
Algorithm Diversity for Resilient Systems

Scott D. Stoller(B) and Yanhong A. Liu

Department of Computer Science, Stony Brook University, New York, USA
{stoller,liu}@cs.stonybrook.edu

Abstract. Diversity can significantly increase the resilience of systems,
by reducing the prevalence of shared vulnerabilities and making vulner-
abilities harder to exploit. Work on software diversity for security typi-
cally creates variants of a program using low-level code transformations.
This paper is the first to study algorithm diversity for resilience. We
first describe how a method based on high-level invariants and system-
atic incrementalization can be used to create algorithm variants. Exe-
cuting multiple variants in parallel and comparing their outputs pro-
vides greater resilience than executing one variant. To prevent differ-
ent parallel schedules from causing variants’ behaviors to diverge, we
present a synchronized execution algorithm for DistAlgo, an extension
of Python for high-level, precise, executable specifications of distributed
algorithms. We propose static and dynamic metrics for measuring diver-
sity. An experimental evaluation of algorithm diversity combined with
implementation-level diversity for several sequential algorithms and dis-
tributed algorithms shows the benefits of algorithm diversity.

1 Introduction

Diversity can significantly increase the resilience of systems, by reducing the
prevalence of shared vulnerabilities and making vulnerabilities harder to exploit.
The idea of intentionally introducing software diversity as a defense mechanism
has been around for decades, e.g., [5,6]. It is closely related to the well-known
moving target defense (MTD) strategy: running different variants of a program at
different times is MTD. Software diversity is an effective defense against attacks
whose success depends on details of the victim software. Without knowing those
details for the specific instance (variant) of the software being attacked, attackers
can still attempt such attacks (e.g., by making random guesses at those details),
but the probability of success is greatly reduced [16].

There is a large corpus of research on techniques for automatically introduc-
ing software diversity that increase resilience to various classes of attacks [16].
For example, Address Space Layout Randomization (ASLR), which randomizes
the starting addresses of segments in a process’s address space, is a classic form
of software diversity that increases resilience to some types of memory corruption
attacks.

The most common way to use software diversity to increase resilience is to
run a randomly selected variant each time the program is executed. With this
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 359–378, 2019.
https://doi.org/10.1007/978-3-030-22479-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_19

360 S. D. Stoller and Y. A. Liu

approach, the use of diversity alters, with high probability, the effect of an attack,
so the attack does not have the intended effect (e.g., gaining root privilege and
installing a rootkit) [16]. The attack might still have a less malicious and less
predictable but nevertheless undesirable effect (e.g., crash or incorrect output).

Another way is to run multiple variants of the application in parallel and
compare their outputs. We call this diversified replication. Any difference in the
outputs of the variants indicates misbehavior of one or more variants due to an
attack; this triggers defensive action. This approach provides greater resilience,
at the cost of more computational resources. It also provides greater resilience
than traditional replication, in which replicas are identical and exhibit the same
(incorrect) behavior when their vulnerabilities are exploited. Note that diversity
may lead to different behavior (and therefore attack detection) in two ways: (1)
it might cause a difference in the direct effect of the attack (e.g., which data
structure is overwritten) or, (2) even if the direct effect of the attack is the
same (e.g., the same data structure is overwritten), it might cause differences
in subsequent behavior, due to differences in the algorithms or implementations
used by the variants (e.g., one variant reads the affected data structure earlier
in its computation and hence before the attack, and another reads the affected
data structure later in its computation and hence after the attack).

This paper focuses on algorithm diversity for software resilience, in which dif-
ferent variants run different algorithms, i.e., perform different computations at
a high level. In contrast, all of the work surveyed in [16] creates implementation-
level diversity, changing details of the implementation without changing the algo-
rithm. Algorithm diversity can introduce new and larger differences between vari-
ants than implementation-level diversity and hence can provide greater resilience,
especially when used together with implementation-level diversity.

Algorithm variants may be obtained in a variety of ways, besides writing them
manually. For standard problems (e.g., dictionary ADT), they can be obtained
from algorithm libraries. A more general automated approach is to generate them
by starting with a high-level algorithm (or specification) and applying different
optimizations (algorithm improvements, automated using program analysis and
transformation). In particular, we have used a method based on systematic incre-
mentalization [18,19,22,27], which transforms programs to maintain high-level
invariants incrementally, and related optimizations to generate multiple variants
of many sequential algorithms and distributed algorithms [24–26].

Algorithm diversity and implementation-level diversity introduce different
kinds of variation and together offer more diversity than either alone. We intro-
duce diversity metrics that quantify the difference between—or equivalently, the
similarity of—variants. We consider a static metric, code diversity, based on
the instruction sequences in the compiled program, and two dynamic (behav-
ioral) metrics: trace diversity, based on the sequence of instructions executed,
and input access diversity, based on the sequence of accesses to input data. The
latter dynamic metric is motivated by the fact that invalid inputs are the pri-
mary attack vector for external attackers. A direction for future work is to aug-

Algorithm Diversity for Resilient Systems 361

ment these broad diversity metrics with more specialized metrics that quantify
resilience to specific classes of attacks.

Algorithm diversity can be applied to programs in any language. In this
paper, we focus on Python and DistAlgo [24,25], an extension of Python for high-
level, precise, executable specifications of distributed algorithms. In contrast,
existing work on automated software diversity primarily targets C programs or
(disassembled) machine code.

Python is interpreted—more precisely, CPython, the predominant implemen-
tation of Python, compiles Python to bytecode and then runs the bytecode in
an interpreter. Algorithm diversity applied to Python programs can be used
together with implementation-level diversity applied to Python programs and
the runtime system. This achieves greater total diversity and increases resilience
to vulnerabilities in the runtime system, because vulnerabilities manifest only
with specific inputs, and the runtime system’s inputs include Python programs
as well as network messages, UI events, etc. Diversity at the high-level lan-
guage level provides additional protection from data-only attacks [4,30], against
which many runtime-system-level defenses are less effective. Algorithm diversity
applied to Python programs can also provide resilience to functional faults in
the runtime system, if the runtime system does not correctly implement the
semantics of some built-in constructs or library functions in some (corner) cases.

Diversified replication requires synchronized execution (often called N -
version execution [1]) of the variants; otherwise, their executions might diverge
due to scheduling differences. Synchronized execution of distributed programs
generally requires synchronization of message delivery order. DistAlgo’s asyn-
chronous message handling requires additional synchronization, to ensure that
all variants handle corresponding messages at corresponding points in their exe-
cutions. We developed a synchronized execution framework for DistAlgo that
ensures this. Our framework can also suppport variants whose behaviors differ
in prescribed ways.

Measuring dynamic diversity for Python and DistAlgo programs required
development of new runtime monitoring tools, which are also more broadly use-
ful. We designed and implemented a tool that intercepts accesses to fields of
selected objects; we use it to log accesses to objects read as input, including
objects received in messages. Handling built-in types such as integers and strings
is tricky, because they are sometimes accessed directly by C code in the Python
interpreter, but essential, because they are commonly used in program inputs.

We also designed and implemented a tracing tool that reconstructs the exact
sequence of bytecode instructions executed by a Python program. It uses the
standard Python tracing module to record the sequence of source lines executed,
and then analyzes the compiled program to determine the sequence of bytecode
instructions corresponding to each source line. Supporting DistAlgo requires
some extra work, due to details of DistAlgo’s implementation by translation to
Python.

In summary, the contributions of this paper include:

362 S. D. Stoller and Y. A. Liu

– The first study of semi-automated algorithm diversity for software resilience,
using a method based on systematic incrementalization to generate algorithm
variants.

– A synchronized execution framework for DistAlgo and for high-level exe-
cutable specifications of distributed algorithms.

– Static and dynamic metrics for measuring diversity.
– A runtime monitoring tool for Python and DistAlgo that logs accesses to

fields of selected objects, including instances of built-in types.
– A tracing tool for Python and DistAlgo that reconstructs the exact sequence

of executed bytecode instructions.
– Experimental evaluation of algorithm diversity combined with imple-

mentation-level diversity for several sequential algorithms and distributed
algorithms, demonstrating that algorithm diversity can achieve more diver-
sity than implementation-level diversity, and the two together can achieve
even more.

2 Background on DistAlgo

Liu et al. [24,25] propose DistAlgo, a language for high-level, precise, executable
specifications of distributed algorithms, and study its use for specification, imple-
mentation, optimization, and simplification of such algorithms. For expressing
distributed algorithms at a high level, DistAlgo supports four main concepts by
building on an object-oriented programming language, Python: (1) distributed
processes that send messages, (2) control flow for handling received messages,
(3) high-level queries for synchronization conditions, and (4) configuration for
setting up and running. DistAlgo is specified precisely by a formal operational
semantics [24].

Processes that Send Messages. A process type P is defined by a class definition
for P that inherits from DistAlgo’s built-in process class. The definition of P
may contain, in addition to the usual definitions that may appear in Python
classes, definition of a setup method for taking in and setting up the values used
by the process, definition of a run method containing the main control flow of the
process, and definitions of receive handlers for handling messages, as described
below.

To create instances of P , DistAlgo provides a new P construct; it can option-
ally be preceded by the number of processes to create (the default is 1) and
followed by “at h” where h identifies the host where the process(es) should be
created (the default is the local host). After a new process has been created,
and its setup method called to initialize it, invoking its start method causes
execution of its run method.

Processes send messages using the statement send m to ps, where ps is a
process or set of processes.

Algorithm Diversity for Resilient Systems 363

Control Flow for Handling Received Messages. Received messages can be han-
dled asynchronously, using receive definitions, and synchronously, using await
statements. A receive definition has the form receive m from p: stmt . It han-
dles un-handled messages that match m from p, where m and p are patterns.
If matching succeeds, unbound variables in m (and p) are bound to the corre-
sponding component of the message (and the message’s sender, respectively),
and then stmt is executed.

To synchronize message handling with local computation, receive handlers
are executed only at yield points. The program point before or after any state-
ment can be declared as a yield point. In addition, there is an implicit yield point
before each await statement, for handling messages while waiting. By default,
any number of pending messages can be handled at a yield point.

An await statement has the form

await cond1: stmt1 or ... or condk: stmtk timeout t: stmt

It waits until one of cond1 , ..., condk is true or time t has elapsed, and then
nondeterministically selects one of stmt1 , ..., stmtk , stmt whose condition is true
and executes the selected statement. Each branch is optional.

High-Level Queries for Synchronization Conditions. DistAlgo provides con-
structs to express synchronization conditions in await statements as high-level
queries over message histories (or other sets or sequences). A query can be an
existential or universal quantification, a comprehension, or an aggregation. An
existential quantification has the form some v1 in s1 , ..., vk in sk | cond . It
returns true iff cond holds for some combination of values of variables that sat-
isfies all vi in si clauses. Universal quantification is similar, with keyword each
instead of some.

A comprehension has the form {e: v1 in s1, ..., vk in sk, cond}. It returns
the set of values of e for all combinations of values of variables that satisfy all
vi in si clauses and condition cond .

DistAlgo automatically maintains histories of messages sent and received by
each process in variables sent and received; they are automatically eliminated
if unused.

Configuration. Configuration for requirements such as use of logical clocks and
use of reliable and FIFO channels can be specified using DistAlgo’s configure
statement. For example, configure clock = Lamport specifies that Lamport’s
logical clocks are used; it configures sending and receiving of a message to update
the clock value, and defines a function logical_time() that returns the clock
value.

3 Creating Variants Using Incrementalization

Algorithm variants differ from each other due to different high-level invariants
they maintain and different ways of maintaining them. We describe the ideas

364 S. D. Stoller and Y. A. Liu

Fig. 1. Lamport’s algorithm (lines 6–19) plus setup in DistAlgo.

of transforming expensive queries into high-level invariants and using system-
atic incrementalization to generate efficient algorithms that maintain the query
results incrementally. Each resulting combination of ways of maintaining the
invariants forms an algorithm variant.

Example. We use as an example Lamport’s algorithm for distributed mutual
exclusion, described in his seminal paper that proposed logical clocks [14]. The
problem is for multiple processes to access a shared resource mutually exclusively,
in what is called a critical section, i.e., there can be at most one process in a
critical section at a time.

Each process can be expressed in DistAlgo as in Fig. 1 [24]. The process is set
up with sets s and q (lines 3–4). To run a task mutually exclusively, the process
sends a request and adds it to q (lines 6–8), waits for (i) own request (t,self)
to be before each other request (t2,p2) in q and (ii) having received an ack with
a time t2 later than t from each process p2 in s (lines 9–10) before doing the
task in critical section (line 11), and then removes the request from q and sends
a release (lines 12–13). When receiving a request or release, it sends back an ack
and adds to or removes from q (lines 14–19).

The two conditions in await are key to the algorithm to ensure mutual exclu-
sion, while the rest does basic sending and receiving of messages and bookkeeping
of q.

Algorithm Diversity for Resilient Systems 365

Incrementalization. Incrementalization transforms queries and updates to main-
tain high-level invariants, including invariants for intermediate and auxiliary
values, incrementally [22,24,26,27]. It can yield diverse algorithms.

For the example in Fig. 1, the two conditions in await are queries, consist-
ing of three quantifications including two that are nested; and assignments and
bookkeeping for s and q and implicitly adding to received at receive handlers
are updates.

The most direct algorithm can compute queries using iterations, in for-loops,
whereas an incremental algorithm can maintain the results of queries at updates
and look up the results as needed. An incrementalized algorithm maintains high-
level invariants not only for the query results but also for intermediate and
auxiliary values needed. Alternative invariants can often be used, yielding even
greater diversity.

For example, the condition on line 10 in Fig. 1 can be transformed into

count {p2: p2 in s, (‘ack’, t2, p2) in received, t2 > t} = count s

and then—with variables responded, number, and total holding the set value and
two count values, respectively, forming three invariants— transformed into:

number = total

Variable total is computed at set up of s, and responded and number at request,
and the following receive handler is added:

receive (‘ack’, t2, p2): # new message handler
if t2 > t: # comparison in the condition

if p2 in s: # membership in the condition
if p2 not in responded: # test before adding

responded.add(p2) # add to responded
number +:= 1 # increment number

The resulting algorithm differs significantly from direct iteration for the nested
quantifications. The condition on line 10 could also be transformed into two
nested count queries, and the condition on line 9 can be transformed into a
count query also, or an aggregate query using min, yielding different algorithms
for incremental maintenance. Details of these transformations are in [24].

In general, incrementalization can also transform nested loops that com-
pute aggregate values such as sum and min [7,23,26]. For recursive functions
as queries, the resulting incremental algorithm can still use recursion, forming
an optimized recursive algorithm, or use iteration, forming an optimized itera-
tive algorithm [20,26]. Additionally, more refined data structures can be used
to implement sets more efficiently [3,10,26], such as using one bit for each pro-
cess in the set responded above. Incrementalization also enables new additional
optimizations that are made possible as the results of systematic transforma-
tions [26].

366 S. D. Stoller and Y. A. Liu

4 Synchronized Execution for DistAlgo

A diversified process is a process with variants. A system may contain a mixture
of diversified and un-diversified processes. A gateway process is created for each
diversified process. It represents the variants of a diversified process to the rest
of the system, making them appear as a single process. The gateway intercepts
and forwards all inbound and outbound messages of all variants of the diversified
process. We focus on synchronization of DistAlgo constructs; other I/O events,
such as file accesses, can be synchronized using standard techniques.

Our synchronized execution framework consists of two parts: (1) an auto-
mated program transformation that (1a) ensures all messages are routed via
the gateway, and (1b) inserts synchronization with the gateway at yield points,
to ensure that all variants have yielded the same number of times before han-
dling their copies of a given inbound message, despite differences in message
latency and process execution speed; and (2) an algorithm run by the gateway
that determines when to forward messages and when to report divergence (i.e.,
differences in behavior). When divergence is reported, the system may initiate
application-specific defensive action.

We first present the core version of this approach, which assumes all variants
of a process have the same communication pattern, i.e., send the same messages
to the same destinations in the same order; we discuss later how to relax this
assumption.

Handling Outbound Messages. To route outbound messages via the gateway,
the transformation replaces all calls to DistAlgo’s send method with calls to
send_sync, and it inserts a definition of that method in every process class.
send_sync sends the original message and its original destination to the gate-
way. Processes often send their own process id in messages. Since each variant
of a diversified process has a unique process id, such messages will differ. To
accommodate this as normal behavior, not divergence, send_sync replaces all
occurrences of the variant’s process id in the message with the gateway’s process
id. This also reflects the principle that the gateway represents the variants to
the rest of the system. Pragmatically, it ensures that, if the recipient sends a
reply to the process id contained in the message, the reply goes to the gateway,
as desired.

The gateway stores un-forwarded outbound messages received from each vari-
ant in a separate FIFO queue. When all of the queues are non-empty, it compares
the messages (including their destinations) at the heads of the queues. If they
are identical, the gateway dequeues the message from all queues and forwards
one copy to the destination, otherwise it reports divergence. To ensure liveness
if some divergent variant fails to send a message, once one queue becomes non-
empty, the gateway waits a limited amount of time for all queues to become
non-empty; if this time limit is exceeded, the gateway reports divergence.

Synchronization at Yield Points and await Statements. The transformation
inserts a call to yield_sync(block, timeout) at every yield point, and it inserts

Algorithm Diversity for Resilient Systems 367

a definition of that method in every process class. The first argument block is
a boolean that indicates whether the yield point is associated with an await
statement. The second argument timeout , meaningful when the first argument
is True, is a timeout duration if the timeout clause is present in that await state-
ment and is None otherwise. The transformation also extends the setup method
to initialize a variable num_yields to zero. yield_sync increments num_yields,
sends a yield message containing block , timeout , and num_yields to the gateway
and waits for a yield-reply message from the gateway before returning.

The transformation for an await statement with timeout ensures the total
wait time is preserved, even though the waiting period may be split by interac-
tions with the gateway. It transforms await c1: s1 or . . . or ck : sk timeout t: s
into

1 start_time = time.time()
2 while not (c1 or ... or ck):
3 elapsed = time.time() - start_time
4 remaining = t - elapsed
5 if remaining ≤ 0:
6 break
7 yield_sync(True, remaining)
8 if c1: s1
9 elif c2: s2

10 . . .
11 elif ck: sk
12 else s

If the await statement has no timeout, then lines 1, 3–6, and 12 are omitted,
and the second argument of yield_sync is None.

Handling Inbound Messages. When the gateway receives an inbound message
m, it stores m in a queue of un-forwarded inbound messages, waits until it has
received yield messages with the same num_yields from all variants, forwards to
all variants and dequeues all un-forwarded inbound messages, and then sends a
yield-reply message to all variants. The gateway communicates with the variants
over FIFO channels, so all variants handle the forwarded messages before pro-
ceeding from the current yield point. In the copy of m to be forwarded to variant
p, the gateway replaces all occurrences of its own process id with p’s process id.

If the gateway has received a yield message from all variants, and has no
inbound message to forward to them, its behavior depends on the values of
block and timeout in the yield messages (if the values of block differ, or the
values of timeout differ by more than a small amount, divergence is reported).
If block=False, the gateway sends a yield-reply message to all variants, allowing
them to proceed. If block=True and timeout=None, the gateway waits until it
has received and forwarded an inbound message before sending a yield-reply
message, since the conditions in the await statements will remain false until the
variants’ states are updated by handling of an inbound message. If block=True

368 S. D. Stoller and Y. A. Liu

and timeout is a number, the gateway behaves as in the previous sentence, except
it will also send a yield-reply message after time timeout has elapsed.

Process Creation. The program transformation reads a configuration file that
specifies which process types are diversified and the types of their variants. For
each diversified process type P , a gateway type GatewayP is generated (basically,
this is done by instantiating template code with the type P and the types of
its variants), and process creation statements with type P are transformed to
create instances of GatewayP instead. The setup method of GatewayP creates an
instance of each of the specified variant types, and passes the gateway’s process
id to the variants as an additional argument to their setup methods, which are
transformed to accept this additional argument.

Relaxed Synchronization. The above approach effectively introduces a barrier
synchronization for a diversified process’s variants at each synchronization point.
This ensures the most timely detection of divergence. An alternative approach,
used in some other synchronized execution frameworks [13,33], is to allow one
variant (the “leader”) to get ahead, try to make the actions of the other processes
(the “followers”) consistent with the leader’s actions (e.g., by delivering the same
number of messages at the corresponding yield event), and reporting divergence
when this is not possible. This may provide speedup but allows a divergent
leader to perform divergent actions before the leader’s divergence is detected;
when this is unacceptable, such actions should not be allowed to have externally
visible effects until the followers catch up and agree on the actions.

Allowing Differences in Message Pattern. It may be desirable to relax the
requirement that corresponding messages sent by all variants of a process are
identical, in order to allow greater diversity. For example, Lamport’s distributed
mutual exclusion algorithm [14] sends in ack messages the current value of the
sender’s logical clock, whereas the variant in [17, Fig. 3] sends in ack messages
the logical time of the request being acknowledged. To support algorithm vari-
ants that have the same communication pattern but different message content,
we modify the gateway to omit the equality check on outbound messages when
the destination is a diversified process, in which case the gateway sends to the
other gateway an array containing the message from each variant, which forwards
each message in the array to its corresponding variant. The correspondence is
determined by indexing variants in the order that their types are listed in the
configuration file.

To support algorithm variants with different communication patterns, the
configuration file can specify that certain types of messages are un-synchronized.
When the gateway receives a message of an un-synchronized type from its i’th
variant, it immediately forwards the message to the destination’s gateway, which
forwards the message to its i’th variant. For example, for synchronized execu-
tion of Lamport’s distributed mutual exclusion algorithm and Ricart-Agrawala’s
distributed mutual exclusion algorithm [29], we specify that ack and release mes-
sages (used only in Lamport’s algorithm) and response messages (used only in

Algorithm Diversity for Resilient Systems 369

Ricart-Agrawala’s algorithm) are un-synchronized; the gateway still synchronizes
messages of other types.

5 Diversity Metrics and Runtime Monitoring Tools

5.1 Code Diversity

Since diversity is the complement of similarity, we measure code diversity with
a well-established document similarity metric, namely, n-gram similarity with
winnowing [31], which is used in the popular software plagiarism detection tool
Moss to measure similarity of program source code. We apply it to Python byte-
code, specifically, the sequence of bytecode instructions in a compiled program.
Bytecode similarity is more relevant than source-level similarity, because diver-
sity at the Python level aims to increase resilience to flaws in the runtime system,
and bytecode is the program representation used by the runtime system.

An n-gram is a sequence of n consecutive instructions, starting at any posi-
tion. The algorithm computes the hash of every n-gram in the compiled program,
and then (for scalability) selects a subset of those hashes and stores them in a
set called the program’s fingerprint. The number of selected hashes is controlled
indirectly by an algorithm parameter w called the window size. A window of size
w consists of the hashes of w consecutive n-grams in the program. The winnow-
ing algorithm is guaranteed to select at least one hash from each window of size
w, although it may select more.

A robust metric should have the property that a slightly modified program
has high similarity to the original program. In Python bytecode, local variables
and global variables are identified by index. Inserting one new global variable
at the beginning of the program causes renumbering of all global variables; this
could make the metric non-robust. To ensure robustness, we normalize variable
indices within each n-gram: we re-index the first global variable accessed in the
n-gram as 0, the second one as 1, etc., and similarly for local variables. For similar
reasons, we replace absolute line numbers used as targets in jump instructions
with a place holder.

We quantify code diversity (and similarity) of two programs as 1 minus the
Jaccard similarity of their fingerprints. Recall that the Jaccard similarity of sets
S and T is |S ∩ T |/|S ∪ T |. We use 1 minus Jaccard similarity so larger values
indicate greater diversity.

An alternative to n-gram similarity is Levenshtein distance (a.k.a. edit dis-
tance, namely, the minimum number of single-element insertions, deletions, and
substitutions needed to change one string to another) between the bytecode
sequences in the compiled programs. Levenshtein distance is less suitable here,
because it is sensitive to bytecode orderings in the compiled program that may
be unimportant at runtime. For example, permuting the order in which func-
tion definitions appear in the compiled program has no effect on the program’s
runtime behavior but has a large effect on the Levenshtein distance. Similarly,
swapping the branches in a conditional statement and negating the condition

https://theory.stanford.edu/~aiken/moss/

370 S. D. Stoller and Y. A. Liu

yields an equivalent program with high n-gram similarity to the original but (if
the branches are large) a large Levenshtein distance from the original.

5.2 Trace Diversity

Trace diversity measures the similarity of the sequences of bytecode instructions
executed by two programs. Our bytecode-level tracing tool uses the standard
Python trace module to obtain a source-level trace, and then translates it to
a bytecode trace. A “blacklist” of modules to be ignored during the conversion
can be specified; in experiments, we blacklist some system modules, such as
bootstrap and trace. For each source line mentioned in the trace, identified by
filename and line number, the translator compiles that .py file to a .pyc file, loads
the .pyc file using the marshal module to obtain a code object, repeatedly uses
the dis (disassembler) module to obtain the bytecode for the entire program as
a list of Instruction objects, and uses the source line number information in the
Instruction objects to determine the sequence of instructions corresponding to
each line of source code in that file. In the traces to be compared, we include
only the opcode and argument attributes of each Instruction; other attributes
(e.g., is_jump_target) are less important. We quantify similarity of two traces as
the Levenshtein distance (edit distance) between them divided by their average
length, for normalization.

5.3 Input Access Diversity

Input access diversity measures the similarity of sequences of accesses to input
data by two programs, quantified as Levenshtein distance between the sequences
divided by their average length, for normalization. The core of the imple-
mentation is a general tool to intercept accesses to attributes of selected
objects, by overriding the __getattribute__ method of appropriate classes. In
our use case, the overriding method logs the access and then calls the original
__getattribute__ method. For user-defined classes, this is easily accomplished
by inserting a definition of __getattribute__ in the class. This approach does
not work for built-in types such as int, string, and tuple, which are common
types of input data.

For each of these built-in classes, we define a new class, e.g. tracked_int
for int, that inherits from the built-in class and overrides the __getattribute__
method. In the remainder of the description, we focus on int; other built-in
types are handled similarly. The problem is that some accesses to attributes of
tracked_int are not logged, because attributes of built-in types are sometimes
accessed directly by C code in the CPython runtime system. For example, even
if x is a tracked_int, the addition operator in x+y compiles to the bytecode
instruction BINARY_ADD, which does not call __getattribute__ on either argument.

We overcome this problem by augmenting tracked_int to override all meth-
ods of int that access the integer value: __add__, __eq__, __le__, etc. If x is
a tracked_int, an expression like x+y now compiles to bytecode that uses the

Algorithm Diversity for Resilient Systems 371

CALL_FUNCTION instruction to explicitly invoke x’s __add__ method with argu-
ment y. The tracked_int.__add__ method logs the access to the first argument
(self), calls __getattribute__ on the second argument (so the access to it will
be logged, if it is a tracked_int), and then calls the built-in __add__ method.
Since we need to override these operations anyway, we augment log entries to
indicate which operation was performed on the accessed attribute.

If x is an int, not a tracked_int, then CALL_FUNCTION invokes the built-in
__add__ method, which is implemented by C code that accesses the second
argument without calling __getattribute__. Consequently, accesses to y are not
logged, even if y is a tracked_int. To overcome this remaining problem, we mod-
ify the program to replace the remaining uses of int with a new class my_int,
which inherits from int and overrides each two-argument method of int with a
method that calls __getattribute__ on the second argument and then calls the
original method. To accomplish this replacement, we bind the name int to our
class my_int, using the assignment int = my_int. As a result, a constructor call
such as int(1) returns an instance of my_int. The literal 1 still produces an int.
Therefore, we transform the source program to replace literals with constructor
calls, e.g., 1 with int(1).

The remaining aspects of input access tracking differ for Python and Dis-
tAlgo. These aspects are (1) determining which objects are tracked, and (2) cre-
ating meaningful identifiers for tracked objects. We could easily use the result
of Python’s built-in id function to identify objects, but it would be difficult to
compare input access traces from different variants (or even different runs of
the same variant), because the object identifiers in them would be unrelated.
Instead, we create object identifiers that can be compared meaningfully with
object identifiers in other logs, as described below. The identifier is stored in an
attribute of each tracked object.

Python. For Python programs, the user specifies which objects should be tracked
by modifying the program to make them instances of tracked classes. For conve-
nience, our tracker class provides a method that recursively traverses an object
or collection (dictionary, list, tuple, or set) and replaces all instances of track-
able built-in types (i.e., types for which a corresponding tracked type exists)
with instances of tracked types. In our benchmark programs, inserting one or
two calls to this method suffices. Tracked objects are identified by a sequence
number assigned in the order that the objects are created. When tracked objects
are used for data read as input, these identifiers are meaningful across logs from
different variants, because the variants are given the same inputs and hence read
the inputs in the same order.

DistAlgo. For DistAlgo programs, all messages are automatically considered as
inputs; additional inputs, if any, are handled as described above for Python
programs. Instances of trackable built-in types in messages are automatically
replaced with instances of tracked types. Our tracker class, which inherits from
DistAlgo’s process class, is automatically inserted as a parent class of every
process class in the given program. It overrides process.send with a method that

372 S. D. Stoller and Y. A. Liu

replaces all instances of trackable built-in types in the message with instances of
tracked types.

To create meaningful identifiers for tracked objects received in messages,
we observe that such an identifier should identify the message in which the
object was received. Our identifier for such an object is a tuple (host, procNum,
msgNum, objNum), where host is the host on which the sender is running, proc-
Num identifies the sending process relative to the host, msgNum identifies the
message relative to the sending process, and objNum identifies the object within
the message.

To avoid dependence on standard process identifiers that cannot be mean-
ingfully compared across executions, we identify processes by a sequence number
assigned in the order in which the processes are created. The tracker class over-
rides process.setup with a method that assigns the process sequence number;
tracker.setup stores the next available process sequence number in a local file.
msgNum is a per-sender sequence number assigned in the order in which mes-
sages are sent. The object sequence number objNum is assigned to each object in
the message in the order that the object is encountered in a depth-first traversal
of the message.

Input access logs for DistAlgo programs also contain entries corresponding
to receive events, so we can determine that a particular data item (possibly
received in a previous message and stored in a data structure) was accessed
while processing a particular message.

6 Evaluation

We evaluated our approach on several sequential and distributed algorithms,
using Python 3.7.2 and DistAlgo 1.1.0b13. Our software is available at https://
www.cs.stonybrook.edu/~stoller/software.

For each problem and each diversity metric, we measure the diversity achieved
(1) by algorithm diversity alone by averaging the diversity metric for each pair
of algorithms; (2) by implementation-level diversity (ILD) alone by averaging
the diversity metric for each pair of an algorithm and its ILD variant (i.e., the
variant obtained by applying ILD transformations to it); (3) by both forms of
diversity together by averaging the diversity metric for each pair of an algorithm
and the ILD variant of another algorithm. For code diversity, we used n = 5
(the value used in [31]), and we disabled winnowing (i.e., included all hashes in
the fingerprint), because the bytecode for our examples is not too large. Library
code is not included in our code diversity measurements.

Implementation-Level Diversity (ILD). We created ILD by applying these typi-
cal ILD transformations: (1) NOP insertion: after each line of code, insert a pass
statement with probability 0.05; (2) instruction reordering: for each two adjacent
independent lines of code, swap them with probability 0.5; (3) branch reordering:
for each if-statement, swap the branches and negate the condition (if there is no
else branch, pretend else: pass is present) with probability 0.5; (4) function

https://www.cs.stonybrook.edu/~stoller/software
https://www.cs.stonybrook.edu/~stoller/software

Algorithm Diversity for Resilient Systems 373

Table 1. Experimental results for sequential algorithms. In the “Level” column, “algo”
and “impl” denote algorithm and implementation-level diversity, respectively. The last
column contains averages.

Metric Level Reach Hanoi LCS Pat. search Sort Tree search Avg.

3 variants 4 variants 3 variants 3 variants 4 variants 6 variants

Code algo 0.80 0.58 0.65 0.81 0.79 0.83 0.74

Diversity impl 0.40 0.39 0.66 0.52 0.32 0.63 0.49

both 0.80 0.65 0.82 0.83 0.80 0.89 0.80

Input Access algo 1.04 0.54 0.58 0.28 0.77 0.35 0.59

Diversity impl 0 0.18 0.82 0.21 0 0 0.20

both 1.04 0.57 1.12 0.28 0.77 0.36 0.69

Trace algo 1.45 0.42 1.22 0.69 0.81 0.80 0.90

Diversity impl 0.05 0.30 0.60 0.23 0.11 0.14 0.23

both 1.45 0.45 1.39 0.70 0.82 0.82 0.94

(including receive handler) reordering: for each two adjacent independent def
statements, swap them with probability 0.5; (5) argument reordering: for each
function (excluding run, setup, and receive handlers), swap the first two argu-
ments, swap the third and fourth arguments, etc.; (6) field reordering: reorder
the assignment statements that initialize the fields in each class, by swapping the
first two, the third and fourth, etc. Applying more complicated implementation-
level diversity techniques is future work; it will require significant effort, because
existing implementations of those techniques do not handle Python.

6.1 Sequential Algorithms

Our experiments use these algorithms for these problems: (1) graph reacha-
bility: original (iterative) algorithm, incrementalized algorithm, and rule-based
algorithm (generated from rules using the method in [21]); (2) Hanoi Tower:
original recursive algorithm, optimized recursive algorithm, optimized iterative
algorithm, and optimized iterative algorithm with swap; (3) longest common
subsequence (LCS): original recursive algorithm, optimized recursive algorithm,
and optimized iterative algorithm; (4) pattern searching: naive algorithm, Knuth
Morris Pratt (KMP) algorithm, Rabin Karp algorithm; (5) sorting: heap sort,
quicksort, insertion sort, and merge sort; (6) tree search: recursive and iterative
algorithms for AVL trees, recursive algorithm for B-trees, iterative algorithm for
red-black trees, and recursive and iterative algorithms for (unbalanced) binary
search trees.

The results are in Table 1. We see from the last column that, for all three
metrics, algorithm diversity creates more diversity than ILD, and that the two
together create even more.

6.2 Distributed Algorithms

Our experiments use the following algorithms: (1) 2-phase commit (2PC); (2)
Hirschberg-Sinclair’s leader election (HSleader) [11]; (3) Lamport’s distributed

374 S. D. Stoller and Y. A. Liu

Table 2. Experimental results for distributed algorithms, with 2 variants for each
algorithm. In the “Level” column, “algo” and “impl” denote algorithm diversity and
implementation-level diversity, respectively.

Metric Level 2PC HSleader Lamutex Paxos RAmutex Average

Code algo 0.56 0.66 0.50 0.68 0.53 0.59

Diversity impl 0.19 0.18 0.08 0.30 0.27 0.21

both 0.59 0.68 0.53 0.68 0.54 0.60

Input Access algo 1.10 0.47 0.21 0.28 0.61 0.53

Diversity impl 0.08 0.04 0 0.03 0.17 0.06

both 1.09 0.52 0.21 0.30 0.61 0.55

Trace algo 0.20 0.35 0.13 0.54 0.21 0.29

Diversity impl 0.06 0.03 0.02 0.13 0.04 0.06

both 0.20 0.36 0.14 0.52 0.21 0.29

mutual exclusion (Lamutex) [14]; (4) Lamport’s basic Paxos [15]; (5) Ricart-
Agrawala’s distributed mutual exclusion (RAmutex) [29]. We used configurations
with 3 or 4 processes for each algorithm. There are two variants of each algorithm:
one variant that uses high-level queries over message histories, and one that
explicitly maintains the result of those queries (and related intermediate results
and auxiliary values), updating them in assignment statements, especially in
receive handlers.

When measuring the dynamic metrics, we avoid spurious differences between
the variants due to the platform’s scheduling variability by running all variants
in parallel using synchronized execution (for programs other than 2PC, due to a
bug that we are still resolving in the interaction between our program transfor-
mations for synchronized execution and input access tracing, when measuring
input access diversity, we instead avoided such spurious differences by running
the variants separately but each with the same pattern of injected message delays
that are larger than the platform’s scheduling variability and designed to avoid
races in message delivery order).

The results are in Table 2. We see from the last column that, for all three met-
rics, algorithm diversity creates significantly more diversity than ILD. The trace
diversity produced by ILD is considerably smaller than the input access diver-
sity it creates. These results are not inconsistent, because both are measured
as ratios, and input accesses constitute a small fraction of the program’s full
activity recorded in the bytecode trace. The results for trace diversity for algo-
rithm diversity for distributed algorithms are notably smaller than for sequential
algorithms, because the trace includes execution of DistAlgo runtime library for
networking, which is not diversified.

7 Related Work

Existing techniques for automated software diversity, including all those surveyed
in [16], create implementation-level diversity, changing details of the implemen-
tation without changing the algorithm. Typically this is done by applying rel-
atively simple local transformations, like those used in our evaluation. There

Algorithm Diversity for Resilient Systems 375

are also some complex global transformations, such as instruction set random-
ization. These transformations are fully automated and more easily applied to
large programs, but they are limited in that they do not create algorithm diver-
sity. For example, they do not change the pattern in which inputs are used by
the program.

Most work on automated software diversity for resilience transforms C pro-
grams or (disassembled) machine code, for broader applicability to systems code.
There is some work on automated diversity for programs in JIT-compiled high-
level languages, which diversifies the machine code generated by the JIT com-
piler. For example, librando does this for Java and JavaScript [12], and INSeRT
does this for JavaScript [32]. This low-level approach is suitable for creating
implementation-level diversity. Our methodology diversifies the high-level pro-
gram directly to create algorithm diversity.

In N -version programming [1], N versions of a system (or component) are
created by separate and independent manual design and implementation efforts
starting from the same requirements specification, and the versions are run in
parallel with synchronized execution. The goal is resilience in the presence of
design faults, since independent teams are less likely to make the same design
mistakes. Our work, like other work on software diversity, aims to mitigate soft-
ware vulnerabilities, not design errors. The two techniques could be used together
to address both. N -version programming may introduce algorithm diversity, but
not in a controlled way, and at the cost of significant manual effort. In contrast,
our approach is to create variants using a program transformation and optimiza-
tion method based on systematic incrementalization, which guides the process,
helps control how much diversity is introduced, and helps ensure correctness
compared to ad-hoc development of variants. Our program transformation sys-
tem InvTS [9,19] provides semi-automated support for the method, significantly
reducing manual effort.

Synchronized execution has been widely studied in the fault-tolerance com-
munity, where it is often called N -version execution. N -version execution frame-
works typically work at the system-call level, so they can be applied to software
running on a given operating system, regardless of the application programming
language. Our synchronized execution framework is applicable only to applica-
tions written in DistAlgo, but it is more portable and lighter weight. It can be
used on any OS supported by DistAlgo (Windows, macOS, Linux, and Android),
while system-call based approaches are highly OS-specific, e.g., Varan [13] and
Bunshin [33] are N -version execution frameworks for Ubuntu. It is lighter-weight
because a single high-level synchronization event is typically implemented by
multiple system calls.

7.1 Evaluation of Diversity Techniques

A few approaches are commonly used to evaluate implementation-level diversity
techniques. One is to estimate the probability of a successful memory-related
exploit (e.g., buffer overflow or format string attack) based on the informa-
tion about the diversified program that the attacker would need to guess, more

376 S. D. Stoller and Y. A. Liu

specifically, the type of information (e.g., the address of a specific object, or the
difference between the addresses of two specific objects) and the number of pos-
sible values of that type of information due to the randomization in the diversity
transformation. This approach is used in, e.g., [2,8].

Diversity techniques designed specifically to defend against ROP attacks are
typically evaluated using a coverage metric that measures the fraction of ROP
gadgets re-located by the transformation, and sometimes also an entropy metric
that measures the number of possible new positions of the ROP gadgets, reflect-
ing the probability of the attacker correctly guessing the new locations. This
approach is used in, e.g., [12,28]).

These approaches based on specific vulnerabilities in low-level languages are
unsuitable for evaluating diversity for interpreted languages, such as Java and
Python.

Acknowledgements. This material is based on work supported in part by ONR
Grant N00014-15-1-2208, NSF Grants CCF-1414078 and CNS-1421893, and DARPA
Contract FA8650-15-C-7561. We thank Thang Bui, Rahul Gadi, Shikhar Sharma, Sha-
laka Sidmul, Shubham Singhal, and Swetha Tatavarthy for their contributions to the
implementation and experiments.

References

1. Avizienis, A.: The N -version approach to fault-tolerant software. IEEE Trans.
Softw. Eng. 11(12), 1491–1501 (1985)

2. Bhatkar, S., DuVarney, D.C.: Efficient techniques for comprehensive protection
from memory error exploits. In: 14th USENIX Security Symposium. USENIX Asso-
ciation (2005)

3. Cai, J., Facon, P., Henglein, F., Paige, R., Schonberg, E.: Type analysis and data
structure selection. In: Möller, B. (ed.) Constructing Programs from Specifications,
North-Holland, pp. 126–164 (1991)

4. Chen, S., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are realistic
threats. In: 14th USENIX Security Symposium. USENIX, August 2005

5. Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12(6), 565–584 (1993)

6. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: 6th
Workshop on Hot Topics in Operating Systems (HotOS), pp. 67–72 (1997)

7. Gautam, Rajopadhye, S.: Simplifying reductions. In: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 30–41 (2006)

8. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: 21st USENIX
Security Symposium, pp. 475–490. USENIX Association (2012)

9. Gorbovitski, M., Liu, Y.A., Stoller, S.D., Rothamel, T.: Composing transforma-
tions for instrumentation and optimization. In: Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation, pp. 53–62 (2012)

10. Goyal, D.: A language theoretic approach to algorithms. Ph.D. thesis, Department
of Computer Science, New York University (2000)

Algorithm Diversity for Resilient Systems 377

11. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configu-
rations of processors. Commun. ACM 23(11), 627–628 (1980)

12. Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Librando: transparent code
randomization for just-in-time compilers. In: ACM Conference on Computer and
Communications Security, pp. 993–1004. ACM (2013)

13. Hosek, P., Cadar, C.: Varan the unbelievable: an efficient n-version execution frame-
work. In: 20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2015), pp. 339–353, March 2015

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

15. Lamport, L.: Paxos made simple. SIGACT News (Distrib. Comput. Column)
32(4), 51–58 (2001)

16. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, 18–21 May 2014, pp. 276–291 (2014)

17. Liu, Y.A.: Logical clocks are not fair: what is fair? A case study of high-level
language and optimization. In: Proceedings of the Workshop on Advanced Tools,
Programming Languages, and Platforms for Implementing and Evaluating Algo-
rithms for Distributed Systems, Egham, UK, July 2018

18. Liu, Y.A., Brandvein, J., Stoller, S.D., Lin, B.: Demand-driven incremental object
queries. In: Proceedings of the 18th International Symposium on Principles and
Practice of Declarative Programming, pp. 228–241. ACM Press (2016)

19. Liu, Y.A., Gorbovitski, M., Stoller, S.D.: A language and framework for invariant-
driven transformations. In: Proceedings of the 8th International Conference on
Generative Programming and Component Engineering, pp. 55–64. ACM Press
(2009)

20. Liu, Y.A., Stoller, S.D.: From recursion to iteration: what are the optimizations?
In: 2000 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM), Boston, January 2000. Published in ACM SIG-
PLAN Notices, February 2000

21. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 1–38 (2009)

22. Liu, Y.A., Stoller, S.D., Gorbovitski, M., Rothamel, T., Liu, Y.E.: Incremental-
ization across object abstraction. In: Proceedings of the 20th ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 473–
486 (2005)

23. Liu, Y.A., Stoller, S.D., Li, N., Rothamel, T.: Optimizing aggregate array compu-
tations in loops. ACM Trans. Program. Lang. Syst. 27(1), 91–125 (2005)

24. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 12:1–12:41 (2017)

25. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the 27th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications, pp. 395–410
(2012)

26. Liu, Y.A.: Systematic Program Design: From Clarity To Efficiency. Cambridge
University Press, Cambridge (2013)

27. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4(3), 402–454 (1982)

28. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: 33rd IEEE
Symposium on Security and Privacy, pp. 601–615. IEEE Computer Society (2012)

378 S. D. Stoller and Y. A. Liu

29. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24(1), 9–17 (1981)

30. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: new data-only attacks and defenses.
In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017,
Paris, France, 26–28 April 2017, pp. 366–381. IEEE (2017)

31. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: 2003 ACM SIGMOD International Conference on Man-
agement of Data, pp. 76–85. ACM (2003)

32. Wei, T., Wang, T., Duan, L., Lu, J.: INSeRT: protect dynamic code generation
against spraying. In: International Conference on Information Science and Tech-
nology, pp. 323–328. IEEE, March 2011

33. Xu, M., Lu, K., Kim, T., Lee, W.: BUNSHIN: compositing security mechanisms
through diversification. In: USENIX Annual Technical Conference, pp. 271–283.
USENIX Association (2017)

	Algorithm Diversity for Resilient Systems
	1 Introduction
	2 Background on DistAlgo
	3 Creating Variants Using Incrementalization
	4 Synchronized Execution for DistAlgo
	5 Diversity Metrics and Runtime Monitoring Tools
	5.1 Code Diversity
	5.2 Trace Diversity
	5.3 Input Access Diversity

	6 Evaluation
	6.1 Sequential Algorithms
	6.2 Distributed Algorithms

	7 Related Work
	7.1 Evaluation of Diversity Techniques

	References

