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Abstract. Two models of periodic autoregressive time series with mul-
tiple periodic effects are introduced and studied. In the first model, the
autoregression coefficients vary periodically with several dominant com-
ponents associated with two or more periods (for example, day and week
for hourly data). In the second model, the autoregression coefficients
consist of the additive periodic effects of several nominal variables (for
example, the effect of hour in a given day and the effect of day in a
given week for hourly data). Truncated Fourier representations of dif-
ferent periods are used to parametrize the autoregression coefficients in
the two models. Model estimation and inference through ordinary and
weighted least squares, and model selection based on diagnostics plots,
in particular, are considered for the two approaches. An application to
a real time series of hourly electricity volumes from the Nord Pool Spot
Exchange is also presented, where the nature and use of the two models
are contrasted.

1 Introduction

Many data collected in time exhibit cyclical variations, and call for time series
models with cyclical features. One class of such models consists of time series
with periodically varying dependence structures. The periodicity could be in
the mean, the variance, but also in the model parameters such as with periodic
autoregressive (PAR) models that play a central role in this class of models. See
Ghysels and Osborne [13], Franses and Paap [12], Hurd and Miamee [16].

In this work, we are interested in periodically correlated time series and,
more specifically, PAR series where periodicity is driven by two or more peri-
ods. Having cyclical variations at multiple periods is expected in many data,
especially when they are associated with natural cycles of 24 h, 1 week (when
modeling human related activity), 4 annual quarters or seasons, and so on. We
shall introduce two classes of periodically non-stationary time series that will
operate at two or more periods.

To motivate briefly the construction of the models and to explain the basic
ideas, suppose the goal is to model just the deterministic mean function μ(t)
of the series as a function with two periodic effects. As with the application
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considered below in this work, suppose time t refers to hours and the two periodic
effects are associated with the 24 h (1 day) and 168 h (1 week) periods. Two
natural candidates for μ(t) operating at these two different periods come to
mind, namely,

μ(t) = μ24(t) + μ168(t), (1)

where, for example, in the first case,

μ24(t) = 2 + 0.5 cos(
2πt

24
), μ168(t) = −0.1 sin(

2πt

168
), (2)

and, in the second case,

μ24(t) = 1 − (0.2)11AM(t) + (0.3)12AM(t) + (0.7)17PM(t),
μ168(t) = (0.3)1Monday(t) − (0.1)1Wednesday(t) + (4)1Sunday(t), (3)

where 1E(t) stands for the indicator function of “event” E, that is, it is equal
to 1 if t falls into E, and 0 otherwise. The mean function μ(t) in (1) and (2)
consists of two dominant components, one with period 24 and the other with
period 168. The mean function μ(t) in (1) and (3), on the other hand, expresses
the idea that the mean effect can be due to the hour of a given day or the day
of a given week.

Our models for PAR time series with multiple periodic effects will allow for
such periodic behavior for all model parameters, not just the mean function.
The model extending (2) will be referred to as the model of Type A, and that
extending (3) as the model of Type B. As with (2), we shall use Fourier repre-
sentations of periodic model coefficients that will often require estimating fewer
coefficients.

A number of other authors also considered various models exhibiting cyclical
variations at several periods. For example, Gould et al. [14], De Livera et al.
[6] and others consider models involving multiple periods based on exponential
smoothing. The use of double seasonal ARIMA models (that is, seasonal ARIMA
models with two periods) goes back at least to Box et al. [4]. Basawa et al. [3]
do not quite have multiple periods but consider a hybrid model exhibiting both
seasonal and periodic dependence for the same period. Neural networks in the
context of multiple periods were used by Dudek [10,11] and others. Compar-
ison of various available methods involving multiple periods can be found in
Taylor et al. [20]. Applications to electricity markets dominate many of these
contributions; see also Weron [22], Dannecker [5].

Our data application is also related to electricity markets. But we do not
seek to provide an exhaustive comparison of our approach to other methods.
The goal is to explain how one could think of periodic autoregressive time series
with multiple periods at a most basic level, and how the resulting models could
be estimated and manipulated in other ways. Though we also note that the
introduced models do seem relevant for the considered data set.

The structure of the paper is as follows. The models of Types A and B are
defined in Sect. 2 below. Estimation issues are discussed in Sect. 3, and inference,
model selection and other issues in Sect. 4. A data application is considered in
Sect. 5. Conclusions can be found in Sect. 6.
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2 PAR Models with Multiple Periodic Effects

For the sake of clarity, we focus on PAR models with two periodic effects and
comment on the case of multiple periodic effects in Remarks 2 and 3 below.
The two periodic effects will be associated with two periods that are denoted
s1, s2. We shall suppose that s1 < s2 and s2/s1 is an integer. For example, in the
application in Sect. 5 below, s1 = 24 h (1 day) and s2 = 24 · 7 = 168 h (1 week).

2.1 Model A

To introduce our first model with two periodic effects, we need several prelimi-
nary observations and definitions. A function f(t) is s-periodic if f(t+ s) = f(t)
for all t ∈ Z. Note that an s1-periodic function is also s2-periodic (with the
assumptions on s1, s2 stated above). An s2-periodic function f(t) can always be
expressed through a Fourier representation as

f(t) = f0 +
�s2/2�∑

m=1

(
f1,m cos(

2πmt

s2
) + f2,m sin(

2πmt

s2
)
)
, (4)

where f0, f1,m, f2,m ∈ R. It can then also be expressed (uniquely) as

f(t) = f0 + f1(t) + f2(t), (5)

where

f1(t) =
�s1/2�∑

m1=1

(
f1,(s2/s1)m1 cos(

2π(s2/s1)m1t

s2
) + f2,(s2/s1)m1 sin(

2π(s2/s1)m1t

s2
)
)

=
�s1/2�∑

m1=1

(
f1,(s2/s1)m1 cos(

2πm1t

s1
) + f2,(s2/s1)m1 sin(

2πm1t

s1
)
)

(6)

and

f2(t) =
∑

m=1,...,�s2/2�;m/s1 �∈Z

(
f1,m cos(

2πmt

s2
) + f2,m sin(

2πmt

s2
)
)
. (7)

We shall refer to fj(t) as the sj-periodic component of f(t), j = 1, 2.
The following definition concerns our first model with two periodic effects.

Definition 1. A time series {Xt}t∈Z is type A periodic autoregressive of order p
(A–PAR(p)) with two periodic effects if

Xt = μ(t) + Yt, (8)
Yt = φ1(t)Yt−1 + . . . + φp(t)Yt−p + σ(t)εt (9)



4 H. Hurd and V. Pipiras

with {εt}t∈Z ∼ WN(0, 1) (that is, a white noise series with Eεt = 0 and Eε2t = 1)
and s2-periodic μ(t), σ(t)2 and φr(t), r = 1, . . . , p, with the decompositions

μ(t) = μ0 + μ1(t) + μ2(t),
σ(t)2 = σ2

0 + σ
(2)
1 (t) + σ

(2)
2 (t),

φr(t) = φr,0 + φr,1(t) + φr,2(t), r = 1, . . . , p,

(10)

as in (5), where at least one of the s1-periodic components μ1(t), σ
(2)
1 (t), φr,1(t),

r = 1, . . . , p, is non-zero.

In practice, motivated by the representations (5)–(7), we shall model the
coefficients φr(t) and their components φr,1(t) and φr,2(t) as

φr,j(t) =
Hj∑

mj=1

(
a(j)

r,mj
cos(

2πmjt

sj
) + b(j)r,mj

sin(
2πmjt

sj
)
)
, j = 1, 2, (11)

assuming H2 < s2/s1 (which ensures that indices m2 in (11) are not multiples
of s2/s1). The indices j = 1 and j = 2 in (11) correspond to s1-periodic and
s2-periodic components, respectively. Modeling periodic time series through the
(reduced) Fourier representations of their coefficients goes back at least to Jones
and Brelsford [17]. See also Dudek et al. [8] and references therein.

The parameters μ0, μ1(t), μ2(t), σ2
0 , σ

(2)
1 (t), σ

(2)
2 (t), on the other hand, will

be estimated in a nonparametric fashion, though a parametric route analogous
to (11) is also a possibility. Note also that σ

(2)
1 (t), σ

(2)
2 (t) are not necessarily

positive.

Remark 1. By the discussion above, the series {Xt}t∈Z in Definition 1 is also
PAR(p) with the larger period s2. We also note that our main interest here is
in such series {Xt}t∈Z which are stable, that is, for which the multivariate VAR
representation of the s2-vector series {(Xs2(t̃−1)+1,Xs2(t̃−1)+2, . . . , Xs2 t̃)

′}t̃∈Z
is

stable. Here and throughout, a prime indicates a vector or matrix transpose.
Conditions for the latter are well-known in the literature; see, for example,
Lütkepohl [19].

Remark 2. The framework described above can be extended straightforwardly
to the case of multiple periods s1, s2, . . . , sK , assuming that s1 < s2 < . . . < sK

and sK/sj are integers. Though some caution would need to be exercised in how
many terms in the Fourier representations are included when some multiples of
two periods sj1 and sj2 are the same (and smaller than sK).

2.2 Model B

We now turn to a different PAR model that builds on the idea behind the model
(1) and (3) for the mean discussed in Sect. 1. We adopt the following quite general
framework concerning two periodic effects.
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We think of each time t and observation Xt as associated with two nomi-
nal variables, that vary periodically in time, and are interested to model their
effects. We assume that the two variables have k1 and k2 levels, respectively.
We shall represent the two nominal variables by two functions g1(t) and g2(t),
assuming that they are s1-periodic and s2-periodic, respectively, and take values
{1, . . . , k1} and {1, . . . , k2}, respectively, that are associated with respective lev-
els. As above, we assume that s1 < s2 and s2/s1 is an integer. It is not necessarily
the case that sj = kj , as the following examples illustrate.

Example 1. In the application to hourly data in Sect. 5 below, the two periodic
effects will be the effect of the hour in a day and the effect of the day in a week.
For hourly data, these effects are periodic with periods s1 = 24 h (1 day) and
s2 = 24 · 7 = 168 h (1 week), respectively. The corresponding nominal variables
have k1 = 24 (hours 1 through 24) and k2 = 7 (Monday through Sunday)
levels, respectively. The effects can be captured through the two corresponding
functions g1(t) and g2(t) with the properties described above. They can also be
represented as

g1(t) = t, t = 1, . . . , 24, g2(t) = � t

24
�, t = 1, . . . , 168, (12)

where �x� denotes the ceiling integer part of x, and then extended periodically
with their respective periods.

Example 2. One could have the second variable (function) in Example 1 having
only k2 = 2 levels (values), for workdays and weekends. Similarly, the first vari-
able (function) in Example 1 could have k2 = 4 levels (values), for night hours
(1–6AM), morning hours (6AM–12PM), afternoon hours (12–6PM) and evening
hours (6PM–12AM).

Definition 2. A time series {Xt}t∈Z is type B periodic autoregressive of order p
(B–PAR(p)) with two periodic effects if

Xt = μ(t) + Yt, (13)
Yt = φ1(t)Yt−1 + . . . + φp(t)Yt−p + σ(t)εt (14)

with {εt}t∈Z ∼ WN(0, 1) and

μ(t) = μ0 + μ1(g1(t)) + μ2(g2(t)),
σ(t)2 = σ2

0 + σ
(2)
1 (g1(t)) + σ

(2)
2 (g2(t)),

φr(t) = φr,0 + φr,1(g1(t)) + φr,2(g2(t)), r = 1, . . . , p,

(15)

where the functions g1(t) and g2(t) are defined before Example 1, are associated
with two nominal variables and are s1-periodic and s2-periodic, respectively.

Definition 2 requires further clarification. With f(t) denoting μ(t), σ(t)2 or
φr(t), let

f(t) = f0 + f1(g1(t)) + f2(g2(t)) (16)
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be the decomposition analogous to those in (15). Recall from above that gj(t)
takes an integer value from 1 to kj , which we shall denote by uj . Thus, fj acts
on a value uj as fj(uj), where uj = gj(t). For identifiability purposes, we assume
that

kj∑

uj=1

fj(uj) = 0, j = 1, 2. (17)

We also note that the function fj(gj(t))) is sj-periodic, j = 1, 2, and hence, with
our assumptions on s1, s2, the function f(t) is s2-periodic with the larger s2.

The function fj(uj), j = 1, 2, uj = 1, . . . , kj , can be expressed through a
Fourier representation as

fj(uj) =
�kj/2�∑

mj=1

(
f
(j)
1,mj

cos(
2πmjuj

kj
) + f

(j)
2,mj

sin(
2πmjuj

kj
)
)
. (18)

In practice, to have fewer coefficients to estimate, we shall model the coefficients
φr(t) and their components as

φr,j(uj) =
Hj∑

mj=1

(
a(j)

r,mj
cos(

2πmjuj

kj
) + b(j)r,mj

sin(
2πmjuj

kj
)
)
, (19)

where Hj ≤ �kj/2�. The parameters μj(uj), σ
(2)
j (uj), j = 1, 2, on the other

hand, will be estimated in a nonparametric fashion, though again a parametric
route analogous to (19) is also a possibility.

Example 3. We continue with the setting of Example 1. In this example, by
combining (12) and (19), the functions φr,j(gj(t)) are modeled as

φr,1(g1(t)) =
H1∑

m1=1

(
a(1)

r,m1
cos(

2πm1t

24
) + b(1)r,m1

sin(
2πm1t

24
)
)

(20)

and

φr,2(g2(t)) =
H2∑

m2=1

(
a(2)

r,m2
cos(

2πm2�t/24�
7

) + b(2)r,m2
sin(

2πm2�t/24�
7

)
)
. (21)

We note again that the function φr,1(g1(t)) is 24-periodic, and that φr,2(g2(t))
is 168-periodic but also constant over successive intervals of length 24.

Remark 3. The framework described above can be extended straightforwardly
to the case of multiple periodic effects, by introducing additional functions gj(t)
associated with these effects.

Remark 4. As A–PAR(p) models discussed in Remark 1, B–PAR(p) models are
also PAR(p) models with the larger period s2. It is instructive here to contrast
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the two introduced models from the perspective of these standard PAR models.
A PAR(p) model with period s2 has its coefficients vary periodically with period
s2. These coefficients can always be expressed through a Fourier representation.
In the applications of the A–PAR model, only a small number of these Fourier
coefficients are assumed to be non-zero, more specifically, the first few in the
Fourier representation and also the first few in the component of the represen-
tation that is s1-periodic. The B–PAR model, on the other hand, assumes that
the periodicity consist of two additive effects associated with two periodic nom-
inal variables. The latter effects do not need to be components of the Fourier
representation of the model coefficients (as, for example, the coefficients (21)
above).

Remark 5. The preceding remark also suggests that A–PAR and B–PAR mod-
els might serve quite different purposes. By increasing the number of non-zero
coefficients in the A–PAR model Fourier representation, one could effectively
get any PAR model with period s2. From this perspective, the A–PAR model is
quite flexible. With the B–PAR model, on the other hand, one might be more
interested in which effects and which of their levels are more pronounced in the
dynamics of the PAR process. This is illustrated further in our application to a
real data set in Sect. 5.

3 Estimation Procedure

We discuss here estimation of the parameters μ(t), σ(t)2 and φr(t) of the
A–PAR and B–PAR models, using the Fourier representations (11) and (19)
of the parameters. The way the A–PAR and B–PAR models were introduced
allows us to present essentially a unified estimation framework. We suppose that
the observed data consist of observations X1, . . . , XT , where the sample size T
is a multiple of both s1 and s2 for simplicity.

3.1 Estimation of Mean

For an A–PAR model, we estimate the means as μ̂0 = X (the overall mean),

μ̂1(t) =
1

(T/s1)

T/s1∑

n=1

(Xt+s1(n−1) − X), t = 1, . . . , s1, (22)

and extended periodically with period s1 for other t’s, and

μ̂2(t) =
1

(T/s2)

T/s2∑

n=1

(Xt+s2(n−1) − μ̂1(t)), t = 1, . . . , s2, (23)

and extended periodically with period s2 for other t’s. Once can check that
μ̂(t) = μ̂0 + μ̂1(t) + μ̂2(t) is just the periodic mean at period s2. For a B–PAR
model, the mean effects are estimated through a least squares regression of Xt

on the two nominal variables described in the beginning of Sect. 2.2. Again, let
μ̂(t) be the overall estimated mean which is generally different from that for the
A–PAR model (see Fig. 1 in Sect. 5 for an illustration).
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3.2 OLS Estimation

Let Ŷt = Xt − μ̂(t). In applying the ordinary least squares (OLS), the model
parameters are estimated as

{
φ̃r,0, ã

(j)
r,mj

, b̃(j)r,mj

}

r=1,...,p,mj=1,...,Hj ,j=1,2

= argmin
φr,0,,a

(j)
r,mj

,b
(j)
r,mj

∑

t

(Ŷt − φ1(t)Ŷt−1 − . . . − φp(t)Ŷt−p)2, (24)

where φr(t) = φr,0 + φr,1(t) + φr,2(t) and φr,j(t) are given in (11) or (19),
depending on the type of the model. Let φ̃r(t) be the resulting OLS parameter
estimators. Consider also the errors

η̃t = Ŷt − φ̃1(t)Ŷt−1 − . . . − φ̃p(t)Ŷt−p. (25)

The model parameter σ(t)2 and its components σ2
0 , σ

(2)
1 (t), σ

(2)
2 (t) could then be

estimated analogously to the mean μ(t) and its three components as in Sect. 3.1
but replacing Xt with η̃2

t . We shall refer to η̃t/σ̃(t) as the residuals from the OLS
estimation.

Remark 6. There are several potential issues with the suggested estimation of
σ(t)2 that, in particular, are encountered in the application in Sect. 5. When
T/s2 is small (e.g. T/s2 = 6 in the application considered below) and σ̃(t)2 is
computed as the s2-periodic sample mean, note that the estimation of each σ(t)2

involves just T/s2 error terms (e.g. 6 in the application below). The quality of
estimation of σ(t)2 is then dubious, and we try to rectify this by slightly smooth-
ing the estimates over time. This procedure does have some minor effect on the
estimates and their standard errors, and might call for further investigation in
the future. (We do not perform smoothing when estimating the mean μ(t) since
we expect these estimates to be already quite smooth.) On the other hand, for
Model B, we also note that the suggested procedure is not guaranteed to yield
nonnegative estimates of σ(t)2, which also happens in our application. In this
case, we use the estimates of σ(t)2 obtained for Model A.

3.3 WLS Estimation

Having the OLS estimate σ̃(t)2 of the variance of the error terms, the model
parameters could be reestimated by using the weighted least squares (WLS) as

{
φ̂r,0, â

(j)
r,mj

, b̂(j)r,mj

}

r=1,...,p,mj=1,...,Hj ,j=1,2

= argmin
φr,0,,a

(j)
r,mj

,b
(j)
r,mj

∑

t

(Ŷt − φ1(t)Ŷt−1 − . . . − φp(t)Ŷt−p)2/σ̃(t)2. (26)

Likewise, the variance σ(t)2 could be reestimated as σ̂(t)2 by using the model
errors based on the WLS estimates (and this process could be iterated till conver-
gence occurs), with possible modifications discussed in Remark 6 above. Letting
η̂t be the error terms from the WLS estimation, defined similarly to (25), the
WLS residuals are defined as η̂t/σ̂(t).
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4 Inference and Other Tasks

In the implementation of the OLS and WLS estimation, a PAR(p) model is
expressed in the form of a linear regression as

Y = Rα + Z. (27)

For example, for an A–PAR(p) model, Y = (Ŷp+1, . . . , ŶT )′ is a (T −p)–vector of
periodically demeaned observations Ŷt, α = (α′

1 . . . α′
p)

′ is a ((1+2H1 +2H2)p)–
vector of parameters with

αr = (φr,0, a
(1)
r,1 , . . . , a

(1)
r,H1

, b
(1)
r,1 , . . . , b

(1)
r,H1

, a
(2)
r,1 , . . . , a

(2)
r,H2

, b
(2)
r,1 , . . . , b

(2)
r,H2

)′,

the regressors R can be expressed as a (T − p) × ((1 + 2H1 + 2H2)p) matrix
(Rp+1 . . . RT )′ with Rt = (Ip ⊗ Bt)Yt,lags, Yt,lags = (Yt−1, . . . , Yt−p)′,

Bt =
(
1, cos(

2πt

s1
), . . . , cos(

2πH1t

s1
), sin(

2πt

s1
), . . . , sin(

2πH1t

s1
),

cos(
2πt

s2
), . . . , cos(

2πH2t

s2
), sin(

2πt

s2
), . . . , sin(

2πH2t

s2
)
)′

and Z refers to the error terms. Within the linear formulation (27), the OLS and
WLS parameter estimators and their standard errors have well-known expres-
sions in terms of R and Y , which we use here as well but omit for the shortness
sake.

In addition to the OLS and WLS estimation as outlined above, we also use
their counterparts when some of the coefficients are set to 0. We shall refer to
the corresponding models as restricted PAR models. Estimation and computing
standard errors for restricted PAR models are carried out in a standard way by
expressing zero constraints through

α = Cγ, (28)

where γ is a k–vector of non-zero coefficients and C is a ((1 + 2H1 + 2H2)p) × k
restriction matrix, with rows of zeros corresponding to the zero elements of
α, and rows with a single entry of 1 corresponding to non-zero elements of α.
The OLS and WLS estimation and inference are then performed essentially by
replacing R by RC.

If needed, model selection can be guided by some information criterion, such
as BIC and AIC defined in the usual way as (−2) multiplied by the log-likelihood,
with an appropriate penalty. In the data application below, we shall be guided
by looking at parameter “significance” and suitable diagnostics plots of model
residuals. Similarly, the introduced PAR models can be used in forecasting in
a straightforward way as with standard AR models and their PAR extensions.
Out-of-sample forecasting performance could also be employed as another tool
for selecting a model.
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Remark 7. Under mild assumptions on the residuals {εt} in the A–PAR and B–
PAR models (with typical assumptions being the i.i.d. property and finiteness
of the 4th moment), the parameter estimators {φ̃r,0, ã

(j)
r,mj , b̃

(j)
r,mj} in (24) and

{φ̂r,0, â
(j)
r,mj , b̂

(j)
r,mj} in (26) (assuming the true variance σ2(t) is used in estima-

tion) are expected to be asymptotically normal. Indeed, these estimators are lin-
ear transformations of the analogous PAR model parameter estimators {φ̃r(t)}
and {φ̂r(t)}. The asymptotic normality of the latter under mild assumptions
is proved in Basawa and Lund [2], Anderson and Meerschaert [1]. The analo-
gous linear transformation argument to establish the asymptotic normality of
the coefficient estimators in the Fourier representation of the parameters is also
used in Tesfaye et al. [21].

Fig. 1. Left: Weekly demeaned energy volume series for 6 weeks. Right: The volume
series for week 2 with estimated means according to Models A and B.

5 Data Application

To illustrate our proposed models, we shall work with a time series of hourly
electricity volumes from Nord Pool Spot Exchange.1 This data was considered
in a number of other works related to periodically correlated series, for example,
Dudek et al. [7]. We consider the series for 6 weeks in 2008, and remove the weekly
mean from the data. The length of the series is thus T = 1, 008. Note that 6
weeks (1 week being the period of the underlying PAR model) are sufficient for
our modeling purposes since the number of parameters is reduced considerably
through the Fourier representations. For example, a small number of non-zero
coefficients in the Fourier representation could be estimated, in principle, even
from the data covering just one period. The resulting series is presented in Fig. 1,
left plot. The right plot of the figure presents one week of the series with the
mean effects estimated according to Models A and B. In the rest of the section,
we shall fit Models A and B to the periodically demeaned series, that is, the
difference between the observed and fitted values in Fig. 1, right plot.
1 http://www.npspot.com.

http://www.npspot.com
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5.1 Fitting Model A

Figure 2 depicts the periodically demeaned series according to Model A, and
its sample PACF. The sample PACF suggests including lags 1, 2 and 24 into
an autoregressive model. Figure 3 presents two commonly used plots to detect
periodic correlations: the spectral coherence plot according to Hurd and Gerr
[15] (left plot of the figure), and a related test statistic with a critical value line
from Lund [18] (right plot; with a tuning parameter M = 10 in Lund [18]).
See also Hurd and Miamee [16], Sects. 10.4 and 10.5 The spectral coherence is
plotted using the R package perARMA [9].

Fig. 2. Left: Periodically demeaned volume series for 6 weeks (Model A). Right: The
corresponding sample PACF.

If a series exhibits periodic correlations at period s, the spectral coherence
plot should have diagonal lines emerging at multiples of the index T/s. Here,
T/s = 1, 008/s. The plot in Fig. 3 suggests the first major diagonal line around
the index 40. In fact, it corresponds to the period s1 = 24 with T/s1 = 42. There
are also traces of diagonal lines at indices smaller than 42 but it is difficult to
say for sure what these indices are. The latter could be determined easier from
the Lund test statistic plot, which essentially averages the spectral coherence
statistic at different indices along the corresponding diagonals, and also provides
a critical value (the horizontal dashed line in the plot). As expected, the Lund
test statistic has a large value at index 42. But note also that the values are larger,
some above the critical values, at multiples of the index 6. This index corresponds
to the period s2 = 168 (1 week) since T/s2 = 6. We thus conclude from these
plots that periodic correlations are present in the periodically demeaned series
at both periods s1 = 24 and s2 = 168.

We also see the presence of periodic correlations at the two periods s1 =
24 and s2 = 168 when fitting Model A. We shall report here on our fitting
attempts for A–PAR(p) models of orders p = 2 and p = 26, to accomodate
the partial autocorrelations seen at these lags in Fig. 2. Experimenting with
various restricted A–PAR(2) models, we settled on the model with the following
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Fig. 3. Left: The spectral coherence plot for periodically demeaned volume series for 6
weeks (Model A). Right: The Lund test statistic for the same series with a horizontal
dashed line indicating the critical value.

non-zero WLS estimated coefficients, with the standard errors indicated in the
parentheses: at lag 1,

φ̂1,0 = 1.104 (0.025),

â
(1)
1,5 = −0.291 (0.038), â

(1)
1,10 = −0.102 (0.037),

b̂
(1)
1,7 = 0.202 (0.036), b̂

(1)
1,9 = 0.081 (0.041),

â
(2)
1,1 = 0.023 (0.012)

and at lag 2,

φ̂2,0 = −0.178 (0.025),

â
(1)
2,5 = 0.245 (0.038), â

(1)
2,10 = 0.084 (0.037),

b̂
(1)
2,7 = −0.195 (0.036), b̂

(1)
2,9 = −0.082 (0.040).

Note that only one non-zero coefficient, namely â
(2)
1,1, is included in the component

for period s2 = 168. The resulting WLS estimated parameter functions φ̂1(t)
and φ̂2(t) are plotted in Fig. 4. The component of the mean with the non-zero
coefficient â

(2)
1,1 at period s2 = 168 produces a “global” trend in the coefficients

φ̂1(t) over the 168 h, which is clearly visible in the left plot. Without this global
trend, the coefficients can be checked to be close to what one would get from
fitting a standard PAR(2) model with period s1 = 24.

Figure 5 depicts the sample ACF and the Lund test statistic for the WLS
residuals of the fitted A–PAR(2) model. Note some remaining autocorrelations
around lag 24, which should not be surprising since we fitted a PAR model of
order p = 2. The plot with the Lund test statistic is depicted using the same
vertical scale as in Fig. 3: the peaks at dominant indices have become smaller in
general but are not completely negligible.
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Fig. 4. The WLS estimated parameter functions ̂φ1(t) and ̂φ2(t) of the fitted A–PAR(2)
model.

Fig. 5. The sample ACF and the Lund test statistic for the WLS residuals of the fitted
A–PAR(2) model.

To remove the remaining autocorrelations in the residuals, one could fit an A–
PAR(p) model of higher order p. (Another possibility would be to use a seasonal
PAR model as in Basawa et al. [3].) In analogy to non-periodic seasonal models,
we have experimented with fitting restricted A–PAR(26), by allowing some of
the coefficients at lags 24, 25 and 26 to be non-zero. We shall not report here the
fitted models but rather indicate several key observations. We found significant
periodicity in the coefficients φ24(t), φ25(t) and φ26(t), but also only in the
component with period s1 = 24. Typical sample ACF and Lund statistic plots
for the WLS residuals of a fitted restricted A–PAR(26) are presented in Fig. 6.
Note the smaller autocorrelations around multiples of lag 24 compared to those in
Fig. 5. The Lund statistic plot continues having several peaks above the critical
value line but their locations are no longer multiples of 6. (For example, the
largest peak is no longer at 42.) It remains to clarify what might cause this shift
in indices where peaks are present.
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5.2 Fitting Model B

We now turn to fitting Model B and follow a similar presentation structure as
for Model A in the previous section. Figure 7 presents similarly the periodically
demeaned volume series according to Model B and its sample PACF. Figure 8
depicts the spectral coherence and Lund statistic plots. Note that the diagonal
lines at the multiples of the indices 6 and 42 in the coherence plot, as well as
the peaks at these indices in the Lund statistic plot, are much more pronounced
compared to those in Fig. 3. This interesting difference is due to the way the
mean effect is computed in Model B.

When fitting a B–PAR(2) model with H1 = 10 and H2 = 3 in the represen-
tations (20) and (21), and then reestimating it through a restricted B–PAR(2)
model when including only the significant coefficients from the non-restricted
model, leads to the following significant non-zero coefficients: at lag 1, φ1,0,

Fig. 6. The sample ACF and the Lund test statistic for the residuals of the fitted
restricted A–PAR(26) model.

Fig. 7. Left: Periodically demeaned volume series for 6 weeks (Model B). Right: The
corresponding sample PACF.
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Fig. 8. Left: The spectral coherence plot for periodically demeaned volume series for
6 weeks (Model B). Right: The Lund test statistic for the same series with a horizontal
dashed line indicating the critical value.

Fig. 9. The estimated parameter functions ̂φ1(t) and ̂φ2(t) of the fitted B–PAR(2)
model.

a
(1)
1,m1

: m1 = 2, 3, 6, 7, 8, 9, b
(1)
1,m1

: m1 = 3, 4, 6, 9, 10,

a
(2)
1,m2

: m2 = 1, 3, b
(2)
1,m2

: m2 = 2,

and at lag 2, φ2,0,

a
(1)
2,m1

: m1 = 1, 2, 3, 7, 8, 10, b
(1)
2,m1

: m1 = 4, 6, 10, a
(2)
2,m2

: m2 = 1, 3.

We shall not indicate here the values and standard errors of the corresponding
WLS estimates but rather present a few revealing plots of the coefficient func-
tions. More specifically, Fig. 10 shows the WLS estimated parameter functions
φ̂1(t) and φ̂2(t) of the fitted B–PAR(2) model. Note that the effect of the day of
a week, especially that of Sunday, is more apparent in the figure when compared
to Fig. 4. This can also be seen clearer through the two components φ̂r,1(g1(t))
and φ̂r,2(g2(t)) depicted in Fig. 9, where the effects of the day (solid line) is
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Fig. 10. The estimated parameter functions ̂φ1,k(gk(t)) and ̂φ2,k(gk(t)) of the fitted
B–PAR(2) model.

Fig. 11. The sample ACF and the Lund test statistic for the WLS residuals of the
fitted B–PAR(2) model.

more pronounced towards Sunday for lag 1 and Saturday through Monday for
lag 2 coefficients.

Figure 11 depicts the sample ACF and the Lund test statistic for the WLS
residuals of the fitted B–PAR(2) model. The conclusions are not very different
from those for the A–PAR(2) model from Fig. 5. In particular, as with Model
A above, one could fit a B–PAR(p) model with higher order p to remove the
remaining autocorrelations around lag 24 in the WLS residuals.

6 Conclusions

In this work, we introduced two periodic autoregression models with two or
more periodic effects, discussed their inference and presented an application,
showing their relevance for real data. Some of the issues that can be explored in
the future include: incorporating moving average components into our models,
comparing out-of-sample forecasting performance between the introduced and
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among competing models, applications to other data sets, clarifying the role of
the used estimation methods for error variances, and others.
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