
Robots in the Classroom

Mobile Robot Projects in Academic Teaching

Jörg Roth(&)

Faculty of Computer Science, Nuremberg Institute of Technology,
Nuremberg, Germany

Joerg.Roth@th-nuernberg.de

Abstract. The field of mobile robotics has a long tradition and due to recent
developments, we expect a huge potential for the future. Expertise in the area of
mobile robotics is important for computer science students. The topic has many
connections to different other computer science areas such as computer vision,
algorithms, planning, world modeling and machine learning but is also related to
basic fields such as mathematics, geometry, statistics, graph theory and opti-
mization techniques. Students have to consider hardware and real-time issues,
meanwhile they have to deal with uncertainty of data that are based on sensors.
Software development differs from typical desktop, office or client-server
developments that often are in focus of computer science studies. As a conse-
quence, academic courses on mobile robotics differ in many ways from other
courses. A major issue: we have to get the students very quickly to a point to
achieve progress in their projects. Moreover, the teacher has to have an envi-
ronment to manage the different facets of the complex topics.

Keywords: Mobile robotics � Robot platforms � Robot simulation �
Academic teaching

1 Introduction

This paper presents ongoing efforts to integrate mobile robot projects in the academic
curriculum of computer science degrees programs (Bachelor and Master). The
Nuremberg Institute of Technology is of type University of Applied Sciences. This
means, its basic task is teaching whereas research, even though strongly encouraged,
appears in second place.

Mobile robotics will play a major role in future society and industry. The appli-
cations range from household and service robots, medical robots, health care to
industrial transport systems and autonomous driving. Besides general development of
mechanical platforms, sensors, actuators and computing hardware, we experience great
advances in the area of machine learning. For future computer scientist it is essential to
have fundamental experience in the area of robotics to be prepared for future tasks.

The computer science degree programs provide a broad education in different areas.
Thus, the topic mobile robotics often is an area of specialization. As a consequence,
this topic usually is not represented in the student’s program mandatory field. At the

© Springer Nature Switzerland AG 2019
K.-H. Lüke et al. (Eds.): I4CS 2019, CCIS 1041, pp. 39–53, 2019.
https://doi.org/10.1007/978-3-030-22482-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22482-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22482-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22482-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-22482-0_4

Computer Science department of the Nuremberg Institute of Technology the field of
robotics can be covered in

• compulsory elective subjects,
• student’s projects,
• Bachelor and Master theses.

This means, the topic either occurs in the later part of the studies or in the
Master’s program. This is reasonable, as mobile robotics require competence in e.g.
mathematics, data structures, algorithms, graph theory and programming.

A supervisor of courses on mobile robotics has to deal with different challenges.
We identified the following areas:

• Technical: A robot platform has to be made available. This includes the actual robot
(hardware), but also the environment to develop, test and upload software.

• Didactic: The large area of robotics must be tailored to a special amount of
knowledge that fits into the respective program.

• Organizational: This includes the administration of the (costly) material, service,
upgrading, but also supervising safety procedures.

In this paper we describe the experience of several courses in the area of robotics
over many years.

2 Robots from the Technical View

2.1 The Robot Platforms

The integration of mobile robots in our courses started 2013 with the Carbot robot ([10,
12], Fig. 1, top, left). The main goal was to gather experience with a driving (car-like)
robot. In 2017 we introduced a second, legged platform, the hexapod Bugbot ([11],
Fig. 1, top, right) that additionally makes it possible to address 3D motion problems
and gait execution.

The experience with mobile robots in the teaching area actually started some years
earlier in 2010 with a first course. At this time, we used Lego NXT sets [1] to teach
knowledge about wheeled robot construction and programming. Even though, the
courses were a great success from the perspective of students, it was disappointing
concerning the richness of contents. The reasons were:

• The mechanical platform mainly consisting of plastic material prevents the con-
struction of precise and stable robots that are able to execute more complex tasks
such as exactly driving planned trajectories.

• The sensors supplied with the sets are mainly of simple type (e.g. switches,
ultrasonic). The respective output does not enable detailed world modeling.

• The computing power of the so-called ‘bricks’ (i.e. the computing components) was
too weak to execute typical robotics tasks such as sensor data fusion or navigation.

The goal was thus in 2013 to introduce a new robot model, the Carbot. We gave up
the ambition to make the robot construction as a part of the course. As this is typically a

40 J. Roth

mechanical engineering tasks and does not actually enrich the computer science skills,
this was reasonable. Thus, the Carbot construction was completely predefined con-
cerning the mechanics, motors and sensors. The students only should extend and
modify the software components.

For the Carbot construction we relied on the Tetrix kit – it contained stable metal
bars assembled with screws. In addition, strong driving motors, servos and motor
controllers were part of the kits. The specific construction was a unique set up, entirely
developed in our faculty. For the legged robot Bugbot we used the widely available
Trossen Phantom Mark III kit that mainly contained a body, the hexapod legs and a
motion control system based on Arduino. This kit provided an empty mounting plate,
where we added additional computing boards and sensors.

Figure 1 (bottom) shows the architecture of the Bugbot. One goal was to have fully
independent robots concerning power supply and computing power. Both robots carry

Computing

Power Supply

Sensors

USB

On-
Board
WLAN Raspberry Pi

A/D
Input

Maintenance

Lidar
USB

FTDI-USB-
Interface

Serial

GPIO

Acceleration
Sensor

IR Leg
Sensor Right

IR Leg
Sensor Left

Ultrasonic
#0

Ultrasonic
#1

5 V

12 V

Ethernet

Computing
Battery Pack

Maintenance,
Debugging and

Commands

Ardiuno
ArbotiX-M

Motion System
Battery Pack

Motors

6 Legs

Femur
Servo

Tibia
Servo

Coxa
Servo

Maintenance

Serial (Daisy Chains)

Fig. 1. Carbot (top, left) and Bugbot (top, right), Bugbot architecture (bottom)

Robots in the Classroom 41

two batteries – one for the motors, one for the computing board. As the basic com-
munication link the robots install a WLAN access point at startup. The developer’s PC
or notebook can login to the respective WLAN cell to install new software, debug the
robot’s software or send task descriptions, e.g. to drive or walk to a specific location.

Both robots have two computing components. One is for higher level tasks such as
sensor processing, world modeling and path planning. Currently, this is a Raspberry Pi.
The second computing component called the Motion Subsystem is represented by a
smaller computing platform (from the viewpoint of computing power), but with more
capabilities concerning motor control. On the Carbot, we use a NXT brick, well-known
from former robot projects. On the Bugbot we use an Arduino that meets the embedded
computing demands to operate the 18 servos (three for each of the six legs). The
operation programs on the Motion Subsystem computing components are considered as
fixed and are usually not subject to changes for e.g. a specific robot tasks. A control
interface accepts motion commands (e.g. drive a curve, walk straight) that are auton-
omously executed. For technical reasons, also some of the sensors are attached to the
Motion Subsystem.

Both robots contain a lot of sensors on board. The Carbot is able to map the world
with the help of a camera in driving direction and a 360°-Lidar (Light Detection and
Ranging). Quick obstacle detection is provided by Ultrasonic and Tactile sensors.

The Bugbot also carries a Lidar and is able to perceive small distance with two
Ultrasonic sensors, mounted in different angles. To avoid falling downstairs, the front
legs measure the distance to the bottom with two Infrared distance sensors. Both robots
use an acceleration sensor to detect tilt angles, collisions and unexpected movements
(e.g. falling).

2.2 Simulation Environments

At the time of first course that used the Carbot robot, it was obvious that the hardware
was the critical resource. Even though we had three identical Carbots, it was critical to
integrate them too careless into the student’s work. We quickly gave up the idea of
weekly schedules and ‘robot hours’ to grant access to the three robots for testing. As
the schedules had to be synchronized with battery loading times (some hours), the
respective slot for testing for a complete class (e.g. with 18 students in 6 groups) would
have been too small.

It turned out that an appropriate simulation environment was unavoidable [7]. This
should easily be installed on the lab PCs, student’s notebook or home computing
environment. The real robot should only be used for final testing and result presen-
tation. We had great demands: the developed software should both run on real robot
and simulator without modifying the code, even without the need of recompilation.
Moreover, simulated motors, sensors and execution environments should be very close
to real facilities, concerning timing, precision, errors etc.

Table 1 presents reasons to use a simulation environment in classrooms. Even
though we have numerous benefits, we had significant efforts for developing the
simulators. Because the respective robot platforms are highly specialized, it is not easy

42 J. Roth

to use a simulator of the shelves – the configuration effort would be very high and some
functions would even not be possible to realize. We thus fully relied on own developed
simulators.

Figure 2 shows a screenshot of the Carbot simulation environment. The main
window contains a ground map with the virtual environment and robot, in addition we
see the virtual camera image and Lidar scan. Figure 3 shows the more complex Bugbot
simulation environment. In contrast to the Carbot, the Bugbot is able to walk over small
obstacles and climb small steps, thus we need a physical simulation in three
dimensions.

Table 1. Ten reasons for robot simulation

Reason Description

1. Convenience The simulator is very convenient. We may execute runs at any
place with a notebook.

2. Valuably of the
hardware

Robots are costly (i.e. Bugbot more than 3000€). Some parts are
unique or are not produced any more. Assembly of parts is costly
in terms of human resources.

3. Number of robots We have too few robots. In larger courses with e.g. 30 Students
it is not possible to provide enough platforms, even if we form
groups.

4. Complexity of usage Real robots are difficult to handle. They are no consumer
products. E.g. startup and shutdown require several steps.

5. Danger for users and
environment

Even though our robots are no ‘killing machines’ their motors
have a reasonable strength. They can easily harm persons and
damage things.

6. Danger for robots
themselves

Robots can easily damage themselves, e.g. uncontrolled servo
motors can exceed joint limits or break cables.

7. Runtime preparations The robot often is not prepared when needed. Typical problems:
batteries are not loaded, software not updated or sensors not
repaired.

8. Serving incomplete
robot functions

Real robots only run, if all functions run stably, from sensor
processing to action planning. Thus, we can only start with a
new idea, if all was available. Simulators can replace unavailable
functions by their ‘ultimate knowledge’. E.g. if real SLAM is
currently not working, we can assume an ultimately precise
(virtual) SLAM using the simulator’s internal robot position.

9. Difficulty of
modifications

Modifications of the real robots are difficult. In the simulator we
can e.g. add new sensors or change the robot’s geometry with
only few lines of code.

10. Setting up test
environments

To create real test environments for robots is costly and requires
a lot of physical space. In the simulator we can e.g. build large
mazes or climbing courses with convenient configurations.

Robots in the Classroom 43

Fig. 2. The Carbot simulation environment

Fig. 3. The Bugbot simulation environment

44 J. Roth

Both simulators provide the following functions:

• simulation of physical effects, e.g. gravity, friction,
• modeling of virtual environments with obstacles, walls or areas of lower traction,
• scheduling of moving objects that represent, e.g. people who walk through the area,
• simulation of motors and sensors with their specific error and precision properties,
• simulation of virtual cameras – even though also kind of sensors they fundamentally

differ in terms of complexity, API and image processing function,
• providing an execution environment for the Motion Subsystem code,
• generating graphical output for the user,
• generating statistics, e.g. measure the virtual damage due to collisions,
• execution of logging and debugging functions,
• state control, e.g. restart the virtual robot, pause a test run.

Figure 4 shows the simulators’ structure. Most important is the physical simulation
component. It executes the natural law in the virtual environment, foremost gravity,
collision of solid obstacles and friction [5]. It, e.g., lets the Bugbot fall down, if the
center of gravity is outside the legs’ support polygon. It is also possible to define parts
of the bottom as more slippery (e.g. like ice surface) to evaluate, how good the
trajectory regulation works. Until now we use an own development for the physical
simulation component, but a current student’s project tries to replace it by Bullet
Physics Engine [3].

We simulate the motors on a very fine-grained level of single motor steps. To
access the motors on the real environment in the same ways as in the simulator, we
make use of the motor interfaces: on the Carbot we have I2C commands, on the Bugbot
a serial protocol to control motors. With sensors we deal in the same way, whereas the

Physical Simulation and
Virtual Environment

Sensor
Interface

Motor
Interface

Robot and
Environment State

Environment
Configuration

Motion Subsystem
Code Sandbox

Motion
Subsystem Code

Motion Subsystem
Command Interface

s
Simulated

Motors

State Control
Interface

State
Control

s
Simulated

Sensor

Schedule
Moving Objects

Fig. 4. Structure of the simulation system

Robots in the Classroom 45

way sensors are attached is more heterogeneous. They are attached, e.g. via I2C bus,
GPIO, A/D ports or USB. Thus, for each sensor, a software driver is realized that maps
access commands to the hardware or simulation facility. This again ensures same
control code between real and simulated robot.

The most complex ‘sensor’ is the HD camera. As it is too difficult to simulate each
access command of the respective hardware interface, we developed a high-level driver
to read the image stream from the real or virtual camera.

It is also very complex to embed the Motion Subsystem code into the simulation
environment. The problem: both Motion Subsystem computing components have their
operating system and runtime libraries – on the Carbot it is NXJ (a Java environment
for the Lego NXT brick), on the Bugbot it is Arduino. In the simulation environment
we thus have to reimplement all respective calls and provide equal functions. This is
performed by the so-called Motion Subsystem Code Sandbox – also an own
development.

2.3 Runtime Modes and Debugging

Debugging robot programs is crucial. Typical debugging mechanisms, such as single
step execution or break points are not useful due to the multithreading and event-based
nature of typical robot programs. Useful debugging information often is not a single
variable value but has a geometric nature, e.g. measured distances, positions, world
models, grids or visibility graphs.

As a consequence, we integrated two debugging mechanisms in the platform:
debug out that is a traditional text-based log and debug painting. The latter allows the
developer to paint simple graphics with coordinates in world dimensions (e.g. cm scale)
on a 2D canvas. In the simulator, this output is directly painted on the 2D environment
map. In Fig. 2, e.g., we see the occupancy grid painted on the ground map. The debug
painting facility is very useful to get an impression of the robot’s current knowledge of
the world and significantly simplifies debugging of control code.

The usage of debugging facilities is different in the three runtime modes (Fig. 5).
The robot controller is the actual robot application, e.g. exploring the environment or
navigating from point to point. In the simulation mode the robot controller and exe-
cution environment run in the simulator, all together run in a desktop application. From
the view of software components, this is the ideal case as all software components run
in the same memory.

Running the robot controller on the real robot, we have two cases. We still may use
the desktop application for debugging. All debugging calls are redirected through a
debug bridge that transfers the respective calls via WLAN to the desktop application.
The developer can still see all debugging information on a convenient workplace,
however, further data such as the (simulated) environment map is not available.

The last mode called native mode is the actual mode for real robots. Debug painting
calls are directed to empty functions and debug out is passed to a text file for later
analyses.

For all modes we have a component called commander. This allows a user at
runtime to specify the robot’s tasks. E.g. a user could specify the position, the robot
should drive or walk to. For this, the user enters a command that indicates the

46 J. Roth

movement target and the robot agrees replying ‘OK’ or disagrees, if the target was out
of the reachable area. For more evolved robots, the commander could later be expanded
by a convenient user interface, e.g. a touch panel – currently a command-line oriented
way is sufficient. Like the debug calls, the commander may communicate with the
robot controller in memory, via the debug bridge or, in native mode, via the operating
system’s console streams.

In robot courses, the commander with its text-oriented nature is ideal for the lec-
turer to define test cases for the robot controller. They can e.g. be stored in text files
(passed via clipboard) or even can be passed by command line at startup.

3 Robots as Subject of Teaching

3.1 Types of Courses and Contributions

The Carbot and Bugbot platforms were created to form an environment for robot
research and to teach robotics skills in classes. As a university of applied sciences has
teaching as primary task, a professor often has to combine research projects and student
projects. Due to a lack of mid-level academic positions (e.g. PhD students) we have to
shift some research tasks (e.g. implementing ideas) to students.

Desktop Application

Simulator

Robot Controller

Libraries

Execution
Environment

Debug Out

3D Output

2D Map

Commander

Debug
Painting

Desktop
Application

Real Robot

Robot Controller

Libraries

Execution
Environment

Debug Out

Commander

Debug PaintingD
ebug B

ridge

Real Robot

Robot Controller

Libraries

Execution
Environment

Debug Out
(direct to file)

Commander
(I/O from console)

Debug Painting
(empty)

Fig. 5. Runtime modes, simulation (top), real robot with debug bridge (bottom, left), native
mode (bottom, right)

Robots in the Classroom 47

In the teaching area, we want to pursue the following goals with our robot
platforms:

• They should serve for different course formats, e.g. elective subjects, Master theses.
• We want to transmit knowledge in different areas of mobile robotics such as

computer vision, navigation, path planning, world modeling, kinetics [15], sensor
data fusion, SLAM (simultaneous localization and mapping) [4] and machine
learning.

• The students should get very quickly to a point to achieve progress in their projects.
This is an important demand as the (short) time is limited by the respective course
formats.

• The students should be able to fade out problems that are not part of their project.

The last two points are crucial. Robots are complex and combine a lot of different
components. For a student it is very demanding to get knowledge about all these
components in sufficient depth in the short time of a course. E.g. a student should
prepare a Bachelor thesis in only five months. In this time she or he should read
literature, prepare an approach, implement and test it and write the thesis. For a certain
topic inside the robot project, the student should start immediately, without to get
distracted by robot components that are not in the focus. Moreover, it should be
possible to assume near-optimal performance of these components to evaluate the own
work. To give an example: if a student should implement a new navigation algorithm, it
is difficult to also consider obstacle detection from camera images. Obstacle detection
on real robots often causes errors. As a result, the robot sometimes assumes obstacles at
wrong positions. The correction of wrong obstacles would overload the student’s
project, but they would significantly falsify the evaluation of the navigation approach.
This again shows the benefit of the simulation environments. The simulator can provide
theoretically correct obstacle detection, as we can put the virtual sensors into error-free
mode. In addition, the self-localization can also be set to be optimal. As a result, the
students are able to separately test desired effects of the respective approach.

Simulator

Robot Controller

Libraries

Execution
Environment (real)

Execution
Environment (sim)

Motion SubsystemMotion Subsystem

Development of higher-
level tasks, e.g. to explore

the environment

Development of basic tasks,
e.g. trajectory planning,

sensor-data fusion

Development of
simulation functions,

e.g. physical effects, 3D
rendering, authoring

the virtual environment

Development of sensor
drivers, state control,

debugging mechanisms

Development of basic
motion control, speed

regulation, gait
execution

A

B
C

D

E

Fig. 6. The robot’s software components and potential tasks for students

48 J. Roth

Figure 6 shows the software components that may be topic of a student’s project.
The robot controller was already described in Sect. 2.3. From the development point of
view it provides a certain service but strongly relies on libraries and is firmly embedded
into the runtime environment.

The Libraries are a collection of general-purpose functions for mobile robots. They
are permanently extended by new projects. Currently, the following functions and
algorithms are covered:

• mathematical basics often used for mobile robot projects, e.g. matrix computation,
equation systems, zero points of functions, quaternions, Eigen values, covariances;

• geometric and graph functions also often used for mobile robots, e.g. Voronoi
diagrams, visibility graphs, intersection of geometric primitives, clothoids, polyg-
onal operations;

• navigation and path planning, e.g. grid based A* [9], trajectory planning, trajectory
regulation [13];

• gait modeling and execution, e.g. Tripod, Ripple, Ample gait [14];
• world modeling, e.g. point clouds, spatial indexing [8];
• localization and mapping, e.g. ICP [2], Hector-SLAM [6];
• robot runtime access and life cycle control.

The Execution Environment contains access drivers, serial protocols and basic
platform services such as logging and debugging. It also contains the Motion Sub-
system, described in Sect. 2.1. Finally, the Simulator maybe subject of extensions by
students, e.g. the physical simulation engine can be extended to simulate more effects.

The respective contributions (A)–(E) (Fig. 6) are distributed among the types of
courses. At our faculty we have:

• Master thesis: 8 months, single student,
• Bachelor thesis: 5 months, single student,
• Student’s project: 12 months, 3–5 students,
• Compulsory elective subject: 15 weeks, 15–30 students.

Table 2 shows the courses of the last years. We see (C) and (D) only rarely occur,
as they are very special to our platforms and do not transport general knowledge about
robotics. In addition, they are ‘mission critical’ – errors or problems would significantly
hinder future projects. Thus until now, these components are usually developed by the
teaching staff and considered as stable.

Contribution of type (A) is ideal for elective subjects over a single term. The
benefit: the students build their software upon a stable and well-documented API. In
particular they can fade out the structure of the platform and internal components. It
also is possible to let the students re-implement available functions that already were
integrated into the Libraries. E.g., in one course, the students had to realize a Robot
Controller which was able to navigate through unknown environment. As this function
already was realized, we deployed a reduced library that did not contain navigation
facilities.

Theses mostly were of type (B). Here, we heavily made use of students’ projects
that also advanced our research – the students often realized new ideas or existing
approaches as a basis for comparison with our research ideas.

Robots in the Classroom 49

Type (E) also rarely occurs. Similar to the runtime environment, the simulator is a
critical resource. Moreover, it is more difficult to identify appropriate internal inter-
faces. These however are required to define students’ projects in a way to made them
assessable later. Until now we only have the replacement of the rendering engine and
physical engine as project of this type.

3.2 Lessons Learnt

According to our faculty rules, each professor has to evaluate her or his course from the
didactical view. However, we did not get enough quantity for meaningful statistics
about the special approach. In particular, the evaluation mainly covers teaching qual-
ities (e.g. quality of textbook or slides), not the actual topic of mobile robotic. In
addition, it is very difficult to compare the students’ feed back between different types
of course and the different types of contribution (A)–(E). Finally, even though we get a
large total number of projects, the number for a certain combination still is low.
Nevertheless, we got a good impression. In this section we will discuss some lessons
learnt.

The simplicity of deployment and installation of the simulator was appreciated by
students. If the project was to develop a robot-controller (contribution type (A)), the
students just have to copy a single binary file (of type .jar) and can start their

Table 2. Overview of robot courses

Subject Type of course Contribution

Visual SLAM Master thesis Carbot (B)
Trajectory planning with clothoids Master thesis Carbot (B)
Probabilistic path planning Master thesis Carbot (B)
Visual obstacle recognition Bachelor thesis Carbot (B)
Vector-based navigation Bachelor thesis Carbot (B)
Trajectory regulation Bachelor thesis Carbot (B)
Feature extraction Bachelor thesis Bugbot & Carbot (B)
Efficient point cloud data structures Bachelor thesis Bugbot & Carbot (B)
Incremental navigation Bachelor thesis Carbot (B)
Positioning with ISOVIST features Bachelor thesis Bugbot & Carbot (B)
Grid-based Lidar-SLAM Bachelor thesis Bugbot & Carbot (B)
Kinematics simulation for arthropods Bachelor thesis Bugbot (E)
Dynamic simulated obstacles Bachelor thesis Carbot (E)
Robot motion building blocks Student’s project Carbot (D)
Visual processing Student’s project Carbot (C)
Robot navigation Student’s project Carbot (B) & (E)
Simulation of a 3D camera view Student’s project Carbot (E)
Integration of bullet physical engine Student’s project Bugbot (E)
Programming a navigation tasks Comp. Elect. subject Carbot (A) & (B)
Programming an exploration tasks Comp. Elect. subject Carbot (A) & (B)

50 J. Roth

development and tests. Some students criticized the demands of the tools concerning
computing power – actually older notebooks (often used by students) sometimes were
too weak to smoothly run the simulator.

None of the courses generated noticeable problems with the robotic topic. In
elective subjects all students successfully finished their project, however with different
levels of software quality. As a large time of development was performed with the help
of the simulator, the students welcomed the flexibility. In particular, the programming
could easily be done in groups, partly at home, without waiting for access to the real
robot. Also the debugging tools were positively received. Typical robot programs
contain a number of threads without a traditional windows-based user interface. Thus,
in particular the debug painting facility was a great benefit.

Debug painting is also used for the lecturer to evaluate a student’s work. This also
is usually very difficult, as the quality of a robot component can either only be eval-
uated as black box or by code inspection, both with certain drawbacks. If the lecturer
requires to students to produce meaningful debug painting output, it is easier to get
insights into the student’s project and the involved data structures. However, students
sometimes complained about the demand of meaningful debug painting output. This is,
because this function does not belong to the application task in a closer meaning.
Actually, on the real robot, there is no debug painting facility at all – the respective
calls are redirected to empty procedures. Thus, debug painting usually means extra
coding for the students.

From the teacher’s view, the simulation tool also is a great facility. There are longer
phases where the students can work without explicit supervision. This in particular is a
great benefit, if we think about safety issues. Also costs of damaged parts or even
completely damaged robots are an issue. In elective subjects, it is possible to only
conduct final tests and presentations on the real robot – which then can easier be
supervised by the lecturer.

It also turned out, we strongly benefit from a huge part of own developments. In the
stressful time of a course, each interrupt is always a problem for students as well as for
the lecturer. E.g. during the period of a Bachelor thesis, the student should not lose time
because of technical problems. Deadlines are very tough. Thus, it is a great benefit to
solve technical problems in a close loop. This would not be possible, if we strongly
relied on third-party software, even if it was open source. Own developments also
enable quick adaptations (even though sometimes ‘quick and dirty’) as a result of
unpredicted new demands. These could be a result of adapting projects due to new
insights after the course already has started.

The students also appreciated that the simulation may fade out real-world errors
during testing and development. This allowed the students to first concentrate on their
project’s task. However, one student remarked that the navigation project of an elective
subject was simplified too much and reminded to ‘game development’. As a result, the
lecturer must carefully decide, how to fine-tune the project and environment settings to
meet the course demands.

Besides the benefits of the described approach, we also have to consider some
drawbacks. The major drawback: the development of robots, runtime environments and
in particular the simulators were very time-consuming. Until now we coded an amount
of approx. 200 000 lines of code, of which only a small part of approx. 10% was

Robots in the Classroom 51

contributed by students. Whenever students contribute, a lot of post-processing was
required. This was, because the students often do not achieve the level of software
quality as required when contributing to long-term libraries. Often, formal corrections
were necessary concerning package structures or naming of packages or classes. As
student projects usually run parallel, the platform evolved by one project before fin-
ishing another. Thus, a costly merge of versions was required. As a rule of thumb,
students’ contributions are more crucial when ‘low-level’ (i.e. (D) and (E)) – such work
should be avoided as much as possible for student projects.

4 Conclusions

Teaching mobile robotics skills still is a demanding task. Due to the amount of con-
nected fields, it is a challenge to get the students quickly to a point to achieve progress
in their projects in the short time of an academic course. Our mobile robots Carbot and
Bugbot with their environments form an appropriate basis for a lecturer to offer
respective courses. In particular the simulators keep the technical, organizational and
safety demands as well as costs under control. Moreover, they help the students to
quickly start with their development and keep the hurdle low for first successful
experiences with robot programming. Further testing facilities such as debug painting
help the students to debug their programs and help the teacher to assess projects.

Dependent on the respective teaching targets, some tasks are still demanding, e.g.
development concerning the robot’s execution environment, sensor drivers or simu-
lators. Here teachers have to bear serious integration efforts to keep the entire platform
stable and manageable.

In the future we want to extend the platforms to more support deep learning
technologies. Currently, most of the robot functions are realized in a traditional manner,
in particular functions related to sensor data interpretation. We expect many of these
functions will be provided by deep neural networks in the future.

References

1. Bagnall, B.: Maximum Lego NXT. Variant Press, Winnipeg (2012)
2. Besl, P.J.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell.

14(2), 239–256 (1992)
3. Boeing, A., Bräun, T.: Evaluation of real-time physics simulation systems. In: 5th

International Conference on Computer graphics and interactive techniques in Australia and
Southeast Asia, pp. 281–288

4. Borenstein, J., Everett, H.R., Feng, L.: Where am I? Sensors and methods for mobile robot
positioning. Univ Michigan 119, 27 (1996)

5. Dupont, P.E.: Friction modeling in dynamic robot simulation. In: Proceedings, IEEE
International Conference on Robotics and Automation, Cincinnati, 13–18 May 1990

6. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM
system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety,
Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011

52 J. Roth

7. Pepper, C., Balakirsky, S., Scrapper, C.: Robot simulation physics validation. In: PerMIS
2007 Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems,
Washington, D.C., 28–30 August 2007, pp. 97–104 (2007)

8. Pomerleau, F., Colas, F., Siegwart, R.: A Review of Point Cloud Registration Algorithms for
Mobile Robotics. Now Publishers, Hanover (2015)

9. Roth, J.: Navigation durch Flächen. In: 13. GI/ITG KuVS Workshop on Location-Based
Application and Services, Jena, Germany, 22, 23 September 2016 (in German)

10. Roth, J.: Carbot, Internal Technical Reference, Nuremberg Institute of Technology
11. Roth, J.: Bugbot Kinematics, Internal Technical Reference, Nuremberg Institute of

Technology
12. Roth, J.: A novel development paradigm for event-based applications. In: International

Conference on Innovations for Community Services (I4CS), Nuremberg, Germany, 8–10
July 2015, pp. 69–75. IEEE xplore (2015)

13. Roth, J.: A viterbi-like approach for trajectory planning with different Maneuvers. In: Strand,
M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds.) IAS 2018. AISC, vol. 867, pp. 3–14.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01370-7_1

14. Roth, J.: Systematic and Complete Enumeration of Statically Stable Multipod Gaits, under
review

15. Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT Press, Cambridge
(2003)

Robots in the Classroom 53

http://dx.doi.org/10.1007/978-3-030-01370-7_1

	Robots in the Classroom
	Abstract
	1 Introduction
	2 Robots from the Technical View
	2.1 The Robot Platforms
	2.2 Simulation Environments
	2.3 Runtime Modes and Debugging

	3 Robots as Subject of Teaching
	3.1 Types of Courses and Contributions
	3.2 Lessons Learnt

	4 Conclusions
	References

