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Preface

Similar to our previous books on cyclostationarity, we present here a selection of 12
interesting papers dealing with cyclostationary and general non-stationary
processes. These papers are devoted either to practical aspects or to theoretical
ones. They report on interdisciplinary research and applications at the border
between mathematics, statistics, and signal processing. Although the book has not
been organized into different parts, we may identify three different classes of works
among the ones presented here.

The first class is related to the theoretical aspects of periodically correlated (PC
or cyclostationary) processes analysis. A few papers are related to the estimation
problem of PC process parameters. Javors’kyj et. al describe in their chapter the
coherent and component estimation of covariance invariants for multivariate
periodically correlated random processes. Reisen et al. describe robust estimation
functions applied to the estimation of the spectral density of univariate and periodic
time series with short- and long-memory processes. A long-memory process, such
as the multifractional Brownian motion with Hoelder function exponent, is also the
topic of the paper of Mastalerz-Kodzis. Here, the author proposes the use of the
least squares method for the estimation of the pointwise Hoelder exponent. The
multifractal Brownian motion with Hoelder function exponent belongs to the class
of non-stationary processes with the so-called anomalous diffusion behaviour.

The second group of papers in this volume is devoted to the general class of
non-stationary processes. Grzesiek and Wyłomańska describe subordinated
processes with infinite variance. Special attention is paid to the stable Levy process
subordinated by different non-decreasing processes. In the area of the processes of
infinite variance, we also find the paper by Gajecka-Mirek and Leśkow, where the
authors consider the subsampling for heavy-tailed non-stationary and weakly
dependent time series. Poczynek et al. describe the analysis of the classical
Ornstein–Uhlenbeck process time changed by Gamma process and show an
application to the modelling of real financial time series, especially of interest rate
data. Another process that is especially useful to describe interest rates is
presented in the paper by Brzozowska-Rup. Here, the author examines the
Cox–Ingersoll–Ross (CIR) model in the context of spot short interest rates on the

v



Polish market. The paper by Doukhan and Gomez, the last of this second group of
papers, is devoted to the analysis of the extreme values of stationary and weakly
dependent random fields.

The last group of papers deals with the practical aspects of non-stationary and
PC processes analysis. Hurd and Pipiras report on an interesting analysis of the
hourly electricity volumes from Nord Pool Spot Exchange. For this, they use
periodic autoregressive (PAR) time series models and consider the theoretical
aspects of the modelling of PAR time series with multiple periodic effects.
Michalak et al. apply the co-integration approach to vibration signal and present a
complete procedure for the evaluation of the detection effectiveness with respect to
changing signal-to-noise ratio. They show that co-integration is strictly related to
the periodic correlation in time series models. The last paper by Wodecki et al.
describes an innovative method for detecting P-wave arrival. At first, they show
how to use the Kolmogorov–Smirnov statistic value to measure the
non-Gaussianity of the seismic signal in the time–frequency representation. Then,
they test their approach in the detection of the so-called P-wave arrival.
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Modeling Periodic Autoregressive Time
Series with Multiple Periodic Effects

Harry Hurd and Vladas Pipiras(B)

Department of Statistics and Operations Research,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3260, USA

hhurd1@nc.rr.com, pipiras@email.unc.edu

Abstract. Two models of periodic autoregressive time series with mul-
tiple periodic effects are introduced and studied. In the first model, the
autoregression coefficients vary periodically with several dominant com-
ponents associated with two or more periods (for example, day and week
for hourly data). In the second model, the autoregression coefficients
consist of the additive periodic effects of several nominal variables (for
example, the effect of hour in a given day and the effect of day in a
given week for hourly data). Truncated Fourier representations of dif-
ferent periods are used to parametrize the autoregression coefficients in
the two models. Model estimation and inference through ordinary and
weighted least squares, and model selection based on diagnostics plots,
in particular, are considered for the two approaches. An application to
a real time series of hourly electricity volumes from the Nord Pool Spot
Exchange is also presented, where the nature and use of the two models
are contrasted.

1 Introduction

Many data collected in time exhibit cyclical variations, and call for time series
models with cyclical features. One class of such models consists of time series
with periodically varying dependence structures. The periodicity could be in
the mean, the variance, but also in the model parameters such as with periodic
autoregressive (PAR) models that play a central role in this class of models. See
Ghysels and Osborne [13], Franses and Paap [12], Hurd and Miamee [16].

In this work, we are interested in periodically correlated time series and,
more specifically, PAR series where periodicity is driven by two or more peri-
ods. Having cyclical variations at multiple periods is expected in many data,
especially when they are associated with natural cycles of 24 h, 1 week (when
modeling human related activity), 4 annual quarters or seasons, and so on. We
shall introduce two classes of periodically non-stationary time series that will
operate at two or more periods.

To motivate briefly the construction of the models and to explain the basic
ideas, suppose the goal is to model just the deterministic mean function μ(t)
of the series as a function with two periodic effects. As with the application

c© Springer Nature Switzerland AG 2020
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2 H. Hurd and V. Pipiras

considered below in this work, suppose time t refers to hours and the two periodic
effects are associated with the 24 h (1 day) and 168 h (1 week) periods. Two
natural candidates for μ(t) operating at these two different periods come to
mind, namely,

μ(t) = μ24(t) + μ168(t), (1)

where, for example, in the first case,

μ24(t) = 2 + 0.5 cos(
2πt

24
), μ168(t) = −0.1 sin(

2πt

168
), (2)

and, in the second case,

μ24(t) = 1 − (0.2)11AM(t) + (0.3)12AM(t) + (0.7)17PM(t),
μ168(t) = (0.3)1Monday(t) − (0.1)1Wednesday(t) + (4)1Sunday(t), (3)

where 1E(t) stands for the indicator function of “event” E, that is, it is equal
to 1 if t falls into E, and 0 otherwise. The mean function μ(t) in (1) and (2)
consists of two dominant components, one with period 24 and the other with
period 168. The mean function μ(t) in (1) and (3), on the other hand, expresses
the idea that the mean effect can be due to the hour of a given day or the day
of a given week.

Our models for PAR time series with multiple periodic effects will allow for
such periodic behavior for all model parameters, not just the mean function.
The model extending (2) will be referred to as the model of Type A, and that
extending (3) as the model of Type B. As with (2), we shall use Fourier repre-
sentations of periodic model coefficients that will often require estimating fewer
coefficients.

A number of other authors also considered various models exhibiting cyclical
variations at several periods. For example, Gould et al. [14], De Livera et al.
[6] and others consider models involving multiple periods based on exponential
smoothing. The use of double seasonal ARIMA models (that is, seasonal ARIMA
models with two periods) goes back at least to Box et al. [4]. Basawa et al. [3]
do not quite have multiple periods but consider a hybrid model exhibiting both
seasonal and periodic dependence for the same period. Neural networks in the
context of multiple periods were used by Dudek [10,11] and others. Compar-
ison of various available methods involving multiple periods can be found in
Taylor et al. [20]. Applications to electricity markets dominate many of these
contributions; see also Weron [22], Dannecker [5].

Our data application is also related to electricity markets. But we do not
seek to provide an exhaustive comparison of our approach to other methods.
The goal is to explain how one could think of periodic autoregressive time series
with multiple periods at a most basic level, and how the resulting models could
be estimated and manipulated in other ways. Though we also note that the
introduced models do seem relevant for the considered data set.

The structure of the paper is as follows. The models of Types A and B are
defined in Sect. 2 below. Estimation issues are discussed in Sect. 3, and inference,
model selection and other issues in Sect. 4. A data application is considered in
Sect. 5. Conclusions can be found in Sect. 6.
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2 PAR Models with Multiple Periodic Effects

For the sake of clarity, we focus on PAR models with two periodic effects and
comment on the case of multiple periodic effects in Remarks 2 and 3 below.
The two periodic effects will be associated with two periods that are denoted
s1, s2. We shall suppose that s1 < s2 and s2/s1 is an integer. For example, in the
application in Sect. 5 below, s1 = 24 h (1 day) and s2 = 24 · 7 = 168 h (1 week).

2.1 Model A

To introduce our first model with two periodic effects, we need several prelimi-
nary observations and definitions. A function f(t) is s-periodic if f(t+ s) = f(t)
for all t ∈ Z. Note that an s1-periodic function is also s2-periodic (with the
assumptions on s1, s2 stated above). An s2-periodic function f(t) can always be
expressed through a Fourier representation as

f(t) = f0 +
�s2/2�∑

m=1

(
f1,m cos(

2πmt

s2
) + f2,m sin(

2πmt

s2
)
)
, (4)

where f0, f1,m, f2,m ∈ R. It can then also be expressed (uniquely) as

f(t) = f0 + f1(t) + f2(t), (5)

where

f1(t) =
�s1/2�∑

m1=1

(
f1,(s2/s1)m1 cos(

2π(s2/s1)m1t

s2
) + f2,(s2/s1)m1 sin(

2π(s2/s1)m1t

s2
)
)

=
�s1/2�∑

m1=1

(
f1,(s2/s1)m1 cos(

2πm1t

s1
) + f2,(s2/s1)m1 sin(

2πm1t

s1
)
)

(6)

and

f2(t) =
∑

m=1,...,�s2/2�;m/s1 �∈Z

(
f1,m cos(

2πmt

s2
) + f2,m sin(

2πmt

s2
)
)
. (7)

We shall refer to fj(t) as the sj-periodic component of f(t), j = 1, 2.
The following definition concerns our first model with two periodic effects.

Definition 1. A time series {Xt}t∈Z is type A periodic autoregressive of order p
(A–PAR(p)) with two periodic effects if

Xt = μ(t) + Yt, (8)
Yt = φ1(t)Yt−1 + . . . + φp(t)Yt−p + σ(t)εt (9)
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with {εt}t∈Z ∼ WN(0, 1) (that is, a white noise series with Eεt = 0 and Eε2t = 1)
and s2-periodic μ(t), σ(t)2 and φr(t), r = 1, . . . , p, with the decompositions

μ(t) = μ0 + μ1(t) + μ2(t),
σ(t)2 = σ2

0 + σ
(2)
1 (t) + σ

(2)
2 (t),

φr(t) = φr,0 + φr,1(t) + φr,2(t), r = 1, . . . , p,

(10)

as in (5), where at least one of the s1-periodic components μ1(t), σ
(2)
1 (t), φr,1(t),

r = 1, . . . , p, is non-zero.

In practice, motivated by the representations (5)–(7), we shall model the
coefficients φr(t) and their components φr,1(t) and φr,2(t) as

φr,j(t) =
Hj∑

mj=1

(
a(j)

r,mj
cos(

2πmjt

sj
) + b(j)r,mj

sin(
2πmjt

sj
)
)
, j = 1, 2, (11)

assuming H2 < s2/s1 (which ensures that indices m2 in (11) are not multiples
of s2/s1). The indices j = 1 and j = 2 in (11) correspond to s1-periodic and
s2-periodic components, respectively. Modeling periodic time series through the
(reduced) Fourier representations of their coefficients goes back at least to Jones
and Brelsford [17]. See also Dudek et al. [8] and references therein.

The parameters μ0, μ1(t), μ2(t), σ2
0 , σ

(2)
1 (t), σ

(2)
2 (t), on the other hand, will

be estimated in a nonparametric fashion, though a parametric route analogous
to (11) is also a possibility. Note also that σ

(2)
1 (t), σ

(2)
2 (t) are not necessarily

positive.

Remark 1. By the discussion above, the series {Xt}t∈Z in Definition 1 is also
PAR(p) with the larger period s2. We also note that our main interest here is
in such series {Xt}t∈Z which are stable, that is, for which the multivariate VAR
representation of the s2-vector series {(Xs2(t̃−1)+1,Xs2(t̃−1)+2, . . . , Xs2 t̃)

′}t̃∈Z
is

stable. Here and throughout, a prime indicates a vector or matrix transpose.
Conditions for the latter are well-known in the literature; see, for example,
Lütkepohl [19].

Remark 2. The framework described above can be extended straightforwardly
to the case of multiple periods s1, s2, . . . , sK , assuming that s1 < s2 < . . . < sK

and sK/sj are integers. Though some caution would need to be exercised in how
many terms in the Fourier representations are included when some multiples of
two periods sj1 and sj2 are the same (and smaller than sK).

2.2 Model B

We now turn to a different PAR model that builds on the idea behind the model
(1) and (3) for the mean discussed in Sect. 1. We adopt the following quite general
framework concerning two periodic effects.



Modeling Periodic Autoregressive Time Series with Multiple Periodic Effects 5

We think of each time t and observation Xt as associated with two nomi-
nal variables, that vary periodically in time, and are interested to model their
effects. We assume that the two variables have k1 and k2 levels, respectively.
We shall represent the two nominal variables by two functions g1(t) and g2(t),
assuming that they are s1-periodic and s2-periodic, respectively, and take values
{1, . . . , k1} and {1, . . . , k2}, respectively, that are associated with respective lev-
els. As above, we assume that s1 < s2 and s2/s1 is an integer. It is not necessarily
the case that sj = kj , as the following examples illustrate.

Example 1. In the application to hourly data in Sect. 5 below, the two periodic
effects will be the effect of the hour in a day and the effect of the day in a week.
For hourly data, these effects are periodic with periods s1 = 24 h (1 day) and
s2 = 24 · 7 = 168 h (1 week), respectively. The corresponding nominal variables
have k1 = 24 (hours 1 through 24) and k2 = 7 (Monday through Sunday)
levels, respectively. The effects can be captured through the two corresponding
functions g1(t) and g2(t) with the properties described above. They can also be
represented as

g1(t) = t, t = 1, . . . , 24, g2(t) = � t

24
�, t = 1, . . . , 168, (12)

where �x� denotes the ceiling integer part of x, and then extended periodically
with their respective periods.

Example 2. One could have the second variable (function) in Example 1 having
only k2 = 2 levels (values), for workdays and weekends. Similarly, the first vari-
able (function) in Example 1 could have k2 = 4 levels (values), for night hours
(1–6AM), morning hours (6AM–12PM), afternoon hours (12–6PM) and evening
hours (6PM–12AM).

Definition 2. A time series {Xt}t∈Z is type B periodic autoregressive of order p
(B–PAR(p)) with two periodic effects if

Xt = μ(t) + Yt, (13)
Yt = φ1(t)Yt−1 + . . . + φp(t)Yt−p + σ(t)εt (14)

with {εt}t∈Z ∼ WN(0, 1) and

μ(t) = μ0 + μ1(g1(t)) + μ2(g2(t)),
σ(t)2 = σ2

0 + σ
(2)
1 (g1(t)) + σ

(2)
2 (g2(t)),

φr(t) = φr,0 + φr,1(g1(t)) + φr,2(g2(t)), r = 1, . . . , p,

(15)

where the functions g1(t) and g2(t) are defined before Example 1, are associated
with two nominal variables and are s1-periodic and s2-periodic, respectively.

Definition 2 requires further clarification. With f(t) denoting μ(t), σ(t)2 or
φr(t), let

f(t) = f0 + f1(g1(t)) + f2(g2(t)) (16)
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be the decomposition analogous to those in (15). Recall from above that gj(t)
takes an integer value from 1 to kj , which we shall denote by uj . Thus, fj acts
on a value uj as fj(uj), where uj = gj(t). For identifiability purposes, we assume
that

kj∑

uj=1

fj(uj) = 0, j = 1, 2. (17)

We also note that the function fj(gj(t))) is sj-periodic, j = 1, 2, and hence, with
our assumptions on s1, s2, the function f(t) is s2-periodic with the larger s2.

The function fj(uj), j = 1, 2, uj = 1, . . . , kj , can be expressed through a
Fourier representation as

fj(uj) =
�kj/2�∑

mj=1

(
f
(j)
1,mj

cos(
2πmjuj

kj
) + f

(j)
2,mj

sin(
2πmjuj

kj
)
)
. (18)

In practice, to have fewer coefficients to estimate, we shall model the coefficients
φr(t) and their components as

φr,j(uj) =
Hj∑

mj=1

(
a(j)

r,mj
cos(

2πmjuj

kj
) + b(j)r,mj

sin(
2πmjuj

kj
)
)
, (19)

where Hj ≤ �kj/2�. The parameters μj(uj), σ
(2)
j (uj), j = 1, 2, on the other

hand, will be estimated in a nonparametric fashion, though again a parametric
route analogous to (19) is also a possibility.

Example 3. We continue with the setting of Example 1. In this example, by
combining (12) and (19), the functions φr,j(gj(t)) are modeled as

φr,1(g1(t)) =
H1∑

m1=1

(
a(1)

r,m1
cos(

2πm1t

24
) + b(1)r,m1

sin(
2πm1t

24
)
)

(20)

and

φr,2(g2(t)) =
H2∑

m2=1

(
a(2)

r,m2
cos(

2πm2�t/24�
7

) + b(2)r,m2
sin(

2πm2�t/24�
7

)
)
. (21)

We note again that the function φr,1(g1(t)) is 24-periodic, and that φr,2(g2(t))
is 168-periodic but also constant over successive intervals of length 24.

Remark 3. The framework described above can be extended straightforwardly
to the case of multiple periodic effects, by introducing additional functions gj(t)
associated with these effects.

Remark 4. As A–PAR(p) models discussed in Remark 1, B–PAR(p) models are
also PAR(p) models with the larger period s2. It is instructive here to contrast
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the two introduced models from the perspective of these standard PAR models.
A PAR(p) model with period s2 has its coefficients vary periodically with period
s2. These coefficients can always be expressed through a Fourier representation.
In the applications of the A–PAR model, only a small number of these Fourier
coefficients are assumed to be non-zero, more specifically, the first few in the
Fourier representation and also the first few in the component of the represen-
tation that is s1-periodic. The B–PAR model, on the other hand, assumes that
the periodicity consist of two additive effects associated with two periodic nom-
inal variables. The latter effects do not need to be components of the Fourier
representation of the model coefficients (as, for example, the coefficients (21)
above).

Remark 5. The preceding remark also suggests that A–PAR and B–PAR mod-
els might serve quite different purposes. By increasing the number of non-zero
coefficients in the A–PAR model Fourier representation, one could effectively
get any PAR model with period s2. From this perspective, the A–PAR model is
quite flexible. With the B–PAR model, on the other hand, one might be more
interested in which effects and which of their levels are more pronounced in the
dynamics of the PAR process. This is illustrated further in our application to a
real data set in Sect. 5.

3 Estimation Procedure

We discuss here estimation of the parameters μ(t), σ(t)2 and φr(t) of the
A–PAR and B–PAR models, using the Fourier representations (11) and (19)
of the parameters. The way the A–PAR and B–PAR models were introduced
allows us to present essentially a unified estimation framework. We suppose that
the observed data consist of observations X1, . . . , XT , where the sample size T
is a multiple of both s1 and s2 for simplicity.

3.1 Estimation of Mean

For an A–PAR model, we estimate the means as μ̂0 = X (the overall mean),

μ̂1(t) =
1

(T/s1)

T/s1∑

n=1

(Xt+s1(n−1) − X), t = 1, . . . , s1, (22)

and extended periodically with period s1 for other t’s, and

μ̂2(t) =
1

(T/s2)

T/s2∑

n=1

(Xt+s2(n−1) − μ̂1(t)), t = 1, . . . , s2, (23)

and extended periodically with period s2 for other t’s. Once can check that
μ̂(t) = μ̂0 + μ̂1(t) + μ̂2(t) is just the periodic mean at period s2. For a B–PAR
model, the mean effects are estimated through a least squares regression of Xt

on the two nominal variables described in the beginning of Sect. 2.2. Again, let
μ̂(t) be the overall estimated mean which is generally different from that for the
A–PAR model (see Fig. 1 in Sect. 5 for an illustration).
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3.2 OLS Estimation

Let Ŷt = Xt − μ̂(t). In applying the ordinary least squares (OLS), the model
parameters are estimated as

{
φ̃r,0, ã

(j)
r,mj

, b̃(j)r,mj

}

r=1,...,p,mj=1,...,Hj ,j=1,2

= argmin
φr,0,,a

(j)
r,mj

,b
(j)
r,mj

∑

t

(Ŷt − φ1(t)Ŷt−1 − . . . − φp(t)Ŷt−p)2, (24)

where φr(t) = φr,0 + φr,1(t) + φr,2(t) and φr,j(t) are given in (11) or (19),
depending on the type of the model. Let φ̃r(t) be the resulting OLS parameter
estimators. Consider also the errors

η̃t = Ŷt − φ̃1(t)Ŷt−1 − . . . − φ̃p(t)Ŷt−p. (25)

The model parameter σ(t)2 and its components σ2
0 , σ

(2)
1 (t), σ

(2)
2 (t) could then be

estimated analogously to the mean μ(t) and its three components as in Sect. 3.1
but replacing Xt with η̃2

t . We shall refer to η̃t/σ̃(t) as the residuals from the OLS
estimation.

Remark 6. There are several potential issues with the suggested estimation of
σ(t)2 that, in particular, are encountered in the application in Sect. 5. When
T/s2 is small (e.g. T/s2 = 6 in the application considered below) and σ̃(t)2 is
computed as the s2-periodic sample mean, note that the estimation of each σ(t)2

involves just T/s2 error terms (e.g. 6 in the application below). The quality of
estimation of σ(t)2 is then dubious, and we try to rectify this by slightly smooth-
ing the estimates over time. This procedure does have some minor effect on the
estimates and their standard errors, and might call for further investigation in
the future. (We do not perform smoothing when estimating the mean μ(t) since
we expect these estimates to be already quite smooth.) On the other hand, for
Model B, we also note that the suggested procedure is not guaranteed to yield
nonnegative estimates of σ(t)2, which also happens in our application. In this
case, we use the estimates of σ(t)2 obtained for Model A.

3.3 WLS Estimation

Having the OLS estimate σ̃(t)2 of the variance of the error terms, the model
parameters could be reestimated by using the weighted least squares (WLS) as

{
φ̂r,0, â

(j)
r,mj

, b̂(j)r,mj

}

r=1,...,p,mj=1,...,Hj ,j=1,2

= argmin
φr,0,,a

(j)
r,mj

,b
(j)
r,mj

∑

t

(Ŷt − φ1(t)Ŷt−1 − . . . − φp(t)Ŷt−p)2/σ̃(t)2. (26)

Likewise, the variance σ(t)2 could be reestimated as σ̂(t)2 by using the model
errors based on the WLS estimates (and this process could be iterated till conver-
gence occurs), with possible modifications discussed in Remark 6 above. Letting
η̂t be the error terms from the WLS estimation, defined similarly to (25), the
WLS residuals are defined as η̂t/σ̂(t).
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4 Inference and Other Tasks

In the implementation of the OLS and WLS estimation, a PAR(p) model is
expressed in the form of a linear regression as

Y = Rα + Z. (27)

For example, for an A–PAR(p) model, Y = (Ŷp+1, . . . , ŶT )′ is a (T −p)–vector of
periodically demeaned observations Ŷt, α = (α′

1 . . . α′
p)

′ is a ((1+2H1 +2H2)p)–
vector of parameters with

αr = (φr,0, a
(1)
r,1 , . . . , a

(1)
r,H1

, b
(1)
r,1 , . . . , b

(1)
r,H1

, a
(2)
r,1 , . . . , a

(2)
r,H2

, b
(2)
r,1 , . . . , b

(2)
r,H2

)′,

the regressors R can be expressed as a (T − p) × ((1 + 2H1 + 2H2)p) matrix
(Rp+1 . . . RT )′ with Rt = (Ip ⊗ Bt)Yt,lags, Yt,lags = (Yt−1, . . . , Yt−p)′,

Bt =
(
1, cos(

2πt

s1
), . . . , cos(

2πH1t

s1
), sin(

2πt

s1
), . . . , sin(

2πH1t

s1
),

cos(
2πt

s2
), . . . , cos(

2πH2t

s2
), sin(

2πt

s2
), . . . , sin(

2πH2t

s2
)
)′

and Z refers to the error terms. Within the linear formulation (27), the OLS and
WLS parameter estimators and their standard errors have well-known expres-
sions in terms of R and Y , which we use here as well but omit for the shortness
sake.

In addition to the OLS and WLS estimation as outlined above, we also use
their counterparts when some of the coefficients are set to 0. We shall refer to
the corresponding models as restricted PAR models. Estimation and computing
standard errors for restricted PAR models are carried out in a standard way by
expressing zero constraints through

α = Cγ, (28)

where γ is a k–vector of non-zero coefficients and C is a ((1 + 2H1 + 2H2)p) × k
restriction matrix, with rows of zeros corresponding to the zero elements of
α, and rows with a single entry of 1 corresponding to non-zero elements of α.
The OLS and WLS estimation and inference are then performed essentially by
replacing R by RC.

If needed, model selection can be guided by some information criterion, such
as BIC and AIC defined in the usual way as (−2) multiplied by the log-likelihood,
with an appropriate penalty. In the data application below, we shall be guided
by looking at parameter “significance” and suitable diagnostics plots of model
residuals. Similarly, the introduced PAR models can be used in forecasting in
a straightforward way as with standard AR models and their PAR extensions.
Out-of-sample forecasting performance could also be employed as another tool
for selecting a model.
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Remark 7. Under mild assumptions on the residuals {εt} in the A–PAR and B–
PAR models (with typical assumptions being the i.i.d. property and finiteness
of the 4th moment), the parameter estimators {φ̃r,0, ã

(j)
r,mj , b̃

(j)
r,mj} in (24) and

{φ̂r,0, â
(j)
r,mj , b̂

(j)
r,mj} in (26) (assuming the true variance σ2(t) is used in estima-

tion) are expected to be asymptotically normal. Indeed, these estimators are lin-
ear transformations of the analogous PAR model parameter estimators {φ̃r(t)}
and {φ̂r(t)}. The asymptotic normality of the latter under mild assumptions
is proved in Basawa and Lund [2], Anderson and Meerschaert [1]. The analo-
gous linear transformation argument to establish the asymptotic normality of
the coefficient estimators in the Fourier representation of the parameters is also
used in Tesfaye et al. [21].

Fig. 1. Left: Weekly demeaned energy volume series for 6 weeks. Right: The volume
series for week 2 with estimated means according to Models A and B.

5 Data Application

To illustrate our proposed models, we shall work with a time series of hourly
electricity volumes from Nord Pool Spot Exchange.1 This data was considered
in a number of other works related to periodically correlated series, for example,
Dudek et al. [7]. We consider the series for 6 weeks in 2008, and remove the weekly
mean from the data. The length of the series is thus T = 1, 008. Note that 6
weeks (1 week being the period of the underlying PAR model) are sufficient for
our modeling purposes since the number of parameters is reduced considerably
through the Fourier representations. For example, a small number of non-zero
coefficients in the Fourier representation could be estimated, in principle, even
from the data covering just one period. The resulting series is presented in Fig. 1,
left plot. The right plot of the figure presents one week of the series with the
mean effects estimated according to Models A and B. In the rest of the section,
we shall fit Models A and B to the periodically demeaned series, that is, the
difference between the observed and fitted values in Fig. 1, right plot.
1 http://www.npspot.com.

http://www.npspot.com
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5.1 Fitting Model A

Figure 2 depicts the periodically demeaned series according to Model A, and
its sample PACF. The sample PACF suggests including lags 1, 2 and 24 into
an autoregressive model. Figure 3 presents two commonly used plots to detect
periodic correlations: the spectral coherence plot according to Hurd and Gerr
[15] (left plot of the figure), and a related test statistic with a critical value line
from Lund [18] (right plot; with a tuning parameter M = 10 in Lund [18]).
See also Hurd and Miamee [16], Sects. 10.4 and 10.5 The spectral coherence is
plotted using the R package perARMA [9].

Fig. 2. Left: Periodically demeaned volume series for 6 weeks (Model A). Right: The
corresponding sample PACF.

If a series exhibits periodic correlations at period s, the spectral coherence
plot should have diagonal lines emerging at multiples of the index T/s. Here,
T/s = 1, 008/s. The plot in Fig. 3 suggests the first major diagonal line around
the index 40. In fact, it corresponds to the period s1 = 24 with T/s1 = 42. There
are also traces of diagonal lines at indices smaller than 42 but it is difficult to
say for sure what these indices are. The latter could be determined easier from
the Lund test statistic plot, which essentially averages the spectral coherence
statistic at different indices along the corresponding diagonals, and also provides
a critical value (the horizontal dashed line in the plot). As expected, the Lund
test statistic has a large value at index 42. But note also that the values are larger,
some above the critical values, at multiples of the index 6. This index corresponds
to the period s2 = 168 (1 week) since T/s2 = 6. We thus conclude from these
plots that periodic correlations are present in the periodically demeaned series
at both periods s1 = 24 and s2 = 168.

We also see the presence of periodic correlations at the two periods s1 =
24 and s2 = 168 when fitting Model A. We shall report here on our fitting
attempts for A–PAR(p) models of orders p = 2 and p = 26, to accomodate
the partial autocorrelations seen at these lags in Fig. 2. Experimenting with
various restricted A–PAR(2) models, we settled on the model with the following
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Fig. 3. Left: The spectral coherence plot for periodically demeaned volume series for 6
weeks (Model A). Right: The Lund test statistic for the same series with a horizontal
dashed line indicating the critical value.

non-zero WLS estimated coefficients, with the standard errors indicated in the
parentheses: at lag 1,

φ̂1,0 = 1.104 (0.025),

â
(1)
1,5 = −0.291 (0.038), â

(1)
1,10 = −0.102 (0.037),

b̂
(1)
1,7 = 0.202 (0.036), b̂

(1)
1,9 = 0.081 (0.041),

â
(2)
1,1 = 0.023 (0.012)

and at lag 2,

φ̂2,0 = −0.178 (0.025),

â
(1)
2,5 = 0.245 (0.038), â

(1)
2,10 = 0.084 (0.037),

b̂
(1)
2,7 = −0.195 (0.036), b̂

(1)
2,9 = −0.082 (0.040).

Note that only one non-zero coefficient, namely â
(2)
1,1, is included in the component

for period s2 = 168. The resulting WLS estimated parameter functions φ̂1(t)
and φ̂2(t) are plotted in Fig. 4. The component of the mean with the non-zero
coefficient â

(2)
1,1 at period s2 = 168 produces a “global” trend in the coefficients

φ̂1(t) over the 168 h, which is clearly visible in the left plot. Without this global
trend, the coefficients can be checked to be close to what one would get from
fitting a standard PAR(2) model with period s1 = 24.

Figure 5 depicts the sample ACF and the Lund test statistic for the WLS
residuals of the fitted A–PAR(2) model. Note some remaining autocorrelations
around lag 24, which should not be surprising since we fitted a PAR model of
order p = 2. The plot with the Lund test statistic is depicted using the same
vertical scale as in Fig. 3: the peaks at dominant indices have become smaller in
general but are not completely negligible.
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Fig. 4. The WLS estimated parameter functions ̂φ1(t) and ̂φ2(t) of the fitted A–PAR(2)
model.

Fig. 5. The sample ACF and the Lund test statistic for the WLS residuals of the fitted
A–PAR(2) model.

To remove the remaining autocorrelations in the residuals, one could fit an A–
PAR(p) model of higher order p. (Another possibility would be to use a seasonal
PAR model as in Basawa et al. [3].) In analogy to non-periodic seasonal models,
we have experimented with fitting restricted A–PAR(26), by allowing some of
the coefficients at lags 24, 25 and 26 to be non-zero. We shall not report here the
fitted models but rather indicate several key observations. We found significant
periodicity in the coefficients φ24(t), φ25(t) and φ26(t), but also only in the
component with period s1 = 24. Typical sample ACF and Lund statistic plots
for the WLS residuals of a fitted restricted A–PAR(26) are presented in Fig. 6.
Note the smaller autocorrelations around multiples of lag 24 compared to those in
Fig. 5. The Lund statistic plot continues having several peaks above the critical
value line but their locations are no longer multiples of 6. (For example, the
largest peak is no longer at 42.) It remains to clarify what might cause this shift
in indices where peaks are present.
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5.2 Fitting Model B

We now turn to fitting Model B and follow a similar presentation structure as
for Model A in the previous section. Figure 7 presents similarly the periodically
demeaned volume series according to Model B and its sample PACF. Figure 8
depicts the spectral coherence and Lund statistic plots. Note that the diagonal
lines at the multiples of the indices 6 and 42 in the coherence plot, as well as
the peaks at these indices in the Lund statistic plot, are much more pronounced
compared to those in Fig. 3. This interesting difference is due to the way the
mean effect is computed in Model B.

When fitting a B–PAR(2) model with H1 = 10 and H2 = 3 in the represen-
tations (20) and (21), and then reestimating it through a restricted B–PAR(2)
model when including only the significant coefficients from the non-restricted
model, leads to the following significant non-zero coefficients: at lag 1, φ1,0,

Fig. 6. The sample ACF and the Lund test statistic for the residuals of the fitted
restricted A–PAR(26) model.

Fig. 7. Left: Periodically demeaned volume series for 6 weeks (Model B). Right: The
corresponding sample PACF.
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Fig. 8. Left: The spectral coherence plot for periodically demeaned volume series for
6 weeks (Model B). Right: The Lund test statistic for the same series with a horizontal
dashed line indicating the critical value.

Fig. 9. The estimated parameter functions ̂φ1(t) and ̂φ2(t) of the fitted B–PAR(2)
model.

a
(1)
1,m1

: m1 = 2, 3, 6, 7, 8, 9, b
(1)
1,m1

: m1 = 3, 4, 6, 9, 10,

a
(2)
1,m2

: m2 = 1, 3, b
(2)
1,m2

: m2 = 2,

and at lag 2, φ2,0,

a
(1)
2,m1

: m1 = 1, 2, 3, 7, 8, 10, b
(1)
2,m1

: m1 = 4, 6, 10, a
(2)
2,m2

: m2 = 1, 3.

We shall not indicate here the values and standard errors of the corresponding
WLS estimates but rather present a few revealing plots of the coefficient func-
tions. More specifically, Fig. 10 shows the WLS estimated parameter functions
φ̂1(t) and φ̂2(t) of the fitted B–PAR(2) model. Note that the effect of the day of
a week, especially that of Sunday, is more apparent in the figure when compared
to Fig. 4. This can also be seen clearer through the two components φ̂r,1(g1(t))
and φ̂r,2(g2(t)) depicted in Fig. 9, where the effects of the day (solid line) is
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Fig. 10. The estimated parameter functions ̂φ1,k(gk(t)) and ̂φ2,k(gk(t)) of the fitted
B–PAR(2) model.

Fig. 11. The sample ACF and the Lund test statistic for the WLS residuals of the
fitted B–PAR(2) model.

more pronounced towards Sunday for lag 1 and Saturday through Monday for
lag 2 coefficients.

Figure 11 depicts the sample ACF and the Lund test statistic for the WLS
residuals of the fitted B–PAR(2) model. The conclusions are not very different
from those for the A–PAR(2) model from Fig. 5. In particular, as with Model
A above, one could fit a B–PAR(p) model with higher order p to remove the
remaining autocorrelations around lag 24 in the WLS residuals.

6 Conclusions

In this work, we introduced two periodic autoregression models with two or
more periodic effects, discussed their inference and presented an application,
showing their relevance for real data. Some of the issues that can be explored in
the future include: incorporating moving average components into our models,
comparing out-of-sample forecasting performance between the introduced and



Modeling Periodic Autoregressive Time Series with Multiple Periodic Effects 17

among competing models, applications to other data sets, clarifying the role of
the used estimation methods for error variances, and others.

Acknowledgements. The second author was supported in part by NSF Grant DMS-
17-12966 at the University of North Carolina.
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Abstract. We present new results on estimation of the periodic mean function
of the periodically correlated time series that exhibits heavy tails and long mem-
ory under a weak dependence condition. In our model that is a generalization of
the work of McElroy and Politis [35,42] we show that the estimator of the peri-
odic mean function has an asymptotic distribution that depends on the degree of
heavy tails and the degree of the long memory. Such an asymptotic distribution
clearly poses a problem while trying to build the confidence intervals. Thus the
main point of this research is to establish the consistency of one of the resampling
methods - the subsampling procedure - in the considered model. We obtain such
consistency under relatively mild conditions on time series at hand. The selection
of the block length plays an important role in the resmapling methodology. In
the article we discuss as well one of the possible ways of selection the length the
subsampling window. We illustrate our results with simulated data as well as with
real data set corresponding to Nord Spool data. For such data we consider practi-
cal issues of constructing the confidence band for the periodic mean function and
the choice of the subsampling window.

Keywords: Periodically correlated time series · Weak dependence ·
Consistency of subsampling · Heavy tails · Long range dependence

1 Introduction

Our approach to model long memory is motivated by the definition of weak dependence
introduced in [17] which is different from the popular α−mixing assumption [48]. The
latter involves the distributions of the time series while the former makes the reference
to moments of functions of time series. While modeling nonstationary phenomena with
time series techniques, it is usually much easier to verify assumptions regarding the
moments than assumptions regarding the distributions.

The heavy tails that we work with will be modeled with the use of stable distribu-
tions. The stable model is quite general allowing situations when there is no variance.
Such generality, however, comes with the inconvenience of not having a closed form of
the pdf.
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Finally, the nonstationarity that we consider is of periodic type. While the formal
results will be presented and developed in the subsequent sections, here we would like to
make an emphasis on wide applicability of such approach. The time series and signals
with periodic type of behavior were very intensively studied in the last decade. Over
2000 research papers were dedicated to such models in topics ranging from climatology
to communication signals to mechanical systems monitoring (see [23]). In the context of
mechanical systems, an applied study of wheel bearings diagnostics was developed (see
[9]) where the presence of periodic behavior was detected together with nongaussian
and heavy tail properties.

This provides a motivation to develop models where dependence structure is
described via moments rather than via distributions and where heavy tails are also
present. The convenient model that is combining all these features is a Gegenbauer
process to be constructed in the subsequent section.

Many real life phenomena are characterized by a seasonal behavior. Seasonal data
appear for example in economics, biology, climatology, telecommunications. Recently,
a considerable research [12,13] was devoted to time series with second order type peri-
odicity, for example periodically correlated time series. For such time series we have
periodicity both in the mean and in the variance and covariance. In scientific literature,
such time series are referred to as periodically non stationary, periodically stationary or
cyclostationary. For a review the reader can refer to Dehay and Hurd [11], Hurd et al.
[32].

Very often periodicity of time series is concurrent with long range dependence [30,
45]. When seasonality is not difficult to remove, we can model the data by seasonal
fractional models [20,25]. Hui and Li in [30] consider the use of fractional differencing
in modeling persistence phenomenon in a periodic process. They combine periodicity
and long-memory by proposing a process consisting two independent fractional long-
memory components.

The main purpose of this paper is to present results regarding estimating the mean
function for a class of nonstationary time series that are heavy tailed and exhibit long
memory together with periodic behavior in their mean and variance.

Our paper is organized as follows. Sections 2 and 3 contain accordingly the funda-
mental definitions, the model we created and tools to be used to present our results.
In Sect. 3.1.1 we present main theorems that is a limit theorem for the synchronous
estimator of the mean and the theorem on subsampling consistency. Section 4 contains
the simulation results while Sects. 5, acknowledgments and appendix are dedicated to
conclusions, acknowledgments and proofs of the theorems.

2 Fundamental Definitions and the Model

In order to better express our concept of periodicity in time series, we recall the follow-
ing popular definition of stationarity of order r. For a more detailed discussion, we refer
the reader to the text [31].

Definition 1 ([31], p. 3). The time series {Xt}t∈Z is called strictly stationary if for each
t1, t2, t3, ..., tn ∈ Z we have

(Xt1 ,Xt2 , ...,Xtn)
d= (Xt1+1,Xt2+1, ...,Xtn+1).
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Definition 2. The time series {Xt}t∈Z is called weakly stationary of order r, (WS(r)),
if E|Xt |r < ∞ and for each t,τ1,τ2, ...,τr−1 ∈ Z and h ∈ Z,

E(XtXt+τ1 ...Xt+τr−1) = E(Xt+hXt+τ1+h...Xt+τr−1+h).

Definition 3. A time series {Xt}t∈Z is called (strictly) periodically stationary PS with
period T if, for every n, any collection of times t1, ..., tn ∈ Z, and Borel sets A1, ...,An ⊂
R,

Pt1+T,...,tn+T (A1, ...,An) = Pt1,...,tn(A1, ...,An),

and there are no smaller values of T > 0 for which above equation holds. τ ∈ Z. P is
the Distribution Function of Time Series {Xt}t∈Z and is defined as follow:
letZ be the set of all vectors {t= (t1, ...tn)

′ ∈ Zn : t1 < t2 < ... < tn,n= 1,2, ...}. Then
the (finite-dimensional) distribution functions of {Xt}t∈Z are the functions {Ft(·), t ∈
Z } defined for t= (t1, t2, ..., tn)

′
by

Ft(x) = P(Xt1+1 ≤ x1, ...,Xtn+1 ≤ xn), x= (x1, ...,xn)
′ ∈ Rn.

Definition 4. ([31], p. 3). Time series {Xt}t∈Z is periodically correlated (PC) in the
Gladyshev sense, if the mean μX (t) is periodic (μX (t) = μX (t+T )) and the autocovari-
ance function BX (t,τ) is periodic in t for all τ ∈ Z.

There is an obvious extension of the long memory time series to the case of period-
ically stationary processes PS or periodically correlated processes PC.

Definition 5. A PC or PS time series {Xt}t∈Z has a long memory if the autocovariance
function γ(s)(h) =Cov(Xs+qT ,Xs+(q+h)T ) for each q∈ Z satisfies the following formula

∑
0<|h|<n

γ(s)(h) ∼C(s)nβ , s ∈ {1, . . . ,T}

as n → ∞, where β ∈ [0,1). For each s ∈ {0, . . . ,T −1} C(s) is the finite constant such
that

C(s) = 2 · lim
n→∞

∑n−1
h=1 γ(s)(h)

nβ > 0.

In 1999 Doukhan and Louhichi [17] and simultaneously Bickel and Bühlmann [6]
introduced the concept of the weak dependence. The weak dependence is expressed
in terms of covariance of functions and exactly this framework is more convenient in
applications than the condition on distributions.

For the convenience of the readers, we are going to present the definition of weak
dependence that is establishing a relationship between the covariance and memory for
time series. It is important to note that this concept works also for non-Gaussian pro-
cesses.

Let (E,‖ · ‖) be a normed space and u ∈ N∗. Here, the symbol N∗ denotes the
positive integers without zero. Define also a classL of functions in the following way:

L = {h : Eu → R, ‖ h ‖∞≤ 1,Lip(h)< ∞},
where Lip(h) = supx 
=y

|h(x)−h(y)|
‖x−y‖1 and ‖ x ‖1= ∑u

i=1 ‖ xi ‖ . Please note thatL is a class
of bounded and Lipschitz functions defined on Eu with values on the real line. For
details, we refer the reader to [10].



22 E. Gajecka-Mirek and J. Leśkow

Definition 6. A sequence {Xt}t∈Z of random variables taking values in E = Rd (d ∈
N∗) is (ε,L ,Ψ)−weakly dependent if there exists Ψ :L ×L ×N∗ ×N∗ → R and a
sequence {εr}r∈N (εr → 0) such that for any ( f ,g)∈L ×L , and u∈N∗, v∈N∗, r ∈N

|Cov( f (Xi1 , ...,Xiu),g(Xj1 , ...,Xjv))| ≤ Ψ( f ,g,u,v)εr

whenever i1 < i2 < .. . < iu ≤ r+ iu ≤ j1 < j2 < ... < jv.

There are several versions of weak dependence and those versions depend on the
form of the function Ψ . The choice of Ψ function defines a particular type of weak
dependence. For example, we call a sequence {Xt}t∈Z λ -weakly dependent, if the func-
tionΨ is of the following form:

Ψ( f ,g,u,v) = uvLip( f )Lip(g)+uLip( f )+ vLip(g).

This means, that the covariance in the definition of weak mixing is dominated by a
sequence εr tending to zero and a function that has a mixed coefficient depending on
u · v and also a linear term in u and v.

Another examples are η-dependence and θ -dependence. We call a sequence
{Xt}t∈Z η-dependent if the functionΨ is of the following form:

Ψ( f ,g,u,v) = uLip( f )+ vLip(g).

On the other hand, we call a sequence {Xt}t∈Z θ -dependent if the function Ψ is of the
form:

Ψ( f ,g,u,v) = uLip( f ).

For η and θ weakly dependent sequences the covariance in the definition is dominated
by a sequence εr tending to zero and a function that has only linear terms in u and v.
For a more detailed discussion, the reader is refereed to the paper of [10].

Below we give a standard examples of weakly dependent time series.

Example 1 ([10], p. 8). Let us define the Bernoulli shift as a sequence Xn =
H(ξn,ξn−1, ...), where H(x) = ∑∞

k=0 2
−(k+1)xk. Then the random sequence Xn is not

mixing but is weakly dependent.

Let us give the stationary representation of Xn as Xn = ∑∞
k=0 2

−(k+1)ξn−k. Where
ξn−k is the k-th digit in the binary representation of the number coming randomly from
the interval [0,1].

Such Xn is a deterministic function of X0, so the event A= (X0 ≤ 1
2 ) belongs to the

σ−algebras: σ(Xt , t ≤ 0) and σ(Xt , t ≥ n). From definition of α-mixing we get that

α(n) ≥| P(A∩A)−P(A)P(A) |= 1
2

− 1
4
=

1
4
.

So, obviously, this sequence can not be α-mixing.
On the other hand the sequence {Xn} is η-weakly dependent (see [10], p. 25).
It is also possible to construct AR(1) model, that will be weakly dependent but it

will not be α-mixing.
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Example 2 ([14], p. 3). Define AR(1) model as: Xt = aXt−1 + εt , where |a| < 1 and
innovations {εt} are i.i.d. Bernoulli variables with parameter p = P(εt = 1) = 1−
P(εt = 0). Such AR(1) model is not α-mixing but is η−weakly dependent.

It is relatively easy to construct stationary time series that is weakly dependent. The
following result proves the point. For details, see [15].

Fact 1 ([15]). Assume that {εt}t∈Z are i.i.d centered and unit variance innovations and
define a linear process Xt as

Xt =
∞

∑
k=0

bkεt−k,

where k ∈ Z and the series bk is square summable. Then Xt is θ−weakly dependent,
where θ 2

2r = ∑k>r b
2
k .

For more examples of weakly dependent sequences see [10] and [19].
Another important feature of time series is long memory. The investigation of this

topic was started by Lawrance and Kottegoda [39], McLeod and Hipel [43], and also
by Hosking [29]. In the seminal papers of Granger and Joyeux [24] and Hosking [28] it
was proposed to use the fractional differencing in modeling this kind of data.

We would like now to present a convenient model that will combine long memory
with weak dependence and periodicity. Such a model is based on the Gegenbauer pro-
cess (see [28]) since it can combine long memory and a seasonal behavior. For the sake
of clarity, we give below the definition of the Gegenbauer process. The details can be
found in [25].

Definition 7. The process {Gt}t∈Z defined by the equation:

Π1≤i≤k(I−2νiB+B2)diGt = εt , (1)

is the k-factor Gegenbauer process. Here, 0 < di < 1/2 if |νi| < 1 or 0 < di < 1/4
if |νi| = 1 for i = 1, ...,k. Moreover, I is the identity operator and B is the backshift
operator and {εt}t∈Z is the Gaussian white noise.

The fact below comes from [19].

Fact 2. Process defined by the Eq. (1) is long memory, stationary, causal and invertible
and has a moving average representation:

Gt = ∑
j≥0

ψ j(d,ν)εt− j,

with ∑∞
j=0 ψ2

j (d,ν)< ∞, where ψ j(d,ν), j ≥ 0, is defined by:

ψ j(d,ν) = ∑
0 ≤ l1, ..., ln ≤ j
l1+ ...+ ln = j

Cl1(d1,ν1) · ... ·Clk(dk,νk),

where Cli(di,νi) are the Gegenbauer polynomials defined as follows:

(1−2νz+ z2)−d = ∑
j≥0

Cj(d,ν)z j, |z| ≤ 1, |ν | ≤ 1.
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The Gegenbauer processes are stationary, seasonal fractional models (see [25],
[26]). It is enough to take ν = cosϖt , with ϖt = 2π/T, where T is the length of the
season. For the sake of simplicity, in our paper we will assume that in the definition of
the Gegenbauer process the parameter k = 1.

Having defined the Gegenbauer process that combines long memory and seasonal
behavior we now will model the heavy tailed part of our data. For that, we will use the
stable distributions. Let us recall the definition of the stable distribution. For details, we
refer the reader to [49].

Definition 8. A random variable X has a stable distribution if there exist parameters:
0 < α ≤ 2, −1 ≤ sk ≤ 1, σ > 0 and μ ∈ R such that the characteristic function of X
has a form:

ϕ(t) =
{
exp{−τα |t|α(1− i · sk · sgn(t)tgπα

2 )+ iμt}, α 
= 1
exp{−τ|t|(1+ i · sk · 2

π sgn(t)ln|t|)+ iμt}, α = 1

The index α ∈ (0,2] is frequently called the stability index, sk ∈ [−1,1] is the skew-
ness parameter, τ > 0 is the scale parameter and μ ∈ R is the location parameter.

The stable variables are very convenient to use in many applications, especially in
modeling heavy tailed phenomena. However, the inconvenience of working with α-
stable distributions for α < 2 is that they will not have second order moments.

2.1 The Model

We build a long-memory periodic process with period T by adjusting a long memory
stationary model to the T-variate process. The model will be simultaneously dealing
with three features of time series: periodicity, long memory and heavy tails.

Let the time series {Xt}t∈Z be defined as:

Xt = σtGGt +η(t), (2)

where

A1 The volatility time series σt and the Gaussian-Gegenbauer time series GGt are
independent

A2 The sequence of random variables σt is i.i.d coming from α-stable family.
A3 GGt is periodic Gaussian-Gegenbauer time series defined as

GGt = f (t) ·Gt .

In the above equality,Gt is Gaussian-Gegenbauer mean zero time series with k=
1, | ν |≤ 1, LM(β ) with β ∈ [0,1). The function f (t) is periodic, deterministic,
bounded with a known period T. The autocovariance of Gt is denoted as γG.

A4 The deterministic function η(t) is periodic with the same period T as f (t).

Comment 1. Note that β = 2d, where d is the parameter from the definition of the
model (2) and β is the long memory parameter from Definition 5.

A similar model to (2) was considered by Politis and McElroy (see [42]). However,
the Authors did not consider the Gegenbauer processes as the representation for long
memory.
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2.2 Properties of the Model

Fact 3. Process Xt defined by Eq. (2) has long memory in the sense of the Definition 5,
with β ∈ [0,1).

The proof of the Fact follows directly from the Definition 5. �
Theorem 1. For each s = 1, ...,T the Gaussian - Gegenbauer process GGs+pT is not
strong mixing, but it has weak dependence properties. This means that Xt defined by
the Eq. (2) is also weakly dependent. More precisely, the model defined by the Eq. (2) is
λ−weakly dependent, for each s= 1, ...,T.

Proof of the above theorem is in the Appendix.
The properties above provide a clear motivation to study heavy-tailed and weakly

dependent structures. In the subsection below we provide a study of volatility with
heavy tails.

Define the volatility process in the model (2) as follows:

σt =
√

εt ,

where εt are i.i.d. α/2-stable with skewness parameter equal to one, scale parameter
(cos(πα/4))2/α , and a location parameter μ = 0. From the research of Taqqu ([49],
Propositions 1.2.16 and 1.2.17), we know that E(σ) = E(σt) is finite and bigger than
zero. The construction of Xt is based on sub-Gaussian process ([49], p. 142).

We also have the following.

Theorem 2. The marginal distributions of Xt defined by the Eq. (2) are SαS with the
scale parameter

τ(Xt) = | ft |
√

γG(0)/2
and the mean ft ·E(σ), t = 1, ...,NT where NT is the number of observation and T is
the length of the period.

The proof of the above fact follows from [49], Propositions 1.2.3 and 1.3.1.
If the volatility in model (2) has a stable distribution then the second moment of

process Xt is infinite, so Xt is not second-order. Thus the model (2) is not periodically
correlated in the sense of Gladyshev, since it does not have variance. However, it is
periodically stationary (PS for short). In such a way we have succeeded in constructing
a heavy tailed, long memory, weakly dependent and not α-mixing time series that has
infinite variance, finite covariances that is also periodically stationary in the sense of
Definition 4. This statement is explained by the following

Comment 2. The Xt defined by the Eq. (2) does not have variance, but it has periodic
autocovariance function γ(t+T,h)< ∞ for h 
= 0.

Indeed:

γ(t+T,h) = ft+T ft+T+h(Eσ)2γG(t+T,h)
= ft+T ft+T+h(Eσ)2γG(h) = ft ft+h(Eσ)2γG(t,h) = γ(t,h).

The following section will be dedicated to statistical inference in our model (2). We
will focus on constructing the estimator of the mean function ηt , proving the central
limit theorem for the estimator under weak dependence, heavy tails and long memory.
Finally, we will prove that subsampling of such estimator is consistent.
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3 Main Results

3.1 The Estimator and Its Properties

One of the main objectives of this paper is to study the subsampling procedure for
the estimator of the mean function η(s) in model (2). In order to do that, we will
have to define the estimator η̂N(s) for s = 1, . . . ,T . We will also have to study the
asymptotic properties of such estimator. Let us assume, that we have a given sample
(X1,X2,X3, ...,Xn) from a series {Xn} with properties such as (2). Without a loss of gen-
erality, let us assume that our sample size n is equal n = NT , where T is the known
period. This essentially means, that we assume that the sample size is proportional to
the length T of the period. This notation reflects how many periods are there in n obser-
vations.

We start with the definition.

Definition 9. We define the estimator η̂N(s) of η(s) as:

η̂N(s) =
1
N

N−1

∑
p=0

Xs+pT , s= 1,2, . . . ,T, (3)

where T is the known period.

Define
ζ = max{1/α,(β +1)/2},

where α is the heavy tails parameter and β is a long memory parameter.
Let us also define PCFN(s) - the modified sample partial autocorrelation function

that estimates the long memory (see also [42]):

Definition 10

PCFN(s) = |
[N1/2]

∑
|h|=1

1
N−|h|

N−|h|
∑
p=0

(Xs+pTXs+pT+hT − η̂2
N(s))|2, (4)

where s= 1,2, . . . ,T.

The above defined function (4) plays an important role in formulating the limiting
distribution of the estimator (3).

We are ready now to formulate the central limit theorem for the estimator (3).

3.1.1 Central Limit Theorem
We need to define the following sequences of random variables:

AN(s) = N1−ζ (η̂N(s)−η(s)),

BN(s) = N−2ζ
N−1

∑
p=0

(Xs+pT − η̂N(s))2,

CN(s) = N−2ζ+1PCFN(s).

Recall, that in the above definitions s ∈ {1, . . . ,T} where T is the length of the period.
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Theorem 3. Assume A1 through A4 from the definition of the model (2).
Then the following joint weak convergence holds:

(
AN(s),BN(s),CN(s)

) d⇒
⎧⎨
⎩

(S(s),U(s),0), i f 1/α > (β +1)/2
(V (s),0,μ4C(s)2), i f 1/α < (β +1)/2
(S(s)+V (s),U(s),(E(σ))4C(s)2), i f 1/α = (β +1)/2.

(5)

The symbol
d⇒ denotes the convergence in distribution.

To have a more convenient way of expressing the central limit theorem we will
introduce the sequence PN(s) of random variables defined as:

PN(s) =
AN(s)√

BN(s)+CN(s)
.

Define also a random variable Q by

Q=

⎧⎨
⎩

S(s)/
√
U(s), i f 1/α > (β +1)/2

V (s)/μ2C(s), i f 1/α < (β +1)/2
(S(s)+V (s))/

√
U(s)+(E(σ))4C(s)2, i f 1/α = (β +1)/2.

Recall, that the function C(s) was defined in Definition 5. We have the following

Corollary 1. Assume A1 through A4 from the definition of the model (2).
Then

PN(s)
d⇒ Q.

In the above convergence of PN we have that S(s) is a SαS variable with zero
location parameter, and scale | f (s)|√γG(0)/2, s= 1, . . . ,T. Moreover, V (s) is a mean
zero Gaussian variable with variance C̃(s)μ2/(β + 1), where C̃(s) = | f (s)|2 · (C(s)−
γG(0)I{β=0}). Additionally, we have that S(s) and V (s) are independent.

The random variablesU(s), s= 1, . . . ,T are α/2 stable with zero location parame-
ter, skewness, and scale proportional to f 2s γG(0). The random variables V (s) are inde-
pendent ofU(s), but S(s) andU(s) are dependent.

Proofs of the Theorems 3 and 1 are in Appendix.
Let us summarize the results of the section above. The Eq. (2) in the beginning

of this section is introducing the equation of our model. It is the Gegenbauer process
scaled by heavy tails volatility time series. We have considered the cases of heavy tails
behavior: the case of α-stable distributions. The fundamental assumptions necessary
for further work are A1 through A4 listed under the model equation (2). The natural
estimator of the unknown periodic mean function (2) is introduced in (Sect. 3.1.1). For
this estimator we have a central limit theorem in which we clearly see the impact of
the long memory assumption and heavy tails. It is quite straightforward to see that it
is quite difficult to get the asymptotic confidence intervals for η(s) (see (2)) due to a
very complicated form of the asymptotic distribution. Therefore, the problem of finding
confidence bands for our unknown mean function η(s) can be solved using the concept
of subsampling. In the next section we will introduce that concept and we will prove
that it provides quantiles that are asymptotically valid which means that subsampling is
consistent.
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3.2 Subsampling

Subsampling is one of the resampling methods available for time series. From the
research of Hall and Lahiri [33,38] we know that for the long-range dependent time
series subsampling provides consistent procedure. In the presence of the long-range
dependence, however, many other known resampling procedures (e.g. Moving Block
Bootstrap, see [37]) fail to provide reliable results.

Let us assume, that we have sample (X1,X2,X3, ...,Xn) from a series {Xn}with prop-
erties such as (2). Recall that our sample size n is equal n = NT . We will use the fol-
lowing form of subsampling:

• Step 1
For each s= 1, . . . ,T the estimator η̂N(s) is recomputed from the (Xs, . . . ,Xs+(N−1)T )
over “short” overlapping blocks of length bs . The block length bs depends on the
length of the sample as well as on s ∈ {1, . . . ,T}.

• Step 2
From Step 1 N−bs+1 statistics are obtained for each s. In our context those will be
abs(η̂N,bs,i(s)− η̂N(s)) where η̂N,bs,i(s) is subsamplig version of the estimator η̂N(s)
and abs is the normalizing sequence.

• Step 3
We calculate the empirical distributions:

LN,bs(s)(x) =
1

N−bs+1

N−bs+1

∑
i=1

I{abs (η̂N,bs,i(s)−η̂N(s))≤x}.

We use LN,bs(s)(x) to approximate the asymptotic distribution L(s)(x) of the estima-
tor aN(η̂N(s)−η(s)).

The fundamental problem with subsampling procedure is its consistency. In partic-
ular, we need to prove that finite sample quantiles generated by the subsampling proce-
dure converge asymptotically (N → ∞) to the quantiles of the asymptotic distribution.

The following subsection presents our central result - the consistency of subsam-
pling.

3.3 Consistency of the Subsampling Method

To prove the consistency of the subsampling procedure we usually start by studying if
there exists a non-degenerated asymptotic distribution L(s)(x) of the statistic LN(s)(x).
It is not necessary to know the form of the asymptotic distribution. In our case this is
already done since we have already established the central limit theorem so LN(s)(x) is
the distribution of the normalized estimator AN(s) defined just before the statement of
the central limit theorem. Therefore, the conclusion from the central limit theorems is
that the empirical distribution functions converge weakly to the cumulative distribution
functions of the limit random variables

LN(s)(x) → L(s)(x) i f N → ∞, s= 1, . . . ,T.

Denote the density of the limit distribution by L′(s). We know that for stable distribu-
tions we have ‖ L′(s) ‖∞< ∞ (for details see [40]).

We are now ready to formulate the subsampling consistency theorem.
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Theorem 4. AssumeA1 throughA4. The consistency of the subsampling method holds,
which means in particular that:

1. If x is the point of the continuity of L(s), then LN,bs(s)(x)
p−→ L(s)(x).

2. If L is continuous then supx |LN,bs(s)(x)−L(s)(x)| p−→ 0.
3. If L(s) is continuous in c(1−q) (where (c(1−q) is a q−quantile) then if N → ∞

P{N1−ζ
N−1

∑
p=0

(η̂N(s)−η(s))< cN,bs(1−q)} → 1−q.

where cN,bs(1−q) is the (1−q)-quantile of the LN,bs(x,s).
Proof can be found in the Appendix.

4 Simulation Study

4.1 Choosing bs

One need to be careful in choosing bs. It cannot be too small of course, but also it can’t
be too big otherwise the subsamlpling will not work (see [4]).

We remind that

LN,bs(x) =
1

N−bs+1

N−bs+1

∑
i=1

I{absPbs≤x},

LN(x) =
1
N

N

∑
i=1

I{aN(s)PN(s)≤x}

and

L(x) = P(aNPN ≤ x)).

Let

L̄bs(x) =
1

N−bs+1

N−bs+1

∑
i=1

I{Pbs≤x}

L̃bs(x) = P(Pbs ≤ x)

Lemma 1. If the sequence Xt is stationary and weak dependent, then L̄b(x) = L̃b(x)+
oP(1), N → ∞.

The above Lemma is a simple corollary from the consistency of the subsampling
method theorem.

Lemma 2. Let k0 = sup{x : L(x) = 0} and k1 = in f{x : L(x) = 1} and assume that L(x)
is continuous and strictly increasing on (k0,k1) as a function of x. If the consistency of
the subsampling method theorem is fulfilled then

abL̄
−1
b (x) = L−1(x)+oP(1), (6)

for any x ∈ (0,1) and N → ∞.
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Proof can be found in Appendix.
In order to choose the block length we will use a simple empirical tool proposed by

Bertail [4].

Assuming that aN = N−ζ and taking logarithm in the Eq. (6) we get:

log(|L̄−1
bs
(x)|) = log(L−1(x))+ζ log(bs)+oP(1).

If we take any pi 
= p j ∈ (0,1) and draw log of some quantile range of subsampling
distribution

|L̄−1
bs
(pi)− L̄−1

bs
(p j)| = ζ log(bs)+ |L−1(pi)−L−1(p j)|+oP(1)

we will get the diagram based on which we can make the best choice of b. The best
choice of b (see [4]) is the largest one before the “unstable” behavior begins. We provide
an example on Fig. 1. The R program was used to obtain the simulations.

Fig. 1. The example of choosing b for the process Xs+p+T with parameters α = 1.5, β = 0.3 and
s= 5, T = 24.

In the sequel, on the Figs. 2, 3, 4 and 5, the simulation study for the
mean is introduced. We assume that the mean function η is periodic function
η(t) = 2cos(π · t/24), for t ∈ Z.

For each s = 1, . . . ,24, we found subsample size bs by the method described by
Bertail [4] and then draw the equal-tailed and symmetric 95% confidence intervals. The
R program was used to obtain the simulations.

For the simulation study we chose the Gaussian Gegenbauer process with k = 1,
innovations with mean zero and variance 1, ν = 1 In this case the autocorrelation func-
tion is equal as follow [49]:

γGG(h) =
Γ (1−β )

Γ (β/2)Γ (1−β/2)
hβ−1

γGG(0) =
Γ (1−β )

Γ 2(1−β/2)
.
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The constant C in the definition of long memory for each s= 1, . . . ,T is:

C(s) = μ2 f 2s
Γ (1−β )

β/2Γ (β/2)Γ (1−β/2)
.

For the εt we chose α/2−stable iid random variables with the skewness parameter 1,
the location parameter 0 and the scale (cos(πα/4))2/α .

The number of observations is NT = 10320, period T = 24.
The two-sided 1− q equal-tailed confidence interval for η(t) were constructed as

follows: [
η̂N(s)− σ̂N(s)√

N
cN,bs(1−q/2), η̂N(s)+

σ̂N(s)√
N

cN,bs(q/2)
]
, (7)

where cN,bs(1−q) is the (1−q)-quantile of the LN,bs(s)(x) and

σ̂2
N(s) =

1
N

N−1

∑
p=0

(Xs+pT − η̂N(s))2+PCFN(s).

The two-sided symmetric subsampling interval for η(t) was constructed as follows:

[
η̂N(s)− σ̂N(s)√

N
cN,bs,|·|(1−q/2), η̂N(s)+

σ̂N(s)√
N

cN,bs,|·|(1−q/2)
]
, (8)

where

cN,bs,|·|(1−q/2) = in f{x : 1
N−bs+1

N−bs+1

∑
i=1

I(|PN,bs (s)|≤x) ≥ 1−q}.

In the first case we took β = 0.3 and α = 1.5. This is the “tail” case.
For each s = 1, . . . ,24, we found subsample size by the method proposed by Bertail

[4]. We chose the minimum of found b and then draw the equal-tailed and symmetric
95% confidence intervals (Figs. 2, 3).

Fig. 2. Example of equal tailed confidence interval for the mean parameter of the process Xs+p+T
with parameters α = 1.5, β = 0.3 and T = 24.
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Fig. 3. Example of symmetric confidence intervals for the mean parameter of the process Xs+p+T
with parameters α = 1.5, β = 0.3 and T = 24.

Fig. 4. Example of equal-tail confidence interval for the mean parameter of the process Xs+p+T
with parameters α = 1.6, β = 0.4 and T = 24.

In the second case we took β = 0.4 and α = 1.6. This is the “memory” case. For
each s= 1, . . . ,24, we have done the same as in previous case (Figs. 4, 5).

4.2 Real Data Application

We consider the prices from the Nord Pool electricity data facility from January 1, 2000
to January 30, 2014 and obtain 5144 daily observations [44]. The Fig. 6 shows the data.
The daily prices are computed as the average of 24 hourly prices.

We apply presented in the article subsampling to construct confidence interval for
periodic mean of the Nord Pool electricity time series [44]. Data consists 5144 daily
observations from January 1, 2000 to January 30, 2014. Daily prices were obtained as
the average of 24 hourly prices. The series considered in the article was also considered
as a series with a long memory and heavy tailed by Proietti, Haldrup and Knapik in
[47].
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Fig. 5. Example of symmetric confidence intervals for the mean parameter of the process Xs+p+T
with parameters α = 1.6, β = 0.4 and T = 24.

Fig. 6. Daily price for Nord Pool: Prices in Norwegian kroner (NOK) per MWh. The period of
observation: January 1, 2000–January 30, 2014; number of observations is 5144

Our time series were split into seven blocks according to 7 days period of length
734 each. (It is possible to use a period such as monthly or quarterly, but seven days
period seems to be the most visible.)

95% confidence interval for the means was calculated in each block.
As already mentioned the period in the time series is equal to T = 7. For each s =

1, . . . ,7, we calculated PN(s). The size of b was calculated by the method proposed by
Bertail [4] and is 200.

Construction of confidence intervals is as in Eqs. (7) and (8). Note that the construc-
tion of PN(s) does not require knowledge of parameters of memory - β and tails - α. It
is possible to estimate parameters α and β , [27]. α = 1.66, β = 0.96. Then we drew
confidence intervals for ηN(s).

We can see that the mean changes over time in the 7 day period (Fig. 7).
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Fig. 7. The confidence interval for daily price for Nord Pool; The period of observation: January
1, 2000– January 30, 2014. The scale on vertical axle is 100.

5 Conclusions

Our results provide a relatively simple and practical algorithm of estimating the mean
together with the confidence intervals in the case of heavy tailed, weakly dependent,
long memory and periodically correlated time series. The method of subsampling pro-
vides a versatile tool to create confidence intervals without the hassle of exact calcu-
lation of parameters of the asymptotic distributions of the estimator of the periodic
mean function. In the forthcoming work, we plan to apply our model to data where
other heavy tailed distributions can be introduced, for example GED distributions. In
such case, we will have an additional advantage of having all finite moments. For the
estimator defined by the Eq. 3.1.1 and when the volatility process σt is from the GED
family one can formulate the analogous limit theorem as 4. In such case, subsampling
consistency theorem could provide another versatile tool to create confidence intervals.

Acknowledgment. Both Authors would like to express their enormous gratitude to Professor
Paul Doukhan for his invaluable help while preparing this manuscript. The Author Leśkow is
supported by the grant no 2013/10/M/ST1/00096 from Polish National Center for Science NCN.

Appendix

In the appendix the proofs of some results are presented.
Proof of Fact 1

The {GGs+pT}s∈Z , for each s= 1, . . . ,T is a second ordered stationary process.
Assume that the process {GGs+pT} satisfies

• α−mixing condition
• completely regular condition and
• completely linear regular condition
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For Gaussian processes the relationship between above coefficient is as follows [36]:
ρ(k)= r(k), and α(k)≤ r(k)≤ 2πα(k). From the theorem below the Gaussian - Gegen-
bauer process can’t be strong mixing. [19] Since {εt}t∈Z in Eq. (1) is a Gaussian pro-
cess, the long memory stationary k-factor Gegenbauer process (1) is not completely
regular and hence is not strong mixing. From [15] we know that the Gaussian - Gegen-
bauer process has weak dependence properties. �
Proof of Theorem 3

The proof of the Theorem 3 is in [22], here only main points will be repeated.
Let: N(η̂N(s)−η(s)) = ∑N−1

p=0 Ys+pT , s= 1,2, ...,T where Yt = Xt −η(t) = σtGGt .

First we need to show that N−ζ ∑N−1
p=0 Ys+pT converge weakly to some random vari-

able.
Let E be the σ−field: E = σ(ε) = σ(εt , t ∈ Z). Let G be the σ−field: G =

σ(GG) = σ(GGt , t ∈ Z). From the assumption A in the definition of the model (2)
the σ−fields E and G are independent with respect to the probability measure P. The
properties of the characteristic function of normal variable sum are used in the proof.

Eexp{iνN−1/α
N−1

∑
p=0

Ys+pT} = E[E[exp{iνN−1/α
N−1

∑
p=0

σs+pTGGs+pT}|E ]]

where ν is any real number and s= 1,2, ...,T.
The inner conditional characteristic function, from the properties of Gaussian char-

acteristic function is

E[exp{iνN−1/α
N−1

∑
p=0

σs+pTGGs+pT}|E ]

= exp{− (νN−1/α)2

2

N−1

∑
p,q=0

σs+pTσs+qT fs+pT fs+qT γN(T (p−q))}, s= 1, ...,T.

This double sum is divided into the diagonal and off-diagonal terms:

N− 2
α
(N−1

∑
p=0

σ2
s+pT γG(0)+ ∑

p 
=q

σs+pTσs+qT γG((p−q)T )
)

(9)

In the case 1/α > (β + 1)/2 the off-diagonal part of (9) is OP(N1−2/αNβ ) which
tends to zero as N → ∞. The characteristic function of the diagonal part of (9) is the
characteristic function of a SαS variable with scale

√
γG(0)/2 = | fs|

√
γN(0)/2, for

s= 1,2, ...,T . (see [42]).
In the case 1/α < (β +1)/2 the formula (9) becomes

N−(β+1)(N−1

∑
p=0

σ2
s+pT γG(0)+ ∑

q 
=p

σs+pTσs+qT γG((p−q)T )
)
. (10)

The first term is OP(N2/α−(β+1)) and tends to zero as N → ∞.
The limiting characteristic function of the second part is characteristic function of a

mean zero Gaussian with variance C̃(s) = ft(C(s)− γG(0)I{β=0}).
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The case 1/α = (β + 1)/2 is the combination of the two above cases. From the
Slutsky’s Theorem we get weak convergence the sum of two independent random vari-
ables.

The next step is to show joint convergence of the first and second moment of the
model (2), for each s= 1, ..,N and p= 0, ...,N−1.

In the proof the joint Fourier/Laplace Transform of the first and second sample
moments [21] is considered.

For any real θ and φ > 0,

Eexp{iθN−ζ
N−1

∑
p=0

Ys+pT −φN−2ζ
N−1

∑
p=0

Y 2
s+pT }

= E[exp{−1
2
N−ζ

N−1

∑
p,q

σs+pTσs+qT γG((p−q)T )(θ +
√
2φWs+pT )(θ +

√
2φWs+qT )}].

The sequence of random variablesWs is i.i.d. standard normal, and is independent
of the Ys series. The information about Ws is denoted by W . The double sum in the
Fourier/Laplace Transform is broken into diagonal and off-diagonal terms.

The off-diagonal term is

N−2ζ
N−1

∑
|h|>0

N−|h|
∑
p=0

σs+pTσs+pT+hT (θ +
√
2φWs+pT )(θ +

√
2φWs+pT+hT )γG(hT ) (11)

In the case 2/α > β + 1, by the Markov inequality the off-diagonal term tends to
zero in probability as N → ∞.

In the case 2/α < β +1 (11) tends to constant (see the proof of Theorem 1 [42]).
In the case 2/α = β + 1, the off-diagonal part, for fixed s = 1,2, ...,T, tends to a

constant.
The diagonal term is examined separately (by Dominated Convergence Theorem

and above fact). Let Vs+pT = θ +
√
2φWs+pT

E[exp{−1
2

γG(0)N−2ζ
N−1

∑
p=0

σ2
s+pTV

2
s+pT}]

= E[exp{−(γG(0)/2)α/2N−αζ
N−1

∑
p=0

|Vs+pT |α}|.

While 2/α < β +1 the sum N−αζ ∑N−1
p=0 |Vs+pT |α p−→ 0.

While 2/α ≥ β + 1 (by the Law of Large Numbers) N−αζ ∑N−1
p=0 |Vs+pT |α p−→

E|V |α . By the Dominated Convergence Theorem, the limit as N −→ ∞ can be
taken through the expectation, so that E[exp{−(γG(0)/2)α/2N−αζ ∑N−1

p=0 |Vs+pT |α}] →
exp{−(γG(0)/2)α/2E|θ +

√
2φN|α12/α≥β+1}. Using the Fourier/Laplace Transform

and argumentation as in [42] we get the proof of this part of the Theorem 3.
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Using argumentation as in [42] and in [35] we obtain for s= 1, ...,T

N−βρ(L̂M(ρ,s))ρ = oP(1)

+
∣∣∣N−βρ

[Nρ ]

∑
|h|>0

1
N−|h|

N−|h|
∑
p=0

Ys+pTYs+pT+hT

∣∣∣ P−→ μ2C(s).

At last from the Slutsky Theorem we get the convergence 5.
The second convergence in (5) follows from the continuous mapping theorem

(denominators are different from zero). �
Proof of Theorem 4
Let us consider a sequence of statistics PN(s), for fixed s= 1,2, ...,T and N = 1,2, ....
LN(s)(x) = P(ZN(s) ≤ x) is cumulative distribution function of PN(s).

There exist

rN(s) = supx∈R|LN(s)(x)−L(s)(x)| −→ 0, N → ∞

For overlapping samples the number of subsamples:
Ybs,p(s) = (XN,s+pT ,Xs+(p+1)T ...,XN,s+(p+bs−1)T ), p = 0,1, ...,N−bs and the num-

ber of subsampling statistics:
PN,bs,p(s) =

√
bs(η̂N,bs,p(s)− η̂N(s))/σ̂N,bs,p(s) is N−bs+1.

Above statistics are used to approximate the distributions LN(s)(x) by empirical
distribution functions: LN,bs,p(s)(x) =

1
N−b+1 ∑N−bs

p=0 I{PN,bs ,p(s)≤x}.
For AN(s) let define subsampled statistics:

UN,bs,p(s)(x) =
1

N−b+1

N−b

∑
p=0

ϕ(
AN(s)− x

εn
).

The sequence εn is decreasing to zero and ϕ is the non-increasing continuous function
such that ϕ = 1 or 0 according to x ≤ 0 or x ≥ 1 and which is affine between 0 and 1.

It is enough to investigate the variance of UN,bs,p(s), s = 1, ...,T (Theorem 11.3.1
[46]).

VarUN,bs,p(s)(x) = (N−bs+1)−2( ∑
|h|<N−bs+1

(N−bs+1−|h|)γ(h))

here γ(h) =Cov(ϕ(AN(s)),ϕ(AN(s))).
From the assumption that we have λ−weak dependency

Cov(ϕ(AN,p(s)),ϕ(AN,p+h(s))) ≤
√
bsλh−b+1/εN

For εN = (N2(1−β )b)1/4 above covariance converge to zero. From Cesaro mean argu-
ment VarUN,bs,p(s)(x) also goes to zero.

VN,bs,p(s)(x) =
1

N−b+1

N−b

∑
p=0

ϕ(
AN(s)PN,bs,p(s)− x

εn
).
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Under condition A1 through A4 and the Theorem 3.1, [50] we have:

limN→∞|E[VN,bs,p(s)(x)−E[VN,bs,p(s)(x)]]
2| = 0.

It implies that Var(VN,bs,p(s)(x)) tends to zero, it proves point 1. of the
Theorem 4.

To prove the point 2. of the Theorem 4 we also use the Theorem 2 in [14].

limN→∞supx∈R|UN,bs,p(s)(x)−L(s)(x)| = 0,

in probability. The proof of point 3. if the 1. holds and under assumption of the model
(2) is the same as the proof of 3. in the Theorem 11.3.1 [46]. �

Proof of the Lemma 2
The proof of the Lemma 2 strictly follows from Lemma 2, [5] and Theorem 2, [14].

�
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Abstract. In this paper a simulation comparison of the bootstrap confidence
intervals for the coefficients of the autocovariance function of a periodically cor-
related time series is provided. Two bootstrap methods are used: the circular ver-
sion of the Extension of Moving Block Bootstrap and the circular version of
the Generalized Seasonal Block Bootstrap. The bootstrap pointwise and simul-
taneous confidence intervals for the real and the imaginary parts of the Fourier
coefficients of the autocovariance function are constructed. The actual coverage
probabilities, the average lengths and the average upper and lower quantiles val-
ues are calculated. On the basis of the performed simulation, the choice of the
block length that is an integer multiple of the period length is advised when the
Moving Block Bootstrap is used. Moreover, two methods for the block length
choice designed for stationary data: the Minimum Volatility Method and the app-
roach based on the logarithm of quantile are verified not to be valid for periodic
nonstationary case. Finally, a heuristic method of the block length choice is pro-
posed.

1 Introduction

Studies of periodically correlated (PC) processes were started in 1961 by Gladyshev
[14]. Time series {Xt , t ∈ Z} with finite second moments is called PC with the period d,
if it has periodic mean and covariance function, i.e.,

E(Xt+d) = E(Xt) , Cov(Xt ,Xs) = Cov(Xt+d ,Xs+d) .

For more details concerning PC processes we refer the reader to [15].
Over the last 60 years the theory of PC processes has developed fast and found

applications in many branches of vibroacoustics, mechanics, signal analysis, hydrol-
ogy, climatology and econometrics (e.g., energy markets). Many motivating examples
can be found in [1,13,15,20,23]. The wide range of possible applications resulted in
thousands of papers. Unfortunately, the analysis of PC processes is very difficult. One
of the major problems is the estimation of the asymptotic covariance matrix for param-
eters of interest. In practice it is almost impossible and hence to construct confidence
intervals resampling methods need to be used.
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The idea of resampling techniques is to approximate the distribution of the statis-
tics of interest. Nowadays, bootstrap is the most popular resampling method. It was
introduced in 1979 by Efron [11]. At the beginning it was designed for i.i.d. data. In
such cases the bootstrap sample is created by random sampling with the replacement
of observations from the original sample. However, this approach cannot be applied for
dependent data. In 1986 Carlstein [3] proposed to select randomly blocks of observa-
tions. This allows us to preserve the dependence structure of the data inside the blocks.
If the data are weakly dependent, i.e., observations that are far from each other are
almost independent, this approach provides consistent estimators for many character-
istics of stationary and also nonstationary time series. The number of block bootstrap
techniques is constantly growing. New methods or modifications of existing techniques
appear to provide estimators with lower bias, better rates of convergence or that mimic
some specific structure of the data such as periodicity. In this paper we consider two
block methods: the Extension of Moving Block Bootstrap (EMBB) and the General-
ized Seasonal Block Bootstrap (GSBB). The EMBB is a modification of Carlstein’s
approach based on the Moving Block Bootstrap (MBB) method. It allows us to select
any block of observations from the sample, while Carlstein’s idea was to choose only
non-overlapping blocks. On the other hand, the GSBB is designed for periodic data. To
preserve periodicity during the block selection process, the set of blocks is restricted
and varies in each step of the algorithm. The detailed description of the EMBB and the
GSBB is presented in Sect. 2.

In this paper we focus on the second-order analysis of a periodically correlated time
series. Proper detection of so-called second-order frequencies is crucial in many appli-
cations like e.g., diagnostics of rotating machines [6,7] and the analysis of the human
walk [10]. These problems are of great importance and mistakes can be very costly, for
example a large machine in a factory might be needlessly stopped for repair. Thus, we
decided to perform a study that may help practitioners to choose the optimal bootstrap
approach. Recently there appeared a few theoretical results for constructing bootstrap
consistent pointwise and simultaneous confidence intervals for the coefficients of the
autocovariance function of a PC time series. Unfortunately, the provided tools are not
complete. There is no method for choosing the block length. Moreover, there is no study
comparing properties of different approaches.

For our work we decided to use computational resources available in the Polish Grid
Infrastructure PL-Grid. That allowed us to consider a wide range of block length values,
from small to very large sample sizes, and different period lengths. In the sequel we try
to provide answers for often posed questions like:

– does using the EMBB have any advantage over the GSBB;
– do some existing methods of block length choice for stationary time series also apply

for our nonstationary case;
– does preserving periodic structure by the GSBB improve, compared with the EMBB,

the coverage of the confidence intervals;
– how are the coverage probabilities affected by non-optimal block length choices;
– can the same block length be used to construct all pointwise confidence intervals for

the considered frequencies;
– are simultaneous confidence intervals less sensitive to non-optimal block length

choice than pointwise ones.
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This paper is organized as follows. In Sect. 2 the necessary notation and definitions
are introduced. Moreover, block bootstrap algorithms and bootstrap consistency results
are recalled. Section 3 is dedicated to the results of the simulation study. The perfor-
mance of the two considered block bootstrap methods is compared. Different sample
sizes and block lengths are used. Pointwise and simultaneous confidence intervals for
the coefficients of the autocovariance function are constructed. Additionally, the prob-
lem of the block length choice is discussed and a new heuristic approach is proposed.
In Sect. 4 a short summary of the results is provided.

2 Problem Formulation

Let {Xt , t ∈Z} be a PC time series with period d. From now on we assume that E(Xt)≡
0. Moreover, let B(t,τ) = Cov(Xt ,Xt+τ) be its autocovariance function. The variables
t and τ represent time and shift, respectively. Note that B(t,τ) is periodic in t. Its anal-
ysis in the frequency domain is performed using the following Fourier decomposition

B(t,τ) = ∑
λ∈Λτ

a(λ ,τ)exp(iλ t),

where Λτ = {λ : a(λ ,τ) �= 0}. The set Λτ is finite and is a subset of the set Λ =
{2kπ/d,k = 0, . . . ,d−1}. This means that there is a finite number of the second-order
significant frequencies. To detect them it is enough to point out the nonzero Fourier
coefficients of B(t,τ). For that purpose one needs to construct confidence intervals for
a(λ ,τ). Below we recall results from literature to show how difficult this task is.

Let X1, . . . ,Xn be a sample from the considered time series. Without loss of gener-
ality we assume that τ ≥ 0. An estimator of a(λ ,τ) is of the form

ân(λ ,τ) =
1
n

n−τ

∑
t=1

XtXt+τ exp(−iλ t).

Moreover, the asymptotic results that we present below require the mixing assumptions.
To be precise Xt is assumed to be α-mixing i.e., αX (k) → 0 as k → ∞, where

αX (k) = sup
t

sup
A∈F X (−∞,t)
B∈F X (t+k,∞)

|P(A∩B)−P(A)P(B)|

and FX (−∞, t) = σ ({Xs : s ≤ t}), FX (t + k,∞) = σ ({Xs : s ≥ t+ k}). If αX (k) = 0
it means that the observations that are k time units apart are independent. In general
mixing assumptions are introduced to ensure that observations that are far from each
other are ‘almost’ independent. An easy example of α-mixing process is a m-dependent
time series.

Let us introduce some additional notation. By λ and τ we denote r-dimensional
vectors of frequencies and shifts of the form λ = (λ1, . . . ,λr)

′
, τ = (τ1, . . . ,τr)

′
.

Additionally, a(λ ,τ)=
(

ℜ(a(λ1,τ1)),ℑ(a(λ1,τ1)), . . . ,ℜ(a(λr,τr)),ℑ(a(λr,τr))
)′

and
ân(λ ,τ) is its estimator. By ℜ(z) and ℑ(z) we denote the real and the imaginary part of
the complex number z.
Theorem 1 below states asymptotic normality of ân(λ ,τ). For the proof we refer the
reader to [26] (Theorem 2.6) and [18] (Theorem 1).
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Theorem 1. Assume that {Xt , t ∈ Z} is a PC α-mixing time series with E(Xt) ≡ 0 and
WP(4) such that:

(i) supt∈Z E|Xt |4+2δ < ∞ for some δ > 0,
(ii) ∑∞

τ=1 ταδ/(2+δ )
X (τ)< ∞.

Then
√
n(ân (λ ,τ)−a(λ ,τ)) d−→ N2r (0,Σ(λ ,τ)) ,

where Σ(λ ,τ) =
[

σe f
]

e, f=1,...,2r and

σe f =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
d ∑d

s=1 ∑∞
k=−∞C(s,k)cos(λes)cos(λ f (s+ k)) for e= 2g1 −1, f = 2g2 −1,

1
d ∑d

s=1 ∑∞
k=−∞C(s,k)sin(λes)sin(λ f (s+ k)) for e= 2g1, f = 2g2,

− 1
d ∑d

s=1 ∑∞
k=−∞C(s,k)sin(λes)cos(λ f (s+ k)) for e= 2g1, f = 2g2 −1,

− 1
d ∑d

s=1 ∑∞
k=−∞C(s,k)cos(λes)sin(λ f (s+ k)) for e= 2g1 −1, f = 2g2,

with C(s,k) = Cov
(

XsXs+τe ,Xs+kXs+k+τ f

)

, g1,g2 = 1, . . . ,r and det(Σ(λ ,τ)) �= 0.

WP(k) denotes weakly periodic times series of order k with period d. In other words
time series is WP(k) when its k-th moments are periodic.

Theorem 1 enables construction of the asymptotic pointwise confidence intervals for
a(λ ,τ). Unfortunately, the asymptotic covariance matrix Σ(λ ,τ) is very difficult to esti-
mate. Thus, in practice resampling methods are often used to approximate the quantiles
of the asymptotic distribution. Additionally, so-called percentile bootstrap confidence
intervals do not require estimation of the covariance matrix (see e.g., [12]). Since PC
time series are an example of the nonstationary processes, block bootstrap methods need
to be used for them to keep the dependence structure contained in the data. So far consis-
tency of two bootstrap techniques was shown for a(λ ,τ). These are the EMBB and the
GSBB. The EMBB was proposed in [7] and [8]. It is the modification of the MBB. The
MBB was introduced independently in [16] and [19] and was designed for stationary
time series. However, it turned out that it can be successfully applied in some nonsta-
tionary cases ([4,5,25]). The main disadvantage of the MBB and its modifications like
the EMBB in the context of PC time series, is the fact that these methods do not preserve
the periodic structure of the original data. On the other hand, the GSBB was designed
for periodic processes. The method was proposed by Dudek et al. in [9]. Applied for a
PC time series it perfectly retains the periodic structure contained in the data.

In this paper we will use a modification of the EMBB and the GSBB, whose idea
is to consider data as wrapped on the circle. It was introduced in [21] to reduce edge
effects caused by the MBB and it was called the Circular Block Bootstrap (CBB). The
CBB guarantees that each observation is present in the same number of blocks which is
not the case of the MBB, the EMBB and the GSBB. Below we recall the algorithms of
the circular versions of the EMBB (cEMBB) and the GSBB (cGSBB).

Let Bi, i = 1, . . . ,n be the block of observations from our sample X1, . . . ,Xn, that
starts with observation Xi and has the length b ∈N, i.e., Bi = (Xi, . . . ,Xi+b−1). If i+b−
1 > n then the missing part of the block is taken from the beginning of the sample and
we get Bi = (Xi, . . . ,Xn,X1, . . . ,Xb−n+i−1) for i= n−b+2, . . . ,n. To apply the cEMBB
and the cGSBB to a PC data, we need to assume that the sample size n is an integer
multiple of the period length d (n = wd). If wd < n ≤ (w+ 1)d then the observations
Xi, i= wd+1, . . . ,n need to be removed from the considered dataset.
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cEMBB Algorithm

Since the cEMBB approach is based on the CBB algorithm, as first we recall the CBB
method.

1. Choose a block size b< n. Then our sample can be divided into l blocks of length b
and the remaining part is of length r, i.e., n= lb+ r, r = 0, . . . ,b−1.

2. For t = 1,b+1,2b+1, . . . , lb+1, let B∗CBB
t =

(

X∗CBB
t , . . . ,X∗CBB

t+b−1

)

= Bkt , where kt
are i.i.d. random variables drawn from a discrete uniform distribution P(kt = s) =
1/n for s= 1, . . . ,n.

3. Join the selected l+1 blocks
(

B∗CBB
1 , . . . ,B∗CBB

l+1

)

and take the first n observations to
get the bootstrap sample

(

X∗CBB
1 , . . . ,X∗CBB

n

)

of the same length as the original one.

The cEMBB algorithm is a simple modification of the CBB one.

1. Define a bivariate series Yi = (Xi, i) and then do the CBB on the sample (Y1, . . . ,Yn)
to obtain (Y ∗

1 , . . . ,Y
∗
n ).

Note that in the second coordinate of the series Y ∗
1 , . . . ,Y

∗
n we preserve the information

on the original time indices of chosen observations. This simple modification of the
CBB approach allows to construct the consistent estimators for the Fourier coefficients
of the autocovariance function of a PC time series.

cGSBB Algorithm

The cGSBB algorithm differs from the CBB only in the second step, i.e.,

2’. For t = 1,b+1,2b+1, . . . , lb+1, let

B∗cGSBB
t =

(

X∗cGSBB
t , . . . ,X∗cGSBB

t+b−1

)

= Bkt (1)

where kt is i.i.d. random variables drawn from a discrete uniform distribution
P(kt = t+ vd) = 1/w for v= 0,1, . . . ,w−1.

Constructing the CBB or the cEMBB sample we are choosing among n blocks. The
cGSBB case is much more subtle. The idea is to perfectly mimic the periodic structure
of the data. Thus, during the block selection process the additional criteria need to be
fulfilled.
Remark. It is well known that a PC time series with period d can be equivalently
expressed as d-variate stationary time series (see e.g., [15]). Moreover, bootstrap meth-
ods and their properties are well investigated in the stationary case (see [17]) and hence
it may seem useless to consider bootstrap for univariate periodic time series (espe-
cially when one is interested in estimation of the mean). However, as pointed out in [8]
(Sect. 2.4) bootstrap approach via one dimensional time series is preferable. There are
several reasons for that. The most important is that the EMBB and the GSBB allow to
use blocks that do not contain an integer number of periods. Moreover, these blocks
can start with any observation. None of those two properties hold when one wants to
use the multivariate stationary representation of PC time series. As a result there are no
bootstrap approaches designed for d-variate stationary time series that are equivalent to
the EMBB and the GSBB for univariate PC time series.
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Bootstrap Confidence Intervals

The consistency of the cGSBB and the cEMBB for a(λ ,τ) was shown in [10] and [7],
respectively. Since both results were obtained under the same assumptions, in order
to recall them, to simplify notation, we use â∗

n(λ ,τ) instead of â∗cEMBB
n (λ ,τ) and

â∗cGSBB
n (λ ,τ). This means that whenever â∗

n(λ ,τ) is used all statements are valid for
both bootstrap approaches.

Theorem 2. Assume that {Xt , t ∈Z} is an α-mixing PC time series with E(Xt)≡ 0 and
WP(4) such that:

(i) supt∈Z E|Xt |8+2δ < ∞ for some δ > 0,

(ii) ∑∞
τ=1 ταδ/(4+δ )

X (τ)< ∞.

If b → ∞ as n → ∞ such that b= o(n), then

ρ
(

L
(√

n(ân(λ ,τ)−a(λ ,τ))
)

,L ∗ (√
n(â∗

n(λ ,τ)−E∗â∗
n(λ ,τ))

)

)

p−→ 0,

where ρ is any distance metricizing weak convergence of probability measures on R
2r.

L (·) denotes probability low and L ∗(·) is its bootstrap counterpart. Moreover, E∗ is
the conditional expectation given the sample (X1, . . . ,Xn).

Using Theorem 2 one may construct bootstrap pointwise confidence intervals for
the real and the imaginary part of a(λ ,τ). For the sake of simplicity below we describe
the basic ideas only for ℜa(λ ,τ). As we mentioned before the asymptotic variance is
very difficult to estimate. Since the construction of the bootstrap percentile confidence
intervals does not require variance estimation, this kind of interval is the most often
used for different characteristics of PC time series. To get it for a fixed frequency λ and
shift τ we define the following statistic

KCBB(x) = P∗ (√
nℜ

(

â∗cEMBB
n (λ ,τ)−E∗ (

â∗cEMBB
n (λ ,τ)

)) ≤ x
)

,

where P∗ is the conditional probability given the sample (X1, . . . ,Xn). Then, the equal-
tailed 95% bootstrap confidence interval for ℜa(λ ,τ) obtained using the cEMBB is of
the form

(

ℜân(λ ,τ)− ucEMBB (0.975)√
n

,ℜân(λ ,τ)− ucEMBB (0.025)√
n

)

,

where ucEMBB (0.975) and ucEMBB (0.025) are 97.5% and 2.5% quantiles of KcEMBB(x),
respectively. The confidence interval for the cGSBB is defined correspondingly.

In real data applications usually many different values of λ and τ are considered.
In such situation the simultaneous confidence intervals are used. To obtain them the
consistency of bootstrap for the smooth functions of a(λ ,τ) is required. Such results
for the cEMBB and the cGSBB can be found in [10] and [7]. The quantiles of the 95%
equal-tailed bootstrap simultaneous intervals can be calculated using the maximum and
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the minimum statistics. Let us assume that one is interested in frequencies λ1, . . . ,λr

and shift τ . Again we describe the construction only for the cEMBB. We define:

KcEMBB,max(x) = P∗
(√

nmax
i

ℜ
(

â∗cEMBB
n (λi,τ)−E∗ (

â∗cEMBB
n (λi,τ)

)) ≤ x

)

,

KcEMBB,min(x) = P∗
(√

nmin
i

ℜ
(

â∗cEMBB
n (λi,τ)−E∗ (

â∗cEMBB
n (λi,τ)

)) ≤ x

)

and we get the confidence region of the form
(

ân(λi,τ)− ucEMBB,max (0.975)√
n

, ân(λi,τ)− ucEMBB,min (0.025)√
n

)

, (2)

where i = 1, . . . ,r and ucEMBB,max (0.975) and ucEMBB,min (0.025) are 97.5% and 2.5%
quantiles of KcEMBB,max(x) and KcEMBB,min(x), respectively.

In the next section we compare bootstrap pointwise and simultaneous confidence
intervals obtained with the cEMBB and the cGSBB. We try to provide answers for
questions posed in Sect. 1.

3 Simulation Study

The aim of our study is to compare the performance of the cEMBB and the cGSBB
applied to construct the pointwise and the simultaneous confidence intervals for the
real and the imaginary parts of the coefficients of the autocovariance function. For that
purpose the actual coverage probabilities (ACPs), the average lengths and the average
upper and lower quantiles values were calculated for all constructed intervals. Finally,
confidence intervals were used to identify the significant frequencies. For our consider-
ation we chose a few examples of PC time series that are listed below.

M1 Xt = cos(2πt/4)ε1
t + cos(2πt/5)ε2

t +Zt ,
M2 Xt = cos(2πt/4)ε1

t + cos(2πt/6)ε2
t +Zt ,

M3 Xt = cos(2πt/4)ε1
t + cos(2πt/8)ε2

t +Zt ,
M4 Xt = 4cos(2πt/4)ε1

t + cos(2πt/5)ε2
t +Zt ,

M5 Xt = 8cos(2πt/4)ε1
t + cos(2πt/5)ε2

t +Zt ,

where Zt is zero-mean moving-average time series of the form

Zt = 0.5εt−3 +0.3εt−2 +0.2εt−1 + εt .

{εt}t≥1, {ε1
t }t≥1, {ε2

t }t≥1 are i.i.d. from the standard normal distribution. Moreover, the
initial observations in each model were generated as standard normal random variables.

Each considered model M1–M5 has exactly 4 true significant frequencies. Models
M1–M3 differ in period length and distance between the consecutive significant fre-
quencies. In fact we were changing period lengths of the cosine function to see what
will happen if two consecutive frequencies will be close to (M3) or far from each other
(M2). Better separation may improve the detection. Moreover, if two frequencies λ1
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and λ2 are close to each other and a(λ1,τ) is much bigger than a(λ2,τ), the detection
of λ2 can be more difficult than in the situation when a(λ1,τ) and a(λ2,τ) are compara-
ble. The frequency λ = 0 is always the strongest (value of the corresponding coefficient
is always the largest among all significant frequencies). Thus, to investigate its influ-
ence on our results the distance between the three remaining frequencies and λ = 0 was
set to be short (M3), medium (M2) and large (M1). Finally, we added to our consid-
erations models M4–M5 to check how strengthening of some frequencies will affect
the detections. Note that M4 and M5 were obtained from M1 by multiplying the first
cosine function by an appropriate constant. That increased the value of a(λ ,0) from
2.38 (M1) to 9.88 (M4) and 33.88 (M5) for λ = 0 Hz and from 0.5 (M1) to 8 (M4)
and 32 (M5) for λ = 0.5 Hz. Values of a(λ ,0) for λ = 0.4 Hz and λ = 0.6 Hz remained
unchanged and were equal to 0.25. In Fig. 1 we present the estimated values of |a(λ ,τ)|
for M1–M5 for sample size n= 1920.

For our study we took three sample sizes, namely n∈ {120,480,1920}. We set τ = 0
and we considered all frequencies λ ∈ {2kπ/d : k = 0, . . . ,d − 1}. Using the cEMBB
and the cGSBB we constructed the 95% equal-tailed pointwise and simultaneous confi-
dence intervals (see Sect. 2) for the real and the imaginary part of a(λ ,τ). The number
of bootstrap resamples was B = 500 and the number of algorithm iteration was 1000.
The block lengths b were chosen from the set {1,2, . . . ,100}. To compare the cEMBB
and the cGSBB we calculated the ACPs, the average lengths and the average quantiles
for all constructed confidence intervals. Since we considered 100 values of block length,
the computation needed to be supported by the supercomputer available via the PL-Grid
Infrastructure. For the sake of clarity we split the summary of our results into three parts.

Actual Coverage Probabilities

For the sake of simplicity, from now on we denote by cEMBB-ACPs and cGSBB-
ACPs the ACPs obtained with the cEMBB and the cGSBB, respectively. The main
conclusions are the same for all models. Generally, the cEMBB provides higher ACPs
than the cGSBB. This means that confidence intervals constructed using the cEMBB
are wider than corresponding ones obtained with the cGSBB. Moreover, in most of the
cases taking b < 20 we get confidence intervals too wide (using the cEMBB) or too
narrow (using the cGSBB).

Some of the cEMBB-APC curves contain periodic structure (see Fig. 2(a)). In fact
for M1–M5 this phenomena can be observed for frequencies that are close to λ = 0 Hz,
i.e., λ = 1/d Hz and λ = 2/d Hz. Let us recall that a(0,0) is always the largest among
a(λ ,0) values for λ ∈ Λ0. For M1 a(0,0) is almost 5 times higher than the correspond-
ing value for λ = 0.5 Hz and 10 times than for λ = 0.4 Hz and λ = 0.6 Hz. Interestingly,
for models M4 and M5 periodicity appears also for λ = 0.4 Hz and λ = 0.45 Hz. These
two frequencies are in neighbourhood of another very strong frequency λ = 0.5 Hz.
Sometimes periodicity is difficult to detect in APCs graphs. However, it can be much
easier captured in figures presenting the average lengths of confidence intervals. More-
over, it is worth noticing that periodic structure appears not only in the context of the
pointwise confidence intervals. We deal with it also in cEMBB-ACP graphs for the
simultaneous confidence intervals. On the other hand, the cGSBB provides ACP curves
without any periodicity (see Fig. 2(b)). We think that the periodicity phenomena may be
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(a) M1 (b) M2

(c) M3 (d) M4

(e) M5

Fig. 1. Estimated values of |a(λ ,τ)| for M1–M5 with sample size n= 1920.
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caused by the bias of the cEMBB estimator. Both bootstrap estimators are only asymp-
totically unbiased but bias of the cEMBB estimator may be strongly dependent on the
chosen block length. Let us recall that the cGSBB preserves the periodic structure con-
tained in the original data, while the cEMBB destroys it completely.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

(a)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 2. Model M1 with n = 120: ACPs (black lines) of pointwise confidence intervals for
ℜa(0.05 Hz,0) together with nominal coverage level (grey lines) for cEMBB (first column) and
cGSBB (second column). On the horizontal axis block length b ∈ {1,2, . . . ,100}.

Block Length Choice - Validity of Some Existing Approaches

To popularize bootstrap techniques in the analysis of the PC time series, it is important
to provide a method of block length choice. For now there is no such result. It concerns
not only coefficients of the autocovariance function. Even in the simplest case of the
overall mean estimation there are no indications for practitioners how to choose b. For
stationary time series this issue is quite well investigated. Thus, we decided to check if
some of the existing heuristic approaches can be applied for our non-stationary case.

In the literature it is often advised for periodic data to use the MBB with the block
length equal to an integer multiple of the period length (see e.g., [24]). Our study con-
firms the validity of this approach. For b = kd, k ∈ N the cEMBB-ACP curves behave
very similar to the cGSBB-ACP ones. In general median differences for the pointwise
confidence intervals range from 0% to 3%, but for n > 120 from 0% to 0.5%. For the
simultaneous confidence intervals the situation is very similar. For n = 120 the largest
absolute difference is around 4% and for n> 120 all absolute differences belong to the
interval (0,0.019). If periodic structure is present, a small change of the b value may
result in big change of the actual coverage probability. Additionally, for large samples
one may always find the block length being an integer multiple of the period length that
provides cEMBB-ACPs close to nominal level.

The Minimum Volatility Method (see [22] p. 197) assumes that the block length b
should be chosen from the region in which confidence interval is a stable function of
b. For that purpose one may use a plot of the average confidence interval lengths or
the average quantile values. We look for a region in which the curve is quite flat and
there is not much variation. This method is not suitable for the cEMBB because of the
periodic structure that appears sometimes. However, we tried to use it for the cGSBB.
Unfortunately, we did not manage to find rules how to select b values for the different
frequencies to obtain cGSBB-ACPs close to 95%. Curves of the average lengths of
pointwise and simultaneous confidence intervals obtained with the cGSBB are quite



Bootstrapping the Autocovariance of PC Time Series 51

smooth and having low volatility. Some parts of the functions are quite flat, but often
they do not contain block lengths corresponding to ACPs close to 95%.

The approach based on the logarithm of quantile for the subsampling method was
recently discussed in [2] (see also references therein). The author proposed to find the
largest b before the function becomes more erratic. Unfortunately, this methods does
not work in the considered problem. When periodic structure is not present, the log of
quantiles are smooth. We cannot localize regions with different behaviour.

Block Length Choice - New Heuristic Method for the cEMBB

Inspired by the aforementioned methods, to choose the value b we investigated plots
of average lengths and logarithm of upper quantiles. In the latter case we managed to
detect the property that allows us to choose the block length for the cEMBB. However,
we would like to indicate that for now we do not have any theoretical confirmation
for the proposed heuristic approach. Thus, further research needs to be done to con-
firm its validity. Our study shows that it seems to work quite well for the simultaneous
confidence intervals.

Block Length Choice Algorithm

1. If the log of quantile contains strong periodic structure, we look at local minima of
the considered function. Their values create a string m1,m2, . . . , which is decreasing
starting from mo, o ∈ N. Finally, we choose the block length b for which the log of
the quantile is equal to mo.

2. If the log of quantile does not contain any periodic structure, we do not consider very
small or very large block lengths. From the remaining “reasonable” block lengths
we choose the largest b before the first break point, i.e., point after which the func-
tion starts to decrease sharply. In fact for very small b a sharp decrease can also
be observed. But we are interested in the largest b from the first region where the
function is quite flat. We would like to indicate that this choice is not always easy.
Sometimes the region in which the function is not decreasing is very small.

In Fig. 3 we present the log of quantiles for the cEMBB simultaneous confidence
intervals for ℜa(λ ,0) and ℑa(λ ,0) obtained for M1 model. Using the proposed algo-
rithm for M1–M5 we chose the block lengths for the cEMBB simultaneous confidence
intervals. Table 1 contains obtained values together with the ACPs generated by them
for each sample size. In general, independently of the considered model and sample
size, the chosen b differs for the real and imaginary part of a(λ ,0). Those for ℑa(λ ,0)
are higher than the corresponding ones for ℜa(λ ,0). The ACPs obtained for ℜa(λ ,0)
are usually below the nominal coverage level. The lowest value equal to 89% was got
for M3 with n= 120. The highest equal to 95.3% was observed for M4 with n= 1920.
For other cases the ACPs belong to interval (91%,95%). On the other hand the simulta-
neous confidence intervals for ℑa(λ ,0) are too wide independently on the sample size.
The ACPs change from 95.7% to 97.9%.

For n= 1920 in the case of the real and the imaginary part of a(λ ,τ) sometimes we
were forced to choose some b ≤ 100 while the minima of log of quantiles in the corre-
sponding figures never started to decrease. In such a situation we were taking the largest



52 A. E. Dudek and P. Potorski

20 40 60 80 100

1.6

1.8

2.0

2.2

(a) n= 120

20 40 60 80 100

2.15

2.20

2.25

(b) n= 480
20 40 60 80 100

2.16

2.18

2.20

2.22

2.24

2.26

2.28

(c) n= 1920

20 40 60 80 100

1.6

1.8

2.0

2.2

(d) n= 120
20 40 60 80 100

2.00

2.05

2.10

2.15

2.20

2.25

2.30

(e) n= 480

20 40 60 80 100

2.05

2.10

2.15

2.20

2.25

2.30

(f) n= 1920

Fig. 3. Model M1: logarithms of the upper quantiles of simultaneous confidence intervals for
ℜa(λ ,0) (first row) and for ℑa(λ ,0) (second row), λ ∈ Λ for cEMBB. On the horizontal axis
block length b ∈ {1,2, . . . ,100}.

possible integer multiple of the period length. But in fact we should consider b > 100.
For M1, M4 and M5 we performed an additional study taking b ∈ {120,140, . . . ,600}.
The new choices of b values are in Table 2. One may observe that new cEMBB-ACPs
are closer to 95%. Especially in the case of ℑa(λ ,τ) the improvement is significant.

Finally, we compared results for M1 with those for M4 and M5. Let us recall that
these models differ in values of ℜa(0Hz,0) and ℜa(0.5Hz,0). M4 and M5 contain
two strongly significant frequencies (λ = 0Hz and λ = 0.5Hz) in contrast to M1 for
which frequency λ = 0 Hz is strongly dominating all other frequencies. For M4–M5 we
obtained with our algorithm b values that resulted in cEMBB-ACPs that are closer to
95% than the corresponding ones for M1. Strengthening of some frequencies improved
their detection.

The proposed algorithm works quite well for the simultaneous confidence intervals
obtained with the cEMBB. Unfortunately, for the cGSBB we did not manage to find
any properties of the log of quantiles curves that would allow us to choose the block
length. For the cEMBB we take advantage of the fact that for b= 1 it provides too wide
confidence intervals and hence the first stabilization area usually contains b close to
optimal one. Using the cGSBB with small b results sometimes in too low and sometimes
too high ACP and hence, for example, local maximum can be very misleading.

Simplification of Algorithm for the Pointwise Confidence Intervals Case
Choice of the block length for the pointwise confidence intervals is more problematic. In
practice one would prefer to use one value of b for all considered frequencies. Moreover,
when period length is long, the amount of calculations to get all plots is too big. Thus,
we decided to check what would happen if we choose b only on the basis of curves
that contain periodic structure. And to make procedure even simpler for each model we
restricted our consideration only to two consecutive frequencies from Λ after λ = 0 Hz,
i.e., λ = 1/d Hz and λ = 2/d Hz. For the n= 480 and n= 1920 the absolute deviation
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Table 1. For M1–M5 and each sample size n and block length choice b ≤ 100 for the cEMBB
used to construct simultaneous confidence intervals for ℜa(λ ,0) (column 3) and ℑa(λ ,0) (col-
umn 5), where λ ∈ Λ . In columns 4 and 6 are the obtained cEMBB-ACPs.

Model n Real part Imaginary part

b cEMBB-ACP b cEMBB-ACP

M1 120 10 0.935 20 0.968

480 40 0.912 60 0.957

1920 100 0.934 100 0.976

M2 120 5 0.918 24 0.962

480 5 0.947 48 0.970

1920 48 0.935 84 0.975

M3 120 8 0.890 16 0.966

480 16 0.931 24 0.974

1920 60 0.949 96 0.964

M4 120 8 0.944 20 0.965

480 30 0.938 60 0.975

1920 60 0.953 100 0.979

M5 120 5 0.947 20 0.957

480 30 0.938 60 0.966

1920 100 0.949 100 0.973

from 95% of majority of APC values is maximally 2.3% and 2.1% in the ℜa(λ ,τ) and
ℑa(λ ,τ) case, respectively. It seems that our method of block length works quite well
also for the pointwise confidence intervals.

Table 2. For M1, M4, M5 and sample size n = 1920 and block length choice b > 100 for
the cEMBB used to construct simultaneous confidence intervals for ℜa(λ ,0) (column 3) and
ℑa(λ ,0) (column 5), where λ ∈ Λ . In columns 4 and 6 are the obtained cEMBB-ACPs.

Model n Real part Imaginary part

b cEMBB-ACP b cEMBB-ACP

M1 1920 200 0.943 320 0.972

M4 1920 60 0.953 340 0.952

M5 1920 180 0.946 280 0.955

4 Conclusions

To obtain bootstrap confidence intervals for the coefficients of the autocovariance func-
tion of PC time series we can use two bootstrap approaches. These are the EMBB and
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the GSBB or their circular versions. We performed an extensive study to compare their
behaviour and we are unable to state, which of them is better. The ACPs obtained with
the cEMBB are usually higher than the corresponding ones for the cGSBB. It means
that the cEMBB confidence intervals are often wider than the cGSBB ones. For very
large samples, the performance of both bootstrap methods is very comparable.

The cEMBB-ACPs curves sometimes contain periodic structure. It seems this hap-
pens for frequencies that are close to the true strong frequencies. This phenomena may
be considered as a disadvantage of the cEMBB, because a slight change in the chosen
block length has a significant affect on the confidence interval. However, it can also be
used in the future to construct a test for the significant frequency detection. Moreover,
we used this feature to propose a heuristic method of block length choice that seems to
work well in the case of pointwise and the simultaneous confidence intervals. In fact for
the pointwise confidence intervals we simplified it to make the choice only on the basis
of 1–2 figures, which substantially reduces the amount of computations and provides
satisfactory results. We also checked a few heuristic approaches for the block length
choice that were designed for the stationary data, but none of them is working for PC
processes. We did not succeed in finding any indication how the block length should
be chosen when the cGSBB is used. Finally, we managed to confirm the suggestion
appearing in the literature that for the cEMBB block lengths that are integer multiples
of the period length should be considered. If we do not have any other method of block
length choice, taking b = kd allows us to avoid the periodicity effect and can provide
the ACP close to the nominal one.
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1 Introduction

Vectorial random processes are the natural mathematical model for the vibration
description, hence physical quantities, which characterize them, i.e. displacement,
velocity, acceleration are vectors. The feature of the vectorial approach is putting under
consideration of invariant quantities, which characterize observed object state inde-
pendently on the coordinate system, in which the measurement is provided (Dragan
et al. 1987; Javorśkyj 2013; Javorśkyj et al. 2017a, b, c).

For the analysis of rotary machinery vibration and detection of their faults the
mathematical models in the form of PCRP are widely used (Javorskyj 2013; McCor-
mick and Nandi 1998; Capdessus et al. 2000; Antoni et al. 2004; Antoni 2009;
Javorskyj et al. 2017a, b, c). The consistency of such approach follows from the
properties of vibration signals of rotary machineries, which are stochastically modu-
lated by their nature with clearly shaped features of cyclic recurrence. Based on such
position we will describe the components of vibration vector by PCRP, and their
interdependency – by jointly PCRP. The properties of the stochasticity and recurrence

are adequately represented in the mean functions of the vector n
!

tð Þ ¼ i
!
n1 tð Þþ

j
!
n2 tð Þ, i.e. in the functions mnp tð Þ ¼ Enp tð Þ, p ¼ 1; 2, E – averaging operator, and also

in auto- bnp t; sð Þ ¼ E np
�

tð Þ np
�

tþ sð Þ, np
�

tð Þ ¼ np tð Þ � mnp tð Þ and cross-covariance

functions bnpnq t; sð Þ ¼ E np
�

tð Þ nq
�

tþ sð Þ. These quantities periodically vary in time
and can be represented in the Fourier series form:

mnp tð Þ ¼
X
k2Z

m
npð Þ

k eikx0t; bnp t; sð Þ ¼
X
k2Z

b
npð Þ

k sð Þeikx0t; ð1Þ

bnpnq t; sð Þ ¼
X
k2Z

b
npnqð Þ

k sð Þeikx0t; ð2Þ

where x0 ¼ 2p=P, P – nonstationarity period. We should not that issue of a cross
covariance and cross spectral analysis is covered in (Gardner 1987; Sadler and Dan-
dawate 1998). Covariance tensor-function

b
n
! t; sð Þ ¼ E~n tð Þ �~n tþ sð Þ ¼ bn1 t; sð Þ bn1n2 t; sð Þ

bn2n1 t; sð Þ bn2 t; sð Þ
� �

: ð3Þ

is a mutual covariance characteristic. Here � – sign of tensor product. On the basis of
matrix (3) elements the quantities, which do not depend on coordinate system, where

measurements of vector ~n tð Þ components were provided, can be formed. The linear
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invariants I1 t; sð Þ and D t; sð Þ, which are average values of scalar and skew products of

vectors ~n tð Þ and ~n tþ sð Þ, respectively:

I1 t; sð Þ ¼ ~n
�
tð Þ

����
���� ~n

�
tþ sð Þ

����
���� cos \~n

�
tð Þ~n

�
tþ sð Þ

� �
¼ bn1 t; sð Þþ bn2 t; sð Þ;

D t; sð Þ ¼ ~n
�
tð Þ

����
���� ~n

�
tþ sð Þ

����
���� sin \~n

�
tð Þ~n

�
tþ sð Þ

� �
¼ bn1n2 t; sð Þ � bn2n1 t; sð Þ

are the simplest. Invariant I1 t; sð Þ is a sum of elements of the matrix (3) main diagonal

and it can be considered as a measure of the collinearity of vectors ~n
�
tð Þ and ~n

�
tþ sð Þ.

For s ¼ 0 the linear invariant I1 t; 0ð Þ is equal to sum of the variances of the vector

components and characterizes the changes of vector ~n
�
tð Þ intensity: I1 t; 0ð Þ ¼

bn1 t; 0ð Þþ bn2 t; 0ð Þ ¼ E ~n
�
tð Þ

����
����
2

. Invariant D t; sð Þ is a subtract of the elements of the

matrix (3) second diagonal. If D t; sð Þ 6¼ 0 then the angle between vectors ~n
�
tð Þ and

~n
�
tþ sð Þ in mean is not equal to zero. The value of D t; sð Þ is maximum if this angle is

equal to p=2. If direction of~n
�
tð Þ and~n

�
tþ sð Þ in mean coincide then D t; sð Þ ¼ 0. Thus

in variant D t; sð Þ can be considered as a rotation indicator.
Quadratic invariant I2 t; sð Þ is a determinant of a symmetric part of the matrix (3). It

is a main characteristic for the classification of the matrix (3) quadratic forms. Eigen-
values of invariant I2 t; sð Þ, namely k1 t; sð Þ and k2 t; sð Þ, define extreme values of
covariance function with respect to orthogonal directions. The second order curves,
parameters of which are effective indicators for defining of defect geometric properties,
can be built on their basis (Javorskyj et al. 2014a, b, c, 2017a, b, c).

The aim of the present paper is investigation of estimator properties of invariants
and their Fourier coefficients, obtained using coherent (Javorskyj 2013; Javorskyj et al.
2007, 2014a, b, c) and component (Javorskyj 2013; Javorskyj et al. 2014a, b, c, 2010)
methods. Estimators of invariants are formed using relations, defining them:

Î1 t; sð Þ ¼ b̂n1 t; sð Þþ b̂n2 t; sð Þ; ð4Þ

D̂ t; sð Þ ¼ b̂n1n2 t; sð Þ � b̂n2n1 t; sð Þ; ð5Þ

Î2 t; sð Þ ¼ b̂n1 t; sð Þb̂n2 t; sð Þ � 1
4

b̂n1n2 t; sð Þþ b̂n2n1 t; sð Þ� �2
;

k̂1;2 t; sð Þ ¼ 1
2

Î1 t; sð Þ � Î21 t; sð Þ � 4Î22 t; sð Þ� �1
2

h i
:

Estimator of quadratic invariant and estimators of eigen values k1 t; sð Þ and k2 t; sð Þ
are non-linear functions of auto- and cross-covariance functions of vector components.
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Because the derivation of the formulae for statistical characteristics of these estimators
is complicated, a problem is simplified for analysis of statistics (4) and (5), charac-
terizing properties of auto- and cross-covariance functions of vector random compo-
nents in invariant form. Here necessary calculations are succeeded up to obtain of
practically important formulas. On a basis of the last ones we can calculate systematic
and mean-square estimation errors dependently on realization length h, sampling
interval h and also the signal parameters. Choosing also processing parameters, pro-
viding small errors of linear invariant estimation, we can hope to obtain admissible
errors of invariant estimators Î2 t; sð Þ and k̂1;2 t; sð Þ.
Synopsis. The paper consists of an introduction, five sections and conclusions. The
second and third sections are divided into two subsections. Coherent estimators of the
linear invariants are considered in Subsect. 2.1. In Subsect. 2.2 their Fourier coeffi-
cients estimators are analyzed. The properties of the linear invariant estimators in the
form of a finite trigonometric polynomials (so called component estimators) are
investigated in Sect. 3. The formulae for biases and their analysis are given in Sub-
sect. 3.1. In Subsect. 3.2 for Gaussian processes the mean square convergence of the
invariant components estimators is proved. The discrete estimators of Fourier coeffi-
cients are analyzed in Sect. 4. The interpolation formulae for invariants with finite
number of Fourier coefficients are obtained. In Sect. 5 the obtained results are specified
for amplitude-modulated vector components. The numeric results from analysis allow
one to compare efficiency of coherent and component estimators. The results of vector
covariance analysis for vibration of decanter Flottweg 24E are given in Sect. 6.

2 Coherent Covariance Analysis

2.1 Estimations of Covariance Invariants

Let us consider statistics (4) and (5). We assume at first that the estimators of auto- and
cross-covariance functions of vectorial components n1 tð Þ and n2 tð Þ are calculated by
averaging of the samples, taken via the non-stationary period P:

b̂np t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ sþ nPð Þ � m̂np tþ sþ nPð Þ
h i

� np tþ nPð Þ � m̂np tþ nPð Þ
h i

; p ¼ 1; 2;

ð6Þ

b̂npnq t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ nPð Þ � m̂np tþ nPð Þ
h i

� nq tþ sþ nPð Þ � m̂nq tþ sþ nPð Þ
h i

; p; q ¼ 1; 2;

ð7Þ
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here with

m̂np;nq tð Þ ¼ 1
N

XN�1

n¼0

np;q tþ nPð Þ;

and N is natural number.

Proposition 2.1. The invariant estimators (4) and (5) when auto- and cross-covariance
functions are calculated using formulae (6) and (7) if conditions

lim
sj j!1

b̂np;nq t; sð Þ ¼ 0; lim
sj j!1

b̂npnq t; sð Þ ¼ 0; p; q ¼ 1; 2; ð8Þ

are satisfied, are asymptotically unbiased and for a finite number N their biases
e Î1 t; sð Þ� � ¼ EÎ1 t; sð Þ � I1 t; sð Þ and e D̂ t; sð Þ� � ¼ ED̂ t; sð Þ � D t; sð Þ are:

e Î1 t; sð Þ� � ¼ X
k2Z

e I1ð Þ
k sð Þeikx0t; ð9Þ

e D̂ t; sð Þ� � ¼ X
k2Z

e Dð Þ
k sð Þeikx0t; ð10Þ

where

e I1ð Þ
k sð Þ ¼ � 1

N
B I1ð Þ
k sð Þþ 1

N

XN�1

n¼�N þ 1

nj jB I1ð Þ
k sþ nPð Þ

" #
; ð11Þ

e Dð Þ
k sð Þ ¼ � 1

N
B Dð Þ
k sð Þþ 1

N

XN�1

n¼�N þ 1

nj jB Dð Þ
k sþ nPð Þ

" #
; ð12Þ

and B I1ð Þ
k sð Þ ¼ B n1ð Þ

k sð ÞþB n2ð Þ
k sð Þ, B Dð Þ

k sð Þ ¼ B n1n2ð Þ
k sð Þ � B n2n1ð Þ

k sð Þ.
Proof. For analysis simplification we rewrite statistic (6) in the form:

b̂np t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ sþ nPð Þ � mnp tþ sð Þ
h i

� m̂np tþ sþ nPð Þ � mnp tþ sð Þ
h ih i

� np tþ nPð Þ � mnp tð Þ
h i

� m̂np tþ nPð Þ � mnp tð Þ
h ih i

¼ 1
N

XN�1

n¼0

n
�
p tþ nPð Þn

�
p tþ sþ nPð Þ � m̂

�
np tþ nPð Þn

�
p tþ sþ nPð Þ

�

� m̂
�
np tþ sþ nPð Þn

�
p tþ nPð Þþ m̂

�
np tþ nPð Þm̂

�
np tþ sþ nPð Þ

�
ð13Þ
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where

n
�
p;q tð Þ ¼ np;q tð Þ � m

np;nq
tð Þ; m̂

�
np;nq tð Þ ¼ 1

N

XN�1

n¼0

n
�
p;q tþ nPð Þ:

Similarly we have

b̂npnq t; sð Þ ¼ 1
N

XN�1

n¼0

n
�
p tþ nPð Þn

�
q tþ sþ nPð Þ�

�
m̂
�
np tþ nPð Þn

�
q tþ sþ nPð Þ

� n
�
p tþ nPð Þm̂

�
nq tþ sþ nPð Þþ m̂

�
np tþ nPð Þm̂

�
nq tþ sþ nPð Þ

� ð14Þ

After ensemble averaging for expressions (13) and (14) we obtain

Eb̂np t; sð Þ ¼ bnp t; sð Þ � 1
N

bnp t; sð Þþ 1
N

XN�1

n¼�Nþ 1

nj jbnp tþ sþ nPð Þ
" #

;

Eb̂npnq t; sð Þ ¼ bnpnq t; sð Þ � 1
N

bnpnq t; sð Þþ 1
N

XN�1

n¼�Nþ 1

nj jbnpnq t; sþ nPð Þ
" #

Hence

e Î1 t; sð Þ� � ¼ � 1
N

I1 t; sð Þþ 1
N

XN�1

n¼�Nþ 1

nj jI1 t; sþ nTð Þ
" #

;

e D̂ t; sð Þ� � ¼ � 1
N

D t; sð Þþ 1
N

XN�1

n¼�Nþ 1

nj jD t; sþ nTð Þ
" #

:

Taking into consideration Fourier series (1) and (2), we come to the formulae (11)

and (12). If conditions (8) are satisfied then
PN�1

n¼�N þ 1
nj jB I1ð Þ

k sþ nTð Þ�O Nað Þ and

PN�1

n¼�Nþ 1
nj jB Dð Þ

k sþ nTð Þ�O Nað Þ, where a\2. Thus e Î1 t; sð Þ� � ! 0 and e D̂ t; sð Þ� � !
0 if N ! 1 h.

If covariance vanish within a time interval less than the period P (i.e. if B I1ð Þ
k nTð Þ ¼

B Dð Þ
k nTð Þ 	 0 for all k 2 N), then

e Î1 t; 0ð Þ� � 	 � I1 t; 0ð Þ
N

; e D̂ t; 0ð Þ� � 	 D t; 0ð Þ
N

:
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We assume that the mean functions are estimated only for t 2 0;P½ 
 and
m̂n1;n2 tþ nPð Þ ¼ m̂n1;n2 tð Þ when t 62 0;P½ 
. Then statistics (6) and (7) can be rewritten in
the form:

b̂np t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ nPð Þnp tþ sþ nPð Þ � m̂np tð Þm̂np tþ sð Þ; ð15Þ

b̂npnq t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ nPð Þnq tþ sþ nPð Þ � m̂np tð Þm̂nq tþ sð Þ: ð16Þ

Proposition 2.2. The invariant estimators (4) and (5) when auto- and cross-covariance
functions are calculated using formulae (15) and (16), are asymptotically unbiased if
conditions (8) are satisfied and for a finite number N their biases are defined by the
Fourier series (9) and (10), where

e I1ð Þ
k sð Þ ¼ � 1

N

XN�1

n¼�Nþ 1

1� nj j
N

� �
B I1ð Þ
k sþ nPð Þ; ð17Þ

e Dð Þ
k sð Þ ¼ � 1

N

XN�1

n¼�Nþ 1

1� nj j
N

� �
B Dð Þ
k sþ nPð Þ: ð18Þ

Proof. We represent the statistics in the form:

b̂np t; sð Þ ¼ 1
N

XN�1

n¼0

n
�
p tþ nPð Þn

�
p tþ sþ nPð Þ � 1

N

XN�1

r¼0

n
�
p tþ nPð Þn

�
p tþ sþ rPð Þ

" #
;

b̂npnq t; sð Þ ¼ 1
N

XN�1

n¼0

n
�
p tþ nPð Þn

�
q tþ sþ nPð Þ � 1

N

XN�1

r¼0

n
�
p tþ nPð Þn

�
q tþ sþ rPð Þ

" #
:

Averaging these expressions, for biases of invariant estimators (4) and (5) we find:

e Î1 t; sð Þ� � ¼ � 1
N

XN�1

n¼�Nþ 1

1� nj j
N

� �
I1 t; sþ nPð Þ;

e D̂ t; sð Þ� � ¼ � 1
N

XN�1

n¼�Nþ 1

1� nj j
N

� �
D t; sþ nPð Þ:

Substituting representations (1)–(2) to these equalities, we come to Fourier series
with coefficients (17) and (18) h.
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We should note that for estimation of auto- and cross-covariance functions the
following statistics can be used:

b̂np t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ nPð Þnp tþ sþ nPð Þ � m̂np tþ nPð Þm̂np tþ sþ nPð Þ
h i

; ð19Þ

b̂npnq t; sð Þ ¼ 1
N

XN�1

n¼0

np tþ nPð Þnq tþ sþ nPð Þ � m̂np tþ nPð Þm̂nq tþ sþ nPð Þ
h i

: ð20Þ

It is easy to show that the biases of these estimators coincide with biases for
estimators (15), (16).

For the variances of invariants estimators when auto- and cross-covariance functions
are calculated using statistics (6), (7) or (15), (16) in the first approximation we find:

Var Î1 t; sð Þ� � ¼ 1
N2

XN�1

n;m¼0

G n1n1n1n1ð Þ
nnmm t; sð Þþ 2G n1n1n2n2ð Þ

nnmm t; sð ÞþG n2n2n2n2ð Þ
nnmm t; sð Þ

h i
;

Var D̂ t; sð Þ� � ¼ 1
N2

XN�1

n;m¼0

G n1n2n1n2ð Þ
nnmm t; sð Þþ 2G n1n2n2n1ð Þ

nnmm t; sð ÞþG n2n1n2n1ð Þ
nnmm t; sð Þ

h i
;

where for Gaussian processes

G n1n2n3n4ð Þ
nmpq t; sð Þ ¼ bn1n2 t; p� nð ÞPð Þbn3n4 tþ s; q� mð ÞPð Þ�

þ bn1n4 t; sþ q� nð ÞPð Þbn2n3 tþ s; p� mð ÞP� sð Þ�:
We introduce the functions

~bnp t; s� t; sð Þ ¼ bnp t; s� tð Þbnp tþ s; s� tð Þþ bnp t; s� tþ sð Þbnp tþ s; s� t � sð Þ;

~bnpnq t; s� t; sð Þ ¼ bnpnq t; s� tð Þbnpnq tþ s; s� tð Þ
þ bnpnq t; s� tþ sð Þbnpnq tþ s; s� t � sð Þ :

Using expressions (1) and (2) we represent these functions in the form of Fourier
series:

~bnp t; s� t; sð Þ ¼
X
k2Z

~B
npð Þ

k s� t; sð Þeikx0t; ð21Þ

~bnpnq t; s� t; sð Þ ¼
X
k2Z

~B npnqð Þ s� t; sð Þeikx0t; ð22Þ
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where

~B
npð Þ

k s� t; sð Þ ¼
X
r2Z

e�irx0s B
npð Þ

kþ r s� tð Þ�B npð Þ
r s� tð ÞþB

npð Þ
kþ r s� t � sð Þ�B npð Þ

r s� tþ sð Þ
� �

;

~B
npnqð Þ

k s� t; sð Þ ¼
X
r2Z

e�irx0s B
npnqð Þ

kþ r s� tð Þ�B npnqð Þ
r s� tð Þ

�

þ B
npnqð Þ

kþ r s� t � sð Þ�B npnqð Þ
r s� tþ sð Þ

�
;

here “¯” denotes complex conjugation. Then for variances we have:

Var Î1 t; sð Þ� � ¼ X
k2Z

a I1ð Þ
k sð Þeikx0t; ð23Þ

Var D̂ t; sð Þ� � ¼ X
k2Z

a Dð Þ
k sð Þeikx0t ð24Þ

where

a I1ð Þ
k sð Þ ¼ 1

N
~B I1ð Þ
k 0; sð Þþ 2

XN�1

n¼1

1� n
N

	 

~B I1ð Þ
k nT ; sð Þ

" #
ð25Þ

and

~B I1ð Þ
k s� t; sð Þ ¼ ~B n1ð Þ

k s� t; sð Þþ ~B n2ð Þ
k s� t; sð Þþ ~B n1n2ð Þ

k s� t; sð Þþ ~B n2n1ð Þ
k s� t; sð Þ:

ð26Þ

The coefficient a Dð Þ
k sð Þ we find, using representations of functions

~bnpðt; s� t; uÞ ¼ bnpðt; s� tÞbnpðtþ u; s� tÞþ bnpnqðt; s� tþ sÞbnqnpðtþ s; s� t � sÞ;

~bnqnpðt; s� t; sÞ ¼ bnqnpðt; s� tÞbnqnpðtþ s; s� tÞþ bnpðt; s� tþ sÞbnqðtþ s; s� t � sÞ

in the form of Fourier series

~bnpðt; s� t; sÞ ¼
X
k2Z

~B
ðnpÞ
k ðs� t; sÞeikx0t; ð27Þ

~bnpnqðt; s� t; sÞ ¼
X
k2Z

~B
ðnpnqÞ
k ðs� t; sÞeikx0t: ð28Þ
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The formulae for Fourier coefficients we find, taking into account (1) and (2):

~B
fpð Þ

k s� t; sð Þ ¼
X
r2Z

eikx0s B
npð Þ

rþ k s� tð Þ�B nqð Þ
r s� tð ÞþB

npnqð Þ
rþ q sþ s� tð Þ�B nqnpð Þ

r s� t � sð Þ
� �

;

~B
fpfqð Þ

k sð Þ ¼
X
r2Z

e�ikx0s B
npnqð Þ

rþ k s� tð Þ�B nqnpð Þ
r s� tð ÞþB

npð Þ
rþ q s� tþ sð Þ�B nqð Þ

r s� t � sð Þ
� �

:

Using these expressions, we have:

a Dð Þ
k sð Þ ¼ 1

N
~B Dð Þ
k 0; sð Þþ 2

XN�1

n¼1

1� n
N

	 

~B Dð Þ
k nT ; sð Þ

" #
; ð29Þ

where

~B Dð Þ
k s� t; sð Þ ¼ ~B n1ð Þ

k s� t; sð Þþ ~B n2ð Þ
k s� t; sð Þþ ~B n1n2ð Þ

k s� t; sð Þ � ~B n2n1ð Þ
k s� t; sð Þ:

ð30Þ

Taking into consideration the foregoing we now formulate the following proposition:

Proposition 2.3. The invariant estimators (4) and (5) of Gaussian vectorial PCRP
when auto- and cross-covariance functions are calculated using formulae (6), (7) or
(15), (16) are consistent if conditions (8) are satisfied and for a finite number N their
variances are defined by the Fourier series (23) and (24), which coefficients in the first
approximation are given by (25)–(30).

We note that the component of statistics (6), (7) and (15), (16) caused by previous
computation of mean functions estimators were neglected above for finding (26) and
(30). The variance of estimators (4), (5) and (19), (20) obtained in this approximation is
dependent on mean functions of vector components. It is obvious that such dependence
is undesirable and therefore the statistics (6), (7) or (15), (16) have advantage over (19),
(20) when covariance invariants are calculated on the basis of experimental data.

2.2 The Estimation of Invariants Fourier Components

We analyze now the estimators of invariants Fourier components which are calculated
by formulae:

B̂ I1ð Þ
k sð Þ ¼ 1

P

ZP
0

Î1 t; sð Þe�ikx0tdt; ð31Þ

B̂ Dð Þ
k sð Þ ¼ 1

P

ZP
0

D̂ t; sð Þe�ikx0tdt; ð32Þ
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where Î1 t; sð Þ and D̂ t; sð Þ are estimated using formulae (6) and (7). Taking expectation
we have:

EB̂ I1ð Þ
k sð Þ ¼ 1

P

ZP
0

EÎ1 t; sð Þe�ikx0tdt;

EB̂ Dð Þ
k sð Þ ¼ 1

P

ZP
0

ED̂ t; sð Þe�ikx0tdt:

Taking into account the series (1) and (2), we conclude that the formulae for biases
of estimators coincide with the expressions for Fourier coefficients of invariants esti-
mators biases that are (11) and (12).

We assume now that the estimators of mean functions of vector components are
periodical on time t. It is obvious that

B̂ I1ð Þ
k sð Þ ¼ B̂ n1ð Þ

k sð Þþ B̂ n2ð Þ
k sð Þ; B̂ Dð Þ

k sð Þ ¼ B̂ n1n2ð Þ
k sð Þ � B̂ n2n1ð Þ

k sð Þ:

The estimators of covariance components for h ¼ NP can be rewritten in the form:

B̂
npð Þ

k sð Þ ¼ 1
h

Zh

0

n
�

p
sð Þ n

�

p
sþ sð Þ � m̂

�

np
sð Þ m̂

�

np
sþ sð Þ

� �
e�ikx0sds; ð33Þ

B̂
npnqð Þ

k sð Þ ¼ 1
h

Zh

0

n
�

p
sð Þ n

�

p
sþ sð Þ � m̂

�

np
sð Þ m̂

�

np
sþ sð Þ

� �
e�ikx0sds; ð34Þ

where h ¼ NP. Then

Var B̂ I1ð Þ
k sð Þ

h i
¼ 1

h2

Zh

0

Zh

0

~bn1 t; s� t; sð Þþ ~bn2 t; s� t; sð Þ� �
e�ikx0 s�tð Þ

h

þ 2~bn1n2 t; s� t; sð Þ cos kx0 s� tð Þ�dtds;
Var B̂ Dð Þ

k sð Þ
h i

¼ 1

h2

Zh

0

Zh

0

~bf1 t; s� t; sð Þþ ~bf2 t; s� t; sð Þ� �
eikx0 s�tð Þ

h

� 2bf1f2 t; s� t; sð Þ cos kx0 s� tð Þ�dtds:
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After introducing a new variable s1 ¼ s� t and changing the order of integration
we find:

Var B̂ I1ð Þ
k sð Þ

h i
¼ 2

h2

Zh

0

Zh�s1

0

~bn1 t; s1; sð Þþ ~bn1 t; s1; sð Þ�
þ ~bn1n2 t; s1; sð Þþ bn2n1 t; s1; sð Þ� cos kx0s1dtds1;

Var B̂ Dð Þ
k sð Þ

h i
¼ 1

h2

Zh

0

Zh�s1

0

~bf1 t; s1; sð Þþ ~bf2 t; s1; sð Þ�
� ~bf1f2 t; s1; sð Þ � ~bf2f1 t; s1; sð Þ� cos kx0s1dtds1:

If to substitute the series (21), (22) and (27), (28) into these expressions, and
integrate with respect to t, in the first approximation we obtain:

Var B̂ I1ð Þ
k sð Þ

h i
¼ 2

h

Zh

0

1� s1
h

	 

~B I1ð Þ
0 s1; sð Þ cos kx0s1ds1; ð35Þ

Var B̂ Dð Þ
k sð Þ

h i
¼ 2

h

Zh

0

1� s1
h

	 

~B Dð Þ
0 s1; sð Þ cos kx0s1ds: ð36Þ

Thus, we can pose the following proposition:

Proposition 2.4. The estimators (31) and (32) if conditions (8) are satisfied are
asymptotically unbiased and consistent for Gaussian vectorial PCRP and for a finite
h ¼ NP their biases and variances are defined in the first approximation by formulae
(11), (12) and (35), (36).

It follows from relationships (35) and (36) that variances of estimators for invari-
ants Fourier components depend in the main on quantities, which are time average
values of covariance function for products of random vector components. The fre-
quency of cosine weight function depends only on the number of invariant Fourier
component which is estimated.

3 Component Estimators of Covariance Invariants

3.1 The Biases of Estimators

Coherent estimation which are obtained on a basis of averaging of the samples, taken
via the non-stationary period P, uses only single values of the processes n1 tð Þ and n2 tð Þ
realizations at the period.

The Coherent and Component Estimation of Covariance Invariants 67



Let us now consider component statistics

Î1 t; sð Þ ¼
XN2

k¼�N2

B̂ I1ð Þ
k sð Þeikx0t; ð37Þ

D̂ t; sð Þ ¼
XN2

k¼�N2

B̂ Dð Þ
k sð Þeikx0t; ð38Þ

where B̂ I1ð Þ
k sð Þ and B̂ Dð Þ

k sð Þ are defined by formulae (31), (32) and the covariance
component estimator are formed on a basis of integral transformations:

B̂
npð Þ

k sð Þ ¼ 1
h

Zh

0

np sð Þ � m̂np sð Þ
h i

np sþ sð Þ � m̂np sþ sð Þ
h i

e�ikx0sds; ð39Þ

B̂
npnqð Þ

k sð Þ ¼ 1
h

Zh

0

np sð Þ � m̂np sð Þ
h i

np sþ sð Þ � m̂nq sþ sð Þ
h i

e�ikx0sds; ð40Þ

m̂np tð Þ ¼
XN1

k¼�N1

eikx0t 1
h

Zh

0

np sð Þe�ikx0sds

2
4

3
5; p ¼ 1; 2: ð41Þ

Here h ¼ NP is a length of realization section, N1 and N2 are amounts of harmonic
components in trigonometric polynomials (37), (38) and (41). Number N1 and N2 can
be defined using results of coherent processing of experimental data.

Proposition 3.1. The component estimators of covariance invariants which are defined
by formulae (37), (38) and (31), (32), (39)–(41) if conditions (8) are satisfied, are
asymptotically unbiased and for a finite h their biases are:

e Î1 t; sð Þ� � ¼ XN2

k¼�N2

e I1ð Þ
k sð Þeikx0t;

e D̂ t; sð Þ� � ¼ XN2

k¼�N2

e Dð Þ
k sð Þeikx0t;

where

e I1ð Þ
k sð Þ ¼ 1

h

Zh

0

1� s1
h

	 

B I1ð Þ
k s� s1ð Þe�ikx0s1 þB I1ð Þ

k sþ s1ð Þe�ikx0s1
h i

h N1; s1ð Þ
h

þ B I1ð Þ
k s1ð Þh 1ð Þ

k N1; s; s1ð Þ
i
ds1;

ð42Þ

68 I. Javors’kyj et al.



e Dð Þ
k sð Þ ¼ 1

h

Zh

0

1� s1
h

	 

B Dð Þ
k sþ s1ð Þe�ikx0s1 � B Dð Þ

k s� s1ð Þeikx0s1
h i

h N1; s1ð Þ
h

þ B Dð Þ
k s1ð Þh 2ð Þ

k N1; s; s1ð Þ
i
ds1;

ð43Þ

and also

h N1; u1ð Þ ¼ 1þ 2
XN1

l¼1

cos lx0u1;

h 1ð Þ
k N1; s; s1ð Þ ¼

X
l2�R

eilx0s e�ilx0s1 þ ei l�kð Þx0s1
	 


;

h 2ð Þ
k N1; s; s1ð Þ ¼

X
l2�R

eilx0s e�ilx0s1 � ei l�kð Þx0s1
	 


;

�R ¼ �N1; . . .;N1f g � R;R ¼ �N1; . . .;N1f g\ k � N1; . . .; kþN1f g:

Proof. The expressions (39) and (40) in case p ¼ q are identical, thus we consider only
(40) as more general. Rewrite this expression in the form:

B̂
npnqð Þ

k sð Þ ¼ 1
h

Zh

0

n
�
p tð Þn

�
q tþ sð Þ � m̂

�
np tð Þn

�
q tþ sð Þ

�

� n
�
p tð Þm̂

�
nq tþ sð Þþ m̂

�
np tð Þm̂

�
nq tþ sð Þ

�
e�ikx0tdt;

ð44Þ

where

m̂
�
np tð Þ ¼

XN1

k¼�N1

eikx0t 1
h

Zh

0

n
�
p sð Þe�ikx0sds

2
4

3
5;

n
�
p sð Þ ¼ np sð Þ � mp sð Þ:

Let us introduce the functions

gk N1; s1; s2ð Þ ¼ e�ikx0s2
XN1

l¼�N1

eilx0 s2�s1ð Þ;

hk N1; s1; s2; sð Þ ¼ e�ikx0s1
XN1

l¼�N1

eilx0 s1�s2 þ sð Þ:
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Then the second and third terms in (44) can be written in the form:

� 1
h

Zh

0

m̂
�
np tð Þn

�
q tþ sð Þþ n

�
p tð Þ m̂

np
tþ sð Þ

� �
e�ikx0tdt

¼ � 1
h

Zh

0

Zh

0

n
�
p s1ð Þn

�
q s2 þ sð Þgk N1; s1; s2ð Þ

�

þ n
�
p s1ð Þn

�
q s2ð Þh1 N1; s1; s2; sð Þ

�
ds1ds2:

ð45Þ

For the fourth term taking into account the expression 1
h

Rh
0
ei k�lþmð Þtdt ¼dk;l�m,

where dk;l�m is Kronecker delta, we have

1
h

Zh

0

m̂
�
tð Þ m̂

�
tþ uð Þe�ikx0tdt ¼ 1

h2

Zh

0

Zh

0

n
�
s1ð Þ n

�
s2ð Þpk N1; s1; s2; sð Þds1ds2; ð46Þ

where

pk N1; s1; s2; sð Þ ¼ e�ikx0s
X
l2�R

eilx0 s1�s2 þ sð Þ:

Taking into consideration equalities (45) and (46) after ensemble averaging we
obtain:

EB̂
npnqð Þ

k sð Þ ¼ B
npnqð Þ

k sð Þ � 1

h2

Zh

0

Zh

0

bnpnq s1; s2 � s1 þ sð Þgk N1; s1; s2ð Þ
h

þ bnpnq s2; s2 � s1ð Þhk N1; s1; s2; sð Þ
i
ds1ds2;

ð47Þ

where

hk N1; s1; s2; sð Þ ¼ e�ikx0s2
X
r2�R

eirx0 s2�s1�sð Þ:

After substituting Fourier series (2) into (47) and integrating on t we have

EB
npnqð Þ

k sð Þ ¼ B
npnqð Þ

k sð Þ � 1
h

XN2

r¼�N2

Zh

0

B
npnqð Þ

r s1 � sð Þeirx0s þB
npnqð Þ

r s1 þ sð Þe�irx0s1

� ��2
4

� h N1; s1ð ÞþB
npnqð Þ

k s1ð Þh 1ð Þ
k N1; s; s1ð Þ

�
fr;k 0; h� s1ð Þds1

�
:
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Here with fr;k 0; h� u1ð Þ ¼ h�1 Rh�u1

0
ei k�rð Þx0tdt. Using expressions EB̂ I1ð Þ

k sð Þ ¼

EB̂ n1ð Þ
k sð ÞþEB̂ n2ð Þ

k sð Þ and EB̂ I1ð Þ
k sð Þ ¼ EB̂ n1n2ð Þ

k sð Þ � EB̂ n2n1ð Þ
k sð Þ we come in the first

approximation to formulae (42) and (43) h.
When k ¼ 0 �R is an empty set and

e B̂ I1ð Þ
0 sð Þ

h i
¼ �

Zh

0

1� s1
h

	 

B I1ð Þ
0 s� s1ð ÞþB I1ð Þ

0 s1 þ sð Þ
h i

h N1; s1ð Þds1; ð48Þ

e B̂ Dð Þ
0 sð Þ

h i
¼ �

Zh

0

1� s1
h

	 

B Dð Þ
0 s� s1ð ÞþB Dð Þ

0 s1 þ sð Þ
h i

h N1; s1ð Þds1: ð49Þ

These quantities define time averaged biased of component invariant estimators. As
following from (42), (43) and (48), (49) the estimators biases in the first approximation
depend only on the value of the same component being estimated.

3.2 The Variances for the Invariant Estimators

Let us analyze the variances of invariant estimators represented in the form of
trigonometric polynomials (37) and (38) which are defined by expressions:

Var Î1 t; sð Þ� � ¼ E Î1 t; sð Þ � EÎ1 t; sð Þ� �2¼ XN2

k;l¼�N2

R I1ð Þ
lk sð Þei l�kð Þx0t; ð50Þ

Var D̂ t; sð Þ� � ¼ E D̂ t; sð Þ � ED̂ t; sð Þ� �2¼ XN2

k;l¼�N2

R Dð Þ
lk sð Þei l�kð Þx0t: ð51Þ

Functions R I1ð Þ
lk sð Þ and R Dð Þ

lk sð Þ are defined by covariances of estimators for invariant
components:

R I1ð Þ
lk sð Þ ¼ EB̂ I1ð Þ

l sð ÞB̂ I1ð Þ
k sð Þ � EB̂ I1ð Þ

l sð ÞB̂ I1ð Þ
k sð Þ;

R Dð Þ
lk sð Þ ¼ EB̂ Dð Þ

l sð ÞB̂ Dð Þ
k sð Þ � EB̂ Dð Þ

l sð ÞB̂k sð Þ:

We can represent the series (50), (51) in the form:

Var Î1 t; sð Þ� � ¼ X2N2

n¼�2N2

a I1ð Þ
n sð Þeikx0t; ð52Þ
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Var D̂ t; sð Þ� � ¼ X2N2

n¼�2N2

a Dð Þ
n sð Þeikx0t; ð53Þ

where

a I1;Dð Þ
n sð Þ ¼

X
k2L

R I1;Dð Þ
nþ k;k sð Þ

and L ¼ �N2 � n;N2f g for n� 0 and L ¼ �N2;N2 � nf g for n[ 0. For Gaussian
processes in the first approximation we have

R̂ I1ð Þ
lk sð Þ ¼ 1

h2
Rh
0

Rh
0

~bn1 t; s� t; sð Þþ ~bn2 t; s� t; sð Þ�
þ ~bn1n2 t; s� t; sð Þþ ~bn2n1 t; s� t; sð Þ�eix0 ks�ltð Þdtds

;

R̂ Dð Þ
lk sð Þ ¼ 1

h2
Rh
0

Rh
0

~bf1 t; s� t; sð Þþ ~bf2 t; s� t; sð Þ�
þ ~bf1f2 t; s� t; sð Þþ ~bf2f1 t; s� t; sð Þ�eix0 ks�ltð Þdtds

:

After introducing a new variable s1 ¼ s� t and changing the order of integration
we obtain:

R I1ð Þ
kþ n;k sð Þ ¼ 1

h2
Rh
0

Rh�s1

0

~bn1 t; s1; sð Þþ ~bn2 t; s1; sð Þ� �
eix0 kþ nð Þs1 þ eix0ks1
� ��

þ ~bn1n2 t; s1; sð Þeikx0s1 þ ~bn2n1 t; s1; sð Þe�i kþ nð Þx0s1
�
e�ikx0tdtds1

;

R Dð Þ
kþ n;k sð Þ ¼ 1

h2
Rh
0

Rh�s1

0

~bf1 t; s1; sð Þþ ~bf2 t; s1; sð Þ� �
e�i kþ nð Þx0s1 þ eix0ks1
� ��

� ~bf1f2 t; s1; sð Þeikx0s1 � ~bf2f1 t; s1; sð Þe�i kþ nð Þx0s1
�
e�ikx0tdtds1

:

If to substitute the Fourier series (21), (22) and (27), (28) to these expressions and
integrate out, then in the first approximation:

a I1ð Þ
n sð Þ ¼ 1

h

Zh

0

1� u1
h

	 

~B I1ð Þ
n s1; sð Þ

X
k2L

e�ix0 kþ nð Þs1 þ eikx0s1
h i

ds1; ð54Þ

a Dð Þ
n sð Þ ¼ 1

h

Zh

0

1� u1
h

	 

~B Dð Þ
n s1; sð Þ

X
k2L

e�ix0 kþ nð Þs1 þ eikx0s1
h i

ds1: ð55Þ
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Summarizing the statements written above we form proposition:

Proposition 3.2. For Gaussian vectorial PCRP the component invariant estimators
(37), (38) if condition (8) are satisfied are consistent and for a finite h their variances
are defined by formulae (52)–(55).

Taking into account that

lim
N2!1

X
k2L

eikx0s þ e�i kþ nð Þx0s
	 


¼ P 1þ e�inx0s
� �X

r2Z
d sþ rPð Þ

for a I1ð Þ
n sð Þ and a Dð Þ

n sð Þ we obtain the formulae which coincide with expressions for the
Fourier coefficients of the variances of coherent invariant estimators, that is (17) and
(18).

As it has been noted above, the component invariant estimators are formed on the
basis of initial information about the amount of harmonic components in Fourier series
for estimated invariants. Using the coherent method, we allow implicitly the existence
of a finite number of components. Just this feature distinguishes the coherent method
from the component one, and we can anticipate a better efficiency for the component
estimators against coherent ones in the case of fast damping of correlations between
processes values.

4 Discrete Estimation

We form discrete estimators of invariant components replacing integral transformations
(31) and (32) by integral sums:

B̂ I1ð Þ
k jhð Þ ¼ 1

Mþ 1

XM
n¼0

Î1 nh; jhð Þe�ik 2p
Mþ 1n; ð56Þ

B̂ Dð Þ
k jhð Þ ¼ 1

Mþ 1

XM
n¼0

D̂ nh; jhð Þe�ik 2p
Mþ 1n: ð57Þ

Here Î1 nh; jhð Þ ¼ b̂n1 nh; jhð Þþ b̂n2 nh; jhð Þ, D̂ nhð Þ ¼ b̂n1n2 nh; jhð Þ � b̂n2n1 nh; jhð Þ,
h ¼ P

Mþ 1, M – natural number, and

b̂np nh; jhð Þ ¼ 1
N

PN�1

k¼0
np nþ jð Þhþ k Mþ 1ð Þh½ 
np nhþ k Mþ 1ð Þh½ 


� m̂np nþ jð Þh½ 
m̂np nh½ 

;

b̂npnq nh; jhð Þ ¼ 1
N

PN�1

k¼0
nq nþ jð Þhþ k Mþ 1ð Þh½ 
np nhþ k Mþ 1ð Þh½ 


� m̂np nþ jð Þh½ 
m̂np nh½ 

:
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Taking into account Fourier series (1), (2) and expressions

Eb̂np nh; jhð Þ ¼ bnp nh; jhð Þ � 1
N

XN�1

p¼�Nþ 1

1� pj j
N

� �
bnp nh; jþ Mþ 1ð Þð Þh½ 
;

Eb̂npnq nh; jhð Þ ¼ bnpnq nh; jhð Þ � 1
N

XN�1

p¼�Nþ 1

1� pj j
N

� �
bnpnq nh; jþ Mþ 1ð Þð Þh½ 
;

for biases of (56) and (57) we obtain

e B̂ I1;Dð Þ
k jhð Þ

h i
¼ e0 B̂ I1;Dð Þ

k jhð Þ
h i

þ eN B̂ I1;Dð Þ
k jhð Þ

h i
;

where

e0 B̂ I1;Dð Þ
k jhð Þ

h i
¼

X
q 2 Z;
q 6¼ 0

B I1;Dð Þ
q Mþ 1ð Þ jhð Þ;

eN B̂ I1;Dð Þ
k jhð Þ

h i
¼ � 1

N

XN�1

p¼�Nþ 1

1� pj j
N

� �
Bkþ q Mþ 1ð Þ iþ p Mþ 1ð Þð Þh½ 
:

Thus we have

Fact 4.1. Aliasing effects of the first and the second kinds (Javorśkyj 1984) signifi-
cantly affect the values of biases of invariant component estimators in the cases when
invariants I1 t; sð Þ and D t; sð Þ are represented by _ infinite Fourier series. These effects
are avoided when the covariance invariants are represented by trigonometric
polynomials

I1 t; sð Þ ¼
XN2

k¼�N2

B I1ð Þ
k sð Þeikx0t; D t; sð Þ ¼

XN2

k¼�N2

B Dð Þ
k sð Þeikx0t;

and the sampling interval satisfies inequality h� P
2N2 þ 1.

Proposition 4.1. Statistics (56) and (57) are asymptotically unbiased estimators for
finite number components if condition (8) and inequality h� P

2N2 þ 1 are satisfied and
for a finite number N their biases are:

e B̂ I1ð Þ
k jhð Þ

h i
¼ � 1

N

XN�1

p¼�Nþ 1

1� pj j
N

� �
B I1ð Þ
k jþ p Mþ 1ð Þð Þh½ 
;
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e B̂ Dð Þ
k jhð Þ

h i
¼ � 1

N

XN�1

p¼�Nþ 1

1� pj j
N

� �
B Dð Þ
k jþ p Mþ 1ð Þð Þh½ 
:

We represent the estimators of covariance invariants for 8 t 2 0;P½ 
 in the forms:

Î t; jhð Þ ¼
XN2

k¼�N2

eikx0t 1
Mþ 1

XM
h¼0

Î nh; jhð Þe�ik 2p
Mþ 1n

" #
; ð58Þ

D̂ t; jhð Þ ¼
XN2

k¼�N2

eikx0t 1
Mþ 1

XM
h¼0

Î nh; jhð Þe�ik 2p
Mþ 1n

" #
; ð59Þ

and prove Proposition.

Proposition 4.2. Statistics (58) and (59) are asymptotically unbiased estimators for
covariance invariants 8t 2 0;P½ 
 if conditions (8) are satisfied and h� P

2N2 þ 1 and for
M ¼ 2N2 they coincide with Shannon-Kotelnikov formulae, i.e.

Î1 t; jhð Þ ¼
X2N2

l¼0

Î lh; jhð Þul tð Þ; ð60Þ

D t; jhð Þ ¼
X2N2

l¼0

D̂ lh; jhð Þul tð Þ; ð61Þ

where Î lh; jhð Þ and D̂ lh; jhð Þ are coherent estimators for covariance invariants and

ul tð Þ ¼
sin 2N2 þ 1ð Þ p

P t � lhð Þ
2N2 þ 1ð Þ sin p

P t � lhð Þ :

Proof. Taking into account Propositions 2.1 and 2.2 we have

lim
N!1

EÎ t; jhð Þ ¼ I t; jhð Þ;

lim
N!1

ED̂ t; jhð Þ ¼ D t; jhð Þ:

So, estimators (60) and (61) are asymptotically unbiased. Using the formula for the
sum of finite geometric sequence, we obtain

XN2

k¼�N2

eik
2p
P t�nhð Þ ¼ sin 2N2 þ 1ð Þ p

P t � nhð Þ
sin p

P t � nhð Þ :

After transformations we come to expressions (60) and (61) h.
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We will analyze the variances of estimators (56), (57) neglecting the components
caused by previous computation of mean functions of processes n1 tð Þ and n2 tð Þ. These
components lead to appearance of additional summands in the expressions of variances
that are of higher order of smallness.

Therefore we write

B̂
npð Þ

k jhð Þ ¼ 1
K

XK�1

n¼0

n
�

p
nhð Þ n

�

p
nþ jð Þh½ 
e�ik 2p

Mþ 1n;

B̂
npnqð Þ

k jhð Þ ¼ 1
K

XK�1

n¼0

n
�

p
nhð Þ n

�

q
nþ jð Þh½ 
e�ik 2p

Mþ 1n;

where K ¼ N Mþ 1ð Þ. Then

Var B̂ I1ð Þ
k jhð Þ

h i
¼ 1

K2

XK�1

m;n¼0

~bn1 nh; m� nð Þh; jhð Þþ ~bn2 nh; m� nð Þh; jhð Þ� ��

� eik
2p

Mþ 1 m�nð Þ þ 2~bn1n2 nh; m� nð Þh; jhð Þ cos k 2p
Mþ 1

m� nð Þ
�
;

Var B̂ Dð Þ
k jhð Þ

h i
¼ 1

K2

XK�1

m;n¼0

~bf1 nh; m� nð Þh; jhð Þþ ~bf2 nh; m� nð Þh; jhð Þ� ��

� eik
2p

Mþ 1 m�nð Þ þ 2~bf1f2 nh; m� nð Þh; jhð Þ cos k 2p
Mþ 1

m� nð Þ
�
:

After transformation we find

Var B̂ I1ð Þ
k jhð Þ

h i
¼ 1

K
B̂ I1ð Þ
q Mþ 1ð Þ 0; jhð Þþ 2

XK�1

p¼1

1� p
K

	 

B̂ I1ð Þ
q Mþ 1ð Þ ph; jhð Þ cos k 2p

Mþ 1
p

" #
;

Var B̂ Dð Þ
k jhð Þ

h i
¼ 1

K
B̂ Dð Þ
q Mþ 1ð Þ 0; jhð Þþ 2

XK�1

p¼1

1� p
K

	 

B̂ Dð Þ
q Mþ 1ð Þ ph; jhð Þ cos k 2p

Mþ 1
p

" #
:

Thus we have

Proposition 4.3. For Gaussian vectorial PCRP the discrete estimators of invariant
components (56)–(57) if conditions (8) are satisfied and h� P

2N2 þ 1 are consistent and
for a finite number K their variances are defined by expressions:

Var B̂ I1ð Þ
k jhð Þ

h i
¼ 1

K
B̂ I1ð Þ
0 0; jhð Þþ 2

XK�1

p¼1

1� p
K

	 

B̂ I1ð Þ
0 ph; jhð Þ cos k 2p

Mþ 1
p

" #
;
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Var B̂ Dð Þ
k jhð Þ

h i
¼ 1

K
B̂ Dð Þ
0 0; jhð Þþ 2

XK�1

p¼1

1� p
K

	 

B̂ Dð Þ
0 ph; jhð Þ cos k 2p

Mþ 1
p

" #
:

The variances of the covariance invariant estimators (60) and (61) are defined by
expressions:

Var Î t; jhð Þ� � ¼ X2N2

r¼�2N2

~a I1ð Þ
r jhð Þeirx0t; ð62Þ

Var D̂ t; jhð Þ� � ¼ X2N2

r¼�2N2

~a Dð Þ
r jhð Þeirx0t; ð63Þ

where

~a I1ð Þ
r jhð Þ ¼ 1

K
2N2 þ rj j þ 1ð Þ~B I1ð Þ

r 0; jhð Þþ
XK�1

p¼1

1� p
K

	 

~B I1ð Þ
r ph; jhð Þ

"

�
X
k2L

ei kþ rð Þ 2p
Mþ 1p þ eik

2p
Mþ 1p

	 
#
;

ð64Þ

~a Dð Þ
r jhð Þ ¼ 1

K
2N2 þ rj j þ 1ð Þ~B Dð Þ

r 0; jhð Þþ
XK�1

p¼1

1� p
K

	 

~B Dð Þ
r ph; jhð Þ

"

�
X
k2L

ei kþ rð Þ 2p
Mþ 1p þ eik

2p
Mþ 1p

	 
#
;

ð65Þ

if h� P
2N2 þ 1. From above expression we pose

Proposition 4.4. For Gaussian vectorial PCRP estimators of covariance invariants
which are defined by interpolation formulae (58) and (59) are consistent if conditions
(8) are satisfied and h� P

2N2 þ 1 and for a finite number K their variances are defined by
expressions (64) and (65).

Formulae obtained here can be used for comparison of the effectiveness of discrete
and continuous estimators. Obviously that comparative analysis of estimators should be
carried out for those sampling intervals at which the aliasing effect of both first and
second kinds are absent.

5 The Covariance Invariant Estimators for Vectorial
Amplitude-Modulated Signals

We consider one case of vectorial PCRP when its components are amplitude-modulated,
exact n1 tð Þ ¼ l tð Þ cosx0t, n2 tð Þ ¼ m tð Þ sinx0t at that
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El tð Þ ¼ ml; E l
�
tð Þ l� tþ sð Þ ¼ Rl sð Þ; l� tð Þ ¼ l tð Þ � ml;

Em tð Þ ¼ mm; E m
�
tð Þ m� tþ sð Þ ¼ Rm sð Þ; v� tð Þ ¼ m tð Þ � mm:

Expression for auto- and cross-covariance function of the components n1 tð Þ and
n2 tð Þ contains the zeroth and the second harmonic components only. Invariants I1 t; sð Þ
and D t; sð Þ are defined with relations

I1 t; sð Þ ¼
X

k20;�2

B Ið Þ
k sð Þeikx0t;

D t; sð Þ ¼
X

k20;�2

B Dð Þ
k sð Þeikx0t;

where

B Ið Þ
0 sð Þ ¼ 1

2
Rl sð Þ � Rv sð Þ� �

cosx0s;

B Ið Þ
2 sð Þ ¼ 1

4
Rl sð Þ � Rv sð Þ� �

eix0s; B Ið Þ
�2 sð Þ ¼ �B Ið Þ

2 sð Þ;

BðDÞ
0 ðsÞ ¼ 1

2
RlvðsÞ � RvlðsÞ
� �

sinx0s;

BðDÞ
2 ðsÞ ¼ � i

4
RlvðsÞ � RvlðsÞ
� �

eix0s; BðDÞ
�2 ðsÞ ¼ �BðDÞ

2 ðsÞ;

We suppose

Rl sð Þ ¼ A1e
�a1 sj j; Rm sð Þ ¼ A2e

�a2 sj j; Rlm sð Þ ¼ Ae�a sj j

and introduce function

rl að Þ ¼ 1
T

ZNT
0

1� s
NT

	 

e�as cos lx0sds;

~rl a; s1ð Þ ¼ 1
T

ZNT
0

1� s1
NT

	 

e�a sþ s1 þ s�s1j jj jð Þ cos lx0s1ds1;

r�l a1; a2; sð Þ ¼ 1
T

ZNT
0

1� s1
NT

	 

e� a1 sþ s1j j þ a2 s�s1j jð Þ cos lx0s1ds1:

Then zeroth components of expressions (23) and (24), defining time averaged
values of invariant estimator variances are the following
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a Ið Þ
0 sð Þ ¼ 1

4N

X2
k¼1

A2
k 2 r0 2akð Þþ~r0 ak; sð Þ½ 
 þ 3 r2 2akð Þþ~r2 ak; sð Þ½ 
½

"

þ r0 2akð Þþ~r0 ak; sð Þþ 2 r2 2akð Þþ~r2 ak; sð Þ½ 
½ 
 cos 2x0sþ r4 2akð Þþ~r4 2akð Þ

þ 2A2 r2 2að Þþ~r2 2að Þþ r0 2að Þþ~r0 2að Þþ 2 r2 2að Þþ~r2 a; sð Þ½ 
½ 
 cos 2x0s

��
;

a Dð Þ
0 sð Þ ¼ 1

4N
A1A2 2

2r0 a1 þ a0ð Þþ 3r2 a1 þ a2ð Þ
� r0 a1 þ a2ð Þþ 2r2 a1 þ a2ð Þ½ 
 cos 2x0sþ r4 a1 þ a2ð Þ

� ���

þ r�2 a1; a2; sð Þþ r�2 a2; a1; sð Þ � r�0 a1; a2; sð Þþ r�0 a2; a1; sð Þ
þ 2r�2 a1; a2; sð Þþ 2r�2 a2; a1; sð Þ

� �
� cos 2x0s

� r�4 a1; a2; sð Þ � r�4 a2; a1; sð Þ�þ 2A2 2~r0 a; sð Þþ 3~r2 a; sð Þ�½ ~r6 a; sð Þþ 2~r2½ 

� cos 2x0sþ~r4 a; sð Þ � r2 2að Þ � r0 2að Þþ 2r2 2að Þ½ 
 cos 2x0s� r4 2að Þ

:

Expression of such quantities in case of coherent estimations are the following

a Ið Þ
0 sð Þ ¼ 1

8N

X2
k¼1

A2
k 1þ e�2ak sj j þ 2 s 2akð Þþ~s 2ak; sð Þ½ 
� �

2þ cos 2x0sð Þ�"

þ 2A2 1þ e�2ak sj j þ 2 s 2að Þþ~s a; sð Þ½ 
� �
cos 2x0s

�
;

a Dð Þ
0 sð Þ ¼ 1

8N
2 A1A2 þA2e�a sj j� �

2� cos 2x0sð Þ � 2 A2 þA1A2e
� a1 þ a2ð Þ sj j

	 
h
� cos 2x0sþ 4 A1A2s a1 þ a2ð ÞþA2~s a; sð Þ� �

2� cos 2x0sð Þ
� 2 2A2s 2að ÞþA1A2 s

� a1; a2; sð Þþ s� a2; a1; sð Þ½ 
� �
cos 2x0s

�
;

where

s að Þ ¼
XN�1

n¼1

1� n
N

	 

e�anT ;

~s a; sð Þ ¼
XN�1

n¼1

1� n
N

	 

e�a sþ nTj j þ s�nTj jð Þ;

s� a1; a2; sð Þ ¼
XN�1

n¼1

1� n
N

	 

e� a1 sþ nTj j þ a2 s�nTj jð Þ:

In Fig. 1 there are represented dependences of time averaged estimator variances

a I1ð Þ
0 sð Þ and a Dð Þ

0 sð Þ on lag s; calculated for D1 ¼ D2 ¼ 1:0; D ¼ 0:8; N ¼ 30; T ¼ 10,
a1 ¼ a2 ¼ 0:2 in cases of coherent and component estimation. As it can be seen, these
quantities are oscillating attenuating functions and for great lags they are periodic
curves. Maximal values of attenuating oscillations and also amplitudes _ stated by
coherent estimating are 1.5 times greater than analogous values obtained in case of
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component estimation. A difference between variances of coherent and component
estimations decreases with decrease of attenuation rate of covariance functions and it
increases essentially in case of its increase (Table 1).

Non-attenuating oscillations of time averaged variances of invariants estimator in
case of large lags are the results of periodic non-stationarity of the signals. In case of
estimation of characteristics of stationary signals the estimators variances tend to
definite constant. Such property of the estimators variances must be taken into account
in case of statistical processing of experimental data, since it leads to increase of
relative mean square estimation error that results in necessity of correlograms trunca-
tion (Javorśkyj 2013; Javorśkyj et al. 2007, 2010).

Fig. 1. Dependencies of quantities a I1ð Þ
0 sð Þ and a Dð Þ

0 sð Þ on lag s for coherent (a, b) and for
component (c, d) estimators.

Table 1. Time averaged invariant estimator variances for coherent and component estimation

a1 0.04 0.12 0.4 0.8 1.2
a2 0.04 0.12 0.4 0.8 1.2
a3 0.02 0.06 0.2 0.4 0.6

a I1ð Þ
0 sð Þ s ¼ 0 Comp. estimation 0.17002 0.06206 0.02574 0.01767 0.01393

Coher. estimation 0.17631 0.07903 0.06108 0.06067 0.06066

a Dð Þ
0 sð Þ s ¼ 4 Comp. estimation 0.06139 0.02137 0.00657 0.00357 0.00259

Coher. estimation 0.06286 0.02530 0.01443 0.01281 0.01252
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6 The Covariance Invariant Analysis of Real Data

Coherent and component methods given above were used for the analysis of vibrations
of decanter Flottweg 24E bearing unit. This decanter is operating on the milk plant in
Ukraine. The aim of the analysis was an evaluation of decanter technical state. The
scheme of the decanter units is given in Fig. 2.

Acquisition and processing of vibro-acceleration signals were provided with the use
of multichannel vibro-acoustic system “Vector”. Treble frequency of the selective filter
– 5 kHz, sampling frequency – fsample ¼ 10 kHz. Realization length – 20 s. The frag-
ment of decanter bearing vertical vibration is shown in Fig. 3.

It can be clearly seen from the figure, that signal contains powerful impacts with
frequency that corresponds to shaft rotation. Using methods of PCRP statistics the
covariance structure of vibration was analyzed. Using such approach, the first stage of
analysis is separation of deterministic and stochastic parts. In order to reach this pur-
pose we used coherent method, for which estimator of mean function, that describes
deterministic part of vertical or horizontal vibration, has a form (Javorskyj 1984;
Javorskyj and Mykhajlyshyn 1996; Javorśkyj et al. 2014a, b, c, 2017a, b, c).

Fig. 2. Mechanical scheme of decanter (arrows show places of accelerometers fastening)

Fig. 3. Realization of decanter bearing vertical vibration
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m̂n1;n2 t; Tð Þ ¼ 1
2N þ 1

XN
n¼�N

n1 tþ nTð Þ
n2 tþ nTð Þ

 �
;

where T – test period. Since discrete values of vibration signals are recorded with
interval h ¼ 10�4 s, so values of t and T may be changed with the same interval. In
order to specify value of period we made resampling using Shannon-Kotelnikov
formula

n1;2 tð Þ ¼
XM
n¼�M

n1;2 nhð Þ sinxmax t � nhð Þ
xmax t � nhð Þ ;

where xmax – the highest frequency of signal. Time t was chosen close to maximum of
estimator m̂n2 t;Tð Þ. Dependence of m̂n2 t; Tð Þ on test period T is shown in Fig. 4. This
quantity reaches maximum at T ¼ 1:6667 � 10�2 s. We consider this value as a true
value of period estimator of mean function m̂n2 t; P̂

� �
of vertical vibration.

Frequency 59:998 Hz corresponds to this value of period. Dependence of mean
function estimator m̂n2 tmax; P̂

� �
on time, that describes vibration deterministic part, as it

may be seen from the Fig. 5, is characterized by consecutive impacts, which repeat
through period of shaft rotation. On the base of mean function values within interval
0; P̂
� �

we can calculate amplitude spectrum of vertical vibration’s deterministic

part. Estimators of harmonics amplitudes m̂ n2ð Þ
k

��� ��� were calculated using formulas

(Javorśkyj 2013; Javorśkyj et al. 2016)

m̂c
k

m̂s
k

 �
¼ 2

Lþ 1

XL
n¼0

m̂n2 n~h; P̂
� � cos k 2p

Lþ 1 n
sin k 2p

Lþ 1 n

 �
; m̂ n2ð Þ

k

��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂c

k

� �2 þ m̂s
k

� �2q
;

here ~h ¼ P̂
�
Lþ 1ð Þ. Values of estimators of harmonic amplitudes are shown in Fig. 6

in the form of a diagram. As it can be seen from the figure, amplitude spectrum is quite
wide, it contains almost 40 harmonics, that correspond to frequency of almost 2:5 kHz.

Fig. 4. Dependence of estimator
m̂n2 tmax; Tð Þ on test period T

Fig. 5. Dependence of mean function
estimator on time t
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Similar results were obtained while processing of horizontal vibration. We should
notice, that period estimator calculated in this case differs from the previous one only
with sixth digit after comma.

We obtain the stochastic parts of both vibration components after centering of
initial data on estimators of mean functions, namely

n1
�

tð Þ ¼ n1 tð Þ � m̂n1 t; P̂
� �

; n2
�

tð Þ ¼ n2 tð Þ � m̂n2 t; P̂
� �

:

Before invariant covariance processing of these components, we carry out
searching for hidden periodicities in the time variety of covariance properties of each of
them. In order to reach this purpose we use symmetric coherent averaging of covari-
ance product (Javorskyj 1984; Javorskyj and Mykhajlyshyn 1996; Javorśkyj et al.
2014a, b, c, 2017a, b, c)

b̂n1 t; s; Tð Þ
b̂n2 t; s; Tð Þ

 �
¼ 1

2N þ 1

XN
n¼�N

n1
�

tþ nTð Þ n1
�

tþ sþ nTð Þ
n2
�

tþ nTð Þ n2
�

tþ sþ nTð Þ

( )
: ð66Þ

These statistics at
@2b̂np t;s;Tð Þ

@t2 6¼ 0 have extremes for these T , which are close to

period of nonstationarity P̂, if analyzed data are realizations of PCRP. The most clearly
such extremes appear for these moments of time, which are close to covariance
function bnp t; sð Þ extremes. Graphs of dependencies of statistics (66) on test period T at
s ¼ 0 for moments of time t, which are close to estimators extremes, are shown in
Fig. 7. As it can be seen, statistics (66) have pronounced peaks, which are significantly
over the level of fluctuations.

Points of extremes are close to period of shaft rotation. More detail calculations
show that they differ from period estimators for mean functions only with sixth digit.
Thus, in this case we also accept that P̂ ¼ 1:6667 � 10�2 s.

Following the accepted value of period let us calculate the estimators of linear
invariants, using the first stage coherent method. We will use formulas (4), (5) and (6),
(7) substituting period P by its estimator P̂. It is shown in (Javorskyj et al. 2017a, b, c)
that mean and covariance functions coherent statistics using a period estimator, are
asymptotically unbiased and consistent. Graphs of dependencies of estimators Î1 t; 0ð Þ

Fig. 6. Amplitude spectrum of deterministic part of vertical vibration
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and D̂ t; smð Þ on time t are shown in Figs. 8a and 9a respectively. Since invariant D̂ t; sð Þ
at s ¼ 0 equals _ zero, thus for illustration of its time dependency we chose another
time lag, which corresponds to its first maximum. Time dependencies of both quantities
contain significant peaks within the period of rotation, which amplitudes significantly
over levels of other invariants time values.

Fig. 7. Dependencies of statistics (66) on test period T at s ¼ 0

Fig. 8. Dependence of estimator Î1 t; 0ð Þ on time (a) and its Fourier coefficients (b)

Fig. 9. Dependence of estimator D̂ t; smð Þ on time (a) and its Fourier coefficients (b)
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Estimators of invariants Fourier coefficients, calculated using formulas (56) and
(57), in the form of diagrams are shown in Figs. 7b and 8b. Widths of invariants
amplitude spectra, as it can be seen, are similar but narrower than amplitude spectra of
mean function estimators. They contain almost 20 significant components. Harmonic
amplitudes monotonically decrease as their number k increases.

Estimator Î1 t; 0ð Þ is defined by a sum of estimators of variances of vector com-
ponents, namely it characterizes power of stochastic changes of acceleration vector.
The measure of nonstationarity of such vectorial random process is a quantity

I ¼
P20
k¼1

B̂ I1ð Þ
k 0ð Þ

B̂ I1ð Þ
0 0ð Þ

;

which can be chosen as an indicator, that defines degree of defect growth. In the present
case _ its value equals _ I ¼ 7:1, that is quite large and testifies about the presence of
powerful stochastic modulation of signal harmonics. Taking into account this result and
also significant widths of amplitude spectra of deterministic oscillations as well as
periodic variety of power of vector stochastic parts we conclude that defect present in
the rotary unit is local and quite developed.

Time variety invariant D̂ t; smð Þ estimator is similar in shape to time variety of
estimator Î1 t; 0ð Þ. Amplitude spectrum is similar too but amplitude of D̂ t; smð Þ and
amplitudes of its harmonics are significantly smaller. Such ratio between values of
these invariants was expected following their definitions. Invariant D̂ t; sð Þ is an indi-
cator of rotation, so even the fact that its value does not equals to zero and its time
variety has the clearly defined shape and is characterized by a wide amplitude spectrum
testifies that present defect is developed in moving part of a rotary unit and has a
percussive character. The same conclusion is testified by analysis of linear invariants
with respect to time lag s.

In Fig. 10 the dependencies of estimators Î1 tmax; sð Þ and D̂ tmax; sð Þ on time lag s,
calculated using formulas (4)–(7) for these moments of time tm, which correspond to
maxima of graphs in Figs. 7a and 8a, are shown. These dependencies are similar. They
have a group structure.

Fig. 10. Dependencies of linear invariants estimators on time lag
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Time intervals between individual groups, the power of which decreases as time lag
increases, are close to period of shaft rotation. Periods of oscillations of individual
groups differ insignificantly and are close to the value, which is almost 25 times smaller
than the period of shaft rotation. We can suppose that such oscillations are forced
oscillations of a rotary unit, which appear under the influence of impacts caused by
present defect.

Estimators of invariants covariance components have similar structure. Nonzero

covariance components are complex ones: B I1; Dð Þ
k sð Þ ¼ 1

2 CI1; D
k sð Þ � iSI1; Dk sð Þ� �

. Esti-

mators of these quantities were represented in the same form: B̂ I1; Dð Þ
k sð Þ ¼

1
2 ĈI1; D

k sð Þ � iŜI1; Dk sð Þ� �
and sine and cosine components were calculated on the base of

formulas:

Ĉ I1ð Þ
k sð Þ

Ŝ I1ð Þ
k sð Þ

( )
¼ 2

Mþ 1

XM
n¼0

Î1 nh; jhð Þ cos k 2p
Mþ 1 n

sin k 2p
Mþ 1 n

 �
;

Ĉ Dð Þ
k sð Þ

Ŝ Dð Þ
k sð Þ

( )
¼ 2

Mþ 1

XM
n¼0

D̂ nh; jhð Þ cos k 2p
Mþ 1 n

sin k 2p
Mþ 1 n

 �
;

Dependencies of estimators for the zeroth and the first covariance components of
invariants on time lag are shown in Figs. 11 and 12. In order to specify internal

Fig. 11. Estimators of covariance components of invariant Î1 tm; sð Þ
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structure of individual groups, which are similar, we illustrated only a group, which
corresponds to a set of small time lags.

Comparing graphs of estimators of both invariants components, we should notice
two differences between them. The first one is that oscillations, which describe the
behavior of estimators of invariant Î1 tm; sð Þ covariance components, damp faster as

time lag increases, and the second – estimators of covariance components B̂ I1ð Þ
k sð Þ

mainly are characterized by pair dependence on time lag, but estimators of covariance

components B̂ Dð Þ
k sð Þ – by odd one. It can be easily proved by separating their pair and

odd parts.

As an example, in the Fig. 13 the graphs of pair B̂ I1; Dð Þ
0 sð Þ

h iþ
¼

1
2

B̂ I1; Dð Þ
0 sð Þþ

þ B̂ I1; Dð Þ
0 �sð Þ

" #
and odd B̂ I1; Dð Þ

0 sð Þ
h i�

¼ 1
2

B̂ I1; Dð Þ
0 sð Þ�

�B̂ I1; Dð Þ
0 �sð Þ

" #
parts of zeroth

covariance components are represented.
As mentioned above, linear invariants have almost 25 significant Fourier coeffi-

cients. Thus, for enhancement of statistical processing while the estimation of quadratic
invariants the component method was used and the number of components N2 was
chosen 25 too. Computation shows, that periodic non-stationarity of the second order
detected in linear invariants properties is stronger represented in the time variety of
quadratic invariant I2 t; sð Þ estimator, which is a determinant of matrix (3). Such
dependence is similar in shape to the previous ones (Figs. 7a and 8a), but its amplitude
is significantly larger. It also should be noticed, that amplitudes of the first harmonics
decrease slower.

Fig. 12. Estimators of covariance components of invariant D tm; sð Þ
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Top-shaped form is also proper to time varieties of estimators k1;2 t; sð Þ, which are
the eigen values of matrix (3) symmetric part and define covariance functions of vector
components in the own basis, and also

k1 t; sð Þþ k2 t; sð Þ ¼ I1 t; sð Þ;

k1 t; sð Þk2 t; sð Þ ¼ I2 t; sð Þ:

It is clearly seen from the Figs. 14a and 15a, in which graphs of time varieties of
k1 t; 0ð Þ and k2 t; 0ð Þ are represented, that estimators values within the period are pos-
itive, and value of k1 t; 0ð Þ significantly exceeds value of k2 t; 0ð Þ. It means _ that the
second order curves built on their basis are ellipses. Significant difference between time

Fig. 13. Pair and odd parts of zeroth components of linear invariants B̂ I1ð Þ
0 sð Þ (a) and B̂ Dð Þ

0 sð Þ (b)

Fig. 14. Dependence of estimator k̂1 t; 0ð Þ on time (a) and its Fourier coefficients B̂ k1ð Þ
k 0ð Þ

��� ��� (b)
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dependencies of k1 t; 0ð Þ and k2 t; 0ð Þ is a displacement of their maxima with respect to
time. Such displacement, in practice, does not represent the relationship between
amplitudes of harmonic of invariants estimators (Fig.s 14b and 15b) but only changes
their phase relationships.

Quantities, which define these relationships were computed using formulas:

B̂ k1;k2ð Þ
0 sð Þ ¼ 1

Mþ 1

XM
n¼0

k̂1;2 nh; sð Þ;

Ĉ k1;k2ð Þ
k sð Þ ¼ 2

Mþ 1

XM
n¼0

k̂1;2 nh; sð Þ cos k 2p
Mþ 1

n;

Ŝ k1;k2ð Þ
k sð Þ ¼ 2

Mþ 1

XM
n¼0

k̂1;2 nh; sð Þ sin k 2p
Mþ 1

n;

B̂ k1;k2ð Þ
k sð Þ

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ k1;k2ð Þ
k sð Þ

h i2
þ Ŝ k1;k2ð Þ

k sð Þ
h i2r

:

As a result of invariants estimators time shifting the orientation of ellipses changes
in time (Fig. 16) and _ some angle sectors, where power of vector stochastic changes is
the greatest, can be allocated. Directions of the greatest power changes happen can be
allocated on the base of graphical representation of quantity

bb t; sð Þ ¼ k1 t; sð Þ cos2 bþ k2 t; sð Þ sin2 b;

which characterizes correlations with respect to direction. Here b is an angle between
given direction and own basis. If s ¼ 0 then this quantity defines power of stochastic
oscillations. As it is seen from the Fig. 17, this direction is close to vertical one.

Fig. 15. Dependence of estimator k̂2 t; 0ð Þ on time (a) and its Fourier coefficients B̂ k2ð Þ
k 0ð Þ

��� ��� (b)
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7 Conclusions

Covariance invariants of vectorial PCRP are functions dependent on two variables –

time t and time lag s. Time variety of these quantities is periodic, thus for their analysis
on the base of real data the coherent method can be used which is based on syn-
chronous averaging of data through period of non-stationarity. On the base of values of
invariants, calculated within period, their Fourier coefficients – covariance components
can be calculated. Such calculations are made for each value of time lag from the
previous chosen set. Covariance components values decrease as their number k
increases. Component method, for which estimators have form of trigonometric
functions, allows to neglect insignificant harmonic components while statistic pro-
cessing of data. Sufficient condition of asymptotic unbiasedness of coherent and
component estimators of invariants is damping of correlations as time lag increases. For
Gaussian vectorial PCRP such condition also provides consistency of estimators.
Formulas for variance and bias of estimators obtained in the paper allow to compute
mean-square errors of statistic processing in dependence on realization length, sam-
pling interval and parameters, which describe covariance structure of analyzed signals,
and on this base to choose grounded parameters for processing.

The carried out theoretical investigations became a basis for algorithms grounding
and creation of software for vectorial covariance processing and analysis of experi-
mental data, which were verified using vibration stand (Javorśkyj et al. 2017a, b, c) and
while diagnose machineries on the enterprise in Ukraine. One of the examples of
vectorial covariance analysis usage for evaluation of industrial object state is given in
the paper. Investigation results showed that using linear and quadratic invariants of
covariance tensor allows defect detection on more early stages than it is possible while
conducting covariance analysis of each of them separately. Calculation of eigen values
of covariance tensor and basis of its orientation allows to define caused by defect
appearance spatial properties of vibration vector and to localize it.

Fig. 16. Second order curves Fig. 17. Time variety of stochastic vibration
power with respect to direction
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On Extreme Values in Stationary Weakly
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Abstract. The existing literature on extremal types theorems for sta-
tionary random processes and fields is, until now, developed under either
mixing or “Coordinatewise (Cw)-mixing” conditions. However, these
mixing conditions are very restrictives and difficult to verify in general
for many models. Due to these limitations, we extend the existing the-
ory, concerning the asymptotic behaviour of the maximum of stationary
random fields, to a weaker and simplest to verify dependence condition,
called weak dependence, introduced by Doukhan and Louhichi [Stochas-
tic Processes and their Applications 84 (1999): 313–342]. This stationary
weakly dependent random fields family includes models such as Bernoulli
shifts, chaotic Volterra and associated random fields, under reasonable
addition conditions. We mention and check the weak dependence prop-
erties of some specific examples from this list, such as: linear, Markovian
and LARCH(∞) fields. We show that, under suitable weak-dependence
conditions, the maximum may be regarded as the maximum of an approx-
imately independent sequence of sub-maxima, although there may be
high local dependence leading to clustering of high values. These results
on asymptotic max-independence allow us to prove an extremal types
theorem and discuss domain of attraction criteria in this framework.
Finally, a numerical experiment using a non-mixing weakly dependent
random field is performed.

Keywords: Weak dependence · Extreme values · Random field ·
Extremal types theorem · Domain of attraction

1 Introduction

This is a well-known fact that, given independent and identically distributed ran-
dom variables X1, . . . , Xn, the asymptotic distribution of the normalised maxima
P(a−1

n (Mn − bn) � x), for Mn = max{X1, . . . , Xn} and for some sequences some
an > 0 and bn ∈ R, converges to a non-degenerate distribution G, which is of
extremal type. The same result is obtained by Leadbetter et al. [15] for depen-
dent stationary sequences (Xi)i∈N under a weak mixing condition. Even more,
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in [15] extend this result to stationary processes {Xt, t � 0} of continuous
time, redefining the maximum as MT = sup{Xt : 0 � t � T}, again under
the same mixing condition. In the case of stationary random fields, we must
begin by quoting [1, § 6.9], where it has been shown that such result holds for
MT = sup{Xt : t ∈ [0, T ]d} (d > 1), with (Xt)t Gaussian with weak covariance
conditions. Specifically,

P

(
MT − bT

aT
� x

)
−→

T→∞
G(x), (1)

where G(x) = exp(− exp(−x)) and whose normalisations are defined by

aT = (2d log T )−1/2

bT = (2d log T )1/2 +
1
2 (d − 1)(log log T ) + log

(
(2π)−1

√
det(Λ)(d/π)d−1

)
(2d log T )1/2

,

with Λ denoting the usual matrix of second-order spectral moments. Finally,
using all those ideas, Leadbetter and Rootzén (1998) [16] proved the result for
stationary random fields subject to appropriate long-range dependence restric-
tions, showing that, if the limit (1) holds for some normalisation constants aT > 0
and bT , then G is of extreme value type. Precisely, there the result is shown
considering a weaker version of dependence than the usual mixing condition of
Rosenblatt (1956) [17], called “Coordinatewise (Cw) mixing”, which is the usual
strong mixing condition (multiplied by the number of sub-blocks of the partition
of the domain), restricted to events of type E = {max{Xt : t ∈ A} � u}. How-
ever, this dependence condition is very difficult to check. For instance, the only
example presented in [12], for which it is shown how to compute the extremal
index of stationary random fields. Those authors verify the Cw-mixing condi-
tion in order to validate the theoretical results, nevertheless the special random
field used which fits this mixing property is extremely specific. A similar situa-
tion, although the results are more generals, is presented in [14]. Note also that,
[16] does not provide example for which this condition holds. In fact, bounding
the decay rates of the Cw-mixing coefficients is suggested a further independent
development.

A natural idea to reduce those limitations could be the use of classical mixing
theory results for random fields, e.g. [4]. Nevertheless, this goes on being a heavy
restriction for several reasons. The first reason is that the mixing assumptions are
difficult to check, especially for random fields; e.g., Doukhan (1994) [4] provides
several explicit bounds of the decay for mixing sequences but analogue result
only hold for very few classes of examples of random fields.

The second reason is that mixing is quite restrictive for both random pro-
cesses and fields. For instance, the autoregressive process of order 1:

Xi =
1
2
(Xi−1 + ξi), (2)

with innovations (ξi)i∈Z iid such that P(ξi = 0) = P(ξi = 1) = 1/2, and the ran-
dom field defined in (15), are not mixing (see [2] and [6], respectively). However,
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these random fields are weakly dependent in the sense of Doukhan and Louhichi
(1999) [5], as shown in [5,6], respectively. This last dependence condition is very
useful because it writes as covariance functions. In fact, note that an important
property of associated random variables is that zero correlation implies indepen-
dence (see [13]). Therefore, one may hope that dependence will appear in this
case only through the covariance structure, which is much easier to compute that
a mixing coefficient. Additionally, under weak assumptions, weak-dependence in
the sense of Doukhan and Louhichi (1999) [5], includes models like Bernoulli
shifts, Markov, associated, mixing, etc.

In view of the above remarks, we will focus on obtaining an “extremal types
theorem” for the maxima M(n1,...,nd) = max

{
Xt : t ∈ ∏d

i=1{1, 2, . . . , ni}
}

of
stationary random fields (Xt)t∈Zd , under conditions of dependence much easier
to verify than Cw-mixing condition and less restrictive than mixing conditions
i.e.; we use weak-dependence conditions, such as defined in [5].

This paper is organised as follows. In Sect. 2, we recall a general result on
extremal types theorem provided in [16]. In Sect. 3, we precisely settle the useful
weak-dependence conditions for stationary random fields, and we provide some
examples. For example, if the parameter space is a regular grid, such as Z

d, we
precisely check the weak dependence properties of linear fields, well adapted to
model, for example, radiography and image data (see [9]). Besides, we exhibit
the example of a stationary and weakly dependent random field which is not
strongly mixing. In Sect. 4, we introduce assumptions on the weak dependence
coefficients of stationary random fields which enable to prove that the maximum
for these fields may be asymptotically rewritten as the maximum of approxi-
mately independent sequences of sub-maxima, although there may be high local
dependence leading to clustering of high values. This is the preliminary result
(Lemma 1), which will be the heart of all other results. In Sect. 5, we provide
the extremal types theorem and we discuss domain of attraction criteria. A sim-
ulation study is included in Sect. 6 using a stationary weakly dependent random
field, which is not strongly mixing.

2 A General Result on Extremal Types

The following general extremal types theorem provides a general property to
ensure that the maximum of dependent processes and fields admit asymptotic
distribution of the extreme value type.

Proposition 1. ([16, Proposition 2.1]) Let MT , with T > 0, be random vari-
ables such that

P
(
a−1

T (MT − bT ) � x
) −→

T→∞
G(x), (3)

where G is a non-degenerate distribution and aT > 0, bT ∈ R are normalisation
constants. Suppose now that for each real x, uT = aT x + bT and

P (MkT � ukT ) − P
k(Mφk(T ) � ukT ) −→

T→∞
0 (4)
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holds for each k = 1, 2, . . . and some continuous strictly increasing functions
φk(T ) −→

T→∞
∞. Then G is of extreme value type.

Remark 1. Let (Xi)i∈Zd be a stationary random field. Note that (4) is obviously
true if T = n, φk(T ) = T and Mkn is the maximum of k−independent random
blocks Yj = (Xi, i ∈ Bj , |Bj | = n), j = 1, . . . , k. Moreover, observe that the
approximation (4) suggests decay of global dependence. We thus can suppose
high local dependence and consider small long-range dependence conditions in
order to verify such condition (4) and develop the extremal types theorem for
stationary random fields. In particular, with these assumptions, we can develop
the results under weak-dependence conditions.

3 Weak Dependence of a Random Field

3.1 Definitions

Let Λu(E) be the set of R-valued functions defined on Eu with u ∈ N and E ⊆ R,
that are bounded by 1 and have a finite Lipschitz modulus Lip(·), i.e.,

Λu(E) = {f : Eu −→ R | Lip(f) < ∞ and ||f ||∞ � 1} ,

where

Lip(f) = sup
(x1,...,xu) �=(y1,...,yu)

|f(x1, . . . , xu) − f(y1, . . . , yu)|
δu ((x1, . . . , xu), (y1, . . . , yu))

,

with

δr((x1, . . . , xr), (y1, . . . , yr)) =
r∑

i=1

|xi − yi|. (5)

We will consider E-valued random fields over Z
d, for some d ∈ N fixed. In this

case, if we set the norm ||(k1, . . . , kd)|| = δd((k1, . . . , kd),0) in Z
d, we say that

two finite sequences I = (i1, . . . , iu) and J = (j1, . . . , jv) in Z
d are l−distant if

min{||is − jt|| : s = 1, . . . , u ; t = 1, . . . , v} = l.

Definition 1. Let ψ : N2×(R+)2 −→ R
+ be a function and let (ε(l))l�0 be a real

positive sequence tending to zero. The random field X = {Xt : t ∈ Z
d} is (ε, ψ)-

weakly dependent if for any pair of l−distant finite sequences I = (i1, . . . , iu),
J = (j1, . . . , jv); and any pair of functions (f, g) ∈ Λu(E) × Λv(E):

|Cov(f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))| � ψ (u, v,Lip(f),Lip(g)) ε(l). (6)

In particular,
if ψ(u, v, x, y) = vy, this is called θ-weakly dependent and ε(l) will be denoted
by θ(l),
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if ψ(u, v, x, y) = ux + vy, this is called η-weakly dependent and ε(l) will be
denoted by η(l),
if ψ(u, v, x, y) = uvxy, this is called κ-weakly dependent and ε(l) will be denoted
by κ(l),
if ψ(u, v, x, y) = ux + vy + uvxy, this is called λ-weakly dependent and ε(l) will
be denoted by λ(l).

3.2 Examples

In this section we give a non-exhaustive list of examples of weakly dependent
random fields. In the sequel, X = (Xi)i∈Zd denote a weakly dependent stationary
random field (the conditions of the stationarity will not be specified) and (ξi)i∈Zd

denote a centred unit variance independent identically distributed random field.

Example 1 (Bernoulli shifts). Consider a function H : RZ
d −→ R and define

(Xi)i∈Zd as
Xi = H

(
ξi−j, j ∈ Z

d
)
.

For each l > 0, define now Xi,l = H (ξj−i, ‖j‖ � l). Observe that Δp(l) :=
‖Xi −Xi,l‖p does not depend on i. In this case, (Xi)i∈Zd is η−weakly dependent
with η(l) = 2Δ1(l/2 − 1).

Remark 2.(1) For d = 1, if the random field is causal: Xi = H(ξi−j , j �
0), then η(l) = θ(l) = Δ1(l − 1) and the weak dependence function takes
the simple form ψ(u, v, x, y) = vy. In particular, the AR(1) process (2)
mentioned in the introduction is θ-weakly dependent with θ(l) = O(2−l).
For more details on the dependence properties of causal time series, see [3,
§ 3.1.4, § 3.1.5], and in the context of extreme value theory, see [11, § 3.1].

(2) For d > 1, note that models are inherently non-causal in the sense that,
unlike time series, they are not defined with respect to some order rela-
tion on Z

d. For particular cases, definitions of causality and semi-causality
for random fields and spatio-temporal models are provided in [8] and [9]
respectively.

In order to briefly explain the technique for demonstrating weak-dependence in
stationary random fields, we will use the following application. For the general
case, the exact same steps can be applied, see [3,5,6].

Application 1 (Linear fields). Define X = (Xi)i∈Zd as

Xi =
∑
j∈Zd

bjξi−j, (7)

where
∑

j b
2
j < ∞. Then X is η-weakly dependent with

η2(2l) = 4
∑

‖j‖>l

b2j . (8)
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Indeed, let l > 0 and Xi,l =
∑

‖j‖�l bjξi−j. Then, we have that

Δ2
2(l) := E (Xi,l − Xi)

2 = E

⎛
⎝ ∑

‖j‖>l

bjξi−j

⎞
⎠

2

=
∑

‖j‖>l

b2j Eξ2i−j =
∑

‖j‖>l

b2j , (9)

which does not depend on i as we expected.
On the other hand, let XI = (Xi1 , . . . , Xiu) and XJ = (Xj1 , . . . , Xjv ),

and consider their truncated versions XI,s = (Xi1,s, . . . , Xiu,s) and XJ,s =
(Xj1,s, . . . , Xjv,s). Then, if I = (i1, . . . , iu) and J = (j1, . . . , jv) are l−distant
with l > 2s,

Cov (f(XI,s), g(XJ,s)) = 0, ∀(f, g) ∈ Λu(R) × Λv(R).

Thus,

|Cov (f(XI), g(XJ))| � |Cov (f(XI) − f(XI,s), g(XJ))|
+ |Cov (f(XI,s), g(XJ) − g(XJ,s))|

� 2‖g‖∞E |f(XI) − f(XI,s)| + 2‖f‖∞E |g(XJ) − g(XJ,s)|
� 2Lip(f)Eδu(XI,XI,s) + 2Lip(g)Eδv(XJ,XJ,s)

= 2Lip(f)
u∑

k=1

E|Xik − Xik,s| + 2Lip(g)
v∑

k=1

E|Xjk − Xjk,s|

� 2(uLip(f) + vLip(g))Δp(s),(10)

for any p � 1. Therefore, it is enough to choose η(l) = 2Δ1(l/2−1). In particular,
as the series bk is square summable, we can take p = 2 to obtain from (9) that

η2(2l) = 4Δ2
2(l) = 4

∑
‖j‖>l

b2j . (11)

Application 2 (Markovian fields). Let v ∈ Z
d, define a shift operator Bv in the

fields on Z
d as (Bv ·X)t = Xt−v. Now, consider a finite sequence of real numbers

(aj)j=1,...,D and a finite sequence (v1, . . . ,vD) ∈ (Zd)D. A Markovian field is
defined by the neighbour regression formula:

Xi =
D∑

j=1

ajXi−vj
+ ξi = (A · X)i + ξi, (12)

where A =
∑D

j=1 ajBvj
. Assume that a =

∑D
j=1 |aj | < 1, then there exists an

integrable stationary solution to (12):

Xi =
∞∑

p=0

(Ap · ξ)i =
∞∑

p=0

∑
0�j1,...,jD

j1+···+jD=p

p!
j1! · · · jD!

aj1
1 · · · ajD

D ξi−(j1v1+···+jDvD). (13)
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Note that ∑
0�j1,...,jD

j1+···+jD=p

p!
j1! · · · jD!

|aj1
1 · · · ajD

D | = ap,

therefore the process (12) can be rewritten as (7) with absolutely summable coef-
ficients, i.e.

Xi =
∑
k∈Zd

bkξi−k,

where the series (bk) is, by definition, such that

|bk| �
∞∑

p=0

∑
(j1,...,jD)∈Vk,p

p!
j1! · · · jD!

|aj1
1 · · · ajD

D |,

with Vk,p := {(j1, . . . jD) ∈ N
D : j1 + · · · + jD = p, j1v1 + · · · jDvD = k}.

Finally, denoting v = max{‖v1‖∞, . . . , ‖vD‖∞}, observe that Vk,p is empty if
p < ‖k‖∞/v, and |bk| � (1− a)−1a‖k‖∞/v. So that (bk) is square summable and
X η−weakly dependent such that (8) holds.

Example 2 (Chaotic Volterra fields). Assume that (ξi)i∈Zd has finite moments
of any order. Define (Xi)i∈Zd as

Xi =
∞∑

s=1

X
(s)
i where X

(s)
i =

∑
j1,...,js∈Zd

a
(s)
j1,...,js

ξi−j1 · · · ξi−js . (14)

If the real series a
(s)
j1,...,js

is absolutely summable, the field (Xi) is then η−weakly
dependent with

η(2l) �
∞∑

s=1

s∑
t=1

∑
‖jt‖>l

j1,...,js∈Z
d

|a(s)
j1,...,js

| E|ξ0|s.

Note that if the random field is causal, that is, if the indices jl are all in N
d,

then the bound holds for η(l).

Application 3 (LARCH(∞)−fields). Let a be a real positive, (bj)j∈T+ a nonnega-
tive sequence and (ςj)j∈T+ an i.i.d nonnegative random field where T+ = N

d\{0}.
Define X = (Xi)i through the recurrence relation

Xi =

⎛
⎝a +

∑
j∈T+

bjXi−j

⎞
⎠ ςi.
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If c = E(ς0)
∑

j∈T+ bj < 1, in [7] is proved that such models have a stationary
representation with the chaotic expansion:

Xi = aςi + a

∞∑
l=1

X l
i , where

X l
i =

∑
j1∈T+

· · ·
∑

jl∈T+

bj1 · · · bjlςi−j1 · · · ςi−(j1+···+jl).

Note that the convergence of the series over l comes from E|X l
i | � cl. Now, let

XL,m
i = aςi + a

L∑
l=1

∑
j1∈[0:m]d

· · ·
∑

jl∈[0:m]d

bj1 · · · bjlςi−j1 · · · ςi−(j1+···+jl),

with the notation [0 : m] = {0, 1, . . . ,m}. Observe that this field (XL,m
i )i is an

approximation of X, such that

E

∣∣∣Xi − XL,m
i

∣∣∣ �
∑
l>L

cl + ρ(m),

where ρ(m) =
∑

j/∈[0:m]d |bj|. Then, X is η−weakly dependent with coefficient

η(l) = min
Lm�l

(
cL+1

1 − c
+ ρ(m)

)
.

In particular, for standard LARCH models with delay p, bj = 0 for all ‖j‖ > p,the
coefficient η(l) = cl/p/(1 − c). In the arithmetic decay case, bj = C‖j‖−a, η(l) =

Const.
(

l
log l

)1−a

. In the geometric case, bj = C exp(−b‖j‖), η(l) = Const.γ
√

l,

for γ = exp(−√−b log c).

Example 3 (Associated random fields). Associated random fields are κ−weakly
dependent, with κ(l) =

∑
‖j‖>l Cov(X0,Xj). See [5].

For other examples of weakly dependent random fields, we defer a reader
to [3,6,8]. Those references also include some examples of weakly dependent
random fields with weakly dependent inputs ξ = (ξi)i∈Zd .

3.3 An Example of Non-mixing Weakly Dependent Linear Field

Let ξ = (ξi)i∈Z and ς = (ςj)j∈Z be two i.i.d Bernoulli sequences with the same
parameter p = 1/2 such that ξ and ς are independents. Define (Ui)i∈Z and
(Vj)j∈Z as

Ui =
∞∑

k=0

ξi−k

2k
, Vj =

∞∑
k=0

ςj−k

2k
.
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The sequences (Ui)i and (Vj)j are stationaries with uniform common marginal
distribution over [0, 1]. Moreover, these are weakly dependent (see [5]) but non-
mixing (because U0 is a deterministic function of Ui for any i > 0. The same for
V , see [2]).

Consider now the random field

X(i,j) = UiVj =
∑

k�0,l�0

ξi−kςj−l

2k+l
. (15)

This is clearly a stationary linear random field with innovations ξiςj .
Note that

Δ2
2(r) = E

∣∣∣∣∣∣X(i,j) −
∑

0�k+l�r

ξi−kςj−l

2k+l

∣∣∣∣∣∣
2

=
∑

k+l>r
k�0,l�0

4−(k+l),

therefore Δ2(r) �
√

2r2−r. Using (8), we can easy prove that the random field
(X(i,j))i,j∈Z is η−weakly dependent with η(r) = 22−r/2

√
r. However, this field

is non-mixing, as shown in [6, § 2.2.6].

4 Asymptotic Max-Independence in Stationary Weakly
Dependent Random Fields

In this section we provide the main preliminary results in order to prove extremal
types theorem in the next section. For this, consider the following notations,
definitions and conditions, which we will use throughout this paper.

Let X = {Xt : t ∈ Z
d} be a stationary random field. For subsets B of Zd,

we denote
M(B) = sup{Xt : t ∈ B},

and we will write
Mn = M(En),

where n = (n1, n2, . . . , nd) ∈ N
d and En =

∏d
i=1[ni]. Here

∏d
i=1 Ai denote the

cartesian product A1 × · · · × Ad and [k] := [1 : k], where [i : j] denote the subset
{i, i + 1, . . . , j − 1, j} of N.

Weak dependence conditions will be given here in such a way that the
extremal types theorem holds for Mn, i.e. such that any non-degenerate limit
G for Mn normalised as in (3) must be of extreme value type. A similar result
is developed in [16] but under mixing conditions (more precisely, under “Cw-
mixing” conditions).

We will use a spatial version of the Bernstein block technique for the proof
of Lemma 1. In order to develop this technique here, it is necessary to consider
for each i ∈ [d], a sequence ri := rni

= o(ni) to build the lengths of sides of
d−blocks (or d−lattices):

Bj1j2...jd :=
d∏

i=1

[(ji − 1)ri + 1 : jiri],
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which will be used for subdivision of En =
∏d

i=1[ni]. Moreover, we denote
mi = mni

= 	ni/ri
 for i ∈ [d] with 	x
 := max{j ∈ N : j � x}. Then, it
is clear that En contains mn = m1m2 · · · md complete blocks, and no more that
(m1 + m2 + · · · + md − d + 1) incomplete ones.

Spatial weak dependence (SWD) conditions. Let li := lni
−→

ni→∞ ∞ be

a sequence such that li = o(ri) for each i ∈ [d]. We say that a random field
X satisfy at least one SWD condition if X satisfy at least one of the following
dependence conditions:

1. θ-weakly dependent such that for each i-direction, with i ∈ [d],

nαi
i n

αi−1
i−1 · · · nα1

1

mi−1 · · · m2m1
θ(li) −→ 0, as (n1, . . . , ni) → ∞; (16)

for some (α1, . . . , αi) ∈ [1,∞)i \ {(1, . . . , 1)}.
2. η-weakly dependent such that for each i-direction, with i ∈ [d],

nαi
i n

αi−1
i−1 · · · nα1

1 mβ
i

mi−1 · · · m2m1
η(li) −→ 0, as (n1, . . . , ni) → ∞; (17)

for some (α1, . . . , αi, β) ∈ [1,∞)i+1 \ {(1, . . . , 1)}.
3. κ-weakly dependent such that for each i-direction, with i ∈ [d],

(
nαi

i n
αi−1
i−1 · · · nα1

1

mi−1 · · · m2m1

)2

κ(li) −→ 0, as (n1, . . . , ni) → ∞; (18)

4. λ-weakly dependent such that for each i-direction, with i ∈ [d],

(
nαi

i n
αi−1
i−1 · · · nα1

1

mi−1 · · · m2m1

)2

λ(li) −→ 0, as (n1, . . . , ni) → ∞; (19)

for some (α1, . . . , αi) ∈ [1,∞)i \ {(1, . . . , 1)}.
In these items, n = (n1, n2, . . . , nd) → ∞ means that nj → ∞ for each j ∈ [d].
Besides, we set the convention m0 = 1.

Lemma 1. Let X = {Xt : t ∈ Z
d} be a stationary random field that sat-

isfy at least one SWD condition. Let (un)n∈Nd be a family of levels such that
P (M(B) = un) = 0, for all B ⊂ Z

d and all n ∈ N
d. Then if Bn =

∏d
i=1[miri]

(this is, Bn =
⋃

j1,··· ,jd
Bj1,··· ,jd),

P (M(Bn) � un) = P
mn (M(J) � un) + o(1) (20)

as n → ∞, where J := B11...1 =
∏d

i=1[ri].
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Proof. W.l.o.g., we will consider d = 2 to reduce notations and simplify the
proof.

Let Ji = [(i − 1)r1 + 1 : ir1] × [m2r2], J′
i = [(i − 1)r1 + l1 : ir1 − l1] × [m2r2]

and J∗
i = Ji \ J′

i. It is evident then that Bn =
⋃m1

i=1 Ji and

P

(
M

(
m⋃

i=1

Ji

)
� un

)
= P

(
M

(
m−1⋃
i=1

Ji

)
� un , M(Jm) � un

)

� P

(
M

(
m−1⋃
i=1

Ji

)
� un , M(J′

m) � un

)
, (21)

for any m ∈ [2 : m1]. Thus

0 � P

(
M

(
m−1⋃
i=1

Ji

)
� un , M(J′

m) � un

)
− P

(
M

(
m⋃

i=1

Ji

)
� un

)

= P

(
M

(
m−1⋃
i=1

Ji

)
� un , M(J′

m) � un , M

(
m⋃

i=1

Ji

)
> un

)

� P(M(J∗
m) > un) = P(M(J∗

1) > un). (22)

On the other hand, observe that

0 � P(M(J′
m) � un) − P(M(Jm) � un)�P(M(J∗

m) > un) = P(M(J∗
1) > un).

(23)

Using stationarity together with (22)–(23), it follows that
∣∣∣∣∣P

(
M

(
m⋃

i=1

Ji

)
� un

)
− P

(
M

(
m−1⋃
i=1

Ji

)
� un

)
P (M(J1) � un)

∣∣∣∣∣
�

∣∣∣∣∣P
(

M

(
m⋃

i=1

Ji

)
� un

)
− P

(
M

(
m−1⋃
i=1

Ji

)
� un , M(J′

m) � un

)∣∣∣∣∣
+

∣∣∣∣∣P
(

M

(
m−1⋃
i=1

Ji

)
� un , M(J′

m) � un

)

−P

(
M

(
m−1⋃
i=1

Ji

)
� un

)
P (M(J′

m) � un)

∣∣∣∣∣
+ P

(
M

(
m−1⋃
i=1

Ji

)
� un

)
|P (M(J′

m) � un) − P (M(Jm) � un)| , (24)
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which implies that

δn := |P(M(Bn) � un)− P
m1 (M(J1) � un)|

=

∣
∣
∣
∣
∣
∣

m1−1
∑

j=1

[

P

(

M

(
m1−j+1

⋃

i=1

Ji

)

� un

)

− P

(

M

(
m1−j
⋃

i=1

Ji

)

� un

)

P(M(Jm1−j+1) � un)

]

×P
j−1(M(J1) � un)

∣
∣

�2(m1 − 1)P {M(J∗
1 ) > un}+

m1−1
∑

j=1

Δj+1,x, (25)

where

Δj,x :=

∣∣∣∣∣P
(

M

(
j−1⋃
i=1

Ji

)
� un , M(J′

j) � un

)

−P

(
M

(
j−1⋃
i=1

Ji

)
� un

)
P

(
M(J′

j) � un

)∣∣∣∣∣ .

Note that Δj,x is the absolute value of the covariance of two indicators func-
tions, which are not Lipschitz. An approximation by Lipschitz functions is used
in order to bound the expressions of interest by using such weak-dependence
conditions.

Let M := Ma×b(R) be the set of real-matrices with a rows and b columns.
For u > 0, define the real function fu,a,b : M −→ R, such that

fu,a,b((xij)ij) = I{max{xij : (i,j)∈[a]×[b]}�u}. (26)

This function has jump discontinuities at the points (matrices) (xij)ij ∈ M such
that

max{xij : (i, j) ∈ [a] × [b]} = u,

i.e., at all the discontinuity points of fu,a,b:

D(fu,a,b) := {(xij)ij ∈ M : max{xij : (i, j) ∈ [a] × [b]} = u} .

Consider now the polyhedral function Ka,b : M −→ R, defined as:

Ka,b((xij)ij) := I{max{xij :(i,j)∈[a]×[b]}�−1}

− 1
2

a∑
i=1

b∑
j=1

(xij − 1)I{|xij |<1, xij�xkl ∀(k,l) �=(i,j)} + · · · .

Consider a positive sequence hn converging to zero, as n → ∞, then the sequence
of Lipschitz functions

Kn,a,b(A) := Ka,b(h−1
n (A − U)), (27)
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converges uniformly to fu,a,b on M \ D(fu,a,b), where U := (uij)ij ∈ M is such
that uij = u for all (i, j) ∈ [a] × [b].

Moreover,
1

abhn
� Lip(Kn,a,b) =

1
hn

. (28)

We can thus use the approximation Δj,x = Δn,j,x + o(1), where

Δn,j,x :=

∣∣∣∣∣Cov

(
Kn,m2r2,(j−1)r1

(
j−1⋃
i=1

Ji

)
,Kn,m2r2,r1−2l1

(
J′

j

))∣∣∣∣∣ .

We will show now that δn −→ 0 as n → ∞.

• Decay of the dependence term.

First, if we suppose that X is η-weakly dependent, we obtain for j ∈ [2 : m1]
that

Δn,j,x

� ψ
(
Lip(Kn,m2r2,(j−1)r1),Lip(Kn,m2r2,r1−2l1), m2(j − 1)r2r1, m2r2(r1 − 2l1)

)
η(l1)

� m2r2r1(j − 2l1/r1)

hn
η(l1),

thus

m1−1∑
j=1

Δn,j+1,x � n2n1m1

hn

[
1 − m−1

1

2
+

(
1

m1
− 2l1

r1m1

)(
1 − 1

m1

)]
η(l1)

�2−1n2n
α1
1 mβ

1

[
1 +

2
m1

(
1 − 2l1

r1

)]
η(l1),(29)

where we have set here hn = n1−α1
1 m1−β

1 , for some (α1, β) ∈ [1,∞)2 \{(1, 1)}

In the same way, if we suppose that X is respectively κ, λ or θ−weakly
dependent, we obtain respectively that

m1−1∑
j=1

Δn,j+1,x � (n2n
α1
1 )2

2
(1 − 2l1

r1
)κ(l1), (30)

m1−1∑
j=1

Δn,j+1,x � (n2n
α1
1 )2

2

[
hnm1

n2n1

(
1 +

2(1 − 2 l1
r1

)
m1

)
+ (1 − 2l1

r1
)

]
λ(l1),

(31)
m1−1∑
j=1

Δn,j+1,x � n2n
α1
1

(
1 − 2l1

r1

)(
1 − 1

m1

)
θ(l1), (32)

where we have set hn = n1−α1
1 for κ, λ and θ cases, for some α1 ∈ (1,∞).
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• Decay of the expectation of the excesses in the remaining blocks J∗.
We only need consider that P

m1{M(J∗
1 ) � un} −→ ρ for some ρ ∈ [0, 1]. In

fact, if ρ = 1, then m1 logP{M(J∗
1) � un} −→ 0 as n → ∞.

Therefore, m1P{M(J∗
1) > un} −→ 0 as n → ∞. Using this and the respective

SWD condition (16)–(19), it follows that δn −→ 0 by (25).

Now, we suppose that ρ < 1. Note that for n sufficiently large, we can choose
k1 = k1,n rectangles {J∗

1j}j∈[k1] inside J′
1, congruents to J∗

1, such that all
are mutually separated by at least l1 points in the 1-direction. Using similar
arguments to (22)–(25), but in the (22) and (23) cases we only use the left
hand inequality, we obtain

P(M(J1) � un)�P
k1(M(J∗

1) � un) +
k1−1∑
j=1

Δ̃n,j+1,x + o(1) (33)

where Δ̃n,j,x =
∣∣∣Cov

(
Kn,m2r2,2(j−1)l1

(⋃j−1
i=1 J∗

1i

)
,Kn,m2r2,2l1(J

∗
1j)

)∣∣∣ .

Thus, for n large, we get

P
m1(M(J1) � un)�P

k1m1(M(J∗
1) � un) +

k1−1∑
j=1

Δn,j+1,x + o(1) (34)

= (ρ + o(1))k1 + o(1) −→ 0,

because ρ < 1. Hence δn = P(M(Bn) � un) + o(1). However, it follows
similarly that

P(M(Bn) � un)�P
m1{M(J′

1) � un} +
m1−1∑
j=1

Δn,j+1,x + o(1)

which tends to zero since (33) and hence (34) also apply with M(J′
1) in place

of M(J1). In consequence, δn −→ 0 as n → ∞ whenever ρ < 1. Therefore,
(25) again holds.

Now to prove that P(M(Bn) � un) = P
m1m2 (M(J) � un) + o(1), it will be

suffice to show that:

P
m1(M(J1) � un) − P

m1m2(M(J) � un) −→ 0.

However, this follows by entirely similar reasoning, splitting the rectangle J1 into
rectangles Hi = [1 : r1] × [(i − 1)r2 + 1 : r2], for i ∈ [m2], and bearing in mind
that the Lipschitz approximations are Kn,r1,(j−1)r2 and Kn,r1,r2−2l2 , defined in
smaller domains of size u = r2r1(j − 1) and v = r1(r2 − 2l2), respectively. �

Replacing [16, Lemma 3.1] by our Lemma 1 in the proof of Proposition 3.2
in [16], we prove the following result.



106 P. Doukhan and J. G. Gómez

Proposition 2. Let X = {Xt : t ∈ Z
d} be a stationary random field that satisfy

at least one SWD condition. Suppose that (un)n∈Nd is a family of levels such that
for all B ⊂ Z

d, and all n ∈ N
d: P(M(B) = un) = 0.

Let I =
∏d

i=1 [	aini
] (with ai ∈ (0, 1] for all i ∈ [d]) be a d-sub-grid of En,
where ai may change with n for all i ∈ [n] but a1a2 · · · ad −→ a > 0 as n → ∞.
Then, under the above notation

1. P (M(I) � un) − P
amn (M(J) � un) −→ 0.

2. P (M(I) � un) − P
a (Mn � un) −→ 0.

Note that if P (Mn � un) has a limit G(x), with un = anx + bn, then, from 2.
in the previous proposition, P(M(I) � un) has the limit Ga(x), which is used to
show max-stability of G in the proof of Theorem 1.

5 Extremal Types Theorem and Domain of Attraction
Criteria

As before, n → ∞ means ni → ∞ for each i ∈ [d]. However, the extremal types
theorem for stationary random fields can be reformulated in terms of the limiting
distribution of Mn as n → ∞ along a monotone path on the grid N

d, i.e., along
n = (n, 	ϑ1(n)
, . . . , 	ϑd−1(n)
) for some strictly increasing continuous functions
ϑj : [1,∞) −→ [1,∞), with j ∈ [d − 1], such that ϑj(T ) −→ ∞ as T → ∞, for
all j ∈ [d − 1].

Theorem 1. Let X = {Xt : t ∈ Z
d} be a stationary random field and sup-

pose that P
(
a−1
n (Mn − bn) � x

) −→ G(x), non-degenerate as n → ∞ along the
monotone path n = (n, 	ϑ1(n)
, . . . , 	ϑd−1(n)
) defined above.

Then, if X satisfies at least one SWD condition and P(M(B) = anx+bn) = 0,
for all (x, n) ∈ R × N and all B ⊂ Z

d, G is of extreme value type.

Proof. Let f : [1,∞) −→ [1,∞) the continuous strictly increasing function
defined by

f(T ) = Tϑ1(T ) · · · ϑd−1(T ),

and define now

φk(T ) = f−1

(
1
k

f(kT )
)

, k = 1, 2, 3, . . . .

If we set T ∗ = φk(T
k ), note that kf(T ∗) = f(T ).

Then, for n = (n, 	ϑ1(n)
, . . . , 	ϑd−1(n)
), we set

I = [	a1n
] × [	a2ϑ1(n)
] × · · · × [	adϑd−1(n)
],

where a1 =
n∗

n
and ai+1 =

ϑi(n∗)
ϑi(n)

for i = 1, . . . , d − 1.
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Clearly ai ∈ (0, 1] for all i ∈ [d], because ϑi is strictly increasing for all i ∈ [d]
and n∗ = f−1

(
1
kf(n)

)
� n for all (n, k) ∈ N

2.

Besides,

a1 · · · ad =
f(n∗)
f(n)

=
1
k

=: a

Then the assumptions of Proposition 1 hold for this I with these (ai)i∈[d] and a.
Thus,

P (Mn � un) − P
k (M(I) � un) −→

n→∞ 0. (35)

By writing Mn = Mn, un = un and M(I) = Mn∗ , expression (35) is equivalent
to

P (Mn � un) − P
k (Mn∗ � un) −→

n→∞ 0, (36)

which verifies (4) by setting n∗ = φk(n/k) and replacing n by kT . Finally the
result now follows from Proposition 1. �

5.1 On Domain of Attraction Criteria

The purpose of this section is to provide a characterisation of the maximum
domain of attraction of a extreme value distribution G.

Since the random field is stationary, this characterisation will be an analogous
version to the one already made for the cases: i.i.d. random variables, stationary
sequences with non-zero extremal index, etc. (See [15,16]). Namely, under SWD
conditions, we obtain that the type of limiting distribution for maxima is also
determined by the tail behaviour of the common marginal distribution function
for each either term or each maximum over (fixed) sub-blocks.

Note that from Lemma 1, we can deduce that the random variables

(M(Bj1,j2,...,jd))j1,...,jd∈[d]

have extremal index 1. Therefore, using this “max-block asymptotic indepen-
dence”, we can provide the characterisation through the tail distribution func-
tion of M(J), where, by stationarity, J := B11...1 =

∏d
i=1[ri] denotes “the first

block” or a generic block. Let now γn be the (1−m−1
n )−percentile of M(J), i.e.

P (M(J) > γn) = m−1
n .

With the above notation, we state the following proposition.

Proposition 3. Let X = {Xt : t ∈ Z
d} be a stationary random field that

satisfies at least one SWD condition.
Suppose that

(TD) P (M(J) > γn + anx) /P (M(J) > γn) −→ H(x) for some constants
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an > 0 and some non-increasing function H(x) such that H(x) −→
x→−∞ ∞ and

H(x) −→
x→∞ 0; and that additionally P(M(B) = anx + γn) = 0, for all B ∈ Z

d

and all (x,n) ∈ R × N
d.

Then

P
(
a−1
n (Mn − γn) � x

) −→
n→∞ G(x) = exp(−H(x)). (37)

Proof. It follows from Proposition 2 - 1 (with ai = 1 for all i ∈ [d]) and the
assumption (TD) that

P (Mn � anx + γn) = P
mn (M(J) � anx + γn) + o(1)

= (1 − H(x)P (M(J) > γn) (1 + o(1)))mn + o(1)

=
(

1 − H(x)
mn

(1 + o(1))
)mn

+ o(1)

−→
n→∞ exp(−H(x)),

where the last equality is because P (M(J) > γn) = m−1
n . �

Remark 3. Note that if F is the distribution function of M(J) for fixed J and if
the assumptions of the previous proposition are satisfied, then the relation (37)
implies that F belongs to the domain of attraction of G.

6 Numerical Experiment

In this section, we estimate the generalised extreme value (GEV) distribution
function of the non-mixing stationary random field (15).

First, we generate a data
(
x(i1,i2)

)
(i1,i2)∈D

from the random field (15),
restricted to the domain D = [n1] × [n2], with n1 = n2 = n = 5000. In order
to build the samplings1, we divide the domain into m1m2 = 81 blocks of size
[r1] × [r2], where r1 = r2 = n0.73. We take the maximum on each block and
we use the L-moments (LM) estimators for the GEV distribution in order to
obtain its estimated parameters (μ, σ, γ). The values resulting from this estima-
tion are shown in Table 1. In the same table, applying a parametric bootstrap
with 502 iterations, we provide also the confidence intervals for these param-
eters with a 95% confidence level. For these calculations we have used the R
package “extRemes”, see [10]. Currently, for L-moments, the only method avail-
able to calculate confidence intervals in this software is to apply a parametric
bootstrap. The implementation of the method is explained on page 16 of the
tutorial: https://cran.r-project.org/web/packages/extRemes/extRemes.pdf.
1 In the context of this work, if we want to simulate a real situation, we would only

have a data matrix of n1×n2 real values. The case would be different if we would had
a space-time data with either independence or weak dependence over time because
the division of the domain would be at least in the time.

https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
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Table 1. Estimation and confidence intervals for the parameters (μ, σ, γ) of the GEV
distribution function fitted to the maximum of the random field (15) on the blocks of
size [r1] × [r2].

2.5% Estimate 97.5%

location (μ) 0.98576 0.98739 0.98910

scale (σ) 0.00589 0.00708 0.00839

shape (γ) −0.75382 −0.55442 −0.38049

0.970 0.975 0.980 0.985 0.990 0.995 1.000
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Fig. 1. Diagnostics from the GEV df fitted to the maximum of the random field (15) on
the blocks of size [r1] × [r2]. Quantile-quantile plot (top left), quantiles from a sample
drawn from the fitted GEV df against the empirical data quantiles with 95% confidence
bands (top right), density plots of empirical data and fitted GEV df (bottom left),
and return level plot with 95% point-wise normal approximation confidence intervals
(bottom right).

On the other hand, in Fig. 1, observe that the GEV distribution function
G(x) = G(x;μ, σ, γ), with the estimated parameters (μ, σ, γ) shown in Table 1,
is well fitted to the simulated data of the maximum of the random field (15)
taken in this experiment. Note that G is here of Weibull type with parameter
α = −γ−1 = 1.803677.
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Abstract. In this paper we consider three models of subordinated pro-
cesses. A subordinated process, called also a time-changed process, is
defined as a superposition of two independent stochastic processes. To
construct such stochastic system we replace the time of a given pro-
cess (called also an external process) by another process which becomes
the “operational time”. In the literature one can find different mod-
els that are constructed as a superposition of two stochastic processes.
The most classical example is the Laplace motion, also known as vari-
ance gamma process, is stated as a Brownian motion time-changed by
the gamma subordinator. In this paper the considered systems are con-
structed by replacing the time of the symmetric α-stable Lévy motion
with another stochastic process, namely the αS-stable, tempered αT -
stable and gamma subordinator. We discuss the main characteristics of
each introduced processes. We examine the characteristic function, the
codifference, the probability density function, asymptotic tail behaviour
and the fractional order moments. To make the application of these pro-
cesses possible we propose a simulation procedure. Finally, we demon-
strate how to estimate the tail index of the external process, i.e. alpha-
stable Levy motion and by using Monte Carlo method we show the effi-
ciency of the proposed estimation method.

Keywords: α-stable Lévy motion · Subordination ·
α-stable subordinator · Tempered α-stable subordinator ·
Gamma subordinator · Infinite variance

1 Introduction

A subordinated process, called also a time-changed process, is defined as a super-
position of two independent stochastic processes. To construct such stochastic
system we replace the time of a given process (called also an external process)
by another process which becomes the “operational time”. The internal process
replacing the time is called subordinator and in general it is an increasing Lévy
process with independent, stationary increments and cadlag sample paths. The
subordinated processes were introduced in 1949 by Bochner in [1] and expounded
by the same author in [2]. In the recent years their theoretical properties have
c© Springer Nature Switzerland AG 2020
F. Chaari et al. (Eds.): CSTA 2017, ACM 16, pp. 111–135, 2020.
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been widely considered. Moreover, the time-changed processes become very use-
ful in the real data analysis. It is related to the fact that after subordination
certain characteristics of the external process are retained and at the same time
certain properties of the subordinated process change.

In the real data modelling very often there is a situation when the time series
demonstrates visible jumps. The fact that we can observe large outliers may sug-
gest that a stochastic process describing the data has infinite variance. One of
the most useful model of this situation is the α-stable Lévy motion introduced in
1925 by Lévy in [15]. The α-stable Lévy motion is a stochastic process starting at
zero with independent and stationary increments. The increments of this process
are distributed according to the α-stable distribution which is an extension of
the Gaussian distribution and for most of the cases (except the Gaussian case)
has diverging variance. The important property of the α-stable random vari-
ables is the role they play in the Generalized Central Limit Theorem, namely
the stable probability laws attract distributions of sums of random variables with
diverging variance, similarly to the Gaussian law that attracts distributions with
finite variance. Another important property of the α-stable distribution (expect
the Gaussian case) are the so-called heavy-tails, i.e. the fact that the tail of the
α-stable distributed random variable decays as a power function. The α-stable
Lévy motion and other stable-based processes have found many applications
in various areas of interest, for example in finance [21,22,26], physiology [19],
electrical engineering [18], biology [3] and economics [17]. Although the sta-
ble processes are ubiquitous in nature, for certain phenomena with stable-kind
behaviour (like for example the power law property in the tail) they do not
appear to be the appropriate models. Because of that in the literature there are
considered many extensions of the classical α-stable Lévy motion.

In the literature one can find different models that are constructed as a
superposition of two stochastic processes. The most classical example is the
Laplace motion [24]. The Laplace motion, also known as variance gamma process,
is stated as a Brownian motion time-changed by the gamma subordinator. This
process found many applications especially in finance, namely in option pricing
[8,14,16]. The subordinated processes were also studied in other areas of interest,
for example in physics [4,25], biology [7] and mechanical systems [6]. In this
paper we introduce three models of such subordinated processes. We take the
classical α-stable Lévy motion, but we replace the time with another stochastic
process. We consider the αS-stable, the tempered αT -stable and the gamma
subordinator. The introduced models can be understood as the extension of the
Laplace motion mentioned above. Instead of the Browian motion, which appears
in variance gamma process, we take under consideration its extension, namely
the α-stable Levy motion. Moreover, we consider not only gamma, but also other
subordinators.

As the result of time-changing we obtain three non-stationary stochastic sys-
tems. In this paper we focus on the theoretical properties of these processes to
compare which characteristics of the external process retain the same and which
ones change due to the subordination. For each model we calculate the charac-
teristic function and the autocodifference of the process. Moreover, we write the
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formula for the probability density function and we examine the asymptotic tail
behaviour. We also calculate the fractional order moments. To make the appli-
cation of these processes possible, we propose a simulation procedure and a tail
index estimation method.
The paper is organized as follows. In Sect. 2 some notations and definitions con-
cerning the α-stable distribution and the α-stable Lévy motion are presented.
We discuss the main properties of the stochastic process which is taken as the
external process for the models provided in the paper. In Sect. 3 the main prop-
erties of the stochastic processes considered as the subordinators are presented.
In Sect. 4 we discuss three models of subordinated processes by presenting the
lemmas and proofs of their theoretical properties. Next, in Sect. 5, we propose
a method of simulations. In Sect. 6, we present an estimation procedure. Last
section contains conclusions.

2 The α-stable Lévy Motion

In this section we present the definition and the properties of the α-stable Lévy
motion which we consider as the external process for the subordinated stochastic
systems considered in this paper. We also recall the definition of the α-stable
distribution (called also stable) and the definition of the α-stable process.

Definition 1. [23] The random variable X has α-stable distribution if its char-
acteristic function has the following form:

ϕ(t) = E(eitX) =

{
exp{iμt − |σt|α(1 − iβsign(t) tan πα

2 )} if α �= 1,

exp{iμt − |σt|α(1 + iβsign(t) 2
π log(t)} if α = 1,

(1)

where 0 < α ≤ 2, σ > 0, −1 ≤ β ≤ 1, μ ∈ R are called stability, scale, skewness
and location parameters, respectively.

The parameters α, σ, β, μ uniquely determine the α-stable distribution. The
following expression:

X ∼ Sα(σ, β, μ) (2)

denotes that X is an α-stable distributed random variable with scale σ, skew-
ness β and location parameter μ. Moreover, if we take β = 0 and μ = 0 the
random variable X is symmetric and for 0 < α < 1 and β = 1 the correspond-
ing α-stable distribution is totally right skewed [23]. For α �= 2 the tails of the
α-stable distribution behave asymptotically as power functions [23]. The first
order moment exists only for α > 1 and the second moment is infinite for all
α < 2 [23]. The probability density function of an α-stable random variable can
be expressed analytically only in three special cases, i.e. for Gaussian, Cauchy
and Lévy distributions [23].

Definition 2. [10] A stochastic process {X(t)}, t ∈ T is α-stable if all its
dimensional distributions(

X(t1), X(t2), X(t3), . . . , X(tn)
)
, t1, t2, t3, . . . , tn ∈ T, n ≥ 1



114 A. Grzesiek and A. Wy�lomańska

Fig. 1. Sample trajectories of the symmetric α-stable Lévy motion in the case of α = 1.8
(top panel), α = 1.2 (middle panel) and α = 0.6 (bottom panel).

are α-stable. Moreover if all its dimensional distributions are strictly/symmetric
α-stable, a stochastic process {X(t)} is called to be strictly/symmetric α-stable.

The most famous example of an α-stable process is the α-stable Lévy motion
discussed in this section.

Definition 3. [23] The α-stable Lévy motion {L(t)}, t ≥ 0 is a stochastic pro-
cess satisfying:

– L(0) = 0 almost surely,
– {L(t)} has independent increments,
– L(t) − L(s) ∼ Sα((t − s)

1
α , β, 0).

Properties of the α-stable Lévy motion [10,20,23]:

– for α = 2 the 2-stable Lévy motion is simply the Brownian motion multiplied
by a constant, i.e. L(t) d=

√
2B(t);

– for β = 0 the corresponding α-stable Lévy motion is symmetric;
– the increments of the α-stable Lévy motion are stationary, i.e. for any 0 ≤

t < t + h < ∞ the distribution of L(t + h) − L(t) depends only on h;
– the increments of the α-stable Lévy motion with α �= 2 are distributed accord-

ing to a heavy-tailed distribution, it means that for each t the following prop-
erty is satisfied [23]:

lim
x→∞ P (L(t) > x) xα =

1
2
Cα(1 + β)t,

lim
x→∞ P (L(t) < −x) xα =

1
2
Cα(1 − β)t,

(3)
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where Cα = (1 − α)/(Γ (2 − α) cos(πα/2)) for α �= 1 and Cα = 2
π for α = 1.

This property impacts on the trajectories of the α-stable Lévy motion: the
smaller values the parameter α takes, the bigger “jumps” of the trajectories
we can observe [10]. Sample paths of the symmetric α-stable Lévy motion for
different values of the parameters α are presented in Fig. 1.

– the α-stable Lévy motion is H-sssi, i.e. it is a self-similar process with index
H and stationary increments; the self-similarity index H is equal to 1/α ∈
[1/2,∞) [23], that is for any c > 0 the finite dimensional distributions of the
processes {L(ct)} and {c1/αL(t)} are the same.

– from the formula for the fractional moments of the α-stable random variables,
given in [23], follows the expression for the fractional moments of the α-stable
Lévy motion. Let α �= 2 and β = 0 in the case α = 1. Then the moment of
order 0 < p < α for each t is given by the following formula [23]:

(E|L(t)|p) 1
p = cα,β(p) t

1
α , (4)

where the constant cα,β(p) equals (E|L(1)|p) 1
p and L(1) ∼ Sα(1, β, 0). It

follows from the fact that L(t) d= t
1
α L(1) and

L(t) ∼ Sα(t
1
α , β, 0). (5)

The constant cα,β(p) is given by [23]:

(cα,β(p))p =
2p−1Γ (1 − p

α )
p

∫ ∞
0

u−p−1 sin2(u)du(
1 + β2 tan2

(απ

2

)) p
2α

cos
( p

α
arctan

(
β tan

(απ

2

)))
.

(6)

– the α-stable Lévy motion is an example of a stochastic process with diverging
variance. It follows from the fact that the second moment is infinite for all
α < 2 and the first moment is infinite for all α < 1. Because of this property,
to measure the interdependence we cannot apply the classical measures like
correlation or covariance which are based on the second moment [23,27].
Instead of them we apply the measure called codifference (CD) which is
an alternative method of measuring the dependence between the α-stable
random variables because it is well-defined for all 0 < α ≤ 2. The codifference
of a stochastic process {X(t)}, t ∈ T is called the autocodifference and it is
given by the following expression [20,23,27]:

CD(X(t),X(s))

= log
(
E(eiX(t))

)
+ log

(
E(e−iX(s))

) − log
(
E(ei(X(t)−X(s))

)
,

(7)
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where s, t ∈ T . The significant advantage is the fact that the codifference
is defined based on the characteristic function which always exists and com-
pletely defines the distribution. For the α-stable Lévy motion it takes the
form [27]:

CD(L(t), L(s)) = −2min(s, t). (8)

3 Different Types of Subordinators

In this section we introduce three processes which we consider as the subordi-
nators for the process {L(t)} presented in Sect. 2. We explain the main proper-
ties of the α-stable subordinator {Sα(τ)}, the tempered α-stable subordinator
{Tα,λ(τ)} and the gamma subordinator {Gk,θ(τ)}.

Since a subordinator is a stochastic process replacing time in an external
process, it has to be increasing almost surely. A subordinator has to have cad-
lag sample paths (right-continuous with left limits) [9,23]. We assume for an
infinitely divisible subordinator {U(τ)}, τ ≥ 0 that the Laplace transform is
given by [9]:

Ee−zU(τ) = e−τφ(z), (9)

where φ(z) is called the Lévy exponent and it is expressed as:

φ(z) =

∞∫
0

(1 − e−zx) v(dx) (10)

and v(dx) is an appropriate Lévy measure [9].

3.1 The α-stable Subordinator

We introduce the α-stable subordinator {Sα(τ)}, τ ≥ 0 which is a Lévy process
with α-stable increments. The characteristic function and the properties of the
α-stable distribution are presented in Sect. 2 where the α-stable Lévy motion
is considered. Since a subordinator has to be an increasing process, we need to
take 0 < α < 1, β = 1. We assume also μ = 0 and σ = cos(πα/2)1/α. The Lévy
measure for {Sα(τ)} is defined as [9]:

v(dx) = x−(1+α)1x>0 dx. (11)

The Lévy exponent in Formula (9) is expressed in the following form [9]:

φ(z) = zα, (12)

what gives the corresponding Laplace transform:

E(e−zSα(τ)) = e−τzα

. (13)

Sample paths of the α-stable subordinator for exemplary values of the parameter
α are presented in Fig. 2.
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Fig. 2. Sample trajectories of the α-stable subordinator in the case of α = 0.8 (top
panel) and α = 0.5 (bottom panel).

3.2 The Tempered α-stable Subordinator

A positive random variable Tα,λ with a stability parameter 0 < α < 1 and a
tempering parameter λ > 0 has the tempered α-stable distribution if it is defined
via the following Laplace transform [5,9]:

Ee−uTα,λ = e−((u+λ)α−λα). (14)

Let us notice that for λ = 0 we obtain the Laplace transform of an α-stable
random variable, more precisely we obtain a random variable with one-sided α-
stable distribution [5,9]. For such definition of the tempered α-stable distribution
the probability density function of a random variable Tα,λ takes the following
form [5,9]:

fTα,λ(x) = Ce−λxfSα(x), (15)

where the quantity C is a normalizing constant and fSα(x) is the probabil-
ity density function corresponding to the one-sided α-stable distribution [5,9].
Furthermore, for the tempered α-stable distribution moments of all orders are
finite [9].

The tempered α-stable subordinator {Tα,λ(τ)}, τ ≥ 0 is an increasing Lévy
process which increments have the tempered α-stable distribution, i.e. the cor-
responding Lévy measure is given by [9]:

v(dx) = e−λxx−1−α1x>0 dx. (16)
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For this subordinator the function φ(z) appearing in Formula (9) takes the
form [9]:

φ(z) = (z + λ)α − λα (17)

what leads to the following form of the Laplace transform:

E(e−zTα,λ(τ)) = e−τ((z+λ)α−λα). (18)

Let us notice that for λ = 0 the considered subordinator becomes an α-stable
one. Moreover, the moment generating function of the tempered α-stable sub-
ordinator is given by:

MTα,λ(τ)(z) = E(ezTα,λ(τ)) = e−τ((λ−z)α−λα). (19)

Next property of this subordinator is the fact that the probability density func-
tion of {Tα,λ(τ)} can be written in the following way [9]:

fTα,λ(x, τ) = e−λx+λατ fSα(x, τ), (20)

where fSα(x, τ) represents the probability density function of a totally skewed
α-stable Lévy process.

In [12] it was proven that for q > 0 the q-th order moment of the tempered
α-stable subordinator {Tα,λ(τ)} behaves asymptotically in the following way:

E(Tα,λ(τ))q ∼ (αλα−1τ)q, (21)

as τ → ∞. Sample paths of the tempered α-stable subordinator for exemplary
values of the parameters are presented in Fig. 3.

3.3 The Gamma Subordinator

A gamma-distributed random variable Gk,θ with a shape parameter k > 0 and a
scale parameter θ > 0 has the probability density function denoted as follows [9]:

fGk,θ (x) =
1

Γ (k)θk
xk−1e− x

θ , (22)

where x ≥ 0 and Γ (k) given by:

Γ (k) =
∫ ∞

0

tk−1e−tdt (23)

is the Gamma function. The Laplace transform of the gamma distribution takes
the following form [9]:

E(e−uGk,θ ) = (1 + θu)−k. (24)

When the parameter k takes only integer values, then this distribution is
called an Erlang distribution and a random variable Gk,θ is a sum of k indepen-
dent identically distributed random variables and each of them is exponentially
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Fig. 3. Sample trajectories of the tempered α-stable subordinator in the case of α = 0.5,
λ = 8 (top panel) and α = 0.5, λ = 1 (bottom panel).

distributed with mean equal to θ. Furthermore, the gamma distribution is an
example of an infinitely divisible distribution, i.e. for n independent random
variables Xi having gamma distribution with parameters ki and θ a random
variable

∑n
i=1 Xi is also gamma-distributed with parameters

∑n
i=1 ki and θ [9].

The gamma subordinator {Gk,θ(τ)}, τ ≥ 0 is the Lévy process with indepen-
dent gamma-distributed increments. The trajectories of the process {Gk,θ(τ)}
are strictly increasing with jumps [13]. In this case the Lévy measure is defined
as [9,13]:

v(dx) = k
e−θx

x
1x>0 dx (25)

and the Lévy exponent φ(z) is given by [9,13]:

φ(z) = k log(1 + θz). (26)

The expressions (25) and (26) lead to the following Laplace transform:

E(e−zGk,θ(τ)) = (1 + θz)−kτ . (27)

Moreover, the probability density function of the gamma subordinator {Gk,θ(τ)}
is given in an analytical form [9]:

fGk,θ (x, τ) =
1

Γ (kτ)θkτ
xkτ−1e− x

θ . (28)
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It was proved in [13] that for q > 0 the q-th order moment of the gamma
subordinator {Gk,θ(τ)}τ≥0 behaves in the following way:

E(Gk,θ(τ))q = θq Γ (q + kτ)
Γ (kτ)

∼ (kθτ)q, (29)

as τ → ∞. Sample paths of the gamma subordinator for exemplary values of the
parameters are presented in Fig. 4.

Fig. 4. Sample trajectories of the gamma subordinator in the case of k = 0.5, θ = 1
(top panel) and k = 2, θ = 1 (bottom panel).

4 Subordinated α-stable Lévy Motion

In this section we introduce the time-changed α-stable Lévy motion for which
we replace the time with another process presented in Sect. 3. The subordinated
process takes the following form:

X(t) := L(Y (t)), (30)

where L(·) denotes the α-stable Lévy motion and Y (·) is its subordinator. In
the paper we consider the special case of the α-stable Lévy motion, namely the
symmetric process, i.e. we take the skewness parameter β = 0. The characteristic
function of L(t) for the symmetric case is given by:

φL(t)(u) = E
(
eiuL(t)

)
= e−t|u|α , (31)
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where 0 < α < 2, t > 0 and u ∈ R. We also assume that the external and
internal processes are independent. In our consideration we take into account
three subordinators: αS-stable, tempered αT -stable and gamma process. Since
all the subordinators and the external process are Lévy processes, {X(t)} is also
Lévy (i.e. has independent and stationary increments).

Lemma 4.1. The subordinated α-stable Lévy motion {X(t)} has stationary
increments, i.e. for any 0 ≤ t < t + h < ∞ the distribution of an increment
X(t + h) − X(t) depends only on h.

Proof. Let us take t and h such that 0 ≤ t < t + h < ∞. Then:

X(t + h) − X(t) = L(Y (t + h)) − L(Y (t)) d=

(∗) d= L(Y (t + h) − Y (h)) d=

(∗∗) d= L(Y (t + h − t)) = L(Y (h)) = X(h)

(32)

In (∗) we apply the fact that the increments of the α-stable Lévy motion {L(t)}
are stationary and in (∗∗) we use the property about the stationarity of the
increments of any subordinator {Y (t)}. ��

4.1 The α-stable Lévy Motion Time-Changed by the αS -stable
Subordinator

The α-stable Lévy motion time-changed by the αS-stable subordinator is defined
in the following way:

X(t) := L(SαS
(t)), (33)

where L(·) denotes the symmetric α-stable Lévy motion presented in Sect. 2
with the skewness parameter β = 0 and SαS

(·) is the αS-stable subordinator
presented in Sect. 3.1 with the stability parameter 0 < αS < 1 and the skewness
parameter βS = 1.

Lemma 4.2. For the α-stable Lévy motion time-changed by the αS-stable sub-
ordinator, the characteristic function of X(t) is given by:

φX(t)(u) = e−t|u|α·αS for u ∈ R. (34)

Proof. Applying the standard conditioning procedure and using Formula (31)
for the characteristic function of L(t) and Formula (13) for the Laplace transform
of SαS

(t), we obtain:

φX(t)(u) = E
(
eiuX(t)

)
= E

(
eiuL(SαS

(t))
)

= E
(
E

(
eiuL(SαS

(t))|SαS
(t)

))
= E

(
e−SαS

(t)|u|α)
= e−t|u|α·αS

.

(35)

��
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Lemma 4.3. The codifference of the α-stable Lévy motion time-changed by the
αS-stable subordinator is given by:

CD(X(t),X(s)) = −2min(s, t). (36)

Proof. We use the general formula for the codifference of a stochastic process
given in (7). From Formula (34) for the characteristic function of X(t) we have:

E
(
eiX(t)

)
= e−t|1|α·αS = e−t, (37)

E
(
e−iX(s)

)
= e−s|−1|α·αS = e−s, (38)

E
(
ei(X(t)−X(s))

)
= E

(
ei(X(t−s))

)
= e−(t−s)|1|α·αS = e−(t−s). (39)

Finally, we get:

CD(X(t),X(s)) = log
(
E(eiX(t))

)
+ log

(
E(e−iX(s))

) − log
(
E(ei(X(t)−X(s))

)
= log(e−t) + log(e−s) − log(e−(t−s))
= −t − s + t − s = −2s = −2min(s, t).

(40)
��

From the form of the characteristic function follows the fact that the random
variable X(t) is stable distributed, namely:

X(t) ∼ SαS ·α(t
1

αS ·α , 0, 0). (41)

Moreover, from Formula (34) we can conclude that {X(t)} is a self-similar pro-
cess with H = (αS · α)−1. In general for the stochastic process {X(t)} defined
in (33) the probability density function p(x, t) takes the following form [11,12]:

p(x, t) =
∫ ∞

0

g(x, r)f(r, t)dr, (42)

where x ∈ R and t ≥ 0. The function g(x, t) denotes the pdf of the symmetric
α-stable Lévy motion and f(r, t) denotes the pdf of the αS-stable subordinator.

Lemma 4.4. For the α-stable Lévy motion time-changed by the αS-stable sub-
ordinator the following formula holds for each t:

P (X(t) > x) ∼ 1
2
CαS ·αx−αS ·αt as x → ∞, (43)

where the constant CαS ·α is given by:

CαS ·α =

{
1−αS ·α

Γ (2−αS ·α) cos(παS ·α/2) for αS · α �= 1,
2
π for αS · α = 1.

(44)
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Proof. We use the fact that X(t) has αS · α-stable distribution and from the
properties of the stable random variables we can write that for each t the fol-
lowing limit holds [23]:

lim
x→∞ P (|X(t)| > x)xαS ·α =

1
2
CαS ·αt, (45)

where the constant CαS ·α given by (44) is specified in [23]. Thus, we can write
that

P (X(t) > x) ∼ 1
2
CαS ·αx−αS ·αt as x → ∞. (46)

��
Lemma 4.5. For 0 < p < αS · α < 2, the fractional order moments of the
α-stable Lévy motion time-changed by the αS-stable subordinator for each t are
given by:

E|X(t)|p = (cαS ·α,0(p))pt
p

αS ·α , (47)

where the constant (cα,0(p))p has the form:

(cα,0(p))p =
2p−1Γ (1 − p

αS ·α )

p
∫ ∞
0

u−p−1 sin2(u)du
. (48)

Proof. We use the fact that X(t) has αS · α-stable distribution and the gen-
eral formula for the fractional order moments of the stable random variables
presented in [23]. ��

4.2 The α-stable Lévy Motion Time-Changed by the Tempered
αT -stable Subordinator

The α-stable Lévy motion time-changed by the tempered αT -stable subordinator
is defined in the following way:

X(t) := L(TαT ,λ(t)), (49)

where L(·) denotes the symmetric α-stable Lévy motion presented in Sect. 2
with the skewness parameter β = 0 and TαT ,λ(·) is the tempered αT -stable
subordinator presented in Sect. 3.2 with the stability parameter 0 < αT < 1 and
the tempering parameter λ > 0.

Lemma 4.6. For the α-stable Lévy motion time-changed by the tempered αT -
stable subordinator, the characteristic function of X(t) is given by:

φX(t)(u) = e−t((|u|α+λ)αT −λαT ) for u ∈ R. (50)



124 A. Grzesiek and A. Wy�lomańska

Proof. Applying the standard conditioning procedure and Formula (31) for the
characteristic function of L(t) and Formula (18) for the Laplace transform of
TαT ,λ(t), we have:

φX(t)(u) = E
(
eiuX(t)

)
= E

(
eiuL(TαT ,λ(t))

)
= E

(
E

(
eiuL(TαT ,λ(t))|TαT ,λ(t)

))
= E

(
e−TαT ,λ(t)|u|α)

= e−t((|u|α+λ)αT −λαT ).

(51)

��
Lemma 4.7. The codifference of the α-stable Lévy motion time-changed by the
tempered αT -stable subordinator is given by:

CD(X(t),X(s)) = −2min(s, t)((1 + λ)αT − λαT). (52)

Proof. We use the general formula for the codifference of a stochastic process
presented in (7). From Formula (50) for the characteristic function of X(t) we
have:

E
(
eiX(t)

)
= e−t((|1|α+λ)αT −λαT ) = e−t((1+λ)αT −λαT ), (53)

E
(
e−iX(s)

)
= e−s((|−1|α+λ)αT −λαT ) = e−s((1+λ)αT −λαT ), (54)

E
(
ei(X(t)−X(s))

)
= E

(
ei(X(t−s))

)
= e−(t−s)((|1|α+λ)αT −λαT )

= e−(t−s)((1+λ)αT −λαT ).
(55)

Finally, we obtain the following expression:

CD(X(t),X(s)) = log
(
E(eiX(t))

)
+ log

(
E(e−iX(s))

) − log
(
E(ei(X(t)−X(s))

)
= log(e−t((1+λ)αT −λαT )) + log(e−s((1+λ)αT −λαT ))

− log(e−(t−s)((1+λ)αT −λαT ))
= −t((1 + λ)αT − λαT ) − s((1 + λ)αT − λαT )
+ (t − s)((1 + λ)αT − λαT ) = −2s((1 + λ)αT − λαT )
= −2min(s, t)((1 + λ)αT − λαT).

(56)
��

Moreover, from the form of the characteristic function of {X(t)} follows that
the stochastic process defined in this way is not a self-similar process. For the
stochastic process {X(t)} defined in (49) the probability density function p(x, t)
has the form presented in (42). In this formula, the pdf of the symmetric α-
stable Lévy motion is denoted by g(x, t) and the pdf of the tempered αT -stable
subordinator is denoted by f(r, t). From Formula (20) we can write f(r, t) using
the probability density function of a totally skewed αT -stable process. Thus, the
pdf p(x, t) can be written as:

p(x, t) =
∫ ∞

0

g(x, r)e−λr+λαtfSαT (r, t)dr, (57)

where fSαT (r, t) represents the pdf of a totally skewed αT -stable process.
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Lemma 4.8. For the α-stable Lévy motion time-changed by the tempered αT -
stable subordinator the following formula holds for each t:

P (X(t) > x) ∼ 1
2
Cαx−α(tαT λαT −1) as x → ∞, (58)

where the constant Cα is given by:

Cα =

{
1−α

Γ (2−α) cos(πα/2) for α �= 1,
2
π for α = 1.

(59)

Proof. Applying the standard conditioning procedure and Formula (3) describ-
ing the tail of the α-stable Lévy motion, we obtain:

P (X(t) > x) = E(P (L(TαT ,λ(t)) > x|TαT ,λ(t)))

∼ E
(1

2
CαTαT ,λ(t)x−α

)
=

1
2
Cαx−αE(TαT ,λ(t)) =

(∗) =
1
2
Cαx−α(tαT λαT −1),

(60)

as x → ∞, where the constant Cα is given in (3). In (∗) we use the formula for
the expected value of TαT ,λ(t). ��
Lemma 4.9. For 0 < p < α < 2, the fractional order moments of the α-stable
Lévy motion time-changed by the tempered αT -stable subordinator are given
by:

E(|X(t)|p) ∼ (tαT λαT −1)p/α(cα,0(p))p as t → ∞, (61)

where the constant (cα,0(p))p has the following form:

(cα,0(p))p =
2p−1Γ (1 − p

α )
p

∫ ∞
0

u−p−1 sin2(u)du
. (62)

Proof. Using the self-similarity of the α-stable Lévy motion and the expression
(4) for the fractional order moments of the α-stable Lévy motion, for 0 < p <
α < 2 we obtain:

E(|X(t)|p) = E(|L(TαT ,λ(t))|p)
= E(|TαT ,λ(t)1/αL(1)|p)
= E(TαT ,λ(t)p/α|L(1)|p)
= E(TαT ,λ(t)p/α)E(|L(1)|p)

(∗) ∼ (tαT λαT −1)p/α(cα,0(p))p as t → ∞.

(63)

In (∗) we apply Formula (21) for the asymptotic behaviour of the moments of the
tempered αT -stable subordinator. Moreover, the constant (cα,β(p))p is specified
in (6) and for β = 0 takes the form presented in (63). ��
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4.3 The α-stable Lévy Motion Time-Changed by the Gamma
Subordinator

The α-stable Lévy motion time-changed by the gamma subordinator is defined
in the following way:

X(t) := L(Gk,θ(t)), (64)

where L(·) denotes the symmetric α-stable Lévy motion presented in Sect. 2 with
the skewness parameter β = 0 and Gk,θ(·) is the gamma subordinator presented
in Sect. 3.3 with the shape parameter k > 0 and the scale parameter θ > 0.

Lemma 4.10. For the α-stable Lévy motion time-changed by the gamma sub-
ordinator, the characteristic function of X(t) is given by:

φX(t)(u) =
( 1

1 + θ|u|α
)kt

for u ∈ R. (65)

Proof. Using the standard conditioning procedure and applying Formula (31)
for the characteristic function of L(t) and Formula (27) for the Laplace transform
of Gk,θ(t), we obtain:

φX(t)(u) = E
(
eiuX(t)

)
= E

(
eiuL(Gk,θ(t))

)
= E

(
E

(
eiuL(Gk,θ(t))|Gk,θ(t)

))
= E

(
e−Gk,θ(t)|u|α)

=
( 1

1 + θ|u|α
)kt

.

(66)

��
Lemma 4.11. The codifference of the α-stable Lévy motion time-changed by
the gamma subordinator is given by:

CD(X(t),X(s)) = −2min(s, t)k log
(
1 + θ

)
. (67)

Proof. We use the general formula for the codifference of a stochastic process
presented in (7). From Formula (66) for the characteristic function of X(t) we
have:

E
(
eiX(t)

)
=

( 1
1 + θ|1|α

)kt

=
( 1

1 + θ

)kt

, (68)

E
(
e−iX(s)

)
=

( 1
1 + θ| − 1|α

)ks

=
( 1

1 + θ

)ks

, (69)

E
(
ei(X(t)−X(s))

)
= E

(
ei(X(t−s))

)
=

( 1
1 + θ|1|α

)k(t−s)

=
( 1

1 + θ

)k(t−s)

.

(70)
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Finally, we get the formula:

CD(X(t),X(s)) = log
(
E(eiX(t))

)
+ log

(
E(e−iX(s))

) − log
(
E(ei(X(t)−X(s))

)
= log

( 1
1 + θ

)kt

+ log
( 1

1 + θ

)ks

− log
( 1

1 + θ

)k(t−s)

= kt log
( 1

1 + θ

)
+ ks log

( 1
1 + θ

)
− k(t − s) log

( 1
1 + θ

)
= 2ks log

( 1
1 + θ

)
= −2ks log

(
1 + θ

)
= −2min(s, t)k log

(
1 + θ

)
.

(71)
��

Moreover, we conclude from the form of the characteristic function that the
stochastic process {X(t)} is not a self-similar process. The probability density
function p(x, t) of the stochastic process {X(t)} has the form given by Formula
(42), where the function g(x, t) denotes the pdf of the symmetric α-stable Lévy
motion and f(r, t) denotes the pdf of the gamma subordinator. Since f(r, t) is
given by Formula (28) we can write the integral in (42) as:

p(x, t) =
∫ ∞

0

g(x, r)
Γ (kt)θkt

rkt−1e− r
θ dr. (72)

Lemma 4.12. The α-stable Lévy motion time-changed by the gamma subor-
dinator is in domain of attraction of a stable law, i.e. the following limit holds:

lim
t→∞

( 1
kθ

) 1
α X(t)

t
1
α

d→ L(1). (73)

Proof. Using the self-similarity of the Lévy motion, for t → ∞, we have:

( 1
kθ

) 1
α X(t)

t
1
α

=
( 1

kθ

) 1
α L(Gk,θ(t))

t
1
α

d∼
( 1

kθ

) 1
α Gk,θ(t)

1
α L(1)

t
1
α

=
( 1

kθ

) 1
α

(
Gk,θ(t)

t

) 1
α

L(1)

(∗) d→
( 1

kθ

) 1
α (

E(Gk,θ(1))
) 1

α L(1) = L(1),

(74)

where the convergence (∗) results form the following property of a subordinator
{Y (t)} [11]:

lim
t→∞

Y (t)
t

a.s.→ E
(
Y (1)

)
. (75)
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We also use the fact that E(Gk,θ(1)) = kθ and the result that if Xn
d→ X and

Yn
d→ c for some constant c, then XnYn

d→ cX s n → ∞ [11]. Summarizing, we
obtain:

lim
t→∞

( 1
kθ

) 1
α X(t)

t
1
α

d→ L(1). (76)

��
Lemma 4.13. For the α-stable Lévy motion time-changed by the gamma sub-
ordinator the following formula holds for t → ∞:

P (X(t) > x) ∼ 1
2
Cαx−α(kθt) as x → ∞, (77)

where the constant Cα is given by:

Cα =

{
1−α

Γ (2−α) cos(πα/2) for α �= 1,
2
π for α = 1.

(78)

Proof. Using the standard conditioning procedure and Formula (3) describing
the tail of the α-stable Lévy motion, we get that for x → ∞:

P (X(t) > x) = E(P (L(Gk,θ(t)) > x|Gk,θ(t)))

∼ E
(1

2
CαGk,θ(t)x−α

)
=

1
2
Cαx−αE(Gk,θ(t))

=
1
2
Cαx−αθ

Γ (1 + kt)
Γ (kt)

(∗∗) ∼ 1
2
Cαx−α(kθt) as t → ∞.

(79)

In (∗∗) we apply Formula (29) which describes the asymptotic behaviour of the
moments of the gamma process. Moreover, the constant Cα is given in (3). ��
Lemma 4.14. For 0 < p < α < 2, the fractional order moments of the α-stable
Lévy motion time-changed by the gamma subordinator are given by:

E(|X(t)|p) ∼ (kθt)p/α(cα,0(p))p as t → ∞, (80)

where the constant (cα,β(p))p has the following form:

(cα,0(p))p =
2p−1Γ (1 − p

α )
p

∫ ∞
0

u−p−1 sin2(u)du
. (81)
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Proof. Applying the self-similarity of the α-stable Lévy motion and the expres-
sion (4) for the fractional order moments of the α-stable Lévy motion and using
Formula (29) for the asymptotic behaviour of q-th order moment of {Gk,θ(t)},
we get that for 0 < p < α < 2:

E(|X(t)|p) = E(|L(Gk,θ(t))|p)
= E(|Gk,θ(t)1/αL(1)|p)
= E(Gk,θ(t)p/α|L(1)|p)
= E(Gk,θ(t)p/α)E(|L(1)|p)

= θp/α Γ (p/α + kt)
Γ (kt)

(cα,0(p))p

∼ (kθt)p/α(cα,0(p))p as t → ∞,

(82)

where the constant (cα,β(p))p is specified in (6) and for β = 0 takes the form
presented in (83). ��

The final summary of the results presented in this section is included in
Table 1, where all calculated characteristics are shown.

Table 1. Comparison of the calculated characteristics of the stochastic processes con-
sidered in the paper.

X(t) := L(SαS (t)) X(t) := L(TαT ,λ(t)) X(t) := L(Gk,θ(t))

φX(t)(u) e−t|u|α·αS
e−t((|u|α+λ)αT −λαT ) (1 + θ|u|α)−kt

CD(X(t), X(s)) −2min(s, t) −2min(s, t)((1 + λ)αT − λαT ) −2min(s, t)k log
(
1 + θ

)

P (X(t) > x) 1
2CαS ·αx−αS ·αt 1

2Cαx−α(tαT λαT −1) 1
2Cαx−α(kθt)

E|X(t)|p (cαS ·α,0(p))
pt

p
αS ·α (tαT λαT −1)p/α(cα,0(p))

p (kθt)p/α(cα,0(p))
p

5 Simulations

In this section we present a simulation method of the time-changed symmetric α-
stable Lévy motion defined in Sect. 4. The main idea is to simulate independent
trajectories of the external and internal processes and to take their superposition.
We suppose we want to simulate a trajectory of {X(t)} on the interval [0, T ],
where T denotes the time horizon. We introduce the following grid: ti = ih,
where h = T/n and i = 0, 1, . . . , n. A sketch of the algorithm is presented below.

(I) In the first step we generate a trajectory of the αS-stable subordinator by
summing up the increments of {Y (t)}:

Y (t0) = 0
Y (ti) = Y (ti−1) + δi for i = 1, . . . , n,

(83)
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where δi are independent random variables having the Laplace transform given
by the formula:

E(e−zδi) = e−hzα

(84)

for the first model with αS-stable subordinator, by the formula:

E(e−zδi) = e−h((z+λ)α−λα). (85)

for the second model with tempered αT -stable subordinator and by the formula:

E(e−xδi) = (1 + θz)−kh (86)

for the third model with gamma subordinator.
(II) In the second step we generate a trajectory of the subordinated process, i.e.
we simulate the symmetric α-stable Lévy motion but we replace the time step
with the increments of the subordinator generated in the first step:

X(t0) = 0

X(ti) = X(ti−1) + (Y (ti) − Y (ti−1))1/αξi for i = 1, . . . , n,
(87)

where ξi ∼ Sα(1, 0, 0) are independent random variables.
In Fig. 5 we present sample trajectories of the subordinators (top panels)

and the corresponding symmetric α-stable Lévy motion time-changed by these
subordinators (bottom panels). Left panels correspond to the first model with

Fig. 5. Sample trajectories of the subordinators (top panels) and corresponding sub-
ordinated processes (bottom panels) for the symmetric α-stable Lévy motion time-
changed by the αS-stable subordinator with α = 1.8 and αS = 0.8 (left panels), for
the symmetric α-stable Lévy motion time-changed by the tempered αT -stable subor-
dinator with α = 1.5, αT = 0.5 and λ = 1 (middle panels) and for the symmetric
α-stable Lévy motion time-changed by the gamma subordinator with α = 1.6, k = 0.5
and θ = 1 (right panels).
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αS-stable subordinator, middle panels correspond to the second model with tem-
pered αT -stable subordinator and right panels correspond to the third model
with gamma subordinator. The processes are generated on the interval [0, 5]
with h = 0.005 and the parameters are: α = 1.8 and αS = 0.8 for the first
model, α = 1.5, αT = 0.5 and λ = 1 for the second model, α = 1.6, k = 0.5 and
θ = 1 for the third model.

6 Estimation

In this section we propose an estimation procedure for the parameters of the
processes presented in Sect. 4. We focus on the tail index estimation, which we
denote as β, i.e. we want to estimate the parameter describing the rate at which
the tail of the distribution converges to zero. In the proposed method we use
the fact that the considered processes are Lévy and therefore their increments
are stationary and independent. Thus, to estimate the parameters we calculate
the increments of the processes ΔXi = X(ti) − X(ti−1) for i = 1, . . . , n and we
examine their tails. For each discussed process, using the formulas describing the
asymptotic behaviour of the tail of X(t), we can write the corresponding formulas
for the increments. Therefore, from the expression (43), for the increments of the
symmetric α-stable Lévy motion time-changed by the αS-stable subordinator we
obtain:

P (ΔXi > x) = P (X(ti) − X(ti−1) > x) = P (X(ti − ti−1) > x)

= P (X(h) > x) ∼ 1
2
CαS ·αx−αS ·αh

as x → ∞ for i = 1, . . . , n,

(88)

where the constant CαS ·α is specified in (44) and h denotes the time step. Anal-
ogously, using Formula (59) for the increments of the symmetric α-stable Lévy
motion time-changed by the tempered αT -stable subordinator we have:

P (ΔXi > x) = P (X(ti) − X(ti−1) > x) = P (X(ti − ti−1) > x)

= P (X(h) > x) ∼ 1
2
Cαx−α(hαT λαT −1)

as x → ∞ for i = 1, . . . , n,

(89)

where the constant Cα is specified in (60) and h denotes the time step. For the
third model, from Formula (82), for the increments of the symmetric α-stable
Lévy motion time-changed by the gamma subordinator we obtain:

P (ΔXi > x) = P (X(ti) − X(ti−1) > x) = P (X(ti − ti−1) > x)

= P (X(h) > x) ∼ 1
2
Cαx−α(kθh)

as x → ∞ for i = 1, . . . , n,

(90)

where the constant Cα is specified in (83) and h denotes the time step.
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The estimation method is based on the idea of fitting the theoretical formulas
presented above to the empirical tails of the increments of {X(t)}. The main
steps of this procedure are described below.

1. Calculate the increments of the process {X(t)}:

ΔXi = X(ti) − X(ti−1) for i = 1, . . . , n.

2. Estimate the empirical cumulative distribution function Fn(x) of the incre-
ments:

F̂n(x) =
1
n

n∑
i=1

1ΔXi≤x,

where 1A denotes the indicator of event A.
3. Estimate the right tail of the distribution Ĝn(x) = 1 − F̂n(x).
4. Plot Ĝn(x) in the log-log scale.
5. Fit the straight line:

y = ax + b (91)

to the second linear part of the plot.
6. Put the tail index β equal to −a.

More precisely, in order to estimate the tail index β we use the least squares
estimator. In the third step of the procedure described above, we calculate the
right tail at points x1, x2, . . . , xn and then, in the fourth and fifth step, we fit
log(Ĝn(xi)) by the linear function which form follows directly from the formulas
(88), (89) and (90), and exemplary for the first model is given by log(12CαS ·αh)−
αSα log(xi) for i = 1, 2, . . . , n. Since for a linear regression model,

yi = axi + b + εi, i = 1, 2, . . . , n,

the least squares estimator of the a parameter is given by

â =
∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

,

thus in the considered case we obtain the following estimator of the tail index

β̂ = −
∑n

i=1(log(xi) − 1
n

∑n
i=1 log(xi)) log(Ĝn(xi))∑n

i=1(log(xi) − 1
n

∑n
i=1 log(xi))2

.

To check the properties of the estimator we apply the method to the simulated
data. In Fig. 6 one can see the bias E(β̂)−β of the considered estimator, obtained
via Monte Carlo simulations, as a function of the length of trajectory. Top panel
corresponds to the first model with αS-stable subordinator, middle panel corre-
sponds to the second model with tempered αT -stable subordinator and bottom
panel corresponds to the third model with gamma subordinator. In all three
cases, the bias tends to zero as the number of observed points increases. More-
over, the efficiency of the procedure is also presented in Fig. 7. Here, we again use
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Fig. 6. Bias of the tail index estimator for the symmetric α-stable Lévy motion time-
changed by the αS-stable subordinator (top panel), for the symmetric α-stable Lévy
motion time-changed by the tempered αT -stable subordinator (middle panel) and for
the symmetric α-stable Lévy motion time-changed by the gamma subordinator (bottom
panel).

Fig. 7. Boxplots of the estimated tail index values for the symmetric α-stable Lévy
motion time-changed by the αS-stable subordinator (left panel), for the symmetric
α-stable Lévy motion time-changed by the tempered αT -stable subordinator (middle
panel) and for the symmetric α-stable Lévy motion time-changed by the gamma sub-
ordinator (right panel).
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the Monte Carlo method, i.e. we generate one trajectory of the stochastic process
{X(t)}, we estimate the parameter using the procedure introduced above and
then we repeat the experiment 100 times. We obtain the results corresponding
to 100 realizations of the process {X(t)} and we compare the median of these
outcomes with the theoretical parameters of the process. The results of these
experiments are presented in Fig. 7. Left panel corresponds to the first model
with αS-stable subordinator, middle panel corresponds to the second model with
tempered αT -stable subordinator and right panel corresponds to the third model
with gamma subordinator. In all cases, the median of estimated values is close
to the theoretical value of the tail parameter.

7 Conclusions

In this paper we have considered the α-stable Lévy motion subordinated by
three different subordinators, namely α-stable, tempered α-stable and gamma.
The new processes can be especially important in modelling of real data when
they exhibit some properties of the external process (α-stable Lévy motion)
however their some properties are different. In this case the pure α-stable Lévy
motion can not be used. In this case we propose to replace the time in the
external process by other process. This replacement can help to introduce a new
process with very specific properties. From the theoretical point of view we have
considered main properties of new processes and indicated their connections with
external process. Moreover, we have also present the new estimation procedure
and check its efficiency for simulated data.

Acknowledgements. This paper is supported by National Center of Science Opus
Grant No. 2016/21/B/ST1/00929 “Anomalous diffusion processes and their applica-
tions in real data modelling”.
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12. Kumar A, Wy�lomańska A, Po�loczański R, Gajda J (2019) Fractional Brownian
motion delayed by tempered and inverse tempered stable subordinators. Methodol
Comput Appl Probab 21(1):185–202
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27. Wy�lomańska A, Chechkin A, Gajda J, Sokolov IM (2015) Codifference as a prac-
tical tool to measure interdependence. Physica A 421:412–429



Influence of Signal to Noise Ratio
on the Effectiveness of Cointegration

Analysis for Vibration Signal

Anna Michalak2, Jacek Wodecki2, Agnieszka Wy�lomańska1(B),
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Abstract. In this paper we consider the problem of local damage detec-
tion in rotating machines. Usually vibration signal is used for the anal-
ysis. Unfortunately classical methods are often not effective enough to
properly detect cyclic components in real-life signal, especially for heavy-
duty machinery used in mining industry. Therefore it is proposed to
design analytical algorithms focused on the evaluation of the periodicity
features of the signal. In this article we apply the cointegration approach
to vibration signal. Although the method itself has been already pro-
posed in the previous work, the main goal of this article is evaluation
of the detection effectiveness with respect to changing Signal-to-Noise
Ratio (SNR) of the input data. In the paper authors present the complete
procedure for the effectiveness evaluation, which is based on the Monte
Carlo simulations. The success rate of the method is assessed based on
analyzing the cointegration with respect to SNR value of input signal.
It allows to discover confidence level for such methodology considering
internal quality of the data.

Keywords: Cointegration · Periodically correlated process ·
Monte Carlo simulation · Vibration signal · Signal-to-Noise Ratio ·
Local damage detection

1 Introduction

Local damage detection in rotating machinery has been a challenging problem
for a long time. In the literature there are many methods for fault detection
in gears and bearings [2,3,15,25]. In such case, local damage is manifested by
the cyclic impulses that appears in the vibration signal. In many real cases the
time series analysis approach can not be applied. This is the case when cyclic
c© Springer Nature Switzerland AG 2020
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impulses are hidden below the noise floor or another components (low-frequency)
which are related to normal operation of the machine [22,28,31,32]. For better
results in such conditions, researchers often consider the vibration signal in other
domains. However, for many real signals, this approach seems to not sufficient
and therefore it is required to apply more advanced processing techniques [8,32].

The essence of this paper is an extension of previously developed analytical
method [23] but the main goal of this article is to analyze its effectiveness with
respect to different levels of signal to noise ratio (SNR) in the input data. In
this case signal part considered to be the impulsive component carrying infor-
mation about the damage. In order to achieve that, simulated signal is prepared
incorporating the impulsive component with different amplitudes with respect
to the background. After that, detection success rate is analyzed in relation to
the increasing SNR [30].

Advantages of presented method come from the fact that it operates in time
domain, which allows to omit any transformation to other domains, which is
never truly lossless. It does not operate from the frequency viewpoint, which is
the basis for most of the vibration-processing methods, and often comes down
to informative frequency band (IFB) identification. On the other hand, it suc-
cessfully identifies components otherwise invisible with any frequency-related
processing methods.

The proposed method is based on the property of the signal, called cointe-
gration, that is especially important in time series analysis. The idea of cointe-
gration was introduced by Eangle in 1987 [13] and was applied to financial data
[4,12,14]. Currently we can find examples in literature of cointegration in var-
ious fields (e.g. structural health monitoring and condition monitoring of wind
turbines) [7–9,26,33].

We say that two processes X and Y are cointegrated, when neither of them
hovers around a constant value or deterministic trend, but some linear combi-
nation of them does, so we can think of cointegration as a feature of long-term
equilibrium relationship.

The rest of the paper is organized as follows: after defining the most impor-
tant features, overall methodology is described. After that simulation method-
ology and results are presented.

2 Methodology

In this section authors present the theoretical background used in the further
analysis.

Definition 1 (Periodically Correlated time series). A second order process
{X(t)}t∈Z is called periodically correlated with period T if for every s, t ∈ Z the
following conditions hold:{

m(t) = E (X(t)) = m(t + T )
R(s, t) = Cov(X(t),X(s)) = R(s + T, t + T ),

(1)

and there are no smaller values of T > 0 for which the above conditions hold.
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PC time series are very popular in the literature [1,2,6,16,19,20,24]. In [5]
it was proved that there is relation between periodically correlated time series
and integrated and cointegrated one.

Definition 2 (Integrated time series). A series is said to be integrated of
order d, denoted X(n) ∼ I(d) if:

(1 − L)d
X(n) = z(n), (2)

where 1−L is the difference operator and z(n) is stationary signal without trend
[17].

Definition 3 (Cointegrated time series). The m time series
{X(1, n)}, . . . , {X(m,n)} are cointegrated with order d and b
(X(1, n), . . . ,X(m,n) ∼ CI(d, b)) if

1. all components of X are integrated with order d, we denote X ∼ I(d),
2. there exists a non-zero vector [a1, . . . , am] such that

a1X(1, n) + a2X(2, n) + · · · + amX(m,n),∼ I(d − b), b > 0. (3)

The vector [a1, . . . , am] is called the cointegrating vector.

In the literature one can find various methods that can be applied to detect
the period T , see for instance [2]. However, in this article we use the algorithm
which is based on the coherent statistic (CS) [18]. The CS is defined as:

|γ(ωp, ωq,M)|2 =
|∑M−1

m=0 IN (ωp+m)IN (ωq+m)|2∑M−1
m=0 |IN (ωp+m)|2 ∑M−1

m=0 |IN (ωq+m)|2
, (4)

where IN (ω) =
∑N

n=1 X(n)e−iω(n−1) for ωk = 2π(k−1)
N , k = 1, 2, . . . , N .

Using statistic defined in (4) we can calculate one dimensional coherence
|γ(0, ωd, N − d)|2 which takes values between [0, 1]. The peaks of CS for argu-
ments (ωd, 2ωd, 3ωd, . . . ) indicate the period T as T = 1

ωd
. The procedure is

described in [23].
If the given time series is PC, then the appropriate selected subsignals are

integrated. Moreover, they are also cointegrated, [5]. Let us assume that given
time series {X(n)} is PC with period T . In this case the subsignals defined as
follows:

Y (v, n) = X(nT + v), v = 1, 2, . . . , T (5)

are cointegrated with the some order. The idea of constructing {Y (v, n)} sub-
signals from the raw signal is demonstrated in Fig. 1.

In the literature one can find various statistics which can be used in the
problem of testing if considered time series is integrated. The classical tests
are Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) [10,21]. In this paper we propose to use Durbin-Watson
statistic which is given by following formula [11]:



SNR-Based Effectiveness Evaluation of Cointegration Analysis 139

Fig. 1. Functional schematic of subsignals construction procedure, image thanks to
courtesy of the Authors of [23].

IDW =
∑

(X(n) − X(n − 1))2∑(
X(n) − X(n)

)2 , (6)

where X(n) is the sample mean of {X(n)}. This statistic always takes value
between 0 and 4. The Durbin-Watson test is used to test the null hypothesis
that linear regression residuals are uncorrelated, against the alternative that
autocorrelation exists. Since null hypothesis cannot be rejected on the given
confidence level, we say that time series of the signal is stationary.

Based on IDW test, one can conclude that analyzed time series is integrated
with order 0 if IDW statistic for the signal is close to 2. Otherwise, we calculate
once again the IDW statistic for differenced signal. If IDW∼2 for differenced
series, then the raw signal is I(1), if not we repeat the procedure unless the
IDW statistic takes value close to 2. The number of times the time series was
differentiated is equal to the order of integration d.

After checking if appropriate subsignals are integrated with given order, one
can check if they are cointegrated. First, the cointegrating vector [a1, . . . , am]
should be estimated. This vector one can calculate using the least squares method
in the multivariate regression model:

Y (1, n) = a1Y (2, n) − · · · − a(m−1)Y (m,n). (7)

After that we calculate the residuals:

v(n) = Y (1, n) − a1Y (2, n) − · · · − a(m−1)Y (m,n)

As a final step, we check if residuals are integrated. In this case we use the
approach based on the IDW statistic.

In the presented case we observe PC behaviour of the simulated signal. First
step is to divide the signal by extracting T subsignals based on presented method-
ology. Next, we calculate IDW statistic and test if the received signals are inte-
grated. Finally, one can calculate the cointegrating vector and examine if it
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Fig. 2. Block diagram of the applied methodology

exhibits random (chaotic) behavior. In this case we apply the Wald-Wolfowitz
test for randomness [27] for distances between nonzero values of the cointegrating
vector [a1, . . . , am]. If the cointegrating vector comes from the healthy machine,
the Wald-Wolfowitz test does not reject the hypothesis of randomness (H0). In
case of damaged machine − the test rejects the hypothesis. In our analysis we
take under consideration the confidence level 0.05 (Fig. 2).

Procedure was performed for a predefined range of damage SNR, and the
whole sequence has been repeated in Monte Carlo (MC) simulation. Then, after
averaging MC results, the probability of damage detection has been calculated,
that leads to determination of success rate of presented analytical method.

It is important to note that the aim of this article is not to present the
analytical method already published in [23], but to evaluate its efficiency with
respect to Signal-to-Noise Ratio of input data.

3 Simulations

In this section we analyzed the simulated data of the vibration signal from gear-
box. The simulated signal consists of the Gaussian noise and the deterministic
part given by four sine waves of 500, 1000, 1500 and 2000 Hz, acting as mesh
components. The sine waves are frequency modulated with modulation frequency
4 Hz. The frequency of damage is equal to 8 Hz and the sampling frequency is
16,384 Hz. The simulated signals have 819,200 observations, which corresponds
to 50 s of data. Thus the simulated model has the following form:

Signal = N(1 + D) + C, (8)
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where, N is the Gaussian noise, D is a deterministic function which contains
information about the damage and C is a deterministic function with the signal
characteristics mentioned above. We generate the signal using the procedure
described in details [23,29]. Because the simulated signal is a sum of the noise
and periodic functions thus it is PC. In [29] the relationship between simulated
and real signals characteristics is discussed.

Fig. 3. Simulated signal corresponding to damaged machine (top panel) and cyclic
impulses related to damage (bottom panel). Red frame denotes a single period detected
in the signal, that is presented closer in Fig. 6

In Fig. 3 on the top panel we observe part of simulated signal corresponding
to the damaged machine. In the bottom panel damage impulses are presented
for informative purposes, which were added to healthy machine signal. For these
impulses the ratio of impulses’ amplitude to noise amplitude is 0.91.

3.1 Cointegration - A Numerical Example

First step is to calculate subsignals according to Fig. 1 and formula (5). The
number of subsignals is the same as the value of period. The period which the
signal has been simulated with, contains 4096 observations, this gives 0.25 s. It
means that for period T = 4096 we will get 4096 subsignals. In Fig. 4 we present
the exemplary subsignals coming from damaged machine.

After the extraction of subsignals, we test the if they are integrated. In this
case we apply the Durbin-Watson statistic (see formula (6)). In Fig. 5 we present
the IDW statistic for all subsignals. As one can see, this statistics is close to two
thus the hypothesis that the subsignals are integrated with order 0 (I(0)) can be
accepted.

In Fig. 6 in the top panel a part of simulated signal is presented, that contains
the length of one determined period. In the middle panel there is one period of
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Fig. 4. The exemplary subsignals extracted from simulated signal

Fig. 5. Durbin-Watson statistic for each of subsignals.

Fig. 6. Signal segment (from damaged machine) containing one period (top panel),
part related to damage (middle panel) and estimated cointegrating vector (bottom
panel).
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damage. Bottom panel presents the cointegrating vector. As we can see, there
are two groups in cointegrating vector which correspond with damage impulse in
period of damage. To detect not randomness behaviour in cointegrating vector
we used Wald-Wolfowitz test. P-value of this test is 4.3205e−07 what means
that H0 hypothesis is rejected and diagnosed machine is damaged.

3.2 Monte Carlo Simulation

In the Monte Carlo simulation signal is simulated with 51 monotonically increas-
ing damage signal amplitudes. The number of MC iterations is 650. In Fig. 7 we
present map of results of Wald-Wolfowitz test for randomness of just 100 MC
iterations for better visibility. On vertical axis we observe number of MC simula-
tions and on horizontal one the average ratio between damage and noise ampli-
tude. Blue color on the map means that the cointegrating vector has random
behaviour and diagnosed machine is not damaged. Yellow color is responsible
for non random behaviour of cointegrating vector (we observe groups) and algo-
rithm classified the machine as damaged. For the purpose of the core message
of this paper, one can describe the results denoted by yellow color as a logical
1 (H0 hypothesis is rejected) and blue color as logical 0 (H0 hypothesis is not
rejected at given confidence level). Considering this, the main goal is to test the
success rate of the method for different levels of damage SNR.

Fig. 7. Map of Wald-Wolfowitz test.

Based on the results of Wald-Wolfowitz test we calculate probability of
damage detection with respect to damage SNR, based on 650 Monte Carlo
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simulations by averaging the results of MC iterations (see Fig. 8). On 95% con-
fidence level (red line) we detect damage when ratio between damage and noise
amplitude is greater than 0.9.

Fig. 8. Probability of damage detection based on 650 Monte Carlo simulations.

4 Conclusions

The integration and cointegration features yield great potential for local damage
detection. While previously described method was proven to be useful, it is also
very important to be aware of the restrictions related to the character and quality
of the input data. In this paper authors evaluate the success rate of diagnostic
method based on cointegration analysis with respect to SNR value of input
signal. Results can allow to define confidence level for such analysis with respect
to internal quality of the data.
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Abstract. The Ornstein-Uhlenbeck (OU) process is one of the most
popular stochastic system applied in many different fields of studies. It
was introduced in 1930 and can be considered as a continuous extension
of the autoregressive model of order one, AR(1). Furthermore, the OU
process in finance it is known as the Vasicek model and is mainly used
in interest rate modelling. Furthermore, it is deeply studied and its main
properties are well known. However, many real data exhibit some prop-
erties of the OU process although they cannot be directly modelled with
this classical system. This is in case when certain characteristics adequate
to the OU process are visible in the data however other properties of the
classical model change. In such case the subordination scenario can be
considered. In general, the subordination it is a time change of the orig-
inal process. In this paper we consider the Ornstein-Uhlenbeck process
delayed (subordinated) by Gamma subordinator. The Gamma subordi-
nator is Lévy process of Gamma distribution. The main properties are
studied, like the influence of the initial condition on the stationarity of
the new subordinated process. Moreover, the formulas for the expected
value and the autocovariance are derived. Furthermore, the simulation
procedures and estimation algorithms are proposed.

Keywords: Ornstein-Uhlenbeck process · Gamma process ·
Subordination

1 Introduction

The Ornstein-Uhlenbeck (OU) process is one of the most popular stochastic
system. It was introduced in 1930, [17]. Interestingly, it can be considered as
a continuous extension of the autoregressive model of order one, AR(1), [10].
Furthermore, the OU process in finance it is known as the Vasicek model [18] and
is mainly used in interest rate modelling, [7]. On the other hand, its applications
to different financial data were widely consider in publications, [3,10,14,21].
It was shown in [15] that this model can be also successfully applied in optical
physics. Furthermore, it can be also applied in vibration based diagnostics, [19].
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Many real data exhibit properties adequate to the OU process although they
can not be directly modelled with this classical system. This is in case when
certain characteristics adequate to the OU process are visible in the data however
other properties of the classical model change. In such case it can be beneficial
to consider so called subordination scenario. In the literature the subordinated
process is also known as a time changed one. In general, it is constructed as
a superposition of two independent process. The first one is called external or
parent process while the second one is called subordinator. The subordinator is a
process which can play a role of time therefore it is non-decreasing and positive.
The subordinated process possesses some properties of the external one. On the
other hand, some of the features change.

The idea of subordination was introduced in [5]. In the literature one can
find different subordinated processes, for instance the popular Variance Gamma
(VG) process, [12] arises as the Brownian motion with drift time-changed by
Gamma process. The other classical example is the compound Poisson process,
[4] or normal inverse Gaussian (NIG) process, [2]. In the literature one can find
also different constructions of subordinated processes, like arithmetic Brown-
ian motion, [20], or geometric Brownian motion, [8], subordinated by tempered
stable process. In recent years in the theory of subordinated process the spe-
cial attention is paid on so-called inverse subordinators. Among them the most
classical is the inverse stable subordinator, [13]. As the examples of the subor-
dinated processes with inverse subordinators we mention here tempered stable
Lévy motion driven by inverse stable subordinator, [9], fractional Lévy stable
process driven by inverse tempered stable subordinator, [16] or stable OU pro-
cess time-changed by inverse stable subordinator, [10].

In this paper we introduce the OU process driven by Gamma subordinator.
This process is some sense is an extension of the VG process however the more
complicated structure of the external process is considered here. We focus on
the main properties of the new process like stationarity or the formulas for
expected value and autocovariance. In the application part it is shown how to
simulate the trajectories of the new process and demonstrated the algorithms of
the parameters estimation.

2 Ornstein-Uhlenbeck Process

Originally introduced by Uhlenbeck and Ornstein, the OU process is well known
in finance as the Vasicek model, in which it is used as model for interest rate
fluctuations. It has also been used in many applications including mathematics
and physics. The model exhibits mean reversion, which means that in a long
time period the process will go back to its equilibrium level. The definition of the
classical OU process {X(t)} is the solution of a stochastic differential equation
of the following form [6]

dX(t) = κ(μ − X(t))dt + σdB(t), (1)
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where μ ∈ R is a long-term mean, κ is the speed of mean-reversion, σ is the
volatility and {B(t)} is the Brownian motion. The solution of this equation is
given by

X(t) = X(0)e−κt + μ(1 − e−κt) + σ

∫ t

0

e−κ(t−s)dB(s).

The Fokker-Planck equation for the one-dimensional conditional probability den-
sity function (pdf) f(t, x) of an OU process is given by the formula [17]

∂f(x, t)
∂t

= κ
∂

∂x

[
(x − μ)f(x, t)

]
+

σ2

2
∂2f(x, t)

∂x2
.

Finally, one can observe that the stationary solution of this equation with
t → ∞ has a Gaussian distribution with mean μ and variance σ2

2κ . Therefore,
the pdf of this equation is following

f(x, t) =
√

κ

πσ2
e− κ(x−μ)2

σ2 , x ∈ R.

2.1 Simulation

In this section the simulation procedure of OU process is presented. The most
intuitive methods is based on the definition of the process. Indeed, in order to
simulate the OU process the representation in stochastic differential equation
can be used, see (1). The following algorithm can be applied:

1. Determine starting point X(0) and duration time T.
2. Create a grid of n equally distant points on interval [0, T ] and set τ = T

n .
3. ∀i ∈ (1, n) set X(ti) = κ(μ − X(ti−1))τ + σ

√
τN where N ∼ N(0, 1).

Three exemplary trajectories of the OU process are presented in Fig. 1. Each
of them has different starting point and the same parameters. Clearly, one can
observe the ability of mean reversion of this process, all of the trajectories are
close to mean μ = 1.

2.2 Properties

In this section main properties of the OU process are presented, namely the
moments and the autocovariance. Furthermore, depending on the starting point
it can be weakly stationary or non-stationary. Indeed, two different cases have
to be considered, namely the fixed and random initial condition. Firstly, let us
assume that starting point is constant (X(0) = const).
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Fig. 1. Three trajectories of OU process with different initial condition and the same
parameters μ = 1, κ = 1, σ = 0.2.

Lemma 1. The expected value of the OU process for fixed t with fixed initial
condition has following form

E(X(t)) = X(0)e−κt + μ(1 − e−κt). (2)

Lemma 2. The autocovariance of the OU process with fixed initial condition
has following form

Cov
(
X(t),X(t + h)

)
= E

(
X(t) − E(X(t))

)(
X(t + h) − E(X(t + h))

)

=
σ2

2κ

(
e−κh − e−κ(2t+h)

)
. (3)

One can observe that Var X(t) = σ2

2κ (1 − e−2tκ). Then variance converges to
Var X(t) = σ2

2κ with t → ∞. Clearly the autocovariance depends on time, thus the
OU process with such initial condition is non-stationary, however it is asymptotic
stationary.

In the second case, let us assume that starting point is a random variable
from Gaussian distribution, more precisely X(0) ∼ N(μ, σ2

2κ ).

Lemma 3. The expected value of the OU process for fixed t with random initial
condition from Gaussian distribution with mean μ and variance σ2

2κ has following
form

E(X(t)) = μe−κt + μ(1 − e−κt) = μ. (4)
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Lemma 4. The autocovariance of the OU process with random initial condition
from Gaussian distribution with mean μ and variance σ2

2κ has following form

Cov
(
X(t),X(t + h)

)
=

σ2

2κ

(
e−κh

)
.

In case on random initial condition from Gaussian distribution with mean
μ and variance σ2

2κ the autocovariance and mean do not depend on the time.
Thus, such OU process is weakly stationary. Finally, using Lemmas 1–4 we can
formulate following Lemma.

Lemma 5. For different starting points the OU process is weakly stationary or
non-stationary

1. with fixed initial condition it is non-stationary,
2. with random initial condition from Gaussian distribution with mean μ and

variance σ2

2κ it is weakly stationary.

In order to confirm theoretical results 1000 trajectories of weakly stationary
and non-stationary OU process are simulated. Then the empirical moments were
computed and compared with theoretical formulas. The results are presented
in Figs. 2 and 3, respectively. It is worth to mentioning, that autocovariance
is computed for first 300 observations. As we observe the empirical functions
coincide with the theoretical ones which indicates the calculation and proposed
simulation method work well.

Fig. 2. Expected value (top panel) and autocovariance (bottom panel) of stationary

OU process with μ = 1, κ = 1, σ = 0.2 and X(0) ∼ N(μ, σ2

2κ
).
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Fig. 3. Expected value (top panel) and autocovariance (bottom panel) of non-
stationary OU process with μ = 1, κ = 1, σ = 0.2, X(0) = 2, for fixed h = 0.1 s

3 Gamma Process

In this section main properties of Gamma process are recalled. Let {Gk,θ(t)} be
Gamma Lévy process such that the increments are stationary, independent and
have Gamma distribution with parameters k and θ [1]. A random variable is said
to have Gamma(k, θ) distribution if its pdf is given by

fG(x) =
1

Γ (k)θk
xk−1e− x

θ ,

where x > 0. Lévy process with positive increment can be used as subordinator.
The Gamma process is non-negative and non-decreasing, thus it can be used as
a subordinator.

3.1 Simulation

It is worth mentioning that, increments of Gamma process have Gamma distri-
bution, thus simulation is straightforward. Indeed, it is sufficient to simulate this
increments. Therefore, following algorithm can be applied

1. Set G(0) = 0,
2. ∀i > 0 set G(i) = G(i − 1) + X where X ∼ Γ (k, θ).

Three exemplary Gamma process trajectories are presented in Fig. 4. Each
of them has different parameters.
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Fig. 4. Three trajectories of Gamma process with different parameters.

3.2 Properties

In this section the moments and the autocovariance of the Gamma process are
presented. First of all let us introduce the formula for the moments

E
(
Gk,θ(t)n

)
=

Γ (n + kt)
Γ (kt)θn

.

It yields that E
(
Gk,θ(t)n

) ∼ (
kt
θ

)n, when t → ∞. From the properties of Gamma
distribution the expected value for fixed t values is equal to

E
(
Gk,θ(t)

)
=

kt

θ
. (5)

Moreover one can easy derive formula for the variance

Var
(
Gk,θ(t)

)
=

kt

θ2
. (6)

Finally, applying E(XY ) = 1
2

(
E(X2) + E(Y 2) − E(X − Y )2

)
, we obtain the

formula for the autocovariance

E
(
Gk,θ(t), Gk,θ(s)

)
=

kt

θ2
s +

k2

θ2
st,

where s < t.

4 Subordinated Ornstein-Uhlenbeck Process

Real data often demonstrate characteristic behaviour of the OU process, namely
mean reversion. However, in real signals the jumps can be observed. Such
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behaviour is not demonstrated by the OU process. In order to overcome this
drawback one can apply subordination approach. For instance, it is proposed to
consider the combination of the OU process and Gamma process. In this section
the main properties of the examined process are discussed. Furthermore, two
cases are thoroughly explored.

Definition 1. Let {Gk,θ(t)} be Gamma process, {X(t)} be OU process and both
processes are independent. The OU process delayed by Gamma process is defined
as

Y (t) = X
(
Gk,θ(t)

)
. (7)

One can observe that time was replaced by another process, namely by Gamma
one.

4.1 Simulation

The main idea of simulation of process {Y (t)} given in 7, is to generate inde-
pendent trajectories of the subordinator {Gk,θ(t)} and the OU process {X(t)}.
For the OU process delayed by Gamma subordinator following algorithm can be
used

1. Simulate the OU process X(t).
2. Simulate Gamma process Gk,θ(t).
3. ∀i ∈ (1, n) set Y (ti) = X(Gk,θ(ti)).

A sample trajectory of weakly stationary and non-stationary OU process delayed
by Gamma process are presented in Fig. 5 and in Fig. 6, respectively. Moreover,
in order to illustrate the influence of subordination a corresponding weakly sta-
tionary and non-stationary OU process are presented in the same figures. For
instance, the jumps are visible and mean reversion is preserved.

4.2 Properties

This section contains the information about the main properties of the OU pro-
cess delayed by Gamma process, namely mean and autocovariance. Furthermore,
two cases (stationary and non-stationary) are considered. Let us firstly examine
the non-stationary process, when the initial condition is fixed.

Lemma 6. The expected value of the OU process delayed by Gamma process for
fixed t with fixed initial condition has following form

E
(
X

(
Gk,θ(t)

))
=

(
X(0)

(1
θ

+ κ
)−kt)

θ−kt + μ
(
1 −

(1
θ

+ κ
)−kt

θ−kt
)
. (8)

Proof 1. Using Eqs. (2) and (5) and applying the conditional expected value, it
can be derived that

E
(
X

(
Gk,θ(t)

))
= E

(
E

(
X(Gk,θ(t))|Gk,θ(t)

))

= E
(
X(0)e−κGk,θ(t) + μ(1 − e−κGk,θ(t))

)
. (9)
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Fig. 5. Trajectory of weakly stationary OU process (top panel) and weakly stationary
OU process delayed by Gamma process (bottom panel) with k = 1

2
, θ = 1, both with

μ = 1, κ = 1, σ = 0.2 and X(0) ∼ N(μ, σ2

2κ
).

Fig. 6. Trajectory of non-stationary OU process (top panel) and non-stationary OU
process delayed by Gamma process (bottom panel) with k = 1

2
, θ = 1, both with μ = 1,

κ = 1, σ = 0.2 and X(0) = 2.

Furthermore,

E
(
e−κGk,θ(t)

)
=

∫ ∞

0

1
Γ (kt)θkt

xkt−1e− x
θ e−κxdx =

(1
θ

+ κ
)−kt

θ−kt. (10)
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Applying Eqs. (9) and (10) we finally obtain the mean value

E
(
X

(
Gk,θ(t)

))
=

(
X(0)

(1
θ

+ κ
)−kt)

θ−kt + μ
(
1 −

(1
θ

+ κ
)−kt

θ−kt
)

�	

Lemma 7. The autocovariance of the OU process delayed by Gamma process
with fixed initial condition has following form

Cov
(
X

(
Gk,θ(t)

)
,X

(
Gk,θ(t + h)

))

=
σ2

2κ

(
p(h) − p(h)v

)
+ X(0)2p(h)v + X(0)μ

(
p(t) − p(h)v + p(t + h) − p(h)v

)

+ μ2
(
1 − p(t) − p(t + h) − p(h)v

)
− p(t)p(t + h)

(
X(0) − μ) +

1
θ

−k(t+h)

μ
)2

,

(11)

where p(h) = θ−kh
(
κ + 1

θ

)−kh and v =
(
2κ + 1

θ

)−kt
θ−kt.

Proof 2. In case of non-stationary OU process it can be derived

E
(
X(t)X(t + h)

)
= Cov(X(t),X(t + h)) + EX(t)EX(t + h)

=
σ2

2κ

(
e−κh − e−κ(2t+h)

)
+ X(0)2e−κte−κ(t+h)

+X(0)μ
(
e−κt

(
1 − e−κ(t+h)

)
+ X(0)μe−κ(t+h)

(
1 − e−κt

)
+ μ2

(
1 − e−κt

)(
1 − e−κ(t+h)

)
.

Furthermore, in order to calculate the autocovariance of subordinated OU process
let us compute

E
(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

))

= E
(
E

(
X(Gk,θ(t))X

(
Gk,θ(t + h)

)|Gk,θ(t), Gk,θ(t + h)
))

= E
(σ2

2κ

(
e−κGk,θ(h) − e−κGk,θ(2t+h)

)
+ X(0)2e−κGk,θ(t+h)e−κGk,θ(t)

+ X(0)μe−κGk,θ(t)
(
1 − e−κGk,θ(t+h)

)
+ X(0)μe−κGk,θ(t+h)

(
1 − e−κGk,θ(t)

)
+ μ2

(
1 − e−κGk,θ(t) − e−κGk,θ(t+h) + e−κGk,θ(t)e−κGk,θ(t+h)

))
.

Furthermore

E
(
e−κGk,θ(t)e−κGk,θ(t+h)

)
= E

(
e−κGk,θ(t)e−κ(Gk,θ(t+h)−Gk,θ(t)+Gk,θ(t))

)
= E

(
e−2κGk,θ(t)e−κGk,θ(h)

)

=
(
κ +

1
θ

)−kh
θ−kh

(
2κ +

1
θ

)−kt
θ−kt.

Finally, applying above equation it is easy to see that autocovariance is given
by
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Cov
(
X

(
Gk,θ(t)

)
,X

(
Gk,θ(t + h)

))
= E

(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

))

− E
(
X

(
Gk,θ(t)

))
E

(
X

(
Gk,θ(t + h)

))
=

σ2

2κ

(
θ−kh

(
κ +

1
θ

)−kh − (
κ +

1
θ

)−kh

θ−kh
(
2κ +

1
θ

)−kt
θ−kt

)
+ X(0)2

(
κ +

1
θ

)−kh
θ−kh

(
2κ +

1
θ

)−kt
θ−kt

+ X(0)μ
(
θ−kt

(
κ +

1
θ

)−kt − (
κ +

1
θ

)−kh
θ−kh

(
2κ +

1
θ

)−kt
θ−kt

)

+ X(0)μ
(
θ−k(t+h)

(
κ +

1
θ

)−k(t+h) − (
κ +

1
θ

)−kh
θ−kh

(
2κ +

1
θ

)−kt
θ−kt

)

+ μ2
(
1 − θ−kt

(
κ +

1
θ

)−kt − θ−k(t+h)
(
κ +

1
θ

)−k(t+h) − (
κ +

1
θ

)−kh
θ−kh

(
2κ +

1
θ

)−kt
θ−kt

)
−

(
θ−kt

((
κ +

1
θ

)−kt(X(0) − μ) +
1
θ

−kt

μ
))

(
θ−k(t+h)

((
κ +

1
θ

)−k(t+h)(X(0) − μ) +
1
θ

−k(t+h)

μ
))

�	

The second case is a weakly stationary process. Therefore, initial condition
is following Gaussian distribution X(0) ∼ N(μ, σ2

2κ ).

Lemma 8. The expected value of the OU process delayed by Gamma process for
fixed t with random initial condition from Gaussian distribution with mean μ

and variance σ2

2κ has following form

E
(
X

(
Gk,θ(t)

))
= μ. (12)

The above Lemma follows from the fundamental properties of the conditional
expected value.

Lemma 9. The autocovariance of the OU process delayed by Gamma process
with random initial condition from Gaussian distribution with mean μ and vari-
ance σ2

2κ has following form

Cov
(
X

(
Gk,θ(t)

)
,X

(
Gk,θ(t + h)

))
=

σ2

2κ
θ−kh

(
κ +

1
θ

)−kh

. (13)

Proof 3. Let us recall that

E
(
X(t)X(t + h)

)
=

σ2

2κ

(
e−κh

)
+ μ2. (14)

Using (12) and (14) we obtain

E
(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

))

= E
(
E

(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

)|Gk,θ(t), Gk,θ(t + h)
))

= E
(σ2

2κ
(e−κGk,θ(h)) + μ2

)
=

σ2

2κ
θ−kh

(
κ +

1
θ

)−kh

+ μ2.
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Finally, the autocovariance for subordinated OU process with Gamma subordi-
nator is following

Cov
(
X

(
Gk,θ(t)

)
,X

(
Gk,θ(t + h)

))
= E

(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

))

− E
(
X

(
Gk,θ(t)

))
E

(
X

(
Gk,θ(t + h)

))
=

σ2

2κ
θ−kh

(
κ +

1
θ

)−kh

�	

Lemma 10. For different starting points the OU process delayed by Gamma
process is weakly stationary or non-stationary

1. with fixed initial condition it is non-stationary,
2. with random initial condition from Gaussian distribution with mean μ and

variance σ2

2κ it is weakly stationary.

In order to confirm the obtained results 1000 trajectories of weakly station-
ary OU process and non-stationary OU process delayed by Gamma process are
simulated. Moreover, the empirical moments are computed and compared with
theoretical formulas. The autocovariance is calculated for first 300 observations.
The results are presented in Figs. 7 and 8. One can observe that the empirical
functions coincide with the theoretical ones, thus it confirms that simulations
and theoretical values are performed properly.

Fig. 7. Expected value (top panel) and autocovariance (bottom panel) of weakly sta-
tionary OU process with μ = 1, κ = 1, σ = 0.2 delayed by Gamma process with k = 2,

θ = 1 and X(0) ∼ N(μ, σ2

2κ
).
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Fig. 8. Expected value (top panel) and autocovariance (bottom panel) of non-
stationary OU process with μ = 1, κ = 1, σ = 0.2, delayed by Gamma process with
k = 2, θ = 1 and X(0) = 2 for fixed h = 0.1 s.

4.3 Distribution

In this section a distribution of the OU process delayed by Gamma process is
derived. It is known, that the OU process have a Gaussian distribution with
appropriate mean and variance. Furthermore, when X ∼ N(m, s) then cumula-
tive distribution functions is given by Φ(z) = 1

2

(
1 + erf

(
z−m√

2s

))
. There are two

cases considered, namely weakly stationary and non-stationary.

Lemma 11. Cumulative distribution function of the OU process delayed by
Gamma process with fixed initial condition is given by

P
(
X

(
Gk,θ(t)

) ≤ x
)

= E
(
1X(Gk,θ(t))≤x

)
= E

[
E

(
1X(Gk,θ(t))≤x|Gk,θ(t)

)]

= E
[
Φ

(x − (μ − (X(0) + μ)e−kGk,θ(t)

σ2

2κ (1 − e−2kGk,θ(t))

)]

= E
[
1
2

(
1 + erf

(x − (μ − (X(0) + μ)e−kGk,θ(t))
√
2σ2

2κ (1 − e−2kGk,θ(t))

))]
.

In case with fixed initial condition, it is extremely difficult to derive the
formula for probability density function. Therefore, it is not given in the explicit
formula.
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Lemma 12. Cumulative distribution function of the OU process delayed by
Gamma process with random initial condition from Gaussian distribution with
mean μ and variance σ2

2κ is given by

P
(
X

(
Gk,θ(t)

) ≤ x
)

= E
(
1X(Gk,θ(t))≤x

)
= E

[
E

(
1X(Gk,θ(t))≤x|Gk,θ(t)

)]

= E
[
Φ

(x − μ
σ2

2κ

)]
= E

[
1
2

(
1 + erf

(x − μ
√
2σ2

2κ

))]
= Φ

(
x − μ

σ2

2κ

)
.

It is easy to observe that if initial condition is X(0)∼ N(μ, σ2

2κ ), then
X

(
Gk,θ(t)

) ∼ N(μ, σ2

2κ ). Finally, 1000 trajectories of weakly stationary subor-
dinated OU process are simulated. Furthermore, empirical cumulative distribu-
tion function and probability density function are computed and compared with
theoretical formulas. Results are presented in Fig. 9. It can be observed that, the
empirical functions coincide with the theoretical ones.

Fig. 9. Probability density function (top panel) and cumulative distribution function
(bottom panel) of stationary OU process with μ = 1, κ = 1, σ = 0.2 delayed by Gamma

process with k = 2, θ = 1 and X(0) ∼ N(μ, σ2

2κ
).

5 Estimation

In this section we describe the parameter’s estimation of the considered model,
namely weakly stationary OU process delayed by Gamma process. In case of real
data usually only one trajectory of the data is available, thus we concentrated on
the weakly stationary case. In this process there are five parameters. It can be
quite complicated to estimate them simultaneously. Therefore, it was decided to
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consider two different cases. First of all, let us assume the parameters of Gamma
process are known, namely k and θ. In the second case, parameters of OU process
are given, namely μ, κ and σ. It is worth mentioning that special case of Gamma
distribution is exponential distribution, where k = 1. In order to illustrate the
effectiveness of the estimation procedure the exponential process is used.

5.1 Estimation Procedure of Stationary OU Parameters

In this subsection it is assumed that, the parameters of Gamma process are
known. Then parameters of OU process are estimated using method of moments.
In the literature one can find another methods [11]. Let us recall that

γ(h) = Cov
(
X

(
Gk,θ(t)

)
X

(
Gk,θ(t + h)

))
=

σ2

2κ
θ−kh

(
κ +

1
θ

)−kh

and

E
(
X

(
Gk,θ(t)

))
= μ.

Therefore, we obtain
⎧⎪⎪⎨
⎪⎪⎩

E
(
X

(
Gk,θ(t)

))
= μ

γ(0) = σ2

2κ

γ(h1) = σ2

2κθ−kh1

(
κ + 1

θ

)−kh1

.

Hence, the following formulas for the parameters can be derived⎧⎪⎪⎨
⎪⎪⎩

μ = E
(
X

(
Gk,θ(t)

))

κ = γ(h1)
γ(0)

− 1
kh1 − 1

θ

σ =
√

2κγ(0).

Finally, the estimators are easilly obtained⎧⎪⎪⎨
⎪⎪⎩

μ̂ = Ê
(
X

(
Gk,θ(t)

))

κ̂ = γ̂(h1)
γ̂(0)

− 1
kh1 − 1

θ

σ̂ =
√

2κγ̂(0),

where Ê
(
X

(
Gk,θ(t)

))
is empirical mean and γ̂(h) is empirical autocovariance. In

order to check the effectiveness of the described estimation procedure we simulate
1000 trajectories of length 1000 of the considered process, with parameters μ = 1,
κ = 1, σ = 0.2, k = 1 and θ = 1, and for each of them we estimate the parameters
μ, κ and σ. Then, we compute the boxplot of the obtained estimators. In Fig. 10
the boxplot of estimators are presented, and the theoretical values are marked
in green. The estimated values of parameters are similar to the theoretical ones.

Furthermore in Fig. 11 the histograms which show the deviation between
the estimators and theoretical values of the parameters are presented. One can
observe that most of the observations are close to 0.
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Fig. 10. The boxplots of estimated OU parameters with known parameters of the
Gamma process. Theoretical parameters of the OU process are equal μ = 1, κ = 1,
σ = 0.2.

Fig. 11. The histograms of estimated OU parameters minus theoretical known param-
eters of the Gamma process. Theoretical parameters of the OU process are equal μ = 1,
κ = 1, σ = 0.2.

5.2 Estimation Procedure of the Gamma Process Parameters

In this subsection let us assume the parameters of OU process are known. Then,
the Gamma process parameters are estimated. The approach is based on min-
imizing the difference between theoretical and empirical autocovariance. For
instance, for each trajectory we compute the theoretical and empirical auto-
covariance and we minimize the difference with respect to the parameters.



Ornstein-Uhlenbeck Process Delayed by Gamma Subordinator 163

In order to check the effectiveness of the described estimation procedure we
simulate 1000 trajectories of length 1000 of the considered process, with param-
eters μ = 1, κ = 1, σ = 0.2, k = 1 and θ = 1, and for each of them we estimate
the parameters k and θ. In Fig. 12 the boxplot of estimated values are presented,
and the theoretical values are marked in green. In this case we also see the esti-
mated values of appropriate parameters coincide with the theoretical ones which
confirms the effectiveness of the estimation procedure.

Fig. 12. The boxplots of estimated Gamma parameters with known parameters of the
OU process. Theoretical parameters of Gamma process are equal θ = 1, k = 1.

Fig. 13. The histograms of estimated Gamma parameters minus theoretical known
parameters of the Gamma process. Theoretical parameters of Gamma process are equal
θ = 1, k = 1.
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Furthermore in Fig. 13 the histograms which show the deviation between
the estimators and theoretical values of the parameters for Gamma process are
presented. One can observe that most of the observations are close to 0.

6 Conclusions

In the paper the OU process time-changed by Gamma subordinator was stud-
ied. Many different properties of this system were analyzed. For instance, it
was shown that stationarity of this process depends on the initial condition,
similar as in case of the classical OU process. Therefore, easily the stationary
and non-stationary process can be obtained through the subordination scenario.
Furthermore, the simulation algorithm was provided. Finally, the estimation pro-
cedures were discussed. Clearly, the analyzed process is complex and estimation
is challenging. Therefore, it is proposed to estimate the Gamma process and OU
process parameters separately. By using Monte Carlo simulations we confirmed
the effectiveness of the estimation procedures. In the future it is planned to study
the convergence of the estimators.

Acknowledgment. This paper is supported by National Center of Science Opus
Grant No. 2016/21/B/ST1/00929 “Anomalous diffusion processes and their applica-
tions in real data modelling”.
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Abstract. The problem of determination of P-wave onset moment is
elementary in seismic signals analysis. This problem is also widely dis-
cussed in the literature. In recent years many methods based on statisti-
cal properties of the signal have arisen. From the mathematical perspec-
tive the problem reduces to segmentation of the raw signal into parts
with different features. Having the knowledge of the particular P-wave
onset moment (for couple differently located sensors), the establishment
of corresponding event’s location and energy is possible. The difference in
signals’ frequency spectra for the registered event and its preceding noise
allows for using time-frequency domain in designating the onset moment.
In this paper an innovative method for searching of the P-wave arrival is
proposed. The method incorporates using signal’s time-frequency repre-
sentation (namely spectrogram) and Kolmogorov-Smirnov (KS) statistic
analysis. We apply two-sample one-sided Kolmogorov-Smirnov statistic
to spectra vectors obtained from the spectrogram. On the basis of KS
map it is possible to find the regime switching point which indicates
the P-wave onset moment. The method is tested on a real life signal
originating from underground mine. Proposed methodology is compared
with classical Short-Time Average over Long-Time Average (STA/LTA)
algorithm and P-wave arrival moment indicated manually by the expert.
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1 Introduction

One of the most crucial challenges in terms of seismic activity monitoring is
recognition of seismic wave onset moment. Identification of this particular point
in time leads to assessment of basic properties for registered event, i.e. its loca-
tion, energy etc. [3]. These attributes are fundamental from view point of further
seismic hazard assessment. Data acquisition system is used for monitoring of rock
mass activity. This data should be next evaluated and interpreted (information
about energy and localization of the event is required). In typical deep mine
one could expect dozens of events per day. In practice this task is technically
very difficult and complex, and daily will require extensive analysis of hundreds
of signals from multiple different data receivers distributed spatially in wide
area. Each signal should be interpreted immediately after measuring. Therefore
it is recommended that such procedures for marking the P-wave onset moment
should be automatic. In the literature this subject has been widely studied,
however still the most commonly used technique is (STA/LTA) for preliminary
detection, which is often corrected manually. When considering seismic signal
which includes pure noise at the beginning (which is most commonly regarded
as white) and actual seismic event subsequently, it is easy to denote a point in
which the signal loses its stationary character. This is a consequence of occur-
rence of sudden instantaneous energy growth which is visible in the signal in
form of amplitude variation increase. When considering time-frequency domain,
sole change of signal power will be visible in spectrogram (due to Parseval’s the-
orem). During P-wave onset moment the frequencies amplitudes rise as well as
their proportions, so the short-time spectrum becomes much more non-uniform.
The pure noise spectrum is flat and recorded seismic event has relatively wide
frequency range at first, which is becoming narrower in time. Existing algorithms
include STA/LTA, AR-based algorithms (finding different models for both event
parts and a noise one [5,10]), algorithms using neural networks [13], or multiscale
wavelet analysis [18]. The reader is referred to [4,15], where the comparison of
some classical algorithms has been investigated. The recent work on this subject
includes [7,9,12,19], and their comparison can be found in [11]. First mentioned
group of algorithms is based mainly on sole time domain and ignores capability
of frequency domain. The potential hidden in time-frequency domain has been
presented in [2,17]. Effectiveness of these methods confirms an adequacy of using
the spectrogram in term of finding P-wave onset moment. Hence, development
of method based on spectrogram in P-wave recognition is justified.

Authors propose to analyze spectrogram of seismic signal using Kolmogorov-
Smirnov statistic values arranged into a map [16]. In presented approach it
is used to differentiate the structure of spectra vectors from the spectrogram.
This enables the separation of spectra vectors from before and after the arrival
moment. As a result we can determine arrival moment as a point located between
obtained groups of spectra vectors. Such approach is fully data-driven in its ana-
lytical process.
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2 Methodology

In this section the overall methodology is explained (see Fig. 1).

Fig. 1. Flowchart of presented procedure

Presented procedure begins with calculating spectrogram (see Eqs. 1 and 2).
Its parameters are selected based on empirical testing and are suited best for
the length of signal time series, in relation to the way that prior segmentation
algorithm selects and segments the individual seismic events. For analyzed signal
the parameters are presented in Table 1.

The short-time Fourier transform (STFT) for the discrete signal x0, x2, . . . ,
xN−1 is defined as follows [8]:

STFT(t, f) =
L−1∑

m=0

xt+mωme−j2πfm/N (1)

for 0 ≤ f ≤ fmax and 0 ≤ t ≤ tmax. In the above equation ω is the shifted
window of the length L. Furthermore, the spectrogram is squared absolute value
of the STFT:

Spec(t, f) = |STFT(t, f)|2. (2)
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After that, for each non-repeating pair of spectra vectors, the Kolmogorov-
Smirnov (KS) statistic is calculated (see Definition 1).

Definition 1 (Kolmogorov-Smirnov statistic). The two-sample one-sided
Kolmogorov-Smirnov (KS) statistic for samples y1

1 , y
1
2 , . . . , y

1
K and y2

1 , y
2
2 , . . . , y

2
K

of lengths K is given by following formula:

D∗
1,2 = max

v

(
F̂y1(v) − F̂y2(v)

)
, (3)

where F̂yi(v) is empirical cumulative distribution functions of vector yi, i = 1, 2
in point v [6,14].

In formula (3) the empirical cumulative distribution function for sample y1, y2,
. . . , yK is defined as follows:

F̂ (v) =
1
K

K∑

k=1

1{vk≤v}, (4)

where 1A is an indicator of a set A.
In our methodology we apply the KS statistic to spectra vectors taken from

the spectrogram. More precisely, for all i, j ∈ {0, ..., tmax} we calculate the value
of KS statistic. All of obtained values D∗

i,j are arranged into upper-triangular
part of a square matrix KS, such as:

KS(i,j) = D∗
i,j , i = 0, . . . , tmax, j = i, . . . , tmax, (5)

that is reflected with respect to the main diagonal in order to obtain symmetric
matrix. Then, such matrix is integrated along one dimension producing a feature
vector, which is then thresholded using central point of the histogram. It is
performed by dividing spectrogram into two halves according to the item count,
then finding two global modes as global maxima in each half of spectrogram, and
finally defining central point as an average between modes. Threshold allows to
automatically indicate the transition point between the processes (see Sect. 2.1).

2.1 KS Map and Its Interpretation

Based on initial visual evaluation of the input data one can notice two disjoint
processes occurring consecutively:

– Process 1: No seismic shocks are present, signal can be considered as a noise
(area (1,1));

– Process 2: Seismic event occurs, signal presents the impact and its damp-
ening (area (2,2)).

In such case one can describe those processes in terms of signal parameters:

– Process 1: Low energy, uniform spectrum;
– Process 2: High energy, non-uniform and time-varying spectrum;
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Fig. 2. Conceptual chart of expected KS map

Despite the relatively good visibility of the events in the input data, it is not
easy to define one simple, effective and precise evaluation criterion. Thus, pro-
posed methodology is based on the analysis of the map constructed by composing
the values of KS statistic.

3 Results

Raw input signal of considered seismic event is presented in Fig. 3. In the first
step spectrogram of the signal was calculated according to parameters in Table 1
(see Fig. 4).

After that, individual spectra vectors are compared with each other in a non-
repeating manner, and KS statistic produced by each comparison is placed in a
upper-triangular half of a square matrix. It is then reflected to form a symmetric
square matrix, which is further called a map.

Table 1. Parameters of compared results

Parameter Value

Sampling frequency 500Hz

Window Hamming, 32 samples

Overlap 0.95%

FFT points 256
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Fig. 3. Raw signal of seismic data
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Fig. 4. Spectrogram of seismic data

It is hard to find transition points based on two-dimensional data. Hence,
we propose to determine threshold based on one-dimensional statistic. Taking
advantage of previously mentioned assumptions (see Sect. 2.1), it is expected
that local sum of KS map vectors will vary according to the area (see Figs. 2
and 5).

Fig. 5. The map of Kolmogorov-Smirnov statistic.
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Hence, in the next step one-dimensional sum of the map is calculated (see
Fig. 6). Since the processes share virtually no similarities, one can expect certain
behavior of the sum values of particular groups of KS map columns:

– Group regarding process 1 (columns of areas (1, x)): relatively low
energy of the signal. KS statistic values will be low when comparing process
1 to itself, high when the impact occurs and medium and decreasing while
the energy damps;

– Group regarding process 2 (columns of areas (2, x)): relatively high
energy. KS statistic values will be low when comparing process 2 to itself,
and medium to high when comparing it to process 1.
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Thresholded feature vector

Fig. 6. Feature vector as a result of map integration

To be able to segment out the processes, obtained feature vector is thresh-
olded using central point of histogram as described before (see Fig. 7). It provided
the timestamp of 1.524 s, which matches the expert-indicated point exactly, and
performs with better precision than STA/LTA method (comparing quotient of
a signal under a specific characteristic function in short and long windows [1])
(Fig. 8).
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Fig. 7. Histogram of feature vector
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Fig. 8. Raw data with marked results of expert, STA/LTA and presented method.
Obtained results: 1.524 s, 1.532 s, 1.524 s respectively.

4 Conclusion

In this article authors present novel approach to P-wave arrival detection in
seismic vibration data. Method is based on segmentation of the feature vector
constructed from KS statistic map. Entries of the map are KS statistic values
that are results of performing KS test on pairs of spectra vectors of signal spec-
trogram. As a result, algorithm is capable of detection of the P-wave arrival.
Presented method produces results consistent with the points indicated manu-
ally by seismic experts from the mine and better than commonly used LTA/STA
algorithm. Important issue is that the method is automatic and data-driven.
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Abstract. Stochastic processes are frequently used, among others, for empirical
analyses in technical, medical as well as socio-economic sciences. A time series
can be treated as a realization of a stochastic process with stationary or non-
stationary increments. Using different quantitative methods we can study the
stationarity of increments in the series and analyze the variability of their value.
Stochastic processes which use Brownian motion are a frequent topic of theo-
retical analyses and empirical study. Among others, we model the variability of
processes featuring stationary increments using Hurst exponent, whereas those
featuring non-stationary increments using Hölder function. A characteristic
feature of this type of processes is the analysis of memory present in a series. In
hereby article the attention is focused on the estimation of pointwise Hölder
exponents. The estimation of pointwise Hölder exponents allows for the analysis
of the variability of a process in the surrounding of any argument of the domain.
The aim of the article is to select the right surrounding in the process of esti-
mation of the pointwise Hölder exponents for different analytical forms of
generating function using the least squares method. The article is composed of
two basic parts - theoretical and containing empirical analyses, in particular
simulation and optimization analysis.

Keywords: Time series � Stochastic process � Hurst exponent �
Hölder function � Estimation of pointwise Hölder exponents �
Least squares method

1 Introduction

Multifractional Brown Motion Process can be used in modelling of time series. The
process with stationary increments, which are featured by fractional parts of Brownian
motion, depends on a constant parameter - Hurst exponent. This exponent belongs to the
range (0,1) and divides the time series into: persistent - with a positive correlation
between the subsequent implementations H 2 0:5; 1ð Þð Þ and anti-persistent, in which the
correlation is negative H 2 0; 0:5ð Þð Þ. A general case is considered below - processes
dependent on Hölder function. Fractional processes are an exceptional example of
multifractional ones, that is, a constant Hölder function is the value of Hurst exponent.

The estimation of pointwise Hölder exponents in Multifractional Brownian Motion
Process is present in the papers (Ayache and Lévy Véhel 1999; Peltier and Lévy Véhel
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F. Chaari et al. (Eds.): CSTA 2017, ACM 16, pp. 175–184, 2020.
https://doi.org/10.1007/978-3-030-22529-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22529-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22529-2_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22529-2_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22529-2_10


1995; Barrière 2007; Mastalerz-Kodzis 2018), but does not clearly define what sur-
rounding is to be taken into consideration in the analyses. For the computer generated
series we have proposed the methodic of the surrounding length selection. We have
used, among others, the least squares method. The first part of the paper includes
theoretical basics of the considered points, the second part contains simulation and
optimization analyses (Bardet et al. 2003; Istas and Lang 1997; Guyon and León 1989).

2 Stochastic Processes with Memory Effect

Time is the only point in the process of time series modelling with fractional and multi-
fractional processes of Brownian motion (Daoudi et al. 1998; Ayache and Taqqu 2004;
Peters 1994; Falconer and Lévy-Véhel 2008; Mastalerz-Kodzis 2018). Processes of
stationary kind featured by fractional parts of Brownian motion depend on a constant
parameter - Hurst exponent. It is included in the range (0,1) and divides the time series
into: persistent - with a positive correlation between the subsequent implementations
H 2 1=2; 1ð Þð Þ and anti-persistent, in which the correlation is negative H 2 0; 1=2ð Þð Þ.
Below, we consider a general case - processes dependent on Hölder function. Fractional
processes make an exceptional example of multi-fractional ones, this means that a
constant Hölder function is the value of Hurst exponent.

2.1 Hölder Function Definition

Let X; dxð Þ and Y ; dYð Þ be metric spaces (Daoudi et al. 1998; Mastalerz-Kodzis 2003).
Function f : X ! Y is Hölder function with an exponent a a[ 0ð Þ, if for each x; y 2 X
such, that dX x; yð Þ\1 the function fulfils an inequality with a positive constant c:

dY f xð Þ; f yð Þð Þ� c � dX x; yð Þð Þa: ð1Þ

By definition, Hölder function is a continuous function in the range. With the
function being of class C1 the function graph’s fractional value equals one. If the
function were of class C0, then the graph could feature a fractional measure.

Let there be a function f : D ! < D � <ð Þ and parameter a 2 0; 1ð Þ. Function
f : D ! < is Hölder function of class Ca f 2 Cað Þ, if there exist constants c[ 0 and
h0 [ 0 such, that for each x as well as all of h such, that 0\h� h0 fulfilled is the
following inequality:

f xþ hð Þ � f xð Þj j � c ha: ð2Þ

Let x0 be any point from the function range f x0 2 D � <ð Þ. Function f : D ! < is

at point x0 Hölder function of class Ca
x0 f 2 Ca

x0

� �
, if constants e; c[ 0 exist such, that

for each x 2 x0 � e; x0 þ eð Þ fulfilled is the following inequality:

f ðxÞ � f ðx0Þj j � cjx� x0ja ð3Þ
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Hölder point exponent of function f at point x0 is the number af x0ð Þ expressed with

the formula af x0ð Þ ¼ sup a : f 2 Ca
x0

n o
. For function f, Hölder function is the func-

tion, which to each of the points x 2 D assigns the number af xð Þ.

2.2 Hölder Function Dependent Process

Let Ht : 0;1Þ½ ! 0; 1ð Þ be Hölder function with exponent a[ 0. Multi-fractional
Brownian motion process with function parameter Ht is a stochastic process BHt tð Þ
defined for t� 0 by the formula (Ayache and Lévy Véhel 1999; Peltier and Lévy Véhel
1995):

BHt tð Þ ¼
1

C Ht þ 1
2ð Þ

Z0

�1
t � sð ÞHt�1=2 � �sð ÞHt�1=2 þ

h i
dBðsÞþ

Z t

0

ðt � sÞHt�1=2dBðsÞ
8<
:

9=
; ð4Þ

where B stands for the standard Brownian motion process.
Hölder point exponents provide information about the characteristics of the process

(Ayache and Lévy Véhel 1999; Daoudi et al. 1998). We can note, among others, that
the process does not feature stationary increments in the situation where Hölder
function is not constant and the variability of the graph increases with values of the
function closer to zero, for function values close to one the process is smoother. The
local capacitive and Hausdorff value of the process trajectory BHt tð Þ for each t0 � 0
equals 2� H t0ð Þ and with probability equal to one Hölder point exponent of the
process trajectory BHt tð Þ for each t0 � 0 equals H t0ð Þ. In the range (0,1) the regularity of
the process measured with Hölder point exponents becomes more changeable.

Hölder function is a constant function in the multi-fractional Brownian motion
process, which means that the regularity of the process trajectory measured by this
function also changes continuously. Further generalization of Brownian motion process
is based on the replacement of the continuous Hölder function with an discontinuous
one (Peltier and Lévy Véhel 1995). A generalized multi-fractional Brownian motion
process with function parameter H tð Þ and k - a real number, is process BH;k tð Þ� �

t2<
such, that for each t 2 <:

BH;k tð Þ ¼
X1
n¼0

Z

Dn

eitn � 1

nj jHn tð Þþ 0;5
dB nð Þ ð5Þ

where D0 ¼ n : nj j\1f g and for all n� 1, Dn ¼ n : kn�1 � nj j\kn
� �

.

2.3 Random Relocation of the Segment Midpoint Method

The multi-fractional Brownian motion process can be generated with the use of random
relocation of the segment midpoint method (Mastalerz-Kodzis 2003; Mastalerz-Kodzis
2016; Mastalerz-Kodzis 2018).

Estimation of the Pointwise Hölder Exponent 177



Interval [0,1] is divided at half point and we assign to it the following value:

BH 1=2ð Þ 1=2ð Þ ¼ B 0ð ÞþB 1ð Þ
2

þG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 22�H 1=2ð Þ�2

p

21�H 1=2ð Þ ð6Þ

where B(0) = 0, B(1) is equal to Gaussian pseudorandom number with an mean of 0
and variation of 1. H(1/2) is a set value, whereas G in the successive stages is a series of
pseudorandom numbers which form an implementation of a variable of a normal
distribution N(0,1).

Also at this stage, generally, the value of the process is set by the formula

BHðtÞðtÞ ¼ Bðt � dÞþBðtþ dÞ
2

þG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 22HðtÞ�2

p

2i�HðtÞ ð7Þ

where t – d and t + d are the former points of time segment interval [0,1] (see Fig. 1).

2.4 Estimation Procedure

For series with stationary increments, Hurst exponent, constant in time, is calculated
according to the rescaled range analysis (Peters 1994; Mastalerz-Kodzis 2003). With
the formula included in (Peltier and Lévy Véhel 1995; Mastalerz-Kodzis 2018) we can
also estimate pointwise Hölder exponents.
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Fig. 1. Multifrational Brownian motion process: Hölder function in form H(t) = 1 − sin2(4.5t)
and process simulation for the set function H(t).
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We will use the symbol Bi;n ¼ BH
i
nð Þ; 0� i� n

� �
- to indicate Brownian motion

process with Hurst exponent H. Let Sn be given by the formula Sn ¼ 1
n�1

Pn�1

i¼1

Biþ 1;n � Bi;n

�� �� and Hn ¼ � log
ffiffiffiffiffiffi
p=2

p
Sn

� 	
log n�1ð Þ . Then lim

n!1Hn ¼ H:

Let 1 < k < n be the length of the neighbourhood (range) used to estimate function
H(t). We are going to estimate a function for t from the range [k/n, 1 – (k/n)].

Then the estimator Ĥi= n�1ð Þ for Sk;n ið Þ ¼ m
n�1

Piþ k=2

j¼i�k=2
Bjþ 1;n � Bj;n

�� �� is as follows

Ĥi= n�1ð Þ ¼ �
log

ffiffiffiffiffiffiffiffi
p=2

p
Sk;n ið Þ

� �
log n� 1ð Þ : ð8Þ

The proper neighbourhood selection is not insignificant. A larger, than required,
neighbourhood used in estimation (k is too high) means an excessively smooth Hölder
function. For a lower k, on the other hand, the estimated function is very irregular. In
the case when n is not a product of the whole numbers k, m, we can estimate the last
(closer to present) n0 of the Hölder function value, for n0 with whole factors.

3 Empirical Study

The selection of a proper neighbourhood in the estimation procedure is extremely
important. The paper (Peltier and Lévy Véhel 1995) does not clearly specify which
criterion is to be followed in the selection of parameters k and m in the pointwise
Hölder exponents estimation procedure.

With the use of the least squares method we considered the following function:

X
H tð Þ � Ĥi= n�1ð Þ
� 	2 ! min ð9Þ

in order to define the estimate of Hölder function, the least different, in the mean square
sense, to the initial generating function. We considered different divisions of the initial
time series characterized by different surrounding lengths (different values of k and m).

For comparison, we also defined the sum:
P

H tð Þ � Ĥi= n�1ð Þ
�� ��.

We considered a computer generated time series using the random relocation of the
segment (513 elements long) midpoint method (formulas 6 and 7). It was transformed
into a series of 513 feet of return. (Mastalerz-Kodzis 2003). The series was shortened
by 1 element (the first, most distant from the present) in order to obtain a series of 512
feet of return. The number 512 can be divided by, inter alia: 128, 64, 32, 16, 8. We,
therefore, analyzed five different surrounding lengths in the estimation procedure (the
surroundings with the length of 4 and 2 were not taken into consideration as being too
short. The questions asked during the analyses were as follows: which length of the
surrounding provides a Hölder function closest to the initial one, does a universal
method of selecting the surrounding length in the estimation process exist.

Estimation of the Pointwise Hölder Exponent 179



Different analytical forms of the generating Hölder function were considered in the
empirical analyses (especially constant functions of values from the range (0, 1) – Hurst
exponent, continuous functions, (linear, trigonometric) and discontinuous. For a set
Hölder function a fractional (for a constant H), multi-fractional (for a continuous H(t)
function) as well as a generalized multi-fractional Brownian motion process (for a
discontinuous H(t)) was generated, and subsequently, for different surrounding lengths,
the pointwise Hölder exponents were estimated. The results of the estimation for the
two analyzed cases are presented below. The results of the analyses were presented in
Fig. 1.

The longer the range used in estimation (the bigger the k), the smoother the esti-
mate, the shorter the range (smaller k), the more ‘ragged’ the obtained function.” The
question is, which range should be accepted as optimal one? Whether in each one of the
cases, for any form of analytical function H(t) the same range length will, in the most
advantageous way, reflect the initial generating function. It turns out that the answer is
negative (Fig. 2).

As the selection criterion in choosing the proper neighbourhood we accepted the
minimum of the total of the squares of the estimated from the initial Hölder function
values pointwise Hölder exponents’ deviations (according to formula 9). Table 1
includes the results of the calculations. Considering the deviations’ total, or its absolute
value, obviously gave different results.

It turned out that, for a Hölder function H(t) = sin(3,1t) the best match is made by
the estimate where k = 32, whereby for a function of a trigonometric form H(t) =
cos2(9t) the estimation which best reflects the initial function is the one conducted for
k = 8. During the analyses we also noticed that:

• For a constant Hölder function (Hurst exponent) the estimate that best matches is for
the highest k (it smoothens random fluctuations);

• For Hölder function with a low number of extremes (as well as for a function with a
low number of largest and smallest values) most often, the best match was made by
the estimate for k = 32.

• The more differentiated the values of Hölder function, the more extreme values, the
lower k used for estimation brings the generating function closer (captures its
shape).

Further, for the function of the following form H(t) = 0,9cos2(5t) + 0,05 the multi-
fractional Brownian motion process was generated, the pointwise Hölder exponents
were estimated and local standard deviation was added to/subtracted from them (cal-
culated for the surrounding k = 32). The results have been presented in Fig. 3. It results
from the graph, that the higher the pointwise Hölder exponents, the lower the local
standard deviation, lower fractional dimension of the graph, lower variability.
According to the pointwise Hölder exponents interpretation, with probability H(t), the
series keeps its course, with probability H(t) after an increase in the value, another
increase will take place, with probability 1 − H(t) a negative increment of the value
will occur. For values close to 1, there is a slight risk of a change in the course, whereas
for values close to 0 the change is very probable. (H(t) − s(t) and H(t) + s(t) deflect
considerably from the estimated H(t)).
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Fig. 2. Multifractional Brownian Motion Process
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To conclude, the estimated pointwise Hölder exponents depend on the selection of
the surrounding, which is taken into consideration in the estimation procedure. One of
the methods of selecting an optimal surrounding is the least squares method. There is
no universal or optimal neighbourhood for each form of analytical Hölder function, we
must, each time, resolve an optimization problem as in (9).

Table 1. The values of the analyzed sums for the estimated Hölder functions for different values
of parameter k

Function H(t) = sin(3,1t) K = 128 K = 64 K = 32 K = 16 K = 8P
H tð Þ � Ĥi= n�1ð Þ
� 	2 6,41 3,41 2,99 3,05 3,19

P
H tð Þ � Ĥi= n�1ð Þ
�� �� 48,17 32,83 27,68 27,83 29,71

Function H(t) = cos2(9t) K = 128 K = 64 K = 32 K = 16 K = 8P
H tð Þ � Ĥi= n�1ð Þ
� 	2 54,12 16,64 6,01 3,98 3,61

P
H tð Þ � Ĥi= n�1ð Þ
�� �� 118,31 71,72 42,30 32,97 31,52

0

0,2

0,4

0,6

0,8

1

0,00 0,20 0,39 0,59 0,78 0,98

H(t)

t

Holder function

-3

-2

-1

0

1

2

3

0,00 0,20 0,39 0,59 0,78 0,98

BH(t)

t

Multifractional Brownian Motion

-0,4
-0,2

0
0,2
0,4
0,6
0,8
1

1,2

0,00 0,20 0,39 0,59 0,78 0,98

tH^(t) H^(t)+s(x) H^(t)-s(x)

Fig. 3. Estimation of Hölder pointwise exponents with the consideration of local standard
deviation for function H(t) = 0,9cos2(5t) + 0,05 and for k = 32.
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The next step will be to use not only the simplest of methods, the least squares
method, but also other optimization methods. It would also be important to develop a
method for estimating the k parameter in empirical research, not only in computer
simulations, when the analytic form of the Hölder function is unknown.

An interesting issue is also the study of cyclostationarity using the pointwise
Hölder exponents. If the stochastic process has stationary increments, the value of the
pointwise Hölder exponents is constant in time. The non-stationary increments of
processes imply visible differences in the point values of the exponents.

4 Conclusion

The application of stochastic processes in empirical analyses has already been widely
described in literature. Taking advantage of processes with a so called long memory in
technical, medical and socio-economic sciences also is a frequent action. However,
there still exist problems that should be continuously attended to, and the reason for
that is their resolutions contribute to a more precise and valuable description of the
surrounding us reality. And the estimation of pointwise Hölder exponents, according to
the author, is one of them.

The article brings up the problem of the estimation of Hölder function, for it is often
applied in numerous studies, both of time series, as well as spatial processes with the
consideration of the memory effect. Based on the example of computer generated
processes (computer simulations), considerations concerning the selection of neigh-
bourhood in the pointwise Hölder exponents estimation processes were carried out. It
turned out, that the selection of neighbourhood depends on the analytical form of the
generating function, whereas one of the possible selection methods is the least squares
method.
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Application of the CIR Model for Spot Short
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Abstract. The paper examines the estimation of the instantaneous Polish short
term interest rate using one of the most popular stochastic differential models for
studying the short interest rates, i.e. the Cox, Ingersoll, Ross model (1985)
(henceforth CIR). We propose a new approach to estimating an instantaneous
short interest rate: our attention is shifted from the whole term structure of the
interest rate to the artificial notation of the short rate. In particular, the method
focusing on determining a relationship between an observed instantaneous short
interest rate and a certain (abstract) unobserved instantaneous rate which is
defined as an interest rate demanded over an infinitesimally short period under
the risk-neutral measure. To estimate the CIR model, we use a state space model
in which estimates of the latent variables and model parameters are obtained by
applying an Expectation-Maximisation algorithm combined with particle filters
(PF). In practice, the instantaneous rate is identified with an overnight rate,
therefore during the research we have adopted daily domestic interbank lending
rates which are represented by interest rates on overnight deposits (WIBOR
ON). To facilitate the discussion, simulated data are also employed. The
obtained results prove the correctness and attractiveness of the method under
consideration.

Keywords: Short (term) interest rates � Cox � Ingersoll and Ross model �
Particle filter � Maximum likelihood estimation

1 Introduction

1.1 Background and Econometric Challenge

Interest rates are one of the most important categories of the national economy, (Dębski
2010). In the last three decades there has been a tremendous profusion of theories and
modelling techniques of interest rate applicable to default-free bonds (commonly ref-
ered to risk-free bonds or Treasury bonds) and other interest rate derivatives. An
important and useful concept in the modelling of interest rates is an instantaneous (also
known as short) interest rate. This idea consists in an inherently discrete-time interest
rate demanded over an extremely short period of time. In practice, the instantaneous
interest rate does not exist, but this permits us to take an inherently discrete-time
interest rate and gives it time-continuity and (additionally) to use the calculus of
continuous-parameter stochastic processes in modelling them.
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Beyond doubt the best-known examples of short rates model are the Vasicek and
the Cox, Ingersoll and Ross one-factor model. The CIR model is a Markov, equilibrium
term structure model with the state variable (as a latent factor) following a square root
process, which captures the main important features of real interest rates. Due to its
features and capacity, it is one of the most frequently employed interest rate models in
literature. The likelihood function for the CIR model is hard to compute: there is no
closed-form expression for it, the model does not satisfy all the normality assumptions
required for statistical consistency in the ML estimation. There are extensive studies
available concerning estimation and implementation of this model, of which several
worth mentioning are: Aït-Sahalia (1996), Chatterjee (2005), Kladìvko (2007),
De Rossi (2010), Vo (2014).

The practical purpose of this paper is to explore an application of the one-factor
CIR model to Polish short interest rate dynamics using an efficient numerical
approximation. We propose a new perspective on estimating an instantaneous short
interest rate. In our approach, attention is shifted from the whole term structure of
interest rate to the artificial notation of the short rate. Rather than using yields-to-
maturity computed from the CIR model, we derive a relation between an observed
WIBOR ON rate (as a surrogate of a rate bond with an established maturity) and an
unobserved short rate.

Therefore, using the yields on WIBOR rate as an input for the estimation process,
we propose to estimate the CIR model by an EM algorithm combined with the particle
filter.

1.2 Outline of the Paper

The remaining part of the paper is organized as follows: Sect. 2 introduces the defi-
nitions and notations used throughout the paper as well as the basic theory of the short-
time interest rate. Next, we consider the one-factor interest rate model – CIR. Section 4
provides a brief discussion on the particle filter algorithm coupled with the maximum
likelihood estimation method, in particular the Expectation-Maximisation algorithm, to
create an iterative process for parameter estimation. Section 5 provides an empirical
illustration of the proposed method to estimate the CIR model for a short-term interest
rate quoted on the Polish market. The last one is the concluding section.

2 Interest Rates - Definition and Notation

In analysing the level and dynamics of the interest rate, a zero-coupon bond with
maturity at time T (also called the T-zero-coupon bond or T-bond for short) is the
fundamental notion that allows linking or setting the majority of interest rates.

Let P t; Tð Þ denote a T-maturity zero-coupon bond price at time t\T . A zero-
coupon bond is a financial instrument defined as follows (Brigo and Mercurion 2001):

Definition. A zero-coupon bond is a contract that guarantees its holder the payment of
one unit of currency at a maturity time T ; with no intermediate payments. Clearly
P T ; Tð Þ ¼ 1, for all T.
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Definition. A continuously-compounded zero-coupon (spot) interest rate at time t for
maturity T , denoted as R t; Tð Þ is the constant rate defined by the formula

P t; Tð Þ exp d T � tð ÞR t; Tð Þð Þ ¼ 1; ð1Þ

from which continuously compounded rate R can be expressed as

R t;Tð Þ ¼ � lnP t;Tð Þ
d T � tð Þ ð2Þ

Accordingly, the function R : T ! R t; Tð Þ is referred to as the (zero-coupon) yield
curve. Term structure of interest rate is a functional dependence between the yield and
the time to maturity d T � tð Þ ¼ T � t of a bond, where d T � tð Þ is the time difference
expressed in years (Brigo and Mercurio 2001). We accept a convention in which
months and years are 30 days and 360 days long respectively.

Another important issue in terms of interest rates is instantaneous (short) interest
rate r tð Þ ¼ rt.

Definition. Instantaneous interest rate rt is the rate of growth of the value of a deposit
started today and lasting for any infinitesimal time interval t; tþD½ � (Weron and Weron
1999). When the maturity of the interest rate collapses towards its expiry, this leads to
the following instantaneous interes rate

rt ¼ limT!tþ R t; Tð Þ ¼ � @

@T
lnP t; Tð Þ

����
T¼t

ð3Þ

This instantaneous interest rate is usually referred to as an instantaneous spot rate, or
briefly, a short rate. The short rate is a mathematical abstract interest rate used for
modelling interest rates. In practice, as a surrogate of the instantaneous rate, due to its
duration, WIBOR rates are used.

It is worthwhile to explore the essence of creating a model for pricing interest rate
derivatives. Quoting from Fabozzi (2002) “when we create a model for pricing interest
derivatives, the “underlying” is not the price of a traded security, as it would be in a
model for equity options. Instead, we specify a random process for the instantaneous,
risk-free spot interest rate, the rate payable on an investment in default-free government
bonds for a very short period of time. For convenience, we call this interest rate “the
short rate”.

The idea of a risk-free interest rate is consistent with the expectations theory of the
term structure of interest rates. The theory deals with uncertain future and stresses the
role of expectations of future short-term interest rates in the determination of the prices
and yields on bonds. Actually, there is a variety of statements of this theory in the
literature that differ in terms of the nature of the bond which is priced and the factors
that enter into pricing. Broadly speaking, the expectations theory states that investing in
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bonds as well as saving on a bank account gives the same (expected) profit. According
to the expectations theory (Fobozzi 2002, Weron and Weron 1999):

P t; Tð Þ ¼ E exp �
Z T

t
r�t dt

� �����F t

� �
; ð4Þ

where r�t is the risk adjusted short rate defined as a random process for the short rate
plus a function of the premium term. This is accomplished by redefining the model so
that the spot rate is equal to expected return from investing over the same short period
of time.

The market LIBOR rates L (and its Polish interbank term structure counterpart
WIBOR rates)

L t; Tð Þ ¼ 1� P t; Tð Þ
r t; Tð ÞP t; Tð Þ ð5Þ

are simply-compounded rates linked to the zero-coupon bond. It follows that zero-
coupon bond prices can be expressed in terms of L as:

P t; Tð Þ ¼ 1
1þ d t; Tð ÞL t; Tð Þ : ð6Þ

Finally, we can remark that the short-term interest rate can be defined as a limit of rates
defined below:

rt ¼ limT!tþ R t; Tð Þ ¼ limT!tþ L t; Tð Þ: ð7Þ

3 The Cox Ingersoll and Ross Model in State Space Form

3.1 CIR Model

The Cox, Ingersoll and Ross model (1985) is one of the better known term structure
models. The model generalizes the Vasicek model so that volatility is non constant and
the dynamic of the underlying short-term interest rate is a diffusion process. The model
links bond yields to one or more latent factors. In particular in the single factor case, the
latent variable has an interpretation of the instantaneous spot rate rt.

The one-factor time-homogeneous, equilibrium CIR model for the risk-free rate of
interest is defined as the following stochastic differential equation (Cox et al. 1985)

drt ¼ j l� rtð Þdtþ r
ffiffiffiffi
rt

p
dWt ð8Þ

with initial condition r 0ð Þ ¼ r0, Wt is a standard Brownian motion under the risk-
neutral measure defined on a complete probability space X;F ; Pð Þ. The interest rate
process rtð Þt� 0 is usually known as the CIR process or square root process. If all
parameters j; l; r (from now on denoted as a vector h ¼ ðj; l; r)) are positive, and
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r2\2jl holds, the CIR process is well defined and has a steady state (marginal)
distribution. Gibson et al. (2001) showed that the distribution is a noncentral chi-square
distribution of 2qþ 2ð Þ degrees of freedom and the unconditioned parameter 2u and is
given by

prðrt rt�1; hÞ ¼ noncentral v2 2qþ 2ð Þ; 2uð Þ�� ¼ ce�u�v v
u

� 	0;5q
Iq 2

ffiffiffiffiffi
uv

p
 � ð9Þ

where c ¼ 2j
r2 1� e�jDð Þ ; u ¼ crt�1e

�jD; v ¼ crt; q ¼ 2jl
r2

� 1;

and

Iq xð Þ ¼
X1

n¼0

0; 5xð Þ2kþ q

n!C qþ nþ 1ð Þ ð10Þ

Iq �ð Þ – is the modified Bessel function of the first kind of order q:1 They also showed
that the density of r0 can be written as

p r0ð Þ ¼ Gamma c 1� e�kD

 �

; qþ 1

 � ¼ c 1� e�jD


 �� 
C qþ 1ð Þ

qþ 1

rq0e
�r0c 1�e�jDð Þ ð11Þ

The CIR process is ergodic and captures three important empirical features of short
rate: mean reversion (interest rate tends to fluctuate over long-run trend l where j is the
reverting speed), conditional heteroscedasticity (this property allows to capture the
relationship between volatility (risk) and the level of interest rates) and non-negativity.

3.2 CIR Affine Models in State Space Form

At this point it is worth recalling that the CIR process belongs to the class of processes
satisfying the “affine property”. Affine term structure models (ATSMs) have become
the standard in the literature on the valuation of fixed income securities, such as bonds,
interest rate swaps and interest rate derivatives. Affine term structure models are
constructed by assuming that the non-arbitrage price P rt; t; Tð Þ at time t of a discount
zero coupon bonds with maturity T [ 0 and underlying interest rate dynamics
described by CIR process, is given by (Cox et al. 1985; Christoffersen et al. 2014)

P rt; t; Tð Þ ¼ P rt; dtð Þ ¼ E exp �
Z T

t
rsds

� �
F tj

� �
¼ A dtð Þe�B dtð Þrt ; ð12Þ

where dt ¼ T � t;A �ð Þ;B �ð Þ are known deterministic functions of dt, and parameters
j; l; r:

1 It is worth noting that Bessel function approaches the plus infinity rapidly, which hinders the
optimization routines. However the issue will not be addressed in this paper.
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A dtð Þ ¼ 2jl
dtr2

ln
2s exp 0; 5 jþ sð Þdtð Þ

jþ sð Þðexp sdtÞ � 1ð Þþ 2s

� �
;B dtð Þ ¼ 1

dt

2ðexp sdtÞ � 1ð Þ
jþ sð Þ exp sdtÞ � 1ð Þþ 2s

;

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 2r2

p
In practice, a short rate is seen as a hidden state and bond prices, or yields (e.g. the yield
of one-month Treasury bills or money market rates) are used as observations. The yield
to maturity at time t of a pure discount bond which expires at time T is defined as:

Y t; Tð Þ ¼ lnP t; Tð Þ
dt

ð13Þ

One solution is to allow for discrepancies between the observed rates and the theo-
retical rates. These deviations can be explained by actual market features such as the
rounding of prices, differences in the timing of observing financial variables and non-
synchronous trading. In a modelling context, this can be done by assuming that the
observed rates are affected by temporary shocks, which are Gaussian white noise
errors. Therefore Eq. (13) which is treated as an exact relationship between factors and
yields would now read as a linear function of the state variables rt

yt dtð Þ ¼ �A dtð ÞþB dtð Þrt þ gt: ð14Þ

It is necessary to note that an estimation of the term structure based on data from the
Polish market Treasury bonds is not possible because there is a lack of liquidity of
bonds and there are still not enough bonds with sufficient short term to maturity.
Therefore we decided to use the interbank rates, i.e. WIBOR rates.

4 Parameter and State Space Estimation

4.1 General State Space Model

Our approach is based on the assumptions that the data (short rates) are not directly
available, the observations are contaminated by measurement errors and the transition
density does not admit an explicit form. These facts prevent the maximum likelihood
estimation and imply that the problem under discussion can be perceived in a category
of incomplete observations of the model with a tractable likelihood function.

To facilitate probabilistic reasoning over time, we will be adopting state space
representations under a Bayesian framework. There are two main benefits of repre-
senting a dynamic system in a state space form. It allows unobserved variables to be
incorporated into an observable model. Using a recursive filtering algorithm we can
analyse the model and compute sample forecasts for a future value of state variable.
Therefore, before starting our discussion of the particle filter we will define a general
state-space model.

State space model consists of two equations: the state (transition) equation and the
observation equation. Let fXtgt� 0; fYtgt� 0 be stochastic processes defined on
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a (measurable) space X;Fð Þ. The discrete-time process fXtgt� 0 is an unobserved
(latent) or hidden Markov process of initial density l x hjð Þ, and Markov transition
density f x0 xj ; hð Þ. The process fXtgt� 0 is partially observed through the observation
process fYtgt� 0. The observations fYtgt� 0 are assumed to be conditionally indepen-
dent given fXtgt� 0 and characterized by the conditional marginal density g y xj ; hð Þ: To
summarize, we have

X0 � l x hjð Þ ð15Þ

Xt X1:t�1 ¼ x1:t�1j ; Y1:t�1 ¼ y1:t�1 � f ðxt xt�1; hÞj ð16Þ

Yt ðX1:t ¼ x1:tj ; Y1:t�1 ¼ y1:t�1Þ� gðy xt�1; hÞj ð17Þ

The system (15–17) defines a Bayesian model (also known as hidden Markov
models, HHM), in which inference about X1:n given the realization Y1:n ¼ y1:n relies
upon the posterior distribution (known as the posterior or target distribution in
literature)

pðx0:n y1:n; hÞ ¼j pðx0:n; y1:n hÞj
pðy1:n hÞj ¼ pðx0:n�1 y1:n�1; hÞj gðyn xn; hÞf ðxn xn�1; hÞjj

pðyn y1:n; hÞj : ð18Þ

This class includes many non-linear and non-Gaussian time series models.
It is worth noting that in the literature the filtering problem is defined as the

recursion satisfied by the marginal distribution pðxt y1:t; hÞj

pðxt y1:t; hÞj ¼ gðyt xt; hÞf ðxt y1:t�1; hÞjj
pðyt y1:t�1; hÞj ; ð19Þ

where

pðxtjy1:t�1; hÞ ¼ Z
pðxt�1jy1:t�1; hÞpðxtjxt�1; hÞdxt�1; ð20Þ

pðytjy1:t�1; hÞ ¼ Z
pðxt�1jy1:t�1; hÞpðytjxt; hÞpðxtjxt�1; hÞdxt�1:t; ð21Þ

From the Bayesian perspective the posterior probability density function
(PDF) contains all the state information both from the system model and from the
observations. It means that knowing posterior PDF gives an opportunity to derive many
well-known estimators, such as minimum-mean-square-error estimators, maximum
likelihood estimators and maximum posterior estimators.

In linear Gaussian models, the problem of estimation is solved using the Kalman
filter. Unfortunately, when the model is nonlinear and/or non-Gaussian, the Kalman
filter, as well as its modifications (e.g. the Extended Kalman Filter, Unscented Kalman
Filter) can only be used for initial approximation.
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4.2 The Idea of Particle Filter

Particle filters have become a popular class of numerical methods for inference in non-
linear non-Gaussian scenarios. In particular particle filtering can be reinterpreted as
some special instances of Sequential Monte Carlo (SMC) method.

The method has been an active area of research since the original work of Gordon
et al. (1993). There is a large body of literature on the theory as well as a number of
successful very extensive and varied applications described in literature. However,
there has been no comprehensive review so far. Taking into account the direction and
topic of the book, it is worth paying attention to the implementation of PF algorithms in
the following areas, such as signal processing: positioning, navigation, target tracking
(see, for instance Gustafsson et al. 2002, Nordlund and Gustafsson 2008); in the field of
robotics and automatics (especially particle filter algorithm known as FastSLAM, Chen
2012), statistics (Doucet 2008) and communication (Djurić et al. 2003, Ghirmai 2016).
The interested reader can also find comprehensive and in-depth expositions of the
different algorithms and extensive lists of references on the subject in Doucet et al.
2001, Cappé et al. 2007 and Kantas et al. 2014.

The basic idea of the PF consists in estimating target probability distributions by
empirical distributions focused on a set of samples (called particles) determined by the
sequential importance sampling (SIS) extended by the technique of resampling (re-
weight the particles using importance weights so that the correct distribution is tar-
geted). The specificity of PF approximation relies on sampling from a known impor-
tance density qhðxt xt�1; y1:t; hÞj (also known as proposal density) instead of sampling
from the transition density f ðxt xt�1; hÞj which may frequently be daunting. A more
detailed discussion of the choice of importance density can be found in (Doucet et al.
2001; Cappe 2007; Brzozowska-Rup and Dawidowicz 2009).

In a standard PF (also known as the sequential importance resampling algorithm),
the posterior PDF pðxt y1:t; hÞj is approximated by a set of N particles as

p̂N xt y1:tjð Þ ¼
XN

i¼1
w ið Þ
t dðxt � x ið Þ

t Þ ð22Þ

Where d denotes the Dirac delta function, x ið Þ
t denotes the i-th particle with

importance weight w ið Þ
t ¼ W x ið Þ

t

� 	
=
PN

j¼1 W x jð Þ
t

� 	
,
PN

i¼1 w
ið Þ
t ¼ 1;w ið Þ

t � 0 for i ¼
1; . . .;N. We define the importance weights

w ið Þ
t ¼ pðx ið Þ

1:t y1:t; hÞj
q x ið Þ

1:t

� 	 ¼ w ið Þ
t�1 x ið Þ

1:t�1

� 	 g yt x
ið Þ
t ; h
���� 	

f x ið Þ
t x ið Þ

t�1; h
���� 	

q x ið Þ
t x ið Þ

t�1; yt
���� 	 ð23Þ

Given current particles set fx ið Þ
t ;w ið Þ

t gNi¼1 from p̂N xt y1:tjð Þ the particles are generated
from the algorithm consists of two steps:

1. For i ¼ 1; . . .;N simulate x ið Þ
tþ 1 � qt xtþ 1 xtj ; ytþ 1ð Þ,
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2. For i ¼ 1; . . .;N using (16) compute weights w ið Þ
tþ 1 compute Effective Sample Size

NESS; NESS ¼
PN

i¼1 w ið Þ
t

� 	2� ��1

If bNESS\NT , then RESAMPLE :

Drawz ið Þ�Mult N;w 1ð Þ
t ; . . .;w Nð Þ

t

� 	
update x ið Þ

0:tþ 1;w
ið Þ
tþ 1

n oN

i¼1
¼ x z ið Þð Þ

0:tþ 1;
1
N

� �N

i¼1

Else keep x ið Þ
0:tþ 1;w

ið Þ
tþ 1

n oN

i¼1

x ið Þ
0:tþ 1;w

ið Þ
tþ 1

n oN

i¼1
approximates the filtering density at time tþ 1.

Specialist literature features different implementation schemes of resampling, for
example: systematic, residual, residual-systematic resampling. Review and comparison
of these techniques can be found in Hol et al. (2006). During the last twenty years, in
parallel with algorithmic developments, the theoretical properties of the method have
been studied extensively, and there is currently a number of available results describing
the convergence and difficulties of PF estimation, e.g. the monographs (Del Moral
2004; 2013; Chopin 2004; Douc and Moulines 2008).

4.3 Forward Filtering-Backward Smoothing

It is known that sampling from a joint distribution pðx1:T y1:TÞj for approximation
marginals pðxt y1:T ; hÞjf gTt¼1, can be inefficient when T is large and t � T (this is the
result of the successive resampling step which causes particle degeneracy). In order to
overcome these difficulties, particle smoothing algorithm is recommended (Doucet and
Johansen 2008).

In this article we will use the concept of the forward-backward smoothing formula,
in which particle smoothing is performed recursively backward in time according to the
formula:

pðxt y1:T ; hÞj ¼ Z
pðxt; xtþ 1 y1:T ; hÞdxtþ 1j

¼ pðxt y1:t; hÞj Z f ðxt xtþ 1; hÞj
pðxtþ 1 y1:t; hÞj pðxtþ 1 y1:T ; hÞdxtþ 1j ð24Þ

The preceding expression reveals that the marginal smoothing posterior density can
be approximated by the following expression:

p̂ðxt y1:T ; hÞj ¼
XN

i¼1
w ið Þ
t Tj d xt � x ið Þ

t

� 	
ð25Þ
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where smoothing weights are defined by

w ið Þ
t Tj ¼ w ið Þ

t

XN

j¼1
w jð Þ
tþ 1 Tj

f x jð Þ
tþ 1 x ið Þ

t

��� ; h
� 	

PN
k¼1 w

kð Þ
t p x jð Þ

tþ 1 Tj x kð Þ
t

��� ; h
� 	 ; ð26Þ

For a detailed treatment on the FFBS algorithm we suggest readers refer (Briers
et al. 2010 and Zhou 2013)

4.4 CIR as a State Space Model Representation

Estimation of the unobservable factors rt within an exact state space model is not
simple because of the highly non-normal transition density p rt rt�1; hjð Þ. Therefore it is
necessary to determine its approximation form.

In our approach we use the fact that yields data are only seen at an equally spaced
discrete time, rather than diffusion form (8) so it would be more convenient to consider
observations for state variables at discrete time intervals with the size D. Therefore
using Euler discretization2 for CIR model, the transition dynamic can be written as
follows:

f rt rt�1; hjð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDr2 rt�1j j

p exp �ðrt � rt�1 � j l� rt�1ð ÞDÞ2
2r2D rt�1j j

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDr2 rt�1j j

p exp �ðrt � jlDþ jD� 1ð Þrt�1Þ2
2r2D rt�1j j

 !
;

ð27Þ

We assume that the measurement error 2t is IID Gaussian, and there is no serial
correlation then the observations conditional density, given by the pricing function (14)
can be derived as:

g yt dið Þ rt; hjð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2y

q exp �ðyt dið ÞþA dið Þ � B dið ÞrtÞ2
2r2g

 !
ð28Þ

From now on Eqs. (27), (28) constitute the state space model under consideration.
We can use the particle filter algorithm to obtain information about rt conditional on the
observation of simply-compounded WIBOR rates yt.

2 We use the Euler discretization with correction, known as “the full truncation scheme” studied in
(Higham et al. 2002).
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4.5 Expectation-Maximisation Algorithm

The Expectation-Maximisation (EM) algorithm (Dempster et al. 1977) is useful in si-
tuations where the observations can be viewed as incomplete data and/or the direct
maximisation of the likelihood is more complex than the maximisation of the complete
likelihood:

‘c h x0:T ; y1:Tj Þ ¼ logpðx0:T ; y1:T hjð Þ; ð29Þ

The method consists of two steps recursively executed so long, until the criterion of
convergence is reached (Cappé 2011, Olsson 2008). The states of model are not
observed so the first (E-step) approximates the joint log-likelihood function by taking
the expected value over the unobserved states based upon some current estimation of
the parameters hk

Qðh; hkÞ ¼ E½log pðx0:T ; y1:T jhÞjy1:T ; hk�
¼
Z

log pðx0:T ; y1:T jhÞpðx0:T jy1:T ; hkÞdx0:T
ð30Þ

The (M-step) then maximises the above expectation with respect to the parameter h

hkþ 1 := argmaxh Q h; hkð Þ ð31Þ

In the offline version of EM, based on the Bayesian rule, and assuming that the
importance weights are known, the desired approximation of the function Q takes the
form of:

bQ h; hkð Þ ¼
XN
i¼1

logp x ið Þ
0 Tj y1:T ; hj

� 	
w ið Þ
0 Tj þ

XT
t¼1

XN
i¼1

logp x ið Þ
t Tj x ið Þ

t�1 Tj ; h
���� 	

w ið Þ
t Tj

þ
XT

t¼1

XN

i¼1
logp yt x

ið Þ
t Tj ; h
���� 	

w ið Þ
t Tj ;

ð32Þ

where the weights w ið Þ
t ;w ið Þ

t Tj are determined respectively during the filtration and

smoothing procedures of formulas (23) and (26) (Cappé 2011, Olsson et al. 2008,
Schön et al. 2011).

4.6 Particle Filtering Backward Smoothing PFBS-EM Algorithm

The discussed EM and particle smoothing estimation method can be summarised in the
following algorithm.
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It is worth noting that in practice it is proposed to perform only step E for the first
10–20 observations. A close analysis of the approximation of EM algorithm using the
FFBS technique was presented in (Olsson et al. 2008; Douc et al. 2011; Zhou 2013)

5 Empirical Analysis and Application

5.1 Estimation of the CIR

In this section, through simulation and real data application, we present performance of
the method that has been discussed so far.

We proposed to consider the conditional optimal proposal distribution, which for
a fixed di can be approximated (up to constant) by

196 K. Brzozowska-Rup



qðrt rt�1; yt; hÞ /j f ðxt xt�1; hÞgðyt xt; hÞjj

/ 1

rrg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D rt�1j jp exp � rt � jlD� jD� 1ð Þrt�1ð Þð Þ2

2r2D rt�1j j

 !

	 exp �ðB dið Þrt � ðyt dið ÞþA dið ÞÞÞ2
2r2g

 !
/ N rt;Rm;Rð Þ

ð33Þ

m ¼ B dið Þ yt dið ÞþA dið Þð Þ
r2g

þ jlD� jD� 1ð Þrt�1

r2D rt�1j j ð34Þ

R�1 ¼ B2 dið Þ
r2g

þ 1
r2D rt�1j j ð35Þ

and incremental importance weight then becomes

wt ¼ f rt rt�1j ; hð Þgðyt rtÞj
q rt rt�1j ; yt; hð Þ ð36Þ

The joint likelihood function with the accuracy to multiplicative constant has the
following formula

‘c hð Þ ¼ � 2j0l0
r20

� �
log

c0 1� e�j0D

 �� 
C 2j0l0

r20

� 	
0@ 1Aþ 2j0l0

r20
logðr0Þ � r0c0 1� e�j0D


 �8<:
þ 1

2

XT
t¼1

log 2pDr2 rt�1j j
 �þ ðrt � jlDþðjD� 1Þrt�1Þ2
r2 rt�1j jD þ yt dtð ÞþA� Brt

rg

� �2
 

þ Tlog 2pry

 ���

ð37Þ

For further calculations we will use the modified form of the above function, where
the change consists in omitting the distribution of the initial state, the normalization
constant and the last component (they do not depend on the parameters sought).

�2Q h; hkð Þ ¼ E
XT

t¼1
log 2pDr2 rt�1j j
 �þ ðrt � jlDþ jD� 1ð Þrt�1Þ2

r2 rt�1j jD

 "

þ yt dtð ÞþA� Brt
ry

� �2
!
þ Tlog 2pr2g

� 	
y1:T ; hkj

# ð38Þ
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The estimates are given by the following formulas:

r̂2 ¼ 1
DT

E
S0ðS23 � S24Þþ S0S5 S4 � S5ð Þþ S1 S1S5 � 2S2S3ð Þþ S22S4

S0S4 � S21

�
y1:T ; hkj

�

r̂2g ¼
1
T
E S6 y1:T ; hkj½ �;

ĵ ¼ E � S0ðS3 � S5Þþ S1 S1 � S2ð Þ
S0S4 � S21

 �

D
y1:T ; hkj

" #
;

l̂ ¼ E
S1ðS3 þ S4Þ � S1S5 � S2S4
S0ðS3 � S5Þþ S1ðS1 � S2Þ y1:T; hkj
� �

:

Where S ¼ ðS0; S1; . . .; S6Þ admits the following sufficient statistics:

S0 ¼
XT

t¼1

1
rt�1j j; S1 ¼

XT

t¼1

rt�1

rt�1
; S2 ¼

XT

t¼1

rt
rt�1j j; S3 ¼

XT

t¼1

rtrt�1

rt�1j j ;

S3 ¼
XT

t¼1

rtrt�1

rt�1j j; S4 ¼
XT

t¼1

r2t�1

rt�1j j; S5 ¼
XT

t¼1

r2t
rt�1j j

S6 ¼
XT

t¼1
y dtð Þþ Â� B̂rt

 �2

;

5.2 Data Description

To illustrate the estimation method, we rely on both simulated and real data, in par-
ticular we apply the daily observations of WIBOR ON (from January 2015 to October
2017). The data are collected from the most popular finance and business website
https://www.money.pl. The total number of observations T = 719. In the estimation,
the number of particles N ¼ 500, the EM iteration number is 200, while the first 20
iterations are not taken into account.

To evaluate the estimation accuracy, we use the RMSE which is defined as the
differences between the estimated observation yHt and the real observation y0t as
follows:

RMSE ¼ 1
T

XT

t¼1
y0t � yHtð Þ2

� �1
2

; ð39Þ

where yHt dtð Þ ¼ �A dtð ÞþB dtð Þbrt; dt ¼ 1 and brt is the estimate of the state rt which
is the mean state of all the particles in time t.

To confirm the effectiveness of the presented method we simulate data from the
discretized form of CIR model with parameters: j ¼ 0; 6; l ¼ 0; 7; r ¼ 0; 05; A dtð Þ ¼
0; 1; B dtð Þ ¼ 1; rg ¼ 0; 05; D ¼ 1: As the initial parameters for EM method we use
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parameters j 0ð Þ ¼ 0; 06; l 0ð Þ ¼ 0; 1; r 0ð Þ ¼ 0; 5; A dtð Þ ¼ 0; 1; B dtð Þ ¼ 1; dt ¼ 1; r 0ð Þ
g

¼ 0; 5, the T = 500, N = 200 number of particles and 100 iterations of PFFBS-EM
algorithm. The results of particle filtering are given in Fig. 1. We can see that despite
the limited number of particles, the estimated trajectory ideally coincides with the
simulated data.

Figure 2 shows the convergence through iteration of estimates for each parameter.
The 100th estimates and their standard deviation are bj ¼ 1; 657; bl ¼ 0; 685;br ¼ 0; 085; brg ¼ 0; 051.

The estimators very quickly stabilize at the right level except for the parameter j.
This fact will be the goal of the future research.

5.3 Estimating CIR Model for Polish Short Interest Rate

We have carried out a number of simulations assuming various initial conditions,
however, due to the limitations of the article, we chose to present one particular case

Fig. 1. Time series of state variable generated from CIR model with initial parameter (green
solid line) and its filtered value obtained by PF (blue line).

Fig. 2. Convergence of the PFBS-EM estimates of the CIR model parameter for simulated data
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result, which we selected as optimal on the basis of RMSE criterion. The data presented
in the Table 1 are averaged results of the estimation from 20 iterations of the complete
PFBS-EM algorithm.

In Figs. 3 and 4 we compare the WIBOR ON rate and the CIR-estimated rate,
where Fig. 4 is an excerpt from the whole trajectory in order to illustrate the resem-
blance of both rates. This proves the efficiency of the applied method (Fig. 5).

Table 1. Estimation of CIR model from daily WIBOR ON rate, 2015-2017.

Parameters Initial value of parameters
for EM

Mean value of parameter
estimators

Standard
deviation

j 0,501 0,483 0,023
l 0,800 2,521 0,240
r 0,250 0,201 0,011
rg 0,250 0,141 0,021

Fig. 3. The daily WIBOR ON rate from January 2015 to October 2017 vs estimated rate
obtained by the presented method with initial parameters from the table

Fig. 4. The graph is a selected excerpt from Fig. 3
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All the numerical results obtained in this section have been produced in the author’s
original program using C Sharp.

6 Concluding Remarks

The models of term structure of interest rates are probably the most computationally
difficult part of the modern finance due to the relative complexity of application
techniques. The knowledge of the CIR model estimators, the current interest rate yt and
the short-term interest rate rt gives an opportunity to estimate the expected future value
of the short-term interest rate, which are very important for the whole economy of the
country. This study aims to test the feasibility of using WIBOR ON rates to model
short interest rates for the Polish market. To achieve this goal, we have used a state
space model to estimate the CIR of term structure of interest rates. The paper
demonstrates the attractiveness of PFBS-EM estimation in the state variable combined
with EM estimation of unknown parameter estimation for the analysed model. The
advantage of the presented method is that it is easy to implement and the fact that, in
contrast to the popular techniques of estimating CIR model, reduces the complexity of
calculation effort and simultaneously returns reliable estimators of unknown parame-
ters. However, it has been pointed out that this method tends to be sensitive to the
selection of the initial values. An indication of methods allowing to determine the
proper initial parameter values will be the direction of the author’s further research.

Acknowledgements. This work is supported by the National Centre of Science granted on the
basis of decision number DEC-2013/11/D/HS4/04014.

Fig. 5. Boxplots of estimates of the CIR parameters produced by PFBS-EM algorithm for Polish
short interest rate
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Higor Henrique Aranda Cotta1,3, Pascal Bondon3, Marton Ispany4,

and Paulo Roberto Prezotti Filho3,5

1 DEST and PPGEA-Universidade Federal do Espirito Santo-UFES, Vitória, Brazil
valderioanselmoreisen@gmail.com, valderio.reisen@ufes.br

2 UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
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Abstract. The periodogram function is widely used to estimate the
spectral density of time series processes and it is well-known that this
function is also very sensitive to outliers. In this context, this paper
deals with robust estimation functions to estimate the spectral den-
sity of univariate and periodic time series with short and long-memory
properties. The two robust periodogram functions discussed and com-
pared here were previously explicitly and analytically derived in Fajardo
et al. (2018), Reisen et al. (2017) and Fajardo et al. (2009) in the
case of long-memory processes. The first two references introduce the
robust periodogram based on M -regression estimator. The third refer-
ence is based on the robust autocovariance function introduced in Ma and
Genton (2000) and studied theoretically and empirically in Lévy-Leduc
et al. (2011). Here, the theoretical results of these estimators are dis-
cussed in the case of short and long-memory univariate time series and
periodic processes. A special attention is given to the M -periodogram for
short-memory processes. In this case, Theorem 1 and Corollary 1 derive
the asymptotic distribution of this spectral estimator. As the applica-
tion of the methodologies, robust estimators for the parameters of AR,
ARFIMA and PARMA processes are discussed. Their finite sample size
properties are addressed and compared in the context of absence and
presence of atypical observations. Therefore, the contributions of this
paper come to fill some gaps in the literature of modeling univariate and
periodic time series to handle additive outliers.

Keywords: Time series · M -estimation · QN -estimation ·
Long-memory · Periodic processes · Robustness

1 Introduction

It is well known that outlying observations may completely destroy most of the
standard estimators and several authors developed robust approaches in order to
c© Springer Nature Switzerland AG 2020
F. Chaari et al. (Eds.): CSTA 2017, ACM 16, pp. 204–224, 2020.
https://doi.org/10.1007/978-3-030-22529-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22529-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-22529-2_12


An Overview of Robust Spectral Estimators 205

mitigate the impact of additive outliers, specially in time series models which is
the process considered in this paper. However, most of the work is devoted to the
robust estimation of the location, scale and other statistical tools. In this direc-
tion, the classical periodogram is the natural estimator of the spectral density of
a time series and recent studies indicate that the periodogram is highly sensitive
to the presence of outliers, and, thus, it becomes useless in any sub-sequential
analysis. As a viable approach to attenuate this issue, the M -regression method
applied to build alternative spectral estimators given in Fajardo et al. (2018)
and Reisen et al. (2017) and the QN -periodogram introduced in Fajardo et al.
(2009) are some methodologies proposed recently in the literature of time series
to handle additive outliers.

The M -periodogram is discussed in Fajardo et al. (2018) and Reisen et al.
(2017) for the long-memory time series. The short-range process was still an
open problem and is one main contribution of this paper. The asymptotic prop-
erty of the M -periodogram is derived for the process which is identified to have
short-memory property such as an ARMA model (Theorem 1). As a second con-
tribution of this paper, the recent results given Fajardo et al. (2018) and Reisen
et al. (2017), for long-memory model, are summarized and these methods are
compared empirically with QN -periodogram and the classical periodogram which
is widely used in modelling time series data. Here, these methods are empirically
studied and compared in time series with and without additive outliers with the
aim to verify their finite sample size robustness properties, that is, to verify their
capacity to accommodate the additive outlier’s effect.

The use of M - and QN -periodograms in periodic ARMA (PARMA) models
is also discussed here in the context of handling atypical or aberrant observations
(additive outliers). This becomes the third contribution of this paper.

This paper is organized as follows: Sect. 2 discusses robust periodograms
based on M -regression method and QN function for short and long-memory
time series. Section 3 presents some simulation results for the methods discussed
in Sect. 2. Section 4 gives some applications of the alternative periodograms in
short and long-memory and periodic processes.

2 Robust Periodograms

Let {Yt}t∈Z be a second order stationary process. Since this paper deals with
short and long-memory processes, additional assumptions on the process {Yt}t∈Z

will be given in the sequel of the paper. For a sample {Y1, Y2, ..., YN}, the classical
periodogram function, at the Fourier frequency λj = 2πj/N, j = 1, . . . , [N/2], is
defined as

IN (λj) =
1

2πN

∣
∣
∣
∣
∣

N∑

k=1

Yk exp(ikλj)

∣
∣
∣
∣
∣

2

. (1)

Next subsections deal with alternative periodogram functions which present sim-
ilar performance (from theoretical and empirical meaning) to IN (λ), λ ∈ (−π, π),
but with robustness property against additive outliers and asymmetric and
heavy-tail distributions.
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2.1 M-periodogram

One alternative way to derive the periodogram function IN (λj) is based on the
Least Square (LS) estimates of a two-dimensional vector β′ = (β(1), β(2)) in the
linear regression model

Yi = c′
Niβ + εi = β(1) cos(iλj) + β(2) sin(iλj) + εi , 1 ≤ i ≤ N, β ∈ R

2 , (2)

where εi denotes the deviation of Yi from c′
Niβ and E(εi) = 0 and E(ε2i ) < ∞.

In the sequel (εi) is assumed to be a function of a stationary Gaussian process,
see (10) for a precise definition. Then,

β̂
LS

N (λj) = Arg min
β∈R2

N∑

i=1

(Yi − c′
Ni(λj)β)2 , (3)

where
c′
Ni(λj) = (cos(iλj) sin(iλj)) . (4)

The solution of (3) is

β̂
LS

N (λj) = (C ′C)−1C ′Y , (5)

where Y = (Y1, . . . , YN )′, C and C ′C are defined by

C =

⎛

⎜
⎜
⎜
⎝

cos(λj) sin(λj)
cos(2λj) sin(2λj)

...
...

cos(Nλj) sin(Nλj)

⎞

⎟
⎟
⎟
⎠

(6)

and

C ′C =

(
∑N

k=1 cos(kλj)2
∑N

k=1 cos(kλj) sin(kλj)
∑N

k=1 cos(kλj) sin(kλj)
∑N

k=1 sin(kλj)2

)

=
N

2
Id2 (7)

where Id2 is the identity matrix 2 by 2. Hence,

β̂
LS

N (λj) =
2
N

C ′Y =
2
N

(
N∑

k=1

Yk cos(kλj)
N∑

k=1

Yk sin(kλj)

)′

= (β̂LS,(1)
N (λj), β̂

LS,(2)
N (λj))′ . (8)

In view of (1),

IN (λj) =
N

8π
‖β̂LS

N (λj)‖2 =
N

8π

(

(β̂LS,(1)
N (λj))2 + (β̂LS,(2)

N (λj))2
)

=: ILSN (λj) ,

(9)

where ‖ · ‖ denotes the classical Euclidean norm and β̂
LS

N (λj) = (β̂LS,(1)
N

(λj), β̂
LS,(2)
N (λj))′ is the least square estimates of β′ = (β(1), β(2)) see, for exam-

ple, Fajardo et al. (2018) and Reisen et al. (2017) and references therein. Note
that IN (λj) (9) can be derived for different choices of εi, i = 1, . . . , N .
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It is supposed here that
εi = G(ηi) . (10)

In (10), G is a non null real-valued and skew symmetric measurable function (i.e.
G(−x) = −G(x), for all x) and (ηi)i≥1 is a stationary Gaussian process with
zero mean and unit variance. Additional assumptions of (ηi)i≥1 will be given in
the sequel of the paper.

Let ψ(.) be a function satisfying the following assumptions.

(A1) 0 < E[ψ2(ε1)] < ∞.
(A2) The function ψ is absolutely continuous with its almost everywhere
derivative ψ′ satisfying E[|ψ′(ε1)|] < ∞ and such that the function z �→
E[|ψ′(ε1 − z) − ψ′(ε1)|] is continuous at zero.
(A3) ψ is nondecreasing, E[ψ′(ε1)] > 0 and E[ψ′(ε1)2] < ∞.
(A4) ψ is skew symmetric, i.e. ψ(−x) = −ψ(x), for all x.

It is now introduced the M -periodogram based on the M -estimator β̂
M

N of the

parameter β defined in Eq. (2). The M -estimator β̂
M

N = (β̂(1)
N , β̂

(2)
N )′ is defined

as the solution (t1, t2) of

N∑

i=1

cos(iλj)ψ(Yi−cos(iλj)t1) = 0 and
N∑

i=1

sin(iλj)ψ(Yi−sin(iλj)t2) = 0. (11)

β̂
(1)
N and β̂

(2)
N can be also seen as the minimizers with respect to t1 and t2,

respectively, of
∣
∣
∣
∣
∣

N∑

i=1

cos(iλj)ψ(Yi − cos(iλj)t1)

∣
∣
∣
∣
∣

and

∣
∣
∣
∣
∣

N∑

i=1

sin(iλj)ψ(Yi − sin(iλj)t2)

∣
∣
∣
∣
∣
, (12)

where ψ satisfies the same assumptions as in Koul and Surgailis (2000). By
analogy to (9), the robust periodogram IM

N (λj) at λj = 2πj/N, j = 1, . . . , [N/2],
is defined by

IM
N (λj) =

N

8π
‖β̂M

N (λj)‖2 =
N

8π

(

(β̂(1)
N (λj))2 + (β̂(2)

N (λj))2
)

. (13)

2.1.1 M-periodogram in Short-Memory Processes

In this subsection the asymptotic properties of β̂
M

N are established in the short-
range dependence framework. For this, the following assumptions are introduced.
This result helps to establish the theoretical properties of the robust periodogram
IM
N given in Corollary 1.
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(A5) Let ηt, t ∈ Z, be i.i.d. standard Gaussian random variables and let aj

be real numbers such that
∑

j≥0 |aj | < ∞ and a0 = 1. Then,

εi =
∑

j≥0

ajηi−j .

(A6) ψ is the Huber function that is ψ(x) = max[min(x, c),−c], for all x in
R, where c is a positive constant.

Theorem 1. Assume that (A5) and (A6) hold and that β = 0 in (2) so that

Yi = εi. Then, for any fixed j, β̂
M

N defined by (12) satisfies
√

N

2
(F (c) − F (−c))β̂

M

N (λj)
d−→ N

(

0,Δ(j)
)

, N → ∞ ,

where F is the c.d.f. of ε1 and

Δ(j) =
∑

k∈Z

E{ψ(ε0)ψ(εk)}
(

cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)

.

Theorem 1 is proved in Sect. 5.

Corollary 1. Under the assumptions of Theorem1, IM
N (λj) defined in (13) sat-

isfies for any fixed j,

IM
N (λj)

d−→ X2 + Y 2

4π(F (c) − F (−c))2
, as N → ∞ ,

where

X ∼ N
⎛
⎝0,

∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)

⎞
⎠ , Y ∼ N

⎛
⎝0,

∑
k∈Z

E{ψ(ε0)ψ(εk)} cos(kλj)

⎞
⎠

and
Cov(X,Y ) =

∑

k∈Z

E{ψ(ε0)ψ(εk)} sin(kλj) .

The proof of Corollary 1 is a straightforward consequence of Theorems 1
and (13).

2.1.2 M-periodogram for Long-Memory Processes
Now, consider the following assumption for (ηi)i≥1 in the case of long-memory
process. The results in this subsection are well detailed in Fajardo et al. (2018).

(A7) (ηi)i≥1 is a stationary zero-mean Gaussian process with covariances
ρ(k) = E(η1ηk+1) satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,
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where the function L is slowly varying at infinity and is positive for large k.
Recall that a slowly varying function L(x), x > 0 is such that L(xt)/L(x) → 1,
as x → ∞ for any t > 0. Constants and logarithms are example of slowly
varying functions.
Moreover, the spectral density f of (ηi)i≥1 can be expressed as:

f(λ) = |1 − exp(−iλ)|−2df∗(λ) , (14)

where d ∈ (0, 1/2) and f∗ is an even, positive, continuous function on (−π, π],
bounded above and bounded away from zero.

Note that
D = 1 − 2d , (15)

where D is defined in Assumption (A7) and d is the standard long-memory
parameter notation given in the literature of long-memory models. The fact
that (ηi)i≥1 is required to satisfy (A7) essentially means that both L(x), x ≥ 1
and f∗(λ), λ in (−π, π] satisfy some smoothness properties.

Theorem 2. Assume that (A7), (A1), (A2), (A3) and (A4) hold and that β = 0

in (2) so that Yi = εi. Then, for any fixed j, β̂
M

N (λj) defined by (12) satisfies√
N

2
β̂
M
N (λj) =

J1

E[ψ′(ε1)]

{√
2

N

N∑
i=1

(
cos(iλj)
sin(iλj)

)
ηi

}
+ op(N

(1−D)/2) , as N → ∞ , (16)

where J1 = E[ψ(G(η))η] 	= 0, η being a standard Gaussian random variable and
D = 1 − 2d. Moreover,

ND/2β̂
M

N (λj)
d−→ N

(

0,
J2
1

(E[ψ′(ε1)])2
Γ̃
)

, N → ∞ , (17)

where

Γ̃ = lim
N→∞

4
N2−D

∑

1≤k,�≤N

cNk(λj)cT
N�(λj)ρ(k − 	) (18)

= 8π × (2πj)−2df∗(0)
(L1 0

0 L2

)

. (19)

In Relation (18), the vector cNk(λj) is defined in (4),

L1 =
1
π

∫

R

sin2(λ/2)
(2πj − λ)2

∣
∣
∣
∣

λ

2πj

∣
∣
∣
∣

−2d

dλ − 1
π

∫

R

sin2(λ/2)
(2πj − λ)(2πj + λ)

∣
∣
∣
∣

λ

2πj

∣
∣
∣
∣

−2d

dλ ,

(20)
and

L2 =
1
π

∫

R

sin2(λ/2)
(2πj − λ)2

∣
∣
∣
∣

λ

2πj

∣
∣
∣
∣

−2d

dλ +
1
π

∫

R

sin2(λ/2)
(2πj − λ)(2πj + λ)

∣
∣
∣
∣

λ

2πj

∣
∣
∣
∣

−2d

dλ .

(21)
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Corollary 2. Under the assumptions of Theorem2, the periodogram IM
N defined

in (13) satisfies

ND−1IM
N (λj)

d−→ (Z2
1 + Z2

2 ) , as N → ∞ , (22)

where (Z1, Z2) is a zero-mean uncorrelated Gaussian vector with covariance
matrix equal to

J2
1

8π(E[ψ′(ε1)])2
Γ̃ , (23)

with Γ̃ defined in (18).

Theorem 2 and Corollary 2 are proved in Fajardo et al. (2018).

2.2 QN -periodogram

Another possible approach to obtain the classical periodogram (1) is to write it
in terms of the sample autocovariance function

IN (λj) =
1
2π

N−1∑

h=−(N−1)

γ̂(h) cos(hλj), (24)

where λj = 2πj/N, j = 1, . . . , [N/2] and γ̂(h) is the classical sample autocovari-
ance function for a sample {Y1, ..., YN} .

A straightforward approach to robustify (24) is to plug in a robust autoco-
variance function replacing the classical one. This methodology is now addressed.

For a sample x1, ..., xN Rousseeuw and Croux (1993) proposed a robust scale
estimator function QN (·) which is based on the τth order statistic of

(
N
2

)

dis-
tances {|xj − xk|, j < k}, and can be written as

QN (x) = κ × {|xj − xk|; j < k}(τ), (25)

where κ is a constant used to guarantee consistency (κ = 2.2191 for the Gaussian
distribution) and τ = 
((N

2

)

+ 2)/4� + 1. The above function can be evaluated
using the algorithm proposed by Croux and Rousseeuw (1992), which is compu-
tationally efficient.

Based on QN (·), Ma and Genton (2000) proposed a highly robust estimator
for the autocovariance function:

γ̂QN
(h) =

1
4

[

Q2
N−h(u + v) − Q2

N−h(u − v)
]

, (26)

where u and v are vectors containing the initial N −h and the final N −h obser-
vations of x1, ..., xN , respectively. The robust estimator for the autocorrelation
function is

ρ̂QN
(h) =

Q2
N−h(u + v) − Q2

N−h(u − v)
Q2

N−h(u + v) + Q2
N−h(u − v)

. (27)

It can be shown that |ρ̂QN
(h)| ≤ 1 for all h.
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Now, returning to (24), the robust QN -periodogram for a sample {Y1, ..., YN}
is defined by

IQN

N (λj) =
1
2π

N−1∑

h=−(N−1)

γ̂QN
(h) cos(hλj), (28)

where λj = 2πj/N, j = 1, . . . , [N/2].
The theoretical properties of IQN

N are still under study. Therefore, in the
sequel, the asymptotic properties of γ̂QN

are summarized for short and long
memory processes. These are well detailed in Lévy-Leduc et al. (2011).

2.2.1 Main Asymptotic Results for Short Memory Process
In the short-memory scenario, the process under study (Yi)i≥1 satisfies the fol-
lowing assumption (see, also, Lévy-Leduc et al. 2011):

(A8) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance
sequence γ(h) = E(Y1Yh+1) satisfying:

∑

h≥1

|γ(h)| < ∞.

Theorem 3. Assume that (A8) holds and let h be a non negative integer. Then,
the autocovariance estimator γ̂QN

(h) satisfies the following Central Limit Theo-
rem: √

N (γ̂QN
(h) − γ(h)) d−→ N (0, σ̌2

h), N → ∞ ,

where

σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2
∑

k≥1

E[ζ(Y1,X1+h)ζ(Yk+1, Yk+1+h)] , (29)

and the function ζ is defined by
ζ : (x, y) �→{
(γ(0) + γ(h)) IF

(
x + y√

2(γ(0) + γ(h))
, Q, Φ

)
− (γ(0) − γ(h)) IF

(
x − y√

2(γ(0) − γ(h))
, Q, Φ

)}
. (30)

where IF is defined by

IF(x,Q,Φ) = κ

(
1/4 − Φ(x + 1/κ) + Φ(x − 1/κ)

∫

R
φ(y)φ(y + 1/κ)dy

)

, (31)

where Φ and φ denote the c.d.f. and p.d.f. of a standard Gaussian random vari-
able, respectively with κ defined in (25).

Theorem 3 is proved in Lévy-Leduc et al. (2011).
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2.2.2 Main Asymptotic Results for Long-Memory Process
The following results concern the robust autocovariance function for long-
memory process see, also, Lévy-Leduc et al. (2011).

(A9) (Yi)i≥1 is a stationary zero-mean Gaussian process with autocovariance
γ(h) = E(Y1Yh+1) satisfying:

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large h. Note that, as
previously stated, D = 1 − 2d.

Theorem 4. Assume that (A9) holds and that L has three continuous deriva-
tives. Assume also that Li(x) = xiL(i)(x) satisfy: Li(x)/xε = O(1), for some
ε in (0,D), as x tends to infinity, for all i = 0, 1, 2, 3, where L(i) denotes the
ith derivative of L. Let h be a non negative integer. Then, γ̂QN

(h) satisfies the
following limit theorems as N tends to infinity.

(i) If D > 1/2, √
N (γ̂QN

(h) − γ(h)) d−→ N (0, σ̌2(h)),

where

σ̌2(h) = E[ζ2(Y1, Y1+h)] + 2
∑

k≥1

E[ζ(Y1, Y1+h)ζ(Yk+1, Yk+1+h)],

ζ being defined in (30).
(ii) If D < 1/2,

β(D)
ND

L̃(N)
(γ̂QN

(h) − γ(h)) d−→ γ(0) + γ(h)
2

(Z2,D(1) − Z1,D(1)2)

where β(D) = B((1 − D)/2,D), B denotes the Beta function, the processes
Z1,D(·) and Z2,D(·) are defined as follows:

Z1,D(t) =
∫

R

[∫ t

0

(u − x)−(D+1)/2
+ du

]

dB(x), 0 < D < 1, (32)

Z2,D(t) =

∫ ′

R2

[∫ t

0
(u − x)

−(D+1)/2
+ (u − y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 , (33)

and

L̃(N) = 2L(N) + L(N + h)(1 + h/N)−D + L(N − h)(1 − h/N)−D, (34)

where B is the standard Brownian motion. The symbol
∫ ′ means that the

domain of integration excludes the diagonal.

Theorem 4 is proved in Lévy-Leduc et al. (2011).
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3 Monte Carlo Simulation

In this section, small sample size experiments are conducted with the aim to
clarify the empirical performance of the spectral estimates discussed previously
in a different context such as time series with additive outliers. Based on this,
some standard questions, such as (1) what is the best method to be used in
a real application? (2) which method (if any) should be considered when deal-
ing with outliers? (3) Does the large observation (if any) make similar outlier’s
effect on the statistical time series modelling functions, that is, on the ACF and
periodogram functions? Among others, are expected to be answered or, at least,
clarified.

Let {Xt}t=1,...,N be a sample from a Gaussian second order stationary process
and let {Yt}t=1,...,N be a sample of the process defined by

Yt = Xt + ωWt (35)

where the parameter ω represents the magnitude of the outlier, and Wt is a
random variable with probability distribution

P (Wt = −1) = P (Wt = 1) = δ/2 and P (Wt = 0) = 1 − δ,

where E[Wt] = 0 and E[W 2
t ] = Var(Wt) = δ. Note that (35) is based on the

parametric models proposed by Fox (1972). Wt is the product of Bernoulli(δ)
and Rademacher random variables; the latter equals 1 or −1, both with proba-
bility 1/2. Xt and Wt are independent random variables. Note that, if ω = 0.0
{Yt} is an outlier free time series.

In order to compare the performance of M - and QN -periodogram, a Monte
Carlo investigation was carried out under different contamination scenarios. For
the simulations, the number of replications was 5000, the samples {Xt} of size
N = 500 were generated according to a model autocorrelation structure, which
is given in what follows, and the contaminated data Yt were generated from (35)
with δ = 0.01 for magnitudes ω = 0 (no outliers) and 10.

The comparison between the methods is performed by estimating α in the
linear regression log(I(λj))  const+α log(λj)+Ej , j = 1, . . . , N0.7, where I(.)
is either IN (.), IM

N (.) or IQN

N (.). The data were generated based on

Xt = (1 − B)−dZt =
∑

j≥0

Γ(j + d)
Γ(j + 1)Γ(d)

εt−j , (36)

where εt is an AR(1) model, that is, εt = φεt−1 + ηt, where ηt, t = 1, ..., N , are
i.i.d. standard Gaussian random variables.

In the finite sample size investigation, the model correlation structures are
divided in two cases:

1. An AR(1) model with φ = 0.6 and d = 0.
2. An ARFIMA(0, d, 0) model with d = 0.3.
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Figure 1 displays the plots of the empirical densities of α̂IN
, α̂IM

N
and α̂

I
QN
N

for the case of AR(1) models without contamination (ω = 0). Although, α̂IM
N

has a slight better performance than α̂
I

QN
N

, that is, the first method and the
classical periodogram presented very close densities, all the methods provided
similar results showing that, even for small sample sizes, the empirical density is
very close which corroborate the theoretical results discussed previously. Based
on the asymptotic theory and the empirical results all three methods can be used
to estimate the spectral density of a time series when there is no contamination
of additive outliers. This opens an important contribution in the context that
alternative spectral estimators such as IM

N and IQN

N can be used instead of the
classical periodogram IN in the step procedure for modelling time series data.
For example, these estimators can be an alternative tools to be used in the
Whittle function to obtain the parameter estimates. This will be also discussed
in what follows. Note that, the disadvantage of IQN

N over IM
N and IN is that the

ACF using QN (.) does not have the positive definite property.
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Fig. 1. Densities of α̂IN , α̂IM
N

and α̂
I

QN
N

for AR(1) models with φ = 0.6 and ω = 0.

When the data is contaminated with additive outliers the scenario changes
significantly. As well known, the periodogram, which depends on the classical
autocovariance, is corrupted by the outliers. Therefore, the alternative methods
are almost unaffected. This is displayed in Fig. 2 in which ω = 10 and δ = 0.01.
The empirical density of α̂IN

is shifted to the right side which is an expected
result since the variance increases with outliers. The empirical densities of α̂IM

N

and α̂
I

QN
N

remain almost unchangeable.
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for AR(1) models with φ = 0.6, δ = 0.01 and

ω = 10.
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when d = 0.3, N = 500 and ω = 0.

In the case of long-memory process, the empirical density plots are given in
Figs. 3 and 4 for non-contaminated and contaminated time series, respectively.
Similar conclusions of the AR case are drawn. That is, in the uncontaminated
scenarios, all three methods displayed similar densities although the method M
and the classical one (periodogram) are very close. In the contaminated case,
the classical one is totally affected by the additive outliers. Reinforcing that the
ACF using QN does not have the positiveness property.
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when d = 0.3, N = 500, δ = 0.01 and ω = 10.

4 Applications of M and QN -periodograms

4.1 Robust Estimation of the Fractional Parameter

Based on the theoretical results discussed previously, this section introduces some
applications related to the use of M -regression and QN estimation functions. The
application is divided in two cases: (a) Estimation of the fractional parameter
d in long-memory processes; (b) Estimation in periodic AR (PAR) processes.
Some finite sample size investigation is also addressed in the context of time
series with and without outliers.

(a) Estimation of the fractional parameter in long-memory process

The estimation methods of the fractional parameter d discussed here are
derived from the well-known semi-parametric regression method (GPH) origi-
nally proposed by Geweke and Porter- Hudak (1983). The regression estimation
methods based on IM

N and IQN

N were previously introduced in Reisen et al. (2017)
and Fajardo et al. (2009), respectively, papers where the reader will find more
details related to theoretical and empirical results of these estimation method-
ologies.

(A10) (εi)i≥1 is a stationary mean-zero Gaussian process with spectral den-
sity given in Assumption (A7).

For estimating the fractional parameter d of long-memory processes hav-
ing their spectral density satisfying (14), it is usual to use the standard GPH
(Geweke and Porter-Hudak 1983) estimator defined in the following. This esti-
mator is motivated heuristically by starting from
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log(f(λj)) = −2d log(|2 sin(λj/2)|) + log(f∗(λj)) = −2dXj + log(f∗(λj))
= log(f�

0 ) − 2dXj + log(f�
j /f�

0 ), (37)

where Xj = log |2 sin(λj/2)| and f�
j = f�(λj). If

εR
j = log

(
IN (λj)
f(λj)

)

, (38)

then
log(IN (λj)) = εR

j + log(f(λj)) ,

and, by (37),

log(IN (λj)) = log(f�
0 ) − 2dXj + log(f�

j /f�
0 ) + εR

j . (39)

The GPH estimator is given by

d̂GPH =
−0.5

∑mN

j=1(Xj − X̄) log(ILSN (λj))
∑mN

k=1(Xk − X̄)2
, (40)

where Xj = log |2 sin(λj/2)|, X̄ =
∑mN

j=1 Xj/mN , ILSN (λj) is defined in (9) and
mN is a function of N .

Based on the above discussion, one way to define a M -regression estimator
of d consists in replacing ILSN in (40) by IM

N defined in (13):

d̂M =
−0.5

∑mN

j=1(Xj − X̄) log(IM
N (λj))

∑mN

k=1(Xk − X̄)2
, (41)

where Xj = log |2 sin(λj/2)|, X̄ =
∑mN

j=1 Xj/mN and mN is a function of N
which is specified in Theorem 5.

The theoretical properties of d̂M are established under the following assump-
tions. The random process (εj) is obtained through a moving average process:

εj =
∑

k≤j

aj−kζk , aj = L(j)j−(1+D)/2 , j ≥ 1 , (42)

for some D in (0, 1), where L(·) is a positive slowly varying function at infinity
and where the random variables ζk are i.i.d. with zero mean and variance 1. It
is assumed that the distribution of ζ0 satisfies

∣
∣E(eiuζ0)

∣
∣ ≤ C(1 + |u|)−δ , u ∈ R . (43)

where C < ∞ and δ > 0 are constants. Note that, Conditions (42) and (43)
imply that the cumulative distribution function Fε0 of ε0 is infinitely boundedly
differentiable, see Koul and Surgailis (2000).
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Theorem 5. Let Yi = εi, for all i in {1, . . . , N}, where εi satisfy (42) and
(A10). Assume that 1/D is not an integer and that β = 0 in (2). Assume
moreover that E(ζ4∨2k�

0 ) < ∞, where k� = [1/D], ζ0 is defined in (42) and
satisfies (43), ν1 	= 0, ν2 = 0 and ν3 	= 0, where the νk are defined by

νk =
∫ ∞

0

ψ(y)
[

1 − (−1)k
]

f (k)(y)dy, for all integer k ≥ 0 , (44)

where ψ is the Huber function. Then, if 1/3 < D < 1,

√
mN (d̂M − d) d−→ N (0, π2/24), as N → ∞ , (45)

where d̂M is defined in (41) and mN = Nβ with 0 < β < (1 − D)/3.

This result is proved in Reisen et al. (2017).
Another way of defining a robust estimator of d is to consider:

d̂QN =
−0.5

∑mN

j=1(Xj − X̄) log(IQN

N (λj))
∑mN

k=1(Xk − X̄)2
, (46)

where Xj = log |2 sin(λj/2)|, X̄ =
∑mN

j=1 Xj/mN , IQN

N (λj) is defined in (28) and
mN is a function of N . For further information, see Fajardo et al. (2009). The
asymptotic property of d̂QN is still an open problem, however, the empirical
results given in Fajardo et al. (2009) support the use of this method under time
series with and without outliers. The performance of fractional estimators d̂GPH ,
d̂M and d̂QN is the motivation of the next subsection for long-memory time series
with and without additive outliers.

4.1.1 Finite Sample Size Investigation
In this subsection, the numerical experiments were carried out in accordance
with the model of Sect. 3. For the simulations, N = 500, ω = 10 and δ = 0.01
for 5000 replications. The results are displayed in Figs. 5, 6 and Table 1. Since
there is not short-memory component in the model mN was fixed at N0.7 for all
tree methods.

Figure 5 presents the boxplots with the results of d̂GPH , d̂M and d̂QN
esti-

mators for the uncontaminated scenario. d̂M and d̂QN
seem to present positive

Table 1. Empirical Mean, Bias and RMSE of d̂GPH , d̂M and d̂QN when ω = 10 and
δ = 0, 0.01, 0.05.

d δ MEAN BIAS RMSE

d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN d̂GPH d̂M d̂QN

0.3 0.0 0.3029 0.2950 0.2933 0.0029 −0.0049 −0.0066 0.0601 0.0596 0.0558

0.01 0.2226 0.2899 0.3052 −0.0773 −0.0101 0.0052 0.0972 0.0581 0.0584

0.05 0.1225 0.2681 0.3236 −0.1775 −0.0318 0.0236 0.1873 0.0689 0.0682
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Fig. 5. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.
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Fig. 6. Boxplots of d̂GPH , d̂M and d̂QN when δ = 0.05 and δ = 0.1, respectively.

bias and, surprisingly, d̂QN
displays smaller deviation. However, in general, all

methods perform similarly, i.e., all estimation methods leaded to comparable
estimates close to the real values of d.

Figure 6 displays the boxplots of d̂GPH , d̂M and d̂QN
when the series has

outliers. As can be perceived from the boxplots, the GPH estimator is clearly
affected by additive outliers while the robust ones keep almost the same picture
as the one of the non-contaminated scenario, except that the bias of d̂QN

becomes
negative, that is, this estimator tends to overestimate the true parameter.
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The empirical mean, bias and mean square root are displayed in Table 1. This
numerically corroborates the results discussed based on Figs. 5, 6, that is, the
estimators have similar performance in the absence of outliers in the data. While
the performance of d̂GPH changes dramatically in the presence of outliers, the
estimates from d̂QN

and d̂M keep almost unchangeable. As a general conclusion,
the empirical result suggests that all the methods can be used to estimate the
parameter d when there is not a suspicion of additive or abrupt observation.
However, in the existence of a single atypical observation, the methods d̂QN

and
d̂M should be preferred. Similar conclusions are given in Fajardo et al. (2009)
and Reisen et al. (2017) for d̂QN

and d̂M , respectively.

4.2 Qn and M-estimators in PARMA Models

One of the most popular periodic causal process is the PARMA model which
generalizes the ARMA model. {Zt}t∈Z is said to be a PARMA model if it satisfies
the difference equation

∑pν

j=0 φν,jZrS+ν−j =
∑qν

k=0 θν,kεrS+ν−k, r ∈ Z (47)

where for each season ν ( 1 ≤ ν ≤ S) where S is the period, pν and qν are the
AR and MA orders, respectively, φν,1, . . . , φν,pν

and θν,1, . . . , θν,qν
are the AR

and MA coefficients, respectively, and φν,0 = θν,0 = 1. The sequence {εt}t∈Z

is zero-mean and uncorrelated, and has periodic variances with period S, i.e.
E(ε2rS+ν) = σ2

ν for ν = 1, . . . ,S. In the following, p = maxν pν , q = maxν qν ,
φν,j = 0 for j > pν , θν,k = 0 for k > qν , and (47) is referred as the PARMA(p, q)S
model (see, for example, Basawa and Lund 2001 and Sarnaglia et al. 2015).

To deal with outliers effect in the estimation of PAR model, Sarnaglia et al.
(2010) proposed the use of the QN (.) function in this model. Following the same
lines of the linear time series model described previously, the QN (.) function is
used to compute an estimator of the periodic autocovariance function γ(ν)(h) at
lag h and this sample ACF based on QN (.) estimator, denoted here as γ

(ν)
Q (h),

replaces the classical periodic ACF γ(ν)(h) in the Yule-Walker periodic equations
(see, for example, McLeod 1994 and Sarnaglia et al. 2010) to derive an alternative
parameter estimator method for a periodic AR model. The authors derived some
asymptotic and empirical properties of the proposed estimator. They showed
that the method well accommodate the effect of additive outliers, that is, it
presented robustness against these type of observations in the finite sample size
series as well as in a real data set.

Let now Z1, ...ZN , where N = nS, be a sample from PAR process which is
a particular case of the model definition in (47) with qν = 0 and let now QN (.)
for PAR process be defined as

Q
(ν)
N (Z) = QN ({ZrS+ν}0≤r≤N ). (48)

Based on Q
(ν)
N (Z), the authors derived the sample ACF for periodic station-

ary processes γ̂
(ν)
Q (h). Under some model assumptions, they proved the following

main results.
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1. For a fixed lag h, γ̂
(ν)
Q (h) satisfies the following central limit theorem: As

N −→ ∞, √
N

(

γ̂
(ν)
Q (h) − γ(ν)(h)

) D−→ N (0, σ̌2
h),

where γ(ν)(h) is the periodic ACF function and σ̌2
h is the variance, more

details are given in Sarnaglia et al. (2010).
2. The Q

(ν)
N Yule-Walker estimators (φ̃ν,i)1≤i≤pν ,ν=1,...,S satisfy φ̃ν,i − φν,i =

OP (N−1/2) for all i = 1, . . . , pν and ν in {1, . . . ,S}.

Recently, Solci et al. (2018) compared the Yule-Walker estimator (YWE), the
robust least squares estimator (Shao 2008) and the ACF Qn estimator (γ̂(ν)

Q (h),
denoted here RYWE, in the context of estimating the parameters in PAR models
with and without outliers. Their main conclusion is similar to the cases discussed
previously, that is, for the case of ARFIMA model γ̂

(ν)
Q (h) displayed good per-

formance in estimating the parameters in PAR models, periodic samples with
and without outliers. As expected, the YWE estimator performed very poorly
with the presence of outliers in the data. One of their simulation results is repro-
duced in the table below (Table 2) in which n = 100, 400 (cycles), S = 4, εt is a
Gaussian white noise process and δ = 0.01 (outlier’s probability) and magnitude
ω = 10. The results correspond to the mean of 5000 replications.

Table 2. Bias and RMSE for Model 1 and outliers with probability δ = 0.01.

ω εt n φν,1 YWE RYWE

Bias RMSE Bias RMSE

0 N (0, 1) 100 0.9 −0.007 0.077 −0.003 0.103

0.8 −0.002 0.065 0.004 0.084

0.7 0.000 0.063 −0.001 0.083

0.6 −0.005 0.066 −0.003 0.083

400 0.9 −0.001 0.037 −0.001 0.047

0.8 −0.001 0.031 0.000 0.038

0.7 −0.001 0.032 0.001 0.038

0.6 0.000 0.032 0.000 0.039

7 N (0, 1) 100 0.9 −0.181 0.247 0.014 0.120

0.8 −0.118 0.176 0.012 0.096

0.7 −0.105 0.157 0.015 0.091

0.6 −0.097 0.151 0.012 0.091

400 0.9 −0.183 0.203 0.017 0.055

0.8 −0.129 0.144 0.012 0.046

0.7 −0.108 0.124 0.013 0.044

0.6 −0.103 0.119 0.014 0.043
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As an alternative estimator of φ̃ν,i, Sarnaglia et al. (2016) proposed the use
of M -periodogram function to obtain estimates of the parameters in PARMA
models. The estimator is based on the approximated Whittle function sug-
gested in Sarnaglia et al. (2015). Basically, the Whittle M -estimator of PARMA
parameters is derived by the ordinary Fourier transform with the non-linear
M -regression estimator for periodic processes in the harmonic regression equa-
tion that leads to the classical periodogram. The empirical simulation investiga-
tion in Sarnaglia et al. (2016) considered the scenarios of periodic time series with
presence and absence of additive outliers. Their small sample size investigation
leaded to a very promising estimation method under the context of modelling
periodic time series with additive outliers and heavy-tailed distributions. The
theoretical justification of the proposed estimator is still an open problem and
it is now a current research theme of the authors.

Table 3 displays results of a simple simulation example to show the empirical
performance of the Whittle M -estimator with the Huber function ψ(x) (Huber
1964) compared to the maximum Gaussian and Whittle likelihood estimators to
estimate a PAR(2) model with parameters φ1,1 = −0.2, φ2,1 = −0.5, σ2

1,1 = 1.0
and σ2

2,1 = 1.0. The sample sizes are N = nS = 300, 800 (n = 150, 400,
respectively) and the Huber function was used with constant equal to 1.345,
which ensure that the M -estimator is 95% as efficient as the least squares esti-
mator for univariate multiple linear models with independent and identically
distributed Gaussian white noise. The sample root mean square error (RMSE)
was computed over 5000 replications. The PAR(2) model with additive outliers
was generated with outlier’s probability δ = 0.01 and magnitude ω = 10. The
values with “∗” refer to the RMSE for the contaminated series.

Table 3. Empirical RMSE results for estimating an PAR(2) model.

Method N φ1,1 σ2
1,1 φ2,1 σ2

2,1

MLE 300 0.067; 0.121∗ 0.117; 1.366∗ 0.079; 0.252∗ 0.111; 1.363∗

800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

WLE 300 0.068; 0.121∗ 0.117; 1.368∗ 0.079; 0.252∗ 0.111; 1.364∗

800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

RWLE 300 0.067; 0.067∗ 0.147; 0.179∗ 0.083; 0.089∗ 0.147; 0.189∗

800 0.051; 0.054∗ 0.118; 0.149∗ 0.051; 0.058∗ 0.108; 0.152∗

In the absence of outliers, in general, all estimators present similar behaviour.
Relating to the estimation of the variance of the innovations, the MLE and
WLE seem to be more precise which is an expected result since the data is
Gaussian with zero-mean and these two methods are asymptotically equivalents.
The RMSE of the estimators decreases as the sample size increases. When the
simulated data has outliers, as an expected result the MLE and WLE estimates
are totally corrupted by the atypical observations while the RWLE estimator
presents generally accurate estimates. This simple example of simulation leads
to the same conclusions of the models discussed previously in which M -regression
method was also considered.
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The methods discussed above give strong motivation to use the methodology
in practical situations in which periodically correlated time series contain additive
outliers. For example, Sarnaglia et al. (2010) applied the robust ACF estimator
γ̂
(ν)
Q (h) to fit amodel for the quarterly Fraser River data. Sarnaglia et al. (2016) and

Solci et al. (2018) analysed air pollution variables using the robust methodologies
discussed in these papers. In the first paper, the authors considered the daily aver-
age SO2 concentrations and, in the second one, it was analysed the daily average
PM10 concentrations. Both data set were collected at Automatic Air Quality Mon-
itoring Network (RAMQAr) in the Great Vitória Region GVR-ES, Brazil, which
is composed by nine monitoring stations placed in strategic locations and accounts
for the measuring of several atmospheric pollutants and meteorological variables
in the area. In general, the models well fitted the series and all these applied exam-
ples revealed outliers effects on the estimates.

5 Proof of Theorem 1

By Propositions 1 and 4 and Example 1 of Wu (2007) the assumptions of The-
orem 1 of Wu (2007) hold. Thus,

√

N

2
(F (c) − F (−c))β̂

M

N (λj)
d−→ N

(

0,Δ(j)
)

, N → ∞ ,

with
Δ(j) =

∑

k∈Z

E{ψ(ε0)ψ(εk)}Δ(j)
k ,

where

Δ(j)
k = lim

N→∞
2
N

N−|k|
∑

�=1

(
cos(	λj)
sin(	λj)

)

(cos((	 + k)λj) sin((	 + k)λj)) .

Observe that

Δ(j)
k = lim

N→∞
2
N

N−|k|
∑

�=1

(
cos(kλj)+cos((2�+k)λj)

2
sin(kλj)+sin((2�+k)λj)

2− sin(kλj)+sin((2�+k)λj)
2

cos(kλj)−cos((2�+k)λj)
2

)

=
(

cos(kλj) sin(kλj)
− sin(kλj) cos(kλj)

)

+ lim
N→∞

2
N

N−|k|
∑

�=1

(
cos((2�+k)λj)

2
sin((2�+k)λj)

2
sin((2�+k)λj)

2
− cos((2�+k)λj)

2

)

.

By observing that

1

N

N−|k|∑
�=1

cos((2� + k)λj) =
cos(kλj)

N

N−|k|∑
�=1

cos(2�λj) +
sin(kλj)

N

N−|k|∑
�=1

sin(2�λj)

=
cos(kλj)

N
cos(λj(N − |k| − 1))

sin(λj(N − |k|))
sin(λj)

+
sin(kλj)

N
sin(λj(N − |k| − 1))

sin(λj(N − |k|))
sin(λj)

tends to zero as N tends to infinity and that the same holds for
N−1

∑N−|k|
�=1 sin(2	 + k), this concludes the proof.



224 V. A. Reisen et al.

Acknowledgements. V. A. Reisen gratefully acknowledges partial financial sup-
port from FAPES/ES, CAPES/Brazil and CNPq/Brazil and CentraleSupélec. Màrton
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Reisen VA, Lévy-Leduc C, Taqqu MS (2017) An M-estimator for the long-memory
parameter. J Stat Plan Infer 187:44–55

Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am
Stat Assoc 88(424):1273–1283

Sarnaglia AJQ, Reisen VA, Bondon P (2015) Periodic ARMA models: application to
particulate matter concentrations. In: 23rd European Signal Processing Conference,
pp 2181–2185
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