to go to the trouble (which would often be very considerable) of ascertaining 
whether the theoric step he proposes to himself to take is absolutely indispensable or not, so 
long as he clearly perceives that it will be exceedingly convenient; and the consequence is 
that many demonstrations introduce theoric steps which relieve the mind and obviate con-
fusing complications without being logically necessary (CP 4:614).

Two years earlier, the same distinction was mentioned in Peirce’s diary:

The distinction between the two conflicting aims [of logic and mathematics] results from 
this, that the mathematical demonstrator seeks nothing but the solution of his problem; and, 
of course, desires to reach that goal in the smallest possible number of steps; while what the 
logician wishes to ascertain is what are the distinctly different elementary steps into which 
every necessary reasoning can be broken up …. In short, the mathematician wants a pair of 
seven-league boots, so as to get over the ground as expeditiously as possible. The logician 
has no purpose of getting over the ground: he regards an offered demonstration as a bridge 
over a canyon, and himself as the inspector who must narrowly examine every element of 
the truss because the whole is in danger unless every tie and every strut is not only correct 
in theory, but also flawless in execution (Fisch Chronological File (n.d.), Fragment on logi-
cian and mathematician, c. 1906).

Mathematicians are often reluctant to build bridges over the canyons filled with 
formal complications. What they want is not to examine every element of the logical 
truss, and not to dissect the process of reasoning into its simplest steps, but to dis-
cover the fastest and the most efficient way to prove (or discard) their assumptions. 
Seen from this perspective, the distinction Peirce aims at here is the one between the 
mathematical practice of making inferences and the logical theory that has those 
inferences as its objects of study. As noted by Kulpa (2009: 76):

mathematicians usually produce informal proofs using much intuition and informal leaps of 
imagination, but still maintaining a certain discipline and rigour that convinces them that 
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the result in principle can be formalized if need be. However, it is hard to hear a convincing 
answer to the question what exactly makes them so sure of that possibility.

Of course, mathematical intuition should not be perceived as being simply at 
odds with the capacity to produce long strings of formal proofs. Yet the distinction 
between the two is salient. For instance, when it comes to a computerized rewrite of 
a solution to a nontrivial mathematical problem, the absence of the intuitive guid-
ance that initially paved the way to the solution leads to the exponential growth in 
the number of possible rewrites that are, at times, too much to handle (Kulpa 2009). 
Mathematicians thus tend to make justified shortcuts in their demonstrations—and 
this habit is nothing new. It was just as much in use among mathematicians back in 
Peirce’s day. As Poincaré (2009: 178), for instance, once wrote, “If it requires 27 
equations to establish that 1 is a number, how many will it require to demonstrate a 
real theorem?” Peirce himself was brought up in a family with two other mathemati-
cians: his older brother James Mills and his father Benjamin, who is best known for 
the so-called “Peirce Criterion” used in statistics for the elimination of suspect 
experimental data. The incomprehensibility and hermetic character of Benjamin’s 
lectures at Harvard were the subject of many legends and anecdotes. As a colleague 
of the elder Peirce once wrote:

his intuition of the whole ground was so keen and comprehensive that he could not take 
cognizance of the slow and tentative process of mind by which an ordinary learner was 
compelled to make his step-by-step progress. In his explanations he would take giant 
strides; and his frequent “you see” indicated what he saw clearly, but that of which his 
pupils could get hardly a glimpse (Cajori 1890: 139; emphasis added).

What do, then, mathematicians see when they use diagrams in solving mathe-
matical problems? They see relational schemata whose very construction, along 
with the transformational grammar implied by the construction, prompts certain 
changes that lead to the discovery of new relations among the parts of the schemata. 
Mathematicians approach problem situations by creating sets of skeletonized 
images in which not just particular moves, but certain general pattern dynamics is 
anticipated. But there is one more respect in which diagrammatic representation is 
of service for mathematical vision, and which may explain the likelihood of the 
aforementioned “giant strides” and “leaps of imagination” in mathematical demon-
strations. What experimenting with diagrams allows mathematicians to see is not 
lengthy successions of discrete images following one another, but something that 
Gilles Deleuze, in trying to integrate Peirce’s theory of signs into his interpretation 
of Henry Bergson’s metaphysics of time, describes as l’image-mouvement.

A movement image, according to Deleuze, reflects not just a relation between 
different positions that the objects involved take at different moments, but a rela-
tion between the general patterns and the behavior those objects reveal and the 
corresponding qualitative changes of the image as a whole (Deleuze 1986: 
56–70). In commenting on Bergson’s Matter and Memory (1896), Deleuze 
(1986: 7) says that, “[when] one constructs a Whole, one assumes that ‘all is 
given,’ whilst movement only occurs if the whole is neither given nor giveable. 
As soon as the whole is given to one in the eternal order of forms or poses, or in 
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the set of any-instant-whatevers, … there is no longer room for real movement.” 
A movement image, according to Deleuze, is an image that cancels the dichot-
omy between the whole and changes in its parts because it is actually expressed 
as a whole by the very continuity of the transformation of its parts. What 
Deleuze’s analysis implies is that a movement image is a movement, conceived 
or anticipated movement, enacted by the mathematical imagination. A diagram 
or a graph (“a moving picture of thought”), understood as such an image, unlike 
a string of discrete symbols, presents its meaning as accessible in its totality at 
any given hic et nunc during its transformation. We do not read it linearly, but 
see it in its entirety, with some stages already in the past, but still controlled in 
retention, and some other stages in the future, but already grasped in anticipatory 
protention. A mathematical graph is thus an image neither of a final state of 
affairs, nor of a passing instant. It is wholly determined by the Bergsonian durée, 
in which the past, the present, and the future are grasped together in the dynamic 
totality of a graph. The parts of it are in space, but the whole of it is in duration 
and change.

�Conclusion

Due to a rich set of two-dimensional graphical properties, along with appropriate 
transformational rules and conventions, diagrams allow for creating structures that 
are more versatile and more efficient in solving mathematical problems than one-
dimensional symbol strings. Moreover, diagrams exhibit a number of phenomena 
not occurring in the world of algebraic formalization. They combine deductive 
necessity and the capacity to generate new meanings, a priori ratiocination and 
visual perception, the visual grasp of the dynamic totality of a given argument, and 
perception of particular changes in its structure. The means by which we construct 
diagrams are our means, yet where this construction ultimately leads us is beyond 
our individual whims. Diagrammatic reasoning shows us that visual perceptions 
are, by nature, inferences, and that there is certain logic to their arrangement, such 
that, by following it, we can visualize the very continuity of thinking.

Peirce was one of the earliest authors on visual perception whose account 
included kinds, relations, modal qualities, and other kinds of general objects. He 
claimed that anything general is, by definition, relational, and that a relation is 
something that can always be represented visually. Overall, apart from all the spe-
cifics discussed above, Peirce’s analysis shows that there is a dynamic element to 
perception, which serves as a bedrock for visual integration. Motion can tell us 
more than where an object is going, whether this object is a stock price, a point on 
a map, a mathematical function, or thought itself. It can also tell us what the object 
is. This is as true of mathematics as it is of the architecture of ordinary visual rec-
ognition: a pencil bouncing on a table, a butterfly in flight, or a closing door sup-
ports the recognition of these objects as such. An object and its stereotypical, 
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habit-driven motion in some important sense make the object what it really is. 
Finally, what Peirce implies in the case of the graphs is that this dynamic element, 
along with the aforementioned features of visual perception, allows us to grasp the 
continuity of thinking itself. Moving pictures are needed in order to turn thought 
into a proper object. If there is a system of graphic conventions, there has to be a 
corresponding system of moves. Only then thinking can be caught in action. In 
what it does.
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Chapter 9
Laws of Form, Peirce, and Cantor

Louis H. Kauffman

�Introduction

The purpose of this chapter is to explore the idea of a sign, using G. Spencer-Brown’s 
(1969) work “Laws of Form” is a pivot, a reference, and a place from which to make 
excursions into both simplicity and complexity. In order to handle the simplicity of 
the issues involved in thinking about distinction, Spencer-Brown’s introduction of a 
language that has only one sign is an instrument of great delicacy.

The Spencer-Brown mark  is a sign that can represent any sign, and so begins 
semiotics in both universal and particular modes. The mark is seen to make a 
distinction in the space in which it is written, and so can be seen, through this 
distinction, to refer to itself. In the language of Charles Sanders Peirce, the mark is 
its own representamen and it is also its own interpretant. The sign that the mark 
produces for somebody is, in its form, the mark itself. By starting with the idea of 
distinction we find, in the mark, the first sign and the beginning of all possible signs.

Right, that’s how long it takes, not a day less,—Qfwfq said,—once, as I went past, I drew a 
sign at a point in space, just so I could find it again two hundred million years later, when 
we went by the next time around. What sort of sign? It’s hard to explain because if I say sign 
to you, you immediately think of a something that can be distinguished from a something 
else, but nothing could be distinguished from anything there; you immediately think of a 
sign made with some implement or with your hands, and then when you take the implement 
or your hands away, the sign remains, but in those days there were no implements or even 
hands, or teeth, or noses, all things that came along afterwards, a long time afterwards. As 
to the form a sign should have, you say it’s no problem because, whatever form it may be 
given, a sign only has to serve as a sign, that is, be different or else the same as other signs: 
here again it’s easy for you young ones to talk, but in that period I didn’t have any examples 
to follow, I couldn’t say I’ll make it the same or I’ll make it different, there were no things 
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to copy, nobody knew what a line was, straight or curved, or even a dot, or a protuberance 
or a cavity. I conceived the idea of making a sign, that’s true enough, or rather, I conceived 
the idea of considering a sign a something that I felt like making, so when, at that point in 
space and not in another, I made something, meaning to make a sign, it turned out that I 
really had made a sign, after all.

In other words, considering it was the first sign ever made in the universe, or at least in the 
circuit of the Milky Way, I must admit it came out very well. Visible? What a question! Who 
had eyes to see with in those days? Nothing had ever been seen by anything, the question 
never even arose. Recognizable, yes, beyond any possibility of error: because all the other 
points in space were the same, indistinguishable, and instead, this one had the sign on it.

I thought about it day and night; in fact, I couldn’t think about anything else; actually, 
this was the first opportunity I had had to think something; or I should say: to think some-
thing had never been possible, first because there were no things to think about, and second 
because signs to think of them by were lacking, but from the moment there was that sign, it 
was possible for someone thinking to think of a sign, and therefore that one, in the sense 
that the sign was the thing you could think about and also the sign of the thing thought, 
namely, itself.

So the situation was this: the sign served to mark a place but at the same time it meant 
that in that place there was a sign (something far more important because there were plenty 
of places but there was only one sign) and also at the same time that sign was mine, the sign 
of me, because it was the only sign I had ever made and I was the only one who had ever 
made signs. It was like a name, the name of that point, and also my name that I had signed 
on that spot; in short, it was the only name available for everything that required a name.

In the universe now there was no longer a container and a thing contained, but only a 
general thickness of signs superimposed and coagulated, occupying the whole volume of 
space; it was constantly being dotted, minutely, a network of lines and scratches and reliefs 
and engravings; the universe was scrawled over on all sides, along all its dimensions. There 
was no longer any way to establish a point of reference: the Galaxy went on turning but I 
could no longer count the revolutions, any point could be the point of departure, any sign 
heaped up with the others could be mine, but discovering it would have served no purpose, 
because it was clear that, independent of signs, space didn’t exist and perhaps had never 
existed. [A Sign in Space, Cosmicomix by Italo Calvino. Copyright © 1965 by Giulio 
Einaudi Editore, S.p.A.  English translation copyright © 1968 by Harcourt Brace & 
Company and Jonathan Cape Limited] (Calvino(1965).

�Finding Distinction

We begin by discussing (the idea of) distinction. If one looks for the definition of 
distinction in any dictionary the result is circular. Distinction is defined as a differ-
ence. Difference is defined as a form of distinction. The meaning of distinction as 
an indication of outstanding value is also an instance of special difference. Fields of 
study are founded in the use and examination of certain basic distinctions.

Mathematics is constructed set theoretically by using the concept of a collection. 
A collection is a distinction of membership. For example the set of prime numbers 
connotes the distinction between composite and prime among the positive integers. 
At the level of sets themselves, the empty set, denoted by brackets containing nothing 
{ }, is a distinction between void and an empty container. The very sign for the 
empty set consists of two brackets (left and right) that together can be interpreted as 
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a container for something that is placed between them. In the case of the empty set, 
nothing is placed between the brackets. The brackets themselves are shaped as cusps 
(Fig. 9.1):

Each cusp can be seen as a process of bifurcation that gives rise to the distinction 
between the branches of the cusp. The two cusps (brackets) are mirror imaged with 
respect to one another, and it is this symmetry across an imaginary mirror between 
them that gives us the possibility to see them together as one container. The brackets 
are two and yet they are one (via the mirror symmetry).

At this point (in the encounter with the empty set) we reach a semantic divide 
between the mode of speaking of mathematicians trained in logical formalism and 
a wider analysis of language that I refer to as semiotic. In speaking of semiotics I 
am relying for its root meanings as expressed by Charles Sanders Peirce:

[Semiotics is a] quasi-necessary, or formal doctrine of signs … which abstracts what must 
be the characters of all signs used by an intelligence capable of learning by experience, … 
and which is philosophical logic pursued in terms of signs and sign processes [Peirce, C. S., 
Collected Papers of Charles Sanders Peirce, vol. 2, paragraph 227].

A sign, or representamen, is something which stands to somebody for something in some 
respect or capacity. It addresses somebody, that is, creates in the mind of that person an 
equivalent sign. That sign which it creates I call the interpretant of the first sign. The sign 
stands for something, its object not in all respects, but in reference to a sort of idea which I 
have sometimes called the ground of the representation [Peirce –Vol. 2, p. 228].

Peirce goes on to say:

The object of representation can be nothing but a representation of which the first represen-
tation is the interpretant. But an endless series of representations, each representing the one 
behind it, may be conceived to have an absolute object as its limit. The meaning of a 
representation can be nothing but a representation. In fact, it is nothing but the representa-
tion itself conceived as stripped of irrelevant clothing. But this clothing never can be 
completely stripped off; it is only changed for something more diaphanous. So there is an 
infinite regression here. Finally, the interpretant is nothing but another representation to 
which the torch of truth is handled along; and as representation, it has its interpretant again. 
Lo, another infinite series [Peirce – Vol. 1, p. 339] (Peirce (1931–1966)).

Peirce concentrates on the structure of signs and for him signs either are or stand 
for certain distinctions. To begin with signs is to begin with something apparently 
definite and yet, as soon as the discussion begins, we find that there are only signs 
(see above) “A sign, or representamen, is something which stands to somebody for 
something in some respect or capacity. It addresses somebody, that is, creates in the 
mind of that person an equivalent sign.” Thus what is in the mind of another person 
is also a sign, albeit a sign that is understood internally by that person. One can look 
and look for substance that may underlie the sign but the search always leads to 
more signs. In this expansion of signs related to signs, signs describing signs, signs, 
and interpretant signs, the self becomes yet another sign standing in relation to all 

Fig. 9.1  Brackets
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the signs that work at the nexus that the person represents. The sign of the self 
becomes a limit of all the signs that are the life of that self. The distinction of a 
person is his or her sign of distinction, his or her sign of self.

Spencer-Brown (1969) in his book “Laws of Form” (here to be abbreviated 
LOF), makes a new semiotic start, beginning with the idea of distinction. Signs arise 
as we shall see, but Spencer-Brown begins with the pronouncement:

We take as given the idea of distinction and the idea of indication, and that we cannot make 
an indication without drawing a distinction. We take, therefore, the form of distinction for 
the form (LOF, page 1).

It is as this point that Peirce and Spencer-Brown come into contact. For in Chap. 
12 in the last sentence of Laws of Form, Spencer-Brown writes “We see now that 
the first distinction, the mark, and the observer are not only interchangeable, but, in 
the form, identical.” Here the mark is the first made sign or indication of a first 
distinction. The observer can be identified with the interpretant in so much as the 
interpretant (see the quote from Peirce above) is an equivalent sign created in the 
mind of somebody, and must for its existence partake of the being of that somebody. 
At this nexus Spencer-Brown indicates the essential identity of sign, representamen, 
and interpretant. The three coalesce into the form that is the form of distinction.

The form of distinction becomes, in Spencer-Brown, a background for the entire 
play of signs that is the context of Peircean semiotics. We take the form of distinc-
tion for the form. And in this saying “the form” becomes a noun as elusive as it 
seems to be concrete, just as is the nature of the sign in Peirce. The form of a distinc-
tion drawn as a circle in the plane is geometrical form, the circle. But the form of 
distinction, the form of the idea of distinction, what is this form?

The echo from Peirce is clear as a bell. The form of distinction calls up a sign in 
the mind of some person. It is an amalgamation or superposition of all the signs for 
distinction in the history of that mind, that observer, or all observers. We come forth 
in the complexity of experience to a sharp idea of the distinct. We can give instruc-
tions for the performance of an act of distinction while simultaneously understand-
ing that it is a creative act, not bound by any given set of rules or regulations.

The first lines of Laws of Form are worth reading, but we shall not quote them 
here. After some thought the reader may come to realize that Spencer-Brown’s first 
paragraph is an amalgam of words that all stand for aspects of distinction: definition, 
continence, boundary, separate, sides, point, draw a distinction, spaces, states, 
contents, side of the boundary, being distinct, indicated, motive, differ in value. The 
paragraph is not a definition in the mathematical sense of definition: something in 
terms of previously defined things. There is no possibility to define distinction in 
terms of previous things that are not distinctions. The only possibility is to define 
distinction in terms of itself. We take the form of distinction for the form.

That first paragraph is nevertheless readable. How did this happen? How could 
readability arise from circularity? The answer is in the injunctive power of language. 
This same paragraph contains the phrases: “arranging a boundary so that a point on 
one side cannot reach the other side without crossing the boundary,” “a circle draws a 
distinction,” “a distinction is drawn,” “spaces, states, or contents … can be indicated,” 
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and “contents are seen to differ in value.” At once the paragraph is an amalgam of 
synonyms for distinction and it is a catalog of injunctions to arrange a boundary, to 
draw a circle, to indicate, and to see the difference in value. We are invited to take 
these steps and so enter into a contract of exploring the concept and practice of 
distinction.

Let us not forget that we have followed already the injunction of the first line: 
“We take as given the idea of distinction and the idea of indication and that we 
cannot make an indication without drawing a distinction.” It is already given that 
there is a something called indication that entails the making of a distinction. And 
implicitly it is called up that a distinction could occur without any indication. We 
cannot make an indication without drawing a distinction. Can we have a distinction 
without making an indication? We are falling down the rabbit hole.

But here, we have to look and see. In most circumstances, to draw is to indicate.
A notion of privacy is another form of distinction. Can I hide distinctions within 

the boundary of my privacy distinction? Then I can pretend that there are distinc-
tions that do not have indications. What a tangled web we weave in order to believe. 
In order to make a distinction without an indication, we are entangled in a web of 
new distinctions. The very act of drawing is a form of indication, and it must be 
concealed? Must we search for distinctions that are made without drawing a distinc-
tion? I sit before an emptiness. The emptiness is distinct for me. It is empty and I am 
empty before it. It is possible to have less action not more. And in the limit of acting 
gently in emptiness, or not at all, there seems to be the possibility of distinction 
without indication.

In the next few lines of Laws of Form, one finds the quote “If a content is of 
value, then a name can be taken to indicate this value.” Already we have faced the 
multiplicity of names for a distinction, and making an indication is a special act that 
cannot happen without the making of a distinction. Nevertheless, it comes as a 
shock that suddenly a name can be called forth. A name can be taken to indicate a 
value. A distinction can be performed that allows the performance of a distinction. 
We begin to realize that in this condensed place where there is only creation of 
distinction, boundary or the crossing of the boundary, the only distinction is at first 
the distinction between nothing (the unmarked) and the act of creation, and then 
arises a distinction between name and act. If a state is of value then a name can be 
taken to indicate this value. If a distinction is a distinction then a distinction of 
distinctioning can be distinctioned to distinction this distinction. We are down the 
rabbit hole again. One side makes you smaller. One side makes you larger. Choose 
a door and pass through it. The act and the name are not different. The indication of 
a distinction, the crossing of the boundary of the distinction, and the distinction 
“itself” are in the form identical.

We come to the creation of a name and find that this is the same as the creation of 
a distinction. They are one and the same. And yet a name can be separated from the 
distinction to which it refers. The name can be taken to be a new distinction that 
refers to the first distinction. Indeed we can imagine that the original distinction (for 
example a circle drawn in the plane) is seen (in all quietness) to stand for, to indicate, 
itself. But in the act of recognizing this possibility that “it” could stand for “itself” we 
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have made a distinction between “it” and “itself.” We have allowed a condensation 
by making the possibility of a separation. The name and the sign are born in that 
process. The name, the sign, is Peirce’s representamen, a sign residing in the mind of 
somebody. And we conclude that the sign, the name, and the original distinction all 
reside in the mind of somebody. At the point of condensation, the mind is the sign 
and the sign is the mind. No mind, no distinction. No distinction, no mind. We take 
the form as the form of distinction. Form is emptiness. Emptiness is form.

In his “A Note on the Mathematical Approach” Spencer-Brown writes “The act 
is itself already remembered … as our first attempt to distinguish different things in 
a world where, in the first place, the boundaries can be drawn anywhere we please. 
At this stage the universe cannot be distinguished from how we act upon it, and the 
world may seem like shifting sand beneath our feet.” The act of naming is the key 
step toward a world of apparent distinctions. It is by naming a distinction that we 
call it into being. In the first page of the first chapter of Laws of Form one finds the 
“Law of Calling: The value of a call made again is the value of the call.” It is enough 
to indicate the name once. For any name, to recall is to call.

And then we find the “Law of Crossing: The value of a crossing made again is 
not the value of the crossing.” At this point a distinction is made between crossing 
(the boundary of a distinction) and calling the name of a distinction. For “The value 
of a call made again is the value of the call.” Crossing and calling appear to be given 
as terms in a similar level of speech, and yet they are declared to be different. We 
understand that the crossing of the boundary can be the act of naming the distinc-
tion. I cross into “riding” when I cross the boundary of balance and actually ride the 
bicycle. I name riding by actually engaging in the act of riding. If I cease to ride, 
then the value of riding ceases. The distinction of riding is no longer present. And 
yet it can still be named.

At this point, we have come to the end of Spencer-Brown’s discussion of Laws 
of Form that makes no explicit use of a sign of distinction. The word “sign” has not 
yet occurred for Spencer-Brown. The first use of the word sign is in the next chapter 
of the book entitled “Forms Taken Out of the Form.”

In this development, the injunctive mode has taken priority. The text tells its 
reader to “Draw a distinction.” and to “Call it the first distinction.” This should 
sweep away any notion that first distinction is an absolute concept.

The first distinction is the one that is under discussion. The form is the form of 
the first distinction. And so the form of the first chapter has shifted from the univer-
sal to the particular, and the form of distinction is the form of that first distinction. 
The form is inherent in any act of distinction. We find that at the point of intent “Let 
any mark, token, or sign be taken in any way with or with regard to the distinction 
as a signal. Call the use of any signal its intent.” Here is the entry of the word sign 
into Spencer-Brown’s consideration of distinction and form.

Now we listen again to Peirce. “A sign, or representamen, is something which 
stands to somebody for something in some respect or capacity.” Indeed Spencer-
Brown’s mark, token, or sign is a sign in the Peircean sense. This sign is taken as a 
signal (in the condensation of Laws of Form, a signal is yet a sign) with regard to or 
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of the first distinction. Spencer-Brown does not say that this mark is the first sign, 
but sign it is and with it, it is possible to indicate the first distinction.

Finally there enters upon the stage of distinction the mark that will be the pivot 
for the formalism of Laws of Form. See Fig. 9.2.

Spencer-Brown writes, “Let a state distinguished by the distinction be marked 
with a mark of distinction.” The mark is written upon one side of the first distinc-
tion. We shall take the liberty of illustrating this in Fig. 9.7. This mark is chosen to 
make and to indicate a distinction in its own form. The mark has (for the observer—
our word for Peirce’s somebody) an inside and an outside. Spencer-Brown says, 
quite explicitly, “Let each token of the mark be seen to cleave the space into which 
it is copied. That is, let each token be a distinction in its own form.” And before this, 
he gives permissions:

“Call the space cloven by any distinction, together with the entire content of the 
space, the form of the distinction.

Call the form of the first distinction the form. … Let there be a form distinct from 
the form. Let the mark of distinction be copied out of the form into such another form.

Call any such copy of the mark a token of the mark. Let any token of the mark be 
called as a name of the marked state. Let the name indicate the state.”

Now the circle has again closed. Each token of the mark is a sign and a copy of 
the mark itself. Each token and indeed the mark itself is a distinction in its own 
form. There is now a plethora of signs, marks, and forms. They all indicate the 
marked side of the first distinction. Only one distinction is being discussed. As 
many marks as may be needed are available to signal this distinction. We embark 
upon not just form, but formalism and the inception of calculation.

Each mark in the expression on the left is a sign or name for the outside of the 
distinction made by the other mark in the expression. Each mark is the name of the 
other mark. The calling of a name made again may be identified with the calling of 
the name. And so we have the equation as indicated above, condensing the two 
marks to a single mark.

As we show in Fig. 9.3, the mark can indicate the outside of the first distinction, 
and we take the mark to make a distinction in the outer space of that first distinction. 

Fig. 9.2  The Spencer-Brown mark
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We see then that we can take the mark itself as the first distinction. This move brings 
the discussion directly in coincidence with C. S. Peirce’s semiotics. If the mark or 
sign is the first distinction then it is a sign for itself. It is a sign that makes a distinction 
and it is a sign that stands for the outside space of that distinction. We are now in a 
position to summarize the semiotic development of the Spencer-Brown mark .

The mark is a sign that makes a distinction in the plane within which it is drawn. 
In that plane there is a distinction between the (bounded) inside and the (unbounded) 
outside of the mark. The mark is chosen to refer to the outside of the distinction that 
it makes in the plane. The mark can be seen to refer (via referring to the outside of 
the distinction that it makes) to itself as the boundary of that distinction. Thus we 
can write the law of calling in the form = .

Each mark in the expression on the left is a sign or name for the outside of the 
distinction made by the other mark in the expression. Each mark is the name of the 
other mark. The calling of a name made again may be identified with the calling of 
the name. And so we have the equation as indicated above, condensing the two 
marks to a single mark.

We take the mark to indicate a crossing from the state indicated on its inside:
A  denotes the state obtained by crossing from the state indicated by A.

Hence  indicates the state obtained by crossing from the marked state.

Hence  indicates the unmarked state.
In equations, we have the law of crossing: =  
The value of a crossing made again is not the value of the crossing.

Fig. 9.3  The mark 
indicates the outside of the 
first distinction
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We have arrived at a self-referential nexus. The mark, first sign, refers to itself. 
The first sign is a name and it is identified with the action of crossing from the 
unmarked state (the state with no sign). We began with the idea of distinction.

The sign of the first distinction acts as the transformation and the boundary 
between the unmarked state (the state with no sign) and the marked state. The sign 
of the first distinction is a signal of the emergence of articulated form. The sign of 
the first distinction is, in the form, identical with the first distinction.

�Finding Primary Arithmetic

The formalism that we have arrived at is directly connected with mathematics. Let’s 
recall where we are.

We have one sign  and two laws or rules about that sign:

The law of crossing: = .

The law of calling: = .
At this stage in the development of the sign, these laws are statements about 

naming and about the crossing of the boundary of an initial distinction. The initial 
distinction can be the distinction made by the sign itself. And yet there is another 
sign. It is the equals sign. And with that sign we enter mathematics. With the equals 
sign, we formalize condensations of reference and meaning.

It is implicit that we may write expressions such as .
And we might wonder what this nest of signs can mean. And we find that we 

have already defined the meaning of this new sign as a fivefold act of crossing from 
the previous state, starting from the unmarked state. And being able to count, we 
know that this means that we will arrive at the marked state after such a process. 
Thus we have

	 = . 	

An infinity of possible equalities of concatenations of signs has opened up before 
us and since we know how to count we can evaluate them all and find either the 
marked state or the unmarked state as an equivalent to each one. Do we need to 
know how to count to accomplish this task? We do not need to know how to count. 
We can apply the laws of calling and crossing where we find them. An empty cross 
with a cross over it can be regarded as an instance of the law of crossing:

	 = . 	

The two innermost marks in the left-hand nest of marks are an instance of the law 
of crossing and we can erase them, forming the right-hand side with only three 
marks. Doing this once more, we find
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	 = = , 	

and the marked value of the nest has been uncovered without the need for counting. 
Here is another way. Let u and m stand for the unmarked and marked states, 
respectively:

Agree that u  has the marked state as its outside value and write

um  to indicate this state of affairs.

Agree that m  has the unmarked state as its outside value
and let mu  indicate this state of affairs.

Then we can evaluate the nest of marks by marking it with u and m.

	 umumum 	

Similarly, =  by repeated application of the law of calling. And = = = ….

Here we combine uses of the laws of calling and crossing when they are avail-
able. We see that there is an arithmetic of expressions written in the mark and the 
equals sign has taken on the crucial role of connecting expressions that indicate the 
same value.

Oh! You want to know the meaning of !

It is a multiple action. Think of putting an unmarked signal u at the deepest 
spaces in the expression and marking it with u and m as we did before:

	 u ummm m u 	

Note that in the space one crossing away from the outside there are two ms.
We take the rules that mm = m, uu = u, mu = um = m. Then any expression can be 

seen as indicating a multiple process of crossing and recrossing from the unmarked 
state of the first distinction. The signals interact with one another and produce the 
value of the expression as either marked or unmarked. The result is the same as that 
obtained by using the laws of calling and crossing on the expression. Here is the 
simplest arithmetic generated by a sign that makes a distinction. Spencer-Brown 
calls this the primary arithmetic or the calculus of indications.

�Finding Logic

The primary arithmetic is a two-valued system. Every expression is either marked 
or unmarked. Remarkably, there is a translation to the two-valued logic of true (T) 
and false (F). Let a ∨ b denote “a or b “(inclusive or –a or b or both a and b), and 
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a ∧ b denote “a and b.” Let ¬a denote “not a” and let a → b denote “a implies b.” 
Recall that in symbolic two-valued logic one takes the equivalence a → b = (¬a) ∨ b.

Now note that if we write algebraically about the primary arithmetic with the 
variables standing for either the marked or the unmarked states, then ab is marked 
exactly when a is marked or b is marked. This suggests that we take the interpreta-
tion T for the marked state and F for the unmarked state. Lets write

T =  and F = .
Then T F=  and F T= . Thus we can interpret a  as ¬a.

And then we have a b a b a b→ = ¬( )∨ =
so that implication in logic becomes the operation a b  in the algebra of the primary 

arithmetic. It is then easy to see that and is expressed by the formula a b a b∧ =  
since the formula on the right is marked exactly when both a and b are marked.

In this way basic logic rests on the primary arithmetic and can be seen as a pat-
terning of its operations and processes. I hope to have convinced the reader that this 
is a satisfactory entry into logic starting with the notions of sign and distinction. One 
can explore a great deal from this basis and I will stop here with only a hint of what 
may come.

One aspect of logic that comes forth at once is the role of paradox. Consider the 
liar paradox in the form L =  ¬ L. Rewriting into primary algebra, we find

	 L L= . 	

Since the mark makes a distinction between its inside and its outside, this equa-
tion suggests that L must itself have a sign that indicates a form that reenters its own 
indicational space. L must have a sign as shown below:

 

In crossing from the state inside the reentering mark, we arrive again at the 
inside. The inside is the outside and the outside is the inside. The sign connotes a 
distinction that controverts itself and yet it is still a sign in the constellation of all 
signs and it still distinguishes itself in its own form. Nothing is left but the time of 
circulation in the oscillation of inside and outside, and beyond this state of time we 
have returned to void.
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�Finding Mathematics

Up to this point we have not actually ventured across a boundary into numerical 
mathematics. The construction of a sign that can stand for any sign and is 
self-referential involves no counting, no calculation, no algebra, and seemingly no 
arithmetic of any kind. It would appear that we have arrived at a pivot point where 
one could begin thinking about the growth of thought and language with no regard 
to the development of mathematics.

And yet mathematics has symbolic beginnings and is woven into the structure of 
language. What signs are the least signs needed for number? We might take on the 
sign | for 1, the sign || for 2, and generally the sign n = |||…| (with n vertical marks) 
for the integer n. In this mode we have n + 1 = n|. And n + m = nm, the juxtaposition 
of the marks for n and the marks for m:

1 = |, 2= ||, 3=|||, 4=||||, 5= ||||| and so on.
3 + 2 = ||| + || = ||||| = 5.

Arithmetic can grow from elemental signs and indeed we can use the Spencer-
Brown mark to represent numbers with zero as the unmarked state:

0 =

	 1= 	

	 2 = 	

	 3 = 	

and so on.
Note that in order to represent numbers in this way, we must rescind the law of 

calling so that multiplicities of marks stand for different numbers. With the law of 
calling removed, we are no longer working with only one distinction. Each new 
number is a distinction in its own form. What about the law of crossing? It turns out 
that we can put it to service for defining multiplication as follows: We define 
a b a b× = #  where a b#  means that we take each cross in b and insert a copy of 
a  underneath it. Then simplify the resulting expression using the law of crossing. 
Here is the example of 2 x 3:

	

2 3 2 3

6

× = =

= =
=

# #

. 	
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Here we have used the algebraic version of the law of crossing: a a=  for any 
a, and such an a can be one of our numerals, taking values beyond marked and 
unmarked.

This is the beginning of arithmetic, the gateway into the depths and beauties of 
mathematics. This foundation for the theory of numbers will clarify the deep 
quests of number theory. One can begin by wondering about the prime numbers. 
Six is not prime as we have just seen. It is a product of 2 and 3. The row of six 
marks is two rows of three marks and it is three rows of two marks. It seems that 
numbers want their own distinctions. After conversing with six we see that six 
prefers to be seen as

 

or as

 

but confinement to a single row is just not comfortable for a composite number. Let 
us find arithmetic anew by staying close to its origin in the origination of a sign.

�Finding Ordinals

Remarkably, the structure of the Laws of Form expressions gives us a map of the 
transfinite ordinals. Let us explain. First recall that the transfinite ordinals of Cantor 
(1941) are an extension of the natural numbers. We begin with the natural numbers 
1,2,3,… and then posit a new infinite number w that is greater than any natural 
number n. So now we have the ordered sequence 1,2,…; w. And we can continue 
with 1,23,…; w, w + 1,w + 2,…, w + w = 2w,…, 3w,…, w2,…, w3,…, ww, ww + 1… .

We shall translate these ordinals into Laws of Form expressions as shown 
below:
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1

2

3

=

=

=
… 	

To get higher we shall notate that generally, A + B = AB (juxtaposition) and 
w AA = .  Thus

	 w w ww ww

= = =, , . 	

While w ww + + =1  and ww ww+ + =1 .

It should be clear to the reader that the finite expressions in Laws of Form, taken 
only up to commutativity (AB = BA), each uniquely represents a treelike polyno-
mial expression fragment of the transfinite ordinals!

Infinite expressions should be explored further.

For example, let J = … .

Then J J J w= =  and J = Jw are the important limit ordinals at the top of the 
hierarchy of the treelike transfinite ordinals that we have just indicated.

With this ordinal correspondence in place, we can translate a version of the 
Hercules and Hydra game of Kirby and Paris (1982) into Laws of Form 
expressions.

Take a finite expression such as E = .
Choose an empty mark in the expression.
Determine the first mark that encloses this mark, making a sub-expression.

For example, E above has the sub-expression , with the leftmost mark the 
one we have chosen.

Now remove the mark you have chosen and duplicate the resulting sub-expression 
to make a new expression E’. Here the result is

	 ′ =E . 	

(In the Kirby-Paris game one can make any finite number of duplicates. We shall 
restrict to one duplicate.) The object of the game is to eventually reduce the expres-
sion to nothing. Note that by the rules above, a single empty mark can be erased. 
Here are a few more moves in the game starting with E, above:
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E

E

=

=′

,

,

,

,

,

,

,

,

. 	

We are sure that the reader would like to finish this game! It will take quite a few 
moves, but not too many. Here is a shorter sequence. And in this shorter sequence 
we have labeled each expression with the corresponding ordinal. The ordinals get 
smaller each time. This always happens and it is the essence of the Kirby-Paris 
proof that one can always win the Hydra game. Any descending sequence of ordi-
nals is finite, and so the game must end:

	

w

w

w

w

w

+ =

+ =

+ =

+ = =

=

=

=

=

=
=

1

2 1

2 1

3

5

4

3

2

1

0 	
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The most remarkable fact about the Hydra game is that, while we can prove that 
the game ends by using the transfinite ordinals, there is no proof of this fact in Peano 
arithmetic (Kirby and Paris 1982). The Laws of Form notation is a perfect expression 
of this fragment of the ordinals, and it is not just an entrance into Boolean algebra, 
ordinary arithmetic, and transfinite arithmetic. The Mark, via the Hydra Game, is an 
exemplar of Godelian incompleteness in what is surely its simplest form.

�The Arctic Essay

This essay on the semiotics of Laws of Form was motivated by the author’s discov-
ery of the manuscript shown below. The manuscript was found at the bottom of an 
abandoned mine shaft in the frozen wastes of the Arctic Circle, abandoned surely in 
the 1800s. Written on crumbling paper and composed long before the conception of 
Spencer-Brown’s book it is a mystery how the reference to the Spencer-Brown mark 
could have occurred in this manuscript. I have attempted in this essay to give 
sufficient background of a semiotic nature that the reader might be able to decipher 
the manuscript itself. The manuscript was entitled “A Sign in Space,” but no author 
is indicated. I can only speculate that perhaps Spencer-Brown himself saw the 
manuscript, and yet that would not solve the puzzle of how it came to bear his name. 
Alas, the original document disintegrated into dust soon after it was found. This 
essay is all that is left. There is one clue. The document refers at a crucial point to 
C. S. Peirce. I suspect that this is a self-reference and that Peirce himself wrote the 
document. As for Spencer-Brown, Peirce time traveled into the future and took back 
these notes on Spencer-Brown’s work. All that happened before the Russell singu-
larity that made forward time travel impossible. There can be no other explanation.

�A Sign in Space

Let  be the Spencer-Brown mark.
Let there be a distinction with inside denoted I, and outside denoted O.
Regard the mark as an operator that takes inside to outside and outside to inside.
Then

	 I O= 	

	 O I= . 	
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Note that it follows that

	

I O I

O I O

= =

= = 	

For any state X we have X X= .

Introduce the unmarked state by letting the inside be unmarked.
Then I = .
And so

	

=

=

O

O 	

Therefore the value of the outside is identified with the mark and = .
The value of the outside is identified with the result of crossing from the unmarked 

inside:

	 = . 	

This equation can be read on the left as “cross from the inside “and it can be read 
on the right as “name of the outside.” Once the inside is unmarked, then the mark itself 
can be seen to be the first distinction. The language of the mark is self-referential:

	 = says that either mark names the other. 	

It is as though I were to wear a name tag that is a picture of myself. At the level 
of the form there is no difference between myself and a picture of myself. A sign can 
refer to another sign (cf. C. Peirce). The mark is seen as a sign and as a distinction 
between the inside of that sign and its outside. We take the mark, as sign, to refer to 
its own outside. In the form, the mark and the observer are identical. In the form, a 
thing is identical to what it is not.

Tat Vam Asi.

In this way one arrives at non-duality by abandoning form to void:

Abandon form to void.
Form is emptiness.
Emptiness is form.
The form we take to exist arises from framing nothing.
We take the form of distinction for the form.
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�Epilogue

In this chapter we have examined the use of and development of signs in relation to 
G. Spencer-Brown’s Laws of Form and we have engaged in wordplay related to a 
real story “A Sign in Space” by Italo Calvino (giving an extensive quote from it in 
our introduction) and a fictitious document named “A Sign in Space” that seems to 
be a precursor to the work of both Charles Sanders Peirce and George Spencer-
Brown. In fact, there is a long history of precursors to the semiotic signs at the base 
of mathematics, logic, and language. Alphabets are historical records and ongoing 
libraries of signs and the simplest of such forms such as the cuneiform and Sumerian 
signs. For example, consider the fragment in Fig. 9.3 from a Sumerian document, 
twenty-sixth century BC.

There in the document are a nest of left-shaped marks, and since they are nested 
the distinction they each make in the plane was clearly part of their use. In modern 
typography a relative of the Spencer-Brown mark is the square root sign, a connected 
sign that can be nested and arranged for mathematical purposes (Fig. 9.4):

	
2

	

The language of Laws of Form was discovered, according to Spencer-Brown, in 
making a descent from Boolean algebra in which he found the notation of the mark, 
the role of the unmarked state, and the double-carry of mark as name and mark as 
transformation. In Boolean algebra and in symbolic logic the negation sign connotes 
transformation and it does not stand for a value (true or false). In the calculus of 
indications, viewed from the stance of symbolic logic, the mark is a coalescence of 
the value true and the sign of negation. This comes about because true is what is not 
false and the false is unmarked in Laws of Form. Hence T = ~F = ~ (using ~ as the 
sign for negation), but this cannot be said without confusion in symbolic logic since 
there is no inside to the sign of negation. In Laws of Form we can write T F= =  
and the mark as container (as parenthesis) makes it possible for it to take on its 
double role of value and operator.

Wittgenstein (1922) says in the Tractatus (4.0621): “the sign ‘~’ corresponds to 
nothing in reality.” And he goes on to say (5.511): “How can all-embracing logic 
which mirrors the world use such special catches and manipulations? Only because 
all these are connected into an infinitely fine network, the great mirror.” For 
Wittgenstein in the Tractatus, the negation sign is part of the mirror making it 

Fig. 9.4  Sumerian 
document, twenty-sixth 
century BC.
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possible for thought to reflect reality through combinations of signs. These remarks 
of Wittgenstein are part of his early picture theory of the relationship of formalism 
and the world. In our view, the world and the formalism we use to represent the 
world are not separate. The observer and the mark are (in the form) identical.

This theme of formalism and the world is given a curious twist by an observation 
that the mark and its laws of calling and crossing can be regarded as the pattern of 
interactions of the most elementary of possible quantum particles, the Majorana 
Fermion (Kauffman 2009, 2010, 2016). A Majorana Fermion is a hypothetical par-
ticle that is its own antiparticle. It can interact with itself to either produce itself or 
annihilate itself. In the mark we have these two modes of interaction as

	 calling and crossing= = . 	

The curious nature of quantum mechanics is seen not in such simple interactions 
but in the logic of superposition (a kind of exclusive or) and measurement. 
Measurement of a quantum state demands the coming into actuality of exactly one 
of a myriad of possibilities. Thus we may write

	 ∗ = + 	

to indicate that the quantum state ∗  of a self-interacting Majorana Fermion  
is a superposition of marked and unmarked states.

Upon observation, one or the other (marked or unmarked) will be actual, but 
before observation the state is neither marked nor is it unmarked. We need a deeper 
step in semiotics to enter into quantum sensibility. The equation for this interaction 
can be written in ordinary algebra as PP = P + 1 where P stands for the Majorana 
particle and 1 stands for the neutral state of pure radiation. Then we recognize a 
famous quadratic equation P2 = P + 1 with solution of the golden ratio 1 5 2+( ) /  
and multifold relationships with the Fibonacci numbers. Indeed this is the legacy of 
the Majorana Fermion as Fibonacci particle, fundamental entity in the most idealis-
tic and yet soon to be practical searches for quantum computing and understanding 
of particles as well known as the electron. Each electron appears to be an amalgam 
of two Majorana Fermions. It is not the point here to start doing technical physics, 
but the moving boundary of sign and space is changed from the time of Wittgenstein 
and we should expect to see semiotic insight of a different kind from now on.

Charles Sanders Peirce came very close to inventing the mark  in his “sign of 
illation” as shown in Fig. 9.5. [C. S. Peirce, “The New Elements of Mathematics,” 
edited by Carolyn Eisele, Volume IV—Mathematical Philosophy, Chapter VI—The 

Fig. 9.5  Peirce’s sign of 
illation
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Logical Algebra of Boole, pp. 106–115. Mouton Publishers, The Hague—Paris and 
Humanities Press, Atlantic Highlands, N. J. (1976) (Peirce (1976).]

The Peirce sign of illation is used for logical implication and it is an amalgam of 
negation as the over-bar and logical or writing as a + sign on the left vertical part. 
See Fig. 9.6 for an illustration of this anatomy of the Peirce sign.

The mark  goes further since the unmarked state is allowed, and the operation 
of or is also unmarked and indicated by juxtaposition. Thus we still have the 
decomposition of A B  as “Not(A) or B” once the mark is understood to operate as 
negation. The largest difference is semiotic in that the mark can be taken as a 
universal sign and as a sign for itself. As such it has a conversational domain quite 
independent of Boolean logic. In this role, the mark can be seen as part of a wider 
context of distinction that informs and illuminates logic and mathematics.

Peirce spoke of a “Sign of Itself.” Here is a key passage from his work.

But in order that anything should be a Sign it must ‘represent’, as we say, something else 
called its Object, although the condition that a Sign must be other than its Object is perhaps 
arbitrary, since, if we insist upon it we must at least make an exception in the case of a Sign 
that is part of a Sign. Thus nothing prevents an actor who acts a character in a an historical 
drama from carrying as a theatrical ‘property’ the very relic that article is supposed merely 
to represent, such as the crucifix that Bulwer’s Richelieu holds up with such an effort in his 
defiance. On a map of an island laid down upon the soil of that island there must, under all 
ordinary circumstances, be some position, some point, marked or not, that represents qua 
place on the map the very same point qua place on the island …

If a Sign is other than its Object, there must exist, either in thought or in expression, 
some explanation or argument or other context, showing how – upon what system or for 
what reason the Sign represents the Object or set of Objects that it does. Now the Sign and 
the explanation make up another Sign, and since the explanation will be a Sign, it will prob-
ably require an additional explanation, which taken together with the already enlarged Sign 
will make up a still larger Sign; and proceeding in the same way we shall, or should 
ultimately reach a Sign of itself, containing its own explanation and those of all its signifi-
cant parts; and according to this explanation each such part has some other part as its 
Object. [C. S. Peirce, Collected Papers – II, p. 2.230 – 2.231, edited by Charles Hartshorne 
and Paul Weiss, Harvard University Press, Cambridge (1933).]

There are extraordinary topological ideas in this passage. There is an implicit 
reference to the notion of a fixed point so that a map and its image must have a 
coincidence. There is the notion that sign and explanation will undergo recursion 
until ultimately the sign, the explanation, and the object become one. We have 
begun with a sign  that is a sign for itself in the sense that it represents the distinc-
tion that is made by the sign in its coincidence with an observer. And yet the 

Fig. 9.6  The Peirce sign 
of illation
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recursion is always possible. Consider the reentrant sign that was discussed in 
section “Finding Logic”. The reentrant sign can be taken to be a solution to J J=  
or, in a graphical mode, to be a solution to the re-embedding of J inside a circle as 
in Fig. 9.7.

“And yet, the equation J J= asserts the reentry of J into its own indicational 
space, and it exhibits J as a ‘part of itself.’ The equation is the explanation of the 
nature of J as reentrant and can be taken as a description of the recursive process 
that generates an infinite nest of circles. It is only J as an equation that yields J as a 
Sign of itself. If we wish to embody the equation in the Sign itself then we need to 
allow the Sign to indicate its own reentry as we did in the last section with the sym-
bol shown in Fig. 9.7. This symbol does ‘contain its own explanation’ in the sense 
that we interpret the arrow as an instruction to reenter the form inside the circle” 
(Kauffman 2001: 79–10) (Fig. 9.8).

In fact that reentry occurs ad infinitum as indicated in Fig. 9.9, from which we 
see that the equational reentry is recaptured from the self-standing form of Fig. 9.10.

We see that it is a matter of language that fuels the difference between a simple 
form that stands for itself such as the mark and those reentry forms that partake of 
infinite regress (as shown in Fig. 9.9) in order to attain self-reference. This infinite 
regress is a microcosm of the infinite regress of Peirce and allows us to solve for J 
as an unending nest of marks:

	 J J=… = . 	

It must be mentioned that the work of Church and Curry on the Lambda Calculus 
(see Kauffman 1985, 1987, 1994, 2001, 2005, 2009, 2012; Buliga and Kauffman 
2009) gives another approach to reentry:

Let GX XX= . Then GG GG=  and so we can take J = GG to obtain J J=  
without any infinite regress!

How did this happen? At the level of sign and operation, G is a duplicating 
device. Given an X, G makes two copies of X and places them under a mark. The 
equals sign means that GX is replaced by XX , and the operation of G is defined by 
this replacement. When we replace X by G in the equation, we have put G in the 

Fig. 9.8  A reentrant form

Fig. 9.7  Reentrant 
equation
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position to act on G. G does act and produces GG with a mark around it. But GG is 
now ready to act again and so GG moves into the temporal domain and instructs a 
recursion:

	 GG GG GG GG GG= = = = =… 	

The infinite regress of J has been replaced by the inherent temporality of GG. 
The Church-Curry idea of recursion is in fact an outgrowth of the Russell paradox 
of the set of all sets that are not members of themselves. To see how this plays out 
in the realm of signs let XY denote that Y is a member of X. Taking this to heart, we 
define the Russell set by the equation RX = ~XX.

As the reader sees immediately, R is now the duplicating Gremlin. We have 
shifted the interpretation of the mark to negation and we use ordered juxtaposition 
as membership. We find that if RX = ~XX, then RR = ~RR and we now have the self-
denial of the Russell set in regard to its self-membership. This could just as well 
have been written RX XX=  and RR RR= . We understand that this need not be a 
paradox. It is a reentry form and can be taken on its own cybernetic grounds. We 
have the option to view the Russell set temporally in the Church-Curry recursion. 
Then Russell oscillates in time between being a member of itself and not being a 
member of itself. The Russell pendulum avoids the Russell singularity.

In our fiction in this chapter, we referred to the Russell singularity as having made 
time travel into the future for the sake of mathematical and semiotic plagiarism impos-
sible. In fact this was a reference to the weight of the ban (The Theory of Types) on 
temporal solutions to the paradox that was presented by Russell and Whitehead in their 
monumental work Principia Mathematica. With the recursive way out it may be that we 
have also released the demons of time travel once again upon an unsuspecting world.

When representation and explanation are insisted upon, then an infinite regress 
occurs due to the proliferation of signs that must indicate each stage of explanation. 
When this “noise” is reduced by the indicational power of an arrow, or the simple 

Fig. 9.10  Infinite regress 
and fixed point or 
eigenform

Fig. 9.9  Equation, 
indication, and reentry

L. H. Kauffman



193

recognition of the presence of a distinction, then forms can stand alone and be 
recognized as being, in form, identical with their creators.

Along with the references quoted directly in the text, I have provided a selection 
of papers that I have written that are related to the themes of this essay. There is 
much to think about in this domain and we have only just begun.
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Chapter 10
The Topology of Mathematics in the Mind 
and Its Interaction with Verbal 
and Written Language

Robert K. Logan and Izabella Pruska-Oldenhoff

�Introduction

When we think of the human mind we most often think of its capacity for verbal 
language as we are the only living organism capable of speech. We are aware of the 
fact that the human mind is capable of mathematical thinking and think that 
mathematics was a later development of the human mind long after humankind had 
acquired language. In a book soon to be released in the Springer series Mathematics 
in the Mind edited by Marcel Danesi entitled A Topology of Mind—Spiral Thought 
Patterns, the Hyperlinking of Text, Ideas and More, we (Logan and Pruska-Oldenhof 
2019) argue that human verbal language was as much a product of mathematical 
thinking as mathematics was a product of verbal thinking. We argue that the origin 
of verbal language, the origin of the mind, and the origin of mathematic thinking all 
happened at approximately the same time and that these three elements are basically 
interlinked. The human mind is a product of the brain and verbal language as was 
argued in The Extended Mind: The Emergence of Language, the Human Mind and 
Culture (Logan 2007), but verbal language as we have argued was dependent on the 
ability of humans to think in terms of sets employing a primitive form of set theory.

Before humans had verbal language, they lived in a world of percepts. Their 
communication was mimetic consisting of hand signals, facial gestures, body 
language, and nonverbal prosody or tones such as grunts and whines. They could 
only communicate about the here and now. Conceptual thinking only became 
possible with verbal language and our first concepts were our first words. These 
words acting as concepts linked to and represented all the percepts associated with 
those words. For example, the word water represents the concept of water and 
instantaneously triggers all of the mind’s direct experiences and perceptions of 
water such as the water we drink, the water we cook with, the water we wash with, 
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the water that falls as rain or melts from snow, and the water that is found in rivers, 
ponds, lakes, and oceans.

The word “water” acting as a concept and an attractor not only brings to mind all 
“water” transactions but it also provides a name or a handle for the concept of water, 
which makes it easier to access memories of water and share them with others or make 
plans about the use of water. Words representing concepts speed up reaction time and, 
hence, confer a selection advantage for their users. And at the same time those lan-
guages and those words within a language, which most easily capture memories, 
enjoy a selection advantage over alternative languages and words, respectively.

The skill that made language possible and allowed a word acting as a concept to 
represent all of the percepts associated with that word was the mathematical ability 
to create sets, the set of all the percepts associated with that word. We suggest that 
the brain before verbal language was merely a percept processor and that after-
wards it was able to conceptualize, i.e., operate with concepts. Each concept linked 
all the percepts associated with that concept. We conclude that the human mind 
naturally makes associations, creates categories or sets, and hence has the natural 
mathematical structure of set theory. We further suggest that verbal language 
emerges as a primitive form of set theory in that a set of percepts that are associated 
with each other or are similar are linked together with a word acting as a concept 
that unites all the members of that set. In a certain sense the primitive form of set 
theory we just described seems to be a precondition for the emergence of verbal 
language. It is not possible to determine the causal linkage between the primitive 
form of set theory and verbal language. We posit as is the case with a complex 
system where one cannot separate the top-down from the bottom-up causality that 
set theory and verbal language co-emerged. It is not that set theory caused verbal 
language to emerge or that language allowed set theory to emerge. Rather we would 
claim that mathematical set theory and verbal language self-organized into an 
emergent supervenient system.

The emergence of set theory according to this model of co-emergence would 
have preceded the emergence of enumeration as enumeration requires verbal lan-
guage. There are two types of numbers, concrete numbers and abstract numbers. A 
pair of shoes, a yoke of oxen, or a brace of partridges are concrete numbers where 
the number is tied to the objects being enumerated. Concrete numbers have mean-
ing only as units of the commodity they are designating and enumerating. The 
number “two” is abstract as it can apply to any set of two objects. We surmise that 
it arose in association with the perception of two people or two deer or two eggs or, 
even more relevantly, two fingers. Concrete numbers, such as “a brace of par-
tridges” or “a yoke of oxen,” cannot be used to designate “two” as an abstract 
number and then be used to enumerate other objects. A brace of sandals is mean-
ingless; instead one must refer to them as a “pair of sandals,” that is, as a concrete 
number or as “two sandals” where “two” operates as an abstract number. We would 
surmise that at some point in the evolution of language one particular concrete 
number came to represent an abstract number. We can only guess as to how this 
happened but certainly it is the case that numbers in the form of numerals like one, 
two, and three are basically concepts represented by words. It is no accident that 

R. K. Logan and I. Pruska-Oldenhoff



197

the universal number system of most cultures is 10, the number of our fingers, or in 
some case 20 where counting included both the fingers and the toes. This explains 
why the term digit has two meanings, one meaning is a finger and the other mean-
ing is a numeral.

The model that we have proposed of how verbal language and mathematical 
thinking co-emerged is an abduction or a just so story. It is a hypothesis but it cannot 
rise to the level of a scientific hypothesis because it cannot be falsified as the emer-
gence of verbal language happened long before any scientific observations could be 
made. In fact, there could be no science before the emergence of verbal language as 
science requires conceptualization, which in turn requires verbal language.

�Mathematics in the Mind Leads to Writing in Sumer 
and Writing Leads to the Further Development 
of Mathematical Thinking

We will argue that not only did mathematical thinking lead to verbal language but 
it also gave rise to written language through the development of mathematical 
notation. The very first notation for recording quantities was tally sticks in which 
the number of notches in the stick or antler corresponded to some quantity that the 
maker of the tally stick wanted to keep track of. The tally stick gave no indication 
of what was being tallied. The next step in the evolution of numerical notation was 
clay accounting tokens that archeologist Denise Schmandt-Besserat discovered in 
her digs in the Middle East especially in the Fertile Crescent between the Tigris 
and Euphrates rivers. These tokens had different shapes that corresponded to the 
things that they were enumerating which were agricultural commodities. The 
tokens were used as receipts for tributes paid by farmers to the priest-accountants 
as a form of taxation.

The agricultural commodities that the priest-accountants collected were redis-
tributed to the workers that built and maintained the irrigation systems that made 
agriculture possible. The system of accounting tokens dates back to 10,000 years 
ago. They are similar to tally sticks except that the clay tokens have different shapes 
as each unique shape represented a different agricultural commodity. The token 
system remained basically unchanged for the first 5000 years of its use. Around 
3200 BC the tokens were placed in spherical clay envelopes so the tokens would not 
become scattered and lost. After about a century of this, a bright priest-accountant 
suggested that they stamp the clay envelope while it was still wet with the tokens to 
be put inside so that they would not have to break open the envelope to see what 
tokens were inside the envelope. After a century or so of this practice another bright 
priest-accountant said why bother putting the tokens inside the envelope once the 
envelope was stamped and voila the clay tablet was born. The next innovation came 
about as the commerce in Sumer expanded and large numbers of agricultural 
commodities were being transacted. It became a nuisance to press the same token 
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into a tablet multiple times. The solution to this problem was that the token for the 
large and small measure of wheat, the ban and the bariga, came to represent the 
numbers 10 and 1, respectively. To distinguish the ban and bariga used as the num-
bers 10 and 1 instead of the large and small measure of wheat it was decided that the 
numbers would be designated by pushing the token into the clay tablet and that the 
agricultural commodities including the large and small measure of wheat would be 
represented by etching the shape with a stylus on the clay tablet that the token rep-
resenting that commodity would make if it were pushed into the wet clay tablet. As 
a result, a bifurcation occurred in which signs representing numbers were distin-
guished from signs representing words. And this is how the idea of writing was born 
as the result of the mathematical thinking of the Sumerian priest-accountants.

The idea of writing spread from Sumer throughout the Eastern Hemisphere. It is 
possible that the Chinese writing system was inspired by Western writing systems 
as trade existed between China and the Middle East before the appearance of writ-
ing during the late Shang dynasty circa 1200–1050  BC.  The other independent 
invention of writing took place in the Western Hemisphere in Mesoamerica begin-
ning with the Zapotec writing system that has not yet been fully deciphered. We 
therefore cannot find a link between math and writing for the Mesoamerican writing 
systems as we do not know how that system emerged.

The Mesoamerican number system of a bar and a dot however is similar to the 
Sumerian ban and bariga with both the dot and the bariga representing the number 
one. The one difference is that the bar represented 20 versus the ban which denoted 
10. One of the chief uses of writing was to keep track of the Mesoamerican calendar 
providing a possible hint of a connection between math and writing, but this is 
hardly convincing evidence.

With a written notation for both words and mathematical notation not only was 
communication enhanced but also mathematical thinking became more sophisti-
cated. De Cruz and De Smedt (2013) argue that

mathematical symbols are not only used to express mathematical concepts—they are 
constitutive of the mathematical concepts themselves. Mathematical symbols are epistemic 
actions, because they enable us to represent concepts that are literally unthinkable with our 
bare brains. [Signalling] an intimate relationship between mathematical symbols and math-
ematical cognition.

Thus, mathematical thinking gave rise to mathematical notation and writing 
which in turn led to the further development of mathematical thinking. Here we 
encounter a spiral structure to human cognition which will be the subject of the next 
section of this chapter.
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�Cyclic and the Spiral Structure of Human Cognition

Mathematical structures of set theory and verbal language co-emerged. Verbal 
language led to enumeration and enumeration in the context of accounting led to 
mathematical notation and writing. This cycle of math in terms of a primitive form 
of set theory led to verbal language that led to number words and enumeration, 
which led to accounting tokens and then the notation of numerals and writing. This 
in turn led to an increase in the cognitive ability of mathematicians and to the further 
development of mathematics. We suggest that this development represents a spiral 
structure. A spiral is generated by circular motion in a two-dimensional conceptual 
plane to which is added an increase or a decrease in the third direction perpendicular 
to the plane of the circular motion. In our case the circular motion is the cycle from 
mathematical structures to notation and back again and the third dimension is the 
increase in the mathematical cognitive development of the human mind. The spiral 
structure of the topology of the human mind appears many times in the evolution of 
human thought, as we will show, replicating the spiral structures found in nature.

Spiral forms abound in nature in both the abiotic physical world and in the bio-
sphere. Examples of abiotic spiral structures range from the spiral structures of 
galaxies to that of hurricanes, and tornados to whirlpools in oceans and rivers and 
even to the spirals in our bathtubs and sinks as water goes down the drain. The spiral 
structure in the biosphere occurs in the helical structures of DNA, RNA, and pro-
teins and in the many structures of both plants and animals. We begin the gallery of 
spirals in various biological specimens by reviewing three examples: the floret of 
the sunflower, which has the pattern of the Fermat’s spiral that allows the maximum 
number of seeds that can be packed into the flower; the logarithmic spiral of the 
nautilus mollusk shell; the fractal spiral structure of Romanesco broccoli; and the 
tails of the veiled chameleon and the seahorse (Fig. 10.1).

Fig. 10.1  Spiral structures
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�The Cyclic/Spiral Structure of Human Thought Patterns

The cyclic/spiral structure of human thought patterns is a universal characteristic of 
many cultures throughout human history. The idea of eternal return is the notion that 
events in the universe and in particular the events experienced by human kind repeat 
themselves so that they occur and reoccur forever and ever. This notion dates back 
to ancient Indian and ancient Egyptian philosophy. It was also an idea at the core of 
the beliefs of the Pythagoreans and the Stoics.

The notion in Indian philosophy and religion of the cyclic nature of time and 
existence can be dated as far back as 3300 BC and is characteristic of today’s reli-
gion in India including Hinduism, Jainism, Buddhism, and Sikhism. The ancient 
Egyptians also believed in the notion of the eternal recurrence with their notion of 
neheh, roughly translated as endless recurrence.

Chinese historians as far back as 2070  BC formulated the notion of dynastic 
cycles in which a new dynasty emerges replacing an older one. At first the new 
dynasty is vital and dynamic but over time it degenerates until it is replaced by a 
new vital dynasty and the eternal cycle resumes once again.

There are two Greek myths that incorporate the notion of a recurring cycle, 
namely the myth of Sisyphus and the myth of Prometheus. According to legend 
Sisyphus was able to put death in chains so that mortals would not have to die. 
Death was able to escape, however, and together with the gods condemned Sisyphus 
to the endless cycle of pushing a heavy rock up a mountain only to have it roll back 
down the mountain and have Sisyphus return to the bottom of the mountain and 
once again push the rock to the top of the mountain and so on and so forth for eter-
nity. The myth of Prometheus whose name literally means forethought is another 
story of the punishment of a mortal. Prometheus is credited with making mortals out 
of clay and then defying the gods he stole fire from them and gave it to humankind. 
Zeus was enraged by this act of theft and condemned Prometheus to be tied to a rock 
and have an eagle, a symbol of Zeus, come every morning and feed on his liver. 
Prometheus’ liver would grow back overnight and the eagle would come again and 
feast on Prometheus’ liver.

Kyklos is a traditional cyclic model of how political regimes evolve that was also 
described in Plato’s Republic. The idea was later enlarged upon and elaborated by 
the Greek historian Polybius (200–118 BC). The cycle begins with society in anar-
chy or a lack of government from which a strong figure emerges as a monarch. At 
first this form of government works well but as a result of inheritance of monarchs 
lacking moral stature the monarchy degenerates into a form of tyranny. The tyran-
nical regime is overthrown by the prominent citizens or aristocrats of the state to 
form an oligarchy that rules effectively until it degenerates through the corruption 
of the inheritors of the oligarchy. This oligarchy is overthrown by the ordinary citi-
zens of the state to form a democracy which in turn degenerates into rule by the mob 
or anarchy and the cycle begins all over again.

Another form of cyclic thinking was developed by Pythagoras and his followers. 
They believed that everything progressed in predictable cycles, which might have 
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been motivated by their knowledge of the cyclic movement of the heavenly bodies 
including the annual movement of the sun, the monthly cyclic movement of the 
moon as well as the recurring cycles of the planets.

Porphyry, a philosopher from Tyre in the Roman Empire wrote in The Life of 
Pythagoras that:

The following became universally known: first, that he [Pythagoras] maintains that the soul 
is immortal; second, that it changes into other kinds of living things; third, that events recur 
in certain cycles and that nothing is ever absolutely new; and fourth, that all living things 
should to be regarded as akin. Pythagoras seems to have been the first to bring these beliefs 
into Greece (the bolding is ours).

Muḥammad ibn Khaldūn al-Ḥaḍramī was a Tunisian/Arab historian who devel-
oped a cyclic theory of the rise and fall of empires in which an empire is formed, 
prospers, and after a period of decline is conquered by another regime which creates 
its empire but incorporates some of the cultural elements of the conquered empire. 
The conquering empire then suffers the same fate as the empire it conquered and so 
on and so forth in a never-ending cycle.

The tradition of cyclic accounts of history continued into modern times. 
Giambattista Vico’s philosophy of history, circa 1725, involved the notion of an 
advancement, a corso, followed by a ricorso or return. According to Vico, a society 
evolves to a high point in its development, its corso, and then regresses back to or 
returns to a more primitive time in its history, which he refers to as a ricorso. After 
the ricorso the society once again embarks on a new corso and progresses to a more 
advanced level of development to once again experience a ricorso or return. The 
spiral structure of history of corso followed by ricorso followed by another cycle of 
corso and ricorso and so on and so forth is characteristic of Vico philosophy of his-
tory. For Vico history has a spiral structure of recurring cycles of development and 
collapse. The cycle consists of three ages. The first and most primitive is the age of 
gods. The second age is the age of heroes, in which there is constant conflict between 
the rulers and the governed. The third age is the age of the people in which democ-
racy emerges but which eventually collapses because of corruption and returns to 
the age of gods once again. There is some parallel with the Greek notion of Kyklos 
if we take the age of gods as monarchy given some monarchs or emperors claimed 
divinity or claimed to have been chosen by God. The age of heroes would corre-
spond to the regime of the aristocrats.

Vico’s work was largely ignored by his contemporaries. His influence was not 
felt until the nineteenth century when his ideas influenced Marx, Goethe, Humboldt, 
Dilthey, Nietzsche, and Gedamer and into the twentieth century when his influence 
was felt by James Joyce, Marshall McLuhan, and Mircea Eliade. The notion of the 
“eternal return” was a central part of Friedrich Nietzsche philosophy. He first for-
mulated this idea in Aphorism 341, entitled “The greatest weight,” in Book IV at the 
very end of Die Fröhliche Wissenschaft (The Gay Science) where he wrote:

What, if some day or night a demon were to steal after you into your loneliest loneliness and 
say to you: “This life as you now live it and have lived it, you will have to live once more 
and innumerable times more; and there will be nothing new in it, but every pain and every 
joy and every thought and sigh and everything unutterably small or great in your life will 
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have to return to you, all in the same succession and sequence—even this spider and this 
moonlight between the trees, and even this moment and I myself. The eternal hourglass of 
existence is turned upside down again and again, and you with it, speck of dust!” Would you 
not throw yourself down and gnash your teeth and curse the demon who spoke thus.

The idea of eternal return was not for Nietzsche just a poetic or philosophical 
idea but something he believed actually and literally happens, is happening, and has 
happened. He even argued for the idea making use of physics and probability argu-
ing that if there is a finite amount of matter in the universe and there is an infinite 
amount of time then every configuration of matter in the universe would have to 
repeat itself. He even considered studying physics to confirm his hunch of the exis-
tence of the eternal return.

Nietzsche returned to the “eternal return” in Thus Spake Zarathustra, the next 
book he wrote after the Gay Science. In Chapter LVII The Convalescent he explic-
itly describes his notion of the “eternal return”:

O Zarathustra, who you are and must become: behold, you are the teacher of the eternal 
return, that is now your fate! That you must be the first to teach this teaching - how could 
this great fate not be your greatest danger and infirmity! Behold, we know what you teach: 
that all things eternally return, and ourselves with them, and that we have already existed 
times without number, and all things with us.

The notion of the “eternal return” reappears in the twentieth century with the 
work of Mircea Eliade. He contends that all religious practitioners not only celebrate 
the sacred but actually participate in ceremonies that reenact and relive those sacred 
events that gave rise to the notion of the sacred. This idea is indicative of Eliade’s 
spiral thought patterns. Given the universality of this pattern of “eternal return” 
among religious practitioners across the globe, Eliade’s observation hints at the idea 
that spiral thought patterns are a universal characteristic of the human mind. Eliade 
suggests that the “eternal return” is not just restricted to religious practitioners but 
that secularist scientists also entertain a notion of the “eternal return” to the sacred 
as they try to understand the origin of the universe and the rules that govern it.

Eliade argued that within the oral tradition time is not a linear progression of 
events but rather a cyclic repetition of sacred events that are re-experienced through 
myths and the performance of rituals that give meaning to the lives of preliterate 
humans. For them there is no distinction between the sacred and the profane or the 
secular. All activities such as hunting, gathering, mating, storytelling, dancing, 
music, and socializing are sacred.

To summarize, we might say that the archaic world knows nothing of “profane” activities: 
every act which has a definite meaning—hunting, fishing, agriculture; games, conflicts, 
sexuality—in some way participates in the sacred (Eliade 1964: 27–28).

There is no religion within the oral tradition because all activity is invested with 
the notion of the sacred and hence there is no need for religion. There are violations 
of the sacred but these are treated harshly by the community and can result in ban-
ishment. In oral culture one cannot live with a double standard as is the case in 
literate societies where people behave in one way on their day of prayer and another 
way for the rest of the week.
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As the final example of a recent example of cyclic/spiral thought patters we con-
sider the work of Marshall McLuhan with whom one of us (RKL) collaborated and 
the other (IP-O) has studied extensively. We believe that a deeper understanding of 
McLuhan’s life work and philosophy emerges by looking at the role of spiral struc-
tures in his understanding of media and culture. We are not suggesting that the spiral 
was foremost in his thinking but we believe that the archetypal structure of the spiral 
provides a frame in which a new view of McLuhan’s work emerges and one that 
encompasses his reversals of figure and ground and that of the reversal of cause and 
effect as well as the retrieval and flip in his Laws of Media (LOM).

McLuhan’s intellectual roots can be found in a number of other scholars, 
philosophers, literary figures, and artists who embraced a spiral structure in their 
thinking and artistic productions including Giambattista Vico, Johann Fitche, Georg 
Hegel, Karl Marx, James Joyce, TS Eliot, Edgar Alan Poe, and members of the 
Vorticism movement including Wyndham Lewis and Ezra Pound, Sigmund Freud, 
and I.  A. Richards, McLuhan’s professor in Cambridge where he did his PhD 
studies.

The spiral structure of purely physical and biological phenomena is primarily 
played out in physical space, whereas the spiral structures of philosophy, culture, 
human thought, scholarship, and artistic expression involve the time dimension. The 
movement back and forth in these domains entails the transitions from the present 
back to the past or forward into the future and vice versa from the past and the future 
to the present. The spiral structure unites the past, the present, and the future. 
According to McLuhan, “We live in post-history in the sense that all pasts that ever 
were are now present to our consciousness and that all the futures that will be are 
here now.” He also suggested that, “the future of the future is the present.”

McLuhan felt that an understanding of history was essential for understanding 
the future and the impact of new technologies. He often used the metaphor of the 
rearview mirror, a device by which we are able to determine what is about to over-
take us from our past. Furthermore, according to McLuhan, history is not to be 
regarded as a series of events but rather as a dynamic process with a discernible 
pattern, which repeats itself from culture to culture and from technology to 
technology.

An example of McLuhan’s cyclic reversals is the way in which he sees the rela-
tionship between the users of technology and the technologies themselves. In 
Understanding Media: Extensions of Man McLuhan (1964) suggests that technolo-
gies are extensions of their users but then he introduces a flip in which he also sug-
gests that the users of their technology become the servomechanisms of their own 
extensions, their own technologies. “To behold, use or perceive any extension of 
ourselves in technological forms is necessarily to embrace it. By continuously 
embracing technologies, we relate ourselves to them as servo-mechanisms 
(McLuhan 1964, 46).” At first, technology serves as an extension of humankind 
serving our immediate needs but unbeknownst to us our tools slowly transform our 
environment and we become their servants or servomechanisms. Consider how the 
automobile has transformed our landscape especially in North America to suit the 
need of the automobile rather than their drivers and pedestrians.
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McLuhan’s reversal of figure and ground is another spiral flip, which he expressed 
in the following excerpts from his writings:

My writings baffle most people simply because I begin with ground and they begin with 
figure. I begin with effects and work round to the causes, whereas the conventional pattern 
is to start with a somewhat arbitrary selection of ‘causes’ and then try to match these with 
some of the effects. It is this haphazard matching process that leads to fragmentary superfi-
ciality. As for myself, I do not have a point of view, but simply work with the total situation 
as obvious figures against hidden ground (Molinaro et al. 1987: 478).

McLuhan (1964: 62) saw the creative process of both the inventor and the artist 
as working backwards from the effect they wanted to create to the cause that would 
lead to the desired effect.

A. N. Whitehead … explained how the great discovery of the nineteenth century was the discov-
ery of the technique of discovery. Namely, the technique of starting with the thing to be discov-
ered and working back, step by step, as on an assembly line, to the point at which it is necessary 
to start in order to reach the desired object. In the arts this meant starting with the effect and then 
inventing a poem, painting, or building that would have just that effect and no other.

McLuhan explained how effects precede causes by showing how the effect of the 
telegraph was the cause of the telephone and the effect of the telegraph and the tele-
phone was the cause of the phonograph.

�The Spiral Structure of the Tetrad or Laws of Media

We will also encounter figure/ground thinking when we encounter McLuhan’s 
(McLuhan 1975, 1977; McLuhan and McLuhan 1988) Laws of Media (LOM) also 
known as the tetrad. The LOM is sometimes formulated in terms of four questions 
and sometimes as four statements. We present both, first as four questions and then 
as four statements.

Four questions:

	(a)	 What does a medium enhance?
	(b)	 What does a medium obsolesce?
	(c)	 What does a medium retrieve that had been obsolesced earlier?
	(d)	 What does a medium flip into when pushed to the limits of its potential?

Four statements:

	1.	 Every medium or technology enhances some human function.
	2.	 In doing so, it obsolesces some former medium or technology, which was used 

to achieve the function earlier.
	3.	 In achieving its function, the new medium or technology retrieves some older 

form from the past.
	4.	 When pushed far enough, the new medium or technology reverses or flips into a 

complementary form.
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In the LOM enhancement as “figure” is to obsolescence as “ground,” just as 
retrieval as “figure” is to reversal as “ground.” The LOM represents a model for the 
evolution of artifacts. According to the LOM, every artifact when pushed far enough 
flips into a new more advanced artifact. As an evolutionary model, it explains the 
continuous emergence of new artifacts in the ongoing cycle of the four laws of 
enhancement, obsolescence, retrieval, and flip. Each cycle of these four laws (the 
tetrad) is linked to the previous one and to the next cycle or tetrad and hence has a 
spiral structure.

We believe that the Laws of Media most vividly illustrate the spiral structure of 
McLuhan’s thought processes that allowed him to pioneer the emergence of the new 
interdisciplinary and multidisciplinary field of study of media ecology, a form of 
systems theory in which causality operates simultaneously top down and bottom up. 
The LOM represents the culmination of McLuhan’s lifelong project to understand 
media and their impact on all aspects of human life. The spiral structure of the LOM 
mirrors the spiral structure of the internal workings of McLuhan’s thought pro-
cesses and is an important part of his legacy.

	1.	 Spiral thought patterns enhance seeing both the liminal and the subliminal.
	2.	 They obsolesce reductionist thinking.
	3.	 They retrieve general systems theory, cybernetics, and emergent dynamics.
	4.	 And pushed far enough they will flip into the ultimate control of human’s arti-

facts to serve human needs and the liberation of humankind’s subservience to 
their technology as their servomechanisms.

�Hyperlinking, Interlinking, and Cognitive Connections

Everything is interconnected and linked. No man is an island and by extension no 
text is an island. Nor does anything or any text stand by itself. Every figure has its 
ground and operates in some environment. And no environment stands by itself, but 
is connected to other environments. There is nothing in the literature that stands by 
itself. Every text digital or non-digital text is connected to other texts, some explicit 
as in hypertexting and some subliminally.

Hypertext arose with the Internet and the World Wide Web in which informa-
tion from one document or Web site is linked to information in another document 
or Web site automatically when the user clicks on a hypertext link of text that is 
underlined in blue. We are more aware of linking in the digital age because 
hyperlinking is a ubiquitous feature of cyberspace. But as we will now show, 
hyperlinking or linking has always been a feature of the human mind. We have 
already claimed that creating the sets of percepts that led to verbal language was 
a form of hyperlinking, but let’s examine other examples beginning with the oral 
tradition. If we define hyperlinking or hypertext more generally as the linking of 
one set of data or information with another set of data or information in another 
location, it is possible to identify pre-digital forms of hypertext in the very origin 
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of language, in the recital or performance of epic poetry such as Homer and in 
written documents and books including both hand-written and printed manu-
scripts and books.

�Oral Forms of Hyperlinking

We have claimed that the emergence of verbal language is connected to the ability 
of the human mind to create a linkage between percepts that share a common prop-
erty and hence create a set of percepts that could be represented by a word acting as 
a concept. Linking is therefore an essential element of the topology of the mind.

Hypertexting or hyperlinking can also be traced back to the oral tradition before 
writing if we consider the way in which epic poetry was generated through the use 
of oral-formulaic composition as was described by Parry (1993) and his student 
Lord (1960), author of The Singer of Tales. According to Parry and Lord oral poets 
or the singer of tales, as in the Homeric tradition for example, composed their epic 
poems extemporaneously by combining elements from a store of formulae that they 
had memorized. Each formula had a certain metrical signature (six-colon Greek 
hexameter in the case of Homer) and represented a certain key idea. During the 
performance of a poem before a live audience the poet or singer of tales would 
combine or hyperlink these stored formulae to generate a unique story. The hyper-
linking took place in the poet’s memory that was facilitated by the meter and the 
rhyme of the stored formulae. The amount of information that could be stored in this 
manner could be quite extensive. Havelock (1963) in his book Preface to Plato 
describes Homer as a “tribal encyclopedia. The Iliad and the Odyssey are not just 
tales of a war and a journey home from a war, but they contain all the information a 
Greek needed to know to operate properly in their society. Homer’s epic poems 
served as a ‘tribal encyclopedia’” transcribed to memory through the devices of 
poetry into hyperlinked formulae. They are a compendium of the wisdom of a cul-
ture. It should be noted that Homer is most likely a mythical figure. The date of the 
composition of the opus attributed to Homer based on the references to geographic 
locations is well before the emergence of the Greek alphabet. So, what goes as the 
work of Homer is most likely the transcriptions of the epic poetry compiled into the 
two collections of the Iliad and the Odyssey.

In addition to the oral tradition of long ago there is another form of oral hyper-
linking if one considers the way in which a conversation or dialogue transpires in 
the everyday affairs of all of us. As the individuals in a conversation or a dialogue 
take turns they often refer back to things said earlier in the conversation.
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�Written Forms of Hyperlinking

With the written word new forms of linkage emerged. The marginalia and illuminations 
of hand-written manuscripts are examples of pre-digital hyperlinking. With print new 
forms of hyperlinking emerged in the form of footnotes, annotations, and indices as 
pointed out by Ted Nelson, who coined the term hypertext.

The closest parallel to digital hypertext in print is the Hebrew Talmud. The 
Talmud in its printed form is a purely literary form that most closely resembles digi-
tal hypertext as each page consists of a central text that is surrounded by comments 
on the central text and often comments on the comments. In 1483 only 43 years 
after the first appearance of the Gutenberg press Joshua Solomon Soncino printed 
the first individual tractates of the Talmud. Soncino’s innovation was not only the 
use of print, but also the way in which he formatted the pages of the Talmud with 
the original Talmudic text in the middle of the page and the commentaries of two 
rabbis, Rashi and Tosafot, surrounding the central text in the margins (see the 
accompanying figures) (Fig. 10.2).

�Digital Hyperlinking

Hypertext is defined in many ways. In the Webster-Miriam dictionary, hypertext is 
defined as “an arrangement of the information in a computer database that allows a 
user to get information and to go from one document to another by clicking on 
highlighted words and pictures.” The definition found in Wikipedia, the hypertext 
open-access encyclopedia, is:

Hypertext is text displayed on a computer display or other electronic devices with refer-
ences (hyper[text]links) to other text which the reader can immediately access, or where 
text can be revealed progressively at multiple levels of detail (Wikipedia).

Fig. 10.2  The Talmud
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These two definitions require that hypertext literature be made and experienced 
on a computer, and is thus medium specific. Some scholars take a different approach 
to defining hypertext, one that challenges the media-chauvinist argument. We find 
the definition of Hayles (2001), an American postmodern literary critic and elec-
tronic literature theorist, more useful because it pertains to both pre-digital and digi-
tal hypertext. “Hypertext has at least these three elements: multiple reading paths; 
text that is chunked in some way; some kind of linking mechanism that connects the 
chunks together so as to create multiple reading paths.” Notice how this definition 
does not include the word “computer” or “database.” Following Hayles’ (2001) 
definition, hypertext is not limited to technology, content, or medium; rather it is an 
organizing structure for a genre of literature that is readily available on paper as well 
as on a computer. Hypertext is not inherently tied to electronic literature. This allows 
hypertext to be more than just a digital format and thus expands the concept of 
hyperlinking as we described in the section above.

When one hyperlinks data, one creates additional information through the net-
work structures that are created that can have a treelike, rhizomic, or labyrinth-like 
structure. Hypertext is a special literary form of hyperlinking limited to written or 
spoken words. Examples of hypertext in digital formats include but are not limited 
to Wikipedia, computer networks, the Internet, the World Wide Web, individual 
Web sites, and Web pages to mention a few examples. Hypertext structure is a series 
of connections with no real beginning or end, just bunches of data to be stumbled 
upon. The order of stumbling becomes a path, which is rarely the same order twice 
(it is difficult to backtrack if you can’t see where you’ve been like Alice in 
Wonderland, down the rabbit hole).

Hypertext utilizes modular theory to expand nodes of information and organize it to 
serve a higher function than pure input. These nodes of information diverge and expand 
into a networking on information, with no center and no margins. We will argue that 
hypertext is a method of organization that gives the reader/user more agency than non-
hyperlinked text. It is by this agency that information is turned into knowledge.

�Vannevar Bush and the Memex

The idea of hypertext was first conceived in a certain sense by Bush (1945) in an 
article he wrote for the Atlantic Monthly entitled “As We May Think” where he 
introduced the idea of the Memex (memory and index), a hypothetical device in 
which individuals would compress and store all of their books, records, and com-
munications, “mechanized so that it may be consulted with exceeding speed and 
flexibility,” and serve as a device that could hold humanities’ collective memory. 
Bush did not think of this as a computer-based system but rather Bush described the 
Memex system as an electromechanical device enabling individuals to develop and 
read a large self-contained research library, create and follow associative trails of 
links and personal annotations, and recall these trails at any time to share them with 
other researchers. This device would closely mimic the associative processes of the 

R. K. Logan and I. Pruska-Oldenhoff



209

human mind, but it would be gifted with permanent recollection. As Bush wrote, 
“Thus science may implement the ways in which man produces, stores, and consults 
the record of the race.”

�Theodor Nelson, Project Xanadu

Theodor Nelson, perhaps inspired by the Memex model, began working on his own 
program that could link information together and mimic the associative thought pat-
terns of its user. Nelson (1965) coined the terms hypertext to refer to linking bodies 
of text using electronic computers and hypermedia in his 1965 article Complex 
Information Processing: A File Structure for the Complex, the Changing and the 
Indeterminate. Those terms have gained common currency in the English language. 
He first formulated his ideas for hypertext when he was a graduate student at Harvard 
as early as 1960 when he began what he called Project Xanadu. Nelson saw a vision 
for a “digital repository scheme for world-wide electronic publishing.” Nelson 
formed a company to commercialize his ideas but Project Xanadu never bore fruit.

�Tim Berners-Lee, The World Wide Web

Nelson’s idea of hypertext was successfully implemented with the emergence of the 
World Wide Web invented in 1989 by Tim Berners-Lee, who was working at the 
high-energy physics accelerator CERN in Switzerland. He wanted to solve the prob-
lem of the communication between physicists based in different parts of the world 
who had conducted experiments at CERN and wanted to share their data with each 
other and the general high energy physics community. He believed that a medium 
that allowed hypertexting or the associative linking of files that displayed both tex-
tual and visual information would serve the needs of the physicists that worked at 
and/or visited CERN. He also realized that this application running on the Internet 
would have thousands of applications outside of high-energy physics. Because the 
Web served the needs of the scientists at CERN he was able to convince the admin-
istrators there to support his project. In 1989 Berners-Lee developed the first version 
of the Hypertext Transfer Protocol (HTTP) for the distribution of hypertext and 
general hypermedia over the Internet. He also developed the first Web browser. 
Berners-Lee made the HTTP protocol available to the general public. He founded 
two organizations, the World Wide Web Consortium that maintains the standards for 
the operation of the Web and the World Wide Web Foundation that looks after ways 
to improve the Web as well as ways to access to it internationally.

World Wide Web brings a human dimension to IT, which facilitates collaboration. 
This is no accident because according to Berners-Lee (1999: 123) it was designed pre-
cisely to do this job: “The Web is more a social creation than a technical one. I designed 
it for a social effect—to help people to work together—and not as a technical toy.”
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The first web page went live on August 6, 1991. It was dedicated to information on the 
World Wide Web project and was made by Tim Berners-Lee. It ran on a NeXT computer at 
…. CERN. The first web page address was http://info.cern.ch/hypertext/WWW/TheProject.
html. It outlined how to create Web pages and explained more about hypertext (https://
www.businessinsider.com/flashback-this-is-what-the-first-website-ever-looked-
like-2011-6 accessed on July 31, 2018).

�The World Wide Web, Hyperlinking, and Cognition

The hypertext structure of the Internet/World Wide Web closely mimics the associa-
tive processes of the human mind. It utilizes modular theory to expand nodes of 
information and organize it to serve a higher function than pure input. These nodes 
of information diverge and expand into a networking on information, with its center 
everywhere and its margins nowhere. Hypertext is a method of organization that 
gives the reader/user more agency than non-hyperlinked text. It is by this agency 
that it turns information into knowledge. Just as spoken language allowed humans 
to conceptualize and written language allowed a more abstract level of thought that 
resulted in mathematics, science, social science, and philosophy so it is that hyper-
text promotes a systemic approach to organizing knowledge.

�Conclusion

Hopefully the reader has seen the interlinking of mathematics, verbal language, 
mathematical notation, writing, digital hypertext, and spiral and hyperlinked struc-
tures of human cognition.
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Chapter 11
Mathematical Fiction as an Interdisciplinary 
Source for Mathematics Courses: Resources 
and Recommendations

Frank Nuessel

�Introduction

The purpose of this essay is to (1) define the notions of mathematics, literature, and 
mathematical fiction; (2) describe a resource-rich database for mathematical fiction; 
(3) discuss the rationale for using mathematical fiction in a mathematics course; (4) 
provide and discuss one selected exemplar of mathematical fiction; and (5) make 
recommendations for the use of mathematical fiction in a mathematics course. The 
following sections will provide details of each objective.

�Definitions of Mathematics, Literature, and Mathematical 
Fiction

It is useful to introduce working definitions of certain key concepts in this essay before 
talking about the specifics. For this reason, descriptions of three important concepts 
“mathematics,” “literature,” and “mathematical fiction” are presented briefly.

The American Heritage Dictionary of the English Language (Morris 1979: 806) 
defines “mathematics” as “[t]he study of number, form, arrangement, and associated 
relationships, using rigorously defined linear, numerical and operational symbols.” 
Devlin (2000: 7) poses the question “What is mathematics?” His simple response is that 
it is the “science of patterns” (Devlin 2000: 7). Devlin (2000: 8) goes on to state that:

the patterns studied by the mathematician can be either real or imagined, visual, or mental, 
static or dynamic, qualitative or quantitative, utilitarian or recreational. They arise from the 
world around us, from the depths of space and time, and from the workings of the human 
mind. Different kinds of patterns give rise to different branches of mathematics. For 
example, number theory studies (and arithmetic uses) the patterns of number and counting; 
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geometry studies the patterns of shape; calculus allows us to handle patterns of motion; 
logic studies patterns of reasoning; probability theory deals with patterns of chance; topol-
ogy studies patterns of closeness and position.

Likewise, literature may be defined as “an art form, or any single writing deemed 
to have artistic or intellectual value, often due to deploying language in ways that 
differ from ordinary usage” (Literature 2018). Moreover, there are distinct ways of 
categorizing literature (Literature 2018):

Literature can be classified according to whether it is fiction or non-fiction, and whether it 
is poetry or prose. It can be further distinguished according to major forms such as novel, 
short story or drama; and works are often categorized according to the historical periods or 
their adherence to certain aesthetic features or expectations.

Mathematics and literature represent two distinct systems of communication with 
different representational modes. On the one hand, mathematics employs symbols to 
represent solutions to problems. In this regard, Danesi (2008: 37) observes that 
“math competence can be defined therefore as the ability to represent problems in an 
appropriate semiotic fashion, whereby the problem is converted into an appropriate 
sign-form.” Danesi (2008: 119) further notes that “Story problems involve a straight-
forward translation of the language of the problem into the language of algebra.”

Literature, on the other hand, is language based, and it makes use of a limited set 
of sounds (phonology), word-formation practices (morphology), and arrangement 
of words (lexicon) within a sentence to represent speech. This linguistic system may 
also be represented orthographically. Chomsky (1965: 8) points out that language 
can “make infinite use of finite means” by which he means that a simple set of 
grammatical rules is capable of generating an infinite number of grammatical 
sentences; hence language has an essentially creative component.

Freeman et al. (2016: 283–284) make the following observations about formal 
writing in mathematics and ordinary language:

Formal writing in mathematics is a precise language that requires accuracy in its expression, 
especially at higher levels of mathematics study …, though it also constitutes a large part of 
K-12 education: in the classroom, in textbooks, and on assessments. The language of math-
ematics contains mathematical statements (hypotheses, conjectures, axioms, and theorems), 
linguistic forms and properties, grammar (connectors, combinators), and symbols. This 
language is often information-dense and abstract. It is also vastly different than language 
used in social conversation  …,  as is the vocabulary of mathematics with mathematical 
meanings being much more exact and nuanced than their ordinary definitions.

While there are distinctions between mathematical and linguistic communica-
tion, there are also areas of overlap. In some cases, mathematics and language 
converge in what Danesi (2008: 118) calls “story problems.” Danesi (2008: 118) 
defines a story problem, or a word problem as “one that requires solvers to translate 
the language used by the problem into appropriate mathematical language.” Danesi 
(2008: 117-153) devotes an entire chapter to this type of mathematical problem. It 
should be noted that Polozov et al. (2015) have proposed a useful personalized word 
problem generator, which allows the individualization of mathematical word 
problems.
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O’Halloran (2000: 362) offers an insightful proposal on the evolution of mathematical 
problems from their linguistic representation to their contemporary visual and symbolic 
formats when she states that:

A historical look at the evolution of the genres of mathematical texts suggests that the 
lexicogrammar of mathematical symbolism may have evolved from natural language 
because mathematical texts were initially written in the prose form of verbal “rhetorical 
algebra.” These texts contained detailed verbal instructions about what was to be done for 
the solution of a problem. In later texts, there appeared abbreviations for recurring partici-
pants and operations in what is known “syncopated algebra.” The use of variables and signs 
for participants and mathematical operations in the last 500 years resulted in “symbolic 
algebra” and the contemporary lexicogrammar of mathematics. Thus, we may conjecture 
that the grammar of modern mathematical symbolism grew directly out of the lexicogram-
mar of natural language and this may explain the high level of integration of symbolic and 
linguistic forms in mathematical texts.

It has been said that learning mathematics is akin to learning a foreign language. 
Mathematical story problems require the student to use ordinary language and translate/
convert it to the language of vocabulary of mathematics. The latter has a precise and 
specific grammar of its own; it has a precise vocabulary with symbols that have specific 
meanings understood by all mathematicians. It also has its own grammar shared by 
mathematicians worldwide, e.g., the convention that formulas are written from left to 
right. Likewise, there are specific typographical conventions for mathematical state-
ments. These formats contain highly condensed and abbreviated information that may 
be converted to ordinary language. With regard to these formulae, O’Halloran (2000: 
361) notes that “[m]athematics is multisemiotic because the linguistic, visual and 
symbolic systems differentially contribute to the meaning of the text.”

It is also important to have a working definition of the primary topic of this 
chapter, namely, mathematical fiction. Mathematical Fiction (2018) provides the 
following general description:

Mathematical fiction is a genre of creative fictional work in which mathematics and 
mathematicians play important roles. The genre may include short stories, novels or plays; 
comic books; films, videos, audios.

It should be noted that comic books, films, videos, and audios all derive from 
scripted material, so their inclusion in this definition is appropriate. Shloming 
(2012: 33–34) further observes that:

The term “mathematical fiction” is used to describe the genre of fictional works that contain 
mathematics. Media of mathematical fiction vary and include but are not limited to novels, 
short stories, movies, plays and poems. Much as mathematics is not limited to one topic, 
neither are the subjects considered in works of mathematical fiction. Numerous mathematical 
fields are represented in mathematical fiction, such as number theory, algebra, geometry, 
and analysis.

Reading and learning mathematics through mathematical fiction may accomplish two 
important educational goals; namely, humanizing mathematics and exploring mathematical 
ideas through literature. References to mathematics in fiction as major themes of the story 
can reflect and shape how society perceives mathematics. Enjoyment from reading mathe-
matical fiction can enhance motivation to learn more mathematics and may alleviate math 
anxiety ….
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�The Alex Kasman Mathematical Fiction Web Site

The representation of the science of mathematics in fictional works is considerable. 
Evidence for this claim comes from the web site entitled “Mathematical Fiction” 
created by Alex Kasman (2018) (see Mann 2010; Nuessel 2012), a professor of 
mathematics at the University of Charleston in South Carolina who has also written 
mathematical fiction (Kasman 2005). The site is a veritable cornucopia of informa-
tion about mathematics in fiction. At this writing, it contains 1274 works. In the 
“About” section of his web page, Kasman observes that “[s]ince it is not especially 
significant to the purposes of this list, I am not differentiating between fiction which 
refers to actual mathematics and literature in which the mathematics itself is 
fictional.” This web site is frequently cited in studies on the use of mathematical 
fiction in mathematics courses. Because of its detailed categorization of mathemati-
cal fiction and its rich description of its current 1274 annotated bibliographic entries, 
it is considered the best and most accurate resource for mathematical fiction. It 
contains multiple parts, which will be presented in the following subsections.

Kasman includes an extremely useful “Search the Mathematical Fiction Database” 
in his web site, which contains the following components designed to reduce the 
user’s work:

	 1.	 Keywords in Title
	 2.	 Keywords in Author
	 3.	 Keywords in Summary
	 4.	 Medium
	 5.	 Genre
	 6.	 Topic
	 7.	 Motif
	 8.	 Math Content Rating
	 9.	 Literary Quality Rating
	10.	 Order (Publication Date, Most Recently Added/Modified and Math Content 

Rating, Literary Quality Rating)

Kasman has categorized mathematical fiction by medium, motif, genre, and 
mathematical topic. Each grouping will be discussed briefly in the following four 
subsections of this chapter.

�Medium in the Kasman Mathematical Fiction Site

Kasman categorizes the media type in the following formats:

	1.	 Available Free Online (137 entries)
	2.	 Collection (14 entries)
	3.	 Comic Book (14 entries)
	4.	 Films (109 entries)
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	5.	 Novels (591 entries)
	6.	 Plays (57 entries)
	7.	 Short Stories (489 entries)
	8.	 Television Series or Episode (31 entries)

It must be remembered that all of these formats derive ultimately from scripted 
documents, so the inclusion of nonprint media is suitable for this inventory.

�Motifs in the Kasman Mathematical Fiction Site

According to Kasman (2018), the following motifs appear in his voluminous list of 
mathematical fiction from a group of 1274 works, and that number will certainly 
increase with time. Several of these motifs are somewhat tangential to mathematics 
proper. Nevertheless, this resource is the best and the creator is meticulous in terms 
of content and accuracy. Kasman invites people to add comments to the web site, 
and many of the entries contain useful information:

	 1.	 Academia (232 entries)
	 2.	 Aliens (96 entries)
	 3.	 Anti-social Mathematicians (118 entries)
	 4.	 Autism (22 entries)
	 5.	 Cool/Heroic Mathematicians (46 entries)
	 6.	 Evil Mathematicians (49 entries)
	 7.	 Female Mathematicians (220 entries)
	 8.	 Future Prediction through Math (49 entries)
	 9.	 Gödel (42 entries)
	10.	 Genius (55 entries)
	11.	 Higher/Lower Dimensions (72 entries)
	12.	 Insanity (80 entries)
	13.	 Math as Beautiful/Exciting/Useful (76 entries)
	14.	 Math as Cold/Dry/Useless (39 entries)
	15.	 Math Education (131 entries)
	16.	 Möbius Strip/Nonorientability (31 entries)
	17.	 Music (22 entries)
	18.	 Newton (18 entries)
	19.	 Prodigies (82 entries)
	20.	 Proving Theorems (118 entries)
	21.	 Real Mathematicians (149 entries)
	22.	 Religion (117 entries)
	23.	 Romance 227 entries)
	24.	 Sherlock Holmes (16 entries)
	25.	 Time Travel (58 entries)
	26.	 Turing (28 entries)
	27.	 War (56 entries)

11  Mathematical Fiction as an Interdisciplinary Source for Mathematics Courses…



218

�Genre in the Kasman Mathematical Fiction Site

Kasman provides his own categories for mathematical fiction as follows:

	 1.	 Adventure/Espionage (98 entries)
	 2.	 Children’s Literature (94 entries)
	 3.	 Didactic (97 entries)
	 4.	 Fantasy (138 entries)
	 5.	 Historical Fiction (187 entries)
	 6.	 Horror (37 entries)
	 7.	 Humorous (244 entries)
	 8.	 Mystery (156 entries)
	 9.	 Romance (18 entries)
	10.	 Science Fiction (478 entries)
	11.	 Not Science-Fiction, Fantasy, or Horror (679 entries)

�Topics in the Kasman Mathematical Fiction Site

Kasman has classified the 1274 examples of mathematical fiction by mathematical 
topic as follows:

	 1.	 Algebra/Arithmetic/Number Theory
	 2.	 Chaos/Fractals
	 3.	 Computers/Cryptography
	 4.	 Fictional Mathematics
	 5.	 Geometry/Typology/Trigonometry, Infinity
	 6.	 Logic/Set Theory
	 7.	 Mathematical Finance
	 8.	 Mathematical Physics
	 9.	 Probability/Statistics
	10.	 Real Mathematics

Each detailed entry also features Kasman’s personal assessment of the quality of the 
mathematical content and its literary quality on a scale of 1–5. Finally, the site provides 
search possibilities for keywords in title, keywords in author, keywords in summary, 
medium, genre, topic, motif, and math content rating and literary quality rating.

�Rationale for Using Mathematical Fiction in Mathematics Classes

At this juncture, it is important to ask why mathematical fiction belongs in the 
curriculum of a mathematics course. There are several answers. First, it provides 
personal entertainment and enjoyment. Second, these works offer an alternative 
medium to illustrate mathematical principles taught at any level (K-16) since they offer 
an ancillary textual representation of mathematical principles and tenets. Mathematics 
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is a representational code just as language is. Finally, numerous scholarly articles 
emphasize the value of mathematical fiction to teach the principles of mathematics 
because they allow the student to consider the specific mathematical topic from the 
perspective of another discipline and another code. These studies bridge all teaching 
levels (K-16). A few examples of this burgeoning literature include the following 
selected items (Hohn 1961; Kilman 1993; Kribs and Ruebel 2008; Padula 2005, 2006; 
Shloming 2012, and Zambo 2005).

Shloming (2012: 4) points out that the essential value in using fiction about 
mathematics is to enhance the experience of acquiring some basic principles of the 
discipline, namely,

Connecting literature with mathematics can further an understanding of mathematical concepts 
(Bosse and Faulconer 2008; Whitin and Whitin 2004) that are taught formally. Many novels and 
short stories in the mathematical fiction genre are of high literary quality and mathematical 
exposition. These novels and short stories can educate and motivate as well as entertain the 
reader. Mathematical fiction can be used before and during formal learning from a textbook.

Interest in mathematical learning through informal knowledge is accelerating (Asklaksen 
2006). However, the matter of utilizing fictions with their mathematical content or how 
these fictions can influence teaching has thus far received only limited scholarly attention.

In this same vein, Padula (2006: 43) states that mathematical fiction can “… moti-
vate students; introduce mathematical ideas in an informative context; elaborate on 
topics; supply imaginative applications; and help clarify mathematics.”

The introduction of mathematical literature into a mathematics class allows the 
student to recognize and distinguish mathematical and linguistic registers. In this 
regard, Schleppegrell (2007: 140) observes that Halliday (1978) points out that 
there are two modes of discussing mathematics. First, there is the everyday language 
register involving counting and measuring, which often lacks precision. Second, 
there is a mathematical register that requires course-related teaching and learning so 
that the student can acquire the precision required by mathematical representation. 
Finally, Schleppegrell (2007: 140) cites Halliday (1978: 195–196), who states that 
discussing mathematics requires the student to learn new “styles of meaning and 
modes of argument … and of combining existing elements into new combinations.” 
In this regard, Schleppegrell (2007: 141) states:

In doing mathematics, it is not enough to be able to work with the language alone; mathe-
matics draws on multiple semiotic (meaning-creating) systems to construct knowledge: 
symbols, oral language, written language, and visual representations such as graphs and 
diagrams. In addition, it uses features such as order, position, relative size, and orientation in 
meaningful ways (Pimm 1987) Because concepts that mathematics construct are often 
difficult to articulate in ordinary language, mathematics symbolism has developed to express 
meanings that go beyond what ordinary language can express. For example, mathematics 
symbolism can be used to describe relationships of parts to whole, and to construct trends 
and patterns of continuous covariation that cannot be presented as precisely in natural 
language. Visual displays, in the form of graphs and diagrams, can represent the information 
presented in the mathematics symbolism in ways that language cannot (O’Halloran 1999).

An essential part of understanding the basic tenets of mathematics is to be able 
to distinguish between mathematical and linguistic registers, and to use them both 
appropriately. The inclusion of mathematical fiction allows the student to make this 
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differentiation through exercises that involve the translation of one register into 
another: (1) ordinary language register to mathematical register, and (2) mathemati-
cal register to ordinary language register. Initially, these tasks will challenge the 
student. However, with sufficient practice, the student will acquire mastery and 
competency of both systems.

The studies cited in this section on the rationale for using mathematical fiction in 
mathematics courses find theoretical support for their differentiation of linguistic 
and mathematical registers in the significant treatise by Sebeok and Danesi (2000) 
on modeling systems. In simple terms, human beings have an innate capacity to 
create models of the world through their perceptual sensory systems (sight, hearing, 
touch, taste, smell). This process is called semiosis, which Sebeok and Danesi 
(2000: 5) define as “[t]he ability to make models is, actually, a derivative of semio-
sis, defined simply as the capacity of a species to produce and comprehend the 
specific types of models it requires for processing and codifying perceptual input in 
its own way.” This process consists of four phases: sensory perceptions > semio-
sis > modeling > representation (Sebeok and Danesi 2000: 6).

Sebeok and Danesi (2000: 32) further note that:

A cohesive modeling system is known in traditional semiotic theory as a code, a system 
providing particular types of signifiers that can be used in various ways and for diverse 
representational purposes  …  A language code, for instance, provides a set of phonetic, 
grammatical, and lexical ‘instructions’ that the producers and interpreters of words and 
verbal texts can recognize and convert into messages.

Generally speaking, for some particular representational need there is an optimal code 
or set of codes that can be deployed.

Sebeok and Danesi (2000: 34) also point out that “[t]he use of a code to make signs 
is called encoding, the reception or interpretation of signs or texts is called decoding.”

In acquiring the ability to understand the mathematical register, the student must 
develop the ability to understand, and subsequently use, the mathematical code or 
register in a meaningful and appropriate fashion in specific contexts (classroom, 
problem-solving activities, and written papers). In the fourth chapter of their book 
on modeling, Sebeok and Danesi (2000: 120) discuss the notion of “tertiary model-
ing system,” which they define as “the system that undergirds highly abstract, 
symbol-based modeling.” In this discussion, they (Sebeok and Danesi 2000: 120–
129) offer examples from mathematics (geometry, algebra) to illustrate their point.

Mathematical literature provides the student with the ability to comprehend the 
mathematical register via ordinary language. Translational exercises will allow the stu-
dent to take the mathematical information in ordinary language and develop a compe-
tency in representing it in mathematical code through the process of “code-switching.”

�Selected Example of Mathematical Fiction

In her detailed discussion of 26 novels and short stories that feature geometric 
themes, Shloming (2012) discusses one work that has received frequent reference in 
the discussion of the use of mathematical fiction in mathematics courses, namely, 
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Flatland: A Romance of Many Dimensions by Edwin Abbott Abbott (1838–1926), 
a British teacher and author, which was published in 1884 (Abbott 2002). This 
novel is a prototypical work of fiction that addresses plane geometry in a completely 
understandable fashion.

Abbott’s (2002) Flatland: A Romance of Many Dimensions has received a great 
deal of academic attention as a good example of mathematical fiction that is usually 
an ancillary reading for mathematics classes at all levels (Danesi 2003: 75–76, Danesi 
2018: 115–119, Dotson 2006, Mann 2010, Shloming 2012: 39, 50–52, passim, 
Padula 2005, 2006, Wallace et  al. 2011, Sriraman 2003, 2004, Sriraman and 
Beckmann 2018).

Kasman’s (2018) entry in his web site Mathematical Fiction gives this novel a 
rating of 3.76 based on the quality of its mathematical content and 2.5 on the basis 
of its literary quality. This work is widely cited in academic papers about mathe-
matical fiction. It is worth reproducing Kasman’s comments on this text to give 
the reader a sense of how a mathematician approaches mathematical literature. 
After an extensive review of the annotations, I found them to be consistently good 
and accurate.

This is the classic example of mathematical fiction in which the author helps us to think 
about the meaning of “dimension” through fictional example: a visit to a world with only 
two spatial dimensions.

One of the genres used in this Website is “didactic”. I classify works of fiction as “didactic” 
if the intention of the author is to use the fiction to teach mathematics. For example, 
Enzenberger’s “Der Zahlenteufel” is didactic because the story does not really matter at all; 
the purpose of that novel is to interest the reader in the real mathematics that it discusses. 
The idea is that many readers who have trouble with abstract mathematical thinking will 
understand it better if it is included in a story and given some sort of fictional “reality”.

Many people do have trouble conceiving of higher dimensional geometry, and a reference 
to Flatland is now commonly used by people who are trying to help others understand this 
difficult concept. It does seem to help people to imagine creatures living and thinking in a 
two-dimensional universe and to imagine how they would perceive the three-dimensional 
objects that are familiar to us. So, people certainly use Flatland as a didactic work of math-
ematical fiction.

However, I do not think Edwin Abbott Abbott was using math that way. It was not his goal 
to make the math more understandable and believable by including it in a story. Quite the 
opposite, in fact. I think Abbott thought of math as something that people would already 
understand and wanted to use that math to discuss certain non-mathematical ideas that 
were important to him. Moreover, he hoped that by using mathematics (a topic most people 
agree upon), he would be able to generate some agreement in discussing something more 
controversial. In particular, I think that what he really wanted to write about was not math-
ematics but the relationships between people and the relationship between people and the 
supernatural.

Consider this: the main character, “a square”, of Flatland has had an experience with some-
thing from beyond his own universe, something he cannot see entirely but can only glimpse 
in pieces. This has changed his view of his reality, changed his view of his relationship with 
the other creatures of Flatland, and he wants to share that information.
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Now, notice that because of his strangely repetitive name (“Abbott Abbott”), the author of 
Flatland could also describe himself as “A Squared” = “A^2.” Abbott was a theologian. He 
presumably also believed that he could perceive God’s existence, but not entirely, only in 
pieces. And although some of his ideas seem to reflect an old fashioned bias to modern 
readers (e.g. that the females in Flatland are line segments while the males are polygons) he 
was actually somewhat progressive for his day. His view of the relationships between peo-
ple was also rather introspective for Victorian England.

Consequently, I believe that the role of mathematics in Flatland was to provide Abbott with 
a language (the language of geometry) through which he could discuss non-mathematical 
ideas with the readers that he otherwise could not quite put into words.

Kasman invites readers of his Mathematical Fiction (2018) web site to send in 
their comments with the writer’s name or anonymously. In the case of the Flatland 
(Abbott 2002) entry, there are 14 comments from different people. One of the 
comments points out that there are two film versions of Flatland, namely, Flatland 
the Movie directed by Johnson and Travis (2007), which features the voices of the 
well-known actors Martin Sheen, Michael York, Kristen Bell, and Joe Estevez in 
this animated short film. The second one (Flatland: The Film) is a full-length 
animated movie directed by Ehlinger Jr. (2007). It features the voices of actors 
Ashley Blackwell, Chris Carter, Megan Colleen, and Ladd Ehlinger, Jr.

Danesi (2018: 115–118) discusses Flatland: A Romance of Many Dimensions 
(Abbott 2002) in his Basic Dictionary of Puzzles and Games. The novel begins with 
an introduction to the two-dimensional world of “flatland” (Abbott 2002: 33–34):

I call our world Flatland, not because we call it so, but to make its nature clearer to you, my 
happy readers, who are privileged to live in Space.

Imagine a vast sheet of paper on which straight Lines, Triangles, Squares, Pentagons, 
Hexagons, and other figures, instead of remaining fixed in their places, move freely about, 
on or in the surface, but without the power of rising above or sinking below it, very much 
like shadows—only hard and with luminous edges—and you will then have a pretty correct 
notion of my country and countrymen. Alas, a few years ago, I should have said “my uni-
verse”: but now my mind has been opened to higher views of things.

In such a country, you will perceive at once that it is impossible that there should be 
anything of what you call a “solid” kind; but I dare say you will suppose that we could at 
least distinguish by sight the Triangles, Squares, and other figures, moving about as I have 
described them. On the contrary, we could see nothing of the kind, not at least so as to dis-
tinguish one figure from another. Nothing was visible, nor could be visible, to us, except 
Straight Lines; and the necessity of this I will speedily demonstrate.

Place a penny on the middle of one of your tables in Space; and leaning over it, look down 
upon it. It will appear a circle.

But now, drawing back to the edge of the table, gradually lower your eye (thus bringing 
yourself more and more into the condition of the inhabitants of Flatland), and you will find 
the penny becoming more and more oval to your view, and at last when you have placed 
your eye exactly on the edge of the table (so that you are, as it were, actually a Flatlander) 
the penny will then have ceased to appear oval at all, and will have become, so far as you 
can see, a straight line.
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The same thing would happen if you were to treat in the same way a Triangle, or Square, or 
any other figure cut out of pasteboard. As soon as you look at it with your eye on the edge 
on the table, you will find that it ceases to appear to you a figure, and that it becomes in 
appearance a straight line. Take for example an equilateral Triangle—who represents with 
us a Tradesman of the respectable class. Figure 1 represents the Tradesman as you would 
see him while you were bending over him from above; Figs.  2 and 3 represent the 
Tradesman, as you would see him if your eye were close to the level, or all but on the level 
of the table; and if your eye were quite on the level of the table (and that is how we see him 
in Flatland) you would see nothing but a straight line:

 

In a second passage in the novel (Abbott 2002:142–144), there is a description of 
what a person from “Spaceland” would perceive in Flatland reproduced here:

The diminished brightness of your eye indicates incredulity. But now prepare to receive 
proof positive of the truth of my assertions. You cannot indeed see more than one of my 
sections, or Circles, at a time; for you have no power to raise your eye out of the plane of 
Flatland; but you can at least see that, as I rise in Space, so my sections become smaller. See 
now, I will rise; and the effect upon your eye will be that my Circle will become smaller and 
smaller till it dwindles to a point and finally vanishes.

 

There was no “rising” that I could see; but he diminished and finally vanished. I winked 
once or twice to make sure that I was not dreaming. But it was no dream. For from the 
depths of nowhere came forth a hollow voice—close to my heart it seemed—"Am I quite 
gone? Are you convinced now? Well, now I will gradually return to Flatland and you shall 
see my section become larger and larger."

Every reader in Spaceland will easily understand that my mysterious Guest was speaking 
the language of truth and even of simplicity. But to me, proficient though I was in Flatland 
Mathematics, it was by no means a simple matter. The rough diagram given above will 
make it clear to any Spaceland child that the Sphere, ascending in the three positions 
indicated there, must needs have manifested himself to me, or to any Flatlander, as a Circle, 
at first of full size, then small, and at last very small indeed, approaching to a Point. But to 
me, although I saw the facts before me, the causes were as dark as ever. All that I could 
comprehend was, that the Circle had made himself smaller and vanished, and that he had 
now reappeared and was rapidly making himself larger.
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Both passages from Flatland: A Romance of Many Dimensions (Abbott 
2002) illustrate why this novel would be useful as collateral reading in a math-
ematics course on plane geometry. First, its plane geometric descriptions are 
accurate. Second, the inclusion of graphics that resemble plane geometric con-
figurations provides the reader with a visual dimension that much fiction lacks 
with the exception of the graphic novel, which is a distinct hybrid visual and 
textual genre (Danesi 1983). Third, the novel allows the student to translate 
ordinary language descriptions of plane geometry into the precise language of 
this mathematical discipline. Finally, the second passage about “Spaceland” 
also provides the opportunity to discuss solid geometry or three-dimensional 
Euclidian space.

In addition to its important mathematical value, the novel also contains social 
criticism of the classism of Victorian England (1837–1901), e.g., the shapes of the 
characters correspond to their social position in society: (1) isosceles triangles 
(soldiers and workmen), (2) squares and pentagons (doctors, lawyers, and other 
professions), (3) hexagons (the lowest rank of nobility), and (4) circles (the priest 
class). Women, on the other hand, are only lines, which is a misogynistic element of 
the novel because they are perceived as a tiny dot, and therefore insignificant, in 
Flatland’s two-dimensional world.

�Recommendations

This section contains a set of recommendations for the use of mathematical fiction 
in a mathematics course.

	1.	 Consult Alex Kasman’s web site entitled “Mathematical Fiction.” Its detailed 
annotations and commentary by Kasman himself as well as readers of his web 
site provide extremely useful observations and interpretations about each work. 
Especially useful are his categorizations of each work, and an assessment on a 
scale of 1–5 of the mathematical and literary quality of each work.

	2.	 Select a work that is appropriate to the topic that you are teaching (see topics 
above).

	3.	 Select a work whose mathematical value and accuracy have the highest rating 
(1–5).

	4.	 Use mathematical fiction as a tool to show how the ordinary linguistic regis-
ter is distinct from the mathematical one. A useful activity is to ask students 
to translate a passage from mathematical fiction to a mathematical register 
and vice versa. This allows the student to become fluent in both registers. A 
student can “translate” a mathematical code into ordinary language. Likewise, 
a student can translate the ordinary language of mathematical fiction into a 
mathematical code, thereby allowing the student to become fluent and profi-
cient in both systems.
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�Concluding Remarks

Mathematical fiction is an excellent ancillary tool for inclusion in mathematics 
classes because it provides an ordinary language perspective of the distinct and 
unique mathematical register in mathematics textbooks. Its selective incorporation 
into a mathematics course allows students to differentiate the two codes or registers. 
Furthermore, mathematical fiction allows the student to translate the ordinary 
language of mathematical fiction into a suitable corresponding mathematical regis-
ter. This type of encoding and decoding practice enhances the student’s knowledge 
of the new mathematical code by seeing the distinctions between three semiotic 
systems (linguistic, symbolic, iconic). An example of mathematical fiction, Edwin 
Abbott’s Flatland: A Romance of Many Dimensions (Abbott 2002), was used to 
exemplify the use of this type of fiction in a course on mathematics. Finally, a set of 
recommendations for the consequential introduction of mathematical fiction into a 
mathematics course was provided.
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Chapter 12
Science, Magic, and the In-Between: 
Whence Logic

Inna Semetsky

In the course of modern history, science and magic have gradually become sepa-
rated into a pair of binary opposites. While acknowledging what the “pure reason” 
of modernity considered to be a supernatural action, science nevertheless attempted 
to explain the latter in terms of a regular method of a direct cause-effect connection 
as a method in natural science, promptly arriving at a conclusion of either anoma-
lous effect (as in magic) or anomalous cause (as in mantic). But can what is called 
magic still be considered a science—a science of hidden relations that are neverthe-
less, and in accord with Charles S. Peirce’s pragmatic maxim, capable of producing 
real effects? Surely John Deely (2001) acknowledged Peirce’s vision as rooted in 
science rather than mysticism. This chapter uses one of the Tarot cards called the 
Magician as an index of overcoming a schism between the dual opposites when 
positioned in the conceptual framework of semiotics that allows us to elucidate the 
meaning of this sign (Fig. 12.1).

Systems theorist Erich Jantsch (1980) defined consciousness as the degree of 
autonomy a system gains in the dynamic relation to its environment—thereby even 
the simplest chemical dissipative structure can possess “a primitive form of con-
sciousness” (1980: 40). The image of the Magician represents such a trace of con-
sciousness in the material universe, in agreement with Alfred North Whitehead’s 
concept of protomentality. It was Ludwig von Bertalanffy, the founder of the gen-
eral systems theory, who addressed the insufficiency of the analytical procedures of 
mechanistic science based on linear causality between two basic variables and 
attracted our attention to “new categories of interaction, transaction, teleology” 
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(Bertalanffy 1972: xix): indeed, interactions between more than two objects create 
an unsolvable problem within the equations of classical mechanics. Importantly, the 
“interactions do not have to be physical; they can also be thought of as a transfer-
ence of information” (Cilliers 1998: 3) along a semiotic bridge created as if by wave 
of the Magician’s wand. According to MIT professor Seth Lloyd (2006), material 
elements such as “Earth, air, fire, and water … are all made of energy, but the differ-
ent forms they take are determined by information. To do anything requires energy. 
To specify what is done requires information. Energy and information are by nature 
(no pun intended) intertwined” (2006: 44). Such intertwined relation parallels 
Peirce’s triad. The world which, according to Peirce, is perfused with signs is thus 
intrinsically informational, and we can represent its dynamic structure by a diagram 
(Fig. 12.2).

Non-incidentally, the four tools on the Magician’s table (aligned with the four 
suits in a Tarot deck: wand, pentacle, cup, and sword) correspond to the four ele-
ments available to the Magician in his alchemical laboratory: fire, earth, water, and 
air. Alternatively, they relate to the four Jungian functions comprising the Magician’s 
semiotic reason: thinking, feeling, sensing, and intuiting. The Magician icon is a 
sign of mind being embodied in matter due to the evolutionary process of semiosis 
wherein Peircean Thirdness functions as a “mediation, whereby first [mind] and 
second [matter] are brought into relation” (Peirce CP 6. 7). The Magician’s com-
municative action is a symbolic dialogue, an interaction, or relation as an ongoing 

Fig. 12.1  The Magician

Information

Matter Energy

Fig. 12.2  The world as 
perfused with signs
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event represented by means of two indices. While his right hand holding the wand 
points upwards, to the skies, the left hand points to the earth, thus enacting the 
Hermetic maxim in the ancient text Emerald Tablet that proclaims the formula of 
analogy: That which is above is like to that which is below and that which is below 
is like to that which is above, to accomplish the miracles of one thing. The number 
corresponding to the Magician in a deck is 1 as a symbol of the Whiteheadian one 
world without and within: as above so below. The action of signs crosses over the 
dualistic gap between mind and matter, science and magic, process and structure, 
subject and object, and partakes of a specific “communication mechanism which is 
capable of acting much faster than metabolic communication” (Jantsch 1980: 156). 
Such process may very well operate in qubits (Lloyd 2006) which are the swift bits 
of quantum information inaccessible to the usual sense perception.

Contemporary cosmology assigns to the natural world the status of a giant quan-
tum computer that processes information in qubits. Hence follows the motto “it 
from bit” or rather “it from qubit” which means that the observable world arises out 
of information on the basis of which the universe computes its own dynamical evo-
lution while actualizing potential reality as the computation proceeds. Ditto for the 
evolution of the human mind: mind and intelligence are evolving. However, the 
computational approach needs a bit (no pun intended) of qualification. At the cut-
ting edge of cognitive science, computers are understood as dynamical systems that 
indeed manipulate bits, but these units of information are not strictly reducible to 
what in physics are called particles. They are moments in the flow represented, 
importantly, by analogue and not solely digital information. Lloyd (2006), stressing 
that the universal quantum computation proceeds in a dual (analogue-digital) mode, 
specifies the structure of the computational space in terms of a circuit diagram rep-
resenting both logical gates (the places where qubits interact, thus exchanging/
transforming information) together with unorthodox causal connections represented 
by the connecting “wires” or paths along which the information flows. Therefore 
these moments in the continuous flow of semiosis can be defined as discrete bits 
only within a certain context—that is, taken as already parts-of-the-whole (cf. 
Rockwell 2007). The flow of information enabled by semiotic communication 
establishes different and new relations so that the system’s boundaries are crossed 
and traversed, and new boundary conditions of the system, or its external structure, 
are being established meanwhile sustaining the integrity of its internal structure in 
the manner of what Gilles Deleuze aptly called the fold as “the inside of the outside” 
(Deleuze 1988: 96).

As semiotician Floyd Merrell remarks, “the fascination of children with 
… Winnie the Pooh, and … Alice's adventures—also a favorite pastime of logi-
cians, mathematicians, and physicists—attests to their import of ‘primitive’ percep-
tual and conceptual modes, keenly picked up by philosopher Gilles Deleuze” 
(Merrell 1996: 141). Is Tarot also such a “primitive” mode (Semetsky 2011)? 
Deleuze’s philosophy employs Riemann’s innovative geometry of surfaces as well 
as Lautman’s notion of transcendence-immanence of ideas in mathematics. From 
Leibniz, Deleuze borrows the notion of “esoteric” infinitesimal calculus of ideas 
which are obscure problematic instances that, instead of being a priori direct, clear 
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and distinct representations in consciousness (as Descartes proclaimed them to be) 
express the vague, fuzzy, and sub-representative “presentation of the unconscious” 
(Deleuze 1994: 192). Such calculus partakes of mathesis universalis, the hypotheti-
cal universal mathematics applicable to all branches of science while also unifying 
science with art, spirituality, and magic. Mathesis—also translated as the science of 
learning—represents “an alphabet of what it means to think” (Deleuze 1994: 182). 
Leibniz included pictures and “various graphic geometrical figures” (Nöth 1995: 
274) as a possible medium of its characters; still his project remained unfinished. 
Ultimately, the “characters [of mathesis] were to be isomorphic with the concepts 
designated by them; [and] the universal signs were to be isomorphic with the facts 
of nature” (1995: 274). As for Deleuze, he was adamant that “to believe that mathe-
sis is merely a mystical lore inaccessible and superhuman, would be a complete 
mistake” (Deleuze 2007: 143). Is the Magician a practitioner of mathesis? It sure 
appears so because it is mathesis that “transforms knowledge itself into a sensible 
object [and] insists upon the correspondences between material and spiritual cre-
ation” (2007: 151) in the tradition of Hermeticism.

The Magician is a symbolic problem-solver. Problems—not solely mathematical 
but existential as well—belong to the level of the virtual and unconscious, while 
solutions—to the level of actual, conscious experience. The realm of the actual 
“contains” identities (as subject to the logical copula) but the virtual realm is the 
domain of differences which are characterized by differential relations and corre-
sponding singular points. Difference is a central concept in Deleuze’s philosophy: 
“Everything which happens and everything which appears is correlated with orders 
of differences: differences of level, temperature, pressure, tension, potential, differ-
ence of intensity” (Deleuze 1994: 222). The unconscious ideas comprise “differen-
tial flashes which leap and metamorphose” (1994: 146) and amount to the new 
image of thought grounded in differences.

The Magician is just an idea, a virtual tendency. Yet, while seemingly musing in 
potentia, it still possesses a peculiar “feeling of the direction and end of various 
lines of behavior [as]… the feeling of habits working below direct consciousness” 
(Dewey 1922/1988: 26). The Magician’s “transversal communications” (Deleuze 
and Guattari 1987: 11) between different levels bring life and vitality into the world 
of supposedly inert, unanimated, matter: matter becomes mindful! Physicist Henry 
Stapp (2007: 10) points out that John von Neumann, in his mathematical formula-
tion of quantum mechanics, specifically coined intervention as a term describing the 
effects of free choices upon the physical word; yet, these free choices are them-
selves dependent on reasons, values, and unconscious motivations. And it is an act 
of intervention as the prerogative of the Magician that enables the functioning of 
this sign in the manner of an autocatalytic element representing “kinetics effective 
in this moment at each spacial point” (Jantsch 1980: 34). The relation between dif-
ferent levels or different terms can be described by the derivative of a function in the 
form dy/dx, where the values of the terms x and y do not have to be determined. 
What is important is that they exist absolutely and only in their relation to each 
other. Relations are prior (or external) to their respective terms! When we encounter 
a problem, its unknown and unidentified terms and conditions (of which we thus 
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remain unconscious) are similar to the yet undetermined values of x and y that 
however are capable of determination precisely via their differential relation. The 
conscious mind then “incorporates all the power of a differential unconscious, an 
unconscious of pure thought which internalizes the difference … and injects into 
thought as such something unthought” (Deleuze 1994: 174). Understanding and 
meaning—solving a problem, becoming aware of the unconscious, creating a novel 
concept—derive “from the mathematical function of differentiation and the biologi-
cal function of differenciation” (1994: xvi). Differentiation (with a “t”) is the opera-
tion of difference, of inequality, and it is “in difference that movement is produced 
as an ‘effect’, that phenomena flash their meaning like signs” (1994: 57), thereby 
engendering the process of semiosis. But there is also differenciation (with a “c”), 
an in-itself or the second part of difference producing multiple “local integrations, 
as mathematicians say” (1994: 98). Such a double process of different/ciation, as 
the Magician’s communicative action, appears to border on a magical act indeed 
when this sign intervenes between the different levels: the Magician lifts up the 
magic wand and makes “events turn into objects, things with meaning” (Dewey 
1925/1958: 166) while actualizing the virtual reality of signs and bringing the 
unconscious to the level of consciousness.

Addressing the “social consequences of the misrepresentations of contemporary 
scientific knowledge” (Stapp 2007: viii), Stapp posits a mindful universe that con-
sists of psychophysical (not just physical or material) building blocks and in which 
the transition from potentiality to actuality is indeed possible. “Idea-like qualities” 
(2007: 97) are therefore signs as part of parcel of semiotic hence “non-anthropocentric 
ontology” (2007: 97). Stapp contends that:

the physically described world is built…out of objective tendencies—potentialities—for 
certain discrete, whole actual events to occur. Each such event has both a psychologically 
described aspect, which is essentially an increment in knowledge, and also a physically 
described aspect, which is an action that abruptly changes the mathematically described set 
of potentialities to one that is concordant with the increase in knowledge (2007: 9).

The actualization of potentialities hiding at the level of the unconscious is taking 
place due to the subjective, bottom-up, “intervention of the mind” (Shimony 1993/
Vol. II: 319) into the chain of semiosis. Yet this very intervention may be considered 
objective in the sense of itself being implemented by a choice of a global, top-down, 
character analogous to the semiotic functioning of the relation between immanence 
and transcendence embedded in one inseparable process of semiosis. The choice of 
this kind may be accounted for by what philosopher of science Abner Shimony, 
addressing “the status of mentality in nature” (Shimony in Penrose 1997: 144), 
dubbed the hypothetical super-selection rule in nature that enables the very “transi-
tion between consciousness and unconsciousness … not … as a change of ontologi-
cal status, but as a change of state” (1997: 150). The magic wand in the Magician 
icon thus is a symbol of “another kind of causation” (Peirce CP 6. 59) or a possible 
self-cause disregarded by classical science. The dynamics of self-organization 
(Jantsch 1980) proceeds in an autopoietic (cf. Varela 1979) manner along environ-
mental perturbations and compensations effectuated by means of a semiotic “bridge, 
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a transversality” (Guattari 1995: 23) between different, heterogeneous planes. Says 
Deleuze: “I undo the folds of consciousness that pass through every one of my 
thresholds, ‘the twenty-two folds’ that surround me and separate me from the deep” 
(1993: 93). This number corresponds to the 22 major cards in a Tarot deck. The 
Magician establishes coordination (Peirce’s category of Thirdness) between the 
noumenal and phenomenal realms despite—or rather, due to—the original differ-
ence between the two so that the former becomes potentially knowable (counter to 
Kant) even if not presently known. The relation between ens reale and ens rationis 
does not mean their identity: the latter can never be completely preserved “in any 
advance to novelty” (Whitehead 1966: 107). However the Magician as a sign “that 
flashes across the system, bringing about the communication between disparate 
series” (Deleuze 1994: 222) of events creates a link between the physical world of 
facts and the world of objective meanings or values: for Whitehead, facts are cre-
ative or valuative due to the principle of creativity as a precondition for novelty.

Whitehead’s philosophy of the organism posits actual occasions as spatiotempo-
ral events endowed with experience that, albeit dim and not fully conscious, never-
theless defies the sharp bifurcation of nature into mindless matter and conscious 
mind. In contemporary physics event is defined as an actualized possibility of this 
event’s objective tendency, or its potentia, to occur. In general relativity, events exert 
a causal influence on the very structure of events: structures are thereby evolving, 
that is, they are process~structures that defy the strictly linear causality of classical 
mechanics. The notation “~” (tilde or squiggle) is an unusual punctuation as a sign 
of what the cutting-edge empirical science of coordination dynamics indicates in 
terms of a “reconciliation of complementary pairs” (Kelso and Engstrøm 2006: 63) 
versus the otherwise disconnected opposites. Coordination dynamics exhibits 
“reciprocal causality” (2006: 115) which operates two-directionally: “from the bot-
tom up (projection) and then from the top down (reinjection)” (Griffin 1986: 129)—
just like as per symbolism of the Magician. The feature of double codification (cf. 
Hoffmeyer and Emmeche 1991) pertinent to the action of the Magician (analogue 
and digital, virtual and actual) relates to a specific problem in philosophy of science 
specified as the one that “for both Whiteheadian process and quantum process is the 
emergence of the discrete from the continuous” (Stapp 2007: 88). The operation of 
projection is significant in both mathematical and psychological terms. Stapp posits 
the hypothetical mechanism of a spontaneous quantum reduction event associated 
with “a certain mathematical ‘projection’ operator” (2007: 94) whose action seems 
to be direct (via projection) but which also causes indirect changes, producing 
faster-than-light effects, thus demonstrating in practice what has long been consid-
ered a “spooky” action at a distance.

The functioning of Tarot presupposes the projection of signs onto a surface, 
which always involves an ontological loss of dimension expressed, as Deleuze 
would say, in (n − 1) dimensions. In contemporary cosmology, the so-called weak 
holographic principle (Smolin 2001) posits the world as consisting of processes or 
events, which can only be perceived through representations. Theoretically, repre-
sentations—or, in semiotic terms, signs that by definition conform to the medieval 
aliquid pro aliquo formula—are all there is: they represent Whitehead’s one kind of 
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entity. These dynamical entities are “representations by which one set of events in 
the history of the universe receives information about other parts of the world” 
(Smolin 2001: 177). Because they occur on a scale unavailable to the ordinary sense 
perception, they sure enough can be seen only in their projected format: a loss in 
dimensions is thus implied. In cosmology, the reduction in dimensions is called 
compactification. We do not know, in general, the total number of hidden dimen-
sions that may have been compactified (cf. Lloyd 2006). For example, a cinema 
projection on the screen compactifies our regular three-dimensional reality into only 
two dimensions. The screen metaphor is potent: it accords with the layout of Tarot 
pictures spread on a flat surface, making a surface literally a locus of meanings (cf. 
Deleuze 1990). The fact is that:

the area of a screen—indeed, the area of any surface in space—is really nothing but the 
capacity of that surface as a channel for information. So, according to the weak holographic 
principle space is nothing but a way of talking about all the different channels of communi-
cation that allow information to pass from observer to observer … In short, the holographic 
principle is the ultimate realization of the notion that the world is a network of relationships. 
These relationships are revealed by this new principle to involve nothing but information 
(Smolin 2001: 177–178).

The layout of Tarot cards—functioning as a screen or projection—thus presents 
a spatiotemporal organization of informational bits and pieces (pun intended) in the 
form of signs embodied in pictorial representations. As regards the psychology of 
perception, “space-time ceases to be a pure given in order to become … the nexus 
of differential relations in the subject, and the object itself ceases to be an empirical 
given in order to become the product of these relations” (Deleuze 1993: 89) when 
unfolded and brought to consciousness, that is, actualized. The structure of the 
psyche does not contradict Lee Smolin’s (2001) quantum account of the structure of 
space and time. It only makes us question whether we should continue positing 
psyche, in a Cartesian fashion, as a-dimensional and non-extended. Respectively, 
the quantum theory in its ontological interpretation (Bohm and Hiley 1993) posits 
the indivisible unity of the world, which is capable of being fully realized not as 
substantial but precisely as a relational or interactional system that continuously 
undergoes transformations between its various forms of manifestation.

When projected onto a pictorial spread, the virtual reality of signs undergoes 
transformations leading to a loss in dimensions at the level of our actual experience 
that “convey the projection, on external space, of internal spaces defined by ‘hidden 
parameters’ and variables or singularities of potential” (Deleuze 1993: 16). Hidden 
variables thus become exposed in practice: what was hiding in the depth of the 
psyche in the form of enfolded “ambiguous signs” (1993: 15) is literally brought to 
the surface and made available to consciousness nevertheless remaining deeply pro-
found both conceptually and with respect to its informational content. It is because 
of the action of signs that “from virtuals we descend to actual states of affairs, and 
from states of affairs we ascend to virtuals, without being able to isolate one from 
the other” (Deleuze and Guattari 1994: 160). Top-down and bottom-up, again and 
again. It is “what is unseen [that] decides what happens in the seen” (Dewey 1998: 
229): due to projection, we become able to actually see the compactified “scope of 
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space and time that [becomes] accessible to observation” (Jantsch 1980: 4). The 
Magician performs the role of a hypothetical (in the framework of science) operator 
of projection when it enters into the “surface organization which assures the reso-
nance of two series” (Deleuze 1990: 104), and the meaning created in practice is, 
paradoxically, even more “profound since it occurs at the surface” (1990: 10) in the 
form of projection of deep structures of the psyche. Mind embodied in matter 
extends itself both spatially and temporarily: consciousness in which the uncon-
scious has been integrated “runs ahead and foresees outcomes, and thereby avoids 
having to await the instructions of actual failure and disaster” (Dewey 1922/1988: 
133). This foreknowledge of the outcomes is the prerogative of Magicians, indeed!

The Magician is a symbol of tertium quid as the essence of semiosis, of the evo-
lutionary dynamics of signs due to which they grow in meaning: “Essence is … the 
third term [which] complicates the sign and the meaning; it measures in each case 
their relation … the degree of their unity” (Deleuze 2000: 90), and it is the very 
“essence of the virtual to be actualized” (Deleuze 2003: 28). The Magician contains 
the conditions for unity, symbolized by the number 1, within itself. The recursive 
communicative feedback loops comprise the network of mutual interactions that 
establish a link between res extensa and res cogitans. As an unconscious idea 
implicit in the protomental nature, the Magician is virtually “extensive and endur-
ing” (Dewey 1925/1958: 279), thus strongly defying the Cartesian postulate of 
mind as a non-extended substance. Creating a momentous “negentropy as semiotic 
information” (Spinks 1991: 71), the Magician is capable of trans-coding the ana-
logue continuum of the universal One into the digital organization of Many particu-
lars demonstrating as such the semiotic code-duality and hinting onto the solution 
to the continuous versus discrete problematic. Entropy as the invisible information 
is also the measure of ignorance (Lloyd 2006), and the boundary line separating the 
unseen invisible information from the visible depends, from the subjective view-
point, on our own ignorance versus knowledge! The Magician performs what Jung, 
in relation to the psychology of the unconscious, called the transcendent function 
that he, in turn, derived from its definition in mathematics as grounded in complex 
(real and imaginary) numbers. It is the important function of “consciousness not 
only to recognize and assimilate the external world through the gateway of the 
senses, but to translate into visible reality the world within us” (Jung CW 8. 342). 
The relation between without and within:

generates a tension charged with energy and creates a living, third thing—not a logical 
stillbirth in accordance with the principle tertium non datur but a movement out of the 
suspension between opposites, a living birth that leads to a new level of being, a new situa-
tion. The transcendent function manifests itself as a quality of conjoined opposites (Jung, 
CW 8. 189).

Tertium non datur is the excluded third, but depth psychology aims to achieve the 
reconciliation between the rigid opposites by means of the inclusion of “a third 
thing in which the opposites can unite … In nature the resolution of opposites is 
always an energic process: she acts symbolically in the truest sense of the word, 
doing something that expresses both sides” (Jung CW 14. 705). Tertium non datur 
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thus becomes tertium quid—the included third: even if seemingly logically unclas-
sifiable, it establishes a relation that connects or unites the perceived opposites. 
Such included middle “is not an average; it is fast motion, it is the absolute speed of 
movement. [It] is neither one nor two; … it is the in-between, the border or line of 
flight or descent running perpendicular to both” (Deleuze and Guattari 1987: 293). 
The Magician reconstructs the Neoplatonic Oneness by taking One out from the 
virtual realm (which is habitually considered supernatural, hence outside science) 
and bringing it down to earth and into the midst of the Many actual, flesh-and-blood, 
human experiences. Hence follows what Deleuze and Guattari (1987) called their 
mystical and magical formula expressed as One=Many.

Because the Magician’s wand “reaches down into nature … it has breadth … to 
an indefinitely elastic extent. It stretches” (Dewey 1925/1958: 1). This stretch, as 
the new “magnitude of thirdness” (Deely 1990: 102), expands the event-horizon of 
knowledge because it “constitutes inference” (Dewey 1925/1958: 1) and contributes 
to the genesis of the fully fledged semiotic reason. A novel concept created by 
means of such a stretch—and effectuated as if by the “magic” wand of the 
Magician—has no reference outside itself. It is self-referential, just as genuine tri-
adic signs, the logic of which appears paradoxical, if not totally magical, in the 
framework of dyadic, strictly two-valued, logic. It is “infinity [that] is self-
referential” (Kauffman 1996: 293), and it is indeed a symbol of infinity crowning 
the Magician (Fig. 12.1) that indicates such self-referential, as though “magical,” 
action.

While analytic reason denounces self-reference (dubbing such logic circular, 
hence begging the question), the action of signs is still “fundamentally linked to a 
logic: a logic of multiplicities” (Deleuze and Parnet 1987: viii) as tri-relative enti-
ties. In parallel to Peirce, Deleuze points out that “there are two in the second, to the 
point where there is a firstness in the secondness, and there are three in the third” 
(Deleuze 1989: 30). Taking two abstract terms A and B, Deleuze inserts the con-
junction AND in between. Multiplicity contains an a-signifying rupture as differ-
ence—a pure relation, a gap—in which the conjunction AND intervenes in the 
mode of the included third: not in the opposition of A to B but “in their complemen-
tarity” (Deleuze and Parnet 1987: 131). The relational logic (semiotics) is not sub-
ordinate “to the verb to be.  …  Substitute the AND for IS.  A and B.  The AND 
is  …  the path of all relations, which makes relations shoot outside their terms” 
(1987: 57). The Magician’s role is to be a Peircean interpretant that traverses the 
series symbolized by two “disparates,” A and B. We therefore can construct another 
visual diagram displaying multiplicity as a genuine triadic sign where the divergent, 
heterogeneous series A and B converge on a paradoxical element symbolized by the 
AND that infinitely repeats itself in the evolutionary process of semiosis. The inten-
sive, even if apparently “non-localizable” (Deleuze 1994: 83), conjunction AND 
forms a semiotic triangle (Fig. 12.3), and the Magician demonstrates the paradox of 
“the One-Whole of the Platonists” (Deleuze 1991: 93).

Notably, the conjunction AND foregrounding multiplicities as signs cannot be 
reduced to numerical addition. The process is of summation that, while suggesting 
a simple adding of information, in fact intensifies it by means of forming a logical 
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product akin to multiplication and forming a power series. An intensified perception 
and understanding would have vitally increased in power, almost literally: there is 
an exponential growth there invoked yet by Peirce, but the Magician’s transversal 
communication carries an exponent towards its limit as if graphically crossing the 
otherwise asymptotic line, thus reaching a threshold provided that the situation 
meets the conditions for actualization of the virtual. Meanings created in actuality 
are “effects that are not a mere dependence upon causes, but the occupation of a 
domain, the operation of a system of signs” (Deleuze and Guattari 1983: 86). The 
act of semiotic, transversal, communication confirms what Whitehead called the 
paradox of the connectedness of things (Whitehead 1966: 228). A semiotic triangle 
(as per Figs. 12.2 and 12.3) both closes on itself in the ternary structure and also 
opens itself to its becoming-other-than-itself because of novel meanings due to the 
inclusion of interpretants. Such is the paradox of self-reference (cf. Kauffman 2010; 
Kelso and Engstrøm 2006; Semetsky 2001b, 2001c) elicited by the logic of included 
middle peculiar to semiotics. A sequence of signs “adds up” to one enduring object. 
It is “when you invoke something transcendent [that] you arrest movement” 
(Deleuze 1995: 147), thereby demonstrating that a Tarot layout, conceptually, is like 
“any given multiplicity [that occupies] one area on the plane” (1995: 147) as the 
result of integration. In mathematics integration is represented by symbol ∫ that 
represents the operation of summation symbolized by ∑.

The Magician creates the conditions for structural couplings defined as “a chain 
of interlocked … communicative interactions” (Varela 1979: 48f) embedded in the 
silent discourse of images. While the Arcanum that precedes the Magician and 
called the Fool (Fig. 12.4) conveys the image of facing the chaotic abyss with its 
unlimited potential, it is the Magician that brings order into the semiotic process 
because chaos as a source of potentially significant meanings is “seen as Creative” 
(Hoffmeyer and Emmeche 1991: 162).

In the Tarot deck the Fool’s corresponding numeral is zero that appears to signify 
nothing (cf. Rotman 1987)—but not quite so. In fact, the presence of the Fool in 
each of the subsequently numbered Arcanum is a truism: 1 and 0 is still 1, 2 and 0 
is still 2, and so forth. Partaking of the Deleuzian difference, imperceptible by itself, 
the Fool exemplifies zero-point energy, a quantum fluctuation (cf. Prigogine in 
Laszlo 1991) or pure information bordering on becoming active. Like an empty set 
∅, an abstract entity of mathematical analysis that apparently signifies nothing, the 
Fool organizes meaning into what is intrinsically meaningless when it itself enters 
into relations following its symbolic leap into the abyss. Each whole number that 
indexes every one of the 22 major cards describes the property that contains zero in 
itself as an empty set. Each subsequent number can be marked off (or signed) by 
basic marks or braces .{}. This is the mathematical process of iteration during which 
the braces are repeated and “the empty set, {} … correspond[s] with zero; then 1 
[becomes] the name of the property belonging to all sets containing the empty set, 
{}” (Noddings and Shore 1984: 51). The Fool plays the role, symbolically, of what 
Deleuze (1990) called an empty square; yet this emptiness or nothingness is what 
elicits the production of series, therefore becoming a precursor for putting them into 
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relation to each other “by virtue of its own power” (Deleuze 1994: 119). Such is the 
Fool’s paradoxical semiotic significance even if signifying nothing!

According to Spencer-Brown’s (1979) Laws of Form, logic is constructed in a 
repeating or replicating series on the basis of an initial act of making a distinction. 
In opposition to Russell, Spencer-Brown arithmeticized logic demonstrating its 
construction “from the basic intuitive act of making a distinction and two funda-
mental arithmetical acts: (1) making a mark to signify the distinction, and (2) repeat-
ing the mark” (Noddings and Shore 1984: 51) in agreement with Deleuze’s (1994) 
fundamental philosophical conception of difference and repetition. Indeed it is 
“recurrence [that] makes novelty possible” (Dewey 1925/1958: 47). The unnum-
bered, and at first sight insignificant, Fool precedes the Magician that marks the 
distinction, thus becoming able to, quantum-mechanically, “create information out 
of nothing” (Lloyd 2006: 118), ex nihilo, the zero sign, the Fool. By virtue of its 
leap into the abyss, the Fool performs a quantum of action and thus initiates the 
evolutionary semiotic process. Surely, there “is nothing wrong with beginning from 
nothing. For example, the positive numbers begin from zero (the ‘empty thing’)” 
(2006: 45). Following the Fool’s initial leap (Semetsky 2001a, 2005, 2013), it is the 
Magician that actively constructs logic as represented by multiple bracketing {…
{…}…}, that is, making a difference and creating novel knowledge precisely due to 
repetition in the manner of the infinite series (Fig. 12.5).

There is “not merely 1, 2, 3, but 1, 2 in 2 and 1,2,3 in 3” (Deleuze 1986: 198). 
Each conjunction AND is the in-between relation that acts as a distributed marker 

AND

A B

Fig. 12.3  Semiotic 
triangle

Fig. 12.4  The Fool
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of “a new threshold, a new direction of the zigzagging line, a new course for the 
border” (Deleuze 1995: 45). The Fool’s zero then presents itself as “the germinal 
nothing … boundless possibility [and] boundless freedom” (Peirce CP 6. 217); this 
sense of freedom and infinite potential (cf. Peat 1997) becoming available for the 
Fool in its nonmetric world of topological space where void coincides with plenum 
and the dual opposites are in fact “inextricably connected to each other” (Kelso and 
Engstrøm 2006: 186). The mind is in the world, not outside of it. The action of signs 
is the “informationally meaningful, self-organizing coordination dynamics, a 
web~weaver” (2006: 253) where the tilde “~” is an index of a connective link 
weaved by the “magic” wand. The transition from the unconscious to consciousness 
(psychologically) or from virtual to actual (ontologically) indicates a “dynamic 
instability [that] provides a universal decision-making mechanism for switching 
between and selection of polarized states” (2006: 10), the latter functioning as 
“‘attractors’ of an underlying dynamical system” (2006: 10) of signs as patterns of 
coordinated activity. The Magician is immanent in matter in its capacity of a “vir-
tual governor” (Juarrero 1999: 125), the function of which is nonlocal but distrib-
uted in the semiotic field in accordance with what Whitehead dubbed the fallacy of 
simple location. A newly created meaning is a new direction taken by means of the 
autocatalytic web built by the Magician’s wand, a specific decision made because 

Fig. 12.5  Infinite series 
(Barrow 2000: 160; cf. 
Rucker 1982: 40)
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every actuality is “the decision amid ‘potentiality’ … The real internal constitution 
of an actual entity constitutes a decision conditioning the creativity which tran-
scends the actuality” (Whitehead 1978: 93). In making a decision, the Magician 
may very well employ abduction that “comes to us as a flash. It is an act of insight” 
(Peirce CP 5. 181), or intuition, or imagination functioning analogous to a certain 
“automatism [as] the psychic mechanism of perception” (Deleuze 1993: 90).

Coordination dynamics exhibits tendencies as “preferences and dispositions” 
(Kelso and Engstrøm 2006: 10) between actual stable states, while in the metastable 
regime there are no states but relations. Mind-in-the world is a semiotic system that 
parallels the Deleuzian fold as a holistic structure held together by the tendency to 
couple or bind together as indeed exhibited by the Magician. The dynamic unity can 
be diagrammed as an oscillation between the opposites when the movement is pro-
jected onto a line, and the dynamics of semiosis is precisely what unites the opposite 
poles. Semiosis is not only the action but also transformation of signs, and self-
reference is ultimately self-transcendence as “the creative overcoming of the status 
quo” (Jantsch 1980: 91). Such fecund empiricism is always already transcendental, 
and it is signs and “symbols [that] act as transformers” (Jung CW 5. 344). Mindful 
nature is by default complementary.

The founders of the science of coordination dynamics Kelso and Engstrøm 
(2006) reflect on their “fascination with what seemed at first a somewhat esoteric 
connection between philosophy and the science of coordination” (Kelso and 
Engstrøm 2006: xiii). Indeed! They notice that despite nature being described by 
quantum laws that sure allow complementarity between two seemingly mutually 
exclusive descriptions, our everyday practical experience habitually chooses 
between one true or right description and another false or wrong, hence ignoring the 
“shades of grey” (2006: xi) between them. The ubiquitous form of coordination 
dynamics (2006: 156) is presented as a symbolic equation cv-dot = f (cv, cp, F), 
where cv-dot is the rate of change of the coordination variable expressing the evolu-
tion of dynamic patterns (see also Kelso 1995), cp stands for the control parameter(s), 
and F is a chance fluctuation (perhaps, the very action of the Fool?). Thus the 
Magician’s transversal link across “the brain~mind and brain~behavior barriers” 
(Kelso and Engstrøm 2006: 9) is not mystical but perfectly natural and it seems that 
surely, “mathematically speaking, [it] contains three different kinds of parameters” 
(2006: 157): the strength, or intensity, of coupling; the presence of intrinsic differ-
ences (not unlike in Deleuze’s theoretical vision); and the always already present 
fluctuations or “noise.” For Leibniz and Deleuze, such background noise would be 
composed of the unconscious or little perceptions as infinitesimal differentials.

At the symposium on developmental science in Stockholm in 1998, Kelso coined 
the principle of the in-between as the new scientific (rather than purely speculative) 
concept. The repudiation of the either-or mentality brought:

a novel scientific grounding to age-old questions that all of us ask: Which is more funda-
mental, nature or nurture, body or mind, whole or part, individual or collective? … a great 
deal of the core essence of such dichotomized aspects seems to be located  …  in what 
Aristotle called the “excluded middle” … The Complementary Nature introduces a new 
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meaning and application of the tilde or “squiggle” character ~, as in yin~yang, 
body~mind … Unlike the hyphen, the squiggle does not represent a simple concatenation 
of words, but … indicates the inextricable complementarity relation between them (Kelso 
and Engstrøm 2006: xiv–xv).

The tilde character “~” is a symbol for the abovementioned oscillation—or the 
Magician’s very nature. The Magician’s action can be expressed not just in signa 
data but in signa naturalia manifesting itself as the universal principle of the in-
between. Such action is, however, implicit: it may be a hidden variable waiting to be 
discovered so as to take its place among the natural laws described in the language 
of mathematical physics meanwhile presenting itself, in psychological terms, as the 
unconscious “noise” striving to enter cognition. Kelso and Engstrøm (2006) point to 
some important nuances: while the laws of coordination, like physical laws in gen-
eral, are matter independent, they are nonetheless function and context dependent; 
they govern and therefore make relatively predictable “the flow of functional infor-
mation” (2006: 100). Information, albeit preserved, is being reorganized and redis-
tributed. It becomes meaningful, functional, or active (cf. Bohm 1980), that is, 
capable of producing real effects in accord with Peirce’s pragmatic maxim. This 
means that by practically stepping into the flow of semiosis—of which we, theoreti-
cally, as signs among signs are a constituent part anyway—we, by virtue of reading 
and interpreting signs represented by Tarot icons, become able to exercise a degree 
of predictability within each specific context. In agreement with the so-called tri-
angle argument constructed on the basis of Einstein’s relativity theory (Fig. 12.6), 
“me-now” can become simultaneous with “me-tomorrow” in practice, at the level of 
empirical reality:

The dotted lines indicate simultaneity; simultaneity implies coexistence; and the 
coexistence relation is indicated by the two-headed arrow, not unlike the double-
directedness inscribed in the imagery of the Magician. The ancient law of analogies 
as applied to space—as above so below—has its temporal correlate in the Emerald 

Fig. 12.6  The triangle argument (Kennedy 2003: 63)
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Tablet expressed as follows: That which was is as that which will be, and that which 
will be is as that which was. Once again, the Hermetic philosophy which is even 
today considered mystical and magical manifests its uncanny affinity with the 
developments in science. The infinitely distant “supernova” may be considered 
conceptually equivalent to the vanishing point—a zero at infinity—in a perspectival 
composition. The Magician immersed in semiosis enables a specific, pointed onto 
by Whitehead, organization of thought that makes precognition possible. The 
Magician’s creative wand establishes directedness, that is, “a vector [that] already 
indicates in which direction the new structure may be expected” (Jantsch 1980: 
46)1, and such action “terminates in a modification of the objective order, in the 
institution of a new object … It involves a dissolution of old objects and a forming 
of new ones in a medium … beyond the old object and not yet in a new one” (Dewey 
1925/1958: 220), but within Leibniz’s zone of indiscernibility between the two.

Novelty, as a change in a system’s behavior, is described in nonlinear mathemat-
ics as a phase transition. Such ubiquitous state is far from equilibrium, yet it pro-
vides an initial impulse to the unfolding dynamics of signs. Semiosis does 
presuppose an initial condition of “uneasy or unstable equilibrium” (Dewey 
1925/1958: 253) symbolized by the Fool tip-toeing at the edge of the abyss. It is 
when “frozen in their locations in space and time” (Kennedy 2003: 53) that past, 
present, and future events symbolized by the Tarot pictures in a specific layout dem-
onstrate their coexistence quite in accord with the block-universe view of relativity 
theory. In the layout of pictures, the signs’ diachronic dimension becomes compac-
tified into a single synchronic slice when the dynamical process of semiosis is pro-
jected, that is, momentarily frozen in its location in space-time because of the 
quality of relatedness functioning in accord with the rules of projective geometry. 
Synchronization is but an example of self-organized coordination (Kelso 1995), and 
the Magician, by exercising the coordination dynamics, exhibits the semiotic value 
of the ultimate growth in knowledge and understanding.

To conclude, let us address one more “mystery” presented by the relation between 
the three worlds, namely physical, mental, and Platonic (see Penrose 1997, 2004). 
Because the Platonic world is inhabited by mathematical truths, but also due to the 

1 In the earlier publication titled “Interpreting Peirce’s abduction through the lens of mathematics” 
(Semetsky 2015) I suggested a vectorial diagram on the complex (Gaussian) plane as a model for 
knowledge structure incorporating abduction as an unconscious inference. Peirce called such a 
mode of thought instinctive reason. The Magician’s semiotic reason can be modeled by means of 
geometry on the complex plane using imaginary numbers—dubbed magical by physicist and 
mathematician Sir Roger Penrose (2004)—coupled with real and together forming complex num-
bers. The imaginary number i as a square root of minus 1 does “appear to play a fundamental role 
in the working of the universe” (Penrose 2004: 67) including, as implied by the Whiteheadian one 
world without and within, the working of the human mind. Leibniz called them amphibian: in-
between being and nothingness. As Lou Kauffman points out, it is “remarkable that domains imag-
inary with respect to arithmetic are virtually real with respect to geometry” (1996: 293). Raising a 
complex number to the n-th power multiplies its angle by n. It was Riemann who merged projec-
tive geometry with the idea of complex numbers. On the Riemann’s “number sphere” zero and 
infinity are but two opposite poles. In quantum mechanics, zero (vacuum) is a source of infinite 
energy.
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“common feeling that these mathematical constructions are products of our mental-
ity” (Penrose 1997: 96), the dependence of the natural world on strict mathematical 
laws appears mysterious. But it seems that we can take away the flavor of mysticism 
pertaining to this relation if we consider it properly semiotic and construct yet 
another semiotic triangle, thus confirming, once again, the presence of the Magician 
functioning in the manner of a “squiggle” or Deleuze’s conjunction AND (Fig. 12.7).

In the language of coordination dynamics, physical and mental worlds form a 
complementary “body~mind” pair in accordance with the logic of included middle, 
thus confirming an assertion that there exists a “part of the Platonic world which 
encompasses our physical world” (Penrose 1997: 97). As such, it is when projected 
onto the physical level, that is, compactified, that the Platonic ideas can become 
“accessible by our mentality” (1997: 97) in the manner of another “the 
unconscious~consciousness” complementary pair. The rules of projective geometry 
establish mapping as the one-to-one correspondence—like in a perspectival compo-
sition towards a vanishing point—thus implying isomorphism between the arche-
typal ideas of the Platonic world and the coupled together mental and physical 
worlds. We can conceptualize a semiotic triangle in terms of such a composition, 
however with a shifting frame of reference or point of view. If and when a vanishing 
point shifts into the mental world, this leads to isomorphism between a mental rep-
resentation and the other two worlds: the world of ideas coupled with the physical 
world of our actions and behaviors. In fact the very quality of this point being 
_“vanishing” makes such composition somewhat a-perspectival (cf. Gebser 1991), 
especially from the viewpoint of the Magician per se.

There is another nuance here. The Magician’s unusual, or virtual, logic (cf. 
Kauffman 1996, 2010) “energizes reason [and] provides the real possibility and the 
means for opening of communication across boundaries long thought to be impen-
etrable” (Kauffman 1996: 293). Such semiotic reason transcends narrow rationality 
and reaches “into a world of beauty, communication and possibility” (1996: 293) 
while going beyond given facts into a world of interpretable signs, meanings, and 
values. What inhabits the Platonic world is not only the True but also the Good and 
the Beautiful that appear to be “non-computable elements—for example, judge-

(AND; ~)

Platonic

Physical Mental

Fig. 12.7  Another 
semiotic triangle
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ment, common sense, insight, aesthetic sensibility, compassion, morality” (Penrose 
1997: 125) as the attributes of the psyche. Does it mean that the Magician as sym-
bolic of an expansive mode of thought that integrates the unconscious is capable of 
paradoxically computing the apparently incomputable?
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Chapter 13
Geometric Cognition

Walter Whiteley

�Introduction

My chapter title asserts that “mathematical cognition” must include “geometric 
cognition” either as a stand-alone process or in a cognitive blend with other forms 
of mathematical cognition. I aim to shift our gaze to geometric cognition—or the 
more general equivalent “spatial/visual reasoning in mathematics.” Of course, the 
spatial representations and visual representations can be experienced across all 
parts of mathematics and statistics. Related cognition is found across all of the 
sciences and engineering and for centuries mathematics and sciences were part of 
the same community, with shared cognitive processes (SIGGRAPH 2002). 
However, geometry offers the clearest and often unavoidable expression of this 
aspect of mathematical cognition.

I am a geometer. I apply geometry in my funded applied mathematics research 
across a range of problems in multiple disciplines in science and engineering. I have 
also been teaching geometry to third-year mathematics majors, many of whom are 
preparing to teach high school. Beginning with my Ph.D.  Thesis on the logical 
foundations of discrete geometry (invariant theory in the language of the nineteenth 
century), and then my growing collaborations in discrete applied geometry, my life has 
been immersed in geometry for about 50 years. That immersion means I have been 
working with spatial reasoning as my sources of insight; my reasoning; my sharing of 
mathematics; my teaching; and my communication of results across multiple disciplines. 
Reflections evolved within this immersion has also encouraged my research, collabora-
tions, and writing on spatial reasoning within mathematics education.

As I tell my undergraduate geometry class: “I see geometry everywhere, and want 
you to share that experience. Learn to recognize where a geometry lens can provide 
surprising insights.” By the end of the yearlong course, most students report that they 
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do not quite see geometry everywhere—but far more places than they ever had 
before. They also say that this class is “not like any other math class they have 
taken—in a good way.” The class is filled with mathematics explored through 
manipulatives, drawing, and spatial reasoning, in multiple representations. For 
examples of these activities, see the text I used in this course for several decades 
(Henderson and Taiminia 2004). As the student end-of-year reflections confirm, such 
a hands-on spatial/kinesthetic exploratory approach is rare as a focus within univer-
sity mathematics courses—and can be missed as a conscious focus of mathematical 
processes. The unusual approach is appreciated by the students as challenging and 
sometime altering their sense of what mathematics is—or at least can be.

This chapter draws on decades of presentations and workshops with students, 
teachers, mathematics educators, and also conversations with a range of collabora-
tors (Whiteley 1999, 2002, 2005, 2010, 2012, 2014, 2019). The feedback from these 
discussions and collaborations has been invaluable to my evolving reflections on all 
these issues.

�Geometric Cognition and Spatial Reasoning

There are so many exciting and significant experiences which connect spatial 
reasoning or geometric cognition to mathematical cognition. As an initial focus on 
geometric cognition, including the related spatial cognition, I will have to be 
selective: picking a few illustrative examples. For a broader survey of the Big Ideas 
and Procedures in Geometry where I find geometric reasoning, see Whiteley (2019).

What are some key features of geometric cognition and spatial reasoning as I 
have lived them in research, teaching, and learning? I offer a condensed list:

	(a)	 Transformations to support evolving questions, conjectures, and geometric 
reasoning

	(b)	 Symmetry, and invariance, as core concepts in many areas (including across 
physics and geometry)

	(c)	 Shifting dimensions: using 3D to understand 2D
	(d)	 Multiple representations with cognitive blending: switching among representa-

tions—learning to see and recognize switching

Let me offer a few examples of how and where these features appear in geomet-
ric cognition.

	(a)	 The modern definition of geometry is Klein’s Erlanger Program of 1872 (Klein’s 
Erlanger Program 1872, Klein 1924): we have a space of objects and a group of 
transformation of that space. The study of that geometry is the study of proper-
ties which are invariant (unchanged) under these transformations. This is 
illustrated in Fig. 13.1, with one classical strand of geometries, ordered upwards 
by inclusion of their expanding groups of transformations.
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In my own problem-solving with discrete applied geometry, I begin the study 
of a problem with the key question (unusual among applied mathematicians): 
“which geometry should I use?” I explore which transformations leave the 
solutions to the problem invariant. I have learned the importance of this ques-
tion by observing (1) cases where the problem was cast at too high a level (too 
many transformations) so that no coherent answer is possible, and (2) other 
cases where the problem is cast at too low a level in the hierarchy—and there 
are too many properties and details which are not relevant and the important 
patterns within the “forest” are lost among the “trees.” For example, the static 
rigidity of spatial frameworks is not topological (too many transformations 
which lose key properties), but requires some further level of geometry. On the 
other hand, Euclidean geometry of distances is too low (too many irrelevant 
details) for statics. Static rigidity belongs to projective geometry, though most 
modern North American trained structural or mechanical engineers do not know 
those transformations (Schulze and Whiteley 2018). With more available pro-
jective transformations, many “different examples” are now recognized as “the 
same” under the transformations and one can focus on some key geometric 
properties and corresponding projective methods.

This grounding in transformations, embedded in a hierarchy of groups and 
subgroups, offers practitioners (researchers and students) thinking tools. Given 
an example, we play around transforming it and seeing what else is “the same.” 

Fig. 13.1  Transformations
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We find some surprises and make new conjectures. We focus on what is invariant 
and find representations that “forget” the details that are changing and which 
bury the appropriate information.

A series of geometry problem-solving books (written for Russian high school 
students) explore this hierarchy with effective problems, figures, and solutions 
(Yaglom I–IV). Part I works with the geometry of rigid motions of the plane 
(isometries). Part II uses the geometry of shape-preserving transformations of 
the plane (similarities). Part III focuses on the geometry of transformations of 
the plane that map lines to lines (affine and projective transformations) and 
introduces the Klein model of non-Euclidean geometry. Part IV focuses on 
conformal mappings that take circles to circles. The introduction to Part III gives 
a nice introduction to the hierarchy, which I regularly used with future teachers. 
Two striking images adapted from the book are recalled by students many years 
later (Fig. 13.2).

	(b)	 Symmetry offers a rich and engaging playground for thinking with transforma-
tions. Look at the subgroup of transformations which leave a specific object or 
example unchanged (invariant)—for example the symmetries of a platonic 
solid, or of a quadrilateral (Whiteley and Paksu 2015). When we find two 
symmetries, we should look for the composition of the two—filling out the 
table of group multiplication for the symmetries. We notice that two mirror 
reflections compose to form a rotation, and a rotation and a reflection compose 
to form another reflection. I know from students and teachers that these simple 
connections are lying around, underdeveloped, within the elementary curricu-
lum as well as the university curriculum. Adding geometric thinking tools 
boosts the interest and richer connections of symmetry for further learning.

	(c)	 Children live in 3D, but the Western math (and science) curriculum gives an 
early focus to 2D. It is a big shift for students to return to 3D—often needing to 
overcome weakness to survive in engineering and science (engage) and to thrive 
in mathematics. Even in my research in the rigidity of frameworks, playing 
among dimensions revived valued techniques, such as reworking the reciprocal 

Fig. 13.2  Affine and 
projective transformations. 
(a) Affine (sun: parallel 
rays). (b) Projective 
(ceiling light)
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diagrams of James Clerk Maxwell which connect the geometry of 3D and 
spherical frameworks with the statics and rigidity of plane frameworks (Schulze 
and Whiteley 2018).

	(d)	 For the geometric/spatial thinker, transformations, including symmetries, offer 
a bundle of connected embodied representations: visual, spatial, kinesthetic, as 
well as shared patterns of group operations. These concepts form a network of 
embedded experiences which invite conceptual blending—and together become 
more richly cognitively linked as we move from one representation to another, 
and one brain network to another. Rapid switching among brain areas (and 
representations) is typical of top students, in brain scans around age 14.

These are just a few samples of the Big Ideas in Geometry and Geometric 
Cognition and themes from my decades of talks (Whiteley 2019). We will see below 
how some of these themes are connected both to historical developments and to how 
we and our students learn to reason.

�Blends with Geometric Cognition, Spatial Reasoning

I am confirming that mathematical cognition is a blend which includes geometric 
cognition and spatial cognition, along with other patterns of mathematical and 
scientific reasoning (Fauconnier and Turner 2002; Turner 2014).

It has been distracting that some earlier researchers in education, such as Howard 
Gardner in Project Zero (Gardner 1985), separated “mathematical intelligence” as 
“logical/symbolic intelligence” from “spatial/visual intelligence” (see Fig. 13.3). All 
the recent research confirms that for children, and for many practicing mathematicians, 

Fig. 13.3  Multiple intelligences
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mathematical cognition includes spatial cognition, as well as Gardner’s “kinesthetic 
intelligence.” These multiple intelligences of Gardner are commonly discussed in 
Faculties of Education (Gardner 1985, 2006) to open up diverse options for teaching 
and learning. This is a valuable emphasis for teachers, but this makes it more important 
that they have an inclusive vision and wide sample of experiences of mathematical 
intelligences (see Going Forward section). In my experiences in teaching, learning, and 
practicing mathematics, we blend from all of the identified intelligences in the dark 
box below (a graphic I use in my class with future teachers). Gardner’s recent addition 
of “pattern seeking” as an eighth intelligence is easily recognized as at the very core of 
our activities as mathematicians. Pattern seeking is something we ask all students to 
practice and develop in mathematics classrooms and well beyond.

Often the use of physical manipulatives, supporting kinesthetic reasoning, is 
used in close association (a blend) with visual spatial reasoning. For example, 
consider the back-and-forth process combining dynamic geometry (a tool devel-
oped for teaching, but now used in geometry research), with paper folding, which is 
deeply geometric and kinesthetic (Whiteley and Paksu 2015).

One of the images I use to help future teachers notice the back-and-forth switch-
ing involved in geometric problem-solving (and noticed in brain scans) is the zigzag 
in Fig. 13.4. This figure images the mental shifts from whole to part and parts back 
into the whole which is required in multistep problem-solving. This type of shift of 
focus within geometric reasoning is often hidden from students, as the teacher’s 
blackboard notes and gestures focus primarily on the details of “right side” (b). This 
leaves unexplained jumps for students to puzzle out, as indicated in Fig. 13.4b. We 
may not publically share the larger processes illustrated in (a)—or even be 
consciously aware of them to raise them up for the students to reflect on.

One recent exploration of how blending is core to mathematical modeling 
appears in Whiteley (2012). This analysis reflects on the classroom spatial reason-
ing/geometric optimization popcorn box activity described for elementary teachers 

Fig. 13.4  Mental shifts
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in Mamalo and Whiteley (2012). This student activity was further analyzed as “a 
network of and for geometric reasoning” which is explicitly connected to students 
developing cognitive blends in Mamalo et al. (2015).

As proposed in this analysis (Mamalo and Whiteley 2012; Mamalo et al. 2015), 
the blend is developed through a sequence of back-and-forth simulations of “generic 
examples”—examples for which the reasoning does not rely on specific details but 
is generalizable over a wide range of variations (Mason and Pimm 1984). This “see-
ing the general within a particular example” is characteristic of a lot of diagram-
matic reasoning (reasoning with diagrams) and of reasoning with manipulatives. 
Grade 4 and 5 students could identify that key choices, such as changing the scale 
of the model had no impact on the “shape optimum box” (using proportional rea-
soning)—in the context of multiple physical models. When the activity was done 
with in-service teachers, they could also explore the analogies with a corresponding 
2D problem and some could even explore 4D versions of the problem. Such “generic 
reasoning” was well developed in centuries of careful geometric practice during the 
centuries after Euclid. It is however a cultural practice that must be learned, and if 
this geometric reasoning culture is missing in the classroom or in the visible shared 
practices, this support for geometric cognition risks being lost to the next genera-
tion, along with other ways of doing mathematics (Whiteley 2010).

Several recent papers speak to neural reuse for conceptual mappings, and the 
reuse of spatial brain maps for memories, ideas, and reasoning about time (Cánovas 
and Monzanares 2014; Copelewicz 2019). This overlap within neural representa-
tions reinforces the claim that these spatial metaphors are fruitful for blending and 
that spatial reasoning is widely used beyond just for “space.”

�Recognizing the Importance and Centrality of Spatial 
Reasoning

For centuries, geometry was central to mathematics and practitioners integrated 
diagrams in shared mathematical practices (some of which have been lost). For 
example, one historical reading of the 13 books of Euclid’s Elements is that the 
entire program is centered on symmetry, and the books all build, with strong use of 
diagrams, to the 3D theorem characterizing the five Platonic solids. This suggests 
that the Elements are based on geometric reasoning as spatial reasoning. The 
common focus on teaching this “elementary” geometry through “formal—symbolic 
proofs” ignores these aspects of spatial geometry—to the loss of students and teach-
ers (Tall et al. 2012; Whiteley 1999, 2010). We return to this theme in Development 
of Geometric Reasoning and Going Forward sections below.

A striking and well-documented example of effective geometric cognition is the 
work of Michael Faraday on electromagnetism (West 2009; Goodings 2006). 
Faraday’s 1821 notebooks for the day he built the first electric motor displays his 
problem-solving in an essentially visual/diagrammatic form. The notebooks record 
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a back and forth between (1) the laboratory experiments (recorded with a diagram 
and then a sequence of observations recording changes as more diagrams), and (2) 
planning using some doodling followed by a new diagram for the next experiment. 
In his work, Faraday invented some new diagrammatic forms to capture his quanti-
tative reasoning with figures, as illustrated in the now standard diagram of “lines of 
force” (Fig. 13.5).

All the historical evidence is that Faraday did not, and could not, work with 
equations (West 2009). Faraday worked with what I am calling geometric cognition. 
Nevertheless, he reasoned out results such as Faraday’s laws of electromagnetism 
which we now write with equations. This way of reasoning was recognized as 
“mathematical cognition” by one of the great figures of this field—James Clerk 
Maxwell: “As I proceeded with the study of Faraday, I perceived that his method of 
conceiving phenomena was also a mathematical one, though not exhibited in the 
conventional form of symbols” (James Clerk Maxwell, as quoted in West 2009).

Maxwell wrote that this use of lines of forces shows Faraday “to have been in 
reality a mathematician of a very high order—one from whom the mathematicians 
of the future may derive valuable and fertile methods.” I agree that there are fertile 
methods here, but unfortunately, if current students rely on such visual methods, 
today’s schooling often identifies them as failing mathematics—and not suitable to 
become engineers.

In the mid-twentieth century, the eminent mathematician Jacques Hadamard 
interviewed a number of leading mathematicians of his generation asking them to 
describe how they “invented” their mathematics (Hadamard 1945). A key observa-
tion was that they wrestled with a problem (exploring the pieces that might become 
a blend) and then set the problem aside. Their first conscious awareness of the new 
insight of how to solve the problem was in visual (spatial) form. The recognition of 
what I call “a cognitive fitting together of pieces towards the solution with the prob-
lem” was in the visual form. This provided a platform to support further exploration 
and re-presentation in a problem-solving blend of connections.

George Polya is widely recognized as a combinatorist, as a student of mathematical 
problem-solving and as a mathematics expositor and teacher (Polya 1954a, 1954b). In 
his review of “Plausible Reasoning,” the mathematician Paul Halmos (1955) summa-

Fig. 13.5  Faraday’s lines 
of force
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rized the central thesis in this way: “a good guess is as important as a good proof.” To 
me, this is capturing the insights of visual reasoning—which are prior to the formal, 
logical, and symbolic reworking of the problem. In his expository paper “On Picture 
Writing” (Polya 1956) Polya makes visible a good sample of his reasoning when shift-
ing from diagrammatic representations of a counting problem to a symbolic algebraic 
generating function. The paper contains two, full-page, samples with a sequence of 
“equivalent representations” of the problem, one line each. Each step records a shift of 
both the representation and the associated operations, in reversible steps. It is a won-
derful expression which makes visible to all of us the otherwise invisible reasoning of 
this master problem solver—something we do not encounter often enough.

While not the reflections of a mathematician, Temple Grandin expresses well 
what working primarily with spatial reasoning is like in her autobiographical book 
“Thinking in Pictures” (Grandin 2006). This book echoes stories of other historical 
figures who relied on vivid and effective spatial reasoning, such as Nicholas Tesla, 
and Faraday (West 2009). This way of working becomes at least one option within 
a broader blended mathematical cognition which includes geometric cognition. The 
very ways we share our work in publications overemphasizing words, symbols, and 
formulas (which are easier to put down on the page) gives priority to later formal 
reasoning over also presenting the geometric reasoning which were the basis for our 
insights. We have limited tools for sharing spatial reasoning, and we often lack 
enough shared conventions for sharing spatial/visual reasoning.

Burton (2004) describes a more recent study in which she interviewed a wide 
range of researchers in mathematics and statistics about how they did their work. One 
of the themes was the wide range of approaches, including analytic, conceptual, and 
visual thinking. Visual thinking was documented as central by some participants, and 
an important option among several by others. Insights from self-reflection are neces-
sary sources, as just reading the published articles gives a skewed impression. As 
mentioned above, mathematicians often select the analytic (algebraic, computational) 
presentation, in preference to the more difficult-to-present visual/geometric presenta-
tion. As I referee research articles, I often recommend more figures and more 
examples. To paraphrase the responses of some colleagues to why they do not include 
more figures: “when I read an article, I draw my own pictures—doesn’t everyone”? 
Again, this self-selection is rendering the spatial/visual basis for the work invisible.

Over the centuries, there has been changing emphasis on spatial reasoning. In 
Whiteley (1999), I draw on experiences in my community to propose a narrative for 
how geometry faded in North America, particularly in the second half of the twen-
tieth century. This culture shift contributed to the breaking of continuity of geometric 
practices based on the central role of spatial/reasoning which was obvious in earlier 
periods, and has almost been lost by the twenty-first century. What I also claim, 
drawing on evidence from the curriculum in both undergraduate and graduate 
programs across disciplines, and evidence in current scientific research, is that 
geometry still remains essential to solving problems in many areas of applied 
mathematics. However, this geometry may now only surface in other disciplines, 
when the required geometric cognition is not supported within pure and applied 
mathematics programs.
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In my own research and teaching experience, spatial/visual reasoning is more 
salient in applied mathematics than in pure mathematics. It was also more salient in 
mathematics prior to the twentieth century (Tall et al. 2012; Whiteley 1999). Visual 
presentation of examples and results still remains the standard for sharing mathe-
matical and statistical reasoning across multiple disciplines. For sample resources 
which support communication: see Howard Wainer’s Visual Revelations, and 
Graphic Discovery, Picturing an Uncertain World (Wainer 2000, 2007), as well as 
the discussion and appendices in the White Paper: Visual Learning for Science and 
Engineering (SIGGRAPH 2002).

In talks and workshops, I often present examples where the spatial reasoning 
becomes visible “with eye and hand.” In “The Case for Mental Imagery” Kosslyn et al. 
(2006) addresses the controversy within cognitive science and philosophy of whether 
images (and therefore spatial reasoning) are actually found in our internal cognition. 
Kosslyn presents strong evidence that what we call images are also present in the 
brain—and we think with and operate on these mental images as we do on external 
images. Spatial reasoning can be done with our eyes closed and our hands not mov-
ing—including operations like mental rotation. For example, mental rotations develop 
early for children (e.g., when learning infant sign language) and this ability remains an 
important spatial reasoning skill which continues to be tested through to mechanical 
reasoning tests. Mental rotation regularly occurs entrance tests for medical and dental 
school (Davis et al. 2015). Weak abilities in spatial reasoning become a negative filter 
for many careers—so developing such abilities or reasoning is an important challenge.

�Development of Geometric Reasoning

There is now a wide recognition of the key role of geometric cognition in the larger 
development of mathematical cognition, at least for young children. There is a large 
literature on using spatial reasoning in the learning of mathematics (see the multiple 
chapters in Davis et al. (2015)), where our spatial reasoning group reviewed a range 
of the literature and described examples. A recent book with the title “Visualizing 
Mathematics; The Role of Spatial Reasoning in Mathematical Thought” also 
describes the key role of geometric cognition (Mix and Battista 2018). I will not 
repeat the references and links from these books.

Children are born into space, learning to see and to move, even from before birth. 
By the time they enter school, they have learned varying amounts of 3D spatial reason-
ing—depending on the activities they did, and what the adults around them direct their 
attention to, in part through use of spatial language (Davis et al. 2015). One of the 
chapters this book specifically explores the connections between 2D and 3D reason-
ing. Burke et al. (2017) make the connection of 3D work to embodied cognition—a 
connection also found in Davis et  al. (2015) and implied by my earlier phrase of 
“working with eye and hand.” Unfortunately, this prior knowledge of 3D is often 
neglected in early schooling. I sometimes say that we take the students who have lived 
in 3-space, and then “flatten their reasoning into the plane” as they enter grade 1!
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In Visual Intelligence: How We Create What We See (Hoffman 2000), Donald 
Hoffman speaks of how we can change what we see, based on experience. As the 
neurologist Oliver Sacks has said, “when we open our eyes each morning, it is upon 
a world we have spent a life-time learning to see.” This means that what I see is not 
the same as what you see—and we can change what we see. This is true for how we 
see geometry, and more generally what we notice in mathematics and statistics 
(Whiteley 2005, 2012, 2014). In an analogy to Betty Edwards’ insights into learning 
to draw by first learning to see (Edwards (1999), I claim that for many students 
“learning to see like a mathematician” opens a new door to success in mathematics 
and statistics (Whiteley 2005, 2012, 2014). Supporting this type of brain changing 
learning is also explored in the appendices of the White Paper (SIGGRAPH 2002).

Froebel, the inventor kindergarten, began his sequence of activities (Gifts) with 
a series of 3D spatial activities using rich precursors of our now simplified building 
blocks (and now somewhat richer Lego) (Brosterman 1997). Drawing on his prior 
work in crystallography, and in hands on learning, Froebel engaged children in 3D 
activities and the very name “kindergarten” reminds us that each child had a small 
garden plot (Brosterman 1997)! The activities included symmetry and transforma-
tions, still common in much of the hands on work with manipulatives. It does not 
seem to be a coincidence that Frank Lloyd Wright’s mother was a Froebel 
Kindergarten teacher—and he continued to play with spatial visual cognition in his 
design work (Brosterman 1997). Later gifts in Froebel’s sequence included 2D 
activities, still with manipulatives, and often with symmetry.

As Davis et al. (2015), Burke et al. (2017), as well as Froebel notice, 3D comes 
before 2D for children. This is a critical concern identified by a number of mathe-
matics educators. The eminent Canadian geometer Donald Coxeter contributed to 
the draft of a rich Geometry K-13 OISE Report (Geometry 1967) which started with 
3D, and with visual reasoning, and built from there. These far-sighted curriculum 
drafters included activities such as work with vectors in grades 4–5. This is the age 
at which children are actually working with maps and compasses to navigate in their 
world outside of school (a basic geometric task). Sadly, this curriculum was never 
implemented. A few years ago when I proposed vectors as sample activity to some 
curriculum writers, there was full agreement that children could do this mathemati-
cal activity at age 10. The barriers to enriching the curriculum were (1) that the 
current teachers probably could not handle it, and (2) such a spatial theme did 
contribute immediately to the otherwise “calculation and algebra based curriculum” 
which was driven to get students “ready for calculus” by the end of high school. The 
general result of these obstacles in North America is an impoverished exposure in 
school to only a few aspects of mathematical cognition and effective problem-
solving, with little spatial/visual reasoning!

The mathematics educator Jo Boaler highlights the damaging myth in mathe-
matics education that visual/spatial reasoning (with hands to count, and diagrams 
to reason with) is only for young students, weak students, or lay people (nonmath-
ematicians) (Boaler et al. 2016). She notes that West (2009) describes this myth as 
centuries old—and that there is compelling brain science to contradict this myth. 
The examples and studies in this section also contradict this myth. In our terms, 
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expert brains contain the key blends that retain these visual/spatial connections, 
even when we appear to be working with another, more abstract level of the blend. 
We continue present school mathematics with only one part of the rich, thick cog-
nitive network of concepts and representations, weakening any support for spatial 
cognition, and for students who depend on this part of the blend.

To return to Klein’s Hierarchy from Geometric Cognition and Spatial Reasoning 
section, Piaget’s trajectories for children’s stages of learning geometry fit well with 
moving down Klein’s Hierarchy. Simple topology is explored early (George 
2017)—with questions about “what is connected to what” as the child explores: 
“what can I reach”? “Can I go out one door of a room and come back through 
another door?” Then learning extends to straight lines: anticipating where a toy train 
that entered a tunnel will emerge. What is the shortest path to follow—all part of 
(projective geometry). The last concepts mastered by children in schools are con-
cepts like volume and area (Euclidean), around ages 8–10 (grade 4).

While children learn spatial reasoning early, they can, and often do, lose these 
abilities during puberty and high school. In some longitudinal studies following 
improved spatial reasoning from piano training developed at age 4, it was found that 
the improved spatial reasoning was scrambled to just chance during puberty. (See 
Rauscher et al. (1997) and their following studies.) Other studies confirm a decline 
of 3D spatial reasoning during high school years, when the curriculum does not 
practice spatial reasoning or make evident to students that spatial reasoning is a 
critical prerequisite skill for many university programs and careers. These students 
graduate to face the shock of the clear necessity of spatial reasoning to succeed in 
their chosen programs across engineering, sciences, and mathematics.

We offer a quote from work on the urgency of developing Spatial Reasoning for 
Engineering (Engage 2019): “Most engineering faculty have highly developed 3D 
spatial skills and may not understand that others can struggle with a topic they find 
so easy. Furthermore, they may not believe that spatial skills can be improved through 
practice, falsely believing that this particular skill is one that a person is either ‘born 
with’ or not. They don’t understand that they probably developed these skills over 
many years. We don’t encourage students not ready for calculus to enroll in calculus 
in their first semester. Shouldn’t spatial skills training be available for those who 
need the help?” [Sheryl Sorby, quoted at ENGAGE: Spatial Reasoning for 
Engineering (2019)].

There is convincing evidence that spatial reasoning is malleable for people over 
a range of ages from zero through middle age (Davis et al. 2015; Uttal et al. 2013). 
My experience, in multiple classes and workshops over the last 30 years, is that 
students, including future teachers, are concerned about their weakness in spatial 
reasoning—and they are very encouraged to learn that they can still continue to 
improve spatial skills. The same observation is true for classes and workshops with 
in-service teachers, as they recognize they can then both be better in their own math-
ematics, and can better support students who may be primarily approaching 
mathematics (and other subjects) through spatial/visual reasoning.

For undergraduate mathematics majors, this encounter with their gap spatial rea-
soning often happens, even to high-achieving mathematics students, in their third 

W. Whiteley



259

course in calculus: multivariable calculus. The ENGAGE website and Sorby (2019) 
speak to both the importance of spatial reasoning and describe short programs 
(10 h) which (re)-build spatial reasoning for retention and success in key programs 
such as engineering. The gap in support for this critical skill continues into many 
university programs—as spatial reasoning becomes a filter for who will remain in 
programs, rather than another important skill to be developed.

Papers such as those of Mann (2005) and Silverman (1995) describe gifted 
students who rely on spatial reasoning and are underserved and under-supported in 
programs and classrooms which omit spatial reasoning. These papers also describe 
effective classroom techniques to support such students. Faraday would have been 
such an underserved student—and would not have survived our schooling to enter 
an engineering program in our century. The losses for mathematics and sciences and 
our larger society for undervaluing geometric cognition are large.

�Going Forward

I highlight two promising themes as directions for future work on geometric 
cognition.

�Aging and Losing Our Mathematical Minds

A lot of research has focused on how we learn different mathematical abilities when 
we are young or even middle aged. At the other end of life, during aging, we may 
experience critical stages of cognitive decline. In particular, various mathematical 
abilities are lost, most visibly in neurodegenerative diseases such as Alzheimer’s, 
Parkinson’s, and more generally dementia (Possin 2010). This survey includes an 
exploration of different facets of visual/spatial cognition—in terms of brain areas and 
networks that can be disrupted in the changing brain. The different forms of loss in 
spatial reasoning are diagnostic of different neurodegenerative diseases and different 
forms of dementia. These losses in spatial cognition are often documented with tests 
such as the Montreal Cognitive Assessment (MoCA) which has a surprising focus on 
spatial reasoning. Overall, the study of loss of spatial reasoning promises additional 
insights into how spatial reasoning is processed in our brains, at all ages.

The loss of spatial reasoning, such as navigation and spatial (distance) percep-
tion, can have a big impact on people, including the loss of a driver’s license and 
associated independence. I conjecture that the loss of spatial reasoning is also 
related to other losses in aging—such as a sense of which day it is (the loss of a 
mental calendar as spatially organized), and what the daily schedule is (the timeline 
as a spatial orientation). Given how much spatial ability contributes to learning 
arithmetic, one has to also wonder whether the loss of spatial reasoning contributes 
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to decline in the ability to calculate or do proportional reasoning (e.g., figure out a 
tip in the restaurant).

With the research emphasis on how mathematical cognition is developed, and 
our aging population, it would be timely to study how mathematical cognition 
declines. “Losing our mathematical minds” is an important life stage. Finding strat-
egies for maintaining and supporting spatial cognition should be a parallel to finding 
ways to maintain language abilities. The losses are commonly identified in the 
current tests, and some of the computer-based programs being tested are spatially 
focused. However I have not seen a good survey of support systems for geometric 
cognition, or more generally for all forms of mathematical cognition, as we age.

More generally, changes in aging brain pose the question of understanding how 
established cognitive blends are broken, and perhaps how to thicken the connections 
within a blended network, so that the blend is more resilient as we age. A “good-
enough blend” may not last as we age and change. We may also blur across some 
blends and incorporate other connections which are not helpful, as the brain ages. 
We “learn how to see”—and we can also lose the ability to perceive connections and 
metaphors well. As I write this, I recognize I am showing my age and describing my 
current community!

�Geometrizing/Spatializing the Curriculum

Davis et al. (2015) and Boaler et al. (2016) present the overall challenge of spatial-
izing the curriculum, and enriching it with visual activities—a challenge that applies 
to all stages of education. This can only happen when many people decide geomet-
ric cognition or spatial/visual skills are important. For the future, we depend on a 
shared recognition of how this spatializing of the curriculum will strengthen the 
mathematical cognition of all students, and the urgent recognition that failure to 
include this spatial content means the exclusion of many students. The diversity of 
cognitive styles and prior knowledge among students excludes many who could be 
major contributors in a more supportive classroom context.

An essential part of such an enrichment is educating a generation of teachers 
who themselves have experienced the value of spatial/visual reasoning, and therefore 
are eager to incorporate these activities in their classrooms. In my own classrooms 
and within my wider community of university geometry teachers, Henderson’s 
“Experiencing Geometry” has provided such support for decades of future teachers 
(Henderson and Taiminia 2004). When the future, or current, teachers reflect on 
how they have been learning mathematics with eye and hand, they consistently want 
their own students to experience that support and engage in spatializing their 
classrooms.

I am hopeful of a future with a rising of geometry and support for geometric 
cognition during the twenty-first century

W. Whiteley
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Chapter 14
Using Evidence to Close the Achievement 
Gap in Math

John Mighton

�Introduction

I’m a professional mathematician and a playwright, but I didn’t show much aptitude 
for math or creative writing until I was an adult. When I was growing up I sometimes 
struggled with math at school and in middle school I began to wonder if I would be 
able to learn the subject at an advanced level. Because I had doubts about my 
abilities, I became obsessed with my intellectual capabilities and with the way I 
learn. When I started to teach in my 20s, first as a graduate student in philosophy 
and later as a math tutor, I also became fascinated with the way other people learn. 
Now, after founding a charity that develops mathematical resources for students 
(JUMP Math) and teaching thousands of learners of all ages, I am convinced that 
our society vastly underestimates the intellectual potential of children and adults. 
And my conviction appears to be well supported by evidence from many fields.

A wide body of recent research, from early childhood development to neurology, 
suggests that mathematics should be accessible to almost any student. For example, 
research has shown that for young children the strongest predictors of later 
achievement in math involve skills and concepts that every person will almost 
certainly develop, no matter how much they struggle in math in their early years or 
how delayed they are in acquiring these skills. These indicators involve very simple 
tasks that humans have evolved to perform with relatively little instruction, including 
the task of counting to ten or the task of correctly associating a numerical symbol 
(1, 2, 3, and so on) with a quantity (for example an array of dots) or a position on a 
number line. The fact that these basic capacities are such strong predictors of later 
achievement suggests that it is not a lack of innate ability that prevents the majority 
of students from becoming proficient at mathematics, but rather something that 
happens to learners in the course of their education.
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Over a hundred years ago, logicians investigating the logical foundations of 
mathematics showed that virtually all of mathematics can be reduced to trivial logi-
cal steps that draw on the same basic skills and concepts that predict success in math 
(such as counting or grouping objects into sets). As well, brain scans of mathemati-
cians have revealed that working mathematicians tend to process math in parts of 
the brain that evolved to perform very basic functions. As David Tall explains in his 
paper in this collection:

when Almeric and Dehaene studied mathematicians working in very different research 
areas (abstract algebra, analysis, geometry, topology), they found that all of them activated 
areas of the brain related to spatial sense and number which are present in young children 
before they develop language and are also found in many other non-human species.

To understand why so many people struggle in math, when evidence from so 
many fields points to the fact that should be easy to learn, we need to look closely at 
the systemic problems that make it so hard for teachers to nurture the full potential 
of their students. Until recently, very few of the math programs and resources that 
are used across North America have been tested in rigorous scientific studies, so 
educators and parents have often been seduced into adopting instructional 
approaches that sound very progressive and appealing, but that lack any strong 
empirical evidence.

For example, when parents, teachers, or administrators choose resources for 
students, they will try to find materials that they believe are engaging or interest-
ing for children. But the choices they make are rarely informed by rigorous 
research. In 2013 psychologists Jennifer Kaminski and Vladimir Sloutsky of 
Ohio State University taught two groups of primary students to read bar graphs 
using two different types of graph: one had pictures of stacked shoes or flowers 
in the bars of the graph, and the other, more abstract graph had solid bars. The 
researchers asked teachers to say which kind of graph they would use with their 
students. The significant majority chose the graphs with pictures because they 
were more engaging and represented the objects in the problem. However, the 
study showed that students learned better from the gray monochrome bars. 
Students who learned with the bars were better at reading graphs when the scale 
of the graph changed to reflect some multiple of the number of objects. Students 
taught with pictures tended to be distracted by counting the objects and so did not 
look at the scale on the graph.

A great deal of recent research suggests that popular approaches to teaching, 
including “reform”- or “discovery”-based teaching (in which students are expected 
to develop their own explanations and approaches to math, often working with other 
students with little guidance from the teacher), haven’t worked for most students 
because they don’t take account of the limited capacity of the brain to absorb and 
process new information.

In addition to overwhelming students with extraneous information, discovery meth-
ods also burden them with too much material at once. Because of this heavy “cognitive 
load,” pure discovery-based strategies do not appear to work as well as those in which 
a teacher helps a student navigate the complexities of a problem. According to Paul 

J. Mighton



267

Kirschner of the Open University of the Netherlands, 50 years of research on learning 
has consistently shown that instructional approaches where a teacher actively guides 
the students’ learning are more or less effective and efficient than approaches where 
the teacher provides minimal guidance. In a 2011 review of 164 studies of discovery-
based learning psychologist Louis Alfieri of City University of New York and his col-
leagues concluded: “Unassisted discovery does not benefit learners, whereas feedback, 
worked examples, scaffolding and elicited explanations do.”

�An Approach to Problem-Solving

In most math textbooks today there are more words than numbers. The books are 
typically full of “word problems” that try to make math relevant by asking students 
to apply their mathematical knowledge in real-world contexts. On state and provin-
cial exams, these are usually the problems that separate students who do well in 
math from the ones who don’t.

Sometimes students struggle with word problems because the text is too hard for 
them. But even when this isn’t the case, students may still have trouble seeing the 
mathematical structure that is buried under the words. Teachers often try to help 
students who struggle with word problems by giving them more word problems. 
This remedy can have the same effect as pouring gas on a fire—it reinforces a stu-
dent’s sense of failure and makes harder for them to develop the confidence and 
ability to focus they will need to solve the problems.

In grades two and three, students sometimes struggle with word problems that 
involve a collection of things (or a “whole”) that is comprised of two different kinds 
of things, or two “parts.” If we are told that Bob has 4 marbles and Alice has 3 
marbles, it’s not hard to see that we can add 4 plus 3 to find how many marbles they 
have altogether. But if we are told how many more marbles one person has, the 
problem becomes more difficult. Some teachers like to tell students to look for key 
words in a problem and that when they see the word “more” it means they need to 
add to find the answer. But this isn’t always the case. If Bob has 6 marbles and Alice 
has 2 more marbles than Bob, we would add 6 plus 2 to find out how many marbles 
Alice has. But if Bob has 6 marbles and has 2 more marbles than Alice, we would 
subtract 2 from 6 to find out how many marbles Alice has.

When students are required to balance the cognitive demands of reading a series 
of word problems—where the vocabulary and context may change from problem to 
problem—with the demands of recognizing what problem type they are given, they 
can easily suffer from cognitive overload. The more elements of a problem a teacher 
varies at one time the more likely it is that they will leave students behind.

One way to address this problem is to allow students to practice finding solutions 
to various types of part-whole problems in a series of exercises where only the prob-
lem type varies but where the numbers are small and the language is minimal and 
doesn’t change. Rather than being asked to read whole paragraphs, about animals, 
then cars, and then vegetables, students might be given short phrases that are always 
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about, for example, green and blue marbles. They might also be given the easiest 
problem type (where you are given the part and the part) first and then progress to 
harder types.

The questions below show the easiest problem type: the part and the part.

1. Shade boxes to show the number of marbles. Then find the total and the difference.

a) 5 green marbles
    3 blue marbles

    green

    blue

difference

total:

2 marbles

8 marbles

b) 4 green marbles
    6 blue marbles

    green

    blue

difference

total:

 

Students might also be allowed to practice solving each type as many times as 
they need to, so they understand one type before they are introduced to the next 
type.

b) 6 marbles altogether
    2 green marbles

The questions below show the other problem types.

The part and the whole.

The part and the difference: When you have the smaller part and you know how many more.

The part and the difference when you know the bigger part and how many fewer.

difference

total:

c) 3 green marbles
    4 more blue marbles than green marbles

difference

total:

d) 8 green marbles
    3 fewer blue marbles than green marbles

difference

total:
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Once students have mastered the various types of part-whole problem individu-
ally, they will still need practice recognizing the various types when they are pre-
sented at random. Switching between different problem types is not an easy task for 
some children, even when they have mastered each type separately. If the problems 
are presented in full paragraphs, it can interfere with the acquisition of this skill. So 
the teacher could put the information for each problem into a chart, as shown below.

Green
Marbles

Blue
Marbles Total Difference

a)

b)

c)

d)

e)

f)

g)

h)

2 more blue marbles than green

1 more blue marble than green

1 more blue marble than green

1 more green marble than blue

2 9

2

4

6

3

2

4

3 5 8

6

7

10

Providing information in a table.  

For students who are capable of handling bigger numbers, the teacher could 
include in the charts some numbers that are larger than the number of squares in their 
grids. This will stretch students a little, by forcing them either to draw their own 
sketch or to rely on their knowledge of numbers to find the answer mentally. The 
research on deliberate practice suggests that students learn most efficiently when 
they are continually pushed a little outside of their comfort zone but not too far.

Sometimes students who have been taken through this series of exercises will 
still panic when they see a word problem presented in a full paragraph. They will 
revert to guessing answers, even if they were able to solve the problems when they 
were presented with minimal language. To break this guessing reflex, one of the 
JUMP writers, Anna Klebanov, came up with an ingenious solution. She put frag-
ments of word problems (in which marbles were replaced by fish, so students could 
get used to changing contexts) on the left-hand side of the chart. Rather than asking 
students to write the answer to the problem, she asked them to fill in all of the miss-
ing pieces of information in the chart and then circle the answer. Students are forced 
to develop a complete (mental or physical) picture of the situation before they are 
allowed to answer the question. This stops the student from guessing.

14  Using Evidence to Close the Achievement Gap in Math



270

Red Green Total Difference

Kate has 3 green fish and 4 red fish.
How many fish does she have altogether?

Bill has 4 green fish and 6 red fish.
How many fish does he have altogether?

Mary has 8 green fish and 2 more
green fish than red fish.
How many fish does she have?

Peter ha 19 fish. He has 15 green fish.
How many red fish does he have?

Hanna has 8 green fish and 3 fewer
red fish than green fish.
How many fish does she have?

Ken has 22 red fish and 33 green fish.
How many more green fish does he have?

4 3 7 1
a)

b)

c)

d)

e)

f)

 

After assigning the kinds of exercise I described above, the teacher can introduce 
problems with more text where the context varies from problem to problem.

The most challenging type of part/whole problem is one where the student is 
given the total and the difference. For example: You have 20 marbles. You have four 
more green marbles than blue marbles. How many blue marbles do you have? This 
is a perfect bonus question for students who are ready to be stretched a little 
further.

Only the most challenged student would encounter any real barriers of pitfalls in 
the progression of exercises I just outlined. When I teach in this way, I usually find 
that all of my students can move at roughly the same pace and no one is left behind. 
I can also cover material fairly quickly, because students are engaged and their 
brains aren’t being overloaded. I always have a stock of incrementally harder bonus 
questions, so no one is bored. If students are ready to be stretched more, I can skip 
steps and let them struggle more. Although I haven’t had the opportunity to test this 
series of exercises in a rigorous study, I predict that this approach would yield better 
results than an approach that involves giving students full word problems at the 
beginning of instruction.
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When the language is stripped away from part-whole problems, you can see 
how easy the math is. You only have to know the two parts, the total and the dif-
ference, in such problems in order to know everything. Once you are able to form 
a mental representation of the situation (for example by visualizing two bars 
representing the parts) you have plumbed the depths of the mathematics. There is 
no hidden mystery here that only the most brilliant people can understand. 
Fortunately, this is the case with all of the mathematics students are required to 
learn at school: it can all be taught in a series of steps that almost anyone can 
understand. That’s because the underlying structure of the math is invariably sim-
ple and accessible to virtually anyone, as long as that structure isn’t obscured by 
language or the learning is not made difficult by too many cognitive demands 
imposed at the same time.

�Avoiding Cognitive Overload

In the last section, I sketched an approach to problem-solving that reduces the learn-
er’s “cognitive load” by limiting the amount of extraneous verbal and visual 
information that the learner is required to process and by providing simple, 
semi-abstract models that help the learner see the deeper underlying structure of 
problems. It is also possible to design lessons that provide students with the 
scaffolding and practice they need to understand and perform the various mathe-
matical procedures or algorithms they learn at school, such as rounding, addition, 
and subtraction.

When teachers teach mathematical procedures they sometimes teach more than 
one step at once without noticing how different those steps might seem to a novice. 
For example, when teachers teach addition with two-digit numbers, they often show 
students how to add the ones and the tens at the same time, without allowing them 
to practice each step in isolation. This is fine when the question doesn’t involve 
regrouping (or “carrying” as regrouping used to be called) because in both the ones 
and the tens place you just add the bottom digit to the top digit. But when addition 
involves regrouping, the methods students use to add the ones are very different 
from the methods they use to add the tens. If the sum of the numbers in the ones 
place is greater than 9, students have to “carry” or “regroup” a ten. Students often 
make the mistakes shown below:
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To help student understand how to regroup, I will sometimes play a game in 
which I hold some pennies in my hand and ask the student to predict if I have 
enough pennies to make a dime. I also ask them to say how many pennies will be 
left over if I exchange the pennies for a dime. After repeating this exercise several 
times, I will hold some of the pennies in one hand and some in the other, so stu-
dents have to mentally add the numbers and then decide if they can make a dime. 
Then I write various two-digit sums on the board and I tell the students to imagine 
that the numbers in the ones column represent pennies. In each case I ask them to 
say if I have enough pennies to make a dime and how many pennies will be left 
over. Then I tell them that in cases where they can make a dime I write a one 
above the numbers in the tens column to indicate that I have an extra ten or an 
extra dime.

Even when students understand why they write a 1 in the tens column when they 
want to regroup, they still need to practice this step. If I ask students to regroup the 
ones and add the numbers in the tens column (which involves adding three num-
bers) at the same time they will often forget how to add the ones. In the JUMP 
student books, in the exercises where student practice adding the ones, we put black 
boxes in the tens column to show students that they don’t have to think about the 
tens yet.

 

Whenever I want to teach a particular mathematical procedure I first do a task 
analysis by listing every step (no matter how minute) I would follow to perform the 
procedure. For example, if I wanted to round 36,739 to the nearest thousand, here 
are the steps I would follow:
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I hope you can see how easy each step of the procedure is when the steps are 
isolated. Even the most challenged student can perform the individual steps if they 
are given enough time to practice. Of course, in an actual lesson, I would help 
students understand why each step works, as I demonstrated in the lesson on 
part-whole problems. But I intentionally isolated the steps here, without focusing on 
the concepts, to show that the individual steps of the procedure people follow to 
round a number are absolutely trivial and could be mastered by anyone.

Every mathematical procedure that you learned (or didn’t learn) at school can be 
reduced to steps that are as simple as the ones I outlined for addition and rounding. 
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This is true even for the advanced algebraic procedures that you had to learn in high 
school. As well, a competent teacher can create a series of Socratic questions, 
exercises, activities, and games that allow students to figure out why all of the steps 
of these procedures work themselves. That is why it is especially tragic that so many 
students fail to master and understand the mathematical procedures they are 
expected to learn at school or in training for their jobs. The JUMP writers and I 
wrote the JUMP Math teachers guides so teachers and parents could learn how to 
teach all of the math students learn between kindergarten and grade 8 using a 
method of instruction we call “structured inquiry.” Students are given many 
opportunities to explore concepts and figure things out for themselves, but the 
teacher provides enough rigorous guidance to ensure that all students master the 
material being taught.

Some teachers are reluctant to break instruction into manageable chunks because 
they think that this kind of teaching is “rote.” The term “rote” refers to a style of 
teaching where students are taught to blindly follow rules and procedures without 
any understanding of why those rules and procedures work. I hope it is clear from 
the lessons on part-whole problems that structured inquiry is not rote. In fact, 
research suggests that students who are led to discover concepts in manageable 
steps will develop a much deeper understanding of math than students whose brains 
are constantly overwhelmed.

Some teachers are averse to teaching in manageable chunks because they think 
students should struggle in math classes so they learn to persevere. But, as cognitive 
scientist Daniel Willingham points out, no one likes to struggle too much: “People 
like to solve problems but not to work on unsolvable problems. If school work is 
always just a bit too difficult for a student, it should be no surprise that she doesn’t 
like school much.” Psychologist Carol Dweck made a similar point after watching a 
JUMP lesson: she said the lesson incorporated “growth mindset principles” because 
the progression of exercises looked hard to the students but weren’t too hard.

Even though I believe that teachers should learn to teach in manageable steps, I 
do not advocate that they only teach in steps. The JUMP lessons include exercises, 
games, and activities that are less structured than the long division lesson. And 
every JUMP lesson ends with a set of “Extension” questions that are more difficult 
than the questions covered in the lesson. As well, I recommend that teachers skip 
steps and give students more challenging or open-ended problems when they have 
developed the confidence and acquired the knowledge they need to struggle produc-
tively. The goal of JUMP is to help all students become creative and independent 
thinkers who no longer depend on the teacher. But if teachers don’t know how to 
reduce instruction into small steps or to unravel concepts into their conceptual 
threads, then they are unlikely to help their entire class reach this level of achieve-
ment. As well, they won’t know how to assist students who are capable of more 
advanced work but who meet a momentary obstacle.

Some teachers are reluctant to guide the learning of younger students too much 
because they believe that children will naturally learn mathematical concepts on 
their own, by playing with “concrete materials” (blocks, toys, measuring instru-
ments, and so on). But research has shown that this view is overly simplistic. While 
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students certainly benefit from playing with concrete objects, they usually need 
assistance seeing the math that is embodied in the objects. As well, concrete materi-
als sometimes appear to impede learning. In a recent study, one group of students 
was instructed to use play money resembling real paper money to solve a problem 
while another group was given more abstract money (rectangles with numbers 
printed on them). The group with the abstract money was more successful at solving 
the problem. Jennifer Kaminski, whose work I mentioned in Chap. 1, found that 
grade 1 children learn fraction concepts more readily with grey and white circles 
than with pictures of objects (for instance flowers with different-colored petals). 
According to Kaminski, her findings suggest “that concrete, perceptually rich 
instantiations of fractions may hinder children’s acquisition of basic fraction knowl-
edge in comparison to simple, generic instantiations for fractions.”

Another body of research, called “concreteness fading,” suggests that students 
learn some concepts better if the teacher starts with a concrete model but gradually 
and systematically “fades” to abstract symbols.

�The Psychology of Success

As early as kindergarten, children start comparing themselves to each other and 
deciding who is smart and who isn’t in various subjects. Most parents and teachers 
seem to think these comparisons are innocent and natural and so do nothing to 
discourage them—in fact some teachers actively encourage them. But based on my 
observations of thousands of students, I believe that our willingness to tolerate 
visible academic hierarchies is one of the main root causes of students’ problems in 
math. As soon as students decide they are not in the talented group their minds stop 
working efficiently—they are no longer engaged in learning and stop paying atten-
tion, taking risks and remembering things. They may even develop anxieties or 
behavioral problems that make it even harder to learn.

When I have had the opportunity to observe teachers who have high expectations 
of every student and who follow the principals of structured inquiry, I’ve frequently 
seen entire classes of students become caught up in an intense collective excitement 
about math—similar to the “collective effervescence” that the sociologist Durkheim 
observed when crowds of people all experience the same positive emotions at the 
same time. Children in these classrooms often ask for extra work or even beg to stay 
in for recess to do more math. Their brains work more efficiently because they stop 
competing against each other in negative ways and start to direct all of their 
enthusiasm and mental effort to competing against the problem at hand.

Melanie Greene is a fourth-grade teacher who used the method of guided inquiry 
to achieve stunning results on the New York state tests in 2014. That year, she and 
her fellow grade 4 and 5 teachers at the Manhattan Charter School produced the 
greatest gains on the state test of all schools in New  York City. In a blog that 
appeared in Achieve, Melanie described the high levels of engagement she saw in 
her students when they were taught through structured inquiry:
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What I saw in those scores wasn’t even the full picture. Something special was happening 
in my classroom. Each day, my students could not wait to begin math. Even my lowest-
achieving students were jumping out of their seats to answer questions. I will never forget 
one student in particular who cried at the beginning of the school year because math was so 
difficult for her. She quickly got on board with JUMP Math and received a four (the highest 
rating) on the New York State Test that same year. Thinking of her achievement still brings 
tears to my eyes.

Psychologists like Carol Dweck have shown that our beliefs about intellectual 
ability matter more than we think, in part because we can change the trajectory of a 
students’ academic career with a single ill-informed remark. I’ve heard parents say, 
in front of their children, that the children can’t possibly be good at math because 
their parents weren’t, and I’ve heard teachers tell students that math is just not their 
subject. A growing body of evidence also suggests that our beliefs about ability can 
have an even wider impact, beyond our immediate families: for example, a recent 
study found that the less people believe that everyone is born with high intellectual 
potential the less likely they are to support free public education or the redistribution 
of educational funds from wealthy to poor districts.

People who underestimate the intellectual capacity of children are more likely to 
tolerate inequitable classrooms—classrooms where the teacher has low expecta-
tions of students who are perfectly capable of learning, where the methods of 
instruction are not designed to close the gap between weaker and stronger students, 
where students can easily rank themselves and compare their rates of progress, and 
where students with normal brains (who do not have severe learning disabilities) 
receive work that is substantially easier than the work given to more advanced stu-
dents. Fortunately, teachers can now look to a large body of research in cognitive 
science to help them understand the true intellectual capacity of their students. They 
can also use this research to reduce visible academic hierarchies in their classrooms 
and to design lessons that allow students to learn in an efficient and enjoyable way, 
so that every student can realize their full potential in math.
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Chapter 15
Knowledge Building, Mathematics, 
and Creative Thinking: An Overview 
on Ontario Elementary Mathematical 
Teaching Beyond Twenty-First-Century 
Skills

Miss Stacy A. Costa

Elementary students in Ontario are bombarded with various mathematical class-
room instructional methodologies, in order to assist them in improving their math-
ematical cognition. Children’s first formal years of schooling can determine a 
student’s awareness regarding their mathematical achievement, their math anxiety, 
and motivational stance regarding mathematics (Gunderson et al. 2018). While for-
mal schooling is the most prominent way to disperse mathematical knowledge, chil-
dren do discuss and embody math and its properties outside of the classroom 
environment. Mathematical knowledge can be acquired outside of formal school 
instruction and become a positive influence on mathematical performance through-
out one’s lifetime (Brownell 1941). Ideas such as financial literacy, probability, and 
patterning are easy topics in which young students can encounter within their every-
day lives. Nonetheless, students in Ontario are still experiencing difficulties when 
applying their understanding of mathematics to given problems within standardized 
testing. While the author of this chapter is aware of the problematic nature of stan-
dardized testing, it is important to note these results as a basis for the argument for 
the rest of this chapter. Ontario’s Education Quality and Accountability Office 
(EQAO 2016/2017) released their annual results of standardized testing on mathe-
matical skills. The 2017–2018 results showed that fewer than half of the province’s 
grade 6 pupils—49%—met the provincial standard in math in the 2017–18 aca-
demic year. According to the EQAO standardized test in the 2016–17 academic 
year, only 49% of grade 3 girls in Ontario agreed with the statement they are good 
at math compared to 62% of boys. The difference widened in grade 6, where 46% 
of girls said that they were good at math compared to 61% of boys. While these 
statistics are problematic for Ontario educational partners, they only demonstrate 
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the surface of the problem. Students are doing poorly not only on their results of 
testing, but also on their self-confidence, and specifically math anxiety within 
females is also distressful. This chapter examines methodologies to go beyond 
twenty-first-century skills, and how future mathematical instructional methods must 
become more rigorous in order to change and make an impact on Ontario student’s 
mathematical cognition. This chapter explores possible instructional methodologies 
in which educators should explore in order to find best practices for their students to 
build upon.

Students are currently studying for a twenty-first-century workplace wherein 
skills are defined by student’s success in being able to tackle and negotiate unfore-
seeable problems within global, technological, and the modern world. These chal-
lenges need to be taken on by innovative citizens. Such innovative citizens need to 
have mathematical knowledge to understand facts, reporting, and statistical infor-
mation. Student’s acquisition of math skills is essential, as they are an indicator and 
possible predictor of future prospective careers. Through the use of twenty-first-
century skills within a mathematics classroom, students will embody skills such as 
collaboration, mathematical reasoning, and preparation for STEM (Science, 
Technology, Engineering and Mathematics) majors. While not all students may fall 
into this same path, it is still vital so as students do not terminate mathematics stud-
ies earlier in their learning trajectory.

Mathematics is needed for problem-solving, reasoning, questioning, computa-
tional strategies, and creative application, well beyond the work required to solve 
well-defined problems characterized by “instructor input  →  student problem-
solving → verification” model. Students can arguably be trained on how to com-
plete irrelevant math problems to understand formulaic math queries but not to 
comprehend outside of imaginary textbook questioning. Arryo et al. (2014) found 
that students can progress through higher level math classes yet are missing founda-
tions of mathematical reasoning, thus providing teachers with numerous math dif-
ficulties that vary across students within the class and making it difficult for teachers 
to meet all the needs of every student.

Students acquire mathematical knowledge and procedures through a variety of 
instructional methods. However, within educational reforms, students are now 
streamlined into utilizing only one correct method of acquiring mathematical 
texts, and this can become a stepping stone to exacerbating the problem of math-
ematical knowledge being validated. Streamlining can lead to concerns of math 
anxiety, or poorer academic performance. This is one explanation as to the statistic 
nightmare reported earlier by EQAO and Ontario student’s scores. By age 4 or 5 
most children seem to have both the conceptual foundation needed for the acquisi-
tion of complex mathematical knowledge (Balfanz 1990, p. 45). Through class-
room instruction, there is difficulty in transferring mathematical knowledge to 
novel contexts. Bredekamp (2004) argues that educators should examine research 
and practices on how children learn mathematics and integrate relevant methods 
into school mathematics. Most mathematical instruction needs to be assessed on 
how to integrate mathematical competencies best to be well understood by stu-
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dents. As mathematical concepts are precursors to the next set of mathematical 
knowledge, it is easy to have skills become too tricky or misunderstood, leading 
students to abandon the subject during upper years of schooling entirely. This then 
leads into a problem within high school of academic versus applied streaming. 
Unfortunately, these two categorical choices are made for students and can easily 
perpetuate disparities in educational outcomes. Understanding why students are 
being streamed within their education not only disadvantages them but sets them 
with a mindset that they must stay within such streams and what their capabilities 
are at such a young age.

In the Liberian schools examined by Brenner (1985), teachers promoted the use 
of indigenous methods in concert with school-taught procedures. By incorporating 
what Brenner (1985) examined provide space and importance for student’s voice 
and interpretation to incorporate student’s understanding and theory. When students 
are introduced to textbooks, and other authoritative sources, a student can begin to 
understand and relate to their own unique context, relational understanding of math 
to answer inquiries they may be facing at their age. However, when referencing 
these materials, if not scaffolded correctly, problems that were initially introduced 
are structurally identical to the ones they will continue to work on during the lesson. 
No unique problem-solving or twenty-first-century skills are incorporated.

“Most children’s environmentally acquired knowledge is obtained orally and 
developed mentally, without the use of writing” (Balfanz 1990, p.  46). Children 
learn their basic numeracy skills through math talk, sharing, manipulating, and trad-
ing. Understanding mathematical cognition would go beyond problem-solving. We 
need to understand that mathematical understanding incorporates more than just 
symbolic reasoning. Balfanz (1990, p. 46) found that as a result, young students 
begin to cease understanding mathematical as a thinking process but instead a 
mechanical one due to their classroom instruction.

One way in which mathematical classrooms in Ontario could benefit would be 
through the use of innovative principle-based learning like knowledge building 
(Scardamalia and Bereiter 2014). In line with the World Economic Forum (2016) 
focus on collaborative work on complex problem-solving at the elementary level, 
collaborative knowledge building (Scardamalia 2002) supports building ideas in 
an online space accessible to all participants. By providing students with ample 
opportunities to interact with their peers and play with math ideas, knowledge 
building has the potential to address this perceived math anxiety, especially for 
the most vulnerable population, Ontario girls, and enhance their student achieve-
ment. Thus, let’s go beyond and empower our learners within the math domain. 
Not unlike Brenner’s (1985) approach, knowledge building allows for student 
voice and classroom promotion of relevant methods to be incorporated with 
school-taught curricula. This pedagogy goes beyond problem-based learning and 
has previously been studied and implemented successfully on elementary stu-
dents’ mathematical studies in geometry (Costa 2016). Knowledge building also 
aligns with its principle-based software knowledge forum which is an innovative 
virtual space. Knowledge forum is one method to improve students’ mathematical 
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communication ability, and studies have shown the potential of using computers 
(Costa 2016).

It is possible to note that knowledge building as an educational technology can 
tailor metacognitive support to individual student needs, including within the 
discipline of mathematics. Studies have shown that knowledge developed in school 
may only be used in school (Greenfield and Lave 1982; Carraher et al. 1987); where 
students are often deprived of the information, they need to understand why their 
invented methods are incorrect. It is important that students go beyond correct or 
incorrect ideas or theories and instead be able to incorporate more mathematical 
talk, explanations, and theories in order to better understand beyond just demonstra-
tion of procedure of the mathematical concepts being studied. It is essential to rec-
ognize and have students share the knowledge they develop outside of the classroom 
and legitimize their knowledge. By building upon student’s mathematical interests, 
it segues to more in-depth math talks and concepts for students to grasp as opposi-
tional theories or ideas meant to be built upon. By allowing students to have multi-
ple representations of their math talk, students were able to type text, use speech, 
correlate new math vocabulary to manipulatives, draw and annotate images to dem-
onstrate their understanding, scaffold ideas, and also discuss how being taught the 
same idea providing different theoretical perspectives on the same terminology. 
These examples all allowed students various opportunities to make errors and to 
have other students assist in catching those errors or providing rationale and expla-
nations to support their reasoning and understanding. Furthermore, it provides stu-
dents with multiple methods to express and demonstrate their mathematical 
understanding. Knowledge building pedagogy also allows students to promote their 
own graphical literacy. Students built shapes and had discussions surrounding what 
they considered a shape, and what properties a shape possessed. Students took 
agency over importing images and describing the symbolic renderings if images 
were shapes, by incorporating conversations surrounding ideas such as hearts, being 
a shape versus being a symbol rendering (Costa 2016).

Ontario students’ standardized testing scores also demonstrate the problems 
instruction is facing within the province. The elementary math curriculum cannot 
only be focused on skills that are not connected and are solely drill tasks or are 
solely discourse conversations of the technique used. It is evident that mathematical 
methods which are being introduced lack modular use and applicability to problems 
that are perceived to be more difficult or provide alternative context. Students are 
grounded in the text examples they are provided initially and cannot maneuver 
between new tasks to apply their knowledge to. Students are not grasping nor meta-
cognitively understanding that their newly introduced math knowledge is applicable 
in multifaceted methods.

Conversely, discovery math is often referred to as inquiry-based mathematics or 
open-ended math. Many are critical of this technique as it may facilitate only class-
rooms that do not emphasize drill-set learning or focus on procedural knowledge. 
One area that can be more prevalent within a discovery math classroom is the usage 
of math talk. During these sessions students articulate their thoughts, expand their 
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understanding of mathematical terms and concepts, listen to their peers, and describe 
the math task they are presented. Discovery math should be used in tandem with 
skill-set-building procedures in math classrooms to allow young students to be com-
fortable and confident in using these terms.

Understanding how we can create mathematical understanding stemming from a 
young age seems to remain a mystery still, as many youths are still struggling with 
math cognition and choosing not to enjoy math as it is perceived as difficult, unrelat-
able, or pointless to student’s self-learning goals. Given that math is a conceptually 
rich and complex subject, students often perceive that math is more difficult to 
understand than other subjects in school (Costa 2015). Many students are hesitant to 
voice confusion or ask for help when stuck on a mathematical problem, which 
deters from their learning. Gunderson et al. (2018) found that students’ mathemati-
cal achievement and reciprocal math anxiety were related and found effects present 
in grade schools’ student within their first 2 years of formal schooling, with each 
demonstrating that at a young age a positive or negative trajectory in math can 
occur. Therefore, if students are performing with difficulties at the grade 6 level in 
Ontario, it could be led to believe that these are cascading effects which can con-
tinually determine and perpetuate difference in low math achievement and avoid-
ance in math-related tasks. We need to have skills applied in order to have students 
cognitively be aware of how to apply their mathematical learning to additional prob-
lem sets, and not just create understanding and skills for specific problem sets. 
“From the known to the unknown through hypothesis, experimentation and analy-
sis, solving a hard problem by looking for ways to simplify it and thinking by anal-
ogy” (Balfanz 1990, p. 54). Student mathematical thinking that emerges must go 
beyond just math talk, but also acquiring understanding to apply these theories to 
solve problems and apply the thinking to other problem sets.

As Greeno et al. (1996, p. 20) note, “knowledge is distributed among people and 
their environment, including objects, artifacts, tools, books and the communities 
they are a part of.” Students must take collective responsibility for advancing com-
munity knowledge, using resource material to extend their work beyond the ideas in 
the local community. Students can shift between the role of providing peer feedback 
or asking for information in order to advance their own thought processes and as 
well of that of their classroom Knowledge building mathematical community. In 
this scenario, students are forced to disclose their thoughts, and see value in the 
importance of sharing knowledge, as well as understanding metacognitive thought 
of self and peer. This then lends to additional feedback from learning between stu-
dents and teacher interjection to facilitate and assist when needed. Costa (2016) 
found that by using symbols and graphical representation of math ideas, students 
can build representations of mathematical structures and designs that incorporate 
other multimedia components that can be attached and uploaded onto the group 
view, allowing students to build on ideas in various formats in which the technology 
is flexible as to cognitive learning style. Moreover, all uploads and representations 
can be co-authored, allowing for collaborative production with potential for stron-
ger motivation and engagement. This example can not only help foster student’s 
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learning and understanding but also be a point of instruction to lead the teacher to 
incorporate areas that are unclear for students. Mathematical misconceptions may 
have the potential of the student thinking, furthering the mathematical understand-
ing of the class if incorporated into instruction (e.g., Stockero and Van Zoest 2013).

As we can see from Figure One (Fig. 15.1) below (Ministers of Education 2004), 
students who are not engaged are correlated to have higher mathematics anxiety, 
with lower mathematics confidence, and do not have an interest and enjoyment in 
mathematics performed the equivalent of one proficiency level lower. These statis-
tics are concerning as those who have higher scores are paradoxically higher in 
mathematics confidence and lower in mathematics anxiety. These students who 
positively related to achievement also had higher motivation to learn math. As 
noted, these scores are prior to EQAO scores from 2017, and of Canadian country-
wide averages not just the province of Ontario. These scores still emphasize a shift 
and concern with mathematical instruction.

Problem-based learning (PBL) is a “teacher facilitated, student-driven approach” 
(Bell 2010). Problem-based learning can be seen as an “object of consideration by 
the class in order to engage the class in making sense of that thinking to better 
understand an important mathematical idea” (Van Zoest et al. 2017, p. 36). Boaler 
(1999) found that students at a PBL school were equally able to answer procedural 
questions that used formulas to a traditionally taught math program, as well as they 
were superior in answering applied and conceptual problems. Boaler’s (1999) 
research supports that students using problem-based learning perform better on 
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Fig. 15.1  Combined mathematics score for students with high mathematics engagement com-
pared to students with low mathematics engagement (Ministers of Education 2004). Students low 
on a given index are defined as those falling one standard deviation below the average, and students 
high on a given index are defined as those falling one standard deviation above the average
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standardized tests and that they had learned the real-world application and analyti-
cal thinking; thus, they could see the application of their learning and were less 
likely to view math as an isolated or useless skill. We want our students also to be 
active learners within the math classroom. If a student then begins to feel spoken to, 
it is easier for them to disengage and daydream, if they are aware that they are only 
told facts, and are not provided with any learning opportunities to engage with 
mathematical concepts. By allowing students to engage in twenty-first-century col-
laboration and communication skills  this honours  students’ agency of  learning 
styles or preferences.

Students are passive observers and with demands to meet curricula expectations, 
or teaching needing to be conducted, students cannot be challenged or think about 
mathematical application in creative ways or entrepreneur ways that match mathe-
matics to familiar applications within their own live trajectories. Novita and Putra 
(2016, p. 35) define creativity within mathematics as “abstraction, connection and 
research.” Now, while there is no universally accepted definition of mathematical 
creativity (Haylock 1997) this chapter would declare an abstraction of mathematical 
creativity as a methodological to see and understand mathematics in multiple ways, 
and to understand various demonstrations to represent their understanding. Writing 
allows children to make connections between the spoken and written word (Cohen 
et  al. 2015). Students can write about their reasoning, develop math vocabulary, 
organize their thoughts, and develop problem-solving methods (Furner and Berman 
2012). One aspect which is not mentioned throughout testing or within math instruc-
tion is creativity. Creativity is a skill in which will serve students as a fundamental 
skill in twenty-first-century evolving global economy. Unfortunately, as it seems, 
the concept of creativity being sidelined within lessons also removes student’s natu-
ral curiosity and interest in mathematics beyond rules and formulaic measures. The 
need for mathematics as a tool for creative work, in a technology-rich knowledge 
society, is widely recognized (Wagner and Dintersmith 2015; Ritchhart 2015).

In mathematical learning, students need to understand two knowledge types: 
procedural and conceptual (Baroody and Dowker 2003; Sidney and Alibali 2015). 
Sidney and Alibali (2015) define procedural knowledge as “knowledge of sets of 
actions that can be used to solve a particular type of problem” (p. 162) while con-
ceptual knowledge is knowledge surrounding meaning and processes (Rittle-
Johnson et  al. 2001). When referring to standardized testing, is EQAO testing 
solely distributed to collect procedural knowledge? If so, then can a student succeed 
if they choose to display conceptual knowledge yet are not tested for this? Again, 
the author is aware of the controversy surrounding standardized testing as a whole, 
but it begs the question: Do successful math-fluent students need to possess both 
types of knowledge to be adequate or successful mathematicians?

As this chapter notes the inconsistencies and concerns with elementary mathe-
matical learning, it is more important to emphasize the importance of student inter-
est and curiosity of mathematics at a young age to stem on long-term outcomes 
instead of short-term outcomes of EQAO scores or mastering a specific unit. It is 
concerning as if students draw on existing knowledge, to understand to build on 
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future mathematical questions, how do students transfer successfully? Are students 
failing to identify that the questions are similar and relate to their current 
knowledge?

Effective instruction cannot occur for students with mathematical difficulties if a 
teacher is halted due to such logistical concerns. As noted in this chapter, it is crucial 
that teachers and classrooms be open to understanding how student ideas are dealt 
with and identified within the math classroom. These ideas need to be constructively 
understood by all participants in the classroom, and they should open up new ave-
nues of instruction and inquiry to support teachers to respond, according to the vari-
ous challenging and unique inquiries students may possess. Furthermore, while 
classrooms import various ideas, this will not mean that the instruction will be linear 
but instead will need to provide a more in-depth and highly flexible routine that 
must be open to shift in teacher belief and differentiated instruction. Teachers must 
go beyond a set method but instead be fluid based on math topic, and classroom 
student response.

Murata (2015) describes a concept seen as “instructional width,” in which a 
classroom incorporates a wider variety of ideas that occur during instruction to sup-
port student’s individual and varying learning goals to converge towards classroom 
instructional goals gradually. This concept would be a possible solution for Ontario 
math teachers to allow for students’ understanding in curricular mandated areas to 
be met but to also provide individual needs that can be overwhelming for one 
teacher.

Henning et al. (2012) found that one useful methodology for elementary mathe-
matics instructors is to facilitate math lessons through three sections: framing, con-
ceptual, and application. This methodology allowed for teachers to maintain their 
explanation and allowed for more complexity to be described by the teacher. The 
rest of the lesson allows for student clarification of understanding, and to encourage 
and evaluate other’s ideas. In summary, teachers must be open to several instruc-
tional strategies in order to allow students to benefit in the long-term understanding 
of mathematical cognition to occur.

While standardized testing scores are problematic measures, it is crucial that we 
look at these results and question and try to understand new methodologies and 
instruction and be open to mathematical learning in a less rigid fashion. As noted, 
we need to continually work on the multifaceted approach of student’s mathemati-
cal learning trajectory. It is important to note that both informal, basic quantitative 
competencies and domain-general abilities contribute to formal mathematics 
learning (Bull et al. 2008). This overview can provide Ontario educators, policy-
makers, and parents with some knowledge and facts to consider in instructing 
mathematics to Ontario students, primarily to provide vulnerable populations, a 
shift in student’s self-mathematical cognition. This chapter has concluded that 
mathematical instruction for Ontario classrooms needs to be open to differentiated 
practices and further review.

M. S. A. Costa
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Chapter 16
Crypto-Mathematics in Ethnography: 
Estimation and Approximation  
via Ballparks and Eyeballing

Myrdene Anderson

�Foreplay

Of course, I know that counting isn’t really maths, but the cognitive play in estimation 
and approximation might qualify! To set this up, some relations pertaining to 
mathematics and arithmetic, and to anthropology and ethnography, are in order, as 
ethnography is the quintessential way humans study humans, whether they’re aware 
of the process or not.

�The Intersection of Mathematics and Anthropology

Mathematics and ethnography overlap at several angles. Ethnography, as one 
approach to the scientific study of humans, is associated with the discipline of 
anthropology. However, anthropology overall employs any manner of “hard” 
technologies as well as “soft” observation—everything from microscopes to 
telescopes, as well as our primal sensational, perceptive, and cognitive aptitudes of 
humans as ethnographic investigators, singly or in groups, about their own 
conspecifics. Furthermore, the scope of the entire anthropological discipline leaves 
no holds barred when it comes to tackling space and time … in the quest to 
understand humans from their evolutionary emergence to the present and into the 
future, in time, and from pole to pole and into any future spheres, in space.

Anthropology in Boasian North America inherits a century-long tradition of four 
subdisciplines, or subfields, that a century ago emerged like Topsy from holism—
that commitment to cover as much as possible about our species, or at least not to 
willfully overlook let alone erase any perspective. These four fuzzy subdisciplines 
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can’t be sequenced, as in fact they overlap, with fallow interstices and redundancies, 
all seeming to be splitting out of their seams.

To be explicit, the four subfields’ labels specify the link to anthropology, itself a 
young discipline, thus in some cases allowing for parallel formations in sibling 
disciplines: archaeological anthropology, biological anthropology, linguistic anthro-
pology, and sociocultural anthropology. Orthogonal to these four subfields is a 
social-problem-oriented approach leading to other applied anthropologies such as 
activist, advocacy, practicing, and more. On occasion, an interstitial subfield (for 
example, medical anthropology, overlapping potentially with all four subfields) may 
itself be a label for a project in applied anthropology. As in the case of applied math-
ematics (Halmos 1984), applied anthropology must also first be anthropology.

While ethnography—as participant-observation in a quotidian human setting—
typically unfolds from sociocultural anthropology, its practice may also be found in 
the other three subfields as well as in the applied approaches. Ethnography has also 
been adopted by a number of other fields, including sociology and education. The 
adventitious roots of anthropology lie in the cultural practices and the individual 
habits already available to its earliest self-conscious practitioners. Justifying the 
four subdisciplines may be either or both futile and irrelevant; the following 
substruction may honor some of the shaping factors, both cognitive and material 
(Fig. 16.1).

�Ethnography as “Participant-Observation”

Zeroing in onto ethnography (sense one), this participant-observation research tack 
is carried out in an actual experiential space and time—a natural habitat of the 
studied humans, saturated by habits of the insiders’ culture and language (be it in a 
kindergarten playground or a scientific laboratory, or even an individual subject)—
where the researcher, typically an outsider, documents the quotidian goings-on. 
More recently, one hears this boiled down to “deep hanging-out.” The ethnographer 
is never invisible, so it goes without saying that doing ethnography has at least the 
tacit permission of the studied persons, while inevitably but inadvertently influenc-
ing them and the setting, and being affected in return. Consequently each 
ethnographic venture will be unique in every way, beyond just the nature and extent 
of “participation” of the outside researcher in the language and culture of the activity 
and events of the insider population, and respecting the nature of the “observa-
tion”—which in every case would include many other senses alongside vision.

I am inclined to be inclusive when it comes to what qualifies as ethnography. 
Sadly, no longer will Darwin’s adventures qualify, if he has been properly quoted 
(in Shermer 2019, p. 67) as writing, “… all observation must be for or against some 
view, if it is to be of any service.” The ethnographer might be in a too-familiar 
situation, as would pertain to autoethnography, or in one so alien that reality disputes 
believability. The ethnographic endeavor may be carried out in several settings and 
be of any length, even interminable, as longitudinal projects may effectively 
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continue beyond one lifetime. For the ethnographer, ever-emerging context, that is 
relations within and across time and space, will provide the justification for Darwin’s 
“observation” (Deely 2012).

Some ethnographic projects involve a team, and any solo ethnographer may also 
have personal accompaniment in the field, perhaps family. Given the cognitive tilt of 
any human, and other living things (given markedness, Waugh 1982, given error 
detection, Noritake et  al. 2018), the ethnographer may first notice some familiar 
expected phenomena, but upon recognition will be struck by distinctions; this 
process—since the second wave of Russian Formalism—is now often called ostrane-
nie, or defamiliarization. The researcher may reflect on the particulars at hand as 
data, with or without relating them to analogous data or larger patterns pertaining to 
human cognitive constraints (Ludwig 2018) or even matters of scale (West 2017).

The outsider ethnographer-researcher, acknowledging his/her own background, 
focuses on noticing, eventually tentatively understanding, even collaborating in 
performing, the inferred lived realities of the others, those insiders. Terminologically 
clumsily, the ethnographer’s pursuit of ethnography (sensu one), once summarized, 
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analyzed, and perhaps compared with other research, results in publication of 
formal documents, articles, and perhaps books, any of these also called ethnography 
(sensu two).

In this naturalistic research, the ethnographer gathers data and captures capta—
however possible, often summed up as participant-observation—in a summative 
process called “writing-down.” The writing may entail media other than pencil and 
paper, from computing to film, any and all of which requiring digestion [often “analy-
sis” before the production of any, even interim, result, the ethnography (sensu two)].

Every field of inquiry—from art to zoology—may call on mathematics, or at 
least arithmetic, in the carrying out of a research project. In the case of anthropolo-
gy’s commitment to holistic research, diligently inclusive of all research subjects, 
their actual and imagined material and mental conditions, anthropology is in a 
position not only to employ mathematics in collection, analysis, and writing-up 
stages, but also to discover the mathematics indigenous to other linguïcultures 
(sensu Anderson and Gorlée 2011; Fabbri 2013, Overmann 2015, Van Bendegem 
and Van Kerkhove 2004).

Although some ethnomathematical systems had been documented, those other 
mathematics went largely unstudied by mathematicians, anthropologists, and 
philosophers, alike, until the 1970s, when scholars were equipped to discuss the 
variety, similarities, and distinctiveness among these systems (Ascher 1991, 
Berland 1982, D’Ambrosio 1997, Lave 1988, Selin 2000, Wilder 1981, Zavlasky 
1973; D’Ambrosio’s work foundational from 1985). Their variety should not be 
any more surprising than the variety in form and in substance manifest across 
cultures and, especially, languages, all deriving from but also shaping cognition 
itself. Much research continues to contribute to the Sapir-Whorf conjecture (from 
1929; surely not a hypothesis, though called one elsewhere) (Hill and Mannheim 
1992, p. 386), which conjecture proposes that the structure of a language shapes its 
speakers’ worldview or cognition. Finally, anthropologists perhaps more than 
linguists have been captivated by J. Willard Gibbs’ (1839–1903) quotable quote 
that “mathematics is a language” (in Silver 2017, p. 364). At the same time, math-
ematicians like Daniel S. Silver (2017) now probe whether or not there can be 
mathematics without worded language, illustrating the promiscuity among and 
between cognition, communication, and culture.

�Introducing “Discrete” and “Indiscrete” Anthropology

Data and capta come in two flavors, even for Peircean semioticians: the digital 
(discrete or discontinuous/episodic/categorical) amenable to counting, and the 
analogic (continuous in space or time or substance) that, unless reduced by 
convention for enumeration, can only respond to measurement. Differences also 
come in two flavors: in kind or in degree.

That is, digital data may be either countable if of one kind, with numerals (“discrete”), 
or clumpable and then manipulated arithmetically (Bateson 1978; Conner 2016; 
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Kauffman n.d.). Analogic data, reflecting the infinite variables and infinitely varying 
cosmos that immerse us in the so-called real world, require intervention before quantifi-
cation, thus inviting the fanciful moniker “indiscrete.”

Hence, clearly, qualification precedes quantification, even though, in sciencing, the numeri-
cal may appear to trump narrative, especially when the quantitative is enhanced through 
statistics … Whatever we choose to count, measure, or weigh, or manipulate in any way, 
has already been masticated by our linguïculturally-saturated human minds and habits 
(Anderson 2012, p. 296).

Too many persons within and beyond the academy have heard about, and perhaps 
are concerned with, a quantitative versus qualitative “debate” across the human 
sciences (Tenenbaum et al. 2011). This discourse has been particularly poignant in 
anthropology, given its inherently interdisciplinary, multidisciplinary, and even 
transdisciplinary stance. Currently, some assume that these incommensurable 
paradigms can be resolved through “mixed methods” (Johnson et al. 2007), these 
often decorating the edge of ethnographic projects with token quantitative data. Any 
textual or numerical data can be repackaged, especially visually, and fed into big 
data, including digital humanities (Aiden and Michel 2013; Drucker 2014), but 
these researchers may not be involved in original documentation at all.

Ethnography—a methodology based on the most fundamental and foundational 
qualitative approach in anthropology and summed up beyond participant-observation 
as naturalistic or qualitative inquiry—is now also practiced in the “pure” and 
“applied” social and behavioral sciences, even for research in mathematics education 
(Anderson et al. 2003). It may not be obvious how mathematical cognition will be 
relevant to such a naturalistic approach. But consider the assumption that 
mathematical cognition cannot be excised from any participatory or observational 
enterprise! That would include living as a subject in one’s ordinary environment, 
from birth to death. This view assumes that ethnography is not just “naturalistic 
inquiry” but integral to our normal faculties, in fact suturing our variously attuned 
senses into patterns and even narratives, tracing the relations within our Umwelt.

First, in broadest strokes, a Rorschach of ethnography would specify that it is 
carried out by a human investigator or investigators, called ethnographers, in a 
spatiotemporal setting with other humans—or even other creatures, but thus far not 
with plants as their behavior doesn’t sync with ours—who allow or at least tolerate 
the ethnographer to observe, and even to clumsily participate. That’s at the initiation 
of what is usually a longer project, even years. As the ethnographer acclimates to 
the language, culture, and especially personalities of the subject group, the very 
quality of the observation and of the participation will shift. With experience the 
relevance, direction, and quality (if not quantity) of both participation and observa-
tion are shaped by habit and by the emerging setting. It is important to consider the 
unique and open dynamics of each ethnographic situation, even holding constant 
the ethnographer.

I have first decoupled the basic variables of participation and observation in 
Fig. 16.2 (adapted from Anderson 1999–2000, p. 184), showing their permutations 
in a static Punnett square. Then, in Figs. 16.3, 16.4, and 16.5, the relative inputs of 
participation and observation are put into time and motion, showing how inputs 
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change from the initiation of a research project—for either an experienced or 
inexperienced ethnographer—through to what would obtain for a seasoned, more 
competent, and more confident, researcher.

What is documented by the ethnographer, and “written down,” qualifies as data 
(or “given”), whether description, quotation, numerical, sketch, or in another 
modality altogether. Collections of data may lend themselves to refinement through 
selection as capta (or captured) (Drucker 2014; Weissner 2016), before further 
interpretation and analysis. Moreover, the ethnographer will be aware as to whether 
the data would be considered “etic,” objective from the observer’s vantage, and/or 
subjective from the projected insider’s vantage, and whether these distinctions will 
be productive.
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In any form—for instance language or numerical—data face similar judgments as 
to validity and reliability regardless of the research being classed as qualitative or 
quantitative or mixed methods (Davis 1992). Validity (data-extrinsic) for qualitative 
approaches rests on explanatory coherence, rather than being measurable, and 
reliability (data-intrinsic) particularly through triangulation points to dependability.

Fig. 16.3  Changing allotment of ethnographer’s time in participation and observation

Fig. 16.4  Direction of investments from early to later stages in ethnography
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Certain collections of data have also been characterized as rich and “thick” 
(Geertz 1973), or rich and “fine” (Kuipers and McDermott Conklin 2007, re 
Conklin), the point being that extended qualitative inquiry will net more data than 
can be exhausted by analysis in any given period. All these perhaps esoteric consid-
erations aside, no one would argue with the assumption that the seasoned researcher 
will be the more competent in documentation of both qualitative and quantitative 
data. The seasoned researcher will also take more risks in apportioning of time and 
selection of activities.

�Estimation and Approximation

This discussion will not deal with ethnomathematical systems and their cognitive 
and/or linguistic correlates, discerned from ethnography (sensu two). About these, 
we can confidently expect continuing insights from ordinary ethnography and 
ethnology (cross-culture comparisons), and especially from the extraordinary 
cognitive and neurological sciences that now flourish with numerous new sensing 
aids such as MRIs and CT scans and with new ways to represent all data and their 
cumulations (Drucker 2014).

Rather I pick out two rudimentary arithmetical methods (at the level of techniques, 
not methodology), singled out in the above subtitle—estimation and approximation 
via ballparks and eyeballing—as these can contribute to ethnography (sensu one). 
Beyond this perhaps trivial detail, I assert that these techniques may be practiced for 
reasons more important than their coming up with tentative results … of the number 

Fig. 16.5  Trajectory of ethnographic competencies
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of people in a group or the size of a garden plot or the weight of a joint of meat. 
The ethnographer must remain alert even when nothing is demanding attention. 
That’s when jotting down some numbers can feel very rewarding; it may even be that 
some of these numbers, if properly grounded, will become meaningful down the line, 
in and of themselves or when associated with others.

This acknowledgment of the manifold value in making “educated” guesses 
encounters a complication from research suggesting that children’s ability to 
estimate may associate positively with performance on math achievement tests 
(Halberda et al. 2008; Halberda 2018; Gallistel and Gelman 2005), this concluding 
that individuals may be differentially endowed with an ingrained sense of number. 
This has been contested by cross-cultural research that found no evidence of differ-
ences in general arithmetic abilities (Reeve et al. 2018).

An ethnographer who regularly makes serial estimates of any countable environ-
mental variable, whether interesting in and of itself, will be convinced that accuracy 
(or relative congruence) accrues with experience (and patience).

�Estimation and Approximation via Ballparks and Eyeballing

Guessing ranks high in getting anyone through the day, and the ethnographer 
“counts on” guessing as well, and not just about counting, measuring, weighing, 
and the like. The guess may even be dressed up as “abduction,” freed of the 
constraints of the other modes of reasoning, induction (from specific to general) and 
deduction (from general to specific).

The ethnographer will never attain the routinized confidence of insiders in the 
studied population, but those insiders are handicapped in other ways. Insiders also 
guess, but without conscious labor, as they can move smoothly through the day 
relying on habit (West and Anderson 2016). Little may depend on each of the 
guesses made by either insider or ethnographer, and guesses are apt to be about 
different things as well. The ethnographer may be aware of being unaware about 
those routine habits, and even hesitate before activating any part of their body, 
especially the tongue. This early stage of inhibition should relax as the ethnographer 
becomes adept in focusing, simultaneously, on the figure as well as on the ground, 
becoming seasoned in their ethnographic setting.

Theoretically the ethnographer’s project will be shaped by theory, that theory 
coupling with a suitable methodology, in this case ethnography, to focus the data 
collection. But since context is always relevant, and since the outsider will be ten-
tative in identifying and attending to what is what and what relates to what (and 
how, not to mention why), the earliest data collected in a project will be somewhat 
spurious—some in irrelevant detail, some suffering from misplaced concreteness, 
and other data still obscured by higher order distractions. The visual metaphor of 
observation inadequately covers what the ethnographer deals with: sights and 
sounds and other senses in the moving scene, whether immediately interpretable or 
not, and their absences, their stillnesses, and their silences. All this will be “written 
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down” (and/or typed, recorded, photographed, filmed …), for compilation and 
analysis and eventual “writing up” as an ethnography.

Up to this point the ethnographer may consider it prudent to capture some numer-
ical data, such as how many persons are in the room/bus/farmyard, even though 
names may be unknown. This calls for head-counting. Along with any head-counting 
that is feasible, an estimate will be prudent, in fact, serial estimates, even though 
persons may not be coming and going. Eyeballing may not seem like a distinguished 
technique, but any researcher can become as skilled as the journalist, without 
instruction, particularly as occasionally there may be reassuring confirmations of 
estimates via actual counting. Often accuracy is not even important, but relative 
numbers may be at least interesting. Any collection of discrete and probably labeled 
objects, whether gathered or dispersed, may be so estimated.

The same exercises obtain with regard to “weights and measures,” these eventu-
ally to respect both the indigenous and the investigator’s units of analysis. Weights 
correspond to mass, while measures apply to lines, areas, and solid volumes.

Eyeballing is more apt to be applied to assemblies of discrete objects, than to 
three-dimensional objects to be weighed or (typically) two-dimensional expanses to 
be measured. Handheld objects lend themselves to direct approximation of relative 
weight, by hefting, and volumes may also be assessed as weighing more or less than 
an equivalent volume of water, the most familiar of substances. Measurements of 
modest areal size may submit to approximation by imagining, or deploying, a 
convenient known unit, perhaps a matchbox or sheet of A4 paper, or for volumes, a 
“breadbox”; for larger expanses, some Westerners use a “football field,” without 
saying whose “football.” Areas will be more confidently estimated in acres or hect-
ares than in thousands of square feet or square meters. In each case, the assumptions 
of the insiders, whether known or estimated, will also count as data.

In English, “estimation” suggests some inductive effort, while “approximation” 
suggests some deductive assumptions. One is more apt to be estimating digital 
units, and approximating more analogue aggregates, sizes, volumes, and weights. 
Reflecting on either category of informed guess, one gauges whether the result is “in 
the ballpark,” whether or not “eyeballing” was used in the assessment.

Time, though, even in the terms of the ethnographer’s units of analysis, presents 
itself as two separate systems, equally important to document, along with the units 
of the insiders (Lebebvre 2013). For the Western ethnographer, there will be the 
“objective” conventional calibrated time dictated by clocks, alongside a subjective 
experienced time or times, that challenge description, as all qualia do by definition.

�Teaching Ethnography: Why We Count, Measure, and Weigh

And why do we usually use another sequence: weigh, count, and measure, if 
there’s evidence for that? Western countries’ regulations seem to specify “weights 
and measures,” or “coinage, weights, and measures” (Linklater 2003, p. 103–142). 
Interesting in this regard is the proliferation of folk units especially when it comes 
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to often perishable odd-shaped or small-grained staples that figure in the commerce 
of daily life.

I for one question whether anything “interesting” can be ‘“taught.” That would 
include subjects like swimming, creative writing, biology, and anthropology, 
especially ethnography. When teaching such a course, I state in the syllabus and 
discuss in the first class period that, in fact, ethnography cannot be taught, per se, 
but yet we must at least pretend. Maybe this corresponds with another assertion 
posted on my office door: Nothing interesting can be defined; corollary, everything 
is interesting.

While humans without hesitation go about studying things larger and smaller 
than they are, when it comes to conspecifics (and allomammals in particular), 
humans studying humans involves nothing less than our languaging studying lan-
guaging, culture investigating culture, and cognition researching cognitions. It helps 
to be able to license the naive habits of the proto-ethnographer, inclusive of senses, 
perceptions, and lurking cognitive biases. Even unaltered, uncorrected, and unknown 
biases are worthy of documentation, since when it comes to qualitative research, 
“closure” may be a culture-bound illusion.

Alongside embracing effortless natural habits, albeit edited along the way, the 
proto-ethnographer should be willing to exercise even marginal skills in representa-
tion by drawing, and documenting through the tools and toys commercially available, 
but never should technological aids impinge on the “writing down” as mediated by 
cognition; this interpretation through writing is relatively robust, while sound 
recording and film documentation, however valuable for expert analysis, are absent 
in the knowledge of someone present in the context—even though that ethnographer 
will likely overlook, underinterpret, and overinterpret in the encounter with the 
living and moving subject matter.

Traditionally the student of ethnography is encouraged to read other ethnographies, 
but these can be more methodologically opaque than a syllabus on methodology 
containing instructions that sound like paint-by-number, in other words, that sound 
doable, and doable by anyone so trained. That sounds like a task without enough 
challenges to be worth doing!

�Asides from an Ethnographic Case History: Counting 
with Tensho-Kotai-Jingu-Kyo

As a mature but naïve student at the University of Hawaii, I opted to do an ethnography 
for a B.A. thesis in anthropology. The ethnography was carried out at meetings of a 
new war-time Japanese religious group in Honolulu, Tensho-Kotai-Jingu-Kyo, the 
movement arriving to Hawaii in 1952. Tensho is also called Odoru Shukyo, or Dancing 
Religion, as one of their prayer forms involves bodily movement. Like some other new 
religions, or sects, arising or being awakened during the hardships of World War II, this 
group’s charismatic founder was a woman.
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Known as the Dancing Goddess, Ogamisama’s philosophy evolved through the 
1940s, the period during which she was visited by various spirits, and the movement 
flourished sufficiently to send out missionaries after the war, hence the Honolulu 
congregation. In the middle of the 1967–1968 academic and ethnographic year, 
while preaching in Japan, Ogamisama died unexpectedly. This event turned out to 
be an interesting variable, while my original interest in health and healing in the sect 
gained no traction once I was familiar with their priorities (Anderson 1968).

I had permission to attend the usually evening meetings that sometimes were more 
frequent than weekly. Most meetings were 2-h indoor chanting-prayer gatherings, but 
on third Sundays there were gatherings in a park where they practiced their dance-
prayer, each individual wandering with eyes closed, chanting the same (Buddhistic) 
nam-myoho-renge-kyo. Members of this English-speaking congregation understood 
that I would be studying them, but no doubt hoped that I would also convert. I was 
encouraged to sit, that is, kneel, in the first row of meetings often held in a home. I 
realized that I would be a distraction in the front row, even if I reined in the “writing 
down.” Therefore, I consistently settled in the back row, in a room with up to several 
dozen other persons, eager to capture absolutely everything, especially if numerical.

I compulsively counted (nothing available to be measured or weighed) every 
variable imaginable (participants’ age, sex, ethnicity, occupation, history in sect 
…), and every inferred category of voluntary act or even word in speech acts [testi-
monies classed as confessions, recollections, exhortations; words such as 
Ogamisama, Wakagamisama (her son), Himegamisama (her granddaughter and 
successor Goddess), “god”], and not to overlook documenting presumably involun-
tary indications of possession by good or dangerous spirits.

This is not about guessing. As a former actuary and sometimes student of 
statistics I was after numbers, even if I could never squeeze any stats out of them. At 
the same time, I did not feel at liberty to keep a notepad out at all times, so I 
concentrated on memorizing everything I would have otherwise written down. But 
I couldn’t figure out how to remember all the numbers I was intent on gathering, 
unless I resorted to wearing a lightweight fly-fisherman’s vest.

There was no room in the thesis for all the data I collected, whether narrative or 
numerical, and not even place to detail how I used the vest. I cannot confidently recite 
at this time, 50 years later, exactly which object in which pocket would undergo 
manipulation or relocation to register what behavior by which class of person, as 
those records are not accessible. This slender description will convey the basics.

The “glass beads” in this “scientific” investigation were both natural seeds (often 
diverse dried legumes) and manufactured pastas (for example, long spaghetti or 
noodles that could be gently broken while remaining in the same pocket), to tally 
particular events or behaviors. The congregation broke down into male leaders, 
other males, and females. Each category was also represented by a distinctive bean, 
and each particular behavior would dictate the relocation (to pockets above or 
below, on the same or the other side of the vest). Because each category of partici-
pant (numbering, say, 1 to 30-plus) could chalk up dozens of acts in any category, it 
was important to have a good supply of each bean at the outset. At home after each 
2-h meeting, though exhausted, I had to carefully excavate each pocket to record all 

M. Anderson



299

the events captured by each category of congregants, and also others that were more 
general. But first I had to type up all the narrative notes I would ordinarily have 
written down, leaving space for expansions for future recall. Only then, the 
bean-counting is done, defending the calculations against resident cats.

I also kept track of the length of the verbal testimonials, and the incidence of 
some key terms, and these I would remember until it was easy to jot them down 
inconspicuously. Shorthand is a defense against roving eyes, besides being expedi-
ent. Each meeting room had a large round analogue clock on the wall; the leader 
of each prayer-chant—10 min at the inception and close of each 2-h meeting—
would be the only one looking at this clock. After 10 min, the leader would clap 
twice, the chanting would cease as the congregation clapped back, twice. If 
chanting continued, it could be that someone had been captured by an evil spirit, 
and the congregation returned to louder chanting to bring the afflicted person back 
to consciousness.

These data were natural to inspect for any change in behavior after the death of 
the Dancing Goddess. For instance, the average-per-meeting incidence of the 
utterance of “Ogamisama” after her death went up 125%; the increase for “god,” 
however, went up 557%. This would be more interesting, had I similar data from the 
Japanese-speaking congregation that I also only occasionally visited. Overall, these 
tabulations also confirmed any impression that the male leaders were manipulating 
their public (although supposedly everyone kept their eyes closed), and perhaps 
were deceiving themselves, too, by being possessed by only good spirits, and rather 
frequently!

In this ethnography, by a naïve and serious ethnographer, the collection of 
numerical data was an end in itself. Keeping indices of the data in movement inside 
or between pockets, and then holding both qualitative and other quantitative data in 
memory, the arduous process left no room for guessing, estimating, or approximating. 
The size of the group, though, being modest, allowed for the precision, however 
spurious these data may be. It’s more relaxing, perhaps, to undertake projects in a 
whole village, when eyeballing and ballparks can take up the slack of natural limits 
to ethnographic finesse.

�Coda

Leaving aside this introduction to the tender role of ethnographer as proto-mathematician, 
some social scientists and mathematicians have actually made a case for intuitive judg-
ments and quick approximations (Gigerenzer and Brighton 2009; Kahneman 2011; 
Nisbett and Ross 1980); sometimes these are inevitable and not just expedient. Unaided 
by ample samples for statistical penetration, however, humans are handicapped when it 
comes to discerning probabilities, “causation,” correlation, and more convoluted 
relationships (E.N. Anderson 1996, 2013; Kahneman et al. 1982; Piattelli-Palmarini 
1994). Humans get by in judgments of similarity and difference, including interpreting 
metaphor and simile, despite a tendency to under-predict the amount of variability 
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(Tversky 1977). Tversky also points out that humans can perceive things that do not 
appear in the data at all, for example clusters, patterns, and winning/losing streaks, as 
when gambling.

Being so undisciplined about their disciplines, it is not surprising that students 
and researchers can be so easily recruited to elevate the simpler quantitative at the 
expense of the ephemeral qualitative. In privileging the quantitative, many assume 
it to be the more “scientific” approach for inquiry (delivering data) and for convincing 
meaning-making (kneading those data statistically); they also assume the quantitative 
to be the more difficult, when in fact it’s quite the opposite. The quantitative 
researcher starts, and ends, outside of the subject/object of study; from that vantage 
point, a refined set of observations is selected to elucidate a finite number of 
questions, or even hypotheses (Anderson 2012, p. 299).
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my former student, Jamie Kruis.
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Chapter 17
“A Mathematician, a Physicist 
and an Engineer”: The Meaning of “M” 
in STEM

Dragana Martinovic

�Introduction

In the recent decades, the “STEM” acronym became a consistent part of different 
governments’ calls for revamping education, so that it equips workforce with skills 
appropriate for the new century. While the original intention was to increase enroll-
ment into the science, technology, engineering, and mathematics (STEM) fields of 
study, in time, it opened up discussions about the nature of STEM-related skills, and 
a possible creation of the unified field of study and its place in the school 
curriculum.

To this end, some recommended fully integrating “mathematical methods in sci-
ence and scientific methods into mathematics such that it becomes indistinguishable 
as to whether [the subject] is mathematics or science” (Berlin and White 1992, 
p. 78). Technology could support this integration, especially in cases when mathe-
matics and science concepts are misaligned in the curricula (e.g., students usually 
learn the physics of motion before they study differential calculus, but with graphics 
calculators and motion detectors they can conceptualize displacement, velocity, and 
acceleration without fully understanding the mathematics behind the formulas). 
Also, the project-based learning may be an appropriate pedagogy for integrating 
subjects, since:

projects, when they encourage thoughtful student exploration, neatly integrate mathematics 
and science. This is not too surprising, since many projects are based on interesting situa-
tions which require a quantitative understanding of cause and effect, that is, they require a 
mathematical treatment of science topics. (Tinker 1992, p. 51)
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The arguments against the integration of science with mathematics are provided 
by those who fear that “merging of the disciplines might cause people to lose impor-
tant philosophical, methodological, and historical differences between the two sub-
jects” (Berlin and White 1992, p. 78). As a mathematician and mathematics educator, 
I am particularly interested in the position of mathematics in the integrated STEM 
education—the meaning of “M” in STEM. In this chapter, I will explore a folk view 
of the STEM fields, such that emphasizes their differences, and compare it to the 
ideas of STEM as a unified field of study. By comparing the epistemological and 
educational perspectives, I hope to arrive at a more comprehensive understanding of 
what STEM really is and to provide some recommendations. As the resources for a 
folk view, I used a limited number of jokes posted on the Internet, and for the educa-
tion view the literature that deals with STEM education.

�Folk View of the STEM Fields: “A Mathematician, a Physicist, 
and an Engineer” Jokes

The Internet is full of jokes about mathematicians and other professions (e.g., scien-
tists, engineers, doctors, and accountants). Gilkey (1990, p. 215) calls them a “pro-
fessional slur,” as they represent professions in a stereotyped way, but mentions that 
the originators of these jokes believe that there is some truth in them. Kessel (2013, 
p. 15) is of the opinion that “this helps to orient mathematicians to features of their 
own discipline by contrasting them with aspects of other sciences.”

The jokes that I present in this chapter were probably written by mathematicians 
or some witty individuals who spent many hours sitting in the postsecondary math-
ematics classes. They are not always easy to understand by nonmathematicians, and 
as such demonstrate some pride in belonging to an elite group that speaks and thinks 
in its own way. For Renteln and Dundes (2005, p. 34), “the tension between the 
mathematical universe and the nonmathematical universe … is central to much of 
mathematical humor,” emphasizing that mathematicians live in their own world and 
think in a way different from other professions.

In the interest of space, I selected four jokes that are exemplary of aspects in 
which thinking of mathematicians differs from that of professionals in other STEM 
fields; I named these aspects: (a) points of view, (b) dealing with redundancies, (c) 
precision of language, and (d) proofs are mathematicians’ work.

�Joke 1: Points of View

An engineer, a physicist, and a mathematician are trying to set up a fenced-in area for some 
sheep, but they have a limited amount of building material. The engineer gets up first and 
makes a square fence with the material, reasoning that it’s a pretty good working solution. 
“No, no,” says the physicist, “there’s a better way.” He takes the fence and makes a circular 
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pen, showing how it encompasses the maximum possible space with the given material. 
Then the mathematician speaks up: “No, no, there’s an even better way.” To the others’ 
amusement he proceeds to construct a little tiny fence around himself, then declares: “I 
define myself to be on the outside.”

In this joke, a mathematician’s thinking is different from that of an engineer and 
a physicist—while his solution mathematically makes sense, it is completely 
detached from the reality. Also, while the engineer is led by practicality, the physi-
cist seeks the best solution under the circumstances (see Fig. 17.1).

Probably because building the largest enclosed area was not explicitly required, 
the engineer in this joke went for practicality, rather than for optimal use of the 
material. Building a squared fence is pretty straightforward—the fence material 
could be stacked into four equal piles, one for each side, and the right angles between 
the sides could be easily determined using different tools. The physicist was not 
satisfied with this solution. He knew that when a square and a circle have the same 
border length, the area of the circle is larger by approximately 27%. Knowing the 
length of the fence (i.e., a circumference of the future circular sheep-pen), it would 
be enough to divide it by 2π~44/7 to obtain the approximate value of the radius. 
After determining the center of the circle, the construction could proceed—all the 
fence material would be used to create the sheep-pen enclosing the maximum area. 
The mathematician worked conceptually. He modeled the situation, so that the 
Earth became a 3-D closed, connected, and triangulable surface (Zeeman 1966) and 
a sheep-pen, a closed curve on this surface. Since the closed fence would separate 
the surface of the Earth (i.e., “A curve is said to separate [the surface] M if cutting 
along the curve causes M to fall into two pieces,” p.  14), this would create two 
areas—one inside and another outside the fence. Then he chose to put the sheep in 
the larger area of the two.

The funny part of this joke is that for the mathematician, who obviously knows 
his discipline, only he and the sheep existed in this task, so as long as they were in 
the different regions, the task was completed. He did not take into account the pur-
pose of fencing—to protect sheep and to allow the farmer easy access to them. But 

Fig. 17.1  Solutions offered by an engineer, a physicist, and a mathematician
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those “details” are not of the concern for mathematicians—in an ideal world, their 
solutions work ideally! Also, he outsmarted the engineer and the physicist by saving 
on the fence material.

�Joke 2: Dealing with Redundancies

How does a mathematician or a physicist prepare tea? Both of them pour water into the pot, 
light the flame, boil the water, and infuse the leaves. What is the difference in the solution, 
if the pot is already filled with water? The physicist lights the flame, boils the water, and 
infuses the leaves. The mathematician pours the water out, thereby reducing the problem to 
the previous, already solved one.

This joke is very relevant to how mathematicians approach problems. They know 
that once a problem is solved, they can apply its result and/or method in solving 
another problem (Pólya 2004). This is an important heuristic used in problem-
solving which Pólya (2004, p. 110) mentions in “Here is a problem related to yours 
and solved before.” In this strategy, it is important to determine how the two prob-
lems are alike and how they are different, since “trying to link up the two prob-
lems…we introduce into the new problem elements corresponding to certain 
important elements of the old problem” (p.  111). Indeed, mathematicians avoid 
redundant actions; once they have an agreed-upon knowledge (e.g., axioms, and 
proved lemmas and theorems), they could use it in new situations, deeming it unnec-
essary to present how this knowledge was acquired in the first place. However, in 
this joke, the physicist’s approach is both rational and correct, while the mathemati-
cian’s approach is silly; (h)she is conducting a pointless as well as a wasteful action 
(i.e., first pouring the water out of the pot), while being guided by the principle of 
avoiding unnecessary effort (see Fig. 17.2).

This is not how mathematicians act. If one starts from the last step, which is to 
infuse tea leaves into hot water, the steps leading to it could be considered auxiliary 
elements in Polya’s heuristics for problem-solving. The mathematician can look 
into conditions leading to this step, one of which is “having the tea leaves,” and the 
other, “having the boiling water.” The mathematician would then conclude that (h)
she needs to boil the water, for which the flame is needed as well as the pot with 
water. In other words, the mathematician would not pour out the water, but recog-
nize that the problem (h)she has is subservient to the problem solved. Using a “uni-
lateral reduction” of the “more ambitious” (p. 56) solved problem, the mathematician 
would prepare the tea in the same way as the physicist in this joke.

�Joke 3: Precision of Language

An astronomer, a physicist and a mathematician (it is said) were holidaying in Scotland. 
Glancing from a train window, they observed a black sheep in the middle of a field. 
“How interesting,” observed the astronomer, “All Scottish sheep are black!” To which 
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the physicist responded, “No, no! Some Scottish sheep are black!” The mathematician 
gazed heavenward in supplication, and then intoned, “In Scotland there exists at least 
one field, containing at least one sheep, at least one side of which is black.” (Stewart 
1995, cited in Kessel 2013, p. 243, italics in original)

This popular joke can be found not only on different Internet websites but also in 
academic papers and books. It presents mathematicians as obsessed with linguistic 
precision and accuracy. In their reasoning, mathematicians are very careful to dis-
tinguish facts from assertions. Here, the astronomer overgeneralizes, and the physi-
cist makes a reasonable inference, while the mathematician’s conclusion sounds 
ridiculously formal. I believe that this aspect is what makes this joke funny—the 
mathematician is deliberately using the overly precise language in order to prevent 
it being “‘contaminated’ by real-world knowledge” (Schoenfeld 1992, p. 347), con-
firming that mathematicians live in their own world.

In everyday communication and especially in the context of “holidaying,” such 
language simply does not have place. Halmos (1970, p. 142) advises that “The sym-
bolism of formal logic is indispensable in the discussion of the logic of mathemat-
ics, but used as a means of transmitting ideas from one mortal to another it becomes 
a cumbersome code.” The same holds when using language of formal logic in infor-
mal speech. The mathematician is reasoning about a real-live situation in a way 
appropriate for reasoning about some mathematical structure. The distinction 
between the two is epistemologically what distinguishes science from mathematics. 

Fig. 17.2  The physicist’s and the mathematician’s approach when the pot is full
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In their development of ontology of mathematical objects, Font, Godino, and 
Gallardo (2013, p. 113–114) describe the difference between material and nonmate-
rial objects as follows:

Objects outside mathematics, such as oranges, trees, etc. are considered to be particular and 
to have a material existence [in time and space]. This type of existence means that they are 
ostensive in the sense that they can be shown directly to another person. … By contrast, this 
kind of existence is not attributed to non-ostensive objects, which are usually considered to 
have an ideal existence.

Language (oral, written, or gestural) allows us to describe, define, and represent 
constructs that exist in our minds; in that way, non-ostensive objects materialize and 
become sharable with others, workable, and explainable. Font et al. (2013, p. 101) 
assert that the language of mathematics leads to reification—treating ideas as real—
“the process by which we assume, or state linguistically, that there is an object with 
various properties or various representations.” It strikes me in this joke how the 
mathematician treats the sheep as a non-ostensive object; (h)she describes it stripped 
from any preconceived notion based on the lived or learned experience. The sheep 
has sides (and we do not know how many), one of which is black, but there is noth-
ing more to say about it.

Similar to Font et  al., Bertrand Russell (1938, Preface) distinguishes “actual” 
from “hypothetical” objects and writes how:

In pure mathematics, actual objects in the world of existence will never be in question, but 
only hypothetical objects having those general properties upon which depends whatever 
deduction is being considered; and these general properties will always be expressible in 
terms of the fundamental concepts which I have called logical constants. Thus when space 
or motion is spoken of in pure mathematics, it is not actual space or actual motion, as we 
know them in experience, that are spoken of, but any entity possessing those abstract gen-
eral properties of space or motion that are employed in the reasonings of geometry or 
dynamics.

For our understanding of epistemological differences between different fields 
and especially the specificities of mathematics, remembering Russell’s words is 
crucial.

�Joke 4: Proofs Are Mathematicians’ Work

A mathematician, a physicist and an engineer are given an identical problem: Prove that all 
odd numbers greater than 2 are prime numbers. They proceed:

Mathematician: 3 is a prime, 5 is a prime, 7 is a prime, 9 is not a prime —counterex-
ample—claim is false.

Physicist: 3 is a prime, 5 is a prime, 7 is a prime, 9 is an experimental error, 11 is a 
prime,…

Engineer: 3 is a prime, 5 is a prime, 7 is a prime, 9 is a prime, 11 is a prime,...

This joke is about how different professionals understand and conduct proofs. It 
presents the mathematician as both “precise and correct …, the physicist [as] 
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willing and eager to overlook error in the name of bigger truth [… and the] engineer 
[as] ignorant in mathematical matters” (Gilkey 1990, p. 216). Proofs, as Bakker and 
Hußmann (2017, p. 399) would say, reveal that “reason and inference are the bread 
and butter of mathematics.” Proofs and refutations go hand in hand, as they both 
contribute to mathematical knowledge. Mathematicians constantly invent and vali-
date statements; if they cannot prove that the statements are correct and consistent 
with the existing knowledge, then they try to understand in which way they are 
flawed. One way of doing so is to find a counterexample—an example for which the 
statement is not true. Stylianides and Al-Murani (2010, p. 21) explain that:

The process of validating assertions (and mathematical knowledge more broadly) often fol-
lows a ‘zig-zag’ path between attempts to generate proofs for the truth of the assertions and 
the discovery of counterexamples that refute the assertions and necessitate their refinement 
before they can be subjected to new proving attempts … A fundamental idea that underpins 
this validation process is that it is not possible to have a proof and a counterexample for the 
same assertion.

The funny part of this joke is that one does not have to be very skilled in mathe-
matics to understand that 9 is an odd number that is not prime (i.e., 9 = 3 times 3). 
This refutes the claim that “all odd numbers greater than 2 are prime.” However, 
neither the physicist nor the engineer refute this statement. How is that possible? 
Stylianides and Al-Murani found that even good undergraduate and high school 
students may have very limited understanding of proofs and that some may think 
that the same statement can simultaneously be true and have a counterexample. The 
difficulty here may be that, on one side, mathematicians argue that empirical argu-
ments do not constitute proofs because one cannot generalize something based on a 
proper subset of all possible cases (e.g., “all odd numbers are prime, because 3 and 
5 and 7 are such”). Yet, on the other side, the refutation of a statement by finding a 
counterexample is an accepted technique. For those not skilled enough in mathe-
matical reasoning, this may even appear as constituting a double standard, and con-
sequently can result in thinking that it is possible to have a proof and a counterexample 
for the same statement.

In this joke, the physicist is presented as a scientist who works with empirical 
data. Without finding more evidence that the claim is false, his/her first inclination 
is to suspect that the data were contaminated in some way. The engineer made an 
oversight, but who knows, errors do not always have big consequences.

�Summary

Except for jokes #1 and #4, #2–#3 do not appear to be connected to mathematics, 
and yet they provide some insight into how mathematicians think. They suggest 
that, even in casual conversations, mathematicians see “phenomena in mathematical 
terms” (Schoenfeld 1992, p. 341). Other jokes that Gilkey (1990, p. 219–220) refers 
to present engineers as “competent in action,” mathematicians as “[too precise] in 
theoretical matters” (p. 219), and physicists somewhere in between, “[unable to] be 
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pragmatic if theory dictates otherwise.” For Schoenfeld (1992), enculturation is an 
important aspect of becoming a professional. He writes that, “The case can be made 
that a fundamental component of thinking mathematically is having a mathematical 
point of view—seeing the world in ways like mathematicians do” (p. 340). Indeed, 
this can be said about other professions as well, providing the base for professional 
jokes to develop. According to Kessel (2013, p. 250):

Being “trained by the discipline” involves oral traditions, jokes, and experiences with math-
ematics. These experiences shape a mathematical perspective which includes views about 
shared characteristics of the natural sciences and scientific methods as well as distinctions 
among the sciences. It includes use of heuristics (e.g., reducing a problem to a previously 
solved problem), precision in use of terms, care with notation, and familiarity with structure-
preserving correspondences that coordinate concepts and representations…Precision in 
definitions helps to delineate the scope of a theory. Details matter, slight differences in 
wording matter, and assumptions matter.

Examples that we reconstructed in this section point to the specificity of mathe-
matical reasoning and, probably as well, that professionals from different disci-
plines take pride in their idiosyncratic traditions. So then, how would integrating the 
STEM fields look like? What would be the place of mathematics in STEM?

�Fitting “M” into STEM

The acronym “STEM education” has been in use for a couple of decades already, 
but its agreed-upon meaning is still lacking. While mathematics and science educa-
tion are well established in national curricula, the roles and contents of technology 
and engineering education are much less established. T(echnology) education may 
mean educational technology that is applicable across the subjects, or may mean 
computer science education. But then would not computer science be part of 
S(cience)? Also, some even define mathematics as S(cience), so why would these 
two be separated? The meaning of E(ngineering) in STEM is even less clear (Assefa 
and Rorissa 2013), especially in recent calls to start with STEM education as early 
as in kindergarten. Governments consistently use this acronym in their calls for 
providing students with the twenty-first-century skills, but many advise moving 
away from the acronyms (e.g., STEM, STEAM, …), as they are too limiting.

In these debates, the general public remains confused or oppositional. Keefe 
(2009) found that by STEM, her survey participants mostly understand stem cell 
research or plant stems. In a survey conducted by Breiner et al. (2012), out of 222 
faculty members at the University of Cincinnati, 25% did not know the meaning of 
the acronym, while about 10% thought that “M” may stand for medicine, mathemat-
ics, music, or even management. The researchers concluded that the survey results 
point to “a challenge in changing the paradigm from compartmentalizing academic 
disciplines to the integration of these disciplines as advocated by many through the 
STEM movement” (p. 9). Also, it seems that even the academics, who are probably 
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following media and government calls to enhance STEM-related skills, do not 
always clearly associate mathematics with other STEM fields.

Mathematicians, like members of other disciplines, have their own epistemologi-
cal views about the nature, limits, methods, and organization of knowledge. These 
views are used in judging knowledge of their own kind or that of other disciplines. 
Also, it is important to understand how to achieve disciplinary literacy as a way to 
read, write, speak, think, and investigate in the discipline. This prompted Spires 
et al. (2018, p. 1428) to ask, “If we do not expect students to become experts in each 
discipline, what should we expect of elementary students, middle grades students, 
and high school students?” Their study showed that science and mathematics under-
stand literacy differently. Mathematicians have to explain their reasoning using the 
dense and rigorous language of mathematics, to use models and different represen-
tations, and to avoid redundancy, while scientists make connections between data 
and conclusions within their own fields (e.g., physics, chemistry, biology). Both 
professions require analytical literacy.

In science as well as in mathematics, there is a distinction between theoretical 
and applied discipline, rarely mentioning that there may be an engineering part. 
Frezza et al. (2013) propose distinguishing the “science” of computer science from 
its “engineering” aspects. They argue that “science aims to explain [i.e., provide 
universal, reliable, comprehensive and sufficiently precise formulation of knowl-
edge] and technology/engineering aims to create artifices (complete them in a 
timely manner, with sufficient precision and comprehension]” (p.  1). Although 
Frezza et al. in many instances interchangeably use the terms “engineering” and 
“technology,” they highlight that the knowledge that engineers have is very specific; 
it is codified and catalogued in the form of reference books, which they use to solve 
very specific problems of practice. As Horgan (2013, para. 19) would say:

[Engineers] don’t seek ‘the truth,’ a unique and universal explanation of a phenomenon or 
solution to a problem … They seek merely answers to specific, localized, temporary prob-
lems, whether building a bridge with less steel or a more efficient solar panel or a smart-
phone with a bigger memory. Whatever works, works.

When teaching in an integrated STEM curriculum, mathematics may be per-
ceived as a tool for science, engineering, and technology—as a service discipline. 
Stephen Hawking (2005, p. xi–xii) reminds us that:

All through the ages, no intellectual endeavor has been more important to those studying 
physical science than has the field of mathematics. But mathematics is more than a tool and 
language for science. It is also an end in itself, and as such, it has, over the centuries, 
affected our worldview in its own right …. the brilliance of the Greeks [was] to recognize 
the importance of principle plura [fundamental principles] in mathematics, and that in its 
essence mathematics is a subject in which one begins with a set of concepts and rules and 
then rigorously works out their precise consequences.

To conclude, nowadays, instructors are challenged, not only when they are 
expected to integrate the STEM subjects, but also when they are faced with students 
who have increasingly gone through individualized curricula, which may contain a 
bare minimum of required courses in addition to a medley of “breadth” or filler 
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courses. Barnett (2003, p. 3) poses that in the era of uncertainty of what the future 
may bring, we are faced with multiple cognitive, epistemological, and ontological 
challenges so that:

[W]e can no longer be sure of our identity. In the contemporary world, what is a doctor? 
What is a professor? What, even, is a university? As knowing subjects, our hold on the 
world is loosened, if not broken apart all together.

According to Donald (2009, p. 48–49), “the disciplines tell us that we [as instruc-
tors] have to tread carefully,… although there are commonalities in the way we 
think, the philosophies under which the disciplines operate are distinct and require 
different navigation patterns.” She proposes that courses address aspects such as 
“what questions does the discipline ask and how are these questions related to those 
asked in other fields? How does the expert in the discipline function?” (p. 48). While 
looking within and across disciplinary boundaries would help students and instruc-
tors alike to freely explore the possibilities of acquiring knowledge, it is important 
not to lose sight of social and intellectual specificities of each discipline, as the jokes 
above clearly point out.
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Chapter 18
Why a Duck?: A Three-Part Essay 
on the Mathematics of Cognition

Yair Neuman

�Part 1

If one would like to sense the human mind in its full complexity, he should just reflect 
on the experience of watching one of the comedies produced by the Marx Brothers. 
Of a specific interest is Groucho Marx, the master of wit, whose signature walk is a 
“duck walk.” Why is it so funny to observe Groucho Marx walking like a duck?

When our mind is amused by Groucho’s duck walk, it is not because we believe 
that Groucho IS a duck but because he walks LIKE a duck despite the fact that he is 
a human being. This example illustrates the way in which the human mind in its 
different expressions, from poetry to religion and mathematics, muses with the 
spectrum ranging from identity to equivalence. When Groucho performs his duck 
walk our mind may imagine him as a member of the set DUCK. Indeed, the famous 
Duck Test suggests that if something looks like a duck, quacks like a duck, and 
swims like a duck, then it is probably a duck. In a limited sense, Groucho Marx 
looks like a duck when he performs his duck walk. However, he doesn’t quack or 
swim like a duck, and the reasonable conclusion is that he is not a duck, a trivial 
observation that doesn’t require any sophisticated form of abductive reasoning. 
However, from a set theoretic perspective, it is difficult to understand the humorous 
aspect of the duck walk and its deep cognitive meaning; Groucho is not a member 
of the DUCK set and there is nothing to laugh about.

Indeed, one of the most basic operations of the mind is working with sets or 
collections of distinct objects. In this context, it is not a surprise that in “Mathematics, 
form and function,” Saunders MacLane (1986/2012) saw the collection of objects as 
a basic human activity reflected in the formation of set theory in mathematics. The 
foundational status of set theory in mathematics can be explained from this 
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psychological perspective, and up to quite recently the foundational status of set 
theory held an almost sacred status in mathematics. The whole palace of mathematics 
is grounded in set theory. Can we imagine and model the mind as a set theoretic kind 
of a computational engine? Well, the mind clearly collects objects into sets; however 
the reduction of the mind to a set theoretic engine may miss something crucial. If this 
was the case then the mind would have been rigid and humor could not have any 
place in our life.

As explained by the mathematician Pierre Schapira (online): “A set A is a collec-
tion of elements a, b, c... with no relations between them, such as the points of a 
geometric space. One says that a belongs to A and writes a ∈ A. The only relations 
between a and b are the equality a = b or its negation a ≠ b.”

From a cognitive epistemological perspective, one may wonder how the unrelated 
elements of a given set have found their way into the same basket. The mind, 
whether the mind of a civilized human being or the mind of a less civilized hen, 
groups elements in a structural and value-laden way (Neuman 2017). In vivo, 
elements do not simply find their way into the same basket. Therefore, it seems that 
from a cognitive perspective, set theory cannot serve as a foundational stratum of 
the mind, the way it is usually conceived in mathematics.

The most basic justification for the above argument is that in the realm of set 
theory, membership and identity cannot be negotiated. Either Groucho Marx 
belongs to the set of ducks or not. If he is a duck then no surprise should be expected 
from observing his duck walk. How else can a duck walk? On the other hand, if Mr. 
Marx is not a duck, what is so funny in observing him walking in a low squatting 
position? The idea of the mind as grounded in the same logic as the one of set theory 
clearly misses the undenied flexibility evident in the mind’s different forms of 
behavior. One may argue that the mind’s violation of set theoretic foundations is a 
shortcoming of our rationality. However, the attempt to revolutionize the founda-
tions of mathematics in the Univalent Foundations Project at Princeton Institute for 
Advanced Studies suggests that instead of fitting our mind to the Bed of Procrustes 
formed by our limited and rigid formalizations, we may feel free to consider 
different foundations. From a cognitive perspective this new venture may not only 
better describe the mathematical realm but may even better fit the flexibility of our 
mind. In this context, we may use the Duck case as a point of departure for discussing 
the way we may better understand and model the human mind with clear implications 
for mathematical cognition, cognition of mathematics, and education of the mind 
through mathematics.

�Part 2

Let us continue our discussion by considering the possibility that our approach 
should be relation oriented rather than object oriented. The reason for this move is 
that if we would like to free our mind from the rigidity of identity then a possible 
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starting point is to imagine the mind as formed through relations rather than objects, 
whether abstract or concrete. Why should we be concerned by identity? The reason 
is that the logical notion of identity is that its binary form fixes our object in a rigid 
way. If Groucho Marx is either a duck or not, then he cannot be “like a” duck. The 
simple realm where a cigar is just a cigar cannot exist for the mind that continuously 
seeks the maximum freedom for musing with conceptual structures.

We can explain this idea by adopting the language of category theory (Lawvere 
and Schanuel 2000). A category may be imagined as a set of objects linked by 
arrows/morphisms. If we represent the idea of Groucho Marx walking like a duck, 
then we have two objects: Groucho Marx and Duck, linked by the relation/arrow 
“walks like a.” However, we may consider a category in more abstract terms where 
relations have precedence over objects, an idea discussed by Gregory Bateson many 
years ago albeit in a different context (Bateson and Bateson 1987).

An object-free definition of a category (Adámek, Herrlich, and Strecker, 1990) is 
as follows. An object-free category is a partial binary algebra C = (M, °), where the 
members of M are called morphisms and the sign ° stands for composition. This 
algebra satisfies the following conditions:

Matching condition: For morphisms f, g, and h, the following conditions are equivalent:
g ° f and h ° g are defined,
h ° (g ° f) is defined, and
(h ° g) ° f is defined.
Associativity condition: If morphisms f, g, and h satisfy the matching conditions, then 

h ° (g ° f) = (h ° g) ° f.
Unit existence condition: For every morphism f there exist units uC and uD of (M, °) such 

that uC ° f and f ° uD are defined.
Smallness condition: For any pair of units (u1, u2) of (M, °) the class hom(u1, u2) = {f ϵ 

M | f ° u1 and u2 ° f are defined} is a set.

In sum, this definition proposes that a category is basically a set of morphisms. 
We can go further by even denying the foundational notion of a set and substituting 
it with a “type” or a “space.” According to this perspective, the “object” “Groucho 
Marx” has no meaning outside the relations that weave it into to a wider context, 
such as the observation that he walks like a duck. In fact, this relational perspective 
isn’t new and one can find various expressions of it from the atomic relations 
proposed by C. S. Peirce to the linguistic theory of Lucien Tesnière (1959/2015).

Emphasizing the precedence of relations (i.e., morphisms) over objects is our 
first step. In this context, the axiom of identity “a = a” is interpreted as a morphism 
both originating and ending at a. From a more dynamic perspective, we may think 
about the identity morphism as a function changing nothing in the value of a as 
determined by his position as a point in a space formed by morphisms. This point 
has crucial consequences for the issue of personal identity as intensively discussed 
by philosophers, and by adopting it we may introduce a reasonable new understand-
ing of personal identity which is a middleway between hard-headed forms of 
essentialism or naïve realism and their zealous modern opponents from the 
postmodernist sect, denying any existence beyond the one gained through social 
constructions and narratives (Neuman 2019).
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Relations don’t exist only between objects but can exist between categories too. 
These morphisms titled “functors” can have relations between them in a way that 
establishes second-order relations. In other words, relations can exist as morphisms 
between morphisms or as second-order morphisms. Our mind cannot perform the 
quantum leap from identity to equivalence unless given the ladder of relations and 
relations between relations.

This is not a semantic issue per se. Drawing the metaphor with homotopy type 
theory, we may substitute the expression “a is an element of the set A” with “a is a 
point of the space A,” where the space A is defined in categorical terms of 
morphisms. According to this idea, instead of considering Groucho as a member of 
the set DUCK, we may consider him as a point of the space A, where the path/
arrow from point “Groucho Marx” to point “Duck” is titled “walks like a.” Here an 
interesting link is established between morphisms and information. The path from 
Groucho Marx to Duck is actually telling about Groucho Marx. Knowing that 
Groucho Marx walks like a duck portrays him in a way we haven’t considered 
before. While we usually consider information in Shannon’s terms of probability 
and surprise, here we may have a new sense of information, an idea worth ponder-
ing about. The idea is that information can be represented in terms of morphisms 
and morphisms of morphisms. In a certain sense, it reminds us of Deutsch and 
Marletto’s (2015) theory of information, where information is expressed in terms 
of transformations.

This shift in perspective has implications for the idea of identity. In homotopy 
type theory the logical notion of identity of two objects a = b of the same type is 
substituted by the notion of a path from a to b in the same space. As the objects 
themselves are categories, it may be better to think about their identity in terms 
of equivalence rather than in the rigid logical notion of identity. The amusement 
of observing Groucho’s duck walk may be therefore interpreted by understand-
ing that in a certain sense Groucho IS a duck because as a “point” in the “duck 
space” he walks in a squatting position characterizing ducks. The equivalence 
formed by our mind between the space of Duck and the space of Groucho is only 
a specific illustration of the fact that our mind is relational and works in a flexible 
way at different scales of abstraction. While there is a difference between 
Groucho and a Duck, as two elements of two different sets, and a similarity 
between Groucho and a Duck as categories, we may also identify similarity of 
differences and differences of similarities. In sum, considered as an object in a 
set, Groucho Marx cannot be clearly related to a duck as they are two elements 
belonging to two different sets. Their similarity can be established only when 
conceived as categories.

�Part 3: Equivalence and the Duck

Here is the point where we may dwell deeper into the notion of equivalence but with-
out messing with the demanding formalisms elsewhere explained (Neuman 2017). 
To explain the idea of equivalence, let’s recall Shakespeare’s Romeo and Juliet, and 
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the way Romeo describes Juliet by comparing her to the sun. A simple interpretation 
is that the same as the sun is rising in the east, Juliet is rising in front of his eyes. 
However, we should not forget that Romeo is deeply in love. In this context, another 
interpretation is that “Juliet is the sun” in another deep sense. The same as the sun 
warms the earth, Juliet warms her lover’s heart. Here the analogy, or metaphor, can 
be simply represented as follows (Fig. 18.1):

What we see is that the functor mapping the relation between the celestial bodies 
to the two human beings can flexibly move us from identity to similarity. While 
Romeo denounces that “Juliet is the sun,” it is clear that the “is” is not used to 
signify identity. Juliet is not the sun. However, when mapping the relation between 
sun and earth to the relation between the lover and his loved one, a metaphor is 
formed. It is a kind of a play where the mind says something like that. I know that 
the sun is the sun. I also know that the sun warms the earth in a physical sense. Now, 
I also know that Romeo feels warmth when he observes the approaching Juliet. 
Therefore, we may reason that Juliet is the sun. This metaphor is a-symmetric. We 
cannot trivially say that the sun is Juliet … However, our mind may consider the 
equivalence of the two above categories, as another step of its muse. If the two 
categories are equivalent then the two celestial bodies may be humanized as if they 
were the two heroes of the play. Indeed, when Romeo says: “Arise, fair sun, and kill 
the envious moon,” he poetically describes two celestial bodies, the sun and the 
moon, as two human beings having the feeling of jealousy and quarreling over a 
social status. Moving from objects to relations, from identity to equivalence and 
from a one-dimensional realm to a high-dimensional space of relations of relations, 
allows us to better understand the flexibility of our mind.

SUN

EARTH

JULIET

ROMEO

Fig. 18.1  Romeo and 
Juliet metaphor
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Chapter 19
On Mathematical Ways of Knowing: 
Musings of a Humanistic Mathematician

Gizem Karaali

Humanistic mathematics is a perspective on mathematics that emphasizes the ways 
our species creates, interacts with, and lives through it. I summarized this idea else-
where (see Karaali 2015) by asserting that mathematics is the way our species 
makes sense of this world and that it is inherent in our thinking machinery; our 
mathematics in turn is dependent on the way we view our universe and ourselves. 
Lakoff and Núñez (2000) argue carefully and eloquently for a mathematics inher-
ently based on human cognition.

Cognition is “the mental action or process of acquiring knowledge and under-
standing through thought, experience, and the senses” (Wikipedia). In this note I 
attempt to engage with the construct of mathematical cognition through the lens of 
humanistic mathematics.

�Three Questions

Cognition is essentially about mental processes involving knowledge, knowing, and 
understanding; mathematical cognition therefore raises questions about mathemati-
cal knowledge, knowing mathematics, and understanding mathematics. Thus, I first 
intend to explore broadly three related questions:

	1.	 What does it mean to know something mathematical?
	2.	 How do we come to know a mathematical truth?
	3.	 What does it mean to understand something in mathematics?
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In what follows, I will not pretend to offer a comprehensive treatment of any of 
these questions. But in the very least I intend to open up all three questions in 
productive ways, so that all readers intrigued by these questions will find in the 
following assertions worth agreeing with and arguing against.

�Question 1

The first question is a natural extension of traditional epistemological investigations 
into mathematics. Philosophers have tinkered with the knowledge question for cen-
turies, or rather, millennia, and mathematical knowledge has often been a part of the 
equation. Knowledge as justified true belief, a core tenet of epistemology since the 
Enlightenment, is where I want to start this note.1

If (mathematical) knowledge is justified true belief (in mathematical statements), 
we have multiple avenues to the first question. Or alternatively we have two related 
questions to attend to:

	1A.	 What does it mean that a mathematical statement is true?
	1B.	 What does it mean that a belief in a mathematical statement is justified?

1A is perhaps on the natural playground of mathematicians. Mathematicians 
seem to be concerned quite single-mindedly and profoundly in the truth of their 
assertions. One can even suggest that mathematics is nothing if not true. That is, 
doing math is making true mathematical assertions.2 In some sense, therefore, I 
think that the truth of a mathematical assertion means that it is a part of mathemat-
ics, this edifice we human mathematicians are building together. Philosophers have 
tried to clarify what mathematicians might mean when they say that a mathematical 
statement is true. Sitting between mathematics and philosophy, the logician Alfred 
Tarski (1933/1956) proposed a definition of just what truth might mean in “the 
deductive sciences,” which presumably include mathematics. Once again many 
have commented on Tarski’s definition of truth (see Tarski and Vaught (1956) for an 
extension and elaboration). I will not go into that here but there is indeed much more 
that can be said along these lines if one is concerned about question 1A.

1 At least since the 1960s with the publication of Edmund Gettier’s “Is Justified True Belief 
Knowledge?” (Gettier 1963), this conventional approach to knowledge has seen many rebuttals 
and rephrasals, but for this note I will mostly ignore this recent body of work. My interest is most 
in line with the idea of mathematical knowledge as being justified true belief.
2 Truth is surely not the only target of mathematicians. It is not even the driving force, according to 
William Byers, who writes: “Classifying ideas as true or false is just not the best way of thinking 
about them. Ideas may be fecund; they may be deep; they may be subtle; they may be trivial. These 
are the kinds of attributes we should ascribe to ideas” (Byers 2007). As a working mathematician, 
I agree with Byers, but this does not mean that I don’t also believe that truth is a prerequisite. Even 
when mathematicians work with tentative and even patently false assertions, they have a broader 
truth in mind, and are not done until eventually they can reach that truth.
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If we want to address question 1B about justification, we can, like some, invoke 
idealized conceptions of mathematical justification involving formal systems and 
proof theory.

But most mathematicians agree that belief in the truth of a mathematical state-
ment is justified once there is a proof of the statement that experts can agree upon. 
This is quite in tune with Reuben Hersh’s various definitions of a “proof” (Hersh 
2014), most notably “The ‘proof’ is a procedure, an argument, a series of claims, 
that every qualified expert understands and accepts.” Though some philosophers 
reading Hersh might disagree (see for instance Pollard 2014), it is indeed the case 
that when mathematicians claim that a statement is true, they mean that there is 
some consensus among the relevant experts that the statement is true. And an argu-
ment might have been a proof at a given time and place and afterwards, with con-
temporary expertise changing sides, it might become invalid. Similarly, proposed 
proofs do not become proofs until verified and validated by experts. Indeed, one 
might argue that “it is the provision of […] evidence, not the endorsement of experts, 
that makes [a display of symbols, words, diagrams and such] a proof” (Pollard 
2014). However, nothing needs to change in the display for an argument to remain 
an alleged proof until experts deem it is valid, and then and only then is the rest of 
the mathematical community comfortable in feeling justified to believe that the 
mathematical statement in consideration has finally been proved. What counts as 
persuasive evidence is almost always context dependent. In the case of law this is 
obvious; even Wikipedia knows that there are variations on what counts as proof, 
what counts as evidence.3 Why do we expect mathematics to be different?

If we see mathematics as something done by humans, the formalist, proof theory-
based understandings of proof and mathematics remain idealized approximations at 
best. It is the human (or sometimes, and begrudgingly, human-assisted) verification 
that mathematicians look for in a proof.4 And this is definitely context based, both 
in terms of space-time coordinates and cultural makeup of the audience. As Israel 
Kleiner (1991) quotes—G. F. Simmons wrote “Mathematical rigor is like clothing: 
in its style it ought to suit the occasion, and it diminishes comfort and restricts free-
dom of movement if it is either too loose or too tight.” This quote captures well how 
our understanding of just what should count as proof is dependent on the fashions 
of our times. This aligns with Harel’s perspective (Harel 2008): “Mathematics is a 
human endeavor, not a predetermined reality. As such, it is the community of the 
creators of mathematics who makes decisions about the inclusion of new discover-
ies in the existing edifice of mathematics.” Among the decisions left to the human 
creators of mathematics are the truth of a mathematical statement and the validity of 

its proof.

3 https://en.wikipedia.org/wiki/Burden_of_proof_(law)#Legal_standards_for_burden_of_proof 
lists a selection of legal standards of evidence and proof.
4 Do we know if the four-color theorem is true? Yes, we do. Or at least most mathematicians would 
concede that the human-assisted computer proof (or alternatively, the computer-assisted human 
proof) is enough for us to agree that it is true. There are still those who want more human proofs 
of the result, but the truth of the statement does not need further justification.

19  On Mathematical Ways of Knowing: Musings of a Humanistic Mathematician

https://en.wikipedia.org/wiki/Burden_of_proof_(law)%23Legal_standards_for_burden_of_proof


324

�Question 2

The standard modern answer to question 2 is “by a rigorous proof.” Let us leave aside 
the historicity and cultural dependency of this response now, and its vagueness (what 
is proof, what is rigor). I already wrote a bit about all that above. The reader who is not 
yet convinced may read (Kleiner 1991) for more on rigor and proof. But I want to 
emphasize here the possible distinction between the doer of the proof and the believer 
who believes with justification that the proof is valid and that the related statement is 
true. Does the believer need to understand the proof in order to know that the related 
statement is true? How similar and how different is this from the calculus student say-
ing that they learned calculus because they passed the final exam? Let us narrow 
things down a bit more. Should the successful calculus student be able to state the 
fundamental theorem of calculus? Should they be able to prove it? Should they be able 
to replicate the argument in their textbook or the one their instructor put on the board? 
Should they be able to provide a convincing argument for its truth? Alternatively, 
should they be able to use it in a problem that requires the result? When do we assume 
that a student has learned or knows the fundamental theorem of calculus?

Mathematics education researcher Guershon Harel thinks that these kinds of peda-
gogical questions are not independent from the philosopher’s concern about mathe-
matical knowledge. In particular he proposes a definition of mathematics which 
originates from his pedagogical research that might help us with our endeavor here:

Mathematics consists of two complementary subsets:

•	 The first subset is a collection, or structure, of structures consisting of particu-
lar axioms, definitions, theorems, proofs, problems, and solutions. This subset 
consists of all the institutionalized ways of understanding in mathematics 
throughout history. It is denoted by WoU.

•	 The second subset consists of all the ways of thinking, which are characteristics 
of the mental acts whose products comprise the first set. It is denoted by WoT 
(Harel 2008).

Here Harel uses “ways of understanding” and “ways of thinking” as technical 
terms. According to him “a way of understanding is a particular cognitive product 
of a mental act carried out by an individual,” while “a way of thinking, on the other 
hand, is a cognitive characteristic of a mental act.” Here is how he uses them in 
context:

Any statement a teacher (or a classmate) utters or puts on the board will be translated by 
each individual student into a way of understanding that depends on her or his experience 
and background … The range of ways of understanding a fraction makes the area of frac-
tions a powerful elementary mathematics topic—one that can offer young students a con-
crete context to construct desirable—indeed, crucial—ways of thinking, such as: 
mathematical concepts can be understood in different ways, mathematical concepts should 
be understood in different ways, and it is advantageous to change ways of understanding of 
a mathematical concept in the process of solving problems.

Consider the mathematician who reads the statement of the four-color theorem 
and discussions about its proof and as a result is convinced of the veracity of the 
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statement and the sufficiency of the proof. This mathematician, in my opinion, is not 
that different from the good student who learned of the fundamental theorem of 
calculus from their instructor, can use it in various scenarios, and can even perhaps 
outline a convincing argument about why it might be a reasonable thing to assume. 
In each case I’d say that the person knows the concept and construct in question. 
They believe the truth of a true statement and are justified in doing so. They put their 
trust in a relatively trustworthy source of expertise. But does the student really know 
(that is, understand) the fundamental theorem of calculus? Does the mathematician 
really know (that is, understand) the four-color theorem? This naturally brings us to 

question 3: What does it mean to understand something in mathematics?

�Question 3

Harel’s ways of thinking and ways of understanding are related quite visibly to 
question 3. For example, Harel offers a handful of ways of understanding the 
concept of fractions:

	(a)	 The part-whole interpretation: m / n (where m and n are positive integers) means 
“m out of n objects.”

	(b)	 m/n means “the sum 1/n+…+1/n, m times,”
	(c)	 “the quantity that results from m units being divided into n equal parts”
	(d)	 “the measure of a segment m inches long in terms of a ruler whose unit is n inches”
	(e)	 “the solution to the equation nx = m”
	(f)	 “the ratio m: n; namely, m objects for each n objects.”

Similarly, we can develop a list of ways of understanding for the derivative, in 
terms of the limit definition; in terms of slopes of tangent lines; in terms of linear 
approximations; and so on. And it seems reasonable to assume that when we say 
that a student understands fractions, we mean that they have mastered an indetermi-
nate (but definitely nonzero) number of ways of understanding the concept. The 
fluency with which they can move from one interpretation to the other can help us 
if we want to further qualify how much they understand.

Understanding seems to presuppose knowing but is there anything more to it? 
More specifically, understanding a piece of mathematics does presuppose knowing 
that piece of mathematics; what we want to know is if it involves anything more.

This is the perfect context for me to bring up my favorite quote from one of my 
mathematical heroes. John von Neumann was a polymath, a genius mathematician 
who was instrumental in the development of quantum mechanics, game theory, func-
tional analysis, operator algebras, and computer science, a great mathematical mind. 
This distinguished mathematician is known to have said to a young scholar asking 
for advice: “Young man, in mathematics you do not understand things. You just get 
used to them.”

I grant that this is a sharp quote. It hits you hard and shakes you up, especially if 
you have at least a passing knowledge of the extent of von Neumann’s own 
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mathematical contributions. But can you take it seriously? Can you get anything out 
of it in the context of mathematical knowledge and mathematical ways of knowing?

My personal take on this quote is twofold.
One is that of the optimistic student of mathematics. Even if I feel like I am not 

understanding something, there is some benefit to pushing forward, if only a bit 
more. Doubtless the great mathematician is right; sometimes you simply have to 
move on, after accepting the fact as a fact and see where it leads you. Stubborn 
patience. Dogged perseverance.

However perhaps von Neumann did not really mean to recommend moving 
forward without understanding. Perhaps he was saying something else, that what you 
call understanding is not something subtle or sublime. In fact, when we are learning 
a new concept, a new theory, don’t we start by making mental patterns, charting new 
pathways in our mind, formatting our minds so certain types of programs run well or 
smoothly enough? How is this different cognitively from getting used to brushing 
our teeth before going to bed, splashing our faces before leaving the bathroom, or 
eating with the fork in our right hand? Habit forming is done by doing something 
over and over again; aren’t mathematical ways of thinking and ways of understand-
ing reinforced by repeated practice as well? And is there a genuinely different, a 
genuinely distinct, sense of “understanding” that goes beyond “getting used to think-
ing of the concept in question in a particularly productive manner”?

Imagine a student who learns to think of a complex number first as an ordered 
pair, then as a point on the complex plane, and then as a linear transformation on the 
complex plane. When can we say that the student knows complex numbers? When 
do we say that the student understands them? I agree with Emily Grosholz who 
argues, using complex numbers as a concrete case study, that “the best way to teach 
students mathematics is through a repertoire of modes of representation, which is 
also the best way to make mathematical discoveries” (Grosholz 2013). But this also 
makes things a lot more complicated. If there are multiple ways of understanding, a 
la Harel, that need to go into understanding a construct, when do we really know the 
construct? When do we understand it?

Bloom’s taxonomy is just one of many ranking frameworks education research-
ers use to delineate cognitive tasks and their demands on a learner. In the original 
taxonomy of Bloom and colleagues, knowledge is the very lowest level of cogni-
tion needed and includes knowledge of specifics, terminology, specific facts, ways, 
and means of dealing with specifics, conventions, trends and sequences, classifica-
tions and categories, criteria, methodology, universals and abstractions in a field, 
principles and generalizations, theories, and structures (Bloom et  al. 1956). 
Understanding is related to the second level, comprehension. (In the revised ver-
sion (Anderson and Krathwohl 2001), to understand is once again the second level, 
and there are several other layers of cognition ranked higher.) Mathematics educa-
tion researchers prefer other frameworks to evaluate the cognitive demand of math-
ematical tasks; see Smith and Stein (1998) for a commonly used schema 
distinguishing between memorization, procedures without or with connections, 
and “doing mathematics.” It is quite interesting that learning mathematics involves 
doing mathematics as a subcategory!
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Putting taxonomies aside, knowing and understanding a concept might not be 
that different from one another after all. There seems to be a psychological differ-
ence for sure; understanding always occurs with knowing but sometimes we might 
feel we know something but do not “really understand.” But perhaps von Neumann 
was not just being cheeky. Perhaps there is really nothing more than getting used to 
knowing something. Perhaps all we need is a brain formatted in the right way to 
accept our knowledge as truth and naturally so.5�

�Mathematical Ways of Knowing

In the remainder of this chapter, I want to delineate a construct I will call “mathe-
matical ways of knowing.” This is in some sense related to what Harel calls “ways 
of thinking.” But I believe that it is not exactly the same.

I start with the axiomatic definition that mathematics is one of the main system-
atic bodies of knowledge that formulates and occasionally aims to address questions 
about human perception of the world and the human endeavors to understand it. 
The concepts and constructs of number, shape, form, time, change, and chance are 
fundamental to our understanding of our world as well as ourselves. These concepts 
and constructs are mathematical in nature, or at least they are naturally amenable to 
mathematical approaches.

Within this setting, I mean a mathematical way of knowing a way of formulating 
and addressing a question or a set of questions about our world and ourselves that 
allows for mathematical inquiry. It might be interesting to try and put these mathe-
matical ways of knowing in contrast to or in conversation with a handful of other 
ways of knowing: scientific/empirical, faith based, and philosophical. I do no such 
thing in this note however. Here I merely put down some ideas as placeholders, as 
tentative yet suggestive notes to a self that might or might not be able to come back 
to revisit them in a possible future.

�Mathematical Ways of Knowing: Rationalism 
and Imagination

The first two mathematical ways of knowing I would like to consider are rationalism 
and imagination.

Rationalism in mathematics is the fundamental assumption that we ought to 
reach our mathematical truths through reason. Experiment and experience might 

5 The formatting of the brain might sound strange but is not that far from the point of education. 
The point of education is to shape students’ minds. What is that if not brain formatting? Indoctrination 
might also fit in this view. Some might take this to discussions of how mathematics education 
promotes dogmatic beliefs. Though I am interested in such inquiry, I will not pursue it here.
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provide hints towards a truth, but they are never enough to convince us in the final 
count. Even if we “know something in our guts,” we are not convinced that we have 
mathematical certainty until we can reason our way to that something. And reason 
and rational thinking are captured effectively in axiomatic thinking. The central 
tenets of axiomatic thinking are captured by Tarski in the following:

When we set out to construct a given discipline, we distinguish, first of all, a certain small 
group of expressions of this discipline that seem to us to be immediately understandable; 
the expressions in this group we call PRIMITIVE TERMS or UNDEFINED TERMS, and 
we employ them without explaining their meanings. At the same time we adopt the princi-
ple: not to employ any of the other expressions of the discipline under consideration, unless 
its meaning has first been determined with the help of primitive terms and of such expres-
sions of the discipline whose meanings have been explained previously (Tarski 1946).

Thus, we begin with some initial assumptions, ideas, fundamental beliefs, core 
values, and axioms. We take certain things for granted. We try to make these as self-
evident as possible.6 And from there we build our argument step by step, using logic 
as our guide. We define new constructs in terms of older, already accepted ones, and 
thus attempt to build a new world which has a solid foundation.

Mathematical rationality can be found in the various versions of the ontologi-
cal argument for the existence of God, as well as in the Declaration of 
Independence of the United States (see Grabiner 1988 for a convincing argument 
about how mathematical rationality is built into the Declaration as well as many 
other illustrative examples of the impact of mathematical ways of knowing on 
Western thought).

In the history of intellectual thought Rationalism of the European Enlightenment 
was met with a backlash movement, Romanticism. Today we can but do not have to 
see these two as directly opposing and mutually exclusive methodologies, each 
rejecting and invalidating the other. Alternatively, and I believe more productively, 
we might choose to accept that they point to two distinct ways of knowing, and 
occasionally certain truths will be more accessible via one way than another.

Mathematical rationalism also has a similar complement, in what I will call 
mathematical imagination, or mathematical romanticism, if you will. Mathematical 
imagination is the way we select our axioms, the way we fix our principles. 
Mathematical imagination is how we determine our target truths. Human mathema-
ticians do not start with a random formal axiomatic system and automatically go 
through all possible provable truths of the theory determined by it. Instead they 
engage with the worlds around them, both real and imaginary, and detect what is 
interesting, conjecture what might be productive to pursue, and then set out. Our 
human mathematics has a freedom to it and mathematical imagination captures this 
freedom.

And freedom, broadly construed, may be viewed in these terms as well. Sándor 
Szathmári’s utopian, satiric novel, The Voyage to Kazohinia, might just be the best 
(fictional) guide to how mathematics is fundamental to a human society. Susan 
Siggelakis (2019) describes how the protagonist of the novel learns that in a society 

6 But of course, self-evidence, just like beauty, is in the eye of the beholder. There is more that can 
be said here.
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without mathematics, “nothing stable exists with which a human can connect and 
find meaning in his/her life.” There is only chaos and violence. As Edward Frenkel 
(2013) declares, “where there is no mathematics, there is no freedom.”

�Mathematical Ways of Knowing: Universals and Eclecticisms

Two other mathematical ways of knowing beckon us here: universals and eclecticisms. 
The tendency of the mathematician to generalize is well known. “Mathematics com-
pares the most diverse phenomena and discovers the secret analogies that unite them,” 
wrote Jean Baptiste Joseph Fourier. “The art of doing mathematics is forgetting about 
the superfluous information,” says Hendrik Lenstra. Thus the human mathematician 
tries to generalize, to abstract from specific examples, and to reach universal statements 
with “any” and “all” that capture the essence of what is true about a whole slew of 
eclectic examples. The human desire to “see the big picture,” the human tendency to 
“find patterns,” is precisely what I mean by mathematical universalism.

Accompanying and complementing (again productively) this tendency is the 
alternative, what I will call mathematical eclecticism. David Hilbert describes the 
complementarity of these two tendencies as follows:

In mathematics, as in any scientific research, we find two tendencies present. On the one 
hand, the tendency toward abstraction seeks to crystallize the logical relations inherent in 
the maze of material that is being studied, and to correlate the material in a systematic and 
orderly manner. On the other hand, the tendency toward intuitive understanding fosters a 
more immediate grasp of the objects one studies, a live rapport with them, so to speak, 
which stresses the concrete meaning of their relations.

Thus, by mathematical eclecticism I mean the search for that one representative 
example on the one hand (“the art of doing mathematics consists in finding that spe-
cial case which contains all the germs of generality,” wrote Hilbert), and the excite-
ment of the weirdness of eclectic cases on the other. In fact a lot of mathematics 
concerns itself with concrete examples. Paul Halmos wrote: “the heart of mathemat-
ics consists of concrete examples and concrete problems.” John B. Conway wrote, 
“mathematics is a collection of examples; a theorem is a statement about a collection 
of examples and the purpose of proving theorems is to classify and explain the exam-
ples.” Also, “We think in generalities, but we live in details,” wrote Alfred North 
Whitehead. In fact, I believe we think in both and we live in both. Once again, these 
two mathematical ways of knowing complement one another and help us live our 
human lives.

�Mathematical Ways of Knowing: Certainty and Ambiguity

Alan Lightman says it best (Lightman 2018): “We are idealists and we are realists. 
We are dreamers and we are builders. We are experiencers and we are experiment-
ers. We long for certainties, yet we ourselves are full of the ambiguities of the Mona 
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Lisa and the I Ching. We ourselves are a part of the yin-yang of the world.” Certainty 
and ambiguity find their way into mathematics and mathematical ways of knowing 
in a similarly complementary fashion.

Certainty is a part of most people’s perception of mathematics. Mathematics, for 
those people, is made up of questions and answers. Answers are certain once we 
know them. Indeed mathematics is perhaps the only certain knowledge we will ever 
have. I do not wish to minimize this perspective. I admit that I too have a romantic 
attachment to the idea that mathematical knowledge has a quality of certainty that 
goes farther than any other type of knowledge. And it took us a long time to get over 
this perspective as the unique way to conceive of mathematical truths and mathe-
matical knowledge.

The loss of certainty in mathematics began more than a century ago (Kline 1980). 
Lakatos (1976) was also influential in convincing many who cared to listen of the 
fallibility of mathematics. And Byers (2007) is perhaps the most detailed expositor 
of the role of ambiguity in the work of mathematics today. The complementarity of 
these two ways of knowing is rich and, at least to me, inspiring.

�Applications of Mathematical Ways of Knowing: Identity 
and Self-Knowledge

Doing math at school or anywhere else is tied deeply with our views of ourselves. 
This has good and bad aspects of course. We can relate our mathematical experi-
ences to confidence, resilience, and determination as well as feelings of inadequacy, 
resistance, and rebelliousness; and as many can personally attest, any combination 
of the six can occur together. There is much emotion in mathematical engagement: 
hatred, love, anger, fear, anxiety, surprise, frustration, and anticipation. How we 
handle mathematical challenges (suffering alone, valiantly standing defeated or 
undefeated, finding commiserators and conspirators) tells us about ourselves. Many 
of those who continue to do math after school connect with it at an emotional and 
personal level. We find aesthetic stimulation and creative joy in mathematical activ-
ity, as well as terrible frustration and occasional bouts of tedium.

But can mathematical ways of knowing allow us to reach self-knowledge and a 
sense of identity mathematically? Andres Sanchez recounts how through an inten-
tional application of set theory to his own personal life he was able to discover his 
true identity and sexuality (Sanchez 2018). Set theory, more generally, offers us 
pathways of thinking about belonging and not belonging. A clever student of mine, 
when asked to form study groups, chose to name his team “the identity element” as 
he wanted to work alone for the project in question. Mathematical ways of knowing 
may come in handy when thinking in terms of borders and boundaries of nations, 
communities, and cultural groups. Mathematical ways of thinking and knowing can 
indeed allow us to view and understand ourselves in new and insightful ways.7

7 And in turn other ways of knowing can help us understand our mathematics better (Gutiérrez 2012).
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�Parting Words: Till Next Time

We have come a long way since Ptolemy argued that “mathematics alone yields 
knowledge and that, furthermore, it is the only path to the good life” (Feke 2018). 
Mathematical knowledge has lost its certainty somewhere along the way, and primal-
ity in the eye of the public a long time ago. Mathematicians eventually learned to be 
humbler about the reaches of mathematical ways of knowing. But mathematics can 
still yield powerful knowledge, and not just the kind that can blow up cities and opti-
mize factory production. I urge us to try and open up to the world once again. If we 
dig deeper into mathematical ways of knowing and the contexts where they might 
apply, mathematics may yet surprise us.
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Chapter 20
Epilogue: So, What Is Math Cognition?

Marcel Danesi

�Introduction

A key 2005 collection of papers (Royer 2008) showed how complex the study of 
mathematical cognition (MC) had become already in the early 2000s, incorporating 
a broad range of scientific, educational, and humanistic perspectives into its modus 
operandi. Studies published in the journal Mathematical Cognition have also 
revealed how truly expansive the field is, bringing together researchers and scholars 
from diverse disciplines, from neuroscience to semiotics. This volume has aimed to 
provide a contemporary snapshot of how the study of MC is developing. In this final 
chapter, the objective is to provide a selective overview of different approaches from 
the past as a concluding historical assessment.

The interdisciplinary study of MC became a concrete plan of action after the 
publication of Lakoff and Núñez’s 2000 book, Where Mathematics Comes from, 
following on the coattails of intriguing works by Dehaene (1997) and Butterworth 
(1999). Lakoff and Núñez argued that MC is no different neurologically from lin-
guistic cognition, since both involve blending information from different parts of 
the brain to produce concepts. This is why we use language to learn math. The most 
salient manifestation of blending in both linguistic and mathematical cognition can 
be seen in metaphor (as studies in this volume have saliently shown). If metaphor is 
indeed at the core of MC then it brings mathematics directly into the sphere of lan-
guage and culture where it is shaped symbolically and textually. This was the con-
clusion deduced as well by American philosopher Max Black in his groundbreaking 
1962 book, Models and Metaphors, in which Black argued that the cognitive source 

M. Danesi (*) 
University of Toronto, Toronto, ON, Canada 

Cognitive Science Network, Fields Institute for Research in Mathematical Sciences,  
Toronto, ON, Canada
e-mail: marcel.danesi@utoronto.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22537-7_20&domain=pdf
mailto:marcel.danesi@utoronto.ca


334

of science and mathematics was the same one that involved the same kind of meta-
phorical thinking that characterizes discourse. Indirectly, Black laid the foundations 
for a humanistic-linguistic study of MC with his radical idea for the era in which it 
was written.

The interdisciplinary study of MC has produced a huge database of findings, 
theories, and insights into how mathematics intersects with other neural faculties 
such as language and drawing. The field has not just produced significant findings 
about how math is processed in the brain, but also reopened long-standing philo-
sophical debates about the nature of mathematics. In this chapter a general charac-
terization of MC that extends the classic views will be discussed at first. Then, it will 
selectively discuss various works and findings that can be used to determine whether 
math is separate or not from language, neurologically and cognitively. Finally, it 
will revisit the Platonist-versus-constructivist debate on the basis of these patterns, 
which is intrinsically a cognitive debate.

�Mathematical Cognition: A Selective Historical Survey

Mathematical cognition is defined in two main ways—first, it is defined as the 
awareness of structural patterns among quantitative and spatial concepts; second, it 
is defined as the awareness of how symbols stand for these concepts and how they 
encode them (for example, Radford 2010).

A historical point of departure for investigating MC is Immanuel Kant’s (1790: 
278) assertion that thinking mathematically involves “combining and comparing 
given concepts of magnitudes, which are clear and certain, with a view to establish-
ing what can be inferred from them.” He argued further that the combination and 
comparison become explicit through the “visible signs” that we use to represent 
them—thus integrating the two definitions above predictively. So, a diagram of a 
triangle (a visible sign) compared to that of a square (another visible sign) will show 
the differentiation between the two concretely. As trivial as Kant’s definition might 
seem, upon further consideration it is obvious that the kind of visualization that he 
describes now falls under the rubric of spatial cognition, and the claim that visible 
signs guide it is consistent with various psychological and semiotic theories of MC 
(see, for example, Stjernfelt 2007, Danesi 2013). As we know today, mental visual-
ization stems from the brain’s ability to synthesize scattered bits of information into 
holistic entities that can be understood consciously through representations such as 
diagrams.

Kant’s main idea that diagrams reveal thought patterns was given a semiotic-
theoretical formulation by Charles Peirce’s existential graph theory (Peirce 1931–
1958, vol. 2: 398–433, vol. 4: 347–584). An existential graph is a diagram that 
displays how the parts of some concept are visualized as related to each other. For 
example, a Venn diagram can be used to show how sets are related to each other in 
a holistic visual way. These do not portray information directly, but the process of 
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thinking about it (Peirce, vol. 4: 6). Peirce called his existential graphs “moving 
pictures of thought” (Peirce, vol. 4: 8–11). As Kiryuschenko (2012: 122) has aptly 
observed, for Peirce “graphic language allows us to experience a meaning visually 
as a set of transitional states, where the meaning is accessible in its entirety at any 
given ‘here and now’ during its transformation.”

The gist of the foregoing discussion is that diagrams and visual signs might mir-
ror the nature of MC itself—an idea that has been examined empirically in abun-
dance (Shin 1994; Chandrasekaran et al. 1995; Hammer 1995; Hammer and Shin 
1996, 1998; Allwein and Barwise 1996; Barker-Plummer and Bailin 1997, 2001; 
Kulpa 2004; Stjernfelt 2007; Roberts 2009). The main implication is that the study 
of MC must take semiotic notions, such as those by Peirce, into account in order to 
better explain the findings of neuroscientists in this domain. In effect, diagrams 
represent our intuitions about quantity, space, and relations in a visually expressive 
way that appears to mirror the actual imagery in the brain, or more specifically what 
Lakoff and Johnson (1980) call image schemata—mental outlines of abstractions. 
The intuitions are probably universal (first type of definition); the visual representa-
tions, which include numerals, are products of historical processes (second type of 
definition).

Algebraic notation, too, is a diagrammatic strategy for compressing information, 
much like pictography does in reproducing referents in compressed semiotic forms 
(Danesi and Bockarova 2013). An equation is an existential graph consisting of 
signs (letters, numbers, symbols) organized in such a way as to reflect the structure 
of events that it aims to represent. It may show that some parts are tied to a strict 
order, whereas others may be unconstrained as to sequential structure. As Kauffman 
(2001: 80) observes, Peirce’s existential graphs contain arithmetical information in 
an economical form:

Peirce’s Existential Graphs are an economical way to write first order logic in diagrams on 
a plane, by using a combination of alphabetical symbols and circles and ovals. Existential 
graphs grow from these beginnings and become a well-formed two dimensional algebra. It 
is a calculus about the properties of the distinction made by any circle or oval in the plane, 
and by abduction it is about the properties of any distinction.

An equation such as the Pythagorean one (c2 = a2 + b2) is an existential graph, 
since it is a visual representation of the relations among the variables (originally 
standing for the sides of the triangle). But, being a graph, it also tells us that the parts 
relate to each other in many ways other than in terms of the initial triangle referent. 
It reveals hidden structure, such as the fact that there are infinitely many Pythagorean 
triples, or sets of three  integers that satisfy the equation. Expressed in language 
(“the square on the hypotenuse is equal to the sum of the squares on the other two 
sides”), we would literally not be able to see this hidden implication. Once the equa-
tion exists as a graph, it becomes the source for further inferences and insights, 
which (as is well known) gave rise to a hypothesis, namely Fermat’s Last Theorem, 
whereby only when n = 2 does the general formula hold (cn = an + bn) (Taylor and 
Wiles 1995). This, in turn, has led to many other discoveries (Danesi 2013). To use 
Susan Langer’s (1948) distinction between discursive and presentational cognition, 
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the equation tells us much more than the statement (a discursive act) because it 
“presents” inherent structure holistically, as an abstract form. We do not read a dia-
gram, a melody, or an equation as individual bits and pieces (notes, shapes, sym-
bols), but presentationally, as a totality which encloses and reveals much more 
meaning. Mathematical notation is visually presentational, which as research has 
shown, may be the source for how abstract ideas emerge (Barwise and Etchemendy 
1994; Allwein and Barwise 1996; Cummins 1996; Chandrasekaran et al. 1995).

Needless to say, mathematicians have always used diagrams to carry out their 
craft. Some diagrammatic practices, such as Cartesian geometry, become actual 
fields of mathematics in themselves; set theory, for example, is an ipso facto theory 
of mathematics, based on Venn diagrams (1880, 1881) which were introduced so 
that mathematicians could literally see the logical implications of mathematical pat-
terns and laws. These are, as mentioned, externalized image schemata (Lakoff and 
Johnson 1980, 1999; Lakoff 1987; Johnson 1987; Lakoff and Núñez 2000) which 
allow us to gain direct cognitive access to hidden structure in mathematical phe-
nomena. Actually, the shift from sentential logic to diagram logic started with Euler, 
who was the first to represent categorical sentences as intersecting circles, embed-
ded circles, and so on (Hammer and Shin 1996, 1998). It actually does not matter 
whether the schema is a circle, a square, a rectangle, or a freely drawn form; it is the 
way it portrays pattern that cuts across language (and languages) and allows us to 
envision a relation or concept in outline form. The power of the diagrams over sen-
tences lies in the fact that no additional conventions, paraphrases, or elaborations 
are needed—the relationships holding among sets are shown by means of the same 
relationships holding among the schemata  representing them. Euler was aware, 
however, of both the strengths and weaknesses of visual representation. For instance, 
in the statement “No A is B. Some C is A. Therefore, Some C is not B,” no single 
diagram can be envisioned to represent the two premises, because the relationship 
between sets B and C cannot be fully specified in one single diagram. Venn (1881: 
510) tackled Euler’s dilemma by showing how partial information can be visualized 
(such as overlaps or intersections among circles). But Peirce pointed out that Venn’s 
system had no way of representing existential statements, disjunctive information, 
probabilities, and some specific kinds of logical relations. He argued that “All A are 
B or some A is B” cannot be represented by neither the Euler nor the Venn systems 
in a single diagram. 

Among the first to investigate the relation between imagery and mathematical 
reasoning was Jean Piaget, who sought to understand the development of number 
sense in relation to symbolism (summarized in Piaget 1952). In one experiment, he 
showed a 5-year-old child two matching sets of six eggs placed in six separate egg 
cups. He then asked the child whether there were as many eggs as egg cups (or 
not)—the child usually replied in the affirmative. Piaget then took the eggs out of 
the cups, bunching them together, leaving the egg cups in place. He then asked the 
child whether or not all the eggs could be put into the cups, one in each cup and none 
left over. The child answered negatively. Asked to count both eggs and cups, the 
child would correctly say that there was the same amount. But when asked if there 
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were as many eggs as cups, the child would again answer “no.” Piaget concluded 
that the child had not grasped the relational properties of numeration, which are not 
affected by changes in the positions of objects. Piaget showed, in effect, that 5-year-
old children have not yet established in their minds the symbolic connection between 
numerals and number sense (Skemp 1971: 154).

A key study by Yancey et al. (1989) has shown that training students how to use 
visualization (diagrams, charts, etc.) to solve problems results in improved perfor-
mance. As Musser, Burger, and Peterson (2006: 20) have aptly put it: “All students 
should represent, analyze, and generalize a variety of patterns with tables, graphs, 
words, and, when possible, symbolic rules.” Another study by Ambrose (2002) sug-
gests, moreover, that students who are taught appropriately with concrete strategies, 
but not allowed to develop their own abstract representational grasp of arithmetic, 
are less likely to develop arithmetical fluency.

�Is Math Cognition Species Specific?

The study of MC has led to a whole series of existential-philosophical questions. 
For example: Intuitive number sense may be a cross-species faculty, but the use of 
symbols to represent numbers is specific human trait. As the philosopher Ernst 
Cassirer (1944) once put it, we are “a symbolic species,” incapable of establishing 
knowledge without symbols. So is math cognition specific to the human species?

Neuroscientist Brian Butterworth (1999) is well known for his investigation of 
this question. He starts with the premise that we all possess a fundamental number 
sense, which he calls “numerosity.” Numbers do not exist in the brain in the same 
way verbal signs such as words do; they constitute a separate kind of intelligence 
with its own brain module, located in the left parietal lobe. But this does not guar-
antee that mathematical competence will emerge homogeneously in all individuals. 
It is a phylogenetic trait that varies ontogenetically. Rather, the reason a person fal-
ters at math is not because of a “wrong gene” or “engine part” in the brain, but 
because the individual has not fully developed numerosity, and the reason is due to 
environmental and personal psychological factors.

Finding hard evidence to explain why numerosity emerged from the course of 
human evolution is a difficult venture. Nevertheless, there is a growing body of 
research that is supportive of Butterworth’s basic thesis—that number sense is 
instinctual and that it may be separate from language. In one study, Izard et  al. 
(2011) looked at Euclidean concepts in an indigenous Amazonian society, called the 
Mundurucu. The team tested the hypothesis that certain aspects of non-perceptible 
Euclidean geometry map onto intuitions of space that are present in all humans 
(such as intuitions of points, lines, and surfaces), even in the absence of formal 
mathematical training. The subjects included adults and age-matched children con-
trols from the United States and France as well as younger American children with-
out training in geometry. The responses of Mundurucu adults and children converged 
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with that of mathematically educated adults and children and revealed an intuitive 
understanding of essential properties of Euclidean geometry. For instance, on a sur-
face described to them as perfectly planar, the Mundurucu’s estimations of the 
internal angles of triangles added up to ∼180 degrees, and when asked explicitly 
they stated that there exists one single parallel line to any given line through a given 
point. These intuitions were also present in the group of younger American partici-
pants. The researchers concluded that, during childhood, humans develop geometri-
cal intuitions that spontaneously accord with the principles of Euclidean geometry, 
even in the absence of training in such geometry. There is however contradictory 
evidence that geometric notions are not innate, but subject to cultural influences 
(Núñez et al. 1999). In one study, Lesh and Harel (2003) got students to develop 
their own models of a problem space, guided by prompts. Without the latter, they 
were incapable of coming up with them. It might be that Euclidean notions may be 
universal and that these are concretized in specific cultural ways. For now, there is 
no definitive answer to the issue one way or the other.

The emergence of abilities such as speaking and counting are a consequence of 
four critical evolutionary events—bipedalism, a brain enlargement unparalleled 
among species, an extraordinary capacity for toolmaking, and the advent of the tribe 
as a basic form of human collective life (Cartmill et al. 1986). Bipedalism liber-
ated the fingers to count and gesture. Although other species, including some non-
primate ones, are capable of tool use, only in the human species did complete 
bipedalism free the hand sufficiently to allow it to become a supremely sensitive and 
precise manipulator and grasper, thus permitting proficient toolmaking and tool use 
in the species. Shortly after becoming bipedal, the neuro-paleontological evidence 
suggests that the human species underwent rapid brain expansion. The large brain 
of modern-day Homo is more than double that of early toolmakers. This increase 
was achieved by the process of neoteny, that is, by the prolongation of the juvenile 
stage of brain and skull development in neonates. Like most other species, humans 
have always lived in groups. Group life enhances survivability by providing a col-
lective form of life. The early tribal collectivities have left evidence that gesture (as 
inscribed on surfaces through pictography) and counting skills occurred in tandem. 
This supports the co-development of language and numerosity that Lakoff and 
Núñez (2000) suggest is part of brain structure.

Keith Devlin (2000, 2005) entered the debate with the notion of an innate “math 
instinct.” If there is some innate capacity for mathematical thinking, which there 
must be, otherwise no one could do it, why does it vary so widely, both among indi-
viduals in a specific culture and across cultures? Devlin connects the math ability to 
language, since both are used by humans to model the world symbolically. But this 
then raises another question: Why, then, can we speak easily, but not do math so 
easily (in many cases)? The answer, according to Devlin, is that we can and do, but 
we do not recognize that we are doing math when we do it. As he argues, our pre-
historic ancestors’ brains were essentially the same as ours, so they must have had 
the same underlying abilities. But those brains could hardly have imagined how to 
multiply 15 by 36 or prove Fermat’s Last Theorem.
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One can argue that there are four orders involved in learning how to go from 
counting to, say, equations. The first is the instinctive ability itself to count. This is 
probably innate. Using signs to stand for counting constitutes a second order. It is 
the level at which counting concepts are represented by numeral symbols. The third 
order is the level at which numerals are organized into a code of operations based on 
counting processes (adding, taking away, comparing, dividing, and so on). Finally, 
a fourth order inheres in the capacity to generalize the features and patterns of 
counting and numeral representations. This is where representations such as equa-
tions come into the developmental-evolutionary picture.

Stanislas Dehaene’s (1997) work brings forth experimental evidence to suggest 
that the human brain and that of some chimps come with a wired-in aptitude for 
math. The difference in the case of the latter is an inability to formalize this innate 
knowledge and then use it for invention and discovery. Dehaene has catalogued 
evidence that rats, pigeons, raccoons, and chimpanzees can perform simple calcula-
tions, describing ingenious experiments that show that human infants also show a 
parallel manifestation of number sense. This rudimentary number sense is as basic 
to the way the brain understands the world as is the perception of color. But how 
then did the brain leap from this ability to trigonometry, calculus, and beyond? 
Dehaene shows that it was the invention of symbolic systems that started us on the 
climb to higher mathematics. He argues this by tracing the history of numbers, from 
early times when people indicated a number by pointing to a part of their body (even 
today, in many societies in New Guinea, the word for six is “wrist”), to early abstract 
numbers such as Roman numerals (chosen for the ease with which they could be 
carved into wooden sticks), to modern numerals and number systems. Dehaene 
argues, finally, that the human brain does not work like a computer, and that the 
physical world is not based on mathematics—rather, mathematics evolved to explain 
the physical world the way that the eye evolved to provide sight.

Studies inspired by both Butterworth’s and Dehaene’s ideas have become wide-
spread in MC circles (for example, Ardila and Rosselli 2002; Dehaene 2004; Isaacs 
et al. 2001; Dehaene et al. 2003; Butterworth et al. 2011). Dehaene (1997) himself 
showed that when a rat is trained to press a bar 8 or 16 times to receive a food 
reward, the number of bar presses will approximate a Gaussian distribution with 
peak around 8 or 16  bar presses. When rats are more hungry, their bar-pressing 
behavior is more rapid, so by showing that the peak number of bar presses is the 
same for either well-fed or hungry rats, it is possible to disentangle time from num-
ber of bar presses. Similarly, researchers have set up hidden speakers in the African 
savannah to test natural (untrained) behavior in lions (McComb et al. 1994). The 
speakers play a number of lion calls, from 1 to 5. If a single lioness hears, for 
example, three calls from unknown lions, she will leave, but if she is with four of her 
sisters, they will go and explore. This suggests that not only can lions tell when they 
are “outnumbered” but also that they can do this on the basis of signals from differ-
ent sensory modalities, suggesting that numerosity involves a multisensory neural 
substratum.

20  Epilogue: So, What Is Math Cognition?

http://en.wikipedia.org/wiki/Gaussian_distribution


340

�Blending Theory

As mentioned above, the study of MC started proliferating and diversifying after 
Lakoff and Núñez (2000) claimed that the proofs and theorems of mathematics are 
arrived at via the same cognitive mechanisms that underlie language—analogy, 
metaphor, and metonymy. This claim has been largely substantiated with neurologi-
cal techniques such as fMRI and other scanning devices, which have led to adopting 
the notion of blending, whereby concepts in the brain are sensed as “informing” 
each other in a common neural substrate (Fauconnier and Turner 2002). Determining 
the characteristics of this substrate is an ongoing goal of research on MC (Danesi 
2016).

Blending can be used, for example, to explain negative numbers. These are 
derived from two basic metaphors, which Lakoff and Núñez call grounding and 
linking. Grounding metaphors encode basic ideas, being directly “grounded” in 
experience. For example, addition develops from the experience of counting objects 
and then inserting them in a collection. Linking metaphors connect concepts within 
mathematics that may or may not be based on physical experiences. Some examples 
of this are the number line, inequalities, and absolute value properties within an 
epsilon-delta proof of limit. Linking metaphors are the source of negative numbers, 
which emerge from a connective form of reasoning within the system of mathemat-
ics. They are linkage blends, as Alexander (2012: 28) elaborates:

Using the natural numbers, we made a much bigger set, way too big in fact. So we judi-
ciously collapsed the bigger set down. In this way, we collapse down to our original set of 
natural numbers, but we also picked up a whole new set of numbers, which we call the 
negative numbers, along with arithmetic operations, addition, multiplication, subtraction. 
And there is our payoff. With negative numbers, subtraction is always possible. This is but 
one example, but in it we can see a larger, and quite important, issue of cognition. The larger 
set of numbers, positive and negative, is a cognitive blend in mathematics … The numbers, 
now enlarged to include negative numbers, become an entity with its own identity. The col-
lapse in notation reflects this. One quickly abandons the (minuend, subtrahend) formula-
tion, so that rather than (6, 8) one uses -2. This is an essential feature of a cognitive blend; 
something new has emerged.

This kind of metaphorical (connective) thinking occurs because of gaps that are 
felt to inhere in the system. As Godino, Font, Wilhelmi, and Lurduy (2011: 250) 
cogently argue, notational systems are practical (experiential) solutions to the prob-
lem of counting:

As we have freedom to invent symbols and objects as a means to express the cardinality of 
sets, that is to say, to respond to the question, how many are there?, the collection of pos-
sible numeral systems is unlimited. In principle, any limitless collection of objects, what-
ever its nature may be, could be used as a numeral system: diverse cultures have used sets 
of little stones, or parts of the human body, etc., as numeral systems to solve this problem.

Fauconnier and Turner (2002) have proposed arguments along the same lines, 
giving substance to the notion that ideas in mathematics are based on blends deriv-
ing from experiences and associations within these experiences. Interestingly, the 
idea that metaphor plays a role in mathematical logic seems to have never been held 
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seriously until very recently, even though, as Marcus (2012: 124) observes, mathe-
matical terms are mainly metaphors:

For a long time, metaphor was considered incompatible with the requirements of rigor and 
preciseness of mathematics. This happened because it was seen only as a rhetorical device 
such as “this girl is a flower.” However, the largest part of mathematical terminology is the 
result of some metaphorical processes, using transfers from ordinary language. Mathematical 
terms such as function, union, inclusion, border, frontier, distance, bounded, open, closed, 
imaginary number, rational/irrational number are only a few examples in this respect. 
Similar metaphorical processes take place in the artificial component of the mathematical 
sign system.

Actually, already in the 1960s, a number of structuralist linguists prefigured 
blending theory, by suggesting that mathematics and language shared basic struc-
tural properties (Hockett 1967; Harris 1968). Their pioneering writings were essen-
tially exploratory investigations of structural analogies between mathematics and 
language. They argued, for example, that both possessed the feature of double artic-
ulation (the use of a limited set of units to make complex forms ad  infinitum), 
ordered rules for interrelating internal structures, among other things. Many inter-
esting comparisons emerged from these writings, which contained an important 
subtext—by exploring the structures of mathematics and language in correlative 
ways, we might hit upon deeper points of contact and thus at a common cognitive 
origin for both. Those points find their articulation in the work of Lakoff and Núñez 
and others working within the blending paradigm. Mathematics makes sense when 
it encodes concepts that fit our experiences of the world—experiences of quantity, 
space, motion, force, change, mass, shape, probability, self-regulating processes, 
and so on. The inspiration for new mathematics comes from these experiences as it 
does for new language.

A classic example of this was Gödel’s famous proof, which Lakoff has argued 
(see Bockarova and Danesi 2012: 4–5) was inspired by Cantor’s diagonal method. 
As is well known, Gödel proved that within any formal logical system there are 
results that can be neither proved nor disproved. Gödel found a statement in a set of 
statements that could be extracted by going through them in a diagonal fashion—
now called Gödel’s diagonal lemma. That produced a statement, S, like Cantor’s C, 
that does not exist in the set of statements. Cantor’s diagonal and one-to-one match-
ing proofs are mathematical metaphors—associations linking different domains in 
a specific way (one-to-one correspondences). This insight led Gödel to envision 
three metaphors of his own: (1) the “Gödel number of a symbol,” which is evident 
in the argument that a symbol in a system is the corresponding number in the 
Cantorian one-to-one matching system (whereby any two sets of symbols can be put 
into a one-to-one relation); (2) the “Gödel number of a symbol in a sequence,” 
which is manifest in the demonstration that the nth symbol in a sequence is the nth 
prime raised to the power of the Gödel number of the symbol; and (3) “Gödel’s 
central metaphor,” which was Gödel’s proof that a symbol sequence is the product 
of the Gödel numbers of the symbols in the sequence.

The proof exemplifies how blending works. When the brain identifies two dis-
tinct entities in different neural regions as the same entity in a third neural region, 
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they are blended together. Gödel’s metaphors come from neural circuits linking a 
number source to a symbol target. In each case, there is a blend, with a single entity 
composed of both a number and a symbol sequence. When the symbol sequence is 
a formal proof, a new mathematical entity appears—a “proof number.”

It is relevant to turn to the ideas of René Thom (1975, 2010) who called discover-
ies in mathematics “catastrophes,” that is, mental activities that subvert or overturn 
existing knowledge. He called the process “semiogenesis,” which he defined as the 
emergence of “pregnant” forms within symbol systems themselves, that is, as forms 
that emerge by happenstance through contemplation and manipulation of the previ-
ous forms. As this goes on, every so often, a catastrophe occurs that leads to new 
insights, disrupting the previous system. Discovery is indeed catastrophic, but why 
does the brain produces catastrophes in the first place? Perhaps the connection 
between the brain, the body, and the world is so intrinsic that the brain cannot really 
understand itself.

�Epilogue: Selected Themes

The chapters of this book span the interdisciplinary scope of MC study, from the 
empirical to the educational and speculative, as well as examining aspects of math-
ematical method, such as proof, and what this tells us about the nature of MC. The 
objective has been twofold: to show how this line of inquiry can be enlarged profit-
ably through an expanded pool of participating disciplines and to shed some new 
light on math cognition itself from within this pool. Only in this way can progress 
be made in grasping what math cognition truly is. Together, the chapters of this 
book constitute a mixture of views, findings, and theories that, when collated, do 
hopefully give us a better sense of what math cognition is.
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