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Abstract. Observing that a motion signal is decomposable into multiple levels,
a video generation model which realizes this hypothesis is proposed. The model
decomposes motion into a two-level signal involving a global path and local
pattern. They are modeled via a latent path in the form of a composite Bezier
spline along with a latent sine function respectively. In the application context,
the model fills the research gap in its ability to connect an arbitrary number of
input key frames smoothly. Experimental results indicate that the model
improves in terms of the smoothness of the generated video. In addition, the
ability of the model in separating global and local signal has been validated.
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1 Introduction

Motion could be modeled in different ways, among which optical flow is one well-
known approach. More recently, Tulyakov et al. proposed using a string of motion
codes to represent motion in the latent space [1]. In this paper, we observe that the
motion signal could be decomposed and be represented as global and local signals.
When a person moves, s/he moves from one place to another with a global trajectory,
while exhibiting some repeating motion locally, such as arm and leg swinging. There
may also be subtle movements for fingers and hair. To model this hierarchical motion
structure, we propose to decompose the motion into a multi-level signal spanning from
the top global level to the fine local level.

In this paper, we validate our motion decomposition approach with two levels: a
global path signal and a local pattern signal. The former represents the motion that
makes an object move in the environment while the latter represents the motion by a
local part of the moving object. This is analogous to computer graphics concepts: the
global path resembles the translation of an object while the local pattern its rotation.

In order to achieve a separation of global and local motion, some key problems
need to be addressed. We model the properties in a latent space [1]. Since a global path
is representing a global movement to model an object going from one place to another,
an intuitive modeling could be a latent path drawn in the latent space. A local pattern
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represents a repeating motion, which could intuitively be modeled with periodic
functions in the latent space (e.g. sine function).

Modeling motion as a global path and local pattern opens up a new avenue for
applications. For a controllable global signal, an intuitive application comes from the
animation industry. It is well accepted that senior animators draw out some key frames
as a rough video. Junior animators will fill out the frames in-between. Global path
could be easily adapted to this application by ensuring that the latent path passes
through the key frames specified by the user. Not only is this an intuitive method to
control video generation, it also fills the research gap on using key frames for gener-
ating video. We currently adopt Bezier spline in the latent space.

With a controllable local motion signal, it would be ideal that the local motion
could be tuned regardless of the global motion. An effect somewhat like moonwalking
could be achieved, where a person’s leg movement is seemingly detached with the
person’s movement. More research is needed to accurately replicate this with our
current model. In summary, the contributions of this paper include the recognition of
the motion signals being decomposable into multiple levels. We decompose the signal
to facilitate automatic video frame generation in the latent space. We propose models
for the global and local motions in the latent space and evaluate via experiments.

2 Literature Review

With the introduction of variational autoencoder (VAE) [2] and generative adversarial
networks (GAN) [3], image and video generation problems have become robustly
solvable. For example, VGAN adopts GAN to generate videos [4], which also implies
that spatial and temporal dimensions have identical properties. TGAN was proposed to
separately generate temporal codes and images from the said codes [5]. Since videos
can be viewed as sequences of coherent images, they could be processed via recurrent
neural networks (RNN) such as LSTM [6]. MoCoGAN is a good example [1].

There are also works in video generation. Mathieu et al. [7] worked on a loss
function to improve the fidelity. Walker et al. [8] used human pose information to act as
a higher-level abstraction for GAN. Liang et al. [9] and Liu et al. [10] adopted optical
flow as additional feature for the generative model. Chan et al. [11] proposed a motion
transfer method for human subjects with stick figure as an intermediate representation
to enable a dancer’s motion to be transferred to another person via video.

There seems to be relatively few works on video generation models controllable by
multiple key frame inputs. VGAN, TGAN and MoCoGAN allow a video to be gen-
erated by a conditional image input. Motion codes in MoCoGAN could also be
transferred from one video to another, but it is unclear how easy it is to control and get
the motion codes. Wang et al. [12] proposed a video-to-video synthesis model that
could translate a video from one domain to another. Although the result is impressive,
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it requires another video to generate a new video. Controllability of the video gener-
ation process via a few specific video key frames as in animation context remains
lacking.

3 Methodology

The key idea of the proposed model is to separate motion into its global and local
components. We will first discuss how the global path could be modelled, followed by
the local pattern. With the global path, we can draw a smooth path in the latent space
for generating a video. How this latent path could fit the input key frames will then be
discussed. For the local pattern, we can use a periodic function to model.

3.1 Global Motion

For the global motion path, we have chosen a VAE framework [2]. A GAN-based
solution does not quite work with the idea of latent path, perhaps due to the fact that
GAN does not explicitly model the distribution of the latent space. On the other hand,
VAE explicitly models the distribution of the latent space and hence, the distance
between the points is meaningful. This allows us to easily apply Euclidean geometry
techniques such as Bezier curves in the latent space. However, we make no claim that
this is the reason why GAN fails in our experiments.

In order to model latent paths, we propose that the input key frames (images) x be
projected first into the latent space via an encoder FE such that (zc, zg

(t)) = FE(x
(t)) where

zc is the content code, zg is the global motion code [1] and t is the time step. Content
code models the content in a video frame and therefore should be consistent throughout
all the frames of a video while motion code models the motion in a video and therefore
represents the changes between frames. zc and zg are both sampled from prior distri-
butions Pzc and Pzg . Similar to [1], we make a distinction between content and motion
by fixing zc for generating all frames (by picking a zc from one of the encoded key
frames). Then the path could be drawn such that it passes through the latent space
projection zg ={…, zg

(t), …} of all input key frames. Let us first consider the simplistic
case where only the starting and ending frames are the inputs such that zg = {zg

(0),
zg
(T−1)} (Fig. 1), where T is the total number of frames of the to-be-generated video. The

latent path will simply be a line which samples the in-between global motion code
c
z tð Þ
g

such that
c
z tð Þ
g ¼ z 0ð Þ

g 1� t
T�1

� �þ z T�1ð Þ
g

t
T�1

� �
. Each video frame could then be con-

structed by decoding the consecutive global motion code bzg ¼ c
z 0ð Þ
g ; . . .;

c
z tð Þ
g ;

�
. . .;

d
z T�1ð Þ
g g with the decoder FD such that the video v = FD(zc, bzg ).

For a three key frames scenario (Fig. 1), a quadratic Bezier curve in the latent space
will be required. It is worth pointing out that although the first and last control points of
the Bezier curve, c(0), c(2), lie on the curve, the middle one does not. Hence, the second
control point c(1) needs to be computed for the curve to pass through the second key
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frame x Mkð Þ, where Mk is the time step of the second key frame. This second control
point c(1) is computed as in Eq. (1).

c 1ð Þ ¼ � c 0ð Þ 1� Mk
T�1

� �2 þ c 2ð Þ Mk
T�1

� �2�z Mkð Þ

2 1� Mk
T�1

� � Mk
T�1

� � ð1Þ

3.2 Local Motion Pattern

To model the local motion pattern, we propose using a periodic function in the latent
space. Here, we have chosen the sine function. Although we will show that using a sine
function is possible, it is not robust and requires a specific design in order to work. So,
we will show here an architecture which we have found to be usable. That is, it is able
to facilitate in the separation of the global and local motions.

Ideal Modeling. Since the original purpose of the periodic function in the latent space
is to model the repeating local motion, ideally the local motion codes sampled from this
function should be repeated every specific time interval. Therefore, the function should

be temporal-based such that the latent local motion z tð Þ
l ¼ sin t

T

� �
. Using only one sine

curve is too simplistic for modeling. Inspired by the Fourier transformation, we instead
propose that there should be multiple sine curves. Internally, the neural network could
be expected to combine the output of multiple sine curves (a sine curve for each
dimension) to model more complex periodic functions.

In our first attempt, we allow the model to choose the amplitude, frequency and
phase shift as in Eq. (2). Specifically for our case, (zc, zg

(t), zs)= FE(x
(t)), where zs is

sampled from Pzs . Our encoder now generates codes for the local motion, as shown in
Eq. (2):

z tð Þ
l ¼ zasin zb

t
T

� �
þ zu

� �
ð2Þ

where zs={za, zb, zu} and sin(�) is an element-wise sine function. The reason why the
sine curve parameters zs do not have a temporal component (t) is that the sine curve
should remain the same throughout the entire video (i.e. picking a zs from one of the

Fig. 1. Illustration of latent paths. The left and right are the latent paths drawn given two and
three conditional key frames input respectively.

Multi-level Motion-Informed Approach for Video Generation 193



encoded key frames, similar to how we treat zc). Regardless, our experiments show that
this ideal approach does not quite work as the model simply disregards the contribution
from the local motion model. We suspect that the periodic nature of the sine curve
could have led to local minima which could have trapped the search for the optimal
solution during the training process.

Modeling with Forced Step Observing the deficiency of the ideal model with a
number of free parameters, we would like to impose additional constraints, in our
alternative model known as “forced steps” (see Fig. 2). This model tries to predict how
far in a phase this time step should move with an RNN such that:

s tð Þ ¼ r z tð Þ
u

� �
þ s t�1ð Þ ð3Þ

z tð Þ
l ¼ zasin s tð Þ

� �
ð4Þ

where zs={za, zu
(t)} and r(�) is a sigmoid function. Here, the frequency component is

dropped. This is because if the model controls which phase is to be sampled for each
time step (Fig. 2), effectively it is also controlling the frequency of the curve. We found
that this model is capable of separating the global and local motions which we will
show later. This solution is based on the assumption that the ideal model experiences
difficulties crossing the local minima induced by the sine curves. Instead, we encourage
the model to move across the local minima with forced phase steps.

3.3 Latent Path

One of the key goals of this paper is to utilize a latent path to generate a smooth video
given an arbitrary number of input key frames. It is possible that the latent path is
immediately drawn based on the number of input key frames initially. For example,
given five key frames we draw a quartic Bezier curve. However, this limits the flex-
ibility of the latent path as the number of inputs needs to be known prior. Instead, it is
proposed that it is better to use Bezier spline to draw the path. To utilize Bezier spline,
we propose two strategies, extension and connection.

Extension. Given a path segment pA and an additional key frame, we need to smoothly
extend the latent path such that it could cross the latent representation of the newly

added input key frame image z TA þTB�1ð Þ
g , where TB is the number of frames of the

Fig. 2. The left is the ideal model while the right is the forced step model. In contrast to the ideal
model which has fixed steps, the forced step model generates a step for each time step.
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extended path pB (Fig. 3). In order for the new composite path to be smooth
throughout, there must not be sudden changes in the tangents of the path. Obviously,
the point that would cause problem in this case is where the path is to extend. To ensure
a smooth extension from that point, it is proposed that the extended path pB be a
quadratic Bezier curve and its second control point cB

(1) be computed as follows:

c 1ð Þ
B ¼ c

McA�1ð Þ
A þ c

McA�1ð Þ
A � c

McA�2ð Þ
A

c
McA�1ð Þ

A � c
McA�2ð Þ

A

���� ���� �
zTA þTB�1
g � c

McA�1ð Þ
A

���� ����
2

ð5Þ

where McA is the number of control points of path segment pA. Note that since pA and

pB meet at z TA�1ð Þ
g , c 0ð Þ

B ¼ c Mc�1ð Þ
A .

Connection. Given two path segments pA and pC, we need to smoothly connect the
two latent paths by drawing an in-between path pB. Similar to extension, we need to
consider the tangents. However this time, we need to consider tangents at the end of pA
and the start of pC. We will connect the two latent paths with a cubic Bezier curve
(Fig. 3). Its second and third control points could be computed similar to extension as:

c 1ð Þ
B ¼ c

McA�1ð Þ
A þ c

McA�1ð Þ
A � c

McA�2ð Þ
A

c
McA�1ð Þ

A � c
McA�2ð Þ

A

���� ���� �
c 0ð Þ
A � c McC�1ð Þ

C

��� ���
2

ð6Þ

c 2ð Þ
B ¼ c 0ð Þ

C þ c 1ð Þ
C � c 0ð Þ

C

c 1ð Þ
C � c 0ð Þ

C

��� ��� �
c 0ð Þ
C � c

McC�1ð Þ
A

���� ����
2

ð7Þ

3.4 Proposed Model

We combine all the methods described above to complete our proposed model. In our
experimental prototype, the global motion code zg is computed as in Sect. 3.1. The
local motion code zl is computed as in Sect. 3.2. When we attempt to generate a video,
we adopt the strategies in Sect. 3.3. Video frames are generated by the decoder from

Fig. 3. The extensions (left) and connections (right) of latent paths could be achieved by
drawing a new path pB with control points without causing a sudden change at the ends of the
paths.
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latent inputs such that a video frame v(t)= FD(zc;
c
z tð Þ
g ; z tð Þ

l ). The training objective of our
proposed VAE model with parameters h is as follow:

Jh ¼
XMc�1

m¼0
DKL qh z k mð Þð Þjk mð Þ

� �
jjpz zð Þ

h i
Þ � klatent

þEqh z kð Þjkð Þ
XT�1

t¼0
L2 FDh R z kð Þ;

t
T � 1

� �� �
; x

� �h i
� krec

ð8Þ

where latent vector z(t)={zc, zg
(t), zl

(t)}, k is the set of key frames, k(m) is the mth key
frame, R is a latent function that computes the latent code for each time step and ks are
hyperparameters. The former term is the latent loss while the latter term is the
reconstruction loss. To obtain zu

(t) for each time step, a string of GRU [13] cells as an
RNN is used with the initial state h0={zc, zu

(0)}. Each GRU cell at time step t will be fed

with the tangent of the latent path z tð Þ
Dg and the previous prediction zu

(t−1). An illustration
of the model is shown in Fig. 4.

4 Experiments

As our proposed model involves a global motion and a local motion component, we
intend to evaluate them separately. The proposed model will be evaluated and com-
pared with MoCoGAN [1] and VGAN [4]. Both MoCoGAN and VGAN models used
spatio-temporal convolutional networks as discriminators. However, since the video
generated does not have a fixed length here, we use a discriminator with spatial

Fig. 4. The proposed model separates the global and local signals via a latent path and a latent
sine curve. An encoder-decoder (FE and FD) pair is used to project an image to and from the
latent space. A string of GRU cells is used to predict zu

(t) for each time step t.
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convolutional layers and GRU-based RNN for the temporal connection instead. Here,
we also use two datasets in the evaluation, the walking videos in KTH action database
[14] and the Weizmann Action database [15]. The KTH walking dataset consists of 75
videos with 25 people walking from left to right and right to left. Given a video length
of 15, 11284 samples can be extracted from the dataset. The Weizmann Action dataset
consists of 72 videos of 9 people performing 4 actions such as hand-waving and
crouching. Given a video length of 15, 2069 samples can be extracted.

4.1 Three Conditional Images

We first evaluate the model given three conditional images, i.e. three input key frames.
When evaluating, one of the questions we want to answer is whether the proposed
model is able to generate a smooth video given arbitrary number of input frames. This
is a question of interest as though models such as MoCoGAN or VGAN could only
accept a fixed number of input images, we can still use them to generate video seg-
ments given two input key frames then merge all video segments together into a single
video. However, it is hypothesized that since the models generate each segment
independently, the transition before and after key frames will not be smooth. Thus, it is
expected that the proposed model would produce an improved performance over
models that do not consider arbitrary number of inputs.

Quantitatively, we make use of four metrics to evaluate the performance of our
model. Average content distance (ACD) and mean-square error (MSE) are two com-
mon metrics. Nevertheless, since they are more useful in evaluating the content sim-
ilarity between frames while we are more interested in evaluating the smoothness
between frames, we propose two metrics, first-order optical flow distance (OFD) and
angular-sensitive smoothness distance (ASD) to evaluate the smoothness of a video.

The OFD metric is defined as in Eq. (9):

OFD f tð Þ
� �

¼ 1
NI

XNI

i
f tþ 1ð Þ
i � f t�1ð Þ

i

��� ��� ð9Þ

where f is the optical flow map, NI the number of pixels and i the index of a pixel. OFD
approximates the acceleration of pixel movements. The expectation is that this metric
could detect sudden movement which may be perceptually viewed as unsmooth.
However, the OFD leans towards measuring the change in speed. Two flow changes
with the same magnitude, but different directions will be measured similarly. To make
the direction carry a stronger influence on the metric, the ASD metric is introduced as
in Eq. (10):

ASD f tð Þ
� �

¼ 1
NI

XNI

i

f tð Þ
hi

� f t�1ð Þ
hi

��� ���
p

þ 1

0@ 1A f tð Þ
mi � f t�1ð Þ

mi

��� ��� ð10Þ

where fh is the angles on a flow map and fm is the magnitudes on a flow map.
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To evaluate whether the content is consistent, we followed [1] in adapting the ACD
metric as in Eq. (11):

ACD I tð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

c

1
NI

XNI

i
I tð Þ
i;c �

XNI

i
I t�1ð Þ
i;c

� �	 
2
s

ð11Þ

where I is a video frame and c is the number of color channels. The MSE metric is
similar to ACD. It compares each frame to the previous frame as in Eq. (12).

MSE I tð Þ
� �

¼ 1
NI

XNI

i
I tð Þ
i;c � I t�1ð Þ

i;c

� �2
ð12Þ

In our evaluation, we give the proposed model three key frames and use it to
generate a video. We evaluate the smoothness of the video by using OFD and ASD to
check whether the frames before and after key frames are smooth transitions. Given
each key frame with time step tk, we use OFD at time step tk and ASD at tk and tk+ 1.
To verify the content consistency, we adopt ACD and MSE for each frame consecu-
tively. As shown in Tables 1 and 2, the proposed model has achieved its intended effect
on generating a video, that is, smoother, since it generally achieves a better OFD and
ASD. However, it does not achieve a better score in terms of content consistency (ACD
and MSE) in general. This outcome is expected as GAN architectures generally per-
form better than VAE in terms of content fidelity. Qualitatively, we can also see that the
proposed model could maintain a better smoothness before and after the key frames as
shown in Fig. 5.

Table 1. Model scores when conditioned on 3 key frames from the KTH walking dataset.

OFD ASD ACD MSE

Proposed model 0.03366 0.03385 0.0008766 0.008037
VGAN 0.05214 0.04689 0.0005443 0.007557
MoCoGAN 0.04096 0.03769 0.0006116 0.010060

Table 2. Model scores when conditioned on 3 key frames from the Weizmann dataset.

OFD ASD ACD MSE

Proposed model 0.01359 0.01629 0.00004677 0.001511
VGAN 0.01599 0.01558 0.00014130 0.001895
MoCoGAN 0.01604 0.01722 0.00011010 0.001661
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4.2 Extending and Connecting Latent Paths

Next, we evaluate the model with different number of input frames, two, three, four and
five. For the four and five input key frames, we need to use the latent path strategies
mentioned in Sect. 3.3. The results on extending and connecting the latent path are
shown in Fig. 6.

As shown in Fig. 7, the proposed model is generally able to achieve a better
smoothness given different number of input key frames. A noticeable exception is
when the model is generating with only two key frames. This outcome is expected as
the global path modeling only has an advantage when the number of input frames is
more than two. This result shows that the latent path is a viable solution to the problem
with an arbitrary number of input frames. There seems to be no trend between the

Fig. 5. Results of the three video generation models conditioned on three key frames. Each set
contains two videos with the first, eighth and fifteenth frames as the key frames. From top to
bottom, the sets represent videos generated by the proposed model, VGAN and MoCoGAN
respectively. Readers can visit https://youtu.be/cj-HsAro_Zk for the video demonstration.

Fig. 6. Results of extending a latent path to pass through a key frame in the latent space (left)
and connecting two latent paths by drawing an in-between latent path (right). The dark blue circle
indicates the key frame inputs. (Color figure online)
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number of inputs and the ASD. However, there seems to be a subtle negative corre-
lation between the number of inputs and the OFD. We suspect that the reason is that
given more conditional key frames, the in-between frames generated will become more
constrained and therefore it will be more likely for the model to be able to generate
video frames that could be coherent with all others.

4.3 Separation of Global and Local Motion

To visualize the separation of the global and local motion, we have devised an
experiment that manipulates the global and local latent space separately. Given a string
of latent vector z(t)={zc, zg

(t), zl
(t)}, we generate two results where one locks zg

(t) such that

v(t)= FD(zc;
c
z 0ð Þ
g ; z tð Þ

l ), and the other locks zl
(t) such that v(t)= FD(zc;

c
z tð Þ
g ; z 0ð Þ

l ). The results
are depicted in Fig. 8. It is shown that our model is able to achieve a separation of the
global and local motions. When zl is locked, the local motion is missing while when zg
is locked, the global motion is missing.

We also conduct an experiment to see if the local motion could be tuned to create
special effects like a person moonwalking. To achieve that, we multiply the value with

r z tð Þ
u

� �
produced by the local motion component described in Sect. 3.2. Effectively, we

have scaled the step to make it go further or vice versa. In Fig. 9, we multiply it by 1.5
and 0.5 to make it go faster and slower respectively. The results show that although the
person indeed moves faster and slower, there are strong artefacts. To fully utilize local
motion tuning for application, further work is needed.

Fig. 7. The results when given different number of input key frames for the different models.
The left is evaluated in OFD while the right is evaluated in ASD.

Fig. 8. Video generated with global motion (above) and local motion (below) locked
respectively. It can be seen that when global motion is locked, the model tries to keep the
person in the same place while still generating the local motion. Readers can visit https://youtu.
be/PYGC0jMa9vw for the video demonstration.
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5 Conclusion and Future Work

Inspired by the observation that a motion signal could be decomposed into multi-level
signals, we proposed a model to materialize our observation and conducted a feasibility
study of the idea via decomposing a motion into a global path and a local pattern. We
suggested that the global path could be represented as a latent Bezier spline while the
local pattern could be represented as a latent sine function. To evaluate the smoothness
of the generated video, two measurement metrics were also proposed. Our experiments
showed that our proposed model was capable of generating a video given some con-
ditional key frames with general improvement on smoothness. One of the experiments
also demonstrated the decomposition of the global and local motion.

In the future, we will expand the number of motion levels to completely model the
multi-level motion in representing a rich continuum that spans from the very global
motion to the very local motion. This means that a hierarchy of motions could be
formed to increase the controllability of the video generation. With human walking as
an example, we could control from the movement of the whole body, to the movement
of the legs, then to the ankles and further down to the feet, and so on to even more local
parts. Instead of just a global motion parented to a local motion, each level of motion
would be parented to another motion one level down in general.
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