
José Pereira
Laura Ricci (Eds.)

 123

LN
CS

 1
15

34

19th IFIP WG 6.1 International Conference, DAIS 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings

Distributed Applications
and Interoperable Systems

Lecture Notes in Computer Science 11534

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

José Pereira • Laura Ricci (Eds.)

Distributed Applications
and Interoperable Systems
19th IFIP WG 6.1 International Conference, DAIS 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019
Proceedings

123

Editors
José Pereira
INESC TEC and University of Minho
Braga, Portugal

Laura Ricci
University of Pisa
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22495-0 ISBN 978-3-030-22496-7 (eBook)
https://doi.org/10.1007/978-3-030-22496-7

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3341-9217
https://orcid.org/0000-0002-8179-8215
https://doi.org/10.1007/978-3-030-22496-7

Foreword

The 14th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Kongens Lyngby, Denmark, during June 17–21, 2019. It was
organized by the Department of Applied Mathematics and Computer Science at the
Technical University of Denmark.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprised three conferences:

– COORDINATION, the IFIP WG 6.1 21st International Conference on Coordina-
tion Models and Languages

– DAIS, the IFIP WG 6.1 19th International Conference on Distributed Applications
and Interoperable Systems

– FORTE, the IFIP WG 6.1 39th International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing
subjects, ranging from theoretical foundations and formal description techniques to
systems research issues.

In addition to the individual sessions of each conference, the event included several
plenary sessions that gathered attendants from the three conferences. This year, the
general chair and the DisCoTec Steering Committee joined the three DisCoTec
conferences in the selection and nomination of the plenary keynote speakers, whose
number was accordingly increased from the traditional three to five. The five keynote
speakers and the title of their talks are listed below:

– Prof. David Basin (ETH Zürich, Switzerland) – “Security Protocols: Model
Checking Standards”

– Dr. Anne-Marie Kermarrec (Inria Rennes, France) – “Making Sense of Fast Big
Data”

– Prof. Marta Kwiatkowska (University of Oxford, UK) – “Versatile Quantitative
Modelling: Verification, Synthesis and Data Inference for Cyber-Physical Systems”

– Prof. Silvio Micali (MIT, USA) – “ALGORAND – The Distributed Ledger for the
Borderless Economy”

– Prof. Martin Wirsing (LMU, Germany) – “Toward Formally Designing Collective
Adaptive Systems”

As is traditional in DisCoTec, an additional joint session with the best papers from
each conference was organized. The best papers were:

– “Representing Dependencies in Event Structures” by G. Michele Pinna
(Coordination)

– “FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps” by
Lakhdar Meftah, Romain Rouvoy and Isabelle Chrisment (DAIS)

– “Psi-Calculi Revisited: Connectivity and Compositionality” by Johannes Åman
Pohjola (FORTE)

Associated with the federated event were also two satellite events that took place:

– ICE, the 12th International Workshop on Interaction and Concurrency Experience
– DisCoRail, the First International Workshop on Distributed Computing in Future

Railway Systems

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2019 was only possible thanks to the
dedicated work of the Organizing Committee, including Francisco “Kiko” Fernández
Reyes and Francesco Tiezzi (publicity chairs), Maurice ter Beek, Valerio Schiavoni,
and Andrea Vandin (workshop chairs), Ann-Cathrin Dunker (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG 6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing infrastructure, the Nordic IoT Hub for their sponsorship, and the Technical
University of Denmark for providing meeting rooms and additional support.

June 2019 Alberto Lluch Lafuente

vi Foreword

Preface

This volume contains the papers presented at DAIS 2019, the 19th IFIP International
Conference on Distributed Applications and Interoperable Systems, sponsored by the
IFIP (International Federation for Information Processing) and organized by the IFIP
Working Group 6.1. The DAIS conference series addresses all practical and conceptual
aspects of distributed applications, including their design, modeling, implementation
and operation, the supporting middleware, appropriate software engineering method-
ologies and tools, as well as experimental studies and applications.

DAIS 2019 was held during June 17–21, 2019, in Kongens Lyngby, Denmark, as
part of DisCoTec, the 12th International Federated Conference on Distributed Com-
puting Techniques. There were 28 submissions for DAIS. Each submission was
reviewed by four Program Committee (PC) members. The review process included an
in-depth discussion phase, during which the merits of all papers were discussed by the
PC. The committee decided to accept nine full papers and two short papers.

Accepted papers address challenges in multiple application areas, such as the
Internet of Things, cloud and edge computing, and mobile systems. A number of
papers focus on middleware for managing concurrency and consistency in distributed
systems, including data replication and transactions. There is also an emphasis on
distributed systems security, including the evaluation and application of trusted exe-
cution environments and applications of blockchain technology.

The conference was made possible by the work and cooperation of many people
working in several committees and organizations that are listed in these proceedings. In
particular, we thank the Program Committee members for their commitment and
thorough reviews and for their active participation in the discussion phase, and all the
external reviewers for their help in evaluating submissions. Finally, we also thank the
DisCoTec general chair, Alberto Lluch Lafuente, and the DAIS Steering Committee
chair, Rui Oliveira, for their constant availability, support, and guidance.

June 2019 José Pereira
Laura Ricci

Organization

Steering Committee

Alysson Bessani Universidade de Lisboa, Portugal
Sara Bouchenak INSA Lyon, France
Lydia Y. Chen IBM Research Zurich Lab, Switzerland
Jim Dowling Swedish Institute of Computer Science, Kista, Sweden
Frank Eliassen University of Oslo, Norway
Pascal Felber Université de Neuchâtel, Switzerland
Karl M. Goeschka FH Technikum Wien, Austria
Evangelia Kalyvianaki University of Cambridge, UK
Rüdiger Kapitza Technical University of Braunschweig, Germany
Kostas Magoutis FORTH-ICS, Greece
Rui Oliveira (Chair) Universidade do Minho, Portugal
Peter Pietzuch Imperial College London, UK
Hans P. Reiser University of Passau, Germany
Romain Rouvoy University of Lille 1, France
François Taiani Université de Rennes 1, France

Program Committee

Sonia Ben Mokhtar LIRIS CNRS, France
Silvia Bonomi Sapienza University of Rome, Italy
Sara Bouchenak INSA Lyon, France
Manuel Bravo IMDEA Software Institute, Madrid, Spain
Frank Eliassen University of Oslo, Norway
Mohammed Erradi ENSIAS Rabat, Morocco
David Eyers University of Otago, New Zealand
Davide Frey Inria, France
Barbara Guidi University of Pisa, Italy
Jordi Guitart Universitat Politècnica de Catalunya, Spain
Mark Jelasity University of Szeged, Hungary
Vana Kalogeraki Athens University of Economics and Business, Greece
Boris Koldehofe TU Darmstadt, Germany
Mark Little RedHat, UK
Kostas Magoutis University of Ioannina and FORTH-ICS, Greece
Miguel Matos INESC-ID and IST Universidade de Lisboa, Portugal
Ibéria Medeiros LaSIGE, Universidade de Lisboa, Portugal
Claudio Antares Mezzina Università di Urbino, Italy
Francesc D. Muñoz-Escoí Instituto Tecnológico de Informática, UPV, Valencia,

Spain
Emanuel Onica Alexandru Ioan Cuza University of Iasi, Romania

Claudio Palazzi University of Padova, Italy
Marta Patiño-Martinez Universidad Politécnica de Madrid, Spain
João Paulo INESC TEC and University of Minho, Portugal
José Pereira (Co-chair) INESC TEC and University of Minho, Portugal
Hans P. Reiser University of Passau, Germany
Laura Ricci (Co-chair) University of Pisa, Italy
Etienne Rivière UCLouvain, Belgium
Altair O. Santin PUCPR, Brazil
Valerio Schiavoni Université de Neuchâtel, Switzerland
Marco Serafini University of Massachusetts Amherst, USA

DisCoTec Organizing Committee

Alberto Lluch Lafuente
(General Chair)

DTU, Denmark

Kiko Fernández-Reyes
(Publicity Chair)

Uppsala University, Sweden

Francesco Tiezzi
(Publicity Chair)

University of Camerino, Italy

Andrea Vandin
(Workshops Chair)

DTU, Denmark

Maurice ter Beek
(Workshops Chair)

CNR, Italy

Valerio Schiavoni
(Workshops Chair)

Université de Neuchâtel, Switzerland

Ann-Cathrin Dunker
(Logistics)

DTU, Denmark

Additional Reviewers

Vilmar Abreu Jr.
Maryem Ait El Hadj
Yahya Benkaouz
Christian Berger
Johannes Köstler
Tien Dat Le
Federico Lombardi

Manisha Luthra
Stewart Sentanoe
Maicon Stihler
Benjamin Taubmann
Dimitrios Tomaras
Eduardo Viegas
Rachid Zennou

x Organization

DisCoTec Keynotes

Versatile Quantitative Modelling: Verification,
Synthesis and Data Inference
for Cyber-Physical Systems

Marta Kwiatkowska

University of Oxford, UK

Abstract. Computing systems are becoming ever more complex, encompassing
autonomous control of physical processes, stochasticity and inference from
sensor data. This lecture will demonstrate the versatility of quantitative mod-
elling and verification to aid the design of cyber-physical systems with machine
learning components. Topics discussed will include recent advances in
probabilistic/quantitative verification, template-based model synthesis,
resource-performance trade off analysis, attacks on biometric security, and
robustness guarantees for machine learning components. The lecture will con-
clude by giving an overview of future challenges in this field.

ALGORAND – The Distributed Ledger
for the Borderless Economy

Silvio Micali

MIT, USA

Abstract. A distributed ledger is a tamperproof sequence of data that can be
read and augmented by everyone. Distributed ledgers stand to revolutionize the
way democratic societies and traditional economies operate. They secure all
kinds of traditional transactions –such as payments, asset transfers, titling– in the
exact order in which they occur; and enable totally new transactions –such as
cryptocurrencies and smart contracts. They can remove intermediaries and usher
in a new paradigm for trust. As currently implemented, however, distributed
ledgers cannot achieve their enormous potential. The global participation and
trust necessary to realize an inclusive and borderless economy require sub-
stantially better technology. Algorand is an alternative, democratic, and efficient
distributed ledger. Unlike prior ledgers based on ‘proof of work’, it dispenses
with ‘miners’. Indeed, Algorand requires only a negligible amount of compu-
tation. Moreover, its transaction history does not ‘fork’ with overwhelming
probability: i.e., Algorand guarantees the finality of all transactions. In addition,
Algorand guarantees flexible self-governance. A successful society and econ-
omy must be able to evolve. A cryptocurrency cannot be an ocean liner on
autopilot. By using its hallmark propose-and-agree process, Algorand can
consensually correct its course, as necessary or desirable, without any ‘hard
forks’, to meet the current and future needs of the community.

Making Sense of Fast Big Data
(DAIS Keynote)

Anne-Marie Kermarrec

Inria Rennes, France

Abstract. Computing systems that make human sense of big data, usually called
personalization systems or recommenders, and popularized by Amazon and
Netflix, essentially help Internet users extracting information of interest to them.
Leveraging machine learning techniques, research on personalization has mainly
focused on improving the quality of the information extracted, according to
some measure of quality. Yet, building an operational recommender goes far
beyond, especially in a world where data is not only big but also changes very
fast. This talk will discuss system challenges to scale to a large number of users
and a growing volume of fastly changing data to eventually provide real-time
personalization.

Contents

Syncpal: A Simple and Iterative Reconciliation Algorithm
for File Synchronizers . 1

Marius Shekow

Check-Wait-Pounce: Increasing Transactional Data Structure
Throughput by Delaying Transactions . 19

Lance Lebanoff, Christina Peterson, and Damian Dechev

Putting Order in Strong Eventual Consistency. 36
Kevin De Porre, Florian Myter, Christophe De Troyer,
Christophe Scholliers, Wolfgang De Meuter, and Elisa Gonzalez Boix

Composable Actor Behaviour . 57
Sam Van den Vonder, Joeri De Koster, and Wolfgang De Meuter

Gossip Learning as a Decentralized Alternative to Federated Learning 74
István Hegedűs, Gábor Danner, and Márk Jelasity

Using Trusted Execution Environments for Secure Stream Processing
of Medical Data: (Case Study Paper) . 91

Carlos Segarra, Ricard Delgado-Gonzalo, Mathieu Lemay,
Pierre-Louis Aublin, Peter Pietzuch, and Valerio Schiavoni

Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems . . . 108
Zoltán Szabó, Krisztián Téglás, Árpád Berta, Márk Jelasity,
and Vilmos Bilicki

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps . . . 116
Lakhdar Meftah, Romain Rouvoy, and Isabelle Chrisment

On the Performance of ARM TrustZone: (Practical Experience Report) 133
Julien Amacher and Valerio Schiavoni

CapBAC in Hyperledger Sawtooth . 152
Stefano Bistarelli, Claudio Pannacci, and Francesco Santini

Developing Secure Services for IoT with OP-TEE: A First Look
at Performance and Usability . 170

Christian Göttel, Pascal Felber, and Valerio Schiavoni

Author Index . 179

Syncpal: A Simple and Iterative
Reconciliation Algorithm for File

Synchronizers

Marius Shekow(B)

Fraunhofer FIT, Sankt Augustin, Germany
marius.shekow@fit.fraunhofer.de

Abstract. Today file synchronizers are tools often used to facilitate
collaboration scenarios and data management across multiple devices.
They replicate the file system, e.g. from a cloud storage to a device disk,
achieving convergence by only transmitting detected changes. A popular
variant available in a plethora of products are state-based file synchro-
nizers such as the Dropbox client. They detect operations by computing
the difference between a previously persisted state and the respective
current state. However, state-based synchronization is difficult because
we need to detect and resolve conflicting operations as well as the prop-
agation order of non-conflicting operations. This work presents Syncpal,
an algorithm that reconciles two divergent file systems using an itera-
tive approach. It first handles conflicts, one at a time, making sure that
resolving one conflict does not negatively affect other ones, while avoid-
ing conflicts whenever possible. It then finds order dependencies (and
breaks cycles) between the remaining non-conflicting operations to avoid
the violation of operation preconditions during propagation. This work
is relevant for file synchronizer researchers and developers who want to
improve their products with an algorithm whose iterative nature reduces
the overall complexity and the probability of bugs. In addition to our
proposed algorithm and a formal analysis of the underlying problem,
our validation approach for the proposed algorithm includes the presen-
tation of a full-scale implementation of an exemplary file system model.

Keywords: File synchronizer · File system · Optimistic replication ·
Conflict detection

1 Introduction

Today tools like word processors are a core component in digital workflows. They
are used to create large parts of the user’s data in the form of files, which are
stored and distributed on multiple devices in a hierarchical file system. However,
copying files and directories between storages causes various problems, both for
individual users and collaborative settings. For instance, users may fail to locate
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 1–18, 2019.
https://doi.org/10.1007/978-3-030-22496-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_1&domain=pdf
http://orcid.org/0000-0003-3477-8446
https://doi.org/10.1007/978-3-030-22496-7_1

2 M. Shekow

the correct, up to date version of a document on the right device [5,8,22], and
files are prone to lose their context and meta-data information when transferred
via Email or instant messaging [25]. One convenient solution for such challenges
is data synchronization. File synchronizers [2] are synchronizers whose data is
the file system, including its namespace structure and file contents. They pro-
vide optimistic replication to otherwise isolated file systems, with weak, even-
tual consistency [21] guarantees. In particular, cloud storage file synchronizers
like Dropbox, Google Backup and Sync, OneDrive, ownCloud and others1 have
become popular over the last ten years, indicated by the high number of their
users [9,18]. They synchronize two file system replicas—a directory on the local
storage of a device, and a directory on a cloud storage server, in near real-time.
As they are not integrated on a kernel-level with the operating system, they
use a state-based approach that detects operations by computing the difference
between the current and a persisted file system state.

When using synchronizers files are available on the local disk, thus users can
work offline for extended time periods (e.g. while traveling). The side effect is an
increased chance for conflicting operations as well as long, non-conflicting oper-
ation sequences resulting from users reorganizing the folder hierarchies. These
are challenging to detect and propagate for the synchronizer. For example, a
conflict situation, where the user creates a new file at path ‘/dir/file’ but ‘/dir’
was already deleted on the server, must be detected and resolved in favor of
one of the operations. But even non-conflicting operations can be challenging
to propagate. Consider the situation where the user swaps two objects at paths
‘/x’ and ‘/y’ on the local disk, using three rename operations. The synchro-
nizer’s state-based update detection mechanism detects them as two operations
(move(‘/x’, ‘/y’)+move(‘/y’, ‘/x’). If the corresponding objects were not mod-
ified on the server since the last synchronization (which makes the operations
non-conflicting), the synchronizer cannot apply these two detected move opera-
tions to the server because they would violate the move operation’s precondition
that requires the target location to be free.

Contrary to the marketing materials of industrial synchronizers which
promise that their product “just works”, we observed that they misbehave and
make intransparent decisions for the user - especially when attempting to syn-
chronize after a long offline phase. This includes:

– Inexplicable changes made to the file system, convoluting its structure, e.g.
with file and folder (conflict) copies where no conflict actually happened,

– Ineffective use of network bandwidth, in particular when move operations
were not detected correctly in replica X, causing the synchronizer to re-
transmit large files as new, rather than moving them on replica Y ,

– Bugs or crashes of the file synchronizer, resulting in permanently divergent
replicas, or even data loss.

All these problems cause frustration because users then have to repair direc-
tory structures and file contents manually. The majority of issues can be traced
1 E.g. Amazon Drive, Box, NextCloud, Seafile, SpiderOakOne, LeitzCloud, Tonido,

TeamDrive, Strato HiDrive, or Hubic.

Syncpal: A Simple and Iterative Reconciliation Algorithm 3

back to an incomplete analysis of the underlying file system model (and its
operations) by the synchronizer authors. In this work we contribute Syncpal, a
generic algorithm for file synchronizers that eliminates above side effects, because
it provides a simple and iterative solution to solving conflicts and propagating
non-conflicting operations. It is based on a formally defined file system model,
which makes its individual steps provably correct. Additionally, it is able to
avoid conflicts whenever possible, resolves conflicts without side effects for other
conflicts, and does not replace detected move operations with delete and create
operations. This improves propagation performance, preserves meta-data (which
would otherwise be lost due to the delete operation) and maintains usability,
because users will be able to identify the move operations of their own replica
in the respective operations log of the other replica [20].

We start with providing background on file synchronizers, file systems and
state-based update detection in Sect. 2. After presenting the generic approach in
Sect. 3 we apply it to a concrete file system model in Sect. 4. We briefly present
the evaluation of an implementation of our approach in Sect. 5 and conclude in
Sect. 6.

2 Background

We begin with a short introduction to file synchronizers in Sect. 2.1. As file
systems are the core component being synchronized, we briefly explain differences
in how file systems can be modeled and formally present our own, exemplary
model in Sect. 2.2, which we use in the remainder of this work. In Sect. 2.3 we
briefly explain how operations are detected in a state-based approach.

2.1 File Synchronizers

In [2] the authors describe and coin the term file synchronizer as a user-invoked
program that performs a pair-wise synchronization of two file system replicas.
They describe a state-based approach [21] with three stages, update detection, rec-
onciliation and propagation. In contrast, operation-based approaches like [13,15]
rely on a complete log of operations. Because some file systems (e.g. POSIX
APIs) do not provide such logs, it is reasonable to assume that cloud storage
synchronizers (and other products) use a state-based approach with a similar
three-stage process. State-based approaches persist the file system state (struc-
ture + meta-data) in a database and compute operations by comparing the
persisted and current state, see Sect. 2.3 for more details. Surprisingly, while
there is a plethora of file synchronizer products, the topic has not received much
attention in comparison within academia (neither state- nor operation-based
synchronizers).

2.2 File System Model

Every file synchronizer uses its own internal file system model definition for the
state. An analysis of related works reveals several differences:

4 M. Shekow

– Identity- vs. path-based model : as discussed in [23, section 3] the file system
and its operations can be modeled using the identity-based approach where
each object is identified by a unique ID, or by a path-based approach where
objects are only identified by their path. ID-based approaches include [3,10–
13,23], for path-based approaches see [2,4,15,24].

– Hardlink support for files: an identity-based model may support that a specific
file is linked exactly once, or several times. In the latter case a file’s name
may be part of the file itself, or be part of the parent-child link.

– Directory support: Most file system implementations support directories.
However, alternatives exist, e.g. models that only consist of a set of file paths
and their identities [19, Definition 2.3.1 + section 2.4.4]. Another example is
Git [24] which does not support empty directories.

– Operation support: while the models of all file synchronizers we examined sup-
port create directory, create file and edit operations (that update the content
of a file), support for other operations varies. For example, the model may or
may not offer a move operation, or the delete operation may be modeled as
such, or as a move operation to the garbage directory [13].

Because there may be a mismatch between the internal model definition and
the definitions of the two underlying replicas being synchronized, file synchro-
nizers belong to the category of heterogeneous synchronization [1,6,17].

We now present a formal file system model that is used in the remainder of
this work. It is ID-based, because the file systems industrial synchronizers are
ID-based, too, and because IDs allow to efficiently detect moved objects.

We define the file system F to be a set of tuples where each tuple represents
an object with a unique ID i ∈ I, parent directory ID p ∈ I, type t ∈ T (with
T = {file, dir}), name n ∈ Σ+ (with Σ+ = Σ∗\{ε}), lastmodified meta-datum
l ∈ L and content b ∈ B. I is the set of unique IDs, L is the set of all valid
lastmodified meta-datum values (e.g. N or arbitrary strings), and B is the set
of arbitrary byte sequences, including ε. That is, F ⊂ I × I × T × Σ+ × L × B,
with tuples (ik, pk, tk, nk, lk, bk) with tk = dir =⇒ bk = ε. Several invariants
hold for F :

∀i, j ∈ I : i ∈ list(j) =⇒ type(j) = dir (1)

∀i ∈ I : i /∈ list(i) (2)

∀i, j, k ∈ I : j �= k ∧ i ∈ list(j) =⇒ i /∈ list(k) (3)

∀i ∈ I : iroot /∈ list(i) (4)

∀i ∈ I \ {iroot} : type(i) �= error ⇐⇒ ancestor(iroot , i) (5)

∀i, j, k ∈ I : j �= k ∧ j ∈ list(i) ∧ k ∈ list(i) =⇒ name(j) �= name(k) (6)

where list(i) returns the set of IDs of all tuples whose pk = i (i.e., the set
of immediate child IDs of i); type(i) returns tk of the tuple where ik = i, or

Syncpal: A Simple and Iterative Reconciliation Algorithm 5

error if no such tuple exists; name(i) returns nk of the tuple where ik = i. We
additionally define the predicate

ancestor(i, j) =

⎧
⎪⎨

⎪⎩

true j ∈ list(i)
true ∃k ∈ list(i) : ancestor(k, j)
false otherwise

to express whether the object with ID i is an ancestor of the object with ID j. F is
an arborescence rooted in the well-known object iroot ∈ I with type(iroot) = dir ,
where each object exists exactly once.

The operations with their pre- and postconditions are defined in Table 1.
Function id(i, n) returns the ID of the object with parent i and name n, or error
if no such object exists. lastmodified(i) returns lk of the tuple where ik = i, or
error if no such tuple exists. content(i) returns bk of the tuple where ik = i, or
error .

We refer to [14, Section 8.5] for an equivalent formal definition, which the
authors proved to be correct using the CISE SMT solver [7].

2.3 State-Based Update Detection

State-based update detection means that operations are computed by comparing
the persisted and current state of the tree-shaped data structure. The operations
depend on the data model and there might be slight differences between the
detected operations and those defined in the file system model. For F we detect:

– createdir(i, p, n): a directory was created, when we find i with type(i) = dir
in the current state, but not in the persisted one

– createfile ′(i, p, n, c): a file with content c was created, when we find i with
type(i) = file in the current state, but not in the persisted one

– move(i,u,v,n): an object was moved, when we find i in both states, but with
varying name or parent

– edit ′(i): a file content was edited, when we find i in both states, but with
different lastmodified meta-datum l. For update-detection, the exact content,
i.e., how the file changed, is not relevant yet (edit ′ �= edit)

– delete ′(i,p): an object was deleted when we find i in the persisted state,
but not in the current one. delete ′ is a recursive operation when it affects
a directory. It aggregates all other detected deletefile(j, q) and deletedir(j, q)
operations that affect objects j situated below i, i.e., where ancestor(i, j)
holds. When the synchronizer applies delete ′(i, p) to the other replica in the
propagation stage, it has to apply the corresponding deletefile and deletedir
operations according to a post-order traversal of the file system arborescence.

The computed list of operations does not indicate the exact order of oper-
ations, and some operations are affected by consolidation. See [4,20] who iden-
tified this problem for file systems without move operation support. For F we
find seven consolidation rules presented in Table 2 by examining all operation
pairs. Note that create = createfile ∨ createdir , delete = deletefile ∨ deletedir .

6 M. Shekow

Table 1. File system operations

Operation Description, pre- and post-conditions

createdir(i, p, n) Creates new dir with ID i and name n in parent dir with ID p
Precondition: ¬ancestor(iroot , i) ∧ (ancestor(iroot , p) ∨ p =
iroot) ∧ type(p) = dir ∧ id(p, n) = error
Postcondition:
i ∈ list(p) ∧ type(i) = dir ∧ lastmodified(i) �= error

createfile(i, p, n) Creates new file with ID i and name n in parent dir with ID p
Precondition: see createdir(i, p, n)
Postcondition:
i ∈ list(p) ∧ type(i) = file ∧ lastmodified(i) �= error

move(i, u, v, n) Moves a file or dir with ID i from parent dir with ID u to
parent dir with ID v, and/or change the object’s name to n
Precondition: type(u) = dir ∧ i ∈ list(u) ∧ type(v) = dir
∧id(v, n) = error ∧ ¬ancestor(i, v)
Postcondition: i ∈ list(v) ∧ i /∈ list(u)
Note: ¬ancestor(i, v) ensures that the user cannot move a dir
to a destination dir below it.

deletefile(i, p) Removes the file with ID i from parent dir with ID p
Precondition: ancestor(iroot , i) ∧ type(i) = file
Postcondition:
i /∈ list(p) ∧ ¬ancestor(iroot , i) ∧ lastmodified(i) = error

deletedir(i, p) Removes the empty dir with ID i from parent dir with ID p
Precondition: ancestor(iroot , i) ∧ type(i) = dir ∧ list(i) = {}
Postcondition: see deletefile(i, p)

edit(i, op) Changes the byte content of file with ID i by performing the
operation op (e.g. adding, removing or changing bytes at
specific positions within the file)
Precondition: ancestor(iroot , i) ∧ type(i) = file. Let
lpre = lastmodified(i)
Postcondition: ancestor(iroot , i) ∧ lastmodified(i) �= lpre

3 Approach

This section describes our approach in generic steps, independent of a concrete
data model, such as F . It consists of two phases. The preparation phase described
in Sect. 3.1 is done offline before implementing the software, whereas the execu-
tion phase applies the findings of phase 1, online at run-time of the synchronizer,
see Sect. 3.2.

3.1 Phase 1: Preparation

In the preparation phase we get an understanding of the problems that can occur
during synchronization by building and closely examining the file system model.
We found that an analysis of the operation preconditions reveals two classes of
issues: first, two concurrent operations (each applied to a different replica) can

Syncpal: A Simple and Iterative Reconciliation Algorithm 7

Table 2. Operation consolidation rules

Operation consolidation rule Explanation

move(i, u, v1, n1) + move(i, v1, v2, n2) ∼=
move(i, u, v2, n2)

An object moved several times is
detected as moved exactly once

createfile(i, p, n) + edit(i, op) ∼=
createfile ′(i, p, n, c)

Creating an empty file and
changing its content is detected
as a non-empty file

create(i, p, n1) + move(i, p, v, n2) ∼=
create(i, v, n2)

Creating and moving an object
is detected as if it were created
in the move operation’s
destination

edit(i, op1) + edit(i, op2) ∼= edit ′(i) Editing a file multiple times is
detected as a single edit ′

operation

create(i, p, n) + delete(i, p) ∼= [] A created object that is
subsequently deleted is not
detected at all

edit(i, op) + deletefile(i, p) ∼=
deletefile(i, p)

When an edited file is
subsequently deleted, only the
deletion is detected

move(i, u, v, n) + delete(i, v) ∼=
delete ′(i, u)

When a moved object is
subsequently deleted, only the
deletion is detected

cause conflicts that a synchronizer needs to handle. Second, state-based update
detection will not detect the actual operations (and their order) applied by the
user, but only an equivalent, unordered set. A precondition analysis must extract
order dependencies (and even identify cycles), otherwise the synchronization of
operations may fail. The following sections describe the individual steps.

Step 1: File System Model Formalization: The first step is to formally
define the file system model the synchronizer uses internally, that consists of a
formal definition of its elements, invariants and operations (with their pre- and
postconditions). We recommend an automated approach where a model (initially
built by hand) is iteratively refined via model checking tools, until all invariants
and operations are known and free of contradictions. See [14] for an example,
who did this for a model equivalent to our F model.

Step 2: Analysis of Conflicting Operations: An operation oX detected in
replica X is conflicting with operation oY detected in replica Y (and thus cannot
be applied to Y by the synchronizer) if the preconditions of oX no longer hold
for new state of Y due to the modifications already applied to Y by oY .

To find conflicts, let OT be the list of all operation types of the model found
in step 1. We start from an initially equal state for replicas X and Y . For any

8 M. Shekow

two types tA, tB from OT we instantiate operations oX (of type tA) and oY (of
type tB), apply oX to X (which yields X ′) and oY to Y (yields Y ′). We choose
the operation parameters (e.g. i, p, u, v, n for F) such that either applying oY to
X ′, or oX to Y ′ fails, due to violated preconditions.

Finding conflicts can be done manually or in an automated approach. The
manual, pragmatic approach examines each individual precondition of each oper-
ation type tA and finds a tB , oY and oX that produces a conflict. We generally
recommend to identify pseudo conflicts, where two operations do conflict syn-
tactically, but should not, because both operations have the same effect. In this
case the synchronizer does not need to change the replicas, because the effect
of both operations is the same anyway. An example for a pseudo-conflict is if
oX , oY are both deletefile(i,p) operations that affect the same object i.

Step 3: Resolving Conflicts: The general rule of conflict resolution is that
the effect of operations oX and oY are preserved as much as possible. There are
two general approaches to conflict resolution:

1. Choose one of the operations to win, and manipulate the loser operation to
resolve the conflict, or

2. Let both operations lose, by manipulating both of them, which avoids having
to choose a winner.

We prefer option 1. Even though it is challenging to decide which of the two
operations should take precedence in case of automatic resolution2, the advan-
tage is that at least one operation is fully preserved, and only the user who
executed the loser operation needs to be informed. Our general approach for
resolving conflicts is to perform the simplest possible resolution step, focusing
on manipulating the loser operation instead of the winner operation. Sometimes
the loser operation only has to be changed slightly, in other cases it has to be
undone completely. Consider an example where oX deletes a directory which
was renamed by oY , and the strategy is to prefer delete over move operations.
Instead of executing oX in replica Y , which could cause side effects because the
directory may have child-objects that are involved in other conflicts, it is more
appropriate to undo oY . The winner operation oX remains and is eventually
executed, once all other conflicts have been resolved.

If conflict resolution is automatic, we need to make sure that if the preconfig-
ured resolution was inappropriate for the user, the costs of subsequent, manual
repair of the file system is manageable. Optimally, automatic resolutions can be
changed by the user by a simple click, either before (via configuration) or after
the fact.

In this step the synchronizer developer needs to examine each conflict found
in step 2 and determine suitable resolution options. The operation(s) the syn-
chronizer generates to resolve a conflict must be designed such that their execu-
tion cannot fail (due to violated preconditions), even if other conflicts exist.

2 This is not a problem if the conflict resolution is delegated to the user.

Syncpal: A Simple and Iterative Reconciliation Algorithm 9

Step 4: Analysis of Operation Order Dependencies: Assume that a file
synchronizer has resolved conflicting operations between X and Y , such that the
update detection now results in one set of unordered operations per replica ŌX ,
ŌY . To be able to propagate the operations in ŌX , ŌY , a suitable order needs to
be found, which requires an analysis of the operation preconditions because not
all operations are commutative. Let OT be the list of considered operation types.
For any two types tA, tB from OT we instantiate the respective operations oA, oB ,
as they would have been detected (see Sect. 2.3) on one specific replica, e.g. X.
We choose the parameters (e.g. i, p, u, v, n for F) such that applying the sequence
(oA, oB) to the other, unchanged replica is feasible, but applying (oB , oA) would
fail, because a precondition of one of the two operations is violated . We end
up with a list of order dependencies, where each order dependency contains
tA, tB (in a specific order) and the violated operation precondition(s). Finally,
we examine whether cycles can be built from the order dependencies.

3.2 Phase 2: Execution

Figure 1 provides a flow chart of our algorithm. Hexagons illustrate computation
steps, table-shaped rectangles represent data structures. The Current file system
state is provided (and regularly updated) by the update detection component
of the synchronizer (not shown). Our algorithm is iterative. Let ŌX , ŌY be
the detected operations. Step Find conflicts analyzes every operation pair of
ŌX , ŌY and generates (1) a list of conflicts C where each c ∈ C is a tuple of
two conflicting operations, and (2) a list of pseudo-conflicts P , where each p ∈ P
summarizes two pseudo-conflicting operations. If C �= ∅, C is sorted according to
some preference (e.g. “resolve conflict type t1 before type t2”), if desired. Then a
resolution operation is generated and executed that only resolves the first c ∈ C.
If C = ∅ then operations are sorted according to Algorithm1.

Fig. 1. Synchronization algorithm

10 M. Shekow

Algorithm 1. Sorting operations

def s o r t o p e r a t i o n s (Ox, Oy, P) −> L :
global has order changed = False
ope ra t i on s = [P + (Ox − P) + (Oy − P)]
comp l e t e cyc l e s = []
r e o rd e r i n g s = []
while True :

has order changed = False
f i n d a n d f i x o r d e r v i o l a t i o n s (ope ra t i on s)
i f not has order changed :

break
comp l e t e cyc l e s = f i nd c omp l e t e c y c l e s (r e o r d e r i n g s)
i f l en (comp l e t e cyc l e s) > 0 :

break
i f l en (comp l e t e cyc l e s) > 0 :

r e s o l u t i o n op e r a t i o n = break cyc l e (c omp l e t e cyc l e s [0])
return [r e s o l u t i o n op e r a t i o n]

else :
return ope ra t i on s

We build operations as an initially unsorted list of pseudo-conflicting oper-
ations P and non-conflicting operations from ŌX , ŌY (that are not in P).
Function find and fix order violations() performs an in-place sorting of
operations. It checks all operation pairs for order violations as determined
in step 4. If a violation is detected, the order of the two operations is swapped,
the corrected order is added to reorderings and has order changed is set to
True. Eventually either a cycle is found in reorderings which needs to be bro-
ken, or no more order violations were found in operations. In the first case
break cycle() must identify an operation oX in the cycle where manipulating
replica Y and the persisted state will dissolve a specific order dependency that
involves oX , turning the cycle into a chain. See Sect. 4.4 for an example. In the
latter case our algorithm achieves convergence for both replicas, by iterating
over each o in operations and executing the detected operation on the corre-
sponding other replica, followed by updating the persisted state. If o ∈ P then
only the persisted state is updated, because the effect of o is already reflected in
X and Y .

4 Application

In this section we provide an exemplary application of the four preparation steps
from Sect. 3 to file system model F .

4.1 Step 1: File System Model Formalization

Refer to the definition of F presented earlier in this work in Sect. 2.2.

Syncpal: A Simple and Iterative Reconciliation Algorithm 11

4.2 Step 2: Conflict Detection

By examining the preconditions of the operations from Table 1, we find the
conflicts and pseudo-conflicts presented in the following two lists. We use the
⊗ symbol for two conflicting operations. We use subscript letters X and Y as
placeholders that designate to which replica the operation (or parameter) applies.

– Create-Create: On both replicas a new object was created with the same
name under the same parent directory.
Definition: createX(iX , uX , nX) ⊗ createY (iY , uY , nY) = [uX = uY] ∧ [nX =
nY] ∧ [typeX(iX) = dir ∨ typeY (iY) = dir ∨ contentX(iX) �= contentY (iY)]
with create := createdir ∨ createfile ′.
Violated precondition: id(p, n) = error

– Edit-Edit: The content of a file was changed on both replicas.
Definition: edit ′

X(iX , opX) ⊗ edit ′
Y (iY , opY) = [iX = iY] ∧ [contentX(iX) �=

contentY (iY)]
Violated precondition: technically no precondition is violated, but overwriting
the file content on replica X with the one from replica Y would cause X’s
changes to be lost

– Move-Create: On one replica the user moved an object into a specific par-
ent directory, assigning name n, on the other replica the user created a new
object with the same name n in the same parent directory.
Definition: createX(iX , uX , nX) ⊗ moveY (iY , uY , vY , nY) = [uX = vY] ∧
[nX = nY] with create := createdir ∨ createfile ′

Violated preconditions: create: id(p, n) = error ; move: id(v, n) = error
– Edit-Delete: On one replica a file’s content was edited, on the other replica

the corresponding file was deleted.
Definition: edit ′

X(iX , opX) ⊗ delete ′
Y (iY , pY) = (iX = iY)

Violated precondition: On replica Y , ancestor(iroot , i) of the edit ′ operation
is violated. On replica X there is no violation on the technical level, but on
the semantic level: the changes of the edit ′ operation would be lost.

– Move-Delete: On one replica an object was moved, on the other replica
the corresponding object was deleted (either directly or as a consequence of
deleting a parent directory).
Definition: moveX(iX , uX , vX , nX) ⊗ delete ′

Y (iY , pY) = (iX = iY)
Violated precondition: On replica Y , i ∈ list(u) of the move operation is
violated. On replica X there is no violation on the technical level, but on the
semantic level: the changes of the structural change of the move operation
would be lost. The user who deleted the object would have done so without
knowing that it was recently moved by another user on the other replica.

– Move-Move (Source): On both replicas the same object was moved to a
different location. That is, on each replica either the new name or parent
directory (or both) differs.
Definition: moveX(iX , uX , vX , nX) ⊗ moveY (iY , uY , vY , nY) = (iX = iY) ∧
[(vX �= vY) ∨ (nX �= nY)]
Violated precondition: on replica X: iY ∈ list(uY); on replica Y : iX ∈
list(uX). The source is no longer in the expected location

12 M. Shekow

– Move-Move (Dest): The users of both replicas each moved a different
object into the same parent directory, assigning the same name. The name of
this conflict is Move-Move (Dest) because the conflict occurs at the destina-
tion.
Definition: moveX(iX , uX , vX , nX) ⊗ moveY (iY , uY , vY , nY) = (iX �= iY) ∧
(vX = vY) ∧ (nX = nY)
Violated precondition: id(v, n) = error

– Move-ParentDelete: On one replica the user deleted directory d, on the
other replica the user moved another object into d.
Definition: moveX(iX , uX , vX , nX) ⊗ delete ′

Y (iY , pY) = (vX = iY)
∧ancestorY (iroot , iX)
Violated precondition: move: type(v) = dir

– Create-ParentDelete: On one replica the user deleted directory d, on the
other replica the user creates a new object in d.
Definition: createX(iX , pX , nX)⊗delete ′

Y (iY , pY) = (pX = iY) with create :=
createdir ∨ createfile ′

Violated precondition: type(p) = dir
– Move-Move (Cycle): Given two synchronized directories A and B, A was

moved into B’s namespace on one replica while B was moved into A’s names-
pace on the other replica. This would create a cyclic parent-child relationship
in the merged result.
Definition: moveX(iX , uX , vX , nX) ⊗ moveY (iY , uY , vY , nY) = (type(iX) =
type(iY) = dir) ∧ [ancestor(iY , vX) ∨ (iY = vX)] ∧ [ancestor(iX , vY) ∨ (iX =
vY)] where ancestor refers to the state after all operations were executed.
Violated precondition: ¬ancestor(i, v)

Pseudo-conflicts are presented in the following list, where indicates that
two operations are pseudo-conflicting:

– Edit-Edit: The content of a file was changed on both replicas, such that the
content is now the same.

– Create-Create: On both replicas a new file was created with the same con-
tent and name under the same parent directory. It would also be possible to
consider two createdir operations to pseudo-conflict and to merge the direc-
tory contents recursively. However, if this resolution is done automatically
and is inappropriate, manual clean up work is extensive [15].

– Delete-Delete: both replicas deleted the same object.
Definition: delete ′

X(iX , pX) delete ′
Y (iY , pY) = (iX = iY)

– Move-Move: A specific object was moved to the same location.
Definition: moveX(iX , uX , vX , nX) moveY (iY , uY , vY , nY) = (iX = iY) ∧
[(vX = vY) ∧ (nX = nY)]

4.3 Step 3: Resolving conflicts

Who Wins? The winner of a conflict can be chosen in numerous ways. Either
the user is explicitly involved in each decision, or conflicts are resolved auto-
matically. For the latter the resolution strategy is pre-configured, typically by

Syncpal: A Simple and Iterative Reconciliation Algorithm 13

the developer. To better customize the synchronizer to the user’s workflows, we
propose to develop multiple conflict resolution strategies to choose from, where
the choice may be given to the users or technically-apt administrators.

Name Occupation Conflicts: The Create-Create, Move-Create and
Move-Move (Dest) conflicts all have in common that a specific name in a spe-
cific directory is being occupied by a create or move operation in each replica.
A simple resolution approach is to modify the loser operation, by renaming the
object on the corresponding replica, appending a unique suffix to the name.

Edit-Edit: When a specific file is edited on both replicas, undoing or modifying
may not be possible because a replica may not store previous versions of a file.
Resolving this conflict can either be achieved by renaming the loser file (and
synchronizing it to the other replica, or keep it only on the loser replica), or
backing up the loser file and overwriting it with the file of the winner replica,
together with updating the lastmodified timestamp in the persisted state.

Delete Conflicts: Both Edit-Delete and Move-Delete are conflicts where
one operation changed the object, while the other one deleted it. Thus the reso-
lution approach should be similar for both. When the resolution favors the delete
operation, a Move-Delete conflict can be resolved by undoing the move, but
since the edit operation of an Edit-Delete conflict cannot be undone, the only
solution is to delete the file from the loser replica and persisted state, to avoid
the redetection of the conflict.

When the resolution favors the move or edit operation, we suggest the fol-
lowing approach:

– Edit-Delete: if the loser replica keeps deleted files in a garbage directory
then restoring such files effectively undoes the delete operation. Otherwise
the synchronizer can remove the file’s entry from the persisted state only. In
the next iteration, the file will be detected as createfile ′ operation and it will
be synchronized to the loser replica.

– Move-Delete: the resolution works like for Edit-Delete conflicts. One
caveat to consider is that when the move operation affects a direc-
tory, removing its entries from the database may cause orphaned
entries for those child-objects that were moved out. For instance,
given a directory at path ‘/d’ and file ‘/d/f’, with operations
moveX(‘/d’, ‘/e’),moveY (‘/d/f ’, ‘/f ’), delete′

Y (‘/d’). To restore the directory,
deleting both the directory and its children from the persisted state is inap-
propriate, because then one move operation would be lost, causing file f to be
duplicated. However, removing only those objects that were deleted on replica
Y , here: ‘/d’, would also be inappropriate, because f would then be orphaned
in the persisted state. We propose to move such orphaned objects temporar-
ily to the root level in the persisted state and solve follow-up Move-Move
(Source) conflicts in favor of replica Y .

14 M. Shekow

Move-Move (Source): We propose to resolve this conflict type by undoing the
loser move operation. Note that undoing a move operation may not always be
possible: the source parent directory s might already be deleted, or the original
name of the moved object might already be occupied in s, or the user could have
moved s such that it is now a child of the affected object. In case of such issues
we propose to move the affected object to the root of the synchronized directory
instead, with a random suffix added to its name.

Indirect Conflicts: Two operations indirectly conflict with each other if they
don’t target two different objects, which are always in a hierarchical parent-child
relationship. The Move-Move (Cycle), Move-ParentDelete and Create-
ParentDelete conflict belong to this category. Move-Move (Cycle) con-
flicts can be resolved exactly like Move-Move (Source) conflicts. Move-
ParentDelete can be resolved by either undoing the deletion by restoring the
deleted directory in its entirety (with all sub-objects), if possible, or to prefer
the delete operation by undoing the move operation. The goal is to resolve this
conflict in a way that avoids that both users are unhappy with the merged result.
For instance, the two following resolution approaches would be bad ideas: (1)
favor the move operation, by restoring only the deleted directory (and all its
ancestor directories) targeted by the move operation, in order to make the move
operation possible. This would partially undo the delete operation and cause an
inconsistent namespace that would not be appreciated by either user. (2) Favor
the delete operation by deleting the directory. This would cause the moved file to
be deleted, which was not the intention of either user. In contrast, our solution
only discards the intention for the user of the move operation.

Resolving Create-ParentDelete conflicts works similarly. We also suggest
to take precedence to the delete operation. Undoing the create operation would
mean data loss, thus we suggest to back up the created object first, or to move
it to the root of the synchronized directory, or to a garbage directory.

Pseudo Conflicts: A pseudo conflict is resolved by updating the entries of
the affected objects in the persisted state, such that the two operations are
no longer detected in the next iteration. For example, a Delete-Delete pseudo-
conflict would be resolved by removing the entries of the affected objects from
the persisted state.

4.4 Step 4: Analysis of Operation Order Dependencies

For F we choose OT = {createfile ′, createdir ,move, edit ′, delete ′}. Figure 2 shows
an overview of the eight order dependencies we found for the operation types in
OT . The arrows are denoted with a dependency number explained below:

Syncpal: A Simple and Iterative Reconciliation Algorithm 15

Fig. 2. Operation dependencies

1. delete ′ before move, e.g. user deletes an object at path ‘/x’ and moves another
object ‘/a’ to ‘/x’

2. move before create, e.g. user moves an object ‘/a’ to ‘/b’ and creates another
object at ‘/a’

3. move before delete ′, e.g. user moves object ‘/X/y’ outside of directory ‘/X’
(e.g. to ‘/z’) and then deletes ‘/X’

4. create before move, e.g. user creates directory ‘/X’ and moves object ‘/y’ into
‘/X’

5. delete ′ before create, e.g. user deletes object ‘/x’ and then creates a new
object at ‘/x’

6. move before move (occupation), e.g. user moves file ‘/a’ to ‘/temp’ and then
moves file ‘/b’ to ‘/a’

7. create before create, e.g. user creates directory ‘/X’ and then creates an object
inside it

8. move before move (parent-child flip), e.g. user moves directory ‘/A/B’ to
‘/C’, then moves directory ‘/A’ to ‘/C/A’ (parent-child relationships are now
flipped)

By connecting the dependencies, we’re able to construct cycles. Figure 3
shows minimal cycles (with the smallest possible number of operations) in the
first row, and two examples of more elaborate cycles in the second row. We note
that it is impossible to build cycles of only delete and create operations. It is
also easy to prove that cycles that exclusively consist of move operations con-
nected only by rule 8 are impossible3. Cycles always include at least one move
operation.

Fig. 3. Operation dependency cycles

3 Intuitively, a proof by contradiction shows that the existence of a rule 8 cycle of n
objects would require that those n objects also formed a cyclic parent-child relation-
ship (before and after synchronization), but cycles are not allowed in F .

16 M. Shekow

For any cycle found in replica X there must always be at least one operation
oX (that affects object with ID i) which frees a location (i.e., a name in a
specific directory) that is used by a follow-up operation o′

X . oX must either be a
move (dependencies 6 + 2) or a delete (dependencies 1 + 5) operation. Instead of
executing oX we generate a different move operation rY that breaks the cycle.
rY renames i by appending a unique suffix to its name. We execute rY on Y and
the persisted state. This way, rY is not detected after restarting the algorithm,
but oX still is detected because rY did not modify X: if oX is a move operation,
changing the name of i in the persisted state to a unique name will still find i
as moved on X; if oX is a delete operation then it will still be deleted on X.
However, the cycle is now broken, because the order dependency (6, 2, 1, or 5)
no longer applies. Note that if oX ∈ P , i.e., oX is a pseudo-conflicting operation,
rY may only be executed on the persisted state, leaving both physical replicas
X,Y untouched.

5 Evaluation

We implemented the approach presented in Sect. 4 as a user-space Python pro-
gram that synchronizes folders on the user’s local disk to the BSCW groupware
[16]. We deployed it to 30 users who have been using it in production for over
one year. In addition to hundreds of hand-made tests we applied two automated
testing approaches to verify practical correctness of our algorithm. We used a
variation of model checking.

In the first test approach we generated all possible operation sequences that
can be applied to the 12 start scenarios that consist of three directories and one
file. Due to state-space explosion we limited the number of operations to one
createfile, two createdir, three move and three delete operations. This resulted
in 5.5 million test cases computed in a HPC cluster over several weeks. Because
local file systems (even RAM disks) are slow, we sped up test generation and
execution by implementing a simple in-memory file system used instead.

To overcome the operation count limit resulting from state explosion in the
first test approach, the second approach generated a much larger count (up to 30
operations). Each operation type and its parameters were chosen at random. We
ran millions of test cases and discovered no anomalies in our implementation.

6 Conclusions

In this work we presented an iterative algorithm for the synchronization of two
replicas X and Y that hold tree-shaped data structures, where operations since
the last synchronization are detected using a state-based approach. We applied
it to file synchronizers with a concrete file system model.

While the drawback of our iterative algorithm is the increased run-time in
those scenarios where multiple iterations are required, we observed that those
higher costs only occur after long offline periods. The advantage of the algo-
rithm is that its individual steps are simple to implement, minimal and atomic.

Syncpal: A Simple and Iterative Reconciliation Algorithm 17

Therefore the synchronization procedure can be interrupted any time, because
it avoids long-lasting transactions.

This work demonstrates two challenges during synchronization. First, state-
based update detection does not provide the order of the detected operations,
which we solve by analyzing the operation preconditions to find a suitable order.
The second challenge is that an operation in replica X may conflict with another
operation in Y . We provide guidelines for how to identify sensible resolution
options, find all possible conflicts, and how to build operations that resolve them.
We leave finding a suitable (graphical) representation of the conflicts and their
resolution (if automatic) as future work. We consider such conflict awareness an
important aspect, as it improves the overall usability of the system.

References

1. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 3–46.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 1

2. Balasubramaniam, S., Pierce, B.C.: What is a file synchronizer? In: Proceedings of
the 4th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, MobiCom 1998, pp. 98–108. ACM, New York (1998). https://doi.org/
10.1145/288235.288261

3. Bao, X., Xiao, N., Shi, W., Liu, F., Mao, H., Zhang, H. (eds.): SyncViews: toward
consistent user views in cloud-based file synchronization services. In: 2011 Sixth
Annual Chinagrid Conference (2011). https://doi.org/10.1109/ChinaGrid.2011.35

4. Csirmaz, E.: Algebraic File Synchronization: Adequacy and Completeness (2016).
https://arxiv.org/pdf/1601.01736.pdf

5. Dearman, D., Pierce, J.S.: It’s on my other computer! Computing with multiple
devices. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 767–776. ACM, Florence (2008). https://doi.org/10.1145/
1357054.1357177

6. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-
ing schemas in data synchronization. J. Comput. Syst. Sci. 73(4), 669–689 (2007).
https://doi.org/10.1016/j.jcss.2006.10.024

7. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: Cause I’m strong
enough: reasoning about consistency choices in distributed systems. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 371–384. ACM, St. Petersburg (2016). https://doi.
org/10.1145/2837614.2837625

8. Jokela, T., Ojala, J., Olsson, T.: A diary study on combining multiple information
devices in everyday activities and tasks. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp. 3903–3912. ACM, Seoul
(2015). https://doi.org/10.1145/2702123.2702211

9. Kollmar, F.: The Cloud Storage Report - Dropbox Owns Cloud Storage
on Mobile (2016). https://blog.cloudrail.com/cloud-storage-report-dropbox-owns-
cloud-storage-mobile/

10. Li, Q., Zhu, L., Zeng, S., Shang, W.Q. (eds.): An improved file system synchronous
algorithm. In: 2012 Eighth International Conference on Computational Intelligence
and Security (2012). https://doi.org/10.1109/CIS.2012.123

https://doi.org/10.1007/978-3-540-88643-3_1
https://doi.org/10.1145/288235.288261
https://doi.org/10.1145/288235.288261
https://doi.org/10.1109/ChinaGrid.2011.35
https://arxiv.org/pdf/1601.01736.pdf
https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1016/j.jcss.2006.10.024
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2702123.2702211
https://blog.cloudrail.com/cloud-storage-report-dropbox-owns-cloud-storage-mobile/
https://blog.cloudrail.com/cloud-storage-report-dropbox-owns-cloud-storage-mobile/
https://doi.org/10.1109/CIS.2012.123

18 M. Shekow

11. Li, Q., Zhu, L., Shang, W., Zeng, S.: CloudSync: multi-nodes directory synchro-
nization. In: 2012 International Conference on Industrial Control and Electronics
Engineering (ICICEE 2012), Piscataway, NJ, pp. 1470–1473. IEEE (2012). https://
doi.org/10.1109/ICICEE.2012.386

12. Lindholm, T., Kangasharju, J., Tarkoma, S.: A hybrid approach to optimistic file
system directory tree synchronization. In: Kumar, V., Zaslavsky, A., Cetintemel,
U., Labrinidis, A. (eds.) The 4th ACM International Workshop on Data Engineer-
ing for Wireless and Mobile Access, pp. 49–56. ACM, New York (2005). https://
doi.org/10.1145/1065870.1065879

13. Molli, P., Oster, G., Skaf-Molli, H., Imine, A.: Using the transformational approach
to build a safe and generic data synchronizer. In: Proceedings of the 2003 Inter-
national ACM SIGGROUP Conference on Supporting Group Work, pp. 212–220.
ACM, Sanibel Island (2003). https://doi.org/10.1145/958160.958194

14. Najafzadeh, M.: The analysis and co-design of weakly-consistent applications.
Ph.D. thesis, Université Pierre et Marie Curie (2016). https://hal.inria.fr/tel-
01351187/document

15. Ng, A., Sun, C.: Operational transformation for real-time synchronization of shared
workspace in cloud storage. In: Proceedings of the 19th International Conference
on Supporting Group Work, pp. 61–70. ACM, Sanibel Island (2016). https://doi.
org/10.1145/2957276.2957278

16. OrbiTeam Software GmbH & Co KG: BSCW Social (2018). https://www.bscw.
de/social/

17. Pierce, B.C., Vouillon, J.: What’s in unison? A formal specification and reference
implementation of a file synchronizer (2004)

18. Price, R.: Google Drive now hosts more than 2 trillion files (2017). http://www.
businessinsider.de/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5

19. Qian, Y.: Data synchronization and browsing for home environments. Ph.D. thesis,
Eindhoven University of Technology (2004)

20. Ramsey, N., Csirmaz, E.: An algebraic approach to file synchronization. In: Tjoa,
A.M., Gruhn, V. (eds.) the 8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International Symposium, p. 175 (2001). https://
doi.org/10.1145/503209.503233

21. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005). https://doi.org/10.1145/1057977.1057980

22. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed
workspaces. In: Proceedings of the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 63–72. ACM, Zurich (2013). https://
doi.org/10.1145/2493432.2493476

23. Tao, V., Shapiro, M., Rancurel, V.: Merging semantics for conflict updates in geo-
distributed file systems. In: Proceedings of the 8th ACM International Systems
and Storage Conference, SYSTOR 2015, pp. 10:1–10:12. ACM, New York (2015).
https://doi.org/10.1145/2757667.2757683

24. Torvalds, L., Hamano, J.: Git: Distributed Version Control (2010). https://git-
scm.com

25. Vonrueden, M., Prinz, W.: Distributed document contexts in cooperation systems.
In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CON-
TEXT 2007. LNCS (LNAI), vol. 4635, pp. 507–516. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74255-5 38

https://doi.org/10.1109/ICICEE.2012.386
https://doi.org/10.1109/ICICEE.2012.386
https://doi.org/10.1145/1065870.1065879
https://doi.org/10.1145/1065870.1065879
https://doi.org/10.1145/958160.958194
https://hal.inria.fr/tel-01351187/document
https://hal.inria.fr/tel-01351187/document
https://doi.org/10.1145/2957276.2957278
https://doi.org/10.1145/2957276.2957278
https://www.bscw.de/social/
https://www.bscw.de/social/
http://www.businessinsider.de/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
http://www.businessinsider.de/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
https://doi.org/10.1145/503209.503233
https://doi.org/10.1145/503209.503233
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1145/2493432.2493476
https://doi.org/10.1145/2493432.2493476
https://doi.org/10.1145/2757667.2757683
https://git-scm.com
https://git-scm.com
https://doi.org/10.1007/978-3-540-74255-5_38

Check-Wait-Pounce: Increasing
Transactional Data Structure Throughput

by Delaying Transactions

Lance Lebanoff, Christina Peterson(B), and Damian Dechev

University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, USA
{lancelebanoff,clp8199}@knights.ucf.edu, dechev@cs.ucf.edu

Abstract. Transactional data structures allow data structures to sup-
port transactional execution, in which a sequence of operations appears
to execute atomically. We consider a paradigm in which a transaction
commits its changes to the data structure only if all of its operations
succeed; if one operation fails, then the transaction aborts. In this work,
we introduce an optimization technique called Check-Wait-Pounce that
increases performance by avoiding aborts that occur due to failed oper-
ations. Check-Wait-Pounce improves upon existing methodologies by
delaying the execution of transactions until they are expected to succeed,
using a thread-unsafe representation of the data structure as a heuristic.
Our evaluation reveals that Check-Wait-Pounce reduces the number of
aborts by an average of 49.0%. Because of this reduction in aborts, the
tested transactional linked lists achieve average gains in throughput of
2.5x, while some achieve gains as high as 4x.

1 Introduction

As multi-core machines are becoming the norm, many software developers turn
to multi-threaded solutions to increase the execution speed of their applications.
Building concurrent programs is difficult, because the programmer needs to have
in-depth knowledge of the pitfalls of multi-threaded programming. Concurrent
programs are prone to semantic errors, performance bottlenecks, and progress
issues such as deadlock and starvation. Therefore, simplifying the task of con-
current programming has become an important challenge.

Concurrent data structures allow users to reap the benefits of concurrency
while avoiding the dangers of multi-threaded programming [5,13]. These data
structures support a predefined set of operations (e.g. insert, delete, find) such
that any execution of concurrent operations is guaranteed to behave as if those
operations were executed atomically. While concurrent data structures provide
this guarantee for individual operations, the same guarantee does not hold for
sequences of operations known as transactions. To overcome this issue, program-
mers often resort to coarse-grained locking, which hinders parallelism.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 19–35, 2019.
https://doi.org/10.1007/978-3-030-22496-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-22496-7_2

20 L. Lebanoff et al.

Fig. 1. A scenario in which a transaction experiences a self-abort that is avoidable. In
(a), Transaction 1 executes get(k) which fails because k does not exist in the data
structure. In (b), Transaction 1 avoids this scenario by waiting until Transaction 2 has
inserted k into the data structure.

This issue has motivated the development of transactional data structures [7–
10,12]. We recognize a data structure to be transactional if it supports atomicity
and isolation. Atomicity means that a transaction may commit its changes to
the data structure only if all its operations succeed. Isolation guarantees that
transactions executed concurrently will appear to execute in some sequential
order. There are several techniques that can be used to create transactional
data structures, and we refer to these techniques as transactional data struc-
ture methodolgies (TDSMs).

We consider a paradigm of transactional data structures in which each oper-
ation in a transaction has a defined precondition [18]. For example, in a reser-
vation system, an operation to reserve an item might require that the item has
not already been reserved. If an operation’s precondition is not satisfied at the
beginning of the operation’s execution, then the operation fails. A TDSM must
abort a transaction if one of its operations fails, in order to preserve atomicity.
We refer to this type of abort as a self -abort. Self-aborts waste computation
time, as time spent executing transactions that will ultimately abort does not
contribute to the overall throughput.

By reordering the execution of transactions, we can reduce the number of self-
aborts and improve performance. For example, consider the scenario in Fig. 1.
In Part (a), two transactions perform operations on a key-value map M . Trans-
action 1 consists of one operation get(k) that reads the value associated with a
key k, and the operation’s precondition requires that the k ∈ M . When the oper-
ation executes, it observes that k /∈ M , so it fails, and the transaction self-aborts.
Then, Transaction 2 executes put(k,v) to insert k into M . Part (b) shows that if
Transaction 1 had waited until Transaction 2’s completion, then its precondition
would have been met, and Transaction 1 would avoid a self-abort.

Finding the optimal ordering of transactions would minimize the number of
self-aborts. Although this approach might be possible in some cases, the large
search space of potential orderings makes this approach computationally expen-
sive [1], possibly more so than the self-aborts themselves.

In this paper, we present an optimization technique called Check-Wait-
Pounce that reduces the number of self-aborts by delaying transactions. Trans-
actions are analyzed before they execute, and if they are predicted to abort, then
they are delayed instead. This results in an ordering of transactions with fewer
self-aborts.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 21

The Check-Wait-Pounce algorithm follows three steps. (1) In the check
step, we heuristically determine the expected chance that a transaction will
succeed. We make this prediction based on the transactional data structure’s
Likely Abstract State Array (LASA), which is an auxiliary array introduced in
this paper. LASA is a heuristic representation of the transactional data struc-
ture’s abstract state. A data structure’s abstract state refers to the underlying
meaning of the data structure. For example, the abstract state of a skip list-based
set is a function across the possible range of keys, indicating whether or not the
key exists in the data structure. In this case, LASA is an array of bits, where
the index of each bit represents a key and the value of each bit represents the
presence of that key in the set. When a transaction commits, LASA is updated
to match the abstract state of the data structure, but it does so without using
costly synchronization mechanisms. Consequently, the operations performed on
LASA are not atomic, so it trades accuracy for performance. In Check-Wait-
Pounce, the expected chance that a transaction will succeed corresponds to the
percentage of operations whose preconditions are satisfied, according to LASA.
(2) In the wait step, we periodically perform this check until the expected chance
of success exceeds a given threshold. While the transaction waits, the thread exe-
cutes other transactions. (3) When the threshold is reached, we proceed to the
pounce step, in which we use an underlying TDSM (e.g. Transactional Boosting)
to execute the transaction. Check-Wait-Pounce treats the underlying TDSM as
a black box.

We employ micro-benchmarks in a variety of test cases to evaluate the effects
of our optimization on several transactional data structures, created by four
state-of-the-art TDSMs: Lock-free Transactional Transformation (LFTT) [18],
Transactional Boosting (TB) [10], Transactional Data Structure Libraries
(TDSL) [16], and Software Transactional Memory (STM) [3,6]. The data struc-
tures we evaluate are transactional versions of linked lists, skip lists, and multi-
dimensional lists created by these TDSMs. With our optimization, the number
of self-aborts is reduced by an average of 49.0%. As a result, the transactional
linked lists based on LFTT, TB, TDSL, and STM achieve 3.3x, 4.6x, 1.8x, and
41.6% gains in throughput, respectively.

This paper makes the following contributions:

– We present Check-Wait-Pounce, an optimization approach to transactional
data structures that reduces the number of aborted transactions. This is
achieved by delaying transactions until they are expected to succeed.

– We introduce a new auxiliary data structure called LASA that is used by the
Check-Wait-Pounce scheme to heuristically determine a transaction’s chance
of success.

– Check-Wait-Pounce can be applied to any TDSM. It controls when each trans-
action should be executed, and then it treats the underlying TDSM as a black
box to execute the transaction.

22 L. Lebanoff et al.

2 Related Work

We use the strict serializability correctness condition to verify the correctness
of transactional data structures. Strict serializability requires that for each com-
pleted transaction, a serialization point can be placed between the transaction’s
first and last operations. A transaction’s serialization point is an instantaneous
point in time that marks when the transaction effectively occurred. A history
of concurrent transactions is strictly serializable if a serialization point can be
placed for each transaction to create a sequential history, such that the outcome
of the sequential history matches the outcome of the concurrent history.

We present a brief survey of fundamental TDSMs and how they support
strict serializability. Then we describe existing techniques that relate to Check-
Wait-Pounce because they reorder transactions.

2.1 Transactional Data Structure Methodologies

To guarantee strict serializability, each TDSM employs a unique approach that
prevents certain transactions from committing, specifically pairs of transactions
that concurrently access the same nodes in the data structure.

Software transactional memory (STM) is a methodology in which each trans-
action maintains all the memory locations it reads in a read set and all the
locations that it writes to in a write set. If one transaction’s write set intersects
another transaction’s read set or write set, then the transactions conflict. One
of the conflicting transactions must abort, undoing the changes that it made
to the data structure. We refer to this type of abort as a spurious abort. Spu-
rious aborts occur as a result of multiple threads that concurrently access the
same nodes in the data structure. Transactional Boosting (TB) proposed by Her-
lihy and Koskinen [10] associates each key in the data structure with a lock. A
transaction that performs an operation on a key must first acquire the lock asso-
ciated with that key. If a transaction fails to acquire a lock, then the transaction
spuriously aborts and rolls back completed operations. Lock-free Transactional
Transformation (LFTT) proposed by Zhang and Dechev [18] makes each node
in the data structure point to a transaction descriptor object, which is an object
that represents the transaction that last accessed that node. Before a transac-
tion performs an operation on a node, it must help to complete any unfinished
transactions that have already accessed that node. Transactional data structure
libraries (TDSL) was proposed by Spiegelman et al. [16]. A thread collects a read
set and write set, and assigns each node in the read set with a version number.
At the end of the transaction, the thread locks all of the nodes in the write set,
then checks the version numbers of all the nodes in the read set to validate that
they have not been changed. If the thread fails to acquire a lock or the validation
fails, then the transaction spuriously aborts.

These TDSMs focus on reducing overhead and spurious aborts, but they do
not optimize for use cases in which self-aborts are common. We present Check-
Wait-Pounce to optimize these algorithms by reducing the number of self-aborts.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 23

Reducing the number of self-aborts is important because self-aborts waste com-
putation time and do not contribute to the application’s overall throughput,
similarly to spurious aborts.

2.2 Reordering Transactions

The following techniques reorder the serialization points of conflicting trans-
actions to avoid spurious aborts. Pedone et al. [15] introduced a reordering
technique for database transactions that detects conflicts between concurrent
transactions and reorders the serialization points of conflicting transactions
to remove the conflicts. Chachopo and Rito-Silva [2] proposed an approach
for transactional memory that avoids all spurious aborts for read-only and
write-only transactions by moving serialization points. Diegues and Romano [4]
extend the types of transactions that are reordered to include some read-write
transactions.

The technique of reordering serialization points could possibly be applied
to the problem of self-aborts. However, all of the TDSMs we study guarantee
strict serializability, and to maintain this level of correctness, each transaction’s
serialization point may only be placed between the invocation of the transac-
tion’s first operation and response of the transaction’s last operation. Conse-
quently, a serialization point reordering technique may only reorder the serial-
ization points of concurrent transactions. This restriction reduces the number
of possible orderings of transactions such that the probability of a self-abort
being avoided is minuscule. According to our experiments running 64 threads
with a micro-benchmark, only 8.6 × 10−4 percent of self-aborts can be avoided
by reordering the serialization points of concurrent transactions. On the other
hand, our technique of reordering the physical execution of transactions is much
more effective, avoiding 49.0% of self-aborts. The details of our experimental
setup are given in Sect. 5.

The steal-on-abort technique [1] reorders the physical execution of trans-
actions to prevent spurious aborts. Steal-on-abort has the purpose of reducing
the number of spurious aborts, while Check-Wait-Pounce reduces the number of
self-aborts. Also, steal-on-abort’s method of reordering allows a transaction to
execute and abort, then it forces the transaction to wait to restart. With Check-
Wait-Pounce, we predict whether a transaction will abort before it executes in
the first place.

3 Check-Wait-Pounce

We provide an overview of Check-Wait-Pounce, followed by detailed descriptions
of the algorithm’s steps.

3.1 Algorithm Overview

Figure 2 depicts a high-level overview of the life cycle of a transaction in Check-
Wait-Pounce. After the transaction is created, we perform the check step: we

24 L. Lebanoff et al.

New
Transaction

Check
LASA

Expected Chance
of Success (COS)?

COS < Tp

COS ≥ Tp

Wait

Pounce
(Execute Transaction)

D transactions later

Update
LASA

Fig. 2. Transaction life cycle in Check-Wait-Pounce.

determine the transaction’s expected chance of success (COS) by checking the
Likely Abstract State Array (LASA) of the data structure. LASA is a thread-
unsafe representation of the data structure’s abstract state. We provide details
about LASA and the prediction of a transaction’s COS in Sect. 3.2.

A threshold value for the COS called the pounce threshold (Tp) is a user-
defined parameter. Based on the COS, we perform one of two actions:

– If the transaction’s COS is less than Tp, then the transaction will likely abort
if executed immediately. In this case, we proceed to the wait step: we delay
the transaction’s execution, allowing D other transactions to be processed
in the meantime (D is an integer provided as an input parameter). After D
other transactions complete, the waiting transaction returns to the check step
to determine its new COS. We hope that after waiting, the transaction will
have a higher chance of success than it had before waiting.

– If the transaction’s COS is greater than or equal to Tp, then the transaction
will likely commit if executed immediately. In this case, we proceed to the
pounce step: we execute the transaction. If the transaction commits, then we
update LASA to reflect the changes to the data structure’s abstract state.

3.2 Algorithm Details

In this paper, we focus on applying Check-Wait-Pounce to transactional data
structures that implement the set and map abstract data types. In the case of
sets and maps, the available operations are Insert, Delete, and Find.

For clarity, we list the data type definitions and constants of Check-Wait-
Pounce in Listing 1. Note, we denote line X of Listing Y as line Y.X.

The Transaction object represents a single transaction. It maintains a
list of Operation objects, which are used in the check step to determine the
transaction’s chance of success. Each Transaction object counts numWaits,
the number of times the transaction has performed the wait step, as well as
waitEndTime, which is a timestamp indicating when the transaction should stop
waiting. Also, the Transaction object has a reference next pointing to the next
transaction in the wait list. These fields will be explained further in this section.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 25

Listing 1. Type Definitions

1 enum OpType
2 Insert;
3 Delete;
4 Find;

5 struct Operation
6 OpType type;
7 int key;

8 struct Transaction
9 Operation[] ops;

10 int numWaits ← 0;
11 int waitEndT ime;
12 Transaction* next = NULL;

13 struct TxnWaitList
14 int timestamp ← 0;
15 Transaction head ← new Transaction();
16 Transaction tail ← new Transaction();

The TxnWaitList object is a thread-local queue that facilitates the wait
step. It is implemented as a linked list, and it maintains an integer timestamp
to track when transactions have finished waiting.

Each thread is given a stream of transactions to process. We show the pro-
cedure that the thread performs on each transaction in Algorithm 2. First, the
thread calls the CheckWaitPounce function to process the transaction from
the stream (line 2.2). We predict the transaction’s COS and proceed to either the
wait step or the pounce step. After processing the transaction from the stream,
we re-process any transactions that have reached the end of their wait steps
(line 2.3). We describe these functions in detail later in this section.

Check Step. The CheckWaitPounce method begins with the check step, in
which we predict the transaction’s chance of success (COS). This prediction is
made based on the number of operations in the transaction that will succeed.
Each operation in the transaction has a given precondition. If that precondition
is satisfied, then the operation succeeds; otherwise, the operation fails. For a set
S and the operation Insert(k) on a given key k, the operation’s precondition is
k /∈ S. Conversely, Find(k) and Delete(k) require k ∈ S.

We predict whether or not each operation will succeed based on the LASA aux-
iliary data structure. LASA represents the abstract state of the transactional data
structure, and its implementation may vary for different data structures. For a set,
the abstract state is a list of keys that exist in the set. We implement LASA as a
bitmap, where each index i represents a key k that could possibly exist in the set,
and the LASA[i] is true if k ∈ S, otherwise false. This boolean array representa-
tion allows for fast constant-time traversal while keeping memory usage low. In the
case of a vastly large key range, LASA can be converted from an array for bits to
a hash set or bloom filter to further decrease memory usage.

First, we count the number of operations that are expected to succeed. For
each operation, we compare its precondition to the data structure’s abstract
state, represented by LASA (line 2.14). If they match, then we predict the oper-
ation will succeed; otherwise it will fail. Next, we calculate the transaction’s
chance of success (COS), which is equal to the ratio of successful operations to
total operations (line 2.17). The transaction’s next step is chosen based on the
relation between COS and the pounce threshold (Tp), as detailed in Sect. 3.1.

26 L. Lebanoff et al.

Algorithm 2. Check-Wait-Pounce
1 Function ProcessTxn(Transaction txn)
2 CheckWaitPounce(txn);
3 ProcessWaitingTxns();

4 end
5 Function CheckWaitPounce(Transaction txn)
6 //Check step
7 int successfulOps ← 0;
8 foreach op ∈ txn.ops do
9 bool precondition;

10 if op.type = Insert then
11 precondition ← False;
12 else if op.type = Delete ‖ op.type = Find then
13 precondition ← True;
14 if LASA[op.key] = precondition then
15 successfulOps++;

16 end
17 float COS ← successfulOps / txn.ops.length;
18 if COS < Tp and txn.numWaits < MAX WAITS then
19 //Wait step
20 if TWL.head = NULL then
21 TWL.head ← txn;
22 TWL.tail ← txn;

23 else
24 TWL.tail.next ← txn;
25 txn.waitEndT ime ← TWL.timestamp + D;
26 txn.numWaits++;

27 else
28 //Pounce step
29 if TDSM.ExecuteTxn(txn) = True then
30 foreach op ∈ txn.ops do
31 if op.type = Insert ‖ op.type = Find then
32 LASA[op.key] ← True;
33 else if op.type = Delete then
34 LASA[op.key] ← False;

35 end

36 end
37 Function ProcessWaitingTxns()

38 Transaction txn ← TWL.head.next;
39 while txn �= NULL and txn.waitEndT ime = TWL.timestamp do
40 CheckWaitPounce(TWL.head);
41 txn ← txn.next;

42 end
43 TWL.head.next ← txn;
44 TWL.timestamp + +;

45 end

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 27

Wait Step. If a transaction’s COS is less than Tp, then it proceeds to the wait
step. Two parameters are given by the user to tune the wait step. D represents
the amount of time that each transaction is delayed in the wait step, measured
by the number of other transactions that are processed by the calling thread
during the transaction’s wait step. MAX WAITS places a bound on the number
of times that a transaction enters the wait step to avoid situations in which a
transaction waits indefinitely. If a transaction has entered the wait step more
than MAX WAITS times, then it proceeds to the pounce step (line 2.18).

In the common case, we add the transaction to the Transaction Wait List
(TWL), at the tail of the queue (line 2.25) or the head if the queue is empty
(line 2.21). The transaction waits until D other transactions have been processed.
To achieve this, the transaction calculates its wait end time—the specific times-
tamp value in which the transaction should finish waiting, which is equal to the
current timestamp value plus D (line 2.20).

The ProcessWaitingTxns function is called each time a thread processes a
transaction from the stream as in Algorithm 2 (line 2.3). This function dequeues
transactions from TWL if they have reached their wait end time and returns
them to the check step (lines 2.35−2.42)

Pounce Step. Once Check-Wait-Pounce chooses the point in time to execute
the transaction, we use a transactional data structure methodology (TDSM) to
actually perform the execution (line 2.28). This underlying TDSM is treated as
a black box to handle the conflict management that ensures strict serializability.
The TDSM returns true if the transaction commits, or false if the transaction
aborts. If the transaction commits, then its operations take effect, so we must
update LASA to match the data structure’s new abstract state (lines 2.30–2.33).

Note that LASA is shared among all threads, yet Check-Wait-Pounce uses
simple read and write instructions when dealing with LASA. Consequently,
LASA is not thread-safe. As a result, multiple threads performing concurrent
updates to LASA might encounter a data race and cause LASA to incorrectly
reflect the data structure’s abstract state. Because of the possibility of such dis-
parities, we only use LASA as a heuristic to choose the point in time to execute
a transaction, rather than using it to actually perform the execution.

4 Correctness

We use the correctness condition strict serializability for our correctness dis-
cussion. The four TDSMs we focus on in this paper—LFTT, STM, TDSL, and
TB—all guarantee strict serializability. TDSL guarantees opacity, which is a
stricter correctness condition, so our correctness proof holds for TDSL as well.
First, we provide background definitions for strict serializability, then we prove
that Check-Wait-Pounce does not alter the correctness of the strictly serializable
TDSMs.

A transaction is a sequence of operations that the user desires to be executed
atomically. An event is (1) a transaction invocation (the start of a transaction)

28 L. Lebanoff et al.

or response (the end of a transaction), or (2) an operation invocation or response.
A history is a finite series of instantaneous events [11].

Definition 1. A history h is strictly serializable if the subsequence of h con-
sisting of all events of committed transactions is equivalent to a legal history in
which these transactions execute sequentially in the order they commit [14].

Definition 2. Two method calls I, R and I ′,R′ commute if for all histories h,
if h · I · R and h · I ′ · R′ are both legal, then h · I · R · I ′ · R′ and h · I ′ · R′ · I · R
are both legal and define the same abstract state.

Definition 3. For a history h and any given invocation I and response R, let
I−1 and R−1 be the inverse invocation and response. Then I−1 and R−1 are
the inverse operations of I and R such that the state reached after the history
h · I · R · I−1 · R−1 is the same as the state reach after history h.

Definition 4. A method call denoted I · R is disposable if, ∀g ∈ G, if h · I · R
and h · g · I ·R are legal, then h · I ·R · g and h · g · I ·R are legal and both define
the same state.

4.1 Rules

Any software transactional memory system that obeys the following correctness
rules is strictly serializable [10].

Rule 1 Linearizability: For any history h, two concurrent invocations I and
I ′ must be equivalent to either the history h·I ·R·I ′ ·R′ or the history h·I ′ ·R′ ·I ·R.

Rule 2 Commutativity Isolation: For any non-commutative method calls
I1, R1 ∈ T1 and I2, R2 ∈ T2, either T1 commits or aborts before any additional
method calls in T2 are invoked, or vice-versa.

Rule 3 Compensating Actions: For any history h and transaction T , if
〈T aborted〉 ∈ h, then it must be the case that h—T = 〈T init〉 · I0 · R0 · · ·
Ii ·Ri · 〈T aborted〉 · I−1

i ·R−1
i · · · I−1

0 ·R−1
0 · 〈T aborted〉 where i indexes the last

successfully completed method call.

Rule 4 Disposable Methods: For any history h and transaction T , any
method call invoked by T that occurs after 〈T commit〉 or after 〈T abort〉 must
be disposable.

4.2 Strict Serializability and Recovery

We now show that Check-Wait-Pounce satisfies the correctness rules required to
guarantee strict serializability. The concrete state of a map is denoted as a node
set N .

Lemma 1. The set operations Insert, Delete, and Find are linearizable,
satisfying Rule 1.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 29

Proof. It is assumed that the underlying TDSM is strictly serializable. It is
therefore guaranteed that any history generated by the TDSM is equivalent to a
legal history in which these transactions execute sequentially in the order they
commit, so they are linearizable.

Lemma 2. Check-Wait-Pounce satisfies commutativity isolation as defined in
Rule 2.

Proof. Two set operations commute if they access different keys. The one-to-one
mapping from nodes to keys is formally stated as ∀nx, ny ∈ N,x �= y =⇒ nx �=
ny =⇒ nx.key �= ny.key. This implies that two set operations commute if they
access different nodes.

Since a transaction is only executed by the underlying TDSM, then Check-
Wait-Pounce satisfies commutativity isolation if the underlying TDSM satisfies
commutativity isolation.

Lemma 3. When a transaction aborts, Check-Wait-Pounce ensures that the
resulting history is equivalent to performing the inverse operations of all com-
puted operations of the aborted transaction, satisfying Rule 3.

Proof. Let T denote a transaction that executes the operations I0 ·R0 · · · Ii ·Ri

on nodes n0 · · ·ni and then aborts. Let S0 denote the abstract state immediately
before I0. By Rule 3, T must execute the inverse operations of the successful
method calls I−1

i · R−1
i · · · I−1

0 · R−1
0 after those method calls have succeeded.

This is equivalent to requiring that the current abstract state Si be restored to
its original state S0. We prove that the current abstract state Si is restored to
its original state S0 following an aborted transaction.

In the pounce step, the transaction is executed by the underlying TDSM.
Since the TDSM is assumed to be strictly serializable, it follows that the partial
effects of an aborted transaction are rolled back to the original abstract state S0

to guarantee that the resulting history is equivalent to a legal history. Therefore,
when the TDSM aborts a transaction, Si = S0.

Lemma 4. The LASA update operation is disposable, so Check-Wait-Pounce
satisfies Rule 4.

Proof. After a transaction executed by the underlying TDSM commits, LASA
is updated using atomic reads and atomic writes to reflect the expected abstract
state based on the operations performed by the transaction. We prove that the
LASA update operation is disposable by showing that it does not change the
abstract state of the data structure. LASA affects the outcome of the check step.
Since the transactional execution by the underlying TDSM does not incorporate
LASA, the LASA update operation does not change the abstract state of the
data structure, making it disposable.

Theorem 1. For a data structure that is generated using Check-Wait-Pounce,
the history of committed transactions is strictly serializable.

Proof. Follow Lemmas 1, 2, 3, 4, and the main theorem of Herlihy et al.’s
work [10], the theorem holds.

30 L. Lebanoff et al.

Table 1. Experimental variables tested.

Variable Values tested

Data structure Linked list, Skip list, MDList-based dictionary [17]

TDSM LFTT, TB, TDSL, STM

Transaction size (# operations) 1, 2, 4, 8, 12, 16

Sleep between operations 0µs, 10µs, 100µs, 1 ms

Tp 0, 0.25, 0.5, 0.75, 1

D 2, 50, 100, 300

MAX WAITS 2, 50, 100, 300

CPU architecture Intel Xeon Platinum 8160, SMP, 24 cores @ 2.1GHz,

AMD Opteron 6272, NUMA, 64 cores @ 2.1GHz

5 Evaluation

We compare the performance of several transactional data structures created
using four different TDSMs, and evaluate the performance impact of Check-
Wait-Pounce when applied to each data structure.

5.1 Experimental Setup

To evaluate the performance impact of Check-Wait-Pounce, we use a micro-
benchmark in a similar manner to other evaluations of TDSMs [3,16]. Several
threads are spawned, each one continuously executing transactions for 5 s. Each
operation in a transaction is randomly assigned an operation type (Insert,
Delete, or Find) and a key. All code is compiled with GCC 7.3 with C++17
features and O3 optimizations.

We perform our experiments in a variety of scenarios, outlined in Table 1. We
compare the performance of three concurrent data structures made transactional
by four TDSMs. We observe the effect of Check-Wait-Pounce on these data
structures in different environments, such as the transaction size (the number of
operations per transaction), user-defined parameters, and CPU architectures. We
also perform tests in which threads execute transactions with different amounts
of extra work in between each data structure operation. This means that the
number of data structure operations remains the same (e.g. 4 operations) but
the time taken to execute each transaction increases. We simulate these kinds
of transactions by tasking the threads to sleep for a certain amount of time per
operation.

When evaluating STM, we test Fraser STM [6] for the skiplist and NOrec [3]
for the other data structures. We denote Check-Wait-Pounce as CWP for the
remainder of this section.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 31

Fig. 3. Linked list performance: throughput and commit rate.

Fig. 4. Skip list performance: throughput and commit rate.

Fig. 5. Comparison using different transaction sizes (number of operations per trans-
action).

Fig. 6. Linked list performance varying user-defined parameters.

32 L. Lebanoff et al.

5.2 Linked List

We show the throughput and commit rate for the transactional linked lists in
a standard environment in Fig. 3. Each graph displays the performance of one
TDSM compared to the performance of that TDSM when optimized by Check-
Wait-Pounce. The throughput is the number of committed transactions per sec-
ond. The commit rate is the percentage of transactions that commit.

For the linked lists, the key range is set to 104. The tests are run on the
Intel Xeon Platinum 8160 using a uniform distribution, 20% write operations,
transaction size of 4, Tp set to 1, D set to 50, and MAX WAITS set to 100.

In almost every scenario across these test cases, CWP significantly increases
the percentage of committed transactions of the original TDSM and enhances
the throughput. On average, CWP improves the commit rate of LFTT by an
average of 62.5%, TB by 61.9%, TDSL by 57.8%, and STM by 14.1%. CWP
improves the throughput of LFTT by an average of 3.3x, TB by 4.6x, TDSL by
1.8x, and STM by 41.6%.

STM does not experience such a large gain in throughput as the other
TDSMs. This can be explained by the percentage of commits; with CWP, STM
increases its commit rate by 14.1%, while the other three TDSMs increase their
commit rates by an average of 60.7%. CWP helps to avoid self-aborts, but one
of the main disadvantages of STM is its high number of spurious aborts. Conse-
quently, CWP achieves smaller gains in commit rate, resulting in smaller gains
in throughput.

CWP improves both the throughput and commit rate when the number of
threads increases, due to increased activity per node. In the case of a higher
number of threads, during the wait step of a transaction T , more transactions
execute, increasing the chance that T will succeed when it finishes waiting.

5.3 Skip List

The performance of the transactional skip lists in a standard environment is
shown in Fig. 4. For the skip lists, we set the key range to 106, as the logarithmic
nature of traversal for skip lists allows them to handle larger key ranges than
linked lists. All other variables are set in the same manner as the linked lists in
Sect. 5.2. The performance results of the MDList-based dictionary is similar to
those of the skip list, so we do not show its results.

In every scenario across these test cases, CWP severely degrades the through-
put of the skip list. On average for all the TDSMs, CWP reduces the throughput
of skip lists by 79.4%. Although CWP increases the commit rate by an average
of 9.8%, this increase is offset by the overhead of reading and writing to LASA.
Because traversal in a skip list takes logarithmic time in comparison to the num-
ber of nodes rather than linear time, each operation completes much faster and
is more harshly affected by the overhead of LASA. This finding leads us to pos-
tulate that CWP is more effective at increasing the throughput of transactions
that take more time to execute.

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 33

We support this hypothesis by performing tests in which the threads are
tasked to sleep for a certain amount of time before each operation. In Fig. 4d we
show the performance of the LFTT skip list with 1 ms of sleep per operation.
We tested sleep times of 10 and 100µs as well but do not display these results
for space. The results show that CWP improves the performance of the data
structure more for cases in which transactions take more time to execute. In the
case of 1 ms of sleep, CWP improves the throughput of the skip list by 194%.

5.4 Transaction Size

In Fig. 5, we compare the effects of CWP on transactions of different sizes. Before
each test run, we fill the data structure until it is 50% full of nodes, and then
the number of insert and delete operations are equal during the test. Under
these circumstances, the probability of success for each operation is 0.5, so an
increased transaction size results in a lower commit rate. Namely, a transaction
with size n has a probability of 1/2n to commit.

Our results indicate that CWP performs more effectively for higher transac-
tion sizes until a size of 8, and then its effectiveness declines for higher sizes. For
sizes lower than 8, each transaction has a relatively high chance of succeeding,
so CWP does not improve the commit rate drastically. For sizes higher than
8, each transaction has such a low chance of succeeding that it needs to wait
a high number of wait steps before it succeeds, often greater than the value of
MAX WAITS, which also reduces the effectiveness of CWP.

5.5 Check-Wait-Pounce Parameters

We vary the user-defined parameters for CWP: Tp, D, and MAX WAITS. The
results are shown in Fig. 6. In Fig. 6a, we see that CWP is most effective when
Tp is set to 1, which signifies that 100% of the operations in a transaction must
be predicted to succeed in order to proceed to the pounce step. If a lower value
of Tp is used, transactions with any fail-prone operations are allowed to proceed
to the pounce step, and they usually abort, which hurts performance.

In Fig. 6b and c, we see that increasing the values of D and MAX WAITS
improves the throughput and commit rate of CWP. However, increasing these
parameters leads to higher latency, as CWP allows transactions to wait for longer
periods of time before executing. For applications that tolerate high latency, D
and MAX WAITS can be set to high values.

6 Conclusion

We present an optimization to transactional data structures called Check-Wait-
Pounce that reduces the number of self-aborts by delaying transactions. In test
cases with linked lists, our optimization improves the throughput of the data
structure by an average of 2.5x. Our optimization uses a thread-unsafe heuristic

34 L. Lebanoff et al.

called a Likely Abstract State Array to predict the chance of success of a trans-
action. Based on our findings, the use of thread-unsafe heuristics for concurrent
data structures is promising and can be the focus of future work.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 1717515 and Grant No. 1740095. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation.

References

1. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-92990-1 3

2. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

3. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: ACM Sigplan Notices, no. 5. ACM (2010)

4. Diegues, N., Romano, P.: Time-warp: lightweight abort minimization in transac-
tional memory. In: Symposium on Principles and Practice of Parallel Programming
(2014)

5. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, pp. 131–140. ACM (2010)

6. Fraser, K.: Practical lock-freedom. Ph.D. thesis, Cambridge University Computer
Laboratory (2003). Also available as Technical report UCAM-CL-TR-579 (2004)

7. Golan-Gueta, G., Ramalingam, G., Sagiv, M., Yahav, E.: Automatic scalable atom-
icity via semantic locking. In: Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 31–41. ACM (2015)

8. Gramoli, V., Guerraoui, R., Letia, M.: Composing relaxed transactions. In: Parallel
& Distributed Processing (IPDPS), pp. 1171–1182. IEEE (2013)

9. Hassan, A., Palmieri, R., Ravindran, B.: On developing optimistic transactional
lazy set. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS,
vol. 8878, pp. 437–452. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14472-6 29

10. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp. 207–216. ACM
(2008)

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2011)

12. Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. ACM Sig-
plan Not. 45(1), 19–30 (2010)

13. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with minimal
memory contention. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013.
LNCS, vol. 8304, pp. 206–220. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03850-6 15

https://doi.org/10.1007/978-3-540-92990-1_3
https://doi.org/10.1007/978-3-540-92990-1_3
https://doi.org/10.1007/978-3-319-14472-6_29
https://doi.org/10.1007/978-3-319-14472-6_29
https://doi.org/10.1007/978-3-319-03850-6_15
https://doi.org/10.1007/978-3-319-03850-6_15

Check-Wait-Pounce: Increasing Transactional Data Structure Throughput 35

14. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
(JACM) 26(4), 631–653 (1979)

15. Pedone, F., Guerraoui, R., Schiper, A.: Transaction reordering in replicated
databases. In: Proceedings of the IEEE Symposium on Reliable Distributed Sys-
tems, pp. 175–182 (1997)

16. Spiegelman, A., Golan-Gueta, G., Keidar, I.: Transactional data structure libraries.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 682–696. ACM (2016)

17. Zhang, D., Dechev, D.: An efficient lock-free logarithmic search data structure
based on multi-dimensional list. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 281–292, June 2016. https://doi.
org/10.1109/ICDCS.2016.19

18. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2016, pp. 325–336. ACM, New York (2016)

https://doi.org/10.1109/ICDCS.2016.19
https://doi.org/10.1109/ICDCS.2016.19

Putting Order in Strong Eventual
Consistency

Kevin De Porre1(B), Florian Myter1, Christophe De Troyer1,
Christophe Scholliers2, Wolfgang De Meuter1, and Elisa Gonzalez Boix1

1 Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
kevin.de.porre@vub.be

2 Ghent University, Sint Pietersnieuwstraat 33, Ghent, Belgium

Abstract. Conflict-free replicated data types (CRDTs) aid program-
mers develop highly available and scalable distributed systems. How-
ever, the literature describes only a limited portfolio of conflict-free data
types and implementing custom ones requires additional knowledge of
replication and consistency techniques. As a result, programmers resort
to ad hoc solutions which are error-prone and result in brittle systems. In
this paper, we introduce strong eventually consistent replicated objects
(SECROs), a general-purpose data type for building available data struc-
tures that guarantee strong eventual consistency (SEC) without restric-
tions on the operations. To evaluate our solution we compare a real-
time collaborative text editor built atop SECROs with a state-of-the-
art implementation that uses JSON CRDTs. This comparison quantifies
various performance aspects. The results show that SECROs are truly
general-purpose and memory efficient.

Keywords: Distribution · Eventual consistency ·
Replicated data types

1 Introduction

According to the CAP theorem [4,5] distributed systems that are prone to parti-
tions can only guarantee availability or consistency. This leads to a spectrum of
distributed systems that ranges from highly available systems (AP) to strongly
consistent systems (CP) with hybrid systems - that are partly AP and partly
CP - in the middle. A substantial body of research has focused on techniques or
protocols to propagate updates [7,16,19,20]. In this paper, we focus on language
abstractions that ease the development of highly available and partition tolerant
systems, the so-called AP systems.

A state-of-the-art approach towards high availability are conflict-free repli-
cated data types (CRDTs) [19]. CRDTs rely on commutative operations to guar-
antee strong eventual consistency (SEC), a variation on eventual consistency that

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 36–56, 2019.
https://doi.org/10.1007/978-3-030-22496-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-22496-7_3

Putting Order in Strong Eventual Consistency 37

provides an additional strong convergence guarantee1. This avoids the need for
synchronisation, yielding high availability and low latency.

The literature has proposed a portfolio of basic conflict-free data structures
such as counters, sets, and linked lists [17,18,22]. However, advanced distributed
systems require replicated data types that are tailored to the needs of the appli-
cation. Consider, for example, a real-world collaborative text editor that repre-
sents documents as a balanced tree of characters, allowing for logarithmic time
lookups, insertions, and deletions. To the best of our knowledge, the only tree
CRDT has been proposed in [12]. In this approach, balancing the tree requires
synchronising the replicas. However, this is not possible in AP systems as it
implies giving up on availability.

When the current portfolio of CRDTs falls short, programmers can resort to
two solutions. One is to manually engineer the data structure as a CRDT. This
requires rethinking the data structure completely such that all operations com-
mute. If the operations cannot be made commutative, programmers need to man-
ually implement conflict resolution. This has shown to be error-prone and results
in brittle systems [1,9,19]. Alternatively, programmers can use JSON CRDTs [9]
or Lasp [14] to design custom CRDTs. JSON CRDTs let programmers arbitrarily
nest linked lists and maps into new CRDTs, whereas Lasp supports functional
transformations over existing CRDTs. However, these constructs are not gen-
eral enough. Consider again the case of a collaborative text editor. Using lists
and maps one cannot implement a balanced tree CRDT, nor can one derive a
balanced tree from existing CRDTs.

In this paper, we explore a new direction which consists in devising a general-
purpose language abstraction for high availability. We design a novel repli-
cated data type called strong eventually consistent replicated object (SECRO).
SECROs guarantee SEC by reordering conflicting operations in a way that solves
the conflict. To find a conflict-free ordering of the operations, SECROs rely on
application-specific information provided by the programmer through concurrent
pre and postconditions defined over the operations of the SECRO. Our approach
is based on the idea that conflict detection and resolution naturally depends on
the semantics of the application [21].

We evaluate our approach by implementing a real-time collaborative text
editor using SECROs and comparing it to a JSON CRDT implementation of
the text editor, as proposed in [9]. We present various experiments that quantify
the memory usage, execution time, and throughput of both implementations.

2 Strong Eventually Consistent Replicated Objects

In this section, we describe strong eventually consistent replicated objects from
a programmer’s perspective. All code snippets are in CScript2, a JavaScript

1 Strong convergence states that correct replicas that received the same updates must
be in an equivalent state.

2 CScript is available at https://gitlab.com/iot-thesis/framework/tree/master.

https://gitlab.com/iot-thesis/framework/tree/master

38 K. De Porre et al.

extension embodying our implementation of SECROs. We introduce the neces-
sary syntax and features of CScript along with our explanation on SECROs.

2.1 SECRO Data Type

A SECRO is an object that implements an abstract data type and can be repli-
cated to a group of devices. Like regular objects, SECROs contain state in the
form of fields, and behaviour in the form of methods. It is not possible to directly
access a SECRO’s internal state. Instead, the methods defined by the SECRO
need to be used. These methods form the SECRO’s public interface. Methods
can be further categorised in accessors (i.e. methods querying internal state)
and mutators (i.e. methods updating the internal state).

As an example, consider the case of a collaborative text editor which organises
documents as a balanced tree of characters [15,22]. Listing 1.1 shows the struc-
ture of the Document SECRO. In order to create a new SECRO, programmers
extend the SECRO abstract data type. Instead of implementing our own balanced
tree data structure, we re-use an existing AVL tree data structure provided by
the Closure library3.
1 class Document extends SECRO {

2 constructor(tree = new AvlTree ((c1, c2) => c1.id - c2.id)) {

3 this._tree = tree;

4 }

5 @accessor

6 containsId(id) {

7 const dummyChar = {char: ’’, id: id};

8 return this._tree.contains(dummyChar);

9 }

10 @accessor

11 generateId(prev) { /* see appendix */ }

12 @accessor

13 indexOf(char) {

14 return this._tree.indexOf(char);

15 }

16 // serialisation methods

17 tojson() {

18 return this._tree; // AVL tree is serialisable

19 }

20 static fromjson(tree) {

21 return new Document(tree);

22 }

23 // operations to manipulate the tree

24 insertAfter(id, char) { /* see listing 1.2 */ }

25 delete(id) { /* see listing 1.3 */ }

26 // SECRO’s state validators

27 pre insertAfter(doc , args) {/* listing 1.2*/}

28 post insertAfter(originalDoc , doc , args , newChar) {/* listing 1.2*/}

29 post delete(originalDoc , doc , args , res) {/* listing 1.3*/}

30 }

31 Factory.registerAvailableType(Document);

Listing 1.1. Structure of the text editor.

3 https://developers.google.com/closure/library/.

https://developers.google.com/closure/library/

Putting Order in Strong Eventual Consistency 39

The Document SECRO defines three accessors (containsId, generateId and
indexOf) and two mutators (insertAfter and delete). containsId returns a
boolean that indicates the presence or absence of a certain identifier in the
document tree. generateId uses a boundary allocation strategy [15] to compute
stable identifiers based on the reference identifiers. Finally, indexOf returns the
index of a character in the document tree. Note that side-effect free methods are
annotated with @accessor, otherwise, CScript treats them as mutators.

The Document SECRO also defines methods to serialise and deserialise the
document as it will be replicated over the network. Note that deserialisation
creates a new replica of the Document SECRO. In order for the receiver to know
the Document class, programmers must register their SECRO at the CScript
factory (line 31).

Finally, the Document SECRO forwards insertAfter and delete opera-
tions on the text to the underlying AVL tree (as we describe later in Sect. 2.2).
Besides the methods defined in the SECRO’s public interface, programmers can
also enforce application-specific invariants by associating concurrent precondi-
tions and postconditions to the mutators (Line 27 to 29). We say that pre and
postconditions are state validators. State validators are used by the SECRO to
order concurrent operations such that they do not violate any invariant. Next
section further describes them.

2.2 State Validators

State validators let programmers define the data type’s behaviour in the face of
concurrency. State validators are declarative rules that are associated to muta-
tors. Those rules express invariants over the state of the object which need to
uphold in the presence of concurrent operations4. Behind the scenes, the repli-
cation protocol may interleave concurrent operations. From the programmer’s
perspective the only guarantee is that these invariants are upheld. State valida-
tors come in two forms:

Preconditions. Specify invariants that must hold prior to the execution of
their associated operation. As such, preconditions approve or reject the state
before applying the actual update. In case of a rejection, the operation is
aborted and a different ordering of the operations will be tried.

Postconditions. Specify invariants that must hold after the execution of their
associated operation. In contrast to preconditions, an operation’s associ-
ated postcondition does not execute immediately. Instead, the postcondition
executes after all concurrent operations complete. As such, postconditions
approve or reject the state that results from a group of concurrent, poten-
tially conflicting operations. In case of a rejection a different ordering is tried.

In CScript, state validators are methods which are prefixed with the pre
or post keyword, defining a pre or postcondition, respectively. To illustrate
4 From now on, we use the terms operation and mutator interchangeably, as well as

the terms update and mutation.

40 K. De Porre et al.

state validators we again consider the example of a collaborative text edi-
tor and present the implementation of the insertAfter and delete methods
and their associated preconditions and postconditions. Listing 1.2 contains the
insertAfter operation. Listing The id argument on Line 1 is the identifier of
the reference character. On Line 2 the method generates a new stable identifier
for the character it is inserting. Using this identifier the method creates a new
character on Line 3. Finally, Line 4 and 5 insert the character in the tree and
return the newly added character. Line 7 to 10 define a precondition on insert.
The precondition is a method which has the same name as its associated oper-
ation and takes as parameters the object’s current state followed by an array
containing the arguments that are passed to its associated operation. In this
case, id and char as passed to insertAfter. The precondition checks that the
reference character exists (Line 9).
1 insertAfter(id, char) {

2 const newId = this.generateId(id),

3 newChar = new Character(char , newId);

4 this._tree.add(newChar);

5 return newChar;

6 }

7 pre insertAfter(doc , args) {

8 const [id, char] = args;

9 return id === null || doc.containsId(id);

10 }

11 post insertAfter(originalDoc , newDoc , args , newChar) {

12 const [id, char] = args ,

13 originalChar = {char: "dummy", id: id};

14 return (id === null && doc._tree.contains(newChar)) ||

15 doc.indexOf(originalChar) < doc.indexOf(newChar);

16 }

Listing 1.2. Inserting a character in a tree-based text document.

Lines 11 to 16 define a postcondition for the insertAfter operation. Similar
to preconditions, postconditions are defined as a method which has the same
name as its associated operation (insertAfter in this case). However, they take
4 arguments: (1) the SECRO’s initial state, (2) the state that results from apply-
ing the operation (insertAfter), (3) an array with the operation’s arguments,
and (4) the operation’s return value (newChar in this case). This postcondi-
tion checks that the newly added character occurs at the correct position in the
resulting tree, i.e. after the reference character that is identified by id. Accord-
ing to this postcondition any interleaving of concurrent character insertions is
valid, e.g. two users may concurrently write “foo” and “bar” resulting in one of:
“foobar”, “fboaor”, etc. If the programmer only wants to allow the interleavings
“foobar” and “barfoo” the SECRO must operate on the granularity of words
instead of single character manipulations.

Listing 1.3 contains the implementation of the delete method and its asso-
ciated postcondition. Lines 1 to 3 show that characters are deleted by removing
them from the underlying AVL tree. Recall that the character’s stable identifier
uniquely identifies the character in the tree. Afterwards, the postcondition on
Lines 4 to 7 ensures that the character no longer occurs in the tree.

Putting Order in Strong Eventual Consistency 41

1 delete(id) {

2 return this._tree.remove(id);

3 }

4 post delete(originalDoc , doc , args , res) {

5 const [id] = args;

6 return !doc.containsId(id);

7 }

Listing 1.3. Deleting a character from a tree-based text document.

Notice that preconditions are less expressive than postconditions but, they
avoid unnecessary computations by rejecting invalid states prior to the execution
of the operation. Preconditions are also useful to prevent operations from running
on a corrupted state, thus improving the system’s robustness.

3 SECRO’s Replication Protocol

A SECRO is a general-purpose language abstraction that guarantees SEC, i.e.
eventual consistency and strong convergence. To provide this guarantee SECROs
implement a dedicated optimistic replication protocol. For the purpose of this
paper, we describe the protocol in pseudocode5.

SECRO’s protocol propagates update operations to all replicas. In contrast
to CRDTs, the operations of a SECRO do not necessarily commute. Therefore,
the replication protocol totally orders the operations at all replicas. This order
may not violate any of the operations’ pre or postconditions.

For the sake of simplicity we assume a causal order broadcasting mechanism
without loss of generality, i.e. a communication medium in which messages arrive
in an order that is consistent with the happened-before relation [10]. Note that
even though we rely on causal order broadcasting, concurrent operations arrive
in arbitrary orders at the replicas.

Intuitively, replicas maintain their initial state and a sequence of operations
called the operation history. Each time a replica receives an operation, it is
added to the replica’s history, which may require reordering parts of the history.
Reordering the history boils down to finding an ordering of the operations that
fulfils two requirements. First, the order must respect the causality of operations.
Second, applying all the operations in the given order may not violate any of the
concurrent pre or postconditions. An ordering which adheres to these require-
ments is called a valid execution. As soon as a valid execution is found each
replica resets its state to the initial one and executes the operations in-order.
Reordering the history is a deterministic process, hence, replicas that received
the same operations find the same valid execution.

The existence of a valid execution cannot be guaranteed if pre and postcon-
ditions contradict each other. It is the programmer’s responsibility to provide
correct pre and postconditions.

5 The implementation is part of CScript and can be found at https://gitlab.com/iot-
thesis/framework/tree/master/src/Application/CRDTs/SECRO.

https://gitlab.com/iot-thesis/framework/tree/master/src/Application/CRDTs/SECRO
https://gitlab.com/iot-thesis/framework/tree/master/src/Application/CRDTs/SECRO

42 K. De Porre et al.

The replication protocol provides the following guarantees:

1. Eventually, all replicas converge towards the same valid execution (i.e. even-
tual consistency).

2. Replicas that received the same updates have identical operation histories
(i.e. strong convergence).

3. Replicas eventually perform the operations of a valid execution if one exists,
or issue an error if none exists.

The operation histories of replicas may grow unboundedly as they perform
operations. In order to alleviate this issue we allow for replicas to periodically
commit their state. Concretely, replicas maintain a version number. Whenever a
replica commits, it clears its operation history and increments its version num-
ber. The replication protocol then notifies all other replicas of this commit,
which adopt the committed state and also empty their operation history. All
subsequent operations received by a replica which apply to a previous version
number are ignored. As we explain in Sect. 3.1, the commit operation does not
require synchronising the replicas and thus does not affect the system’s avail-
ability. However, commits come at the price of certain operations being dropped
for the sake of bounded operation history size.

3.1 Algorithm

We now detail our replication protocol which makes the following assumptions:

– Each node in the network may contain any number of replicas of a SECRO.
– Nodes maintain vector clocks to timestamp the operations of a replica.
– Nodes are able to generate globally unique identifiers using lamport clocks.
– Reading the state of a replica happens side-effect free and mutators solely

affect the replica’s state (i.e. the side effects are confined to the replica itself).
– Eventually, all messages arrive, i.e. reliable communication: no message loss

nor duplication (e.g., TCP/IP).
– There are no byzantine failures, i.e. no malicious nodes.

A replica r is a tuple r = (vi , s0 , si , h, idc) consisting of the replica’s version
number vi , its initial state s0 , its current state si , its operation history h, and
the id of the latest commit operation idc . A mutator m is represented as a tuple
m = (o, p, a) consisting of the update operation o, precondition p, and postcon-
dition a. We denote that a mutation m1 happened before m2 using m1 ≺ m2 .
Similarly, we denote that two mutations happened concurrently using m1 ‖m2 .
Both relations are based on the clocks carried by the mutators [8].

We now discuss in detail the three kinds of operations that are possible on
replicas: reading, mutating, and committing state.

Reading Replicas. Reading the value of a replica (vi , s0 , si , h, idc) simply
returns its latest local state si .

Putting Order in Strong Eventual Consistency 43

ALGORITHM 1. Handling mutate messages
arguments: A mutate message m = (o, p, a, c, id), a replica = (vi , s0 , si , h, idc)

1 h′ = h ∪ {m}
2 for ops ∈ LE(sort>>(h′)) do
3 s′

i = si
4 pre = 0
5 post = 0
6 for m ∈ ops do
7 concurrentClosure = TC (m, h′) ∪ {m}
8 for m′ = (o, p, a, c, id) ∈ concurrentClosure do
9 if p(s′

i) then
10 pre += 1

11 s′
i = o(s′

i)

12 end

13 end

14 for m′ = (o, p, a, c, id) ∈ concurrentClosure do
15 if a(s′

i) then
16 post += 1
17 end

18 end
19 ops = ops \ concurrentClosure

20 end
21 if pre == |ops| ∧ post == |ops| then
22 return (vi , s0 , s

′
i , h

′, idc)
23 end

24 end
// throw faulty program exception

Mutating Replicas. When a mutator m = (o, p, a) is applied to a replica a
mutate message is broadcast to all replicas. Such a message is an extension
of the mutator (o, p, a, c, id) which additionally contains the node’s logical
clock time c and a unique identifier id.

As mentioned before, operations on SECROs do not need to commute by
design. Since operations are timestamped with logical clocks they exhibit a par-
tial order. Algorithm 1 governs the replicas’ behaviour to guarantee SEC by
ensuring that all replicas execute the same valid ordering of their operation
history.

Algorithm 1 starts when a replica receives a mutate message. The algorithm
consists of two parts. First, it adds the mutate message to the operation his-
tory, sorts the history according to the >> total order, and generates all lin-
ear extensions of the replica’s sorted history (see Lines 1 and 2). We say that
m1 = (o1 , p1 , a1 , c1 , id1) >> m2 = (o2 , p2 , a2 , c2 , id2) iff c1 � c2 ∨ (c1 ‖ c2 ∧
id1 > id2). The generated linear extensions are all the permutations of h ′ that
respect the partial order defined by the operations’ causal relations. Since repli-
cas deterministically compute linear extensions and start from the same sorted
operation history, all replicas generate the same sequence of permutations.

Second, the algorithm searches for the first valid permutation. In other words,
for each operation within such a permutation the algorithm checks that the pre-
conditions (Lines 8 to 13) and postconditions (Lines 14 to 18) hold. Remember
that postconditions are checked only after all concurrent operations executed
since they happened independently (e.g. during a network partition) and may

44 K. De Porre et al.

thus conflict. For this reason, Line 7 computes the transitive closure of concur-
rent operations6 for every operation in the linear extension.

Since the “is concurrent” relation is not transitive, one might wonder why we
consider operations that are not directly concurrent. To illustrate this, consider a
replica r1 that executes operation o1 followed by o2 (o1 ≺ o2) while concurrently
replica r2 executes operation o3 (o3 ‖ o1 ∧ o3 ‖ o2). Since o3 may affect both
o1 and o2 we take into account all three operations. This corresponds to the
transitive closure {o1, o2, o3}. We refer the reader to AppendixA for a proof
that no operation can break this transitive closure of concurrent operations.

Finally, the algorithm returns the replica’s updated state as soon as a valid
execution is found, otherwise, it throws an exception.

Committing Replicas. In a nutshell, commit clears a replica’s operation his-
tory h, increments the replica’s version and updates the initial state s0 with
the replica’s current state si . This avoids unbounded growth of operation
histories, but operations concurrent with the commit will be discarded7.

When a replica is committed a commit message is broadcast to all replicas
(including the committed one). This message is a quadruple (si , vi , clock , id)
containing the committed state, the replica’s version number, the current logical
clock time, and a unique id.

ALGORITHM 2. Handling commit messages
arguments: A commit message = (sc , vc , clock , id), a replica = (vi , s0 , si , h, idc)

1 if vc = vi then
2 return (vi + 1 , sc , sc , ∅, id)
3 end
4 if vc = vi − 1 ∧ id < idc then
5 return (vi , sc , sc , ∅, id)
6 end

To ensure that replicas converge in the face of concurrent commits we design
commit operations to commute. As a result, commit does not compromise avail-
ability. Algorithm2 dictates how replicas handle commit messages. The algo-
rithm distinguishes between two cases. First, the commit operation commits the
current state (see Line 1). The replica’s version is incremented, its initial and
current state are set to the committed state, the operation history is cleared and
the id of the last performed commit is updated. Second, the commit operation
commits the previous state (see Line 4). This means that the commit operation
applies to the previous version vi−1. As a result, the newly received commit oper-
ation is concurrent with the last performed commit operation (i.e. the one that

6 The transitive closure of a mutate message m with respect to an operation history h
is denoted TC(m,h) and is the set of all operations that are directly or transitively
concurrent with m. A formal definition is provided in Appendix A.

7 Since commit may drop operations, one can argue that SECROs are similar to last-
writer-wins (LWW) strategies. However, SECROs guarantee invariant preservation,
which is not the case with CRDTs.

Putting Order in Strong Eventual Consistency 45

caused the replica to update its version from vi−1 to vi). To ensure convergence,
replicas perform the commit operation with the smallest ID. This ensures that
the order in which commits are received is immaterial and hence that commit
operations commute. Note that the algorithm does not need to tackle the case
of committing an elder state since it cannot happen under the assumption of
causal order broadcasting.

4 Evaluation

We now compare our novel replicated data type to JSON CRDTs, a state-of-
the-art approach providing custom CRDTs built atop lists and maps. We per-
form a number of experiments which quantify the memory usage, execution
time and throughput of the collaborative text editor. We implemented it twice
in JavaScript, once using SECROs8 and once using JSON CRDTs9. The JSON
CRDT implementation uses a list to represent text documents. The SECRO
implementation comes in two variants: one that uses a list and one that uses a
balanced tree (described in Sect. 2).

Note that SECROs are designed to ease the development of custom repli-
cated data types guaranteeing SEC. Hence, our goal is not to outperform JSON
CRDTs, but rather to evaluate the practical feasibility of SECROs.

4.1 Methodology

All experiments are performed on a cluster consisting of 10 worker nodes which
are interconnected through a 10 Gbit twinax connection. Each worker node has
an Intel Xeon E3-1240 processor at 3.50 GHz and 32 GB of RAM. Depending on
the experiment, the benchmark is either run on a single worker node or on all
ten nodes. We specify this for each benchmark.

To get statistically sound results we repeat each benchmark at least 30 times,
yielding a minimum of 30 samples per measurement. Each benchmark starts with
a number of warmup rounds to minimise the effects of program initialisation.
Furthermore, we disable NodeJS’ just-in-time compiler optimisations to obtain
more stable execution times.

We perform statistical analysis over our measurements as follows. First,
depending on the benchmark we discard samples that are affected by garbage
collection (e.g. the execution time benchmarks). Then, for each measurement
including at least 30 samples we compute the average value and the correspond-
ing 95% confidence interval.

8 CScript code presented in Sect. 2 compiles to JavaScript and runs atop NodeJS.
9 The implementations are available at https://gitlab.com/iot-thesis/framework/tree/

master.

https://gitlab.com/iot-thesis/framework/tree/master
https://gitlab.com/iot-thesis/framework/tree/master

46 K. De Porre et al.

20

40

60

80

0 100 200 300 400 500 600 700 800 900 1000
Executed Operations

H
ea

p
U

sa
ge

 in
 M

B

 Json CRDT Tree SECRO List SECRO insert delete

(a) Comparison between the memory us-
age of the SECRO and JSON CRDT text
editors.

10

11

12

13

0 100 200 300 400 500 600 700 800 900 1000
Executed Operations

H
ea

p
U

sa
ge

 in
 M

B

 Tree List Measured Regression line insert delete

(b) Comparison between the list and tree
implementations of the SECRO text edi-
tor.

Fig. 1. Memory usage of the collaborative text editors. Error bars represent the 95%
confidence interval for the average taken from 30 samples. These experiments are per-
formed on a single worker node of the cluster. (Color figure online)

4.2 Memory Usage

To compare the memory usage of the SECRO and JSON CRDT text editors, we
perform an experiment in which 1000 operations are executed on each text editor.
We continuously alternate between 100 character insertions followed by deletions
of those 100 characters. We force garbage collection after each operation10, and
measure the heap usage. The resulting measurements are shown in Fig. 1. Green
and red columns indicate character insertions and deletions respectively.

Figure 1a confirms our expectation that the SECRO implementations are
more memory efficient than the JSON CRDT one. The memory usage of the
JSON CRDT text editor grows unbounded since CRDTs cannot delete charac-
ters, but merely mark them as deleted using tombstones. Conversely, SECROs
support true deletions by reorganising concurrent operations in a non-conflicting
order. Hence, all 100 inserted characters are deleted by the following 100 dele-
tions. This results in lower memory usage.

Figure 1b compares the memory usage of the list and tree-based implementa-
tions using SECROs. We conclude that the tree-based implementation consumes
more memory than the list implementation. The reason is that nodes of a tree
maintain pointers to their children, whereas nodes of a singly linked list only
maintain a single pointer to the next node. Interestingly, we observe a staircase
pattern. This pattern indicates that memory usage grows when characters are
inserted (green columns) and shrinks when characters are deleted (red columns).
Overall, memory usage increases linearly with the number of executed opera-
tions, even though we delete the inserted characters and commit the replica

10 Forcing garbage collection is needed to get the real-time memory usage. Otherwise,
the memory usage keeps growing until garbage collection is triggered.

Putting Order in Strong Eventual Consistency 47

after each operation. Hence, SECROs cause a small memory overhead for each
executed operation. This linear increase is shown by the dashed regression lines.

4.3 Execution Time

We now benchmark the time it takes to append characters to a text document.
Although this is not a realistic edition pattern, it showcases the worst case per-
formance. From Fig. 2a we notice that the SECRO versions exhibit a quadratic
performance, whereas the JSON CRDT version exhibits a linear performance.
The reason for this is that reordering the SECRO’s history (see Algorithm 1 in
Sect. 3.1) induces a linear overhead on top of the operations themselves. Since
insert is also a linear operation, the overall performance of the text editor’s insert
operation is quadratic. To address this performance overhead the replica needs
to be committed. The effect of commit on the execution time of insert operations
is depicted in AppendixB.

0

100

200

300

0 100 200 300 400 500
Document Length

T
im

e
in

 m
ill

is
ec

o
n

d
s

 Tree SECRO List SECRO Json CRDT

(a) Execution time of an operation that
appends one character to a document.

0

250

500

750

1000

0 1000 2000 3000 4000 5000
Document Length

T
im

e
in

 m
ill

is
ec

o
n

d
s

 List SECRO Tree SECRO Json CRDT

(b) Execution time of an operation that
appends 100 characters to a document.

Fig. 2. Execution time of character insertions in the collaborative text editors. Replicas
are never committed. Error bars represent the 95% confidence interval for the aver-
age taken from a minimum of 30 samples. Samples affected by garbage collection are
discarded. (Color figure online)

Figure 2b also shows that the SECRO implementation that uses a linked
list is faster than its tree-based counterpart. To determine the cause of this
counterintuitive observation, we measure the different parts that make up the
total execution time:

Execution time of operations. Total time spent on append operations.
Execution time of preconditions. Total time spent on preconditions.
Execution time of postconditions. Total time spent on postconditions.

48 K. De Porre et al.

Copy time. Due to the mutability of JavaScript objects our prototype imple-
mentation in CScript needs to copy the state before validating the potential
history. The total time spent on copying objects (i.e. the document state) is
the copy time.

Figures 5a and b in AppendixC depict the detailed execution time for the list
and tree implementations respectively. The results show that the total execution
time is dominated by the copy time. We observe that the tree implementation
spends more time on copying the document than the list implementation. The
reason being that copying a tree entails a higher overhead than copying a linked
list as more pointers need to be copied. Furthermore, the tree implementation
spends considerably less time executing operations, preconditions and postcondi-
tions, than the list implementation. This results from the fact that the balanced
tree provides logarithmic time operations.

Unfortunately, the time overhead incurred by copying the document kills
the speedup we gain from organising the document as a tree. This is because
each insertion inserts only a single character but requires the entire document
to be copied. To validate this hypothesis, we re-execute the benchmark shown
in Fig. 2a but insert 100 characters per operation. Figure 2b shows the resulting
execution times. As expected, the tree implementation now outperforms the list
implementation. This means that the speedup obtained from 100 logarithmic
insertions exceeds the copying overhead induced by the tree. In practice, this
means that single character manipulations are too fine-grained. Manipulating
entire words, sentences or even paragraphs is more beneficial for performance.

Overall, the execution time benchmarks show that deep copying the doc-
ument induces a considerable overhead. We believe that the overhead is not
inherent to SECROs, but to its implementation on top of a mutable language
such as JavaScript.

4.4 Throughput

The experiments presented so far focused on the execution time of sequential
operations on a single replica. To measure the throughput of the text editors
under high computational loads we also perform distributed benchmarks. To
this end, we use 10 replicas (one on each node of the cluster) and let them
simultaneously perform operations on the text editor. The operations are equally
spread over the replicas. We measure the time to convergence, i.e. the time that
is needed for all replicas to process all operations and reach a consistent state.
Note that replicas reorder operations locally, hence, the throughput depends on
the number of operations and is independent of the number of replicas.

Figure 3 depicts how the throughput of the list-based text editor varies in
function of the load. We observe that the SECRO text editor scales up to
50 concurrent operations, at which point it reaches its maximal throughput.
Afterwards, the throughput quickly degrades. On the other hand, the JSON
CRDT implementation achieves a higher throughput than the SECRO version

Putting Order in Strong Eventual Consistency 49

50

100

150

200

0 100 200 300
Concurrent Insertions

In
se

rt
io

ns
/s

ec

Version
JSON CRDT
List SECRO

Comparison of the naive JSON CRDT and SECRO implementations
Throughput Of The Text Editor

Error bars represent the 95% CI.
Commit interval of 100 for the SECRO version.

Fig. 3. Throughput of the list-based SECRO and JSON CRDT text editors, in function
of the number of concurrent operations. The SECRO version committed the document
replica at a commit interval of 100. Error bars represent the 95% confidence interval
for the average of 30 samples.

under high loads (100 concurrent operations and more). Hence, the JSON CRDT
text editor scales better than the SECRO text editor, but SECROs are general-
purpose which allowed us to organise documents as balanced trees of characters.

5 Related Work

We now discuss work that is closely related to the ideas presented in this paper.
Central to SECROs is the idea of employing application-specific information to
reorder conflicting operations. Bayou [21] was the first system to use application-
level semantics for conflict resolution by means of merge procedures provided
by users. Our work, however, does not require manual resolution of conflicts.
Instead, programmers only need to specify the invariants the application should
uphold in the face of concurrent updates, and the underlying update algorithm
deterministically orders operations.

Within the CRDT literature, the research on JSON CRDTs [9] is the most
closely related to our work. JSON CRDTs aim to ease the construction of CRDTs
by hiding the commutativity restriction that traditionally applies to the opera-
tions. Programmers can build new CRDTs by nesting lists and maps in arbitrary
ways. The major shortcoming is that nesting lists and maps does not suffice to
implement arbitrary replicated data types. Hence, JSON CRDTs are not truly
general-purpose as opposed to SECROs.

50 K. De Porre et al.

Lasp [14] is the first distributed programming language where CRDTs are
first-class citizens. New CRDTs are defined through functional transformations
over existing ones. In contrast, SECROs are not limited to a portfolio of existing
data types that can be extended. Any existing data structure can be turned into
a SECRO by associating state validators to the operations.

Besides CRDTs, cloud types [6] are high-level data types that can be repli-
cated over the network. Similar to SECROs, cloud types do not impose restric-
tions on the operations of the replicated data type. However, cloud types hard-
code how to merge updates coming from different replicas of the same type.
As such, programmers have no means to customise the merge process of cloud
types to fit the application’s semantics. Instead, they are bound to implement a
new cloud type and the accompanying merge procedure that fits the application.
Hence, conflict resolution needs to be manually dealt with.

Some work has considered a hybrid approach offering SEC for commutative
operations, and requiring strong consistency for non-commutative ones [2,3].
There are some similarities to SECROs as they employ application-specific
invariants to classify operations as safe or unsafe under concurrent execution.
In this work, unsafe operations are synchronised while SECROs reorder unsafe
operations as to avoid conflicts without giving up on availability. Partial Order-
Restrictions (PoR) consistency [13] uses application-specific restrictions over
operations but cannot guarantee convergence nor invariant preservation since
these properties depend on the restrictions over the operations specified by the
programmer.

6 Conclusion

In this work, we propose strong eventually consistent replicated objects
(SECROs), a data type that guarantees SEC without imposing restrictions on
the operations. SECROs do not avoid conflicts by design, but instead compute
a global total order of the operations that is conflict-free, without synchronis-
ing the replicas. To this end, SECROs use state validators: application-specific
invariants that determine the object’s behaviour in the face of concurrency.

To the best of our knowledge, SECROs are the first approach to support truly
general-purpose replicated data types while still guaranteeing SEC. By speci-
fying state validators arbitrary data types can be turned into highly available
replicated data types. This means that replicated data types can be implemented
similarly to their sequential local counterpart, with the addition of preconditions
and postconditions to define concurrent semantics. We showcase the flexibility of
SECROs through the implementation of a collaborative text editor that stores
documents as a tree of characters. The implementation re-uses a third-party
AVL tree and turns into a replicated data type using SECROs.

Putting Order in Strong Eventual Consistency 51

We compared our SECRO-based collaborative text editor to a state-of-the-art
implementation that uses JSON CRDTs. The benchmarks reveal that SECROs
efficiently manage memory, whereas the memory usage of JSON CRDTs grows
unbounded. Time complexity benchmarks reveal that SECROs induce a lin-
ear time overhead which is proportional to the size of the operation history.
Performance wise, SECROs can be competitive to state-of-the-art solutions if
committed regularly.

Acknowledgments. Kevin De Porre is funded by an SB Fellowship of the Research
Foundation - Flanders. Project number: 1S98519N.

A Proof: Operations Cannot Break the Transitive
Closure of Concurrent Operations

Recall from Algorithm 1 in Sect. 3.1 that checking preconditions and postcon-
ditions requires computing the transitive closure of concurrent operations. We
now formally define the transitive closure of concurrent operations and prove
that operations cannot break this closure.

Definition 1. An operation m1 = (o1, p1, a1, c1, id1) happened before an opera-
tion m2 = (o2, p2, a2, c2, id2) iff the logical timestamp of m1 happened before the
logical timestamp of m2: m1 ≺ m2 ⇐⇒ c1 ≺ c2.

Definition 2. Two operations m1 and m2 are concurrent iff neither one hap-
pened before the other [11]: m1 ‖m2 ⇐⇒ m1 ⊀ m2 ∧ m2 ⊀ m1.

Definition 3. We define ‖+ as the transitive closure of ‖.
Definition 4. The set of all operations that are transitively concurrent to an
operation m with respect to a history h is defined as: TC(m,h) = {m′ |m′ ∈
h ∧ m′ ‖+ m}.
Definition 5. An operation m happened before a set of operations T iff it hap-
pened before every operation of the set: m ≺ T ⇐⇒ ∀m′ ∈ T : m ≺ m′.

Definition 6. An operation m happened after a set of operations T iff it hap-
pened after all operations of the set: T ≺ m ⇐⇒ ∀m′ ∈ T : m′ ≺ m.

Definition 7. A set of operations T1 happened before a set of operations T2 iff
every operation from T1 happened before every operation of T2: T1 ≺ T2 ⇐⇒
∀m1 ∈ T1 ∀m2 ∈ T2 : m1 ≺ m2

Theorem 1. For any operation m′ and any non-empty transitive closure
TC(m,h) it holds that m′ ∈ TC(m,h) ∨ m′ ≺ TC(m,h) ∨ TC(m,h) ≺ m′.

52 K. De Porre et al.

Proof. Proof by contradiction.
Assume that an operation m′ exists for which Theorem 1 does not hold: ∃m′ :
m′ /∈ TC(m,h) ∧ m′ ⊀ TC(m,h) ∧ TC(m,h) ⊀ m′. This means that operation
m′ breaks the concurrent transitive closure into two disjoint sets of operations:
∃T1 ∃T2 : T1 ≺ m′ ∧ m′ ≺ T2 where T1 = {m1,m2, . . . ,mi} ⊂ TC(m,h) and
T2 = {mi+1, . . . ,mn} ⊂ TC(m,h) and T1 ∩ T2 = ∅ and T1 ∪ T2 = TC(m,h).
Then by transitivity of the happened-before relation (≺) we find that T1 ≺
T2. This leads to a contradiction since we know that T1 ∈ TC(m,h) ∧ T2 ∈
TC(m,h) =⇒ ∃mi ∈ T1 ∃mj ∈ T2 : mi ‖mj , i.e., there must be a link mi ||mj

between T1 and T2. Therefore, T1 cannot have happened before T2. ��

B The Effect of Commit on the Execution Time

In this appendix, we present two benchmarks. The first quantifies the perfor-
mance overhead of SECROs that results from reordering the operation history.
The second illustrates the effect of commit on the execution time of the collab-
orative text editor and how commit improves its performance.

0

100

200

300

400

0 100 200 300 400 500
Executed Operations

Ti
m

e
in

 m
ill

is
ec

on
ds

Commit Interval Infinite 50 1

(a) Execution time of a constant time op-
eration in function of the number of exe-
cuted operations.

0

100

200

0 250 500 750 1000
Document Length

Ti
m

e
in

 m
ill

is
ec

on
ds

Commit Interval Infinite 100 1

(b) Time to append a character to the
text document using the list implemen-
tation of the SECRO text editor.

Fig. 4. Execution time of SECROs for different commit intervals, performed on a single
worker node of the cluster. Error bands represent the 95% confidence interval for the
average taken from a minimum of 30 samples. Samples affected by garbage collection
were discarded. (Color figure online)

To quantify the performance overhead of SECROs we measure the execu-
tion times of 500 constant time operations, for different commit intervals. Each
operation computes 10 000 tangents and has no associated pre- or postcondition.
Hence, the resulting measurements reflect the best-case performance of SECROs.

Putting Order in Strong Eventual Consistency 53

Figure 4a depicts the execution time of the aforementioned constant time
operation. If we do not commit the replica (red curve), the operation’s execution
time increases linearly with the number of operations. Hence, SECROs induce
a linear overhead. This results from the fact that the replica’s operation history
grows with every operation. Each operation requires the replica to reorganise the
history. To this end, the replica generates linear extensions of the history until a
valid ordering of the operations is found (see Algorithm1 in Sect. 3.1). Since we
defined no preconditions or postconditions, every order is valid. The replica thus
generates exactly one linear extension and validates it. To validate the ordering,
the replica executes each operation. Therefore, the operation’s execution time is
linear to the size of the operation history.

As mentioned previously, commit implies a trade-off between concurrency
and performance. Small commit intervals lead to better performance but less
concurrency, whereas large commit intervals support more concurrent opera-
tions at the cost of performance. Figure 4a illustrates this trade-off. For a com-
mit interval of 50 (blue curve), we observe a sawtooth pattern. The operation’s
execution time increases until the replica is committed, whereafter it falls back
to its initial execution time. This is because commit clears the operation history.
When choosing a commit interval of 1 (green curve), the replica is committed
after every operation. Hence, the history contains a single operation and does
not need to be reorganised. This results in a constant execution time.

We now analyse the execution time of insert operations on the collaborative
text editor. Figure 4b shows the time it takes to append a character to a text
document in function of the document’s length, for various commit intervals. If
we do not commit the replica (red curve), append exhibits a quadratic execution
time. This is because the SECRO induces a linear overhead and append is a linear
operation. Hence, append’s execution time becomes quadratic. For a commit
interval of 100 (blue curve) we again observe a sawtooth pattern. In contrast to
Fig. 4a the peaks increase linearly with the size of the document, since append
is a linear operation. If we choose a commit interval of 1 (green curve) we get a
linear execution time. This results from the fact that we do not need to reorganise
the replica’s history. Hence, we execute a single append operation.

From these results, we draw two conclusions. First, SECROs induce a linear
overhead on the execution time of operations. Second, commit is a pragmatic
solution to keep the performance of SECROs within acceptable bounds for the
application at hand.

C Detailed Execution Time

In this appendix we show the detailed execution time of character insertions in
the list and tree versions of the collaborative text editor. This is a breakdown of
the green and blue curves respectively in Fig. 2a. The replica is never committed.
The plotted execution time is the average taken from a minimum of 30 samples.
Samples affected by garbage collection are discarded. The complete explanation
can be found in Sect. 4.3.

54 K. De Porre et al.

0

100

200

300

0 100 200 300 400 500
Document Length

Ti
m

e
in

 m
ill

is
ec

on
ds

Copying Operation Postcondition Precondition

0

100

200

0 100 200 300 400 500
Document Length

Ti
m

e
in

 m
ill

is
ec

on
ds

Copying Operation Postcondition Precondition

(a)

(b)

Fig. 5. (a) List implementation (b) Tree implementation

Putting Order in Strong Eventual Consistency 55

References

1. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based CRDTs by delta-
mutation. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466,
pp. 62–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26850-7 5

2. Balegas, V., et al.: Putting consistency back into eventual consistency. In: 10th
European Conference on Computer Systems, EuroSys 2015, pp. 6:1–6:16 (2015)

3. Balegas, V., et al.: Geo-replication: fast if possible, consistent if necessary. IEEE
Data Eng. Bull. 39(1), 12 (2016)

4. Brewer, E.: Towards robust distributed systems. In: 19th Annual ACM Symposium
on Principles of Distributed Computing, PODC 2000, p. 7 (2000)

5. Brewer, E.: CAP twelve years later: how the “rules” have changed. Computer
45(2), 23–29 (2012)

6. Burckhardt, S., Fähndrich, M., Leijen, D., Wood, B.P.: Cloud types for even-
tual consistency. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 283–307.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7 14

7. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence proto-
col: a robust abstraction for replicated shared state. In: Boyland, J.T. (ed.) 29th
European Conference on Object-Oriented Programming (ECOOP 2015), vol. 37,
pp. 568–590. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)

8. de Juan-Maŕın, R., Decker, H., Armendáriz-́Iñigo, J.E., Bernabéu-Aubán, J.M.,
Muñoz-Escóı, F.D.: Scalability approaches for causal multicast: a survey. Comput-
ing 98(9), 923–947 (2016)

9. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype. IEEE
Trans. Parallel Distrib. Syst. 28(10), 2733–2746 (2017)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

11. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

12. Letia, M., Preguiça, N., Shapiro, M.: CRDTs: consistency without concurrency
control. Technical report, INRIA, Rocquencourt, France (2009). rR-6956

13. Li, C., Preguiça, N., Rodrigues, R.: Fine-grained consistency for geo-replicated
systems. In: 2018 USENIX Annual Technical Conference (USENIX ATC 2018),
pp. 359–372. USENIX Association, Boston (2018)

14. Meiklejohn, C., Van Roy, P.: Lasp: a language for distributed, coordination-free
programming. In: 17th International Symposium on Principles and Practice of
Declarative Programming, PPDP 2015, pp. 184–195 (2015)

15. Nédelec, B., Molli, P., Mostefaoui, A., Desmontils, E.: LSEQ: an adaptive structure
for sequences in distributed collaborative editing. In: Proceedings of the 2013 ACM
Symposium on Document Engineering, DocEng 2013, Florence, Italy, pp. 37–46
(2013)

16. Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible
update propagation for weakly consistent replication. In: 16th ACM Symposium
on Operating Systems Principles, SOSP 1997, pp. 288–301 (1997)

17. Roh, H.G., Jeon, M., Kim, J.S., Lee, J.: Replicated abstract data types: building
blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3), 354–368
(2011)

18. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Research report RR-7506, Inria
- Centre Paris-Rocquencourt, INRIA, January 2011

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-642-31057-7_14

56 K. De Porre et al.

19. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29

20. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, CSCW 1998, pp. 59–68 (1998)

21. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in bayou, a weakly connected replicated stor-
age system. In: Jones, M.B. (ed.) 15th ACM Symposium on Operating Systems
Principles, SOSP 1995, pp. 172–182 (1995)

22. Weiss, S., Urso, P., Molli, P.: Logoot-Undo: distributed collaborative editing system
on P2P networks. IEEE Trans. Parallel Distrib. Syst. 21(8), 1162–1174 (2010)

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

Composable Actor Behaviour

Sam Van den Vonder(B), Joeri De Koster, and Wolfgang De Meuter

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{svdvonde,jdekoste,wdmeuter}@vub.be

Abstract. Code reusability is the cornerstone of object-oriented pro-
gramming. Reuse mechanisms such as inheritance and trait composition
lay at the basis of a whole range of software engineering practices with
the goal to improve software quality and reliability. In this paper we
investigate code reuse mechanisms for actors, and find that it is cur-
rently difficult to specify the behaviour of an actor out of reusable parts.
We discuss different kinds of code reuse mechanisms in different kinds
of actor model, and we motivate why these mechanisms are currently
unsatisfactory. As a possible solution we define a new reuse mechanism
based on delegation-based trait composition. In a nutshell, the mecha-
nism allows programmers to compose the behaviour of actors, and every
time a compound behaviour is spawned into an actor, it will cause mul-
tiple actors to be spawned (one for each independent behaviour). Some
messages will be automatically delegated to the actor that implements
the desired functionality. We provide an implementation of this model in
a prototype Active Object language called Stella, and we formalise a sub-
set of Stella using a small-step operational semantics to unambiguously
define the different steps involved in our reuse mechanism.

Keywords: Actors · Delegation · Active Objects · Code reusability

1 Introduction

In object-oriented programming, the principle of “programming against an inter-
face” helps to foster code reuse and reduce complexity, thus increasing the reli-
ability of individual components [20]. Essentially it is beneficial for the overall
complexity of the program to design components as black boxes, because it is
then the sole responsibility of each individual component to ensure the func-
tionality it offers through its interface is correct. This principle manifests itself
in many reuse mechanisms, such as inheritance [15] and trait composition [12]
for class-based languages, and delegation for prototype-based languages [19]. In
actor-based programs, using components as black boxes is equally important but
for reasons other than just modularity and code reuse.

The behaviour of an actor is usually a combination of its internal state and
its interface, which is the set of messages that an actor can process [18]. The
only way to communicate with an actor is to send it a message that matches
an entry in its interface, which is important for two reasons. First, it makes it
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 57–73, 2019.
https://doi.org/10.1007/978-3-030-22496-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-22496-7_4

58 S. Van den Vonder et al.

easier for actors to protect their internal state from race conditions via interface
control [17] (essentially by asynchronously processing messages one by one).
Second, a message-passing communication model is beneficial for (among others)
concurrency, fault tolerance, and distribution over a network.

Despite the principle of “programming against an interface” being ingrained
in the actor model almost by definition, it is rarely leveraged to facilitate mod-
ularisation and code reuse among actors. More specifically, currently there is
limited language support for composing the behaviour of an actor, i.e. its inter-
face, out of reusable parts.

Since code reuse is an important aspect of software engineering, we argue
that actor-based programs can benefit from a simple and well-defined code reuse
mechanism to control and reduce their complexity. To this end we introduce
Stella, a prototype language that implements an actor composition mechanism
based on asynchronous message delegation. The main contributions of this paper
are the design and definition of Stella, and a formalisation of a subset of Stella
that captures the precise semantics of the reuse mechanism.

In Sect. 2 we discuss the requirements of a suitable code reuse mechanism for
actors, and we discuss reuse mechanisms in a number of state-of-the-art actor
languages. In Sect. 3 we define Stella, and in Sect. 4 we define an operational
semantics for a subset of Stella.

2 Code Reuse in Actor-Based Languages

Before we look into existing reuse mechanisms, we define the term actor behaviour
and we specify the requirements of a reuse mechanism suitable for actors. We
adopt the terminology of [18] that defines the behaviour of an actor as the
description of its interface and state. The interface defines the list (and possibly
types) of messages that an actor can process, as well as the program logic to
process them. The state of an actor is defined as all the program state that is
synchronously accessible by the actor.

From a software engineering point of view it is beneficial to split up a mono-
lithic behaviour into multiple “reusable components” that can be composed using
a composition mechanism. We devise 2 goals or requirements for such a mech-
anism that is suitable for the actor model, which we base on well-established
design principles for object-oriented programming [24, Chapter 14].

Extensibility. The interface of behaviours can be extended to accept new mes-
sages, and a behaviour can specialise the acquired components to adapt them
to its own needs. Relating this to object-oriented programming, this is similar
to how a class can add, override, and specialise methods of a superclass, or to
how traits can add methods to a class which may also be further specialised.

Reusability. Pre-existing behaviours can be reused by extending, adapting or
specialising them via new behaviour definitions, without modifying the orig-
inal behaviour. In object-oriented programming this is similar to how a class
may be specialised via subclassing, while it remains independently instanti-
atable regardless of new class definitions that rely on it.

Composable Actor Behaviour 59

Over the years a number of reuse mechanisms have been proposed in different
kinds of actor languages that implement different kinds of actor model. In the fol-
lowing sections we discuss inheritance, trait composition, function composition,
and reuse via prototypes in the Communicating Event-Loops model.

2.1 Inheritance

The relation between inheritance and concurrent object-oriented programming
has been thoroughly researched. Part of this research is focussed specifically on
inheritance in actor-based languages such as Act3 [4] and ACT++ [16], which
are based on the work of Agha [3]. In these languages, a become statement
(fundamental to the model) is used to replace the behaviour of the current actor
with a new behaviour. This statement causes severe reusability issues due to the
Actor-Inheritance Conflict [17]. Consider a behaviour as being similar to a class,
then the conflict describes a fundamental issue where adding a new method to
a subclass may invalidate many superclass methods.

Classes in combination with inheritance fulfil the requirements of extensibility
and reusability. However, inheritance is known to have reusability issues when
used as the sole reuse mechanism [12]. Furthermore, nowadays it is generally
accepted as a good design principle in object-oriented programming to favour
object composition over class inheritance [7,14]. For these reasons we do not
consider inheritance by itself to be a suitable reuse mechanism for actors.

2.2 Trait Composition

The Active Objects model is based on the work on ABCL/1 [27], and has modern
implementations in languages such as Pony [9] and Encore [8]. Here, actors
are typically instances of an active object class which describes mutable fields
and a set of methods that can be asynchronously invoked via message passing.
Pony and Encore support neither a become statement (which caused the Actor-
Inheritance Conflict from the previous section) nor reuse via inheritance. In the
case of Pony it is mentioned that composition is preferred to inheritance [1].

Instead of inheritance, Pony and Encore support stateless traits [12]. Traits
can be composed with behaviours and other traits to add new methods to the
composer. However, they do not fulfil our 2 requirements. Extensibility is only
partially fulfilled because, while traits can be used to extend a behaviour with
new functionality, they have a number of drawbacks. Most notably, stateless
traits are likely to be an incomplete implementation of some functionality unless
it is completely stateless [6]. The follow-up work on stateful traits also has some
drawbacks such as possibly breaking black-box encapsulation, and difficulties
regarding a linear object layout in memory [6]. Reusability is unfulfilled because
the trait composition mechanism cannot be used to compose behaviours.

2.3 Function Composition

Popular languages and libraries such as Erlang [5], Elixir [26] and Akka [23]
closely link behaviours and functional programming. In Erlang and Elixir, a

60 S. Van den Vonder et al.

blocking receive statement is used as part of a function body to dequeue 1
message from the mailbox of the current actor, and local actor state is encapsu-
lated via lexical scoping. In Akka (a library for Scala), the behaviour of an actor
is represented as a Scala partial function that is continually applied to mes-
sages by the receiving actor. Consequentially, behaviour composition is based
on function composition. For example, in Akka, the Scala andThen and orElse
function combinators compose two behaviours by respectively chaining two func-
tions (pass the output of 1 into the next) or switching over 2 functions (if the
given argument is not in the domain of the first, try the second).

We do not consider function composition to be a suitable reuse mechanism
because it does not support extensibility. Logically switching over behaviours
can be used to emulate some features of extensibility, e.g. the behaviour that is
the result of the composition (behaviourA orElse behaviourB) will accept the
union of messages accepted by both behaviours. However, the end result is highly
susceptible to the composition order; messages matched by both behaviours will
always be processed exclusively by behaviourA. Furthermore, there is no mecha-
nism to deal with conflict resolution, for example when behaviourA accidentally
captures messages that should be processed by behaviourB.

2.4 Communicating Event-Loops

The Communicating Event-Loops model (CEL) originated in the E [22] language
and was later adopted by AmbientTalk [11]. Here, an actor is not described by a
behaviour. Instead, an actor is a vat of plain objects that are said to be owned by
the actor. Objects owned by one actor can have near references to objects within
the same vat and far references to objects in another vat. Method calls via a near
reference are synchronous; method calls via a far reference are asynchronous, are
sent to the actor that owns the object, which will eventually invoke the method.
In this model, the behaviour of an actor depends on which of its objects are
accessible via far references, since those determine which messages are accepted.

Both E and AmbientTalk define a prototype-based object model, which relies
on functions and lexical scoping for object instantiation and information hiding.
A problem occurs when two similar actors attempt to share a behaviour, which in
this model amounts to sharing an object. If two actors could reference the same
behaviour, they would have access to shared mutable state either via the shared
lexical scope, or via the shared object. Therefore, a CEL model in combination
with a prototype-based object model does not offer a suitable reuse mechanism
because, idiomatically, behaviours cannot be freely reused by different actors.

A possible avenue to explore could be to design a class-based CEL language
which can eliminate shared mutable state. While we consider this to be a viable
approach to our problem, in this paper we opt for a different approach that we
consider to be simpler and more applicable to other actor languages.

Composable Actor Behaviour 61

2.5 Problem Statement

In the previous sections we discussed different kinds of reuse mechanisms in dif-
ferent kinds of actor model. In Sect. 2.1 we discussed the relationship between
inheritance and actors, and concluded that inheritance by itself is not a suit-
able reuse mechanism for actors. For Active Objects (Sect. 2.2) we discussed
trait composition and how it does not fulfil our requirements, because traits
have a number of drawbacks and cannot be used to compose behaviours them-
selves. We discussed actor languages where behaviours are encapsulated by
functions (Sect. 2.3), where we motivated that function composition is not a
suitable composition mechanism. Finally, for the Communicating Event-Loops
model (Sect. 2.4) we discussed that a prototype-based object model would lead
to shared mutable state between actors if behaviours could be reused.

The problem that we tackle in this paper is to define a code reuse mecha-
nism for behaviours that fulfils the requirements of extensibility and reusability.
The mechanism defines (1) how the interface of behaviours can be extended
with functionality defined by different components (extensibility), and (2) how
behaviours themselves can be reused to define new behaviours (reusability).

3 Delegation-Based Actor Composition in Stella

In this section we introduce Stella, a prototype language based on the Active
Objects model, where behaviours can be composed with a mechanism based on
delegation-based trait composition [10]. We opted for a language-based approach
(rather than a library) to convey the mechanism in a clear and concise manner.
It also ensures consistent run-time semantics, particularly with respect to the
definition of behaviours and message sending between actors. We first give a
motivating example that benefits from reusable behaviours, and in the sections
thereafter we gradually introduce the different aspects of Stella. For brevity we
only implement parts of the motivating example to introduce the base language
and to explain behaviour composition (the precise semantics of which are for-
malised in Sect. 4)1.

3.1 Motivating Example

A modern approach to building “real-time” or “live” applications are stream-
based frameworks such as ReactiveX, which describes the API of a class of
streaming frameworks in over 18 languages [2]. These frameworks provide
abstractions for data streams together with an extensive collection of built-in
operators to transform and combine them. Consider a temperature monitor-
ing application that visualises live measurements of many heterogenous sensors.
Depending on units of measurement and user preferences, measurements may
have to be transformed from one unit to another. This can be done by mapping
a conversion function over a stream of measurements using some built-in map
operator, resulting in a new stream of data.
1 The code for the complete example is available and can be run at http://soft.vub.

ac.be/∼svdvonde/examples/DAIS19/.

http://soft.vub.ac.be/~svdvonde/examples/DAIS19/
http://soft.vub.ac.be/~svdvonde/examples/DAIS19/

62 S. Van den Vonder et al.

Fig. 1. Composition of behaviours in an actor-based streaming framework.

Streaming frameworks are often designed sequentially, i.e. new input data is
first propagated to all connected streams before the next input can be accepted,
and parallelising this process is non-trivial. With composable behaviours we can
design a simple framework where streams and operators are actors, such that
multiple computations can run in parallel.

Figure 1 depicts the different behaviours involved in our streaming frame-
work. Every behaviour lists the methods that it provides, and for clarity we
also list when a behaviour expects a certain method to be present in its com-
poser that it does not implement itself. The framework provides a SocketStream
behaviour to abstract over a typical socket connection as a data stream, and also
1 built-in Map operator to map a function over a stream. Common functionality
for operators is factored out into an Operator behaviour (which also behaves like
a stream), and common functionality of streams is factored out into Stream and
Subscribable. Stream implements functionality for publishing and receiving
values, Subscribable simply keeps a list of other streams (actors) that should
receive new publications.

3.2 The Base Stella Language

In this section we introduce the base Stella language without behaviour com-
position. Similar to other Active Object languages, Stella has an active layer of
active object classes and actors, and a passive layer of regular classes and objects
We omit the details of the passive object layer since its definition is irrelevant
to the problem of behaviour composition.

A program written in Stella is a set of top-level behaviour definitions and reg-
ular class definitions. Every program must define a Main behaviour that is instan-
tiated as the first actor of the program. Listing 1 implements two behaviours
Stream (Lines 1–5) and Subscribable (Lines 7–14). Stream implements generic
stream functionality for publishing and receiving data. It has two methods called
publish and receive with 1 formal parameter data (Lines 2–4 and 5). Pub-
lishing data to a stream simply amounts to sending a receive message to all
subscribers. The logic of sending that message is contained within local definition

Composable Actor Behaviour 63

1 (actor Stream
2 (def-method (publish data)
3 (def f (lambda (subscriber) (send subscriber 'receive data)))
4 (send self 'collect-subscribers f))
5 (def-method (receive data) 'do-nothing))
6
7 (actor Subscribable
8 (fields subscribers)
9

10 (def-constructor (init) (set! subscribers '()))
11
12 (def-method (subscribe subscriber)
13 (set! subscribers (add subscribers subscriber)))
14 (def-method (collect f) (for-each subscribers f)))

Listing 1. Implementation of the Stream and Subscribable behaviours.

f (Line 3) that is bound to a lambda function2. When the lambda is invoked,
it sends the receive message to subscriber with the data to be published as
single argument. Iterating over subscribers of the stream is done by sending a
collect-subscribers message to the current actor via pseudo-variable self
with f as argument. The default receive method on Line 5 simply returns the
symbol ’do-nothing.

The Subscribable behaviour stores a list of subscribers to a stream. Its
definition is analogous to Stream but shows the use of fields (local actor state)
and constructors. In this case there is 1 field subscribers (Line 8), a constructor
named init (Line 10), and 2 methods subscribe and collect (Lines 12–13
and 14). A constructor is a special method that is called exactly once when
an actor is spawned. Behaviours without a constructor will be initialized by a
default constructor. In this case the init constructor initializes the local field
subscribers to an empty list via the special form set! (assignment).

Bodies of constructors and methods contain either special forms (like set!)
or synchronous method invocations on regular objects. Here, we use the following
syntax where methodName is invoked on object target with the given argument
expressions.

(methodName target arg1 ... argn)

In that vein, the invocation of send in Stream (Listing 1 Line 3 and 4) is simply
the invocation of the send method on an object that represents a reference to an
actor. Similarly, the add and for-each methods (Line 13 and 14) are invocations
on a list object.

Actors can be spawned via a spawn special form that returns a refer-
ence object that can be used to send asynchronous messages to the newly
spawned actor. For example, the following expression spawns an actor with the
Subscribable behaviour that is initialized by calling the init constructor.

(spawn Subscribable 'init)

2 Stella does not have functions. Using a process similar to Lambda Lifting, a lambda

statement is transformed to an object with an apply method.

64 S. Van den Vonder et al.

1 (actor Operator
2 (delegate-to Stream)
3 (delegate-to Subscribable (rename 'collect 'collect-subscribers))
4
5 (def-constructor (init stream)
6 (spawn-delegate Subscribable 'init)
7 (spawn-delegate Stream)
8 (send stream 'subscribe self)))

Listing 2. Implementation of the Operator behaviour.

1 (actor Operator
2 (delegate-fields Subscribable Stream) // run-time syntax
3
4 (def-constructor (init stream)
5 (spawn-delegate Subscribable 'init) // populate special field
6 (spawn-delegate Stream) // populate special field
7 (send stream 'subscribe self))
8
9 (def-method (subscribe subscriber)

10 (delegate Subscribable 'subscribe subscriber))
11 (def-method (collect-subscribers f) // renamed method
12 (delegate Subscribable 'collect f))
13
14 (def-method (publish data) (delegate Stream 'publish data))
15 (def-method (receive data) (delegate Stream 'receive data)))

Listing 3. Compile-time expanded version of the Operator behaviour.

3.3 Delegation-Based Behaviour Composition in Stella

In this section we introduce a new composition mechanism for behaviours
inspired by delegation-based trait composition in AmbientTalk [10]. In a nut-
shell, a behaviour can statically acquire the methods of other behaviours, and
spawning an actor from a compound behaviour creates multiple actors that each
run part of the compound behaviour. We will refer to these actors as the delegate
actors. Messages that match an acquired method are automatically delegated to
the corresponding delegate actor. To explain the different aspects of behaviour
composition, we implement the Operator behaviour from Fig. 1.

The Operator behaviour implements common functionality for all stream-
ing operators in our motivating example, which in this case only amounts to
ensuring that every instance of an operator behaves like a stream of data.
Its implementation is shown in Listing 2. A delegate-to statement (Line 2–
3) is used to declare that (at compile-time) all methods from the behaviours
Stream and Subscribable are acquired. A conflict may occur when acquiring
two or more methods with the same name. These must be explicitly resolved
by aliasing or excluding certain methods using a rename or exclude statement
respectively. In this case, the collect method from Subscribable is renamed
to collect-subscribers for clarity rather than solving a conflict.

Before we can explain the run-time semantics of acquired methods (which
is different from traditional trait composition), we first show the effects of
a delegate-to statement at compile-time. Listing 3 shows the compile-time
expanded version of the Operator behaviour of Listing 2, which incorporates
the acquired methods. The added lines of code are Line 2 – a pseudocode state-
ment to explain the run-time semantics – that declares 2 new (special) fields,

Composable Actor Behaviour 65

Lines 9–12 which are the acquired methods from the Subscribable behaviour
(note that the collect method is renamed), and finally Lines 14–15 which are
the acquired methods from the Stream behaviour.

The 2 new fields on Line 2 are generated by the compiler and carry the
name of the delegate behaviours. They are populated by the spawn-delegate
statements in the constructor (Lines 5–6), which is a special version of a regu-
lar spawn. Instead of returning the address of the new actor, it is stored in the
corresponding (generated) field that carries the name of the spawned behaviour.
Thus, when Operator is spawned, it also spawns 2 delegate actors, and by stor-
ing their addresses in generated fields we can guarantee that the contents of
these fields cannot be directly modified or retrieved. Consequentially, because
the address of delegate actors can never be shared with other actors, we keep the
process of spawning delegates completely transparent to users of a behaviour.

In contrast with regular trait composition for object-oriented programming,
the implementation of acquired methods is not copied over. Instead, a delegate
statement is generated that serves 2 purposes. First, delegate retrieves the dele-
gate actor (from the generated fields) referenced by its first argument. Second, it
sends a special message to the delegate actor that, when the message is executed,
changes the self pointer of the delegate actor to that of the sender. This is a
crucial mechanism of trait composition that allows the delegate to communicate
with its delegator, which is similar to the unchanged this pointer for regular
trait composition in object-oriented programming [10,12]. The effect is that, any
time the delegate actor sends a message to self, the message is actually received
by its delegator. An example of where this mechanism is necessary is the Stream
behaviour of Listing 1 Line 4, where a collect-subscribers message is sent to
self to iterate over a list of subscribers stored in another behaviour.

4 Operational Semantics of Stella

In this section we formalise a subset of Stella via an operational semantics.
The formalisation entails the necessary details about actors, behaviours and
delegation. For brevity we omit the sequential class-based object-oriented subset
of the language, since this concern is orthogonal to actors and behaviours. The
goal of this formalisation is to describe the precise semantics of the composition
mechanism such that it can be reproduced in other languages. Our semantics is
based on the formalisation of JCoBox [25] and AmbientTalk [11].

4.1 Syntax

The abstract syntax of Stella is shown in Fig. 2. Capital letters denote sets,
and overlines denote sequences (ordered sets). We may implicitly treat single
elements as sequences or sets of size 1 (e.g. A(. . .) is equivalent to {A(. . .)}).
Most of the syntax is shown in Sect. 3. Note that in this section we talk about
(active object) classes instead of behaviours.

66 S. Van den Vonder et al.

Fig. 2. Abstract syntax.

Fig. 3. Semantic entities.

– A program p is a set actor class declarations, one of which we assume will be
called Main.

– For simplicity, classes have no constructor.
– Because there are no constructors, there is no explicit spawn-delegate state-

ment required in the syntax because delegate actors can now be created ex
nihilo (i.e. without initializing them with run-time values).

– Methods have just one expression as their body, and there are no variable
definitions (e.g. via a let statement).

– Fields are accessed explicitly via get and set! statements.

4.2 Semantic Entities

The static and dynamic semantics are formulated as a small-step operational
semantics whose semantic entities are listed in Fig. 3. Calligraphic letters such
as K and C are used as “constructors” to distinguish different semantic entities
syntactically.

The state of a program is represented by a configuration k which contains a
set of concurrently executing actors and a set of classes.

A class has a unique name n, fields f , delegate fields d (these are the generated
fields to store references to delegate actors, see Sect. 3.3), and a set of methods
M . In Sect. 4.4 we show how a class is produced from the abstract syntax.

Composable Actor Behaviour 67

An actor has a unique identifier i that we use as its address, a set of methods
M that can be invoked by the actor, a queue Q that holds a sequence of messages
to be processed, a set F that maps fields to values, a set Fd that maps delegate
fields to delegate actors, and an expression e that the actor is currently executing.

A message msg is a triplet of a self address i to be used during execution
of the message (either the message receiver or the delegator), the name m of a
method to invoke, and a sequence of values v which are the method arguments.

A method M is a triplet containing the name of the method m, a sequence
of formal parameters x, and a body e.

Our reduction rules in Sect. 4.5 operate on “runtime expressions” which are
simply all expressions e extended with run-time values v, which can be actor
references i and null.

4.3 Notation

We use the ·∪ (disjoint union) operator to lookup and extract values from sets.
For example, S = S′ ·∪ s splits the set S into element s and the set S′ = S \{s}.
When the order of elements is important (e.g. for representing the message queue
of an actor) we use the notation S = S′ · s to deconstruct a sequence S into
sequence S′ = S \ {s} and s which is the last element of S. We denote both the
empty set and the empty sequence as ∅.

4.4 Static Semantics

Our reuse mechanism requires an additional compilation step to transform a
class declaration from the abstract syntax into a class that can be used at run-
time. In Fig. 4 we define a number of auxiliary functions in a declarative style
to generate such a run-time class. We sum up their purpose:

gen. Generates a set of methods (to be acquired by a class) based on a set of
pre-existing methods and a set of delegate-to statements. M represents a
set of pre-existing (non-acquired) methods of a class, C is a set of compiled
run-time classes, and D a set of delegation declarations. For each delegation
declaration, lookup the corresponding run-time class and generate a set of
methods to be acquired for this particular delegate.

genMethods. Given a set of pre-existing methods M , a classname n, a set
of excluded methods mexcl, a set of aliased methods malias and a set of
methods M ′ to acquire, return a new set of methods possibly extended with
newly acquired ones. Methods in M ′ with name m are excluded if m ∈ mexcl,
or if a method m already exists in the pre-existing set of methods M . The
latter ensures that methods from the base class take precedence over acquired
methods (they are not “overridden” by the delegate).

genMethod. Generate the method to be acquired by a class. M is the original
method from the delegate class, n is the name of said class, and malias is
a set of tuples to possibly rename the generated method. The body of the
generated method is a delegate expression where n will refer to the delegate
actor.

68 S. Van den Vonder et al.

Fig. 4. Auxiliary functions for class compilation.

Fig. 5. Class compilation reduction rule.

name. Given a method name m and a set of possibly aliased methods malias,
return the (possibly aliased) method name.

methodsOf. Given a delegation declaration and a set of run-time classes C,
return the set of all method names that would be acquired by C using the
delegation declaration.

Figure 5 defines a reduction →c to compile a set of class declarations B.
The reduction is defined as 〈B,C〉 →c 〈B′, C ′〉 where the tuple 〈B,C〉 initially
contains all class declarations B in the program, and C is empty. Compilation
fails when the conditions of the rule are not met and no element in B can
be reduced. This signifies an error in the program. Another possible error is
explicitly formulated by a precondition given on the first line of the premise that
prevents method conflicts between delegates, which means that the intersection
of the acquired methods for any 2 delegates is empty. A set of delegate fields d
is created using the classnames of delegates.

Composable Actor Behaviour 69

Fig. 6. Actor-local reduction rules.

4.5 Dynamic Semantics

Evaluation Contexts. We use evaluation contexts [13] to abstract over the
context of an expression, and to indicate which subexpressions should be fully
reduced before a compound expression can be reduced. The expression e�	
denotes an expression with a “hole” to identify the next subexpression to be
reduced. The notation e�	[e] indicates that expression e is part of an abstracted
compound expression e�	, and that e should be reduced first before e�	 can be
reduced.

e�	 ::=
�	 | (set! f e�) | (send e�	 m e) |

(send v m v e�	 e) | (delegate d m v e�	 e)

Evaluation Rules. Our evaluation rules are defined in terms of a reduction
on sets of configurations K → K ′. For clarity we split the rules defining this
reduction in two parts. Actor-local rules are defined in terms of a reduction
a →a a′ and can be applied in isolation (within one actor). Actor-global rules
are defined in terms of a reduction K →k K ′ and indicate interactions between
actors.

Actor-Local Evaluation Rules. Actors continually dequeue the first message
from their message queue, retrieve the correct expression to process this message,
and reduce this expression to a value. The next message can only be processed
after the expression is reduced to a value. An actor is considered idle when its
message queue is empty and its current expression has been completely reduced.
This is the only situation in which no rules apply to a particular actor. Otherwise,
if an actor is not idle and no rules can reduce its current expression, there is an
error in the program. We summarise the actor-local reduction rules in Fig. 6.

Field-Get, Field-Set. Values of fields are stored in a set F of 2-tuples that
map fields to values. A get expression is a simple lookup of the field, and
set! replaces the current association with a new one.

Process-Msg. Processing a message is only possible when the message queue
Q is not empty and the current expression is reduced to a value. The last
entry of the queue is removed and the corresponding method is retrieved. To
evaluate the body of the method we substitute the formal parameters x and

70 S. Van den Vonder et al.

Fig. 7. Actor-global reduction rules.

Fig. 8. Auxiliary functions to create actors.

self with the values contained within the message. Note that self is either
the current actor (when the message was sent via a normal message send) or
the delegator (when the message was delegated).

Actor-Global Evaluation Rules. We summarise the actor-global evaluation
rules of Fig. 7.

Send. Describes an asynchronous message send to an actor. A new message is
added at the front of the queue Q′ of the receiving actor i′. The address of the
self reference passed as an argument in the message is also i′. This means
that the receiving actor will execute the message using its own address as
self parameter. Semantically, all arguments v are passed to the other actor
via a (deep) copy, but in our case there is no assignment other than local
fields, and therefore we do not explicitly create copies in this formalisation.
The send expression reduces to null.

Delegate. Describes delegating messages. This rule is almost identical to Send,
except that the address of the receiver i′ is stored in a delegate field d in Fd,

Composable Actor Behaviour 71

Fig. 9. Program initialization.

and that the address of the sender i is passed in the message instead of i′.
Thus, when the receiver eventually processes this message, any messages it
sends to self during execution will be sent to the delegator i.

Spawn. This rule describes the spawning of an actor given a classname n.
Spawning an actor may add multiple actors to the program, namely the
actor with the spawned behaviour and all of its delegates (and all of their
delegates, ...). To create these actors in a single evaluation step we define
an auxiliary function makeActor in Fig. 8 that, given a classname n and all
classes C, returns a sequence of newly created actors. The first element of
this sequence is the actor spawned from behaviour n, whose address i′ is the
value of the reduced spawn expression. All newly created actors are added to
the configuration.

Congruence. This rule relates the local and global reduction rules such that
reductions of local rules also progress the global system.

Finally, the rule in Fig. 9 bridges compilation and evaluation, and shows how
to reduce a fully compiled program represented by a tuple 〈∅, C〉 into the first
configuration of the program. The first actor is an instance of the Main class and
contains a start message in its mailbox.

5 Conclusion

Code reusability is an important aspect of software engineering that can improve
software quality and reliability of actor-based systems. We approach this topic in
Sect. 2 by discussing different kinds of code reusability mechanisms in different
kinds of actor models. The discussed mechanisms do not fulfil 2 requirements
that we find essential for programming actor-based systems: extensibility and
reusability.

We introduce a prototype language in Sect. 3 called Stella with a behaviour
composition mechanism based on delegation-based trait composition. Here, a
compound behaviour essentially describes a collection of actors that are com-
posed at runtime such that some messages are implicitly delegated from one
actor to another. It fulfils the requirement of extensibility because behaviours
can be easily extended with new methods defined elsewhere, and it fulfils self-
containment because every part of a composed behaviour can, by itself, also be
used to create new actors.

Acknowledgements. We would like to thank Thierry Renaux for his insightful com-
ments on drafts of this paper. Sam Van den Vonder is supported by the Research
Foundation - Flanders (FWO) under grant No. 1S95318N.

72 S. Van den Vonder et al.

References

1. Pony tutorial: What about inheritance? https://web.archive.org/web/201807171
15657/tutorial.ponylang.org/types/classes.html. Accessed 17 July 2018

2. ReactiveX: An API for asynchronous programming with observable streams.
http://web.archive.org/web/20180717115824/reactivex.io/ (2018). Accessed 17
July 2018

3. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990)

4. Agha, G.: A Model of Concurrent Computation in Distributed Systems. The MIT
Press, Cambridge (1986)

5. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in ERLANG.
Prentice Hall, Upper Saddle River (1993)

6. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Stateful traits and their formal-
ization. Comput. Lang. Syst. Struct. 34(2–3), 83–108 (2008)

7. Bloch, J.J.: Effective Java. The Java Series... from the Source, 2nd edn. Addison-
Wesley, Boston (2008)

8. Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel
language Encore. In: Bernardo, M., Johnsen, E.B. (eds.) SFM 2015. LNCS, vol.
9104, pp. 1–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18941-
3 1

9. Clebsch, S., Drossopoulou, S., Blessing, S., McNeil, A.: Deny capabilities for safe,
fast actors. In: Boix, E.G., Haller, P., Ricci, A., Varela, C. (eds.) Proceedings of
the 5th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, 26 October 2015, pp.
1–12. ACM (2015)

10. Van Cutsem, T., Bergel, A., Ducasse, S., De Meuter, W.: Adding state and visibility
control to traits using lexical nesting. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 220–243. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03013-0 11

11. Van Cutsem, T., et al.: Ambienttalk: programming responsive mobile peer-to-peer
applications with actors. Comput. Lang. Syst. Struct. 40(3–4), 112–136 (2014)

12. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

13. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

15. Johnson, R.E., Foote, B.: Designing reusable classes. J. Object-Orient. Program.
1(2), 22–35 (1988)

16. Kafura, D.G.: Concurrent object-oriented real-times systems research. SIGPLAN
Not. 24(4), 203–205 (1989)

17. Kafura, D.G., Lee, K.H.: Inheritance in actor based concurrent object-oriented
languages. Comput. J. 32(4), 297–304 (1989)

18. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy
of actor models and their key properties. In: Clebsch, S., Desell, T., Haller, P.,
Ricci, A. (eds.) Proceedings of the 6th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam,
The Netherlands, 30 October 2016, pp. 31–40. ACM (2016)

https://web.archive.org/web/20180717115657/tutorial.ponylang.org/types/classes.html
https://web.archive.org/web/20180717115657/tutorial.ponylang.org/types/classes.html
http://web.archive.org/web/20180717115824/reactivex.io/
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-642-03013-0_11
https://doi.org/10.1007/978-3-642-03013-0_11

Composable Actor Behaviour 73

19. Lieberman, H.: Using prototypical objects to implement shared behavior in object
oriented systems. In: Meyrowitz [21], pp. 214–223 (1986)

20. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
21. Meyrowitz, N.K. (ed.): Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA 1986), Portland, Oregon, USA, Proceed-
ings. ACM (1986)

22. Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency among strangers. In: De
Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer,
Heidelberg (2005). https://doi.org/10.1007/11580850 12

23. Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning Publications
Co., New York (2015)

24. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.E., et al.: Object-
Oriented Modeling and Design, vol. 199. Prentice-Hall, Englewood Cliffs (1991)

25. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14107-2 13

26. Thomas, D.: Programming Elixir. Pragmatic Bookshelf, Boston (2018)
27. Yonezawa, A., Briot, J., Shibayama, E.: Object-oriented concurrent programming

in ABCL/1. In: Meyrowitz [21], pp. 258–268 (1986)

https://doi.org/10.1007/11580850_12
https://doi.org/10.1007/978-3-642-14107-2_13

Gossip Learning as a Decentralized
Alternative to Federated Learning

István Hegedűs1 , Gábor Danner1 , and Márk Jelasity1,2(B)

1 University of Szeged, Szeged, Hungary
jelasity@inf.u-szeged.hu

2 MTA SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. Federated learning is a distributed machine learning app-
roach for computing models over data collected by edge devices. Most
importantly, the data itself is not collected centrally, but a master-worker
architecture is applied where a master node performs aggregation and the
edge devices are the workers, not unlike the parameter server approach.
Gossip learning also assumes that the data remains at the edge devices,
but it requires no aggregation server or any central component. In this
empirical study, we present a thorough comparison of the two approaches.
We examine the aggregated cost of machine learning in both cases, con-
sidering also a compression technique applicable in both approaches. We
apply a real churn trace as well collected over mobile phones, and we
also experiment with different distributions of the training data over
the devices. Surprisingly, gossip learning actually outperforms federated
learning in all the scenarios where the training data are distributed uni-
formly over the nodes, and it performs comparably to federated learning
overall.

1 Introduction

Performing data mining over data collected by edge devices, most importantly,
mobile phones, is of very high interest [17]. Collecting such data at a central
location has become more and more problematic in the past years due to novel
data protection rules [9] and in general due to the increasing public awareness to
issues related to data handling. For this reason, there is an increasing interest in
methods that leave the raw data on the device and process it using distributed
aggregation.

Google introduced federated learning to answer this challenge [12,13]. This
approach is very similar to the well-known parameter server architecture for
distributed learning [7] where worker nodes store the raw data. The parameter

This work was supported by the Hungarian Government and the European Regional
Development Fund under the grant number GINOP-2.3.2-15-2016-00037 (“Internet of
Living Things”) and by the Hungarian Ministry of Human Capacities (grant 20391-
3/2018/FEKUSTRAT).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 74–90, 2019.
https://doi.org/10.1007/978-3-030-22496-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_5&domain=pdf
http://orcid.org/0000-0002-5356-2192
http://orcid.org/0000-0002-9983-1060
http://orcid.org/0000-0001-9363-1482
https://doi.org/10.1007/978-3-030-22496-7_5

Gossip Learning as a Decentralized Alternative to Federated Learning 75

server maintains the current model and regularly distributes it to the workers
who in turn calculate a gradient update and send it back to the server. The
server then applies all the updates to the central model. This is repeated until
the model converges. In federated learning, this framework is optimized so as to
minimize communication between the server and the workers. For this reason,
the local update calculation is more thorough, and compression techniques can
be applied when uploading the updates to the server.

In addition to federated learning, gossip learning has also been proposed
to address the same challenge [10,15]. This approach is fully decentralized, no
parameter server is necessary. Nodes exchange and aggregate models directly.
The advantages of gossip learning are obvious: since no infrastructure is required,
and there is no single point of failure, gossip learning enjoys a significantly
cheaper scalability and better robustness. The key question, however, is how the
two approaches compare in terms of performance. This is the question we address
in this work. To be more precise, we compare the two approaches in terms of
convergence time and model quality, assuming that both approaches utilize the
same amount of communication resources in the same scenarios.

To make the comparison as fair as possible, we make sure that the two
approaches differ mainly in their communication patterns. However, the com-
putation of the local update is identical in both approaches. Also, we apply
subsampling to reduce communication in both approaches, as introduced in [12]
for federated learning. Here, we adapt the same technique for gossip learning.

We learn linear models using stochastic gradient descent (SGD) based on
the logistic regression loss function. For realistic simulations, we apply smart-
phone churn traces collected by the application Stunner [2]. We note that both
approaches offer mechanisms for explicit privacy protection, apart from the basic
feature of not collecting data. In federated learning, Bonawitz et al. [3] describe
a secure aggregation protocol, whereas for gossip learning one can apply the
methods described in [4]. Here, we are concerned only with the efficiency of the
different communication patterns and do not compare security mechanisms.

The result of our comparison is that gossip learning is in general comparable
to the centrally coordinated federated learning approach, and in many scenarios
gossip learning actually outperforms federated learning. This result is rather
counter-intuitive and suggests that decentralized algorithms should be treated as
first class citizens in the area of distributed machine learning overall, considering
the additional advantages of decentralization.

The outline of the paper is as follows. Section 2 describes the basics of fed-
erated learning and gossip learning. Section 3 describes the specific algorithmic
details that were applied in our comparative study, in particular, the manage-
ment of the learning rate parameter and the subsampling compression tech-
niques. Section 4 presents our results.

2 Background

Classification is a fundamental problem in machine learning. Here, a data set
D = {(x1, y1), . . . , (xn, yn)} of n examples is given, where an example is rep-
resented by a feature vector x ∈ Rd and the corresponding class label y ∈ C,

76 I. Hegedűs et al.

where d is the dimension of the problem and C is the set of class labels. The
problem of classification is often expressed as finding the parameters w of a func-
tion fw : Rd → C that can correctly classify as many examples as possible in
D, as well as outside D (this latter property is called generalization). Expressed
formally, the objective function J(w) captures the error of the model parameters
w, and we wish to minimize J(w) in w:

w∗ = arg min
w

J(w) = arg min
w

1
n

n∑

i=1

�(fw(xi), yi) +
λ

2
‖w‖2, (1)

where �() is the loss function (the error of the prediction), ‖w‖2 is the regu-
larization term, and λ is the regularization coefficient. By keeping the model
parameters small, regularization helps in avoiding overfitting to the training set.

Perhaps the simplest algorithm to approximate w∗ is the gradient descent
method. Here, we start with a random weight vector w0. In each iteration, we
compute wt+1 based on wt by finding the gradient of the objective function at
wt and making a step towards the direction opposite to the gradient. One such
iteration is called a gradient update. Formally,

wt+1 = wt − ηt(
∂J

∂w
(wt)) = wt − ηt(λwt +

1
n

n∑

i=1

∂�(fw(xi), yi)
∂w

(wt)), (2)

where ηt is the learning rate at iteration t. Stochastic gradient descent (SGD)
is similar, only we use a single example (xi, yi) instead of the entire database to
perform an update:

wt+1 = wt − ηt(λwt +
∂�(fw(xi), yi)

∂w
(wt)). (3)

It is also usual to apply a so called minibatch update, in which more than one
example is used, but not the entire database.

In this study we use logistic regression as our machine learning model, where
the specific form of the objective function is given by

J(w) = − 1
n

n∑

i=1

ln P (yi|xi, w) +
λ

2
‖w‖2, (4)

where yi ∈ {0, 1}, P (0|xi, w) = (1 + exp(wTx))−1 and P (1|xi, w) = 1 −
P (0|xi, w).

2.1 Federated Learning

The pseudocode of the federated learning algorithm [12,13] is shown in Algo-
rithm1 (master) and Algorithm2 (worker). The master periodically sends the
current model w to all the workers asynchronously in parallel and collects the
answers from the workers. Any answers from workers arriving with a delay larger

Gossip Learning as a Decentralized Alternative to Federated Learning 77

Algorithm 1. Federated Learning Master
1: (t, w) ← init()
2: loop
3: for every node i in parallel do � non-blocking (in separate thread(s))
4: send (t, w) to i
5: receive (ni, hi) from i � ni: example count at i; hi: model gradient
6: end for
7: wait(Δf) � the round length
8: n ← 1

|I|
∑

i∈I ni � I: nodes that returned a model in this round
9: t ← t + n

10: h ←aggregate({hi : i ∈ I})
11: w ← w + h
12: end loop

Algorithm 2. Federated Learning Worker
1: procedure onReceiveModel(t, w)
2: (t′, w′) ←update((t, w), Dk) � Dk: the local database of examples
3: (n, h) ← (t′ − t, w′ − w) � n: the number of local examples
4: send (n, compress(h)) to master
5: end procedure

than Δf are simply discarded. After Δf time units have elapsed, the master
aggregates the received gradients and updates the model. We also send and
maintain the model age t (based on the average number of examples used for
training) in a similar fashion, to enable the use of dynamic learning rates in
the local learning. These algorithms are very generic, the key characteristics
of federated learning lie in the details of the update method (line 2 of Algo-
rithm2) and the compression mechanism (line 4 of Algorithm 2 and line 10 of
Algorithm 1). The update method is typically implemented through a minibatch
gradient descent algorithm that operates on the local data, initialized with the
received model w. The details of our implementation of the update method and
compression is presented in Sect. 3.

2.2 Gossip Learning

Gossip Learning is a method for learning models from fully distributed data
without central control. Each node k runs Algorithm 3. First, the node initializes

Algorithm 3. Gossip Learning Framework
1: (tk, wk) ← init()
2: loop
3: wait(Δg)
4: p ← select()
5: send (tk, compress(wk)) to p
6: end loop

7: procedure onReceiveModel(tr, wr)
8: (tk, wk) ←merge((tk, wk), (tr, wr))
9: (tk, wk) ←update((tk, wk), Dk)

10: end procedure

78 I. Hegedűs et al.

Algorithm 4. Model update rule
1: procedure update((t, w), D)
2: for all batch B ⊆ D do � D is split into batches
3: t ← t + |B|
4: w ← w − ηt

∑
(x,y)∈B(∂�(fw(x),y)

∂w
(w) + λw)

5: end for
6: return (t, w)
7: end procedure

Algorithm 5. Model initialization
1: procedure init()

2: t ← 0
3: w ← 0 � 0 denotes the vector of all zeros
4: return (t, w)
5: end procedure

a local model wk (and its age tk). This is then periodically sent to another node
in the network. (Note that these cycles are not synchronized.) The node selection
is supported by a so-called sampling service [11,16]. Upon receiving a model wr,
the node merges it with the local model, and updates it using the local data
set Dk. Merging is typically achieved by averaging the model parameters; see
Sect. 3 for specific implementations. In the simplest case, the received model
merely overwrites the local model. This mechanism results in the models taking
random walks in the network and being updated when visiting a node. The
possible update methods are the same as in the case of federated learning, and
compression can be applied as well.

3 Algorithms

In this section we describe the details of the update, init, compress, aggre-
gate, and merge methods. Methods update, init and compress are shared
among federated learning and gossip learning. In all the cases we used the imple-
mentations in Algorithms 4 and 5. In the minibatch update we compute the sum
instead of the average to give an equal weight to all the examples irrespective of
batch size. (Note that even if the minibatch size is fixed, actual sizes will vary
because the number of examples at a given node is normally not divisible with
the nominal batch size.) We used the dynamic learning rate ηt = η/t, where t is
the number of instances the model was trained on.

Method aggregate is used in Algorithm 1. Its function is to decompress
and aggregate the received gradients encoded with compress. When there is
no actual compression (compressNone in Algorithm 7), simply the average
of gradients is taken (aggregateDefault in Algorithm 6). The compression
technique we employed is subsampling [13]. When using subsampling, workers
do not send all of the model parameters back to the master, but only random

Gossip Learning as a Decentralized Alternative to Federated Learning 79

Algorithm 6. Various versions of the aggregate function
1: procedure aggregateDefault(H) � Average of gradients
2: return 1

|H|
∑

h∈H h
3: end procedure
4:
5: procedure aggregateSubsampled(H) � Restore expected value
6: return d

s|H|
∑

h∈H h � s: number of model parameters kept by subsampling
7: end procedure
8:
9: procedure aggregateSubsampledImproved(H)

10: h′ ← 0
11: for i ∈ {1, ..., d} do
12: Hi ← {h : h ∈ H ∧ h[i] �= 0} � h[i] refers to the ith element of the vector h
13: h′[i] ← 1

|Hi|
∑

h∈H h[i] � skipped if |Hi| = 0
14: end for
15: return h′

16: end procedure

Algorithm 7. Various versions of the compress function
1: procedure compressNone(h)
2: return h
3: end procedure
4:
5: procedure compressSubsampling(h)
6: h′ ← 0
7: X ← random subset of {1, ..., d} of size s
8: for i ∈ X do
9: h′[i] ← h[i]

10: end for
11: return h′

12: end procedure

subsets of a given size (see compressSubsampling). Note that the indices
need not be sent, instead, we can send the random seed used to select them. The
missing values are treated as zero. Due to this, the gradient average needs to be
scaled as shown in aggregateSubsampled to create an unbiased estimator of
the original gradient. We introduce a slight improvement to this scaling method
in aggregateSubsampledImproved. Here, instead of scaling based on the
theoretical probability of including a parameter, we calculate the actual average
for each parameter separately based on the number of the gradients that contain
the given parameter.

In gossip learning, merge is used to combine the local model with the incom-
ing one. In the simplest variation, the local model is discarded in favor of the
received model (see mergeNone in Algorithm 8). It is usually a better idea
to take the average of the parameter vectors [15]. We use average weighted by
model age (see mergeAverage). Subsampling can be used with gossip learning

80 I. Hegedűs et al.

Algorithm 8. Various versions of the merge function
1: procedure mergeNone((t, w), (tr, wr))
2: return (tr, wr)
3: end procedure
4:
5: procedure mergeAverage((t, w), (tr, wr))
6: a ← tr

t+tr
7: t ← max(t, tr)
8: w ← (1 − a)w + awr

9: return (t, w)
10: end procedure
11:
12: procedure mergeSubsampled((t, w), (tr, wr)) � averages non-zero values only
13: a ← tr

t+tr
14: t ← max(t, tr)
15: for i ∈ {1, ..., d} do
16: if wr[i] �= 0 then � w[i] refers to the ith element of the vector w
17: w[i] ← (1 − a)w[i] + awr[i]
18: end if
19: end for
20: return (t, w)
21: end procedure

as well, in which case mergeSubsampled must be used, which considers only
the received parameters.

4 Experiments

4.1 Datasets

We used three datasets from the UCI machine learning repository [8] to test
the performance of our algorithms. The first is the Spambase (SPAM E-mail
Database) dataset containing a collection of emails. Here, the task is to decide
whether an email is spam or not. The emails are represented by high level
features, mostly word or character frequencies. The second dataset is Pendig-
its (Pen-Based Recognition of Handwritten Digits) that contains downsampled
images of 4×4 pixels of digits from 0 to 9. The third is the HAR (Human Activity
Recognition Using Smartphones) [1] dataset, where human activities (walking,
walking upstairs, walking downstairs, sitting, standing and laying) were mon-
itored by smartphone sensors (accelerometer, gyroscope and angular velocity).
High level features were extracted from these measurement series.

The main properties, such as size or number of features, are presented in
Table 1. In our experiments we standardized the feature values, that is, shifted
and scaled them to have a mean of 0 and a variance of 1. Note that the stan-
dardization can be approximated by the nodes in the network locally if the

Gossip Learning as a Decentralized Alternative to Federated Learning 81

Table 1. Data set properties

Spambase Pendigits HAR

Training set size 4140 7494 7352

Test set size 461 3498 2947

Number of features 57 16 561

Number of classes 2 10 6

Class-label distribution ≈6:4 ≈uniform ≈uniform

Parameter η 1E+4 1E+4 1E+2

Parameter λ 1E–6 1E–4 1E–2

approximation of the statistics of the features are fixed and known, which can
be ensured in a fixed application.

In our simulation experiments, each example in the training data was assigned
to one node when the number of nodes was 100. This means that, for example,
with the HAR dataset each node gets 73.5 examples on average. When the
network size is 1000, we replicate the examples, that is, each example is assigned
to 10 different nodes. As for the distribution of class labels on the nodes, we
applied two different setups. The first one is uniform assignment, which means
that we assigned the examples to nodes at random independently of class label.
The number of samples assigned to each node was the same (to be more precise,
it differed by at most one due to the number of samples not being divisible by
100).

The second one is single class assignment when every node has examples only
from a single class. Here, the different class labels are assigned uniformly to the
nodes, and then the examples with a given label are assigned to one of the nodes
with the same label, uniformly. These two assignment strategies represent the
two extremes in any real application. In a realistic setting the class labels will
likely be biased but much less so than in the case of the single class assignment
scenario.

4.2 System Model

In our simulation experiments, we used a fixed random k-out overlay network,
with k = 20. That is, every node had k = 20 fixed random neighbors. Simulations
were performed with a network size of 100 and 1000 nodes. In the churn-free
scenario, every node stayed online for the whole experiment. The churn scenario
is based on a real trace gathered from smartphones (see Sect. 4.3 below). We
assumed that a message is successfully delivered if and only if both the sender
and the receiver remains online during the transfer. We also assume that the
nodes are able to detect which of their neighbors are online at any given time
with a delay that is negligible compared to the transfer time of a model.

We assumed uniform upload and download bandwidths for the nodes, and
infinite bandwidth on the side of the server. Note that the latter assumption

82 I. Hegedűs et al.

favors federated learning, as gossip learning does not use a server. The uniform
bandwidth assumption is motivated by the fact that it is likely that in a real
application there will be a configured (uniform) bandwidth cap that is signifi-
cantly lower than the average available bandwidth. The transfer time of a full
model was assumed to be 172 s (irrespective of the dataset used) in the long trans-
fer time scenario, and 17.2 s in the short transfer time scenario. This allowed for
around 1,000 and 10,000 iterations over the course of 48 h, respectively.

The cycle length parameters Δg and Δf were set based on the constraint
that in the two algorithms the nodes should be able to exploit all the available
bandwidth. In our setup this also means that the two algorithms transfer the
same number of bits overall in the network in the same time-window. This will
allow us to make fair comparisons regarding convergence dynamics. The gossip
cycle length Δg is thus exactly the transfer time of a full model, that is, nodes
are assumed to send messages continuously. The cycle length Δf of federated
learning is the round-trip time, that is, the sum of the upstream and downstream
transfer times. When compression is used, the transfer time is proportionally less
as defined by the compression rate. Note, however, that in federated learning the
master always sends the full model to the workers, only the upstream transfer
is compressed.

It has to be noted that we assume much longer transfer times than what
would be appropriate for the actual models in our simulation. To put it dif-
ferently, in our simulations we pretend that our models are very large. This is
because in the churn scenario if the transfer times are very short, the network
hardly changes during the learning process, so effectively we learn over a static
subset of the nodes. Long transfer times, however, make the problem more chal-
lenging because many transfers will fail, just like in the case of very large machine
learning models such as deep neural networks. In the case of the no-churn sce-
nario this issue is completely irrelevant, since the dynamics of convergence are
identical apart from scaling time.

4.3 Smartphone Traces

The trace we used was collected by a locally developed openly available smart-
phone app called STUNner, as described previously [2]. In a nutshell, the app
monitors and collects information about charging status, battery level, band-
width, and NAT type.

We have traces of varying lengths taken from 1191 different users. We divided
these traces into 2-day segments (with a one-day overlap), resulting in 40,658
segments altogether. With the help of these segments, we were able to simulate
a virtual 48-h period by assigning a different segment to each simulated node.

To ensure our algorithm is phone and user friendly, we defined a device to be
online (available) when it has been on a charger and connected to the internet
for at least a minute, hence we never use battery power at all. In addition, we
also treated those users as offline who had a bandwidth of less than 1 Mbit/s.

Gossip Learning as a Decentralized Alternative to Federated Learning 83

Fig. 1. Online session length distribution (left) and dynamic trace properties (right)

Figure 1 illustrates some of the properties of the trace. The plot on the right
illustrates churn via showing, for every hour, what percentage of the nodes left,
or joined the network (at least once), respectively. We can also see that at any
given moment about 20% of the nodes are online. The average session length is
81.368 min.

4.4 Hyperparameters and Algorithms

The learning rate η and regularization coefficient λ were optimized using grid
search assuming the no-failure scenario, no compression, and uniform assign-
ment. The resulting values are shown in Table 1. These hyperparameters depend
only on the database, they are robust to the selection of the algorithm. Mini-
batches of size 10 were used in each scenario. We used logistic regression as our
learning algorithm, embedded in a one-vs-all meta-classifier.

4.5 Results

We ran the simulations using PeerSim [14]. We measure learning performance
with the help of the 0–1 loss, which gives the proportion of the misclassified
examples in the test set. In the case of gossip learning the loss is defined as the
average loss over the online nodes.

First, we compare the two aggregation algorithms for subsampled models
in Algorithm 6 (Fig. 2) in the no-failure scenario. The results indicate a slight
advantage of aggregateSubsamplingImproved, although the performance
depends on the database. In the following we will apply aggregateSubsam-

plingImproved as our implementation of method aggregate.
The comparison of the different algorithms and subsampling probabilities is

shown in Fig. 3. The stochastic gradient descent (SGD) method is also shown,
which was implemented by gossip learning with no merging (using mergeNone).
Clearly, the parallel methods are all better than SGD. Also, it is very clear that

84 I. Hegedűs et al.

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.1 1

0-
1

E
rr

or

Hours

Spambase Dataset

aggregateSubsamplingImproved 25%
aggregateSubsamplingImproved 10%

aggregateSubsampling 25%
aggregateSubsampling 10%

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 1

0-
1

E
rr

or

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 1

0-
1

E
rr

or

Hours

HAR Dataset

Fig. 2. Federated learning, 100 nodes, long transfer time, no failures, different aggre-
gation algorithms and subsampling probabilities.

subsampling helps both federated learning and gossip learning. However, gossip
learning benefits much more from it. The reason is that in the case of federated
learning subsampling is implemented only in the worker master direction, the
master sends the full model back to the workers [12]. However, in gossip learning,
subsampling can be applied to all the messages.

Most importantly, gossip learning clearly outperforms federated learning in
the case of high compression rates (low sampling probability) over two of the
three datasets, and it is competitive on the remaining dataset as well. This
was not expected, as gossip learning is fully decentralized, so the aggregation
is clearly delayed compared to federated learning. Indeed, with no compression,
federated learning performs better. However, with high compression rates, slower
aggregation is compensated by a higher communication efficiency. Figure 3 also
illustrates scaling. As we can see, the performance with 100 and 1000 nodes is
practically identical for both algorithms.

Figure 4 contains our results with the churn trace. In the first hour, the
two algorithms behave just like in the no-churn scenario. On the longer range,
clearly, federated learning tolerates the churn better. This is because in federated
learning nodes always work with the freshest possible models that they receive
from the master, even right after coming back online. In gossip learning, outdated

Gossip Learning as a Decentralized Alternative to Federated Learning 85

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

SGD

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

Fig. 3. Federated learning and gossip learning with 100 (left) and 1000 (right) clients,
long transfer time, no failures, with different subsampling probabilities. Minibatch
Stochastic Gradient Descent (SGD) is implemented by gossip learning with no merging
(using mergeNone).

models could temporarily participate in the optimization, albeit with a smaller
weight. In this study we did not invest any effort into mitigating this effect, but
outdated models could potentially be removed with more aggressive methods as
well.

We also include an artificial trace scenario, where online session lengths are
exponentially distributed following the same expected length (81 min) as in the
smartphone trace. The offline session length is set so we have 10% of the nodes
spending any given federated learning round online in expectation, assuming
no compression. This is to reproduce similar experiments in [13]. The results

86 I. Hegedűs et al.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

Fig. 4. Federated learning and gossip learning over the smartphone trace (left) and
an artificial exponential trace (right), long transfer time, with different subsampling
probabilities.

are similar to those over the smartphone trace, only the noise is larger for gos-
sip learning, because the exponential model results in an unrealistically large
variance in session lengths.

Figure 5 shows the convergence dynamics when we assume short transfer
times (see Sect. 4.2). Clearly, the scenarios without churn result in the same
dynamics (apart from a scaling factor) as the scenarios with long transfer time.
The algorithms are somewhat more robust to churn in this case, since the nodes
are more stable relative to message transfer time.

Gossip Learning as a Decentralized Alternative to Federated Learning 87

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

Fig. 5. Federated learning and gossip learning with no churn (left) and over the smart-
phone trace (right), short transfer time, with different subsampling probabilities.

Figure 6 contains the results of our experiments with the single class assign-
ment scenario, as described in Sect. 4.1. In this extreme scenario, the learning
problem becomes much harder. Still, gossip learning remains competitive in the
case of high compression rates.

88 I. Hegedűs et al.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0-
1

Er
ro

r

Hours

HAR Dataset

Fig. 6. Federated learning and gossip learning with no churn (left) and over the smart-
phone trace (right), long transfer time, single class assignment, with different subsam-
pling probabilities.

5 Conclusions

Here, our goal was to compare federated learning and gossip learning in terms
of efficiency. We designed an experimental study to answer this question. We
compared the convergence speed of the two approaches under the assumption
that both methods use the available bandwidth, resulting in an identical overall
bandwidth consumption.

We found that in the case of uniform assignment, gossip learning is not
only comparable to the centralized federated learning, but it even outperforms
it under the highest compression rate settings. In every scenario we examined,

Gossip Learning as a Decentralized Alternative to Federated Learning 89

gossip learning is comparable to federated learning. We add that this result relies
on our experimental assumptions. For example, if one considers the download
traffic to be essentially free in terms of bandwidth and time then federated
learning is more favorable. This, however, is not a correct approach because it
hides the costs at the side of the master node. For this reason, we opted for
modeling the download bandwidth to be identical to the upload bandwidth, but
still assuming an infinite bandwidth at the master node.

As for future work, the most promising direction is the design and evaluation
of more sophisticated compression techniques [5] for both federated and gossip
learning. Also, in both cases, there is a lot of opportunity to optimize the com-
munication pattern by introducing asynchrony to federated learning, or adding
flow control to gossip learning [6].

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: 21th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN) (2013)

2. Berta, Á., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn
over the internet: a measurement study. In: Proceedings of the 14th IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P 2014). IEEE (2014)

3. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-
held data. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)

4. Danner, G., Berta, Á., Hegedűs, I., Jelasity, M.: Robust fully distributed mini-
batch gradient descent with privacy preservation. Secur. Commun. Netw. 2018,
15 (2018). Article no. 6728020

5. Danner, G., Jelasity, M.: Robust decentralized mean estimation with limited com-
munication. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018.
LNCS, vol. 11014, pp. 447–461. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96983-1 32

6. Danner, G., Jelasity, M.: Token account algorithms: the best of the proactive
and reactive worlds. In: Proceedings of the 38th International Conference on Dis-
tributed Computing Systems (ICDCS 2018), pp. 885–895. IEEE Computer Society
(2018)

7. Dean, J., et al.: Large scale distributed deep networks. In: Proceedings of the 25th
International Conference on Neural Information Processing Systems, NIPS 2012,
vol. 1, pp. 1223–1231. Curran Associates Inc., USA (2012)

8. Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.
edu/ml

9. European Commission: General data protection regulation (GDPR) (2018).
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-
protection/2018-reform-eu-data-protection-rules

10. Hegedűs, I., Berta, Á., Kocsis, L., Benczúr, A.A., Jelasity, M.: Robust decentralized
low-rank matrix decomposition. ACM Trans. Intell. Syst. Technol. 7(4), 62:1–62:24
(2016)

11. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3), 8 (2007)

https://doi.org/10.1007/978-3-319-96983-1_32
https://doi.org/10.1007/978-3-319-96983-1_32
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules

90 I. Hegedűs et al.

12. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. In: Private
Multi-Party Machine Learning (NIPS 2016 Workshop) (2016)

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J.
(eds.) Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282.
PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017

14. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of
the 9th IEEE International Conference on Peer-to-Peer Computing (P2P 2009),
pp. 99–100. IEEE, Seattle, Washington, USA, September 2009. Extended abstract

15. Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully
distributed data. Concurr. Comp. Pract. Exp. 25(4), 556–571 (2013)

16. Roverso, R., Dowling, J., Jelasity, M.: Through the wormhole: low cost, fresh peer
sampling for the internet. In: Proceedings of the 13th IEEE International Confer-
ence on Peer-to-Peer Computing (P2P 2013). IEEE (2013)

17. Wang, J., Cao, B., Yu, P.S., Sun, L., Bao, W., Zhu, X.: Deep learning towards
mobile applications. In: IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 1385–1393, July 2018

Using Trusted Execution Environments
for Secure Stream Processing

of Medical Data
(Case Study Paper)

Carlos Segarra1(B) , Ricard Delgado-Gonzalo1 , Mathieu Lemay1,
Pierre-Louis Aublin2, Peter Pietzuch2, and Valerio Schiavoni3

1 CSEM, Neuchâtel, Switzerland
{cse,rdg,mly}@csem.ch

2 Imperial College London, London, UK
{p.aublin,prp}@imperial.ac.uk

3 University of Neuchâtel, Neuchâtel, Switzerland
valerio.schiavoni@unine.ch

Abstract. Processing sensitive data, such as those produced by body
sensors, on third-party untrusted clouds is particularly challenging with-
out compromising the privacy of the users generating it. Typically, these
sensors generate large quantities of continuous data in a streaming fash-
ion. Such vast amount of data must be processed efficiently and securely,
even under strong adversarial models. The recent introduction in the
mass-market of consumer-grade processors with Trusted Execution Envi-
ronments (TEEs), such as Intel SGX, paves the way to implement solu-
tions that overcome less flexible approaches, such as those atop homo-
morphic encryption. We present a secure streaming processing system
built on top of Intel SGX to showcase the viability of this approach with
a system specifically fitted for medical data. We design and fully imple-
ment a prototype system that we evaluate with several realistic datasets.
Our experimental results show that the proposed system achieves modest
overhead compared to vanilla Spark while offering additional protection
guarantees under powerful attackers and threat models.

Keywords: Spark · Data streaming · Intel SGX · Medical data ·
Case-study

1 Introduction

Internet of Things (IoT) devices are more and more pervasive in our lifes [22].
The number of devices owned per user is anticipated to increase by 26× by
2020 [19]. These devices continuously generate all large variety of continuous
data. Notable examples include location-based sensors (e.g., GPS), inertial units
(e.g., accelerometers, gyroscopes), weather stations, and, the focus of this paper,
human-health data (e.g., blood pressure, heart rate, stress).
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 91–107, 2019.
https://doi.org/10.1007/978-3-030-22496-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_6&domain=pdf
http://orcid.org/0000-0003-3455-7563
http://orcid.org/0000-0002-7183-6257
http://orcid.org/0000-0003-1493-6603
https://doi.org/10.1007/978-3-030-22496-7_6

92 C. Segarra et al.

These devices usually have very restricted computing power and are typically
very limited in terms of storage capacity. Hence, this continuous processing of
data must be off-loaded elsewhere, in particular for storage and processing pur-
poses. In doing so, one needs to take into account potential privacy and security
threats that stem inherently from the nature of the data being generated and
processed.

Cloud environments represent the ideal environment to offload such process-
ing. They allow deployers to hand-off the maintenance of the required infras-
tructure, with immediate benefit for instance in terms of scale-out with the
workload.

Processing privacy-sensitive data on untrusted cloud platforms present a
number of challenges. A malicious (compromised) Cloud operator could observe
and leak data, if no countermeasures are taken beforehand. While there are
software solutions that allow to operate on encrypted data (e.g., partial [33] or
full-homomorphic [24] encryption), their current computational overhead makes
impractical in real-life scenarios [25].

The recent introduction into the mass market of processors with embedded
trusted execution environments (TEEs), e.g., Intel Software Guard Extensions
(SGX) [20] (starting from processors with codename Skylake) or ARM Trust-
Zone [1], offer a viable alternative to pure-software solutions. TEEs protect code
and data against several types of attacks, including a malicious underlying OS,
software bugs or threats from co- hosted applications. The application’s security
boundary becomes the CPU itself. The code is executed at near-native execution
speeds inside enclaves of limited memory capacity. All the major Infrastructure-
as-a-Service providers (Google [21], Amazon [2], IBM [3], Microsoft [37]) are
nowadays offering nodes with SGX processors.

We focus on the specific use case of processing data streams generated by
health-monitoring wearable devices on untrusted clouds with available SGX
nodes. This setting addresses the fact that algorithms for analyzing cardiovas-
cular signals are getting more complex and computation-intensive. Thus, tradi-
tional signal-processing approaches [29] have left the way to deep neural net-
works [43,45]. This increase in computational expenditure has moved the pro-
cessing towards centralized centers (i.e., the cloud) when scaling up to a large
fleet of wearable devices is needed. In order to illustrate the concept, we present
a system that computes in real time several metrics of the heart-rate variability
(HRV) steaming from wearable sensors. While existing stream processing solu-
tions exist [27,46], they either lack support for SGX or, if they do support it, are
tied to very specific programming frameworks and prevent adoption in industrial
settings.

The contributions of this case-study paper are twofold. First, we design
and implement a complete system that can process heart-specific signals inside
SGX enclaves in untrusted clouds. Our design leverages SGX-Spark, a stream
processing system that exploits SGX to execute stream analytics inside TEEs
(described in detail in Sect. 2). Note that our design is flexible enough to
be used with different stream processing systems (as further described later).

Using TEEs for Secure Stream Processing of Medical Data 93

Second, we compare the proposed system against the vanilla, non-secure Spark.
Our evaluation shows that the current overhead of SGX is reasonable even for
large datasets and for high-throughput workloads and that the technology is
almost ready for production environments.

This paper is organized as follows. In Sect. 2, we introduce Intel SGX, Spark,
and SGX-Spark. The architecture of the proposed system is presented in Sect. 3,
while we further provide implementation details in Sect. 4. We evaluate our pro-
totype with realistic workloads in Sect. 5 for which include experimental compar-
isons also against the vanilla Spark. A summary of related work in the domain
of (secure) stream processing is given in Sect. 6. Finally, we present future work
(Sect. 7) before concluding in Sect. 8.

2 Background

To better understand the design and implementation details, we introduce some
technical background on the underlying technologies that we leverage, as well
as some of the specific features interesting for cardiac signals. In Sect. 2.1, we
provide background on the technical aspects exploited in the remaining of this
paper, specifically describing the operating principles of Intel SGX, Spark and
its secure counter-part SGX-Spark. In Sect. 2.2, we describe the specifics of the
data streams that the system has to deal with from the medical domain, such
as heart-beat monitoring signals, together with the required processing that our
system allows to offload on an untrusted cloud provider.

2.1 Technical Background

Trusted Execution Environments and Intel SGX. A trusted execution
environment (TEE) is an isolated area of the processor that offers code and
data’s confidentiality and integrity guarantees. TEEs are nowadays available in
commodity CPUs, such as Arm TrustZone and Intel R©SGX.

Fig. 1. Intel SGX execution workflow.

In comparison with Arm Trust-

Zone, SGX includes a remote attes-
tation protocol, support multiple
trusted applications on the same
CPU, and its SDK is easier to pro-
gram with. As mentioned earlier,
all the major IaaS providers offer
SGX-enabled instances on their cloud
offering, hence we decided to base
the design of our system on top
of it. Briefly, the SGX extensions
are a set of instructions and mem-
ory access extensions. These instruc-
tions enable applications to create
hardware-protected areas in their

94 C. Segarra et al.

address space, also known as, enclaves [31]. At initialization time, the content
loaded is measured (via hashing) and sealed. An application using an enclave
identifies itself through a remote attestation protocol and, once verified, interacts
with the protected region through a call gate mechanism. In particular, Fig. 1
breaks down the typical execution workflow of SGX applications. After the initial
attestation protocol, code in the untrusted region creates an enclave and securely
loads trusted code and data inside (Fig.-➊). Whenever this untrusted code wants
to make use of the enclave, it makes a call to a trusted function (Figs.-➋, -➌)
that gets captured by the call gate mechanism and, after performing sanity and
integrity checks (Fig.-➍), gets executed (Fig.-➎), the value returned (Fig.-➏)
and the untrusted code can resume execution (Fig.-➐). The security perimeter
is kept at the CPU package and, as a consequence, all other software including
privileged software, OS, hypervisors or even other enclaves are prevented from
accessing code and data located inside the enclave. Most notably, the systems’
main memory is left untrusted and the traffic between CPU and DRAM over
the protected address range is managed by the Memory Encryption Engine [26].

Spark and Spark Streaming. Spark is a cluster-computing framework to
develop scalable, fault-tolerant, distributed applications. It builds on RDDs,
resilient distributed datasets [46], a read-only collection distributed over a clus-
ter that can be rebuilt if one partition is lost. It is implemented in Scala and
provides bindings for Python, Java, SQL and R. Spark Streaming [47] is
an extension of Spark’s core API that enables scalable, high-throughput, fault
tolerant stream (mini-batch) processing of data streams [16]. The proposed sys-
tem leverages Spark Streaming to perform file-based streaming, by monitoring
a filesystem interface outside the enclave.

SHM

Spark

Worker

Worker

Enclave

Spark Driver
&

Application
Entry Point

Driver

Enclave

T 1 · · · T N

Spark Master

Fig. 2. SGX-Spark attacker model
and collaborative structure scheme.

SGX-LKL and SGX-Spark. SGX-

LKL [11] is a library OS to run
unmodified Linux binaries inside enclaves.
Namely, it provides system support for
managed runtimes, e.g., a full JVM.
This feature enables the deployment of
Spark, and Spark Streaming applications
to leverage critical computing inside Intel
SGX with minimal to no modifications
to the application’s code. SGX-Spark

[15] builds on SGX-LKL. It partitions
the code of Spark applications to execute
the sensitive parts inside SGX enclaves.
Figure 2 depicts its architecture. Basi-
cally, it deploys two collaborative Java
Virtual Machines (JVM), one outside
(Fig. 2, Spark Driver) and one inside the
enclave (Fig. 2, Driver Enclave) for the
driver, and two more for each worker
deployed. Spark code outside the enclave

Using TEEs for Secure Stream Processing of Medical Data 95

Fig. 3. Schematic representation of an ECG signal. It shows three normal beats and
the information transferred from the sensor to the gateway. The most relevant part of
the ECG wave are the R peaks and the time elapsed between them. The RR intervals
together with the R peaks’ timestamp are sent from the sensor to the gateway.

accesses only encrypted data. The communication between the JVMs is kept
encrypted and is performed through the host OS shared memory. SGX-Spark

provides a compilation toolchain, and it currently supports the vast majority of
the native Spark operators, allowing to transparently deploy and run existing
Spark applications into the SGX enclaves.

2.2 Heart Rate Variability Analysis

The data streams used for the evaluation and the algorithms compiled with
SGX-Spark belong to the medical domain and motivate the real need for confi-
dentiality and integrity. As further explained in Sect. 3, our use case contemplates
a scenario where multiple sensors track the cardiac activity of different users.
The two most standard procedures for monitoring heart activity are electro-
cardiograms (ECG) and photoplethysmograms (PPG). An ECG measures the
heart’s electrical activity and is the method used by, for instance, chest bands.
A PPG is an optical measure of the evolution of blood volume over time and is
the method used by wrist-based sensors [34]. Both procedures lead to an approx-
imation of R peaks’ timestamps and the intervals between them (RR intervals).
The generation of the approximated diagram and the time measures are done
inside the sensor. Figure 3 depicts a schematic representation of an ECG and
the values streamed from the sensor to the gateway: R peak’s timestamps and
RR intervals. With healthy individuals’ heart rate (HR) averaging between 60
to 180 beats per minute (bpm), the average throughput per client is between 23
and 69 bytes per second. An interesting use case of RR processing, besides HR
approximation, is the study of Heart Rate Variability (HRV). HRV [30] is the
variation in the time intervals between heartbeats and it has been proven to be
a predictor of myocardial infarction. Finally, despite the proposed system being
specifically designed for streams with these data features, its modular design (as
we later describe in Sect. 3) makes it easy to adapt to other use-cases.

96 C. Segarra et al.

3 Architecture

The architecture of the proposed system is depicted in Fig. 4. It is composed
of a server-side component which executes on untrusted machines (e.g., nodes
on the cloud), where Intel SGX is available. The clients are distributed among
remote locations. Each client is a sensor generating samples, and a gateway
aggregating and sending them periodically every n seconds to the cloud-based
component. Similarly, clients fetch the results at fixed time intervals (i.e., every
5 s in our deployments). The interaction between the clients and the server-side
components of the system happens over a filesystem interface. Each client data
stream is processed in parallel by the SGX-Spark job. In the reminder, we
further detail these components.

Fig. 4. (Left) Schematic of the system’s main architecture. A set of clients bidirection-
ally stream data to a remote server. The interaction is done via a filesystem interface.
On the server side, SGX-Spark performs secure processing using different HRV analy-
sis algorithms. (Right) Breakdown of a packaged client: it includes a sensor and gate-
way that wrap four different microservices (mqtt broker, mqtt-subscriber, consumer,
producer) to interact with the remote end.

3.1 Server-Side

The server-side component is made by three different modules: a filesystem inter-
face, the SGX-Spark engine, and a set of algorithms to analyze HRV. The
filesystem interface acts as a landing point for the batches of data generated by
each client. It is monitored by the SGX-Spark engine. Currently, it is mounted
and unmounted, respectively at start-up time and upon the shutdown of the
service. The streaming engine and the pool of algorithms are compiled together
by the same toolchain, yet they are independent. The Spark engine (deployed
in standalone mode) executes: the master process, the driver process, and an
arbitrary number of workers. In the case of SGX-Spark jobs, two JVMs are

Using TEEs for Secure Stream Processing of Medical Data 97

deployed per driver and worker process: one inside an enclave and one out-
side. The communication between JVMs is kept encrypted and is done through
the host OS shared memory (see Fig. 2). For each JVM pair, SGX-Spark will
initialize a new enclave. The specific algorithm that the system will execute is
currently set at start-up time, although several concurrent ones can be executed,
each yielding separated results.

3.2 Clients

The client is a combination of: (1) a data generator that simulates a sensor and
(2) a gateway that interacts with the remote end. The data generator streams
RR intervals. These samples are gathered by the gateway, which stacks and sends
them for processing in a file-based streaming fashion. The typical size of these
batches is in the 230–690 Bytes range. Each gateway is composed by: a message
broker that handles the samples, a service that handles data pre-processing and
batch sending, and a fetcher that directly greps from the server’s filesystem.

3.3 Threat Model

We assume that the communication between the gateway and the filesystem is
kept protected (e.g., encrypted) using secure transfer protocols (more in Sect. 4).
Given this assumption, the threat model is the same as typical systems that rely
on SGX. Specifically, we assume the system software is untrusted. Our security
perimeter only includes the internals of the CPU package. The trusted computing
base is Intel’s microcode as well as and the code loaded at the enclave, which
can be measured and integrity can be checked. We assume that in our case the
client package is trusted and tamper-proof. We focus on protecting the areas
outside user’s control. However, if the client package is deployed in, for instance,
a Raspberry Pi, the Trusted Computing Base (TCB) could be further reduced
using Arm TrustZone and Op-Tee [9].

3.4 Known Vulnerabilities

As for the known vulnerabilities, SGX (in particular the memory encryption
engine) is not designed to be an oblivious RAM. As a consequence and adversary
can perform traffic analysis attacks [26]. Moreover, side-channel attacks [38] and
speculative execution attacks (Spectre-like [13] and Foreshadow [42]) have still
successful against enclaves and will require in-silicon fixes.

4 Implementation

This section presents the further implementation details. To stress-test our eval-
uation, we replaced real sensors with synthetic data generators. Additionally, we
deploy a large number of Docker containers [5] to mimic a fleet of concurrent
clients.

98 C. Segarra et al.

4.1 Server-Side

We rely on the original SGX-Spark implementation, and we only modify it to
support a different in-enclave code deployment path, so that the .jar archive
is available inside the enclaves and the shared memory. The application code is
implemented in the Scala programming language [14]. Applications must adhere
to the RDD API [10] to be usable inside the SGX enclaves. We use SGX-Spark

via Structured Streaming jobs, and must also adhere to the same API. We have
implemented two state-of-the-art HRV analysis algorithms, namely SDNN and
HRVBands [39]. The SDNN algorithm measures the standard deviation of NN
(RR in our case) intervals. HRVBands performs frequency domain calculations:
high-frequency (HF) power, low-frequency (LF) power and HF to LF ratio. For
the sake of performance comparison, we also include results using an identity
algorithm, simply reading the input data stream and outputting it. The imple-
mentation of these algorithms rely on basic Spark Streaming operators, and their
corresponding Scala implementations. We use the file-based data stream input
for Spark streaming.1

4.2 Clients

Clients correspond to body-sensors strapped to the body of a user. These are
connected to a gateway, (e.g., a Raspberry Pi) packaged together. Our imple-
mentation decouples the clients into into five different microservices (see Fig. 4,
right). For evaluation purposes, the sensor is a Python service that generates
random RR intervals. These are published into the MQTT queue [6,8] following
a uniform time distribution. The gateway is composed by a MQTT queue and
broker service. We rely on eclipse-mosquitto2, a mqtt-sub service that sub-
scribes to the specific topic and generates data files with several samples, and a
producer and consumer services that interact with the remote filesystem. These
components are implemented in Python, and consist of 888 Lines of Code (LoC).
Our prototype relies on Docker to facilitate the deployment of new clients, and
on docker-compose [4] to easily group orchestrate their deployment. The com-
munication between the client and the server happens via SSH/SecureFTP to
ensure transport layer security when transferring user’s data.

4.3 Deployment

To ease scalability and reproducibility of both server and client, deployment
is orchestrated by a single script detached from both execution environments.
Specifying the remote location, the SGX-Spark engine, the streaming algorithm
and the filesystem interface are initialized either container-based or on metal.
Specifying the number of simulated users and their location, a cluster of clients
is dynamically started. On execution time, a Spark streaming service located

1 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/streaming.
2 https://hub.docker.com/ /eclipse-mosquitto/.

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/streaming
https://hub.docker.com/_/eclipse-mosquitto/

Using TEEs for Secure Stream Processing of Medical Data 99

in a remote server with a master process and an arbitrary number of Spark
workers (or executors) interacts with a standalone Docker Swarm composed by
the cluster of clients, a name discovery service and an overlay network. This
architecture scales to hundreds of clients.

5 Evaluation

In this section, we present the experimental evaluation. We first present the
evaluation settings for both the client and the server components. Then, we
describe the metrics of interest on which we focus our experiments. Finally, we
present our results. Our experiments answer the following questions: (i) is the
design of the proposed system sound? (ii) is our implementation efficient, (iii)
what is the overhead of SGX, and (iv) is it scalable?

5.1 Settings

Clients. Each client (e.g., a body sensor in real-life) is emulated by a stan-
dalone Docker application. We deploy them on a quad-16core (64 hardware
cores) AMD EPYC 7281 with 64 GiB of RAM running Ubuntu v18.04 LTS (ker-
nel 4.15.0-42-generic). The client containers are built and deployed using Docker
(v18.09.0) and docker-compose (v1.23.2). We use docker-machine (v0.16.0)
with the virtualbox disk image. Each machine hosts 20 clients, the maximum
number of services supported by its local network, and it registers itself to the
Swarm via a name discovery service running on another machine. Inter-container
communication rely on the overlay network driver. We pull the latest images
available on Docker Hub for the Consul name discovery service (v1.4) and the
eclipse-mosquitto (v1.5) message broker.

Server. The server components run on host machines with Intel R© Xeon R© CPU
E3-1270 v6 @ 3.80 GHz with 8 cores and 64 GiB RAM. We use Ubuntu 16.04
LTS (kernel 4.19.0-41900-generic) and the official Intel R© SGX driver v2.0 [7],
and SGX-LKL [11]. We use an internal release of the SGX-Spark framework.

5.2 Experiment Configurations

We compare the results of 3 different systems (or execution modes): the vanilla
Spark (our baseline), the SGX-Spark system with enclaves disabled (i.e. col-
laborative JVMs communicating over SHM which run outside the SGX enclaves)
and SGX-Spark with enclaves enabled. The latter mode is the one the proposed
system runs in. The current implementation of SGX-Spark (still under develop-
ment) does not provide support for Spark’s Streaming Context inside enclaves.
To overcome this temporary limitation, we evaluate the SDNN and Identity algo-
rithms in batch and stream mode. For the former, all three different execution

100 C. Segarra et al.

modes are supported. For the latter, we present estimated results for SGX-

Spark with enclaves enabled, basing the computation time on the batch execu-
tion times and the additional overhead against the other modes. The algorithms
are fed with a data file or a data stream, respectively. In the streaming scenario,
an output file is generated every ten seconds. In a multi-client scenario, each
client has a separated data stream (or file) and consequently a different result
file. A streaming execution consists of 5 min of the service operating with a spe-
cific configuration. We execute our experiments 5 times and report average and
standard deviations.

Metrics. To assess performance, scalability, and efficiency, we consider average
batch processing times for streaming jobs, and elapsed times for batch execu-
tions. Note that we mention batch in two different contexts: batch execution (one
static input and static output) and streaming batches. Spark Streaming divides
live input data in chunks called batches determined by a time duration (10 s
in our experiments). The time it takes the engine to process the data therein
contained is denoted as batch processing time. In order to obtain all batch pro-
cessing times, we rely on the internal Spark’s REST API [12]. Since the GET
request fetches the historic of batch processing times for the running job, one
single query right before finishing the execution provides all the sufficient infor-
mations for our computations. In order to obtain the elapsed times for batch
executions, a simple logging mechanism suffices.

Workload. The clients inject streams as cardiac signals, as shown earlier
(Sect. 2.2). Each signal injects a modest workload into our system (230–690 bytes
per minute). Hence, to assess the efficiency and the processing time as well as to
uncover possible bottlenecks, we scale up the output rate of these signals with
the goal of inducing more aggressive workloads. We do so in detriment of medical
realism, since arbitrary input workloads do not relate to any medical situation
or condition. Table 1 shows the variations used to evaluate the various execution
modes.

Table 1. Different input loads used for Batch Executions (BE) and Streaming Execu-
tions (SE). We present the sample rate they simulate (i.e. how many RR intervals are
streamed per second) and the overall file or stream size (Input Load).

Experiment s rate (samples/s) Input Load

BE - Small Load {44, 89, 178, 356, 712, 1424} {1, 2, 4, 8, 16, 32} kB

SE - Small Load {44, 89, 178, 356, 712, 1424} {1, 2, 4, 8, 16, 32} kB/s

BE - Big Load {44, 89, 178, 356, 712, 1424} ∗ 1024 {1, 2, 4, 8, 16, 32} MB

SE - Big Load {44, 89, 178, 356, 712, 1424} ∗ 1024 {1, 2, 4, 8, 16, 32} MB/s

Using TEEs for Secure Stream Processing of Medical Data 101

5.3 Results

Batch Execution: Input File Size. The configuration for the following exper-
iments is: one client, one master, one driver, one worker, and a variable input file
that progressively increases in size. We measure the processing (or elapsed) time
of each execution and present the average and standard deviation of experiments
with the same configuration. The results obtained are included in Fig. 5.

From the bar plot we highlight that the variance between execution times
among same execution modes as we increase the input file size is relatively low.
However, it exponentiates as we reach input files of 4–8 MB. We also observe
that the slow-down factor between execution modes remains also quite static
until reaching the before mentioned load threshold. SGX-Spark with enclaves,
if input files are smaller than 4 MB, increases execution times x4-5 when com-
pared to vanilla Spark and x1.5-2 when compared to SGX-Spark with enclaves
disabled. Note that, since a single client in our real use case streams around 230
to 690 bytes per minute, the current input size limitation already enables several
concurrent clients.

Streaming Execution: input load. As done previously, we scale the load of
the data streams that feed the system. We deploy one worker, one driver and
one client, query the average batch processing time to Spark’s REST API, and
present the results for the Identity and SDNN algorithms. Results are summa-
rized in Fig. 6.

We obtain results for vanilla Spark, and SGX-Spark without enclaves, and
we estimate them for SGX-Spark with enclaves. We observe similar behav-
ior as those in Fig. 5. Variability among same execution modes when increasing
the input stream size is low until reaching values of around 4 to 8 MB per sec-
ond. Similarly, the slow-down factor from vanilla Spark to SGX-Spark without
enclaves remains steady at around x2-2.5 until reaching the load threshold. As a
consequence, it is reasonable to estimate that the behavior of SGX-Spark with
enclaves will preserve a similar slow-down factor (×4-×5) when compared with
vanilla Spark in streaming jobs. Similarly, the execution time will increase lin-
early with the input load after crossing the load threshold of 4 MB. Note as well
how different average batch processing times are in comparison with elapsed
times, in spite of relatively behaving similar. The average of streaming batch
processing times smoothens the initial overhead of starting the Spark engine,
and data loading times are hidden under previous batches’ execution times.

102 C. Segarra et al.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Input File Size (kB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves

 0
 2
 4
 6
 8

 10
 12
 14

1 2 4 8 16 32A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Input File Size (kB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Input File Size (MB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves 51
.5

4
s

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Input File Size (MB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves 63
.5

3
s

11
4.

78
 s

Fig. 5. Evolution of the average elapsed time, together with its standard deviation, as
we increase the size of the input file. We compare the three different execution modes
for each algorithm. Mode SGX-Spark w/ enclaves is the mode our system runs in.

Using TEEs for Secure Stream Processing of Medical Data 103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 4 8 16 32A
vg

. B
at

ch
 P

ro
ce

ss
in

g
T

im
e

(s
)

Input Load (kB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1 2 4 8 16 32A
vg

. B
at

ch
 P

ro
ce

ss
in

g
T

im
e

(s
)

Input Load (kB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 32A
vg

. B
at

ch
 P

ro
ce

ss
in

g
T

im
e

(s
)

Input Load (MB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

3.
63

 s

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 4 8 16 32A
vg

. B
at

ch
 P

ro
ce

ss
in

g
T

im
e

(s
)

Input Load (MB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

5.
45

 s

9.
81

 s

Fig. 6. Evolution of the average batch processing time as we increase the input file
size. We compare the results of the three different execution modes. Note that those
corresponding to SGX-Spark w/ enclaves are estimated basing on the results in Fig. 5
and the slow-down with respect to the other execution modes.

104 C. Segarra et al.

6 Related Work

Stream processing has recently attracted a lot of attention from academia and
industry [28,32,44]. Apache Spark [46] is arguably the de-facto standard in this
domain, by combining batch and stream processing with a unified API [48].
Apache Spark SQL [18] allows to process structured data by integrating rela-
tional processing with Spark’s functional programming style. Structured stream-
ing [17] leverages Spark SQL and it compares favorably against the discretized
counterpart [47]. However, the former lacks security or privacy guarantees, and
hence it was not considered. The proposed system relies on SGX-Spark, as it
directly extends Spark with SGX support.

Opaque [49] is a privacy-preserving distributed analytics system. It leverages
Spark SQL and Intel SGX enclaves to perform computations over encrypted
Spark DataFrames. In encryption mode, Opaque offers security guarantees
similar to the proposed system. However, (1) the Spark master must be co-
hosted with the client, a scenario not supported by our multi-client setting and
(2) it requires changes to the application code. In oblivious mode, i.e., pro-
tecting against traffic pattern analysis attacks, it can be up to 46× slower, a
factor not tolerable for the real-time analytics in our setting. SecureStreams [27]
is a reactive framework that exploits Intel SGX to define dataflow processing
by pipelining several independent components. Applications must be written in
the Lua programming language, hindering its applicability to legacy systems
or third-party programs. DPBSV [35] is a secure big data stream processing
framework that focuses on securing data transmission from the sensors or clients
to the Data Stream Manager (DSM) or server. Its security model requires a
PKI infrastructure and a dynamic prime number generation technique to syn-
chronously update the keys. In spite of using trusted hardware on the DSM end
for key generation and management, the server-side processes all the data in
clear, making the framework not suitable for our security model.

Homomorphic encryption [23] does not rely on trusted execution environ-
ments and offers the promise of providing privacy-preserving computations over
encrypted data. While several works analyzed the feasibility of homomorphic
encryption schemes in cloud environments [40,41], the performance of homo-
morphic operations [25] is far from being pragmatic.

Further, for the specific problem of HRV analysis, while periodic monitor-
ing solutions exist [36], they are focused on embedded systems. As such, since
they off-load computation to third-party cloud services, these solutions simply
overlook the privacy concerns that the proposed system considers.

To the best of our knowledge, there are no privacy-preserving real-time
streaming systems specifically designed for medical and cardiac data. The pro-
posed system fills this gap by leveraging Intel SGX enclaves to compute such
analytics over public untrusted clouds without changing the existing Java- or
Scala-based source code.

Using TEEs for Secure Stream Processing of Medical Data 105

7 Future Work

The current prototype can be improved along several dimensions. First, we envi-
sion to support clients running inside ARM TrustZone: this TEE is widely avail-
able in low-power devices (e.g., Raspberry PI), hence makes an ideal candidate
to reduce the TCB in the client-side of the architecture. Second, we intend to
improve the plug-in mechanism for additional analysis of the data, as currently
a given algorithm is set at deploy-time, while it is expected to load/unload those
at runtime. Thirdly, we intend to study the cost of deployment of such system
over public cloud infrastructures such as AWS Confidential Computing.

8 Conclusion

We presented a stream-processing architecture and implementation that lever-
age Spark-SGX to overcome privacy concerns of deploying such systems over
untrusted public clouds. Its design allows to easily scale to different types of
data generators (e.g., the clients). The processing components that execute on
the cloud rely on SGX-Spark, a stream processing framework that can exe-
cutes Spark jobs within SGX enclaves. Our evaluation shows that for typical
signal processing, despite an observed overhead of 4×–5× induced by the cur-
rent experimental version of SGX-Spark, the performance is still practical.
This suggests that it will be possible in a near-future to deploy such systems on
a production-ready environment with performances that can easily satisfy even
strict Service Level Agreements, while keeping maintaining the costs to use the
cloud infrastructure reasonable. We intend to release the code as open-source.

Acknowledgements. We are grateful to the members of the LSDS Team (https://
lsds.doc.ic.ac.uk/) at Imperial College London to have provided us early access to
SGX-Spark.

References

1. ARM TrustZone Developer. https://developer.arm.com/technologies/trustzone
2. Coming Soon: Amazon EC2 C5 Instances, the next generation of Compute Opti-

mized instances. http://amzn.to/2nmIiH9
3. Data-in-use protection on IBM Cloud using Intel SGX. https://www.ibm.com/

blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
4. Docker Documentation: Docker Compose. https://docs.docker.com/compose/
5. Docker: What is a Container? https://www.docker.com/resources/what-container
6. Eclipse Paho MQTT Implementation. https://www.eclipse.org/paho/
7. Intel Software Guard Extension for Linux OS Driver on GitHub. https://github.

com/intel/linux-sgx-driver
8. MQTT Communication Protocol. http://mqtt.org/
9. Open Portable Trusted Execution Environment. https://www.op-tee.org

10. RDD Programming Guide. https://spark.apache.org/docs/latest/rdd-programm
ing-guide.html

https://lsds.doc.ic.ac.uk/
https://lsds.doc.ic.ac.uk/
https://developer.arm.com/technologies/trustzone
http://amzn.to/2nmIiH9
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://docs.docker.com/compose/
https://www.docker.com/resources/what-container
https://www.eclipse.org/paho/
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
http://mqtt.org/
https://www.op-tee.org
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

106 C. Segarra et al.

11. SGX-LKL on Github. https://github.com/lsds/sgx-lkl
12. Spark Documentation: REST API. https://spark.apache.org/docs/latest/monitor

ing.html#rest-api
13. Spectre Attack SGX on Github. https://github.com/lsds/spectre-attack-sgx
14. The Scala Programming Language. https://www.scala-lang.org/
15. D3.2 SecureCloud: Specification and Implementation of Reusable Secure Microser-

vices (2017). https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf
16. Apache Foundation: Spark streaming programming guide. https://spark.apache.

org/docs/2.2.0/streaming-programming-guide.html
17. Armbrust, M., et al.: Structured streaming: a declarative API for real-time appli-

cations in Apache Spark. In: ACM SIGMOD 2018 (2018)
18. Armbrust, M., et al.: Spark SQL: relational data processing in Spark. In: ACM

SIGMOD 2015 (2015)
19. Barbosa, M., et al.: SAFETHINGS: data security by design in the IoT. In: IEEE

EDCC 2017 (2017)
20. Costan, V., Devadas, S.: Intel SGX explained. IACR 2016 (2016)
21. Darrow, B.: Google is first in line to get Intel’s next-gen server chip. http://for.

tn/2lLdUtD
22. Gartner: Leading the IoT Gartner Insights on how to lead in a connected world

(2017)
23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC

2009 (2009)
24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:

Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

25. Göttel, C., et al.: Security, performance and energy trade-offs of hardware-assisted
memory protection mechanisms. In: IEEE SRDS 2018 (2018)

26. Gueron, S.: A memory encryption engine suitable for general purpose processors.
IACR 2016

27. Havet, A., et al.: SecureStreams: a reactive middleware framework for secure data
stream processing. In: ACM DES 2017 (2017)

28. Koliousis, A., et al.: SABER: window-based hybrid stream processing for hetero-
geneous architectures. In: ACM SIGMOD 2016 (2016)

29. Kumar, A., Shaik, F., Rahim, B.A., Kumar, D.S.: Signal and Image Processing in
Medical Applications. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
981-10-0690-6

30. Malik, M.: Heart rate variability: standards of measurement, physiological inter-
pretation, and clinical use. Circulation 93, 1043–1065 (1996)

31. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP 2013 (2013)

32. Miao, H., Park, H., Jeon, M., Pekhimenko, G., McKinley, K.S., Lin, F.X.: Stream-
Box: modern stream processing on a multicore machine. In: USENIX ATC 2017
(2017)

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

34. Parák, J., Tarniceriu, A., Renevey, P., Bertschi, M., Delgado-Gonzalo, R., Korho-
nen, I.: Evaluation of the beat-to-beat detection accuracy of PulseOn wearable
optical heart rate monitor. In: IEEE EMBC 2015 (2015)

35. Puthal, D., Nepal, S., Ranjan, R., Chen, J.: DPBSV - an efficient and secure scheme
for big sensing data stream. In: IEEE TRUSTCOM 2015 (2015)

https://github.com/lsds/sgx-lkl
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://github.com/lsds/spectre-attack-sgx
https://www.scala-lang.org/
https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
http://for.tn/2lLdUtD
http://for.tn/2lLdUtD
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-981-10-0690-6
https://doi.org/10.1007/978-981-10-0690-6
https://doi.org/10.1007/3-540-48910-X_16

Using TEEs for Secure Stream Processing of Medical Data 107

36. Renevey, P., et al.: Respiratory and cardiac monitoring at night using a wrist
wearable optical system. In: IEEE EMBC 2018 (2018)

37. Russinovich, M.: Introducing Azure Confidential Computing. https://azure.
microsoft.com/en-us/blog/introducing-azure-confidential-computing/

38. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

39. Shaffer, F., Ginsberg, J.P.: An overview of heart rate variability metrics and norms.
Front. Pub. Health 5, 258 (2017). https://doi.org/10.3389/fpubh.2017.00258

40. Stephen, J.J., Savvides, S., Sundaram, V., Ardekani, M.A., Eugster, P.: STYX:
stream processing with trustworthy cloud-based execution. In: ACM SoCC 2016
(2016)

41. Tetali, S.D., Lesani, M., Majumdar, R., Millstein, T.: MrCrypt: static analysis for
secure cloud computations. In: ACM OOPSLA 2013 (2013)

42. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: USENIX Security 2018 (2018)

43. Van Zaen, J., Chételat, O., Lemay, M., Calvo, E.M., Delgado-Gonzalo, R.: Classifi-
cation of cardiac arrhythmias from single lead ECG with a convolutional recurrent
neural network. In: BIOSTEC 2019 (2019)

44. Venkataraman, S., et al.: Drizzle: fast and adaptable stream processing at scale.
In: ACM OSP 2017 (2017)

45. Xiong, Z., Nash, M., Cheng, E., Fedorov, V., Stiles, M., Zhao, J.: ECG signal clas-
sification for the detection of cardiac arrhythmias using a convolutional recurrent
neural network. Physiol. Measur. 39, 094006 (2018)

46. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: USENIX HotCloud 2010 (2010)

47. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an effi-
cient and fault-tolerant model for stream processing on large clusters. In: USENIX
HotCloud 2012 (2012)

48. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 2016 59, 56–65 (2016)

49. Zheng, W., Dave, A., Beekman, J.G., Popa, E.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: USENIX
NSDI 2017 (2017)

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.3389/fpubh.2017.00258

Stunner: A Smart Phone Trace
for Developing Decentralized Edge

Systems

Zoltán Szabó1 , Krisztián Téglás1, Árpád Berta1 , Márk Jelasity1,2(B) ,
and Vilmos Bilicki1

1 University of Szeged, Szeged, Hungary
jelasity@inf.u-szeged.hu

2 MTA SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. Conducting research into edge and fog computing often
involves experimenting with actual deployments, which is costly and
time-consuming, so we need to rely on realistic simulations at least in
the early phases of research. To be able to do so we need to collect real
data that allows us to perform trace-based simulation and to extract
crucial statistics. To achieve this for the domain of distributed smart-
phone applications, for many years we have been collecting data via
smartphones concerning NAT type, the availability of WiFi and cellu-
lar networks, the battery level, and many more attributes. Recently, we
enhanced our data collecting Android app Stunner by taking actual P2P
measurements. Here, we outline our data collection method and the tech-
nical details, including some challenges we faced with data cleansing. We
present a preliminary set of statistics based on the data for illustration.
We also make our new database freely available for research purposes.

1 Introduction

Distributed computing over the edge as part of various smart systems is becom-
ing a popular research topic [4]. Research into algorithms that are suitable to such
environments often involves actual deployments, because realistic conditions are
non-trivial to model, yet they are crucial for finding an optimally efficient and
robust solution. Still, this severely limits the possibilities of exploratory research.

One important domain is smartphone applications that can form a part of
many smart systems such as smart city or e-health solutions [14]. In this domain,
it is important to fully understand the capabilities and limitations of the devices
and their network access as well. This includes battery charging patterns, net-
work availability (churn) and network attributes (for example, NAT type).

This work was supported by the Hungarian Government and the European Regional
Development Fund under the grant number GINOP-2.3.2-15-2016-00037 (“Internet of
Living Things”) and by the Hungarian Ministry of Human Capacities (grant 20391-
3/2018/FEKUSTRAT).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 108–115, 2019.
https://doi.org/10.1007/978-3-030-22496-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_7&domain=pdf
http://orcid.org/0000-0003-3863-7595
http://orcid.org/0000-0002-4005-2273
http://orcid.org/0000-0001-9363-1482
https://doi.org/10.1007/978-3-030-22496-7_7

Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems 109

Our team started to develop the smartphone app Stunner in 2013 to collect
data concerning the NAT properties of smartphones using the STUN protocol [2],
as well as many other attributes such as battery level and network availability.
Since then, we have collected a large trace involving millions of individual mea-
surements. Recently, we also updated the application to collect data concerning
direct peer-to-peer capabilities based on a basic WebRTC implementation.

There have been many data collection campaigns targeting smartphones.
This included the famous Mobile Data Challenge (MDC) [6], which aimed to
collect large amounts of data from smartphones for various research studies,
including sensory data, cell towers, calls, etc. and ran between 2009 and 2011,
resulting in the largest and most widely known dataset yet. After this, the most
prominent project to achieve similar results was the Device Analyzer Experi-
ment. started in 2011 by the University of Cambridge, aiming to not only record
similar attributes to the MDC, but also system-level information such as phone
types, OS versions, energy and charging [3,13]. This trace has been used, for
example, to determine the most energy consuming Android APIs [7] or to recon-
struct the states of battery levels on the monitored smartphones [5]. Our dataset
is unique in that, apart from being five years long, it contains all the necessary
attributes to simulate decentralized applications.

Another set of projects are concerned with measuring the network (e.g.,
detecting NAT boxes) as opposed to collecting a full trace from the devices,
which is our main goal. For instance, in 2014 a study was initiated to analyze
the deployment rate of carrier-grade NATs that can hide entire areas behind
a single public IP address [11]. The measurement was based on Netalyzr, as
well as on crawls of BitTorrent DHT tables to detect possible leaked internal
addresses due to hairpin NAT traversal. In another study across Europe, an
application called NAT Revelio was developed [9]. Yet another data collection
campaign attempted to collect traceroute sessions from smartphones using the
custom TraceboxAndroid application [12]. The application detects the exact
number of middleboxes and NAT translations encountered between the device
and a specified test target. In a similar two-week campaign, the Netpicular

application was deployed [15]. Also, a mobile application called Mobil Trace-

box was deployed to carry out traceroute measurements [16]. This campaign ran
for an entire year. A summary of these NAT studies can be found in Table 1.

While our NAT measurements are simply based on STUN server feedback [8],
thus underestimating the complexity of the network, our P2P measurements
indicate that our NAT type data is a good basis for predicting connection success
(see Sect. 3).

Our contribution is fourfold: (1) our application Stunner has been collect-
ing data for a much longer time than any of these applications, which allows
us to observe historic trends; (2) in the latest version, we measure direct P2P
connections allowing us to collect NAT traversal statistics; (3) we collect a wide
range of properties simultaneously, including NAT type, battery level, network
availability, and so on, to be able to fully model decentralized protocols; and (4)
we make our trace publicly available at http://www.inf.u-szeged.hu/stunner.

http://www.inf.u-szeged.hu/stunner

110 Z. Szabó et al.

Table 1. Comparison between various NAT measurement campaigns

Source Collected attributes Length Public Tools

[11] Local, external and public
IP addresses

2014–2016 No Netalyzr

[9] External IP, mapped port,
traceroute results, UPnP
query results

2016 May
and August

No NAT Revelio

[16] Traceroute results 2016
Feb–2017
Feb

No Mobile Tracebox

[15] Traceroute results,
number of detected
middleboxes

2011 Jan.,
2 weeks

No Netpiculet

[12] Traceroute results,
number of detected
middleboxes

2014
May–Sep

No TraceboxAndroid

2 Data Collection Methodology

The functionality of our Android app Stunner is to provide the user with
information about the current network environment of the phone: private and
public IP, NAT type, MAC address, and some other network related details [2].
At the same time, the app collects data about the phone and logs it to our
servers. The app was launched in April 2014, when it was simply made public
without much advertising. Since then, at any point in time we had a user base of
a few hundred to a few thousand users, and over 40 million measurements have
been collected from all over the world.

In the original version measurements were triggered either by the user (when
the app is used) or by specific events that signal the change of some of the
properties we measure: battery charging status, network availability. There was
periodic measurement as well every 10 min, if no other events occurred.

The latest version was completely redesigned. This was necessary because
Android has become very hostile to background processes when the phone is not
on a charger, in an effort to save energy. For this reason, we now collect data only
when the phone is on a charger. This, however, is not a real issue, because for
decentralized applications these are the most useful intervals, when it is much
cheaper to communicate and to perform computing tasks in the background.
Android event handlers have also became more restricted, so we can use them
only under limited circumstances or on early Androids. The events raised by
connecting to a charger or a network can still be caught by the Android job
scheduler, but the timing of these events is not very reliable.

For this reason, instead of relying on event handlers, we check the state of the
phone every minute, and if there is a change in any important locally available
networking parameter or in charging availability, we perform a full measurement.

Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems 111

Fig. 1. Proportions of the possible outcomes of P2P connection attempts.

A measurement is still triggered if the user explicitly requests one, and it is
also triggered by an incoming P2P measurement request. Also, if there is no
measurement for at least 10 min, a full measurement is performed.

P2P connection measurements are also a new feature in the latest version
that are performed every time a measurement is carried out. They are based on
the WebRTC protocol [1], with Firebase as a signaling server [10], and a STUN
server [8]. We build and measure only direct connections, the TURN protocol
for relaying is not used. Every node that is online (has network access and is on
a charger) attempts to connect to a peer. To do this, the node sends a request
to the Firebase server after collecting its own network data. The server attempts
to find a random online peer and manages the information exchange using the
Session Description Protocol (SDP) to help create a two-way P2P connection
over UDP. If the two-way channel is successfully opened then a tiny data massage
is exchanged. The channel is always closed at the end of the measurement. One
connection is allowed at a time, every additional offer is rejected. The signaling
server maintains an online membership list.

3 Some Measurement Results

For illustration, we present some of the interesting patterns in our trace. Figure 1
shows the proportions of the outcomes of 63184 P2P connection attempts. Out
of all the attempts, 34% was completed successfully. Let us briefly describe the
possible reasons for failure. First, signaling related error means that the SDP
data exchange via the signaling server failed. This can happen, if the server
contacts a possible peer but the peer replies with a reject message (offer rejected),
or it does not reply in time (timed out with peer), or we cannot see proof in the
trace that any peer was actually contacted (timed out without peer). Note that
a peer rejects a connection if it has an ongoing connection attempt of its own.

If the signaling phase succeeds, we have a pair of nodes ready to connect.
The most frequent error here is failing to open the channel, most likely due

112 Z. Szabó et al.

OA

FC

RC

PRC

SC

SF

FB

N/A

OA FC RC PRC SC SF FB N/A

in
iti

at
or

’s
 N

A
T

ty
pe

peer’s NAT type

 0

 20

 40

 60

 80

 100

Fig. 2. Statistics over successful connections as a function of NAT type. The area of
a disk is proportional to its observed frequency, the color signifies the success rate.
Examined NAT types: OA - Open Access, FC - Full Cone, RC - Restricted Cone, PRC
- Port Restricted Cone, SC - Symmetric Cone, SF - Symmetric UDP Firewall, FB -
Firewall blocks, N/A-missing type (Color figure online)

to incompatible NAT types. After the channel is open, transporting the test
message is still not guaranteed to succeed (transport error). Participant nodes
may disconnect with an open connection (connection lost). In some rare cases
a timeout also occurred after successful signaling, that is, the WebRTC call did
not return in time.

Figure 2 shows statistics over successful connections as a function of NAT
type. Here, we do not include signaling related errors. Note that NAT type
discovery is an independent process executed in parallel with the P2P connection
test. Therefore, there are some cases where the NAT type information is missing
but the signaling process is completed nevertheless.

We illustrate the dynamics of the NAT distribution over the years in Fig. 3
(left). The distribution is based on continuous sessions of online users. These
continuous sessions of homogeneous network conditions were determined based
on the measurement records. A session has a start time, a duration, and a NAT
type. The distribution is calculated based on the number of aggregated millisec-
onds of session durations falling on the given day. The distribution of online time
per day is near 8% almost every time. Recall, that here the online state is meant
to imply that the phone is on a charger.

The plot has gaps because in 2015 the data collector server was down, when
the project was temporarily neglected. In addition, the first version of our P2P
connection measurement implementation caused lots of downtime in 2018. Also,
some of the STUN servers that were initially wired in to the clients disappeared
over the years. As a result, the Firewall blocked NAT type is not reliable, so we

Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems 113

exclude that category from the figure. Note that the distribution is surprisingly
stable over the years.

Fig. 3. (1) NAT distribution per day over 5 years (2) Session length distribution

Fig. 4. NAT type distribution by continent in 4 different years (top) and NAT type
distribution by the top 10 providers in 4 different years (bottom). Colors represent
types as defined in Fig. 3. (Color figure online)

We present session length distribution as well in Fig. 3 (right). Session length
is in minutes, the bins for the histogram are defined on a logarithmic scale.
Sessions shorter than one minute are not always measured accurately due to our
one minute period of observation, so we group such sessions in one bin (<= 0).

Figure 4 contains stacked bar charts illustrating the distribution of different
NAT types in the 6 continents and in the networks of the top 10 most represented
providers in 4 different years. The most common NAT type is the Port Restricted
Cone except in Africa where the Symmetric Cone has a relatively larger share.

114 Z. Szabó et al.

According to the chart the rarest NAT type is Open Access everywhere. Interest-
ingly, the NAT type distribution is very different among the different providers,
unlike in the case of the distributions based on geographic location.

4 Conclusion

Here, we outlined the latest version of our Android app Stunner for collect-
ing a smartphone trace. Our motivation was to enable exploratory research into
decentralized algorithms for edge systems. Our trace contains locally observable
attributes such as battery status and network availability, STUN measurements,
as well as direct P2P connection data. In this unique combination, we can com-
bine these sources of data to be able to predict, for example, P2P connection suc-
cess, or to simulate distributed protocols over overlay networks of smartphones.
Our trace spans over five years and contains over 40 million measurements. We
also make the anonymized version of our trace publicly available.

References

1. Webrtc 1.0: Real-time communication between browsers (2018). https://www.w3.
org/TR/webrtc/

2. Berta, A., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn
over the internet: a measurement study. In: 14th IEEE International Conference
on Peer-to-Peer Computing. IEEE (2014)

3. Cheng, X., Fang, L., Hong, X., Yang, L.: Exploiting mobile big data: sources,
features, and applications. IEEE Netw. 31(1), 72–79 (2017)

4. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. SIGCOMM
Comput. Commun. Rev. 45(5), 37–42 (2015)

5. Gechter, F., Beresford, A.R., Rice, A.: Reconstruction of battery level curves based
on user data collected from a smartphone. In: Dichev, C., Agre, G. (eds.) AIMSA
2016. LNCS (LNAI), vol. 9883, pp. 289–298. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44748-3 28

6. Laurila, J.K., et al.: The mobile data challenge: big data for mobile computing
research (2012)

7. Li, L., Beitman, B., Zheng, M., Wang, X., Qin, F.: eDelta: pinpointing energy
deviations in smartphone apps via comparative trace analysis. In: 2017 Eighth
International Green and Sustainable Computing Conference (IGSC), pp. 1–8. IEEE
(2017)

8. MacDonald, D., Bruce, L.: NAT behavior discovery using session traversal utilities
for NAT (STUN), No. RFC 5780. (2010). http://www.rfc-editor.org/info/rfc5780

9. Mandalari, A., Lutu, A., Dhamdhere, A., Bagnulo, M., Claffy, K.: Tracking the
big NAT across Europe and the U.S. Technical report, Center for Applied Internet
Data Analysis (CAIDA), April 2017

10. Moroney, L.: Firebase Cloud Messaging, pp. 163–188. Apress, Berkeley (2017)
11. Richter, P., et al.: A multi-perspective analysis of carrier-grade NAT deployment.

In: Proceedings of the 2016 Internet Measurement Conference. ACM (2016)

https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://doi.org/10.1007/978-3-319-44748-3_28
https://doi.org/10.1007/978-3-319-44748-3_28
http://www.rfc-editor.org/info/rfc5780

Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems 115

12. Thirion, V., Edeline, K., Donnet, B.: Tracking middleboxes in the mobile world
with traceboxandroid. In: Steiner, M., Barlet-Ros, P., Bonaventure, O. (eds.) TMA
2015. LNCS, vol. 9053, pp. 79–91. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17172-2 6

13. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: understanding smart-
phone usage. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MindCare 2014.
LNICST, vol. 131, pp. 195–208. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11569-6 16

14. Wang, J., Cao, B., Yu, P.S., Sun, L., Bao, W., Zhu, X.: Deep learning towards
mobile applications. In: IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 1385–1393, July 2018

15. Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of middleboxes in
cellular networks. In: Proceedings of the ACM SIGCOMM 2011 Conference. ACM
(2011)

16. Zullo, R., Pescapé, A., Edeline, K., Donnet, B.: Hic sunt NATs: uncovering address
translation with a smart traceroute. In: 2017 Network Traffic Measurement and
Analysis Conference (TMA). IEEE (2017)

https://doi.org/10.1007/978-3-319-17172-2_6
https://doi.org/10.1007/978-3-319-17172-2_6
https://doi.org/10.1007/978-3-319-11569-6_16
https://doi.org/10.1007/978-3-319-11569-6_16

FOUGERE: User-Centric Location
Privacy in Mobile Crowdsourcing Apps

Lakhdar Meftah1(B), Romain Rouvoy2(B), and Isabelle Chrisment3(B)

1 Inria/Univ. Lille, Lille, France
lakhdar.meftah@inria.fr

2 Univ. Lille/IUF/Inria, Lille, France
romain.rouvoy@inria.fr

3 LORIA-TELECOM Nancy/Univ. Lorraine, Lorraine, France
isabelle.chrisment@loria.fr

Abstract. Mobile crowdsourcing is being increasingly used by indus-
trial and research communities to build realistic datasets. By leveraging
the capabilities of mobile devices, mobile crowdsourcing apps can be used
to track participants’ activity and to collect insightful reports from the
environment (e.g., air quality, network quality). However, most of exist-
ing crowdsourced datasets systematically tag data samples with time
and location stamps, which may inevitably lead to user privacy leaks by
discarding sensitive information.

This paper addresses this critical limitation of the state of the art by
proposing a software library that improves user privacy without compro-
mising the overall quality of the crowdsourced datasets. We propose a
decentralized approach, named Fougere, to convey data samples from
user devices to third-party servers. By introducing an a priori data
anonymization process, we show that Fougere defeats state-of-the-art
location-based privacy attacks with little impact on the quality of crowd-
sourced datasets.

Keywords: Location privacy · Mobile crowdsourcing · LPPM

1 Introduction

Mobile crowdsourcing platforms and applications (or apps) are being widely
used to collect datasets in the field for both industrial and research purposes [2,
6,31]. By relying on a crowd of user devices, mobile crowdsourcing delivers an
engaging solution to collect insightful reports from the wild. However, the design
of such platforms presents some critical challenges related to the management of
users, also known as workers. In particular, the privacy of the workers is often
underestimated by the crowdsourcing platforms and it often fails to be addressed
effectively in practice [25].

While data anonymization is commonly achieved a posteriori on the server
side [7,16,20,22], this approach is subject to adversarial attacks, even when
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 116–132, 2019.
https://doi.org/10.1007/978-3-030-22496-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-22496-7_8

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 117

protocols for the communication and the data storage are claimed to be
secured [11,12]. Furthermore, the workers may be reluctant to share Sensitive
Personal Information (SPI) with third parties (e.g., students contributing to
a crowdsourcing campaign initiated by a professor). Gaining the confidence of
workers is extremely difficult and we argue in this paper that the adoption of
a priori data anonymization mechanisms contributes to delivering a trustable
component to better mitigate privacy leaks in the data shared by workers.

For example, the worker’s location is not only the most requested but also
the most sensitive data collected by mobile crowdsourcing platforms [3]. Our
scheme therefore explores the physical proximity of workers to agree on a dis-
semination strategy for reporting the crowdsourced data. By altering the link
between workers and data consumers on the server, our approach intends to
mix data contributed by several workers within a collaborative data flow that
exhibit similar crowd-scale properties and without discarding any SPI. In par-
ticular, we propose a system-level service that acts as a proxy within the mobile
device for sharing crowdsourced data and from which workers can control their
privacy settings. Fougere is our implementation of this anonymization scheme
and is available as an open source library1 that can be used by legacy mobile
crowdsourcing apps. We illustrate the benefits of Fougere by integrating it
within the state-of-the-art MobiPerf mobile crowdsourcing app as well as the
APISENSE mobile crowdsourcing platform. We evaluate the effectiveness and
the impact of our anonymization scheme on these two mobile crowdsourcing
systems by deploying and orchestrating a crowd of 15 emulated mobile devices.
More precisely, we replay the SfCabs cab mobility traces [30] and we show that
Fougere defeats state-of-the-art privacy attacks [18,24,26] with little impact
on the quality of the resulting datasets.

The remainder of this paper is organized as follows. Section 2 gives a back-
ground on mobile crowdsourcing platforms and discusses the related work in the
areas of mobile crowdsourcing and location-based privacy. Section 3 provides an
overview of the privacy threats in crowdsourcing apps and platforms. Section 4
introduces our anonymization scheme and the integration of LPPMs to increase
the workers’ privacy. Section 5 describes the implementation of the Fougere

open source library on Android. Section 6 introduces our evaluation protocol of
Fougere on the MobiPerf mobile crowdsourcing app and discusses the results
we obtained on an experimental setup involving 15 emulated workers. Section 7
discusses the threats to validity of our contribution. Finally, Sect. 8 concludes on
this paper.

2 Related Work

Thanks to the wide adoption of mobile devices, mobile crowdsourcing has
emerged as a convenient approach to gather meaningful and scalable environ-
mental datasets by involving citizens in the process of performing measurements
in the wild [2,6,22,31]. While the development of mobile crowdsourcing apps
1 https://github.com/m3ftah/fougere

https://github.com/m3ftah/fougere

118 L. Meftah et al.

is clearly leveraged by the Software Development Kits (SDK) made available
by Android and iOS, mobile crowdsourcing platforms are bringing another level
of abstraction to ease the design and the deployment of mobile crowdsourcing
campaigns [4,8,13,20].

As depicted in Fig. 1, mobile crowdsourcing campaigns typically consist of
several stages: (i) the description of the data to be crowdsourced, (ii) the deploy-
ment and the gathering of the dataset in the wild, (iii) the aggregation and
storage of datasets in the Cloud, (iv) the processing and (v) publication of the
campaign results. However, along all these stages, SPI can be conveyed by the
platform and potentially be subject to attacks from adversaries, therefore moti-
vating the development of a better privacy support.

Collecting Stage Storing Stage Mining Stage Publishing StageTasking Stage

Fig. 1. Anatomy of a mobile crowdsourcing campaign

Location Privacy Protection Mechanisms. (LPPMs) are particularly inter-
esting to limit user privacy leaks [5]. A large body of the related work has been
devoted towards the latest stages of mobile crowdsourcing campaigns by improv-
ing the privacy properties of datasets once uploaded to remote servers [23,28,35].
These techniques contribute to preserving the privacy of workers while limiting
the impact on the quality of the resulting dataset. However, raw datasets stored
on a remote server may be leaked through security breaches.

Collaborative Privacy-Preserving Location-Based Services. In the
domain of Location-Based Services (LBS), some privacy protection mechanisms
can be adapted to mobile crowdsourcing platforms. In particular, we consider
the solutions where users collaborate to hide information from the server [10,29,
32,33], which share similarities with Fougere. In particular, Chow et al. [10]
use communication over peer-to-peer (P2P) protocols, Shokri et al. [32] use WiFi
Access Point connection, and finally, Shokri et al. [33] and Peng et al. [29] pro-
pose to use Wi-Fi Direct communications. Yet, such approaches are not widely
adopted by LBS solutions as they fail to demonstrate their effectiveness in a
realistic deployment.

Privacy in Mobile Crowdsourcing Platforms. Mobile crowdsourcing plat-
forms are actively working on privacy protection mechanisms [3,19]. In partic-
ular, Cornelius et al. [13] have proposed Anonysense: a mobile platform for
opportunistic sensing. Because the server hosting the collected dataset can trace

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 119

the worker’s wireless access points, they propose to use an anonymization net-
work to hide worker locations, they rely on a third-party server for routing the
data. Anonysense also supports reporting data with a statistical guarantee of
k-anonymity. The workers’ data are blurred and combined before being reported
to the remote server. While their approach hides workers from the server, it
exposes them to a third-party server that has to be trusted by the workers.
Thus, introducing a single point of failure. Das et al. [14] present PRISM: a
platform for remote sensing. They use a sandbox to prevent mobile apps from
using mobile sensors. Adversaries can still collect geotagged data from workers
and apply privacy de-anonymization attacks on the dataset. As discussed in [14],
both Anonysense and PRISM suffer from similar privacy leaks as the mobile
app collects data local sensors made available by their mobile device, allowing
data to be linked to the worker identifier. Hu et al. [21] present a collabora-
tive privacy-preserving platform called HP3, which uses social networks to hide
workers from the server. In their approach, they rely on third-party servers (the
social network) that can store all the exchanged locations along with workers
identifiers.

Synthesis. To the best of our knowledge, the state of the art fails to appropri-
ately address the anonymization schemes along the earliest stages of a mobile
crowdsourcing campaign in order to limit potential privacy threats. Therefore,
in this paper, we intend to address this limitation by proposing an approach
that leverages existing privacy protection mechanisms from the mobile device
by providing the first decentralized dissemination to adjust location privacy in
mobile crowdsourcing systems.

3 Privacy Threats in Mobile Crowdsourcing Systems

This section discusses the potential threats in mobile crowdsourcing systems
along 3 axes: the system model, the sensitive personal information, and the known
location-based attacks.

Mobile Crowdsourcing System Model. The architecture we consider is a
mobile crowdsourcing campaign that involves three components, namely, mobile
devices, crowdsourcing apps, and storage servers.

We consider that the mobile crowdsourcing apps can be trusted as we believe
that the owner of the mobile crowdsourcing app or platform is interested in
gathering insightful datasets with the consent of workers, especially if this mobile
app is open sourced.

However, we consider that the storage server can be compromised and reveal
some sensitive personal information on behalf of the owner and the workers. For
example, no matter if they are deployed in the cloud or on-premise, the remote
storage servers may suffer from security leaks that can be exploited by an adver-
sary. Furthermore, storing the crowdsourced data on the server must comply
with The EU General Data Protection Regulation (GDPR) and the Privacy Act
of 1974 of the USA. With crowdsourced data, it is difficult to comply with

120 L. Meftah et al.

the regulations, for example: giving the users the right to delete their own data
whenever they want. Fougere does resolve issues related to these regulations
as it does not store personal identifiers on the server side.

Sensitive Personal Information in Mobile Crowdsourcing. The goal of a
mobile crowdsourcing system is to gather a very large volume of data from mea-
surements produced by third-party workers. These workers are recruited by the
owner of the mobile crowdsourcing system to upload crowdsourced data through
a dedicated mobile app or device. However, existing mobile crowdsourcing sys-
tems may collected some sensitive personal information.

In particular, we identify 4 categories of sensitive personal information (SPI)
that might be exploited by attackers:

Identifiers group all persistent or transient identifiers that can take the form
of a device ID (IMEI) or Google account ID, for example, to explicitly identify
a worker from the perspective of a mobile crowdsourcing system. However,
such identifiers may directly name the worker or be used to perform context
linking attacks by combining several measurements;

Point of Interests (POI) gather all the forms of geolocated data that can
deliver some spatial information on the location of a worker. This includes
GPS locations, but also places check-in, cell tower ID or location, which are
used by some systems to produce maps from crowdsourced measurements.
However, these POI may also reveal the home, office, shopping and/or leisure
locations of workers that can uniquely identify them [17];

Routines concern any information that can be use to capture a recurrent activ-
ity of a worker. This category of SPI covers in particular any form of times-
tamp, no matter the format and the precision. While this precious information
often appears as harmless, it may also be used by context linking attacks to
group crowdsourced data and observe correlation along time (e.g., nights,
week-ends);

Markers finally focus on information whose entropy in terms of values can be
exploited to detect outlier workers and thus be indirectly used as an identifier
by an attacker. There can be a wide diversity of such markers depending on
the purpose of the mobile crowdsourcing system. For example, in the case
of MobiPerf, the properties of device manufacturer, model, OS version and
network carrier can be considered as unique if a worker uses some original/old
mobile device.

Location Privacy Attacks. Similarly to [37], we consider that the adver-
sary can exploit two dimensions of knowledge: temporal information and context
information.

In the context of mobile crowdsourcing systems, temporal information refers
to the capability of the adversary to access a history of crowdsourced data—i.e.,
several measurements reported by a single worker. In the case of a compromised
storage server (or connection to the storage server), such assumption holds as the
attacker gets access to sufficiently large volume of crowdsourced data to build
some temporal knowledge.

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 121

Beyond spatio-temporal information, context information refers to any addi-
tional information that an attacker can exploit. This covers embedded knowledge
that is included in the crowdsourced dataset (e.g., markers) or side knowledge
that an attacker can obtain from other information sources (e.g., the number of
involved workers).

4 FOURGERE: Empowering Workers with LPPMs

To overcome the above privacy threats and strengthen the location privacy
of workers, this paper introduces a new middleware library, named Fougere,
which acts as an embedded proxy to anonymize and disseminate the workers’
crowdsourced data across the network. This section introduces the key design
principles we adopted, a description of how crowdsourced data flows across
multiple devices, as well as the core Location Privacy Protection Mechanisms
(LPPMs) that are provided by Fougere.

Collaborating with Apps & Workers. In order to be trusted and gather
a large crowd of workers, we assume that mobile crowdsourcing apps and plat-
forms are doing their best to enforce privacy and security support. However,
developers are not necessarily aware of privacy threats and implementing a com-
prehensive support for such a support might be time-consuming and error-prone.
Fougere therefore offers mobile crowdsourcing apps the possibility to offload
the management of the worker privacy settings and the data dissemination across
the network, thus letting developers focus on the core business of the mobile
app. More specifically, Fougere offers the workers control over worker’s privacy
preferences, thus providing a preference panel to (i) explore the list of mobile
crowdsourcing apps and respective SPI, (ii) monitor and control the volume of
crowdsourced data reported by each app, and (iii) configure the list of LPPMs
to be enforced by a given mobile crowdsourcing app.

By following these principles, Fougere can collaborate with the mobile app
and the worker to ensure the anonymization and the dissemination of crowd-
sourced data. Figure 2 overviews these principles and illustrates how a mobile
app can disseminate crowdsourced data without and with Fougere. In partic-
ular, mobile crowdsourcing apps that do not fulfill the design principles—or do
not integrate Fougere—will upload crowdsourced data directly to the remote
server, thus exposing the workers to the privacy threats introduced in Sect. 3. By
integrating Fougere, any mobile crowdsourcing app simply delegates the data
dissemination to the library. Fougere enforces the worker’s privacy settings and
applies the appropriate LPPMs to the forwarded data. Such mechanisms include
privacy filters (to discard the data), privacy distortions (to alter the data) and
privacy aggregation (to group the data).

Enabling Crowdsourced Dissemination. If the crowdsourced data has not
been discarded by one of the configured LPPMs, Fougere stores a message for
dissemination that is composed of (i) a payload, (ii) a configuration of remote

122 L. Meftah et al.

Internet

Alice

Storage
server B

data uploaded by Fougeredata uploaded without Fougere

Fougere
LPPM GPS 1

LPPM Id 1

App A App B

Fougere
LPPM GPS 2

LPPM Time 1

App A App B

Fougere
LPPM GPS 1

LPPM Time 2

App A App C

Storage
server A

Eve Trudy

Storage
server C

Fig. 2. Overview of Fougere

LPPMs, (iii) a bloom filter of forwarder devices, and (iv) a time-to-live (TTL)
for the dissemination process. While the payload refers to the crowdsourced
data, which has eventually been altered by the local LPPMs, the message also
includes some configuration parameters for LPPMs that can be executed by
remote instances of Fougere (e.g., replacing the location of the source by the
location of the forwarder). In order to avoid a given message to be forwarded by
the same set of mobile devices, Fougere also includes a bloom filter that encodes
the list of forwarder nodes, without discarding their identifier. The bloom filter
is configured with a false positive probability of 0.1 and a number of expected
elements equals to the TTL. Finally, the message encloses a TTL to define the
numbers of workers hops requested by the worker to disseminate the message.

Fougere filters out the known workers by querying the bloom filter, and
randomly picks and forwards the message to one the remaining nodes. Upon
receiving such a message, a remote Fougere node eventually applies the LPPM
listed in the configuration before checking the TTL. If the TTL equals 0, then
Fougere stores the payload for being forwarded by the mobile crowdsourcing
app to the remote storage server. Otherwise, Fougere decreases the TTL, adds
its own identifier to the bloom filter, and stores the resulting message for further
dissemination.

Mobile crowdsourcing apps share similarities with Delay Tolerant Networks
(DTN) by considering that the crowdsourced data does not have to be immedi-
ately uploaded to the remote server and can tolerate delays ranging from min-
utes to hours. We exploit this property to adopt a multi-hop forwarding scheme
in Fougere, which ensures that at least k neighboring devices with the same
mobile app are also potentially collecting data in the same area, thus preventing
the worker to be spotted as an outlier.

Furthermore, Fougere complements existing privacy-preserving mecha-
nisms, like the Tor anonymity network, which can also be used by Fougere

to upload the crowdsourced data to the remote server. Using Tor, therefore,
hides workers from the remote server, but it loses the physical proximity infor-
mation that is useful for local LPPMs. For example, when an isolated worker is

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 123

contributing from within the countryside, she can still report data using Tor

but she will remain exposed to location privacy attacks.

Controlling LPPMs from Devices. In order to give the worker more control
over her own data, Fougere includes several LPPMs that can be configured by
the worker to decide upon the quality and the volume of crowdsourced data to
be obfuscated. In particular, we consider 3 classes of LPPMs: filters, distortions,
and aggregations, which can be implemented within a mobile device and used to
obfuscate one of the SPI of the user.

Privacy Filters are a group of LPPMs that can decide autonomously if a
crowdsourced data can be shared with the crowdsourcing platform or not. For
example, a LocationFilter applies to points of interests and can be configured
by the worker to define white areas or black areas that delimit zones where
the mobile crowdsourcing app can or cannot collect data, respectively. Simi-
larly, a TimeFilter rather applies on routines and is used with configured periods
along which a mobile crowdsourcing app can or cannot collect data. Finally, a
QuotaFilter is a more generic filter that can accept a worker-defined quota of
crowdsourced data to be uploaded before discarding once this quota is reached.

Privacy Distortions are another class of LPPMs that can modify the value
of an enclosed SPI in the crowdsourced data to be shared. For example, a Iden-
tifierDistortion will change the value of an identifier at a given frequency (every
request, hour, day), while a location distortion adds a controlled random noise to
the worker’s location (depending on radius r with a level of privacy that depends
on r) into the reported coordinates [15].

Privacy Aggregations reflect the last class of LPPMs that are supported
by Fougere and propose to delay the dissemination of crowdsourced data by
grouping them along a given criteria. For example, a TimeAggregation will group
data per hour and apply an aggregation operator (like the average, the median,
the min or the max) to the enclosed timestamp in order to report the same value
for all the aggregated samples before reporting them. A MarkerAggregation is an
example of remote LPPMs that will be encapsulated with the crowdsourced data
and wait for a given marker (e.g., the ISP name) to appear at least k times before
being uploaded. This LPPM is an example of a distributed implementation of
the k-anonymity algorithm [9,34] that we can apply on a wide diversity of SPI,
including GPS coordinates.

Summary. By combining an opportunistic dissemination scheme with worker-
defined LPPMs, Fougere aims at leveraging the privacy properties of legacy
mobile crowdsourcing apps and platforms. Before assessing the efficiency of
Fougere, we now report on the implementation of these principles on the
Android platform.

5 Implementation Details on Android

On Android, Fougere is packaged as an open source library that deploys system
service within the mobile device of a worker. This system service currently builds

124 L. Meftah et al.

on the Wi-Fi Direct network interface to exchange crowdsourced data between
nearby devices of workers. It can be shared by multiple crowdsourcing apps of a
given device to centralize the control of privacy settings, which are exposed to
the worker as a dedicated preference panel. Thanks to its modular architecture,
Fougere can be further extended with additional LPPMs, which are not covered
by this paper.

Application Programming Interface. Any mobile crowdsourcing app can
integrate Fougere through a simple API that exposes the following operations:

hasFields(...) is called by the mobile crowdsourcing app to declare any SPI
as a PrivacyField, that refers the classes IDENTIFIER, POI, ROUTINE, and

MARKER;
forward(...) enlists a task in charge of uploading a crowdsourced data sample

to the remote server when the TTL expires;
send(...) delegates the dissemination of a crowdsourced data to Fougere.

Opportunistic Dissemination. The current implementation of the Fougere

dissemination module builds on the WiFi-Direct technology to discover nearby
devices. When a mobile crowdsourcing app forwards a message, Fougere trig-
gers the configured LPPMs and accumulates the data in the forwarding queue.
For each data accumulated in the forwarding queue, Fougere picks a random
peer that has never received this data and forwards it.

If the message reaches the configured number of device hops (ttl = 0), then
the forwarded data is placed in an uploading queue, which will be emptied as soon
as the remote mobile crowdsourcing app runs by invoking the upload handler
registered by the app.

LPPM Integration. Fougere combines the implementation of a decentral-
ized dissemination scheme with the integration of LPPMs that can filter out
data or alter its content depending on the worker’s privacy settings. More gener-
ally, Fougere intends to leverage the integration of additional LPPMs to bet-
ter control the data uploaded by any compatible crowdsourcing app. Fougere
organizes these LPPMs along the 4 categories of SPI it supports. An LPPM com-
plies to am interface Lppm<T extends PrivacyField> that declares the category T

of SPI it considers and implements a method to apply a privacy mechanism on
the uploaded data, which eventually returns the anonymized data to be further
processed by Fougere.

In order to effectively apply the worker’s privacy settings, Fougere operates
by first applying the privacy filters, before proceeding with privacy distortions
and finally privacy aggregations. In addition to that, privacy distortions and
aggregations can also be triggered remotely to implement decentralized algo-
rithms that build on neighboring samples to increase the privacy of workers [1].

6 Evaluations of FOUGERE

6.1 Evaluation Protocol

Beyond the challenges related to the integration in legacy mobile crowdsourc-
ing systems, Fougere intends to deliver an efficient adoption of LPPMs in a

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 125

decentralized context. The validation of such a capability requires consideration
of a realistic deployment of mobile devices in order to assess the benefits of
Fougere. Given that we are interested in providing a proof of feasibility for
Fougere, we are not interested in simulating the behaviour of LPPMs, but
rather in assessing the reference implementation of Fougere. However, testing
mobile applications that make use of opportunistic communications is hard to
achieve and reproduce with real mobile devices. We propose to deploy a clus-
ter of emulated devices to reproduce the behavior of a crowd of workers who
contribute to a mobile crowdsourcing campaign. We use mobility datasets that
are publicly available to control the emulated devices and we collect their inter-
actions to trace their actions a posteriori. The crowdsourced dataset collected
on the remote server are evaluated by the LPM2 toolkit [32] to evaluate the
preservation of workers’ privacy. By adopting such an empirical validation, we
can evaluate real applications integrating Fougere and we can observe the
impact of changing the parameters of Fougere (number of hops, LPPMs’ spe-
cific parameters).

In the remainder of this section, we select the legacy MobiPerf [22] mobile
app as the mobile crowdsourcing app that we considered to assess Fougere.

Emulating Crowds of Workers. The assessment of our opportunistic dis-
semination scheme and the associated LPPMs requires consideration of a crowd
of workers who installed a mobile crowdsourcing app that integrates Fougere.
While running an emulator on a single machine is rather resource-consuming and
cannot scale, we propose to consider the deployment of a cluster of servers to
host multiple Android emulators. As Android emulators do not provide any sup-
port for ad hoc communications, such as WiFi-Direct, we use AndroFleet [27]
to control the discovery of nearby devices within a cluster of emulators.

Controlling Crowds of Workers. To assess the efficiency of Fougere in the
AndroFleet cluster, the emulated devices are required to be controlled in order
to update their location and eventually internal state, to reproduce the mobility
of a crowd of workers. While the choice of such a mobility dataset might be
challenging depending on the category of mobile crowdsourcing app, we use the
epfl/mobility dataset that is publicly available from CRAWDAD [30] to emu-
late 15 workers who are performing network measurements with the MobiPerf

mobile app. The crowdsourced dataset contains network measurements reported
every 5 min by the workers moving in the San Francisco bay area.

Attacking Crowdsourced Datasets. To evaluate the impact of Fougere on
the privacy of workers, we use the LPM2 toolkit [32], which is a state-of-the-art
tool for measuring location privacy. In particular, LPM2 covers the evaluation of
the LPPMs that are supported by Fougere, like the obfuscation mechanisms
including perturbations (adding noise), reducing precision, location hiding. To
validate Fougere against privacy attacks, for each configuration, we run an
experiment that follows these steps:

1. Run AndroFleet with MobiPerf and Fougere (incl. privacy settings),
2. Assign tasks to workers during 3 days, and wait 4 more days for the data

dissemination to complete,

126 L. Meftah et al.

3. Gather the logs of data exchanges between workers to evaluate the oppor-
tunistic dissemination scheme,

4. Retrieve all the raw crowdsourced data stored on the remote server,
5. Construct the adversary knowledge by tagging the crowdsourced data of one

worker (as required by LPM2),
6. Evaluate the privacy support of Fougere with the LPM2 toolkit,
7. Report on performance, utility, robustness and uncertainty, which are the

parameters proposed by Verykios et al. [36] to assess LPPMs.

6.2 Empirical Evaluation

In this section, we instantiate the above experimental protocol to assess
Fougere as a practical support to improve the location privacy of workers.

Experimental Setup. In particular, thanks to the AndroFleet [27] emula-
tion platform, we can reproduce the execution of a deployment of 15 mobile
instances emulating a one-week crowdsourcing campaign, thus proposing a real-
istic input dataset to evaluate Fougere. Then, we compare the behaviors of 6
configurations of the MobiPerf app:

1- Vanilla refers to the reference implementation of the MobiPerf Android
app, as it can be downloaded from http://www.mobiperf.com. This configura-
tion is used to demonstrate the vulnerability of legacy mobile crowdsourcing
apps with regards to potential privacy threats. It is also used as a witness to
evaluate the benefits of the other configurations including Fougere;

2- Fougere with no LPPM refers to the extension of MobiPerf with the
Fougere library. This configuration is used to isolate the properties of our
opportunistic dissemination schemes independently of the impact of LPPMs.
In particular, we consider the following worker configurations for the number
of required hops to disseminate the crowdsourced data and the WiFi-Direct
discovery scans: (a) 〈1hop, 5min〉, (b) 〈4hops, 5min〉 (default configuration),
and (c) 〈4hops, 10min〉;

3- Fougere with LPPMs refers to the Fougere library with the default con-
figuration 2-b selected with 2 privacy distortions—location noise and time
noise—and 1 privacy aggregation—k-anonymity, which are representative
LPPMs used by the state-of-the-art. To configure these LPPMs, we consider
2 worker profiles, which are mapped to the following values:
(a) weak privacy profile where location noise is set to 〈1, 0.1, 0.05〉, thus reduc-

ing the location precision by 1 digit with a probability of 0.1 and possibly
removing the location with a probability of 0.05. Time noise is set to
〈30, 0.1, 0.05〉, thus reducing the time precision to half an hour with a
probability of 0.1 and possibly removing the timestamp with a probabil-
ity of 0.5, and finally k-anonymity is set to 〈2〉, meaning that at least 2
samples should be produced in the same area to be forwarded;

(b) strong privacy profile configured with location noise = 〈2, 0.2, 0.1〉, time
noise = 〈60, 0.2, 0.1〉 and k-anonymity = 〈4〉 as privacy settings.

http://www.mobiperf.com

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 127

None of these configurations includes a privacy filter as these LPPMs are
expected to be used to hide the living and working places of workers and the
input dataset does not include this information. Furthermore, this paper does not
aim at evaluating the efficiency of individual LPPMs, but rather demonstrating
the benefit of combining them in an open framework like Fougere.

Performance Analysis. Fougere implements an opportunistic dissemination
scheme to improve the privacy of workers. By doing so, Fougere exploits the
physical proximity of workers to exchange crowdsourced data and to guarantee
that the uploaded data has been forwarded along a number of hops requested
by the worker. Figure 3 depicts the time to converge as a metrics to evaluate
(i) the impact of integrating Fougere on a legacy mobile crowdsourcing app
like MobiPerf, and (ii) the effect of the number of hops and the WiFi-Direct
discovery duration parameters. One can observe that, by using Fougere, not all
the crowdsourced data is reported back to the remote storage server. This can be
explained by the fact that some workers are contributing in sparsely populated
areas, which prevents Fougere from disseminating the collected measurements.
This result is actually a strength of Fougere as it automatically protects the
workers from adversaries who would apply some location distribution attacks to
identify them.

Regarding the parameters of Fougere, one can note that the delay to upload
data and the volume of reported data is more affected by the discovery duration
than the number of hops required to upload the crowdsourced data. By increasing
the delay of peer discovery, mobile devices miss some other workers in their
vicinity in order to improve the time to converge. Therefore, we privilege the
configuration 2-b (4 hops and 5 min) as the default configuration for Fougere.
However, the worker remains free to adjust each of these parameters.

Fig. 3. Measurements’ time to converge Fig. 4. Distance traveled by measurements

The traveling distance is another interesting metrics to evaluate the efficiency
of the dissemination process and the relevance of peer-to-peer communications.
Increasing this data traveling distance with Fougere contributes to better shuf-
fle crowdsourced data produced by a crowd of workers. Figure 4 reports on
this distance traveled by the crowdsourced data before being uploaded back to

128 L. Meftah et al.

the remote storage server. In particular, the default configuration of Fougere

maximizes the traveled distance with 20% of data that traveled at least 10 km
(6.2miles), thus ensuring that the data was conveyed by Fougere as far as
possible from the location where it has been produced.

Utility Analysis. While Fougere aims at improving the location privacy of
workers, the utility of the resulting dataset should not be neglected. Figure 5
reports on the tradeoff between utility and anonymity of the configurations we
considered. While the vanilla configuration (1) offers the highest utility with no
anonymity, one can observe that the integration of Fougere seriously improves
the anonymity of workers without seriously impacting the utility of the result-
ing dataset. As mentioned in Fig. 3, the loss of 20% utility is mainly due to
crowdsourced data in sparsely populated areas that were retained by Fougere.
Furthermore, adding some LPPMs (configurations 3-a and 3-b) strongly increase
the anonymity of workers.

Interestingly, one can observe that the weak privacy profile offers a good
privacy/anonymity tradeoff compared to the strong privacy profile, which seri-
ously harms the dataset utility without bringing any further improvement over
anonymity.

Fig. 5. Dataset utility Fig. 6. Robustness against location privacy
attacks

Robustness Analysis. Regarding the effective privacy support offered by
Fougere, we used the LPM2 toolkit to evaluate the robustness of crowdsourced
datasets that are uploaded through Fougere. We randomly select the crowd-
sourced data reported by one of the workers as the adversary knowledge required
by LPM2 to apply location privacy attacks and we depict in Fig. 6 the reported
robustness for 14 workers. While LPM2 successfully defeats worker 3 (used as
the adversary knowledge), the other 14 workers clearly benefit from the integra-
tion of Fougere. In particular, we can observe that the integration of LPPMs
complements efficiently our opportunistic dissemination scheme by supporting
workers who are not located in a dense area and by offering similar privacy

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 129

guarantees. Successfully location privacy attacks requires to combine different
strategies to cope with the profile of workers.

While Fougere offers the worker the possibility to manually adjust her
privacy settings, one of the perspectives of this work consists in leveraging this
configuration process by delivering privacy risk feedback that would guide her
settings accordingly. By recommending the privacy settings of Fougere, we aim
at maximizing the individual privacy of workers, while preserving the overall
utility of the crowdsourced dataset (cf. Fig. 5).

Uncertainty Analysis. Finally, we consider the view of an adversary to study
the level of uncertainty that introduces Fougere into the crowdsourced dataset.
Figure 7 reports on the uncertainty metrics computed by LPM2. One can observe
that Fougere succeeds to increase the uncertainty of adversaries when it com-
bines the opportunistic dissemination scheme with LPPMs, which confirms our
previous observation. Furthermore, it also assesses that adopting a weak pri-
vacy profile already brings a reasonable level of privacy that puts adversaries in
difficulties.

Fig. 7. Adversary uncertainty

Indicator Value

Crowdsourced dataset size 29, 712
Exchanged messages 113, 785
Contributions per user 59
Messages forwarded per user 227
Detected neighbors 1, 730, 827
Established connections 127, 545
Isolated users 8

Fig. 8. Overhead analysis for 500 workers

Overhead Analysis. To analyze the overhead induced by our data dissemina-
tion process, we report in Table 8 the statistics related to an experiment involv-
ing 500 emulated workers for 24 h. Along the experiment, the workers adopt
the default configuration of Fougere 〈4hops, 5min〉 (2-b). The overhead per
user and at the scale of the crowd does not exceed 4 times the initial volume
of contributions. Fougere also discards 8 users considered as isolated and thus
identifiable by tools like LPM2.

7 Threats to Validity

This section analyzes the factors that may threaten the validity of our results.

Internal validity concerns the relation between theory and observations. In
this paper, they could be due to measurement errors reported during the exper-
imentations. That is the reason why we did several experiments and we tried
to reduce as much as possible external factors as explained in our experimental

130 L. Meftah et al.

protocol in Sect. 6.2. We also performed our experiments on a crowd of emulated
devices equipped with real mobile apps, instead of a simulation, to reduce the
threats that could be due to an integration of the proposed approach in a real
mobile crowdsourcing app or platform.

External validity relates to the possibility to generalize our findings. We
believe that further validations should be done on different mobile crowdsourc-
ing apps and with different configurations to broaden our understanding of the
impact of LPPMs on the privacy of workers. Thus, we are not assuming that
our results can be used to generalize the impact of a specific LPPM on privacy.
However, we believe that this paper contributes to prove that there is a clear
positive impact for the privacy threats we considered.

Reliability validity focuses on the possibility of replicating our experiments
and results. We attempt to provide all the necessary details to replicate our study
and our analysis. Furthermore, the reference implementation of Fougere, the
input datasets, case studies and testing environment are made available online
to leverage its reproduction by the research community.

Construct validity has been covered by considering the convergent validity
of privacy and utility properties. We observed that these two properties are
related in practice, as the application of LPPMs tends to decrease the utility
of the crowdsourced dataset. This observation calls for the identification of a
privacy and utility trade-off in the context of mobile crowdsourcing systems, as
acknowledged by [5].

Conclusion validity refers to the correctness of the conclusions reached in this
paper. The empirical evaluation we reported confirms our initial assumption
that a priori anonymization techniques can be used to leverage the privacy of
workers. We were also careful with our conclusion with regards to the impact on
the utility of crowdsourced dataset.

8 Conclusion

Mobile crowdsourcing apps and platforms are more and more challenged to pro-
tect their workers’ privacy. To address this challenge, we introduce Fougere

to increase worker’s privacy in mobile crowdsourcing systems. Fougere oper-
ates a system-level service that collaborates with a mobile crowdsourcing app
to declare SPI and delegate the dissemination of crowdsourced data by leverag-
ing the physical proximity of workers. This opportunistic dissemination scheme
is complemented by the integration of LPPMs that can be configured by the
workers, independently of the installed mobile crowdsourcing apps.

Finally, we consider the deployment of Fougere in a realistic Android envi-
ronment by emulating a crowd of 15 mobile devices hosting different versions of
MobiPerf and Fougere to assess our contribution. We show that Fougere

succeeds to improve the workers’ privacy by defeating location privacy attacks
implemented by the LPM2 toolkit.

FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps 131

References

1. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of CCS 2013, pp. 901–914 (2013)

2. Balan, R.K., Misra, A., Lee, Y.: LiveLabs: building an in-situ real-time mobile
experimentation testbed. In: ACM HotMobile (2014)

3. Boutsis, I., Kalogeraki, V.: Location privacy for crowdsourcing applications. In:
Proceedings of UbiComp 2016 (2016)

4. Brouwers, N., Langendoen, K.: Pogo, a middleware for mobile phone sensing. In:
Proceedings of Middleware 2012 (2012)

5. Cerf, S., et al.: PULP: achieving privacy and utility trade-off in user mobility data.
In: Proceedings of SRDS 2017, September 2017

6. Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.:
Crowdsourcing with smartphones. IEEE Internet Comput. 16(5), 36–44 (2012)

7. Chen, R., Fung, B.C.M., Mohammed, N., Desai, B.C., Wang, K.: Privacy-
preserving trajectory data publishing by local suppression. Inf. Sci. 231, 83–97
(2013)

8. Choi, H., Chakraborty, S., Charbiwala, Z.M., Srivastava, M.B.: SensorSafe: a
framework for privacy-preserving management of personal sensory information. In:
Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp. 85–100. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23556-6 6

9. Chow, C.Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for
anonymous location-based service. In: Proceedings of ACM SIGSPATIAL (2006)

10. Chow, C.Y., Mokbel, M.F., Liu, X.: Spatial cloaking for anonymous location-
based services in mobile peer-to-peer environments. GeoInformatica 15(2), 351–380
(2011)

11. Christin, D., Bub, D.M., Moerov, A., Kasem-Madani, S.: A distributed privacy-
preserving mechanism for mobile urban sensing applications. In: Proceedings of
ISSNIP 2015 (2015)

12. Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in
mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)

13. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.:
Anonysense: privacy-aware people-centric sensing. In: Proceedings of Mobisys 2008
(2008)

14. Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R., Sharma, A.: PRISM: plat-
form for remote sensing using smartphones. In: Proceedings of MobiSys 2010 (2010)

15. Fawaz, K., Shin, K.G.: Location privacy protection for smartphone users. In: Pro-
ceedings of CCS 2014. ACM (2014)

16. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: GEPETO: a geoprivacy-
enhancing toolkit. In: Proceedings of AINA Workshops 2010 (2010)

17. Gambs, S., Killijian, M.O., Del Prado Cortez, M.N.: Next place prediction using
mobility Markov chains. In: Proceedings of MPM 2012 (2012)

18. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: De-anonymization attack on
geolocated data. J. Comput. Syst. Sci. 80(8), 1597–1614 (2014)

19. Gao, S., Ma, J., Shi, W., Zhan, G., Sun, C.: TrPF: a trajectory privacy-preserving
framework for participatory sensing. IEEE Trans. Inf. Forensics Secur. 8(6), 874–
887 (2013)

20. Haderer, N., Rouvoy, R., Seinturier, L.: A preliminary investigation of user incen-
tives to leverage crowdsensing activities. In: Proceedings of PerCom 2013 (2013)

https://doi.org/10.1007/978-3-642-23556-6_6

132 L. Meftah et al.

21. Hu, L., Shahabi, C.: Privacy assurance in mobile sensing networks: go beyond
trusted servers. In: 2010 8th IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), pp. 613–619. IEEE
(2010)

22. Huang, J., et al.: MobiPerf: mobile network measurement system. Technical report,
University of Michigan and Microsoft Research (2011)

23. Kifer, D.: l-diversity: privacy beyond k -anonymity. In: Proceedings of ICDE 2006,
vol. 1, no. 1, March 2006

24. Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72037-9 8

25. Lin, J., Sadeh, N., Amini, S., Lindqvist, J., Hong, J.I., Zhang, J.: Expectation
and purpose: understanding users’ mental models of mobile app privacy through
crowdsourcing. In: Proceeding of UbiComp 2012 (2012)

26. Ma, C.Y., Yau, D.K., Yip, N.K., Rao, N.S.: Privacy vulnerability of published
anonymous mobility traces. In: Proceedings of MobiCom 2010 (2010)

27. Meftah, L., Gomez, M., Rouvoy, R., Chrisment, I.: ANDROFLEET: testing WiFi
peer-to-peer mobile apps in the large. In: Proceedings of ASE 2017 (2017)

28. Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-closeness: privacy beyond
k-anonymity and l-diversity. In: Proceedings of ICDE 2007 (2007)

29. Peng, T., Liu, Q., Meng, D., Wang, G.: Collaborative trajectory privacy preserving
scheme in location-based services. Inf. Sci. 387, 165–179 (2017)

30. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD dataset
epfl/mobility, February 2009. https://crawdad.org/epfl/mobility/20090224. Acc-
essed 24 Feb 2009. https://doi.org/10.15783/C7J010

31. Prandi, C., Salomoni, P., Mirri, S.: mPASS: integrating people sensing and crowd-
sourcing to map urban accessibility. In: Proceedings of CCNC 2014 (2014)

32. Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P.: Quantifying
location privacy. In: Proceedings of S&P 2011, May 2011

33. Shokri, R., Theodorakopoulos, G., Papadimitratos, P., Kazemi, E., Hubaux, J.P.:
Hiding in the mobile crowd: location privacy through collaboration. IEEE Trans.
Dependable Secur. Comput. 11(3), 266–279 (2014)

34. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty 10(5),
557–570 (2002)

35. Terrovitis, M., Mamoulis, N.: Privacy preservation in the publication of trajecto-
ries. In: Proceedings of MDM 2008 (2008)

36. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis,
Y.: State-of-the-art in privacy preserving data mining. ACM SIGMOD Rec. 33(1),
50–57 (2004)

37. Wernke, M., Skvortsov, P., Dürr, F., Rothermel, K.: A classification of location
privacy attacks and approaches. Pers. Ubiquit. Comput. 18(1) (2014). https://
doi.org/10.1007/s00779-012-0633-z

https://doi.org/10.1007/978-3-540-72037-9_8
https://crawdad.org/epfl/mobility/20090224
https://doi.org/10.15783/C7J010
https://doi.org/10.1007/s00779-012-0633-z
https://doi.org/10.1007/s00779-012-0633-z

On the Performance of ARM TrustZone
(Practical Experience Report)

Julien Amacher and Valerio Schiavoni(B)

Université de Neuchâtel, Neuchâtel, Switzerland
{julien.amacher,valerio.schiavoni}@unine.ch

Abstract. The TrustZone technology, available in the vast majority
of recent Arm processors, allows the execution of code inside a so-called
secure world . It effectively provides hardware-isolated areas of the pro-
cessor for sensitive data and code, i.e., a trusted execution environment
(TEE). The Op-Tee framework provides a collection of toolchain, open-
source libraries and secure kernel specifically geared to develop applica-
tions for TrustZone. This paper presents an in-depth performance- and
energy-wise study of TrustZone using the Op-Tee framework, includ-
ing secure storage and the cost of switching between secure and unsecure
worlds, using emulated and hardware measurements.

Keywords: Trusted Execution Environment · ARM · TrustZone ·
Benchmarks

1 Introduction

Internet of Things (IoT) devices are expected to offer the pervasive computing
that was promised at its advent [47]. The economic impact of the IoT ecosystem
has created many new business opportunities and is expected to continue growing
rapidly. As a result, the number of devices owned per user is anticipated to
increase up to 26 by 2020 [44]. Arm, expects 275bn active devices by 2025 - a
11× improvement over 2019 [6] - while already having sold 100bn processors.
For instance, Fig. 1 reports the sales for Arm processors in the last 20 years.

These IoT devices gather, distribute and process information on their own,
effectively pushing intelligence to edge devices. Due to their nature, these devices
are mostly nomad: easy to relocate, designed as wearable, embedded in vehicles
or left in remote locations. As such, assets need to be protected from attackers,
in particular those easily subject to physical tampering. Hence, ensuring that
confidential data is processed in a secure manner, even in hostile environments,
remains a challenging prerequisite for such devices. Indeed, an attacker with
physical access can relatively easily inspect and modify the execution workflow
of any program. Nowadays, even more disturbing attacks not requiring physical
access are surfacing [51], reinforcing the need to exploit hardware-based secu-
rity mechanisms when available. Hardware-based protections offer an additional
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 133–151, 2019.
https://doi.org/10.1007/978-3-030-22496-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_9&domain=pdf
http://orcid.org/0000-0003-1493-6603
https://doi.org/10.1007/978-3-030-22496-7_9

134 J. Amacher and V. Schiavoni

 0

 5

 10

 15

 20

 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

A
R

M
v6

Z
 T

ru
st

Z
on

e

A
R

M
v7

 T
ru

st
Z

on
e

A
R

M
v8

−
A

 T
Z

/E
L3

A
R

M
v8

−
M

 w
/ T

Z

U
ni

ts
 s

ol
d

[b
n]

Year

Fig. 1. Sales and popularity of ARM processors in the last 20 years [4,5]

security layer, by physically separating processing of secure and non-secure data
components. These can be dedicated processing chips (hardware security mod-
ules –HSM–), or regular chips to which security extensions were added. Examples
of the latter include Intel’s Software Guard Extensions (i.e., SGX [21]) since the
Skylake architecture (2015), or Arm’s TrustZone [7] since ARMv6 (2008).

Arm devices are often battery-powered and must therefore make optimal
use of their limited energy capacity. This is especially true nowadays, when bat-
tery capacity is becoming the limiting factor when deploying new functionalities.
Despite the availability of such devices on the market, to the best of our knowl-
edge we could not find a public study on the performance and energy-related
consumption for these security extensions.

The contributions of this work are as follows. We begin by providing the first
public experimental analysis of the performance and energy requirements of the
TrustZone security extensions based on hands-on metrics. Second, we report
on the advantages and limitations of Op-Tee [26], an open-source framework
that supports TrustZone. Third, we provide a methodology to extend the ker-
nel of Op-Tee in order to offer new syscalls inside TrustZone. We leverage
this methodology to implement two new additional syscalls, e.g., to fetch ther-
mal metrics and for secure time measurements in the TrustZone. Finally, we
report on our in-depth experimental analysis along several dimensions (includ-
ing energy) of the current secure processing capabilities offered by some widely
popular IoT devices (i.e., Raspberry Pi) shipping TrustZone processors. Our
results are put into perspective by comparing them against an emulated envi-
ronment aware of the TrustZone extensions.

The paper is organized as follows. Sect. 2 describes the TrustZone archi-
tecture and key concepts of world isolation. Sect. 3 explains how the kernel was
extended to expose new syscalls within TrustZone, how all the data was gath-
ered, as well as the hardware and software tools that were developed. Sect. 4
presents our in-depth evaluation using real hardware and under emulation, for
several hardware components (e.g. CPU, memory, secure storage) and metrics
(e.g. performance, energy and power consumption). We discuss some lessons
learned in Sect. 5, before concluding in Sect. 6.

On the Performance of ARM TrustZone 135

Kernel mode

User mode

Rich application Trusted application (TA)

Secure
kernel

tee-supplicant

GlobalPlatform
TEE Client API

OP-TEE
driver Rich kernel

GlobalPlatform
TEE Internal API

Storage Shared
memory

Secure Monitor
& TEE core

Internal TEE
utility functions

OP-TEE OS
OP-TEE Client

REE (non-secure) TEE (secure)

User mode

Kernel mode

Fig. 2. TrustZone components and interaction workflow.

2 Background

This section provides some background on TrustZone. First we define a few
terms used throughout this paper. Sect. 2.1 describes TrustZone’s main mech-
anisms and limitations, while Sect. 2.2 introduces Op-Tee.

Rich Execution Environment. The REE (or normal world) is the regular,
non-secure operating system of a device. The memory, registers, and caches are
not isolated or protected by any hardware mechanism. Typically, the REE is not
focused on security and is difficult to review for security vulnerabilities, due to
its large size and complexity.

Trusted Execution Environments. Also called TEE or secure OS, it is the
so-called secure world operating system part of the TrustZone specifications. It
complies with the GlobalPlatform’s TEE System Architecture specifications [57],
a set of operations offered to secure applications. These include interactions with
persistent (secure) storage [57, Chapter 5], memory [57, Chapter 4.11], and cryp-
tographic operations [57, Chapter 6]. As such, a secure application can easily be
ported to another platform, due to the standardized nature of available services.
Similar to what a non-secure operating system offers to its running applications,
the TEE offers access to special services only available to secure applications
(such as the secure storage feature, which we evaluate). This environment has a
small footprint, contrary to a full-fledged operating system, and only implements
the very minimal set of features required to operate. Its small size makes it sim-
pler to review for security vulnerabilities, as any could potentially compromise
all secure applications.

Trusted Application. A trusted application (TA), also called secure applica-
tion is designed to be run exclusively inside the secure world. It uses services
provided by the TEE kernel to access resources, specifically: (1) disk via the
secure storage subsystem exclusively, (2) TCP/IP sockets, (3) memory alloca-
tion, (4) other custom services. Trusted applications provide services to either
standard userland programs or other TAs. Op-Tee expects TAs to be written
in C.

136 J. Amacher and V. Schiavoni

2.1 TRUSTZONE in a Nutshell

This section describes the main components of the TrustZone architecture,
also depicted in Fig. 2 alongside their interfaces.

Overview. TrustZone is a hardware feature implemented in recent Arm
processors. It enables physical separation of different execution environments,
namely TEE and REE. Its working principle is very similar to a hypervisor, the
main difference being that no emulation is performed and that all isolation is
offered at the hardware level. Both secure (TEE) and normal worlds (REE) share
the underlying physical processor. The secure world has unrestricted access to
memory regions, hardware and devices. This is realized by using an additional
addressing line, the NS (Non Secure) bit. Hardware checks performed by the
Tzasc (TrustZone Address Space Controller) [42,50] determines, if the access
is authorized based on this NS-bit.

Memory. Parts of the memory can be isolated for exclusive use by the
secure world by means of special hardware support. The memory management
unit (MMU) is secure-world aware, and secure and non-secure descriptors are
stored alongside each other. The differentiation is done by the Non-secure TLB
ID (NSTID) [12], an extra bit of the TLB. The secure applications (TAs) must
fit in the on-chip memory. Due to high costs of the secure memory, it is usually
limited in size, in the order of 3–5 MB. Hence, TAs are expected to have small
memory footprints and only contain the minimal subset of features required.
Clearly, this reduces the attack surface exposed by TAs.

Interrupts. The Fast Interrupt (FIQ) secure interrupt mode is used exclusively
by devices residing in a memory region allocated to the secure world. As such,
regular interrupts (IRQ), which are of lower priority, cannot be used to prevent
the secure world from executing, in particular if a physical secure clock (i.e.,
RTC) is used. Secure clocks are crucial to ensure a TA is safely executed: an
external clock is a common attack vector and can be easily tampered with [53].
Latest Arm processors include secure clocks.

World Switching. Switching between worlds requires the state of the pro-
cessor to be saved and then restored, respectively when entering and exiting
a new world. Processor registers are saved by the monitor when entering, and
restored when leaving the secure world. The NS-bit is changed accordingly. Nor-
mal world applications use TrustZone indirectly, by invoking functionalities
implemented in a dedicated TA. When in PL-1 [1,43] privilege level, a special
hardware instruction, Secure Monitor Call (SMC), allows switching between
worlds. Recent Cortex-A processors [48] support SMC calls by the kernel in
the normal world. Entry to a different world (from secure to unsecure and vice
versa) is done on a core-basis, thus limiting the parallel execution of TAs to the
number of available cores. To enter the secure world, a kernel thread executes
the monitor, which in turn issues the SMC instruction to the CPU [8,29]. Calls
to SMC by a processor not in kernel mode trigger an undefined exception trap.
TAs can be called from userland programs residing in the REE or from other

On the Performance of ARM TrustZone 137

Table 1. Existing frameworks for TEE-based applications.

Framework License Technology
OP-TEE [26] BSD TRUSTZONE

Trustonic TEE [38] Commercial TRUSTZONE

Open TEE [52] Apache License 2.0 TRUSTZONE

OpenEnclaves [23] MIT SGX1 & TRUSTZONE

TLK [54] BSD NVIDIA Tegra
Android Trusty TEE [2] Apache License 2.0 TRUSTZONE1

1: emulated under Intel’s VT

TAs. The latter is particularly useful to reduce code duplication and to keep the
TA’s attack surface minimal. Data is passed back and forth between worlds by
memory pointers or direct copies.

Secure Storage. TrustZone supports persistent data storage for TAs using
secure storage. Objects are stored encrypted on disk, and are signed for anti-
tampering countermeasure. TAs access the files in cleartext: the TEE layer runs
the cryptographic stack transparently. These files have a unique numeric name
based on a counter. An encrypted index of files is maintained alongside the files.
Operations on the index are atomic, ensuring integrity protection by means of a
hash tree data structure that guards the index. To protect against storage replay
attacks, an eMMC storage device (embedded MultiMediaCard, a type of non-
volatile, non-removable solid-state storage device [22]) is required. This security
feature is entirely implemented in the eMMC storage in the form of Replay
Protected Memory Block (RPMB) [55].

Key Management. The key manager starts with a device-specific key, the
Secure Storage Key (SSK). It is derived from two pieces of information unique
to each device’s processor: the chip identifier and the hardware key. The TA
Storage Key (TSK) is a per-TA key, derived from the SSK and the TA’s UUID
identifier. The File Encryption Key (FEK) is a per-file key generated upon file
creation. It is used to protect the file contents, including its metadata, and is
encrypted using the TSK.

Resilience to Attacks. It is of paramount importance to ensure that only
trustworthy applications are deployed to the secure world. Vulnerabilities in any
TA, the TEE or a compromised secure kernel do compromise the security of
the secure world. Prevention against buffer overflow attacks in the secure world
are currently only provided using basic stack canaries [31]. Future support for
ASLR (Address Space Layout Randomization) will improve resilience against
those attacks. Finally, there exist mitigations against Meltdown and Spectre
speculative execution attacks [13–16]. Covert data channels [45] can also be used
when required.

138 J. Amacher and V. Schiavoni

2.2 The OP-TEE Trusted OS

While there are few options (Table 1) to develop applications for TEEs, we rely
on Op-Tee, due to its fast development cycle and native support for the Trust-
Zone.

Op-Tee is a security framework that includes several components: a min-
imal secure-world operating system (the Op-Tee Os [26]); the tee-supplicant
[30], offering normal world services to the secure world; a complete build
toolchain [24], the testing tool [28] (OPTEE sanity testsuite), a secure privileged
layer enabling world switching, a basic REE image, and several utility functions
for developers to implement TAs. Op-Tee is flexible and can be deployed to
platforms for which there exists a manifest, that lists the dependencies required
to build for the platform it describes, as well as its hardware characteristics.
Additionally, the Qemu open source emulator [33] allows to deploy and eval-
uate Op-Tee in emulated mode on ubiquitous machines. The TEE interface
implemented in Op-Tee is compliant with the GlobalPlatform’s specifications.

Details.Op-Tee imposes a specific interface regarding TA interactions initiated
from the REE. First, a request to load the desired TA is made by passing its
UUID to TEEC InitializeContext which returns a context object. The UUID is
defined at compile-time and must be unique amongst all TAs. Next, this context
is passed to TEEC OpenSession which returns a session. This session is then
used to invoke actual services in the TA using the TEEC InvokeCommand, which
takes as parameters the service identifier as well as any optional parameters. A
single session can be used to call TEEC InvokeCommand any number of times.
Sessions are finally closed using TEEC CloseSession and ultimately, the context
is closed by calling TEEC FinalizeContext. To support multiple sessions, the
TA must be compiled with the TA FLAG MULTI SESSION flag set. Op-Tee
signs TAs with a private RSA key, but the toolchain does not allow a unique
key per-TA (all TAs are signed with the same device key). Upon TA loading,
the Op-Tee core checks the integrity of the TA by verifying its signature based
on its signed header. The framework includes a minimal OS that offers services
to TAs, and leverages the tee-supplicant application to access resources residing
in user land.

3 Methodology

This section describes the tools and techniques used to carry out our evaluation.
We focus on four metrics : (1) execution time for various types of benchmarks
(CPU-bound, volatile and non-volatile memory), (2) power consumption under
different CPU governors, (3) energy consumption, and (4) thermal behaviour of
the CPU.

Hardware Measurement Tools. Energy and power measurements are carried
out using a Power-Z KM001 unit [32], plugged in-between the USB power supply
and the Raspberry Pi device. The variant used in our testbed features two main
USB ports (to provide power and one from where the power is drawn) of the

On the Performance of ARM TrustZone 139

Start/stop
recording

Export CSV

Parse CSV
Markers,
duration

Host computerKM001 official application Raspberry Pi

Benchmark
applicationsBenchmark

applications

Power supply

Execute
benchmark

JTAG

Power
consumption

KM001

Monitoring
program

Fig. 3. Experimental setup and approach used to run our measurements

current mainstream USB types (type A, micro and type C). In our configuration,
type A is used for both input and output of power delivery. An additional (micro)
USB port is used to fetch power consumption measurements. The KM001 unit
supports different USB protocols, including USB PD (Power Delivery) 2.0 and
Qualcomm QC (QuickCharge) from version 2.0 up to 4.0. This configuration
allows the power used by the Raspberry Pi to be measured directly as the losses
of the power supply itself are not taken into account. We use this device to mea-
sure only power [W] and energy [Wh], for which it produces 1 record per second.
Unfortunately, the software (Fig. 3, left) provided by the unit manufacturer is
a closed-source 32-bit Windows binary, and the protocol used to exchange mes-
sages over USB is undocumented. To overcome these limitations, we used the
following approach. Specific markers (e.g. start recording and stop recording)
are generated during execution of benchmark applications, allowing for precise
recording of areas of interest (Fig. 4). These markers are monitored by a custom
program (on a separate node) that pilot the Windows binary (Fig. 5). The pilot
sends automated messages to the binary instance using the Win32 API through
P/Invoke (Platform Invokation Service) [11] issued by a monitoring program
implemented in C#.

CPU Governors. The Linux kernel supports several CPU governors [46], used
to adjust the frequency of each core depending on its load and temperature.
Several options exist: powersave and performance for minimum and maximum
operating frequency; ondemand toggles between the previous two, and a more
conservative mode that operates less aggressively; userspace, to manually set
the CPU frequency; and schedutil, where the frequency is set by the scheduler.
The core frequency is increased during the execution of stressful workloads and
reduced right after, for instance when the maximum temperature is reached in
order to prevent overheating. This is different from a hardware thermal throt-
tling, which tries to prevent damage caused by excessive heat. The Op-Tee
kernel uses powersave governor by default. This reduces heat output by reduc-
ing the frequency of the core clocks, allowing passive cooling - even without
heatsink - but also negatively impacts performance. In a compute-intensive dat-
acenter, one would typically use the performance governor. Instead, if energy

140 J. Amacher and V. Schiavoni

Benchmark
application

Monitoring
program

Execute

t: duration

Start
recording

Stop
recording

Export
CSV

Marker: start

Marker: stop

Operation
of interest

Process
CSV

KM001

Fig. 4. Use of markers

TEE kernel

Syscall/RPC
of interest

Syscall

t1: Start
instrument.

t2: Stop
instrument.

Store
t=t2-t1

t: getDuration

Execute

Benchmark
application

Monitoring
program

KM001

Process
CSV

Start
recording

Stop
recording

Export
CSV

REE kernel

opt

Fig. 5. Microbenchmarking: workflow

constraints are important, the powersave mode is best suited. Our benchmarks
consider both governors and compare them for REE and TEE executions.

Timing issues. Initially, we planned on porting Stress-NG [36] to run inside
TrustZone. Unfortunately this proved to be not straightforward, given its
reliance on system calls not available inside the TEE kernel. As such, we decided
to implement custom ad-hoc benchmark applications. Execution time is mea-
sured using either the gettimeofday(2) [18] or the clock gettime(3) [10]
syscall, which support the following parameters:

1. CLOCK REALTIME: the realtime clock of the system, can be adjusted by NTP
and thus can go forward and backwards.

2. CLOCK MONOTONIC: a monotonic time since an unspecified starting point (usu-
ally system startup, as is the case with our setup)

3. CLOCK PROCESS CPUTIME ID: per-process timer
4. CLOCK THREAD CPUTIME ID: thread-specific CPU-time clock

For our experiments we exclusively use CLOCK MONOTONIC. Our benchmarks
include the instrumentation delay, e.g., the overhead introduced by the mea-
surement itself. This is especially important from the TEE perspective (i.e.,
inside a TA) where one syscall can lead to a second one if REE needs to be
accessed (e.g., Figs. 2-➒ and 2–➐).

Kernel and Op-Tee modifications. To access and store the monotonic
time and temperature from within a TA using the secure kernel, and to
retrieve it later on within the REE, we extended the kernel with four new
system calls: TEE GetCpuTemperature, sys ktraceadd, sys ktraceget and
sys ktracereset.

To gather the temperature measurements, we used two methods: (1) software,
via thermal APIs1 and (2) external hardware sensor. Originally, we planned on
1 /sys/class/thermal/thermal zone[0-9]+/temp.

On the Performance of ARM TrustZone 141

Fig. 6. Idle (left) and burn (right) power consump-
tion.

Table 2. Average power
consumptions for idle and burn
experiments (see Fig. 6)

Idle Burn
Governor

W BTU/h W BTU/h

ondemand 0.78 2.66 3.08 10.51
performance 0.86 2.93 3.32 11.33
powersave 0.78 2.66 1.65 5.63

using a script to record the temperature at fixed intervals during the CPU stress
tests executed by userland threads. However, since kernel threads executing the
TAs have a higher priority, the userland threads were starved and thus did not
produce enough data points. This is a typical scenario of normal world starvation
occurring when TAs monopolize all cores. We overcome this problem by accessing
the CPU temperature from inside the TA, and sending it periodically to the
monitoring software for safekeeping. To use the temperature gathering syscall
from within the TA, we additionally had to implement the corresponding TEE
kernel syscall wrapper. An extensive walkthrough on this process is given at
https://github.com/vschiavoni/on-the-performance-of-arm-trustzone.

4 Evaluation

This section presents our in-depth evaluation and performance analysis, the main
contribution of this work. Energy results are always presented by systematically
excluding idle energy consumption, e.g., we only show the energy cost of the
given operation. Energy requirements are shown on a per-operation fashion. To
prevent thermal throttling, all tests run while the onboard chip is actively cooled.

Evaluation Settings. We use the Raspberry Pi 3B, a popular yet represen-
tative single-board device, equipped with Broadcom BCM2837 System-On-Chip
(1 GB of RAM, ARM Cortex A53 quad core running at 1.2 GHz). For some of
our measurements, we compared the hardware experiments against a modified
version of the Qemu emulator provided by Op-Tee with support for Trust-
Zone [34]. This mimics the scenario of an Infrastructure-as-a-Service provider
offering access to Arm nodes (as virtual machines) to cloud tenants without hav-
ing the corresponding hardware infrastructure and thus relying on TrustZone
virtualization [49]. Qemu uses the Cortex A53 emulation profile on an Ubuntu
host residing on a VMWare ESXi [40] machine equipped with an i7 6820HQ run-
ning at 2.7 GHz. Note that the Raspberry Pi 3B lacks support for secure boot
and hardware separation of memory and peripherals [27], hence these aspects of

https://github.com/vschiavoni/on-the-performance-of-arm-trustzone

142 J. Amacher and V. Schiavoni

the TrustZone ecosystem could not be evaluated and are left for future work.
Finally, we do not override the default secure storage key (SSK) provided by
Op-Tee.

Power consumption. We start by measuring the idle and under-stress (burn)
power consumption of our hardware unit. We evaluate how the three different
CPU governors (ondemand, performance, and powersave) behave. The idle mea-
surements use the standard REE kernel image provided by Op-Tee, without any
user-intensive applications nor TAs running. Burn measurements run the prime
benchmark, a single-threaded TA which computes the first 20000 prime numbers
before exiting. We run 8 instances in parallel, ensuring maximum heat output
on the 4 cores. Measurements start 60 seconds after the benchmark instances.
Figure 6 shows our results, respectively for idle (left) and burn (right) experi-
ments. Table 2 shows the average W and BTU/h. We use a box-and-whiskers
plot: the first and third quartile are shown as a colored box, the median as hor-
izontal black bar. Min/max values are also included. Results for ondemand and
powersave are on par with the ondemand governor, in particular when the CPU
frequency is set at 600 MHz. As expected, we observe higher power consump-
tion using the performance governor even in idle, as the cores are boosted up to
1.2 GHz. Overall, the board’s power consumption is very low, in particular below
1 W in idle mode.

Fig. 7. Basic TA operations: loading, unloading and
successive calls to load/unload the same TA.

Load & unload TAs.
Next, we measure the time
required to load and unload
a TA inside the Trust-
Zone, respectively execut-
ing TEEC InitializeContext
[56, Chapter 4.5.2] and
TEEC FinalizeContext [56,
Chapter 4.5.3] functions. We
compare results obtained
with a TA of size smaller and
another one of size larger
than the 512 kB L2 cache
of the Broadcom BCM2837
processor, respectively 102 kB
and 517 kB. Our experi-
ments show no significant
difference between TAs of different sizes. For each configuration, Fig. 7 shows
average and standard deviation over 10k executions. We include the time spent
to execute an empty function inside the TA once it is loaded (1.31 ms), to give
a baseline of comparison.

Surprisingly, our results do not show a significant differences on subsequent
loadings compared to the first loading, despite the tee-supplicant is supposed to
cache the TA code. We will investigate this aspect in future work.

On the Performance of ARM TrustZone 143

Fig. 8. World switching performance and energy requirements

Context (World) Switching. Switching between worlds is a key operation
when deploying applications that execute inside and outside the TrustZone.
To measure the switching time, we implemented an ad-hoc benchmark made by
a host application and a TA. Both programs record the monotonic time when
entering and exiting the world in which they reside. The host issues a call to
an almost empty function, which only contain time-measuring code. Two calls
are made to the TA per session, recording the time taken to switch between
TEE and REE, and vice versa. Figure 8 (left) shows these results. To evaluate
possible caching effects, we also include the results obtained for all the calls
following the first one. As expected, it is more time-consuming to switch from
the REE to the TEE (110µs with the performance-oriented governors) than
the opposite (47µs). The instrumentation delay (Fig. 8, center) is the difference
between two consecutive calls to the time measurement function. An increased
instrumentation delay is observed in the TEE compared to the REE, due to the
additional world switch. Finally, we also evaluate the energy spent for calling
an empty TA function from the REE (Fig. 8, right). The timer starts and stops
when leaving and re-entering the REE, respectively. The ondemand governor is
the most energy-eager (up to 12.1 nWh), while powersave is the most energy
efficient.

Volatile Memory. Next, we consider simple in-memory operations (e.g., read
and write, sequential or at random), for two different sizes of volatile mem-
ory (1 MB and 100 KB) used by the REE and the TEE. We consider inter-
(REE←TEE) and intra-world (e.g., REE↔REE, TEE↔TEE) memory readings,
as TrustZone restrictions prevents reading TEE memory from the REE. We
compute the average and standard deviation over 100 run, always using the high-
resolution monotonic counter. Figure 9 shows our results, for the Raspberry Pi
device with 3 CPU governors and using Qemu. Performance of accessing a single
byte in TEE memory from the TEE is on par with accessing REE memory from
the TEE, on average 0.01µs, around 2× under emulation. Interestingly, using
memory from within the TEE is also less energy eager (Fig. 10), also verified by
the cost of the single operations in the various configurations. We observe how
the operations in the TEE↔TEE case are on average 2× faster on bare metal
and 1.2× under emulation than in the other cases.

144 J. Amacher and V. Schiavoni

Fig. 9. Benchmark for memory ops Fig. 10. Energy:
memory accesses

Secure Storage: performance. We evaluate the performance of TrustZone’s
secure storage via the corresponding GlobalPlatform’s API implemented by Op-
Tee. Specifically, we benchmark the cost of creating, writing, reading and closing
objects inside the secure storage area, for two different object sizes (100 KB and
1 MB), although current memory allocator limitations prevented to cover some
cases [19,20,35,39]. Figure 11 (left) shows that closing and deleting objects are
fast operations, and opening and writing are the slowest ones. Iterating over
objects in the secure storage (e.g., the execution of a find operation) is slow,
up to a few hours in the worst case (Fig. 11, right). Adding more objects in
secure storage degrade the results even more (up to 2.01 × object count ratio).

Secure Storage: Cost Breakdown. To understand how each low-level syscall
affects the performance of a file-system inside the secure storage, we implemented
a simple microbenchmark, inside ree fs create and ree fs write. Specifically,
these tests create and write data into a new object. Figure 14 shows a breakdown
cost using stacked bars for writing and creating files. These two functions are
atomic and thus are surrounded by a monitor (mutex) which adds a considerable
delay (not shown) regarding the write operation. The impact is negligible on
the create operation. We observe that opening the file and setting the filename
accounts for the most time spent.

On the Performance of ARM TrustZone 145

Fig. 11. Secure storage: basic operations (left) and iteration (right)

Fig. 12. Secure storage: energy measurements for basic operations

Secure Storage: Energy. Being a feature often used by nomad devices with
low energy autonomy, we deeply investigate its energy impacts. Figure 12 shows
that creating objects is the most energy-demanding (up to 403µWh), irrelevant
of the size. Power consumption of writing objects is dependent on their size.
Interestingly, the ondemand governor achieves slightly worse results when cre-
ating a file, whereas for closing and deleting files it stands out. Figure 13 shows
the energy requirements to iterate over a single stored object (top) [57, Chapter
5.8] during enumeration of all stored objects in secure storage or rename (bot-
tom) a single object, when additional 10 or 100 objects (of the same size) are
already in the secure storage. We execute this test for 2 different file sizes (1 kB
and 10 kB). We observe that the energy required to iterate over a single object
depends on the number of objects stored (in particular when using performance
and ondemand), whereas the size of the object is irrelevant.

CPU Benchmarks. To benchmark the raw performance of the Arm processors
of our units, we implemented and deployed a single-threaded TA that executes a
CPU-bound task, e.g., computes the first 20000 prime numbers. We run multiple

146 J. Amacher and V. Schiavoni

Fig. 13. Secure storage, energy to iterate (top) and rename (bottom)

Fig. 14. Secure storage breakdown for two operations: create and write

instances concurrently, and while they execute we also gather energy measure-
ments (for all cases minus the emulation mode). Figure 15 presents these results.

As expected, the performance governor ensures the fastest computing time.
Due to emulation costs, the Qemu results are the worst ones. As the number of
instances exceed the available hardware cores, we observe an increase of energy
consumption. Overall, in this benchmark the ondemand governor is the most
energy eager. This can be explained by the fact that adjusting the core frequen-
cies (from 600 MHz and 1.2 GHz) seems to be a relatively costly operation [41].

Thermal Benchmarks. We conclude our evaluation by looking at the thermal
envelope of the SoC. To do so, we execute 8 concurrent instances of the prime
benchmark inside TrustZone. Figure 16 presents the measurements fetched
using the kernel’s thermals API. Additionally, we monitor the surface temper-
ature of the chip using a Texas Instruments LM35 precision linear sensor with
the help of an external micro controller. Thermal conductivity between the SoC
and the LM35 is ensured by using a thermal compound (Arctic MX-4 [3]). The

On the Performance of ARM TrustZone 147

Fig. 15. CPU benchmark: processing delay and energy requirements.

Fig. 16. Evolution of CPU temperature with different cooling modes and governors.

ambient temperature is of around 21.9 ◦C. Results returned by the LM35 are
calibrated and checked at rest against a Fluke thermocouple, and against a Flir
E4 [17] thermal camera (see pictures in Fig. 17). Marked points in Fig. 16 refer
to measurements done using the thermal camera. We observe a small margin
of error of 3 ◦C, and a discrepancy between the thermals API and the LM35 of
over 15 ◦C at times. This could be problematic because the measured surface
temperature exceeds the rated continuous temperature of 85 ◦C specified by the
chip’s manufacturer. In this situation, the thermals API returns an incorrect
temperature that is well below the acceptable temperature. As a consequence
measures which should be taken to reduce the temperature, such as software
thermal throttling, are not undertaken. A passively cooled Raspberry Pi should
therefore only operate in powersave mode or risk being hardware throttled or
worse, suffer damage. An actively cooled system on the other hand can operate
in any mode and stay well within acceptable conditions, even without additional
heat sink. Once the maximal temperature is reached, recovery time is around 8
minutes when passively cooled and less than a minute with active cooling.

148 J. Amacher and V. Schiavoni

Fig. 17. Raspberry Pi thermal behaviour during processor stress benchmarks.

5 Lessons Learned

This section reports on a few lessons learned during this experimental work.

Memory Limitations. By default, 32 MB are dedicated to Op-Tee, of
which: 1 MB for TEE memory, 1 MB for PUB (non-secure RAM) memory,
and the remaining 30 MB for TAs. Each TA has two compile-time options,
TA STACK SIZE and TA DATA SIZE (in user ta header defines.h), defining
the stack size and heap size that can be utilized by a TA. These values are
set at very low values by default, 2 kB and 32 kB respectively [25]. For larger
memory allocations, the TA’s MMU L1 table must be set accordingly, as the
default mapping is 1 MB. We were unable to allocate more than 3 MB for a single
TA, even with shared memory enabled. Consequently, the Op-Tee benchmark
framework [9] could not be used.

Compliance to Standards.The GlobalPlatform’s implementation in Op-Tee
is not error-free and some parts of the implementation do not comply fully with
the specification. For instance, the TEE BigIntAdd [57, p. 252] function, con-
trary to its definition, does not allow to use the same pointers for both input and
output [37]. Being relatively new, Op-Tee is improving rapidly. While this offers
great advantages, such as mitigations against the latest attacks, it also introduces
incompatibilities by deprecating older APIs. However, the GlobalPlatform con-
sortium offers strong incentives for TEE vendors to comply with their API,
which is unlikely to introduce breaking changes. Establishing this level of com-
pliance ensures interoperability of TAs between existing TEE solutions which is
undeniably of great interest to secure application developers.

Developers Toolchain. The Op-Tee framework groups all required dependen-
cies in a single project while also including several components of its own, such

On the Performance of ARM TrustZone 149

as the secure kernel. This greatly facilitates development of secure application
by reducing setup and development efforts. The Op-Tee project includes a few
TA examples and host applications, which are a good foundation to introduce
the TEE paradigm.

6 Conclusion

TrustZone is a widely available technology that offers Trusted Execution Envi-
ronment guarantees to low-energy devices. The goal of this practical experience
report was to uncover the performance of these systems. To perform our exper-
iments, we extended2 both secure and rich kernels so that secure timing mea-
surements and thermal metrics could be fetched from within TrustZone. Our
work highlights several advantages as well as limitation of the currently available
software platforms, such as the Op-Tee framework chosen in our case, to imple-
ment and deploy TAs. We would like to point out two major limitations. (1) the
lack of several basic features inside the REE kernel for security reasons, which
materialize in the lack of basic syscalls (e.g. fopen, msgget). For this reason, it is
paramount to reduce syscall dependencies when developing TAs. (2), the current
limitations regarding memory allocation and addressing, which could negatively
affect the facility to deploy more complex TAs inside TrustZone. We hope this
work will provide useful insights to TrustZone software developers.

Acknowledgments. The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation programme under the
LEGaTO Project (http://legato-project.eu), grant agreement No 780681.

References

1. AArch64 Exception Handling - System calls to EL2/EL3. http://infocenter.arm.
com/help/index.jsp?topic=/com.arm.doc.den0024a/ch10s02s04.html

2. Android Trusty TEE. https://source.android.com/security/trusty
3. Arctic MX-4. https://www.arctic.ac/ch en/mx-4.html
4. ARM Everywhere. https://hexus.net/static/arm-everywhere/
5. ARM Financial Results. https://www.arm.com/company/investors/financial-

results
6. ARM Inside The Numbers - 100bn. https://community.arm.com/processors/b/

blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
7. ARM TrustZone Developer. https://developer.arm.com/technologies/trustzone
8. ARM1176JZF-S Technical Reference Manual - 2.12.13. Secure Monitor

Call (SMC). http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0301h/ch02s12s13.html

9. Benchmark framework. https://github.com/OP-TEE/optee os/blob/master/
documentation/benchmark.md

10. clock gettime(3) - Linux man page. https://linux.die.net/man/3/clock gettime

2 Details at https://github.com/vschiavoni/on-the-performance-of-arm-trustzone.

http://legato-project.eu
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch10s02s04.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch10s02s04.html
https://source.android.com/security/trusty
https://www.arctic.ac/ch_en/mx-4.html
https://hexus.net/static/arm-everywhere/
https://www.arm.com/company/investors/financial-results
https://www.arm.com/company/investors/financial-results
https://community.arm.com/processors/b/blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/processors/b/blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://developer.arm.com/technologies/trustzone
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/ch02s12s13.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/ch02s12s13.html
https://github.com/OP-TEE/optee_os/blob/master/documentation/benchmark.md
https://github.com/OP-TEE/optee_os/blob/master/documentation/benchmark.md
https://linux.die.net/man/3/clock_gettime
https://github.com/vschiavoni/on-the-performance-of-arm-trustzone

150 J. Amacher and V. Schiavoni

11. Consuming Unmanaged DLL Functions. https://docs.microsoft.com/en-us/
dotnet/framework/interop/consuming-unmanaged-dll-functions

12. Cortex-A9 Technical Reference Manual - 6.3. Memory Access Sequence. http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Ciheiecd.html.
Accessed 12 Sept 2018

13. CVE-2017-5715. https://nvd.nist.gov/vuln/detail/CVE-2017-5715
14. CVE-2017-5753. https://nvd.nist.gov/vuln/detail/CVE-2017-5753
15. CVE-2017-5754. https://nvd.nist.gov/vuln/detail/CVE-2017-5754
16. CVE-2018-3639. https://nvd.nist.gov/vuln/detail/CVE-2018-3639
17. Flir E4. https://www.flir.com/products/e4/
18. gettimeofday(2) - Linux man page. https://linux.die.net/man/2/gettimeofday
19. Hikey: trying to allocate more physical memory to secure world. https://github.

com/OP-TEE/optee os/issues/1396
20. How to alloc 10M memory by TEE Malloc(). https://github.com/OP-TEE/optee

os/issues/2090
21. Intel SGX. https://software.intel.com/en-us/sgx
22. Kingston Embedded Solutions. https://www.kingston.com/en/embedded/emmc
23. Microsoft OpenEnclave Framework. https://github.com/Microsoft/openenclave
24. OP-TEE Build on Github. https://github.com/OP-TEE/build. Accessed 12 Apr

2018
25. OP-TEE FAQ on Github. https://github.com/OP-TEE/OP-TEE website/tree/

master/faq. Accessed 12 Apr 2018
26. OP-TEE OS on Github. https://github.com/OP-TEE/optee os. Accessed 12 Apr

2018
27. OP-TEE Raspberry 3B platform specific documentation. https://www.op-tee.org/

docs/rpi3/
28. OP-TEE sanity testsuite on Github. https://github.com/OP-TEE/optee test.

Accessed 12 Apr 2018
29. OP-TEE source. https://github.com/OP-TEE/optee os/blob/master/core/arch/

arm/kernel/generic entry a64.S. Accessed 12 Sept 2018
30. OP-TEE Supplicant on Github. https://github.com/OP-TEE/optee client/tree/

master/tee-supplicant. Accessed 12 Apr 2018
31. OPTEE-OS kernel thread.c init canaries. https://github.com/OP-TEE/optee os/

blob/master/core/arch/arm/kernel/thread.c#L150
32. POWER-Z KM001C. http://www.chargerlab.com/archives/536.html
33. Qemu. https://www.qemu.org. Accessed 12 Apr 2018
34. QEMU with WIP TrustZone Support. https://git.linaro.org/virtualization/qemu-

tz.git
35. Shared memory size bigger than 1 MB. https://github.com/OP-TEE/optee os/

issues/1523
36. Stress-NG. https://kernel.ubuntu.com/∼cking/stress-ng/. Accessed 20 Jan 2019
37. TEE BigIntAdd fails when dest=op OP-TEE OS Issue #2577. https://github.

com/OP-TEE/optee os/issues/2577
38. TRUSTSONIC. https://www.trustonic.com/solutions/trustonic-solutions-iot
39. Using more than 1 Mb with TEE Malloc. https://github.com/OP-TEE/optee os/

issues/2178
40. VMware ESXi. https://www.vmware.com/products/esxi-and-esx.html
41. Workloads and governor effects. https://www.ibm.com/developerworks/library/l-

cpufreq-3/
42. ARM: ARM® CoreLinkTM TZC-400 TrustZone®Address Space Controller

(2014)

https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Ciheiecd.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Ciheiecd.html
https://nvd.nist.gov/vuln/detail/CVE-2017-5715
https://nvd.nist.gov/vuln/detail/CVE-2017-5753
https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://www.flir.com/products/e4/
https://linux.die.net/man/2/gettimeofday
https://github.com/OP-TEE/optee_os/issues/1396
https://github.com/OP-TEE/optee_os/issues/1396
https://github.com/OP-TEE/optee_os/issues/2090
https://github.com/OP-TEE/optee_os/issues/2090
https://software.intel.com/en-us/sgx
https://www.kingston.com/en/embedded/emmc
https://github.com/Microsoft/openenclave
https://github.com/OP-TEE/build
https://github.com/OP-TEE/OP-TEE_website/tree/master/faq
https://github.com/OP-TEE/OP-TEE_website/tree/master/faq
https://github.com/OP-TEE/optee_os
https://www.op-tee.org/docs/rpi3/
https://www.op-tee.org/docs/rpi3/
https://github.com/OP-TEE/optee_test
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/generic_entry_a64.S
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/generic_entry_a64.S
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/thread.c#L150
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/thread.c#L150
http://www.chargerlab.com/archives/536.html
https://www.qemu.org
https://git.linaro.org/virtualization/qemu-tz.git
https://git.linaro.org/virtualization/qemu-tz.git
https://github.com/OP-TEE/optee_os/issues/1523
https://github.com/OP-TEE/optee_os/issues/1523
https://kernel.ubuntu.com/~cking/stress-ng/
https://github.com/OP-TEE/optee_os/issues/2577
https://github.com/OP-TEE/optee_os/issues/2577
https://www.trustonic.com/solutions/trustonic-solutions-iot
https://github.com/OP-TEE/optee_os/issues/2178
https://github.com/OP-TEE/optee_os/issues/2178
https://www.vmware.com/products/esxi-and-esx.html
https://www.ibm.com/developerworks/library/l-cpufreq-3/
https://www.ibm.com/developerworks/library/l-cpufreq-3/

On the Performance of ARM TrustZone 151

43. ARM Limited: SMC CALLING CONVENTION System Software on ARM® Plat-
forms (2016)

44. Barbosa, M., et al.: SAFETHINGS: data security by design in the IoT. In: 2017
13th European Conference on Dependable Computing Conference (EDCC), pp.
117–120. IEEE (2017)

45. Cho, H., et al.: Prime+Count: novel cross-world covert channels on ARM trustzone.
In: Proceedings of the 34th Annual Computer Security Applications Conference,
ACSAC 2018, New York, NY, USA, pp. 441–452. ACM (2018)

46. Brodowski, D.: CPU frequency and voltage scaling code in the Linux(tm) kernel
(2018)

47. Gartner: Leading the IoT Gartner Insights on How to Lead in a Connected World
(2017)

48. Greenhalgh, P.: big.LITTLE processing with arm cortex-a15 & cortex-a7. ARM
White paper 17 (2011)

49. Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H.: vTZ: virtualizing ARM
trustzone. In: Proceedings of the 26th USENIX Security Symposium (2017)

50. Lentz, M., Sen, R., Druschel, P., Bhattacharjee, B.: SeCloak: ARM trustzone-based
mobile peripheral control, pp. 1–13, June 2018

51. Lipp, M., et al.: Nethammer: Inducing Rowhammer Faults through Network
Requests. arXiv preprint arXiv:1805.04956 (2018)

52. McGillion, B., Dettenborn, T., Nyman, T., Asokan, N.: Open-TEE-an open virtual
trusted execution environment. In: Proceedings of the 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 01, pp. 400–407. IEEE Computer Society (2015)

53. NCC Group: Implementing practical electrical glitching attacks (2015)
54. nVidia: Trusted Little Kernel (TLK) for Tegra, FOSS edn. (2015)
55. Reddy, A.K., Paramasivam, P., Vemula, P.B.: Mobile secure data protection using

eMMC RPMB partition. In: 2015 International Conference on Computing and
Network Communications (CoCoNet), pp. 946–950. IEEE (2015)

56. G-Technology: GlobalPlatform TEE Client API Specification v1.0 (2019)
57. G-Technology: TEE Internal Core API Specification Version 1.1.2.50 (2018)

http://arxiv.org/abs/1805.04956

CapBAC in Hyperledger Sawtooth

Stefano Bistarelli1, Claudio Pannacci2, and Francesco Santini1(B)

1 Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

{stefano.bistarelli,francesco.santini}@unipg.it
2 Faculty of Technology, Linnæus University, Växjö, Sweden

cp222kr@student.lnu.se

Abstract. In the Internet of Things (IoT) context, the number of con-
nected devices can be too large for a centralised server. This paper focuses
on how to enforce authorisation in such a distributed and dynamic envi-
ronment. The key idea is to use a blockchain-based technology both as
a way to maintain a common distributed ledger to store and use access
control information, and as a way to enforce Access Control policies
in the form of smart contracts. An implementation of an access-control
system is presented as a proof of concept: it corresponds to an adap-
tation of the Capability-based Access Control Model (CapBAC) in the
form of a transaction family in Hyperledger Sawtooth. The main claim is
that the features and simplicity of CapBAC magnify the usefulness of a
blockchain to control the access in the IoT.

1 Introduction

Regarding decentralised systems, recent years have seen the success of Bit-
coin [13], based on the blockchain technology and the first crypto-currency that
solved the double spending problem, which consequently granted trust in a trust-
less peer to peer network. Bitcoin opened the door for a new era of decentrali-
sation touching every sector, not only the economical one, with improvements,
variants and generalisations of the protocol enabling for a variety of services, like
messaging platforms and distributed file storage, to be secure without a grantee.

Many researchers started to work on/with the blockchain, some of them
seeing in this new technology also a solution for some problems related to the
security in the Internet of Things (IoT). This paper follows in this belief: it is
focused on the research of an Access Control Model (simply, ACM), among the
ones already designed specifically for the IoT, which addresses all or most of
the features required, such as scalability, lightweightness, and privacy [3], while
being compatible with the blockchain architecture.

In this IoT scenario, the goal of this paper is “go back” and propose a “sim-
ple” ACM, as the Capability-based Access Control Model (CapBAC) [7], adapted
to an underlying Hyperledger Sawtooth blockchain, with the purpose to man-
age capabilities. We implemented all the components of the proposed ACM in
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 152–169, 2019.
https://doi.org/10.1007/978-3-030-22496-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-22496-7_10

CapBAC in Hyperledger Sawtooth 153

Python (code released in a public repository, link in the following) and using
Sawtooth. Sawtooth is also scalable and secure, two features needed by ACM
for the IoT world (see Sect. 2.1). Among all Hyperledger blockchains, Sawtooth
also comes with an SDK that allows its integration into Android applications.
The “simplicity” of CapBAC and its focus on capability tokens lead to a high
usability level in this kind of apps, particularly if compared to more complex
ACMs (see Sect. 2.2).

However, we present this work as a proof-of-concept, mapping from the
abstract model to the actual components, and paving the way to future ad-
hoc blockchains. In fact, we believe (and explain why in the following of the
paper) that CapBAC perfectly and easily integrates with the blockchain princi-
ples, but an ad-hoc blockchain developed to support CapBAC would overcome
the limitations of Sawtooth and additional current ledgers. For instance, allow-
ing untraceability and using “light” cryptography, in order to use constrained
devices (even more constrained than mobile phones).

The paper is organised as follows: in Sect. 2 we introduce blockchains and
ACMs. In Sect. 3 we describe CapBAC and we motivate why the use of a
capability-based blockchain reinforces CapBAC as an ACM for the IoT. Section 4
describes our case-study by implementing such a model with Sawtooth. Section 5
reports related work, while Sect. 6 finally wraps up the paper with conclusive
thoughts and future work.

2 Background

We divide background information into two different subsections, about
blockchains (Sect. 2.1) and ACMs for the IoT (Sect. 2.2) respectively.

2.1 Blockchain

A distributed ledger (also Distributed Ledger Technology or DLT) is a consensus
of replicated, shared, and synchronised digital data distributed across multiple
sites. A peer-to-peer network and a consensus algorithms among such peers are
required to ensure consistent replication across the nodes. One of the possible
forms of DLT implementation is the blockchain system.

In 2009, Bitcoin [13] was proposed by Satoshi Nakamoto as a new crypto-
currency: approximately every 10 minutes, the nodes on the network come to
consensus on a set of unspent coins, and the conditions required to spend them.
This data set, known as the “unspent transaction output” (UTXO), can be mod-
ified by submitting transactions to the network that replace one or more UTXOs
with a new set of unspent transaction outputs. In order to ensure that all nodes
come to consensus, the Bitcoin protocol leverages a set of transaction valida-
tion rules and a consensus mechanism known as Proof-of-Work (PoW) [13]; this
allows a permissionless1 and anonymous participation in the consensus protocol.
1 In permissioned blockchains, the network owners decide who can join the network,

and in general any action as block verification, transaction issuing, or just consulting
the blockchain, can be allowed or not by some administrator.

154 S. Bistarelli et al.

After Bitcoin, many other blockchain systems with different characteristics
have been proposed, mainly with the purpose to improve its limited scalability,
limited scripting language, and intermediate-statelessness design. However, most
of them share the following characteristics:

– Distributed : The blockchain database is shared among potentially untrusted
participants and it is demonstrably identical on all nodes in the network (at
least in case of permissionless blockchains).

– Immutable: The blockchain database is an unalterable history of all transac-
tions that uses block hashes to make it easy to detect and prevent attempts
to alter the history.

– Secure: All changes are performed by transactions that are signed by known
identities. These features and agreed-upon consensus mechanisms work to
provide “adversarial trust” among all participants in a blockchain network.

Hyperledger2 is an umbrella project of open source blockchains and related
tools. All the frameworks part of the project (as Fabric, Sawtooth and Iroha, Bur-
row and Indy) share the common goal of improving performance of blockchains
with the purpose to support global business transactions by technological, finan-
cial, and supply chain companies. The code is open-source and the same stan-
dards are followed in order to achieve inter-operability.

To implement the access control scheme we propose in this paper, we took
advantage of Hyperledger Sawtooth because of the following features.

Scalability: Sawtooth was originally designed to overcome scalability chal-
lenges of a typical blockchain, such as Bitcoin. For this reason, the light-
weight consensus algorithm PoET (Proof-of-Elapsed-Time) is adopted. PoET
is a form of random leader election, wherein each validator node waits a ran-
dom amount of time before trying to claim a block. In other random leader
election algorithms like PoW, that randomness is enforced by searching for
partial hash collisions.3 A benchmark that measures the scalability of different
blockchains (Hyperledger included) is presented in [5].

Security: in order to narrow the attack surface, Sawtooth has a contract logic
which is termed as transaction families (more details in the following).

There are five core components in Sawtooth:

– A peer-to-peer network for passing messages and transactions between nodes;
– A distributed log which contains an ordered list of transactions;
– A state machine/smart contract logic layer for processing the content of those

transactions;
– A distributed state storage for storing the resulting state after processing

transactions;
– A consensus algorithm for achieving consensus across the network on the

ordering of transactions and the resulting state.

2 Hyperledger project: https://www.hyperledger.org.
3 PoET replaces that work (needed by PoW) with trusted computing.

https://www.hyperledger.org

CapBAC in Hyperledger Sawtooth 155

In Sawtooth, the data model and transaction language are implemented in a
transaction family. A transaction family is a group of operations or transaction
types that a programmer allows on the ledger. The users are expected to build
custom transaction families that reflect the unique requirements of their ledgers.

The Sawtooth framework elaborates on the concept of smart contracts by
viewing them as a state machine, or transaction processor. After passing through
a strictly-ordered distributed log (i.e., a blockchain), transactions are routed to
the appropriate processor. These processors than ingest the payload of transac-
tions, as well as any relevant state, before processing the transaction (updating
the state). Sawtooth is capable of supporting both the stateless (UTXO) and
stateful (Ethereum-style4) models. Smart contracts can be written in different
languages (e.g., Python or Solidity). By creating a domain specific transaction
processor, it is much easier to limit the types of actions that can be performed
on a blockchain network, which can improve security and performance.

Sawtooth is a configurable blockchain with a focus on security and designed
for IoT scenarios, however, as already stated in Sect. 1, the model we propose
in this paper is not meant to be blockchain-specific. To develop an “ad hoc“
blockchain could be the only way to include constraint devices in the secure
peer-to-peer network.

2.2 IoT and ACMs

The term “Internet of Things” was used for the first time in 1999 to describe a
scenario in which computers, and so the Internet as a whole, can gather real world
data without human intervention [2]. In recent years the term became widespread
under the acronym “IoT” and usually refers to a network of constrained devices,
as embedded systems with sensors and actuators, connected to the Internet.

Concerning how the security of the IoT can be enforced, in this paper we
focus our attention on authorisation. It refers to the specification of access rights
or privileges to specific resources, which in our case is the information gath-
ered and managed by IoT devices. The OM-AM5 reference model proposed in
[15] gives a better view of what authorisation means in the IoT world. Among
its required objectives, authorisation has to be decentralised, anonymous or
pseudonymous (unlinkability prevents from connecting pseudonyms to real ids),
scalable, lightweight (low use of resources such power and memory), it needs to
offer revocation and delegation of rights, the response time has to be low, and
access information needs to last for a long time.

In the following, we will briefly discuss some ACMs frequently used in the
IoT; for their connection to related work, see Sect. 5. CapBAC-based schemes,
access rights are granted to subjects based on the concept of capability, which
is a transferable and unforgeable token of authority (e.g, a key), and describes
a set of access rights for each subject (in Sect. 3 we will provide more details).

4 Sawtooth also supports Ethereum smart contracts via Seth, a Sawtooth transaction
processor integrating the Hyperledger Burrow Ethereum Virtual Machine.

5 Objective-Model Architecture-Mechanism layers (OM-AM).

156 S. Bistarelli et al.

DCapBAC [9] is a distributed version of CapBAC developed with the specific
purpose to control the access in the IoT. The framework conceived in this paper
moves the distribution-related features of DCapBAC to the blockchain level.

In the RBAC -based schemes [6], access control is based on the roles (e.g.,
administer or guest) of subjects (i.e., entities that access to resources) within an
organisation. By associating roles with access rights (e.g., read, write, execute)
and assigning roles to subjects, the RBAC-based schemes can establish a many-
to-many relationship between access rights and subjects.

The ABAC -based schemes [10] exploit policies that combine various types of
attributes, such as subject attributes, object (i.e., the entity that holds resources)
attributes and environment attributes, in order to define a set of rules expressing
under what conditions access rights can be granted to subjects.

OrBAC [11] focuses on the concept of organisation: a security policy that
applies to a given organisation is defined as a collection of permissions, prohibi-
tions, obligations, and recommendations.

Finally, the work in [3] proposes a Trust-based ACM (TBAC), which adds a
trust evaluation on top of the decentralised architecture of DCapBAC.

3 CapBAC and Blockchains

In Sect. 3.1 we introduce the basic components of CapBAC and their interaction,
while in Sect. 3.2 we suggest how it smoothly integrates with a blockchain system.

3.1 CapBAC

In a typical use-case of CapBAC, after the owner of a resource, hosted by a device,
or someone delegated to do so, referred to as the issuer, issues a capability token
in name of a subject for that particular resource, subject is then able to access to
a resource by sending an access request to device in which the capability token
is attached. The authorisation is granted if the token passes the authorisation
procedure. We now briefly introduce all the main actors in such a scenario.

A resource is a univocally identifiable and actable-upon object (e.g. a REST-
ful resource). A capability token is a communicable object (e.g. in JSON)
digitally signed by the issuer, in which the subject is represented by its public
key. It is unequivocally identifiable by its id, it has a time-stamp and a validity
time interval. Moreover, it has a field to store the issuer’s capability that is used
to specify from which parent capability it is derived from, in case of delegation.
A capability with no parent is said to be a root capability. In a delegation every
token is chained to the one it is derived from up to the root. A revocation token
contains the issuer’s capability as authorisation. The revoked token is specified
along with the revocation type. An access request for a service/operation on a
resource also includes (or refer to) a capability token. A policy decision-point
(PDP) is a resource-agnostic service in charge of managing the validation of the
access rights granted in the received capabilities against local policies, and it
updates the capability database. A resource manager manages the requests

CapBAC in Hyperledger Sawtooth 157

Fig. 1. Token issuing and the access request procedure in CapBAC.

for a resource. It checks the acceptability of the capability token shipped with
the service request, as well as the validity and congruence of the requested ser-
vice/operation against the presented capability, by taking also the validation
outcome from the PDP into account. The revocation service validates incom-
ing capability revocations and it updates the capability and revocation databases
(storing the revocation tokens).

When an access request for a resource is received by a device, the authori-
sation procedure is executed: the resource manager first (i) checks the formal
validity of all the capabilities in the authorisation chain, then (ii) it checks
the logical validity of the request by evaluating the congruence of the opera-
tion granted by the capability with the operation reported in the initial request;
finally, (iii) it forwards the request to the PDP. The PDP checks the applicability
of the operation by (i) verifying the logical validity of each capability in the del-
egation chain, and (ii) inquiring the revocation service. The revocation service
checks in the revocation database if the capability wasd. After this step succeeds,
the authorisation is granted. Figures 1 and 2 summarise the issuing procedure of
a token, the access request and revocation procedures in the CapBAC model.

3.2 Blockchains with CapBAC: Characteristics

In this section we survey the advantages in adopting CapBAC supported by
a blockchain model, highlighting the compatibility between the two, and com-
menting about related work.

Capability and Revocation Database. The main advantage of a blockchain is that
it offers a trusted distributed database, which can be used in an ACM to address
revocation and delegation in an effective way. In DCapBAC [9], both revocation
and delegation are abandoned in favour of pure distribution (we instead keep
both these two phases in our proposal): the PDP is integrated into the device
itself and the capability tokens, once issued, are stored by their subject, which
attaches the whole token to its requests. On the other hand, a ledger can be
used to store both the capability and revocation tokens granting revocation and
delegation even in a distributed scenario: this feature is almost always required

158 S. Bistarelli et al.

when dealing with IoT security. A single database for both the capability and
revocation tokens was adopted in the implementation proposed in [7].

PDP and Revocation Service. A blockchain featuring smart contracts can apply
any rule-set to the validation of transactions; this means that the work done by
the PDP in [7] and [3] can be distributed to all the blockchain nodes in the form
of transaction validation. The same also holds with the controls performed by
the revocation service. Their computation is thus distributed.

Tokens. In our proposal, tokens are represented on the ledger state of Sawtooth.
In this case, the CapBAC model has the great advantage, over other ACMs, of
using tokens, i.e. the capability tokens, that behave in a similar way to transac-
tions in a token-based crypto-currency. The authorisation/ownership is granted
by the issuer/sender with the inclusion of the subject/receiver’s public key in the
token/transaction; the issuer/sender has to digitally sign the token/transaction;
the whole delegation chain/transaction history is required in order to prove the
validity/ownership of the capability/token. In such a CapBAC blockchain, a
transaction is considered valid only if it contains all the fields of a capability
token and the hash of the parent transaction (owned by the issuer), which has
to allow the delegation on all the stated access-rights. The revocation concerns
a different kind of transaction (without owners), also chained to a pre-existing
capability transaction in order to spend/revoke it and/or its descendants. Once
added to the ledger, a capability transaction is valid until it (or a capability in
its chain of transactions) expires or it is revoked.

Privacy. Blockchain privacy is controversial. In our proposal, transparency is
granted by default since anyone in the network can access to the ledger. The
capability system is user-driven by design, since the owner of a resource is always
in full control of the rights granted: owning the root capability, she can easily
revoke any derived access right. The challenge is represented by anonymity:
while pseudonymity is obtained by using signature validation as identification
and authentication means, blockchains usually do not easily grant unlinkability
or untraceability, e.g. the identity of the participants can be inferred by looking
at the transaction history [16]. A capability token-based blockchain, however,
could achieve the complete detachment between identities and capabilities by
exploiting the delegation system as described in [7, Sect. 6].6 Moreover, unob-
servability of accesses is granted, since the request validation can be performed
without broadcasting any information, and decentralisation is the key feature
offered by both capability-based models and blockchains.

Confidentiality and Integrity. As previously stated, the selling points of the pro-
posed system are the granularity of access control rights and an effective dele-
gation and revocation procedures.

6 This issue in not addressed in this paper, but ad-hoc blockchains can be designed
following the example of untraceable tokens as in Monero crypto-currency.

CapBAC in Hyperledger Sawtooth 159

Reliability and Availability. The offline mode is not available with a blockchain:
the communication among devices is required during the authentication proce-
dure. The short-term availability of information depends on the implementation:
e.g., Sawtooth provides a low latency [5]. Finally, long-term availability is a key
feature of the blockchain, since all the stored information is unalterable.

Social and Economic Aspects. Given the diffusion of inter-operating private
blockchains, such as the Hyperledger project, collaboration is to be expected
between different implementations following the same standards: we propose
CapBAC as an ACM to be supported by different blockchains. To achieve
context-awareness, additional considerations need clarifications, as the use of a
level of trust, either in access control rules or in underling consensus algorithm.

Technological Constraints. While the proposed system provides high flexibility
and scalability, the main question is whether or not it would be able to run on
constrained devices, i.e. if it provides the lighweightness required by IoT. At first
the idea of having every device storing a copy of the whole ledger could seem too
memory intensive for it to be deployed on low-hardware devices, and it certainly
is at the current state of technology. However, as for the PDP in [3] and [7], it
is not necessary for every device to be a blockchain node, i.e. storing the ledger
and providing validation, but the ones without enough resources could rely on
a validator network composed of more powerful devices. We can also refer to
[1] as a proof of the feasibility of this approach. Finally, heterogeneity would
require some standardisation efforts, but it is achievable because nothing about
the proposed system is hardware-specific.

Usability. The presented capability system is “simple”, as well as the develop-
ment of highly accessible applications that can mange rights through tokens (as
crypto-currency wallets for mobile devices already do); this makes the proposed
solution user-friendly. A high-level interface could allow everyone to manage the
access-control rules of her own device.

4 Implementation

We dedicate this section to the presentation of our proof-of-concept, by using
Hyperledger Sawtooth as the blockchain where to implement a CapBAC ACM.
Ad-hoc blockchains could be envisioned in the future, for instance achieving
untraceability (see Sect. 3.2), or fully exploiting cryptographic primitives of
resource-constrained devices, typical of the IoT. However, the following imple-
mentation paves the way to such solutions, proving their feasibility.

We use the ledger state to represent the issued capability tokens, while the
policies are enforced during blocks validations. The implementation runs in a
Docker7 using Ubuntu images on a 64bit architecture, thus it is not directly
meant for constrained devices, but it is anyhow useful for a proof-of-concept. All
the developed source code was committed to a GitHub repository8.
7 Docker.com: https://www.docker.com/.
8 Proof-of-concept project: https://github.com/kappanneo/sawtooth-capbac.

https://www.docker.com/
https://github.com/kappanneo/sawtooth-capbac

160 S. Bistarelli et al.

Fig. 2. CapBAC model: a visual description of the capa-
bility and revocation databases, and revocation service.

Fig. 3. A Sawtooth node
with a custom transaction
family.

Transaction Families. In Sawtooth it is possible to build a custom service on
top of the pre-built blockchain architecture by defining a so called Transaction
Family (TF). This is possible because the core system is detached from the appli-
cation layer. The main component of a TF is the Transaction Processor (TP)
which, as the name suggests, is where the evaluation of incoming transactions
is performed, according to the built-in rule-set (in a smart contract) written in
one of the supported programming languages. More TPs can be attached to the
same validator, which is a node in the peer-to-peer validator network responsible
for maintaining the common ledger. For example, Sawtooth provides a TF for
managing the settings saved in-state (including the ones used by the consensus
module); its TP is always required on the side of all the others. Each TP has an
addressing space in the ledger state for storing its information usually obtained
from the family name itself. Between the validator and the client resides the
REST API, also offered by Sawtooth, which manages the incoming requests.
To be noted is the fact that Sawtooth allows the transmission of any kind of
data format and encoding; the only requirement is that every participant to the
network has to sign in with an RSA key pair in order to send transactions. Mul-
tiple transaction requests are encapsulated in a transaction batch (also signed),
which is atomically validated (a single faulty transaction will cause the batch
to be rejected). When a batch is accepted, the ledger state is modified accord-
ingly to the transactions it contains. It is also possible to generate custom events
that spread through the network and can be listened by any client aware of the
specific transaction family from which they are generated. Figure 3 shows the
relations between the various component: the validator is the main component,
since it evaluates transaction requests forwarded from the REST API. It has a
TP as additional module, and it behaves as a peer in the peer-to-peer validator
network, which shares the same Common Ledger.

CapBAC in Hyperledger Sawtooth 161

4.1 A New Transaction Family for CapBAC

We now describe the operations implemented by the new TF developed in Saw-
tooth. These operations can be performed by any client, where “client” is a soft-
ware module that receives and executes commands in any peer of the network.
The CapBAC transaction family allows users to issue and revoke capability
tokens in which access rights for a particular resource are given to a specific sub-
ject. Since the tokens are stored in the ledger state, both issuing and revoking
steps require a transaction request, sent to the validator and processed by the
TP. A CapBAC client can also list the tokens stored in the current state for
a specific device, sign an access token composed of a resource request and a
capability id, and, finally, validate it over the ledger state. The client can be
used from the command line with the following syntax:

list <device URI>
issue [--root] <not-signed capability token as JSON string>
revoke <not-signed revocation token as JSON string>
sign <not-signed access token as JSON string>
validate <access token as JSON string>

State. Capability tokens are stored in-state in a Concise Binary Object Repre-
sentation (CBOR) [4] encoded dictionary. The format in which they are stored
is different from the one used for the issuing and as transaction payload, since
the processor removes the fields that are not necessary anymore after valida-
tion, and it reformats the access rights to let the validation of access tokens
be more efficient. In this scenario, the information contained in the ledger is
already tamper-proof, thus there is no need for the token to be stored as it
is: the state is obtained as a consequence of the whole transaction history and
transactions are the ones to be stored as-they-are for validation purposes, so the
signature for the capability tokens is no longer required; this is one of the main
differences between an implementation of the model on top of the state of a new-
generation blockchain, versus the use of ad-hoc blockchains where transactions
themselves would represent capability tokens, hence without the need of a ledger
state. For the same reason, the revocation tokens are not saved, but the state is
changed according their content instead, just by removing revoked tokens. Since
the global state is obtained as the result of the whole transaction history, it is
always possible to inspect it in order to recover previously revoked tokens.

Addressing. CapBAC data is stored in the state dictionary using addresses that
are generated from (i) the CapBAC name-space prefix, and (ii) the unique URI
of the device. The latter is also the parameter passed to the list command,
and one of the attributes of the JSON entry of the other commands (“DE” in
the examples shown in Fig. 6), so that they all refer to the same address in the
ledger state. The choice of a per-device addressing has many advantages: the
whole capability token tree for a device is under the same address: neither a
request has to include a reference to all the capabilities in the delegation chain,
nor the validator has to search for them across the whole state. The address for

162 S. Bistarelli et al.

the whole tree is the only input and output of the transaction, hence meaning
that is by-design impossible to change access data for a device different from the
one reported in a transaction. The URI of devices does not need to be explicitly
saved in the state, thus it is removed to increase privacy. URIs are by definition
unique: they will not cause name conflicts, while token identifiers can be reused
for different devices. Addresses adhere to the following format:

– an address is a 70 character hexadecimal-string;
– the first 6 characters of the address are the first 6 characters of an SHA512

hash of the CapBAC name-space prefix: capbac;
– the following 64 characters of the address are the last 64 characters of an
SHA512 hash of the device URI.

Transaction Payload. The payload is an object encoded in CBOR with two fields:
the name of the action performed, and the corresponding token as object. As
already said, the commands capbac issue and capbac revoke are the only
ones that can be used to create and send transactions. Therefore, the object of
the payload has only two possible formats: one for the capability, and one for
the revocation token. The parameters of the transaction header are: the inputs
and outputs (the address generated using the device URI), the dependencies
(in our case None since our transaction family does not depend on any other
transaction family), the family name (i.e., capbac version: 1.0), and the encoding
(the encoding field needs to be set to application/cbor).

Execution. As shown in Fig. 4, when the TP receives a transaction it first checks
the formal validity of the payload, including the specific token format in relation
to the proposed action. In case of the issue command, also the logical validity
of the time interval is checked. Finally, the signature is verified and the state is
retrieved.

If the transaction is created for issuing a token, first the TP checks if a token
with the same ID is not already in the state, and if the issuer is the owner
of the parent capability; then, the token is reformatted to match the in-state
representation and its validity is tested over the delegation chain, by checking
at each step that all the access rights are included in the parent token, the
delegation for each is allowed and the token is not expired. If all the delegation
chain is valid up to the root capability, the token is added to the state.

If the transaction is due to the revocation of a token, then the authorisation
of the requester is checked by also verifying that the revoker’s capability is an
ancestor of the revoked one. If the operation is valid, then the tokens are removed
according to the revocation type. Finally, the signature of the token is verified
against the requester public key, and the state is updated.

CapBAC in Hyperledger Sawtooth 163

Fig. 4. The sequence diagram for the issuing or revocation of capabilities: the two
possible values for action are issue and revoke, while token can respectively be a
capability or a revocation token.

4.2 Testing Environment

Our implementation features a testing environment that can be assembled by
using Docker Compose, a tool for defining and running multi-container Docker
applications: we build a container for each actor in the scenario shown in Fig. 5.
The REST API and validator both run in two separate containers assembled
from the images offered by Sawtooth. This set-up can be used to test the func-
tioning the introduced TF within a single node. Indeed, the same Docker images
can be used to create a more complex network composed of multiple nodes. Scal-
ability tests will be part of future work, also because we primarily believe in the
development of an ad-hoc blockchain, and Sawtooth is used as a proof-of-concept
towards this ultimate goal.

Issuing of a Capability Token. Tokens are issued using the issue command with
an incomplete capability token (as the ones shown in Fig. 6) as parameter. An
example of capability issuing is the one automatically performed by device before
starting the CoAP server9. For testing purposes, the two resources device will
open to requests are (i) time (the actual time on the machine) and (ii) resource
(a re-writable string with no meaning). Since it is the first token to be issued
under the address space for the URI coap://device, the token will be a root

9 The Constrained Application Protocol [18], is the IoT standard transfer-protocol at
the application layer, and it is based on the same RESTful principles as HTTP.

164 S. Bistarelli et al.

Fig. 5. A testing scenario of a CapBAC TF. Each one of the four entities is executed
in a different Docker container. The numbered relations represent the issuing of a
capability token and, when dashed, the corresponding delegation hierarchy. A JSON
representation of the capability tokens is shown in Fig. 6.

token. A root token does not have a parent and, as architectural constraint
desirable in this implementation, its subject is always the issuer of the token
itself: hence, in this specific case it is device. Since the CapBAC client has access
to the public key of the issuer of the token, the subject field is automatically
filled in before signing the token, and the parent capability is set to null. The
signing procedure also adds the TF version (1.0) and a timestamp, required for
a signature to be unique. If a given token is not a root token, then also the
parent capability needs to be specified. After a token is assembled, it is set as
the object of a transaction payload, with action set to issue; then, it is sent to
the validator through the REST API.

Delegation. The owner of a capability token can delegate to someone else any of
the access rights it is granted, only if their delegation depth (DD) is greater than
zero. This is done by issuing a new capability token for the same device that
refers to her capability, also known as issuer’s capability (IC) or parent capability,
and listing a subset of those access rights. Moreover, in the access rights of the
new token, the DD of each resource has to be strictly less than the one in the
parent token. If this condition is not satisfied, then a token is invalidated by the
TP, and the corresponding transaction is discarded by the validator. If the device
now wants to delegate all its access rights to issuer, device can do so by using
issue with a capability token formatted as the second one shown in Fig. 6. In
the same way, if issuer wants to give to subject some access rights from the ones
she also has, but without granting the possibility to delegate them any further,
issuer can issue a capability token as the third one from the right in Fig. 6.

Accessing to a Resource. Once in possession of a capability token, subject can
access to a resource on device by sending a CoAP request with an access token
as a prefix to its payload. When device receives this request, first it checks
that the access token matches the request itself, then it passes the token to
validate. It searches for the referred capability in the ledger state, also climbing
the delegation chain up to the root token. If the access token refers to a valid

CapBAC in Hyperledger Sawtooth 165

Fig. 6. An example of a delegation chain showing the JSONs used during the issuing
of the respective capability tokens. The leftmost one is for a root capability. Following
the same delegation relations shown in Fig. 1, both 1st and 2nd capabilities (from the
right) are issued by the device, while the 3rd one by the issuer.

capability, then the operation requested by subject is performed. The whole
access procedure is summarised in Fig. 7.

Revoking a Capability Token. At any time, an issued capability token can be
revoked by its issuer or the issuer of an ancestor capability, i.e. a capability
that is “higher” in the delegation chain of the revoked one. In our case this
operation is performed via a revoke transaction including a revocation token in
its payload. This transaction, as for the issue one, is built from an incomplete
token, and it is completed by the CapBAC client. The revocation type (i.e., RT)
field specifies the type of revocation, and it can be one of the following:

– ICO (Identified Capability Only): it revokes only the capability identified in
the revocation;

– DCO (Descendant Capabilities Only): it revokes all the descendants of the
identified capability;

– ALL: it revokes the identified capability and all its descendants.

5 Related Work

In order to overcome the problems related to ABAC and RBAC concerning
scalability and flexibility, a CapBAC model is proposed in [7] with a focus on
IoT. It offers revocation, delegation support, and granularity of the access rights.
It is meant to be easy to understand and to use, removing the burden represented
by the management of identities. Also, by design, it enforces the Least Privilege
principle, i.e., only the rights strictly necessary are granted, so that abuses are
not possible. However, it does not specify how the issuing of tokens could be

166 S. Bistarelli et al.

Fig. 7. A sequence diagram of scenario where a user want to access to a resource.

enforced and it is based on the RSA encryption scheme [17] for authentication,
which is not supported by constrained devices, typical of the IoT world.

In [9], a distributed CapBAC is presented as DCapBAC. Compared to [7] it
does not offer neither delegation nor revocation since the focus of the paper is
the authentication through “Elliptic Curve Cryptography” (ECC), i.e. a public-
key crypto-system compatible with constrained devices. Other improvements are
the use of JSON as data format for the tokens, and the use of the Constrained
Application Protocol (CoAP) [18], recently announced as the standard trans-
fer protocol at the application layer for IoT, and based on the same RESTful
principles as HTTP. As in [7], the generation of tokens is not discussed.

In [12] the authors propose a blockchain technology to publish the policies
expressing the right to access a resource and to allow the distributed transfer of
such rights among users. They take advantage of Attribute-Based Access Control
(ABAC) policies. However, their proof-of-concept implementation is based on the
Bitcoin blockchain (quite limited on the application side), which cannot handle
smart contracts (as Sawtooth can instead do), and thus the actual authorisation
system is external to the blockchain, which only stores tokens. Indeed, not having
the authorisation logic on the blockchain is a critical point.

In [19] a blockchain access control ecosystem is implemented with Hyperledger
Fabric; the Hyperledger composer modelling tool is used to implement the smart
contracts or transaction processing functions that run on the blockchain network.

CapBAC in Hyperledger Sawtooth 167

The authors adopt a RBAC-based scheme: users are assigned roles and roles are
assigned privileges controlled by asset owners. A smart contract is triggered to
pull the roles that have access to that asset. As advanced in Sect. 3, we believe
that a simple scheme (as CapBAC) with no super-entity keeps the model more
secure and scalable, particularly if the architecture is IoT-oriented.

In [1] an implementation of a token-based ACM on top of a private Ethereum
blockchain network is showcased, featuring a Proof of Possession (PoP) consen-
sus protocol, to bind the client’s identity to an access token. The focus is on
the feasibility of the blockchain architecture: neither the token format nor the
access control model are described in details. However, this is not a limitation
since the Ethereum’s smart contract language allows for any access control rule
to be described so that the proposed solution can potentially express any ACM.

Two other IoT-related ACMs are presented in [14] and [20]. The former
proposes a private blockchain for managing Identity and Access Management,
while the latter advances a proof-of-concept prototype implemented on both
resources-constrained devices, tested on a local private blockchain network.

6 Conclusion and Future Work

The aim of this paper was to propose the use of CapBAC revitalised by managing
capabilities for heterogeneous and light devices with a blockchain. The ultimate
purpose is to secure the IoT with a scalable and decentralised implementation
that takes advantage of an underlying blockchain-based architecture. Most fea-
tures of CapBAC, as for instance its simplicity and fine-grainess, smoothly adapt
to a distributed ledger, which on the other hand enforces trust in a naturally
unsafe environment as the IoT. We have discussed the features of the proposed
system along with its problems (and possible solutions to them). Finally, we
showcased an implementation realised by exploiting the transaction families of
Hyperledger Sawtooth, in order to show that the mapping from the proposed
model to a real blockchain-based architecture is possible.

A possible continuation of this work could be the implementation of a
capability-based access control solution using a new, memory-efficient and multi-
purpose private blockchain as proposed in [1], and featuring a lightweight
public key encryption system (like what used also in [9]). Actually, different
blockchains could implement this model, at different levels and for different sce-
narios, inter-operating to form a wide system in which authorisation decisions
are taken thanks to a distributed effort. One of these technologies could even be
a blockchain with the only purpose of managing accesses, in which the object of
transactions are capability tokens and the validation operation is light enough
to reach even the most constrained devices.

OAuth [8] is the standard currently proposed for authorisation frameworks,
and it is also based on delegable tokens. However, it inherits the centralised
approach from its previous version, and so it requires a trusted third-party in
order to work. We leave a possible integration of OAuth with the model proposed
in this paper as future work.

168 S. Bistarelli et al.

Acknowledgment. This research is supported by project “REMIX” (funded by
Banca d’Italia and Fondazione Cassa di Risparmio di Perugia).

References

1. Alphand, O., et al.: IoTChain: a blockchain security architecture for the internet of
things. In: IEEE Wireless Communications and Networking Conference, Murcia,
30100, Spain (2018). Technical report

2. Ashton, K., et al.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)
3. Bernabe, J., Ramos, J.H., Gomez, A.S.: TACIoT: multidimensional trust-aware

access control system for the internet of things. Soft Comput. 20, 1763–1779 (2015)
4. Bormann, C., Hoffman, P.: Concise binary object representation (CBOR). IETF

RFC 7049 (2013)
5. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling

blockchain: a data processing view of blockchain systems. IEEE Trans. Knowl.
Data Eng. 30(7), 1366–1385 (2018)

6. Ferraiolo, D., Kuhn, D.: Role-based access control. In: 15th National Computer
Security Conference, pp. 554–563 (1992)

7. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security approach to
manage access control in the internet of things. Math. Comput. Model. 58, 1189–
1205 (2013)

8. Hardt, D.: The oauth 2.0 authorization framework. RFC 6749, RFC Editor, Octo-
ber 2012. http://www.rfc-editor.org/rfc/rfc6749.txt

9. Hernàndez-Ramos, J., Jara, A., Maŕın, L., Gómez, A.S.: DCapBAC: embedding
authorization logic into smart things through ECC optimizations (2016)

10. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST special publication 800(162) (2013)

11. Kalam, A.A.E., et al.: Organization based access control. In: 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY), p.
120. IEEE Computer Society (2003)

12. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control.
In: Chen, L.Y., Reiser, H.P. (eds.) DAIS 2017. LNCS, vol. 10320, pp. 206–220.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59665-5 15

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
14. Nuss, M., Puchta, A., Kunz, M.: Towards blockchain-based identity and access

management for internet of things in enterprises. In: Furnell, S., Mouratidis, H.,
Pernul, G. (eds.) TrustBus 2018. LNCS, vol. 11033, pp. 167–181. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98385-1 12

15. Ouaddah, A., Mousannif, H., Elkalam, A., Ouahman, A.: Access control in the
internet of things: big challenges and new opportunities. Comput. Netw. 112, 237–
262 (2016)

16. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity—
a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44702-4 1

17. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

http://www.rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1007/978-3-319-98385-1_12
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1

CapBAC in Hyperledger Sawtooth 169

18. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
IETF RFC 7252 10 (2014)

19. Uchibeke, U.U., Kassani, S.H., Schneider, K.A., Deters, R.: Blockchain access con-
trol ecosystem for big data security. CoRR abs/1810.04607 (2018)

20. Xu, R., Chen, Y., Blasch, E., Chen, G.: BlendCAC: a smart contract enabled
decentralized capability-based access control mechanism for the IoT. Computers
7(3), 39 (2018)

Developing Secure Services for IoT
with OP-TEE: A First Look
at Performance and Usability

Christian Göttel(B) , Pascal Felber , and Valerio Schiavoni

University of Neuchâtel, Neuchâtel, Switzerland
{christian.gottel,pascal.felber,valerio.schiavoni}@unine.ch

Abstract. The implementation, deployment and testing of secure ser-
vices for Internet of Things devices is nowadays still at an early stage.
Several frameworks have recently emerged to help developers realize
such services, abstracting the complexity of the many types of under-
lying hardware platforms and software libraries. Assessing the perfor-
mance and usability of a given framework remains challenging, as they
are largely influenced by the application and workload considered, as
well as the target hardware. Since 15 years, Arm processors are provid-
ing support for TrustZone, a set of security instructions that realize
a trusted execution environment inside the processor. Op-Tee is a free-
software framework to implement trusted applications and services for
TrustZone. In this short paper we show how one can leverage Op-Tee

for implementing a secure service (i.e., a key-value store). We deploy and
evaluate the performance of this trusted service on common Raspberry
Pi hardware platforms.

We report our experimental results with the data store and also com-
pare it against Op-Tee’s built-in secure storage.

Keywords: Op-Tee · Arm TrustZone · Secure storage · IoT

1 Introduction

Despite the availability of security-oriented instruction sets in consumer-grade
processors, high-level frameworks that can help developers use such extensions
are still at an early stage. Moreover, little has been said regarding the perfor-
mance and usability of these frameworks. This is unfortunate given that the
large majority of devices featuring Arm processors (mobile and not) feature
the TrustZone extensions, introduced since 15 years [12], and are constantly
being improved with new processor revisions. For instance, Arm recently [4]
updated its ARMv8.4 architecture of application processors enabling virtualiza-
tion in the secure world. The introduction of virtualization in the secure world
better improves the isolation of components and resources, and it is expected to

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Pereira and L. Ricci (Eds.): DAIS 2019, LNCS 11534, pp. 170–178, 2019.
https://doi.org/10.1007/978-3-030-22496-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22496-7_11&domain=pdf
http://orcid.org/0000-0002-4465-6197
http://orcid.org/0000-0003-1574-6721
http://orcid.org/0000-0003-1493-6603
https://doi.org/10.1007/978-3-030-22496-7_11

Developing Secure Services for IoT with OP-TEE 171

boost the trusted applications (TA) ecosystem in developing and using common
standards and APIs.

It is only very recently that the first open-source tools aiming to exploit
these capabilities have emerged. Notable examples include Linaro ARM Trusted
Firmware [14], ARM GNU Toolchain [1], Android’s Trusty [11], Trustonic’s
Kinibi [21], NVIDIA’s TLK [18] and finally Linaro’s Op-Tee [17].

Kernel mode

User mode

Rich application Trusted application (TA)

Secure
kernel

tee-supplicant

GlobalPlatform
TEE Client API (libteec)

OP-TEE
driver Rich kernel

GlobalPlatform
TEE Internal API (libutee)

Storage

Shared
memory

Secure Monitor
& TEE core

Internal TEE
utility functions

OP-TEE OS
OP-TEE Client

REE (non-secure) TEE TrustZone(secure)

User mode

Kernel mode

Fig. 1. Organization of components within TrustZone and interaction with Op-Tee

A major challenge for developers of trusted applications resides in the com-
plexity of the secure platforms themselves. Despite the existence of standards
and APIs, trusted applications remain OS-specific because of the custom libraries
provided by the different vendors. Theses libraries are specialized for the various
processors and are required to access secure storage and processing elements.
They rely on drivers shipped with the hardware by the silicon manufacturer.
Furthermore, dispatching trusted OSs requires trusted OS-specific code in the
firmware, which adds up to the issue. This greatly hinders the portability of
trusted applications across different trusted OSs and, as consequence, forces TA
developers toward implementing and supporting several versions of trusted OS-
specific TAs.

In this paper, we focus on a specific framework, Op-Tee [17], which has
gained much attention recently and is arguably the most mature open-source
framework for developing trusted application with Arm’s TrustZone exten-
sions. We describe its architecture and features, and we evaluate its usability and
performance by developing a simple key-value store. Such a key-value store could
be used to implement a secure password manager, or a secure session manager
protecting session data. We also execute Op-Tee’s secure storage benchmark
and report our results. This preliminary study brings insights into the benefits
of such framework, and in particular how it is able to hide the complexity of the
underlying vendor-specific libraries and processor, as well as their performance
and overhead.

172 C. Göttel et al.

2 Background

2.1 TrustZone in a Nutshell

The TrustZone technology is available in Arm processors since 2003 [4]. It is a
hardware-enforced mechanism isolating a secure world (trusted) from a normal
world (untrusted), which includes all components within the SoC as well as
peripherals. Thus, TrustZone provides secure endpoints to peripherals on the
bus and enables device root-of-trust. Software running in the normal world is
unable to directly access secure components and resources. When booting up
a TrustZone-enabled SoC, secure firmware is the first software component
executed at exception level 3 (EL3). The secure firmware code is responsible
for initializing the platform, installing the trusted operating system (OS) and
routing secure monitor calls. The trusted OS consists of a small and secure
kernel to execute trusted applications (TA). Once the secure world is set up, the
normal world OS is booted in parallel to the trusted OS running in the secure
world. Worlds can be switched via a software-based secure monitor (ARMv8-A)
or in hardware (ARMv8-M) [3]. The secure monitor acts as a gateway and runs
at the highest privilege level EL3 [2].

Table 1. Comparison of platforms

2.2 The GlobalPlatform Specifications for TEEs

The main specifications for secure digital services and devices are published by
industry associations [10,20]. In our study, we focus on the GlobalPlatform

specifications for TrustZone. A rich execution environment (REE) is an exe-
cution environment that involves at least one device and all its components or
an OS, excluding any trusted or secure component. In contrast, a trusted execu-
tion environment (TEE) provides a level of security to protect against attacks
and secures data access. The TEE executes alongside the REE, but is shielded
from it. A trusted application executes inside a TEE and exposes secure services
to applications in the REE. Trusted storage is a hardware or cryptographically-
protected device capable of storing data [9]. Data can be exchanged between an

Developing Secure Services for IoT with OP-TEE 173

application in the REE and a TA by three types of shared memory: whole (an
entire memory region and is allocated by the TEE), partial (only a subset of the
whole with a specified offset), and temporarily, for which a memory buffer region
allocate by the application in the REE temporarily shared with the TA for the
duration of the API call [7].

2.3 The OP-TEE Framework

Op-Tee [17] is a TEE implementation of GlobalPlatform specifications on
top of TrustZone. It can be used alongside a Linux-based distribution running
in the REE. TAs are single-threaded executables stored inside the REE. Users
develop TAs without having to recompile the entire framework. However, Op-

Tee does not provide mechanisms to verify the integrity of a TA. TAs, that do
not origin from a secure storage, can compromise the integrity or protection of
the TEE upon modification. Alternatively, TAs can be directly integrated into
Op-Tee as pseudo TAs. Pseudo TAs run inside Op-Tee OS’ kernel (at secure
EL1) as secure privileged-level services without access to GlobalPlatform’s
Internal Core API. Thus, pseudo TAs can only use Op-Tee’s core Internal API.

Secure storage allows applications to offload data from a TA to either the
REE file system or a replay protected memory block (RPMB) partition of an
embedded multi-media controller (eMMC) device using the Internal Core API.
By default, the Op-Tee OS is configured to use the RPMB [16] if available. The
secure storage is accessible and visible only to the TA that created it.

3 Usability

The communication between an application in the normal world and a TA evolves
around functions handling the context, session, command and shared memory as
shown in Fig. 1. This facilitates interoperability between different GlobalPlat-

form API compatible TEE implementations and allows REE applications to
set up multiple contexts. A context is initialized by referencing the device file
Fig. 1-❶ connecting to the TEE driver Fig. 1-❷. TAs are identified by a univer-
sally unique identifier (UUID), which is referred to when setting up a session
to a TA Fig. 1-❸. To set up a session, Op-Tee will load the TA from the nor-
mal world to the secure world with the help of tee-supplicant Fig. 1-❹. The
tee-supplicant is a daemon running in the normal world used by Op-Tee to
request services from the REE. These steps are skipped when a session to a
pseudo TA is established. A TA can initialize and set up its environment upon
TA creation and session establishment (Fig. 1-❺ and -❻). From this point on, the
REE application can request services from the TA by invoking commands. These
commands can pass up to four parameters, which are either values or references
to shared memory regions. Values are pairs of unsigned 32 bit integers. Shared
memory regions are allocated, registered and released through GlobalPlat-

form API calls in libteec. Without the availability of libteec, developers

174 C. Göttel et al.

would have to communicate directly with the kernel driver through ioctl sys-
tem calls.

In Op-Tee, TAs can use services accessible through GlobalPlatform

Internal Core API Fig. 1-❻ implemented in libutee. TAs are statically linked
against libutee, which wrapps the API functions around assembler macros
to Op-Tee OS system calls. The library provides interfaces to secure storage
Fig. 1-❽, time, arithmetic and cryptographic operations Fig. 1-❼. The secure
storage API encrypts data objects by the use of a secure storage service. The
encryption process involves three keys: secure storage key (SSK), trusted appli-
cation storage key (TSK) and file encryption key. The SSK is generated from
the hardware unique key and is used to derive TSKs. Each TA has a TSK that
is generated from the SSK and the TA’s UUID. Both SSK and TSK are gener-
ated using HMAC SHA256 algorithm [16]. Finally, for every created file, a file
encryption key (FEK) is generated from the pseudo random number generator.
The encrypted data objects are then transferred to the tee-supplicant by a
series of remote procedure calls and stored in a special file. Op-Tee further pro-
vides TAs with libraries for TLS and SSL protocols (libmbedtls [5]), arithmetic
(libmpa) and a subset of ISO C functions (libutils). These libraries are used
in part by Op-Tee to implement GlobalPlatform’s Internal Core APIs, in
particular the Arithmetical API and the Cryptographic Operations API. With-
out these libraries, TA developers would have to provide this code, and they
would not be able to just simply link their TA’s code against this set of initial
libraries. Once the REE application has no further service requests, the session
is terminated and the context is destroyed.

Fig. 2. Throughput-latency plots of shared memory types for key-value TA in TEE
and REE

Developing Secure Services for IoT with OP-TEE 175

4 Performance Evaluation

4.1 Setup

The Op-Tee framework has built-in support for QEMU [6] deployments,
which provides an easy to use and inexpensive way for developers to explore
Arm TrustZone, with little to no downsides compared to hardware deploy-
ments. For this reason, we decided to deploy the key-value store and Op-Tee’s
Sanity Testsuite v3.2.0 [15] on the following two platforms: Dell PowerEdge R330
Server and Raspberry Pi 3B v1.2. The Dell PowerEdge R330 is running Ubuntu
18.04.1 LTS with the 4.15.0-43-generic Linux kernel and is used to emulate the
Raspberry Pi 3B platform with QEMU v2.12.0. A comparison of the two plat-
forms can be found in Table 1. Op-Tee provides a build environment which, by
default, deploys and emulates its OS on an ARM Virtual Machine virt using
a Cortex-A57 with no more than two cores. The deployment was changed to
match the specification of the Raspberry Pi 3B platform as close as possible.

4.2 Shared Memory

We have ported a simple key-value store to a TA, in order to evaluate the
overhead and performance of different types of shared memory. As basis, we
use a modified version of the hash table implementation of kazlib v1.20 [13],
removing support for contexts and dynamic tables. The hash table is static, uses
separate chaining to resolve collisions, applies a modular hashing and has 251
chains. We time every DEL (delete), GET and PUT operation for each benchmark by
referring to CLOCK MONOTONIC in the REE. Operations are uniformly distributed
and issued 256 times at a rate of 1 to 32768 operations per second.

When using whole or partially shared memory introduced in Sect. 2.2, the
REE application requests a shared memory region of 512 KiB and fills it with
random data from /dev/urandom. Similarly, the REE application allocates and
initializes a 512 KiB buffer used as temporarily shared memory. Before every
invocation of a key-value operation, a random offset into the shared memory
region is computed, which is also used as key. A chunk size of 1 KiB beginning
at the random offset is used as data object. The PUT benchmark starts with an
empty hash table. The DEL and GET benchmarks start with a pre-populated hash
table of 256 data objects. Finally, the mixed benchmark (ratio of GET and PUT
operations) begins with a pre-populated hash table relative to the percentage of
GET operations.

Figure 2 shows throughput and latency for the different shared memory types
and for running the key-value store entirely in the REE. On the QEMU plat-
form, the operations do not separate as well as on the Raspberry platform; we
assume due to reaching an I/O bound. The operations on the Raspberry plat-
form separate as expected according to their throughput (lowest to highest):
PUT, MIX50, MIX20, GET, and DEL. The overhead of the PUT operation is due to
memory allocation, memory copy and object insertion. The GET operation looks
up a data object and copies it to shared memory, resulting in a lower overhead.

176 C. Göttel et al.

The higher the portion of PUT operations in the MIX benchmarks is, the slower
the average operation speed becomes. Thus, MIX50 (50% PUT operations) has a
lower average throughput than MIX20. The DEL operation looks up a data object
and frees its memory, avoiding time consuming memory operations. Comparing
TEE throughput against REE throughput yields a 12 to 14 × overhead on the
QEMU platform and a 12 to 17 × overhead on the Raspberry platform. A sim-
ilar experiment was conducted in [19], where they compared the time spend in
normal and secure world when invoking a noop operation.

4.3 Secure Storage

The secure storage benchmark is part of the Op-Tee sanity test suite adhering
to the Trusted Storage API for Data and Keys described in [8]. Neither of the
platforms is equipped with an eMMC, for which reason the secure storage has to
be offloaded to the REE file system. The benchmark executes three commands
WRITE, READ, and REWRITE, for data sizes in the range of 256 B to 1 MiB, that
are accessed in chunks of at most 1 KiB. The REWRITE command first reads data
from an object, resets the cursor and writes the data back to the same object.
The data to be stored in the secure storage is allocated and filled with scrambled
data within the TEE.

Fig. 3. Secure storage benchmark execution time and throughput

Figure 3 shows the overhead of accessing data in chunks of 1 KiB in the
secure storage. In general, the overhead becomes more significant with increasing
data sizes, more precisely once the data size exceeds the chunk size. Maximum
speed is achieved when the data size equals the chunk size. Overall, the REWRITE
command has the highest overhead, because it basically executes the READ and
WRITE commands in one batch.

Developing Secure Services for IoT with OP-TEE 177

5 Concluding Remarks

Development of secure services benefits from well established APIs and stan-
dards. Op-Tee has implemented several of GlobalPlatform’s specifications
and APIs and provides common interfaces for secure services. We have ported a
simple key-value store to a TA and we have studied the performance and usabil-
ity of secure storage and shared memory. The results of our benchmarks have
shown that requesting services from TAs in TrustZone on ARMv8-A using
Op-Tee incurs a significant overhead compared to service execution in the nor-
mal world. Limiting the space available to a TA is sensible, in order to minimize
the trusted computing base. However, the default memory limit of 1 MiB for
TAs in Op-Tee becomes a major inconvenience with respect to secure storage
and shared memory.

Generating the SSK in Op-Tee requires the HUK. However, most platforms
lack of documentation to access or obtain the HUK. Op-Tee avoids this issue
by considering a static string value instead of the HUK. This alternative can
potentially weaken the cryptographic protection of the objects stored in the REE
file system of the secure storage. TEEs would greatly benefit from unrestricted
access to HUKs and could so improve the protection of trusted storage.

We expect the trusted application ecosystem to improve portability of TAs
among TEEs. Furthermore, we hope that our evaluation of usability and perfor-
mance of TAs provides deeper insight into future development of trusted services.

Acknowledgments. The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation programme under the
LEGaTO Project (legato-project.eu), grant agreement No. 780681.

References

1. Arm Limited: ARM GNU Toolchain. https://developer.arm.com/open-source/
gnu-toolchain/gnu-a. Accessed 22 Feb 2019

2. Arm Limited: Fundamentals of ARMv8-A, March 2017. https://static.docs.arm.
com/100878/0100/fundamentals of armv8 a 100878 0100 en.pdf. Accessed 22 Feb
2019

3. Arm Limited: Trustzone technology for the ARMv8-M architecture, March 2017.
https://static.docs.arm.com/100690/0200/armv8m trustzone technology 100690
0200.pdf. Accessed 22 Feb 2019

4. Arm Limited: Isolation using virtualization in the secure world (2018). https://
developer.arm.com/-/media/Files/pdf/Isolation using virtualization in the
Secure World Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2.
Accessed 22 Feb 2019

5. Arm Limited: mbed TLS, February 2019. https://tls.mbed.org. Accessed 22 Feb
2019

6. Bellard, F.: QEMU, January 2019. https://www.qemu.org. Accessed 22 Feb 2019
7. GlobalPlatform Inc.: TEE Client API Specification Version 1.0, July 2010,

GPD SPE 007

http://legato-project.eu
https://developer.arm.com/open-source/gnu-toolchain/gnu-a
https://developer.arm.com/open-source/gnu-toolchain/gnu-a
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
https://tls.mbed.org
https://www.qemu.org

178 C. Göttel et al.

8. GlobalPlatform Inc.: TEE Internal Core API Specification Version 1.2, October
2018, GPD SPE 010

9. GlobalPlatform Inc.: TEE System Architecture Version 1.2, November 2018,
GPD SPE 009

10. GlobalPlatform Inc.: GlobalPlatform Homepage, February 2019. https://
globalplatform.org. Accessed 22 Feb 2019

11. Google LLC: Android Trusty, February 2019. https://source.android.com/
security/trusty. Accessed 22 Feb 2019

12. HEXUS.net: ARM Everywhere. https://hexus.net/static/arm-everywhere/.
Accessed 22 Feb 2019

13. Kylheku, K.: Kazlib, November 2000. http://www.kylheku.com/∼kaz/kazlib.html.
Accessed 22 Feb 2019

14. Linaro Limited: Linaro Trusted Firmware. https://www.linaro.org/engineering/
projects/arm-trusted-firmware/. Accessed 22 Feb 2019

15. Linaro Limited: OP-TEE Sanity Testsuite, June 2018. https://github.com/OP-
TEE/optee test/tree/3.2.0. Accessed 22 Feb 2019

16. Linaro Limited: Secure Storage in OP-TEE, May 2018. https://github.com/
OP-TEE/optee os/blob/3.2.0/documentation/secure storage.md. Accessed 22 Feb
2019

17. Linaro Limited: Open Portable Trusted Execution Environment, February 2019.
https://www.op-tee.org. Accessed 22 Feb 2019

18. NVIDIA Corporation: TLK Repository, October 2015. http://nv-tegra.nvidia.
com/gitweb/?p=3rdparty/ote partner/tlk.git. Accessed 22 Feb 2019

19. Pettersen, R., Johansen, H.D., Johansen, D.: Secure edge computing with ARM
TrustZone. In: Ramachandran, M., Muñoz, V.M., Kantere, V., Wills, G., Walters,
R., Chang, V. (eds.) Proceedings of the 2nd International Conference on Internet
of Things, Big Data and Security, vol. 1, pp. 102–109 (2017). https://doi.org/10.
5220/0006308601020109

20. Trusted Computing Group, February 2019. https://trustedcomputinggroup.org.
Accessed 22 Feb 2019

21. Trustonic: Trustonic Kinibi, February 2019. https://www.trustonic.com/markets/
iot. Accessed 22 Feb 2019

https://globalplatform.org
https://globalplatform.org
https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://hexus.net/static/arm-everywhere/
http://www.kylheku.com/~kaz/kazlib.html
https://www.linaro.org/engineering/projects/arm-trusted-firmware/
https://www.linaro.org/engineering/projects/arm-trusted-firmware/
https://github.com/OP-TEE/optee_test/tree/3.2.0
https://github.com/OP-TEE/optee_test/tree/3.2.0
https://github.com/OP-TEE/optee_os/blob/3.2.0/documentation/secure_storage.md
https://github.com/OP-TEE/optee_os/blob/3.2.0/documentation/secure_storage.md
https://www.op-tee.org
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git
https://doi.org/10.5220/0006308601020109
https://doi.org/10.5220/0006308601020109
https://trustedcomputinggroup.org
https://www.trustonic.com/markets/iot
https://www.trustonic.com/markets/iot

Author Index

Amacher, Julien 133
Aublin, Pierre-Louis 91

Berta, Árpád 108
Bilicki, Vilmos 108
Bistarelli, Stefano 152

Chrisment, Isabelle 116

Danner, Gábor 74
De Koster, Joeri 57
De Meuter, Wolfgang 36, 57
De Porre, Kevin 36
De Troyer, Christophe 36
Dechev, Damian 19
Delgado-Gonzalo, Ricard 91

Felber, Pascal 170

Göttel, Christian 170
Gonzalez Boix, Elisa 36

Hegedűs, István 74

Jelasity, Márk 74, 108

Lebanoff, Lance 19
Lemay, Mathieu 91

Meftah, Lakhdar 116
Myter, Florian 36

Pannacci, Claudio 152
Peterson, Christina 19
Pietzuch, Peter 91

Rouvoy, Romain 116

Santini, Francesco 152
Schiavoni, Valerio 91, 133, 170
Scholliers, Christophe 36
Segarra, Carlos 91
Shekow, Marius 1
Szabó, Zoltán 108

Téglás, Krisztián 108

Van den Vonder, Sam 57

	Foreword
	Preface
	Organization
	DisCoTec Keynotes
	Versatile Quantitative Modelling: Verification, Synthesis and Data Inference for Cyber-Physical Systems
	ALGORAND – The Distributed Ledger for the Borderless Economy
	Making Sense of Fast Big Data (DAIS Keynote)
	Contents
	Syncpal: A Simple and Iterative Reconciliation Algorithm for File Synchronizers
	1 Introduction
	2 Background
	2.1 File Synchronizers
	2.2 File System Model
	2.3 State-Based Update Detection

	3 Approach
	3.1 Phase 1: Preparation
	3.2 Phase 2: Execution

	4 Application
	4.1 Step 1: File System Model Formalization
	4.2 Step 2: Conflict Detection
	4.3 Step 3: Resolving conflicts
	4.4 Step 4: Analysis of Operation Order Dependencies

	5 Evaluation
	6 Conclusions
	References

	Check-Wait-Pounce: Increasing Transactional Data Structure Throughput by Delaying Transactions
	1 Introduction
	2 Related Work
	2.1 Transactional Data Structure Methodologies
	2.2 Reordering Transactions

	3 Check-Wait-Pounce
	3.1 Algorithm Overview
	3.2 Algorithm Details

	4 Correctness
	4.1 Rules
	4.2 Strict Serializability and Recovery

	5 Evaluation
	5.1 Experimental Setup
	5.2 Linked List
	5.3 Skip List
	5.4 Transaction Size
	5.5 Check-Wait-Pounce Parameters

	6 Conclusion
	References

	Putting Order in Strong Eventual Consistency
	1 Introduction
	2 Strong Eventually Consistent Replicated Objects
	2.1 SECRO Data Type
	2.2 State Validators

	3 SECRO's Replication Protocol
	3.1 Algorithm

	4 Evaluation
	4.1 Methodology
	4.2 Memory Usage
	4.3 Execution Time
	4.4 Throughput

	5 Related Work
	6 Conclusion
	A Proof: Operations Cannot Break the Transitive Closure of Concurrent Operations
	B The Effect of Commit on the Execution Time
	C Detailed Execution Time
	References

	Composable Actor Behaviour
	1 Introduction
	2 Code Reuse in Actor-Based Languages
	2.1 Inheritance
	2.2 Trait Composition
	2.3 Function Composition
	2.4 Communicating Event-Loops
	2.5 Problem Statement

	3 Delegation-Based Actor Composition in Stella
	3.1 Motivating Example
	3.2 The Base Stella Language
	3.3 Delegation-Based Behaviour Composition in Stella

	4 Operational Semantics of Stella
	4.1 Syntax
	4.2 Semantic Entities
	4.3 Notation
	4.4 Static Semantics
	4.5 Dynamic Semantics

	5 Conclusion
	References

	Gossip Learning as a Decentralized Alternative to Federated Learning
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Gossip Learning

	3 Algorithms
	4 Experiments
	4.1 Datasets
	4.2 System Model
	4.3 Smartphone Traces
	4.4 Hyperparameters and Algorithms
	4.5 Results

	5 Conclusions
	References

	Using Trusted Execution Environments for Secure Stream Processing of Medical Data
	1 Introduction
	2 Background
	2.1 Technical Background
	2.2 Heart Rate Variability Analysis

	3 Architecture
	3.1 Server-Side
	3.2 Clients
	3.3 Threat Model
	3.4 Known Vulnerabilities

	4 Implementation
	4.1 Server-Side
	4.2 Clients
	4.3 Deployment

	5 Evaluation
	5.1 Settings
	5.2 Experiment Configurations
	5.3 Results

	6 Related Work
	7 Future Work
	8 Conclusion
	References

	Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems
	1 Introduction
	2 Data Collection Methodology
	3 Some Measurement Results
	4 Conclusion
	References

	FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps
	1 Introduction
	2 Related Work
	3 Privacy Threats in Mobile Crowdsourcing Systems
	4 FOURGERE: Empowering Workers with LPPMs
	5 Implementation Details on Android
	6 Evaluations of FOUGERE
	6.1 Evaluation Protocol
	6.2 Empirical Evaluation

	7 Threats to Validity
	8 Conclusion
	References

	On the Performance of ARM TrustZone
	1 Introduction
	2 Background
	2.1 TRUSTZONE in a Nutshell
	2.2 The OP-TEE Trusted OS

	3 Methodology
	4 Evaluation
	5 Lessons Learned
	6 Conclusion
	References

	CapBAC in Hyperledger Sawtooth
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 IoT and ACMs

	3 CapBAC and Blockchains
	3.1 CapBAC
	3.2 Blockchains with CapBAC: Characteristics

	4 Implementation
	4.1 A New Transaction Family for CapBAC
	4.2 Testing Environment

	5 Related Work
	6 Conclusion and Future Work
	References

	Developing Secure Services for IoT with OP-TEE: A First Look at Performance and Usability
	1 Introduction
	2 Background
	2.1 TrustZone in a Nutshell
	2.2 The GlobalPlatform Specifications for TEEs
	2.3 The OP-TEE Framework

	3 Usability
	4 Performance Evaluation
	4.1 Setup
	4.2 Shared Memory
	4.3 Secure Storage

	5 Concluding Remarks
	References

	Author Index

