
Simon N. Foley (Ed.)
LN

CS
 1

15
59

33rd Annual IFIP WG 11.3 Conference, DBSec 2019
Charleston, SC, USA, July 15–17, 2019
Proceedings

Data and Applications
Security and Privacy XXXIII

Lecture Notes in Computer Science 11559

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Simon N. Foley (Ed.)

Data and Applications
Security and Privacy XXXIII
33rd Annual IFIP WG 11.3 Conference, DBSec 2019
Charleston, SC, USA, July 15–17, 2019
Proceedings

123

Editor
Simon N. Foley
Norwegian University of Science
and Technology
Gjøvik, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22478-3 ISBN 978-3-030-22479-0 (eBook)
https://doi.org/10.1007/978-3-030-22479-0

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© IFIP International Federation for Information Processing 2019
The chapter “Is My Phone Listening in? On the Feasibility and Detectability of Mobile Eavesdropping” is
Open Access. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22479-0
http://creativecommons.org/licenses/by/4.0/

Preface

This book contains the papers that were selected for presentation and publication at the
33rd Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy
(DBSec 2019) that was held in Charleston, South Carolina, USA, July 15–17, 2019.

The Program Committee accepted 21 papers out of a total of 51 papers that were
submitted from 18 different countries. The papers in this book are drawn from a range
of topics, including privacy, code security, security threats, security protocols,
distributed systems, and mobile and Web security. The 43-member Program Com-
mittee, assisted by a further 43 external reviewers, reviewed and discussed the papers
online over a period of over six weeks and with each paper receiving at least three
reviews.

DBSec 2019 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. Our thanks go to the members
of the Progam Committee and the external reviewers for their work in evaluating the
papers. Grateful thanks are due to all the people who gave their assistance and ensured
a smooth organization, in particular Csilla Farkas and Mark Daniels for their efforts as
DBSec 2019 general chairs; Sabrina De Capitani di Vimercati (IFIP WG11.3 Chair) for
her guidance and support, and Emad Alsuwat for managing the conference website.
A special thanks goes to the invited speakers for their keynote presentations. Finally,
we would like to express our thanks to the authors who submitted papers to
DBSec. They, more than anyone else, are what makes this conference possible.

July 2019 Simon Foley

Organization

IFIP WG 11.3 Chair

Sabrina De Capitani di
Vimercati

Università degli Studi di Milano, Italy

General Chairs

Csilla Farkas University of South Carolina, USA
Mark Daniels Medical University of South Carolina, USA

Program Chair

Simon Foley Norwegian University of Science and Technology,
Norway

Program Committee

Vijay Atluri Rutgers University, USA
Frédéric Cuppens IMT Atlantique, France
Nora Cuppens-Boulahia IMT Atlantique, France
Sabrina De Capitani di

Vimercati
University of Milan, Italy

Giovanni Di Crescenzo Perspecta Labs, USA
Wenliang Du Syracuse University, USA
Barbara Fila INSA Rennes, IRISA, France
Simon Foley Norwegian University of Science and Technology,

Norway
Sara Foresti University of Milan, Italy
Joaquin Garcia-Alfaro Telecom SudParis, France
Stefanos Gritzalis University of the Aegean, Greece
Ehud Gudes Ben-Gurion University, Israel
Yuan Hong Illinois Institute of Technology, USA
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Florian Kerschbaum University of Waterloo, Canada
Adam J. Lee University of Pittsburgh, USA
Yingjiu Li Singapore Management University, Singapore
Giovanni Livraga University of Milan, Italy
Javier Lopez UMA, Spain
Brad Malin Vanderbilt University, USA
Fabio Martinelli IIT-CNR, Italy

Sjouke Mauw University of Luxembourg, Luxembourg
Catherine Meadows NRL, USA
Charles Morisset Newcastle University, UK
Martin Olivier University of Pretoria, South Africa
Stefano Paraboschi University of Bergamo, Italy
Günther Pernul Universität Regensburg, Germany
Andreas Peter University of Twente, The Netherlands
Silvio Ranise FBK-Irst, Italy
Indrajit Ray Colorado State University, USA
Kui Ren State University of New York at Buffalo, USA
Pierangela Samarati University of Milan, Italy
Andreas Schaad WIBU-Systems, Germany
Scott Stoller Stony Brook University, USA
Tamir Tassa The Open University of Israel, Israel
Mahesh Tripunitara University of Waterloo, Canada
Jaideep Vaidya Rutgers University, USA
Vijay Varadharajan The University of Newcastle, Australia
Lingyu Wang Concordia University, Canada
Wendy Hui Wang Stevens Institute of Technology, USA
Attila A Yavuz University of South Florida, USA
Ting Yu Qatar Computing Research Institute, Qatar
Nicola Zannone Eindhoven University of Technology, The Netherlands

Additional Reviewers

Ahlawat, Amit
Akowuah, Francis
Alhebaishi, Nawaf
Anagnostopoulos, Marios
Asadi, Behzad
Behnia, Rouzbeh
Bui, Thang
Ceccato, Mariano
Cledel, Thomas
Dietz, Marietheres
Esquivel-Vargas, Herson
Fernandez, Gerardo
Gadyatskaya, Olga
Hitchens, Michael
Hoang, Thang
Kalloniatis, Christos
Liu, Bingyu
Luo, Meng
Mercaldo, Francesco
Michailidou, Christina
Mohammady, Meisam
Mueller, Johannes

Oqaily, Alaa
Oqaily, Momen
Ozmen, Muslum Ozgur
Puchtra, Alexander
Ramírez-Cruz, Yunior
Rizos, Athanasios
Sengupta, Binanda
Seyitoglu, Efe Ulas Akay
Tian, Yangguang
Tsohou, Aggeliki
Uuganbayar, Ganbayar
van de Kamp, Tim
van Deursen, Ton
Vielberth, Manfred
Voloch, Nadav
Wang, Han
Widel, Wojciech
Xie, Shangyu
Xu, Jiayun
Xu, Shengmin
Zhang, Mingwei

viii Organization

Contents

Attacks

Detecting Adversarial Attacks in the Context of Bayesian Networks 3
Emad Alsuwat, Hatim Alsuwat, John Rose, Marco Valtorta,
and Csilla Farkas

AGBuilder: An AI Tool for Automated Attack Graph Building,
Analysis, and Refinement. 23

Bruhadeshwar Bezawada, Indrajit Ray, and Kushagra Tiwary

On Practical Aspects of PCFG Password Cracking 43
Radek Hranický, Filip Lištiak, Dávid Mikuš, and Ondřej Ryšavý

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 61
Diptendu Mohan Kar and Indrajit Ray

Mobile and Web Security

Adversarial Sampling Attacks Against Phishing Detection 83
Hossein Shirazi, Bruhadeshwar Bezawada, Indrakshi Ray,
and Charles Anderson

Is My Phone Listening in? On the Feasibility and Detectability
of Mobile Eavesdropping . 102

Jacob Leon Kröger and Philip Raschke

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps. . . . 121
Davide Caputo, Luca Verderame, Simone Aonzo, and Alessio Merlo

Privacy

Geo-Graph-Indistinguishability: Protecting Location Privacy for LBS
over Road Networks . 143

Shun Takagi, Yang Cao, Yasuhito Asano, and Masatoshi Yoshikawa

“When and Where Do You Want to Hide?” – Recommendation
of Location Privacy Preferences with Local Differential Privacy 164

Maho Asada, Masatoshi Yoshikawa, and Yang Cao

Analysis of Privacy Policies to Enhance Informed Consent 177
Raúl Pardo and Daniel Le Métayer

Security Protocol Practices

Lost in TLS? No More! Assisted Deployment of Secure TLS
Configurations . 201

Salvatore Manfredi, Silvio Ranise, and Giada Sciarretta

Contributing to Current Challenges in Identity and Access Management
with Visual Analytics . 221

Alexander Puchta, Fabian Böhm, and Günther Pernul

Analysis of Multi-path Onion Routing-Based Anonymization Networks 240
Wladimir De la Cadena, Daniel Kaiser, Asya Mitseva,
Andriy Panchenko, and Thomas Engel

Distributed Systems

Shoal: Query Optimization and Operator Placement for Access
Controlled Stream Processing Systems . 261

Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 281
Marietheres Dietz, Benedikt Putz, and Günther Pernul

Refresh Instead of Revoke Enhances Safety and Availability:
A Formal Analysis . 301

Mehrnoosh Shakarami and Ravi Sandhu

Source Code Security

Wrangling in the Power of Code Pointers with ProxyCFI. 317
Misiker Tadesse Aga, Colton Holoday, and Todd Austin

CASFinder: Detecting Common Attack Surface . 338
Mengyuan Zhang, Yue Xin, Lingyu Wang, Sushil Jajodia,
and Anoop Singhal

Algorithm Diversity for Resilient Systems . 359
Scott D. Stoller and Yanhong A. Liu

x Contents

Malware

Online Malware Detection in Cloud Auto-scaling Systems Using
Shallow Convolutional Neural Networks . 381

Mahmoud Abdelsalam, Ram Krishnan, and Ravi Sandhu

Redirecting Malware’s Target Selection with Decoy Processes 398
Sara Sutton, Garret Michilli, and Julian Rrushi

Author Index . 419

Contents xi

Attacks

Detecting Adversarial Attacks
in the Context of Bayesian Networks

Emad Alsuwat(B), Hatim Alsuwat, John Rose, Marco Valtorta,
and Csilla Farkas

University of South Carolina, Columbia, SC 29208, USA
{Alsuwat,Alsuwath}@email.sc.edu, {Rose,Mgv,Farkas}@cse.sc.edu

Abstract. In this research, we study data poisoning attacks against
Bayesian network structure learning algorithms. We propose to use the
distance between Bayesian network models and the value of data conflict
to detect data poisoning attacks. We propose a 2-layered framework that
detects both one-step and long-duration data poisoning attacks. Layer 1
enforces “reject on negative impacts” detection; i.e., input that changes
the Bayesian network model is labeled potentially malicious. Layer 2
aims to detect long-duration attacks; i.e., observations in the incoming
data that conflict with the original Bayesian model. We show that for a
typical small Bayesian network, only a few contaminated cases are needed
to corrupt the learned structure. Our detection methods are effective
against not only one-step attacks but also sophisticated long-duration
attacks. We also present our empirical results.

Keywords: Adversarial machine learning · Bayesian networks ·
Data poisoning attacks · The PC algorithm · Long-duration attacks ·
Detection methods

1 Introduction

During the last decade, several researchers addressed the problem of cyber
attacks against machine learning systems (see [24] for an overview). Machine
learning techniques are widely used; however, machine learning methods were
not designed to function correctly in adversarial settings [16,18]. Data poison-
ing attacks are considered one of the most important emerging security threats
against machine learning systems [33,35]. Data poisoning attacks aim to corrupt
the machine learning model by contaminating the data in the training phase [11].
Data poisoning was studied in different machine learning algorithms, such as
Support Vector Machines (SVMs) [11,21,28], Principal Component Analysis
(PCA) [9,10], Clustering [8,12], and Neural Networks (NNs) [36]. However, these
efforts are not directly applicable to Bayesian structure learning algorithms.

There are two main methods used in defending against a poisoning attack: (1)
robust learning and (2) data sanitization [14]. Robust learning aims to increase
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-22479-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_1

4 E. Alsuwat et al.

learning algorithm robustness, thereby reducing the overall influence that con-
taminated data samples have on the algorithm. Data sanitization eliminates
contaminated data samples from the training data set prior to training a classi-
fier. While data sanitization shows promise to defend against data poisoning, it
is often impossible to validate every data source [14].

In our earlier work [3,4], we studied the robustness of Bayesian network
structure learning algorithms against traditional (a.k.a one-step) data poisoning
attacks. We proposed two subclasses of data poisoning attacks against Bayesian
network algorithms: (i) model invalidation attacks and (ii) targeted change
attacks. We defined a novel link strength measure that can be used to perform
a security analysis of Bayesian network models [5].

In this paper, we further investigate the robustness of Bayesian network struc-
ture learning algorithms against long-duration (a.k.a multi-step) data poisoning
attacks (described in Sect. 3). We use the causative model proposed by Barreno
et al. [6] to contextualize Bayesian network vulnerabilities. We propose a
2-layered framework to detect poisoning attacks from untrusted data sources.
Layer 1 enforces “reject on negative impacts” detection [30]; i.e., input that
changes the model is labeled malicious. Layer 2 aims to detect long-duration
attacks; i.e., it looks for cases in the incoming data that conflict with the origi-
nal Bayesian model.

The main contributions of this paper are the following: We define long-
duration data poisoning attacks when an attacker may spread the malicious
workload over several datasets. We study model invalidation attacks which aim
to arbitrarily corrupt the Bayesian network structure. Our 2-layered framework
detects both one-step and long-duration data poisoning attacks. We use the dis-
tance between Bayesian network models, B1 and B2, denoted as ds(B1, B2),
to detect malicious data input (Eq. 3) for one-step attacks. For long-duration
attacks, we use the value of data conflict (Eq. 4) to detect potentially poisoned
data. Our framework relies on offline analysis to validate the potentially mali-
cious datasets. We present our empirical results, showing the effectiveness of
our framework to detect both one-step and long-duration attacks. Our results
indicate that the distance measure ds(B1, B2) (Eq. 3) and the conflict measure
Conf(c,B1) (Eq. 4) are sensitive to poisoned data.

The rest of the paper is structured as follows. In Sect. 2, we present the
problem setting. In Sect. 3, we present long-duration data poisoning attacks
against Bayesian network structure learning algorithms. In Sect. 4, we present
our 2-layered detection framework and our algorithms. In Sect. 5 we present our
empirical results. In Sect. 6, we give an overview of related work. In Sect. 7, we
conclude and briefly discuss ongoing work.

2 Problem Setting

We focus on structure learning algorithms in Bayesian networks. Let DSv =
{c1, . . . , cN} be a validated dataset with N case. Each case c is over attributes
x1, . . . , xn and of the form c = <x1 = v1, . . . , xn = vn>, where vi is the value

Detecting Adversarial Attacks in the Context of Bayesian Networks 5

of attribute xi. A Bayesian network model B1 is learned by feeding a validated
dataset DSv into a Bayesian structure learning algorithm, BN Algo, such as the
PC algorithm, which is the most widely used algorithm for structure learning in
Bayesian networks [34], as shown in Eq. 1.

B1 = BN Algo(DSv) (1)

The defender attempts to divide an incoming dataset, DSp, coming from an
untrusted source, into clean and poisoned cases. The attacker aims to inject a
contaminated dataset, DSp with the same attributes as DSv and N1 cases, into
the validated training dataset, DSv. A learning error occurs if DSu, obtained
by the union of DSv and DSp, results in a Bayesian network learning model
B2 (shown in Eq. 2), such that there is a missing link, a reversed link, or an
additional link in B2 that is not in B1.

B2 = BN Algo(DSu) (2)

To estimate the impact of the poisoned dataset on the validated dataset, we
define a distance function between two Bayesian network models B1 and B2,
denoted as ds(B1, B2). Intuitively, B1 is the validated model and B2 is the
potentially corrupted model.

Let B1 = (V,E1) and B2 = (V,E2) be two Bayesian network models where
V = {x1, x2, . . . , xn} and E = {(xu, xv) : xu, xv ∈ V }. Let B1 be the vali-
dated model resulting from feeding DSv to a Bayesian network structure learn-
ing algorithm, and B2 be the newly learned model resulting from feeding DSu to
a Bayesian network structure learning algorithm. Let e1 = (xu, xv) be a directed
edge from vertex xu to vertex xv, and e2 = (xv, xu) be a directed edge from ver-
tex xv to vertex xu (e2 is the reverse of e1). The distance function, ds(B1, B2),
is a non-negative function that measures the changes in the newly learned model
B2 with respect to the original model B1. The distance function, ds(B1, B2), is
defined as follows:

(Distance measure). Let Bayesian network models B1 = (V,E1) and B2 =
(V,E2) be the results of feeding DSv and DSu, respectively, to a Bayesian net-
work structure learning algorithm. ds(B1, B2) is defined as the sum of distances
over pairs of vertices (xu, xv) ∈ V × V as follows:

ds(B1, B2) =
∑

(xu,xv)∈V ×V

dsxuxv(B1, B2) (3)

where dsxuxv(B1, B2) is the distance between every pair of vertices (xu, xv) ∈
V × V .

We define dsxuxv(B1, B2) as the cost of making a change to B1 that results
in the newly learned model B2. The function dsxuxv(B1, B2) between the two
Bayesian network models B1 and B2 is defined as follows [19]:

Status 1 (True Negative Edges): if ((e1 �∈ E1 && e2 �∈ E1) && (e1 �∈ E2

&& e2 �∈ E2)), then there is no edge (neither e1 nor e2) between vertex xu

and vertex xv in either models B1 and B2. Hence, dsxuxv(B1, B2) = 0.

6 E. Alsuwat et al.

Status 2 (True Positive Edges): if ((e1 ∈ E1 && e1 ∈ E2) || (e2 ∈ E1 &&
e2 ∈ E2)), then the same edge (either e1 or e2) appears from vertex xu to
vertex xv in both models B1 and B2. Hence, dsxuxv(B1, B2) = 0.

Status 3 (False Negative Edges): if ((e1 || e2 ∈ E1) && (e1 && e2 �∈
E2)), then there is an edge (either e1 or e2) from vertex xu to vertex xv in
B1 that does not exist in B2. Without loss of generality, assume that the
deleted edge from B1 is e1, then if the indegree of vertex xv, denoted as
indegree(xv), which is the number if edge incoming to vertex xv, is greater
than 1, then dsxuxv(B1, B2) = 8 (deleting e1 breaks an existing v-structure
and changes the Markov equivalence class); otherwise, dsxuxv(B1, B2) =
4 (deleting e1 does not break an existing v-structure, but it changes the
Markov equivalence class).

Status 4 (False Positive Edges): if ((e1 && e2 �∈ E1) && (e1 || e2 ∈ E2)),
then there is an edge (either e1 or e2) from vertex xu to vertex xv in
B2 but not the in B1. Without loss of generality, assume that the added
edge to B2 is e1, then if the indegree of vertex xv, is greater than 1, then
dsxuxv(B1, B2) = 8 (adding e1 introduces a new v-structure and changes the
Markov equivalence class); otherwise, dsxuxv(B1, B2) = 4 (adding e1 does
not introduce a new v-structure, but it changes the Markov equivalence
class).

Status 5 (False Positive and True Negative Edges): if ((e1 ∈ E1 &&
e2 ∈ E2) && (e1 ∈ E2 && e2 ∈ E1)), then the edge from vertex xu

to vertex xv in B1 is the reverse of the edge from vertex xu to vertex xv

in B2. Without loss of generality, assume that there is an edge, e1, from
xu to xv in B1, then e2 is the reverse of e1 in B2. If the indegree of ver-
tex xu, is greater than 1, then dsxuxv(B1, B2) = 8 (reversing e1 introduces
a new v-structure and changes the Markov equivalence class); otherwise,
dsxuxv(B1, B2) = 2 (reversing e1 does not introduce a new v-structure, but
it changes the Markov equivalence class).

To investigate the coherence of an instance case, c = <x1 = v1, . . . , xn =
vn> (or simply <v1, . . . , vn>), in DSp with the validated model B1, we use con-
flict measure, denoted as Conf(c,B1). Conflict measure, Conf(c,B1), is defined
as follows:

(Conflict measure). Let B1 be a Bayesian network model and let DSp be an
incoming dataset, Conf(c,B1) is defined as the process of detecting how well a
given case <v1, . . . , vn> fits the model B1 according to the following equation:

Conf(c,B1) = log2
P (v1) . . . P (vn)

P (v)
(4)

where c = <v1, . . . , vn>, and P (v) is the prior probability of the evidence v [31].
If P (v) = 0, then we conclude that there is inconsistency among the observa-

tions <v1, . . . , vn>. If the value of Conf(c,B1) is positive, then we can conclude
that <v1, . . . , vn> are negatively correlated (i.e., unlikely to be correlated as the
model requires; P (v1, . . . , vn) < P (v1)×· · ·×P (vn)) and thus are conflicting with

Detecting Adversarial Attacks in the Context of Bayesian Networks 7

the model B1. The higher the value of Conf(c,B1) is, the more incompatibility
we have between B1 and <v1, . . . , vn>.

In this paper, we adopt the causative model proposed by Barreno et al.
[6]. Attacks on machine learning systems are modeled as a game between mali-
cious attackers and defenders. In our setting, defenders aim to learn a validated
Bayesian network model B1 using the dataset DSv with the fewest number of
errors (minimum ds function). Malicious attackers aim to mislead the defender
into learning a contaminated model B2 using the dataset DSu, obtained by pol-
luting DSv with DSp. We assume that malicious attackers have full knowledge
of how Bayesian network structure learning algorithms work. Also, we assume
that attackers have knowledge of the dataset DSv. In addition, we assume that
the poisoning percentage at which attackers are allowed to add new “contami-
nated” cases to DSv, β, is less than or equal to 0.05. The game between malicious
attackers and defenders can be modeled as follows:

1. The defender: The defender uses a validated dataset DSv, to produce a
validated Bayesian network model B1.

2. The malicious attacker: The attacker injects a contaminated dataset, DSp,
to be unioned with the original dataset, DSv, with the goal of changing the
Markov equivalence class of the original validated model, B1.

3. Evaluation by the defender:
– The defender feeds the new dataset DSu (Note that, DSu = DSv ∪ DSp)

to a Bayesian network structure learning algorithm, resulting in B2.
– The defender calculates the distance function ds(B1, B2).
– If ds(B1, B2) = 0, then Bayesian models B1 and B2 are identical. Oth-

erwise, i.e., ds(B1, B2) > 0, the newly learned Bayesian model B2 is
different from the original validated model B1.

– For each case c, the defender calculates the value of conflict measure
Conf(c,B1).

– If Conf(c,B1) is positive, then the case c conflict with the Bayesian model
B1. Otherwise, the newly incoming case is validated and added to DSv.

Note, that the goal of malicious attackers is to maximize the quantity ds(B1, B2).
The notations used in this paper are summarized as follows:

Notation Description
DS[x1, . . . , xn] Schema for datasets with attributes x1, . . . , xn

DSv = {c1, . . . , cN} Validated dataset instance with attributes x1, . . . , xn

DSp = {c̄1, . . . , c̄N1}} Crafted dataset instance with attributes x1, . . . , xn

DSi
c = {c̄1, . . . , c̄Ni}} Contaminated dataset instance at time point i

β Data poisoning percentage for DSv

λi Data poisoning rate for DSi
c

B1 The result of feeding DSv to a learning algorithm
B2 The result of feeding DSu to a learning algorithm
ds(B1, B2) Distance function between models B1 and B2

Conf(c, B1) Conflict measure of how well the case c fits B1

8 E. Alsuwat et al.

3 Long-Duration Data Poisoning Attacks

In our earlier work data poisoning attacks [3], we studied data poisoning attacks
against Bayesian structure learning algorithms. For a Bayesian structure learning
algorithms, given the dataset, DSv, and the corresponding model, B1 (Eq. 1),
a malicious attacker attempts to craft an input dataset, DSp, such that this
contaminated dataset will have an immediate impact on DSv and thereby on
B1. The defender periodically retrains the machine learning system to recover
the structure of the new model, B2, using DSu, the combination of the original
dataset DSv and the attacker supplied DSp. We call such an attack a “one-step”
data poisoning attack as malicious attackers send all contaminated cases at once.

In this section, we introduce long-duration data poisoning attacks against
structure learning algorithms. Long-duration poisoning attacks are adversarial
multi-step attacks in which a malicious attacker attempts to send contaminated
cases over a period of time, t = {1, 2, . . . , w}. That is, at every time point i, a
malicious attacker sends in a new dataset, DS

i

c, which contains Ni cases, λiNi

of which are corrupted cases for some 0 < λi < 1 (λi is the data poisoning rate
at which we allowed to add contaminated cases to DSi

c at iteration i). Even
though the defender periodically retrains the model, B

′
2, at time i using the

dataset DS
i

l d, which is equal to DSv ∪ ⋃i
t=1 DS

c

t
, it is not easy to detect the

long-duration attack since such an attack is not instantaneous.
By the end of the long-duration poisoning attack, i.e., at time point w,

the attacker would have injected
⋃w

t=1 DS
c

t
to DSv, resulting in a new dataset,

DS
w

l d. We assume that attackers cannot add more than βN cases to DSv (i.e.,
0 <

⋃w
t=1 λtNt < βN). When the defender retrains the model, B

′
2, using the

dataset DS
w

l d, the attack will dramatically affect the resulting model. Note that
this attack is sophisticated since the attacker may not need to send contaminated
cases with the last contaminated dataset (the wth dataset) in the long-duration
attack, i.e., DS

w

c may trigger the attack with no poisoned cases, as our experi-
ments show.

We propose causative, long-duration model invalidation attacks against
Bayesian network structure learning algorithms. Such attacks are defined as mali-
cious active attacks in which adversarial opponents attempt to arbitrarily corrupt
the structure of the original Bayesian network model in any way. The goal of
adversaries in these attacks is to poison the validated training dataset, DSv, over
a period of time t = {1, . . . , w} using the contaminated dataset

⋃w
i=1DSt

c such
that DSv will be no longer valid. We categorize causative long-duration model
invalidation attacks against Bayesian network structure learning algorithms into
two types: (1) Model invalidation attacks based on the notion of d-separation
and (2) Model invalidation attacks based on marginal independence tests.

Causative, long-duration model invalidation attacks which are based on the
notion of d-separation are adversarial attacks in which adversaries attempt to
introduce a new link in any triple (A − B − C) in the original Bayesian network
model, B1. The goal of the introduced malicious link, (A − C), is to change
the independence relations and the Markov equivalence class of B1. Within
such attacks, we can identify two subtypes: (i) Creating a New Converging

Detecting Adversarial Attacks in the Context of Bayesian Networks 9

Connection (V-structure), and (ii) Breaking an Existing Converging Connection
(V-structure). See Appendix A for more details.

Causative, long-duration model invalidation attacks which are based on
marginal independence tests are adversarial attacks in which adversaries attempt
to use marginal independence tests in order to change the conditional indepen-
dence statements between variables in the original model, B1. Such attacks can
be divided into two main subtypes: (i) Removing the Weakest Edge, and (ii)
Adding the Most Believable Edge yet incorrect Edge. See Appendix A for more
details.

Due to space limitation, in this work, we only provide a brief description of
long-duration data poisoning attacks that aim to achieve a certain attack by
sending in contaminated cases over a period of time t. We refer the reader to
our technical report [2] for the full algorithmic details.

4 Framework for Detecting Data Poisoning Attacks

In this section, we present our detective framework for data poisoning attacks.
Our techniques build on the data sanitization approach that was proposed by
Nelson et al. [30]. We extend Nelson et al. approach such that it is applicable to
detect both one-step and long-duration causative attacks.

The main components of our framework are: (1) Structure learning Algo-
rithms: the PC learning algorithm, (2) FLoD: first layer of detection, and (3)
SLoD: second layer of detection.

First Layer of Detection: In the FLoD, our framework uses “Reject On Neg-
ative Impact” defense [30] to examine the full dataset (DSv ∪ DSp) to detect
the impact of DSp on DSv. The attacker aims to use DSp to change the Markov
equivalence class of the validated model, B1. The first layer of detection detects
the impact of adversarial attacks that aim to corrupt the model B1 using one-
step data poisoning attacks. FLoD is useful for efficiently filtering obvious data
poisoning attacks.

Algorithm 1. First Layer of Detection
Input : DSv = {c1, . . . , cN} and DSp = {c̄1, . . . , c̄N1}
Output: ds(B1, B2)

1 Generate B1 from DSv;
2 Generate B2 from DSv ∪ DSp;
3 Calculate ds(B1, B2) � as described in section 2;
4 if ds(B1, B2) > 0 then
5 Return ds(B1, B2);
6 Send DSp to be checked offline;
7 else
8 Go to Algorithm 2;
9 end

10 E. Alsuwat et al.

In the FLoD, we use the distance function ds described in Sect. 2 as a method
for detecting the negative impact of DSp on the validated model B1. If ds(B1, B2)
is greater than zero, then the new incoming dataset, DSp, is potentiality mali-
cious. In this case, we sent DSp to be checked offline. Otherwise, we proceed
with the second layer of detection, SLoD, looking for long-duration data poison-
ing attacks.

Algorithm 1 provides algorithmic details of FLoD detect one-step data poi-
soning attacks.

Second Layer of Detection: In the SLoD, our framework uses “Data Conflict
Analysis” [31] to examine the newly incoming dataset DSp to detect if DSp

has conflicting cases with the original model B1. The Second layer of detection
detects sophisticated adversarial attacks that aim to corrupt the model B1, such
as long-duration data poisoning attacks.

Algorithm 2. Second Layer of Detection
Input : DSv = {c1, . . . , cN} and DSp = {c̄1, . . . , c̄N1}
Output: DSv, DSconf.

1 Generate B1 from DSv;
2 DSconf = φ;
3 for every case c in DSp do
4 Calculate P (v) � i.e., the probability of the evidence for c;
5 if P (v) = 0 then
6 DSconf = DSconf ∪ {c} � i.e., c is inconsistent with B1;
7 DSp = DSp \ {c} � remove c from DSp;
8 else
9 Conf(c,B1) = log2

P (v1)...P (vn)
P (v) � calculate conflict measure for the

case c;
10 if Conf(c,B1) > 0 then
11 DSconf = DSconf ∪ {c} � i.e., c is incompatible with B1;
12 DSp = DSp \ {c};
13 end
14 end
15 if DSconf �= φ then
16 Send DSconf to be checked offline;
17 end
18 DSv = DSv ∪ (DSp\DSconf);
19 Return DSv, DSconf;
20 end

In the SLoD, we use the value of the conflict measure Conf(c,B1) described
in Sect. 2 as a method for detecting whether or not a case, c, in the newly
incoming dataset, DSp, is conflicting with the original model B1. If the P (v)
is equal to zero, then the case c is inconsistent with the validated model B1.

Detecting Adversarial Attacks in the Context of Bayesian Networks 11

If Conf(c,B1) is positive, then the case c is incompatible with the validated
model B1. In these two situations, we add inconsistent and incompatible cases
to DSconf. DSconf is then sent to be checked offline. Thereby, the model B1 will
be retrained according to the following equation: B1 = BN Algo(DSv) where
DSv = DSv ∪ (DSp\DSconf).

Algorithm 2 provides algorithmic details of the SLoD detect long-duration
data poisoning attacks.

The process of applying our framework is summarized in Fig. 1. The workflow
of our framework is described as follows: (1) A validated dataset, DSv, which
is a clean training dataset that is used to recover a validated machine learning
model B1. (2) A new incoming dataset, DSp, which is coming from an untrusted
source and a potentially malicious dataset, is used along with DSv to learn B2.
(3) FLoD checks for one-step data poisoning attacks. If model change occurs
(i.e., ds(B1, B2) > 0), send DSp for offline evaluation. Else, (4) SLoD checks for
long-duration data poisoning attacks. If the value of conflict measure is positive
(i.e., Conf(c,B1) > 0), send conflicting data to offline evaluation. Else, update
the validated dataset.

Decide
offline

Decide
offline

New
incoming

dataset

Validated
dataset

A structure
learning

algorithm

A structure
learning

algorithm

Model
B2

Model
B1

FLoD

SLoD

Model
Change?

Yes

No

New dataset
has conflicting

cases?

Yes

No

B1

B2

Validated dataset = Validated dataset New dataset

Fig. 1. Framework for detecting data poisoning attacks.

5 Empirical Results

We implemented our prototype system using the Chest Clinic Network [23]. The
Chest Clinic Network was created by Lauritzen and Spielgelhalter [23] and is
widely used in Bayesian network experiments. As shown in Fig. 2, Visit to Asia
is a simple, fictitious network that could be used at a clinic to diagnose arriving
patients. It consists of eight nodes and eight edges. The nodes are as follows:

12 E. Alsuwat et al.

(1) (node A) shows whether the patient lately visited Asia; (2) (node S) shows
if the patient is a smoker; (3) (node T) shows if the patient has Tuberculosis;
(4) (node L) shows if the patient has lung cancer; (5) (node B) shows if the
patient has Bronchitis; (6) (node E) shows if the patient has either Tuberculosis
or lung cancer; (7) (node X) shows whether the patient X-ray is abnormal; and
(8) (node D) shows if the patient has Dyspnea. The edges indicate the causal
relations between the nodes. A simple example of a causal relation is: Visiting
Asia may cause Tuberculosis and so on. We refer the readers to [23] for a full
description of this network.

A S

T L B

E

X D

Fig. 2. The original Chest Clinic Network.

A S

T L B

E

X D

Fig. 3. The validated model B1.

We used the Chest Clinic Network to demonstrate the data poisoning attacks
and our detection capabilities. In each experiment, we manually generated poi-
soned datasets. Given the contingency table of two random variables A and B
in a Bayesian network model with i and j states, respectively. To introduce a
malicious link between A and B, we add corrupt cases to the cell with the high-
est test statistic value in the contingency table. To remove the link between A
and B, we transfer cases from the cell with the highest test statistics value to
the one with the lowest value.

5.1 One-Step Data Poisoning Attacks

To set up the experiment, we implemented the Chest Clinic Network using
HuginTM Research 8.1. We then used HuginTM case generator [26,32] to gen-
erate a simulated dataset of 20, 000 cases. We call this dataset DSv. Using the
PC algorithm on dataset DSv with 0.05 significance setting [26], the resulting
validated structure, B1 = PC Algo(DSv), is given in Fig. 3. While the two net-
works in Figs. 2 and 3 belong to different Markov equivalence classes, we will use
the validated network B1 as the starting point of our experiment.

We evaluated the effectiveness of one-step data poisoning attacks against
the validated dataset DSv (i.e., against the validated model B1). An attacker
aims to use one-step data poisoning attacks to inject in a contaminated dataset
DSp into DSv, resulting in the dataset DSu. The defender retrains the machine

Detecting Adversarial Attacks in the Context of Bayesian Networks 13

learning model by feeding the new dataset DSu to the PC learning algorithm
(B2 = PC Algo(DSu)), resulting in the model B2.

We aim to study the attacker’s goals, i.e., study the feasibility of one-step
data poisoning attacks, which might be as follows: (i) introduce new v-structures:
that is, (1) add the links D −S and S −E to the serial connections D → B → S
and S → L → E, respectively, and (2) add the link A − E to the diverging
connection A ← T → E; (ii) break an existing v-structure T → E ← L, i.e.,
shield the collider E; (iii) remove the weakest edge, i.e., remove the edge T → A;
and (iv) add the most believable edge, i.e., add the edge B → L. (Note that, for
finding the weakest link in a given causal model or the most believable link to
be added to a causal model, we refer the readers to our previous works [3,5] for
technical details on how to measure link strength of causal models).

In all of the scenarios, the attacker succeeded in corrupting the new model
that was going to be learned by the defender, the model B2. The attacker had to
introduce a dataset DSp with 67 corrupt cases (data items) to introduce the link
D−S in the newly learned model B2. To introduce links S−E and A−E required
21 and 7 corrupt cases, respectively. To shield the collider E, the attacker only
needed 4 poisoning data items. The attacker had to modify only 3 cases to break
the weakest link A − T . To add the most believable link B − L required to only
7 corrupt data items.

5.2 Long-Duration Data Poisoning Attacks

To set up the implementation of long-duration attacks, let DSv be a validated
training dataset with attributes x1, . . . , xn and N cases, and β be data poisoning
rate at which attackers are allowed to add new “contaminated” cases to DSv.
Let DSi

c be a newly crafted dataset also with attributes x1, . . . , xn and Ni cases,
and λi be data poisoning rate at which attackers allowed to add new crafted
cases to DSi

c (we default set 0 ≤ ⋃w
t=1 λiNi ≤ βN).

We start by calculating τ , which is the maximum number of poisoned cases
that could be added to DSv over a period of time t = {1, . . . , w}. We then learn
the structure of the validated model B1 from DSv using the PC algorithm.

We then iterate w times. In each iteration t, we generate a clean dataset
DSt

clean and a poisoned dataset DSt
p. We let DSt

c = DSt
clean ∪ DSt

p (note that,

DSt
c has Nt cases, λtNt of which are poisoned). After that, we create the union

of DSt
c and DSv, resulting in DS

t

l d, which is used to learn the structure of model
B

′
2. Note that, in each iteration the number of cases in DSt

p should be between
0 (i.e., no poisoned cases) and τ

w , which is the maximum number of poisoned
cases that could be added to DSt

c in the tth iteration.
We terminate after iteration w. If

⋃w
t=1 λtNt ≤ βN , we return DS

t

l d; other-
wise, we print a failure message since implementing the long-duration attack on
DSv is not feasible.

14 E. Alsuwat et al.

Table 1. Results of long-duration data poisoning attacks against DSv.

(a) Introducing the link A → E in the diverging connection A ← T → E.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 3 1 3 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,003 2,004 2,007 2,007
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,003 16,004 18,007 20,007
Model Change No No No Yes

(b) Breaking the v-structure T → E ← L.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 2 2 0 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,002 2,002 2,000 2,000
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,002 16,004 18,004 20,004
Model Change No No No Yes

(c) Add the most believable edge, B → L, to the causal model B1.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 2 2 1 2
DSt

c = DSt
Clean ∪ DSt

Crafted 2,002 2,002 2,001 2,002
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,002 16,004 18,005 20,007
Model Change No No No Yes

(d) Adding the link D → S to the serial connection D → B → S.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 20 20 23 4
DSt

c = DSt
Clean ∪ DSt

Crafted 2,020 2,020 2,023 2,004
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,020 16,040 18,063 20,067
Model Change No No No Yes

(e) Adding the link S → E to the serial connection S → L → E.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 7 8 5 1
DSt

c = DSt
Clean ∪ DSt

Crafted 2,007 2,008 2,005 2,001
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,007 16,015 18,020 20,021
Model Change No No No Yes

(f) Removing the weakest link, T → A, from the causal model B1.

Time point t = {1, . . . , w} t = 1 t = 2 t = 3 t = 4
Number of clean cases at time point t (DSt

Clean) 2,000 2,000 2,000 2,000
Number of crafted cases at time point t (DSt

Crafted) 1 1 1 0
DSt

c = DSt
Clean ∪ DSt

Crafted 2,001 2,001 2,001 2,000
DSt

l d = DSv ∪ ⋃w
t=1DSt

c 14,001 16,002 18,003 20,003
Model Change No No No Yes

Detecting Adversarial Attacks in the Context of Bayesian Networks 15

We assumed that w = 4, which means that the attacker is allowed to send in
four contaminated datasets to achieve the long-duration data poisoning attack.
We divided the 20, 000 case dataset that was generated for one-step data poi-
soning attacks in Sect. 5.1 into five datasets as follows: 12, 000 cases are used as
DSv; and the rest is divided into four datasets of 2, 000 cases each. We call these
four datasets DS1

Clean, DS2
Clean, DS3

Clean, and DS4
Clean. Using the PC algorithm

on dataset DSv with 0.05 significance setting [26], the resulting validated struc-
ture, B1 = PC Algo(DSv), is given in Fig. 3, which is the starting point of this
experiment.

We evaluated the effectiveness of long-duration data poisoning attacks
against the validated dataset DSv (i.e., against the validated model B1). At
every time point t = {1, . . . , w}, the attacker injects a contaminated dataset
DSt

Crafted into DSt
Clean, resulting in the dataset DSt

c. This resulting dataset is
then sent in as a new source of information. The defender receives DSt

c and
retrains the validated model, B1, by creating the union of DSv and the new
incoming dataset DSt

c and feeding them to the PC algorithm, resulting in the
model B

′
2 (i.e., B

′
2 = PC Algo(DSv ∪ DSt

c)).

The results of our experiments are presented in Table 1. In all of the scenarios,
the attacker succeeded in achieving the desired modification. In our experiments,
we assumed that t = {1, . . . , 4}. For every one of the studied long-duration
attacks on the dataset DSv (Tables 1a, b, c, d, e, and f), the adversary had to
send in the attack over 4 datasets. That is, at every time point t (for t = 1, . . . , 4),
the attacker had to create the union of DSt

Clean and DSt
Crafted resulting in DSt

c,
which was going to be sent to the targeted machine learning system as a new
source of information. The defender, on the other hand, retrained the machine
learning model every time a new incoming dataset DSt

c arrived.
Note that, in our experiments, long-duration attacks require the same num-

ber of contaminated cases as the one-step data poisoning attacks. An important
observation is that the malicious attacker does not always have to send poi-
soned cases in the last dataset that will trigger the attack. For instance, in our
experiments, when introducing the link A → E (Table 1a), shielding collider
E (Table 1b), and removing the weakest edge (Table 1f), the last contaminated
dataset, DS4

c, had no contaminated cases, which makes it impossible for the
defender to find what caused a change in the newly learned model.

5.3 Discussion: Detecting Data Poisoning Attacks

The results of using our framework to detect one-step data poisoning attacks are
presented in Table 2. Algorithm 1 succeeded to detect the negative impact (i.e.,
the change in the Markov equivalence class) of the new incoming dataset DSp

on the validated model B1.

16 E. Alsuwat et al.

Table 2. Results of using FLoD to detect one-step poisoning attacks.

Attack Attack’s class ds(B1, B2) score

Introduce the link A → E New v-structure 12

Introduce the link D → S New v-structure 24

Introduce the link S → E New v-structure 54

Introduce the link T → L Shield an existing collider 16

Remove the link A → T Delete the weakest link 4

Introduce the link B → L Add the most believable link 32

The results using our framework to detect long-duration data poisoning
attacks are summarized in Table 3. Algorithm 2 succeeded to detect the long-
duration impact of DSc on the validated dataset DSv. Note, that FLoD using tra-
ditional reject on negative impact was not able to detect long-duration attacks.
However, when using the SLoD, we were able to detect the conflicting cases,
which are either inconsistent or incompatible with the original validated model
B1 (A detailed experiment is presented in Fig. 4). Such cases might be exploited
by a malicious adversary to trigger the long-duration attack at a later time.
Also, in some attacks no poisoned cases are even required to be sent with DSc

to trigger the long-duration attack, which is very hard to detect.

Table 3. Results of using SLoD to detect long-duration data poisoning attacks.

Attack Attack’s class Algorithm2 decision

Introduce A → E New v-structure Inconsistent observations

Introduce D → S New v-structure Incompatible observations

Introduce S → E New v-structure Inconsistent observations

Introduce T → L Shield an existing collider Inconsistent observations

Remove A → T Delete weakest link Inconsistent\Incompatible observations

Introduce B → L Add most believable link Inconsistent observations

In summary, our 2-layered approach was able to detect both one-step and
long-duration attacks. Moreover, our solution did not lose all the incoming
datasets; we only send conflicting cases to be checked offline. We have carried
out over 200 experiments for long-duration attacks. A comprehensive description
of these experiments is given in [2].

6 Related Work

In this section, we will give a brief overview of adversarial machine learning
research; focusing on data poisoning. Recent surveys on adversarial machine
learning can be found in [6,16,24].

Detecting Adversarial Attacks in the Context of Bayesian Networks 17

(a) DS1
c has 20 incompatible cases. (b) DS2

c has 20 incompatible cases.

(c) DS3
c has 23 incompatible cases. (d) DS4

c has 4 incompatible cases.

Fig. 4. The result of using SLoD to detect a long-duration attack that aims to intro-
duce the link D → S in the Chest Clinic dataset, DSv. We present the case number in
DSt

c
as the variable on the X-axis and the value of our conflict measure Conf(c,B1)

as the variable on the Y-axis. A case is incompatible (conflicting) with the validated
model B1 if Conf(c,B1) > 0.

Data Poisoning Attacks: As machine learning algorithms have been widely
used in security-critical settings such as spam filtering and intrusion detection,
adversarial machine learning has become an emerging field of study. Attacks
against machine learning systems have been organized by [6,7,18] according to
three features: Influence, Security Violation, and Specificity. Influence of the
attacks on machine learning models can be either causative or exploratory.
Causative attacks aim to corrupt the training data whereas exploratory attacks
aim to corrupt the classifier at test time. Security violation of machine learning
models can be a violation of integrity, availability, or privacy. Specificity of the
attacks can be either targeted or indiscriminate. Targeted attacks aim to cor-
rupt machine learning models to misclassify a particular class of false positives
whereas indiscriminate attacks have the goal of misclassifying all false positives.

Evasion attacks and Data poisoning attacks are two of the most com-
mon attacks on machine learning systems [18]. Evasion attacks [17,20,22] are
exploratory attacks at the testing phase. In an evasion attack, an adversary
attempts to pollute the data for testing the machine learning classifier; thus
causing the classifier to misclassify adversarial examples as legitimate ones. Data
poisoning attacks [1,11,21,27,28,36] are causative attacks, in which adversaries
attempt to corrupt the machine learning classifier itself by contaminating the
data in the training phase.

18 E. Alsuwat et al.

Data poisoning attacks are studied extensively during the last decade [3,8–
12,21,28,29,36]. However, attacks against Bayesian network algorithm are lim-
ited. In our previous work, we were addressed data poisoning attacks against
Bayesian network algorithms [3–5]. We studied how an adversary could corrupt
the Bayesian network structure learning algorithms by inserting contaminated
data into the training phase. We showed how our novel measure of strengths of
links for Bayesian networks [5] can be used to do a security analysis of attacks
against Bayesian network structure learning algorithms. However, our approach
did not consider long-duration attacks.

Defenses and Countermeasures: Detecting adversarial input is a challeng-
ing problem. Recent research [13,15,25] illustrate these challenges. Our work
addresses these issues in the specific context of Bayesian network structure learn-
ing algorithms. Data sanitization is a best practice for security optimization in
the adversarial machine learning context [14]. It is often impossible to validate
every data source. In the event of a poisoning attack, data sanitization adds a
layer of protection for training data by removing contaminated samples from
the targeted training data set prior to training a classifier. Reject on Negative
Impact is one of the widely used method for data sanitization [6,14,24]. Reject on
Negative Impact defense assesses the impact of new training sample additions,
opting to remover or discard samples that yield significant, negative effects on
the observed learning outcomes or classification accuracy [6,14]. The base train-
ing set is used to train a classifier, after which, the new training instance is
added and a second classifier is trained [6]. In this approach, classification per-
formance is evaluated by comparing error rates (accuracy) between the original
and the new, retrained classifier resulting from new sample integration [24]. As
such, if new classification errors are substantially higher compared to the original
or baseline classifier, it is assumed that the newly added samples are malicious
or contaminated and are therefore removed in order to maximize and protect
classification accuracy [6].

7 Conclusion and Future Work

Data integrity is vital for effective machine learning. In this paper, we studied
data poisoning attacks against Bayesian network structure learning algorithms.
We demonstrated the vulnerability of the PC algorithm against one-step and
long-duration data poisoning attacks. We proposed a 2-layered framework for
detecting data poisoning attacks. We implemented our prototype system using
the Chest Clinic Network which is a widely used network in Bayesian networks.
Our results indicate that Bayesian network structure learning algorithms are
vulnerable to one-step and long-duration data poisoning attacks. Our framework
is effective in detecting both one-step and long-duration data poisoning attacks,
as it thoroughly validates and verifies training data before such data is being
incorporated into the model.

Our ongoing work focuses on offline validation of potentially malicious
datasets. Currently, our approach detects datasets that either change the

Detecting Adversarial Attacks in the Context of Bayesian Networks 19

Bayesian network structure (distance measure) or in conflict with the validated
model (conflict measure). We are investigating methods for (1) distinguishing
actual model shift from model enrichment, i.e., our initial model was based
on data that was not fully representative of the “true” distribution, and (2)
determining if cases are truly conflicting or again if the initial model poorly
approximates the “true” distribution. We are also investigating the applicability
of Wisdom of the Crowd (WoC) [37]. Rather than human experts, we plan to use
an ensemble of classifiers, i.e., take the votes of competing algorithms instead of
the votes of humans. In the case of an ensemble of classifiers, one could investi-
gate the likelihood of unexpected cases and adjust the sensitivity to anomalies
by how much perturbation it causes in the model.

A Causative, Long-duration Model Invalidation Attacks

In this Appendix, we explain the two subtypes of each of the causative long-
duration attacks which are based on the notion of d-separation and marginal
independence tests.

The causative long-duration attacks which are based on the notion of d-
separation are divided into two main subtypes as follows:

(i) Creating a new converging connection (v-structure) attacks, in which adver-
saries attempt to corrupt the original Bayesian network model, B1, by poi-
soning the validated dataset, DSv, using contaminated datasets

⋃w
t=1DSt

c.
Attackers aim to introduce a new v-structure by adding the link A → C
to the serial connection A → B → C, link C → A to the serial connection
A ← B ← C, or either one of the links A → C or C → A to the diverging
connection A ← B → C in B1.

(ii) Breaking an existing converging connection (v-structure) attacks, in which
malicious attackers attempt to corrupt the original model, B1, by shield-
ing existing colliders (v-structures). Such adversarial attacks can be per-
formed by poisoning the dataset, DSv, over time using the poisoned datasets⋃w

t=1DSt
c such that new links are introduced to marry the parents of

unshielded colliders in B1 (i.e., add the link A → C to the converging con-
nection A → B ← C).

We divide the causative long-duration attacks which are based on marginal
independence tests into two main subtypes:

(i) Removing the weakest edge attacks, in which adversarial opponents attempt
to poison the validated learning dataset, DSv, using contaminated datasets,⋃w

t=1DSt
c, over a period of time t with the ultimate goal of removing weak

edges. Note that, a weak edge in a Bayesian model, B1, is the easiest edge to
be removed from B1. We use our previously defined link strength measure
to determine such edges [5].

(ii) Adding the most believable yet incorrect edge attacks, in which adversaries
can cleverly craft their input datasets,

⋃w
t=1DSt

c, over a period of time t to

20 E. Alsuwat et al.

poison DSv so that adding the most believable yet incorrect edge is viable.
The most believable yet incorrect edge is a newly added edge to model,
B1, with the maximum amount of belief. We use our link strength measure
defined in [5] to determine such edges.

References

1. Alfeld, S., Zhu, X., Barford, P.: Data poisoning attacks against autoregressive
models. In: AAAI, pp. 1452–1458 (2016)

2. Alsuwat, E., Alsuwat, H., Rose, J., Valtorta, M., Farkas, C.: Long duration data
poisoning attacks on Bayesian networks. Technical report, University of South
Carolina, SC, USA (2019)

3. Alsuwat, E., Alsuwat, H., Valtorta, M., Farkas, C.: Cyber attacks against the PC
learning algorithm. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS (LNAI),
vol. 11329, pp. 159–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-13453-2 13

4. Alsuwat, E., Valtorta, M., Farkas, C.: Bayesian structure learning attacks. Techni-
cal report, University of South Carolina, SC, USA (2018)

5. Alsuwat, E., Valtorta, M., Farkas, C.: How to generate the network you want with
the PC learning algorithm. In: Proceedings of the 11th Workshop on Uncertainty
Processing (WUPES 2018), pp. 1–12 (2018)

6. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learn-
ing. Mach. Learn. 81(2), 121–148 (2010)

7. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning
be secure? In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security, pp. 16–25. ACM (2006)

8. Biggio, B., et al.: Poisoning complete-linkage hierarchical clustering. In: Fränti, P.,
Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol.
8621, pp. 42–52. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44415-3 5

9. Biggio, B., Didaci, L., Fumera, G., Roli, F.: Poisoning attacks to compromise face
templates. In: 2013 International Conference on Biometrics (ICB), pp. 1–7. IEEE
(2013)

10. Biggio, B., Fumera, G., Roli, F., Didaci, L.: Poisoning adaptive biometric systems.
In: Gimel’farb, G., et al. (eds.) SSPR /SPR 2012. LNCS, vol. 7626, pp. 417–425.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34166-3 46

11. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Conference on International
Conference on Machine Learning, pp. 1467–1474. Omnipress (2012)

12. Biggio, B., Pillai, I., Rota Bulò, S., Ariu, D., Pelillo, M., Roli, F.: Is data clustering
in adversarial settings secure? In: Proceedings of the 2013 ACM Workshop on
Artificial Intelligence and Security, pp. 87–98. ACM (2013)

13. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp. 3–14. ACM (2017)

14. Chan, P.P., He, Z.M., Li, H., Hsu, C.C.: Data sanitization against adversarial label
contamination based on data complexity. Int. J. Mach. Learn. Cybern. 9(6), 1039–
1052 (2018)

https://doi.org/10.1007/978-3-030-13453-2_13
https://doi.org/10.1007/978-3-030-13453-2_13
https://doi.org/10.1007/978-3-662-44415-3_5
https://doi.org/10.1007/978-3-662-44415-3_5
https://doi.org/10.1007/978-3-642-34166-3_46

Detecting Adversarial Attacks in the Context of Bayesian Networks 21

15. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. CoRR abs/1703.00410 (2017)

16. Gardiner, J., Nagaraja, S.: On the security of machine learning in malware C&C
detection: a survey. ACM Comput. Surv. (CSUR) 49(3), 59 (2016)

17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

18. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58. ACM (2011)

19. de Jongh, M., Druzdzel, M.J.: A comparison of structural distance measures for
causal Bayesian network models. In: Recent Advances in Intelligent Information
Systems, Challenging Problems of Science, Computer Science Series, pp. 443–456
(2009)

20. Kantchelian, A., Tygar, J., Joseph, A.: Evasion and hardening of tree ensemble
classifiers. In: International Conference on Machine Learning, pp. 2387–2396 (2016)

21. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
In: International Conference on Machine Learning, pp. 1885–1894 (2017)

22. Laskov, P., et al.: Practical evasion of a learning-based classifier: a case study. In:
2014 IEEE Symposium on Security and Privacy (SP), pp. 197–211. IEEE (2014)

23. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Stat. Soc.
Ser. B (Methodol.) 50, 157–224 (1988)

24. Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S., Leung, V.C.: A survey on security threats
and defensive techniques of machine learning: a data driven view. IEEE Access 6,
12103–12117 (2018)

25. Lu, J., Issaranon, T., Forsyth, D.: Safetynet: detecting and rejecting adversarial
examples robustly. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 446–454, October 2017. https://doi.org/10.1109/ICCV.2017.56

26. Madsen, A.L., Jensen, F., Kjaerulff, U.B., Lang, M.: The Hugin tool for proba-
bilistic graphical models. Int. J. Artif. Intell. Tools 14(03), 507–543 (2005)

27. Mei, S., Zhu, X.: The security of latent Dirichlet allocation. In: Artificial Intelli-
gence and Statistics, pp. 681–689 (2015)

28. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks
on machine learners. In: AAAI, pp. 2871–2877 (2015)

29. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with
back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Arti-
ficial Intelligence and Security, pp. 27–38. ACM (2017)

30. Nelson, B., et al.: Misleading learners: co-opting your spam filter. In: Yu, P.S., Tsai,
J.J.P. (eds.) Machine Learning in Cyber Trust, pp. 17–51. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-0-387-88735-7 2

31. Nielsen, T.D., Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer,
Heidelberg (2009)

32. Olesen, K.G., Lauritzen, S.L., Jensen, F.V.: aHUGIN: a system creating adaptive
causal probabilistic networks. In: Uncertainty in Artificial Intelligence, pp. 223–
229. Elsevier (1992)

33. Paudice, A., Muñoz-González, L., Gyorgy, A., Lupu, E.C.: Detection of adversarial
training examples in poisoning attacks through anomaly detection. arXiv preprint
arXiv:1802.03041 (2018)

34. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT
Press, Cambridge (2000)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ICCV.2017.56
https://doi.org/10.1007/978-0-387-88735-7_2
http://arxiv.org/abs/1802.03041

22 E. Alsuwat et al.

35. Wang, Y., Chaudhuri, K.: Data poisoning attacks against online learning. arXiv
preprint arXiv:1808.08994 (2018)

36. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against
neural networks. arXiv preprint arXiv:1703.01340 (2017)

37. Yi, S.K.M., Steyvers, M., Lee, M.D., Dry, M.J.: The wisdom of the crowd in com-
binatorial problems. Cogn. Sci. 36(3), 452–470 (2012)

http://arxiv.org/abs/1808.08994
http://arxiv.org/abs/1703.01340

AGBuilder: An AI Tool for Automated
Attack Graph Building, Analysis,

and Refinement

Bruhadeshwar Bezawada1(B), Indrajit Ray2,3, and Kushagra Tiwary2

1 Mahindra Ècole Centrale, Hyderabad, India
bru@mechyd.ac.in

2 Colorado State University, Fort Collins, CO 80523, USA
{indrajit.ray,kushagra.tiwary}@colostate.edu
3 National Science Foundation, Alexandria, USA

Abstract. Attack graphs are widely used for modeling attack scenarios
that exploit vulnerabilities in computer systems and networked infras-
tructures. Essentially, an attack graph illustrates a what-if analysis,
thereby, helping the network administrator to plan for potential secu-
rity threats. However, current attack graph representations not only suf-
fer from scaling issues, but also are difficult to generate. Despite efforts
from the research community there are no automated tools for generating
attack graphs from textual descriptions of vulnerabilities such as those
from the Common Vulnerabilities and Exposures (CVE) in the National
Vulnerability Database (NVD). Additionally, there is little support for
incremental updates and refinements to an attack graph model. This
is needed to reflect changes to an attack graph that arise because of
changes to the vulnerability state of the underlying system being mod-
eled. In this work, we present an artificial intelligence (AI) based planning
tool, AGBuilder – Attack Graph Builder, for automatically generating,
updating and refining attack graphs. A key contribution of AGBuilder
is that it uses textual descriptions of vulnerabilities to automatically
generate attack graphs. Another significant contribution is that, using
AGBuilder, we describe a methodology to incrementally update attack
graphs when the system changes. This aspect has not been addressed in
prior research and is a crucial step for achieving resiliency in the face
of evolving adversarial strategies. Finally, AGBuilder has the ability to
reuse smaller attack graphs, e.g., when building a network of networks,
and join them together to create larger attack graphs.

Keywords: Attack graphs ·
Planning Domain Definition Language (PDDL) · AI Planning · CVE ·
NVD

1 Introduction

Cyber-attacks against safety critical and mission critical systems such as nuclear
power plants are rising alarmingly. It is no longer a question of “if” but “when”
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 23–42, 2019.
https://doi.org/10.1007/978-3-030-22479-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_2

24 B. Bezawada et al.

a system will be attacked. Thus, in order to be adequately prepared for such
an eventuality, there is a need to better understand how the system can be
attacked so that provisions for defense deployment can be made or, perhaps,
provisions for the graceful degradation of mission services can be instantiated
when all defenses have failed. Information security planning and management
traditionally begins with risk assessment with the help of system mapping and
dependency analysis. The outcome of this process is an identification of vulnera-
bilities in the system, an enumeration of the threats to critical resources arising
from these vulnerabilities, and the corresponding loss expectancy. The analysis
allows one to determine appropriate security controls to protect resources and
minimize their susceptibility to cyber attacks.

Attack trees [2,10,17] and attack graphs [1,13,16,20,22,28] are two system-
atic computer security models that represent a networked system’s vulnerability
to malicious attacks by enumerating known vulnerabilities in the hosts or appli-
cations. They capture cause-consequence relationships between system config-
uration and the vulnerabilities in the form of And-Or tree (attack tree) or a
directed graph (attack graph). Nodes in the tree/graph represent system states
that may be of interest to the attacker. Edges connecting the nodes denote a
cause-consequence relationship among the states. A key weakness of this rep-
resentation is the explosion of state space. This becomes a critical drawback
for analyzing large cyber-physical systems with many resources that need to be
protected from a multitude of attacks.

Automated planning holds promise to reduce the number of nodes in the
attack graph/tree and produce a scalable solution. Boddy et al. [3], presented
Behavioral Adversary Modeling System (BAMS), a planning system that mod-
els attack scenarios and produces countermeasures to subvert the attacks in
networks of large organizations. Ghosh and Ghosh [7] proposed a planner based
approach for tractable representation of attack graphs and automatic generation
of attack paths. However, none of these works discuss how an attack graph can be
automatically constructed, refined and updated as needed from textual descrip-
tion of vulnerabilities such as those in the National Vulnerability Database or
CVE repositories.

In this work, we model the attack graph generation and analysis problem
as a planning problem [7] in the artificial intelligence community. When com-
pared with logic programming approaches like [13], the planning approach lends
itself to incremental updates and aggregation, which are quite useful to network
administrators. We encode the attack graph in the Planner Domain Definition
Language (PDDL) representation, referred to as a PDDL domain. However, there
are some important challenges that arise in this modeling. First challenge is that,
translating the attack graph/tree of a large network to the corresponding PDDL
domain is an iterative process, which demands a lot of time and effort from engi-
neers. The issue is further exacerbated by the lack of tool support to build, debug
and maintain PDDL domains from textual CVE descriptions. The second chal-
lenge is that, if the underlying system is changed in any manner, for example, by
installing a new application, then updating the corresponding attack graph is a

AGBuilder 25

computationally complex and error-prone process. The existing approaches have
not addressed this situation and require generating a fresh attack graph for the
changed system environment. The third challenge is that, when a PDDL domain
is incrementally built more actions are added into a domain or actions already
in the domain are edited. Such incremental development is found in scenarios
where network administrators start by analyzing smaller parts of a network and
then try to aggregate the smaller network models into a larger network model.

To address these challenges, we present a formal methodology and a corre-
sponding tool-set, AGBuilder –Attack Graph Builder, designed to automatically
generate PDDL based representation of attacks from textual description of vul-
nerabilities found in the CVE system or the NVD system. Our tool-set incorpo-
rates a natural-language processing based generator to generate a PDDL based
model of attacks from vulnerabilities and support for incremental development
of the PDDL model to reconcile incremental versions of PDDL domains by gen-
erating explanations for changes in plans that result from running the modified
domain against a planner. Additionally, the tool-set constructs abstract syntax
trees and attack graphs for the PDDL domain representation, which facilitates
visualization of the domain and the planning problems.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of the PDDL language and explain the modeling of attack graphs using PDDL.
In Sect. 3, we give an overview of our approach. In Sect. 4, we describe the
AGBuilder tool set and our methodology in detail. In Sect. 5, we describe the
related work in this domain and conclude in Sect. 6.

2 Attack Graph Modeling Using PDDL

In [7], the authors provided an approach for modeling the attack graphs using AI
planners. In this section, we describe this process in detail. A PDDL definition
is composed of two key parts: (1) a PDDL domain definition and (2) a PDDL
problem description.

PDDL Domain: A PDDL domain is a high-level description of a set of prob-
lems and the corresponding actions and constraints involved. A PDDL domain
specifies the requirements it supports, the available actions, the pre-conditions
and post-conditions of actions. The pre-conditions and post-conditions are
expressed as first-order logic predicates. The requirements of the PDDL domain
specify which features it expects the planner to support. A planner will
only accept a domain if it supports all the requirements mentioned in the
domain. A single PDDL domain can be used to represent multiple attacks
from vulnerability databases. The PDDL domain stores pre-conditions, post-
conditions and cause-effect relationships in courses of actions that repre-
sent attacks. Consider the following PDDL domain that models an attack:

26 B. Bezawada et al.

(define (domain PAG) (:requirements :equality :disjunctive-preconditions)
(:functions (version ?software))
(:predicates (user ?User) (email-msg ?User ?Msg) ... (browser-ssl-
compromised ?Browser) (certificate-authorized ?Certificate))
(:action attacker-sends-email-with-keylogger :parameters (?User ?File ?Key-
logger) :precondition (and (user ?User) (file ?File) (has-trojan ?File) (key-
logger-trojan ?File ?Keylogger)) :effect (and (email-msg ?User bad-email)
(mail-attachment bad-email ?File))))
(:action user-visits-site :parameters (?User ?Browser ?Site) :precondition
(and (user ?User) (software ?Browser) (browser ?Browser) (site ?Site)) :effect
(and (use-software ?Browser) (user-visits-site ?User ?Site)))
(:action user-starts-email :parameters (?User ?Mailer) :precondition (and
(user ?User) (mailer ?Mailer)) :effect (and (use-software ?Mailer) (running
?Mailer)))
(:action user-reads-email :parameters (?User ?Mailer ?Msg) :precondition
(and (user ?User) (mailer ?Mailer) (use-software ?Mailer) (email-msg ?User
?Msg)) :effect (and (msg-opened ?Msg))
(:action user-presses-F1-at-vbscript-site :parameters (?User ?Browser ?Site)
:precondition (and (user ?User) (use-software ?Browser) (browser ?Browser)
(= ?Browser browser-IE) (= ?Site vbscript-link) (user-visits-site ?User
vbscript-link)) :effect (user-types F1))
(:action user-opens-attachment :parameters (?User ?Msg ?File ?Mailer) :pre-
condition (and (user ?User) (use-software ?Mailer) (mailer ?Mailer) (msg-
opened ?Msg) (mail-attachment ?Msg ?File) (file ?File)) :effect (opened
?File))
(:action key-logger-installed :parameters (?User ?File ?KeyLogger) :pre-
condition (and (user ?User) (opened ?File) (file ?File) (has-trojan ?File)
(key-logger-trojan ?File ?KeyLogger)) :effect (and (key-logger ?KeyLogger)
(installed ?KeyLogger)))
::
::
(:action user-login-with-keylogger-activated :parameters (?User ?Account
?Keylogger) :precondition (and (user ?User) (account ?Account) (key-logger
?Keylogger) (running ?Keylogger)) :effect (and (logged-in ?User ?Account)
(information-available ?User ?Account) (records ?Keylogger ?Account))))

The predicates (user ?User) and (file ?file) among others describe the
state of the world. They can either be true or false. ?User and ?file are formal
parameters to the predicates, user and file. They describe who the user is and
which file is being used.

Actions allow a planner to move from one state to another. An action can
have pre-conditions and post-conditions, both of which are expressed as predi-
cates. An action can only occur in the current state if the current state supports
its preconditions, i.e., the predicates already in the current state do not negate
the predicates in the action’s preconditions. The effects of an action result in the
next state.

AGBuilder 27

To elaborate, the shown PDDL domain Personalized Attack Graph (PAG),
contains ten actions. Each action is defined with pre-conditions and post-
conditions (effects). For example, action user-reads-email with parameters
(?User, ?Mailer and ?Msg) has preconditions (user ?User), (mailer ?Mailer),
(use-software ?Mailer) and (email-msg ?User ?Msg)). These preconditions
verify if the mailer supplied as an argument actually exists, if the user is indeed
the user supplied in the argument and whether the email message has the user
supplied in the argument and the message supplied in the argument. In other
words, the pre-conditions test to see if those predicates are true in the current
state. If the pre-conditions are true in the current state, then the post-conditions
or effects are applied. The effects are (use-software ?Mailer) and (running
?Mailer). When the effects are applied, the predicates (use-software ?Mailer)
and (running ?Mailer) are set to true. Each action can be a unit step towards
exploiting a vulnerability.

PDDL Problem: A PDDL problem is a concrete instance of a specific PDDL
domain where the general variables in a PDDL domain are replaced with concrete
values and a sub-set of actions defined in the PDDL domain. A PDDL problem
contains an initial state: a set of predicates that are set to true initially, and a goal
state: a set of predicates that may or may not be true with the actions defined
in the domain. A PDDL problem can be used to perform what-if analysis by
simulating conditions of the system and testing various attack paths originating
from the current simulated state of the system. Consider the following PDDL
problem that corresponds to the domain “PAG”.

(define (problem PAG-problem1) (:domain PAG) (:objects user1 ...
browser-seamonkey browser-mozilla)
(:init (user user1) (mailer gmail) (exploit-vulnerability vulnerability-
key-logger) (file file-with-trojan) (has-trojan file-with-trojan) (key-
logger key-logger1) (key-logger-trojan file-with-trojan key-logger1) (site
vbscript-link) (has-crafted-dialog-box vbscript-link) (vb-script-version
VB-5-1) (software browser-IE) (browser browser-IE) (software browser-
firefox) (= (version browser-firefox) 2) (browser browser-firefox)
(information-available user1 account-bank) (account account-bank))
(:goal (and (information-leakage account-bank))))

In the above problem, the initial state consists of predicates, (user
user1) and (mailer gmail) etc. The initial state describes what is
true about the system when the planner starts out. The goal state is
defined as (information-leakage account-bank). This indicates that when
(information-leakage account-bank) becomes true, the goal state is said to
have been reached.

PDDL Planner: A PDDL planner tries to solve a PDDL problem by finding
a plan that satisfies it. A successful plan is a sequence of actions from those
specified in the PDDL problem for a given initial state.

28 B. Bezawada et al.

PDDL Plan: A plan is a sequence of actions from the initial state in the PDDL
problem to the final state in the PDDL problem. A plan can also be thought of
as a sequence of transitions from the initial state to the goal state. Here is the
plan produced for the domain “PAG” and problem “PAG-problem1” by using
the Metric-FF planner [8]:

0: ATTACKER-SENDS-EMAIL-WITH-KEYLOGGER USER1 FILE-
WITH-TROJAN KEY-LOGGER1
1: USER-VISITS-SITE USER1 BROWSER-IE VBSCRIPT-LINK
2: USER-STARTS-EMAIL USER1 GMAIL
3: USER-READS-EMAIL USER1 GMAIL BAD-EMAIL
4: USER-OPENS-ATTACHMENT USER1 BAD-EMAIL FILE-WITH-
TROJAN GMAIL
5: KEY-LOGGER-INSTALLED USER1 FILE-WITH-TROJAN KEY-
LOGGER1
6: USER-PRESSES-F1-AT-VBSCRIPT-SITE USER1 BROWSER-IE
VBSCRIPT-LINK
7: KEY-LOGGER-ACTIVATED KEY-LOGGER1 BROWSER-IE
8: USER-LOGIN-WITH-KEYLOGGER-ACTIVATED USER1
ACCOUNT-BANK KEY-LOGGER1
9: ATTACKER-INTERCEPTS KEY-LOGGER1 ACCOUNT-BANK

The sequence of actions is “ATTACKER-SENDS-EMAIL-WITH-KEY
LOGGERUSER1FILE-WITH-TROJANKEY-LOGGER1” followedby “USER-
VISITS-SITE USER1 BROWSER-IE VBSCRIPT-LINK” and so on until the last
step, “ATTACKER-INTERCEPTS KEY-LOGGER1 ACCOUNT-BANK”.

In essence, these steps describe that an attacker sends an email with a key-
logger to a user. Once the user opens his/her browser and goes to their Gmail
account, reads their email, and opens the attachment from the email sent by the
attacker, the keylogger is installed on their system. When the user presses F1 on
a website with VB Script, the keylogger is activated. This allows the attacker to
remotely track all of the user’s keystrokes and allows the attacker to intercept
the user’s bank account credentials when the user visits their bank’s website
and tries to sign in. The PDDL domain above only has one vulnerability, but in
a more realistic scenario, we can expect thousands of such vulnerabilities in a
domain and at least one plan for every vulnerability, which allows us to derive
attack paths.

Planning Graph: A planning graph is a layered directed graph, consisting of
alternating layers of states and actions. The state layers contain predicates that
are for that state. The action layers consist of actions that map pre-conditions
and post-conditions. An edge from a predicate to an action indicates that the
predicate is the pre-condition of that action. An edge from an action to a predi-
cate implies that the predicate is an effect or post-condition of that action. The
planning graph, therefore, represents the transitions from the initial state to the
goal state by using the actions and predicates defined in the PDDL domain. A

AGBuilder 29

planning graph is, simply put, a more granular way to look at a PDDL plan and
can help us visualize the attack path.

3 Our Approach for Automated Attack Graph
Generation and Refinement

The AGBuilder tool set’s workflow shown in Fig. 1 has the following key steps
each of which has been developed as an independent software module:

Fig. 1. Overview of the process of generating and maintaining attack graphs

– Step 1. The Extractor is used to extract structured information from the vul-
nerability descriptions. Such information is typically obtained from vulnera-
bility databases such as NVD (https://nvd.nist.gov) or ICS-CERT (https://
ics-cert.us-cert.gov).

– The structured information is used to generate a PDDL domain by the Gen-
erator module. The PDDL domain represents cause-effect relationships in the
attack.

– Step 2. The PDDL domain is tested using different PDDL problems, which
are extracted from the information in event logs of the system.1 Each PDDL
problem is meant to test at least one attack/vulnerability. These PDDL prob-
lems are stored in a database internally maintained by the AGBuilder tool.

– Step 3. An AI planner is used to generate one PDDL plan for each PDDL
problem along with the PDDL domain. The set of actions in the PDDL
planner describe an attack path in the attack graph.

– Step 4. Whenever the domain is updated/modified, the tool ensures that the
latest version of the PDDL domain is consistent with respect to the last known
stable version. The tool checks for the consistency of PDDL plans against the
PDDL domain and PDDL problems, and provides feedback on plans which
failed, thus helping the developer maintain the cause-effect relationships.

1 An event log is record of actions taken by users and may represent the exploitation
of a vulnerability.

https://nvd.nist.gov
https://ics-cert.us-cert.gov
https://ics-cert.us-cert.gov

30 B. Bezawada et al.

3.1 Automatically Generating PDDL Domain from Natural
Language Textual Descriptions

The automatic generation phase takes vulnerability descriptions (CVE or NVD)
from a vulnerability database as input and renders an automatically generated
PDDL domain as output. Our tool extends the NLP-based (natural language
processing) software previously developed by us as part of a prior project [29]
to extract structured information from unstructured text. The NLP algorithm
implementation is based on parts-of-speech tagging model wherein lexical pat-
terns are identified from the text and the relationships of the subjects and rules
are identified from these patterns. The Stanford coreNLP POS Tagger [23] was
used for tagging. A corpus of 30 descriptions were used for the manual rule gen-
eration. Based on these rules, the parts-of-speech tagging algorithm works by
tagging labels of a word in the text based on its role in the sentence, like verb,
noun, adjective etc, and the context of the word’s usage. For instance, software
names are typically tagged as proper nouns. Another rule is that software names
are followed by a preposition or subordinating conjunction. A pre-stored gazette
of 48709 entries, consisting of software and operating systems, is used to match a
proper noun to a software name. File names can be matched using regular expres-
sions containing period “.” and so on. To identify attacker and user actions, we
partition the description and based on the relative positioning of the subject,
verbs and modifiers, e.g., like “through”, to extract the subjects [11] and the
respective actions. As a subject can be either attacker or user, sentiment analy-
sis [6] is used to label the subject as positive or negative sentiment by considering
the sentiment labels of the respective verbs and modifiers, and finally, labeling
the respective subject as attacker or user. The information extracted comprises
of the following: software name(s), software version(s), user action(s), attacker
action(s) and attacker impact(s) Here is an example of a vulnerability description
from NVD:

CVE-2010-0483: vbscript.dll in VBScript 5.1, 5.6, 5.7, and 5.8 in
Microsoft Windows 2000 SP4, XP SP2 and SP3, and Server 2003 SP2,
when Internet Explorer is used, allows user-assisted remote attackers to
execute arbitrary code by referencing a (1) local pathname, (2) UNC
share pathname, or (3) WebDAV server with a crafted .hlp file in the
fourth argument (aka helpfile argument) to the MsgBox function, lead-
ing to code execution involving winhlp32.exe when the F1 key is pressed,
aka “VBScript Help Keypress Vulnerability.”

For the above vulnerability description, our extractor gives the following
output:

AGBuilder 31

Software: VBScript
Versions: [51, 56, 57, 5.8, 2000, 2003, SP2, SP2, winhlp32.exe]
Modifiers: [and 5.8]
User Action: Internet Explorer is used
User Action: the F1 key is pressed
Attack Vector: referencing a -LRB- 1 -RRB- local pathname, -LRB- 2
-RRB- UNC share pathname, or -LRB- 3 -RRB- WebDAV server with
a crafted hlp file in the fourth argument -LRB- aka helpfile argument
-RRB- to the MsgBox function, leading to code execution involving
winhlp32exe
Attack Impact: execute arbitrary code

The structured information extracted from vulnerability descriptions is then
used to automatically generate the corresponding PDDL domain. Figure 2 is
an example of an attack graph that is automatically generated by the Genera-
tor module of our AGBuilder toolset using the above domain and the relevant
problem file, and illustrates the attack path taken to exploit the vulnerability.

Fig. 2. Attack path generated for NVD 2010-0483

3.2 Incremental Building and Refinement of the Attack Graph

AGBuilder assumes that the PDDL domain, PDDL problem and the plan that
represent the cyber threat situational awareness model are syntactically correct

32 B. Bezawada et al.

and valid. A system administrator focuses only on the undesired plans, i.e., plans
that have changed since the last update of the domain. Figure 3 illustrates the
process flow for the domain reconciliation algorithm.

Fig. 3. Overview of incremental support for maintaining/refining attack domains

Given that the system administrator has the last known stable version of
the PDDL domain, the PDDL problem set, archived plans from the last known
stable version, and the new PDDL domain with bugs in it, a PDDL planner is
run on each problem from the PDDL problem set and the new PDDL domain
to generate one plan per problem. The tool then matches each pair of a newly
generated plan and its corresponding archived plan. For each pair of plans that
do not match, the tool constructs an explanation for the observed difference in
plans. Sometimes plans may have a different sub-sequence of actions such as
A → B → C → D as opposed to A → C → B → D. If actions B and C can be
executed in parallel, the tool will consider the two plans to be equivalent.

As a motivating example, for incrementally refining the model, let us assume
that a planner runs on a stable PDDL domain and a PDDL problem and creates
a plan (user − opens − email − client → user − opens − email → user −
downloads−keylogger− in−attachment → user−enters−username−and−
password−on−site1 → user−enters−username−and−password−on−site2)
where the actions in the plan are defined in the domain. If some modification to
the domain causes the plan to be generated as (user − opens − email → user −
opens − email − client → user − downloads − keylogger − in − attachment →
user − enters − username − and − password − on − site1 → user − enters −
username − and − password − on − site2), this new plan may be considered an
undesirable plan by the developer since the user now opens the email before even
opening the email client. Now, to debug the domain definition and fix the plan,
the developer needs to track the state of the system starting with the initial
state defined in the PDDL problem and trace all the actions in the plan and
their effects on the state of the system, to figure out what caused the observed
difference in the plans.

AGBuilder 33

Further, it is possible that a new plan (user − opens − email − client →
user − opens − email → user − downloads − keylogger − in − attachment →
user − enters − username − and − password − on − site2 → user − enters −
username − and − password − on − site1) is observably different, but it
might still be equivalent to the old plan (user − opens − email − client →
user − opens − email → user − downloads − keylogger − in − attachment →
user − enters − username − and − password − on − site1 → user − enters −
username − and − password − on − site2. This is possible if user − enters −
username − and − password − on − site1 and user − enters − username −
and − password−on − site2, are independent actions, i.e., actions that do not
affect each other in anyway and can be executed in parallel. If the goal of the
PDDL plan is for the user’s credentials from site1 and site2 to be compro-
mised in no particular order, it should not make a difference if the user’s cre-
dentials for site1 are compromised before his/her credentials for site2 and vice-
versa. If the actions user − enters − username − and − password − on − site1
and user − enters − username − and − password−on − site2 do not have any
preconditions or effects in common, then they can be considered independent.
Therefore, even though the two plans are observably different, they are equiva-
lent. This would imply that neither of the two is an undesired plan. The developer
would still need to manually look at the code to make this deduction.

With incremental development, some inadvertent changes to the old actions
in the PDDL domain can also lead to unexpected outcomes in terms of the plans
produced. At some point, the interaction of the actions in the PDDL domain
can get very challenging to visualize for the developer. If multiple developers
collaborate on a PDDL domain, and some unintended changes are made to the
domain (for instance, adding a new pre-condition to an action or deleting an
action), this change in the domain can cause a different plan to be generated by
the planner. It can get very hard to manually inspect this change in plan and
deduce what caused the change.

Our tool assists the PDDL domain developer ensure that subsequent versions
of the PDDL domain are consistent by constructing explanations for the observed
changes in the old and new plan by creating two planning graphs: (1) a planning
graph using the last stable version of the domain, the PDDL problem and the
last stable version of the plan, and (2) planning graph using the new domain, the
PDDL problem and the new plan. It then traverses the two planning graphs layer
by layer and determines what caused the change in the plan. It infers whether the
cause for the change is the addition/removal/replacement of a predicate in the
set of pre-conditions or post-conditions, or the addition/removal/replacement
of an action. This is then reported as an explanation for the observed change
in plans. Next, we describe the details of the modules in AGBuilder and their
functionality.

4 AGBuilder Modules

We categorize AGBuilder into its knowledge base components and processing
modules.

34 B. Bezawada et al.

4.1 Knowledge Base Components

Input Data: Input to AGBuilder includes the presumably faulty domain which
needs to be fixed, the most recent known stable version of the domain, the set of
PDDL problems pertaining to the faulty domain, and the archived PDDL plans.

Most Recent Stable Domain: This is the last known stable version of the domain
that produces all the plans as expected by the user.

Faulty Domain: A domain file is considered faulty because of changes made
to the most recently stable version of the domain. The most recently stable
version of the domain produces all the plans as expected but the faulty domain
produces unexpected/undesired plans. Unexpected/undesired plans are plans
with unexpected sequences of actions in them, or sequences of actions that are
different from those produced in plans from the last known stable version of the
domain.

PDDL Problem Set: The PDDL domain is accompanied by a set of problems.
The PDDL problems are used for generating plans. The tool uses the planner,
the faulty domain, and PDDL problem set to generated plans for the faulty
domain.

Archived PDDL Plans: The archived PDDL plans can be thought of as the
reference output. There is one archived plan per problem in the problem set.
The archived PDDL plans were generated using the most recently stable version
of the PDDL domain. If the plans generated using a PDDL domain and the
problem set match those in the archived set, then the plans are treated as correct
and the PDDL domain used to generate those plans is considered “stable” and
not “faulty”.

4.2 AGBuilder Processing Modules

AGBuilder has a parsing module, a planning graph construction module, and a
module for generating explanations.

Parsing Module: The parsing module has a built-in lexer and parser that
reads a PDDL domain or problem into an abstract syntax tree (AST). The AST
structure is useful as it allows the tool to run queries on it to find actions that
contain a predicate for determining if two or more actions are independent of
each other. AGBuilder uses a parser and a lexer. The parser and lexer were
generated using a BNF representation of PDDL 3.1 and ANTLR [14], a popular
parser generator for Java.

AGBuilder 35

Planning Graph Construction Module: We use the Metric-FF the PDDL
Planner to generate plans [8]. However, any other new planner can also be used,
which gives the tool a distinct advantage of keeping up to date with minimal
effort. The planning graph construction module takes as input, a PDDL domain,
a PDDL problem and a plan generated using the PDDL domain and the PDDL
problem. It converts the domain and the problem into ASTs and then uses the
ASTs and the plan to create a planning graph.

1. Initialize the first layer as the set of predicates in the initial conditions from
the PDDL Problem’s AST.

2. For every action ai in the sequence of actions in the plan:
(a) Initialize the next layer as an action layer (if it is not initialized already),

and set it as the current layer.
(b) If the current action layer is not the first action layer and the current

action ai is “independent” with respect to every single action in the pre-
vious action layer:
i. Add current action ai to previous action layer and set previous action

layer as current layer.
(c) Initialize the next layer as state layer (if it is not initialized already) and

set it as the current layer.
(d) For every precondition of action ai in the previous state layer, set a

directed edge from the pre-condition in the previous state layer to the
action ai in the previous action layer.

(e) Apply the postconditions of action ai to the current state layer.
(f) For every postcondition of the action ai in the current state layer, set

a directed edge from the action ai in the previous action layer to the
postcondition in the current state layer.

This module determines whether two actions are independent. The criteria for
two actions to be independent is that the negative effects (negated predicates) of
either action should not have any intersection with the preconditions or the pos-
itive effects (predicates that aren’t negated) of the other action. This is formally
expressed in the following relationship as: actions a1 and a2 are independent if
and only if:

effects− (a1) ∩ (preconditions(a2) ∪ effects+(a2)) = {φ}
and
effects− (a2) ∩ (preconditions(a1) ∪ effects+(a1)) = {φ}
The relationship implies that two independent actions don’t interact with

each other in any way, so they can be executed simultaneously, or can be in
the same layer of a planning graph. For a set of actions to be independent,
every possible pair of actions in that set needs to satisfy the aforementioned
relationship for independence. Thus, for a plan A → B → C → D where B and
C are independent according to the aforementioned criteria, the planning graph
would have A in the first action layer, B and C in the second action layer and
D in the third action layer. Another plan A → C → B → D would also have
A in the first action layer, B and C in the second action layer, and D in the
third action layer. This is how it is determined that two plans with differing
sub-sequences of actions are equivalent.

36 B. Bezawada et al.

Module for Constructing Explanations: The module for constructing
explanations is the main module of AGBuilder. It takes one problem at a time
from the PDDL problem set, generates two planning graphs, one for the last
known stable version of the domain and the archive plan, and another for the
faulty domain and the new plan. It then compares these two planning graphs
to deduce if two plans are actually different or if they are equivalent but have
different sub-sequences of actions. If the plans are different, it uses the planning
graphs to deduce an explanation for causes of the change in the new plan. The
main algorithm for generating explanations in AGBuilder is as follows: For each
PDDL problem x, in the problem set {X}:

1. Run planner on PDDL problem and the new (faulty) domain to generate a
plan.

2. If the plan produced has a different sequence of actions than the archived
plan:
(a) Run the faulty domain and the stable version of the domain through the

parsing module to get two ASTs.
(b) Run the PDDL problem xi through the parsing module to get an AST

for the problem.
(c) Construct one planning graph using the stable domain AST, problem xi

AST and the archived plan of the table domain on the problem xi.
(d) Traverse both the graphs simultaneously, one layer at a time, and find

differences in actions or states at each layer. If a difference is observed in
the corresponding layers of the two planning graphs, report the differences
observed and halt any further traversal of planning graphs. The process
of constructing explanations is discussed in more detail next.

Now, the explanation construction module takes as input the planning graph
from the most recent stable domain, the planning graph from the new (pre-
sumably faulty) domain, the old domain AST and the new domain AST. The
algorithm for generating explanations is as follows:

1. Skip the first state layer in the two planning graphs. This is because the first
state layer has the initial preconditions from the PDDL problem (which both
planning graphs share), therefore they must be the same.

2. Compare the two sets of actions after the first state layer of the two planning
graphs.

3. If the sets of actions in the current action layer of the old graph and the new
graph are different:
(a) Print the actions in the current layer of the new graph which are not in

the corresponding layer of the old graph. These actions are extra actions
in the new plan.

(b) Print the actions in the current layer of the old graph which are not in the
corresponding layer of the new graph. These actions are missing actions
in the new plan.

4. If the sets of predicates in the current state layer are different:

AGBuilder 37

(a) Print the predicates in the new graph which are a negation of the predi-
cates in the old graph.

(b) For each predicate Pi in the new graph that is ¬Pi in the old graph:
i. Print the action(s) from the previous action layer which has this pred-

icate ¬Pi in its post conditions. The action(s) that had this predicate
as its post condition is what contributed to the change in the observed
plan.

ii. Print the action(s) from the previous action layer of the old graph
that has the predicate Pi in its post conditions for reference.

(c) Print the predicates in the current layer of the old graph which are not
in the corresponding layer of the new graph. For each of these predicates:
i. Print the action(s) from the previous action layer in the old planning

graph that has this predicate in its post condition.
5. If the sets of predicates in the current state layer of the two graphs are the

same and there are more action layers:
(a) Repeat step (2) with the next action layer of the two graphs as the current

layers.

Finally, we present a worked out example for the domain PAG.

4.3 Working Example of Explanation Constructor

For the exercise, we consider the PDDL problem, PAG-problem1 from Sect. 2.
We edited the action user-visits-site and included all the parameters,
pre-conditions and effects from user-starts-email in user-visits-site. In
essence, the two actions were combined and put in user-visits-site. This was
to simulate an inadvertent change to the domain.

The planner runs on the last known stable version of the domain and the
problem, and then on the new version of the domain and the problem. By con-
structing planning graphs for both instances and crawling the planning graphs,
the tool displays the change in domain that caused the new plan to be differ-
ent from the previous version. The original actions in the PDDL definition of
PAG-problem1 are:

(1) user-visits-site and (2) user-starts-email. A new updated
PDDL Domain needs is generated with the following new actions: (1)
user-visits-site and (2) user-starts-email:

(:action user-visits-site :parameters (?User ?Browser ?Site ?Mailer) :precon-
dition (and (user ?User) (software ?Browser) (browser ?Browser) (site ?Site)
(user ?User) (mailer ?Mailer)) :effect (and (use-software ?Browser) (user-
visits-site ?User ?Site) (use-software ?Mailer) (running ?Mailer)))
(:action user-starts-email :parameters (?User ?Mailer) :precondition (and
(user ?User) (mailer ?Mailer)) :effect (and (use-software ?Mailer) (running
?Mailer)))

Finally, the updated plan from new PDDL domain for PAG-problem1 is given
by:

38 B. Bezawada et al.

0: ATTACKER-SENDS-EMAIL-WITH-KEYLOGGER USER1 FILE-
WITH-TROJAN KEY-LOGGER1
1: USER-VISITS-SITE USER1 BROWSER-IE VBSCRIPT-LINK GMAIL
2: USER-READS-EMAIL USER1 GMAIL BAD-EMAIL
3: USER-OPENS-ATTACHMENT USER1 BAD-EMAIL FILE-WITH-
TROJAN GMAIL
4: KEY-LOGGER-INSTALLED USER1 FILE-WITH-TROJAN KEY-
LOGGER1
5: USER-PRESSES-F1-AT-VBSCRIPT-SITE USER1 BROWSER-IE
VBSCRIPT-LINK
6: KEY-LOGGER-ACTIVATED KEY-LOGGER1 BROWSER-IE
7: USER-LOGIN-WITH-KEYLOGGER-ACTIVATED USER1
ACCOUNT-BANK KEY-LOGGER1
8: ATTACKER-INTERCEPTS KEY-LOGGER1 ACCOUNT-BANK

Below is an example output of AGBuilder on all the problems for the last
known stable version of the domain and the new version of the domain and
reporting changes:

Problems found: (1) problems/PAG-problem1.pddl: PAG-problem1
Archived plans found: (1) archivedPlans/PAG-problem1.plan

Creating planning graph for domainPAG.pddl, PAG-problem1.pddl and
PAG-problem1.plan ...done
Creating planning graph for domainPAGV2.pddl, PAG-problem1.pddl and
new plan ...done

plans different? True
Difference observed:
State Layer 1: same
Action Layer 1: same
State Layer 2: same
Action Layer 2: same
State Layer 3: different!
extra predicates found in action: USER-VISITS-SITE
extra effects:
(1) (use-software ?Mailer)
(2) (running ?Mailer)

As shown above, the tool runs on the two versions of the PAG domain and
PAG-problem1. It crawls the two planning graphs generated using both versions
of the domain, the problem and the two versions of the plans. The plan gener-
ated from the new domain does not include “USER-STARTS-EMAIL USER1
GMAIL” because “USER-VISITS-SITE USER1 BROWSER-IE VBSCRIPT-
LINK GMAIL” has all of its pre-conditions and post-conditions. AGBuilder
finds a disparity at state layer 3, which is after USER-VISITS-SITE was run
for both domains and complaints that the predicates in the state layers were

AGBuilder 39

different and leads to the action which caused this change. This is how the tool
generates an explanation for the change observed in plans.

5 Related Work

There is a wealth of knowledge [2,4,10,12,13,16,19,21,22,28] on attack graphs
and attack trees. We discuss a few works in brief here.

In [20], demonstrated the first technique for automatic generation of attack
graphs using symbolic model checking techniques. However, this approach suffers
from scalability issues. In [13], the authors model the attack graph generation as
a logic programming problem in Prolog. Their tool MulVAL takes in informa-
tion from vulnerability databases, configuration information from each machine
and the network. Once the entire information is available and encoded in the
MulVAL framework, for a given host and policy configurations, an attack sim-
ulation is performed by the MulVAL scanner for policy violations or presence
of exploit paths. However, even small changes in the configuration will require
the simulations to be rerun again. In AGBuilder, the configuration information
can be updated incrementally and generate new attack paths. Furthermore, we
can combine two smaller PDDL domains of different networks and check for
attack paths. While the underlying logical framework remains same, the plan-
ning domain formulation allows for simpler way to perform incremental updates
and analysis. In [16], the authors describe Bayesian Attack Graphs that not only
encodes cause-consequence relationship between network states but also consider
the likelihoods of exploiting these relationships. However, none of the existing
works did considered building attack graphs from natural language descriptions
of the attack/vulnerabilities.

Prior work in the area of applying AI planning in cyber-security applications,
provide evidence for the ability of PDDL being used to model attack-graphs.
Mark Roberts et al. have demonstrated that PDDL can be used for modeling an
attack graph for use in personalized security agents [18].

Existing tools for PDDL allow for automatically generating PDDL code from
formal models, developing PDDL code in an IDE with an integrated planner, and
determining whether plans generated by a planner are correct [25]. AGBuilder
seeks to compliment the existing research on knowledge engineering tools by
assisting in the generation and incremental development of very large and com-
plex domains.

ItSimple [26,27] is a knowledge engineering tool that uses simple UML mod-
els and converts them into PDDL representations. Invariants (constraints) on
UML classes are represented using OCL (Object Constraint Language). Accord-
ing to the authors, “ItSimple was designed to give support to users during the
construction of a planning domain application mainly in the initial stages of
the design life cycle” ItSimple 2.0 [24,27] assists users to resolve issues during
requirements specification, analysis and modeling phases. ItSimple 2.0 allows
users to build use case diagrams from UML, thus allowing the requirements to
be represented at a high level of abstraction. ItSimple 4.0 also features a text

40 B. Bezawada et al.

editor for further editing after the PDDL domain has already been created, uses
modeling patterns (essentially a set of common planning models in UML), time
based models that describe how properties of objects change during the execu-
tion of an action, and a wizard that allows users to quickly select the initial
preconditions and goal states for actions [27]. PDDLStudio is an IDE for PDDL
that features document management, syntax highlighting, code completion with
hints, and planner integration [15].

ModPlan is an integrated environment that allows for knowledge acquisi-
tion and domain analysis in planning applications. ModPlan helps in knowledge
engineering by examining pairwise dependencies in actions and letting the user
examine these dependencies [5]. It allows for plans to be visualized using Vega
and validated using VAL.

VAL is used to determine if the plans generated by a planner are correct.
It first examines if the domain and the problem are syntactically correct and if
the objects, preconditions and goal state(s) in the problem match the domain. It
then validates the plan generated by a planner for a given domain and a problem,
and reports if the plan is flawed, and how it might be fixed [9].

6 Conclusion and Future Work

In this paper, we presented a tool, AGBuilder, that generates attack graphs in
PDDL from textual descriptions of CVEs. The tool assists developers with incre-
mentally developing PDDL domains for modeling attack graphs by generating
explanations for why undesired plans are produced when PDDL domains are
modified, and also allows for what-if analysis of attacks with the PDDL rep-
resentation. The tool also allows for generating abstract syntax trees of PDDL
domains and problems, and generating attack graphs as DOT files, which can
then be rendered into image files, in order to visualize attack paths. We demon-
strated our tool on an NVD description of a key-logger malware propagation
and showed the corresponding attack graph/paths in PDDL.

Future work will look into extending the tool to perceive the current state of
the system. This will allow us to estimate courses of actions that could lead to an
attack in real time. Secondly, we will obtain quantifiable quality measurements
of AGBuilder’s scalability. Thirdly, we will investigate the feasibility of stitching
together attack paths from the various attack graphs modeled by the attack
graph domain to build a single consolidated attack graph. This task will require
using the domain and all problem files to generate a DOT file that can then
be rendered into an image file. Since the AGBuilder already has the capability
of building abstract syntax trees and attack graphs for individual graphs, we
anticipate this feature enhancement to be an immediate attainable goal. Finally,
we will seek to integrate AGBuilder with an online IDE that we are in the process
of developing. This will allow for multiple users to collaborate and build a PDDL
domain.

AGBuilder 41

Acknowledgment. This work is partially supported by the U.S. Department of
Energy under award number DE-NE0008571 subcontracted through the Ohio State
University. This material is also based upon work performed by Indrajit Ray while
serving at the National Science Foundation. Research findings presented here and opin-
ions expressed are solely those of the authors and in no way reflect the opinions the
DOE, the NSF or any other federal agencies.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnera-
bility analysis. In: Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS 2002, pp. 217–224. ACM, New York (2002). http://doi.
acm.org/10.1145/586110.586140

2. Audinot, M., Pinchinat, S., Kordy, B.: Guided design of attack trees: a system-
based approach. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pp. 61–75. IEEE (2018)

3. Boddy, M.S., Gohde, J., Haigh, T., Harp, S.A.: Course of action generation for
cyber security using classical planning. In: ICAPS, pp. 12–21 (2005)

4. Cao, C., Yuan, L.-P., Singhal, A., Liu, P., Sun, X., Zhu, S.: Assessing attack
impact on business processes by interconnecting attack graphs and entity depen-
dency graphs. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol.
10980, pp. 330–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95729-6 21

5. Edelkamp, S., Mehler, T.: Knowledge acquisition and knowledge engineering in
the modplan workbench. In: Proceedings of the First International Competition
on Knowledge Engineering for AI Planning, pp. 26–33 (2005)

6. Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for
opinion mining. In: LREC, vol. 6, pp. 417–422. Citeseer (2006)

7. Ghosh, N., Ghosh, S.K.: A planner-based approach to generate and analyze mini-
mal attack graph. Appl. Intell. 36(2), 369–390 (2012)

8. Hoffmann, J.: The Metric-FF planning system: Translating “ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)

9. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: 16th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2004, pp. 294–301. IEEE (2004)

10. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

11. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp.
423–430. Association for Computational Linguistics (2003)

12. Lippmann, R.P., Ingols, K.W.: An annotated review of past papers on attack
graphs. Technical report, Massachusetts Inst of Tech Lexington Lincoln Lab (2005)

13. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345. ACM (2006)

14. Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(k) parser generator. Softw.
Pract. Exp. 25(7), 789–810 (1995)

http://doi.acm.org/10.1145/586110.586140
http://doi.acm.org/10.1145/586110.586140
https://doi.org/10.1007/978-3-319-95729-6_21
https://doi.org/10.1007/978-3-319-95729-6_21
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23

42 B. Bezawada et al.

15. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL doc-
uments: simply and efficiently with PDDL studio. In: System Demonstrations and
Exhibits at ICAPS, pp. 15–18 (2012)

16. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Trans. Depend. Secure Comput. 9(1), 61–74 (2012)

17. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

18. Roberts, M., Howe, A.E., Ray, I., Urbanska, M.: Using planning for a personalized
security agent. In: Workshop on Problem Solving Using Classical Planners at 26th
AAAI Conference on Artificial Intelligence (2012)

19. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 2

20. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security
and Privacy, pp. 273–284. IEEE (2002)

21. Singhal, A., Ou, X.: Security risk analysis of enterprise networks using probabilistic
attack graphs. In: Wang, L., Jajodia, S., Singhal, A. (eds.) Network Security Met-
rics, pp. 53–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-
4 3

22. Sun, X., Dai, J., Liu, P., Singhal, A., Yen, J.: Using Bayesian networks for prob-
abilistic identification of zero-day attack paths. IEEE Trans. Inf. Forensics Secur.
13(10), 2506–2521 (2018)

23. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora: Held in Conjunction with the 38th Annual Meeting of the Association
for Computational Linguistics, vol. 13, pp. 63–70. Association for Computational
Linguistics (2000)

24. Vaquero, T.S., Romero, V., Tonidandel, F., Silva, J.R.: itSIMPLE 2.0: an inte-
grated tool for designing planning domains. In: ICAPS, pp. 336–343 (2007)

25. Vaquero, T.S., Silva, J.R., Beck, J.C.: A brief review of tools and methods for
knowledge engineering for planning & scheduling. In: KEPS 2011, p. 7 (2011)

26. Vaquero, T.S., Tonidandel, F., Silva, J.R.: The itSIMPLE tool for modeling plan-
ning domains. In: Proceedings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, California, USA (2005)

27. Vaquero, T.S., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.:
itSIMPLE4.0: enhancing the modeling experience of planning problems. In: System
Demonstration-Proceedings of the 22nd International Conference on Automated
Planning & Scheduling (ICAPS-2012), pp. 11–14 (2012)

28. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network config-
urations using attack graphs. In: Barker, S., Ahn, G.-J. (eds.) DBSec 2007. LNCS,
vol. 4602, pp. 98–112. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73538-0 9

29. Weerawardhana, S., Mukherjee, S., Ray, I., Howe, A.: Automated extraction of
vulnerability information for home computer security. In: Cuppens, F., Garcia-
Alfaro, J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp.
356–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17040-4 24

https://doi.org/10.1007/11555827_14
https://doi.org/10.1007/978-3-540-88313-5_2
https://doi.org/10.1007/978-3-319-66505-4_3
https://doi.org/10.1007/978-3-319-66505-4_3
https://doi.org/10.1007/978-3-540-73538-0_9
https://doi.org/10.1007/978-3-540-73538-0_9
https://doi.org/10.1007/978-3-319-17040-4_24

On Practical Aspects of PCFG
Password Cracking

Radek Hranický(B), Filip Lǐstiak, Dávid Mikuš, and Ondřej Ryšavý

Faculty of Information Technology,
Brno University of Technology, Brno, Czech Republic

{ihranicky,rysavy}@fit.vutbr.cz, {xlisti00,xmikus15}@stud.fit.vutbr.cz

Abstract. When users choose passwords to secure their computers,
data, or Internet service accounts, they tend to create passwords that
are easy to remember. Probabilistic methods for password cracking profit
from this fact, and allow the attackers and forensic investigators to guess
user passwords more precisely. In this paper, we present our additions
to a technique based on probabilistic context-free grammars. By modifi-
cation of existing principles, we show how to guess more passwords for
the same time, and how to reduce the total number of guesses without
significant impact on success rate.

Keywords: Password · Cracking · Security · Grammar

1 Introduction

Confidential data and user accounts for various systems and services are pro-
tected by passwords. Though a password is usually the only piece that separates
a potential attacker from accessing the privileged data, users tend to choose weak
passwords which are easy to remember [1]. In reaction, system administrators
and software developers introduce mandatory rules for password composition,
e.g., “use at least one special character.” While password-creation policies force
users to create stronger passwords [11,13], recent leaks of credentials from various
websites showed the reality is much more bitter. People widely craft passwords
from existing words [4] and often reuse the same password between multiple sites
[3]. This fact may be utilized by both malicious attackers and forensic investi-
gators who seek for evidence in password-protected data.

Traditional ways of password cracking contain a brute-force attack where one
tries every possible sequence of characters upon a given alphabet, and a dictio-
nary attack where one uses a list of existing passwords and tries each of them.
The main drawback of the brute-force attack is the size of a keyspace (a set of
all possible password candidates) which grows exponentially with the length of
the password, and one does not need to “try everything” to crack the password.
The dictionary attack, on the other hand, usually checks a limited number of

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 43–60, 2019.
https://doi.org/10.1007/978-3-030-22479-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_3

44 R. Hranický et al.

commonly-used or previously-leaked passwords. It is possible, however, to com-
bine both methods to perform a “smarter” cracking. The use of probability
and statistics has been shown to bring substantially better results for cracking
human-created passwords [9,10,15].

One approach is the use of Markov chains which consider probabilities that
a certain character will follow after another one. The probabilities are learned
from an existing password dictionary and then reused for generating password
guesses [10]. The method, however, only works with individual characters and
does not consider digraphs or trigraphs. To work with larger password fragments,
Weir et al. proposed the use of probabilistic context-free grammars (PCFG) that
can describe the structure of passwords in an existing (training) dictionary. Frag-
ments described by PCFG represent finite sequences of letters, digits, and spe-
cial characters. Then, by derivation using rewriting rules of the grammar, one
can not only generate all passwords from the original dictionary, but produce
many new ones that still respect password-creation patterns learned from the
dictionary [15].

The rewriting rules of PCFG have probability values assigned accordingly to
the occurrence of fragments in the training dictionary. The probability of each
possible password equals the product of probabilities of all rewriting rules used
to generate it. Using PCFGs, generating password guesses is deterministic and
is performed in an order defined by their probabilities. Therefore, more probable
passwords are generated first.

While the creation of such grammar is fast and straightforward, the appli-
cation of rewriting rules takes a significant amount of processor time, and the
number of generated passwords is overwhelming in comparison with the original
dictionary. For example, using Weir’s tool1 with a PCFG trained on 6.5 kB elite-
hacker2 dataset (895 passwords) generates a 12 MB dictionary with 1.8 million
passwords. However, using 73 kB faithwriters dataset (8,347 passwords) gener-
ates a 28 GB dictionary with over 3 billion passwords. Even more unpleasant is
the time required to generate such datasets. The first 10 and first 100 passwords
of darkweb2017 3 dataset and darkweb2017-top100 can be both used for train-
ing and generating within 1 min on Core(TM) i7-7700K CPU. Taking first 1000
passwords requires more than a day to generate guesses on the same processor.

1.1 Contribution

Our goal was to make the PCFG-based password cracking utilizable for prac-
tical use. We identified factors that influence the time of generating password
guesses. Based on Weir’s Python PCFG cracker, we created an implementa-
tion in Go4 language, which enables to parallelize the generation of terminal
structures making the password generation multiple times faster. Moreover, we

1 https://github.com/lakiw/pcfg cracker.
2 https://wiki.skullsecurity.org/index.php?title=Passwords.
3 https://github.com/danielmiessler/SecLists/tree/master/Passwords.
4 https://golang.org/.

https://github.com/lakiw/pcfg_cracker
https://wiki.skullsecurity.org/index.php?title=Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://golang.org/

On Practical Aspects of PCFG Password Cracking 45

proposed methods that remove specific rewriting rules from the grammar which
leads to a massive speedup of password guessing and allows the process to end
in a meaningful time without having a considerable impact on success rate.

1.2 Structure of the Paper

The paper is structured as follows. Section 2 provides an introduction to PCFG
and discusses related work. Section 3 describes the enhancements we made to
PCFG-based techniques, while Sect. 4 shows experimental results of our work.
Finally, Sect. 5 concludes the paper.

2 Background and Related Work

For a long time, probability and statistics have been applied to measure pass-
word strength [8,11,13] and generate guesses in password cracking [7,9,10,15].
Major password leaks allowed to make a clearer image of how user create their
passwords [2]. Such knowledge has been utilized in multiple password cracking
principles and adopted to existing tools.

Narayanan et al. proposed the use of Markov chains for password guessing.
The method uses conditional probability P (A|B) that character A will follow
after character B. The probabilities for all characters A, B are stored in a matrix
obtained by the analysis of an existing password dictionary [10]. The technique
was utilized in Hashcat tool which uses Markov chains for brute-force attacks by
default. The probability matrix can be generated automatically using Hcstatgen5

utility and is stored in a .hcstat file. Recent versions of Hashcat use LZMA
compression which is indicated by .hcstat2 file extension.

Weir et al. introduced password cracking using probabilistic context-free gram-
mars (PCFG) [15]. The mathematical model is based on classic context-free
grammars [5] with the only difference that each rewriting rule is assigned a prob-
ability value. The grammar is created by training on an existing password dic-
tionary. Each password is divided into continuous fragments of letters (L), digits
(D), and special characters (S). For fragment of length n, a rewriting rule of the
following form is created: Tn → f : p, where T is a type of the character group
(L, D, S), f is the fragment itself, and p is the probability obtained by dividing
the number of occurrences of the fragment by the number of all fragments of the
same type and length. In addition, we add rules that rewrite the starting sym-
bol (S) to base structures which are non-terminal sentential forms describing the
structure of the password [15]. For example, password “p@per73” is described by
base structure L1S1L3D2 since it consist from a single letter followed by a single
special character, three letters, and two digits. Table 1 shows rewriting rules of
a PCFG generated by training on two passwords: “pass!word” and “love@love”.
There is only one rule that rewrites S since both passwords are described by
the same base structure. By using PCFG on MySpace dataset (split to training

5 https://hashcat.net/wiki/doku.php?id=hashcat utils#hcstatgen.

https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen

46 R. Hranický et al.

and testing part), Weir et al. were able to crack 28% to 128% more passwords
in comparison with the default ruleset from John the Ripper (JtR) tool6 using
the same number of guesses.

Table 1. An example of PCFG rewriting rules

Left → Right Probability

S → L4S1L4 1

L4 → pass 0.25

L4 → word 0.25

L4 → love 0.5

S1 → @ 0.5

S1 → ! 0.5

The proposed approach, however, does not distinguish between lowercase and
uppercase letters. Weir extended the original generator by adding capitalization
rules like “UULL” or “ULLL” where “U” means uppercase and “L” lowercase.
The rules are applied to all letter fragments which increases the number of
generated guesses [14]. After adding capitalization, the notation for letter non-
terminals were changed from Ln to An (as alphabetical) since L now stands for
lowercase.

While the previous techniques consider only the syntax of passwords, Veras et
al. designed a semantics-based approach which divides password fragments into
categories by semantic topics like names, numbers, love, sports, etc. With JtR
in stdin mode feeded by a semantic-based password generator, Veras achieved
better success rates than using Weir’s approach or the default JtR wordlist [12].

Ma et al. showed how normalization and smoothing can increase the success
rate of Markov models. By training and testing on a huge number of datasets,
Ma showed that the improved Markov-based guessing could bring better results
than PCFGs [9].

Weir’s PCFG-based technique encountered extensions as well. Houshmand
et al. introduced keyboard patterns represented by additional rewriting rules
that helped improve the success rate by up to 22%, proposed the use of Laplace
probability smoothing, and created guidelines for choosing appropriate attack
dictionaries [7]. After that, Houshmand also introduced targeted grammars that
utilize information about a user who created the password [6].

The current version of Weir’s PCFG Cracker consists of two separate tools:
PCFG Trainer and PCFG Manager. While PCFG Trainer is used to create
a grammar from an existing password dictionary, PCFG Manager generates
new password guesses from the grammar - i.e., gradually applies rewriting rules
to the starting symbol and derived sentential forms.

6 https://www.openwall.com/john/.

https://www.openwall.com/john/

On Practical Aspects of PCFG Password Cracking 47

At the time of writing this paper, both tools include the support for letter
capitalization rules [14], keyboard patterns [7], as well as the ability to generate
new password segments using Markov chains [10]. In the training phase, a user
can set a coverage value which defines the portion of guesses to be generated
using rewriting rules only while the rest is generated using Markov-based brute-
force. A smoothing parameter allows the user to apply probability smoothing
as described in [7]. Moreover, the tools contain the support for context-sensitive
character sequences like “<3” or “#1” that, if present in the training data, form
a separate set of rewriting rules. Such replacements can be used to describe
special strings like smileys, arrows, and others.

Despite numerous improvements made by Houshmand [7], users still have to
face slow password guessing speed which is currently the bottleneck of the entire
process. Besides, the generating of password guesses gets progressively slower as
the time goes on and, as we detected, has high memory requirements. Creating
a complete wordlist of possible password candidates using PCFGs trained on
leaked datasets may take many hours or even days. Moreover, current tools
do not provide information about the size of the keyspace, i.e., the number of
possible password candidates, and thus the user has no clue about how long will
the process take. This obstacle has already been reported as a GitHub issue7.
Weir, however, does not plan to resolve the issue “anytime soon.”

3 Enhancements to PCFG

We focus on making PCFG-based password cracking suitable for practical use -
i.e., allow the user to create a PCFG, generate a wordlist of password guesses in
a short time, and start cracking immediately. To achieve this, we decided to:

– Create a faster “password generator” that could produce more guesses at the
same time using the same hardware.

– Make a tool to calculate the number of possible password guesses from
a PCFG. The number can help estimate the size of an output dictionary
as well as the time required to generate all password candidates.

– Analyze if modification of an existing grammar can provide any help to the
password guessing process. Concretely, if it accelerates the password guessing,
or makes it end in a meaningful time.

To verify the success of our efforts, we study the following metrics: (a) the number
of guesses per time unit, (b) the total time of password guessing, (c) the number
of generated passwords, (d) the success rate for testing datasets, i.e., how many
newly-generated passwords are present in existing password dictionaries.

3.1 Key Observations

By analyzing the behavior of Weir’s Python PCFG Cracker on various leaked
datasets, we observed the following:
7 https://github.com/lakiw/pcfg cracker/issues/9.

https://github.com/lakiw/pcfg_cracker/issues/9

48 R. Hranický et al.

– The Python implementation of PCFG Manager uses a priority queue and
three processes: one that fills the queue with pre-terminal structures [15],
one that creates terminal structures (password guesses), and one for storage
backup. No other parallelization is supported. Thus, the processor cores are
not utilized well.

– Processing long base structures like A1D1A2D2A3D3A4D4A5D5 is compu-
tationally complex and wastes a lot of time even if their probabilities are
insignificant.

– Rewriting rules for alpha characters (A), digits (D), and other symbols (O)
have all similar probability, while rewriting rules for base structures differ
more between each other.

– For capitalization of letter fragments, a grammar usually contains few (1 to
4) rules with higher probabilities while the rest have probability below 0.1
and only little impact on success rate.

3.2 Long Base Structures

For every PCFG, possible sentential forms create a tree structure where the start-
ing symbol represents the root node, and terminal structures are leaves. Every
edge stands for the application of a rewriting rule that transforms a parent node
to a child node. In terms of probabilistic password cracking, terminal structures
are password candidates, and base structures (e.g., A4D2O1) are located on the
second level of the tree.

In PCFG Manager, every base structure is processed by Deadbeat dad algo-
rithm [14]. The goal of this algorithm is to create new children from the current
node and ensure that these child nodes are inserted into the priority queue in
the correct order. Deadbeat dad replaced the original Next function [15] and
significantly reduced the size of the priority queue at the expense of computing
operations [14].

We analyzed the algorithm and observed that the most expensive task is
to find every possible parent of every node which is being inserted into the
priority queue. In Weir’s PCFG Manager, the task is resolved by a function called
dd is my parent that runs in iterations whose count is potentially increased by
every non-terminal present in the processed base structure. The deciding factor is
the number of different probabilities assigned to the rewriting rules applicable to
the non-terminal. If all usable rules have the same probability value, the number
of iterations is not increased. The more different probabilities are present, the
more rapidly the iteration count grows, if the non-terminal is added to the base
structure.

Table 2 shows the number of dd is my parent iterations under different set-
tings. For D3 non-terminal, all rules have the same probability, and thus D3 has
no impact on the iteration count. For A1, rewriting rules have 26 to 29 different
probability values (Ap

1). As a capitalization rule for A1, only “L” is used. One
can see, the number of iterations grows almost exponentially each time A1 is
added to the base structure.

On Practical Aspects of PCFG Password Cracking 49

Table 2. The number of iterations of dd is my parent function

base structure Ap
1 = 26 Ap

1 = 27 Ap
1 = 28 Ap

1 = 29

A1 103 107 111 115

A1D3 103 107 111 115

A1D3A1 15,811 17,067 18,371 19,723

A1D3A1D3 15,811 17,067 18,371 19,723

A1D3A1D3A1 1,506,286 1,688,528 1,884,906 2,095,948

A1D3A1D3A1D3 1,506,286 1,688,528 1,884,906 2,095,948

A1D3A1D3A1D3A1 120,939,106 140,790,314 162,990,446 187,717,930

In PCFGs trained on leaked password datasets, the variedness between rule
probabilities is usually high, especially for shorter character fragments. For long
base structures, the dd is my parent function may iterate millions of times
which significantly slows the password guessing process. Such structures usually
have low probability values since they are in most cases created from randomly
generated strings, not created by users. We assume, removing such structures
from the grammar speeds up password generation several times and does not
noticeably decrease success rate at cracking sessions.

3.3 Calculating the Number of Password Candidates

The calculation of possible password guesses from a PCFG is a currently missing
(see footnote 7) feature that is, however, essential for tools presented in this
paper. Let size(N) be the number of terminal structures that can be created by
applying rewriting rules on non-terminal N . For base structure B = N1N2 . . . Nn,
the number of possible password candidates can be calculated as:

cnt base(B) =
n∏

i=1

size(Nn). (1)

For grammar G, the total number of possible password candidates is the sum of
cnt base(B) for all base structures B ∈ G:

cnt total(G) =
∑

B∈G

cnt base(B). (2)

The file and directory structure of Weir’s PCFG considers a single rewriting rule
per line. All rewriting rules have non-zero probability, and thus, all are used.
Therefore, size(N) for non-terminal N = Tn (see Sect. 2) is, in most cases, the
number of lines in n.txt file located in a directory for fragments of type T .
For example, size(D3) equals the number of lines in Digits/3.txt file. Since
letter capitalization rules have been introduced, it is necessary to take them
into consideration. Thus, size(An) is the number of lines in Alpha/n.txt file
multiplied by the number of lines in Capitalization/n.txt file.

50 R. Hranický et al.

The calculation shown above is usable for classical PCFG-based approach
only, i.e., with the --coverage parameter of PCFG Trainer set to 1. Otherwise,
Weir’s PCFG Manager would create additional character fragments using brute-
force and Markov chains which is out of the scope of this paper.

3.4 The New PCFG Manager

To improve the use of resources, we created an alternative8 to Weir’s PCFG Man-
ager. We started with a simple transcription of Python sources to Go program-
ming language that we chose because of its speed, simplicity, and compilation
to machine language. Early experiments showed that our Go-based alternative
using the same algorithms was about four times faster than the original solution.
However, there was still enough space for optimization.

Within all steps performed by the PCFG Manager, generating password
guesses from pre-terminal structures [14,15] was the most computationally com-
plex part. Since there is no mutual dependence between the pre-terminals, we
decided to modify the program and parallelize this part of the process. Our
new design uses a single goroutine (a lightweight thread) for filling the priority
queue [15] with pre-terminal structures, and one to n goroutines for generat-
ing terminals in parallel. The n can be set by a user to reflect the processor’s
capabilities. Moreover, we added a parameter which allows the user to limit the
number of generated password guesses. We illustrate both approaches by sim-
plified schematics that display goroutines and data transfer operations. While
Fig. 1a shows the original design of Weir’s PCFG Manager, the parallel version
is depicted in Fig. 1b.

For synchronization and mutual communication, goroutines use a mechanism
called channels that act as FIFO queues. A goroutine can send values to a chan-
nel or receive values from it. By default, channels are not buffered and both send
and receive operations are blocking. In our solution, we use a buffered channel
of size n where the sender is blocked only if the channel contains n values in the
queue. Each value represents a pre-terminal structure. The main goroutine (M)
implements the Deadbeat dad algorithm [14] filling the priority queue with pre-
terminals. Every time a pre-terminal is created, it is sent to the buffered channel
if there is enough space. Every time the channel is full, the main goroutine is sus-
pended automatically by the send operation. There is no need to generate more
pre-terminals at the time they cannot be processed. In contrast to the original
version, the proposed design allows to process multiple pre-terminals and gen-
erate passwords in parallel if n > 1. In that case, the only apparent drawback
is the possible slight change of the password order at the output. This behavior
could be resolved by adding a supplementary synchronization mechanism at the
output, however, at the cost of performance loss. For practical use, we do not
consider this as a large obstacle since for millions of password, the changes are
insignificant because the order of larger password blocks is preserved. Moreover,
if the user does not set the guess limit explicitly, or if the limit is set in the

8 https://github.com/Dasio/pcfg-manager.

https://github.com/Dasio/pcfg-manager

On Practical Aspects of PCFG Password Cracking 51

PCFG Mower (see Sect. 3.5) instead of PCFG Manager, the output dictionary
contains the same passwords, and the success rate would be intact.

By profiling, we later detected that even though we accelerated generating
terminal structures, the new bottleneck was at the output, where simple I/O
text operations slowed down the entire process. We overcame this obstacle by
adding extra output buffers to goroutines that generate terminal structures.
The buffers store the terminal structures and are flushed to output after the

getNext

send... PT

Process 1

Priority queue

Process 2

list
PT T1

...

Ti

(a) Python PCFG Manager

... PT

Goroutine M

Priority queue

PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

Wordlist
flush

flush

receive

receive

flush

flush

flush

flush

(b) Go PCFG Manager

... PT

Goroutine M

Priority queue

PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

receive

flush

Output buffer

flush

Output buffer

Wordlist

receive

(c) Go PCFG Manager with buffered output

Fig. 1. The architecture of PCFG Manager in Python and Go (PT - pre-terminal
structure, T - terminal)

52 R. Hranický et al.

entire pre-terminal is processed. The final design is illustrated in Fig. 1c and the
experimental results in Sect. 4.

3.5 Grammar Filtering

To increase speed even more, we experimented with various modifications of
already-trained grammars. We noticed that removing rules which rewrite the
starting symbol into long base structures brings a significant speedup without
higher impact on a success rate. The motivation for such filtering was discussed
in Sect. 3.2. We automated the process by creating a simple script that automat-
ically filters out all base structures longer than a user-defined maximum.

At this point, we were able to generate much more passwords per time
unit. However, without a manually-defined limit for password guesses, the total
amount of time required for generating was still extensive. From a practical
perspective, any limit to guess count means that there is always a part of the
grammar that is never used and unnecessarily wastes memory during the guess
generation. Such consideration led us to speculate about reducing the size of the
grammar instead of limiting guesses in PCFG Manager.

We came with an idea to remove the least significant rewriting rules from
the grammar. We are aware of the fact that any removal of rules from already-
created PCFG without adjusting probability values results in a mathematically
incorrect grammar where the total probability of rules that rewrite some non-
terminals may be lower than one. For practical use with the PCFG Manager,
it does not matter. The goal of the filtering is to make the output dictionary
more compact and to ensure that generating passwords will end in a meaningful
time. Besides, having a reduced grammar that can be processed entirely, ensures
that even the parallel run of PCFG Manager generates the same passwords every
time. Nevertheless, the strongest motivation for grammar filtering is a potentially
massive saving of processor time. Putting a limit before the guessing even starts
prevents the Deadbeat dad algorithm from performing many useless derivation
steps on trees that never form terminal passwords due to a low probability.

As denoted above, rules for alpha characters, digits, and special symbols
usually have similar probabilities, thus removing them leads to a considerable
loss of information which decreases the success rate. Rulesets for base structures
and capitalization, on the other hand, contain many insignificant rewriting rules
that can be removed safely. We created a tool called PCFG Mower9 which can:

– Calculate the total number of possible password guesses from a PCFG and
inform the user about achievable keyspace. Moreover, if the user knows an
average speed of password guessing, it is possible to estimate the total time
required for generating all password candidates.

– Filter a PCFG by performing an automatic removal of rewriting rules based
on a set of options entered by the user.

9 https://github.com/findo11/pcfg mower.

https://github.com/findo11/pcfg_mower

On Practical Aspects of PCFG Password Cracking 53

Input: original grammar, limit, bs, cs
Output: reduced grammar
1: reduce = true, i = 0
2: repeat
3: i++
4: count = password count()
5: if count ≤ limit then
6: reduce = false
7: end if
8: if reduce then
9: Remove as many base structures as required to reduce their total probability

by bs.
10: Remove all capitalization rules that have probability lower than i × cs.
11: end if
12: until not reduce

Fig. 2. PCFG reduction algorithm

To verify our assumptions, we created a simple PCFG reduction algorithm that
is implemented in PCFG Mower and shown in Fig. 2. The goal of the algorithm
is not to provide a universal solution, but to validate or disprove that system-
atic PCFG filtering brings a possible benefit to password cracking. Besides the
original grammar, it takes the following input parameters: limit defining the
maximum number of password guesses to be generated, and probability values
bs, cs. While bs allows to set how rapidly should the algorithm remove base
structures, cs sets the same for capitalization rules. The output of the algorithm
represents a PCFG which generates the maximum of limit password guesses.

4 Experimental Results

In this section, we demonstrate the practical benefits of our enhancements to
PCFGs. For experimental purposes, we work with both original and modified
datasets from real password leaks. As data sources, we used SkullSecurity (see
footnote 2) pages and SecLists (see footnote 3) repository. All employed datasets
are enlisted in Table 3. For shorter notation, we assign each a unique identifier
(ID). The last row (def) represents the default PCFG from Weir’s PCFG Cracker
(see footnote 1), which is said to be trained on a random sample of million
passwords from RockYou dataset.

The table shows the number of passwords in the dataset (pw count), its
size, and the average password length (avg). The other columns illustrate how
a PCFG trained on the dataset looks like. We show the number of rewriting rules
for alpha characters (A), digits (D), other characters (O) as well as the number
of rewriting rules for base structures (base) and capitalization (cap).

54 R. Hranický et al.

Table 3. Password datasets used for experiments

Dataset PCFG

ID name pw count size avg A D O base cap

dw Darkweb2017-10000.txt 10,000 82.6 kB 7 5,244 947 30 323 83

r65 rockyou-65.txt 30,290 344.5 kB 7 17,845 4,213 35 256 39

r75 rockyou-75.txt 59,187 478.9 kB 7 30,670 10,601 51 351 51

ms myspace.txt 37,126 354.2 kB 8 22,587 4,273 133 1,574 179

tl tuscl.txt 38,820 324.7 kB 7 26,806 6,518 71 1,290 242

pr probab-v2-top12000.txt 12,645 100.2 kB 6 11,117 534 1 125 23

def Random million passwords from RockYou 330,343 145,510 906 84,307 950

4.1 The Performance of PCFG Manager

At first, we measured the acceleration that can be achieved using our new PCFG
Manager in contrast with the original one from Weir et al. [15]. Table 4 shows
experimental results of generating password guesses using PCFG trained on
Darkweb2017-10000 dataset (dw), RockYou-75 dataset (ru75), and the default
PCFG (def) used in Weir’s cracker. All three experiments were performed using
a computer with Intel(R) Core(TM) i7-4700HQ CPU with 8 GB RAM. We also
decided to study the influence of disk I/O speed, so that we measured everything
using HDD and then using SSD. In all cases, we measured how many password
guesses we can generate within 3 min.

Our solution was from 8 to 40 times faster than the original one. Using
Darkweb dataset (see Fig. 3) resulted in lowest acceleration since it contains long
and complex base structures. With the default PCFG (see Fig. 4) and Rockyou-
75 dataset (see Fig. 5), we were able to generate much more password guesses,
and the difference between HDD and SSD is more noticeable.

Table 4. No. of guesses and acceleration of PCFG manager

Training Manager HDD SSD

dw Python 3,022,923 2,948,532

Go 24,592,908 24,609,579

acceleration 8.14 x 8.35 x

def Python 29,613,726 32,402,490

Go 405,819,926 485,244,534

acceleration 13.70 x 14.98 x

r75 Python 18,418,684 20,843,491

Go 490,635,443 842,695,475

acceleration 26.64 x 40.43 x

On Practical Aspects of PCFG Password Cracking 55

4.2 The Impact of PCFG Filtering

The second set of experiments aim to examine the effects of our attempts to
reduce the grammar. Table 5 shows the results of training, modification, gener-
ating password guesses, and checking success rate using multiple datasets. The
experiments were performed using Intel(R) Core(TM) i7-7700K CPU with 32 GB
RAM and an SSD. Since generating password guesses using non-modified PCFGs
would take hours and days, we set a time limit of 10 min to all measurements -
every time the PCFG manager exceeded the 10-min interval, it was stopped.

Fig. 3. No. of guesses within 3 min using Darkweb-trained PCFG

Fig. 4. No. of guesses within 3 min using Default PCFG

The first column (tr) shows which dataset we used for training to create
the PCFG. For all training datasets, the first line represents generating pass-
word guesses using the original grammar - i.e., without any modification. The
longbase modification stands for the grammar where we removed base struc-
tures longer than 10 characters (5 non-terminals). In other measurements, we
used a grammar with already-removed long base structures and reduced it using
PCFG Mower described in Sect. 3. The mow-n modification means that we per-
formed longbase first and then we set the limit of the PCFG reduction algorithm

56 R. Hranický et al.

Fig. 5. No. of guesses within 3min using Rockyou-75-trained PCFG

to n passwords. We experimented with the following limit values: 1,000,000,000
(1000M), 500,000,000 (500M), and 20,000,000 (20M) passwords. In all cases, the
bs and cs constants were set to 0.001 to achieve fine-grained filtering. Since the
algorithm removes selected rules, we illustrate the changes done to the gram-
mars in each step. For every modification, we display the preserved number of
rewriting rules for base structures (base) and capitalization (cap).

Next columns inform about password guessing. We display the amount of
time required to generate the output dictionary (time), (or 10m∗ if we reached
the time 10-min limit), the size of the output dictionary (out size) and the
number of its passwords in millions (mop). The rest displays the success rate
of password guessing on testing datasets - i.e., the percentage telling how many
generated password guesses were included in different testing datasets. The last
column displays the average success rate impact (ASRI) which is calculated as:

ASRI =
∑n

i=1(SR
mod
i − SRorig

i)
n

where SRorig
i is the success rate on testing dataset number i before the modifi-

cation of the PCFG, and SRmod
i is the success rate on testing dataset number i

after the modification of the PCFG, and n is the total number of testing datasets.
In our case, n = 4. We use ASRI to analyze the influence of our modifications.
Positive ASRI means that the success rate was improved while negative stands
for decrease.

As we can see from results, removing long base structures resulted in a mas-
sive increase of password guessing speed which enabled to generate much more
passwords within 10 min. We achieved the highest acceleration on dw and r65
since they contain very complex passwords that create enormously long base
structures. After the modification, we were able to generate over 14 times more
password guesses. In contrast, training on ms and tl creates more simple gram-
mars, and thus the speedup was not as rapid. Removing long base structures
showed almost no impact on the success rate which confirms our assumption
that their importance is negligible. From 16 testings, only 8 led to decrease by
a maximum of 0.06%. To our surprise, the ASRI was mostly positive since in 6

On Practical Aspects of PCFG Password Cracking 57

Table 5. Success rates of original and modified PCFGs (* - reached the time limit)

Grammar Password guesses Success rate

tr modification base cap time out size mop pr ms dw r65 ASRI

dw original 323 83 10m* 731 MB 78 45.03% 26.83% 98.27% 41.39%

longbase 288 83 10m* 12GB 1,110 45.01% 26.91% 98.35% 41.40% +0.04%

mow-1000M 106 40 25 s 3.3GB 373 44.54% 24.47% 96.42% 38.36% −1.93%

mow-500M 106 40 25 s 3.3GB 373 44.54% 24.47% 96.42% 38.36% −1.93%

mow-20M 86 32 2 s 77MB 9 44.18% 24.12% 95.65% 38.00% −2.39%

r65 original 256 39 10m* 1.5GB 151 72.34% 37.63% 88.25% 99.84%

longbase 223 39 10m* 25GB 2,210 72.30% 37.63% 88.14% 99.81% −0.05%

mow-1000M 161 36 3m 31 s 11GB 980 72.17% 37.17% 87.73% 99.61% −0.35%

mow-500M 123 31 1m 31 s 4.5GB 409 72.01% 36.62% 87.23% 99.35% −0.71%

mow-20M 79 20 3.5 s 130MB 13.8 70.98% 34.26% 85.80% 97.16% −2.47%

ms original 1574 179 10m* 5.7GB 616 47.47% 93.68% 69.14% 46.42%

longbase 1430 179 10m* 9.5GB 1,030 47.45% 94.38% 69.07% 46.42% +0.15%

mow-1000M 110 25 3m 9.2GB 941 46.37% 82.40% 66.74% 43.04% −4.54%

mow-500M 78 20 1m 3.1GB 334 45.13% 79.67% 64.71% 42.62% −6.15%

mow-20M 21 20 2 s 126MB 15 33.25% 61.17% 54.28% 35.58% −18.11%

tl original 1290 242 10m* 4.5GB 520 55.27% 36.87% 69.85% 43.86%

longbase 1158 242 10m* 7.6GB 870 55.23% 37.15% 69.79% 43.87% +0.05%

mow-1000M 91 20 2m 43s 7.5GB 884 54.06% 30.94% 66.08% 40.37% −3.60%

mow-500M 48 19 1m 8s 1.8GB 200 53.77% 29.05% 64.19% 39.39% −4.86%

mow-20M 24 18 2s 133MB 17 52.08% 22.27% 55.61% 35.64% −10.07%

cases, removing long base structures improved the success rate by up to 0.7%
thanks to more passwords generated within the same time.

Next measurements analyzed grammars filtered by PCFG Mower to verify if
the removal of low-probability rewriting rules brings any benefit. In all cases, the
mow modification allowed the PCFG Manager to process the entire grammar in
less than 4 min, showing that it can provide a suitable alternative to a “hard”
limit for password guessing. More compact PCFGs produced smaller dictionaries.
With more compact PCFGs, the generated dictionaries were smaller as well.
Again, we achieved the best results with dw and r65 datasets, where we were
able to reduce the size from 12 GB (longbase) to 112 MB dictionary, and from
25 GB to 130 MB with a loss of success rate below 4% in all cases. For ms and
tl, filtering the grammar spared time and space as well, however, the mow-20M
limit was too strict to provide satisfactory results. For dw, we received the same
results with mow-1000M and mow-500M. The dw -trained grammar contains
a high number of base structures with similar probabilities. Thus, a lot of them
was removed by mow-1000M modification, and no further filtering was necessary.

4.3 Evaluation

By modification of both PCFG Manager and existing grammars, we were able to
make password guessing many times faster. What most helped the speedup was

58 R. Hranický et al.

the use of a compiled programming language, the parallelization of generating
terminal structures and removing rewriting rules for long base structures. For
datasets we analyzed, such rules caused “more harm than good.” The rewriting
rules for long base structures mostly had insignificant probabilities but compli-
cated the calculation of the computationally-complex Deadbeat dad algorithm.
In all cases, the removal accelerated the password guessing dramatically.

Filtering grammars with PCFG Mower reduced the time required for pass-
word guessing rapidly. The settings, however, have to be selected wisely. With
our experimental setup, we achieved the best results with PCFG Mower limit
set to 500 millions of passwords. Stricter limitation produced decent results for
only some cases. We assume that the success rate highly depends on the nature
of selected datasets, and thus there is no universal solution.

5 Conclusion

Probabilistic methods certainly have their place in the area of password cracking.
While Markov chains were adopted to existing tools a long time ago, probabilistic
context-free grammars are currently more a subject of academic research than
a ready-to-use technique. However, as the development of cracking methods con-
tinues by researchers, communities, and commercial subjects, the situation may
change. Even the authors of Hashcat consider10 adding support for generating
“slow candidates.”

From our standpoint, one of the main factors that currently complicate the
use of PCFG-based techniques is the extensive amount of time required to gen-
erate password guesses. By using both analytic and experimental approach, we
identified the critical spots that slowed down the entire process. We proposed
methods that optimize the password guessing and allow better use of hardware
resources. We experimentally proved that our new PCFG Manager is capable of
generating passwords 8 to 40 times faster than the original tool from Weir et al.

Moreover, we proposed a way of PCFG filtering which provides a resource-
saving alternative to a “hard” password guess limit. We showed that the system-
atic removal of selected rewriting rules might reduce the total amount of time
required to generate password candidates without having a significant impact
on the success rate. If one decides to use the filtering techniques, we recom-
mend starting with the removal of long base structures that produce the least-
probable passwords and perceptibly increase the number of necessary processor
operations.

In our future research, we want to perform a more detailed analysis of the
relation between PCFG filtering and the success ratio which may discover new
factors that have not been revealed yet. Since the practical use of password crack-
ing often involves a distributed environment, we currently work on distributed
PCFG-based password guessing techniques which may provide a smarter alter-
native for a classic dictionary attack.

10 https://hashcat.net/forum/thread-7903.html.

https://hashcat.net/forum/thread-7903.html

On Practical Aspects of PCFG Password Cracking 59

Acknowledgements. The research presented in this paper is supported by “Inte-
grated platform for analysis of digital data from security incidents” project, no.
VI20172020062 granted by Ministry of the Interior of the Czech Republic and “ICT
tools, methods and technologies for smart cities” project, no. FIT-S-17-3964 granted by
Brno University of Technology. The work is also supported by Ministry of Education,
Youth and Sports of the Czech Republic from the National Programme of Sustainabil-
ity (NPU II) project “IT4Innovations excellence in science” LQ1602.

References

1. Bishop, M., Klein, D.V.: Improving system security via proactive password check-
ing. Comput. Secur. 14(3), 233–249 (1995)

2. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, pp. 538–552, May
2012. https://doi.org/10.1109/SP.2012.49

3. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS 2014, pp. 23–26 (2014)

4. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, WWW 2007, pp.
657–666. ACM, New York (2007). https://doi.org/10.1145/1242572.1242661

5. Ginsburg, S.: The Mathematical Theory of Context Free Languages. McGraw-Hill
Book Company, New York (1966)

6. Houshmand, S., Aggarwal, S.: Using personal information in targeted grammar-
based probabilistic password attacks. Advances in Digital Forensics XIII. IAICT,
vol. 511, pp. 285–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67208-3 16

7. Houshmand, S., Aggarwal, S., Flood, R.: Next gen PCFG password cracking. IEEE
Trans. Inf. Forensics Secur. 10(8), 1776–1791 (2015)

8. Kelley, P.G., et al.: Guess again (and again and again): measuring password
strength by simulating password-cracking algorithms. In: 2012 IEEE Symposium
on Security and Privacy (SP), pp. 523–537. IEEE (2012)

9. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, pp. 689–704 (2014). https://doi.
org/10.1109/SP.2014.50

10. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS 2005, pp. 364–372. ACM, New York (2005).
https://doi.org/10.1145/1102120.1102168

11. Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E., Salvendy, G.: Improving com-
puter security for authentication of users: influence of proactive password restric-
tions. Behav. Res. Methods Instrum. Comput. 34(2), 163–169 (2002)

12. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: NDSS (2014)

13. Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.L.B., Cook, J., Schultz,
E.E.: Improving password security and memorability to protect personal and orga-
nizational information. Int. J. Hum.-Comput. Stud. 65(8), 744–757 (2007). https://
doi.org/10.1016/j.ijhcs.2007.03.007

https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1145/1242572.1242661
https://doi.org/10.1007/978-3-319-67208-3_16
https://doi.org/10.1007/978-3-319-67208-3_16
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1016/j.ijhcs.2007.03.007
https://doi.org/10.1016/j.ijhcs.2007.03.007

60 R. Hranický et al.

14. Weir, C.M.: Using probabilistic techniques to aid in password cracking attacks.
Ph.D. thesis, Florida State University (2010)

15. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security
and Privacy, pp. 391–405 (2009). https://doi.org/10.1109/SP.2009.8

https://doi.org/10.1109/SP.2009.8

That’s My DNA: Detecting Malicious
Tampering of Synthesized DNA

Diptendu Mohan Kar(B) and Indrajit Ray(B)

Colorado State University, Fort Collins, CO 80523, USA
{diptendu.kar,indrajit.ray}@colostate.edu

Abstract. The area of synthetic genomics has seen rapid progress in
recent years. DNA molecules are increasingly being synthesized in the
laboratory. New biological organisms that do not exist in the natural
world are being created using synthesized DNA. A major concern in this
domain is that a malicious actor can potentially tweak with a benevolent
synthesized DNA molecule and create a harmful organism [1] or create a
DNA molecule with malicious properties. To detect if a synthesized DNA
molecule has been modified from the original version created in the lab-
oratory, the authors in [13] had proposed a digital signature protocol
for creating a signed DNA molecule. It uses an identity-based signatures
and error correction codes to sign a DNA molecule and then physically
embed the digital signature in the molecule itself. However there are sev-
eral challenges that arise in more complex molecules because of various
forms of DNA mutations as well as size restrictions of the molecule itself
that determine its properties, the earlier work is limited in scope. In this
work, we extend the work in several directions to address these problems.

Keywords: Cyber-bio security · DNA · Identity-based signatures ·
Reed-Solomon codes · Approximate string matching ·
Pairing-based cryptography

1 Introduction

Synthesizing DNA molecules in the laboratory is quite common these days. Such
a synthetic DNA molecule is often a licensed intellectual property. DNA sam-
ples are shared between academic laboratories, ordered from DNA synthesis
companies and manipulated for a variety of purposes, for example, to create
new biochemicals, reduce the burden of diseases, improve agricultural yields or
simply to study the DNA’s properties and improve upon them. There have also
been instances of new biological organisms that do not exist in the natural world
being created using synthesized DNA [1]. While the vast majority of such activ-
ities are pursued for beneficial purposes, there are concerns that malicious users
can use the technology malevolently, for example, to make harmful biochemicals,
or making existing bacteria more dangerous [1]. Recently, a DNA-based security

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 61–80, 2019.
https://doi.org/10.1007/978-3-030-22479-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_4

62 D. M. Kar and I. Ray

exploit was demonstrated as a proof of concept, where a synthesized DNA was
used to attack a DNA sequencer that has been deliberately modified with a vul-
nerability [16]. Preventing such malicious use of synthesized DNA is beyond the
scope of this current work. However, attribution of a physical DNA sample and
establishing proof of origin can contribute significantly to deter such malicious
activities.

Following the anthrax attack of 2001, there is an increased urgency to employ
microbial forensic techniques to trace and track agent inventories. For instance,
it has been proposed that unique watermarks be inserted in the genome of infec-
tious agents to increase their traceability [12]. The synthetic genomics commu-
nity has demonstrated the feasibility of this approach by inserting short water-
marks into DNA without introducing significant perturbation to genome function
[6,8,15,20]. The use of watermarks has also been proposed in order to identify
genetically modified organisms (GMOs) or proprietary strains. Heider et al. [7]
describe DNA-based watermarks using DNA-Crypt algorithm. This technique
is applicable to provide proof of origin to a DNA molecule. However, there is
a major shortcoming with all watermark based approaches. The watermark in
all these works is generated from an arbitrary binary data and added to the
original sequence, and so is independent of the original sequence and provides
no integrity of the actual DNA sequence.

To enable effective trace back and eliminate the limitation of watermark-
based approaches, Kar et al. [13] had proposed a scheme to create digital sig-
natures of DNA molecules in living cells. The main idea is as follows: Take a
DNA molecule and sequence it. The result is a string over the alphabet A, C,
G, and T, representing the four nucleotide building blocks of DNA. The output
of the sequencer is stored in what is called a FASTA file. For interpretability
reasons, the FASTA file is annotated by the researcher to create another file
called the GenBank file. The authors then use Shamir’s identity-based signature
scheme [23], Reed-Solomon error-correction codes [18,19] and the 16 digits Open
Researcher and Contributor ID (ORCID – https://orcid.org) of the researcher to
create a digital signature of the string in the FASTA file. The resulting signature
is in the form of a DNA sequence which is now synthesized as a physical molecule.
Finally, the signature molecule is inserted into the original DNA molecule using
DNA editing tools to obtain a signed DNA molecule. When this signed molecule
is shared, a receiver can sequence the signed molecule to verify that it was shared
by an authentic sender and that the sequence of the original molecule has not
been altered or tampered with.

However, there are significant challenges related to the placement of the
signature within the molecule and various types of mutations in more complex
molecules (discussed in more details in Sect. 2) that Kar et al. do not address. The
current work improves the previous scheme to address these problems (Sects. 3
and 4). Moreover, we would like to shorten the size of the signature sequence
as much as possible without impacting security. While biologists believe that
the size of the DNA has a correlation with its properties within certain bounds,
they still do not know by how much a DNA molecule can be expanded without

https://orcid.org

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 63

changing the properties of interest. The current work explores other crypto-
graphic algorithms towards this end (Sect. 5).

2 Limitations of Earlier Work and Current Contributions

2.1 Cyclic Shifts and Reverse Complement

In [13], the signer is required to send the GenBank file along with the physical
DNA sample to the receiver. This is because the GenBank file is needed to align
the FASTA file (which is the output of a DNA sequencer) in the same order
as during the signature generation. Plasmid DNA is cyclic and double-stranded.
Following DNA sequencing, any cyclic permutation of the DNA structure is
possible. A sequence represented in a FASTA file, and consequently the GenBank
file, is thus one of several possible linear representations of a circular structure.
For example, in a FASTA file if the sequence was “ACGGTAA”, and the same
sample is sequenced again, the FASTA file might read as “TAAACGG”.

Moreover, since DNA is composed of two complementary, anti-parallel
strands, a DNA sequencer can read a sample in both the “sense” or “antisense”
direction. The sequence may be represented in a FASTA file in either direction.
When the sample is sequenced again, the output might be in the other direc-
tion, or what is known as the reverse complement. The reverse complement of
“A” is “T” and vice-versa, and the reverse complement of “C” is “G” and vice-
versa. The DNA molecule has a polarity with one end represented as 5’ and
the other represented as 3’. One strand adheres to its reverse complement in
an anti-parallel fashion. So if the sequence is - “5’-ACGGTAA-3’”, the reverse
complement is “3’-TGCCATT-5’”. The FASTA file will represent one strand of
the DNA sequence in the 5’ to 3’ direction; so the FASTA file could read as
“ACGGTAA” or “TTACCGT”. Thus, by combining these two properties, for a DNA
that contains N number of bases, the possible number of correct representations
of the same sample is 2N : N cyclic permutations plus each reverse complement.

Let us now consider the implications of this characteristic of DNA on the sig-
nature generation and verification. The sender has a sequence say “ACCGTT”. The
sender synthesizes the sequence and sends it to the receiver. The receiver after
sequencing with an automated DNA sequencer may not have exactly “ACCGTT”.
It can be “TTACCG” which is a cyclic permutations. The receiver can also get
something like “AACGGT” which is the reverse complement of “ACCGTT”. Owing
to such domain challenges, the signature verification procedure is not as simple
as in digital messages.

Let us assume the signature sequence is “TTAA”. (The actual signature length
is 512 base pairs). In [13], the authors had defined a start and an end tag which
served as delimiters for the signature. Let “ACGC” and “GTAT” be the start and
end tags. For this discussion, we will use the term message to denote some linear
representation of the sequence generated by a DNA sequencer. There can be
three cases for including the signature sequence in the DNA sequence:

64 D. M. Kar and I. Ray

1. Append the signature after the message: In this case, the sender’s
message with the signature embedded looks like - “ACCGTT ACGC TTAA
GTAT”. The receiver, after sequencing the signed DNA sample may get some-
thing like – “GTT ACGCTTAA GTAT ACC” or something else depending on
which base position the sequencer considers as the beginning of the sequence.
In the permutation, the DNA sequencer assumed the 4th base from the left
as the start of the sequence. The message is split but the delimiters and sig-
nature are intact. The simplest way to extract the message and signature
is to append the extracted sequence to itself. With the permutation, this
becomes “GTT ACGC TTAA GTAT ACC || GTT ACGC TTAA GTAT
ACC”. Now we can extract the message which will be contained between two
“ACGC TTAA GTAT” when the string is wrapped around. The receiver recon-
structs the message which is “ACCGTT”. The receiver can then invoke the ver-
ification. Note that this scheme works no matter which position the sequence
considers as the start of the sequence.

2. Append the signature before the message: In this case, the sender’s
message with signature looks like - “ACGC TTAA GTAT ACCGTT”. The
receiver after sequencing the DNA might get something like - “AA GTAT
ACCGTT ACGC TT”. We observe that this is the same as the previous case.
We can append the extracted sequence to itself – “AA GTAT ACCGTT
ACGC TT || AA GTAT ACCGTT ACGC TT. Thus we can extract the
message using the same procedure as above and then invoke the verification.

3. Append the signature between the message: In this case, the sender’s
message with signature might look like - “ACC ACGC TTAA GTAT GTT”.
The receiver after sequencing the DNA might get something like “ACGC
TTAA GTAT GTT ACC”. The problem occurs in this scenario. Even if we
append the extracted sequence, we will not be able to recover the message.
After appending the sequence we get “ACGC TTAA GTAT GTT ACC ||
ACGC TTAA GTAT GTT ACC”. We can observe that the sequence con-
tained by the two “ACGC TTAA GTAT” is “GTTACC”. This is not the mes-
sage the sender signed. The sender signed the message on “ACCGTT”. But the
receiver has no way of knowing this and hence the verification will fail since
the message is not the same even though there is no modification to either
the message or the signature.

The problem of recovering the message only occurs when the signature is
placed within the message. The other two cases when the signature is placed
before or after the message works perfectly fine. However, when working with
DNA molecules, it may not always be possible to place the signature at the end
or the beginning of the message. This is because there can be a feature present
at that location. The possible places to place the signature are most likely to
be within the original sequence. For this reason the GenBank file needed to be
shared. Only this way would the receiver be able to align the sequence in the
same order that the sender had when he signed.

There are several reasons why we may not want to share the GenBank file.
The GenBank file is created by the originator of the DNA molecule using a gene

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 65

editor. Its only purpose is to annotate the DNA sequence. If the DNA is an
intellectual property, then the creator of the DNA will be annotating the DNA’s
GenBank file with different features of different subsequences of the DNA. While
the creator may be willing to divulge the property of the synthesized DNA as
a whole, s/he may not be willing to divulge properties of various subsequences.
Sending the GenBank file jeopardizes the latter. Moreover, gene editors maintain
databases of DNA molecule properties. However, these databases may not be
consistent across different editors in the sense that receivers gene editor may not
have all the information about the same set of molecules that the sender’s gene
editor has. Finally, the GenBank file format is not the only format used by gene
editors, unlike the FASTA file format. In order to not share the GenBank file
with the receiver, we have changed the signature generation procedure in this
work, such that the verification is not dependent on where the signer placed the
signature. The details of the new signature generation procedure are explained
in Sect. 3.

2.2 Mutations in Identifying Tags

In our previous work, we defined two identifying tags to demarcate the signature.
The start tag was chosen as “ACGCTTCGCA” and the end tag as “GTATCCTATG”.
These two delimiters were chosen not just randomly but for very specific rea-
sons. First biologists typically have some idea about what DNA sequence will
not occur in their specific project. Thus they can choose delimiters from these
non-occurring sequence. Second, from these possible delimiters, they will choose
the ones that are simple to synthesize and assemble since DNA synthesis is
expensive. Finally, they will choose a sequence that are easy to identify visually,
are unlikely to develop secondary structures and have a balanced number of “A,
C, G and T”s. Our domain experts selected these delimiters for this project. We
also used error correction code to tolerate mutations within the DNA. However,
we assumed that the start and end tag do not mutate. If they do, our previous
work will fail to locate the signature and consequently, it will not be possible to
verify the signature.

To overcome this limitation, in this work we propose using partial matching
techniques such that the start and end tag can be located approximately. This
is used in conjunction with error correction codes. Note that since the start and
end tags are fixed, we know what we are searching for in the DNA molecule.
For example, we may want to look for strings similar to “ACGCTTCGCA” such as
“GCGCTTCGCG”. The different techniques we use for achieving this are discussed
in Sect. 4.

2.3 Signature Length

The length of the signature plays a very important role in this biology domain.
Shorter signatures imply less cost of synthesizing the signature into a physical
DNA molecule. Shorter signatures will also be less likely to impact the existing

66 D. M. Kar and I. Ray

functionality and stability of the plasmid during signature embedding. Previ-
ously, we used 1024 bit keys and that resulted in 512 base-pair signature. How-
ever, 1024 bit keys are no longer considered very strong and not recommended in
practice for digital signatures. Generally, 2048 bit keys are used. In our domain,
this would result in a 1024 base pair signatures. This length has a higher proba-
bility of affecting the characteristics and stability of the plasmid. Furthermore,
when synthesizing the signature, presently with a 512 base pair signature the
cost is $46.08 - 512 base pairs at $0.09 per base pair. With a 1024 base pair
signature, even if the plasmid remains stable and functional, the cost of synthe-
sizing the signature would be $92.16. The new signature scheme with a shorter
signature is described in Sect. 5.

3 DNA Signature Generation and Verification Procedure

In our DNA sign-share-validate workflow, there are three players: (i) The DNA
signer will create the DNA signature and sign a DNA sequence. (ii) The verifier
will use the signature to verify whether the received DNA sequence was sent by
the appropriate sender and was unchanged after signing. (iii) A central authority,
which is trusted, provide the signer with an encrypted token that is associated
with the signer’s identity. The token contains the signer’s private key.

Trust Model: For this work, we assume a polynomial-time adversary, Mallory,
who is trying to forge the signature of a reputed synthesized DNA molecule cre-
ator, Alice. Alice is trying to protect her IP rights/reputation as she distributes
DNA molecules synthesized by her to researcher Bob. If the attacker, Mallory, is
able to forge the signature of Alice then: (a) Mallory can replace the actual DNA
created by Alice with her own but keep the signature intact. (b) Mallory can
create her own DNA molecule and masquerade as Alice to sign it. (c) Mallory
can modify parts of the signed DNA molecule created by Alice.

Use of Error Correction in DNA Signature: In the digital domain, the
digital signature on a message can be used to detect integrity violations. If
a violation is detected, the sender can always re-transmit the signed message
without incurring much extra cost. However, in the DNA world, we are primarily
shipping physical DNA samples. This implies that if a DNA signature identifies
that there is an error in the signature validation, then the sample needs to be
physically transported and/or synthesized again. This incurs significant cost.
DNA mutation is a very natural and common phenomenon. Thus, there is a
good likelihood that signature validation will fail. Moreover, associated with the
problem of mutation lies the problem of sequencing. When the DNA is processed
by an automated DNA sequencer, the output is not always one hundred percent
correct. It is dependent on the depth of sequencing, and increased sequencing
depth means higher costs. Sequencing a small plasmid to sufficient depth is
relatively inexpensive, but for larger sequences, sequencing errors can be an
issue. In order to overcome these limitations, we use block-based error correction
codes, such as a Reed-Solomon code [19], together with signatures. The presence

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 67

of error correction codes helps the receiver to locate a limited number of errors
(as set by the signer) in the sequenced DNA as well as correct them. The position
of the errors and the corrected values are conveyed to the verifier. The verifier
can then decide if the errors are in any valuable feature of the DNA or not. If
a valuable feature has been corrupted, the verifier can ask for a new shipment,
else if the error was in a non-valuable area in the DNA, the verifier can disregard
the error and continue to work with it.

We now describe our new DNA signature scheme. The steps are shown in
Algorithm 1 (for signing) and Algorithm2 (for verification). To avoid confusion
we use the following conventions. The term sample is used to indicate the physi-
cal DNA molecule. The term sequence is used to signify the digital counterpart of
a DNA molecule. This is generated by sequencing a sample in a DNA sequencer.
The raw sequence (output of sequencing) is stored in a FASTA file. The anno-
tated sequence is stored in a GenBank file. The signer creates a physical DNA
sample from the signed sequence and sends the sample (only) to the verifier. The
verifier sequences this sample to get another sequence that is then verified.

For ease of understanding, we denote the sequence to be signed by the string
SEQUENCE, the signature by SIN, the begin and end tags as BESN and EDSN and
the error correction code as ECC. Each of these strings is really a sequence of
bases that can be synthesized into a physical DNA molecule and embedded
in the sample. Any location reference in SEQUENCE for subsequence discussion is
specific to the location within the sequence. For instance, location 3 in the string
contains character Q. However, in the real sequence, the subsequence denoted
by Q may occur in position 350 (for example) depending on how many bases
constitute S and E.

Signature Generation: The signature generation procedure begins by scan-
ning the GenBank file for the keyword ORIGIN and locating the actual DNA
sequence. Let there exists a feature from location 1 to 3 in the sequence, which
corresponds to SEQ. Next, the location of the signature placement specified by
the signer is checked. If the location collides with a feature, the user is alerted to
change the location. In our example, if the user had provided 2, the algorithm
will alert the user that there is already a feature SEQ there and ask for a new
location. If the user chooses 4 which is after Q, it will be allowed. Next, the
ORCID and Plasmid ID (which are integers) are converted to the corresponding
A C G T sequence by the following conversion method – [0 - AC, 1 - AG, 2 - AT,
3 - CA, 4 - CG, 5 - CT, 6 - GA, 7 - GC, 8 - GT, 9 - TA]. The reason for choosing
this conversion type is that if any ORCID or Plasmid ID has repetitions e.g. if
ORCID is 0000-0001-4578-9987, the converted sequence will not have a long run
of a single base. Long runs of a single nucleotide can result in errors during
sequencing. Let the converted ORCID and Plasmid ID sequences be ORCID and
PID respectively.

To account for the problem of placing the signature within the sequence
mentioned earlier in Sect. 2, the signature is generated on the hash of a tweaked
version of the sequence. We left rotate a copy of the sequence by n−1 where n is
the location within the sequence where the signature needs to be placed. For this

68 D. M. Kar and I. Ray

Algorithm 1. DNA Signature Algorithm Accommodating Cyclic Shifts,
Reverse Complement and Mutating Tags
Input: The GenBank (.gb) file: file, ORCID: a 16 digit number in

xxxx-xxxx-xxxx-xxxx format, Plasmid ID: a 6 digit number, Location of
signature placement: number, Error tolerance limit: number (can be 0
meaning no error tolerance)

Output: Signed GenBank (.gb) and FASTA (.fa) file: file
1 Input checks e.g. correct file extension, ORCID format, integers etc.
2 Parse GenBank file. Split content and sequence based on keyword ORIGIN.

Parse content to get the list of feature locations.
3 if Location of signature placement NOT within a feature then
4 Make the position as start of the sequence and wrap everything before the

location to the end. If position is 0 or length of sequence - no wrap is needed.
5 Generate hash (SHA-256) of this sequence.
6 Generate signature on the hash.
7 Convert the signature bytes,ORCID and Plasmid ID to ACGT sequence.

Create the following string by concatenating parts:
8 BESN+ORCID+Plasmid ID+SIN+EDSN
9 if error tolerance NOT 0 then

10 Append MSG (shifted sequence) before
BESN+ORCID+PLASMID ID+SIN+ESN.

11 Pass SEQUENCE+BESN+ORCID+PLASMID ID+SIN+ESN to
Reed-Solomon Encoder.

12 Convert the parity bytes to ACGT. (call this ECC)
13 Signature Sequence =

BESN+ORCID+PLASMID ID+SIN+ECC+EDSN.

14 else
15 Signature Sequence = BESN+ORCID+PLASMID ID+SIN+EDSN.

16 if signature placement location is start of the original sequence then
17 Final Sequence = SEQUENCE+Signature Sequence

18 else if signature placement location is end of the original sequence then
19 Final Sequence = Signature Sequence+SEQUENCE

20 else
21 part1 = prefix of SEQUENCE of length n− 1 (where signature is to be

placed at location n
22 part2 = suffix of SEQUENCE of length len(SEQUENCE) − n + 1
23 Final Sequence = part1+Signature Sequence+part2

24 Write the Final Sequence to a new GenBank file and FASTA file.

25 else
26 Alert user about collision. Allow user to input new location. Go to step 3

with new location.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 69

example, the sender wants to place the signature after Q. The sequence will be
shifted as – UENCESEQ. The signature is generated on the hash of the left rotated
sequence UENCESEQ. The signature bits are then converted to A C G T sequence. Let
this signature sequence be SIN. Let the start tag be BESN and end tag be EDSN.
The signature sequence is concatenated with ORCID and PID and then placed
between the start and end tags as BESN ORCID PID SIN EDSN. This entire string
is then placed at the position specified by the user. We chose 4 in our example.
Hence, the signed sequence looks like - SEQ BESN ORCID PID SIN EDSN UENCE.

Next, this sequence is passed into the error correction encoder. According
to the number of tolerable errors specified by the user, the error correcting
parity bits are generated. These parity bits are then converted to some A C G T
sequence. Let this sequence be ECC. When the encoder output is generated, the
sequence would look like – SEQ BESN ORCID PID SIN EDSN UENCE ECC. Next, the ECC
is separated and is placed before the signature and end tag. So the final output
sequence is - SEQ BESN ORCID PID SIN ECC EDSN UENCE. Note that the error correc-
tion code is generated after generating the signature sequence and combining
with original sequence. Hence any error in that string can be corrected provided
it is within the tolerable limit. For instance, if we put 2 as our error tolerance
limit, then any 2 errors within the string SEQ BESN ORCID PID SIN ECC EDSN UENCE
can be tolerated. If there is 1 error in SEQ and 1 error in SIN, or 2 errors in
SIN, or 1 error in SIN and 1 error in ECC, these can be corrected. But if there
are more than two errors it cannot be corrected. The final output sequence
- SEQ BESN ORCID PID SIN ECC EDSN UENCE is written into another GenBank file.
The descriptions are updated i.e. the locations of the signature, start, end, ecc
are added and if there were features after location 4 in the original DNA, the
locations of these features are also updated. This GenBank file is for reference
of the sender. It is not required for signature verification and there is no need to
share it with the receiver unless there are other reasons. The output sequence is
now synthesized into the signed DNA sample.

Signature Verification: The signature verification procedure is described
below in Algorithm 2.

The receiver sequences the shared DNA using an automated DNA sequencer.
The sequence in the FASTA file might not be the in the same order when the
sender signed it. That is, after sequencing the shared DNA, the FASTA file may
look like - ORCID PID SIN ECC EDSN UENCE SEQ BESN which is a cyclic permutation
of the sender’s sequence.

The first step in the verification procedure is to extract the BESN and EDSN
tags. If they are not mutated they are retrieved directly. If the tags cannot
be located directly, we use Algorithm 3 to retrieve their closest matches and
use them as BESN and EDSN tags. We defer the discussion on Algorithm 3 to
Sect. 2.2. The verification step now will concatenate the FASTA sequence -
ORCID PID SIN ECC EDSN UENCE SEQ BESN + ORCID PID SIN ECC EDSN UENCE SEQ
BESN.

Now, it looks for 2 BESN tags and extracts the content between them. After
obtaining the start tag, 32 bases are counted, this is the ORCID sequence, next

70 D. M. Kar and I. Ray

Algorithm 2. New signature verification procedure
Input: A FASTA file generated from sequencing the DNA sample received
Output: Prompt - Signature Valid or Invalid.

1 Input checks: file extension and only ACGT content.
2 Parse FASTA file and create reverse complement of the file
3 Use Algorithm 3 to get the BESN and EDSN tags.
4 if (file contains BESN or EDSN) OR (reverse contains BESN or EDSN) then
5 if file contains BESN or EDSN then
6 Create content string by appending FASTA file content thrice.
7 Get the sequence between two BESN tags. Create the following parts by

counting: ORCID = first 32 chars; PLASMID ID = next 12 chars; SIN
= next 512 chars; ECC = chars between SIN and END (may be empty);
MSG = chars from END to end of string.

8 else
/* When input FASTA file is in reverse complement form. */

9 Create content string by appending reverse complement of FASTA file
content thrice.

10 Same as Step 6. i.e. get the parts from reverse complement.

11 Generate hash (SHA-256) of MSG
12 Invoke signature verification
13 if signature is valid then
14 Alert user about success.

15 else
16 Alert user about failure and start error correction procedure.
17 if ECC length is 0 then
18 Alert user there is no ECC and correction not possible.

19 else
20 Create the following string from the parts:

SEQUENCE+BESN+ORCID+PID+EDSN+ECC and send to
Reed-Solomon decoder.

21 if decoder outputs null or same as input then
22 Alert user errors are more than tolerable limit.

23 else
24 Get the corrected parts and re-invoke verification.
25 if re-verification is success then
26 Alert user that verification succeeded after error correction.

Compare the parts before and after error correction and
display the errors.

27 else
28 Alert user that verification failed even after successful

correction.

29 else
30 Alert user that BESN and EDSN tags are not present.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 71

12 bases are counted, this is the plasmid ID sequence, then 512 bases are counted,
this is the signature sequence. Next the substring after this signature sequence
to the EDSN tag is retrieved, this is the error correction sequence. Finally, the
substring between EDSN and BESN is the message for signature verification.

Until this point, we have retrieved UENCESEQ, ORCID, PID, SIN, and ECC. The
UENCESEQ, ORCID and SIN is used for signature verification. With our previ-
ous signature generation method, since the message signed by the sender was
SEQUENCE and the message retrieved by the verifier is ENCESEQ the hashes will be
different and the validation would fail. With the new procedure, we can see that
the although the sender’s file contained the sequence SEQUENCE, the signature
was actually generated on the shifted UENCESEQ. Due to this shift, the retrieved
sequence and the sender’s sequence will always be the same under any rotations.
We have shifted the message of the sender to make the signature placement at
the start of the message. We call this new generation scheme as force shift 0.

If the FASTA file contains the reverse complement of the sender’s DNA
sequence, the entire FASTA file is reverse complemented and then we look for
the BESN and EDSN tags. If there is a match, we arrive at the conclusion that the
FASTA file contains the reverse complement. Then we start the same verification
steps on the reverse complemented FASTA sequence.

4 Allowing Mutations in Start and End Tags

The approximate matching technique, shown in Algorithm3, breaks the entire
string in which we are looking for the result into substrings of the length of the
input string. Each of the broken substring in the larger string is assigned a score
based on how similar it is to the input string. A match is inferred using the
highest score. Now in the real DNA, we are looking for sequences of A, C, G,
and T. So there might be a case that there are multiple close matches which
means that there are multiple starts (or end) tags. In those cases, we use the
end tags (or start tags respectively) to narrow our results. The following steps
describe how the approximate matching technique works. There can be a total
of four scenarios:

1. Case 1: No mutation in either start or end tags. - In this case, we
can find the exact locations of the tags and hence approximate matching
techniques are not needed. There can be mutations in any other place which
will be handled by the error correction code.

2. Case 2: Mutation in BESN tag only. - In this case, the EDSN tag is found
directly. The algorithm looks for the closest match to BESN. If there is a single
match with the highest score, then we can be quite certain that the BESN tag
has been located correctly. However, there can be multiple matches with close
scores, i.e., there is no single stand out high score. In that case, we use the
EDSN tag for further elimination of choices. We already know that the content
within the start tag and the end tag is more than 556 base pairs. Hence
we choose only those potential BESN tags which are at distance of 556 base

72 D. M. Kar and I. Ray

pairs/characters or more away from the EDSN tag. The logic is set to 556 or
more because the length of the error correction can be 0 if the user chooses
no error correction.

3. Case 3: Mutation in EDSN tag only. - In this case, the BESN tag is found
directly. The tool looks for the closest match to EDSN. As in case 2, if there is
a single match with the highest score then we can be quite certain that the
EDSN tag has been located correctly. For multiple matches with close scores,
we use the same logic as described in case 2 above, using the distance between
the BESN and EDSN tags to be more than or equal to 556 base pairs.

4. Case 4: Mutation in both BESN and EDSN tags. - In this case, we try to
locate the closest matches for both tags. If there is a single match with the
highest score for both of them then we can be pretty certain that we have
located them both correctly. Also, we invoke the criteria of length more than
or equal to 556 between them for more certainty. In case of multiple potential
BESN and EDSN tags, we employ the length counting criteria for each BESN
and EDSN tag pair possible from the obtained results and narrow down the
results.

We used the Optimal String Alignment variant of the Damerau-Levenshtein
algorithm [2] as our preferred method for string matching. For a discussion on the
experiments we performed to arrive at this decision please refer to Appendix 1.

5 New Identity-Based Signature Scheme with Shorter
Signature Size

There are several identity-based digital signature schemes using pairings. Some
of the notable schemes are: Sakai-Kasahara [22], Sakai-Ohgishi-Kasahara [21],
Paterson [17], Cheon [3], and Yi [24]. The Sakai-Kasahara scheme described
two types of identity-based signatures. One is El-Gamal type and the other is
Schnorr type. To identify the most appropriate scheme we first implemented all
the above schemes using the Java Pairing Based Cryptography library (jPBC)
[5]. We then investigated the signature lengths based on different types of curves
that can be used. The time to generate and validate a signature depends on the
type of the curve used. We evaluated both aspects: time to sign and verify, and
the size of the signature using this algorithm for all the different types of curves
present in the jPBC library.

Based on the signature size and the computation cost of signature generation
and verification, we identified the best scheme to be the Sakai-Kasahara Schnorr
type. We now describe the Sakai-Kasahara Schnorr type identity-based signature
scheme. It has four steps: setup, extract, sign and verify.

Setup: The setup generates the curve parameters. The different curves provided
in the jPBC library can be used to load the parameters. Let g1 be the generator
of G1, g2 be the generator of G2. A random x ∈ Z∗

n is chosen to be the master
secret. Two public keys P1 and P2 are calculated as - P1 = x · g1 and P2 = x · g2.
An embedding function H is chosen such that H(0, 1)∗ → G1.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 73

Algorithm 3. Approximate matching of tags
Input: Content of FASTA file: String
Output: BESN and EDSN tags: 2 Strings

1 begin = ACGCTTCGCA; end = GTATCCTATG /* hardcoded */

2 revcomp = reverse complement of input string
3 if input contains (begin and end) then
4 BESN = begin; EDSN = end

5 else if input contains end and NOT begin then
6 EDSN = end; Split input into substrings of length 10
7 foreach substring do
8 Calculate score with begin; Store each substring and score. Sort by

score.

9 if single highest score then
10 BESN = highest score substring

11 else if multiple high scores then
12 Calculate distance between each substring to end.
13 BESN = substring where distance > 556
14 if multiple pairs with distance > 556. then
15 Alert user about failure to extract tags. Exit

16 else if input contains begin and NOT end then
17 BESN = begin; Split input into substrings of length 10
18 Same as step 7 and 8. Replace begin with end

19 Same as step 9. Set EDSN = highest score substring as in step 10.
20 Same as step 11. Replace end with begin in step 12. Set EDSN as in step 13.
21 Same as step 14 and 15.

22 else if input does NOT contain begin and end then
23 Split input into substrings of length 10
24 foreach substring do
25 Calculate score with both begin and end;
26 Store each substring and score for both. Sort by score.

27 if single highest score in both then
28 BESN = highest score substring;EDSN = highest score substring;

29 else if multiple high scores in both then
30 Calculate distance between each pair of substrings. Set BESN and

EDSN where distance > 556.
31 if multiple pairs with distance > 556. then
32 Alert user about failure to extract tags. Exit

33 Repeat the same four conditions as in step 3, 5, 16 and 22 with revcomp instead
of input. e.g. revcomp contains (begin and end)

34 return BESN and EDSN

74 D. M. Kar and I. Ray

Extract: Takes as input the curve parameters, the master secret key x, and
a user’s identity and returns the users identity-based secret key. This step is
performed by the central authority for each user A with identity IDA.

1. For an identity IDA, calculate CA = H(IDA). That is map the identity string
to an element of G1.

2. Calculate VA = x · CA.

User A’s secret key is (CA, VA) and is sent to the user via a secure channel.

Sign: To sign a message m, a user A with the curve parameters and the secret
key (CA, VA) does the following:

1. Choose a random r ∈ Z∗
n. Compute ZA = r · g2.

2. Compute e = en(CA, ZA), where en is the pairing operation.
3. Compute h = H1(m ‖ e), where H1 is a secure cryptographic hash function

such as SHA-256 and ‖ is the concatenation operation.
4. Compute S = hVA + rCA.

A’s signature for the message m is - (h, S)

Verify: The verification procedure is as follows:

1. Compute w = en(S, g2) ∗ en(CA,−hP2)
2. Check H1(m ‖ w) ?= h

The above equation works because:

e = en(CA, ZA) = en(CA, r · g2) = en(CA, g2)r

w = en(S, g2) ∗ en(CA,−hP2)
= en(hVA + rCA, g2) ∗ en(CA,−hx · g2)
= en(hx · CA + rCA, g2) ∗ en(CA, g2)−hx

= en((hx + r) · CA, g2) ∗ en(CA, g2)−hx

= en(CA, g2)hx+r ∗ en(CA, g2)−hx

= en(CA, g2)r

Hence, h = H1(m ‖ e) = H1(m ‖ w).
The signature is a tuple (h, S) where h is the result of a hash function and

is dependent on the choice of the hash function. If h is SHA-1, then length is 20
bytes, if h is SHA-256, the length is 32 bytes. The value S is an element of the
group G1. Hence its length will be dependent on the curve type and the length
of the prime. There are six types of curves in the jPBC library namely – a, a1,
d, e, f, and g. The different types of curves and their parameters are provided
in the library as “properties” files. Table 1 summarizes the comparison of the
signature length using the different curves.

Based on the signature size, the best performance is provided by the d159, f,
and g149 curves. However, the length of the primes are a bit different and also

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 75

Table 1. Signature size using different curves for the Sakai-Kasahara scheme.

Curve Name Signature Size using SHA-1 (Bytes) Signature Size using SHA-256(Bytes)

a.properties (20, 128) = 148 (32, 128) = 160

a1.properties (20, 260) = 280 (32, 260) = 292

d159.properties (20, 40) = 60 (32, 40) = 72

d201.properties (20, 52) = 72 (32, 52) = 84

d224.properties (20, 56) = 76 (32, 56) = 88

e.properties (20, 256) = 276 (32, 256) = 288

f.properties (20, 40) = 60 (32, 40) = 72

g149.properties (20,38) = 58 (32, 38) = 70

the embedding degree is different. In the d159 curve, the prime is 159 bits and the
embedding degree is 6. In the f curve, the prime is 158 bits and the embedding
degree is 12. In the g149 curve, the prime is 149 bits and the embedding degree
is 10. Keeping in view the small difference in signature sizes and the security
related to each type, the better choice is the f curve.

The time to generate the signature and verify also depends on the type of
the curve because of their properties. Table 2 summarizes the time to sign and
verify using the different types of curves.

Table 2. Average time taken to sign and verify for different types of curves for the
Sakai-Kasahara scheme.

Curve Name Average time to sign (ms) Average time to verify (ms)

a.properties 56 60

a1.properties 594 448

d159.properties 102 98

d201.properties 121 138

d224.properties 129 131

e.properties 262 214

f.properties 133 251

g149.properties 170 219

From the speed perspective, the a type curve is the fastest for generating and
verifying the signature. But the size of the signature is way larger. The short
signature size generating curves i.e. d159, f and g149 take a bit more time. It is,
therefore, a matter of priority - signature size over speed. If we need to sign and
verify a lot of messages and not care about the signature size then type A curve
is a good choice. However, if the size of the signature is more important than
speed like in our application, the f type curve is a better option. Also, the f type
curve offers the best security among the three as its embedding degree is higher.
Using this Sakai-Kasahara scheme we have reduced the signature size from 512
base pairs to 288 base pairs. The only thing it affects in our earlier algorithms is

76 D. M. Kar and I. Ray

determination of BESN and EDSN in Sect. 4 when these tags mutate and we need
to rely on counting base pairs to locate those tags.

Security of Scheme: Since we use well-known signature schemes that assume that
no polynomial-time adversary can forge a genuine signature without knowing the
secret used to sign, it trivially follows that our scheme is also secure.

6 Conclusion and Future Work

In this work, we improve the previous DNA signing scheme [13] in several direc-
tions. First, we remove the need to share the genbank file by eliminating the
requirement of alignment at the sample receiver’s end. The new signature gener-
ation procedure is independent of where the signer wants to place the signature.
Notwithstanding any cyclic shifts or reverse complements that the receiver may
get during sequencing, the signature can still be verified. To account for DNA
mutations, we use error correction codes in the signature protocol to correct
errors within pre-specified tolerable limits. Our second improvement is a way to
locate mutated tags using approximate string matching techniques. This allows
us to overcome mutation in the identifying tags and hence we can correctly
recover the error correction code. This was a major problem in previous scheme.

Our third improvement is the reduction of signature size. We used pairing
based cryptography to improve the previous signature scheme which generated
512 base pair signature to the Sakai-Kasahara scheme which generates 288 base
pair signature. That is almost 43% gain in signature length.

One of the future directions in this work would involve signing and verifying
the same DNA molecule multiple times by different users. Alice signs and sends
a DNA sample to Bob and Bob validate Alice’s DNA. Then Bob continues
to modify it, signs it and sends it to Mallory. Can Mallory only verify Bob’s
signature, or is there a way for Mallory to track the entire pathway starting
from Alice? It would be interesting to see if the concept of aggregate signatures
can be applied in these scenarios. Also, it would be interesting to see if we put a
signature on top of an existing signature whether the characteristic of the DNA
changes or not. If it does not, how many signatures can be inserted before the
characteristics of the original DNA molecule begin to change? Also, if we cannot
put multiple signatures within the same DNA molecule, how do we remove the
signature that was present before signing it again. Finally, does removing the
signature also alters the property of the DNA?

Acknowledgment. This work is partly based on research supported by the Office
of the Vice President of Research, Colorado State University. This material is also
based upon work performed by Indrajit Ray while serving at the National Science
Foundation. Research findings presented here and opinions expressed are solely those
of the authors and in no way reflect the opinions of Colorado State University, the U.S.
NSF or any other federal agencies. The authors would like to thank Jenna Gallegos
and Jean Peccoud for their comments and suggestions.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 77

Appendix 1 - Analysis of Distance Measures for String
Matching

Various techniques exist to handle matching of similar strings. These methods
measure the distance between strings using a distance equation. One of the
most important works in this field is the Levenshtein distance [14]. Other notable
algorithms are Damerau-Levenshtein [2,4,14], Optimal String Alignment variant
of Damerau-Levenshtein (sometimes called the restricted edit distance) [2], Jaro-
Winkler edit distance [11], and Jaccard index [9,10].

We used all these five algorithms for the approximate start and end tag
matching. One of the reasons for using all of the above was we wanted to find
out which would be most suited to the DNA domain. For testing, the FASTA file
is taken as input and the start and end tag within the FASTA file are manually
changed. Then we search for the location of the defined start and end tags within
the mutated FASTA file. The results for each algorithm are summarized on a
case by case basis in Fig. 1. As can be seen from the Figures the Jaro algorithm
was fairly inaccurate with an average accuracy of only 35.12%. The Jaccard
algorithm fared much better but was still imperfect with an average accuracy
of only 95.18%. All of the three Levenshtein variants were perfectly accurate in
their assessment. These results indicate that if accuracy was the chief concern,
either of the three Levenshtein variants would be ideal choices.

Another important consideration in algorithm selection was speed. While an
algorithm may be perfectly accurate in its selection of the closest match to a
string this means little in practice if the algorithm has an untenable long run
time. To this end, the speed of the algorithms was compared. To accomplish this
each method was used to compare a series of one million random strings of a set
length. A graph of the time in milliseconds (ms) for each algorithm is given in
Fig. 2.

Fig. 1. Accuracy of algorithms per case as a percentage.

78 D. M. Kar and I. Ray

Fig. 2. Runtime analysis of various algorithms in milliseconds.

As can be seen from Fig. 2, the Jaro-Winkler and Optimal String Alignment
algorithms were the quickest, each growing at very slow rates with Jaro-Winkler
being slightly faster overall. Taking both of these factors into consideration Opti-
mal String Alignment was chosen as the preferred method.

Appendix 2 - pUC19 DNA Before and After Signing

See Figs. 3 and 4.

Fig. 3. View of sequenced but unsigned pUC19 in SnapGene editor

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 79

Fig. 4. View of sequenced signed pUC19 in SnapGene showing embedded signature.
Note increased size of DNA

References

1. Biodefense in the Age of Synthetic Biology. National Academies of Sciences, Engi-
neering and Medicine, Washington, D.C., June 2018

2. Damerau - Levenshtein Distance. Wikipedia, February 2019
3. Choon, J.C., Hee Cheon, J.: An identity-based signature from Gap Diffie-Hellman

groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6 2

4. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3), 171–176 (1964)

5. De Caro, A., Iovino, V.: jPBC: Java pairing based cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications, ISCC 2011, pp.
850–855. IEEE, Kerkyra, Corfu, Greece, 28 June–1 July 2011

6. Gibson, D.G., et al.: Creation of a bacterial cell controlled by a chemically synthe-
sized genome. Science 329(5987), 52–56 (2010)

7. Heider, D., Barnekow, A.: DNA-based watermarks using the DNA-Crypt algo-
rithm. BMC Bioinf. 8(1), 176 (2007)

8. Hutchison, C.A., et al.: Design and synthesis of a minimal bacterial genome. Science
351(6280), aad6253 (2016)

9. Jaccard, P.: Distribution de la Flore Alpine dans le Bassin des Dranses et dans
quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles
37(140), 241–72 (1901)

10. Jaccard, P.: Etude De La Distribution Florale Dans Une Portion Des Alpes Et
Du Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37(142), 547–579
(1901)

11. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)

12. Jupiter, D.C., Ficht, T.A., Samuel, J., Qin, Q.M., de Figueiredo, P.: DNA water-
marking of infectious agents: progress and prospects. PLOS Pathog. 6(6), 1–3
(2010)

https://doi.org/10.1007/3-540-36288-6_2

80 D. M. Kar and I. Ray

13. Kar, D.M., Ray, I., Gallegos, J., Peccoud, J.: Digital signatures to ensure the
authenticity and integrity of synthetic DNA Molecules. In: Proceedings of the New
Security Paradigms Workshop, NSPW 2018, pp. 110–122. ACM, Windsor (2018)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

15. Liss, M., et al.: Embedding permanent watermarks in synthetic genes. PLOS ONE
7(8), 1–10 (2012)

16. Ney, P., Koscher, K., Organick, L., Ceze, L., Kohno, T.: Computer security, pri-
vacy, and DNA sequencing: compromising computers with synthesized DNA, pri-
vacy leaks, and more. In: Proceedings of the 26th USENIX Security Symposium,
Vancouver, Canada, August 2017

17. Paterson, K.G.: ID-based signatures from pairings on elliptic curves. Electron. Lett.
38(18), 1025–1026 (2002)

18. Plank, J.S., et al.: A tutorial on Reed-Solomon coding for fault-tolerance in RAID-
like systems. Softw. Pract. Exper. 27(9), 995–1012 (1997)

19. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

20. Richardson, S.M., et al.: Design of a synthetic yeast genome. Science 355(6329),
1040–1044 (2017)

21. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Proceed-
ings of the 2000 Symposium on Cryptography and Information Security. Okinawa,
Japan, January 2000

22. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve.
IACR Cryptology ePrint Archive (2003)

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

24. Yi, X.: An identity-based signature scheme from the Weil pairing. IEEE Commun.
Lett. 7(2), 76–78 (2003)

https://doi.org/10.1007/3-540-39568-7_5

Mobile and Web Security

Adversarial Sampling Attacks Against
Phishing Detection

Hossein Shirazi1(B), Bruhadeshwar Bezawada2, Indrakshi Ray1,
and Charles Anderson1

1 Colorado State University, Fort Collins, CO 80523, USA
{shirazi,Indrakshi.Ray}@colostate.edu, anderson@cs.colostate.edu

2 Mahindra Ècole Centrale, Hyderabad, Telangana, India
bru@mechyd.ac.in

Abstract. Phishing websites trick users into believing that they are
interacting with a legitimate website, and thereby, capture sensitive
information, such as user names, passwords, credit card numbers and
other personal information. Machine learning appears to be a promising
technique for distinguishing between phishing websites and legitimate
ones. However, machine learning approaches are susceptible to adver-
sarial learning techniques, which attempt to degrade the accuracy of
a trained classifier model. In this work, we investigate the robustness
of machine learning based phishing detection in the face of adversar-
ial learning techniques. We propose a simple but effective approach to
simulate attacks by generating adversarial samples through direct fea-
ture manipulation. We assume that the attacker has limited knowledge
of the features, the learning models, and the datasets used for train-
ing. We conducted experiments on four publicly available datasets on
the Internet. Our experiments reveal that the phishing detection mecha-
nisms are vulnerable to adversarial learning techniques. Specifically, the
identification rate for phishing websites dropped to 70% by manipulating
a single feature. When four features were manipulated, the identification
rate dropped to zero percent. This result means that, any phishing sam-
ple, which would have been detected correctly by a classifier model, can
bypass the classifier by changing at most four feature values; a simple
effort for an attacker for such a big reward. We define the concept of
vulnerability level for each dataset that measures the number of features
that can be manipulated and the cost for each manipulation. Such a
metric will allow us to compare between multiple defense models.

Keywords: Phishing · Machine learning · Adversarial sampling ·
Classifiers

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 83–101, 2019.
https://doi.org/10.1007/978-3-030-22479-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_5

84 H. Shirazi et al.

1 Introduction

1.1 Motivation

Phishing, as defined in [1], is an attempt to obtain sensitive information such as
user-names, passwords, and credit card details by masquerading as a trustworthy
entity in an electronic communication. The first recorded mention of the term
is found in the hacking tool against American Online (AOL) users in the 1995
named AOHell while the technique was elaborated earlier in a presentation to the
International HP Users group, Interix, by Felix and Hauck in 1987 [2]. Phishing
attacks have shown remarkable resilience against a multitude of defensive efforts,
and attackers continue to generate sophisticated phishing websites that closely
mimic legitimate websites. While there were 328,000 unique attacks reported in
2007, this number almost quadrupled by 2017 [3].

Phishing, when viewed as a social-engineering attack, cannot be solved solely
by educating the end users, and hence, automatic detection techniques are essen-
tial. Several defenses were proposed against phishing attacks, such as URL black-
listing, keyword-based filtering, IP address filtering, and machine learning based
techniques. Solutions like URL-blacklisting are no longer effective as attackers
can bypass such techniques through simple URL manipulation or by hosting web-
sites on popular free hosting services on the Internet. Machine learning based
techniques appear to be a promising direction.

1.2 Problem Statement

The studies in the existing literature emphasize on feature definition or enhanc-
ing the statistical learning models to discriminate between phishing and legit-
imate websites. The state-of-the-art solutions for phishing detection [4–8] use
engineered features based on observations made by the research experts in
this domain on publicly available datasets. One crucial assumption, in exist-
ing machine learning based phishing detection approaches, is that the training
data collection process is independent of the attackers’ actions [9]. However, in
adversarial contexts, e.g. phishing or spam filtering, this is far from the reality as
attackers either generate noisy data samples or generate new attack samples by
manipulating features of existing ones. The noisy data samples result in a classi-
fication model with low accuracy and requires a higher effort for an attacker. The
manipulation of features results is a more dangerous scenario wherein an attacker
can bypass an existing classifier without much effort. In this work, we explore
and study the effect of adversarial sampling on phishing detection algorithms
in depth, starting with some simple feature manipulation strategies, and show
some surprising results that demonstrate impact on the classification accuracy
with trivial feature manipulation.

1.3 Proposed Approach and Key Contributions

We gathered four separate publicly available datasets developed by other
researchers and applied adversarial sampling techniques to evaluate the robust-
ness of the trained model against artificially generated adversarial samples.

Adversarial Sampling Attacks Against Phishing Detection 85

Although we do not show any solution to address this current threat, we show
the vulnerability of the current approaches, and explored the robustness of the
datasets against the engineered features, and the learning models. Our key con-
tributions are as follows:

– We modeled the threat against the current defense and detection mechanism
and explained the attackers’ access and knowledge, which the attackers utilize
to attack any given trained classifier model.

– We define the vulnerability level of phishing instances, which quantifies the
attackers’ efforts, and describe an approach to manipulate phishing instances
and create new samples.

– We surveyed a full range of phishing detection techniques focusing on the
machine learning based approaches. We showed the weakness of some well-
known machine learning approaches and emphasized on how a phisher can
generate new phishing website instances to evade a trained classifier in each
of these approaches.

– We built an experimental setup and conducted a wide range of experiments
and analyzed how vulnerable the datasets and learning model are by testing
against the adversarial samples.

The rest of this paper is organized as follows. In Sect. 2, we describe a wide
range of defense mechanisms against phishing attacks in the literature. Also, we
describe the various adversarial attacks against the machine learning classifiers in
non-phishing domains. In Sect. 3, we model the threat from three points of view:
attackers’ goal, knowledge, and influence. In Sect. 4, we simulated adversarial
sampling attack followed by the assessing vulnerability level and quantifying the
cost of the attack. In Sect. 5, we explain the results of our experiments to prove
the robustness of the classifiers and datasets against these attacks. In Sect. 6, we
conclude the paper and discuss some future work.

2 Related Work

2.1 Machine Learning for Phishing Detection

For phishing website detection, machine learning algorithms are well suited as
they can assimilate common attack patterns such as hidden fields, keywords,
and page layouts, across multiple phishing data instances and create learning
models that are resilient to small variations in future unknown phishing data
instances. In the prior machine learning approaches, researchers engineered novel
sets of features from diverse perspectives based on public datasets of phishing and
legitimate websites. While these approaches have demonstrated excellent results
for detecting phishing websites, they also suffer from serious disadvantages due
to adversarial sampling as we show in the following discussion.

Niakanlahiji et al. [4] introduced PhishMon, a scalable feature-rich framework
with a series of new and existing features derived from HTTP responses, SSL
certificates, HTML documents, and JavaScript files. The authors reported an
accuracy of 95% on their datasets.

86 H. Shirazi et al.

According to a Symantec report [10], the number of URL obfuscation based
phishing attacks was up by 182.6% in 2017. Some URL obfuscation techniques
used by attackers are: misspelling of the targeted domain name, using the tar-
geted domain name in other parts of the URL like the sub-domain, adding sen-
sitive keywords like ‘login’, ‘secure’ or ‘https’ etc. Sahinguz et al. [11] proposed
a real-time detection mechanism based on Natural Language Processing (NLP)
of URLs. The technique used a large dataset without requiring third-party ser-
vices, and focused on features derived from URL obfuscation, and achieved an
accuracy of more than 95%.

Verma et al. [12] defined lexical, distance, and length related features for
the detection pf phishing URLs. They employed the two-sample Kolmogorov-
Smirnov statistical test along with other features to detect phishing websites.
They conducted a series of experiments on four large proprietary datasets and
reported an accuracy of 99.3% with a false positive rate of less than 0.4%.

Jiang et al. [5] merged information from DNS and the URL to develop a
Neural Network (DNN) with the help of NLP to detect phishing attacks. While
other approaches need to specify features explicitly, this method extracts hidden
features automatically. The approach relies on the information from DNS and
thus, requires third-party services.

Attackers use Domain Generation Algorithms (DGA) to dynamically gener-
ate a large number of random domain names for adversarial purposes including
phishing attacks. Pereira et al. [6] introduced an approach for detecting such
domains. These domains are considered as legitimate for detection mechanisms
and human analysis. The authors used a graph-based algorithm to extract the
dictionaries that have been used by attackers to detect malicious domains.

While these proposed approaches are promising, they often do not considering
the page content. Attackers have full control over the URL except for the Second
Domain Level (SLD), and thus, they can create any URL to bypass the classifier.
Also, the content of the website is the most critical factor to lure the end-users
rather than the URL or domain name themselves. Therefore, any solution not
considering the website content would not be useful in the real world.

Tian et al. [13] studied five types of domain squatting over a large DNS
dataset of over 224 million registered domains. They identified 657 thousand
domains that potentially targeted 702 popular websites. Using visual and Optical
Character Recognition (OCR) analysis, they created a highly accurate classifier
and found more than one thousand new phishing instances of which 90% of them
successfully evaded well-known blacklists even after one month. The authors
combined two powerful techniques: domain squatting and OCR analyses on a
large dataset. The advantage of this approach is in finding new instances that
evaded the current classifiers. However, there is significant cost in keeping this
information current.

Shirazi et al. [7] observed two concerns with existing machine learning
approaches: a large number of training features and bias in the type of datasets
used. The study focused on the features derived from the domain name usage
in phishing and legitimate websites and reported an accuracy of 97–98% on the
chosen datasets. To prove the performance of the whole model, they evaluated

Adversarial Sampling Attacks Against Phishing Detection 87

it with unseen phishing samples from a completely different source and achieved
a detection rate of 99%.

Recently, Li et al. [8] proposed an approach to extract the features from
both URL and web page content and ran multiple machine learning techniques
including GBDT, XGBoost, and LightGBM, in multiple layers, referred to as
stacking approaches. The URL-based feature set includes eight features in total
e.g. using IP address, suspicious symbols, sensitive vocabulary. The HTML based
category includes features like Alarm Window, Login Form, Length of HTML
Content. With The dataset has 20 features in total. The experiment has been
conducted on three datasets, of which two are large ones with 50 K instances and
the accuracy is more than 97% in all cases. Although this approach is similar to
recent machine learning approaches and does not use third-party services, it is
similar to other previous work like [7].

2.2 Learning in Adversarial Context

The proposed defense mechanisms in the literature widely employed machine
learning techniques to counter phishing attacks. However, adversarial sampling
attacks can threaten the current defense mechanisms. While there are some
general analysis of the vulnerabilities of classification algorithms and the corre-
sponding attacks [14], to the best of our knowledge, there is no other study on
adversarial sampling in the context of the phishing attacks. Thus far, researchers
studied and formulated these threats in a general manner or in other application
contexts like image recognition. In the following, we briefly explore these efforts.

Dalvi et al. [9] studied the problem of adversary learning as a game between
two active agents: data miner and adversary. The goal of each agent is to mini-
mize its cost and maximize the cost to the other agent. The classifier adapts to
the environment and its settings either manually or automatically in this app-
roach. The authors assumed that both sides, including data miner and adversary,
have perfect knowledge about a problem. This assumption, however, does not
hold in many situations. For example, in the phishing detection system, the
adversary does not know the training set or the actual classification algorithm
used. In Sect. 3, we modeled the adversary and elaborated why the adversary
cannot have perfect knowledge. The attackers may directly or indirectly target
the vulnerabilities in the feature selection procedure. Although the attackers
might target the trained classification system, it still is an indirect attack on the
chosen features.

Xiao et al. [15] explored the vulnerabilities of feature selection algorithms
under adversarial sampling attacks. They extended a previous framework [16] to
investigate the robustness of three well-known feature selection algorithms.

There are few approaches that create more secure machine learning models.
Designing a secure learning algorithm is one way to build a more robust classifier
against these attacks. Demontis et al. [17] investigated a defense method that
can improve the security of linear classifier by learning more evenly-distributed
feature weights. They presented a secure SVM called Sec-SVM to defend against
evasion attacks with feature manipulation. Wang [18] theoretically guaran-
teed robustness of k-nearest neighbors algorithm in the context of adversarial

88 H. Shirazi et al.

examples. They introduced a modified version of k-nearest neighbor classifier
while k is equal to 1 and theoretically guaranteed its robustness in a large dataset.

Finally, there are some tools for bench-marking and standardizing perfor-
mance of machine learning classifier against adversarial attacks in the literature.
Cleverhans [19] is an open-source library that provides an implementation of
adversarial sample construction techniques and adversarial training for image
datasets. Given the lack of such bench-marking tools for the phishing problem,
we tested our approach with our own attack strategies and implementation.

3 Threat Model

In this section, we model the adversarial sampling attack against machine learn-
ing based phishing detection approaches. We start with the attacker’s goal,
knowledge, and influence in general machine learning solutions, and then we
explain them in the context of phishing problem. We model the adversarial sam-
ple generation for existing phishing instances based on the attacker’s abilities and
then evaluate the cost that the adversary has to pay for the successful execution
of this attack. Finally, we define the vulnerability level for the dataset.

3.1 Attacker’s Goal

Biggio et al. explored three different goals for the attackers namely security vio-
lation, attack specificity, and error specificity [20]. The goal of an attacker in the
security violation is to evade well-known security metrics including availability,
privacy, and integrity. The attacker may violate the availability of the system
by denial-of-service attack. In this case, if the system cannot accomplish the
desired task due to the attacker’s behavior, the availability of the service would
be affected. The attacker needs to obtain sensitive and private information of
users with approaches like reverse-engineering to violate the user’s privacy.

In the phishing context, the adversary will attack the integrity of the system.
The integrity is violated if the attack does not violate the regular system behav-
ior; however, the attacker violates the accuracy of the classifier e.g. by luring
classifier to label maliciously crafted phishing instances as legitimate to evade
the classifier. The attack specificity depends on whether an attacker wants to
mis-classify a specific set of samples (like phishing) or any given sample. The
error specificity relates to the attacker’s effort to increase a specific type of error
in the system and degrade other classifier scores.

In this study, we consider that the adversary desires to attack the specificity
of the learning model. This leads to the incorrect classification of the adversarial
phishing samples as legitimate and thereby, these samples will deceive the end
users. Also, with respect to error specificity, the adversary wants to decrease the
True Positive Rate (TPR).

3.2 Attacker’s Knowledge

An attacker may have different levels of knowledge about the machine learning
model. An attacker might have detailed knowledge, i.e., white-box or perfect

Adversarial Sampling Attacks Against Phishing Detection 89

knowledge, minimal knowledge about the model called zero knowledge [15,20]
and limited knowledge about the model known as the gray-box. If the adversary
knows everything about the learning model, parameters, and the training dataset
including the classifier parameters, then the attacker has perfect knowledge. In
the zero knowledge, the adversary can probe the model by sending instances
and observing the results. The adversary infers information about the model
by choosing appropriate data samples. In the limited knowledge, it is assumed
that adversary knows about features and their representation, and the learning
algorithm. However, the adversary does not know about the training set or the
algorithm’s parameters.

From the dataset point of view, the attacker may have partial or full access to
the training dataset. Attacker may also have partial or full knowledge about the
feature representation or feature selection algorithm and its criteria. In the worst
case scenario, an attacker may know about the subset of selected features. In
our study, we assumed that the adversary has limited knowledge. The adversary
knows about the classifier model and the feature set but does not know about
training set, the classifier, or classifier’s training parameters.

3.3 Attacker Influence

Two major types of attacker influence have been defined in the literature namely
poisoning and evasion attacks. The poisoning attack refers to the case where the
adversary injects adversarial instances into the training phase. This injection
leads to bypass data later on in the testing phase of the experiment or even
at the practical usage of the model. For example, email providers use spam
detection services to block emails that include a link to phishing websites. The
email system gives the users ability to override the email’s label e.g. re-labeling a
spam email as non-spam to deal in cases of False Positive detection, The system
benefits from user’s labeling to improve the accuracy by updating the training
set. However, in a poisoning attack, an attacker with an authorized email account
in the system can re-label the correctly detected spam emails as non-spam to
poison the training set of the classifier.

While the attacker does not have access to the training set in the evasion
attack, it tries to intentionally and smartly manipulate features to avoid samples
being labeled correctly by the classifier at the testing phase. Similar to the
previous example on the spam detection system, a phisher may send an email
with intentionally misspelled words to evade the classifier.

In this work, we assume that the attacker has a limited knowledge about the
learning model, but has unlimited access to the predict function of the learning
model. The attacker can test as many instances as needed and get the results.
With this assumption, an attacker can create a large number of new samples and
test them against the classifier to see if they can bypass the model. In the next
section, we describe our adversarial sampling approach and outline our method
for measuring the effectiveness of the samples in lowering the classifier’s accuracy.
Section 5 studies how this attack can be effective by showing the degradation of
the classifier’s score under this attack.

90 H. Shirazi et al.

4 Adversarial Sampling for Phishing

We simulate the attacker’s approach to generate new adversarial samples based
on the existing phishing instances that are detected by the classifier. The adver-
sary generates new instances based on these current phishing instances to check
whether the generated instances are able to evade the classifier. We assume that
the attacker has full control on the URL and web page content except for the
domain name, which is unique. The attacker has limited knowledge about the
classifier and features, as we discussed earlier.

4.1 Defining the Dataset

We use similar notation to that used in [15]. The whole dataset has been gen-
erated by a procedure P : X �→ Y. In the experiment, we defined two types
of instances: Legitimate (L) and Phishing (P). A learning algorithm trains from
this dataset and will label the new instances. Each instance in the dataset has
d features that are represented as a d-dimensional vector and is labeled as legit-
imate (L) or phishing (P).

xi = [x1
i , · · · xd

i]
T ∈ X (1)

Each instance relates to the target label of yi ∈ Y ,Y ∈ {0, 1}. We denote this
set D with n samples as follows: D = {xi, yi}ni=1. The set T is the subset with t
instances that the adversary can access, T ⊆ D , t ≤ n

4.2 Selecting Features for Manipulation

To specify a subset of features, we introduce the notation Φ = {0, 1}d, where
each element denotes whether the corresponding feature has been selected (1)
or not (0). The first step for creating adversarial samples is to select one or
more features for manipulation. Φs denote the set of all possible combinations
of s features,

(
n
s

)
, that have been selected and πs

i denotes ith such choice of
features. For example, π3

1 = (0, 1, 1, 1, 0) means that, the first combination from
Φs, chooses features 2, 3, and 4, for manipulation. We formalize this in Eq. 2:

πs
i ∈ Φs where i ∈

(
n

s

)
and

d∑

i=1

πs
i = s (2)

Assigning new feature values is the next step after defining the subset of fea-
tures for manipulation. We assumed that each feature value may be replaced
by values that appeared in existing phishing instances. The intuition is that, if
the value has been found to be assigned to that feature previously for a phish-
ing instance, then the feature is more likely to get that value again in another
phishing instance.

Let T i denote the set of all values that have appeared for the feature i among
the phishing instances. For example, T 2 = {−1, 0, 1} denotes existing phishing
instances have values −1, 0, and 1 in the second feature.

Adversarial Sampling Attacks Against Phishing Detection 91

For generating new instances, first, we need to generate all possible feature
combinations with different lengths and then, for each combination, we need to
permute all possible feature values from T i. This process is done only for phish-
ing instances that have been predicted correctly by the classifier. Algorithm 1
explains this process for a given phishing instance. It shows how the adversarial
instances will be generated based on an original input and desired features for
manipulation. There are two inputs for Algorithm 1: an original phishing instance
and the selected features to manipulate, and returns as output, the new adver-
sarial instances that have been generated. In lines 2 and 3, the algorithm loops
over all of the selected features for manipulation. The algorithm gets all avail-
able values for them from the array T that is previously defined. The algorithm
adds a series of available feature values to the list L. Line 5 calculates a Product
function over array L to calculate all possible values for selected features and
saves them in L pr.

Now, each row in L pr has the values for all of the selected features for
manipulation. We make another loop over L Pr to assign new values to the
original phishing instance x. The algorithm saves them in the result array of
genSamples.

4.3 Adversary Cost

Attackers have to handle two challenges for generating adversarial instances.
From a machine learning point of view, the dataset includes vectors, but the

92 H. Shirazi et al.

attacker has to change the website in a way that it generates the desired vector
similar to adversarial samples. This is not a trivial process, and it has consid-
erable cost for the attacker. Whereas adversarial samples may have a higher
chance of evading the classifier, but they may not be visually or functionally
similar to the targeted websites. This increases the chance of being detected by
the end-user. Thus, the adversary wants to minimize two parameters: the num-
ber of manipulated features and the assigned feature values. We consider this as
a cost function for the adversary.

In the previous section, we discussed how the attacker controls the number
of manipulated features, but it is not the only parameter. If the manipulated
feature values are far from the original values, it will increase the chance of
evading the classifier. We study this hypothesis in Sect. 5. But, this will also
change the visual appearance or behavioral functionality of the website from
the targeted website, thereby, increasing the chance of phishing website being
detected by the end-user.

In this work, we used the Euclidean distance between the original phishing
sample and newly generated sample to estimate the cost, a higher distance indi-
cates a larger cost. Consider xi to be a phishing instance and x

′
i a manipulated

one based on the original xi instance. Both are vectors of size n. The Euclidean
distance between xi and x

′
i will be calculated by Eq. 3:

d(xi, x
′
i) =

√√
√
√

n∑

k=1

(xk
i − x

′k
i)2 (3)

If l is the number of manipulated features to generate x
′
i from xi, and d is

Euclidean distance between them, the total cost c will be derived from this
equation: C(xi, x

′
i) = (l, d). This tuple will be used to evaluate the total cost for

generating the adversarial instances.

4.4 Vulnerability Level

A phishing instance that has been predicted correctly is vulnerable at the level
of l with the cost of d if there is at least one adversarial instance that can bypass
with l manipulated features and distance d. We call this instance vulnerable if,
by manipulating l features and with the distance of d, it can bypass the classifier.
The goal of the attacker here is optimizing the l and d; a multi-objective opti-
mization problem for the attacker. For example, if we have a phishing instance,
which has been detected by the classifier, but there is the new instance gener-
ated by manipulating 3 features and a Euclidean distance of 2.7 bypasses the
classifier, the original sample is vulnerable at the level of 3 with a cost of 2.7.

5 Experiments and Results

In this section, we show the effectiveness of our threat model and proposed
adversarial sampling attack that degrades the accuracy and efficacy of existing

Adversarial Sampling Attacks Against Phishing Detection 93

learning models. First, we discuss the datasets utilized and then, we elaborate
on three different experiments we have conducted and their results.

5.1 Used Datasets

We obtained four publicly available phishing datasets on the Internet and the
details of these datasets are given below.

Dataset 1: DS-1: This set includes 1000 legitimate websites from Alexa.com
and 1200 phishing websites from PhishTank.com; 2200 in total. Each instance
in this dataset has eight features and all are related to the domain name of
the websites. The features used are domain length, presence of non-alphabetic
character in the domain name, the ratio of hyperlinks referring to the domain
name, the presence of HTTPS protocol, matching domain name with copyright
logo, and matching domain name with the page title. With these features, Shirazi
et al. [7] reported an ACC of 97–98% in the experiments, which is significantly
high.

Dataset 2: DS-2: Rami et al. [21] created this dataset in 2012 and shared it with
UCI machine learning repository [22]. This set includes 30 features and are cate-
gorized into five categories: URL based, abnormal based, HTML-based, JavaScript
based, and domain-based features. This dataset includes 4898 legitimate instances
from Alexa.com merged with 6158 phishing instances from PhishTank.com; more
than 11000 in total making it the most extensive dataset that we have used in
this study.

Dataset 3: DS-3: In 2014, Abdelhamid et al. [23] shared their dataset on UCI
machine learning repository [22]. This dataset includes 651 legitimate websites
and 701 phishing websites; 1352 instances in total and includes ten features
combination of third-party services and HTML based features for each instance.
Authors report an ACC between 90%–95% in their experiments.

Dataset 4: DS-4: This dataset is the most recent dataset publicly available in
the literature that we could find and was published in 2018. It has been created
by Tan et al. [24] and was published on Mendeley1 dataset library. This set
contains 5000 websites from Alexa.com and as well as those obtained by web
crawling, labeled as legitimate, and 5000 phishing websites from PhishTank.com
and OpenPhish.com. The authors collected this data from January to May 2015
and from May to June 2017. This dataset includes 48 features, a combination
of URL-based, and HTML-based features. While this dataset includes the URL
length and it may bias the dataset as Shirazi et al. [7] explained it, but we kept
all features.

Table 1 summarises the number of instances, features, and the portion of
legitimate vs phishing instances in each dataset. We have a dataset with a large
number of instances, DS-2, and DS-4 with 11000 and 10000 respectively. We
also have small dataset DS-3 with 1250 instances. With respect to the number

1 https://data.mendeley.com/.

https://www.alexa.com/
https://www.phishtank.com
https://www.alexa.com/
https://www.phishtank.com
https://www.alexa.com
https://www.phishtank.com
https://www.openphish.com
https://data.mendeley.com/

94 H. Shirazi et al.

Table 1. Number of instances, features, and portion of legitimate and phishing websites
in each dataset

Dataset Data shape (#) Instances (%)

Size Features Legitimate Phishing

DS-1 2210 7 44.71 55.29

DS-2 11055 30 55.69 44.31

DS-3 1250 9 43.84 56.16

DS-4 10000 48 50.0 50.0

of features, DS-1, with just seven features is a dataset with a limited number of
features and in comparison, DS-4 with 48 features is a large dataset. Also, we
used an unbiased dataset like DS-1 and used DS-4 as well though it may be biased
concerning some of the features like URL length. Besides, the features in each
dataset are selected from different points of view such as URL-based features in
DS-2, DS-3, and DS-4, or domain-related features in DS-1, and HTML-Based
features in DS-2 and DS-4. These variations validate our hypothesis in a stronger
and more general sense. Also, it shows that adversarial sampling is a serious
problem that may be happening in different situations and needs to be addressed.

5.2 Exp-1: Evaluation of Datasets

In the first experiment, we tested the performance of each dataset against a
wide range of classifiers. The experiment is as follows. We labeled phishing web-
sites in all datasets as +1 and legitimate websites as −1. We used five-fold
cross-validation to avoid issues of over-fitting and to test the performance of the
learning model against unknown data instance classification. We used six dif-
ferent classifiers namely Decision Tree Decision Tree (DT), Gradient Boosting
(GB), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector
Machine (SVM) with two different kernels: Linear (lin) and Gaussian (rbf) to
make the comparison between classifiers. We repeated each experiment 10 times
and reported the average and standard deviation of the results. Table 2 explains
the achieved results in this experiment.

For DS-1, RF and GB both generate the highest ACC and the TPR in each
classifier is almost the same. Also, DS-1 has the best average of TPR among
all classifiers. This means that, despite different classifiers, the features are well-
defined. RF gives the best TPR (94.25%) and ACC (95.76%) on DS-2. Interest-
ingly, the DT does not generate a good TPR (86.77%).

The experiments on DS-3 dataset did not yield a high TPR or the ACC.
Both GB and SVM with Gaussian kernel has the TPR of 87%, which are not
that much good. The best ACC, for this dataset, is from GB, with 83%. The
experiment on DS-3 gave very good results. Both GB and RF gave a TPR
over 97% and accuracy of 97%, which are very high. Also, this dataset has the
best average of ACC among different classifiers meaning this dataset performs

Adversarial Sampling Attacks Against Phishing Detection 95

Table 2. Evaluation of model against different classifiers with two metrics.

(a) TPR

Cls. DS-1 DS-2 DS-3 DS-4 Avg.
DT 95.25 86.77 84.97 96.14 95.25
GB 96.18 92.25 87.23 97.65 96.18
KNN 95.93 90.61 84.95 93.97 95.93
RF 96.25 94.25 85.84 97.85 96.25
SVM(l) 95 89.62 86.71 94.93 95
SVM(r) 93.67 91.88 87.88 95.69 93.67
Best 96.25 94.25 87.88 97.85

(b) ACC

Cls. DS-1 DS-2 DS-3 DS-4 Avg.
DT 94.8 92.1 82.51 95.73 91.29
GB 95.49 94.32 83.76 97.52 92.77
KNN 94.82 92.21 81.16 93.76 90.49
RF 95.35 95.76 82.89 97.8 92.95
SVM(l) 93.96 92.4 79.16 94.38 89.98
SVM(r) 93.96 94.14 82.4 95.2 91.43
Best 95.49 95.76 83.76 97.8

Table 3. The classifier that holds best f1 on each dataset has been selected. TPR and
ACC are also reported for comparison

Metric DS-1 DS-2 DS-3 DS-4

Best classifier GB RF GB RF

Best f1 95.94 95.17 85.83 97.8

TPR 96.18 94.25 87.23 97.85

ACC 95.49 95.76 83.76 97.8

very well with different types of classifiers. With six different classifiers, the
experiments on both DS-1 and DS-4 show an average ACC of more than 94%,
which is significantly high. This confirms that these datasets are well-defined
and have a good set of distinguishing features.

We used a single metric of f1 to compare all classifiers and datasets together.
Table 3 shows the best f1 score for each dataset with the classifier that has
produced that result. It is evident from this table that both GB and RF generate
the best results among all of the experiments, so we selected these two classifiers
for the next experiments.

5.3 Generating Adversarial Samples

In each dataset, we reserved 200 phishing instances and then trained the model
without the 200 reserved phishing instances. The generated adversarial samples
need to be similar and valid to the phishing examples; otherwise, those can-
not be assumed to be phishing instances. To assign new values to the features
and generate new instances, we just used previously seen values in the phishing
instances. With this strategy, it is guaranteed that the newly assigned value is
valid and has already been seen in other phishing instances in the dataset. We
discussed this process earlier in Sect. 4. We randomly selected combination of
features, up to four different features, and changed the values of each feature
with all possible feature values.

After creating each new sample, we tested our new sample against the selected
classifier and checked whether it could bypass the classifier or not. If it did, we

96 H. Shirazi et al.

Fig. 1. Robustness of datasets against adversarial samples

consider the original phishing instance to be a vulnerable instance. We calculate
the distance between the new instance and the original one to find the closest
instance that can bypass the classifier.

5.4 Exp-2: Robustness of Learning Model

This experiment studies the robustness of datasets and learning models against
generated adversarial samples. We selected one classifier that performs best for
each dataset based on the f1 score from Table 3. For the datasets DS-1 and DS-3,
we selected GB and RF for DS-2 and DS-4.

In this experiment, we counted the number of reserved phishing instances
that are vulnerable. This means that, there should be at least one optimized
manipulated instance based on the original sample that can bypass the classifier.
With small perturbation on these instances, they can bypass the classifier and
elude the users to release their critical information. Based on our hypothesis,
these are vulnerable instances and can be assumed as a threat to the learning
model. We repeated each experiment ten times and reported the average of the
results.

Figure 1 shows the results of Exp-2. While the x-axis shows the number of
manipulated features, zero manipulated feature means that the test happened
with the original phishing instances without any perturbation. The trend of
results reveals that by increasing the number of perturbation, the number of
evaded samples increase proportionally. We continued increasing the perturbed
features for up to four different features at a time. We observed that with four
features, almost all phishing instances bypass the classifier model.

For example, Fig. 1 shows that less than 4% of phishing instances in DS-1
can bypass the classifier without any perturbation. With only one manipulated
feature, more than 20% of phishing instances can bypass the classifier. With two
manipulated features, almost all of instances can bypass the GB. The results are
almost the same for other datasets. In another case, while just 12% of original
phishing instances (the instances without any changes) have been misclassified
in DS-3, the results significantly go up to 65% with only one perturbed feature.

Adversarial Sampling Attacks Against Phishing Detection 97

This experiment shows how vulnerable the machine learning models are for
the phishing problem. Small perturbation on features can bypass the classifier
and degrade the accuracy significantly.

5.5 Exp-3: Dataset Vulnerability Level

In this experiment, we studied the cost that an adversary has to pay to bypass
a classifier. From an adversary point of view, it is not inexpensive to manipulate
an instance with new feature values and bypass the classifier. In Sect. 4.3, we
assessed the cost and in Sect. 4.4, we defined the term vulnerability level for one
instance. Similar to previous experiment 5.4, we reserved 200 phishing instances
from each dataset and chose the classifier for each dataset based on Table 3. For
datasets DS-1 and DS-3, we chose GB while we chose RF for both DS-2 and DS-4
datasets. Averaging the vulnerability level for each of the 200 selected instances
and repeating the experiment ten times, we assessed the vulnerability level for
the whole dataset.

Figure 2 presents the results of this experiment for all datasets for two param-
eters: the number of manipulated features and the average cost of adversarial
instances. It is evident that, by increasing the number of manipulated features,
the cost also increases steadily. For example, for the dataset DS-1, the average
cost, for adversarial samples, with one manipulated feature is 0.95 and with four
manipulated features the cost is 3.93.

Furthermore, it is clear that the average cost for some datasets is more than
that of other datasets. For example, in the DS-4, the adversary has to pay
more cost especially when the number of features increases to three and four in
comparison to the other datasets. This shows that this dataset is more robust
against these attacks and has a lower vulnerability level. Also, it is clear that
with one single feature manipulation with a small cost, it is possible to bypass a
classifier. This needs to be considered when a dataset and features are designed.

5.6 Comparing the Results with Previous Experiments

In this section, we compare our approach with some of the previous researches
in this field. Table 4 compared nine different approaches in the literature. We
summarized the pros and cons of each approach and show the dataset size and
best accuracy results of each approach. We studied a wide range of previous
efforts by focusing on machine learning techniques. Some of the techniques solely
focused on the URL itself [11,13] but others look at both URL and the content
of the page [7,25]. The use of third-party services is another difference between
approaches. While using third-party services like search or DNS inquires lever-
age the feature set and make the feature set more reliable it also endangers
the privacy of the users. Third-party enquiries to fetch the feature value reveal
the browsing history of the end-users The previous studies have been done on
variable sizes of datasets. While some of the datasets have less than 5 thousand
records [7,25], there are also datasets with millions of instances [5,13]. Also,
for approaches analyzing just the URL without the webpage content, creating

98 H. Shirazi et al.

Table 4. Comparisons of different approaches in the literature including our proposed
approach

Author Description Size ACC

Niakanlahiji

et al. [4]

-Scalable feature-rich framework with a series of
new and existing features
-Not using third-party services, Language
agnostic

22.3K 95%

Sahinguz

et al. [11]

-Real-time detection mechanism based on NLP of
URLs, Language independent
-Tested on a large dataset, Not using third-party
service

73K 97%

Verma
et al. [12]

-Features based on lexical-, distance-, and length-
related features of the URL
-Using four large datasets

115K 99.3%

Jiang

et al. [5]

-Combined the URL and DNS information, Used
a deep neural network with the help of NLP,
Automatically extracts hidden features

7M 96%

Tian
et al. [13]

-Studied five types of domain squatting, Using
dataset of over 224 million registered domains,
Using visual and OCR analysis, Found new
phishing instances that evaded common blacklist

234M N/A

Pereira
et al. [6]

-Detecting algorithmically generated domain,
Graph-based algorithm to extract the
dictionaries that are being used to generate
algoritmically domains

80K 99%

Shirazi
et al. [7]

-Studying limitation current approaches: large
number of features and bias in the datasets,
Focused on the domain name, Running at the
client-side
-Not using third-party services

2.2 K 97–98%

Li et al. [8] -Extract the features from both URL and HTML
of the page
-Not using third-party services

50K 97%

Bulakh
et al. [25]

-Companies can define their phishing detection
mechanism and protect the customers
-Can be used as an complimentary service
besides other detection approaches

1.3K 96.34%

Our work -Evaluate the performance of existing datasets
including [7,21,23,24]
-Using multiple classifiers and comparing the
results

2–10K 81–95%

Our work -Proposing adversarial sampling attack against
the learning model, Showing the feasibility of the
attack, Prove the vulnerability of current model,
Modeling the vulnerability level and cost

2–10K 0%

Adversarial Sampling Attacks Against Phishing Detection 99

Fig. 2. The manipulation cost for adversarial samples based on number of manipulated
features

massive datasets are easier. Most of the approaches achieved high accuracy of
over the 95%. Both [6,12] achieved accuracy of 99%, which is significantly high.
Tian et al. [13] found new phishing samples that were not detected by common
phishing detection mechanisms even after one month. We also added the results
of this study to Table 4. We trained the classifier on the four public datasets
and achieved very high accuracy. When we added the manipulated features in
the testing phase, the accuracy degraded significantly and finally became zero.
These experiments prove that our proposed attack is sufficient to evade existing
classifiers for phishing detection.

6 Conclusion and Future Work

In this work, we explained the limitation of machine learning techniques when
adversarial samples are taken into consideration. We introduced the notion of
vulnerability level for data instances and datasets based on the adversarial
attacks and quantified it. We achieved high accuracy in the absence of this
attack using seven different well-studied classifiers in the literature: more than
95% for all classifiers except one that had 82%. However, when we evaluated
the best-performing classifier against the adversarial samples, the performance
of the classifier degraded significantly. With only one feature perturbation, the
TPR falls from 82–97% to 79%-45% and, increasing the number of perturbed
features to four, the TPR fell to 0%, meaning that all of the phishing instances
were able to bypass the classifier. We continued our experiments by consider-
ing the adversary cost in the experiment. We showed that both the number
of manipulated features and the total manipulation cost, which can be derived
from the difference between original phishing sample and the adversarial sample,

100 H. Shirazi et al.

are essential. This means that from an attacker point of view, not only chang-
ing the minimum number of instances is desired, but also it is important that
the adversarial sample has the minimum cost. This is an impressive result and
shows the weakness of well-known defense mechanisms against phishing attacks.
In future, we want to design robust machine learning models that are immune
to adversarial learning attacks.

Acknowledgements. This work is supported in part by funds from NSF Awards
CNS 1650573, CNS 1822118 and funding from CableLabs, Furuno Electric Company,
SecureNok, and AFRL. Research findings and opinions expressed are solely those of
the authors and in no way reflect the opinions of the NSF or any other federal agencies.

References

1. Zhang, Y., Xiao, Y., Ghaboosi, K., Zhang, J., Deng, H.: A survey of cyber crimes.
Secur. Commun. Netw. 5, 422–437 (2012)

2. Felix, J., Hauck, C.: System security: a hacker’s perspective. Interex Proc. 1, 6–6
(1987)

3. APWG: Phishing attack trends report - 3q 2018 (2018). Accessed 24 Jan 2019
4. Niakanlahiji, A., Chu, B.-T., Al-Shaer, E., PhishMon: a machine learning frame-

work for detecting phishing webpages. In: Intelligence and Security Informatics,
pp. 220–225 (2018)

5. Jiang, J., et al.: A deep learning based online malicious URL and DNS detection
scheme. In: Security and Privacy in Communication Systems, pp. 438–448 (2017)

6. Pereira, M., Coleman, S., Yu, B., DeCock, M., Nascimento, A.: Dictionary extrac-
tion and detection of algorithmically generated domain names in passive DNS
traffic. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID
2018. LNCS, vol. 11050, pp. 295–314. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00470-5 14

7. Shirazi, H., Bezawada, B., Ray, I.: “Kn0w Thy Doma1n Name”: unbiased phish-
ing detection using domain name based features. In: Access Control Models and
Technologies, pp. 69–75 (2018)

8. Li, Y., Yang, Z., Chen, X., Yuan, H., Liu, W.: A stacking model using URL and
HTML features for phishing webpage detection. Future Gener. Comput. Syst. 94,
27–39 (2019)

9. Dalvi, N., Domingos, P., Sanghai, S., Verma, D., et al.: Adversarial classification.
In: International Conference on Knowledge Discovery and Data Mining, pp. 99–108
(2004)

10. ISTR Internet Security Threat Report. Technical report, vol. 23
11. Sahingoz, O.K., Buber, E., Demir, O., Diri, B.: Machine learning based phishing

detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)
12. Verma, R., Dyer, K.: On the character of phishing URLs: accurate and robust

statistical learning classifiers. In: Data and Application Security and Privacy, pp.
111–122 (2015)

13. Tian, K., Jan, S.T.K., Hu, H., Yao, D., Wang, G.: Needle in a haystack: tracking
down elite phishing domains in the wild. In: Internet Measurement Conference,
pp. 429–442 (2018)

https://doi.org/10.1007/978-3-030-00470-5_14
https://doi.org/10.1007/978-3-030-00470-5_14

Adversarial Sampling Attacks Against Phishing Detection 101

14. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial
machine learning. In: ACM Workshop on Security and Artificial Intelligence, pp.
43–58 (2011)

15. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is feature selection
secure against training data poisoning? In: International Conference on Machine
Learning, pp. 1689–1698 (2015)

16. Biggio, B., Fumera, G., Roli, F.: Security evaluation of pattern classifiers under
attack. IEEE Trans. Knowl. Data Eng. 26, 984–996 (2014)

17. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on
android malware detection. Depend. Secure Comput. (2017)

18. Wang, Y., Jha, S., Chaudhuri, K.: Analyzing the robustness of nearest neighbors
to adversarial examples. In: International Conference on Machine Learning, pp.
5120–5129 (2018)

19. Papernot, N., Goodfellow, I., Sheatsley, R., Feinman, R., McDaniel, P.: cleverhans
v1. 0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768,
October 2016

20. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. arXiv preprint arXiv:1712.03141 (2017)

21. Mohammad, R.M., Thabtah, F., McCluskey, L.: An assessment of features related
to phishing websites using an automated technique. In: Internet Technology and
Secured Transactions, pp. 492–497 (2012)

22. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017)
23. Abdelhamid, N., Ayesh, A., Thabtah, F.: Phishing detection based associative

classification data mining. Expert Syst. Appl. 41(13), 5948–5959 (2014)
24. Tan, C.L.: Phishing dataset for machine learning: feature evaluation (2018)
25. Bulakh, V., Gupta, M.: Countering phishing from brands’ vantage point. In: Inter-

national Workshop on Security and Privacy Analytics, pp. 17–24 (2016)

http://arxiv.org/abs/1610.00768
http://arxiv.org/abs/1712.03141

Is My Phone Listening in? On the Feasibility
and Detectability of Mobile Eavesdropping

Jacob Leon Kröger1,2(&) and Philip Raschke1

1 Technische Universität Berlin, Berlin, Germany
{kroeger,philip.raschke}@tu-berlin.de

2 Weizenbaum Institute for the Networked Society, Berlin, Germany

Abstract. Besides various other privacy concerns with mobile devices, many
people suspect their smartphones to be secretly eavesdropping on them. In
particular, a large number of reports has emerged in recent years claiming that
private conversations conducted in the presence of smartphones seemingly
resulted in targeted online advertisements. These rumors have not only attracted
media attention, but also the attention of regulatory authorities. With regard to
explaining the phenomenon, opinions are divided both in public debate and in
research. While one side dismisses the eavesdropping suspicions as unrealistic
or even paranoid, many others are fully convinced of the allegations or at least
consider them plausible. To help structure the ongoing controversy and dispel
misconceptions that may have arisen, this paper provides a holistic overview of
the issue, reviewing and analyzing existing arguments and explanatory
approaches from both sides. Based on previous research and our own analysis,
we challenge the widespread assumption that the spying fears have already been
disproved. While confirming a lack of empirical evidence, we cannot rule out
the possibility of sophisticated large-scale eavesdropping attacks being suc-
cessful and remaining undetected. Taking into account existing access control
mechanisms, detection methods, and other technical aspects, we point out
remaining vulnerabilities and research gaps.

Keywords: Privacy � Smartphone � Eavesdropping � Spying � Listening �
Microphone � Conversation � Advertisement

1 Introduction

Smartphones are powerful tools that make our lives easier in many ways. Since they are
equipped with a variety of sensors, store large amounts of personal data and are carried
throughout the day by many people, including in highly intimate places and situations,
they also raise various privacy concerns.

One widespread fear is that smartphones could be turned into remote bugging
devices. For years, countless reports have been circulating on the Internet from people
who claim that things they talked about within earshot of their phone later appeared in
targeted online advertisements, leading many to believe that their private conversations
must have been secretly recorded and analyzed.

© The Author(s) 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 102–120, 2019.
https://doi.org/10.1007/978-3-030-22479-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_6

The reported suspicious ads range across many product and service categories,
including clothing, consumer electronics, foods and beverages, cars, medicines, holi-
day destinations, sports equipment, pet care products, cosmetics, and home appliances
– and while some of these ads were described as matching an overall discussion topic,
others allegedly promoted a brand or even a very specific product mentioned in a
preceding face-to-face conversation [6, 12]. Some people claim to have experienced the
phenomenon frequently and that they have successfully reproduced it in private
experiments. Interestingly, many of the purported witnesses emphasize that the
advertised product or service seems not related to places they have visited, terms they
have searched for online, or things they have mentioned in text messages, emails or
social media [6, 40]. Furthermore, some reports explicitly rate it as unlikely that the
respective advertisements were selected by conventional targeting algorithms, as they
lay notably outside the range of advertising normally received and did sometimes not
even appear to match the person’s consumer profile (e.g. in terms of interests, activities,
age, gender, or relationship status) [6, 41].

Numerous popular media outlets have reported on these alleged eavesdropping
attacks [3]. In a Forbes article, for instance, the US-based market research company
Forrester reports that at least 20 employees in its own workforce have experienced the
phenomenon for themselves [40]. The same holds true for one in five Australians,
according to a recent survey [38]. Even the US House Committee on Energy and
Commerce has started to investigate the issue by sending letters to Google and Apple
inquiring about the ways in which iOS and Android devices record private conver-
sations [77].

Many commentators, including tech bloggers, researchers and business leaders, on
the other hand, view the fear that private companies could target their ads based on
eavesdropped conversations as baseless and paranoid. The reputational risk, it is
argued, would be far too high to make this a viable option [76]. With regard to CPU,
battery and data storage limitations, former Facebook product manager Antonio García
Martínez even considers the alleged eavesdropping scenario to be economically and
technically unfeasible [51]. As an alternative explanation for suspiciously relevant ads,
he points to the many established and well-documented methods that companies
successfully use to track, profile and micro-target potential customers. Yet another
possible explanation states that the frequently reported phenomenon is merely a pro-
duct of chance, potentially paired with some form of confirmation bias [41]. Finally,
some commentators also suggest that topics of private conversations are sometimes
inspired by unconsciously processed advertisements, which may later cause the per-
ception of being spied upon when the respective ad is encountered again [28].

Many views, theories and arguments have been put forward in attempt to explain
the curious phenomenon, including experimental results and positions from the
research community. However, a consensus has not yet been reached, not even
regarding the fundamental technical feasibility of the alleged eavesdropping attacks.
Therefore, this paper reviews, verifies and compares existing arguments from both
sides of the discourse. Apart from providing a structured overview of the matter,
conclusions about the feasibility and detectability of smartphone-based eavesdropping
are drawn based on existing research and our own analysis.

Is My Phone Listening in? On the Feasibility and Detectability 103

In accordance with the reports found on the phenomenon, this paper will focus on
smartphones – specifically, iOS and Android devices. Since smartphones are the most
widespread consumer electronics device, and since iOS and Android together clearly
dominate the mobile OS market [70], this choice seems justified to us. However, most
of the considerations in this paper are applicable to other types of mobile devices and
other operating systems as well.

The remainder of this paper is structured as follows. In Sect. 2, we describe the
underlying threat model, distinguishing between three possible adversaries. Section 3
examines the possibility of using smartphone microphones for stealthy eavesdropping,
expanding on aspects of security permissions and user notifications. Similarly, Sect. 4
considers smartphone motion sensors as a potential eavesdropping channel, taking into
account sampling frequency limits enforced by mobile operating systems. Section 5
then looks into the effectiveness of existing mitigation and detection techniques
developed by Google, Apple, and the global research community. In Sect. 6, the
ecosystem providers themselves are considered as potential adversaries. Section 7
evaluates the technical and economic feasibility of large-scale eavesdropping attacks.
After that, Sect. 8 examines ways in which governmental and criminal hackers can
compromise the speech privacy of smartphone users. Finally, Sect. 9 provides a dis-
cussion of analysis results, followed by a conclusion in Sect. 10.

2 Threat Model

To target advertisements based on smartphone eavesdropping, an organization A, who
is responsible for selecting the audience for certain online ads (either the advertiser
itself or a contractor entrusted with this task, such as an advertising network1), needs to
somehow gain access to sensor data2 from the corresponding mobile device, or to
information derived from the sensor data.

Initially, speech is recorded through the smartphone by an actor B, which could be
either (1) the operating system provider itself, e.g. Apple or Google, (2) non-system
apps installed on the device, or (3) third-party libraries3 included in these apps.
Potentially after some processing and filtering, which can happen locally on the device
or on remote servers, actor B shares relevant information extracted from the recording –
directly or through intermediaries – with organization A (unless A and B are one and
the same actor, which is also possible).

Organization A then uses the received information to identify the smartphone
owner as a suitable target for specific ads and sends a corresponding broadcast request
to an ad publisher (organization A could also publish the ads itself if it has access to ad
distribution channels). Finally, the publisher displays the ads on websites or apps –

either on the smartphone through which the speech was recorded or on other devices

1 Advertising networks are companies that match demand and supply of online ad space by connecting
advertisers to ad publishers. They often hold extensive amounts of data on individual internet users to
enable targeted advertising [17].

2 “sensor data” can refer to either audio recordings or motion sensor data (see Sects. 3, 4).
3 The role and significance of third-party apps will be further explained in Sect. 3.1.

104 J. L. Kröger and P. Raschke

that can be linked4 to the smartphone owner, for example through logins, browsing
behavior, or IP address matching. The websites and apps on which the advertisements
appear do not reveal who recorded the smartphone owner’s speech. Not even orga-
nization A necessarily understands how and by whom the received profiling infor-
mation was initially collected. For illustration, Fig. 1 presents a simplified overview of
the threat model.

3 Microphone-Based Eavesdropping

Modern smartphones have the capability to tape any sort of ambient sound through
built-in microphones, including private conversations, and to transmit sensitive data,
such as the recording itself or information extracted from recorded speech, to remote
servers over the Internet. Mobile apps installed on a phone could exploit these capa-
bilities for secret eavesdropping. Aspects concerning app permissions and user noti-
fications that could affect the feasibility and visibility of such an attack are examined in
the following two subsections.

3.1 Microphone Access Permission

Before an app can access microphones in Android and iOS devices, permission has to
be granted by the user. However, people tend to accept such requests blindly if they are
interested in an app’s functionality [10]. A survey of 308 Android users found that only
17% of respondents paid attention to permissions during app installation, and no more
than 3% of the participants correctly answered the related comprehension questions
[24].

Fig. 1. A schematic and simplified overview of the threat model.

4 For more information on cross-device tracking, refer to [65].

Is My Phone Listening in? On the Feasibility and Detectability 105

Encouraging app development at the expense of user privacy, current permission
systems are much less strict than they were in early smartphones and have been
criticized as “coarse grained and incomplete” [59]. Also, once a permission is granted,
it is usually not transparent for users when and for which particular purpose data is
being collected and to which servers it is being sent [62].

To include analytics and advertising capabilities, apps commonly make use of
third-party libraries, i.e., code written by other companies. These libraries share mul-
timedia permissions, such as microphone access, with their corresponding host app and
are often granted direct Internet access [39]. Apart from the concern that third-party
libraries are easily over-privileged, it is considered problematic that app developers
often have limited or no understanding of the library code, which can also be changed
dynamically at runtime [59]. Thus, not only users but also app developers themselves
may be unaware of privacy leaks based on the abuse of granted permissions.

A large variety of existing apps has access to smartphone microphones. Examining
over 17.000 popular Android apps, Pan et al. found that 43.8% ask for permission to
record audio [59].

3.2 User Notifications and Visibility

Android and iOS apps with microphone permission can not only record audio at any
time while they are active, i.e. running in the foreground, but also while they are in
background mode, under certain conditions [7, 31]. Background apps have limited
privileges and are often suspended to conserve the device’s limited resources. In cases,
however, where they request the system to stay alive and continue recording while not
in the foreground, there are ways to indicate this to the user.

In iOS, the status bar will automatically turn bright red when recording takes place
in the background, allowing the user to immediately detect potentially unwanted
microphone activity [8].

While the latest release of Android (version 9 Pie) implements similar measures
[31], some older versions produce no visible indication when background apps access
the microphone [10]. In this context, it might be worth noting that Android has been
widely criticized for its slow update cycle, with hundreds of millions of devices run-
ning on massively outdated versions [56]. Also, quite obviously, notifications in the
graphical user interface are only visible as long as the device’s screen is not turned off.
And finally, some experimenters have already succeeded in circumventing the notifi-
cation requirements for smartphone media recordings [69].

4 Motion Sensor-Based Eavesdropping

Adversaries might be able to eavesdrop on conversations through cell phones without
accessing the microphone. Studies have shown that smartphone motion sensors – more
specifically, accelerometers and gyroscopes – can be sensitive enough to pick up sound
vibrations and possibly even reconstruct speech signals [36, 54, 79].

106 J. L. Kröger and P. Raschke

4.1 Experimental Research Findings

There are opposing views on whether non-acoustic smartphone sensors capture sounds
at normal conversational loudness. While Anand and Saxena did not notice an apparent
effect of live human speech on motion sensors in several test devices [3], other studies
report very small but measurable effects of machine-rendered speech, significant
enough to reconstruct spoken words or phrases [54, 79].

Using only smartphone gyroscopes, researchers from Israel’s defense technology
group Rafael and Stanford University were able to capture acoustic signals rich enough
to identify a speaker’s gender, distinguish between different speakers and, to some
extent, track what was being said [54]. In a similar experiment, Zhang et al. demon-
strated the feasibility of inferring spoken words from smartphone accelerometer read-
ings in real-time, even in the presence of ambient noise and user mobility [79].
According to their evaluation, the achieved accuracies were comparable to microphone-
based hotword detection applications such as Samsung S Voice and Google Now.

Both [79] and [54] have notable limitations. First of all, their algorithms were only
able to detect a small set of predefined keywords instead of performing full speech
recognition. Also, the speech in both experiments was produced by loudspeakers or
phone speakers, which may result in acoustic properties different from live human
speech. In [54], the playback device and the recording smartphone even shared a
common surface, leading critics to suggest that the observed effect on sensor readings
was not caused by aerial sound waves, but rather by direct surface vibrations [3]. Also,
in contrast to Zhang et al., this approach only achieved low recognition accuracies,
particularly for speaker-independent hotword detection. By their own admission,
however, the authors of [54] are “security experts, not speech recognition experts” [32].
Therefore, the study should be regarded as an initial exploration rather than a perfect
simulation of state-of-the-art spying techniques. With regard to the effectiveness of
their approach, the researchers pointed out several possible directions for future
improvement.

It might also be noteworthy that patents have already been filed for methods to
capture acoustic signals through motion sensors, including a “method of detecting a
user’s voice activity using an accelerometer” [21] and a “system that uses an
accelerometer in a mobile device to detect hotwords” [55].

4.2 Sampling Frequency Limits

In order to limit energy consumption and because typical applications of smartphone
motion sensors do not require highly sampled data, current mobile operating systems
impose a cap on the sampling frequency of motion sensors, such as a maximum of
200 Hz for accelerometer readings in Android [3] and 100 Hz for gyroscopes in iOS
[32]. For comparison, the fundamental frequency of the human speaking voice typi-
cally lies between 85 Hz and 155 Hz for men and 165 Hz and 255 Hz for women [79].
Thus, if at all, non-acoustic smartphone sensors can only capture a limited range of
speech sounds, which presents a challenge to speech reconstruction attacks.

Is My Phone Listening in? On the Feasibility and Detectability 107

With the help of the aliasing effect explained in [54], however, it is possible to
indirectly capture tones above the enforced frequency limits. Furthermore, experiments
show that motion sensor signals from multiple co-located devices can be merged to
obtain a signal with increased sampling frequency, significantly improving the effec-
tiveness of speech reconstruction attacks [36]. Two or more smartphones that are
located in proximity to each other and whose sensor readings are shared – directly or
indirectly – with the same actor may therefore pose an increased threat to speech
privacy.

It should also be noted that motion sensors in smartphones are usually capable of
delivering much higher sampling frequencies (often up to 8 kHz) than the upper
bounds prescribed by mobile operating systems [3]. Researchers already expressed
concern that adversaries might be able to override and thereby exceed the software-
based limits through patching applications or kernel drivers in mobile devices [3, 54].

4.3 Sensor Access Permissions and Energy Efficiency

While certain hardware components, such as camera, microphone and the GPS chip,
are typically protected by permission mechanisms in mobile operating systems, motion
sensors can be directly accessed by third-party apps in iOS and Android without any
prior notification or request to the user [32, 45]. Thus, there is usually no way for
smartphone owners to monitor, let alone control when and for what purposes data from
built-in accelerometers and gyroscopes is collected. Even visited websites can often
access smartphone motion sensors [32]. Exploiting accelerometers and gyroscopes to
intrude user privacy is also much more energy-efficient and thus less conspicuous than
recording via microphone [79].

5 Existing Mitigation and Detection Techniques

Many methods are applied by ecosystem providers and security researchers to screen
mobile apps for vulnerabilities and malicious behavior. The following two subsections
examine existing efforts with regard to their potential impact on the feasibility and
detectability of mobile eavesdropping attacks.

5.1 App Inspections Conducted by Ecosystem Providers

Both iOS and Android apply a combination of static, dynamic and manual analysis to
scan new and existing apps on their respective app market for potential security threats
and to ensure that they operate as advertised [78]. Clearly, as the misbehavior of third-
party apps can ultimately damage their own reputation, the platforms have strong
incentives to detect and prevent abuse attempts.

Nevertheless, countless examples of initially undetected malware and privacy leaks
have shown that the security screenings provided by Google and Apple are not always
successful [19]. Google Play’s app inspection process has even been described as
“fundamentally vulnerable” [29]. In a typical cat-and-mouse game, malicious apps
evolve quickly to bypass newly implemented security measures [63], sometimes by

108 J. L. Kröger and P. Raschke

using “unbearably simple techniques” [29]. In Android devices from uncertified
manufacturers, malware may even be pre-installed before shipment [14]. Significant
vulnerabilities have also been found in official built-in apps. Apple’s FaceTime app, for
example, allowed potential attackers to gain unauthorized access to iPhone cameras and
microphones without any requirement of advanced hacking skills [15].

Leaving security loopholes aside, the existing security mechanisms do not guar-
antee privacy protection in terms of data minimization and transparency. Many mobile
apps collect personal data with no apparent relevance to the advertised functionality
[18, 62]. Even well-known apps like Uber have not been prevented from collecting
sensitive user data that is not required for the service they offer [46].

There are also many documented cases of mobile apps using their microphone
access in unexpected ways. An example that has received a lot of media attention
recently is the use of so-called “ultrasonic beacons”, i.e. high-pitched Morse-style
audio signals inaudible to the human ear which are secretly played in stores or
embedded in TV commercials and other broadcast content in order to be able to
unobtrusively track the location, activities and media consumption habits of consumers
[10]. For this to work, the data subject needs to carry a receiving device that records
and scans ambient sound for relevant ultrasonic signals and sends them back to the
tracking network for automated comparison. A constantly growing number of mobile
apps – several hundred already, some of them very popular – are using their micro-
phone permission for exactly that purpose, often without properly informing the user
about it [10, 47]. These apps, some of which are targeted at children and would not
require audio recording for their core functionality, may even detect sounds while the
phone is locked and carried in a pocket [47]. Even in cases where users are aware that
their phone listens in, it is not clear to them what the audio stream is filtered for exactly
and what information is being exfiltrated. Thus, the example of ultrasonic beacons
shows how apps that have been approved into Apple’s App Store and Google Play can
exploit their permissions for dubious and potentially unexpected tracking purposes.

Finally, it should not be overlooked that smartphone apps can also be obtained from
various non-official sources, circumventing Apple’s and Google’s permission systems
and auditing processes [62]. In Android, users are free in choosing the source of their
applications [78]. Following a more restrictive policy, iOS only allows users to install
apps downloaded from the official Apple App Store. However, kernel patches can be
used to gain root access and remove software restrictions in iOS (“iOS jailbreaking”),
which enables users to install apps from uncertified publishers [62].

5.2 App Inspections Conducted by the Research Community

In addition to the checks conducted by Google and Apple, mobile apps are being
reviewed by a broad community of security and privacy researchers. A wide and
constantly expanding range of manual and automated methods is applied for this
purpose.

Pan et al., for instance, scanned 17,260 popular Android apps from different app
markets for potential privacy leaks [59]. Through examining their media permissions,
privacy policies and outgoing network flows, the researchers tried to identify apps that
upload audio recordings to the Internet without explicitly informing the user about it.

Is My Phone Listening in? On the Feasibility and Detectability 109

While unveiling other serious forms of privacy violations, they found no evidence of
such behavior. Based on these findings, the widely held suspicion of companies
secretly eavesdropping on smartphone users was already portrayed as refuted in news
headlines [34, 80].

However, the study comes with numerous limitations: Apart from considering only
a small fraction of the over 2 million available Android apps, the researchers did not
examine media exfiltration from app background activity, did not consider the use of
privileged APIs, only tested a limited amount of each app’s functionalities for a short
amount of time, used a controlled test environment with no real human interactions, did
not consider iOS apps at all, and were not able to detect media that was intentionally
obfuscated, encrypted at the application-layer, or sent over the network in non-standard
encoding formats. Perhaps most importantly, Pan et al. were not able to rule out the
scenario of apps transforming audio recordings into less detectable text transcripts or
audio fingerprints before sending the information out. This would be a very realistic
attack scenario. In fact, various popular apps are known to compress recorded audio in
such a way [10, 33]. While all the choices that Pan et al. made regarding their
experimental setup and methodology are completely understandable and were com-
municated transparently, the limitations do limit the significance of their findings. All
in all, their approach would only uncover highly unsophisticated eavesdropping
attempts.

Of course, many other researchers have also tried to detect privacy leaks in iOS and
Android apps [62]. Besides analyzing decompiled code, permission requests and
generated network traffic, other factors, such as battery power consumption and device
memory usage, can also be monitored to detect suspicious app behavior [67]. Although
some experts claim to have observed certain mobile apps recording and sending out
audio with no apparent justification [58], the scientific community has not yet produced
any hard evidence for large-scale eavesdropping through smartphone microphones.

Like the above-cited work by Pan et al., however, other existing methods to
identify privacy threats in mobile devices also come with considerable limitations. Due
to its closed-source nature, there is generally a lack of scalable tools for detecting
malicious apps within iOS [19]. While, on the other hand, numerous efficient methods
have been proposed for automatically scanning Android apps, none of these approaches
is totally effective at detecting privacy leaks [59]. As with security checks of the official
app stores (see Sect. 5.1), there is a wide range of possible obfuscation techniques and
covert channels to circumvent detection mechanisms developed by the scientific
community [10, 67]. Furthermore, many of the existing approaches do not indicate if
detected data exfiltration activities are justified with regard to an app’s advertised
functionality [62]. Yerukhimovich et al. even suggest that apps classified as safe or
non-malicious are more likely to leak private information than typical “malware” [78].

Therefore, the fact that no evidence for large-scale mobile eavesdropping has been
found so far should not be interpreted as an all-clear. It could only mean that it is
difficult – under current circumstances perhaps even impossible – to detect such attacks
effectively.

110 J. L. Kröger and P. Raschke

6 Ecosystem Providers as Potential Adversaries

Not only third-party apps but also mobile operating systems themselves can access
privacy-sensitive smartphone data and transfer it over the Internet. It has been known
for years that both, iOS and Android, do so extensively [5]. Examining the amount of
data sent back to Google’s and Apple’s servers from test devices, a recent study found
that iPhones – on average – received four requests per hour from their manufacturer
during idle periods, and eighteen requests during periods of heavy use [68]. Leaving
these numbers far behind, Android phones received forty hourly requests from Google
when in idle state and ninety requests during heavy use. Of course, the number of
requests per hour has only limited informational value. Data is often collected much
more frequently, such as on a secondly basis or even constantly, to be later aggregated,
compressed and sent out in data bundles [5].

While the establishment of network connections can be monitored, many aspects of
data collection and processing in smartphones remain opaque. The source code of iOS
is not made publicly available, and while Android is based on code from the Android
Open Source Project, several of Google’s proprietary apps and system components are
closed-source as well [2]. Due to the resulting lack of transparency, it cannot be reliably
ruled out that sensitive data is collected and processed without the will or knowledge of
the smartphone owner – although, naturally, this would represent a considerable legal
and reputational risk for the corresponding platform provider.

As an intermediary between applications and hardware resources, operating sys-
tems control the access to smartphone sensors, including microphones, accelerometers
and gyroscopes, and can also decide whether or not sensor activity is indicated to the
user on the device’s screen. Other than with third-party apps, there is no superior
authority in the system supervising the actions and decisions of iOS and Android.
While external security experts can carry out inspections using similar methods as
outlined in Sect. 5.2, they also face similar limitations. There is no reason to assume
that operating systems refrain from using sophisticated obfuscation techniques to
conceal their data collection practices. Additionally, being in control of the whole
system, iOS and Android can access data on different levels of their respective software
stack, which gives them more options for stealthy data exfiltration and could possibly
impede detection.

7 Technical and Economic Feasibility

Even where adversaries manage to get around security measures and evade detection, it
remains questionable whether a continuous and large-scale eavesdropping operation for
the purpose of ad targeting would be technically feasible and economically viable.
Based on estimations of CPU, battery, network transfer and data storage requirements,
some commentators already stated their conclusion that such an operation would be far
too expensive [51, 76] and may “strain even the resources of the NSA” [71]. Taking
into account their underlying assumptions, these estimates appear valid. However, there
are several ways in which smartphone-based eavesdropping could be made much more
efficient and scalable, including:

Is My Phone Listening in? On the Feasibility and Detectability 111

• Low quality audio recording. To reduce the required data storage, processing
power and energy consumption, adversaries could record audio at low bitrates.
Speech signals do not even have to be intelligible to the human ear to be recognized
and transcribed into text by algorithms [54].

• Local pre-processing. Some steps in the processing of recordings (e.g. transcrip-
tion, extraction of audio features, data filtering, keyword matching, compression)
can be performed locally on the device in order to transmit only the most relevant
data to remote servers and thus reduce network traffic and required cloud storage.

• Keyword detection instead of full speech recognition. The amounts of processing
power required for automatic speech recognition can be prohibitively high for local
execution on mobile devices. A less CPU-intensive alternative to full speech
recognition is keyword detection, where only a pre-defined vocabulary of spoken
words is recognized. Such systems can even run on devices with much lower
computational power than smartphones, such as 16-bit microcontrollers [25]. It has
been argued that it would still be too taxing for mobile devices to listen out for the
“millions or perhaps billions” of targetable keywords that could potentially be
dropped in private conversations [51]. However, instead of listening for specific
product and brand names, audio recordings can simply be scanned for trigger words
that indicate a person’s interest, such as “love”, “enjoyed”, or “great”, in order to
identify relevant snippets of the recording, which can then be analyzed in more
depth. In fact, this very audio analysis method has already been patented, with the
specific declared purpose of informing “targeted advertising and product recom-
mendations” [22].

• Selective recording. Instead of recording continuously, an adversary could only
record at selected moments using wake words or triggers based on time, location,
user activity, sound level, and other context variables. This could significantly
reduce the amount of required storage and network traffic [67].

Mobile apps that use all or some of the above techniques can be light enough to run
smoothly on smartphones, as numerous commercial apps and research projects show
[9, 10, 33, 58, 67].

But even if it is possible for companies to listen in on private conversations, some
argue that this information might not be of much value to advertisers, since they would
need to know a conversation’s context and speaker personalities very well in order to
accurately infer personal preferences and purchase intentions from spoken phrases [51].
This argument is reasonable, but can equally be applied to many other profiling
methods, including online tracking and location tracking, which are widely used
nonetheless. Of course, where contextual information is sparse, such methods may lead
to wrong conclusions about the respective data subject, possibly resulting in poor and
inefficient ad targeting. However, this would not conflict with the above-mentioned
reports of suspected eavesdropping: While the ads were perceived as inspired by topics
raised in private conversations, they did not always reflect the purported witnesses’
actual needs and wants [6, 12].

From an outside perspective, it cannot be precisely determined how profitable
certain types of personal data are for advertisers. It is therefore difficult, if not
impossible, to draw up a meaningful cost-benefit calculation. However, it can generally

112 J. L. Kröger and P. Raschke

be assumed that private conversations contain a lot of valuable profiling information,
especially when speakers express their interest in certain products or services. It is also
worth mentioning that some of the world’s largest companies earn a significant portion
of their revenue through advertising – for Google and Facebook, this portion amounted
to 85% and 98% in 2018, respectively [1, 23]. Profits from advertising can be con-
siderably increased through effective targeting, which requires the collection of detailed
personal information [68]. There is no doubt that smartphone sensor data can be very
useful for this purpose. A recently filed patent describes, for example, how “local
signals” from a mobile device, including motion sensor data and audio data from the
microphone, can be analyzed to personalize a user’s Facebook news feed [50].

8 Unauthorized Access to Smartphones

Although this is most likely no explanation for suspicious ad placement, it should be
noted that there are many ways in which skilled computer experts or “hackers” can gain
unauthorized access to mobile devices. The widespread use of smartphones makes
them a particularly attractive hacking target [4].

Not only cyber criminals, but also law enforcement agencies and secret services
invest heavily in their capabilities to exploit software flaws and other security vul-
nerabilities in consumer electronics [73]. It has been known for some time that intel-
ligence agencies, such as NSA, GCHQ, and CIA, are equipped with tools to secretly
compromise devices running iOS, Android and other mobile operating systems,
enabling them “to move inside a system freely as if they owned it” [66, 75].

In addition to accessing sensitive data, such as geo-location, passwords, personal
notes, contacts, and text messages, this includes the ability to turn on a phone’s
microphone without a user’s consent or awareness [11]. With the help of specialized
tools, smartphone microphones can even be tapped when the device is (or seems)
switched off [73]. Such attacks can also be successful in high-security environments. In
a recent case, for example, more than 100 Israeli servicemen had their phones infected
with spyware that allowed unknown adversaries to control built-in cameras and
microphones [57].

Besides the United States and some European nations, other developed countries,
such as Russia, Israel and China, also have highly sophisticated spying technology at
their disposal [75]. Less developed countries and other actors can buy digital eaves-
dropping tools from a flourishing industry of surveillance contractors at comparatively
low prices [60]. That not only secret services but also law enforcement agencies in the
US can be authorized to convert smartphones into “roving bugs” to listen in on private
conversations has been confirmed in a 2012 court ruling [16]. Eavesdropping capa-
bilities of criminal organizations should not be underestimated, either. According to a
report by McAfee and the Center for Strategic and International Studies (CSIS), there
are 20 to 30 cybercrime groups with “nation-state level” capacity in countries of the
former Soviet Union alone [52].

Is My Phone Listening in? On the Feasibility and Detectability 113

9 Discussion

So far, despite significant research efforts, no evidence has been found to confirm the
widespread suspicion that firms are secretly eavesdropping on smartphone users to
inform ads. To the best of our knowledge, however, the opposite has not been proven
either. While some threat scenarios (e.g. the constant transfer of uncompressed audio
recordings into the cloud) can be ruled out based on existing security measures and
considerations regarding an attack’s visibility, cost and technical feasibility, there are
still many security vulnerabilities and a fundamental lack of transparency that poten-
tially leave room for more sophisticated attacks to be successful and remain undetected.

In comparison with the researchers cited in this paper, it can be assumed that certain
companies have significantly more financial resources, more training data, and more
technical expertise in areas such as signal processing, data compression, covert
channels, and automatic speech recognition. This is – besides unresolved contradictions
between cited studies and large remaining research gaps – another reason why existing
work should not be seen as final and conclusive, but rather as an initial exploration of
the issue.

While this paper focuses on smartphones, it should be noted that microphones and
motion sensors are also present in a variety of other Internet-connected devices,
including not only VR headsets, wearable fitness trackers and smartwatches, but also
baby monitors, toys, remote controls, cars, household appliances, laptops, and smart
speakers. Some of these devices may have weaker privacy safeguards than smart-
phones. For instance, they may not ask for user permission before turning on the
microphone or may not impose a limit on sensor sampling frequencies. Numerous
devices, including smart TVs [13], smart speakers [27], and connected toys [26], have
already been suspected to spy on private conversations of their users. Certain smart
home devices, such as home security alarms, may even contain a hidden microphone
without disclosing it in the product specifications [44]. For these reasons, it is essential
to also thoroughly examine non-smartphone devices when investigating suspicions of
eavesdropping.

It is quite possible, at the same time, that the fears of advertising companies
eavesdropping on private conversations are unfounded. Besides the widespread attri-
bution to chance, one alternative approach to explaining strangely accurate advertise-
ments points to all the established tracking technologies commonly employed by
advertisers that do not depend on any phone sensors or microphones [51].

Drawing from credit card networks, healthcare providers, insurers, employers,
public records, websites, mobile apps, and many other sources, certain multi-national
corporations already hold billions of individual data points on consumers’ location
histories, browsing behaviors, religious and political affiliations, occupations, socioe-
conomic backgrounds, health conditions, personality traits, product preferences, and so
on [17, 64]. Although their own search engines, social networks, email services, route
planners, instant messengers, and media platforms already give them intimate insight
into the lives of billions of people, advertising giants like Facebook and Google also
intensively track user behavior on foreign websites and apps. Of the 17.260 apps
examined in [59], for example, 48.22% share user data with Facebook in the

114 J. L. Kröger and P. Raschke

background. Through their analytics services and like buttons, Google and Facebook
can track clicks and scrolls of Internet users on a vast number of websites [17].

The deep and potentially unexpected insights that result from such ubiquitous
surveillance can be used for micro-targeted advertising and might thereby create an
illusion of being eavesdropped upon, especially if the data subject is ill-informed about
the pervasiveness and impressive possibilities of data linkage.

Even without being used for audio snooping, smartphones (in their current con-
figuration) allow a large variety of actors to track private citizen in a much more
efficient and detailed way than would ever have been possible in even the most
repressive regimes and police states of the 20th century. At the bottom line, whether
sensitive information is extracted from private conversations or collected from other
sources does not make much difference to the possibilities of data exploitation and the
entailing consequences for the data subject. Therefore, whether justified or not, the
suspicions examined in this paper eventually lead to a very fundamental question:
What degree of surveillance should be considered acceptable for commercial purposes
like targeted advertising? Although this paper cannot offer an answer to this political
question, it should not be forgotten that constant surveillance is by no means a tech-
nical necessity and that, by definition, democracies should design and regulate tech-
nology to primarily reflect the values of the public, not commercial interests.

Certainly, the fear of eavesdropping smartphones should never be portrayed as
completely unfounded, as various criminal and governmental actors can gain unau-
thorized access to consumer electronics. Although such attacks are unlikely to result in
targeted advertisement, they equally deprive the user of control over his or her privacy
and might lead to other unpredictable harms and consequences. For example, digital
spying tools have been used to infiltrate the smartphones of journalists [49] and human
rights activists [60] for repressive purposes.

Finally, it should be recognized that – apart from the linguistic contents of speech –

microphones and motion sensors may unexpectedly transmit a wealth of other sensitive
information. Through the lens of advanced analytics, a voice recording can reveal a
speaker’s identity [53], physical and mental health state [20, 37], and personality traits
[61], for example. Accelerometer data from mobile devices may implicitly contain
information about a user’s location [35], daily activities [48], eating, drinking and
smoking habits [72, 74], degree of intoxication [30], gender, age, body features and
emotional state [43] and can also be used to re-construct sequences of text entered into
a device, including passwords [42].

10 Conclusion

After online advertisements seemingly adapted to topics raised in private face-to-face
conversations, many people suspect companies to secretly listen in through their
smartphones. This paper reviewed and analyzed existing approaches to explaining the
phenomenon and examined the general feasibility and detectability of mobile eaves-
dropping attacks. While it is possible, on the one hand, that the strangely accurate ads
were just a product of chance or conventional profiling methods, the spying fears were

Is My Phone Listening in? On the Feasibility and Detectability 115

not disproved so far, neither by device manufacturers and ecosystem providers nor by
the research community.

In our threat model, we considered non-system mobile apps, third-party libraries,
and ecosystem providers themselves as potential adversaries. Smartphone microphones
and motion sensors were investigated as possible eavesdropping channels. Taking into
account permission requirements, user notifications, sensor sampling frequencies,
limited device resources, and existing security checks, we conclude that – under the
current levels of data collection transparency in iOS and Android – sophisticated
eavesdropping operations could potentially be run by either of the above-mentioned
adversaries without being detected. At this time, no estimate can be made as to the
probability and economic viability of such attacks.

References

1. Alphabet Inc.: Alphabet Announces Fourth Quarter and Fiscal Year 2018 Results (2019).
https://abc.xyz/investor/static/pdf/2018Q4_alphabet_earnings_release.pdf?cache=adc3b38

2. Amadeo, R.: Google’s iron grip on Android: Controlling open source by any means
necessary (2018). https://arstechnica.com/gadgets/2018/07/googles-iron-grip-on-android-
controlling-open-source-by-any-means-necessary/

3. Anand, S.A., Saxena, N.: Speechless: analyzing the threat to speech privacy from
smartphone motion sensors. In: 2018 IEEE Symposium on Security and Privacy, San
Francisco, CA, pp. 1000–1017. IEEE (2018). https://doi.org/10.1109/SP.2018.00004

4. Aneja, L., Babbar, S.: Research trends in malware detection on Android devices. In: Panda,
B., Sharma, S., Roy, N. (eds.) Data Science and Analytics. Communications in Computer
and Information Science, vol. 799, pp. 629–642. Springer, Singapore (2018). https://doi.org/
10.1007/978-981-10-8527-7_53

5. Angwin, J., Valentino-DeVries, J.: Apple, Google Collect User Data (2011). https://www.
wsj.com/articles/SB10001424052748703983704576277101723453610

6. Anonymous: YouTube user demonstrating how Facebook listens to conversations to serve ads
(2017). https://www.reddit.com/r/videos/comments/79i4cj/youtube_user_demonstrating_
how_facebook_listens/

7. Apple: Background Execution. https://developer.apple.com/library/archive/documentation/
iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/
BackgroundExecution.html

8. Apple: Record - iPhone User Guide. https://help.apple.com/iphone/11/?lang=en#/iph4d2a
39a3b

9. Arcas, B.A., et al.: Now playing: continuous low-power music recognition. arXiv Comput.
Res. Repos. abs/1711.10958 (2017). http://arxiv.org/abs/1711.10958

10. Arp, D., et al.: Privacy threats through ultrasonic side channels on mobile devices. In: 2017
IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, pp. 35–47.
IEEE (2017). https://doi.org/10.1109/EuroSP.2017.33

11. Ball, J.: Angry Birds and “leaky” phone apps targeted by NSA and GCHQ for user data
(2014). https://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-
birds-personal-data

12. BBC News Services: Is your phone listening in? Your stories (2017). https://www.bbc.com/
news/technology-41802282

116 J. L. Kröger and P. Raschke

https://abc.xyz/investor/static/pdf/2018Q4_alphabet_earnings_release.pdf%3fcache%3dadc3b38
https://arstechnica.com/gadgets/2018/07/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
https://arstechnica.com/gadgets/2018/07/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
http://dx.doi.org/10.1109/SP.2018.00004
http://dx.doi.org/10.1007/978-981-10-8527-7_53
http://dx.doi.org/10.1007/978-981-10-8527-7_53
https://www.wsj.com/articles/SB10001424052748703983704576277101723453610
https://www.wsj.com/articles/SB10001424052748703983704576277101723453610
https://www.reddit.com/r/videos/comments/79i4cj/youtube_user_demonstrating_how_facebook_listens/
https://www.reddit.com/r/videos/comments/79i4cj/youtube_user_demonstrating_how_facebook_listens/
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://help.apple.com/iphone/11/%3flang%3den#/iph4d2a39a3b
https://help.apple.com/iphone/11/%3flang%3den#/iph4d2a39a3b
http://arxiv.org/abs/1711.10958
http://dx.doi.org/10.1109/EuroSP.2017.33
https://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-personal-data
https://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-personal-data
https://www.bbc.com/news/technology-41802282
https://www.bbc.com/news/technology-41802282

13. Beres, D.: How To Stop Your Smart TV From Eavesdropping On You (2015). https://www.
huffpost.com/entry/your-samsung-tv-is-spying-on-you_n_6647762

14. Bocek, V., Chrysaidos, N.: Android devices ship with pre-installed malware (2018). https://
blog.avast.com/android-devices-ship-with-pre-installed-malware

15. Bogost, I.: FaceTime Is Eroding Trust in Tech (2019). https://www.theatlantic.com/
technology/archive/2019/01/apple-facetime-bug-you-cant-escape/581554/

16. Brown, A.J.: United States v. Oliva (United States Court of Appeals, D.C. No. 3:07-cr-
00050-BR-1) (2012)

17. Christl, W.: Corporate Surveillance in Everyday Life. Cracked Labs, Vienna (2017)
18. Christl, W., Spiekermann, S.: Networks of Control: A Report on Corporate Surveillance,

Digital Tracking, Big Data & Privacy. Facultas, Vienna (2016)
19. Cimitile, A., et al.: Machine learning meets iOS malware: identifying malicious applications

on Apple environment. In: Proceedings of the 3rd International Conference on Information
Systems Security and Privacy, Porto, Portugal, pp. 487–492. SciTePress (2017). https://doi.
org/10.5220/0006217304870492

20. Cummins, N., et al.: Speech analysis for health: current state-of-the-art and the increasing
impact of deep learning. Methods (2018). https://doi.org/10.1016/j.ymeth.2018.07.007

21. Dusan, S.V., et al.: System and Method of Detecting a User’s Voice Activity Using an
Accelerometer (Patent No.: US9438985B2) (2014). https://patents.google.com/patent/
US9438985B2/en

22. Edara, K.K.: Keyword Determinations from Voice Data (Patent No.: US20140337131A1)
(2014). https://patents.google.com/patent/US20140337131A1/en

23. Facebook: Facebook Reports Fourth Quarter and Full Year 2018 Results. https://s21.q4cdn.
com/399680738/files/doc_financials/2018/Q4/Q4-2018-Earnings-Release.pdf

24. Felt, A.P., et al.: Android permissions: user attention, comprehension, and behavior. In:
Proceedings of the Eighth Symposium on Usable Privacy and Security (SOUPS 2012),
Washington, D.C. ACM Press (2012). https://doi.org/10.1145/2335356.2335360

25. Fourniols, J.-Y., et al.: An overview of basics speech recognition and autonomous approach
for smart home IOT low power devices. J. Signal Inf. Process. 9, 239–257. https://doi.org/
10.4236/jsip.2018.94015

26. de Freytas-Tamura, K.: The Bright-Eyed Talking Doll That Just Might Be a Spy (2018).
https://www.nytimes.com/2017/02/17/technology/cayla-talking-doll-hackers.html

27. Fussell, S.: Behind Every Robot Is a Human (2019). https://www.theatlantic.com/
technology/archive/2019/04/amazon-workers-eavesdrop-amazon-echo-clips/587110/

28. Ganjoo, S.: Is Facebook secretly listening your conversations? New report says yes, security
experts say no proof (2018). https://www.indiatoday.in/technology/features/story/is-
facebook-secretly-listening-your-conversations-new-report-says-yes-security-experts-say-
no-proof-1255870-2018-06-09

29. Gao, G., Chow, M.: Android Applications, Can You Trust Google Play on These. Tufts
University (2016)

30. Gharani, P., et al.: An Artificial Neural Network for Gait Analysis to Estimate Blood Alcohol
Content Level. arXiv Comput. Res. Repos. abs/1712.01691 (2017). https://arxiv.org/abs/
1712.01691

31. Google: Android 9 Pie. https://www.android.com/versions/pie-9-0/
32. Greenberg, A.: The Gyroscopes in Your Phone Could Let Apps Eavesdrop on Conversations

(2014). https://www.wired.com/2014/08/gyroscope-listening-hack/
33. Grosche, P., et al.: Audio content-based music retrieval. In: Müller, M., et al. (eds.)

Multimodal Music Processing. Dagstuhl Follow-Ups. Dagstuhl Publishing, Wadern (2012)

Is My Phone Listening in? On the Feasibility and Detectability 117

https://www.huffpost.com/entry/your-samsung-tv-is-spying-on-you_n_6647762
https://www.huffpost.com/entry/your-samsung-tv-is-spying-on-you_n_6647762
https://blog.avast.com/android-devices-ship-with-pre-installed-malware
https://blog.avast.com/android-devices-ship-with-pre-installed-malware
https://www.theatlantic.com/technology/archive/2019/01/apple-facetime-bug-you-cant-escape/581554/
https://www.theatlantic.com/technology/archive/2019/01/apple-facetime-bug-you-cant-escape/581554/
http://dx.doi.org/10.5220/0006217304870492
http://dx.doi.org/10.5220/0006217304870492
http://dx.doi.org/10.1016/j.ymeth.2018.07.007
https://patents.google.com/patent/US9438985B2/en
https://patents.google.com/patent/US9438985B2/en
https://patents.google.com/patent/US20140337131A1/en
https://s21.q4cdn.com/399680738/files/doc_financials/2018/Q4/Q4-2018-Earnings-Release.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2018/Q4/Q4-2018-Earnings-Release.pdf
http://dx.doi.org/10.1145/2335356.2335360
http://dx.doi.org/10.4236/jsip.2018.94015
http://dx.doi.org/10.4236/jsip.2018.94015
https://www.nytimes.com/2017/02/17/technology/cayla-talking-doll-hackers.html
https://www.theatlantic.com/technology/archive/2019/04/amazon-workers-eavesdrop-amazon-echo-clips/587110/
https://www.theatlantic.com/technology/archive/2019/04/amazon-workers-eavesdrop-amazon-echo-clips/587110/
https://www.indiatoday.in/technology/features/story/is-facebook-secretly-listening-your-conversations-new-report-says-yes-security-experts-say-no-proof-1255870-2018-06-09
https://www.indiatoday.in/technology/features/story/is-facebook-secretly-listening-your-conversations-new-report-says-yes-security-experts-say-no-proof-1255870-2018-06-09
https://www.indiatoday.in/technology/features/story/is-facebook-secretly-listening-your-conversations-new-report-says-yes-security-experts-say-no-proof-1255870-2018-06-09
https://arxiv.org/abs/1712.01691
https://arxiv.org/abs/1712.01691
https://www.android.com/versions/pie-9-0/
https://www.wired.com/2014/08/gyroscope-listening-hack/

34. Hale, J.L.: Does Your Smartphone Listen To You? A New Study Debunked This Common
Conspiracy (2018). https://www.bustle.com/p/does-your-smartphone-listen-to-you-a-new-
study-debunked-this-common-conspiracy-9682413

35. Han, J., et al.: ACComplice: location inference using accelerometers on smartphones. In:
2012 Fourth International Conference on Communication Systems and Networks
(COMSNETS), pp. 1–9 (2012). https://doi.org/10.1109/COMSNETS.2012.6151305

36. Han, J., et al.: PitchIn: eavesdropping via intelligible speech reconstruction using non-
acoustic sensor fusion. In: Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), pp. 181–192. ACM Press, Pittsburgh
(2017). https://doi.org/10.1145/3055031.3055088

37. Hashim, N.W., et al.: Evaluation of voice acoustics as predictors of clinical depression
scores. J. Voice 31(2), 256.e1–256.e6 (2017). https://doi.org/10.1016/j.jvoice.2016.06.006

38. Hassan, B.: 1 in 5 Aussies convinced their smartphone is spying on them (2018). https://
www.finder.com.au/press-release-july-2018-1-in-5-aussies-convinced-their-smartphone-is-
spying-on-them

39. He, Y., et al.: Dynamic privacy leakage analysis of Android third-party libraries. In: 1st
International Conference on Data Intelligence and Security (ICDIS), pp. 275–280 (2018).
https://doi.org/10.1109/ICDIS.2018.00051

40. Khatibloo, F.: Is Facebook Listening (And So What If They Are)? (2017). https://www.
forbes.com/sites/forrester/2017/03/17/is-facebook-listening-and-so-what-if-they-are/

41. Kleinman, Z.: Is your smartphone listening to you? (2016). https://www.bbc.com/news/
technology-35639549

42. Kröger, J.: Unexpected inferences from sensor data: a hidden privacy threat in the internet of
things. In: Strous, L., Cerf, V.G. (eds.) Internet of Things. Information Processing in an
Increasingly Connected World. IFIP Advances in Information and Communication
Technology, vol. 548, pp. 147–159. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-15651-0_13

43. Kröger, J.L., et al.: Privacy implications of accelerometer data: a review of possible
inferences. In: Proceedings of the 3rd International Conference on Cryptography, Security
and Privacy (ICCSP). ACM, New York (2019). https://doi.org/10.1145/3309074.3309076

44. Lee, D.: Google admits error over hidden microphone (2019). https://www.bbc.com/news/
technology-47303077

45. Liu, X., et al.: Discovering and understanding Android sensor usage behaviors with data
flow analysis. World Wide Web 21(1), 105–126 (2018). https://doi.org/10.1007/s11280-
017-0446-0

46. Lomas, N.: Uber to end controversial post-trip tracking as part of privacy drive (2017).
http://social.techcrunch.com/2017/08/29/uber-to-end-controversial-post-trip-tracking-as-
part-of-privacy-drive/

47. Maheshwari, S.: That Game on Your Phone May Be Tracking What You’re Watching on
TV (2017). https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.
html

48. Mannini, A., et al.: Activity recognition using a single accelerometer placed at the wrist or
ankle. Med. Sci. Sports Exerc. 45(11), 2193–2203 (2013). https://doi.org/10.1249/MSS.
0b013e31829736d6

49. Marczak, B., et al.: Hacking Team and the Targeting of Ethiopian Journalists (2014). https://
citizenlab.ca/2014/02/hacking-team-targeting-ethiopian-journalists/

50. Marra, C.J., et al.: Ranking of News Feed in a Mobile Device Based on Local Signals (Pub.
No.: US20170351675A1) (2017). https://patents.google.com/patent/US20170351675A1/en

51. Martínez, A.G.: Facebook’s Not Listening Through Your Phone. It Doesn’t Have To (2017).
https://www.wired.com/story/facebooks-listening-smartphone-microphone/

118 J. L. Kröger and P. Raschke

https://www.bustle.com/p/does-your-smartphone-listen-to-you-a-new-study-debunked-this-common-conspiracy-9682413
https://www.bustle.com/p/does-your-smartphone-listen-to-you-a-new-study-debunked-this-common-conspiracy-9682413
http://dx.doi.org/10.1109/COMSNETS.2012.6151305
http://dx.doi.org/10.1145/3055031.3055088
http://dx.doi.org/10.1016/j.jvoice.2016.06.006
https://www.finder.com.au/press-release-july-2018-1-in-5-aussies-convinced-their-smartphone-is-spying-on-them
https://www.finder.com.au/press-release-july-2018-1-in-5-aussies-convinced-their-smartphone-is-spying-on-them
https://www.finder.com.au/press-release-july-2018-1-in-5-aussies-convinced-their-smartphone-is-spying-on-them
http://dx.doi.org/10.1109/ICDIS.2018.00051
https://www.forbes.com/sites/forrester/2017/03/17/is-facebook-listening-and-so-what-if-they-are/
https://www.forbes.com/sites/forrester/2017/03/17/is-facebook-listening-and-so-what-if-they-are/
https://www.bbc.com/news/technology-35639549
https://www.bbc.com/news/technology-35639549
http://dx.doi.org/10.1007/978-3-030-15651-0_13
http://dx.doi.org/10.1007/978-3-030-15651-0_13
http://dx.doi.org/10.1145/3309074.3309076
https://www.bbc.com/news/technology-47303077
https://www.bbc.com/news/technology-47303077
http://dx.doi.org/10.1007/s11280-017-0446-0
http://dx.doi.org/10.1007/s11280-017-0446-0
http://social.techcrunch.com/2017/08/29/uber-to-end-controversial-post-trip-tracking-as-part-of-privacy-drive/
http://social.techcrunch.com/2017/08/29/uber-to-end-controversial-post-trip-tracking-as-part-of-privacy-drive/
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html
http://dx.doi.org/10.1249/MSS.0b013e31829736d6
http://dx.doi.org/10.1249/MSS.0b013e31829736d6
https://citizenlab.ca/2014/02/hacking-team-targeting-ethiopian-journalists/
https://citizenlab.ca/2014/02/hacking-team-targeting-ethiopian-journalists/
https://patents.google.com/patent/US20170351675A1/en
https://www.wired.com/story/facebooks-listening-smartphone-microphone/

52. McAfee: Net Losses: Estimating the Global Cost of Cybercrime. Center for Strategic and
International Studies (CSIS), Washington, D.C. (2014)

53. McLaren, M., et al.: The 2016 speakers in the wild speaker recognition evaluation. In:
Proceedings of the 16th Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 823–827 (2016). https://doi.org/10.21437/Interspeech.
2016-1137

54. Michalevsky, Y., et al.: Gyrophone: recognizing speech from gyroscope signals. In:
Proceedings of the 23rd USENIX Security Symposium, pp. 1053–1067 (2014)

55. Mohapatra, P., et al.: Energy-efficient, Accelerometer-based Hotword Detection to Launch a
Voice-control System. (Patent No.: US20170316779A1) (2017). https://patents.google.com/
patent/US20170316779A1/en

56. Morris, I.: Android Is Still Failing Where Apple’s iOS Is Winning (2018). https://www.
forbes.com/sites/ianmorris/2018/04/13/android-is-still-failing-where-apples-ios-is-winning/

57. Naor, I.: Breaking The Weakest Link Of The Strongest Chain (2017). https://securelist.com/
breaking-the-weakest-link-of-the-strongest-chain/77562/

58. Nichols, S., Morgans, J.: Your Phone Is Listening and it’s Not Paranoia (2018). https://www.
vice.com/en_uk/article/wjbzzy/your-phone-is-listening-and-its-not-paranoia

59. Pan, E., et al.: Panoptispy: Characterizing Audio and Video Exfiltration from Android
Applications. Proc. Priv. Enhanc. Technol. 2018(4), 33–50 (2018). https://doi.org/10.1515/
popets-2018-0030

60. Perlroth, N.: Governments Turn to Commercial Spyware to Intimidate Dissidents (2017).
https://www.nytimes.com/2016/05/30/technology/governments-turn-to-commercial-
spyware-to-intimidate-dissidents.html

61. Polzehl, T.: Personality in Speech. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-09516-5

62. Quattrone, A.: Inferring Sensitive Information from Seemingly Innocuous Smartphone Data.
The University of Melbourne (2016)

63. Rahman, M., et al.: Search rank fraud and malware detection in Google Play. IEEE Trans.
Knowl. Data Eng. 29(6), 1329–1342 (2017). https://doi.org/10.1109/TKDE.2017.2667658

64. Ramirez, E., et al.: Data Brokers. A Call for Transparency and Accountability. Federal Trade
Commission, Washington, D.C. (2014)

65. Ramirez, R., et al.: Cross-Device Tracking: An FTC Staff Report. Federal Trade
Commission, Washington, D.C. (2017)

66. Rosenbach, M., et al.: iSpy: How the NSA Accesses Smartphone Data (2013). http://www.
spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-
a-921161.html

67. Schlegel, R., et al.: Soundcomber: a stealthy and context-aware sound trojan for
smartphones. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS) (2011)

68. Schmidt, D.C.: Google Data Collection. Digital Content Next, New York (2018)
69. Sidor, S.: Exploring limits of covert data collection on Android: apps can take photos with

your phone without you knowing (2014). http://www.ez.ai/2014/05/exploring-limits-of-
covert-data.html)

70. Statista: Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd
quarter 2018. https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/

71. Stern, J.: FacebookReally Is SpyingonYou, JustNot ThroughYour Phone’sMic (2018). https://
www.wsj.com/articles/facebook-really-is-spying-on-you-just-not-through-your-phones-mic-
1520448644

Is My Phone Listening in? On the Feasibility and Detectability 119

http://dx.doi.org/10.21437/Interspeech.2016-1137
http://dx.doi.org/10.21437/Interspeech.2016-1137
https://patents.google.com/patent/US20170316779A1/en
https://patents.google.com/patent/US20170316779A1/en
https://www.forbes.com/sites/ianmorris/2018/04/13/android-is-still-failing-where-apples-ios-is-winning/
https://www.forbes.com/sites/ianmorris/2018/04/13/android-is-still-failing-where-apples-ios-is-winning/
https://securelist.com/breaking-the-weakest-link-of-the-strongest-chain/77562/
https://securelist.com/breaking-the-weakest-link-of-the-strongest-chain/77562/
https://www.vice.com/en_uk/article/wjbzzy/your-phone-is-listening-and-its-not-paranoia
https://www.vice.com/en_uk/article/wjbzzy/your-phone-is-listening-and-its-not-paranoia
http://dx.doi.org/10.1515/popets-2018-0030
http://dx.doi.org/10.1515/popets-2018-0030
https://www.nytimes.com/2016/05/30/technology/governments-turn-to-commercial-spyware-to-intimidate-dissidents.html
https://www.nytimes.com/2016/05/30/technology/governments-turn-to-commercial-spyware-to-intimidate-dissidents.html
http://dx.doi.org/10.1007/978-3-319-09516-5
http://dx.doi.org/10.1007/978-3-319-09516-5
http://dx.doi.org/10.1109/TKDE.2017.2667658
http://www.spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-a-921161.html
http://www.spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-a-921161.html
http://www.spiegel.de/international/world/how-the-nsa-spies-on-smartphones-including-the-blackberry-a-921161.html
http://www.ez.ai/2014/05/exploring-limits-of-covert-data.html
http://www.ez.ai/2014/05/exploring-limits-of-covert-data.html
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.wsj.com/articles/facebook-really-is-spying-on-you-just-not-through-your-phones-mic-1520448644
https://www.wsj.com/articles/facebook-really-is-spying-on-you-just-not-through-your-phones-mic-1520448644
https://www.wsj.com/articles/facebook-really-is-spying-on-you-just-not-through-your-phones-mic-1520448644

72. Tang, Q., et al.: Automated detection of puffing and smoking with wrist accelerometers. In:
Proceedings of the 8th International Conference on Pervasive Computing Technologies for
Healthcare. pp. 80–87 (2014)

73. Taylor, P.: Edward Snowden interview: “Smartphones can be taken over” (2015). https://
www.bbc.com/news/uk-34444233

74. Thomaz, E., et al.: A practical approach for recognizing eating moments with wrist-mounted
inertial sensing. In: Proceedings of the ACM International Conference on Ubiquitous
Computing, pp. 1029–1040. ACM Press (2015). https://doi.org/10.1145/2750858.2807545

75. Timberg, C., et al.: WikiLeaks: The CIA is using popular TVs, smartphones and cars to spy on
their owners (2017). https://www.washingtonpost.com/news/the-switch/wp/2017/03/07/why-
the-cia-is-using-your-tvs-smartphones-and-cars-for-spying/?noredirect=on&utm_term=.c16
2373021c3

76. Triggs, R.: No, your smartphone is not always listening to you (2018). https://www.
androidauthority.com/your-phone-is-not-listening-to-you-884028/

77. Tsukayama, H., Romm, T.: Lawmakers press Apple and Google to explain how they track and
listen to users (2018). https://www.washingtonpost.com/technology/2018/07/09/lawmakers-
press-apple-google-explain-how-they-track-listen-users/

78. Yerukhimovich, A., et al.: Can smartphones and privacy coexist? Assessing technologies
and regulations protecting personal data on Android and iOS devices. MIT Lincoln
Laboratory, Lexington, MA (2016). https://doi.org/10.7249/RR1393

79. Zhang, L., et al.: AccelWord: energy efficient hotword detection through accelerometer. In:
Proceedings of the 13th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys), pp. 301–315. ACM Press (2015). https://doi.org/10.1145/2742647.
2742658

80. No, Phones Aren’t Listening to Your Conversations, but May Be Recording In-App Videos:
Study (2018). https://www.justandroid.net/2018/07/05/no-phones-arent-listening-to-your-
conversations-but-may-be-recording-in-app-videos-study/

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.
The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

120 J. L. Kröger and P. Raschke

https://www.bbc.com/news/uk-34444233
https://www.bbc.com/news/uk-34444233
http://dx.doi.org/10.1145/2750858.2807545
https://www.washingtonpost.com/news/the-switch/wp/2017/03/07/why-the-cia-is-using-your-tvs-smartphones-and-cars-for-spying/%3fnoredirect%3don%26utm_term%3d.c162373021c3
https://www.washingtonpost.com/news/the-switch/wp/2017/03/07/why-the-cia-is-using-your-tvs-smartphones-and-cars-for-spying/%3fnoredirect%3don%26utm_term%3d.c162373021c3
https://www.washingtonpost.com/news/the-switch/wp/2017/03/07/why-the-cia-is-using-your-tvs-smartphones-and-cars-for-spying/%3fnoredirect%3don%26utm_term%3d.c162373021c3
https://www.androidauthority.com/your-phone-is-not-listening-to-you-884028/
https://www.androidauthority.com/your-phone-is-not-listening-to-you-884028/
https://www.washingtonpost.com/technology/2018/07/09/lawmakers-press-apple-google-explain-how-they-track-listen-users/
https://www.washingtonpost.com/technology/2018/07/09/lawmakers-press-apple-google-explain-how-they-track-listen-users/
http://dx.doi.org/10.7249/RR1393
http://dx.doi.org/10.1145/2742647.2742658
http://dx.doi.org/10.1145/2742647.2742658
https://www.justandroid.net/2018/07/05/no-phones-arent-listening-to-your-conversations-but-may-be-recording-in-app-videos-study/
https://www.justandroid.net/2018/07/05/no-phones-arent-listening-to-your-conversations-but-may-be-recording-in-app-videos-study/
http://creativecommons.org/licenses/by/4.0/

Droids in Disarray: Detecting Frame
Confusion in Hybrid Android Apps

Davide Caputo, Luca Verderame, Simone Aonzo, and Alessio Merlo(B)

DIBRIS, University of Genoa, Viale F. Causa, 13, 16145 Genoa, Italy
{davide.caputo,luca.verderame,simone.aonzo,alessio.merlo}@unige.it

Abstract. Frame Confusion is a vulnerability affecting hybrid applica-
tions which allows circumventing the isolation granted by the Same-
Origin Policy. The detection of such vulnerability is still carried out
manually by application developers, but the process is error-prone and
often underestimated. In this paper, we propose a sound and complete
methodology to detect the Frame Confusion on Android as well as a
publicly-released tool (i.e., FCDroid) which implements such methodol-
ogy and allows to detect the Frame Confusion in hybrid applications,
automatically. We also discuss an empirical assessment carried out on
a set of 50K applications using FCDroid, which revealed that a lot of
hybrid applications suffer from Frame Confusion. Finally, we show how
to exploit Frame Confusion on a news application to steal the user’s
credentials.

Keywords: Frame Confusion · Android security · Static analysis ·
Dynamic analysis

1 Introduction

Nowadays, the landscape of mobile devices is mostly divided between Android
and iOS, with a market share of 74% and 23%, respectively1. From a technical
standpoint, Android and iOS have remarkable differences both in terms of OS
architecture and Software Development Kit (SDK). Such heterogeneity nega-
tively impacts the application (hereafter, app) development process, as compa-
nies must rely on different developer teams (be them internal or outsourced) for
each platform, thereby increasing the costs of both app development and mainte-
nance. A promising way to overcome the limitation posed by such multi-platform
development process is a cross-platform framework, which allows to implement
an app using a unique programming language and automatically generate a cor-
responding Android and iOS version. Cross-platform frameworks based on web
technologies (i.e., HTML, CSS, and JavaScript), like Cordova [11] or Phone-
Gap [26], allow for the development of the so-called hybrid applications, which
combine elements of both native (i.e., OS-specific) and web apps.
1 http://gs.statcounter.com/os-market-share/mobile/worldwide.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 121–139, 2019.
https://doi.org/10.1007/978-3-030-22479-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_7&domain=pdf
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/978-3-030-22479-0_7

122 D. Caputo et al.

Hybrid apps allow developers to write code based on platform-neutral web
technologies and wrap them into a single native app that can render HTML/CSS
content and execute JavaScript – like a standard web browser – through a com-
ponent called WebView on Android, and WKWebView in iOS. Such component
acts as a bridge between the web (i.e., the JavaScript code) and the native world
(i.e., the Java or Swift code) through the definition of ad-hoc interfaces. Such
interfaces (called JavaScriptInterfaces in Android or WKScriptMessageHandlers
in iOS) allow the developer to define a set of function calls that can be mutually
invoked by the two worlds using asynchronous callbacks. As a result, they grant
access to the complete set of OS functionality to hybrid apps, thereby making
them equivalent to native apps.

However, from a security standpoint, the interaction between the native and
the web worlds – which rely on different security models and requirements – can
expose hybrid apps to ad-hoc and complex vulnerabilities, like those described in
[9,15,20,22,23]. Among them, the Frame Confusion vulnerability [22] in hybrid
apps has been discovered some years ago and it has been fixed on iOS2 but
not on Android (neither in the latest version, i.e., Android Pie 9.0). To this
regard, we argue that a lot of hybrid apps still suffer from such vulnerability and
that there is still a lack of (i) an extensive analysis of Frame Confusion, (ii) a
methodology to automatically detect Frame Confusion in hybrid apps, and (iii)
a reliable solution to mitigate the problem.

Frame Confusion is basically due to the ability of JavaScript code to invoke
Android native code through web pages containing at least an Iframe element.
Such element allows loading external contents (e.g., advertisements, video and
payment systems) from domains which differ from the domain of the hybrid app.
For this reason, any Iframe is in charge of containerizing the rendered sub-page,
and should execute content only within the scope of its own domain, as prescribed
by the Same-Origin Policy (SOP). However, in case of web pages with multiple
Iframes, the WebView is unable to identify the Iframe that invokes a function
in the native code, and thus the result of the invocation is always executed in
the main app page, thereby inducing the confusion problem. Such misbehavior
occurs as the JavaScriptInterface is bound by the OS to the entire WebView
element, without any distinction among the domains (and thus the Iframes) that
invoke the function calls. Therefore, the Frame Confusion vulnerability allows
to bypass the isolation granted by the Iframe security model and to build a
communication channel between web pages belonging to different domains, (i.e.,
the main app page and the inner Iframes). As a consequence, such vulnerability
can affect the confidentiality and the integrity of hybrid apps: a malicious Iframe
can, for instance, force the main app to expose private information (like session
cookies or internal app files) or mount sophisticated phishing attacks.

Contribution of the Paper. In this work, we focus on the Frame Confu-
sion vulnerability on Android. Therefore, hereafter we refer specifically to the
Android OS.
2 https://cordova.apache.org/docs/en/latest/guide/appdev/security/index.html#

iframes-and-the-callback-id-mechanism.

https://cordova.apache.org/docs/en/latest/guide/appdev/security/index.html#iframes-and-the-callback-id-mechanism
https://cordova.apache.org/docs/en/latest/guide/appdev/security/index.html#iframes-and-the-callback-id-mechanism

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 123

Our contribution is three-fold. First, we propose a methodology for systema-
tically detecting the Frame Confusion vulnerability in hybrid apps on Android.
Then, we present FCDroid, a tool that implements such methodology to auto-
matically identify hybrid apps on Android that suffer from the Frame Confu-
sion vulnerability. FCDroid combines static and dynamic analysis techniques in
order to reduce false positive and false negative rates. Finally, we discuss the
results of an extensive analysis carried out through FCDroid on a set of 50, 000
apps downloaded from the Google Play Store. The experimental results indi-
cate that the 49.35% of the analyzed apps are hybrid, as they use the WebView
component and enable JavaScript execution, while about 6.63% of them (i.e.,
1637 apps) were found to be vulnerable to Frame Confusion for a total of more
than 250.000.000 app installations worldwide. To further validate the proposed
methodology, we have manually analyzed some of these vulnerable apps to find
out possible attacks exploiting the Frame Confusion vulnerability. To this regard,
we were able to exploit Frame Confusion in an Asian news application that has
more than 1M users worldwide; such attack allows to steal the user’s credential
of the primary social media website.

Organization of the Paper. The rest of the paper is organized as follows:
Sect. 2 introduces some technical background on hybrid apps and the Frame
Confusion, while Sect. 3 discusses the detection methodology. Section 4 presents
FCDroid, while Sect. 5 shows the experimental results. Section 6 discusses the
exploitation of the Frame Confusion on an actual news app, and Sect. 7 presents
some related work. Finally, Sect. 8 concludes the paper.

2 Technical Background

Landscape of Mobile Apps. Mobile apps can be divided into three categories,
namely, (i) native, (ii) web, and (iii) hybrid apps.

Native apps are binary, platform-specific files which are installed on the
device and execute by interacting with a set of API calls exposed by the mobile
OS. As a consequence, they must be developed in the OS-specific language (i.e.,
Java/Kotlin for Android and Objective-C/Swift for iOS), and they have full and
direct access to the OS API. On one hand, native apps exhibit the best perfor-
mance for CPU-intensive workloads, while, on the other hand, they need to be
re-implemented to execute on a different mobile OS. As this is a daunting task
mostly for small-medium enterprises, there is a growing trend towards web or
hybrid apps.

Web apps render HTML5 and execute Javascript code within the device
browser (which is a native app). For this reason, they are highly portable and
platform-independent, but the interaction with the underlying OS is limited
to the API accessible by the browser itself. Consequently, they have restricted
functionalities and, in general, limited performance.

Hybrid apps have been proposed to overcome the limitations of both native
and web apps, namely granting (i) portability over platforms, (ii) access to the
whole OS API and, (iii) reasonable performance. Hybrid apps are programmed

124 D. Caputo et al.

once in cross-platform web technologies (i.e., HTML, CSS, and JavaScript) as
web apps, and then wrapped into a platform-specific native container, i.e., the
WebView. The WebView may also allow the interaction between the web and
the native part, acting like a bridge between the web code and the host OS API,
thereby allowing to render HTML/CSS content, execute JavaScript code, and
get access to the full OS API.

WebView. The WebView is an Android app component which embeds a mini-
browser for rendering HTML/web pages and execute JavaScript code in mobile
apps.

The WebView allows defining ad-hoc interfaces, called Javascript-
Interfaces, that enable to invoke Java methods from the JavaScript code. This
feature allows cross-platform frameworks (e.g., Cordova, PhoneGap) to design
a set of plugins that can be embedded in apps and offer platform-specific func-
tionality, such as the API for the file-system or the GPS location. To enable
JavaScript interfaces, the developer needs to bind a set of Java methods to a
WebView component using the addJavascriptInterface method. The commu-
nication between the JavaScript and the Java code is handled by the WebView
using asynchronous callbacks. In detail, when some JavaScript code invokes Java
code through an interface bounded to the WebView, it does not wait for the
result: instead, when the result is ready, the Java code outside the WebView
invokes a JavaScript callback function, passing the result back to the web page.
This mechanism provides improved app performance and responsiveness, partic-
ularly in the case of long-running operations that would block the UI.

WebView Security Mechanisms. As the WebView deals with web content
that can include untrusted HTML and JavaScript code, it can suffer from well-
known web security vulnerabilities such as cross-site scripting [6,7,17] or file-
based cross-zone scripting [9]. As countermeasures, the Android OS includes
a set of mechanisms aimed at limiting the capability of the WebView to the
minimum functionality required by hybrid apps. By default, the WebView does
not execute JavaScript, thus requiring developers to enable this feature using
the setJavascriptEnabled method. Besides, the application can either enable
or disable the access of the WebView to specific resources like files, databases or
geolocation [30] through the WebSettings object.

Since API 17, the Java methods – which are exposed through a JavaScript
interface – need to be explicitly annotated with the @JavascriptInterface [16].
The aim is to restrict the access to the OS API, in order to prevent the invocation
of any public Java method through code reflection [1].

To further increase the resilience of the WebView component against
untrusted contents, since API level 21 the Android OS implements the Web-
View as an independent app, thus offering a centralized update mechanism that
relieves the developer from the burden of manually updating each hybrid app
[31].

Moreover, since API Level 26 the WebView renderer executes in a sepa-
rate process [33]. Finally, since Android 8, the WebView incorporates Google’s
Safe Browsing protections to detect and warn users about potentially danger-

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 125

ous websites. Unfortunately, this option needs to be explicitly enabled by the
developer through a specific tag in the Android Manifest [32].

2.1 Frame Confusion

Frame Confusion is a vulnerability affecting hybrid apps that allows malicious
interactions among the main web page (hereafter, main frame) and different
web domains hosted in inner Iframe elements (hereafter, child frames) through
the asynchronous bridge between the Java and the JavaScript code, granted by
the WebView. To this aim, the WebView maintains a map that links the Web-
View instance with a list of function calls in the native code registered to the
JavascriptInterface. However, such a map does not include any restriction on web
domains (and thus web pages) that can access the attached interfaces. Thus, if
the main frame contains multiple child frames, each of them can independently
and asynchronously access all the interfaces bound to the WebView component,
in order to interact with the Java code. For this reason, the WebView is forced
to return the results of each native method invocation to the main frame and
not to the actual caller, be it the main frame or a child frame, thereby caus-
ing potentially unintended interactions between different frames, i.e., the Frame
Confusion.

Fig. 1. Exploitation of Frame Confusion from (a) the child frame and (b) the main
frame.

Such interaction between the native and the web worlds allows bypassing
the Same Origin Policy (SOP), which - in a standard web browser - completely
isolates the contents of the main frame from the child frames, since they belong
to different domains.

Attacking and Exploiting the Frame Confusion. The Frame Confusion
vulnerability can be exploited either by using a compromised child frame or the
main frame, as shown in Fig. 1 (taken from [22]). In detail, if an attacker is able to
compromise a child frame (Fig. 1a), he triggers the invocation of native function

126 D. Caputo et al.

calls through the WebView App (step 1), which computes the result (step 2)
and sends the callback to the main frame (step 3). For instance, a malicious
advertisement campaign - embedded in a child frame - can exploit this attack
and affects the main frame, by, e.g., inducing an unwanted phone call or force
the sending of an SMS.

On the other hand, in case of a compromised main frame (Fig. 1b), the
attacker is able to intercept all the callbacks triggered by the child frames, thus
leading to possible information leaks. As an example, a benign child frame could
inadvertently expose sensitive information like, e.g., the GPS location or the
result of a SQL query, to the main frame in control of the attacker, through a
native method invocation.

The exploitation of the Frame Confusion vulnerability requires the attacker
to affect any web domain in the main or a child Iframes that has access to the
JavaScript interfaces. This condition is achieved through:

– The direct control of a web page. In such a scenario, the attacker can be able
either to take control over an existing web domain or to create an ad-hoc
website, e.g., a malicious advertisement campaign.

– The injection of malicious code in an existing web page. In this case, the
attacker can exploit a weakness in the communication protocol of the hybrid
app, e.g., a clear-text communication or a misconfigured SSL connection, to
mount a Man-In-The-Middle attack3 and inject malicious code in the loaded
web pages.

It is worth noticing that the presence of other vulnerabilities in the JavaScript
code, e.g., the adoption of JavaScript libraries with known vulnerabilities [25]
or the presence of XSS vulnerabilities [4,6,28], further boosts the exploiting
capabilities of the attacker.

Mitigations. As described above, the Frame Confusion allows violating the
SOP by circumventing the sandbox of Iframes. Unfortunately, despite the recent
security mechanisms added in the WebView component, the Frame Confusion is
still unfixed at any Android API level. Still, the web world offers an extra set of
security mechanisms that are able to restrict the communication among the main
frame and the child frames, thus preventing the Frame Confusion vulnerability,
i.e.:

– the Iframe sandbox attribute [29], which enables a set of extra restrictions
on any content hosted by an Iframe and, among them, it allows blocking the
execution of JavaScript code. Although effective in principle, this mechanism
completely prevents the execution of any JavaScript code, thus limiting the
functionalities of the web page.

– the Content Security Policy (CSP) [10] that allows for the definition of fine-
grained restrictions on the execution of JavaScript code, including the possi-
bility to define a set of trusted domains that are able to execute JavaScript,

3 https://www.owasp.org/index.php/Man-in-the-middle attack.

https://www.owasp.org/index.php/Man-in-the-middle_attack

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 127

in a white-listing fashion. Although effective against the loading of an unde-
sired web domain, the CSP cannot prevent the injection of the malicious
code in a white-listed domain, thereby resulting ineffective against the Frame
Confusion.

Furthermore, previous security mechanisms are not enabled by default, thus
leaving the burden of their configuration to the developer. All in all, at the
current state of the art, none of the existing security mechanisms are able to
effectively prevent the Frame Confusion.

3 A Frame Confusion Detection Methodology

The lack of a solution for preventing the Frame Confusion asks for – at least –
a methodology to automatically detect such vulnerability. Unfortunately, at the
current state of the art, the only way to detect Frame Confusion is through man-
ual source-code inspection, mostly carried out by app developers. Such activity is
error-prone and requires good skills in security analysis by the developing team.
Furthermore, the complexity of Frame Confusion leads developers to false pos-
itives/negatives or, in the worst case, to underestimate or ignore the problem.
To overcome this limitation, we propose a novel methodology for the automatic
identification of the Frame Confusion in Android. To achieve such result, we
first define a blueprint of the Frame Confusion vulnerability, and then we build
an analysis flow that is able to detect it automatically, by exploiting a fruitful
combination of static and dynamic analysis techniques.

3.1 Vulnerability Blueprint

The design of an automatic and rigorous analysis flow for the Frame Confu-
sion vulnerability demands for the selection of a set of features that enable the
vulnerability. To this aim, we argue that a minimal set of such features is the
following:

1. the app requires the Internet permission in order to access web domains using
a WebView component;

2. the app uses at least a WebView (W) that is configured to execute JavaScript
code;

3. W sets at least a JavascriptInterface (JI);
4. JI injects at least a public Java method (m) that can be accessed from the

JavaScript code;
5. in case of an app targeted to API level 17 or higher, m needs to be further

annotated with the @javascriptinterface tag;
6. W loads at least a web page (WP) that contains one or more Iframe elements;
7. WP does not enforce any mitigation technique among those described in the

previous section.

128 D. Caputo et al.

3.2 Detection Algorithm

The Frame Confusion detection methodology can be summarized by the pseu-
docode listed in Algorithm1. Given a generic Android app in .apk format, the
algorithm begins by retrieving a list of the Android permissions used by the app
(row 1). If the list does not include the Internet permission, then the app cannot
use the WebView component, and therefore it is marked as not vulnerable (rows
2–4). Otherwise, the algorithm computes the list of all the invoked methods of
the app (row 5) in order to locate the presence of setJavaScriptEnabled, and
addJavascriptInterface APIs.

If a setJavaScriptEnabled invocation (row 9) is recognized, the algorithm
further investigates the flag parameter of the call (rows 10–14). A True value
indicates that the WebView enables the execution of JavaScript and thus its
object reference is retrieved (row 12) and included in the list of those that enable
JavaScript (row 13).

Instead, the presence of a addJavascriptInterface indicates that a Web-
View component is configured to expose a bridge between Java and JavaScript.
If this is the case, the algorithm extracts (i) the WebView object from which the
addJavascriptInterface method is invoked (row 17), and (ii) the Java object
injected in the JavascriptInterface (row 18). After that, the algorithm needs
to detect if the Java object injected in the interface contains public methods
that can potentially be accessed from JavaScript code (rows 19–27). Moreover,
in case of apps targeted to API level 17 or above, the public methods of the
object need to be further annotated with the @javascriptinterface tag (rows
19–22). If the injected Java object contains methods accessible from JavaScript,
then the corresponding WebView instance can be added to the list of those that
expose potentially vulnerable interfaces (row 21 or row 25).

Next, if the analysis is not able to find at least a WebView - with JavaScript
enabled - that contains a JavaScript interface with exposed Java methods, then
the app is marked as not vulnerable (rows 29–34). Otherwise, the analysis collects
from the Website collector module all the website pages accessed by the WebView
that are (i) included in the resources of the .apk package (row 35), (ii) statically
invoked by loadURL methods (row 36), and (iii) dynamically reached during the
execution of the app (row 37).

Thereafter, the algorithm collects every website that uses at least an Iframe
element that loads an external page (either embedded in HTML pages or gener-
ated by JavaScript) and that does not enforce any of the mitigation techniques
discussed in the previous section (rows 40–48). Finally, if the app loads at least
one vulnerable website, it is marked as vulnerable. On the contrary, if the app
uses the appropriate security mechanisms or does not use any Iframe is marked
as non vulnerable.

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 129

Algorithm 1. Frame Confusion Detection
Input : APK Package

Output: vulnerable, notVulnerable

1 listPermissions = getPermissionFromApk(app);

2 if ”android.permission.INTERNET” not in listPermissions then

3 return notVulnerable;

4 end

5 methodsList = getAllInvMet(app);

6 JSWebView = list();

7 IWebView = list();

8 foreach method in methodsList do

9 if method.getName == ”setJavaScriptEnabled” then

10 flagParam = getFlagParam(method);

11 if flagParam == True then

12 webViewObj = getInvObj(method);

13 JSWebView.add (webViewObj);

14 end

15 end

16 else if method.getName == ”addJavascriptInterface” then

17 webViewObj = getInvObj(method);

18 interface = getInterfaceObj(method);

19 if getSDK(app) > 17 then

20 if containAnnotatedPubMet (interface) then

21 IWebView.add (webViewObj);

22 end

23 end

24 else if containPubMet(interface) then

25 IWebView.add (webViewObj);

26 end

27 end

28 end

29 if len (JSWebView) == 0 or len (IWebView) == 0 then

30 return notVulnerable;

31 end

32 if len (IWebView ∩ JSWebView) == 0 then

33 return notVulnerable;

34 end

35 resourceFiles = getAllResourceApk(app);

36 dumpWebStat = getStaticUrl(methodsList);

37 dumpWebDyn = getDynamicUrl(app);

38 filesToCheck = dumpWebDyn union resourceFiles union dumpWebStat;

39 vulnerablePages = list();

40 foreach file in filesToCheck do

41 if isHTMLfile(file) or isJSfile(file) then

42 if containIframe(file) then

43 if not containCSP(file) and not containSandboxAtt(file) then

44 vulnerablePages.add (file);

45 end

46 end

47 end

48 end

49 if len (vulnerablePages) > 0 then

50 return vulnerable;

51 end

52 return notVulnerable;

130 D. Caputo et al.

Fig. 2. The FCDroid Architecture.

4 The FCDroid tool

FCDroid4 implements the proposed detection methodology to automatically
identify the presence of the Frame Confusion vulnerability in Android apps.

The rest of the section discusses (i) the implementation challenges addressed
by FCDroid and (ii) its architecture, emphasizing the underlying tools and tech-
nologies.

4.1 Implementation Challenges

The Frame Confusion detection methodology poses several challenges in terms
of implementation. Indeed, an automatic detection tool needs to:

1. achieve maximum coverage, i.e., by detecting all possible app execution paths
that may lead to the vulnerability;

2. recognize the actual configuration of WebView components, which may
dynamically enable JavaScript or define new interfaces;

3. analyze all the web pages loaded inside some potentially vulnerable Web-
Views, by also considering those loaded according to (i) the user’s input, and
(ii) the value of runtime variables.

To address such challenges, an automatic tool can rely on static and dynamic
analysis techniques. Static analysis techniques can examine all possible execution
paths and variable values, not just those invoked during execution. However,
static approaches can (i) introduce false positives and (ii) be unable to detect
complex scenario, like, e.g., values provided by the user or resources loaded
at runtime. On the other hand, dynamic analysis techniques allow to detect the
actual behavior of the app, but it is limited by (i) the coverage of the analysis and
(ii) the time required for the analysis, thus producing potential false negatives.

4 FCDroid is available at https://www.fcdroid.com.

https://www.fcdroid.com

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 131

To this aim, FCDroid combines static and dynamic analysis techniques to
overcome the limitations of both techniques and achieve more accurate detection
results.

4.2 FCDroid Architecture

The FCDroid architecture, depicted in Fig. 2, is composed by five main build-
ing blocks: the Static Analysis Module (SAM), the Dynamic Analysis Module
(DAM), the WebSite Dumper (WD), the Frame Confusion Detector (FCD), and
the Exploitation Checker (EC).

Static Analysis Module (SAM). The Static Analysis Module relies on Apk-
tool [34] to disassemble the app package (in the .apk format) and translate the
Dalvik bytecode contained in the app into Smali [14] language. In addition to
that, SAM brings the resources contained in the app back to their original form,
e.g., from binary compiled XML files into textual XML files. Then, the mod-
ule extracts the list of permissions requested by the app and the target Android
API level according to the content of the AndroidManifest.xml file. Finally, the
SAM inspects each extracted Smali file in order to locate all the API invocations
related to the WebView component. In detail, the module detects:

– setJavaScriptEnabled that enables the JavaScript code in a WebView
object. If found, the SAM also extracts the variable containing the boolean
flag passed as an argument;

– addJavascriptInterface, that creates a JavaScript interface object. In this
case, the SAM retrieves the Java class of the injected object and the name
assigned to the interface;

– loadUrl and evaluateJavaScript, that allows the loading of specific URLs
or JavaScript code inside the WebView. In case, the module also extracts the
URL address or the script code, if statically defined;

The collected pieces of information are then sent to the WebSite Dumper and
the Frame Confusion Detector to continue the analysis.

Dynamic Analysis Module (DAM). The Dynamic Analysis Module is in
charge of executing the app into a controlled testing environment in order to
monitor the stimulation of the WebView components at runtime. To this aim,
it installs the app into an Android Emulator and stimulates the app automat-
ically, trying to explore its possible execution states. This allows the DAM to
(i) monitor the invocations of WebView-related API along with their execu-
tion parameters, and (ii) intercept all the network traffic generated by the app.
In order to stimulate the app automatically, the DAM relies on DroidBot [21],
an open-source tool that can automatically explore the app UI and mimic the
interaction with a user. Unlike many existing input generators that rely on static
analysis and instrumentation of the app to generate inputs, DroidBot works in
black-box mode, i.e., it does not need to know in advance the structure of the
app, and it is resilient to obfuscation techniques. In order to keep track of API

132 D. Caputo et al.

invocations, the DAM module provides the Android emulator with an ApiMon-
itor module. ApiMonitor, based on the Xposed5 framework, allows the DAM
to intercept and collect each method executed by the app during the analysis,
saving its invocation and the value of parameters on a JSON file. Furthermore,
the DAM module intercepts and stores all the network traffic generated by the
app using the HTTP/HTTPs proxy mitmproxy [12].

WebSite Dumper (WD). The WebSite Dumper module aims at extracting
and retrieving all the websites invoked by the WebView components. To do that,
it retrieves from the SAM and DAM modules the list of URLs accessed by app
WebView components.

For each identified URL, the WebSite Dumper determines whether it refers
to a local or a remote resource. In the first case, it collects and stores the static
resource obtained by the app package. In the latter case, the WD module dumps
the content of the remote website by downloading the web pages recursively,
up to a maximum of 3 levels deep, by using the wget tool6. Finally, the module
polishes the results and maintains only HTML and JavaScript files that will be
inspected by both the FCD and the EC module.

Frame Confusion Detector (FCD). The Frame Confusion Detector module
implements the core logic of FCDroid for the detection of the vulnerability. At
first, FCD collects from the SAM the list of permissions of the app and verifies
that the app requires the Internet permission. If so, the module analyzes the
list of invoked APIs (both those statically extracted by the SAM module and
those evaluated at runtime by the DAM) to verify the existence of at least a
WebView instance that enables JavaScript and exposes a JavaScript interface.
Furthermore, if an exposed interface is found, the FCD parses the class of the
injected Java object to determine the existence of methods that can be accessed
from JavaScript.

Finally, the FCD also needs to detect the amount of potentially-vulnerable
webpages. To this aim, the module collects the websites dumped by the WD and
checks whether a page contains at least an Iframe element and does not enforce
any mitigation techniques (i.e., the Content-Security-Policy meta tag in the
HTML header or the sandbox attribute). At the end of the analysis, the FCD
module marks the application as vulnerable or not vulnerable.

Exploitation Checker (EC). The Exploitation Checker is the module respon-
sible for the detection of app configurations that can boost the exploitation of
the Frame Confusion Vulnerability. In details, the EC can identify:

– The adoption of unencrypted communication channels, by analyzing the net-
work traffic generated by the DAM module and by extracting the list of URLs
that are accessed in plain HTTP.

– The presence of buggy/vulnerable Javascript libraries by relying on the
RetireJS [13] tool, which allows obtaining a list of known-to-be-vulnerable
JavaScript libraries that are executed within the WebView.

5 https://repo.xposed.info/.
6 https://www.gnu.org/software/wget/.

https://repo.xposed.info/
https://www.gnu.org/software/wget/

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 133

Table 1. Statistics on the Frame Confusion blueprint.

Percentage Ratio
Internet Permission 96.45% 48226/50k

Use WebView 49.35% 24675/50k
JavaScript Enabled 49.35% 24675/50k
JavaScript Interface 44.84% 22420/50k

Table 2. Statistics on the web pages accessed by hybrid apps.

Percentage Ratio
Web pages with Iframes 1.2% 87k/6.7M

Web pages with Iframes and CSP 27.96% 24108/87k
Web pages with Iframes and sandbox attribute 0% 0/87k

Table 3. Statistics on the exploiting conditions of vulnerable apps.

Percentage Ratio
Insecure connections 59.98% 982/1637
XSS vulnerabilities 27.48% 450/1637

Vulnerable JS libraries 79.96% 1309/1637

– The presence of JavaScript code vulnerable to DOM-XSS attacks7, by includ-
ing a customized implementation of JSPrime [24]. Such tool inspects the
JavaScript code in order to detect unsanitized input variables that could allow
an attacker to execute arbitrary JavaScript code in the victim’s WebView.

5 Experimental Results

We empirically assessed the reliability of the proposed methodology, by sys-
tematically analyzing 50.000 apps with FCDroid8. Such apps have been down-
loaded from the Google Play Store in December 2018, and they are the top free
Android apps ranked by the number of installations and average ratings accord-
ing to Androidrank [2]. Our experiments were conducted using an Intel Xeon
3106@1.70 GHz, with 32 GB RAM, running Ubuntu 18.04.

Frame Confusion Identification. The FCDroid tool discovered that 49.35%
of apps (i.e., 24675 out of 50000) are hybrid, since they use at least a WebView
component, thereby highlighting the wide adoption of such component in the
Android ecosystem.

As shown in Table 1, all the apps with at least one WebView compo-
nent enable the execution of JavaScript, while 44.84% also attach (at least) a
7 https://www.owasp.org/index.php/DOM Based XSS.
8 The complete list of experimental results is available at https://www.fcdroid.com/

results.

https://www.owasp.org/index.php/DOM_Based_XSS
https://www.fcdroid.com/results
https://www.fcdroid.com/results

134 D. Caputo et al.

Fig. 3. FCDroid vs static and dynamic analysis

JavaScript interface, which contains properly annotated methods. Such methods
can be invoked from the websites loaded inside the apps.

Furthermore, FCDroid inspected all the websites accessed by the hybrid apps
obtaining the results described in Table 2. In detail, 1.2% (87k/6.7M) of websites
contain at least an Iframe element; among those pages, the 27.96% include CPS
policies while none of the visited pages enforces the sandbox attribute. Therefore,
such findings indicate that most of the web pages that use Iframe elements are
potentially vulnerable to Frame Confusion. Finally, our analysis identifies that
6.63% (i.e., 1637) of hybrid apps are potentially vulnerable to Frame Confusion.
To estimate the impact of such results on the Android users’ community, we
cross-referenced our findings with the Google Play Store meta-data, obtaining
that the total sum of official installations for vulnerable apps is greater than
250.000.000.

Exploitation Conditions. We further inspected the vulnerable apps with
FCDroid, in order to detect the presence of other vulnerabilities in the app
configuration that can make easier the exploitation of the Frame Confusion.
As shown in Table 3, 59.98% of vulnerable apps access websites using an inse-
cure connection, i.e., plain HTTP, while 27.48% contain code vulnerable to XSS
attacks. Finally, 79.96% of vulnerable apps include JavaScript libraries with
known security vulnerabilities.

Advantages and Limitations of FCDroid. FCDroid combines static and
dynamic analysis techniques to maximize the detection accuracy. To prove that,
we compared the analysis results obtained by the static and the dynamic analysis
with the hybrid approach of FCDroid, as shown in Fig. 3. In detail, the static
analysis allows to identify 12.43% of apps as potentially vulnerable to Frame
Confusion. Unluckily, such amount contains both true and false positives. To

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 135

Fig. 4. YTN news: flow of the attack.

discriminate, each app should be manually inspected, through a time-consuming
and error-prone process. On the contrary, the dynamic analysis is not exhaustive,
i.e., it may be unable to reach statically defined web pages, like those hardcoded
in the app package, that are loaded in WebView components. Therefore, only
4.69% of apps are successfully detected as vulnerable (true positives) through
dynamic analysis.

To overcome such limitations, the mixed approach (i.e., static and dynamic
analysis) adopted by FCDroid detected 6.63% of (true positive) vulnerable apps
automatically. Indeed, FCDroid allowed to automatically validate more than half
of the potentially positive results detected by the static analysis. Furthermore,
FCDroid increased the detection rate of the dynamic analysis by 1.94%.

Nonetheless, the experimental results also unveiled some limitations of the
current FCDroid implementation. First, the dynamic analysis is limited to the
public surface of the app (i.e., the one that does not require any user authen-
tication) and executes in a predefined time-frame (i.e., 60 s). Furthermore, the
implementation of FCDroid does not detect dynamically-generated Iframe ele-
ments, like, i.e., those created at runtime by the JavaScript code.

6 Attacking and Exploiting the Frame Confusion

In this section, we discuss the impact of a successful exploitation of Frame Confu-
sion by attacking a news app (i.e., YTN News9) which has been found vulnerable
by FCDroid. At the moment of writing, YTN is available on the Google Play
Store and has more than 1M downloads.

We manually reverse-engineered and analyzed the app: it uses the WebView
component to load a home page with several Iframes. The Iframe at the bottom

9 https://play.google.com/store/apps/details?id=com.estsoft.android.ytn.

https://play.google.com/store/apps/details?id=com.estsoft.android.ytn

136 D. Caputo et al.

of the web page loads an advertisement (step 1 in Fig. 4). Our manual investi-
gation confirms the FCDroid findings: the WebView uses HTTP, JavaScript is
enabled, and there is an interface exposed through addJavascriptInterface.
The interface exposes different methods that are able to get some information
about the device. One of these exposed methods is named liveLogin. This
method has three parameters of type string, the first two are converted into
integers and used to customize the WebView, while the last one is passed as a
parameter to the loadUrl method without any kind of sanitization. Therefore,
an attacker can easily inject arbitrary JavaScript code or a web page that will
be loaded in the main frame. In order to exploit the vulnerability, the attacker
must control an Iframe. There exist two approaches to achieve such result: (1) if
the attacker and the mobile device belong to the same network, the attacker can
carry out a Man-in-the-Middle (MitM) attack, otherwise, (2) the attacker can
create an ad-hoc advertising campaign. In our use case, we carried out a MitM
attack, and we were able to control the advertisement (steps 2, 3 and 4 in Fig. 4).
For the sake of precision, since the WebView uses HTTP, the attacker can also
target the main frame; however, in this example, we focused on a child frame,
since we only aim to prove the exploitability of Frame Confusion. Thus, given
the absence of any security mechanisms, we can access the exposed interface and
exploit the Frame Confusion by invoking the liveLogin method with a URL
pointing to our malicious web page (step 5 in Fig. 4) containing a fake Twitter
login page.

It is worth pointing out that the WebView is a promising vector attack for
phishing, as there are no GUI components that prompt the actual URL and the
transport protocol (e.g., HTTP/HTTPS), thereby making hard to distinguish
between the legitimate Twitter website and a well-crafted phishing site [3].

As a final remark, it is worth noticing that this is just one among a set of
potential exploitation of Frame Confusion under such specific app settings. For
instance, it is possible to download a large file (since the app has the WRITE-
EXTERNAL STORAGE permission) or continue to load the same pages within the
WebView to carry out simple Denial-of-Service attacks.

7 Related Work

The steady growth of hybrid apps has attracted the attention of both academic
and industrial security research communities. The main approaches for the secu-
rity analysis of hybrid apps can be divided into static and dynamic. In static anal-
ysis methodologies, the hybrid app is analyzed according to its source (or binary)
code without being executed. For instance, Lee et al. proposed HybriDroid [18],
a static analysis framework that examines the inter-communication between the
native and the web counterpart of the app to identify development bugs or poten-
tial leaks of sensitive information. Other works, like [8,27], and [35] propose some
detection methodologies for code injection attacks based on app-instrumentation
or machine learning techniques. However, any of the proposed static analysis
techniques suffer from the over-approximation of the app execution paths which

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 137

drastically reduce the accuracy due to a high rate of false positives [19]. On
the other hand, dynamic analysis techniques aim at analyzing the security of
the app runtime behavior in a controlled environment. The sole work based on
dynamic analysis techniques for hybrid apps is BridgeTaint, proposed by Bai et
al. [5]. BridgeTaint tracks sensitive data exchanged through the bridge and uses
a cross-language taint mapping method to perform the taint analysis in both
domains. Although dealing with the dynamic monitoring of the bridge between
the Java and the JavaScript worlds, BridgeTaint is only focused on data anal-
ysis aimed at the identification of data leaks. Anyway, none of the approaches
mentioned above is either able to identify the Frame Confusion vulnerability.
The work proposed by Luo et al. [22] is the only research paper that explic-
itly discusses this vulnerability. Indeed, the authors – who also coined the term
“Frame Confusion” – have also studied the security implications of the two-way
interaction between the native and the web code in hybrid apps. Anyway, they
focus only on detecting the security weaknesses of the WebView component and
the JavaScript interfaces, as well as some statistics on the usage of the WebView
API and JavaScript interfaces. Furthermore, their analysis is manual, and it has
been carried out on a reduced dataset made by only 132 apps.

To the best of our knowledge, our methodology is the first approach allowing
us to systematically detect the Frame Confusion vulnerability. Furthermore, the
adoption of both static and dynamic analysis techniques allows overcoming the
limitations of both approaches.

8 Conclusion

In this work, we have proposed a methodology for systematically detecting the
Frame Confusion vulnerability in hybrid Android apps. Then, we have imple-
mented a tool, FCDroid, based on our methodology, which combines static and
dynamic analysis techniques to reduce false positive and false negative rates.
The results obtained with FCDroid show that Frame Confusion is a concrete
problem: among the top 50.000 apps by installations on the Google Play Store,
24675 use the WebView component and we find that 1637 apps (i.e., about the
6.63% among the ones with at least a WebView component) are vulnerable.
Although we took into consideration only the top apps, the Frame Confusion
already affects more than 250.000.000 installations. Moreover, we have also dis-
covered that about 59.98% of such vulnerable apps load the page within the
WebView using a clear-text connection thereby easing phishing attacks.

Future extension of this research will be the study of proper remediations that
could prevent the Frame Confusion without disabling the execution of JavaScript
inside Iframes in hybrid apps. As a final remark, our attack to the YTN news
app10 suggests that the WebView is a promising vector for phishing attacks, as
the user has no way to discriminate whether she is interacting with the legitimate
website or a well-crafted phishing one.

10 We responsibly disclosed our finding to the app developers in January 2019.

138 D. Caputo et al.

References

1. Thomas, D.R., Beresford, A.R., Coudray, T., Sutcliffe, T., Taylor, A.: The lifetime
of Android API vulnerabilities: case study on the JavaScript-to-Java interface. In:
Christianson, B., Švenda, P., Matyáš, V., Malcolm, J., Stajano, F., Anderson, J.
(eds.) Security Protocols 2015. LNCS, vol. 9379, pp. 126–138. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26096-9 13

2. AndroidRank: Androidrank market data (2018). https://www.androidrank.org/
3. Aonzo, S., Merlo, A., Tavella, G., Fratantonio, Y.: Phishing attacks on modern

android. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), Toronto, Canada, October 2018

4. Backes, M., Gerling, S., Styprekowsky, P.V.: A Local Cross-Site Scripting Attack
against Android Phones, pp. 1–6. Saarland University (2011). http://www.infsec.
cs.uni-saarland.de/projects/android-vuln/

5. Bai, J., Wang, W., Qin, Y., Zhang, S., Wang, J., Pan, Y.: BridgeTaint: a bi-
directional dynamic taint tracking method for JavaScript bridges in Android hybrid
applications. IEEE Trans. Inf. Forensics Secur. 14(3), 677–692 (2019). https://doi.
org/10.1109/TIFS.2018.2855650

6. Bao, W., Yao, W., Zong, M., Wang, D.: Cross-site scripting attacks on android
hybrid applications. In: Proceedings of the 2017 International Conference on
Cryptography, Security and Privacy - ICCSP 2017, pp. 56–61. ACM Press, New
York (2017). https://doi.org/10.1145/3058060.3058076, http://dblp.uni-trier.de/
db/conf/iccsp/iccsp2017.html

7. Bhavani, A.B.: Cross-site scripting attacks on Android WebView. Int. J. Comput.
Sci. Netw. 2(2), 1–5 (2013)

8. Chen, Y.L., Lee, H.M., Jeng, A.B., Wei, T.E.: DroidCIA: a novel detection method
of code injection attacks on HTML5-based mobile apps. In: 2015 Proceedings of
14th IEEE International Conference on Trust, Security and Privacy in Comput-
ing and Communications, vol. 1, pp. 1014–1021 (2015). https://doi.org/10.1109/
Trustcom.2015.477

9. Chin, E., Wagner, D.: Bifocals: analyzing WebView vulnerabilities in Android
applications. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267,
pp. 138–159. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9 9

10. Content Security Policy: Content security policy (2016). http://content-security-
policy.com, https://developers.google.com/web/fundamentals/security/csp/

11. Apache Cordova: (2018). https://cordova.apache.org/
12. Cortesi, A., Hils, M., Kriechbaumer, T., Contributors: mitmproxy: a free and open

source interactive HTTPS proxy (Version 4.0) (2010). https://mitmproxy.org/
13. Erlend, O.: RetireJS - Scanner detecting the use of JavaScript libraries with known

vulnerabilities (2019). https://retirejs.github.io/retire.js/
14. Gruver, B.: Smali - Assembler/Disassembler for the dex format (2019). http://

github.com/JesusFreke/smali/
15. Hu, J.: A tale of two cities : how WebView induces bugs to Android applications,

vol. 1, pp. 702–713 (2018). https://doi.org/10.1145/3238147.3238180
16. JavascriptInterface: (2019). https://developer.android.com/reference/android/

webkit/JavascriptInterface
17. Jin, X., Hu, X., Ying, K., Du, W., Yin, H., Peri, G.N.: Code injection attacks on

HTML5-based mobile apps. In: Proceedings of 2014 ACM SIGSAC Conference on
Computer and Communications Security - CCS 2014, pp. 66–77 (2014). https://
doi.org/10.1145/2660267.2660275

https://doi.org/10.1007/978-3-319-26096-9_13
https://www.androidrank.org/
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/
https://doi.org/10.1109/TIFS.2018.2855650
https://doi.org/10.1109/TIFS.2018.2855650
https://doi.org/10.1145/3058060.3058076
http://dblp.uni-trier.de/db/conf/iccsp/iccsp2017.html
http://dblp.uni-trier.de/db/conf/iccsp/iccsp2017.html
https://doi.org/10.1109/Trustcom.2015.477
https://doi.org/10.1109/Trustcom.2015.477
https://doi.org/10.1007/978-3-319-05149-9_9
http://content-security-policy.com
http://content-security-policy.com
https://developers.google.com/web/fundamentals/security/csp/
https://cordova.apache.org/
https://mitmproxy.org/
https://retirejs.github.io/retire.js/
http://github.com/JesusFreke/smali/
http://github.com/JesusFreke/smali/
https://doi.org/10.1145/3238147.3238180
https://developer.android.com/reference/android/webkit/JavascriptInterface
https://developer.android.com/reference/android/webkit/JavascriptInterface
https://doi.org/10.1145/2660267.2660275
https://doi.org/10.1145/2660267.2660275

Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps 139

18. Lee, S., Dolby, J., Ryu, S.: HybriDroid: static analysis framework for Android
hybrid applications. In: Proceedings of 31st IEEE/ACM Int. Conference on Auto-
mated Software Engineering - ASE 2016, pp. 250–261 (2016). http://dl.acm.org/
citation.cfm?doid=2970276.2970368

19. Li, L., et al.: Static analysis of android apps: a systematic literature review. Inf.
Softw. Technol. 88, 67–95 (2017). https://doi.org/10.1016/j.infsof.2017.04.001

20. Li, T., et al.: Unleashing the walking dead : understanding cross-app remote infec-
tions on mobile WebViews. In: CCS, pp. 829–844 (2017). https://doi.org/10.1145/
3133956.3134021, https://acmccs.github.io/papers/p829-liA.pdf

21. Li, Y., Yang, Z., Guo, Y., Chen, X.: DroidBot: a lightweight UI-guided test input
generator for android. In: Proceedings of 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion, ICSE-C 2017, pp. 23–26 (2017).
https://doi.org/10.1109/ICSE-C.2017.8

22. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView in the Android
system. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference on - ACSAC 2011, p. 343 (2011). https://doi.org/10.1145/2076732.2076781

23. Neugschwandtner, M., Lindorfer, M., Platzer, C.: A view to a kill: WebView
exploitation. In: LEET (2013). http://publik.tuwien.ac.at/files/PubDat 223415.
pdf

24. Das Patnaik, N., Sabyasachi Sahoo, S.: JSPrime (2013). https://dpnishant.github.
io/jsprime/

25. OWASP: using components with known vulnerabilities (2017). https://
www.owasp.org/index.php/Top 10-2017 A9-Using Components with Known
Vulnerabilities

26. Adobe PhoneGap: (2018). https://phonegap.com/
27. Rizzo, C., Cavallaro, L., Kinder, J.: BabelView: evaluating the impact of code

injection attacks in mobile Webviews (2017). http://arxiv.org/abs/1709.05690
28. Sedol, S., Johari, R.: Survey of cross-site scripting attack in Android Apps. Int. J.

Inf. Comput. Technol. 4(11), 1079–1084 (2014)
29. w3: Sandbox attribute (2018). https://www.w3.org/wiki/Html/Elements/iframe
30. WebSetting: (2019). https://developer.android.com/reference/android/webkit/we

bsettings
31. WebView: (2019). https://play.google.com/store/apps/details?id=com.google.and

roid.webview&hl=en
32. WebViewSafeBrowsing: (2018). https://developer.android.com/guide/webapps/ma

naging-webview
33. WebViewSecurity: (2017). https://android-developers.googleblog.com/2017/06/wh

ats-new-in-webview-security.html
34. Wísniewski, R., Tumbleson, C.: Apktool A tool for reverse engineering Android

apk files (2018). http://ibotpeaches.github.io/Apktool/
35. Yan, R., Xiao, X., Hu, G., Peng, S., Jiang, Y.: New deep learning method to detect

code injection attacks on hybrid applications. J. Syst. Softw. 137, 67–77 (2018).
https://doi.org/10.1016/j.jss.2017.11.001

http://dl.acm.org/citation.cfm?doid=2970276.2970368
http://dl.acm.org/citation.cfm?doid=2970276.2970368
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/3133956.3134021
https://doi.org/10.1145/3133956.3134021
https://acmccs.github.io/papers/p829-liA.pdf
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/2076732.2076781
http://publik.tuwien.ac.at/files/PubDat_223415.pdf
http://publik.tuwien.ac.at/files/PubDat_223415.pdf
https://dpnishant.github.io/jsprime/
https://dpnishant.github.io/jsprime/
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://phonegap.com/
http://arxiv.org/abs/1709.05690
https://www.w3.org/wiki/Html/Elements/iframe
https://developer.android.com/reference/android/webkit/websettings
https://developer.android.com/reference/android/webkit/websettings
https://play.google.com/store/apps/details?id=com.google.android.webview&hl=en
https://play.google.com/store/apps/details?id=com.google.android.webview&hl=en
https://developer.android.com/guide/webapps/managing-webview
https://developer.android.com/guide/webapps/managing-webview
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
http://ibotpeaches.github.io/Apktool/
https://doi.org/10.1016/j.jss.2017.11.001

Privacy

Geo-Graph-Indistinguishability:
Protecting Location Privacy for LBS

over Road Networks

Shun Takagi(B) , Yang Cao , Yasuhito Asano , and Masatoshi Yoshikawa

Graduate School of Informatics, Department of Social Informatics, Kyoto University,
Kyoto, Japan

shun.0721@hotmail.co.jp

Abstract. In recent years, Geo-Indistinguishability (GeoI) has been
increasingly explored for protecting location privacy in location-based
services (LBSs). GeoI is considered a theoretically rigorous location pri-
vacy notion since it extends differential privacy to the setting of location
privacy. However, GeoI does not consider the road network, which may
cause insufficiencies in terms of both privacy and utility for LBSs over
a road network. In this paper, we first empirically evaluate the privacy
guarantee and the utility loss of GeoI for LBSs over road networks. We
identify an extra privacy loss when adversaries have the knowledge of
road networks and the degradation of LBS quality of service. Second, we
propose a new privacy notion, Geo-Graph-Indistinguishability (GeoGI),
for protecting location privacy for LBSs over a road network and design
a Graph-Exponential mechanism (GEM) satisfying GeoGI. We also show
the relationship between GeoI and GeoGI to explain theoretically why
GeoGI is a more suitable privacy notion over road networks. Finally, we
evaluate the empirical privacy and utility of the proposed mechanism in
real-world road networks. Our experiments confirm that GEM achieves
higher utility for LBSs over a road network than the planar Laplace
mechanism for GeoI under the same empirical privacy level.

Keywords: Location privacy · Geo-Indistinguishability ·
Road network · Differential privacy

1 Introduction

In recent years, the spread of smartphones and the improvement of GPS has
led to a growing use of location-based services (LBSs). While such services have
provided enormous benefits to individuals and society, the exposure of the user’s
location raises privacy issues. By using the location information, it is easy to
identify sensitive personal information, such as that pertaining to home and

This work was supported by JSPS KAKENHI Grant Numbers (S) No. 17H06099, (A)
No. 18H04093, (C) No. 18K11314.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 143–163, 2019.
https://doi.org/10.1007/978-3-030-22479-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_8&domain=pdf
http://orcid.org/0000-0001-7732-2807
http://orcid.org/0000-0002-6424-8633
http://orcid.org/0000-0002-9095-0127
http://orcid.org/0000-0002-1176-700X
https://doi.org/10.1007/978-3-030-22479-0_8

144 S. Takagi et al.

family. Many methods for protecting location information have been proposed
in the past decade. Most of these methods perturb the true location by using
a location privacy-preserving mechanism before sending it to an LBS provider
or sharing it with a third party. A mechanism takes a true location as input
and outputs a perturbed location that follows a probability distribution over a
location domain.

Andrés et al. [10] defined a formal notion of location privacy based on
the well-known concept of differential privacy. The definition is called geo-
indistingui-shability (GeoI), and an output of a mechanism achieving it guaran-
tees indistinguishability of the true location from other locations, that is, strong
privacy protection. This notion is derived from differential privacy [5], which pro-
vides a rigorous guarantee of indistinguishability of two neighboring databases.
One of the most appealing features of GeoI, inherited from differential privacy,
is the guarantee of privacy protection against any attacker to a certain degree.

However, since the proposal of GeoI, many studies [3,14,25] have identified
its weaknesses. Yu et al. [25] showed that GeoI did not protect location privacy
against the optimal inference attack [16], and they proposed the framework that
adapted GeoI to the expected inference error [17], a complementary notion of
GeoI. Chatzikokolakis et al. [3] focused on the fact that GeoI did not consider
privacy for semantic information (such as population density) and proposed a
mechanism that guarantees the protection of this privacy by using a graph whose
weight of edges contains such information. However, this graph does not consider
a road network. Oya et al. [14] quantified the privacy against an adversary who
knows that the true location is one of two locations. The researchers showed that
an output of the mechanism achieving GeoI results in a worse quality of service
to protect the user’s location privacy.

In this study, we find that GeoI provides inadequate privacy guarantee and
insufficient utility for some LBSs over road networks, such as the k-nearest neigh-
bor search (e.g., searching for k restaurants nearest to the user location). In such
LBSs, the quality of service can be improved by taking advantage of the road
network instead of the Euclidean space. This is because objects can usually move
only on a predefined set of trajectories as specified by the road network and it
is natural for these LBSs to use the distance on the road network [4,9,15]. GeoI
may not be practical for LBSs over a road network because it assumes that (1)
the perturbed location can be any location in a continuous plane and (2) the
distance between locations is measured by the Euclidean distance.

Due to assumption (1), GeoI may result in unexpected privacy loss. For
example, as shown in Fig. 1, if a user’s perturbed location is unreasonable, such as
a position on the sea, an adversary can realize that such a location is impossible,
which may cause unexpected privacy leakage. Next, due to assumption (2), GeoI
may offer inadequate utility for LBSs over a road network. Taking k-nearest
neighbor search using shortest path for example, as shown in Fig. 2, a user of
LBS searching the nearest restaurant expects that restaurant 2 will be returned
in a higher probability than restaurant 1. This is because the path to restaurant
1 is farther than to restaurant 1 because of the river. However, if the user uses a

Geo-Graph-Indistinguishability 145

Fig. 1. Perturbation of the location to
the unreasonable location.

Fig. 2. Difference of the Euclidean dis-
tance and the shortest path length on
a road network.

GeoI mechanism, the probabilities outputting restaurants 1 and 2 are the same
since the two Euclidean distances between restaurants and the user are the same.

In this paper, we study how to protect location privacy while preserving high
utility for LBS over a road network. Our contributions are threefold. First, we
identify two insufficiencies of GeoI by two empirical evaluations. We quantita-
tively analyze the change of the inference error w.r.t. adversaries having the
knowledge of road network or not when the location is protected by the planar
Laplace mechanism that Andrés et al. [10] proposed, and show its privacy leak-
age. Additionally, we propose the formulation of the utility of the mechanism
for LBSs over a road network. We compute its utility of the planar Laplace
mechanism on a graph (PLG), which is our extension of PLM for LBSs over a
road network, on two real-world road networks, which shows that it performs
poorly w.r.t. this formulation. Second, we propose a new privacy notion based on
differential privacy, called Geo-Graph-Indistinguishability (GeoGI) that takes a
road network into consideration so that we can construct a more suitable mech-
anism than GeoI mechanism for protecting location privacy in LBSs over a road
network. We design a Graph-Exponential Mechanism (GEM) satisfying GeoGI.
We also show the relationship between GeoI and GeoGI to explain theoretically
why GeoGI is more suitable privacy notion for LBSs over a road network. Third,
to better understand the proposed mechanism, we empirically evaluate privacy
and utility of the approach in the case of two real-world road networks in Japan;
the results verify that the proposed GEM for GeoGI achieves higher utility than
PLM for GeoI when both mechanisms have the same empirical privacy level.

2 Preliminary and Problem Setting

2.1 Geo-Indistinguishability [10]

In this section, we describe the definition of Geo-Indistinguishability (GeoI).
Let X be a set of locations and let Z be a set of query outputs. Intuitively, a
mechanism K achieving GeoI guarantees that K(x) and K(x′) are similar to
a certain degree for any two locations x, x′ ∈ X . This means that even if an

146 S. Takagi et al.

adversary obtains an output of the mechanism, he cannot distinguish the true
location from other locations to a certain degree.

The multiplicative distance dP that expresses the distance between two prob-
ability distributions σ1 and σ2 on S is defined as dP(σ1, σ2) = supS∈S | ln σ1(S)

σ2(S) |
with the convention that | ln σ1(S)

σ2(S) | = 0 if both σ1 and σ2 are zero and ∞ if only
one of them is zero. d(x, x′) represents the Euclidean distance between x and x′.
Given ε ∈ R

+, ε-GeoI is defined as follows.

Definition 1 (ε-geo-indistinguishability). The mechanism satisfies ε-GeoI iff
∀x, x′ ∈ X , Z ⊆ Z

dP(Pr(K(x) ∈ Z),Pr(K(x′) ∈ Z)) ≤ εd(x, x′) (1)

Mechanism Satisfying ε-GeoI. The authors of [10] introduced a mechanism
called planar Laplace mechanism (PLM) for achieving ε-GeoI. The probability
distribution that PLM generates is called the planar Laplace distribution and,
as its name suggests, is derived from a two-dimensional version of the Laplace
distribution as follows: Pr(PLMε(x) = z) = ε2

2π e−εd(x,z).

2.2 Problem Statement

As we described in Sect. 1, some LBSs improve their services by using a road
network. In this paper, we assume these LBSs, where the road network G is
defined as a weighted undirected graph (V,E). Let V be a set of vertices which
represent points on the road network, each of which has a coordinate on the
Euclidean plane, and let E be a set of edges. The weight w(a, b) of edges between
connected vertices a ∈ V and b ∈ V represents the shortest distance of the road
on the Euclidean plane connecting the two vertices a and b, which leads to
w(a, b) ≥ d(a, b). Then, ds(v, v′) represents the shortest path length between
v ∈ V and v′ ∈ V , and following inequality holds. This is because d(v, v′) stands
for the shortest distance as the crow flies while ds(v, v′) stands for the shortest
distance on the road network.

ds(v, v′) ≥ d(v, v′) (2)

In these LBSs, a user who wants to receive the service sends a vertex that
represents his location to an untrusted LBS provider, and the LBS provider
performs the service’s computations w.r.t. the vertex (using the road network)
and provides the service. Furthermore, we assume that there is no trusted server.
Hence, a user needs to protect privacy on his device by himself.

Quantification of Utility and Privacy Guarantee. When a user uses a
mechanism to protect his privacy, the quality of the service the user receives
degrades. Shokri et al. [16] generally quantified this quality loss, referred to as
service quality loss (SQL), in LBSs when a user uses mechanism K:

SQL(πu,K, dq) =
∑

r,r′
πu(r) Pr(K(r) = r′)dq(r, r′) (3)

Geo-Graph-Indistinguishability 147

Table 1. Summary of notation

gninaeMlobmyS

LBSs Location-based Services.
u, a A user and an adversary.
X Set of locations of users on the Euclidean plane.
Z Set of query outcomes that represent the users’ perturbed locations
G Weighted undirected graph (V, E) that represents a road network.
V Set of vertices on the Euclidean plane.

E
Set of edges.
A weight is the shortest distance on a road connecting two vertices.

πu(r) The probability of being at location r when accessing the LBS.

πa(r)
The adversary’s knowledge about user’s location
that represents the probability of being at r.

K A mechanism. Given a location, K outputs a perturbed location.
d(x, x′) Euclidean distance between x and x′.
ds(v, v′) The shortest path length on the graph between v and v′.

Here, πu is the probability distribution representing the probability of user’s
location, called a prior of the user. dq(r, r′) represents the metric of a degree of
dissimilarity, which depends on the LBS. Thus, this means the expected value of
a degree of dissimilarity between the actual location of the user and the location
obfuscated by mechanism K. Shokri et al. used the Euclidean distance from a
natural idea that the longer the Euclidean distance between the true location
and the obfuscated location is, the worse the service becomes. We call this SQLe.

Shokri et al. also quantified the degree of a privacy protection by a mech-
anism. The researchers translated location privacy into adversarial error (AE)
by measuring how accurately an adversary could infer the user’s true location.
Formally, AE can be formulated as follows:

AE(πa,K, h, dq) =
∑

r̂,r′,r

πa(r) Pr(K(r) = r′) Pr(h(r′) = r̂)dq(r̂, r) (4)

Here, πa is the probability distribution representing the adversarial knowledge
about the user’s actual location, called a prior of the adversary. An inference
mechanism h outputs an inferred point by drawing a point according to the
probability distribution when given an obfuscated point, which stands for the
inference of the adversary. Thus, Pr(h(r′) = r̂) means the probability of estimat-
ing r̂ as the actual location of the user when the adversary observes r′. Therefore,
AE represents the expected value of a degree of dissimilarity dq(r̂, r) between
the user’s true location r and the location r̂ the adversary infers. As in the case
of SQL, the researchers used the Euclidean distance as dq.

The major notations in this paper are summarized in Table 1.

148 S. Takagi et al.

3 Evaluating Privacy and Utility
of Geo-Indistinguishability

In this section, we empirically show two insufficiencies of GeoI caused by consid-
ering a road network. First, we describe the model of an adversary [17]. Then, we
show the insufficiency of the privacy guarantee by modeling an adversary who
considers the road network and quantifying the accuracy of the attack of this
adversary. Next, we describe the formulation of the utility of an output of the
mechanism [16]. Then, we propose the way of applying it for LBSs over a road
network, and we show by experimentations with two real-world road networks
that PLM performs poorly for this formulation.

3.1 Empirical Privacy Evaluation

We assume that the adversary also uses a road network to infer the user’s actual
location because a road network is publicly available. In the paper [10], the
authors did not consider such an adversary, and we empirically show that if the
adversary considers a road network, this may lead to privacy leakage even if the
mechanism satisfies GeoI, which is referred to as an insufficiency of the privacy
protection.

Adversarial Model. First, we describe the model of the adversary who tries
to infer the user’s actual location. Shokri et al. [17] modeled the adversary who
knows the prior πa and the mechanism that the user uses and can solve problems
with any computational complexity. Although this assumption is advantageous
for the adversary, showing the protection against this adversary will guarantee
strong privacy. When the adversary obtains the user’s obfuscated location r′,
he tries to infer the user’s true location by the optimal inference attack. In this
attack, an adversary solves the following mathematical optimization problem and
obtains the optimal probability distribution and constructs the optimal inference
mechanism h w.r.t. his knowledge; by using this mechanism with input r′, he
estimates the user’s true location.

minimize
h

∑

r̂,r′,r

πa(r) Pr(K(r) = r′) Pr(h(r′) = r̂)dp(r, r̂)

subject to
∑

r̂

h(r′)(r̂)= 1,∀r′ (5)

h(r′)(r̂)≥ 0,∀r′, r̂

We model an adversary who knows a road network in this way. If an adversary
knows a road network, the domain of his prior πa is V , and dp is ds because we
assume that the adversary also tries to improve his inference w.r.t. the shortest
distance. In this setting, this is a linear programming problem because Pr(h(r′) =
r̂) represents a variable and the other terms are constant so that the objective

Geo-Graph-Indistinguishability 149

Fig. 3. A synthetic map. The dimen-
sions are 4000m * 4000 m, and each lat-
tice point has a coordinate. The red
line indicates the road, and a user is
located inside the black frame. (Color
figure online)

Fig. 4. Adversarial error (AE) in the
scenarios of the adversary knowing or
not knowing the road network. (Color
figure online)

function and the constraints are linear. We solve this problem using CBC (coin-or
branch and cut)1 solver of the PuLP library of Python.

Experiment. In the following paragraph, we show that the adversary who
knows a road network can attack with higher accuracy than can the adversary
who does not know it. To make this easy to understand, we use a simple synthetic
data illustrated in Fig. 3.

This map consists of 1600 squares with the side length of 100 m; that is, the
area dimensions are 4000 m * 4000 m, and each lattice point has a coordinate.
The red line through the center represents the road where the user is considered
to be, and the other area represents locations where the user must not be, such
as on the sea.

Thus, we assume that the user’s location is determined according to a uniform
distribution on the red line and inside the black frame to make an output of the
mechanism planarly spread; the adversary who does not consider uses the prior
given by the uniform distribution inside the black frame, and the adversary who
considers the road network uses the prior given by the uniform distribution on the
red line inside the black frame. Then, Fig. 4 shows AEe of each adversary w.r.t.
the privacy parameter ε of the mechanism. Comparing AEe of both adversaries,
it is clear that the adversary with the prior considering the road network can
estimate the user’s true location more accurately.

Remark 1. This results from that the PLM could obfuscate the user’s location
to a place where the user must not be; in the case of Fig. 3, anywhere except the
red line. Thus, determining this place contributes to the accuracy of the attack.
Figure 4 shows that an adversarial error could become approximately half in this
particular case, so this is an insufficiency of the privacy protection of GeoI.

1 https://projects.coin-or.org/Cbc.

https://projects.coin-or.org/Cbc

150 S. Takagi et al.

3.2 Utility

If a user uses LBSs over a road network and uses a mechanism on the Euclidean
plane, such as PLM, the user or the LBS provider needs to map the perturbed
location to a vertex of the road network because the LBS provider presumes
that the user is located at a vertex of the graph to take advantage of a road
network. For example, in the LBS that searches for the nearest restaurants, the
LBS provider needs to compute the shortest path length between vertices where
the user and restaurants are located. If the user is located outside of the graph,
the shortest path length cannot be computed.

Then, it is worth noting that if the user (rather than the service provider)
performed the mapping to the vertex before the user sent the perturbed location,
it would prevent the perturbed location from being the location where the user
must not be and would improve the privacy protection. In this view, we propose
the mechanism on the graph, which is defined as the algorithm that outputs the
perturbed vertex when given a vertex. Then, we can formulate SQL on a road
network as SQLs using the shortest path length as the metric.

SQLs(πu,K) = SQL(πu,K, ds) =
∑

v,v′
πu(v) Pr(K(v) = v′)ds(v, v′) (6)

In this formulation, we anticipate the lower utility of an output of the mechanism
achieving GeoI because it cannot consider SQLs due to the definition using the
Euclidean distance. For example, if there is a river with no bridges so that the
user cannot cross it, the opposite riverside is far away and obfuscating to the
opposite riverside results in the lower utility (see Fig. 2). However, GeoI may
consider the opposite riverside to be close.

Then, we can also formulate the adversarial error over a road network that
we call AEs as follows:

AEs(πa,K, h) = AE(πa,K, h, ds)

=
∑

r̂,r′,r

πu(r) Pr(K(r) = r′) Pr(h(r′) = r̂)ds(r̂, r) (7)

This formula expresses the expected value of the shortest path length between
the actual location and the location that an adversary with the prior of πa infers
with inference mechanism h when a user uses mechanism K. Intuitively, this
represents the adversarial error on a road network because we use the shortest
path length ds as the metric. Thus, when the adversary can infer the true location
on the road network with a high accuracy, the formula (7) will have a small
value. It can be stated that if AEs is small, the privacy protection level of the
mechanism is low.

Experiments. Here, we empirically show that the mechanism satisfying GeoI
may perform worse w.r.t. SQLs than we expect, since the definition of GeoI

Geo-Graph-Indistinguishability 151

Fig. 5. Output of PLG. Fig. 6. Tokyo (left) and Akita (right)
road networks.

Fig. 7. SQLs and SQLe of PLG vs. ε
on the Tokyo graph.

Fig. 8. SQLs and SQLe of PLG vs. ε
on the Akita graph.

considers SQL as SQLe. To illustrate this, we compare SQLs and SQLe of the
same GeoI mechanism. As we stated, we use a mechanism on a graph for LBSs
over a road network. Then, we propose a natural and straightforward way of
converting PLM to a planar Laplace mechanism on a graph (PLG). First, a user
perturbs the location using PLM. Next, the user maps the perturbed location
on the Euclidean plane to the nearest vertex on the road network. Figure 5 is an
example of an output of PLG. Formally, we formulate this mechanism as follows:

Pr(PLGε(v) = w) =
∫

Sw

Pr(PLMε(xv) = z)dz (8)

Here, xv is the coordinate of vertex v, and let Sw be a Voronoi cell of vertex
w when the Voronoi diagram created from the graph on the Euclidean plane is
given.

Theorem 1. PLGε satisfies ε-GeoI on the graph.

We refer the reader to the appendix for the proof. Thus, it is assumed that this
is a straightforward way of GeoI mechanism in our setting where a user needs to
output a vertex as we stated in Chap. 2.2, and because we cannot use PL, it is
reasonable to use this mechanism instead of PL. We compute SQLs and SQLe

152 S. Takagi et al.

on two road networks. We used OpenStreetMap2 to retrieve two maps of areas
of two cities, Tokyo and Akita, in Japan with dimensions of 4000 m * 4000 m as
in Fig. 6.

We plot the results in Figs. 7 and 8 around the range where SQL is reasonable.
If the user uses the same mechanism (i.e., the same ε), it is observed that the
utility for the LBS over a road network is worse. This outcome is caused by the
difference of the Euclidean distance and the shortest path length between two
vertices. Additionally, it is observed that the difference between SQLs and SQLe

on the Akita graph is larger than that on the Tokyo graph at the same SQLe

because the difference between the two distances on the Akita graph is larger
than that on the Tokyo graph.

Remark 2. GeoI constrains the mechanism to use the Euclidean distance so
that the mechanism cannot improve its utility of the output for LBSs using
a road network. Regardless of how hard we try to improve the utility of the
mechanism output, as long as there is the constraint of GeoI, the mechanism
cannot consider a road network, and we cannot improve the mechanism. Addi-
tionally, we showed that SQLs of PLG is worse on two graphs; however, there
may be a road network that results in much worse utility than we showed. Unless
the mechanism considers a road network, the mechanism cannot guarantee high
utility.

4 Geo-Graph-Indistinguishability

In this section, we propose a new definition of location privacy called Geo-Graph-
Indistinguishability (GeoGI) for LBSs using a road network, which is tolerant to
the weaknesses of GeoI. We first formally define GeoGI, and then propose a mech-
anism satisfying GeoGI which is called Graph-Exponential Mechanism (GEM).
Finally, we clarify the relationship between GeoI and GeoGI, and describe valid-
ity of the definition of GeoGI.

4.1 Definition

Given a graph G = (V,E) representing a road network, let W be a set of vertices
that a mechanism outputs. Then, mechanism K on the graph returns the random
vertex w ∈ W according to a probability distribution when given a vertex v ∈ V .
Then, given ε ∈ R

+, ε-Geo-Graph-Indistinguishability is defined as follows.

Definition 2 (ε-Geo-Graph-Indistinguishability). A mechanism K on a road
network G = (V,E) satisfies ε-Geo-Graph-Indistinguishability iff ∀v, v′ ∈
V,∀W ⊆ W,

dP(Pr(K(v) ⊆ W),Pr(K(v′) ⊆ W) ≤ εds(v, v′) (9)

2 https://openstreetmap.jp/.

https://openstreetmap.jp/

Geo-Graph-Indistinguishability 153

The definition can be also formulated as ∀v, v′ ∈ V,∀W ⊆ W, Pr(K(v)⊆W)
Pr(K(v′)⊆W) ≤

eεds(v,v′). This formulation implies that GeoGI is an instance of dX -privacy [7]
proposed by Chatzikokolakis et al. as are GeoI and differential privacy. The
authors showed that an instance of dX -privacy guaranteed strong privacy. We
refer the reader to the appendix for further details. Intuitively, this definition
guarantees that for any v, v′ ∈ V , the closer to v′ a vertex v is w.r.t. the shortest
path length, the more similar K(v) and K(v′) are.

It is worth noting that the definition of GeoGI includes a given graph rep-
resenting a road network, and this results in the privacy protection level and
utility varying depending on the road network even if the privacy parameter ε
remains the same.

4.2 Graph Exponential Mechanism

In this section, we propose a mechanism that achieves ε-GeoGI. Given parameter
ε ∈ R

+ and graph G = (V,E), we define GEMε for any user’s location v ∈ V
and perturbed location w ∈ W as follows.

Definition 3. GEMε takes v as an input and outputs w with the following
probability.

Pr(GEMε(v) = w) = α(v)e− ε
2ds(v,w) (10)

where α is a normalization factor and α(v) = 1
∑

w∈V e− ε
2 ds(v,w) .

The pseudocode of GEM is described in Appendix (Sect. 8.3) due to space
limitation. This mechanism employs the idea of exponential mechanism [12] that
is one of the general mechanisms for achieving differential privacy.

Theorem 2. GEMε satisfies ε-GeoGI.

We refer the reader to the appendix for the proof. This mechanism considers a
road network so that high utility for LBSs over a road network can be expected.
Moreover, since this mechanism satisfies GeoGI, strong privacy based on differ-
ential privacy is guaranteed.

Creating the Probability Distribution and Drawing a Random Point.
Because we assume that the LBS provider is untrusted and there is no trusted
server, a user needs to create this distribution by himself and choose the per-
turbed vertex according to the distribution. In this section, we describe a method
to do this and its issues caused by the number of vertices.

To create the probability distribution, (i) the user gets shortest path lengths
to all vertices from the vertex where the user is located. (ii) Then the user
computes e− ε

2ds and based on this distribution, (iii) chooses a point.
Phase (i) is acceptable if the server which has enough computing power com-

putes the all shortest lengths and sends users it in advance. This is because the
shortest path length can be computed by Dijkstra’s algorithm; this computa-
tional complexity of this operation depends on the data structure. if we use a

154 S. Takagi et al.

naive method, it is O(|E| + |V |2), and it can be improved by using Fibonacci
heap to O(|E| + |V | log |V |), where |V | and |E| represent the counts of edges
and vertices. However, There is a problem if the user needs to compute it and
the size of vertices is large because the user uses a mobile phone with limited
computing power. So we have to consider the better algorithm. On a road net-
work, a fast algorithm computing the shortest path length has been studied; we
refer the reader to [1] that may be applied to our algorithm. Phase (ii) is no
problem because it computational complexity is O(|V |). For phase (iii), when
the number of vertices is much larger than we expected, we may not be able
to effectively sample the vertices according to the distribution. This problem
has also been studied and is known as consistent weighted sampling (CWS): we
refer the reader to [11,23]. We believe that these studies can be applied to our
algorithm and it can be computed even if the size of vertices is somewhat large.

4.3 Analyzing the Relationship Between GeoI and GeoGI

In this section, we describe the relationship between GeoI and GeoGI. There are
two major differences: one is the domain, and the other is the distance metric.

First, we state the difference of the location domain. We can design a GeoI
mechanism on the Euclidean plane; however, the same cannot be done for GeoGI
because GeoGI constrains a mechanism to use a vertex on the graph due to the
definition using the shortest path length. Since we exploit the mechanism for
LBSs using a road network, the constraint does not pose a problem. Moreover,
this constraint prevents the perturbation to a location where the user must not
be located and improve the privacy guarantees, as we stated in Sect. 3.1. We
refer the mechanism which meets this constraint as a mechanism on the graph.

The other difference is the used metric. In this part, we assume the mechanism
on a graph; otherwise, we cannot design a GeoGI mechanism. Then, the following
theorem holds due to the used metric of GeoGI.

Theorem 3. If a mechanism on the graph satisfies ε-GeoI, it satisfies ε-GeoGI.

This is due to the definition of a graph that represents the road network. Using
Inequality (2), we derive the following inequality:

dP(Pr(K(v) ⊆ (W)),Pr(K(v′) ⊆ (W))) ≤ εd(v, v′) ≤ εds(v, v′) (11)

This inequation shows that the GeoI mechanism is also the GeoGI mechanism,
but the reverse is not always true. For example, PLG satisfies both GeoI and
GeoGI. This means that GeoGI relaxes the restriction of GeoI. Thus, we can
design a more suitable mechanism which improves the utility for a road network.

It is worth noting whether this relaxing of the definition leads to weakening
of the guarantees of privacy protection. In short, GeoGI has no guarantees of pri-
vacy protection w.r.t. the Euclidean distance so that if a user uses a mechanism
that satisfies GeoGI to protect the location, the adversary may easily distinguish
the user’s location in terms of the Euclidean distance. In what follows, we show

Geo-Graph-Indistinguishability 155

Fig. 9. Changing the shortest path
length of the graph.

Fig. 10. Change of TP according to
GEM and PLG.

this fact using the notion of the true probability (TP). The probability that an
adversary can distinguish user’s location is represented as

TP (πu,K, h) =
∑

v̂,v,w

πu(v) Pr(K(v) = w) Pr(h(w) = v̂)δ(v̂, v) (12)

Here δ(v̂, v) is a function that returns 1 if v̂ = v holds and otherwise returns 0.
TP means the expected value of a probability that an adversary can remap the
obfuscated location to the true location.

We assume a set of graphs, each of which has only two vertices. The Euclidean
distance between the vertices is the same for all the graphs, but the weight of
the edge between them is different for each graph (Fig. 9). Next, we assume that
each prior the user and the adversary have is a uniform distribution on two
vertices of this graph, and we compute TP of PLG and GEM. Figure 10 shows
the change of TP when the weight, that is, the shortest path length, changes.
Due to the guarantee of the Euclidean distance of GeoI, PLG does not degrade
TP even if the shortest path length changes, however, since GeoGI does not have
a guarantee of the Euclidean distance, GEM significantly degrades TP, which
means that the adversary can know the user’s true location.

GeoGI can achieve better utility than can GeoI by guaranteeing privacy
protection in terms of the shortest path length instead of the Euclidean distance.
This idea comes from the interpretation of privacy; in this paper, we assume that
privacy and the utility can be interpreted as the shortest path length on the
graph and that it should be acceptable for LBSs on a road network. Therefore,
GeoGI may not be suitable for protecting location privacy if the privacy should
be interpreted as the Euclidean distance, e.g., querying the weather conditions
where we need to protect a wide range of locations.

4.4 Discussion

We assume that a graph representing the road network is given in GeoGI. We
note that setting a different graph (road network) in the definition of GeoGI
implies a different privacy model. Thus, GeoGI can be personalized. For exam-
ple, a conservative user may want to use a global graph in GeoGI that covers
all possible locations on Earth, while a liberal user may use a smaller graph in

156 S. Takagi et al.

Fig. 11. SQLrs of each vertex on Akita
graph.

Fig. 12. AErs of each vertex on Akita
graph.

GeoGI that only covers the city of her residence. The graph may also depend
on application scenarios in practice. For example, if the application is vehicle
navigation, the graph should cover all highway road network instead of pedes-
trian lanes. In summary, the privacy level and utility depend on the shape of
the graph, such as its density and size, and its relationships should be shown
because this has the potential to lead to improvement of the privacy protection
and utility. This topic is left to future research.

Additionally, the utility and the privacy protection level depend on the vertex
where the user uses the GeoGI mechanism because, as opposed to the Euclidean
plane that spreads uniformly, each vertex relates differently with other vertices
and because to satisfy GeoGI, the mechanism needs to vary the probability
distribution depending on the vertex’s relationship. This complexity obscures
the mechanism performance for a user, and a user will not know how to adjust
the privacy parameter. Then, we propose a way of measuring the performance
of the mechanism used by a user located at a certain vertex. We formulate the
mechanism’s utility as SQLrs and its privacy protection level as AErs as follows:

SQLrs(v,K) =
∑

v′
Pr(K(v) = v′)ds(v, v′) (13)

AErs(v,K, h) =
∑

v′,v̂

Pr(K(r) = r′) Pr(h(v′) = v̂)ds(v̂, v) (14)

When a user is located at vertex v, SQLrs represents the expected value of the
shortest path length between v and the perturbed vertex v′. AErs represents
the expected value of the shortest path length between v and vertex v̂ inferred
by the adversary with inference mechanism h (in this case, we assume optimal
inference attack). We show SQLrs and AErs of the Akita graph using GEM with
ε = 0.002 in Figs. 11 and 12, respectively. As we can see, the utility loss (i.e.,
SQLrs) and privacy (i.e., AErs) differ on different locations in spite of the same
privacy parameter. We can develop a tool to visualize the privacy and utility
of the mechanism under different privacy parameters, which may help users to
determine a proper privacy parameter. We defer this to a long version of this
work.

Geo-Graph-Indistinguishability 157

Fig. 13. AEe when using
GEM and PLM against the
adversary who knows the
road network.

Fig. 14. SQLs of PLG
and GEM w.r.t. AEs on
the Tokyo graph.

Fig. 15. SQLs of PLG
and GEM w.r.t. AEs on
the Akita graph.

5 Experiments

In this section, we show that GEM outperforms the GeoI mechanism in terms
of utility and privacy protection for LBSs on a road network. To demonstrate
this conclusion, we performed two experiments as follows. First, since GEM, in
contrast to PL, may perturb the input location to a location that is out of the
road network, such as on the sea (as stated in Sect. 3.1), it is assumed that GEM
achieves better privacy guarantee when the adversaries have the knowledge of
road networks. To show this, we computed AEe of GEM on the synthetic graph
we used in Sect. 3.1. Next, because GEM, in contrast to PLG, considers a road
network (as stated in Sect. 3.2), it is assumed that the output quality of GEM
is higher than PLG. To show this, we computed SQLs of GEM for two cities we
used in Sect. 3.2. Additionally, we compared the results with those of PL and
PLG.

5.1 Privacy Protection Level of GEM

We computed AEe of GEM on the graph of Fig. 3. As in Sect. 3.1, we assume that
the adversary knew the road network so that his prior was a uniform distribution
on the red line inside the black frame. Since GEM, in contrast to PL, outputs
only the locations on the red line, it is assumed that AEe of GEM is higher
than that of PLM. To fairly compare AEe of each mechanism, we performed the
comparison under the same utility SQLe.

As is shown in Fig. 13, AEe of GEM is higher than that of PL in case of
the adversary who knows a road network. This means that GE can protect user
privacy more strongly than can PL because GE guarantees that the output is
on the road network.

5.2 Utility of GEM

We computed SQLs of GEM on two graphs of Fig. 6. Since GEM considers the
road network, it is assumed that SQLs of GEM is higher than that of PLG. To

158 S. Takagi et al.

fairly compare SQLs of each mechanism, we performed the comparison under the
same AEs. Then, we assumed that both the priors that a user and an adversary
have are uniform distributions on the graph with a range of 2000 m from the
centers of maps.

As we can see from Figs. 14 and 15, SQLs of GEM is lower than that of
PLG. Thus, a GEM output has higher utility for LBSs using a road network
than does a PLG output. Additionally, it can be said that the difference of the
SQL between PLG and GEM is larger on the Akita graph than on the Tokyo
graph. The reason is that the difference between the Euclidean distance and the
shortest path length is larger for vertices of the Akita graph.

6 Related Work

6.1 Location Privacy on a Road Network

To the best of our knowledge, this is the first study to propose the perturbation
with the differential privacy approach over the road network. However, several
studies explored location privacy on a road network.

Tyagi et al. [20] studied location privacy over a road network for VANET
users, and they show that there are no comprehensive privacy-preserving tech-
niques or frameworks that cover all privacy requirements or issues to maintain
the desired level of location privacy.

Wang et al. [21] and Wen et al. [22] proposed the method of privacy protection
for the user who wishes to receive location-based services and travels over roads.
The authors use k-anonymity as the protection method and take advantage of
the road network constraints.

A series of key features distinguish our solution from these studies: (a) we use
the differential privacy approach so that our solution has a guarantee of privacy
protection against any attacker and (b) we assume that there is no trusted server.
We highlight these two points as advantages of our proposed method.

6.2 State-of-the-Art Privacy Models

Since GeoI was published, many related applications have been proposed. To
et al. [18] developed an online framework of privacy-preserving spatial crowd-
sourcing service using GeoI. Tong et al. [19] proposed a framework of privacy-
preserving ridesharing service based on GeoI and differential privacy approach.
It may be possible to improve these applications by using GeoGI instead of GeoI.
Additionally, Bordenabe et al. [13] proposed an optimized mechanism satisfying
GeoI; it may be possible to apply this method to GeoGI.

According to [10], if a user uses the GeoI mechanism multiple times, this
causes privacy degradation due to correlations in the data; this scenario also
applies to GeoGI. This issue remains a difficult and intensely investigated prob-
lem in the field of differential privacy. There are two kinds of approaches attempt-
ing to solve this problem. The first is to develop a mechanism for multiple pertur-
bations that satisfies existing notion, such as differential privacy and GeoI [6,8].

Geo-Graph-Indistinguishability 159

Kairouz et al. [8] studied the composition theorem and proposed a mecha-
nism that upgrades the privacy guarantee. Chatzikokolakis et al. [6] proposed
a method of controlling privacy using GeoI when locations are correlated. The
second approach is to propose a new privacy notion for correlated data [2,24].
Xiao et al. [24] proposed δ-location set privacy to protect each location in a
trajectory when a moving user sends locations. Cao et al. [2] proposed PriSTE,
a framework for protecting spatiotemporal event privacy. We believe that these
studies can be applied to our work.

7 Conclusion and Future Work

In this paper, by evaluating privacy and utility of PL, we have shown that the
definition of GeoI is insufficient for LBSs over a road network to protect privacy
and output the useful perturbed location. The core of our proposal is a new
notion of privacy that we call GeoGI, which takes the place of GeoI for such
LBSs, and a mechanism GEM, based on the exponential mechanism, to perturb
the user location. We have shown how GeoGI relates to GeoI and that GeoGI
is a more suitable privacy definition for such LBSs w.r.t. privacy protection
and utility. We also have shown the effectiveness of our proposed approach by
comparing GEM with PLG in the example of two cities in Japan.

In the future, we aim to extend the privacy model to several graphs. Although
in this paper, we represented a road network as an undirected graph, it should be
represented as a directed graph because of the existence of one-way roads, and
this may degrade the utility. Additionally, we need to consider the movement
mode such as walking, driving, and flying. Finally, we need to pay attention to
the fact that multiple perturbations of correlated data such as trajectory data
may degrade the level of protection even if the mechanism satisfies GeoGI as in
case of GeoI and differential privacy. This topic has been intensely studied, and
we believe that it can be applied to GeoGI. We plan to solve these problems in
future research.

8 Appendix

8.1 Proofs

Theorem 1. PLGε on graph G = (V,E) satisfies ε-GeoI on graph G.

Proof. This proposition can be formulated as follows for all vertices v, v′ ∈
V,W ⊆ W,

dp(Pr(PLG(v) ⊆ W),Pr(PLG(v′) ⊆ W)) ≤ εd(v, v′) (15)

Furthermore, we derive

∀v, v′ ∈ V,w ∈ W,Pr(PLG(v) = w) ≤ eεd(v,v′) Pr(PLG(v′) = w) (16)

160 S. Takagi et al.

Since PLε satisfies ε-GeoI, for all z ∈ Z, we derive

Pr(PLε(xv) = z) ≤ eεd(xv,xv′) Pr(PLε(xv′) = z) (17)

By the theorem of integral inequality we obtain
∫

Sw

Pr(PLε(xv) = z)dz ≤
∫

Sw

eεd(xv,xv′) Pr(PLε(xv′) = z)dz

= eεd(xv,xv′)
∫

Sw

Pr(PLε(xv′) = z)dz (18)

Using (8) and (18), we obtain

Pr(PLG(v) = w) ≤ eεd(v,v′) Pr(PLG(v′) = w) (19)

This concludes the proof.

Theorem 2. GEMε satisfies ε-GeoGI.

Proof. This proposition can be formulated for all vertices v, v′ ∈ V,W ⊆ W:

dp(Pr(GEM(v) ⊆ W),Pr(GEM(v′) ⊆ W)) ≤ εds(v, v′) (20)

The ratio of Pr(GEM(v) = w) and Pr(GEM(v′) = w) is expressed as follows:

Pr(GEM(v) = w)
Pr(GEM(v′) = w)

=
α(v)e− ε

2ds(v,w)

α(v′)e− ε
2ds(v′,w)

=
a(v)
a(v′)

e
ε
2 (ds(v

′,w)−ds(v,w)) (21)

When −ds(v, w) + ds(v′, w) has the maximum value for w ∈ W , (21) reaches
the maximum value too. Due to the triangle inequality, the inequality ∀w ∈
W,−ds(v, w) + ds(v′, w) ≤ −ds(v, w) + ds(v′, v) + ds(v, w) = ds(v, v′) holds, and
the following inequality is derived:

Pr(GEM(v) = w)
Pr(GEM(v′) = w)

≤ α(v)
α(v′)

e
ε
2ds(v,v′) (22)

Next, we show that the following inequality holds:

α(v)
α(v′)

< e
ε
2ds(v,v′) (23)

The inequality 23 is expressed as follows for any v, v′ ∈ V,w ∈ W of any graph
G: ∑

w∈V

e− ε
2ds(v

′,w) − e
ε
2ds(v,v′)

∑

w∈V

e− ε
2ds(v,w) < 0 (24)

Using the triangle inequality, we have ∀w ∈ W,d(v, w) − d(v, v′) ≤ ds(v′, w),
e− ε

2ds(v
′,w) ≤ e− ε

2 (ds(v,w)−ds(v,v′)). Therefore,
∑

w∈V

(e− ε
2ds(v

′,w) − e− ε
2 (ds(v,w)−ds(v,v′))) ≤

∑

V \v

(e− ε
2ds(v

′,V) − e− ε
2ds(v

′,V)) < 0

Geo-Graph-Indistinguishability 161

Using (22) and (23), we obtain

Pr(GEM(v) = w)
Pr(GEM(v′) = w)

< e
ε
2ds(v,v′)e

ε
2ds(v,v′) = eεds(v,v′) (25)

8.2 dX -privacy

As we stated in Sect. 4, GeoGI is an instance of dX -privacy: due to this char-
acterization, we can give two characterizations of GeoGI that mathematically
show the guarantee of strong privacy protection. In this section, we stated the
characterizations of GeoGI.

Hiding Function. The first characterization uses the concept of a hiding func-
tion φ : V → V . For any hiding function and a secret location v ∈ V , when an
attacker who has a prior distribution that expresses the user’s location informa-
tion obtains each output w ∼ K(v), w′ ∼ K(φ(v)) of a mechanism satisfying
ε-GeoGI, the following inequality holds for the multiplicative distance between
its two posterior distributions:

dP(p(v|w), p(v|w′)) ≤ 2εds(φ) (26)

Let ds(φ(v)) = supv∈V ds(v, φ(v)) be the maximum distance between an actual
vertex and its hidden version. This inequality guarantees that the adversary’s
conclusions are the same (up to 2εdX (φ)) regardless of whether φ has been
applied or not.

Informed Attacker. The other characterization is shown by the multiplica-
tive distance between the prior distribution and its posterior distribution that is
derived by obtaining an output of the mechanism. By measuring its distance, we
can determine how much the adversary has learned about the secret. We assume
that an adversary (informed attacker) knows that the vertex v where the user
is located in N . When the adversary obtains an output of the mechanism. The
following inequality holds for the multiplicative distance between his prior dis-
tribution π|N (v) = π(v|N) and its posterior distribution p|N (v|w) = p(v|w,N):

dP(π|N , p|N (v|w)) ≤ εds(N) (27)

Let ds(N) = maxv,v′∈Nds(v, v′) be the maximum distance between vertices in
N . This inequality guarantees that when ds(N) is small, the adversary’s prior
distribution and its posterior distribution are similar. In other words, the more
the adversary knows about the actual location, the less he cannot learn about
the location from an output of the mechanism.

162 S. Takagi et al.

8.3 Pseudocode of GEM

Algorithm 1. Graph Exponential Mechanism (GEM).
Input: v, G, ε.
Output: Sanitized location w of input v.

1 initialization;
2 Compute shortest distances to all other vertices from v by Dijkstra’s

algorithm and calculate e−
ε
2 ds ;

3 Normalize to make a distribution ;
4 Draw random vertex w according to the distribution;
5 return w.

References

1. Akiba, T., Iwata, Y., Kawarabayashi, K., Kawata, Y.: Fast shortest-path distance
queries on road networks by pruned highway labeling. In: Proceedings of the Six-
teenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 147–
154 (2014)

2. Cao, Y., Xiao, Y., Xiong, L., Bai, L.: PriSTE: from location privacy to spatiotem-
poral event privacy. arXiv preprint arXiv:1810.09152 (2018)

3. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: Constructing elastic distin-
guishability metrics for location privacy. Proc. Priv. Enhancing Technol. 2, 156–170
(2015)

4. Cho, H.J., Chung, C.W.: An efficient and scalable approach to CNN queries in a
road network. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 865–876 (2005)

5. Dwork, C.: Differential privacy. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclo-
pedia of Cryptography and Security, pp. 338–340. Springer, Boston (2011). https://
doi.org/10.1007/978-1-4419-5906-5

6. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A predictive differentially-
private mechanism for mobility traces. In: De Cristofaro, E., Murdoch, S.J. (eds.)
PETS 2014. LNCS, vol. 8555, pp. 21–41. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08506-7 2

7. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

8. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential pri-
vacy. IEEE Trans. Inf. Theor. 63(6), 4037–4049 (2017)

9. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial
network databases. In: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, vol. 30, pp. 840–851 (2004)

10. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security,
pp. 901–9134 (2013)

http://arxiv.org/abs/1810.09152
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/978-3-319-08506-7_2
https://doi.org/10.1007/978-3-319-08506-7_2
https://doi.org/10.1007/978-3-642-39077-7_5

Geo-Graph-Indistinguishability 163

11. Manasse, M., McSherry, F., Talwar, K.: Consistent weighted sampling. Technical
report, MSR-TR-2010-73, June 2010

12. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 94–
103, October 2007

13. Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-
indistinguishable mechanisms for location privacy. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, New
York, NY, USA, pp. 251–262 (2014)

14. Oya, S., Troncoso, C., Pérez-González, F.: Is geo-indistinguishability what you are
looking for? In: Proceedings of the 2017 on Workshop on Privacy in the Electronic
Society, pp. 137–140 (2017)

15. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of the 29th International Conference on Very Large
Data Bases, pp. 802–813 (2003)

16. Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying loca-
tion privacy. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
247–262 (2011)

17. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Boudec, J.Y.L.:
Protecting location privacy: optimal strategy against localization attacks. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 617–627 (2012)

18. To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location pri-
vacy in spatial crowdsourcing. Proc. VLDB Endowment 7(10), 919–930 (2014)

19. Tong, W., Hua, J., Zhong, S.: A jointly differentially private scheduling protocol for
ridesharing services. IEEE Trans. Inf. Forensics Secur. 12(10), 2444–2456 (2017)

20. Tyagi, A.K., Sreenath, N.: Location privacy preserving techniques for location
based services over road networks. In: Proceedings of International Conference on
Communications and Signal Processing (ICCSP), pp. 1319–1326, April 2015

21. Wang, T., Liu, L.: Privacy-aware mobile services over road networks. Proc. VLDB
Endowment 2(1), 1042–1053 (2009)

22. Wen, J., Li, Z.: A method of location privacy protection in road network environ-
ment. In: 2018 International Conference on Smart Materials, Intelligent Manufac-
turing and Automation (SMIMA), vol. 173, p. 03048 (2018)

23. Wu, W., Li, B., Chen, L., Zhang, C., Yu, P.S.: Improved Consistent Weighted
Sampling Revisited. arXiv:1706.01172 [cs], June 2017

24. Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal
correlations. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security - CCS 2015, pp. 1298–1309 (2015)

25. Yu, L., Liu, L., Pu, C.: Dynamic differential location privacy with personalized error
bounds. In: Proceedings of the Symposium on Network and Distributed System
Security (NDSS) (2017)

http://arxiv.org/abs/1706.01172

“When and Where Do You Want
to Hide?” – Recommendation of Location

Privacy Preferences with Local
Differential Privacy

Maho Asada, Masatoshi Yoshikawa, and Yang Cao(B)

Kyoto University, Kyoto, Japan
asada@db.soc.i.kyoto-u.ac.jp

{yoshikawa,yang}@i.kyoto-u.ac.jp

Abstract. In recent years, it has become easy to obtain location infor-
mation quite precisely. However, the acquisition of such information has
risks such as individual identification and leakage of sensitive informa-
tion, so it is necessary to protect the privacy of location information.
For this purpose, people should know their location privacy preferences,
that is, whether or not he/she can release location information at each
place and time. However, it is not easy for each user to make such deci-
sions and it is troublesome to set the privacy preference at each time.
Therefore, we propose a method to recommend location privacy prefer-
ences for decision making. Comparing to existing method, our method
can improve the accuracy of recommendation by using matrix factoriza-
tion and preserve privacy strictly by local differential privacy, whereas
the existing method does not achieve formal privacy guarantee. In addi-
tion, we found the best granularity of a location privacy preference, that
is, how to express the information in location privacy protection. To
evaluate and verify the utility of our method, we have integrated two
existing datasets to create a rich information in term of user number.
From the results of the evaluation using this dataset, we confirmed that
our method can predict location privacy preferences accurately and that
it provides a suitable method to define the location privacy preference.

Keywords: Privacy preference · Location data · Matrix factorization ·
Local differential privacy

1 Introduction

In recent years, due to the popularization of smartphones and the development
of GPS positioning equipment, location information for people has been able to
be obtained quite precisely and easily. Such data can be utilized in various fields
such as marketing and urban planning. In addition, there are many applications

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 164–176, 2019.
https://doi.org/10.1007/978-3-030-22479-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_9

Recommendation of Location Privacy Preferences with LDP 165

that do not function effectively without location information [9]. Because of such
value, market maintenance to buy and sell it has started [9].

However, on the other hand, by publishing accurate location information,
there are privacy risks associated with such as individuals being identified [3].
Due to such risks, privacy awareness regarding location information among peo-
ple is very high. One of the most risky situations is when smartphones are used.
This is because we are sending location information to them when using many
applications [5].

In order to prevent privacy risks under such circumstances, it is necessary to
anonymize or obfuscate location information. One of the countermeasures is a
primitive one: turn off location information transmission manually when using
a smartphone. There is also a method of applying a location privacy protection
technique. Various techniques are used for protection, including k-anonymity [7,
14], differential privacy [4] [8], and encryption [16]. Fawaz [5] proposed a system
that applies these privacy protection technologies to smartphones. This system
controls the accuracy of the location information sent to each application. The
user needs to input how accurate he/she wants to send the respective location
information to each application.

In these countermeasures, to avoid a privacy risk by the disclosure of location
information, the user has to decide location privacy preference for each location,
that is, whether or not he/she publishes the location data at a certain place
and time. However, we think that there is a problem in such a situation. What
is the best privacy preference is unclear, and it may be different for each user.
Therefore, individual users need to determine their location privacy preferences.
However, most users find it difficult to determine these preferences themselves
[12], and it is troublesome to set the privacy preference at each time.

Therefore, we need a system to recommend location privacy preferences for
decision support when choosing a user’s location information privacy preference
and for the promotion of safe location information release. Recently, one such
system was developed using the concept of item recommendation, which is used
for online shopping. Item recommendation regards the combination of location
and time as an item and whether or not to release location information as a
rating of the item, and it predicts the rating of an unknown item using other
users’ data. Zhang [17] proposed a method of recommending by collaborative
filtering.

We focus on the problems of existing location privacy preference recommen-
dation methods and propose a recommendation method to solve these problems.

The contributions of this research are as follows.

1. Clarifying the definition of location privacy preference: In location
privacy preservation, it is important to define where and when we want to
preserve location privacy, which has various granularities. Although many
location privacy protection methods have been proposed in the literature,
none of them addresses the problem of how to set location privacy preference.
Therefore, we generate recommendation models using various granularities for
time information and compare their usefulness. From these results, we find

166 M. Asada et al.

Table 1. A comparison of our method with related work [17].

Method How to preserve
privacy

Related work [17] Collaborative filtering
(inaccurate for a large
amount of data)

Add noise that is
not strict
mathematically

Our method Matrix Factorization
(accurate for a large
amount of data)

Add noise based
on local
differential
privacy

the best granularity that will produce trade-offs between the density of spatial
data for the recommendation and the consideration of time.

2. Applying matrix facrorization to location privacy preference rec-
ommendation: Because location privacy preferences are very sensitive, the
system must recommend them accurately. Collaborative filtering, which was
used in the method by Zhang [17], experiences problems that when the num-
ber of users and products increase; accurate prediction cannot be achieved,
and only the nature of either the user or product can be considered well.
Therefore, we propose a method to improve by utilizing matrix factorization.
As a result of experiments, we confirm that we can predict accurate evaluation
values with a probability of 90% for large amount of data.

3. Recommendation with local differential privacy: Matrix factorization
is involved in privacy risk, because each user needs to send their data to the
recommendation system [2,6]. Location privacy preferences encompass loca-
tion information of the users at a certain times and whether the information
is sensitive for him/her. However, a location privacy preference recommenda-
tion that achieves highly accurate privacy protection has not been proposed
so far. Actually, the method by Zhang [17] did not preserve privacy in a strict
mathematical sense. Therefore, we propose a recommendation method that
realizes it with local differential privacy, which refers to the method by Shin
[13]. A comparison of our method with related work is shown in Table 1. We
confirm that our method maintain precision that is the same as that achieved
a method without privacy protection.

4. Generating a location information privacy preference dataset: A
challenge in experiments for testing the performance of our methods is that
no appropriate location privacy preference dataset is available in literature.
The only available real-world dataset of location privacy preference [11] has
few users. Such data is not suitable for the evaluation of the method using
matrix factorization [10]. In addition, we need bulk data in the evaluation
because there are many users of recommendation in the real world. There-
fore, we created an artificial dataset that combines such the location privacy
preference dataset and a trajectory dataset with a large number of users.

Recommendation of Location Privacy Preferences with LDP 167

This paper is organized as follows: We describe the knowledge necessary for
realizing our goal in Sect. 2. Then, we describe our method in Sect. 3 and evaluate
and discuss about our method in Sect. 4.

2 Preliminaries

2.1 Matrix Factorization

Matrix factorization is one of the most popular methods used for item recom-
mendation, which predicts the ratings of unknown items. This is an extension of
collaborative filtering to improve the accuracy for the large amount of data by
dimentionality reduction.

We consider the situation in which m users rate any item in n items. We
express each user’s rating of each item by M ⊂ {1, · · · ,m} × {1, · · · , n}, and
the number of ratings as M = |M|, for the user i’s rating of item j. Matrix
factorization predicts the ratings of unknown items given {rij : (i, j) ∈ M}.
To make a prediction, we consider a ratings matrix R = m × n, a user matrix
U = d × m, and an item matrix V = d × n. The matrices satisfy the formula:
R ≈ UTV .

In matrix factorization, the user i’s element, i.e. the i-th column of U , is
expressed by ui ∈ R

d, 1 ≤ i ≤ m, and the item j’s element, i.e. the j-th column
of V , is expressed by vj ∈ R

d, 1 ≤ j ≤ n, which are learned from known ratings.
The user i’s rating of item j is obtained by the inner product of uT

i and vj .
In learning, we obtain the matrices U and V , which minimize the following:

1
M

∑

(i,j)∈M
(rij − uT

i vj)2 + λu

m∑

i=1

||ui||2 + λv

n∑

j=1

||vj ||2 (1)

λu and λv are positive variables for regularization.
U and V are obtained by updating using the following formulae:

ut
i = ut−1

i − γt · {∇ui
φ(U t−1, V t−1) + 2λuU t−1

i } (2)

vt
j = vt−1

j − γt · {∇vj
φ(U t−1, V t−1) + 2λvV

t−1
j } (3)

γt is the learning rate at the tth iteration, and ∇ui
φ(U, V) and ∇vj

φ(U, V) are
the gradients of ui and vj . They are obtained from derivative of (1) and expressed
by the followings:

∇ui
φ(U, V) = − 2

M

∑

j:(i,j)∈M
vj(rij − uT

i vj) (4)

∇vj
φ(U, V) = − 2

M

∑

i:(i,j)∈M
ui(rij − uT

i vj) (5)

We predict the ratings of the unknown items by calculating U and V by these
formulae.

168 M. Asada et al.

2.2 Local Differential Privacy

We use local differential privacy to expand the matrix factorization into a form
that satisfies privacy preservation. This approach is an extension of differential
privacy [4], in which a trusted server adds noise to the data collected from the
users. However, we assume that the server can not be trusted and use local
differential privacy, in which users add noise to the data before sending the data
to the server.

The idea behind local differential privacy is that for a certain user, regardless
of whether or not the user has certain data, the statistical result should not
change. The definition is given below:

Definition 1 (Local differential privacy). We take x ∈ Nx′ ∈ N . A mech-
anism M satisfies ε-local differential privacy if M satisfies the following:

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(x′) ∈ S]

∀S ⊆ Range(M) is any output that M may generate. A randomized response
[15] is used to realize local differential privacy, which decides the value to output
based on the specified probability when inputting a certain value. Each user can
add noise to the data according to their own privacy awareness, since he/she can
decide the probability.

2.3 Definition of the Location Privacy Preference

The location privacy preference is defined by the following:

Definition 2 (Location privacy preference). The location privacy prefer-
ence pu(t, l), in which the user u wants to hide location information at time t in
location l, is expressed by the following:

pu(t, l) =
{

1 (Positive)
0 (Negative)

1 (Positive) means that he/she can publish location information, and
0 (Negative) means that he/she does not want to publish location information.

The time t is expressed as a slot of time divided by a certain standard, and the
division method varies depending on the reference time. Additionally, the loca-
tion l is represented by a combination of geographic information and a category
of place or either of these. Geographical information represents the latitude and
longitude or certain fixed areas, and the category represents the property of a
building located in that place such as a restaurant or a school.

There are various granularity regarding how to represent this information
as mentioned in Sect. 1. As the granularity of information changes, the number
of items in the recommendation and the degree of consideration of the nature
of the time/location change, which influence the utility of the recommendation.
However, it is not clear what kind of granularity is the best. Therefore, we
confirm the best granularity, that is, the definition of best location information
privacy preferences.

Recommendation of Location Privacy Preferences with LDP 169

3 Recommendation Method

3.1 Framework

We propose a location privacy preference recommendation method that preserves
privacy. When a user enters location privacy preferences for a certain number of
places and time combinations, the method outputs location privacy preferences
for a combination of unknown places and times. We assume the recommendation
system exists on an untrusted server. We also assume an attacker who tries to
extract the location and time of users’ visit and their rating based on the output
of the system. Our method aims for compatibility between high availability as a
recommendation scheme and privacy protection. We realize the former by matrix
factorization and the latter by local differential privacy.

First, we show a rough flow for the recommendation of the location privacy
preference using the normal matrix factorization below:

1. The recommendation system sends the user matrix U and item matrix V to
the user.

2. The gradients are calculated by using the user’s data and step 1 and sent to
the system.

3. The system updates U and V by the calculated gradients.

This operation is performed a number of times, and there is a risk that the user’s
data is leaked to the attacker. Therefore, we add noise to the data in step 2 above
to avoid such risks. When the user calculate the gradients to update U and V ,
noise that satisfies local differential privacy is added to the information regarding
“when and where the user visits” and “whether he/she wants to publish the
location information.” The gradients calculated based on the noise-added data
are sent to the recommendation system We show the overview of our method in
Fig. 1.

Fig. 1. Overview of our method.

170 M. Asada et al.

3.2 Addition of Noise

We preserve privacy for the information, that is, when and where the user vis-
its and whether he/she wants to publish their location information. In privacy
protection process, we refer the method by Shin [13].

First, we will describe how to add noise to the information regarding the
time and location of the user’s visits. Let yij be a value indicating whether
or not user i has visited place j, which is 1 if he/she has visited the place
and 0 otherwise. The following equation holds:

∑
(i,j)∈M(ril − uT

i vj)2 =∑n
i=1

∑m
j=1 yij(rij − uT

i vj)2. Therefore, Eq. (5) can be transformed as follows:
∇vj

φ(U, V) = − 2
n

∑
i:(i,j)∈M yijui(rij −uT

i vj). To protect information regarding
the time and location of the user’s visits from privacy attacks, we should add
noise to a vector Yi = (yij)1≤j≤m. We use a randomized response, and the value
y∗
ij is obtained by adding noise to yij as follows.

y∗
ij =

⎧
⎨

⎩

0, with probability p/2
1, with probability p/2
yij , with probability 1 − p

Next, we describe a method of privacy protection for information on whether
to disclose location information for a certain place and time combination. We
add noise ηijl, which is based on a Laplace distribution, to the value gij =
(gijl)1≤l≤d = −2ui(rij−uT

i vj). The noise-added value g∗
ijl is expressed as follows:

g∗
ijl = gijl + ηijl.

Each user adds noise to his/her own data in the above way, and the noise-
added gradients, {(y∗

ijg
∗
ij1, . . . g

∗
ijd) : j = 1, . . . , m}, are sent to the server. By

repeating the operation k times, updating the value of the matrix using the slope
calculated using the data with noise added, we find the matrix for predicting the
evaluation value.

4 Evaluation

4.1 Overview

In this section, we describe the evaluation indices and points of view to consider
when verifying the utilities of our method.

We evaluate the approximation between the true ratings value. We describe
the details of these metrics in Sect. 4.3.

In the evaluations, we compare the utilities of the recommendation methods
using normal matrix factorization and local differential privacy. In addition, we
evaluate the method from the following three viewpoints:

1. What is the best location privacy preference definition?
2. How much impact does changes in the privacy preservation level make?
3. What impact does changes in the number of unknown evaluation values make?

More detailed results of the evaluation can be found in [1].

Recommendation of Location Privacy Preferences with LDP 171

Table 2. A measure representing true or false values of the result.

True rating

Positive Negative

Predicted rating Positive TP (True Positive) FP (False Positive)

Negative FN (False Negative) TN (True Negative)

4.2 Dataset

In the evaluation, we use artificial data combining the location privacy preference
dataset and the position information dataset.

For the location privacy preference dataset, we use LocShare acquired from
the data archive CRAWDAD [11]. This dataset was obtained from 20 users in
London and St. Andrews over one week from April 23 to 29 in 2011, with privacy
preference data for 413 places. This dataset has few users, so it is not suitable for
the evaluation of our method using matrix factorization [10]. In addition, we need
bulk data in the evaluation because there are many users of recommendation in
the real world.

Therefore, we generated an artificial dataset by combining the location pri-
vacy preference dataset with the trajectory dataset Gowalla, which was acquired
from the location information SNS in the U.S. This dataset includes check-in his-
tories of various places from 319,063 users collected from November 2010 to June
2011. The total number of check-ins is 36,001,959, and the number of checked-in
places is 2,844,145.

4.3 Metrics

We describe the metrics for verifying the utility of our method.
We measure how accurately the recommendation can predict the ratings.

The predicted value in the recommendation can be classified based on the true
evaluation value as in Table 2. For example, TP (True Positive) is the number
of data that are truly Positive (can be released) and whose predicted values are
also Positive. We calculate the number of TP, FP, TN, and FN results from the
prediction result and measure the following two indices.

– False Positive Rate: The false positive rate is the percentage of false positives
predicted relative to the number of negatives.

FPR =
FP

TN + FP

This metric is an index for verifying whether the location information that
the user wants to disclose is not erroneously disclosed. The lower the false
positive rate, the higher the accuracy of the privacy protection.

172 M. Asada et al.

– Recall: Recall is the proportion of data predicted to be positive out of the
data that are actually positive.

Recall =
TP

TP + FN

Recall is an index for verifying whether the location information that the
user can publish is predicted to be positive, since if the released location
information decreases, the benefit decreases. The higher the recall value is,
the higher the utility of the recommendation.

4.4 Evaluation Process

We evaluate our method from the three viewpoints mentioned in Sect. 4.1, and
we adopt each of the following methods.

1. We used 10-fold cross validation, that divides the users into training data and
test data, in which 90% of the users are regarded as training data and 10%
of the users are regarded as test data.

2. Among the user’s data included in the test data, we regard the known eval-
uation value as unknown according to the values of the UnknownRate men-
tioned later.

3. We predict the evaluation value by using the test data and the training data
which have undergone conversion processing and calculate the metrics.

4. We repeat the above process 100 times and verify the average of the evaluation
indices.

In the evaluation, we change the value of one of the following parameters:
time, ε, UnknownRate. time is the length of the standard when dividing time
into multiple slots. ε is privacy protection level when using local differential
privacy. UnknownRate is the ratio of what is regarded as unknown.

4.5 Results

We describe the results of experiments to confirm the utility of the recommen-
dation method.

The Best Location Privacy Preference Definition: When defining the
location privacy preference, the best definition regarding the granularity of the
information is not yet clear. In this experiment, we examine the influence of
changing the granularity of time on the utility. We change the criterion for
dividing time into multiple slots as follows: time = 2, 3, 4, 6, 8, 12, the other
parameters are set as follows: ε = 0.01 and the UnknownRate = 0.1. The results
are shown in Fig. 2.

From these results, we confirm that the precision drops when the granularity
is small, that is, when the criterion time is short. This is because the coarser
the definition of the granularity is, the smaller the number of goods in the rec-
ommendation, and the matrix used for prediction becomes dense. On the other

Recommendation of Location Privacy Preferences with LDP 173

(a) False positive rate (b) Recall

Fig. 2. Results when the time granularity is changed.

(a) False positive rate (b) Recall

Fig. 3. Results when the ε is changed.

hand, however, we confirm that the accuracy drops even if the granularity is too
large. Therefore, in defining the location privacy preference, we should choose
the criterion with the highest utility. In this evaluation, the best criterion is 8 h.

Impact of Changes in the Privacy Preservation Level: The strength of the
privacy protection can be adjusted with the value ε in local differential privacy.
The smaller the value of ε, the more privacy is protected. On the other hand,
there is a risk that the utility of the recommendation decreases as the added
noise become large. Therefore, we examine the influence of changing the privacy
protection level on the utility.

In this evaluation, we change the privacy protection level as follows: ε =
0.0001, 0.0003, 0.001, 0.005, 0.01, the other parameters are set as follows: time =
6 and the UnknownRate = 0.1. The results are shown in Fig. 3.

From the results, we confirm that a normal recommendation is more useful
in general, and as the value of ε increases, the usefulness increases. On the other
hand, however, the change in the usefulness due to the change in the value
of ε is small for ε = 0.003. Larger values do not have a significant effect on
the usefulness. We should select the maximum parameter that can maintain

174 M. Asada et al.

(a) False positive rate (b) Recall

Fig. 4. Results when the Unknown Rate is changed.

prediction accuracy, since a stronger privacy protection level is achieved for a
smaller value of ε. Therefore, in this evaluation, the best privacy protection level
is ε = 0.001.

Impact of Changes in the Number of Unknown Evaluation Values:
We verify how much each user should know his/her privacy preference for an
accurate prediction. In the evaluation, we regard a certain number of eval-
uated data as unevaluated in generating the model and verify the influence
of the number of unknown evaluation values on the utility. We change the
parameter for the percentage of unevaluated data as follows: UnknownRate =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 The smaller the UnknownRate, the higher
the number of evaluation values is. The other parameters are set as follows:
time = 6 and ε = 0.01. The results are shown in Figs. 4.

From these results, we confirm that the utility tends to decrease as the num-
ber of unevaluated data values increases. This is because the accuracy of the
recommendation will be reduced if the training dataset is small. From these
results, ideally, the user should know the location privacy preference nearly as
much as possible, for about 70% of all products.

In all the evaluation, we compare the utility of the models using normal
matrix factorization and local differential privacy. Since appreciable differences
were not observed in devising the parameters, we confirm that the recommen-
dation method can maintain an accuracy comparable to that of normal matrix
factorization.

5 Conclusion

We propose a location privacy preference recommendation system that uses
matrix factorization and achieves privacy protection by local differential pri-
vacy. We also confirm how to determine the best location privacy preference
definition.

Recommendation of Location Privacy Preferences with LDP 175

We evaluate our method using an artificial dataset from a location privacy
preference dataset and a trajectory dataset. From its results, we confirm that
our method can maintain the utility at a level that is the same as a method
without privacy preservation. In addition, we confirm the best parameters, the
granularity of the location privacy preference definition, the privacy protection
level, and the number of rated items.

References

1. Asada, M., Yoshikawa, M., Cao, Y.: When and where do you want to hide? Rec-
ommendation of location privacy preferences with local differential privacy. arXiv
preprint arXiv:1904.10578 (2019)

2. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You
might also like:” privacy risks of collaborative filtering. In: 2011 IEEE Symposium
on Security and Privacy (SP), pp. 231–246. IEEE (2011)

3. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)

4. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

5. Fawaz, K., Shin, K.G.: Location privacy protection for smartphone users. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 239–250. ACM (2014)

6. Frey, D., Guerraoui, R., Kermarrec, A.M., Rault, A.: Collaborative filtering under
a sybil attack: analysis of a privacy threat. In: Proceedings of the Eighth European
Workshop on System Security, p. 5. ACM (2015)

7. Huo, Z., Meng, X., Hu, H., Huang, Y.: Y ou can walk alone: trajectory privacy-
preserving through significant stays protection. In: Lee, S., Peng, Z., Zhou, X.,
Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7238, pp. 351–
366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29038-1 26

8. Jiang, K., Shao, D., Bressan, S., Kister, T., Tan, K.L.: Publishing trajectories with
differential privacy guarantees. In: SSDBM (2013)

9. Kanza, Y., Samet, H.: An online marketplace for geosocial data. In: Proceedings
of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, p. 10. ACM (2015)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30–37 (2009)

11. Parris, I., Abdesslem, F.B.: Crawdad st andrews/locshare dataset (2011). https://
crawdad.org/st andrews/locshare/20111012/

12. Sadeh, N., et al.: Understanding and capturing people’s privacy policies in a mobile
social networking application. Pers. Ubiquitous Comput. 13(6), 401–412 (2009)

13. Shin, H., Kim, S., Shin, J., Xiao, X.: Privacy enhanced matrix factorization for
recommendation with local differential privacy. IEEE Trans. Knowl. Data Eng.
30, 1770–1782 (2018)

14. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

15. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

http://arxiv.org/abs/1904.10578
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-642-29038-1_26
https://crawdad.org/st_andrews/locshare/20111012/
https://crawdad.org/st_andrews/locshare/20111012/

176 M. Asada et al.

16. Wasef, A., Shen, X.S.: REP: location privacy for vanets using random encryption
periods. Mob. Netw. Appl. 15(1), 172–185 (2010)

17. Zhao, Y., Ye, J., Henderson, T.: Privacy-aware location privacy preference rec-
ommendations. In: Proceedings of the 11th International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, MOBIQUITOUS
2014, ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), ICST, Brussels, Belgium, pp. 120–129 (2014). https://doi.
org/10.4108/icst.mobiquitous.2014.258017

https://doi.org/10.4108/icst.mobiquitous.2014.258017
https://doi.org/10.4108/icst.mobiquitous.2014.258017

Analysis of Privacy Policies to Enhance
Informed Consent

Raúl Pardo and Daniel Le Métayer(B)

Univ Lyon, Inria, INSA Lyon, CITI, 69621 Villeurbanne, France
{raul.pardo-jimenez,daniel.le-metayer}@inria.fr

Abstract. In this paper, we present an approach to enhance informed
consent for the processing of personal data. The approach relies on a
privacy policy language used to express, compare and analyze privacy
policies. We describe a tool that automatically reports the privacy risks
associated with a given privacy policy in order to enhance data subjects’
awareness and to allow them to make more informed choices. The risk
analysis of privacy policies is illustrated with an IoT example.

1 Introduction

One of the most common argument to legitimize the collection of personal data is
the fact that the persons concerned have provided their consent or have the possi-
bility to object to the collection. Whether opt-out is considered as an acceptable
form of consent (as in the recent California Consumer Privacy Act1) or opt-in
is required (as in the European General Data Protection Regulation - GDPR2),
a number of conditions have to be met to ensure that the collection respects
the true will of the data subject. In fact, one may argue that this is seldom the
case. In practice, internet users generally have to consent on the fly, when they
want to use a service, which leads them to accept mechanically the conditions
of the provider. Therefore, their consent is not really informed because they do
not read the privacy policies of the service providers. In addition, these policies
are often vague and ambiguous. This situation, which is already critical, will
become even worse with the advent of the internet of things (“IoT”) which has
the potential to extend to the “real world” the tracking already in place on the
internet.

A way forward to address this issue is to allow users to define their own
privacy policies, with the time needed to reflect on them, possibly even with the
help of experts or pairs. These policies could then be applied automatically to
decide upon the disclosure of their personal data and the precise conditions of
such disclosures. The main benefit of this approach is to reduce the imbalance of
1 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill id=201720180AB

375.
2 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L .2016.119.01.

0001.01.ENG&toc=OJ:L:2016:119:TOC.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 177–198, 2019.
https://doi.org/10.1007/978-3-030-22479-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_10&domain=pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
https://doi.org/10.1007/978-3-030-22479-0_10

178 R. Pardo and D. Le Métayer

powers between individuals and the organizations collecting their personal data
(hereafter, respectively data subjects, or DSs, and data controllers, or DCs,
following the GDPR terminology): each party can define her own policy and
these policies can then be compared to decide whether a given DC is authorized
to collect the personal data of a DS. In practice, DSs can obviously not foresee
all possibilities when they define their initial policies and they should have the
opportunity to update them when they face new types of DCs or new types
of purposes for example. Nevertheless, their privacy policies should be able to
cope with most situations and, as time passes, their coverage would become ever
larger.

However, a language to define privacy policies must meet a number of require-
ments to be able to express the consent of the DSs. For example, under the
GDPR, valid consent must be freely given, specific, informed and unambigu-
ous. Therefore, the language must be endowed with a formal semantics in order
to avoid any ambiguity about the meaning of a privacy policy. However, the
mere existence of a semantics does not imply that DSs properly understand the
meaning of a policy and its potential consequences. One way to enhance the
understanding of the DSs is to provide them information about the potential
risks related to a privacy policy. This is in line with Recital 39 of the GDPR
which stipulates that data subjects should be “made aware of the risks, rules,
safeguards and rights in relation to the processing of personal data and how to
exercise their rights in relation to such processing”. This approach can enhance
the awareness of the DSs and allow them to adjust their privacy policies in a
better informed way.

A number of languages and frameworks have been proposed in the literature
to express privacy policies. However, as discussed in Sect. 6, none of them meets
all the above requirements, especially the strong conditions for valid consent laid
down by the GDPR. In this paper, we define a language, called Pilot, meeting
these requirements and show its benefits to define precise privacy policies and
to highlight the associated privacy risks. Even though Pilot is not restricted
to the IoT, the design of the language takes into account the results of previous
studies about the expectations and privacy preferences of IoT users [12].

We introduce the language in Sect. 2 and its abstract execution model in
Sect. 3. Then we show in Sect. 4 how it can be used to help DSs defining their
own privacy policies and understanding the associated privacy risks. Because the
language relies on a well-defined execution model, it is possible to reason about
privacy risks and to produce (and prove) automatically answers to questions
raised by the DSs. In Sect. 5, we compare Pilot with existing privacy policy
languages, and we conclude the paper with avenues for further research in Sect. 6.

2 The Privacy Policy Language Pilot

In this section we introduce, Pilot, a privacy policy language meeting the objec-
tives set forth in Sect. 1. The language is designed so that it can be used both by
DCs (to define certain aspects of their privacy rules or general terms regarding

Analysis of Privacy Policies to Enhance Informed Consent 179

data protection) and DSs (to express their consent). DCs can also store the DSs
policies that they have received for accountability purposes—i.e., to be able to
demonstrate that data has been treated in accordance with the choices of DSs.

DCs devices must declare their privacy policies before they collect personal
data. We refer to these policies as DC policies. Likewise, when a DS device sends
data to a DC device, the DS device must always include a policy defining the
restrictions imposed by the DS on the use of her data by the DC. We refer to
these policies as DS policies.

In what follows, we formally define the language Pilot. We start with def-
initions of the most basic elements of Pilot (Sect. 2.1), which are later used
to define the abstract syntax of the language (Sect. 2.2). This syntax is then
illustrated with a working example (Sect. 2.3).

2.1 Basic Definitions

Devices and Entities. We start with a set D of devices. Concretely, we consider
devices such as smartphones, laptops or access points, that are able to store,
process and communicate data.

Let E denote the set of entities such as Google or Alphabet and ≤E
the associated partial order—e.g., since Google belongs to Alphabet we have
Google ≤E Alphabet . Entities include DCs and DSs. Every device is associated
with an entity. However, entities may have many devices associated with them.
The function entity : D → E defines the entity associated with a given device.

Data Items, Datatypes and Values. Let I be a set of data items. Data items
correspond to the pieces of information that devices communicate. Each data
item has a datatype associated with it. Let T be a set of datatypes and ≤T the
associated partial order. We use function type : I → T to define the datatype
of each data item. Examples of datatypes3 are: age, address, city and clinical
records. Since city is one of the elements that the datatype address may be
composed of, we have city ≤T address. We use V to the denote the set of all
values of data items, V = (

⋃
t∈T Vt) where Vt is the set of values for data items

of type t. We use a special element ⊥ ∈ V to denote the undefined value. A
data item may be undefined, for instance, if it has been deleted or it has not
been collected. The device where a data item is created (its source) is called the
owner device of the data item. We use a function owner : I → D to denote the
owner device of a given data item.

Purposes. We denote by P the set of purposes and ≤P the associated partial
order. For instance, if newsletter is considered as a specific type of advertisement,
then we have newsletter ≤P advertisement .

3 Note that here we do not use the term “datatype” as traditionally in programming
languages. We use datatype to refer to the semantic meaning of data items.

180 R. Pardo and D. Le Métayer

Conditions. Privacy policies are contextual: they may depend on conditions on
the information stored on the devices on which they are evaluated. For example,
(1) “Only data from adults may be collected” or (2) “Only locations within the city
of Lyon may be collected from my smartwatch” are examples of policy conditions.
In order to express conditions we use a simple logical language. Let F denote a
set of functions and terms t be defined as follows: t:: = i | c | f(#»t) where i ∈ I
is data item, c ∈ V is a constant value, f ∈ F is a function, and #»

t is a list of
terms matching the arity of f . The syntax of the logical language is as follows:
ϕ :: = t1 ∗ t2 | ¬ϕ | ϕ1 ∧ϕ2 | tt | ff where ∗ is an arbitrary binary predicate, t1, t2
are terms; tt and ff represent respectively true and false. For instance, age ≥ 18
and smartwatch location = Lyon model conditions (1) and (2), respectively. We
denote the set of well-formed conditions as C. In order to compare conditions, we
use a relation, 	 : C ×C. We write ϕ1 	 ϕ2 to denote that ϕ2 is stronger than ϕ1.

2.2 Abstract Syntax of Pilot Privacy Policies

In this section we introduce the abstract syntax of Pilot privacy policies, or,
simply, Pilot policies. We emphasize the fact that this abstract syntax is not
the syntax used to communicate with DSs or DCs. This abstract syntax can be
associated with a concrete syntax in a restricted form of natural language. We
do not describe this mapping here due to space constraints, but we provide some
illustrative examples in Sect. 2.3 and describe a user-friendly interface to define
Pilot policies in Sect. 4.3. The goal of Pilot policies is to express the conditions
under which data can be communicated. We consider two different types of data
communications: data collection and transfers. Data collection corresponds to
the collection by a DC of information directly from a DS. A transfer is the event
of sending previously collected data to third parties.

Definition 1 (Pilot Privacy Policies Syntax). Given Purposes ∈ 2P ,
retention time ∈ N, condition ∈ C, entity ∈ E and datatype ∈ T , the syntax
of Pilot policies is defined as follows:

PilotPrivacy Policy :: = (datatype, dcr ,TR)
Data Communication Rule (dcr) :: = 〈condition, entity , dur〉

Data Usage Rule (dur) :: = 〈Purposes, retention time〉
Transfer Rules(TR) :: = {dcr1, dcr2, . . .}

We use DUR, DCR, PP to denote the sets of data usage rules, data com-
munication rules and Pilot privacy policies, respectively. The set of transfer
rules is defined as the set of sets of data communication rules, TR ∈ 2DCR. In
what follows, we provide some intuition about this syntax and an example of
application.

Data Usage Rules. The purpose of these rules is to define the operations that
may be performed on the data. Purposes is the set of allowed purposes and

Analysis of Privacy Policies to Enhance Informed Consent 181

retention time the deadline for erasing the data. As an example, consider the
following data usage rule,

dur1 = 〈{research}, 26/04/2019 〉.

This rule states that the data may be used only for the purpose of research
and may be used until 26/04/2019 .

Data Communication Rules. A data communication rule defines the condi-
tions that must be met for the data to be collected by or communicated to an
entity. The outer layer of data communication rules—i.e., the condition and
entity—should be checked by the sender whereas the data usage rule is to be
enforced by the receiver. The first element, condition, imposes constraints on
the data item and the context (state of the DS device); entity indicates the
entity allowed to receive the data; dur is a data usage rule stating how entity
may use the data. For example, 〈age > 18,AdsCom, dur1〉. states that data
may be communicated to the entity AdsCom which may use it according to
dur1 (defined above). It also requires that the data item age is greater than
18. This data item may be the data item to be sent or part of the contextual
information of the sender device.

Transfer Rules. These rules form a set of data communication rules specifying
the entities to whom the data may be transferred.

Pilot Privacy Policies. DSs and DCs use Pilot policies to describe how data
may be used, collected and transferred. The first element, datatype, indicates
the type of data the policy applies to; dcr defines the collection conditions
and TR the transfer rules. In some cases, several Pilot policies are necessary
to fully capture the privacy choices for a given datatype. For instance, a DS
may allow only her employer to collect her data when she is at work but,
when being in a museum, she may allow only the museum. In this example,
the DS must define two policies, one for each location.

2.3 Example: Vehicle Tracking

In this section, we illustrate the syntax of Pilot with a concrete example that
will be continued with the risk analysis in Sect. 4.

The use of Automatic Number Plate Recognition (ANPR) [10] is becoming
very popular for applications such as parking billing or pay-per-use roads. These
systems consist of a set of cameras that automatically recognize plate numbers
when vehicles cross the range covered by the cameras. Using this information,
it is possible to determine how long a car has been in a parking place or how
many times it has traveled on a highway, for example.

ANPR systems may collect large amounts of mobility data, which raises pri-
vacy concerns [11]. When data is collected for the purpose of billing, the consent
of the customer is not needed since the legal ground for the data processing can
be the performance of a contract. However, certain privacy regulations, such as
the GDPR, require prior consent for the use of the data for other purposes, such
as commercial offers or advertisement.

182 R. Pardo and D. Le Métayer

Consider a DC, Parket, which owns parking areas equipped with ANPR
in France. Parket is interested in offering discounts to frequent customers. To
this end, Parket uses the number plates recorded by the ANPR system to send
commercial offers to a selection of customers. Additionally, Parket transfers some
data to its sister company, ParketWW, that operates worldwide with the goal of
providing better offers to their customers. Using data for these purposes requires
explicit consent from DSs. The Pilot policy below precisely captures the way
in which Parket wants to collect and use number plates for these purposes.

(number plate, 〈tt ,Parket , 〈{commercial offers}, 21/03/2019 〉〉,
{〈tt ,ParketWW , 〈{commercial offers}, 26/04/2019 〉〉}) (1)

The condition (tt) in (1) means that Parket does not impose any condition on the
number plates it collects or transfers to ParketWW. This policy can be mapped
into the following natural language sentence:

Parket may collect data of type number plate and use it for
commercial offers purposes until 21/03/2019 .
This data may be transferred to ParketWW which may use it for
commercial offers purposes until 26/04/2019 .

The parts of the policy in italic font correspond to the elements of Pilot’s
abstract syntax. These elements change based on the content of the policy. The
remaining parts of the policy are common to all Pilot policies.

To obtain DSs consent, Parket uses a system which broadcasts the above
Pilot policy to vehicles before they enter the ANPR area. The implementation
of this broadcast process is outside the scope of this paper; several solutions are
presented in [8]. DSs are therefore informed about Parket’s policy before data
is collected. However, DSs may disagree about the processing of their data for
these purposes. They can express their own privacy policy in Pilot to define
the conditions of their consent (or denial of consent).

Consider a DS, Alice, who often visits Parket parkings. Alice wants to benefit
from the offers that Parket provides in her city (Lyon) but does not want her
information to be transferred to third-parties. To this end, she uses the following
Pilot policy:

(number plate, 〈car location = Lyon,Parket ,
〈{commercial offers}, 21/03/2019 〉〉, ∅) (2)

In practice, she would actually express this policy as follows:

Parket may collect data of type number plate if car location is Lyon and
use it for commercial offers purposes until 21/03/2019 .

which is a natural language version of the above abstract syntax policy.
In contrast with Parket’s policy, Alice’s policy includes a condition using

car location, which is a data item containing the current location of Alice’s car.

Analysis of Privacy Policies to Enhance Informed Consent 183

In addition, the absence of transfer statement means that Alice does not allow
Parket to transfer her data. It is easy to see that Alice’s policy is more restrictive
than Parket’s policy. Thus, after Alice’s device4 receives Parket’s policy, it can
automatically send an answer to Parket indicating that Alice does not give her
consent to the collection of her data in the conditions stated in Parket ’s policy. In
practice, Alice’s policy can also be sent back so that Parket can possibly adjust
her own policy to match Alice’s requirements. Parket would then have the option
to send a new DC policy consistent with Alice’s policy and Alice would send her
consent in return. The new policy sent by Parket can be computed as a join of
Parket’s original policy and Alice’s policy (see AppendixC for an example of
policy join which is proven to preserve the privacy preferences of the DS).

This example is continued in Sect. 4 which illustrates the use of Pilot to
enhance Alice’s awareness by providing her information about the risks related
to her choices of privacy policy.

3 Abstract Execution Model

In this section, we describe the abstract execution model of Pilot. The purpose
of this abstract model is twofold: it is useful to define a precise semantics of the
language and therefore to avoid any ambiguity about the meaning of privacy
policies; also, it is used by the verification tool described in the next section
to highlight privacy risks. The definition of the full semantics of the language,
which is presented in a companion paper [19], is beyond the scope of this paper.
In the following, we focus on the two main components of the abstract model:
the system state (Sect. 3.1) and the events (Sect. 3.2).

3.1 System State

We first present an abstract model of a system composed of devices that commu-
nicate information and use Pilot policies to express the privacy requirements of
DSs and DCs. Every device has a set of associated policies. A policy is associated
with a device if it was defined in the device or the device received it. Additionally,
DS devices have a set of data associated with them. These data may represent,
for instance, the MAC address of the device or workouts recorded by the device.
Finally, we keep track of the data collected by DC devices together with their
corresponding Pilot policies. The system state is formally defined as follows.

Definition 2 (System state). The system state is a triple 〈ν, π, ρ〉 where:

– ν : D × I ⇀ V is a mapping from the data items of a device to their corre-
sponding value in that device.

4 This device can be Alice’s car on-board computer, which can itself be connected to
the mobile phone used by Alice to manage her privacy policies [8].

184 R. Pardo and D. Le Métayer

– π : D → 2D×PP is a function denoting the policy base of a device. The policy
base contains the policies created by the owner of the device and the policies
sent by other devices in order to state their collection requirements. A pair
(d, p) means that Pilot policy p belongs to device d. We write πd to denote
π(d).

– ρ : D → 2D×I×PP returns a set of triples (s, i, p) indicating the data items
and Pilot policies that a controller has received. If (d′, i, p) ∈ ρ(d), we say
that device d has received or collected data item i from device d′ and policy p
describes how the data item must be used. We write ρd to denote ρ(d).

In Definition 2, ν returns the local value of a data item in the specified device.
However, not all devices have values for all data items. When the value of a data
item in a device is undefined, ν returns ⊥. The policy base of a device d, πd,
contains the Pilot policies that the device has received or that have been defined
locally. If (d, p) ∈ π(d), the policy p corresponds to a policy that d has defined
in the device itself. On the other hand, if (d, p) ∈ π(e) where d = e, p is a policy
sent from device e. Policies stored in the policy base are used to compare the
privacy policies of two devices before the data is communicated. The information
that a device has received is recorded in ρ. Also, ρ contains the Pilot policy
describing how data must be used. The difference between policies in π and ρ is
that policies in π are used to determine whether data can be communicated, and
policies in ρ are used to describe how a data item must be used by the receiver.

Example 1. Figure 1 shows a state composed of two devices: Alice’s car, and
Parket’s ANPR system. The figure depicts the situation after Alice’s car has
entered the range covered by the ANPR camera and the collection of her data
has already occurred.

The database in Alice’s state (νAlice) contains a data item of type number
plate plateAlice whose value is GD-042-PR. The policy base in Alice’s device
(πAlice) contains two policies: (Alice, pAlice) representing a policy that Alice
defined, and (Parket , pParket) which represents a policy pParket sent by Par-
ket. We assume that pAlice and pParket are the policies applying to data items
of type number plate.

Parket’s state contains the same components as Alice’s state with, in addi-
tion, a set of received data (ρParket). The latter contains the data item plateAlice

collected from Alice and the Pilot policy pParket that must be applied in
order to handle the data. Note that pParket was the Pilot policy originally
defined by Parket. In order for Alice’s privacy to be preserved, it must hold that
pParket is more restrictive than Alice’s Pilot policy pParket , which is denoted
by pParket � pAlice .5 This condition can easily be enforced by comparing the
policies before data is collected. The first element in (Alice, plateAlice , pParket)
indicates that the data comes from Alice’s device. Finally, Parket’s policy base
has one policy: its own policy pParket , which was communicated to Alice for data
collection. ��

5 See Appendix A for the formal definition of �.

Analysis of Privacy Policies to Enhance Informed Consent 185

Fig. 1. Example system state

3.2 System Events

In this section we describe the set of events E in our abstract execution model.
We focus on events that ensure that the exchange of data items is done according
to the Pilot policies of DSs and DCs.

Events. The set of events E is composed by the following the events: request ,
send , transfer and use. The events request , send and transfer model valid
exchanges of policies and data among DCs and DSs. The event use models
correct usage of the collected data by DCs. In what follow we explain each event
in detail.

request(sndr , rcv , t , p) models request of data from DCs to DSs or other DCs.
Thus, sndr is always a DC device, and rcv may be a DC or DS device. A
request includes the type of the data that is being requested t and a Pilot
policy p. As expected, the Pilot policy is required to refer to the datatype
that is requested, i.e., p = (t , ,). As a result of executing request , the pair
(rcv , p) is added to πrcv . Thus, rcv is informed of the conditions under which
sndr will use the requested data.

send(sndr , rcv , i) represents the collection by the DC rcv of a data item i from
the DS sndr . In order for send to be executed, the device sndr must check
that πsndr contains: (i) an active policy defined by sndr , psndr , indicating
how sndr allows DCs to use her data, and (ii) an active policy sent by rcv ,
prcv , indicating how she plans to use the data. A policy is active if it applies
to the data item to be sent, to rcv ’s entity, the retention time has not yet
been reached, and its condition holds.6 Data can only be sent if prcv is more
restrictive than psndr (i.e., prcv � psndr), which must be checked by sndr .
We record the data exchange in ρrcv indicating: the sender, the data item
and rcv ’s Pilot policy, (sndr , i, prcv). We also update rcv ’s database with
the value of i in sndr ’s state, ν(rcv , i) = ν(sndr , i).

transfer(sndr , rcv , i) is executed when a DC (sndr) transfers a data item i to
another DC (rcv). First, sndr checks whether πsndr contains an active policy,
from rcv , prcv . Here we do not use a Pilot policy from sndr , instead we use
the Pilot policy p sent along with the data—defined by the owner of i. Thus,
sndr must check whether there exists an active transfer rule (tr) in the set

6 See Appendix B for the formal definition of active policy and active transfer.

186 R. Pardo and D. Le Métayer

of transfers rules of the Pilot policy p. As before, sndr must check that the
policy sent by rcv is more restrictive than those originally sent by the owner
of the data, i.e., prcv � ptr where ptr is a policy with the active transfer tr in
the place of the data communication rule and with the same set of transfers
as p. Note that data items can be transferred more than once to the entities
in the set of transfers as long as the retention time has not been reached.
This is not an issue in terms of privacy as data items are constant values. In
the resulting state, we update ρrcv with the sender, the data item and rcv ’s
Pilot policy, (sndr , i, prcv). Note that, in this case, the owner of the data
item is not sndr since transfers always correspond to exchanges of previously
collected data, owner(i) = sndr . The database of rcv is updated with the
current value of i in νsndr .

use(dev , i, pur) models the use of a data item i by a DC device dev for pur-
pose pur . Usage conditions are specified in the data usage rule of the policy
attached to the data item, denoted as pi, in the set of received data of dev ,
ρdev . Thus, in order to execute use we require that: (i) the purpose pur is
allowed by pi, and (ii) the retention time in pi has not elapsed.

4 Risk Analysis

As described in the introduction, an effective way to enhance informed consent
is to raise user awareness about the risks related to personal data collection.
Privacy risks may result from different sorts of misbehavior such as the use of
data beyond the allowed purpose or the transfer of data to unauthorized third
parties [15].

In order to assess the risks related to a given privacy policy, we need to rely
on assumptions about potential risk sources, such as:

– Entities ei that may have a strong interest to use data of type t for a given
purpose pur .

– Entities ei that may have facilities and interest to transfer data of type t to
other entities ej .

In practice, some of these assumptions may be generic and could be obtained
from databases populated by pairs or NGOs based on history of misconducts by
companies or business sectors. Others risk assumptions can be specific to the DS
(e.g., if she fears that a friend may be tempted to transfer certain information to
another person). Based on these assumptions, a DS who is wondering whether
she should add a policy p to her current set of policies can ask questions such
as: “if I add this policy p:

– Is there a risk that my data of type t is used for purpose pur?
– Is there a risk that, at some stage, entity e gets my data of type t? ”

In what follows, we first introduce our approach to answer the above ques-
tions (Sect. 4.1); then we illustrate it with the example introduced in Sect. 2.3.
(Section 4.2) and we present a user-friendly interface to define and analyze pri-
vacy policies (Sect. 4.3).

Analysis of Privacy Policies to Enhance Informed Consent 187

4.1 Automatic Risk Analysis with SPIN

In order to automatically answer questions of the type described above, we use
the verification tool SPIN [14]. SPIN belongs to the family of verification tools
known as model-checkers. A model-checker takes as input a model of the system
(i.e., an abstract description of the behavior of the system) and a set of properties
(typically expressed in formal logic), and checks whether the model of the system
satisfies the properties. In SPIN, the model is written in the modeling language
Promela [14] and properties are encoded in Linear Temporal Logic (LTL) (e.g.,
[4]). We chose SPIN as it has successfully been used in a variety of contexts [18].
However, our methodology is not limited to SPIN and any other formal verifi-
cation tool such as SMT solvers [5] or automated theorem provers [24] could be
used instead.

Our approach consists in defining a Promela model for the Pilot events and
privacy policies, and translating the risk analysis questions into LTL properties
that can be automatically checked by SPIN. For example, the question “Is there
a risk that Alice’s data is used for the purpose of profiling by ParketWW?”
is translated into the LTL property “ParketWW never uses Alice’s data for
profiling”. Devices are modeled as processes that randomly try to execute events
defined as set forth in Sect. 3.2.

In order to encode the misbehavior expressed in the assumptions, we add
“illegal” events to the set of events that devices can execute. For instance, con-
sider the assumption “use of data beyond the allowed purpose”. To model this
assumption, we introduce the event illegal use, which behaves as use, but disre-
gards the purpose of the DS policy for the data.

SPIN explores all possible sequences of executions of events (including mis-
behavior events) trying to find a sequence that violates the LTL property. If no
sequence is found, the property cannot be violated, which means that the risk
corresponding to the property cannot occur. If a sequence is found, the risk cor-
responding to the property can occur, and SPIN returns the sequence of events
that leads to the violation. This sequence of events can be used to further clarify
the cause of the violation.

4.2 Case Study: Vehicle Tracking

We illustrate our risk analysis technique with the vehicle tracking example intro-
duced in Sect. 2.3. We first define the Promela model and the assumptions on
the entities involved in this example. The code of the complete model is available
in [23].

Promela Model. We define a model involving the three entities identified in
Sect. 2.3 with, in addition, the car insurance company CarInsure which is iden-
tified as a potential source of risk related to ParketWW , i.e., E = {Alice, Parket ,
ParketWW , CarInsure}. Each entity is associated with a single device: D = E
and entity(x) = x for x ∈ {Alice, Parket , ParketWW , CarInsure}. We focus on
one datatype T = {number plate} with its set of values defined as Vnumber plate =

188 R. Pardo and D. Le Métayer

{GD-042-PR}. We consider a data item plateAlice of type number plate for which
Alice is the owner. Finally, we consider a set of purposes P = {commercial offers,
profiling}.

Risk Assumptions on Entities. In this case study, we consider two risk assump-
tions:

1. ParketWW may transfer personal data to CarInsure disregarding the associ-
ated DS privacy policies.

2. CarInsure has strong interest in using personal data for profiling.

In practice, these assumptions, which are not specific to Alice, may be obtained
automatically from databases populated by pairs or NGOs for example.

Set of Events. The set of events that we consider is derived from the risk assump-
tions on entities. On the one hand, we model events that behave correctly, i.e.,
as described in Sect. 3.2. In order to model the worst case scenario in terms of
risk analysis, we consider that: the DCs in this case study (i.e., Parket, Par-
ketWW and CarInsure) can request data to any entity (including Alice), the
DCs can collect Alice’s data, and the DCs can transfer data among them. On the
other hand, the risk assumptions above are modeled as two events: ParketWW
may transfer data to CarInsure disregarding Alice’s policy, and CarInsure may
use Alice’s data for profiling even if it is not allowed by Alice’s policy. Let
DC ,DC ′ ∈ {Parket ,ParketWW ,CarInsure}, the following events may occur:

– request(DC ,Alice,number plate, p) - A DC requests a number plate from
Alice and p is the Pilot policy of the DC.

– request(DC ,DC ′,number plate, p) - A DC requests data items of type number
plate from another DC and p is the Pilot policy of the requester DC.

– send(Alice,DC , i) - Alice sends her item i to a DC.
– transfer(DC ,DC ′, i) - A DC transfers a previously received item i to another

DC.
– illegal transfer(ParketWW ,CarInsure, i) - ParketWW transfers a previously

received item i to CarInsure disregarding the associated Pilot policy defined
by the owner of i.

– illegal use(CarInsure, i, profiling) - CarInsure uses data item i for profiling
disregarding the associated privacy policy defined by the owner of i.

Alice’s Policies. In order to illustrate the benefits of our risk analysis approach,
we focus on the following two policies that Alice may consider.

p transAlice = (number plate, 〈tt ,Parket , 〈{commercial offers}, 21/03/2019 〉〉,
{〈tt ,ParketWW , 〈{commercial offers}, 26/04/2019 〉〉}).

p no transAlice = (number plate, 〈tt ,Parket , 〈{commercial offers}, 21/03/2019 〉〉, ∅).

Analysis of Privacy Policies to Enhance Informed Consent 189

The policy p transAlice states that Parket can collect data of type number plate
from Alice, use it for commercial offers and keep it until 21/03/2019. It also
allows Parket to transfer the data to ParketWW. ParketWW may use the data
for commercial offers and keep it until 26/04/2019. The policy p no transAlice is
similar to p transAlice except that it does not allow Parket to transfer the data.
We assume that Alice has not yet defined any other privacy policy concerning
Parket and ParketWW.

Parket’s Policy. We set Parket’s privacy policy equal to Alice’s. By doing so,
we consider the worst case scenario in terms of privacy risks because it allows
Parket to collect Alice’s data and use it in all conditions and for all purposes
allowed by Alice.

ParketWW’s Policy. Similarly, ParketWW’s policy is aligned with the transfer
rule in p transAlice :

pParketWW = (number plate, 〈tt ,ParketWW , 〈{commercial offers}, 26/04/2019 〉〉, ∅).

The above policy states that ParketWW may use data of type number plate for
commercial offers and keep it until 26/04/2019 . It also represents the worst case
scenario for risk analysis, as it matches the preferences in Alice’s first policy.

Results of the Risk Analysis

Table 1 summarizes some of the results of the application of our SPIN risk ana-
lyzer on this example. The questions in the first column have been translated
into LTL properties used by SPIN (see [23]). The output of SPIN appears in
columns 2 to 5. The green boxes indicate that the output is in accordance with
Alice’s policy while red boxes correspond to violations of her policy.

Columns 2 and 3 correspond to executions of the system involving correct
events, considering respectively p transAlice and p no transAlice as Alice’s policy.
As expected, all these executions respect Alice’s policies.

Columns 3 and 4 consider executions involving illegal transfer and
illegal use. These columns show the privacy risks taken by Alice based on the
above risk assumptions. Rows 3 and 6 show respectively that CarInsure may get
Alice’s data and use it for profiling. In addition, the counterexamples generated
by SPIN, which are not pictured in the table, show that this can happen only
after ParketWW executes illegal transfer .

From the results of this privacy risk analysis Alice may take a better informed
decision about the policy to choose. In a nutshell, she has three options:

1. Disallow Parket to use her data for commercial offers, i.e., choose to add
neither p transAlice nor p no transAlice to her set of policies (Parket will use
the data only for billing purposes, based on contract).

2. Allow Parket to use her data for commercial offers without transfers to Par-
ketWW, i.e., choose p no transAlice .

190 R. Pardo and D. Le Métayer

3. Allow Parket to use her data for commercial offers and to transfer to Par-
ketWW, i.e., choose p transAlice .

Therefore, if Alice wants to receive commercial offers but does not want to take
the risk of being profiled by an insurance company, she should take option two.

Table 1. Risk Analysis of Alice’s policies p transAlice and p no transAlice . Red boxes
denote that Alice’s policy is violated. Green boxes denote that Alice’s policy is
respected.

4.3 Usability

In order to show the usability of the approach, we have developed a web applica-
tion to make it possible for users with no technical background to perform risk
analysis as outlined in Sect. 4.2 for the ANPR system.

Figure 2 shows the input forms of the web application. First, DSs have access
to a user-friendly form to input Pilot policies. In the figure we show an example
for the policy p transAlice . Then DSs can choose the appropriate risk assump-
tions from the list generated by the system. Finally, they can ask questions
about the potential risks based on these assumptions. When clicking on “Ver-
ify!”, the web application runs SPIN to verify the LTL property corresponding
to the question. The text “Not Analyzed” in grey is updated with “Yes” or “No”
depending on the result. The figure shows the results of the three first questions
with p transAlice and no risk assumption chosen (first column in Table 1).

The web application is tailored to the ANPR case study we use through-
out the paper. The Promela model and the policies defined in Sect. 4.2 are
implemented in the application. This prototype can be generalized in different

Analysis of Privacy Policies to Enhance Informed Consent 191

Fig. 2. Input forms of risk analysis web application.

directions, for example by allowing users to enter specific risk assumptions on
third parties. The range of questions could also be extended to include questions
such as “Can X use Y ’s data for other purpose than pur?” The code of the web
application is available at [23].

5 Related Work

Several languages or frameworks dedicated to privacy policies have been pro-
posed. A pioneer project in this area was the “Platform for Privacy Preferences”
(P3P) [22]. P3P makes it possible to express notions such as purpose, retention
time and conditions. However, P3P is not really well suited to the IoT as it was
conceived as a policy language for websites. Also, P3P does not offer support
for defining data transfers. Other languages close to P3P have been proposed,
such as the “Enterprise Policy Authorization Language” (EPAL) [2] and “An
Accountability Policy Language” (A-PPL) [3]. The lack of a precise execution

192 R. Pardo and D. Le Métayer

model for these languages may also give rise to ambiguities and variations in
their implementations.

Even if its first target was the interactions with service providers rather than
IoT environments, the language that is the closest to the spirit of Pilot is the
Data Handling Policy (DHP) language [1]. DHP also allows users to express the
actions and purposes that are authorized for (specific or generic) recipients. DHP
does not include explicitly transfer rules and retention time but, in contrast to
Pilot, it makes it possible to specify obligations. Obligations can be used, for
example, to require the deletion of data after a given period of time.

None of the above works include tools to help users understand the privacy
risks associated with a given a policy, which is a major benefit of Pilot as
discussed in Sect. 4. In the same spirit, De et al. [16] have proposed a methodology
where DSs can visualize the privacy risks associated to their privacy settings.
Here the authors use harm trees to determine the risks associated with privacy
settings. The main difference with Pilot is that harm trees must be manually
defined for a given application whereas we our analysis is fully automatic.7

Another line of work is that of formal privacy languages. Languages such as
S4P [7] and SIMPL [17] define unambiguously the behavior of the system—and,
consequently, the meaning of the policies—by means of trace semantics. The goal
of this formal semantics is to be able to prove global correctness properties such
as “DCs always use DS data according to their policies”. While this semantics
is well-suited for its intended purpose, it cannot be directly used to develop
policy enforcement mechanisms. In contrast, we provide a Promela model in
Sect. 4—capturing the execution model of Pilot (cf. Sect. 3)—that can be used
as a reference to implement a system for the enforcement for Pilot policies.
In addition, these languages, which were proposed before the adoption of the
GDPR, were not conceived with its requirements in mind.

Other languages have been proposed to specify privacy regulations such as
HIPAA, COPAA and GLBA. For instance, CI [6] is a dedicated linear temporal
logic based on the notion of contextual integrity. CI has been used to model
certain aspects of regulations such as HIPAA, COPPA and GLBA. Similarly,
PrivacyAPI [18] is an extension of the access control matrix with operations such
as notification and logging. The authors also use a Promela model of HIPAA
to be able to verify the “correctness” and better understand the regulation.
PrivacyLFP [9] uses first-order fixed point logic to increase the expressiveness
of previous approaches. Using PrivacyLFP, the authors formalize HIPAA and
GLBA with a higher degree of coverage than previous approaches. The main
difference between Pilot and these languages is their focus. Pilot is focused
on modeling DSs and DCs privacy policies and enhancing DSs awareness whereas
these languages focus on modeling regulations.

Usage control (UCON) [20,21] appeared as an extension of access control
to express how the data may be used after being accessed. To this end, it
introduces obligations, which are actions such as “do not transfer data item i”.

7 Only risk assumptions must be defined, which is useful to answer different “what-if”
questions.

Analysis of Privacy Policies to Enhance Informed Consent 193

The Obligation Specification Language (OSL) [13] is an example of enforcement
mechanism through digital right management systems. However, UCON does
not offer any support to compare policies and does not differentiate between
DSs and DCs policies, which is a critical feature in the context of privacy poli-
cies. For DSs to provide an informed consent, they should know whether DCs
policies comply with their own policies.

Some work has also been done on privacy risk analysis [15], in particular
to address the needs of the GDPR regarding Privacy Impact Assessments. We
should emphasize that the notion of risk analysis used in this paper is different in
the sense that it applies to potential risks related to privacy policies rather than
systems or products. Hence, the risk assumptions considered here concern only
the motivation, reputation and potential history of misbehavior of the parties
(but not the vulnerabilities of the systems, which are out of reach and expertise
of the data subjects).

6 Conclusion

In this paper, we have presented the privacy policy language Pilot, and a novel
approach to analyzing privacy policies which is focused on enhancing informed
consent. An advantage of a language like Pilot is the possibility to use it as a
basis to implement “personal data managers”, to enforce privacy policies auto-
matically, or “personal data auditors”, to check a posteriori that a DC has
complied with the DS policies associated with all the personal data that it has
processed. Another orthogonal challenge in the context of the IoT is to ensure
that DSs are always informed about the data collection taking place in their
environment and can effectively communicate their consent (or objection) to
the surrounding sensors. Different solutions to this problem have been proposed
in [8] relying on Pilot as a privacy policy language used by DCs to commu-
nicate their policies and DSs to provide their consent. These communications
can either take place directly or indirectly (through registers in which privacy
policies can be stored).

The work described in this paper can be extended in several directions. First,
the risk analysis model used here is simple and could be enriched in different
ways, for example by taking into account risks of inferences between different
types of data. The evaluation of these risks could be based on past experience
and research such as the study conducted by Privacy International.8 The risk
analysis could also involve the history of the DS (personal data already collected
by DCs in the past). On the formal side, our objective is to use a formal theorem
prover to prove global properties of the model. This formal framework could also
be used to implement tools to verify that a given enforcement system complies
with the Pilot policies.

8 https://privacyinternational.org/sites/default/files/2018-04/data%20points%20used
%20in%20tracking 0.pdf.

https://privacyinternational.org/sites/default/files/2018-04/data%20points%20used%20in%20tracking_0.pdf
https://privacyinternational.org/sites/default/files/2018-04/data%20points%20used%20in%20tracking_0.pdf

194 R. Pardo and D. Le Métayer

Acknowledgments. This work has been partially funded by the ANR project CISC
(Certification of IoT Secure Compilation) and by the Inria Project Lab SPAI.

Appendix

A Policy Subsumption

We formalize the notion of policy subsumption as a relation over Pilot policies.
We start by defining subsumption of data usage and data communication rules,
which is used to define Pilot policy subsumption.

Definition 3 (Data Usage Rule Subsumption). Given two data usage rules
dur1 = 〈P1, rt1〉 and dur2 = 〈P2, rt2〉, we say that dur1 subsumes dur2, denoted
as dur1 �DUR dur2, iff (i) ∀p1 ∈ P1 · ∃p2 ∈ P2 such that p1 ≤P p2; and (ii)
rt1 ≤ rt2.

Definition 4 (Data Communication Rule Subsumption). Given two data
communication rules dcr1 = 〈c1, e1, dur1〉 and dcr2 = 〈c2, e2, dur2〉, we say that
dcr1 subsumes dcr2, denoted as dcr1 �DCR dcr2, iff (i) c1 	 c2; (ii) e1 ≤E e2;
and (iii) dur1 �DUR dur2.

Definition 5 (Pilot Privacy Policy Subsumption). Given two Pilot pri-
vacy policies π1 = 〈t1, dcr1,TR1〉 and π2 = 〈t2, dcr2,TR2〉, we say that π1

subsumes π2, denoted as π1 � π2 iff (i) t1 ≤T t2; (ii) dcr1 �DCR dcr2; and (iii)
∀tr1 ∈ TR1 · ∃tr2 ∈ TR2 such that tr1 �DCR tr2.

B Active Policies and Transfer Rules

Here we formally define when Pilot policies and transfer rules are active.
Let eval(ν, d, ϕ) denote an evaluation function for conditions. eval(ν, d, ϕ) is
defined as described in Table 2. We use a function time(e) : E → N to assign a
timestamp—represented as a natural number N—to each event of a trace.

Active policy. Formally, activePolicy(p, send(sndr , rcv , i), st) = type(i) ≤T
t ∧ eval(ν, sndr , ϕ) ∧ time(st , send(sndr , rcv , i)) < rt ∧ entity(rcv) ≤E e
where p = (t , 〈ϕ, e, 〈 , rt〉〉,) and st = 〈ν, , 〉. Intuitively, given p =
(t , 〈ϕ, e, 〈P, rt〉〉,TR), we check that: (i) the type of the data to be sent
corresponds to the type of data the policy is defined for (type(i) ≤T t); (ii)
the condition of the policy evaluates to true (eval(ν, sndr , ϕ)); the retention
time for the receiver has not expired (time(send(sndr , rcv , i)) < rt); and
(iii) the entity associated with the receiver device is allowed by the policy
(entity(rcv) ≤E e).

Active transfer rule. In order for a transfer rule to be active, the above checks
are performed on the transfer rule tr , and, additionally, it is required that
the retention time for the sender has not elapsed (time(transfer(sndr , rcv , i))
< rt).

Analysis of Privacy Policies to Enhance Informed Consent 195

Table 2. Definition of eval(ν, d, ϕ). We use ĉ, f̂ and ∗̂ to denote the interpretation of
constants, functions and binary predicates, respectively.

C Policy Join

We present a join operator for Pilot policies and prove that the resulting policy
is more restrictive than the policies used to compute the join. We first define
join operators for data usage rules and data communication rules, and use them
to the join operator for Pilot policies. Let min(e, e′) be a function that, given
two elements e, e′ ∈ X returns the minimum in the corresponding partial order
≤X . Let � denote the intersection keeping the minimum of comparable elements
in the partial order of purposes. Formally, given P, P ′ ∈ P, P � P ′ � (P ∩ P ′) ∪
P ′′ where P ′′ = {p ∈ P | ∃p′ ∈ P ′ s.t. p < p′}.

Definition 6 (Data Usage Rule Join). Given two data usage rules dur1 =
〈P1, rt1〉 and dur2 = 〈P2, rt2〉, the data usage rule join operator is defined as:
dur1 �DUR dur2 = 〈P1 � P2,min(rt1, rt2)〉.

Definition 7 (Data Communication Rule Join). Given two data com-
munication rules dcr1 = 〈c1, e1, dur1〉 and dcr2 = 〈c2, e2, dur2〉, the data
communication rule join operator is defined as: dur1 �DCR dur2 = 〈c1 ∧
c2,min(e1, e2), dur1 �DUR dur2〉.

Definition 8 (Pilot Policy Join �). Given two Pilot policies p =
(t1, dcr1,TR1) and q = (t2, dcr2,TR2), the policy join operator is defined as:
dur1 �DCR dur2 = (min(t1, t2), dcr1 �DCR dcr2, {t �DCR t′ | t ∈ TR1 ∧ t′ ∈
TR2 ∧ t �DCR t′}).

We say that an join operation is privacy preserving if the resulting policy is
more restrictive than both operands. Formally,

Definition 9 (Privacy Preserving Join). We say that � is privacy preserv-
ing iff ∀p, q ∈ PP ·(p � q) � p ∧ (p � q) � q.

In what follows we prove that the operation � is privacy preserving, Lemma 3.

196 R. Pardo and D. Le Métayer

Lemma 1. Given two data usage rules dur1, dur2 ∈ DUR it holds that
dur1 �DUR dur2 �DUR dur1 and dur1 �DUR dur2 �DUR dur2.

Proof. We split the proof into the two conjuncts of Lemma 1.

dur1 �DUR dur2 �DUR dur1 - We split the proof into the elements of data usage
rules, i.e., purposes and retention time.
– We show that ∀p ∈ dur1.P � dur2.P · ∃p′ ∈ dur1.P such that p ≤P p′.

• ∀p ∈ [(dur1.P ∩ dur2.P) ∪ {p1 ∈ dur1.P | ∃p2 ∈ dur2.P s.t. p1 ≤P
p2}] · ∃p′ ∈ dur1.P such that p ≤P p′ [By Def. �]

• We split the proof for each operand in the union.
∗ We show that ∀p ∈ (dur1.P ∩ dur2.P) · ∃p′ ∈ dur1.P such that

p ≤P p′. Assume p ∈ (dur1.P ∩ dur2.P). Then ∃p′ ∈ dur1.P
s.t. p = p′ [By Def. ∩]. Therefore, p ≤P p′.

∗ We show that ∀p ∈ {p1 ∈ dur1.P | ∃p2 ∈ dur2.P s.t. p1 ≤P
p2} · ∃p′ ∈ dur1.P such that p ≤P p′. Assume p ∈ {p1 ∈
dur1.P | ∃p2 ∈ dur2.P s.t. p1 ≤P p2}. Then, p ∈ dur1.P , and,
consequently, ∃p′ ∈ dur1.P s.t. p ≤P p′.

– min(dur1.rt , dur2.rt) ≤ dur1.rt [By Def. min]
dur1 �DUR dur2 �DUR dur2 - Retention time is symmetric to the previous case,

therefore we only show purposes.
– We show that ∀p ∈ dur1.P � dur2.P · ∃p′ ∈ dur2.P such that p ≤P p′.

• ∀p ∈ [(dur1.P ∩ dur2.P) ∪ {p1 ∈ dur1.P | ∃p2 ∈ dur2.P s.t. p1 ≤P
p2}] · ∃p′ ∈ dur2.P such that p ≤P p′ [By Def. �]

• We split the proof for each operand in the union.
∗ The case ∀p ∈ (dur1.P ∩dur2.P) ·∃p′ ∈ dur2.P such that p ≤P p′

is symmetric to the case above.
∗ We show that ∀p ∈ {p1 ∈ dur1.P | ∃p2 ∈ dur2.P s.t. p1 ≤P p2} ·

∃p′ ∈ dur2.P such that p ≤P p′. Assume p ∈ {p1 ∈ dur1.P | ∃p2 ∈
dur2.P s.t. p1 ≤P p2}. Then ∃p2 ∈ dur2.P s.t. p ≤P p2, and,
consequently, ∃p′ ∈ dur2.P s.t. p ≤P p′. ��

Lemma 2. Given two data communication rules dcr1, dcr2 ∈ DCR it holds that
dcr1 �DUR dcr2 �DUR dcr1 and dcr1 �DCR dcr2 �DCR dcr2.

Proof. We split the proof into the two conjuncts of Lemma2.

dcr1 �DUR dcr2 �DUR dcr1 - We split the proof into the elements of data com-
munication rules, i.e., conditions and entities and data usage rules.
– dcr1.c ∧ dcr2.c 	 dcr1.c. [By ∧-elimination]
– min(dcr1.e, dcr2.e) ≤E dcr1.e [By Def. min]
– dcr1.dur �DUR dcr2.dur �DCR dcr1.dur . [By Lemma 1]

dcr1 �DUR dcr2 �DUR dcr2 - The proof is symmetric to the previous case. ��

Lemma 3. The operation � in Definition 8 is privacy preserving.

Proof. Let p1 and p2 be two Pilot privacy policies. We show that p1 � p2 �
p1 and p1 � p2 � p2. We proof each conjunct separately.

Analysis of Privacy Policies to Enhance Informed Consent 197

p1 � p2 � p1 - We split the proof in cases based on the structure of Pilot poli-
cies, i.e., datatype (p1.t, p2.t), data communication rules (p1.dcr , p2.dcr) and
transfers (p1.TR, p2.TR).
– min(p1.t, p2.t) ≤T p1.t. [By Def. of min]
– p1.dcr �DCR p2.dcr �DCR p1.dcr . [By Lemma 2]
– ∀tr� ∈ {tr1 �DCR tr2 | tr1 ∈ p1.TR ∧ tr2 ∈ p2.TR ∧ tr1 �DCR tr2} · ∃tr ∈

TR1 s.t. tr� �DCR tr . Assume tr� ∈ {tr1 �DCR tr2 | tr1 ∈ p1.TR ∧
tr2 ∈ p2.TR ∧ tr1 �DCR tr2}. Then tr1 ∈ p1.TR and tr� �DCR tr1. [By
Lemma 2]

p1 � p2 � p2 - The proof is symmetric to the previous case. ��

References

1. Ardagna, C.A., De Capitani di Vimercati, S., Samarati, P.: Enhancing user pri-
vacy through data handling policies. In: Damiani, E., Liu, P. (eds.) DBSec 2006.
LNCS, vol. 4127, pp. 224–236. Springer, Heidelberg (2006). https://doi.org/10.
1007/11805588 16

2. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL). IBM Research (2003)

3. Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., De Oliveira, A.S., Sendor,
J.: A-PPL: an accountability policy language. In: Garcia-Alfaro, J., et al. (eds.)
DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 319–326. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17016-9 21

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,

Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

6. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual
integrity: framework and applications. In: Proceedings of the 27th IEEE Sym-
posium on Security and Privacy, S&P 2006, pp. 184–198 (2006)

7. Becker, M., Malkis, A., Bussard, L.: S4P: a generic language for specifying privacy
preferences and policies. Research report, Microsoft Research (2010)

8. Cunche, M., Le Métayer, D., Morel, V.: A generic information and consent frame-
work for the IoT. Research report RR-9234, Inria (2018). https://hal.inria.fr/hal-
01953052

9. DeYoung, H., Garg, D., Jia, L., Kaynar, D.K., Datta, A.: Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In: Proceedings of the 2010
ACM Workshop on Privacy in the Electronic Society, WPES 2010, pp. 73–82 (2010)

10. Du, S., Ibrahim, M., Shehata, M.S., Badawy, W.M.: Automatic license plate recog-
nition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Tech-
nol. 23(2), 311–325 (2013)

11. Electronic Fountrier Foundatino (EFF): Automated License Plate Readers (ALPR)
(2017). https://www.eff.org/cases/automated-license-plate-readers

12. Emami-Naeini, P., et al.: Privacy expectations and preferences in an IoT world.
In: Proceedings of the 13th Symposium on Usable Privacy and Security, SOUPS
2017, pp. 399–412 (2017)

13. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A policy language for
distributed usage control. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 531–546. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 35

https://doi.org/10.1007/11805588_16
https://doi.org/10.1007/11805588_16
https://doi.org/10.1007/978-3-319-17016-9_21
https://doi.org/10.1007/978-3-319-10575-8_11
https://hal.inria.fr/hal-01953052
https://hal.inria.fr/hal-01953052
https://www.eff.org/cases/automated-license-plate-readers
https://doi.org/10.1007/978-3-540-74835-9_35
https://doi.org/10.1007/978-3-540-74835-9_35

198 R. Pardo and D. Le Métayer

14. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

15. De, S.J., Le Métayer, D.: Privacy Risk Analysis. Morgan & Claypool Publishers,
San Rafael (2016)

16. De, S.J., Le Métayer, D.: Privacy risk analysis to enable informed privacy set-
tings. In: 2018 IEEE European Symposium on Security and Privacy, Workshops,
EuroS&P Workshops, pp. 95–102 (2018)

17. Métayer, D.: A formal privacy management framework. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 162–176. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01465-9 11

18. May, M.J., Gunter, C.A., Lee, I.: Privacy APIs: access control techniques to ana-
lyze and verify legal privacy policies. In: Proceedings of the 19th IEEE Computer
Security Foundations Workshop, CSFW 2006, pp. 85–97. IEEE Computer Society
(2006)

19. Pardo, R., Le Métayer, D.: Formal verification of legal privacy requirements (Sub-
mitted for Publication)

20. Park, J., Sandhu, R.S.: The UCONABC usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

21. Pretschner, A., Hilty, M., Basin, D.A.: Distributed usage control. Commun. ACM
49(9), 39–44 (2006)

22. Reagle, J., Cranor, L.F.: The platform for privacy preferences. Commun. ACM
42(2), 48–55 (1999)

23. Pilot Risk Analysis Model. https://github.com/raulpardo/pilot-risk-analysis-
model

24. Robinson, A.J., Voronkov, A.: Handbook of Automated Reasoning, vols. 1 and 2.
Elsevier, Amsterdam (2001)

https://doi.org/10.1007/978-3-642-01465-9_11
https://github.com/raulpardo/pilot-risk-analysis-model
https://github.com/raulpardo/pilot-risk-analysis-model

Security Protocol Practices

Lost in TLS? No More!
Assisted Deployment of Secure

TLS Configurations

Salvatore Manfredi1,2(B) , Silvio Ranise1 , and Giada Sciarretta1

1 Security & Trust, FBK, Trento, Italy
{smanfredi,ranise,giada.sciarretta}@fbk.eu

2 University of Trento, Trento, Italy

Abstract. Over the last few years, there has been an almost exponential
growth of TLS popularity and usage, especially among applications that
deal with sensitive data. However, even with this widespread use, TLS
remains for many system administrators a complex subject. The main
reason is that they do not have the time to understand all the crypto-
graphic algorithms and features used in a TLS suite and their relative
weaknesses. For these reasons, many different tools have been developed
to verify TLS implementations. However, they usually analyze the TLS
configuration and provide a list of possible attacks, without specifying
their mitigations. In this paper, we present TLSAssistant, a fully-featured
tool that combines state-of-the-art TLS analyzers with a report system
that suggests appropriate mitigations and shows the full set of viable
attacks.

Keywords: TLS misconfiguration · Vulnerability detection ·
Assisted mitigations

1 Introduction

Transport Layer Security (TLS) consists of a set of cryptographic protocols
designed to provide secure communications over a network. Developed as a suc-
cessor of the Secure Socket Layer (SSL) protocol, TLS has gained popularity
and widespread usage since the release of its first version in 1999 [21]. According
to [37], more than 130,000 of the top Alexa websites [43] support one or multiple
versions of the TLS protocol.

The popularity of TLS has encouraged attackers to find vulnerabilities and
develop exploits as documented by a long line of reported attacks and corre-
sponding fixes [1–5,16,17,28,31–33,42,46,48] together with the evolution of the
standard TLS specification from 1.0 to 1.3 as a result of the strategies put in
place by Internet service providers such as Apple, Google, Amazon, and Mozilla
to deprecate the use of TLS versions 1.0 and 1.1 [7] and of the SHA-1 hash func-
tion [6]. The types of attacks vary widely and include the renegotiation of cipher
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 201–220, 2019.
https://doi.org/10.1007/978-3-030-22479-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_11&domain=pdf
http://orcid.org/0000-0001-9645-6034
http://orcid.org/0000-0001-7269-9285
http://orcid.org/0000-0001-7567-4526
https://doi.org/10.1007/978-3-030-22479-0_11

202 S. Manfredi et al.

suites to exploit weak encryption algorithms [31], the knowledge of initialization
vectors to retrieve symmetric keys [17], and the use of libraries to exploit poor
certificate validation in deployments where clients are non-browsers [15]. The
variety attacks is the result of (i) maintaining backward compatibility and (ii)
evolving use case scenarios in which TLS is deployed. The main problem with (i)
is illustrated by the following observation from [37]: more than 108,000 web sites
still support TLS 1.0 that is vulnerable to a set of well-known attacks including
Man In The Middle (MITM). The problem with (ii) has already been pointed
out in [15] for SSL where it is shown that certificate validation—as supported
by available libraries for developing clients not based on browsers (e.g., native
mobile applications)—is flawed and permits to mount MITM attacks.

To help administrators in deploying secure TLS instances, a variety of tools
[11,14,29,39,45,47,50,51] have been developed for identifying weaknesses that
may lead to one or more known attacks. While such tools are quite effective in
automatically finding vulnerabilities and issuing warning about possible attacks,
the burden of finding adequate mitigation measures is completely left on the
administrator who must first collect information about the identified problem
and related fixes. Typically, such information is distributed in several sources
ranging from scientific papers to blog posts. Even disregarding the effort to col-
lect enough material to mitigate a security problem—notice that available tools
have varying coverage of the known TLS attacks—administrators should have
enough skills to understand the (often subtle) details and turn the information
in a concrete strategy to fix the problem. In other words, there is a problem
in making actionable the reports returned by available tools. To overcome this
problem, we make the following four main contributions:

– we build an exhaustive catalogue of known attacks to TLS deployments;
– we perform a comparison of the state-of-the-art tools capable of identifying

attacks of TLS deployments and characterize the coverage with respect to
the catalogue compiled in the previous point;

– we design and build an open-source tool, called TLSAssistant1, that reuses
some of the tools for identifying attacks considered in the previous point to
maximize coverage and enriches reports with possible mitigations and fixes,
including code snippets when the TLS entities are among the most widely
used (e.g., the TLS server is Apache);

– we experimentally evaluate the effectiveness of TLSAssistant by reporting
our experience in using it in the context of the deployment of a large scale
infrastructure for identity management and, most importantly, in a user
study involving users with little or no security skills. The findings of the
user study provide encouraging first evidence of the effectiveness of the tool
as even un-experienced users were able to successfully mitigate complex
attacks.

While many of the problems reported by TLSAssistant are server-side, particular
attention has been devoted to the security issues that result from inadequate

1 Available at sites.google.com/fbk.eu/tlsassistant.

http://sites.google.com/fbk.eu/tlsassistant

Assisted Deployment of Secure TLS Configurations 203

certificate validation in mobile applications. The main motivation for this choice
is the increasing role of mobile applications in accessing Internet resources com-
bined with the serious security consequences of managing certificates without
the help of browsers (as already observed in [15]).

Plan of the paper. Section 2 provides the necessary background notions on TLS
and a brief overview of its vulnerabilities. Section 3 contains a comparison of
the state-of-the-art automated tools for identifying TLS attacks both server
and (mobile) client-side. Section 4 contains a comprehensive catalogue of attacks
and related mitigations in the various version of TLS. Section 5 introduces the
tool TLSAssistant with its architecture, usage, and some details about the imple-
mentation. Section 6 reports the use of TLSAssistant in the deployment of an
eIDAS solution based on the new Italian identity cards and a user study involv-
ing bachelor and master degree students that were asked to fix two non-trivial
vulnerabilities. Section 7 concludes the paper and highlights future work.

2 Background

We provide some background notions about TLS needed to better understand
the security implications of its use. We briefly describe the general structure of
the TLS suite and some details in Sect. 2.1 and then give a concise guide to the
main vulnerabilities in Sect. 2.2.

2.1 TLS

The Transport Layer Security (TLS) suite is composed of two main protocols:

Handshake: allows the parties to exchange all information required to estab-
lish a reliable session. Depending on the configuration, the handshake can
provide either mutual or one-way authentication (usually is one-way, thus
only server provides a certificate). The protocol supports two special mes-
sages: (i) Change Cipher Spec that signals the transition of the session to a
different ciphering strategy and (ii) Alert which propagates potential alert
messages.
Record: encapsulates the messages to be transmitted to ensure their security.
The record protocol is composed of the following steps: (i) splitting of the
data stream into chunks; (ii) compression of the chunks; (iii) generation of
the Message Authentication Code (MAC) with the algorithm agreed during
the handshake; (iv) encryption of the payload using the cipher chosen during
the handshake; and (v) addition of the header to enable the packet to be
transmitted.

Over the years, TLS has seen the release of four versions: v1.0 released in
1999 [21], v1.1 released in 2006 [22], v1.2 released in 2008 [23], v1.3 released in
2018 (August) [26]. In the following we will detail v1.2, as is the most widely
supported, and v1.3, as it has introduced a set of changes to mitigate known
vulnerabilities that affected the previous TLS versions.

204 S. Manfredi et al.

Fig. 1. TLS 1.2 full handshake.

TLS 1.2. According to Qualys’ March monthly scan [37], TLS 1.2 is currently
the most widely supported protocol with a coverage of 94.8%. Each message of
the full handshake is shown in Fig. 1 (the striped sections show the encrypted
transmission, asterisks indicate optional messages). For lack of space, we refer
to the TLS specification [23] for the description of all the messages. Here, we
specify the first two messages: Client Hello and Server Hello. As we will describe
in Sect. 5, our tool analyzer will send different Client Hello messages and analyze
the Server Hello answers to check the presence of vulnerabilities. The remaining
messages are used to authenticate the parties, calculate the symmetric key and
to apply the ciphering strategies.

Client Hello. The client can start the handshake at any time by sending a
Client Hello message to the server, it contains: (i) the version of the protocol
that the client wants to use (it should be the highest available); (ii) a random
value obtained by chaining the timestamp (32 bit in UNIX time) and a randomly
generated nonce (28 bytes); (iii) a session identifier: empty field indicating the
will to create a new session (in case of session resumption the client behaves
differently); (iv) list of supported cipher suites, each element has the follow-
ing structure: TLS 〈KeyExchange〉 WITH 〈Cipher〉 〈Mac〉; (v) a list of supported
compression methods; and (vi) a list of requested extensions (set of additional
functionalities the server has to provide).

Server Hello. In response to the Client Hello, the server sends its hello message
that contains: (i) a chosen protocol (the highest version supported by both
parties); (ii) a random value obtained by chaining the timestamp (32 bit in
UNIX time) and a randomly generated nonce (28 bytes); (iii) a freshly-generated
value that will identify the new session (in case of session resumption, the server
behaves differently); (iv) a chosen cipher suite; (v) a chosen compression method;
and (vi) a list of required extensions (additional features).

Assisted Deployment of Secure TLS Configurations 205

Table 1. Main differences introduced with TLS 1.3

Status What Why

Removed not-AEAD ciphers avoid attacks on legacy ciphers

RSA key exchange always provide forward secrecy

broken hash algorithms (MD5, SHA-1) avoid SLOTH and similar attacks

Change Cipher Spec message streamline the handshake

data compression avoid CRIME attack

session renegotiation avoid renegotiation attacks

Added 0-RTT mode for a quick resumption increase resumption speed

EncryptedExtensions msg avoid transmitting preferences in plaintext

Changed msg encryption starts after the Server Hello allow Client certificate encryption

Hello content (structure unchanged) extend Handshake capabilities

TLS 1.3. After years in the making, the final version of the standard has been
published this August, 2018. Table 1 summarizes the key differences with TLS
1.2 according to the RFC [26]. Thanks to these changes, TLS 1.3 is not prone to
any of the known attacks such as the ones related to legacy ciphers (e.g., Lucky
13) or broken hash algorithms (e.g., SLOTH).

2.2 Vulnerabilities

There exist many TLS-related vulnerabilities: some of them exploit the support
of weak cryptographic aspects (e.g., weak ciphers and hash functions), others
use an (un)voluntary weakening of security properties to bypass the authentica-
tion process (e.g., accepting self-signed certificates [34] and setting a permissive
hostname verifier [34]) or the loss of trust in the PKI system due to a improper
certificate generation (e.g., CA impairment [19] and Certificate Spoofing [25]).
In Table 2 we detail a set of well-known TLS attacks, each line contains: (i) the
name given by the authors; (ii) the feature or weakness exploited; (iii) a brief
description on how the attack can be mounted, and (iv) which version of TLS
can be affected by such attack. To better understand the described vulnerability
exploitation, we review some cryptographic aspects:

Export ciphers. Weakened ciphers introduced by the U.S. government to
limit the security of foreign countries’ transmissions [20];
Stream ciphers. Symmetric key ciphers in which each digit is encrypted
combining it with a pseudorandom cipher [40];
Block ciphers. Symmetric key ciphers in which a set of bits with a fixed
length (called block) is encrypted all at once [44];
Compression mechanism. TLS feature used to reduce the amount of data
sent through the network [24];
Hash functions. Function that takes as input data of arbitrary size and
produces as output a string with fixed length [49];
Renegotiation. TLS feature used to enhance the security of an already estab-
lished session without dropping the current connection [27];

206 S. Manfredi et al.

Table 2. Known TLS attacks.

Name Vulnerability Attack Affects

3SHAKE [31] Renegotiation feature Completing three handshakes
with incorrectly placed
certificates

ANY

Bar Mitzvah [28] RC4 steam cipher Extracting weak keys by
targeting the first 100 bytes of
the ciphertext

ANY

BEAST [17] Initialization vector in
cipher block chain

Guessing the plaintext to
retrieve the symmetric key

TLS 1.0

CRIME [33] TLS header compression
mechanism (DEFLATE)

Continuously requesting data
from the server in order to
decrypt the session cookies
(inferring the encryption)

ANY

DROWN [3,36] SSLv2 weakness due to the
use of export ciphers

Decrypting intercepted TLS
connections by connecting to an
SSLv2 server that uses the same
private key

SSLv2

Logjam [1,18] Weakness of export cipher
suites

Negotiating the use of weak
cipher suites (DHE EXPORT)

TLS 1.1

Lucky 13 [2,12] CBC-mode weakness due to
HMAC-SHA1 decryption
failure information leakage

Replacing the last bytes with
chosen bytes and monitoring
the transmission time

ANY

POODLE [32] SSLv3 weakness due to the
missing validation of
padding bytes

Downgrading to SSLv3 and
guessing the padding in order to
slowly recover plaintext

SSLv3

RC4 NOMORE [48] Bias in the generation of
the “random” keys of the
RC4 stream cipher

Statistically analyzing the
Fluhrer-McGrew biases

ANY

SLOTH [4,13] Availability of weak hash
functions

Requesting a RSA-MD5
certificate signature and looking
for collisions

TLS 1.2

Reneg. [42] Renegotiation feature Blocking the handshake process
of the victim and use it to
complete the attacker’s
transaction

ANY

Sweet32 [5] 64-bit block ciphers Mounting a birthday attack
which creates collisions

TLS 1.2

Truncation [46] Server incorrect handling of
the TLS termination mode
through multiple
connections

Keeping the victim’s session
alive (by blocking the logout
request sent to the server)

ANY

BREACH [16] HTTP compression
mechanism

Requesting data from the server
in order to guess the response
body (note: without
downgrading the SSL/TLS
connection)

ANY

Assisted Deployment of Secure TLS Configurations 207

Termination protocol. Exchange of alert messages which signals the end of
the message sending [21, §7.2.1].

Among all the attacks, here we detail the two used in our experimentation
(see Sect. 6.2): CRIME [33] and BREACH [16]. Both attacks are related to the
availability of DEFLATE [24], a compression algorithm that reduces the size of
an input by replacing duplicate strings with a reference to their last occurrence.
Given that neither TLS nor HTTP hide the size of each message, an attacker
can exploit this information leakage to steal sensitive data. Supposing the will to
steal session cookies, the attack is performed by injecting (e.g., using a controlled
JavaScript loaded by the victim) different characters into the client’s messages
trying to guess the cookie. Thanks to DEFLATE, if the guess is wrong and the
characters are not part of the cookie, the size of the response will be bigger. On
the other hand, if the attacker guessed correctly, the size will remain the same.
This attack is referred as CRIME if it exploits the compression within TLS,
BREACH otherwise.

3 Tools Comparison

There are many TLS analyzers on the market and we wanted to understand
which one suited better our purposes. For this reason, we decided to compare
them to find the one who had the highest amount of features.

Table 3. Tool comparison - server.

Checks sslscan sslenum TLSSLed TLS-atk 3Shake chk testssl

SSLv3, TLS 1.0, 1.1 and 1.2, RC4 ● ● ● ● ❍ ●

AES ciphers ◗ ◗ ● ● ❍ ●

Weak ciphers ◗ ◗ ● ◗ ❍ ●

SSLv2, Secure renegotiation ● ❍ ● ● ❍ ●

POODLE, CBC-mode cipher, 3DES ● ● ❍ ● ❍ ●

MD5/SHA1 signature alert ● ● ● ❍ ❍ ●

Sweet32 ● ◗ ❍ ◗ ❍ ●

Certificate expiration ● ❍ ● ❍ ❍ ●

Weak DH parameters ● ● ❍ ❍ ❍ ●

Heartbleed, TLS compression ● ❍ ❍ ● ❍ ●

BEAST ◗ ❍ ● ❍ ❍ ●

TLS 1.3, DROWN ❍ ❍ ❍ ● ❍ ●

Qualys scoring ❍ ● ❍ ❍ ❍ ●

More analysisa ❍ ❍ ❍ ❍ ❍ ●

3SHAKE ❍ ❍ ❍ ❍ ● ❍

a server’s default picks, certificate info, HSTS, HPKP, security headers, cookie, reverse proxy,
client simulations, SPDY and HTTP2 availability

208 S. Manfredi et al.

Table 3 shows the comparison between six tools that perform server-related
TLS vulnerabilities2. Each detection is identified depending on the type of infor-
mation resulting. In particular, ●,◗ and ❍ mean an explicit, implicit (which can
be inferred using other explicit detections) or missing detection, respectively.
The evaluated tools are:

sslscan [39]: the analyzer is able to detect the full set of available ciphers
on a webserver. The default output shows the full list of accepted/rejected
connections, detailing each line with the cipher’s name, its key length and the
used protocol;
ssl-enum-ciphers [29]: script developed for the nmap security scanner [30]
that lists all the available cipher suites, compression methods and a small set
of possible misconfigurations. The generated report shows the set of ciphers
(available per protocol) with the relative Qualys’ rating [38], a grade which
goes from A+ to F depending on the level of provided security;
TLSSLed.sh [45]: built on top of an older version of sslscan [39], this script
check if the server supports old protocols, weak ciphers and for the certificate
signature. The verbose output highlights the results using different colours;
TLS-Attacker [47]: open source framework for analyzing TLS libraries. It can
be fully-customized to perform any kind of connection and contains a set of
pre-configured attacks for testing purposes. By running each attack, the user
can understand whether or not the server is vulnerable;
3SHAKE checker [51]: is a simple script that checks if the target server sup-
ports extended master secret, an extension specifically designed to miti-
gate the 3SHAKE [31] attack. The output shows, for each available version
of TLS, if the extension request has been accepted;
testssl.sh [50]: is a fully-featured open source command-line tool able to ana-
lyze a server’s configuration. The tool is mainly focused on detecting weak-
nesses and various configuration issues while being able to perform a wider
set of tests. Among these, testssl.sh is able to list the set of ciphers avail-
able per protocol, analyze the chain of trust of a provided certificate, simulate
handshakes and much more. These features make testssl.sh the most pow-
erful tool among the evaluated. The generated report contains the results for
all the performed analysis, associated with a colour that signals the severity
of the detected result.

All the listed tools work by repeatedly connecting to the target server using
specifically crafted ClientHello messages. By checking the server’s responses
(i.e. ServerHello), the tools are able to understand the server’s configuration.
Besides the amount of provided features, the compared tools have a major lim-
itation: all of them offer little or no explanation on how to actually mitigate
the detected weaknesses. This somehow defies their purpose given that a system
administrator will still have to spend a lot of time and effort researching the
most appropriate set of mitigations to apply.

2 Given the need for modularity, we focused on local analyzers rather than their online
counterparts.

Assisted Deployment of Secure TLS Configurations 209

Table 4. Tool comparison - mobile clients.

Checks Mallodroid Tapioca

Detect non-default trust managers ● ❍

Check client’s certificate validation ◗ ●

Enumerate contacted hosts ❍ ●

Validate HTTPS negotiations ❍ ●

Read encrypted traffic ❍ ●

3.1 Mobile Clients

As mentioned in the introduction, while in a browser the handle of TLS and
its certificates is built-in, this is not the case for mobile native applications: a
developer can either choose to use one of the many available TLS libraries or
to implement his own methods. In both cases, an incorrect certificate handling
may lead to several authentication-related issues. For this reason, there is the
need for specific tools.

Table 4 shows the differences between two Android-related analyzers:

Mallodroid [14]: Python script (built on top of Androguard [10]) that per-
forms static analysis on the code of an Android application. Taking as input
the app installer (.apk), Mallodroid uses the capabilities inherited from
Androguard to decompile the application. Once the script acquires the source
code, it (i) extracts the set of URLs the app is instructed to connect and
checks the validity of their certificates, and (ii) identifies if the app is using
an non-standard trust manager and checks the related methods;
Tapioca [11]: testing framework that performs a series of unique checks by
simulating a MITM. Using different types of packet capture, the tools is able
to: (i) validate the negotiation between server and client; (ii) enumerate all
the URLs the app tries to connect; (iii) verify if the client correctly validates
the received certificates; and (iv) (prior packet decryption) search among the
messages to locate known strings.

4 Mitigations Identification

Given the known vulnerabilities described in Sect. 2.2, system administrators
should identify and follow a set of mitigations. To assist them we have collected
in Table 5 the current best practice to mitigate the known vulnerabilities of TLS
1.2. The vast majority of the mitigations is applied by changing some lines in the
server’s configuration file while the remaining are related to vulnerable/outdated
support libraries. The identification of such mitigations is not trivial because the
currently available reports (see AppendixB) lack of clear indications on which
is the source of misconfiguration.

210 S. Manfredi et al.

Table 5. List of Mitigations for TLS 1.2.

Mitigation Attack

Disable renegotiation 3SHAKE [31]

Renegotiation attack [42]

Enable the use of
extended master secret TLS
extension

3SHAKE [31]

Disable RC4 Bar Mitzvah [28]

RC4 NOMORE [48]

Disable the compression
mechanism

CRIME [33]

Disable SSLv2 DROWN [3]

Use AEAD ciphers Lucky 13 [2]

Disable SSLv3 POODLE [32]

Disable RSA-MD5 certificate
signature

SLOTH [4]

Enforce AES usage (and
disable 3DES when possible)

Sweet32 [5]

Enforce the termination
mode

TLS Truncation [46]

Disable HTTP compression
(may slow down the
transmission)

BREACH [16]

Ignore self-signed certificates
and perform a complete
validation (up to the trusted
root)

Accept self-signed certs [34]

Check if the hostname (from
the certificate) matches the
one related to the
transmission

Setting a permissive hostname verifier [34]

5 TLSAssistant

During our study of TLS-related vulnerabilities, we noticed that all the currently
available TLS analyzers have two major limitations. Putting aside the amount of
provided features, all the examined tools gave little or no explanation on how to
actually mitigate the detected weaknesses. On the other hand, every tool focuses
on a specific party of the communication (either server or client) thus making
its usage only part of a complete analysis.

To assist average system administrators and app developers to deploy resilient
instances of the TLS protocol we propose TLSAssistant. By bringing together
different powerful analyzers, our tool is able to cover a full-range of analysis on all

Assisted Deployment of Secure TLS Configurations 211

the parties involved in a secure communication and to provide a set of mitigation
measures that aim to thwart the impact of the identified vulnerabilities.

5.1 Architecture

TLSAssistant is written in Bash and can thus be invoked via command-line.
Among the available parameters, the tool takes as input the target to be evalu-
ated (e.g., the IP address of a server) and outputs a single report file. The content
of the report depends on the detected weaknesses and on the level of verbosity
the user chose. Being built on top of other works, our TLSAssistant has been
designed to be modular and easily upgradable. Figure 2 shows the architecture
with its two main components: Analyzer and Evaluator.

Server related

Final
report

Developer Mallodroid
(Android) Testssl.sh 3SHAKE

checker ++

Others

ANALYZER

EVALUATOR

Vulnerability
Enumerator

Report Handler

Textual
Description

Code
Snippets

Mitigations

Mitigation
Report Tool Report(s)

URLAndroid
APK

Report
options

Vulnerability List

Tools report(s)

+

Fig. 2. TLSAssistant architecture

Analyzer. Takes as input a series of parameters depending on which analysis
the user wants to run. By design, our tool has a flexible architecture that allows
a continuous integration of newer and more sophisticated tools. Currently, the
set of integrated tools consists of command-line scripts written either in Bash or
Python. At the time of writing, the Analyzer integrates the following tools:

Testssl.sh [50] chosen among many others (as shown in Sect. 3) due to the
enormous amount of features and for its ongoing development;
3SHAKE checker [51] added to make the Analyzer able to test whether a
server is vulnerable to the Triple Handshake Attack or not. This is an example
of the continuous integration that has driven the design of TLSAssistant: being
able to integrate different analyzers to become a useful toolbox for a complete
TLS-vulnerability detection;

212 S. Manfredi et al.

Mallodroid [14] even if less powerful than Tapioca (see Sect. 3), it was more
suitable for our modularity requirement. Indeed, the current version of the
installer of Tapioca turns the client machine into a dedicated appliance; a
design choice incompatible with our tool.

The integrated tools allow the Analyzer to take as input: (i) a hostname/IP
address (optionally specifying the port to scan); (ii) an apk installer or (iii) both
of the previous. Once loaded, the module will run each of the tools related to
the required scan, collect their reports and transmit them to the Evaluator.

Evaluator. Core of TLSAssistant and our main contribution, it is respon-
sible for the enumeration of the detected vulnerabilities and the generation of
the report that will guide the system administrator towards all the mitigations
to be applied. It can be seen as two dependent modules:

Vulnerability enumerator collects and analyzes the reports generated by
the analyzer. By parsing the inputs, this module is able to compile a list
containing all the discovered vulnerabilities.
Report handler takes the vulnerability list and, in accordance with the sys-
tem administrators’ choice, renders the final output. While TLSAssistant has
been developed to be modular, the only available source of information cur-
rently available is the Mitigations module. It consists of a shared database
containing a list of all the known TLS vulnerabilities with their descriptions
and related fixes. The Report handler currently offers three kinds of report,
each version provides the content of the previous one and adds more technical
details. For every detected weakness, the main information contained in each
version of the report is the following:

v0 mitigations’ description. Is the most basic form of report, it only con-
tains a description of how the related mitigation works;
v1 code snippet. Provides a fragment of code that can be copy-pasted
into the webserver’s configuration to seamlessly fix the weakness. TLSAs-
sistant can detect any webserver but is currently only able to provide
snippets for Apache HTTP server. We plan to extend the code coverage
to all the most common webservers available on the market;
v2 tools’ individual reports. In addition to our detailed contribution, this
kind of report also provides the full set of individual reports generated by
each tool.

6 Experimental Evaluation

To evaluate TLSAssistant’s efficacy, we have analyzed a real use-case scenario
involving the Italian eID card (CIE 3.0) [9] (Sect. 6.1) and conducted a user-study
experimentation involving university students (Sect. 6.2). These two instances
helped us prove that the result of our work is effective both for security experts,
who may benefit from an additional support, and for unexperienced users who
seamlessly became able to perform complex mitigations without the need for an
in-depth knowledge.

Assisted Deployment of Secure TLS Configurations 213

6.1 Use-Case: CIE 3.0

In a joint collaboration between FBK and IPZS (acronym for “Istituto Poligrafico
e Zecca dello Stato”) [35], which is the Italian state printing office and mint, we
implemented a mobile authentication mechanisms that uses the Italian electronic
identity card (CIE 3.0 - Carta d’Identitá Elettronica) [9] to access public admin-
istration online services. Being the use of TLS the basic building block of the
solution, any unpatched vulnerability (see Sect. 2.2) may compromise the entire
authentication process.

For this reason, we run TLSAssistant targeting a prototype of the infras-
tructure and found that the deployment (which was entering in the final devel-
opment stages) was prone to Lucky 13, 3SHAKE and an incorrect certificate
handling. These three issues, that can be easily go unnoticed for a variety of
reasons, have now been fixed. This example clearly shows how running a tool
like TLSAssistant can help even expert system administrators to determine if a
new deployment contains some severe misconfigurations.

6.2 User Study

The following paragraphs will detail the settings of the experimentation
(designed following the template and guidelines by Wohlin et al. [8]) and a
summary of the main results.

Experiment Scoping and Planning. As described in Sect. 5, TLSAssistant is
based on the most powerful TLS analyzers available on the market. The main
additional feature is the generation of a report that assist the user during the
mitigation process: together with the list of vulnerabilities, a textual descrip-
tion of the mitigations and (when is possible) a corresponding code snippet is
provided.

The goal of this study is to analyze the effect of providing a set of mitigations
with the purpose of evaluating the support offered by TLSAssistant in patching
a TLS configuration.

The context of this study consists of:

Subjects: 16 Bachelor and Master students from University of Trento (with
background on information security) playing the role of an unexperienced
system administrator;
Objects: two VMs with custom-compiled misconfigured versions of Apache
HTTP Server v2.4.37 and OpenSSL v1.0.2:
O1 a TLS configuration vulnerable to BREACH;
O2 a TLS configuration vulnerable to CRIME;

It is important to note that the proposed objects are representative of realistic
TLS misconfigurations. To fit the time constraint of our experiment, only one
vulnerability is present in each object. The selected objects are comparable in
terms of complexity of the operation required to patch the problem.

214 S. Manfredi et al.

Research Questions and Hypothesis Formulation. In this study, we want to eval-
uate whether the report provided by TLSAssistant (with textual descriptions of
the mitigations and code snippets) facilitates the patching task in terms of time
and correctness. Thus, our research questions are:

RQ1 (on time): does the time spent by a system administrator in patching an
error decrease when the tool provides a text description of the mitigation and
the corresponding code snippet?
RQ2 (on correctness): does the capabilities of a system administrator in patch-
ing an error increase when the tool provides a text description of the mitiga-
tion and the corresponding code snippet?

Thus, the null hypothesis can be formulated as follows:

H01 (on time): providing a text description of the mitigation and the corre-
sponding code snippet does not significantly decrease the time spent by a
system administrator to patch the error;
H02 (on correctness): providing a text description together with a code snippet
of the mitigation does not significantly increase the capability of a system
administrator to patch the error.

Variables Selection. To measure the subject’s capability to perform a patching
task (vulnerability detected and solved) and the time spent, we asked subjects
to run the provided tool, look at the resulting report, and perform the patching
task (perform the required operations to patch the misconfiguration).

The main factor of the experiment — that acts as an independent variable
— is the presence of the treatment during the execution of the task. In our
experiment, we have considered the following alternative treatments:

Treatment 1 (Tr1): TLSAssistant provides as report a list of vulnerabilities
plus a textual description of the mitigations and a suggested code snippet to
perform the mitigation.
Treatment 2 (Tr2): TLSAssistant provides as report the original reports of
the tools that are composing the server-related module of the Analyzer
(Testssl.sh and 3SHAKE checker).

Experiment Design and Procedure. We adopt a counter-balanced experiment
design intended to fit two lab sessions. Subjects are classified into four groups
(despite they work alone), each one working in two labs on different objects with
different treatments. The design allows for considering different combinations of
objects and treatments in different order across labs (see Table 6).

Before our experiment, subjects were properly trained with lectures and exer-
cises on TLS. The purpose of training is to make subjects confident about the
kind of tasks they are going to perform and the environment they will have
available.

The experiment was carried out according to the following procedure. Sub-
jects had to:

Assisted Deployment of Secure TLS Configurations 215

Table 6. Labs.

Group A Group B Group C Group D

Lab 1 O1 with Tr1 O2 with Tr2 O2 with Tr1 O1 with Tr2

Lab 2 O2 with Tr2 O1 with Tr1 O1 with Tr2 O2 with Tr1

1. complete a pre-experiment survey questionnaire;
2. for each of the two labs to be performed: (i) mark the start time; (ii) perform

the patching task; and (iii) mark the stop time;
3. complete a post-experiment survey questionnaire.

Post-experiment survey questionnaire (reported in AppendixA) deals with
object clarity of the tasks, cognitive effects of the treatments on the behaviour
of the subjects and perceived usefulness of TLSAssistant.

Results. The amount of time required to correctly patch a vulnerability is
significantly longer when working with the report provided in Tr2 than when
working with the report with the mitigations (Tr1): 25 min on average to fix a
vulnerability with Tr2 , 7 min on average to fix a vulnerability with Tr1 . Thus,
hypothesis H01 on time can be rejected. Therefore, we can formulate the follow-
ing alternative hypothesis:

HA1 : providing a text description of the mitigation and the corresponding
code snippet decreases the time spent by a system administrator to patch the
error.

Regarding the task correctness all students were able to correctly patch the
vulnerability with Tr1 ; however, just the 68.75% of students was able to perform
a proper vulnerability patch with Tr2 , which corresponds to a 31.25% difference
on the overall sampled population. For this reason, we can accept the following
alternative hypothesis:

HA2 : providing a text description together with a code snippet of the mitiga-
tion increases the capability of a system administrator to patch the error.

Moreover, from the post-experiment survey we can learned that the 81.25%
of the students considers Tr1 more useful and the 93.25% assessed that Tr2 is
more complex to understand. In addition, all the students positively recommend
our tool. Here we report some comments:

“Fast, correct and easy to use. It found the vulnerability and helped me
solving it”
“It would be very easy to fix such vulnerabilities following the given
instructions. Also, you can search for more info about the vulnerability
itself, which can help you to learn more about TLS.”
“I won’t waste a lot of time looking for all vulnerabilities”

216 S. Manfredi et al.

7 Conclusions and Future Work

To assist system administrators with limited security skills to deploy resilient
instances of the TLS protocol suite we propose TLSAssistant, a fully-featured
tool that combines state-of-the-art tools with a report system that provides
appropriate mitigations.

To design this tool, we have: (i) compared the state-of-the-art tools for TLS
analysis, (ii) classified known TLS vulnerabilities and (iii) identified their miti-
gations. Finally, to validate the efficacy of our tool, we performed a user-study
experimentation involving university students and analyzed a real use-case sce-
nario involving the Italian eID card (CIE 3.0) [9].

As future work, we plan to extend TLSAssistant ’s capabilities by (i) improv-
ing the webserver coverage; (ii) supporting more inputs (e.g., configuration files);
(iii) automatize the mitigation process and further analyze experimentation’s
results by using statistical test, including co-factor analysis such as subject’s
experience, learning across tasks and more. As a second objective, we plan to
use TLSAssistant to increase awareness and education in cybersecurity. A step
in this direction is being made by integrating CVE identifiers, CVSS scores and
modelling a series of attack trees [41], a hierarchical representation on how each
attack can be mounted and which security properties it violates. Finally, we also
plan to make TLSAssistant’s source code freely available for anyone who wants
to contribute to this project.

Acknowledgments. The authors would like to thank IPZS for the collaboration on
the development of the authentication solution based on the CIE 3.0 carried out in the
context of the joint laboratory DigimatLab between FBK and IPZS.

A Post-questionnaire

Table 7 shows the content of the post-experiment survey questionnaire mentioned
in Sect. 6.2. It deals with object clarity of the tasks, cognitive effects of the treat-
ments on the behaviour of the subjects and perceived usefulness of TLSAssistant.
The first set of questions (Q1–Q6) needs to be answered twice (one answer for
each performed lab) while the remaining set only needs to be answered once as
it refers to the overall session.

Assisted Deployment of Secure TLS Configurations 217

Table 7. Post-experiment survey questionnaire.

ID Applies to Question

Q1 Each lab I had enough time to perform the tasks (1–5)

Q2 Each lab I experienced no difficulty in patching the vulnerability
given the report (1–5)

Q3 Each lab How much time (in terms of percentage) did you spend
looking at the TLS configuration code? (0, <20%, ≥20%
and <40%, ≥40% and <60%, ≥60% and <80%, ≥80%)

Q4 Each lab How much time (in terms of percentage) did you spend
looking at online documentation on TLS vulnerabilities?
(0, <20%, ≥20% and <40%, ≥40% and <60%, ≥60% and
<80%, ≥80%)

Q5 Each lab Provide some examples of online queries you used to search
the vulnerabilities online (e.g., keywords used)

Q6 Each lab Which steps did you take to perform the tasks? (e.g., run
command Y, opened file X, ..)

Q7 Overall Which report did you find more useful. (Report of Lab 1–2)

Q8 Overall Which report did you find more easy to read. (Report of
Lab 1–2)

Q9 Overall Which report did you find more complex to understand.
(Report of Lab 1–2)

Q10 Overall The textual description of the mitigation is useful to
complete the tasks (1–5)

Q11 Overall The code snippet is useful to complete the tasks (1–5)

Q12 Overall How did you use the code snippet? (Copy-pasted where
needed, Typed manually where needed, Used to perform a
web search)

Q13 Overall Would you use TLSAssistant for your work? (Yes, No,
Maybe)

Q14 Overall Motivate your answer (to the previous question). (open
question)

Q15 Overall Do you know any tool that performs similar tasks? (open
question)

Q16 Overall Do you have any suggestion related to the tool usage?
(open question)

Q17 Overall Do you have any suggestion related to the amount of
information provided by TLSAssistant’s report? (open
question)

B Report snippet

To show the effort required by a system administrator in identifying the required
mitigation, we show a snippet of the testssl’s report (see Fig. 3). It contains the

218 S. Manfredi et al.

Fig. 3. testssl report snippet (Color figure online)

list of checked vulnerabilities matched with their presence in the analyzed TLS
deployment. The status of each vulnerability is shown with a combination of a
string (e.g.; “potentially vulnerable”) and a color that represents the severity of
the finding.

Not the shown snippet nor any other part of the report give any useful insight
on how to actually mitigate the detected vulnerabilities.

References

1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security (2015). https://doi.org/10.1145/2810103.2813707

2. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: IEEE Symposium on Security and Privacy, SP, pp. 526–540
(2013). https://doi.org/10.1109/SP.2013.42

3. Aviram, N., et al.: DROWN: breaking TLS with SSLv2. In: 25th USENIX Security
Symposium (2016)

4. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication
in TLS, IKE and SSH. In: 23rd Annual Network and Distributed System Security
Symposium, NDSS (2016)

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1109/SP.2013.42

Assisted Deployment of Secure TLS Configurations 219

5. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016 (2016). https://doi.org/10.1145/2976749.2978423

6. Blog, G.S.: SHA-1 Certificates in Chrome. https://security.googleblog.com/2016/
11/sha-1-certificates-in-chrome.html

7. Bright, P.: Apple, Google, Microsoft, and Mozilla come together to end TLS 1.0.
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-
for-20-year-old-tls-1-0/

8. Cartwright, M.: Book Review: Experimentation in Software Engineering: An Intro-
duction. By Wohlin, C, Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A. Kluwer Academic Publishers (1999). ISBN 0-7923-8682-5. Softw. Test. Verif.
Reliab. (2001). https://doi.org/10.1002/stvr.230

9. Dell’Interno, M.: Carta di identitá elettronica. https://www.cartaidentita.interno.
gov.it

10. Desnos, A.: Github: Androguard. https://github.com/androguard/androguard
11. Dormann, W.: Announcing CERT Tapioca 2.0 for Network Traffic Analysis.

https://insights.sei.cmu.edu/cert/2018/05/announcing-cert-tapioca-20-for-netwo
rk-traffic-analysis.html

12. Ducklin, P.: Boffins ‘crack’ HTTPS encryption in Lucky Thirteen attack. https://
nakedsecurity.sophos.com/2013/02/07/boffins-crack-https-encryptionin-lucky-thir
teen-attack/

13. Ducklin, P.: The SLOTH attacks: why laziness about cryptography puts secu-
rity at risk. https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-
laziness-about-cryptography-puts-security-at-risk/

14. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love android: an analysis of android SSL (in)security. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, pp. 50–61 (2012). https://doi.org/10.1145/2382196.2382205

15. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: ACM Conference on Computer and Communications Security, pp. 38–49
(2012). https://doi.org/10.1145/2382196.2382204

16. Gluck, Y., Harris, N., Prado, A.: BREACH: reviving the CRIME attack. http://
breachattack.com/

17. Green, M.: A Diversion: BEAST Attack on TLS/SSL Encryption. https://blog.
cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/

18. Green, M.: Attack of the week: Logjam. https://blog.cryptographyengineering.
com/2015/05/22/attack-of-week-logjam/

19. Green, M.: The Internet is broken: could we please fix it? https://blog.
cryptographyengineering.com/2012/02/28/how-to-fix-internet/

20. Grimmett, J.: Encryption export controls (2001). http://www.au.af.mil/au/awc/
awcgate/crs/rl30273.pdf

21. Group, N.W.: The TLS Protocol: Version 1.0. https://tools.ietf.org/pdf/rfc2246.
pdf

22. Group, N.W.: The Transport Layer Security (TLS) Protocol: Version 1.1. https://
tools.ietf.org/pdf/rfc4346.pdf

23. Group, N.W.: The Transport Layer Security (TLS) Protocol: Version 1.2. https://
tools.ietf.org/pdf/rfc5246.pdf

24. Group, N.W.: Transport Layer Security Protocol Compression Methods. https://
tools.ietf.org/pdf/rfc3749.pdf

https://doi.org/10.1145/2976749.2978423
https://security.googleblog.com/2016/11/sha-1-certificates-in-chrome.html
https://security.googleblog.com/2016/11/sha-1-certificates-in-chrome.html
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0/
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0/
https://doi.org/10.1002/stvr.230
https://www.cartaidentita.interno.gov.it
https://www.cartaidentita.interno.gov.it
https://github.com/androguard/androguard
https://insights.sei.cmu.edu/cert/2018/05/announcing-cert-tapioca-20-for-network-traffic-analysis.html
https://insights.sei.cmu.edu/cert/2018/05/announcing-cert-tapioca-20-for-network-traffic-analysis.html
https://nakedsecurity.sophos.com/2013/02/07/boffins-crack-https-encryptionin-lucky-thirteen-attack/
https://nakedsecurity.sophos.com/2013/02/07/boffins-crack-https-encryptionin-lucky-thirteen-attack/
https://nakedsecurity.sophos.com/2013/02/07/boffins-crack-https-encryptionin-lucky-thirteen-attack/
https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-laziness-about-cryptography-puts-security-at-risk/
https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-laziness-about-cryptography-puts-security-at-risk/
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382204
http://breachattack.com/
http://breachattack.com/
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/
https://blog.cryptographyengineering.com/2015/05/22/attack-of-week-logjam/
https://blog.cryptographyengineering.com/2015/05/22/attack-of-week-logjam/
https://blog.cryptographyengineering.com/2012/02/28/how-to-fix-internet/
https://blog.cryptographyengineering.com/2012/02/28/how-to-fix-internet/
http://www.au.af.mil/au/awc/awcgate/crs/rl30273.pdf
http://www.au.af.mil/au/awc/awcgate/crs/rl30273.pdf
https://tools.ietf.org/pdf/rfc2246.pdf
https://tools.ietf.org/pdf/rfc2246.pdf
https://tools.ietf.org/pdf/rfc4346.pdf
https://tools.ietf.org/pdf/rfc4346.pdf
https://tools.ietf.org/pdf/rfc5246.pdf
https://tools.ietf.org/pdf/rfc5246.pdf
https://tools.ietf.org/pdf/rfc3749.pdf
https://tools.ietf.org/pdf/rfc3749.pdf

220 S. Manfredi et al.

25. Group, O.W.: OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound
Access Tokens. https://tools.ietf.org/pdf/draft-ietf-oauth-mtls-10.pdf

26. IETF: The Transport Layer Security (TLS) Protocol: Version 1.3. https://tools.
ietf.org/pdf/rfc8446.pdf

27. IETF: Transport Layer Security (TLS) Renegotiation Indication Extension.
https://tools.ietf.org/pdf/rfc5746.pdf

28. IMPERVA: Attacking SSL when using RC4. https://www.imperva.com/docs/HII
Attacking SSL when using RC4.pdf

29. Kolybabi, M., Lawrence, G.: ssl-enum-ciphers. https://nmap.org/nsedoc/scripts/
ssl-enum-ciphers.html

30. Lyon, G.: Nmap: the Network Mapper. https://nmap.org
31. Microsoft-Inria: Triple Handshakes Considered Harmful: Breaking and Fixing

Authentication over TLS. https://www.mitls.org/pages/attacks/3SHAKE
32. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting the SSL 3.0

Fallback. https://www.openssl.org/∼bodo/ssl-poodle.pdf
33. NIST: CVE-2012-4929. https://nvd.nist.gov/vuln/detail/CVE-2012-4929
34. NowSecure: Fully Validate SSL/TLS. https://books.nowsecure.com/secure-

mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
35. Poligrafico e Zecca dello Stato Italiano. https://www.ipzs.it
36. Pornin, T.: What is DROWN and how does it work? https://security.

stackexchange.com/a/116140/186367
37. Qualys: SSL Pulse. https://www.ssllabs.com/ssl-pulse/
38. Qualys, I.: SSL Server Rating Guide. https://github.com/ssllabs/research/wiki/

SSL-Server-Rating-Guide
39. rbsec. https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec
40. Robshaw, M.: Stream ciphers (1995). ftp://ftp.rsasecurity.com/pub/pdfs/tr701.

pdf
41. Schneier, B.: Attack Trees. https://www.schneier.com/academic/archives/1999/

12/attack trees.html
42. SecurityLearn: SSL Attacks. http://www.securitylearn.net/tag/ssl-renegotiation-

attack/
43. Services, A.W.: Alexa Top Sites. https://aws.amazon.com/alexa-top-sites/
44. Shannon, C.E.: Communication theory of secrecy systems*. Bell Syst. Tech. J. 28

(1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
45. Siles, R.: TLSSLed v1.3. http://blog.taddong.com/2013/02/tlssled-v13.html
46. Smyth, B., Pironti, A.: Truncating TLS connections to violate beliefs in web appli-

cations. In: 7th USENIX Workshop on Offensive Technologies, WOOT (2013)
47. Somorovsky, J.: Systematic fuzzing and testing of TLS libraries. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, pp. 1492–1504 (2016). https://doi.org/10.1145/2976749.2978411

48. Vanhoef, M., Piessens, F.: RC4 NOMORE (Numerous Occurrence MOnitoring &
Recovery Exploit). https://www.rc4nomore.com/

49. Weisstein, E.: Hash Function. http://mathworld.wolfram.com/HashFunction.html
50. Wetter, D.: /bin/bash based SSL/TLS tester: testssl.sh. https://testssl.sh
51. Young, C.: TLS Extended Master Secret Extension: Fixing a Hole in TLS. https://

www.tripwire.com/state-of-security/security-data-protection/security-hardening/
tls-extended-master-secret-extension-fixing-a-hole-in-tls/

https://tools.ietf.org/pdf/draft-ietf-oauth-mtls-10.pdf
https://tools.ietf.org/pdf/rfc8446.pdf
https://tools.ietf.org/pdf/rfc8446.pdf
https://tools.ietf.org/pdf/rfc5746.pdf
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf
https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html
https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html
https://nmap.org
https://www.mitls.org/pages/attacks/3SHAKE
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://nvd.nist.gov/vuln/detail/CVE-2012-4929
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://www.ipzs.it
https://security.stackexchange.com/a/116140/186367
https://security.stackexchange.com/a/116140/186367
https://www.ssllabs.com/ssl-pulse/
https://github.com/ssllabs/research/wiki/SSL-Server-Rating-Guide
https://github.com/ssllabs/research/wiki/SSL-Server-Rating-Guide
https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec
ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://www.securitylearn.net/tag/ssl-renegotiation-attack/
http://www.securitylearn.net/tag/ssl-renegotiation-attack/
https://aws.amazon.com/alexa-top-sites/
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://blog.taddong.com/2013/02/tlssled-v13.html
https://doi.org/10.1145/2976749.2978411
https://www.rc4nomore.com/
http://mathworld.wolfram.com/HashFunction.html
https://testssl.sh
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/

Contributing to Current Challenges
in Identity and Access Management

with Visual Analytics

Alexander Puchta1(B), Fabian Böhm2(B) , and Günther Pernul2(B)

1 Nexis GmbH, Franz-Mayer-Str. 1, 93053 Regensburg, Germany
alexander.puchta@nexis-secure.com

2 University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
fabian.boehm@ur.de, guenther.pernul@ur.de

Abstract. Enterprises have embraced identity and access management
(IAM) systems as central point to manage digital identities and to grant
or remove access to information. However, as IAM systems continue to
grow, technical and organizational challenges arise. Domain experts have
an incomparable amount of knowledge about an organization’s specific
settings and issues. Thus, especially for organizational IAM challenges
to be solved, leveraging the knowledge of internal and external experts
is a promising path. Applying Visual Analytics (VA) as an interactive
tool set to utilize the expert knowledge can help to solve upcoming chal-
lenges. Within this work, the central IAM challenges with need for expert
integration are identified by conducting a literature review of academic
publications and analyzing the practitioners’ point of view. Based on this,
we propose an architecture for combining IAM and VA. A prototypical
implementation of this architecture showcases the increased understand-
ing and ways of solving the identified IAM challenges.

Keywords: Identity and access management · Identity management ·
Visual Analytics

1 Introduction

Identity and access management (IAM) has become a vital component of modern
companies as it enables the management of identities and grants access to nec-
essary resources. IAM also assures compliance with regulations like SOX [41] or
Basel III [3]. To achieve this, IAM systems consist of manifold policies, processes
and technical solutions [13]. The core of IAM are identities like employees and
their access rights to resources maintained within the system. Besides human
identities, new technologies like the Internet of Things (IoT) require the inte-
gration of technical identities (e.g. sensors and machines) into IAM [27]. Thus,
the number of elements maintained in the system is constantly rising. This will
ultimately lead to an identity explosion where a vast amount of heterogeneous
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 221–239, 2019.
https://doi.org/10.1007/978-3-030-22479-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_12&domain=pdf
http://orcid.org/0000-0002-0023-6051
https://doi.org/10.1007/978-3-030-22479-0_12

222 A. Puchta et al.

identities has to be managed in a single system. This results in numerous prob-
lems to be addressed in the next years to ensure IAM systems remain an effective
part of companies’ IT landscapes.

A solution for those problems needs an effective way to manage and analyze
the huge quantity of information with often thousands of identities and hundreds
of thousands of entitlements. To decide whether information about an identity
is wrong or redundant access rights are assigned to it, the knowledge of domain
experts with experience and deep understanding of an enterprise’s individual
IAM landscape is needed. In this work we investigate how this domain knowledge
can be integrated into an IAM landscape by leveraging Visual Analytics (VA)
as VA is one of the central methods to include domain experts’ knowledge and
utilize their feedback [11]. In order to reach this goal, this work investigates three
research questions:

– RQ-1: What are current and upcoming key challenges within IAM to be
solved by integrating domain knowledge?

– RQ-2: How can VA be integrated into an existing IAM architecture and
which steps are necessary?

– RQ-3: What could an exemplary VA solution for IAM look like and which
challenges could be solved?

By answering these research questions our work focuses on two main contribu-
tions. We provide a list of challenges for current and future IAM. This list is
an outcome of a structured analysis taking both academic and practice view-
points into consideration. We also demonstrate how VA can be applied helping
to integrate domain knowledge in tasks to identify IAM anomalies and possible
erroneous configurations (e.g. over-authorization or wrong identity attributes).
Therefore, we develop a prototypical visualization designed in cooperation with
experienced IAM practitioners.

The remainder of this work is structured as follows. Section 2 introduces some
background on IAM systems as well as related work regarding the integration of
VA into IAM. Next, Sect. 3 follows a structured, two-fold approach to identify
current challenges for IAM system as seen from academia and practice to answer
RQ-1. An architecture to integrate VA into IAM (RQ-2) as well as a correspond-
ing proof-of-concept visualization (RQ-3) are presented in Sect. 4. The benefits
of this prototype regarding the identified challenges are highlighted with exem-
plary use cases in Sect. 5. Section 6 concludes our work and highlights possible
future research directions as well as current limitations.

2 Background and Related Work

In this chapter we define key concepts of IAM and introduce related work regard-
ing the integration of VA into IAM.

Contributing to Current Challenges in IAM with Visual Analytics 223

2.1 Background

IAM consists of two main fields which are managing identities and granting
them access to resources. According to Pfitzmann and Hansen [33] an identity is
a subset of attributes uniquely identifying a person. An identity is either real or
exists as a digital identity like profiles in social media. Real and digital identities
are often linked, and a real identity may own multiple digital personas. However,
in the following we assume each entity to have exactly one digital identity as
the scope of this work is limited to a single company’s context. Currently, IAM
regards employees, contractors or customers as identity because they all need
to have access to certain resources [45]. In addition to humans having digital
identities, technical equipment like machines or sensors are entities which need
access to resources, too. Thus, these technical identities also are relevant for
maintaining them within an IAM [12].

Digital identities in an IAM are managed from their creation to their deletion
when not needed anymore. During this life cycle, access control is used to provide
access to applications, data or other information [35]. Enterprises often employ
role-based access control (RBAC) in order to grant access [37]. In RBAC, roles
are utilized to bundle single access rights and consequently assigned to identities.
On the contrary, attribute-based access control (ABAC) leverages identities’
attributes and predefined access policies for dynamic access management [16].

To maintain landscapes with thousands of identities, enterprises employ IAM
systems which are able to support the identity life cycle and provide identities
with the correct entitlements. Besides that, modern IAM systems offer a variety
of other functionalities (e.g. Single Sign-on) which are not detailed any further
in this work.

2.2 Related Work

There are some existing publications applying visual representations for IAM
problems. The earliest integration of VA to the best of our knowledge is the
“role graph model” by Nyanchama and Osborn [32]. It is based on RBAC and is
used to optimize existing roles for a company. In addition to that, several authors
propose a matrix-based approach to visualize users and their entitlements [5,28].
Based on that, VA can be applied to identify suitable roles or outliers with
extensive entitlement assignments. Recently, Morisset and Sanchez introduced a
tool to visualize ABAC policies [30].

These approaches are focusing mostly on interactive visual techniques for
Access Control. To the best of our knowledge there is no existing work taking
Identity Management into consideration to build a more cohesive visual solution.
Therefore, we try to fill this gap by identifying general IAM challenges where
domain knowledge of experts is needed to solve them. After identifying those
challenges, we build a prototypical visual approach to demonstrate how domain
experts can be integrated.

224 A. Puchta et al.

3 IAM Challenges

This section defines current or future IAM challenges where domain knowledge
of human experts may play a vital role. They can serve as a starting point
to deduce requirements for any type of solution trying to tie experts and IAM
systems closer together. In Sect. 4 we introduce a proof-of-concept visual solution
to tackle some of the herein defined challenges.

For identifying the challenges, existing academic literature as well as practi-
tioners experience within the field of IAM are taken into consideration. We are
aware that there are far more challenges than the five proposed by us. How-
ever, based on the results of our structured analysis and the domain knowledge
of practitioners, we chose the most relevant ones with respect to the necessity
to integrate domain experts. An IAM challenge in the context of this work is
a current or future problem with the need to be solved for IAM. Challenges
already being tackled or focusing only on parts of an IAM system (e.g. access
control) are not considered in this work. Neither do we consider problems where
the inclusion of domain expert knowledge is not vital. To identify challenges, we
follow a structured approach introduced in the Sect. 3.1.

3.1 Approach for Identifying Challenges

We derive current challenges following a structured approach depicted in Fig. 1.
We ensure to include both the scientific and the practitioners’ view as IAM is
an active research field as well as a highly relevant topic in enterprises.

Fig. 1. Approach for defining the key IAM challenges.

During the literature survey we analyze existing academic literature pub-
lished in the last ten years regarding IAM and respective challenges or prob-
lems. This scientific viewpoint allows us to derive a first set of IAM chal-
lenges. However, IAM is highly business-driven and there are numerous practical
approaches outside the academic world. Thus, we also include the perspective of
practitioners.

The goal of this second analysis is twofold. We verify the academic IAM
challenges but also identify further challenges not yet considered by scientific
literature. Three different sources of information are leveraged in order to mini-
mize subjectivity of different business opinions:

1. Analyst reports and surveys from the IAM industry

Contributing to Current Challenges in IAM with Visual Analytics 225

2. Interviews with IAM consultants with 3 to 15 years of experience
3. Interviews with companies applying IAM solutions.

In a last step, we integrate all inputs from the analysis into five IAM chal-
lenges. The list of identified challenges is not exhaustive for the IAM field of
research. Our work is focusing only on current challenges that can strongly ben-
efit from integrating experts’ knowledge.

3.2 Literature Survey

In order to identify relevant literature, we follow a structured approach by defin-
ing keywords to review relevant IAM literature. As we are defining challenges
for the entire IAM system we only take resources into consideration which are
dealing either with “identity and access management” or specific problems and
challenges within “identity management” or “access management”. We trans-
form these phrases into suitable search terms1,2 and applied them to the dblp
computer science bibliography3. Dblp is a service indexing relevant academic
journals and proceedings of peer-reviewed conferences from computer science.
Searching dblp results in a feasible number of results with a high suitability.
Therefore, we can ensure to get only relevant academic publications. Dblp serves
as a quality gate for our scientific analysis as it returns a manageable amount of
entries compared to other engines like Google Scholar with nearly 10.000 results
for the second search term. We manually filter the results based on title, abstract,
and key sections to remove findings not mentioning any challenges or problems.

We apply a second, more unstructured search to identify additional relevant
entries. In this step we include further academic databases (IEEE XPlore, ACM,
Google Scholar) to find additional literature not listed within dblp. This results
in a total of 19 academic publications mentioning or clearly defining relevant
challenges for IAM. We group the identified problems and define the first four
challenges (cf. C1 to C4 in Sect. 3.4).

3.3 Practitioner’s View

We now conduct a business analysis to include the practitioners’ point of view.
Information received in this process step is often hard to generalize as it reflects
subjective opinions. However, by including various sources of information we
try to overcome this deficit. In the business analysis we look at reports from
specialized IAM analysts namely KuppingerCole4. This company is focused on
IAM and technologies around that sector and thus has accumulated valuable
knowledge in this area [26,40,43]. Additional input is generated by Gartner [9],
Forrester [7] and IDG Research Services [20].

1 identity—access management challenge/problem.
2 identity-and-access-management.
3 https://dblp.uni-trier.de/.
4 https://www.kuppingercole.com.

https://dblp.uni-trier.de/
https://www.kuppingercole.com

226 A. Puchta et al.

Furthermore, we conduct interviews with three different IAM consultants
with several years of practical experience in the field of IAM projects. Besides
that, four companies already applying IAM solutions are inquired regarding
possible challenges. While the four previously defined challenges are verified
throughout the interview, a fifth one (C5) arises as a current problem of IAM
from a business viewpoint.

Table 1. Results of literature survey on ten years of academic work.

Source Year C1 C2 C3 C4 C5

Hovav and Berger [15] 2009 x x

Mahalle et al. [27] 2010 x x x

Bandyopadhyay and Sen [2] 2011 x x x

Jensen [22] 2012 x x x

Kanuparthi et al. [23] 2013 x x x

Fremantle et al. [12] 2014 x x

Xiong et al. [46] 2014 x

Hummer et al. [18] 2015 x x x

Kunz et al. [24] 2015 x x

Hummer et al. [19] 2016 x x x x

Moghaddam et al. [29] 2017 x

Servos and Osborn [38] 2017 x

Asghar et al. [1] 2018 x

Damon et al. [8] 2018 x x

Hummer et al. [17] 2018 x x x

Indu et al. [21] 2018 x x x

Nuss et al. [31] 2018 x x

Povilionis et al. [34] 2018 x x

Kunz et al. [25] 2019 x x x

3.4 IAM Challenges

Within this section the identified IAM challenges are described in detail. A map-
ping of all relevant academic publication to the challenges is provided in Table 1.
Table 2 maps the results of our analysis with practitioners to the challenges.

Challenge 1 - Identification of All Relevant Identities (C1): For current
and future IAM systems the identification of all relevant identities may sound
like a simple task. However, especially in practical application it is not. One
of the major reasons for this is the integration of various types of identities

Contributing to Current Challenges in IAM with Visual Analytics 227

Table 2. Analysis results from practitioners’ view.

Source Year C1 C2 C3 C4 C5

IDG Research Services [20] 2017 x x

KuppingerCole and CXP Group [26] 2017 x

Tolbert [43] 2017 x x

Diodati et al. [9] 2018 x x

Small [40] 2018 x x x

Cser and Maxim [7] 2018 x x x

Interviews (IAM consultants) 2019 x x x x x

Interviews (Companies applying IAM) 2019 x x x x

into IAM. Currently, mainly employee and contractor identities are maintained
in an IAM system. A recent trend, customer IAM or shortly CIAM, strives to
add customer identities into these systems as well [7]. Additionally, the Internet
of Things requires integrating even more identities, mostly technical ones [31].
Furthermore, numerous IT systems are not even connected to IAM. Nevertheless,
such systems also contain various identities with the need to be identified for
IAM in order to prevent identities not being centrally manageable. These trends
hinder IAM to establish a central view of all relevant identities. However, this
view is vital for any further analysis to be done within IAM (e.g. identification
of unnecessary accounts or entitlements).

Challenge 2 - Privacy Within IAM (C2): As modern IAM systems offer a
centralized view on nearly all employees, contractors and even costumers includ-
ing their attributes the need for privacy arises. Especially business solution power
users like IAM administrators can easily retrieve personal information from the
identities. Based on our practical experience this could be a simple mail address
but may also uncover more sensitive information like wage brackets or entitle-
ment usage information. In order to protect this information in compliance with
regulations, privacy mechanisms are needed to grant access to such information
only when necessary and for authorized users. This challenge is mainly focused
by scientific research and not by practitioners at the moment. However, as the
European General Data Protection Regulation (GDPR) came into effect in 2018,
it certainly will have an impact on the business sector of IAM. Please note that
this challenge is limited to the application of privacy mechanisms on IAM sys-
tems and does not include the application of IAM systems for enhancing GDPR
compliance within companies.

Challenge 3 - Heterogeneity of Various Identities (C3): As there are var-
ious identities within an IAM system, they are not identical. In fact, they differ
quite a bit as identities consist of various attributes (e.g. first name, depart-
ment). Considering C1, it gets clear that not all identities have the same kind

228 A. Puchta et al.

of attributes. Technical and human identities are likely to have a completely dif-
ferent set of attributes. For example, technical devices do not have a first name,
but instead have an attribute indicating their software version. This, on the one
hand, rises a technical challenge to integrate this variability of identities into
one underlying data set for IAM. In addition, IAM mechanisms like provisioning
of entitlements still need to be working for all of these identities. On the other
hand, it also hinders the analytic part of IAM as domain experts need to browse
through an enormously large, heterogeneous database. By applying VA, domain
experts could be supported as various attributes can be displayed in a more
accessible way than in currently deployed table-based reports.

Challenge 4 - Data Quality and Data Management (C4): When it comes
to attributes and other data existing in IAM, data quality and the underlying
data management in IAM system needs to be considered. Attributes are often
manually entered by different people; thus, wrong or inconsistent values are very
likely to occur. For example, the current business location of an employee may
be added by HR employees. If the employee moves to another department of an
enterprise, the location also needs to be changed. Manual processes for attribute
modifications exacerbate data quality issues as one can forget to adjust the
location attribute. Therefore, IAM mechanisms like provisioning of entitlements
based on the attribute location might fail. Additionally, wrong attribute val-
ues limit the possibilities of IAM analytics. Although an approach to improve
attribute quality management was lately introduced [25], algorithms can only
detect anomalies but can neither confirm nor reject whether it is a real data
error. To do so, domain experts are needed, and VA can be highly beneficial to
support related decisions by integrating domain expert feedback.

Challenge 5 - Transformation from Role-Based IAM to Attribute-
Based IAM (C5): Challenge 5 was identified during the interviews with IAM
consultants as it is not explicitly defined as an upcoming challenge in academic
literature. It comprises the enterprise IAM transformation from a role-based
approach to an attribute-based one. As mentioned before, enterprises mainly
depend on an RBAC approach. However, this can lead to an increasing number
of existing roles and requires increasing effort regarding role management [10]. In
order to overcome these limitations, ABAC can be applied [16]. However, as this
is a fundamental change of approach for IAM companies have to consider various
factors (e.g. processes, technologies and policies [13]). Changes needed for this
transformation are therefore not limited to access control, but existing research
is mainly focused on the transformation of the access control model [36,47]. To
the best of our knowledge there is no overarching approach how an enterprise
IAM can be transformed from a role-based approach to an attribute-based one.

Tables 1 and 2 compare the results and show that C1, C3, and C4 are found
in both worlds and can easily be identified as relevant IAM challenges. Privacy
in IAM and therefore, C2, is mainly embraced by academic literature and not
explicitly mentioned in the business sector. C5 is not described explicitly in

Contributing to Current Challenges in IAM with Visual Analytics 229

academic literature but only mentioned very shortly by 3 articles. We identified
this challenge by conducting interviews with IAM consultants and companies.

4 Applying Visual Analytics to IAM

Any of the previously identified challenges can benefit from including domain
experts and their knowledge. VA has proven its capabilities to help integrate
domain expert knowledge in complex and data-intensive cyber security tasks
throughout the last years [6,44]. Additionally, decision makers can be supported
with VA by making highly technical data sources more accessible. Therefore,
we argue that leveraging concepts from VA to solve the identified challenges in
IAM is a reasonable approach. As described in Sect. 2, there is some existing
work that has shown the feasibility and utility of VA in the context of IAM.
However, none of the challenges identified in Sect. 3 has been explicitly tackled
with visual approaches yet. We try to fill this gap as we describe the architecture
and design of our new visualization approach. The visualization design cannot
support all the identified challenges as they are far too different in requirements.
However, our approach shows how heterogeneous information about human and
technical identities can be integrated into a single visual representation. The
resulting view allows identifying existing identities (c.f. C1) and their structures
(c.f. C3) as well as users can detect problems regarding data quality (c.f. C4).

The visual representation is designed and implemented in close cooperation
with IAM practitioners which were also part of our interviews during the chal-
lenge identification. By including them in development, we ensure that the rep-
resentation that is helpful for practical use. The participating experts are IAM
consultants working for numerous clients and with years of experience in practi-
cal work with IAM projects. While the current visual tool is at a proof-of-concept
stage, we are planning to continue our fruitful cooperation with these experts
to develop a solution that can be used in their day-to-day work. Our coopera-
tion also allowed for the development of the prototype based on the adaption
of anonymized real-world identity data from a medium-sized company in the
manufacturing sector with around 1.200 employees.

The underlying architecture for our prototypical application is depicted in
Fig. 2 and its main components - Data Sources, Data Preparation, and Data Visu-
alization - are described in more detail throughout the following sections. This
architectural design is based on the Information Visualization Pipeline [4] which
is a widely accepted structural design concept for any interactive visualization
approach. The applied architecture shows how identity-related information can
be collected and integrated from different sources and how the information needs
to be prepared for VA concepts supporting domain experts. The identification
of different data sources and their integration into a single, displayable data set
are a starting point for any visual representation of identity data. Therefore, the
main part of our architectural design, the Data Preparation, demonstrates how
visual representations in general can be integrated into an existing IAM struc-
ture. The operations executed during the Data Integration Engine and the Data

230 A. Puchta et al.

Transformation step need only small adjustments for varying Data Sources. The
last part of the architectural design, the Data Visualization, demonstrates how
VA can contribute to the focused challenges by introducing an exemplary visu-
alization of identity information. Interaction in this step is crucial as it ensures
that experts can adjust the view for their personal needs and explore the data
based on their own preferences to gain insight.

4.1 Data Sources

Our current proof-of-concept tool collects information about identities from three
main data layers. Although the company representing the use case has a cen-
tral IAM system with a role-based access control mechanism, not all informa-
tion about the existing identities is fed into it. Only partial information from
the Application Layer is integrated into IAM, while other applications, like the
company’s Active Directory (AD) to manage windows accounts, are not con-
nected to it. Therefore, information from these systems needs to be collected
separately. Technical identities representing IoT devices are currently not inte-
grated into IAM but rather maintained separately (IoT-layer). The wide variety
of different data sources storing information about the companies’ identities and
the missing integration of this information into IAM are the main reasons for
the challenges we focus in this prototype. It becomes increasingly hard for any
company to keep track of its identities when the information about them is so
spread out. Additionally, the different information systems store the available
data in different formats or data models. Furthermore, it is very important for
any company to keep the quality of their identity information at a high level.
Spread out data makes this very difficult, especially when data is maintained
redundantly in different repositories.

Additional data sources can be plugged easily into our architecture via the
Data Integration Engine. Our proof-of-concept system works with one source
from each layer. This number of data sources is already enough to demonstrate

Fig. 2. Architecture for IAM Visual Analytics.

Contributing to Current Challenges in IAM with Visual Analytics 231

how VA helps to leverage experts’ domain knowledge in the context of the afore-
mentioned challenges as is demonstrated in Sect. 5.

4.2 Data Preparation

The main purpose of this part of the architectural design is to integrate and nor-
malize the data from the sources into a single data model and format. Additional
fields are added and calculated in this step. The resulting data is structured as
a single table containing all relevant and necessary information about the iden-
tities. This step is essential for further visual display as it defines the level of
detail available to the users. The operations applied to the data in this step are
dynamic and can be changed whenever different information is of interest or new
data sources are plugged into the architecture.

Data Integration Engine (P1): This part of the architecture is responsible
for collecting data relevant from the data source and integrating them into a
single cohesive data set. Our proof-of-concept work extracts CSV data from all
data sources. However, each CSV export contains a different set of attributes.
To preserve the information about the source of a data set, we annotate the
data with a flag depicting the source. Additionally, we add a field describing
whether the identity is a human or a technical identity. In our conceptual set-
ting, this identity type is mainly dependent on the data source. For example,
identities extracted from IAM are automatically annotated to be “Human” as
only employees or costumers are integrated into IAM. In the same way, iden-
tities extracted from the IoT layer are annotated to be “Technical” identities.
The cohesive data set is built as a union of the three data sets depicted in Fig. 2:
ApplicationLayer ∪ IAMLayer ∪ IoTLayer.

Data Transformation (P2): After integrating all available data sources into a
single, high-dimensional table, this data set is structured as needed for the visu-
alization in this phase. This part of the architecture applies a variety of trans-
formations. These include splitting a single field into multiple fields, replacing
values in a specific field, calculating additional fields based on existing informa-
tion. The result of this step is a cohesive data set containing all relevant and
necessary information.

4.3 Data Visualization

This last part of the architecture is responsible for creating the interactive visual
representation with the subset of the data selected by the domain expert. The
interactions available to the users enable exploratory work with the visualization
and the identification of inconsistencies, miss-configurations as well as structures
and dependencies in the set of identities.

232 A. Puchta et al.

Data Filtering (P3): The interactive filtering assures the efficiency of the
following steps and guarantees the expressiveness of the resulting view for the
user. The subsequent Data Mapping (P4) can be CPU-intensive for very large
data sets and, therefore, the input for this step needs to be as small as possible. It
only contains the fields (columns) the user wants to see. The interactive selection
of fields relevant for the user and the early integration of this interaction into the
architectural design ensures that only relevant data is passed to the subsequent
components. Up to this point the proposed architecture is generalized and can
be applied to various visualization approaches within IAM. However, the Data
Mapping (P4) and the Interactive Visual Display (P5) are highly dependent on
the visualization technique selected for a specific VA solution. Therefore, the
following considerations are specific to our exemplary solution.

Fig. 3. Screenshot of the prototype available under http://bit.ly/iam-vis. Please note
that the current version of the tool is only working in Google’s Chrome Browser.

Data Mapping (P4): This phase in the architecture maps the filtered identity
information into a dynamic hierarchical data structure which is necessary for
the prototype to visualize the data correctly. We will not elaborate this data
structure any further as it is specific for the proof-of-concept visualization and
is prone to change for different visualization types.

Interactive Visual Display (P5): Before we are able to build a visual repre-
sentation for the data at hand, it is necessary to choose a suitable visualization
technique. This technique needs to be capable of displaying the dimensions and
structure of the underlying data properly. For our prototypical visualization the

http://bit.ly/iam-vis

Contributing to Current Challenges in IAM with Visual Analytics 233

technique must be able to represent multi-dimensional and hierarchical data.
While there is a number of techniques (e.g. tree diagrams, circle packing, sun-
burst diagrams, or treemaps) which fulfill this requirement [39], each technique
has its own advantages and disadvantages. It mainly comes down to the use case
as well as the subjective preferences of the users which technique is most suit-
able. We used design sketches of the different suitable visualization techniques to
interview IAM domain experts about their preferred visual representation. These
interviews resulted in the sunburst diagram to be the most preferable technique
to apply in the proof-of-concept application. However, any of the mentioned as
well as a number of other techniques might be suitable, too.

The sunburst diagram displays a hierarchy using a series of concentric circles.
Each ring itself corresponds to a level of the hierarchy. Therefore, underlying data
structure is similar to a tree where the root node is depicted by the central ring
and outermost circles represent the leaves of the tree-like structure. The sun-
burst’s rings are sliced up and divided based on their hierarchical relationship to
the parent slice. Therefore, the sunburst highlights structural, hierarchical rela-
tionships while being more scalable than other hierarchical visualization types.
Figure 3 depicts the main view of our proof-of-concept application consisting of
three main parts.

In (A) experts can drag-and-drop the boxes for the corresponding fields in
the data set they want to be depicted in the sunburst diagram between two
main lists. Each box represents an IAM employee attribute of the normalized
data set. Exemplary fields which are contained in the proof-of-concept are the
“Organisational Unit”, “Data Source”, or the number of entitlements of an iden-
tity. The upper list holds the currently active (i.e. displayed) fields and the lower
one the inactive attributes. The first element in the list of active elements serves
as the root element (innermost circle in the sunburst) when constructing the
hierarchical data set. Accordingly, the second active attribute is displayed as the
next outer circle. Logically, the last active element is included in the Sunburst
diagram as the outermost circle.

The central part of the view is dedicated to the sunburst diagram (B). Each
segment of the circles (attributes) depicts a single characteristic of an attribute
in relative size to all existing identities. Hovering a segment brings up the num-
ber of identities depicted by this segment. The relative frequency with respect
to the number of current root element (innermost circle) and the path to the
hovered segment are displayed on top of the visual representation. Left-clicking a
segment allows zooming in on this particular representation of an attribute. This
improves the readability of specific hierarchy levels in very granular sunburst dis-
plays. When zoomed into a segment, clicking the white area in the middle of the
sunburst diagram brings the zoom one hierarchy level upwards. Right-clicking a
segment brings up a dialog. This dialog holds a table with identities in the rows
and all attributes available for them in the columns. The identities displayed in
the table are dependent on the clicked segment of the sunburst diagram as only
the identities whose attributes fulfill the path to the segment are shown in the

234 A. Puchta et al.

table. The table allows filtering and sorting of the currently displayed identities.
In the dialog identities can also be reported for further analysis if necessary.

(C) holds the description of the sunburst as a dynamic list containing all
currently visible circles (attributes) and the respective visible ring segments
(attributes values). Clicking the magnifier for a list element zooms in into the seg-
ment representing this element. A click on the counter badge brings up the table
with the identities included in corresponding node in the hierarchy. Within this
table identities can be marked for further analysis by using a “Report”-button for
each identity in the details table-view (e.g. after identification of an anomaly),
thus, providing the possibility for integration of domain expert feedback into
other applications. However, further functionality beyond this notification is out
of scope for this work and needs to be implemented in a following version of the
prototype.

5 Exemplary Use Cases

The current prototypical implementation5 of our visualization for IAM was
developed in co-creation with experts as suggested by Staheli et al. [42]. We
regularly conducted semi-structured interviews with the participating practi-
tioners to ensure that the implementation fits their needs and requirements.
This section explicitly highlights how the visual display can support domain
experts. We therefore go through several problems and inconsistencies based on
one use case and identified by IAM experts while exploring the data. These had
not been noticed before applying the visualization.

As the different problems only become evident in the sunburst diagram with
different actively visualized attributes, we added predefined scenarios of the sun-
burst to our publicly available version of the prototype. Using the drop-down
menu in the top right corner, we provide a video showcasing each of the following
subsections. We would recommend to look at the corresponding video for each
subsection in order to grasp the connection between the IAM problem and the
sunburst visualization for identification of the inconsistency.

The exemplary use cases are based on the data set from a manufacturing com-
pany with 1.200 employees mentioned in Sect. 4. The company recently intro-
duced an IAM system and connected the HR system as well as some minor
applications. However, the Active Directory (AD) is currently not under IAM
control because of its complexity as it was one of the company’s first IT system
growing for two decades. Therefore, some employees are missing an AD account
while some AD accounts from former contractors and employees are still active.
These orphan accounts are not identified via the IAM system, but they are still
active and can be used for malicious activities (cf. Sect. 5.1).

Furthermore, the company made some investments in automating specific
process tasks. Thus, two assembly machines and some automated users were

5 The prototype is available under http://bit.ly/iam-vis. Please note that the current
version of the tool is only working on Google’s Chrome Browser.

http://bit.ly/iam-vis

Contributing to Current Challenges in IAM with Visual Analytics 235

integrated within the AD and were provisioned by an AD administrator. How-
ever, there was no communication with the IAM department and, therefore, no
access management or integration into the IAM system took place. This results
in technical identities with excessive entitlements. As the company is not expe-
rienced with such technical identities, the risk for failures (e.g. deletion of data)
resulting from misconfiguration is high (cf. Sect. 5.2).

During configuration and assignment of a location to the technical identities
some flaws regarding the existing location attribute values were detected. As
entitlements shall be assigned automatically within the new IAM system based
on a policy, the identification and correction of these values is highly relevant.
Otherwise, identities with an incorrect value for their location attribute are not
assigned enough entitlements (cf. Sect. 5.3).

5.1 Identities Not Managed Within a Central IAM (C1, C4)

As stated before, some identities within the company are not integrated in the
central IAM system. Identifying these is a hard task considering the spread-out
information. Our approach integrates applications not connected to the IAM
system. Taking a look at the “Data Source” attribute the sunburst shows in
which layer the respective data originates. Identities in the “IAM Layer” segment
of the diagram are collected directly from IAM. However, another 17 identities
are not managed by the IAM system. Three of them are maintained in the “AD
Layer” while 14 are gathered from the “IoT Layer”. Taking a look at the details
view of those 14 identities brings out that they are technical devices. Adding
another circle for the “Identity Type” to the Sunburst allows an analyst to see
that none of the identities within the “IAM Layer” are technical devices. So
obviously the company has not integrated its technical identities into the central
IAM system.

5.2 Identities with an Unusual Number of Entitlements (C3)

Another use case needing the attention of domain experts are identities with
anomalous high number of entitlements. The Sunburst Diagram facilitates the
identification of relevant entities and a decision how to proceed. Displaying the
“Entitlements”, “Identity Type”, and the “Function” a small set of identities
becomes visible having more than 76 entitlements. This seems conspicuous as
most of the entities in the company have 0 to 25 roles assigned to them. Zooming
into the segment with 76 to 100 entitlements a technical device attributed with
function “Support” becomes visible and an identity from the company’s cus-
tomer “Brandmark” has an anomalous number of entitlements. These findings
do not indicate an error per se, but it might be necessary to carry out further
analyses. By browsing through the Sunburst domain experts are enabled to find
various of similar cases. Any identity which might be over-authorized has to be
examined, if all the entitlements are still needed (e.g. via recertification). If not,
this indicates a serious security breach as identities having excessive permissions
are legitimately allowed to access classified resources.

236 A. Puchta et al.

5.3 Poor Data Quality in IAM Data (C4)

The Sunburst diagram allows for identifying data quality flaws via several means.
A first possibility is to compare similar attribute fields which originate from dif-
ferent data sources. Exemplary for this used when comparing “Location (AD)”
and “Location (IAM and IoT)”. Information about locations of identities is
administered in both the application layer and the IAM layer. Usually the IAM
layer which contains the HR should be the master system for attributes like the
location. After analyzing the data, some quality issues included in this system
become apparent. An example is visible by zooming to the value “Berlin” of the
“Location (AD)” attribute. The IAM layer has in fact 3 different attributes for
identities having this value in the AD system, namely the correct value “Berlin”
but also “BER” and “10249 Berlin”. Presumably, this value was recorded man-
ually by the HR employees resulting in inconsistent data.

6 Conclusion

The complexity of modern IAM systems is constantly rising (e.g. increasing num-
ber of identities, further IAM mechanisms). Therefore, new challenges emerge.
Within this work we showed that VA can be integrated into IAM in order to
solve some of them. To achieve this, we initially identified five central challenges
through a review of academic literature and analysis of the experience of prac-
titioners (RQ-1). Thereby, we discovered two challenges especially connected to
the identification and management of identities. Furthermore, we expect more
challenges within the topics Privacy and Data Quality. Besides that, there will
be the future challenge to transform role-based IAM into an attribute-based
architecture for enterprises. We do not claim that our list of IAM challenges is
exhaustive. However, we focused especially on problems where the integration of
domain expert knowledge is vital. We detected some additional challenges but
excluded them as they are not in the scope of the paper (e.g. inclusion of trust
management in IAM, identity as a service, compliance with regulations).

Based on these challenges we identified VA as a possible solution as it enables
enterprises to integrate domain expert knowledge and utilize their feedback to
solve upcoming IAM challenges. We proposed an architecture how IAM by lever-
aging concepts from VA in order to answer our previously defined RQ-2. Addi-
tionally, we implemented proof-of-concept visualization according to our archi-
tecture and based on real world data (RQ-3). By applying VA, we have shown
that problems tightly connected to the defined IAM challenges can be identified.
However, the implementation should be regarded as a first example how the
architecture can be implemented and as proof that VA can support enterprises
to solve central IAM challenges. Other visualization techniques might be applied
to solve another subset of our identified challenges.

After proposing an architecture for integration of VA and a first proof-of-
concept implementation we want to focus further on the process to choose a
suitable visualization for the Interactive Visual Display component. Addition-
ally, we want to introduce further VA implementations to solve the remaining

Contributing to Current Challenges in IAM with Visual Analytics 237

IAM challenges. Afterwards, we can orchestrate the single implementations to
an overarching coordinated view [14].

Acknowledgment. This research was supported by the Federal Ministry of Education
and Research, Germany, as part of the BMBF DINGfest project (https://dingfest.ur.de).

References

1. Asghar, M., Backes, M., Simeonovski, M.: PRIMA: privacy-preserving identity and
access management at internet-scale. In: Proceedings of the 2018 IEEE Interna-
tional Conference on Communications, pp. 1–6. IEEE Computer Society (2018)

2. Bandyopadhyay, D., Sen, J.: Internet of things: applications and challenges in tech-
nology and standardization. Wirel. Pers. Commun. 58(1), 49–69 (2011)

3. Basel Committee on Banking Supervisions: Basel III: International Framework for
Liquidity Risk Measurement, Standards and Monitoring (2010)

4. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visu-
alization: Using Vision to Think. Morgan Kaufmann, Burlington (1999)

5. Colantonio, A., Di Pietro, R., Ocello, A., Verde, N.: Visual role mining: a picture
is worth a thousand roles. IEEE Trans. Knowl. Data Eng. 24(6), 1120–1133 (2012)

6. Crouser, R., Fukuday, E., Sridhar, S.: Retrospective on a decade of research in
visualization for cybersecurity. In: Proceedings of the 2017 IEEE International
Symposium on Technologies for Homeland Security, pp. 1–5. IEEE (2017)

7. Cser, A., Maxim, M.: Forrester - Top trends shaping IAM in 2018 (2018)
8. Damon, F., Coetzee, M.: The design of an identity and access management assur-

ance dashboard model. In: Tjoa, A.M., Raffai, M., Doucek, P., Novak, N.M. (eds.)
CONFENIS 2018. LNBIP, vol. 327, pp. 123–133. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99040-8 10

9. Diodati, M., Farahmand, H., Ruddy, M.: Gartner - 2019 planning guide for identity
and access management (2018)

10. Elliott, A., Knight, S.: Role explosion: acknowledging the problem. In: Proceedings
of the 8th International Conference on Software Engineering Research and Practice,
pp. 349–355 (2010)

11. Federico, P., Wagner, M., Rind, A., Amor-Amorós, A., Miksch, S., Aigner, W.:
The role of explicit knowledge: a conceptual model of knowledge-assisted visual
analytics. In: Proceedings of the 2017 IEEE Conference on Visual Analytics Science
and Technology (2017)

12. Fremantle, P., Aziz, B., Kopecký, J., Scott, P.: Federated identity and access man-
agement for the internet of things. In: Proceedings of the 2014 International Work-
shop on Secure Internet of Things, pp. 10–17. IEEE Computer Society (2014)

13. Fuchs, L., Pernul, G.: Supporting compliant and secure user handling - a struc-
tured approach for in-house identity management. In: The Second International
Conference on Availability, Reliability and Security (ARES 2007), pp. 374–384.
IEEE (2007)

14. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10(2),
30 (2012)

15. Hovav, A., Berger, B.: Tutorial: identity management systems and secured access
control. Commun. Assoc. Inf. Syst. 25(1), 1–42 (2009)

16. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. In: NIST Special Publication (2014)

https://dingfest.ur.de
https://doi.org/10.1007/978-3-319-99040-8_10
https://doi.org/10.1007/978-3-319-99040-8_10

238 A. Puchta et al.

17. Hummer, M., Groll, S., Kunz, M., Fuchs, L., Pernul, G.: Measuring identity and
access management performance - an expert survey on possible performance indi-
cators. In: Proceedings of the 4th International Conference on Information Systems
Security and Privacy, pp. 233–240 (2018)

18. Hummer, M., Kunz, M., Netter, M., Fuchs, L., Pernul, G.: Advanced identity
and access policy management using contextual data. In: Proceedings of the IEEE
International Conference on Availability, Reliability and Security, pp. 40–49. IEEE
Computer Society (2015)

19. Hummer, M., Kunz, M., Netter, M., Fuchs, L., Pernul, G.: Adaptive identity
and access management - contextual data based policies. EURASIP J. Inf. Secur.
2016(1), 1–19 (2016)

20. IDG Research Services: Studies Identity- & Access-Management 2017 (2017)
21. Indu, I., Anand, P.M.R., Bhaskar, V.: Identity and access management in cloud

environment: mechanisms and challenges. Eng. Sci. Technol. Int. J. 21(4), 574–588
(2018)

22. Jensen, J.: Federated identity management challenges. In: Proceedings of the 2012
IEEE International Conference on Availability, Reliability and Security, pp. 230–
235. IEEE Computer Society (2012)

23. Kanuparthi, A., Karri, R., Addepalli, S.: Hardware and embedded security in the
context of internet of things. In: Proceedings of the 2013 ACM Workshop on Secu-
rity, Privacy & Dependability for Cyber Vehicles, pp. 61–64. ACM (2013)

24. Kunz, M., Fuchs, L., Hummer, M., Pernul, G.: Introducing dynamic identity and
access management in organizations. In: Jajodia, S., Mazumdar, C. (eds.) ICISS
2015. LNCS, vol. 9478, pp. 139–158. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26961-0 9

25. Kunz, M., Puchta, A., Groll, S., Fuchs, L., Pernul, G.: Attribute quality manage-
ment for dynamic identity and access management. J. Inf. Secur. Appl. 44, 64–79
(2019)

26. KuppingerCole, CXP Group: State of organizations - does their identity & access
management meet their needs in the age of digital transformation? (2017)

27. Mahalle, P., Babar, S., Prasad, N.R., Prasad, R.: Identity management framework
towards internet of things (IoT): roadmap and key challenges. In: Meghanathan, N.,
Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp.
430–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14478-
3 43

28. Meier, S., Fuchs, L., Pernul, G.: Managing the access grid - a process view to
minimize insider misuse risks. In: Proceedings of the 11th International Conference
on Wirtschaftsinformatik, pp. 1051–1065 (2013)

29. Moghaddam, F., Wieder, P., Yahyapour, R.: A policy-based identity management
schema for managing accesses in clouds. In: Proceedings of the 8th International
Conference on the Network of the Future, pp. 91–98. IEEE Computer Society
(2017)

30. Morisset, C., Sanchez, D.: VisABAC: a tool for visualising ABAC policies. In:
Proceedings of the 4th International Conference on Information Systems Security
and Privacy. Newcastle University (2018)

31. Nuss, M., Puchta, A., Kunz, M.: Towards blockchain-based identity and access
management for internet of things in enterprises. In: Furnell, S., Mouratidis, H.,
Pernul, G. (eds.) TrustBus 2018. LNCS, vol. 11033, pp. 167–181. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98385-1 12

32. Nyanchama, M., Osborn, S.: The role graph model and conflict of interest. ACM
Trans. Inf. Syst. Secur. (TISSEC) 2(1), 3–33 (1999)

https://doi.org/10.1007/978-3-319-26961-0_9
https://doi.org/10.1007/978-3-319-26961-0_9
https://doi.org/10.1007/978-3-642-14478-3_43
https://doi.org/10.1007/978-3-642-14478-3_43
https://doi.org/10.1007/978-3-319-98385-1_12

Contributing to Current Challenges in IAM with Visual Analytics 239

33. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity—
a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44702-4 1

34. Povilionis, A., et al.: Identity management, access control and privacy in integrated
care platforms: the PICASO project. In: Proceedings of the 2018 International
Carnahan Conference on Security Technology, pp. 1–5. IEEE Computer Society
(2018)

35. Samarati, P., de Vimercati, S.C.: Access control: policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2 3

36. Sandhu, R.S.: The authorization leap from rights to attributes: Maturation or
chaos? In: Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies, pp. 69–70. ACM (2012)

37. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

38. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Comput. Surv. 49(4), 1–65 (2017)

39. Severino, R.: The data visualisation catalogue (2019). https://datavizcatalogue.
com/index.html. Accessed 21 Feb 2019

40. Small, M.: Kuppingercole report - advisory note - big data security, governance,
stewardship (2018)

41. SOX: Sarbanes-Oxley Act of 2002, pl 107–204, 116 stat 745 (2002)
42. Staheli, D., et al.: Visualization evaluation for cyber security. In: Proceedings of

the 2014 IEEE Symposium on Visualization for Cyber Security, pp. 49–56. ACM
(2014)

43. Tolbert, J.: Kuppingercole report - advisory note - identity in IoT (2017)
44. Wagner, M., Rind, A., Thür, N., Aigner, W.: A knowledge-assisted visual malware

analysis system: design, validation, and reflection of kamas. Comput. Secur. 67,
1–15 (2017)

45. Windley, P.J.: Digital Identity: Unmasking Identity Management Architecture
(IMA). O’Reilly Media Inc, Newton (2005)

46. Xiong, J., Yao, Z., Ma, J., Liu, X., Li, Q., Ma, J.: PRIAM: privacy preserving
identity and access management scheme in cloud. KSII Trans. Internet Inf. Syst.
8(1), 282–304 (2014)

47. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from RBAC
policies. In: Proceedings of the 10th International Conference and Expo on Emerg-
ing Technologies for a Smarter World. IEEE (2013)

https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-45608-2_3
https://datavizcatalogue.com/index.html
https://datavizcatalogue.com/index.html

Analysis of Multi-path Onion
Routing-Based Anonymization Networks

Wladimir De la Cadena1(B), Daniel Kaiser1, Asya Mitseva1,
Andriy Panchenko2, and Thomas Engel1

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
{wladimir.delacadena,daniel.kaiser,asya.mitseva,thomas.engel}@uni.lu

2 Brandenburg University of Technology, Cottbus, Germany
andriy.panchenko@b-tu.de

Abstract. Anonymization networks (e.g., Tor) help in protecting the
privacy of Internet users. However, the benefit of privacy protection
comes at the cost of severe performance loss. This performance loss
degrades the user experience to such an extent that many users do not
use anonymization networks and forgo the privacy protection offered.
Thus, performance improvements need to be offered in order to build
a system much more attractive for both new and existing users, which,
in turn, would increase the security of all users as a result of enlarging
the anonymity set. A well-known technique for improving performance
is establishing multiple communication paths between two entities. In
this work, we study the benefits and implications of employing multiple
disjoint paths in onion routing-based anonymization systems. We first
introduce a taxonomy for designing and classifying onion routing-based
approaches, including those with multi-path capabilities. This taxonomy
helps in exploring the design space and finding attractive new feature
combinations, which may be integrated into running systems such as
Tor to improve users’ experience (e.g., in web browsing). We then eval-
uate existing implementations (together with relevant design variations)
of multi-path onion routing-based approaches in terms of performance
and anonymity. In the course of our practical evaluation, we identify the
design characteristics that result in performance improvements and their
impact on anonymity.

1 Introduction

In modern society, people disclose a large quantity of digital traces via the Inter-
net. Hence, privacy is attracting more and more attention and has become a
serious concern. Anonymization is a basic technical means for achieving privacy.
Despite the variety of approaches proposed for anonymous communication, only
a few have reached widespread deployment. Currently, Tor [9] is the most pop-
ular low-latency anonymization network designed for TCP-based applications,
serving more than two million daily users1. The main objective of Tor is to hide
1 https://metrics.torproject.org/userstats-relay-country.html, October 2018.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 240–258, 2019.
https://doi.org/10.1007/978-3-030-22479-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_13&domain=pdf
https://metrics.torproject.org/userstats-relay-country.html
https://doi.org/10.1007/978-3-030-22479-0_13

Analysis of Multi-path Onion Routing-Based Anonymization Networks 241

the identities (i.e., IP addresses) of users who communicate through the Inter-
net. To start a connection via Tor, the user runs local software, an onion proxy
(OP), and creates a virtual tunnel, referred to as a circuit, to the destination over
three nodes, known as onion relays (ORs) [8]. The ORs are run by volunteers
who determine the amount of bandwidth they are willing to share. Depending on
their position on the circuit, the ORs are denoted as entry, middle, and exit. Via
a Diffie-Hellman key exchange, the user negotiates a distinct symmetric key with
each OR on the circuit. The symmetric keys are used to encrypt the actual user
data in multiple layers of encryption [8]. While forwarding user traffic, each OR
on the circuit removes (or adds, depending on the direction) a layer of encryp-
tion. This ensures that none of the ORs on the circuit knows both the source
and the destination of a connection at the same time. Along a circuit, user traffic
travels encapsulated in fixed-size units referred to as cells.

Due to the diverse resource capabilities of ORs and their dynamic nature—
anybody can join the network by running an OR or leave the network at any
time—Tor suffers from both high congestion and latency. This often leads to
significant delays for users which, in turn, may discourage them from using the
network. Since the strength of anonymity provided by Tor strongly depends
on the number of users, the protection of Tor clients utilizing the network is
weakened by any user leaving the network. Therefore, performance improvements
are necessary to make the system more attractive for both new and existing users.
This will further improve the security of all users due to the increased anonymity
set.

In response to this, a significant amount of research has focused on optimiz-
ing Tor’s performance by improving its circuit processing [4,36,38], transport
mechanisms [29,39,41], and relay selection algorithms [2,33,42], analyzing relay
recruiting techniques [12,20,21], and adopting throttling methods [22] to reduce
the load on the network. However, none of this work has investigated the perfor-
mance benefits of multiple, disjoint paths used at overlay level when transmitting
user data for a single Tor client. Although a few works [3,44] have suggested con-
crete approaches to deploying multi-path techniques in Tor, their evaluations are
limited by unrealistic and outdated conditions.

In this paper, we present an up-to-date review of existing multi-path
approaches particularly designed for Tor and similar onion routing-based low-
latency anonymization systems. By conducting experimental evaluations at dif-
ferent scales, we analyze the state-of-the-art multi-path anonymization tech-
niques in terms of the performance gain and anonymity implications of each
approach. Our contribution is two-fold:

1. We provide a systematic survey of currently-existing multi-path approaches
for Tor and other similar onion routing-based anonymization systems as well
as techniques that allow adding multi-path capability. To this end, we intro-
duce a taxonomy for onion routing-based low-latency designs with a focus on
multi-path approaches and classify the existing related works accordingly.

2. We conduct a comprehensive evaluation to compare these approaches in terms
of both performance and anonymity. Based on the results from our evalua-

242 W. De la Cadena et al.

tion and our theoretical analysis, we discuss which design choices should be
considered to achieve a desired set of properties in new systems.

2 Related Work

To improve the performance of the Tor network, a significant amount of research
has focused on exploring a variety of relay selection algorithms, e.g., by try-
ing to avoid congested ORs [42], considering the geographical location [2] or
bandwidth [34,35] of chosen ORs. Another group of works [10,27,29] criticizes
the transport design applied by Tor, i.e., circuits from several users are mul-
tiplexed through a single TCP connection between two ORs. This may slow
down the performance of interactive circuits. In response to this, several works
evaluate advanced circuit scheduling mechanisms [36,38], propose improved con-
gestion control algorithms [4,29] or even replacing the underlying transport pro-
tocol [26,41] to optimize the utilization of available bandwidth in Tor. In contrast
to our study, these works did not evaluate the effect of multi-path techniques in
Tor. Nevertheless, these proposals complement our work and their coexistence
can further improve the performance and harden the security of Tor.

Karaoglu et al. [23] propose a multi-path routing scenario which emulates the
operation of multi-path TCP [13]. Here, the Tor client is responsible for splitting
and sending the traffic through multiple disjoint circuits to a web server which,
in turn, is required to merge the received data. Thus, the authors do not require
any modification in the core Tor network. However, Karaoglu et al. consider only
a unidirectional scenario, in which the client uploads a file to the web server.
Furthermore, the authors do not make any comparison with existing state-of-
the-art multi-path approaches proposed for Tor or other onion routing-based
anonymization systems. Last, but not least, Ries et al. [30] compare different
low-latency anonymization networks with respect to their usability and the level
of anonymity that they provide. Unlike our work, there is no evaluation of the
applicability of multi-path techniques within these anonymization networks.

3 Multi-path in Anonymization Systems

Using multiple paths in anonymization systems has been also considered in pre-
vious theoretical analyses, simulations, and non onion routing approaches. The
objectives pursued by those works were: passive attack resilience [11,32], multi-
path as a means of anonymity [24], and performance improvements [23,33]. How-
ever, only three systems have been fully developed and implemented as multi-
path onion routing-based approaches. Two of these, Conflux [3] and mTor [44],
are extensions to vanilla Tor that adapt its traffic management design to uti-
lize multiple circuits; the third, MORE [25], comprises a multi-path design over
UDP where each cell travels along a different circuit. To our knowledge, there
is no fully-developed multi-path approach that is both UDP-based and uses, as
Tor does, fixed circuits per data transfer. For a more comprehensive analysis
of standard transport protocol (UDP, TCP)-based multi-path approaches, we

Analysis of Multi-path Onion Routing-Based Anonymization Networks 243

consider closing this gap in the design space to be necessary and so added multi-
path support to UDP-OR [41] as a further contribution; we refer to the result
as mUDP-OR. We chose enhancing UDP-OR because it is fully-developed and
relies on standard transport protocols (see Sect. 4). The remainder of this section
describes the multi-path onion routing-based systems analyzed and evaluated in
this paper.

3.1 Conflux

In this design (see [3]), the OP builds multiple circuits with the same exit OR.
Once those circuits are created, the OP sends a cell with a random nonce towards
the exit OR as an identifier of the multi-path structure. To send each cell, the
OP and the exit OR, known as end-points, select one of the multiple circuits
according to its congestion, which is estimated as the time interval between
the 100th cell being sent, and the corresponding sendme2 being received. Cells
that arrive out-of-order to the end-points are merged and sorted using a 4-byte
sequence number included in the cell’s payload. Conflux presents results from
an implementation that supports only two circuits. For our analysis, we have
enhanced the Conflux’s design in order to support m circuits.

3.2 mTor

Here (see [44]), the multi-path structure and cell merging procedure is similar
to Conflux. However, end-points choose one of the multiple circuits according to
its current stream-level window3 value. The end-point drops cells to the circuits
in a first-in-first-out manner, while their stream window is greater than zero.

3.3 MORE

In MORE (see [25]), it is required that the client participates as OR within the
network (peer-to-peer network). To send data, the client OR captures TCP data
via a TUN device4 and encapsulates it in cells, which will each be sent across a
different circuit. This means that no initial circuit establishment takes place, but
that each cell travels along its own randomly-chosen path. To guarantee reliabil-
ity of cells traveling along different routes, MORE takes advantage of the TUN
device’s functionality and provides an IP overlay service for tunneling TCP data.
In this sense, a multi-path layer TCP session exists between sender and receiver.
To discover each cell’s route, an intermediary OR onion-decrypts and reads the
corresponding successor node from the header. To reduce the computational cost

2 Cell used for flow control: an end-point sends it to acknowledge the arrival of 100
cells within a circuit, or 50 cells within a stream.

3 As part of the flow control, the stream-level window caps the maximum amount of
cells to 500 per stream at any moment.

4 A TUN device is a virtual kernel network interface that works as a bridge between
the user and kernel spaces.

244 W. De la Cadena et al.

Fig. 1. Taxonomy of design choices for onion routing-based approaches

of re-setting up a cryptographic context for each cell, MORE uses elliptic curve
cryptography (ECC). While using one circuit for each cell increases the resilience
against traffic analysis attacks, it also considerably reduces performance.

3.4 mUDP-OR

Here (see [41]), the multi-path structure and circuit identification is performed
in a manner similar to Conflux. However, ORs in a circuit communicate with
each other using the UDP transport protocol. This circuit is used for tunnel-
ing TCP application data. Instead of encapsulating complete TCP segments, an
end-point builds cells, appending to the header the necessary TCP fields (e.g.
sequence numbers) to reconstruct a TCP packet at the other end-point. This
TCP virtual connection is realized by setting up a SOCKS proxy in the exit
OR, and establishing a virtual tunnel from a virtual TUN device in the OP.
We implemented two strategies to dispatch cells into the circuits. In the first,
the end-point chooses the circuit in a round robin (RR) manner with a config-
urable number of cells per circuit. In the second, the end-point randomly chooses
through which circuit the next cell will be sent. We leverage the existing circuit-
layer TCP session to merge cells arriving from different circuits. In this sense,
the existing virtual end-to-end TCP connection is agnostic to the circuit(s) used.

4 Classifying Design Choices

In this section we introduce a hierarchical taxonomy for classifying and discussing
onion routing design choices. The top level classes of our taxonomy comprise
traffic management, path selection, and circuit construction; Fig. 1 illustrates
our taxonomy. We focus on the multi-path aspects and the effect of adding
multi-path capabilities. Based on the structure of our taxonomy, we classify and
discuss the multi-path OR approaches introduced in the previous section.

Analysis of Multi-path Onion Routing-Based Anonymization Networks 245

4.1 Traffic Management

The traffic management class comprises design choices which are concerned with
transmitting data over already-established circuits in an anonymization over-
lay network; specifically regarding providing a TCP-like end-to-end service and
scheduling decisions. This class is a key element of designing OR approaches and
significantly affects performance. It also has an effect on anonymity, as feedback
mechanisms might leak information, allowing for fingerprinting attacks [29].

We classify traffic management into OR-link layer, circuit layer, and multi-
path layer. These layers are intertwined, as their combination must provide the
same service as a direct TCP connection, namely reliability, congestion control,
and flow control. Inter-layer dependency causes some issues, the most prominent
of which is cross-circuit interference [42]. In general, cross-circuit interference is a
consequence of OR-link layer connection artifacts affecting virtually independent
circuits, because several circuit-layer connections share the same OR-link.

OR-Link Layer: The OR-link layer comprises the transport connection
between ORs. We classify the OR-link layer design according to which of reli-
ability, congestion control, and flow control it incorporates. Tor uses TCP on
the OR-link layer, realizing reliability, congestion control, and flow control on
this layer. Since Tor multiplexes all circuit segments over a single OR-link layer
connection (TCP connection) between ORs and TCP mechanisms are agnostic
to these circuits, it is subject to cross-circuit interference; specifically, because
of shared I/O buffers and congestion control. Shared I/O buffers are a problem
because segments are taken out of the shared TCP buffer on a first-come-first-
served basis, no matter which circuit they are associated with. This leads to high
latency for all circuits in the presence of high-throughput circuits that congest
the shared TCP I/O buffer. This, in turn, may render interactive sessions using
a low-throughput circuit over the same TCP connection unusable, as there is no
means for prioritizing an interactive session.

Congestion control causes TCP connections to be throttled in the case of a
congestion event5; thus, if a congestion event occurs related to a single circuit, all
circuits over the same TCP connection are throttled. Even without congestion
control, reliability6 would cause cross-circuit interference because the recovery
from packet loss in one circuit would also affect all other circuits sharing the
same TCP connection.

Two classes of solutions addressing Tor’s cross-circuit interference have been
proposed; firstly, dedicating a TCP connection to each circuit segment [5]; and
secondly, using a simple transport protocol, e.g., UDP [41]. Conflux and mTor
are Tor extensions that add the multi-path layer while inheriting this weakness
of Tor. mUDP-OR and MORE both use UDP as a transport protocol, avoid-
ing cross-circuit interference. However, this countermeasure leads to aggressive
traffic7, which might congest the network. This issue has been addressed in [39].
5 A congestion event might, e.g., be a packet loss.
6 The realization of reliability is typically intertwined with congestion control.
7 Traffic sent at high rates even in case of network congestion.

246 W. De la Cadena et al.

A multi-path based mitigation technique for cross-circuit interference on the
OR-link layer, which to our knowledge has not yet been discussed, would be the
use of multi-path TCP [13] as a transport protocol. Since multi-path TCP han-
dles scheduling among the various TCP sub-streams on the transport layer, it
is not suited to circuit-aware scheduling. Still, having several TCP sub-streams
would lower the risk of cross-circuit interference while potentially multiplex-
ing several circuits over a single connection hiding them in an anonymity set.
However, especially in congested networks, having several TCP connections also
increases the aggressiveness of traffic [40].

Circuit Layer: The circuit layer comprises a single overlay connection between
an OP and an exit OR. As with the OR-link layer, we classify the circuit layer
design by which of reliability, congestion control, and flow control it incorporates.
The Tor circuit layer protocol [8] does not implement reliability, since it is already
provided by TCP at the OR-link layer. It provides flow control with a fixed-size-
window-based mechanism and no congestion control. Reliability methods do not
benefit from inter OR-link or inter-layer communication and thus should be
realized on one layer exclusively. Flow control and congestion control can benefit
from inter OR-link and inter-layer interaction [39], and thus may be (partially)
realized on several layers. Both having a fixed-size window for flow control and
not providing congestion control have been identified as the major performance
limiting factors of Tor [6]. Prioritization of interactive connections on the circuit-
level has been proposed by Tang et al. [36] as a mitigation technique for cross-
circuit interference, making interactive connections more responsive.

Conflux and mTor also inherit the properties of Tor for the circuit layer.
mUDP-OR tunnels TCP, meaning the onion proxy and the exit node have a
virtual TCP connection; thus, mUDP-OR provides all of flow control, congestion
control, and reliability on the circuit layer. MORE is an overlay IP service where
TCP data can be tunneled, making it part of the same class as mUDP-OR. The
advantage of both mUDP-OR and MORE is being able to avoid cross-circuit
interference. However, the OP-to-exit feedback loop for congestion control and
reliability realization is very long and therefore not responsive. If a packet is
dropped on the first circuit segment, this packet loss is detected at the end of
the last circuit segment and the notification of this event needs to travel all the
way back. The same problem occurs for adapting the TCP congestion window.
Further, because mUDP-OR tunnels kernel-level TCP, the feedback across the
whole circuit allows OS fingerprinting attacks [29].

A further property we use to classify the circuit layer by is circuit to OR-
link mapping. The circuit to OR-link mapping decides how circuit segments are
mapped to connections between the corresponding pair of ORs. Realizations
comprise (1) n : 1, where all circuit segments between a pair of ORs are mul-
tiplexed over one transport connection, (2) 1 : 1, where each circuit segment is
mapped to a dedicated transport connection, and (3) n : m, where several circuit
segments between a pair of ORs are multiplexed over a set of transport connec-
tions. While (1) may suffer from cross-circuit interference (e.g., when reliability

Analysis of Multi-path Onion Routing-Based Anonymization Networks 247

is provided) but offers the best anonymity properties, (2) prevents cross-circuit
inference but may allow passive attackers to infer which circuit a given packet
is associated with, which in turn might allow association with the sender. A
compromise is provided by (3) which reduces cross-circuit interference while still
hiding packets in an anonymity set. Tor implements strategy (1), which is inher-
ited by Conflux and mTor. mUDP-OR also implements this strategy. MORE
implements strategy (2) and further uses a new circuit for each (set of) cell(s).
The multi-path TCP based solution described above is an example of (3).

We also classify the circuit layer by its circuit scheduling method. If several
circuits share a transport connection, cells associated with various circuits are
multiplexed over this connection. Circuit-layer scheduling is concerned with how
to choose which cell from various circuit-level output queues should be the next
to be put into the transport-level output queue. We classify circuit scheduling
methods into (1) ad hoc, and (2) metric-based. Ad hoc methods do not depend on
a metric; subclasses are, e.g., (1a) random, where cells are randomly taken from
input queues and put into the output queue, and (1b) round robin. Metric-based
methods collect information about available circuits. This information is used
to calculate a metric, based on which scheduling decisions are made. A subclass
is (2a) traffic class prioritization, where specific traffic classes, e.g., traffic from
an interactive connection, are prioritized. (1) is simple to implement and neither
consumes additional computational power nor needs extra network messages.
However, as shown in [6], (2) provides superior overall performance.

Prior to 2012, Tor used round robin as its scheduler. Then, an improved sched-
uler based on the recent circuit’s activity was implemented [36]. Most recently, in
2017 a new scheduler called KIST [18] was introduced. It uses feedback from the
kernel to prioritize the traffic of each circuit’s queue. Conflux and mTor inherit
this characteristic from Tor. mUDP-OR does not maintain circuit-level queues
and therefore directly passes cells to the transport layer. Because MORE has a
1 : 1 mapping between circuit segments and OR-links, it too does not implement
any circuit-level scheduling and leaves this task to the transport layer. Not hav-
ing a circuit-level queue decreases feedback time and total queueing delay, but
comes at the cost of not having the advantages of circuit scheduling.

Multi-Path Layer: The multi-path layer incorporates sets of circuits jointly
building communication channels. We classify the multi-path layer design by
which of congestion control and flow control it considers. While it is a feasi-
ble design choice for the multi-path layer to be agnostic to both flow control
and congestion control, the realization of reliability for a multi-path approach
always includes the multi-path layer. The subclasses of multi-path reliability are
merge and full reliability. The former expects the underlying circuits to provide
a reliable ordered stream of cells—either by realizing reliability on the OR-link
layer or on the circuit layer—and merges cells coming from different circuits.
The latter collects all packets from the associated circuits and fully implements
reliability. Having reliability on the multi-path layer allows for sending control
information on less-congested circuits to reduce feedback time.

248 W. De la Cadena et al.

While Tor does not offer multi-path capabilities, both Conflux and mTor
can be seen as multi-path extensions to vanilla Tor. As Tor already provides
reliability and congestion control on the OR-link layer and flow control on the
circuit layer, both solutions apply the merge strategy on the multi-path layer.
Since mUDP-OR is a multi-path extension of UDP-OR, which already provides
a means for anonymizing a reliable connection, mUDP-OR adds merge on top
of the circuit layer provided by UDP-OR. MORE sends cell(s) over a different
unreliable circuit; thus, full reliability is performed at the multi-path layer.

Another multi-path layer design choice is multi-path scheduling. While circuit
scheduling decides from which circuit-level queue the next cell is put into the
transport-level queue, multi-path scheduling decides over which circuit a given
cell should be sent. The classes of scheduling algorithms, however, are the same as
for circuit scheduling. New subclasses are (2b) congestion-based, where cells are
sent through less congested circuits, (2c) round trip time (RTT) based, where
circuits with lower RTT are prioritized, and (2d) tunable, which is a tunable
combination of the other subclasses. As multi-path layer scheduling allows for
congestion control which, in turn, leads to more even utilization of circuits, it also
helps in mitigating cross-circuit interference. Both Conflux and mTor implement
congestion-based scheduling. While Conflux’s scheduling strategy has a very long
feedback loop (see Sect. 3), mTor implements a more responsive method based on
the stream-level receive window size. Still, in absolute terms, the feedback loop is
long. The mTor scheduling algorithm improves the throughput of bulk transfers
while not negatively affecting interactive sessions. The default scheduler used
in mUDP-OR is round robin. MORE is special in this case, as it creates new
circuits on the fly for each cell and sends cells over the respective newly-created
circuit. Thus, it depends on path selection and circuit construction discussed in
the following subsections. The scheduling itself is therefore ad hoc, because a
cell is scheduled to the only available circuit at a given point in time.

Multi-path TCP [13] could be used not only on the OR-link layer, but also
on the circuit and multi-path layers, tunneling multi-path TCP’s sub-streams on
the circuit layer and using its scheduling and merging strategy on the multi-path
layer. While this solution has the advantage of using an established protocol, it
comes with little flexibility for adapting it to be a Tor transport. Such a solution
should not use TCP at the OR-link layer as this would lead to TCP over TCP
throttling effects [37].

Summarizing the realization of TCP functionality, all approaches directly use
TCP and do not introduce custom designs. Both Conflux and mTor use TCP on
the OR-link layer, mUDP-OR uses TCP on the circuit layer, and MORE uses
TCP8 on the multi-path layer. Like Tor, Conflux and mTor add only a simple flow
control mechanism on the circuit layer. More sophisticated approaches tailored
to anonymization overlay networks (see, e.g., [39]) have not as yet been used in
the context of multi-path onion routing.

8 MORE uses TCP when anonymizing a reliable service. Because MORE provides an
IP service on the overlay, it can also be used without providing TCP functionality
at all.

Analysis of Multi-path Onion Routing-Based Anonymization Networks 249

4.2 Circuit Construction

This design class comprises the considerations for building the path(s) that the
OP will employ. The only subclass of circuit construction is the number of cir-
cuits required by the OP for exchanging data. The subclass single circuit is
valid for Tor, since only one circuit is required by the OP for a data transfer. If
multiple circuits are required, the design choice needs to specify where the merg-
ing/splitting points are. This in turn defines how many ORs per position (entry,
middle, or exit) can compose a circuit. This design choice influences anonymity,
performance and implementation complexity. Conflux, mTor, and mUDP-OR
enlarge the bandwidth capacity of the last hop by building extra middle-to-exit
connections. From the anonymity perspective, using multiple entry ORs may
improve the resilience against some attacks (see Sect. 6). None of the considered
approaches merge on a middle OR; this scheme would represent a more complex
implementation but at the same time an easier deployment in the network, since
there are fewer requirements for starting a middle OR in Tor [1].

Another class refers to the topology formed by the selected ORs. Conflux,
mTor, and mUDP-OR form a partial mesh, since each entry OR communicates
with one middle OR. MORE tends to form a full mesh as the number of sent
cells increases.

Lastly, the linking subclass refers to the mechanism to associate/save sev-
eral circuits as a singular structure upon their creation. In Conflux, mTor and
mUDP-OR, multiple circuits are referred by an end-point under a common iden-
tifier exchanged via a control cell. This type of linking comprises the subclass
identifier. The other subclass, cell-based, is used by MORE. Here, paths are not
linked in the construction process, but their cells will be grouped during the data
transmission based on their header. This linking class is strongly related to the
scheduling from the multi-path layer, and choosing it properly results in faster
multi-path build times, and a more secure multi-path structure.

4.3 Path Selection

Preemptively, more than the required circuits can be built before streams are
attached to them. This design choice determines which of the built path(s) will
be next used for the data transfer. Once the path(s) are selected, the OP sends
cells based on the traffic management design choices.

The subclass selection criteria determines which parameter(s) must be con-
sidered for defining which circuit(s) will be employed. In Tor, after discarding
circuits with slow build times, the newest available is chosen. Other parameters
such as RTT, congestion, or a tunable combination of these may be also consid-
ered. The subclass stream attachment comprises special choices for multi-path
approaches. In contrast to Tor, where the stream will be directly attached to
a single circuit, multiple circuits allow this attachment to be fixed, when the
set of selected circuits does not change after they are chosen, or to be dynamic
when the set of selected circuits may change during the data transfer. When the

250 W. De la Cadena et al.

set of selected circuits changes as dynamically as in MORE, this design choice
determines the multi-path layer scheduling.

To sum up, the top level classes of the taxonomy address the design choices to
be considered before user data is sent (path selection and circuit construction),
and for the data transmission itself (traffic management). In our evaluation, we
identify the effects of the design choices employed by the analyzed approaches.

5 Performance Evaluation

In this section, we evaluate each approach within two scenarios: on an isolated
private local network, and in a larger network using the NetMirage9 emulator.

5.1 Private Local Network Experiment

We use this experiment to understand the differences between all designs without
external influence. In a local network we set up seven ORs, one client for measure-
ments, four web servers, and up to 30 clients to generate load on the employed
circuit(s). Three metrics are reported on the client: TTFB (Time to First Byte),
and download times (DT) for HTTP web (320 KiB) and bulk (1 MiB) requests10.
Furthermore, on each OR the CPU usage was periodically logged. Considering
that there are no congestion effects from other sources in an isolated network, we
evaluated each approach with the round robin multi-path scheduler. This also
ensures that multiple circuits will be equitably used. Effects of congestion-based
schedulers are evaluated in the second scenario.

Multi-path Circuits and Load Balancing: In the left columns of Table 1 we
present the average CPU load on each OR for the maximum number of clients.
For multiple circuits, we present results for only one of them, since values in
others are similar. It is clearly observable that the load assigned to each OR is
decreased by using multiple circuits simultaneously. Furthermore, it is noticeable
that translating the reliability and congestion control tasks to the end-points (in
mUDP-OR and MORE) results in a higher load on them. We also observe that
entry ORs are more loaded than others (except by MORE) in the circuit due to
the cryptographic operations performed.

Client Performance: Performance metrics are presented in the right columns
of Table 1. As an expected consequence of the dynamic stream attachment in
MORE, its clients experience the slowest download times, making it unfeasible
to complete data transfers in many cases (e.g., for bulk downloads). We confirm
that a UDP-based approach such as mUDP-OR responds faster than a TCP-
based approach. In contrast to Conflux and mTor, our multi-path enhancement
to UDP-OR did not produce the desired improvements due to the still-existing
very long feedback for retransmissions and acknowledgments.
9 https://crysp.uwaterloo.ca/software/netmirage/.

10 Values presented with 95% confidence and based on 200 repetitions.

https://crysp.uwaterloo.ca/software/netmirage/

Analysis of Multi-path Onion Routing-Based Anonymization Networks 251

Table 1. CPU usage percentage on the onion routers, and performance metrics for the
maximum number of clients.

Approach Paths CPU usage on the OR Client performance metrics

Entry Middle Exit TTFB[s] DT Web [s] DT Bulk[s]

Conflux 1 57.87 ± 2.16 49.85 ± 1.82 31.74 ± 1.15 0.027 ± 0.005 0.059 ± 0.003 0.113 ± 0.008

2 33.22 ± 2.25 31.01 ± 2.21 31.51 ± 2.22 0.016 ± 0.002 0.052 ± 0.0005 0.082 ± 0.002

3 27.24 ± 1.94 22.78 ± 1.56 32.94 ± 2.28 0.014 ± 0.003 0.049 ± 0.0007 0.079 ± 0.0024

mTor 1 57.87 ± 2.16 49.85 ± 1.82 31.74 ± 1.15 0.027 ± 0.005 0.059 ± 0.003 0.113 ± 0.008

2 25.10 ± 2.21 23.19 ± 1.73 32.51 ± 2.26 0.012 ± 0.002 0.055 ± 0.001 0.079 ± 0.003

3 13.45 ± 0.97 14.62 ± 0.85 32.90 ± 2.27 0.017 ± 0.003 0.049 ± 0.0007 0.081 ± 0.002

mUDP-OR 1 88.31 ± 1.51 86.89 ± 1.48 71.33 ± 1.24 0.002 ± 0.0003 0.031 ± 0.0018 0.076 ± 0.005

2 36.75 ± 2.51 32.67 ± 2.79 73.48 ± 3.09 0.002 ± 0.0001 0.034 ± 0.0017 0.081 ± 0.001

3 22.73 ± 3.11 24.45 ± 3.27 75.30 ± 3.21 0.0024 ± 0.0001 0.035 ± 0.001 0.113 ± 0.014

MORE 1 6.73 ± 0.14 6.93 ± 0.19 75.92 ± 2.34 0.014 ± 0.004 1.41 ± 0.007 N.A

2 6.65 ± 0.13 6.93 ± 0.2 70.09 ± 2.24 0.014 ± 0.004 1.37 ± 0.19 N.A

3 6.57 ± 0.11 6.52 ± 0.08 68.19 ± 2.48 0.016 ± 0.006 1.39 ± 0.014 N.A

Fig. 2. Time to first byte for web and bulk clients

5.2 Larger-Scale Experiment

Currently, the Shadow [19] tool is widely used for large-scale Tor simulations.
However, due to lack of support for some required functions (e.g., TUN devices)
in Shadow, we opted for the NetMirage tool for building a common testbed. We
based our experiment on the PlanetLab and Tor topologies included in version
1.12.1 of the Shadow simulator. It consisted of 303 nodes distributed all over
the world, where we set up 206 web clients, 22 bulk clients, 14 exit nodes, 59
non-exit nodes and 14 web servers. Web clients performed successive downloads
of 320 KiB data, waiting randomly from 0 to 20 s between each download, and
bulk clients downloaded 1 MiB sequentially without pausing.

252 W. De la Cadena et al.

Fig. 3. Download speed for web and bulk clients

Client Performance: For every approach, each design variation11 was emu-
lated for two hours (see Figs. 2 and 3). We observe that, in a congested envi-
ronment, mUDP-OR only outperforms other approaches in the TTFB metric.
Moreover, the congestion-based scheduling techniques of mTor and Conflux do
not profit completely from the utilization of multiple circuits; this may explain
why the RR scheduler performs better, particularly for bulk downloads. Thus, it
is necessary to develop a more efficient circuit congestion estimation procedure.
Since Tor does not directly access the congestion information provided by TCP
for each OR link, the estimations done in the circuit layer are not completely
reliable and may not represent the state of the circuit at that moment. We
observe that the improvements in downloading data are more advantageous to
bulk transfers. Moreover, the TCP-based approaches outperform the UDP-based
ones in terms of download speed for nearly all the 228 clients.

Network Scalability: In this experiment we incrementally introduced up to
228 clients (10% bulk and 90% web clients) and measured TTFB and download
speed for each iteration (see Fig. 4). The fast first response of mUDP-OR is
clearly advantageous within a congested network; however, clients of Conflux
and mTor download data faster. We observe that the download speed for all
approaches stabilizes to its minimum value when around 140 clients are present.
After this point, differences between all approaches remain constant. We notice
that using RR for multi-path scheduling scales better, due to the equitable usage
of network resources. It is also noticeable that congestion-based mechanisms
perform better in a lightly-congested environment; this reinforces the intuition

11 Two design variations were evaluated: the number of paths (labeled as 1,2,3) and the
multi-path scheduler (labeled as RR for round robin and CB for congestion based).

Analysis of Multi-path Onion Routing-Based Anonymization Networks 253

that the employed congestion estimation techniques are not fully precise. We
refrain from comparing MORE in this regard due to its poor performance.

Fig. 4. Performance metrics for different number of clients

5.3 Design Recommendations

From the performed evaluations we identify that any design (single or multi-
path) based on UDP, provides a fast first response. This feature comes however,
at the cost of a degraded performance. If fast download speed is desired (e.g.,
in web browsing), the design should use the TCP protocol on the OR-link layer
together with an effective congestion-based multi-path scheduler. If the objective
is to ease the burden on ORs, the round robin scheduler ensures an equitable
traffic distribution. If performance is not of the essence—for instance in non-time-
sensitive applications like messaging or microblogging—even higher anonymity
can be achieved by systems with the characteristics of MORE.

6 Anonymity Analysis

In this section, we address the anonymity implications produced by using mul-
tiple paths in the context of the evaluated approaches.

6.1 Client Multi-path Circuits Compromise

A circuit becomes compromised if an attacker gains control over both its edges.
An adversary that controls a fraction of entry and exit nodes (fg and fx), can
compromise any single circuit with a probability P (c) ≈ fgfx [3,7]. For multi-
path clients employing m entries and one exit OR, this expression becomes
Pm(c) ≈ fx(1 − (1 − fg)m). This expression is valid for all evaluated approaches;

254 W. De la Cadena et al.

however, for MORE, an adversary must compromise many more than m circuits
to fully affect one client, which means that this approach provides higher levels
of anonymity. Even though Pm(c) ≥ P (c), this difference is negligible even in
the presence of a powerful attacker12.

6.2 Using Multiple Entry Onion Routers

To make the probability of de-anonymization vanishingly small, Tor clients try
to choose the same entry OR from the priority-ordered primary list13. Since a
multi-path client uses m entries, they should be taken from a primary list of
minimum size m. In order to evaluate the anonymity implications, we leverage
the framework presented in [17] together with metrics and adversary models
presented in [15]. Two adversary models are considered for a client using m
entries, the first determines that a client is compromised if at least one entry is
controlled, which may be valid for confirmation and correlation attacks [14]. The
second, defines a compromised client if and only if all m entries are controlled,
which may be valid for website fingerprinting attacks [16,28,31,43]. Both models
are valid for designs that assign streams to a fixed set of circuits (Conflux, mTor
and mUDP-OR). For systems with dynamic stream attachment (MORE), the
models are valid during the usage interval of the circuits. Using consensus data
from 2015, we simulated 500,000 clients and a high-resource adversary controlling
10% of the overall entry bandwidth. Figure 5 shows the mean compromise rate
(CR) of 50 simulations. We notice that, for the second adversary model, the CR
decreases exponentially with each additional entry. Conversely, if one from m
entries is enough to compromise a client, they become around twice as vulnerable.

Lastly, we analyze the guard fingerprinting attack14, where using multiple
entries decreases the mean anonymity set size (A). Currently, each Tor client
shares its entry OR with on average another 1,000 users (A = 1000). If clients
used m paths, A would drastically decrease to 2×106

(2000m) . Using the Tor source code,

we simulated the creation of primary lists for 83,000 clients. For m = 1, we
experimentally obtained A = 112, while for m = 2 roughly 90% of clients had
a unique pair of entries, and the user with the largest anonymity set shared its
entries with another 14 users. For this attack, the dynamism of MORE is also
favorable, because all clients tend to use all nodes as entries. Thus, A converges
to its upper limit (the total number of clients).

To sum up, the anonymity advantages of using multiple entry ORs, together
with the presented performance gains, are compelling reasons to enhance systems
such as Tor with multi-path capabilities. The main constraint is the fact that

12 An adversary controlling 20% of the total bandwidth (ca. 60Gbit/s in Tor) is con-
sidered as very powerful; in this case P (c) ≈4% and Pm(c) ≈9.8% for m = 3.

13 From all ORs with entry flags listed in the consensus, by default, a client filters three
ORs from several lists, choosing the first that is reachable as its entry OR.

14 Guard ORs refer to the entry ORs regularly selected by a client. This set of nodes
may be used as a fingerprint for de-anonymizing a client.

Analysis of Multi-path Onion Routing-Based Anonymization Networks 255

Fig. 5. Fraction of compromised clients (Compromise Rate) during one year: Single,
two, and three entries refer to the second adversary model. In the scenario labeled as
COMB, 60% of the clients use a single entry, 20% two entries and 20% three entries.

using multiple entries is not considered in the latest Tor specification, however
future research directions [17] aim to give more flexibility in this regard.

7 Conclusions and Future Work

Onion routing-based approaches (e.g., Tor) can leverage multi-path capabilities
as a means of enhancing the users’ experience through performance improve-
ment. To investigate these capabilities, we have presented a comprehensive anal-
ysis and evaluation of multi-path onion routing approaches regarding their design
choices and realizations. By using the proposed taxonomy, we presented impor-
tant guidelines to be followed not only for future multi-path onion routing-based
designs, but also for other types of anonymization systems.

For future multi-path designs, greater performance improvements are
expected if the current congestion estimation mechanisms can be refined to
reflect the actual transport layer congestion into the multi-path layer. Further-
more, other aspects such as anonymity and load balancing should be taken into
consideration when designing the multi-path circuit structure and scheduling
mechanisms. We notice that for some attacks (e.g., guard fingerprinting) a con-
siderable modification in the current node selection strategy is needed to guar-
antee a level of anonymity. Meanwhile, for other attacks such as website finger-
printing a quantitative analysis of their impact is required.

In future work we also plan to address cross-circuit interference, which is a sig-
nificant problem in Tor, with mitigation techniques that often affect anonymity.
We plan to analyze trade-offs between using different subsets of the mechanisms
that TCP offers on the OR-link layer and specifically look into alternative con-
gestion control methods. We want to improve performance while still avoiding
network congestion, and also protect anonymity by not introducing end-to-end
feedback and so opening additional attack vectors.

256 W. De la Cadena et al.

Acknowledgments. We thank the anonymous reviewers for their useful comments,
and all authors of the evaluated approaches for providing their source code and assis-
tance. This research was funded by the Luxembourg National Research Fund (FNR)
within the CORE Junior Track project PETIT.

References

1. The Tor Relay Guide (2018). https://trac.torproject.org/projects/tor/wiki/
TorRelayGuide

2. Akhoondi, M., Yu, C., Madhyastha, H.: LASTor: a low-latency as-aware tor client.
In: Symposium on Security and Privacy (S&P). IEEE, San Francisco, May 2012

3. AlSabah, M., Bauer, K., Elahi, T., Goldberg, I.: The path less travelled: overcoming
Tor’s bottlenecks with traffic splitting. In: De Cristofaro, E., Wright, M. (eds.)
PETS 2013. LNCS, vol. 7981, pp. 143–163. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39077-7 8

4. AlSabah, M., et al.: DefenestraTor: throwing out windows in Tor. In: Fischer-
Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 134–154. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 8

5. AlSabah, M., Goldberg, I.: PCTCP: per-circuit TCP-over-IPsec transport for
anonymous communication overlay networks. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security. ACM, Berlin,
November 2013

6. AlSabah, M., Goldberg, I.: Performance and security improvements for tor: a sur-
vey. ACM Comput. Surv. (CSUR) 49, 32:1–32:36 (2016)

7. Das, A., Borisov, N.: Securing anonymous communication channels under the selec-
tive DoS attack. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 362–370.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 31

8. Dingledine, R., Mathewson, B.: Tor protocol specification (2018). https://gitweb.
torproject.org/torspec.git?a=blob plain;hb=HEAD;f=tor-spec.txt

9. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: 13th conference on USENIX Security Symposium. USENIX Association,
San Diego, CA, USA, August 2004

10. Dingledine, R., Murdoch, S.: Performance improvements on Tor or, why Tor is
slow and what we’re going to do about it (2009). http://www.torproject.org/press/
presskit/2009-03-11-performance.pdf

11. Feigenbaum, J., Johnson, A., Syverson, P.: Preventing active timing attacks in low-
latency anonymous communication. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 166–183. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14527-8 10

12. Ghosh, M., Richardson, M., Ford, B., Jansen, R.: A TorPath to TorCoin: proof-
of-bandwidth altcoins for compensating relays. In: 7th Workshop on Hot Topics in
Privacy Enhancing Technologies (HotPETs), Amsterdam, Netherlands, July 2014

13. Handley, M., Bonaventure, O., Raiciu, C., Ford, A.: TCP extensions for multipath
operation with multiple addresses. RFC 1654 (1995)

14. Hayes, J.: Traffic confirmation attacks despite noise. In: Understanding and
Enhancing Online Privacy Satellite Workshop of NDSS, San Diego, CA, USA,
April 2016

15. Hayes, J., Danezis, G.: Guard sets for onion routing. Proc. Priv. Enhancing Tech-
nol. 2015(2), 65–80 (2015). https://content.sciendo.com/view/journals/popets/
2015/2/article-p65.xml

https://trac.torproject.org/projects/tor/wiki/TorRelayGuide
https://trac.torproject.org/projects/tor/wiki/TorRelayGuide
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-22263-4_8
https://doi.org/10.1007/978-3-642-39884-1_31
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
https://doi.org/10.1007/978-3-642-14527-8_10
https://doi.org/10.1007/978-3-642-14527-8_10
https://content.sciendo.com/view/journals/popets/2015/2/article-p65.xml
https://content.sciendo.com/view/journals/popets/2015/2/article-p65.xml

Analysis of Multi-path Onion Routing-Based Anonymization Networks 257

16. Hayes, J., Danezis, G.: k-fingerprinting: A robust scalable website fingerprinting
technique. In: 25th USENIX Conference on Security Symposium. USENIX Asso-
ciation, Austin, August 2016

17. Imani, M., Barton, A., Wright, M.: Guard sets in Tor using AS relationships. Proc.
Priv. Enhancing Technol. 2018(1), 145–165 (2018). https://content.sciendo.com/
view/journals/popets/2018/1/article-p145.xml

18. Jansen, R., Geddes, J., Wacek, C., Sherr, M., Syverson, P.F.: Never been KIST:
Tor’s congestion management blossoms with kernel-informed socket transport. In:
Proceedings of the 23rd USENIX Security Symposium. USENIX Association, San
Diego, August 2014

19. Jansen, R., Hopper, N.: Shadow: running Tor in a box for accurate and efficient
experimentation. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). Internet Society, August 2012

20. Jansen, R., Johnson, A., Syverson, P.: LIRA: lightweight incentivized routing for
anonymity. In: 21st Annual Network and Distributed System Security Symposium
(NDSS), February 2013

21. Jansen, R., Miller, A., Syverson, P., Ford, B.: From onions to shallots: rewarding
tor relays with TEARS. In: 7th Workshop on Hot Topics in Privacy Enhancing
Technologies (HotPETs), Amsterdam, Netherlands, July 2014

22. Jansen, R., Syverson, P., Hopper, N.: Throttling Tor bandwidth parasites. In:
21st USENIX Conference on Security Symposium. USENIX Association, Bellevue,
August 2012

23. Karaoglu, H., Akgun, M., Gunes, M., Yuksel, M.: Multi path considerations for
anonymized routing: challenges and opportunities. In: 5th International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE, May 2012

24. Katti, S., Cohen, J., Katabi, D.: Information slicing: anonymity using unreliable
overlays. In: 4th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, Cambridge, April 2007

25. Landsiedel, O., Pimenidis, A., Wehrle, K., Niedermayer, H., Carle, G.: Dynamic
multipath onion routing in anonymous peer-to-peer overlay networks. In: 50th
Annual IEEE Global Telecommunications Conference (GLOBECOM), pp. 64–69.
IEEE, Washington, DC, November 2007

26. Loesing, K., Murdoch, S., Jansen, R.: Evaluation of a libutp-based Tor datagram
implementation. Technical report 2013–10-001, The Tor Project (2013)

27. Murdoch, S.: Comparison of Tor datagram designs. Technical report (2011)
28. Panchenko, A., et al.: Website fingerprinting at internet scale. In: 23rd Annual

Network and Distributed System Security Symposium (NDSS). Internet Society,
San Diego, February 2016

29. Reardon, J., Goldberg, I.: Improving Tor using a TCP-over-DTLS tunnel. In: 18th
Conference on USENIX Security Symposium, pp. 119–134. USENIX Association,
Montreal, August 2009

30. Ries, T., Panchenko, A., State, R., Engel, T.: Comparison of low-latency anony-
mous communication systems - practical usage and performance. In: Ninth Aus-
tralasian Information Security Conference (AISC) (2011)

31. Rimmer, V., Preuveneers, D., Juarez, M., Goethem, T.V., Joosen, W.: Automated
website fingerprinting through deep learning. In: 25th Annual Network and Dis-
tributed System Security Symposium (NDSS). Internet Society, San Diego, Febru-
ary 2018

32. Serjantov, A., Murdoch, S.J.: Message splitting against the partial adversary. In:
Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 26–39. Springer,
Heidelberg (2006). https://doi.org/10.1007/11767831 3

https://content.sciendo.com/view/journals/popets/2018/1/article-p145.xml
https://content.sciendo.com/view/journals/popets/2018/1/article-p145.xml
https://doi.org/10.1007/11767831_3

258 W. De la Cadena et al.

33. Snader, R.: Path selection for performance- and security-improved onion routing.
Ph.D. thesis, University of Illinois at Urbana-Champaign (2010)

34. Snader, R., Borisov, N.: A tune-up for Tor: improving security and performance
in the Tor network. In: 16th Annual Network and Distributed System Security
Symposium (NDSS), February 2008

35. Snader, R., Borisov, N.: Improving security and performance in the Tor net-
work through tunable path selection. Trans. Depend. Secure Comput. 85, 728–741
(2011)

36. Tang, C., Goldberg, I.: An improved algorithm for tor circuit scheduling. In: 17th
ACM Conference on Computer and Communications Security, pp. 329–339. ACM,
Chicago, October 2010

37. Titz, O.: Why TCP over TCP is a bad idea. http://sites.inka.de/bigred/devel/tcp-
tcp.html. Accessed 16 Nov 2018

38. Tschorsch, F., Scheuermann, B.: Tor is unfair - and what to do about it. In: 36th
Conference on Local Computer Networks. IEEE, Bonn, October 2011

39. Tschorsch, F., Scheuermann, B.: Mind the gap: towards a backpressure-based
transport protocol for the tor network. In: 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI), pp. 597–610. USENIX Association,
Santa Clara, March 2016

40. Tschorsch, F., Scheurmann, B.: How (not) to build a transport layer for anonymity
overlays. In: Proceedings of the ACM Sigmetrics/Performance Workshop on Pri-
vacy and Anonymity for the Digital Economy. ACM, New York, June 2012

41. Viecco, C.: UDP-OR: a fair onion transport design. In: 1st Workshop on Hot Topics
in Privacy Enhancing Technologies (HotPETS), Leuven, Belgium, July 2008

42. Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware path selection for
Tor. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 98–113. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 9

43. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effective attacks and
provable defenses for website fingerprinting. In: Proceedings of the 23rd USENIX
Security Symposium. USENIX Association, San Diego, August 2014

44. Yang, L., Li, F.: mTor: a multipath tor routing beyond bandwidth throttling. In:
IEEE Conference on Communications and Network Security (CNS), pp. 479–487.
IEEE, Florence, September 2015

http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html
https://doi.org/10.1007/978-3-642-32946-3_9

Distributed Systems

Shoal: Query Optimization and Operator
Placement for Access Controlled Stream

Processing Systems

Cory Thoma(B), Alexandros Labrinidis, and Adam J. Lee

Department of Computer Science, University of Pittsburgh, Pittsburgh, USA
{corythoma,labrinid,adamlee}@cs.pitt.edu

Abstract. Distributed Data Stream Processing Systems (DDSPS) exe-
cute on transient data flowing through long-running, continuous, stream-
ing queries, grouped together in query networks. Often, these continuous
queries are outsourced by the querier to third-party computing plat-
forms to help control the cost and maintenance associated with owning
and operating such systems. Such outsourcing, however, may be con-
tradictory to a data provider’s access controls as they may not permit
their data to be viewed or accessed by an unintended third party. A
data provider’s access controls may, therefore, prevent a querier from
fully outsourcing their query. Current research in this space has provided
alternative access control techniques that involve computation-enabling
encryption techniques, specialized hardware, or specialized query opera-
tors that allow for a data provider to enforce access controls while still
allowing a querier to employ a third-party system. However, no system
considers access controls and their enforcement as part of the query opti-
mization step. In this paper, we present Shoal, an optimizer that consid-
ers access controls as first class citizens when optimizing and distributing
a network of query operators. We show that Shoal can generate more effi-
cient queries versus the state-of-the-art, as well as detail how changes in
access controls can generate new query plans at runtime.

1 Introduction

The ever-increasing and ever-changing size, speed, and availability of accessible
data has led to the rise of new outsourced data processing paradigms. One
such paradigm is Data Stream Processing handled by Distributed Data Stream
Processing Systems (DDSPSs). A DDSPS handles data on-the-fly by executing
on transient data with long-running continuous computations (queries), such
as streaming operations, map-reduce functions, or user-defined functions, etc.
These computations are often outsourced to third-party systems that handle
data processing and execution.

Outsourcing computation is desirable for the querier as it provides them with
cost savings. For instance, the querier need not maintain expensive hardware

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 261–280, 2019.
https://doi.org/10.1007/978-3-030-22479-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_14

262 C. Thoma et al.

and software platforms. Further, the cloud provider offers guarantees on uptime
and service availability that a querier can rely on. Finally, the querier can take
advantage of a cloud provider’s ability to scale to meet demand, by allocating
new resources or freeing up underused ones. When a querier contracts a third-
party cloud service provider, they are often able to optimize their query to take
advantage of different third-party offerings and pricing models. In doing so, they
are able to improve the efficiency of their query for some measurable metric (e.g.,
latency, throughput, monetary cost) by taking advantage of location, current
pricing, current load, and other factors at runtime by changing the placement
of certain components (i.e., operators) of their queries. This allows queriers to
freely move queries around to improve some aspect of the query’s performance.

When a data provider dictates access controls over their streaming data,
however, a querier may lose some of these freedoms. For instance, if a data
provider authors an access control policy that removes a third-party altogether,
the querier would lose the ability to execute any part of their streaming query
on that provider. Similarly, if access controls are enforced using some crypto-
graphic method (e.g., Polystream [31] or Streamforce [3]), the querier may expe-
rience degraded performance as different permissions require different encryption
schemes, each incurring different overheads. In both cases, a querier stands to
lose some of the benefits of hosting their queries on a third-party system, and
may even be required to host the query themselves.

Queriers must consider access controls when trying to generate and optimize
their queries. For instance, when a query is broken down into different operators,
some operators may be able to execute directly on plaintext, but may have to
execute on a querier-maintained machine, whereas others may be more costly
(monetarily, in terms of latency, or otherwise) but can be executed on a third-
party system. A querier must now be able to reason about and decide which
implementation of an operation to choose given the accesses they have been pro-
vided. This implies that a querier must be able to enumerate potential operators
and consider them at query optimization time to ensure that the most efficient
query plan is derived given each data providers’ access controls. Further, when
a data provider changes their access controls, query networks may need to be
updated.

Currently, DDSPS optimizers and related work have explored DDSPSs opti-
mization in a limited scope. Some have simply focused on better utilization
of the underlying computation hardware alone [17], while others have focused
on the underlying network alone [7,13,27,29]. Several optimizers and systems
have focused on the impact of data variability on the system in the presence
of access controls [3,31] and in the impact of data stream rates and selectivi-
ties [2,6]. Currently, there is no system that focuses on optimizing queries based
on the underlying access controls from different data-providers. Further, the
closest related work focuses on the use of an optimize-then-place approach in
which a user’s query is first optimized for non-distributed execution and then
post-processed for placement on distributed resources. Finally, related work with
enforcing access controls in a DDSPS focuses on a single query, which may not
suit a querier as they may query many data providers.

Shoal: Query Optimization and Operator Placement 263

We present an optimizer that considers a querier’s access privileges at opti-
mization time to produce a high-quality placement and ordering of individual
streaming operators. Our proposal, Shoal,1 uses a dynamic programming algo-
rithm to guarantee optimal placement and orderings for moderate-sized sets of
streaming queries on a DDSPS, and includes a heuristic approach for larger query
networks. Shoal combines the ordering and placement steps to take advantage of
the underlying system by considering multiple orderings on various distributed
computation infrastructures, and avoids the pitfalls of the optimize-then-place
approach. To this end, we make the following contributions:

• We show the optimize-then-place approach to be a sub-optimal approach for
computing operator placement in a DDSPS.

• We introduce the first cost model for distributed streaming queries that lever-
ages parallelism inherent to the DDSPS and accounts for key sources of het-
erogeneity such as fluctuations and changes in the underlying data streams
and the underlying system and network.

• We detail an optimization algorithm that can execute both at query initial-
ization as well as when a change in the system is detected. This algorithm
only optimizes the parts of any queries that are potentially affected by a
change in access controls. By only considering parts that are affected by sys-
tem changes, this online algorithm is able to quickly re-optimize and recover
while maintaining an optimal solution.

• We run an extensive evaluation of our algorithms and compare to several
baseline, state-of-the-art, and optimize-then-place algorithms. We show that
our proposed framework can produce higher quality optimization and place-
ment plans (up to 2.2x better) with reasonably low overheads, and further
show these plans are of a higher quality when compared to related work.

The remainder of this paper is organized as follows. We present the system
model in Sect. 2 and formalize our problem statement in Sect. 3. We describe our
proposed approach in Sect. 4 and present results form our experimental evalua-
tion in Sect. 5. Section 6 summarizes related work. We conclude in Sect. 7.

2 Background and System Model

This section overview the features Shoal considers when optimizing. We further
detail our system model and overview access control frameworks and their affect
on a DDSPS.

2.1 Background on DDSPSs

Shoal uses a common Distributed Data Stream Processing System (DDSPS)
model. DDSPSs separate the data provider from the data consumer, and often

1 A shoal is a heterogeneous group of fish that is organized to function towards a
common purpose, typically of a safety or social nature.

264 C. Thoma et al.

separate the data processing machines as well. DDSPSs rely on long running,
continuous computations that execute on transient data. Once a DDSPS has
processed the transient data, results can be stored or forgotten depending on
the computation being done.

DDSPSs can implement many different stream-processing paradigms such
as relational data stream processing [2,4,5], MapReduce [19], and user-defined
tasks. Relational data stream processing systems use continuous SQL-like queries
that are comprised of streaming operations that execute a single task. Simi-
lar to traditional database management systems, some operations require large
amounts of information to produce their result (e.g., a join or aggregation). Since
data is transient in a DDSPS, data is grouped by windows and slides: a window
represents how much data to keep (e.g., 100 tuples, 10 min, etc.) and a slide
represents how often to update the querier (e.g., every 10 s, every 500 tuples,
etc.).

The system components of a typical DDSPS are listed below.

• Data Providers provide streaming data (subject to access controls) to the
system.

• Sites are third-party computational and storage platforms (such as Amazon
EC2 or Microsoft Azure). They are tasked with the execution of streaming
operations as well as forwarding data.

• Data Consumers author and submit streaming queries to the system. These
queries can be of a variety of paradigms such as relational streaming contin-
uous queries, map-reduce computations, or user-defined functions.

2.2 Access Controls

In a DDSPS, access control enforcement becomes difficult since the data
providers can not control the propagation of their data after it is transmitted.
The current literature on enforcing access controls in a DSMS can be grouped
into two categories: trusted third-party enforcement and untrusted enforcement.
Trusted third-party enforcement techniques work by trusting that a computa-
tional site will enforce access to their data on their behalf. Such systems either
work with special operators [9–11] or by re-writing queries [20,23] so that access
can be limited.

Systems that do not trust third-party enforcement will rely on cryptographi-
cally enforced access controls. Rather than forcing a querier to process data only
after it has been decrypted, systems like PolyStream [31] and Streamforce [3]
allow the data provider to use specialized computation-enabling encryption tech-
niques to enable third-party computation for a querier directly on encrypted data.
These systems, however, limit the expressiveness and accessibility of a queriers’
potential query. In Streamforce, a querier may only access integer data via a
view-like format, (i.e., only allowing filtering and aggregations on numeric data).
PolyStream supports a richer set of query operations than Streamforce, but can-
not support join or complex user-defined functions over streams from multiple

Shoal: Query Optimization and Operator Placement 265

providers. Furthermore, these systems also leak information about the under-
lying plaintext values, such as equality, relative partial ordering, or relation-
ships between groups of tuples (e.g., the encrypted aggregate of some encrypted
data). In either the fully-trusted third-party or the untrusted third-party sce-
nario, access control enforcement comes with computational overheads that must
be properly accounted for when optimizing and placing a query.

3 Problem Description

In this section, we detail the exact optimization problem addressed by our frame-
work and define the different components of a Distributed Data Stream Process-
ing System (DDSPS). We offer a description of our optimization approach and
show the optimize-then-place approach to be suboptimal.

3.1 Problem Description

In order to properly define the problem being addressed here, we must first for-
malize the required components. There are three main components to optimizing
and placing a data consumer’s computation: sites, operations, queries, and query
networks.

Definition 1. Site: As introduced in Sect. 2, a site s executes operators. Inter-
connections between sites have bandwidth (in bits/s, where tuples can be of
varying size) and latency (in ms) characteristics that we represent as b(s1, s2)
and l(s1, s2) respectively. Sites are associated with the following properties:

• s.cap is the site’s processing capacity (in cycles, translated to tuples/s).
• s.name is the site’s name used for unique identification purposes.
• s.per is a set of permissions {<o, f>| site s can execute a physical operator

o on field f}.
Definition 2. Operation: An operation op is a set of operators that execute
the same task via different physical implementations.

• op.type represents the action to be performed on a data stream (e.g., filter,
projection, summation, top-k, etc.).

• op.args includes metadata about the operations such as the join condition or
selection criteria.

• op.input represents the set of fields required for this operation to execute.
• op.output represents the set of fields in the output of this operation.
• op.id is a unique identifier for the operation.

A typical operation can be a filter over someone’s age, a join to match two
streams, or an aggregation to find the maximum profit in a given window of
time. Operations can be implemented using different techniques, represented as
operators.

266 C. Thoma et al.

Definition 3. Operator: The basic computational unit used in Shoal is an
operator o, which has the following properties:

• o.s represents the expected or actual selectivity of the operation. Selectivities
can be derived either by estimation, measurements during a warm-up period,
or historical selectivity data.

• o.c represents the cost of the operation in terms of the latency for computing
on one tuple. It can be calculated in a manner similar to the selectivities.

• o.site represents the site an operator has been assigned to.
• o.opId represents the ID of the operation (that is to say, the logical operator

that this physical operator represents) that this operator implements.
• o.window represents the window size for a stateful operator either in tuples

or ms, with a default of 0.

Operators allow flexibility when implementing an operation. Consider the
potential difference between a hash-join implementation of a join operation ver-
sus a merge-join implementation. Given the input rate and selectivity of each
stream, it is highly likely that one join would outperform the other in terms of
overall latency. An operation would have the merge-join and hash-join as poten-
tial operators, and each operator would have a cost that can be used to better
optimize the query network.

Definition 4. Query: A query is represented as a set q of operations that
describe the query or task that a data consumer wishes to execute over a set
of data streams.

• leaves(q) returns the set of operations that operate on a raw data stream (i.e.,
do not require the output of another operation to execute).

Definition 5. Query Network: A query network is represented as a set qn of
queries that will execute within the DSMS.

• sinks(qn) returns the set of operations that return a result to a querier (i.e.,
the last part of any one query).

Using a query, permissions, and a set of available sites as input, Shoal pro-
duces a plan as output:

Definition 6. Plan: A plan p = (Vo, Eo) where Vo is a set of physical operators
and Eo ⊂ Vo ×Vo is the edge set linking the outputs of one operator to the inputs
of adjacent operators.

Definition 7. Satisfiability: A plan p satisfies a query network qn if:

• ∀op ∈ qn,∃! o ∈ Vo s.t. o.opId = op.id
• ∀o ∈ Vo,∃! op ∈ qn s.t. op.id = o.opId∧ < o, o.metadata >∈ o.site.per
• ∀o ∈ p, o.input ⊆ ⋃

o′|<o′,o>∈Eo

o′.output

Shoal: Query Optimization and Operator Placement 267

That is, each operation in each query that comprises the query network
has a unique operator in the plan and that each operator in the plan is the
implementation of one operation in the query, and that each operation in the
query is represented in the resulting network. Additionally, each operator’s input
must be part of the output of its immediate predecessor, and each operator must
be permitted to execute on its assigned site.

To determine the relative quality of a given plan p, we use the following cost
model.

Definition 8. Cost: For a plan p of a Query Network qn, the cost of p, starting
at the leaf node(s), is determined by:

max
path∈Paths(p)

pathCost(path) (1)

where Paths is the set of paths from leaf nodes to sink nodes. The expected input
rate for each operator (starting from the initial input rate of the leaf node from
the source stream) is:

ir(oi) = IRqn ∗
∏

opj∈pathUpTo(opi)

opj .s (2)

The function pathUpdTo(o) for an operator o is the ordered subset of opera-
tors that precede o in the plan (as part of the same query). IRqn is the maximum
input rate of any leaf operator on the current path. The cost of a path is:

pathCost(path) =
∑

opi∈path

max(opi.c, opi.window) + Latency(opi, path) ∗ Penalty(oi) (3)

The penalty is defined as:

Penalty(o) =

{
1, if pr(o, o.site) > ir(oi)

ir(o)
pr(o,o.site) , otherwise

(4)

The function pr(operator, site) determines what the processing rate of a site
would be with the operator o assigned to it. If this processing rate is greater than
the input rate, then there is no penalty. If the processing rate is insufficient to
handle the input rate, the plan is penalized by the input rate over the processing
rate. Latency is computed as:

Latency(o, path) =

{
0, for o ∈ leaves(qn)
l(op, opi−1), for opi>1

(5)

Constrained by s.cap and bandwidth(opi, opi−1).

268 C. Thoma et al.

f3

j1

f1

f2

s1

f1

f2

f3
j1 s1

Selectivity f1 = .25 f2 = .96 f3 = .96 j1 = .05

j1

f1

f3fff2ff

s1

Cost: 43
f3

j1

f1

f2

s1

Cost: 56

f1

f3ff2ff

j1 s1

Cost: 36

f1

f2ff

f3f
j1 s1

1
2
3

Fig. 1. Simple continuous query.

Definition 9. Problem: Given a query network qn of queries, a set of Sites s,
and a set of access control permissions per, produce a plan p that satisfies qn
such that Eq. 1 is minimized.

3.2 Optimize-then-place Approach

A reasonable first step solution to this optimization problem would be to separate
optimization from operator placement. This would allow a placement algorithm
to simply use an existing off-the-shelf optimizer and post-process the result for
placement. This approach, however, can lead to a sub-optimal plan even if the
query itself is fully optimized. Consider the following scenario for a continuous
query optimizer, which we will use throughout the remainder of the paper to
illustrate Shoal:

A simple query contains three filters (f1, f2, f3), a join (j1), and a projection
(s1) as depicted in the top of Fig. 1 as the result of an optimization step. Next
consider the three sites available for placement, and assume the network cost is
uniform. Each site has a capacity of 10 (unit-less for simplicity). The cost of each
filter is 4, of the join 6, and of the project 2; each have selectivities shown in Fig. 1.
Given these costs, either the join must be co-located with f1 (the top of Fig. 1)
or separated from all of f1, f2 and f3, (the middle of Fig. 1). However, notice
that the selectivity of f1 combined with f2 is .92, meaning that a tremendous
amount of data is being sent over the network to the join. The selectivity of the
join, however, is far lower at .05, meaning that a smaller amount of data is being
produced. If the query was instead optimized so that f3 were to follow the join,
the overall network cost would be substantially reduced, resulting in a higher
quality plan (78.8 ms vs. 67.8 ms with Eq. 1). This illustrates the need for the
optimization and placement steps to be considered simultaneously.

Shoal: Query Optimization and Operator Placement 269

Algorithm 1. DynamicProgramming
1: DynamicProgramming(sc, perms, sites)
2: optPlace= new Array(ArrayList(plan))
3: for leaf ∈ leaves(sc) do
4: optPlace[0] = ∅ � Initialize Empty list at level 0
5: for s ∈ sites do
6: for l ∈ operators(leaf) do
7: if s.cap ≥ l.c && (< l, l.metadata.field >∈ s.perms) then
8: l.site = s
9: optPlace[0].add(new plan(l)) � Capacity kept per plan

10: prunePlans(optPlace[0])

11: for lv = 1...|sc| do
12: optPlace[lv] = ∅ � Initialize Empty list at level lv
13: for operation ∈ sc | operation.type = join do
14: for plan1, plan2 ∈ optPlace[lv − 1] | (operation.input ⊆ (plan1.output ∩ plan2.output)) ∧

operation.opId
∈ plan1.opIds ∧ operation.opId
∈ plan2.opIds do
15: for s ∈ sites do
16: for join ∈ allowableOps(operation) do
17: if (updateCapacity(plan1, plan2, s) ≥ join.c) ∧ (< join, join.metadata.field >∈

s.perms) then
18: join.site = s
19: optPlace[lv].add(joinPlans(plan1, plan2, join))

20: for plan ∈ optPlace[lv − 1] do
21: for operation ∈ sc | (operation.type
= join)∧(operation.opId
∈ plan.opIds) ∧ (operation.

input ⊆ plan.output) do
22: for s ∈ sites do
23: for o ∈ allowableOps(operation) do
24: if plan.s.cap ≥ o.c∧ < o, o.metadata.field >∈ s.perms then
25: o.site = s
26: optPlace[lv].add(combine(plan, o))

27: prunePlans(optPlace[lv])

4 The Shoal Optimizer

In this section, we introduce our optimization and placement algorithms.

4.1 Online Optimization Approach

Given the long-running nature of continuous queries, there is a high chance
(essentially a certainty) that a data provider’s access controls will change over
time, requiring re-optimization of the network of streaming queries currently
deployed. When access controls change for any one data streaming operator,
it could possibly have a ripple effect for other downstream operators as they
may need to be moved to reallocate resources. To accommodate these changes,
there are two possible approaches: stop-the-world and on-the-fly. The stop-the-
world approach simply halts query execution and uses Algorithm1 to re-optimize
the query from the root nodes. This approach, however, can lead to large re-
optimization times for larger query networks, and can end up doing repetitive
work when a relatively small set of operations are affected by the change.

We introduce an on-the-fly approach to mitigate these overheads. The prin-
ciple behind our on-the-fly approach is to execute Algorithm1 from the operator
that is first affected by the access control update relative to the data providers of
the overall query network, which we will call the first-impacted. This requires the

270 C. Thoma et al.

Algorithm 2. Access Control first-impacted identifier.
1: ACUpdate(Update u, Plan p)
2: cld = sc.leaf � Operations not processed
3: for o ∈ cld do
4: if o.input | u.protectedFields then
5: return p.levelOf(o)
6: else
7: cld.add(p.childrenOf(o)

8: cld.remove(o)

ability to determine the first-impacted, which depends upon the type of access
control update that occurred.

Access Control. Algorithm 2 determines which operators are first-impacted by a
change in access controls. It starts by adding operations that directly access raw
data streams on Line 2 to the current query network, cld. These operators are
then looped through on Line 3, and Line 4 determines if that operator accesses
the data being protected by the new access control update. If so, this operation
is the first-impacted and the algorithm determines its level by asking the plan
for the level. If the operation does not access the protected data, its children
are added to the cld set, and it removes itself from this set. This continues
until the first-impacted is found. At this point, Algorithm1 will execute on the
descendant children of the first-impacted, as well as all operations at the same
level and their descendants. Note that on Lines 16 and 23, we check for all
allowable operations. Recall that one physical operation can be implemented by
many physical operations (e.g., the querier may have sufficient access to query in
plaintext local to their machine and further have access to use a computation-
enabling encryption scheme such as an order preserving scheme on encrypted
data in the cloud. This function enumerates the possible operators based on the
current permissions of the querier. This leaves the already optimized operations
and their ancestor operations intact from the previous plan, and re-optimizes
the operations at and after the first-impacted’s level, leading to less optimization
time. The only alteration required for Algorithm1 is the inclusion of the current
plan from which to start, which is simply placed in the optimalP lans set and
the Algorithm starts from Line 11 where the level is determined by traversing
back to the leaf nodes.

4.2 Greedy and Hybrid Approaches

As with traditional dynamic programming optimizers, our algorithm could suffer
from prohibitively large execution times for large or complicated query networks
(explored further in Sect. 5). When query networks become too large or complex,
we defer to a greedy approach. This approach simply considers one operator at
a time and optimally places it. In the base case where each operator needs to
be placed, the user defines a time threshold toffline for their optimization step.
If the dynamic programming approach is expected to exceed toffline, then the
greedy approach is used. The online approach poses a different problem because

Shoal: Query Optimization and Operator Placement 271

there may be uncertainty in how costly an update may be to the system (i.e.,
the number of operators that need to be re-optimized).

The larger the number of operators that need to be considered, the greater
the number of operators requiring re-optimization, and therefore the greater the
cost of the update. In a system operating at or near capacity, online updates may
end up hindering the quality of the result as some information may be lost during
optimization, especially for costly updates on large overall query networks. To
combat this problem, we use the greedy approach when updates are too costly
relative to the system load. The greedy approach simply re-optimizes, placing
each operator in the most optimal location, in a quick but likely non-optimal
fashion.

The greedy approach lends itself nicely to distributed systems with heavy
load where re-optimization needs to be quick to avoid losing data, but it will not
produce plans of the same quality as the dynamic programming approach. To
help a data consumer determine which to use, we propose a hybrid solution which
automatically determines which approach to use given the current system state.
The determination is based on three factors relative to the overall streaming
query network submitted by the data provider: (a) buffer capacity, (b) processing
time of a single streaming tuple (end-to-end), and (c) the input rate. When an
update is deemed necessary, its cost c in seconds is determined by multiplying
the number of operations needing to be re-optimized by the average amount
of time to optimize one operator (based on the execution time of optimizing
the entire query, or a running average). Then, the following equation is used to
determine which algorithm to use:

uc = (
o∈p∑

i

(bi ∗ ti)) + iro ∗ c (6)

where o is the operator in the plan p, bi is the utilized buffer size of o, ti is the
processing time of o, ir is the input rate. If c < uc then the dynamic programming
approach is used, otherwise the greedy approach is used to minimize data loss.

4.3 Example

To help illustrate how Shoal optimizes a set of streaming queries, consider the fol-
lowing continuous query on a data stream that contains tuples with a timestamp,
companyName, companyId, and the company profit, as illustrated in Fig. 2:

SELECT max(avg_profit), companyName
FROM (SELECT companyName, AVG(profit) as avg_profit

FROM profitStream GROUP BY companyName EVERY 1m UPDATE 15s;)
GROUP BY companyName EVERY 1m UPDATE 15s;

This query requires five operations; a max (m), a projection (p), an average
(a), and two group-by operations (g1 and g2) represented by circles in Fig. 2.
Assume that the profit field is protected by a homomorphic encryption and the

272 C. Thoma et al.

Fig. 2. Given a the set of operations and the sites A and B, Shoal optimizes and places
the operations so that the first aggregation is placed on A with the projection reducing
network load to the second aggregation operation placed on B.

others are plaintext. Further assume (for simplicity) that there are two sites A
and B with capacities 10 and 10 respectfully, and a latency of 10ms between
them (squares in Fig. 2).

Shoal starts with the operation a as it is the operation that accesses raw data.
Since a homomorphic option exists for the aggregation, an operator executing
a homomorphic scheme is put onto each site and the next round of dynamic
programming is initiated. Further, plans are also added for random encryption
and trusted machine processing. This aggregation requires a group-by operation,
which can execute on the plaintext column for “company name”. This operation
is placed with the aggregation on each site, making each site’s best plan having
a cost of 8 which, along with other plans with varying physical operators, are
kept for each site. Shoal then tests the remaining operations and determines that
the projection p can be added to each site’s best plan for a cost of 9. Plans are
now kept for each site and for each physical operator, but the minimum plan
score is 9. Note that this choice reduces the overall network load by eliminating
all columns except the company name and the average. Shoal continues and
determines that the maximum operation along with its group-by can not fit on
either site and chooses them to operate on site B with site A keeping its previous
plan. With all operators placed, the new plan resembles the one in the right half
of Fig. 2.

5 Evaluation

To evaluate our optimizers, we decided to use relational continuous queries for
the bulk of our experimentation.

Setup: For our evaluation, we limit Shoal to be used in a simple streaming
system with data providers, data consumers, and data processing components.
For our simulation, data is streamed from a laptop into Amazon AWS EC2
instances. Once data is processed, it is passed back to the laptop to act as the
data consumer. We implement the streaming layer on the Apache Storm [30]
framework. To keep the streaming layer simple, we use the most basic function-
ality of Storm where our data provider implements a spout and our data pro-
cessing nodes implement bolts with no multi-threating or replication (i.e., a bolt

Shoal: Query Optimization and Operator Placement 273

just mimics a machine for our purposes). We use Storm only for the transport
layer as it guarantees delivery and provides acking and nacking functionality. To
simulate real-world streams, each stream is imposed with an artificial latency of
0–30 ms to emulate them being geographically separated.

Datasets: We use queries from the TPC-H [25] workload and modify them for
use in a streaming system (e.g., aggregations use windows). We will explicitly
call out any changes to the query we made, or if we use more than one query as
part of the query network. We further segment data based upon a timestamp so
that it is streamed into the system (in a pre-processing step) so that days are
equivalent to minutes. All queries are referenced using the query number (e.g.,
q1 for TPC-H query 1) and the number of operators it translates to (e.g., q1(4)
is TPC-H query 1, which has four operations).

Baseline Algorithms: In addition to our original and hybrid dynamic pro-
graming algorithms, we chose three additional baselines for comparison: (1) all-
on-client, where all of the operations run on one machine, (2) first site, where
each operation is placed on the first site available, and switched to the next when
either the site is at capacity or there is a conflict with access controls, and (3)
greedy, where a plan is generated by greedily assigning each operation based on
the best score.

5.1 Online Optimizer

This section evaluates our dynamic programing optimizer as compared to other
baseline approaches. The cost of an update is based on how many operations
in the query network are affected by the update, so we omit cases where the
entire network was updated since it would degenerate to the basic case where
each operator must be optimized.

Optimization Time. Given the cost of an update, this experiment determines the
average optimizer execution time for the our dynamic programming approach as
well as the baseline approaches.

Configuration: We combine queries in increasing size order (i.e., 1 query, 2
queries, 3 queries, up to 4 queries, or 8, 14, 28, and 45 operators). This provides
four data points with an increasing size and number of sinks. All aggregation
and join operations are given windows of 5 min (to directly use the date field
in each relevant tuple). We trigger updates so that only a certain number of
operators in each query are affected by the update. Each optimizer is then used
to order and place the subsequent operations.

274 C. Thoma et al.

0

10

20

30

40

50

60

70

q4(1) q6(3) q4(4) q3(8) q7(12)

O
pt
im

iz
at
io
n
T
im

e
(m

s)

Operators after f rst-impacted

DP
Greedy
Hybrid

First Site

Fig. 3. Optimizer execution time for
the online algorithm approaches.

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100 110

La
te
nc

y
(m

s)

Time (ms)

16
32
64

Fig. 4. Recovery time caused by an
access control update for different costs.

Results (Fig. 3): Here we can see the dynamic programming approach is the
slowest. This optimizer execution time included the time to determine the first-
impacted for each approach, for each query.

Takeaway: Although Shoal has the highest optimization time, it is still rela-
tively low, especially when executing on a long-running continuous query in a
network where the resulting plan quality is much more important.

Plan Quality. This experiment evaluates the overall plan quality of each app-
roach in terms of latency (ms) for each updated plans. Again, we present both
the expected latency, as well as the actual latency. Here, we include the hybrid
approach to show when it may switch optimizers to reduce the overall impact of
an update.

Configuration: Queries are executed for 10 min in total. There is a two-minute
window for the initial query, after which an access control update is presented.
The query is then updated and the remainder of the time is spent monitoring
the updated query. The results presented below are the quality (latency in ms)
of the updated query network, as presented by the number of operators updated
in the largest network.

Results (Figs. 5a and b): Our dynamic programming optimizer produces the
best overall latencies for both expected and actual evaluations for the query
network. The difference between the expected and the actual is roughly 10.2%,
which indicates that Shoal can produce results that are close to the actual values.
Notice that the hybrid approach chose to switch to the Greedy optimizer in the
last update to the query network. This is due to the system being near capacity
when the update occurred (roughly 2,500 tuples/s with a processing rate of
roughly 2,615 tuples/s), and in the time to process a new query, the system
could have lost data, so the hybrid algorithm chose to use the greedy optimizer.

Takeaway: Shoal produces higher quality plans when compared to the baseline.

Shoal: Query Optimization and Operator Placement 275

0

10

20

30

40

50

60

70

80

90

q6(1) q4(2) q3(4) q7(8)

La
te
nc

y
(m

s)

Operators after f rst-impacted

DP
Greedy
All-on-1
First Site

Hybrid

(a) Expected latency.

0

10

20

30

40

50

60

70

80

q6(1) q4(2) q3(4) q7(8)

La
te
nc

y
(m

s)

Operators after f rst-impacted

DP
Greedy
All-on-1
First Site

Hybrid

(b) Actual latency.

Fig. 5. Expected and Actual latency for Shoal on random data.

Recovery Time. When an update occurs, the system must determine how to
re-optimize from first-impacted operation. This process takes time, and while it
is processing, the query will still need to be executing. The time between the
start of an update optimization and the normal execution of the resulting plan
is the time it takes the system to recover from an update. In this experiment,
we evaluate this recovery time for access control updates.

Configuration: For this experiment, we generated a 128-operator query net-
work. Operations were selected from a random distribution of operations which
included two-way joins, filters, summations, averages, projections, and decrypt-
process-encrypt operations. Access control updates occur by specifying a specific
change in access controls that target a specific operator such that the update cost
remains consistent across the evaluation, and each update causes an increase in
latency and a decrease in throughput (i.e., switch from plaintext to encrypted).
A query is considered recovered once the latency has normalized back to a steady
value.

Results (Fig. 4): When an update occurs to an access control policy (Fig. 4), the
data consumer may lose access as indicated by the unreported latency values.
Once the query has been resumed, the larger updates cause a large spike in
latency that takes more time to recover from, as expected. Note the processing
time of each update also increases, but the recovery time is more-or-less the same
(20–30 ms). This shows that the new queries can handle the increased workload
to make-up for the lost work and then maintain a new latency rather quickly.

5.2 Comparison to the State-of-the-Art

We now evaluate the quality of the plans produced by Shoal versus other operator
placement approaches, namely Pietzuch et al. [24] and Srivastava et al. [29].

Algorithms: Pietzuch et al. [24] propose a solution that focuses on placing
operators in a large-scale distributed network using a latency metric. Their opti-
mizer takes a query plan and places it using a two-step algorithm: first a Virtual

276 C. Thoma et al.

Operator Placement step and then a Physical Operator Placement step. The vir-
tual operator placement step considers all operators in a query and places them
based on a cost space. This cost space consists of a decentralized view of the
network from a single node’s perspective and focuses on the latencies between
potential sites. There is also a load dimension that can ensure that a single site
does not become overwhelmed. Their approach allows for access control updates
by allowing operators to migrate between sites. To compare to our work, we fix
the cost space by artificially creating latencies and data rates between potential
sites (i.e., the assumed information gathered by the DDSMS in their work) and
then allow it to adjust over time. The main optimization function used in their
work is to minimize the following formula:

∑

l∈L

DR(l) ∗ LAT (l) (7)

Where l is the link between two nodes, DR(l) is the data rate of that link, and
LAT (l) is the latency of that link.

Srivastava et al. [29] also reduce data transmission, but do so for localized
networks. Their work focuses on using parts of the query itself, as well as the
machines available for placement, to make a placement decision. Specifically,
they focus on the selectivity of filtering operations, the cost associated with each
operation, and the cost associated with sending a tuple through the network. In
addition to the above costs, a join’s cost is calculated using its selectivity and
the cost per unit time for processing one tuple. The cost of a placement plan is
therefore the sum of all of the nodes where the selectivities of upstream filters
are multiplied by the cost of the current filter. Some filters are correlated and
some are not, so the ordering decision comes from the commutative aspect and
the overall cost comes from minimizing the cost of the filter and join orderings.
To compare with our work, we again assume an artificially created latency and
use the same operators’ costs and latencies across all approaches.

Configuration: For our comparison, we use multiple queries over a fixed num-
ber of sites. We use 5 sites, each connected to each other with an initial latency
randomly selected from a range of 5–500 ms. Each query is comprised of between
4 and 128 operations selected as either filters (selection operations) or joins, with
plaintext data. Since [24] requires an initial query plan, we use Shoal with a sin-
gle site and sufficient capacity to generate a non-distributed query plan. Finally,
each filter is given a selectivity randomly selected from the set {.1,.2,...,.9}. To
gather information on actual latencies, each query was executed for a total of
five minutes for each approach.

Results (Figs. 6a & b): As depicted in Figs. 6a and b, Shoal produces plans
with better expected and actual latency. As before, the expected and actual are
within an average of 8%, however the Pietzuch et al. approach is more predictable
since its expected is on average only 4% different from the actual value. Shoal is
able to outperform the other approaches because it attempts to find an optimal

Shoal: Query Optimization and Operator Placement 277

solution that takes into account the parallelism inherent to a distributed system
by preferring plans that allow work to be done on multiple devices simultane-
ously. The Pietzuch et al. approach relies on an optimize-then-place approach
and missed better filter orderings, which becomes more apparent as queries grow
larger. The Srivastava et al. approach does consider ordering, but does not con-
sider the parallelism inherent to a distributed system and would often serialize
sets of operations that could have otherwise been done in parallel.

Fig. 6. Expected and Actual latency for Shoal on random data.

Takeaway: By considering ordering and placement at optimization time, as well
as taking advantage of parallelization inherent to the distributed system, Shoal
can out-preform other state-of-the-art optimizers in terms of end-to-end latency.

6 Related Work

Stream processing has been rigorously studied in the literature to include novel
systems such as Aurora [1], Borealis [2], and Twitter Herron [18]. For traditional
database applications, the focus for operator placement in distributed database
systems usually focuses on replication, sharding, or scalability [12,14,15,28]. The
PAQO [16] optimizer focuses on placing operators in a distributed database sys-
tem so that one entity does not learn the underlying intension of the query. For
data steaming systems, operator placement is of a larger concern since queries
are long-running and operators are expected to consume resources for long peri-
ods of time while possibly fluctuating in their required resource utilization. The
contributions in [8] explore the general problem of operator placement on hetero-
geneous computational platforms for DDSMs, and propose a linear programming
model to place operators. Their approach processes placement in a separate step
from optimization, which can lead to suboptimal results (cf. Sect. 3).

Huang et al. [17] fit operators onto sites by calculating the execution time of
an operation and place it based on the capacity of each site, using end-to-end
delay and throughput as the metrics. Thoma et al. [32] place operators in a
DDSMS where queriers have the ability to control where operators are placed
via a set of constraints. These constraints generally cover all aspects of the

278 C. Thoma et al.

placement, but do not consider the access control policies of a data consumer.
Operators placement using heuristics to optimize for end-to-end latency and
network traffic have also been explored [7,13,27].

Finally, some related work has focused on the impact of enforcing access
controls in a DDSPS. Enforcement systems such as FENCE [21,22] include
the enforcement overheads in the optimization step by adding streaming oper-
ations that can be handled like any other operation, but do so without consid-
ering operator placement. Other systems will rewrite queries or alter streaming
operators [9–11,23], while others focus on protecting a single system, such as
Borealis [20]. These systems simply explore the overheads associated with access
control enforcement and do not consider them at optimization time or dur-
ing operator placement. Furthermore, these systems do not explore the tradeoff
between different types of access control enforcement during optimization time,
which is provided in ShoalṠystems like PolyStream [31], and Streamforce [3],
CryptDB [26] consider such tradeoffs, but do either do not operate in a dis-
tributed fashion (CryptDB), or do not consider them at optimization time.

Thus far current optimizers and systems have focused on a limited scope of
characteristics within a DDSPS, mostly excluding access controls. Either they
do not consider optimization and placement simultaneously, or they limit their
approach to optimize solely for something like network, hardware, or other tra-
ditional metrics. Shoal provides a general cost model and dynamic programming
algorithm that accounts for data provider’s access control enforcement at query
optimization time.

7 Conclusion

We present Shoal which considers access controls as first-class-citizens during
query optimization. By simultaneously ordering and placing streaming query
networks on a per-operator level, Shoal can guarantee optimal results through a
dynamic programming algorithm. Further, Shoal reduces optimization time for
updates based on changes in access controls by identifying the precise operators
that need to be re-optimized and only optimizing from those points forward in
an online fashion. Finally, we show that Shoal produces higher quality plans
(up to 2.2x) versus the state-of-the-art optimizers, and does so while considering
data provider’s access controls.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under awards CNS–1253204 and CNS–1704139.

References

1. Abadi, D., et al.: Aurora: a new model and architecture for data stream manage-
ment. VLDB 12(2), 120–139 (2003)

2. Abadi, D., et al.: The design of the borealis stream processing engine. In: CIDR
(2005)

Shoal: Query Optimization and Operator Placement 279

3. Anh, D.T.T., Datta, A.: Streamforce: outsourcing access control enforcement for
stream data to the clouds. In: ACM CODASPY, pp. 13–24 (2014)

4. Arasu, A., et al.: Stream: the Stanford data stream management system. Book
chapter (2004)

5. Arasu, A., et al.: The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121–142 (2006)

6. Arasu, A., et al.: Stream: the Stanford data stream management system. In: Garo-
falakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management. Data-Centric
Systems and Applications. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-540-28608-0 16

7. Backman, N., Fonseca, R., Çetintemel, U.: Managing parallelism for stream pro-
cessing in the cloud. In: HOTCDP Workshop, pp. 1–5. ACM (2012)

8. Cardellini, V., et al.: Optimal operator placement for distributed stream processing
applications. In: DEBS, pp. 69–80. ACM (2016)

9. Carminati, B., et al.: Enforcing access control over data streams. In: ACM SAC-
MAT, pp. 21–30 (2007)

10. Carminati, B., Ferrari, E., Tan, K.L.: Specifying access control policies on data
streams. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 410–421. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71703-4 36

11. Carminati, B., et al.: A framework to enforce access control over data streams.
ACM TISSEC 13(3), 28 (2010)

12. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39(4),
12–27 (2011)

13. Chatzistergiou, A., Viglas, S.D.: Fast heuristics for near-optimal task allocation in
data stream processing over clusters. In: CIKM, pp. 1579–1588. ACM (2014)

14. Corbett, J.C., et al.: Spanner: Google’ globally distributed database. ACM Trans.
Comput. Syst. (TOCS) 31(3), 8 (2013)

15. Curino, C., et al.: Relational cloud: a database-as-a-service for the cloud. In: CIDR
(2011)

16. Farnan, N., et al.: PAQO: preference-aware query optimization for decentralized
database systems. In: ICDE (2014)

17. Huang, Y., et al.: Operator placement with QoS constraints for distributed stream
processing. In: CNSM, pp. 1–7. IEEE (2011)

18. Kulkarni, S., et al.: Twitter heron: stream processing at scale. In: SIGMOD, pp.
239–250. ACM (2015)

19. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with MapReduce: a survey. ACM SIGMOD Rec. 40(4), 11–20 (2012)

20. Lindner, W., Meier, J.: Securing the borealis data stream engine. In: IEEE IDEAS,
pp. 137–147 (2006)

21. Nehme, R., et al.: A security punctuation framework for enforcing access control
on streaming data. In: ICDE, pp. 406–415 (2008)

22. Nehme, R.V., et al.: Fence: continuous access control enforcement in dynamic data
stream environments. In: ACM CODASPY, pp. 243–254 (2013)

23. Ng, W.S., et al.: Privacy preservation in streaming data collection. In: ICPADS,
pp. 810–815 (2012)

24. Pietzuch, P., et al.: Network-aware operator placement for stream-processing sys-
tems. In: ICDE, pp. 49–49. IEEE (2006)

25. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. ACM SIGMOD Rec. 29(4), 64–71 (2000)

https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-71703-4_36

280 C. Thoma et al.

26. Popa, R., et al.: CryptDB: protecting confidentiality with encrypted query pro-
cessing. In: ACM SOSP, pp. 85–100 (2011)

27. Rizou, S., et al.: Solving the multi-operator placement problem in large-scale oper-
ator networks. In: ICCCN, pp. 1–6. IEEE (2010)

28. Shute, J., et al.: F1: a distributed SQL database that scales. VLDB 6(11), 1068–
1079 (2013)

29. Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network
stream query processing. In: SIGMOD, pp. 250–258. ACM (2005)

30. StormProject: Storm: distributed and fault-tolerant realtime computation (2014).
http://storm.incubator.apache.org/documentation/Home.html

31. Thoma, C., et al.: Polystream: cryptographically enforced access controls for out-
sourced data stream processing. In: SACMAT, vol. 21, p. 12 (2016)

32. Thoma, C., Labrinidis, A., Lee, A.J.: Automated operator placement in distributed
data stream management systems subject to user constraints. In: ICDEW, pp. 310–
316. IEEE (2014)

http://storm.incubator.apache.org/documentation/Home.html

A Distributed Ledger Approach to Digital
Twin Secure Data Sharing

Marietheres Dietz(B), Benedikt Putz, and Günther Pernul

University of Regensburg, Regensburg, Germany
{marietheres.dietz,benedikt.putz,guenther.pernul}@ur.de

Abstract. The Digital Twin refers to a digital representation of any
real-world counterpart allowing its management (from simple monitor-
ing to autonomy). At the core of the concept lies the inclusion of the
entire asset lifecycle. To enable all lifecycle parties to partake, the Digital
Twin should provide a sharable data base. Thereby, integrity and confi-
dentiality issues are pressing, turning security into a major requirement.
However, given that the Digital Twin paradigm is still at an early stage,
most works do not consider security yet. Distributed ledgers provide a
novel technology for multi-party data sharing that emphasizes security
features such as integrity. For this reason, we examine the applicability
of distributed ledgers to secure Digital Twin data sharing. We contribute
to current literature by identifying requirements for Digital Twin data
sharing in order to overcome current infrastructural challenges. We fur-
thermore propose a framework for secure Digital Twin data sharing based
on Distributed Ledger Technology. A conclusive use case demonstrates
requirements fulfillment and is followed by a critical discussion proposing
avenues for future work.

Keywords: Trust frameworks · Distributed systems security ·
Distributed ledger technology · Digital twin

1 Introduction

Hardly anything has revolutionized society as much as digitization. At its begin-
ning, data from everyday life was captured and stored digitally. After reaching
significant amounts of digital data, recent years have been devoted to gaining
relevant insights into data by leveraging Big Data Analytics, Artificial Intelli-
gence and so on. A next step in digitization is now emerging in the form of the
Digital Twin (DT) paradigm.

The Digital Twin refers to a digital representation of any real-world counter-
part, at most times an enterprise asset. Its core building blocks are asset-specific
data items, often enhanced with semantic technologies and analysis/simulation

The first two authors have contributed equally to this manuscript.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 281–300, 2019.
https://doi.org/10.1007/978-3-030-22479-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_15

282 M. Dietz et al.

environments to explore the real-world asset digitally. The DT thus allows man-
agement of such an asset ranging from simple monitoring to autonomy. An essen-
tial part of the concept is the inclusion of the whole asset lifecycle. To integrate
all lifecycle participants, the DT should provide comprehensive networking for
its data, allowing it to be shared and exchanged [4].

Although the DT concept certainly advances digitization, it nevertheless
poses new challenges in terms of IT security, especially in industrial ecosys-
tems [10,18]. Most notably, security must be maintained during the exchange of
DT data between different, non-trusting parties. For instance, consider the DT
of a power plant. Synchronizing tasks between twins should uphold integrity to
avoid manipulated operations on the power plant. Also, involved parties should
not be able to read every shared data element (e.g. the manufacturer of the
power plant need not know the plant’s current status), resulting in confidential-
ity requirements. To the best of our knowledge, current DT frameworks do not
permit secure data sharing. Bridging this gap, our work provides a framework
introducing security-by-design in DT data sharing.

To achieve this goal, we consider Distributed Ledger Technology (DLT). DLT
is the umbrella term for distributed transaction-based systems, shared among
several independent parties in a network. Distributed Ledgers have built-in mech-
anisms for access control and asset management, including authentication and
authorization mechanisms. We focus on permissioned distributed ledgers, which
target enterprise usage by restricting access to fixed set of independent and semi-
trusted participants. One of the main reasons for using a Distributed Ledger
is disintermediation, replacing the need for trust in a third party or central
operator through a replicated and integrity-preserving database. Inherent trans-
parency and auditability are additional advantages over centralized solutions.
Due to these properties, DLT is uniquely suited to solve the challenges of DT
secure data sharing.

Accordingly, this work proposes a framework for secure DT data sharing
across an asset’s lifecycle and collaborating parties based on DLT. We contribute
to the body of knowledge by offering a solution without a trusted third party
(TTP) based on security-by-design. The remainder of this paper is organized as
follows: Sect. 2 introduces the background of our work. Afterwards, we proceed
to the description of the current problems in DT data sharing and name the
resulting requirements for secure DT data sharing (Sect. 3). In Sect. 4, we provide
a framework for secure DT data sharing for multiple parties based on DLT. To
show practical relevance and the functionality of our framework, a use case is
provided in Sect. 5. In Sect. 6, we evaluate our approach in terms of fulfillment
of the stated requirements. To conclude, Sect. 7 sums up the main contributions
and gives an outlook for future work.

2 Background

At present, the Digital Twin phenomenon is still in its infancy. Nevertheless,
implementation and design of this concept are addressed to date, especially in

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 283

the area of Industry 4.0. With strong focus on the industrial domain, the major
part of research suggests DT implementation through AutomationML-formatted
descriptive data of the real-world counterpart, e.g. [2,6,20]. The XML-based
AutomationML (AML) format describes industrial assets and provides object-
orientation for modeling the asset’s physical and logical components [20]. Eck-
hart and Ekelhart [6] propose a framework for using a DT’s simulation mode
for security purposes such as pen testing. While these works focus on an initial
development of a DT, the consideration of data sharing functions are still miss-
ing. However, exchanging data is vital for enabling the lifecycle integration and
collaboration [4]. Our work builds on existing DT propositions, resulting in a
concept that can be applied in a complementary way to enable secure DT data
sharing.

Regarding DT data sharing, both the communication between lifecycle par-
ties and the bidirectional communication between the DT and its real-world
asset counterpart need to be considered. Bidirectional communication consists
of the DT’s instructions for the asset and the asset’s status update for the DT.
To uphold integrity among multi-domain DT models, Talkhestani et al. [21]
offer a solution. They detect model changes by applying anchor points, and
upon detection synchronize the DT while keeping model dependencies consis-
tent. However, this includes drawbacks such as the manual creation of anchor
points and reliance on a Product Lifecycle Management (PLM) system, while
our solution offers platform-independence. Security aspects, such as the guaran-
tee for all lifecycle partners to access the data while upholding confidentiality,
are not considered to date, but integrated in our solution.

DT management is a form of enterprise asset management, which is one of the
prime use cases of Distributed Ledgers [1]. Distributed Ledgers are able to track
events and provenance information along an asset’s lifecycle and increase trans-
parency for all participants. For example, Litke et al. [12] studied the benefits
of Distributed Ledgers for different actors in supply chain asset management, a
research area closely related to DT asset management. In another study, Meroni
and Plebani [14] investigate how the blockchain technology can be used for pro-
cess coordination among smart objects. Smart objects are similar to DTs in that
they are applied for monitoring physical artifacts. An issue with their proposed
approach is that sensor data is also stored on the blockchain, which can be
detrimental to performance and scalability. We consider this issue and provide
a solution to overcome this obstacle.

3 Problem Statement

On the one hand, DTs should facilitate the access to asset information for dif-
ferent stakeholders along its lifecycle [17]. It is a task which enables feedback
loops, while stepping towards a circular economy [3]. On the other hand, the
involved parties do not necessarily trust each other, resulting in a confidential-
ity dilemma. A useful example is given in [13]: Two separate standalone DTs
exist for a single device instance, one for the manufacturer and the other at the

284 M. Dietz et al.

customer site – due to information security reasons. Additionally, current works
state that enterprise infrastructures need to overcome the following obstacles to
provide secure DT data sharing:

– application of different tools [13,24]
– usage of various data formats [13]
– missing standards [4]
– broken information flow across lifecycle phases [13,24]
– clarification of the ownership of information [13].

This calls for a holistic approach that provides confidentiality and integrity, two
central security dimensions in networks [26].

3.1 Digital Twin Model

ni
wTl atigi

D
elcycefiL

access control

descriptive data sensor data

Physical device

sync

MaintainerDistributorOwnerManufacturer

simulationmonitoring analysis ...

information flow
system flow

Fig. 1. Overview of the asset lifecycle participants interacting with the DT.

Figure 1 illustrates DT data sharing and an exemplary set of lifecycle stake-
holders. The depicted DT model comprises different capabilities and two types
of asset-specific data. Descriptive data refers to static properties of the device
and infrequently changing state information. This data is mainly produced by
users. Sensor data occurs frequently and should be available in near real-time.
It is generated by sensors of the physical asset or in its proximity, which provide
valuable information on the asset’s environmental conditions. Moreover, data of
both types needs to be synchronized with the physical counterpart. Therefore,
the sync capability compares the state of the DT to its real-world counterpart
and resolves possible discrepancies.

The access control capability provides authentication and authorization mod-
ules to enable data sharing of involved parties without hampering confidentiality.
The monitoring, simulation and analysis capabilities represent advanced opera-
tions of the DT. Depending on the extent of the operations present in a DT, DT
status data can be returned to the participant or the real-world counterpart’s
state can be modified.

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 285

The depicted information flows show how information about the physical
device is gathered from and sent to the lifecycle parties. Generally, the type of
data accessed and shared by the different lifecycle parties depends on the real-
world twin, the parties’ roles in its lifecycle and thus, the specified access control
mechanisms in the DT. The system flows represent necessary bidirectional syn-
chronization between the DT and its real-world counterpart as stated in Sect. 2.
Both flows contribute to making the data sharing activities of the involved par-
ties traceable. This enables feedback from the latest stages of the asset lifecycle
to the earliest ones [17].

3.2 A Formal Basis for Secure Digital Twin Data Sharing

Although a methodological literature analysis to establish requirements is the
state-of-the-art approach, it is currently not sensible to carry out with regard to
our research focus. On the one hand, this is due to the fact that only a small
number of publications exist. In addition, data sharing has not yet been a focus
in DT literature to date. Moreover, security-by-design concepts have not been
considered yet. Therefore, we establish a formally valid basis in order to create
a uniform understanding of DT data sharing. To derive the requirements, the

Fig. 2. Control flows for a single DT.

mechanisms to achieve the central goal of secure DT data sharing have to be
examined in detail. Figure 2 illustrates the formal functions required to achieve
this goal, which are also described hereafter.

DT Data: We see DT data twofold: At first, there is a set of descriptive data
elements Ddesc := {d1, ..., dm} varying from documents to models or analytic
outcomes. Its essential data element is the specification of the DT dspec ∈ Ddesc.
The second set contains environmental, device-produced data, namely sensor
data Dsensor := {d1, ..., dn}, whereby Ddesc � Dsensor.

286 M. Dietz et al.

Sharing: A finite set of lifecycle parties N := {n1, ..., nk|k ≥ 2} can share the
respective data elements of Ddesc (write operation) or access the data elements of
Ddesc, Dsensor (read operation). This results in the following necessary functions:

write(ni, dj |dj ∈ Ddesc) and read(ni, dj |dj ∈ Ddesc ∨ dj ∈ Dsensor).

Note that 1 ≤ i ≤ k as well as j

{
1 ≤ j ≤ m if j ∈ Ddesc

1 ≤ j ≤ n if j ∈ Dsensor

.

Security-by-design: Security-by-design infers introducing security mechanisms
at the very beginning of a system’s design [22]. In terms of DT data and sharing
security, data integrity and confidentiality mechanisms are of special interest.
Confidentiality in terms of securing data from view of non-trusted third parties
can be reached by access control mechanisms [19]:

authentication:
authenticate(ni)

authorization:
authorize(read(ni, dj))

authorize(write(ni, dj))

Integrity of data can be achieved by auditability and traceability of write
operations. Given Ddesc as the origin set of data, D′

desc is the set of data after
a data element dj is added to the origin set. The following functions can cover
integrity aspects:

auditability:

audit() : Ddesc → D′
desc ⇐⇒ write(ni, dj) ∧

Ddesc � D′
desc ⇐⇒ ¬write(ni, dj)

traceability:
trace() : Ddesc → D′

desc =⇒ Ddesc ◦ D′
desc

Thereby, auditability guarantees that Ddesc is transformed to D′
desc in case of

an authorized write operation whereas other operations are not able to transform
the data in any way. Traceability ensures that authorized writes of data elements
and thus, transformations of Ddesc to D′

desc, are chained up. In conclusion, data
integrity is ensured as the data cannot be manipulated or tampered with in
retrospect.

3.3 Requirements for Secure DT Data Sharing

To provide a sound solution for secure DT data sharing, the following require-
ments were derived from the formal basis and the aforementioned challenges
identified in the literature analysis.

R1. Multi-party Sharing. To enable lifecycle inclusion, a vital characteristic
of the DT paradigm [4], the multiple stakeholders N involved in the lifecycle

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 287

have to be considered. As described in Fig. 1, parties can vary from manufac-
turer to maintainer. However, all involved parties are pre-registered and therefore
determinable.

R2. Data Variety Support. At the heart of the DT lie the relevant digital
artifacts Ddesc, Dsensor, which vary from design and engineering data to oper-
ational data to behavioral descriptions [4]. Thus, different data types and data
formats [13] need to be supported during data sharing. For instance, Schroeder
et al. claim that using the semi-structured AutomationML format to model
attributes related to the DT (dspec) is very useful for DT data exchange [20]. In
addition to semi-structured data, structured data (e.g. sensor tuples in Dsensor,
database entries) and unstructured data such as human-readable documents can
be asset-relevant and shared via the DT.

R3. Data Velocity Support. Often, DT data is distinguished between descrip-
tive, rather static data, and behavioral, more dynamic data (see Fig. 1). The
latter changes with time along the lifecycle of the real-world counterpart [20]:
With each lifecycle stage the asset-related information evolves, resulting in dif-
ferent versions and a dynamic information structure [17]. Naturally, dynamic
data includes sensor data Dsensor – which mostly refers to the actual state of
the real-world counterpart [8]. While the infrequently changing data Ddesc might
not require high throughput, sensor and dynamic data Dsensor accrues in inter-
vals ranging from minutes to milliseconds. Therefore, the solution must support
high throughput and low sharing latency for efficient sharing of dynamic data –
thus supporting data velocity.

R4. Data Integrity and Confidentiality Mechanisms. An important
requirement is taking into account data security features, especially integrity and
confidentiality. At first, this requirement aims at safeguarding data integrity to
avoid wrong analytic decisions based on manipulated data. It can be ensured by
audit() and trace() mechanisms. The second main security objective is to avoid
confidentiality and trust problems while enabling multi-party participation. This
calls for restricted data access dependent on the party through authenticate()
and authorize() functions, while ideally keeping the effort for user registration
low. Different levels of confidentiality should be possible for different data ele-
ments. For instance, Dsensor might need a lower level of protection than Ddesc,
as the latter might include sensitive corporate information such as blueprints.
Detailed authorize() functions, providing access-restrictions for each data ele-
ment, can cover this aspect.

R5. Read and Write Operations. To interact with DT data, a DT data
sharing solution must provide read() and write() data operations for the sharing
parties. The allowance of operation modes for the data elements should be chosen
carefully for each party to ensure R4 (cf. Fig. 2).

Overall, we do not claim that these requirements are complete. There may be
other requirements of importance, but regard these as essential for the following
reasons. On the one hand, these requirements were found to be mentioned most
often in the reviewed literature, while others were less frequently mentioned and

288 M. Dietz et al.

are therefore considered of lower importance (see Sect. 6.2 for further explana-
tion). On the other hand, the stated requirements were also the main focus in
various practitioners reports (e.g. [9,16,25]) and during discussions with experts.

4 Solution Architecture

In order to develop a framework for secure DT data sharing, we first evaluate the
suitability of DLT in Sect. 4.1. Afterwards, Sect. 4.2 explains the system archi-
tecture and Sect. 4.3 explains how the various data types are stored. Section 4.4
details the inclusion of the DT capabilities as part of the DLT solution. Finally,
Sect. 4.5 explains the initial setup procedure for our framework.

4.1 Technology Selection

To develop a solution architecture, we first evaluate different data storage solu-
tions’ properties to select the technology best suited to fulfill the requirements.

A centralized solution could be created in the form of a portal, operated
by a third party or the operator of the twinned device. This requires trust of
the participating parties towards the portal maintainer, as the maintainer could
manipulate data or revoke access to the DT for other parties. A distributed
approach jointly operated by all participants could solve this trust issue. Dis-
tributed Ledgers represent such a distributed solution. They permit verifiable
decentralized execution of business logic via smart contracts, ensuring that rules
and processes agreed upon by the lifecycle participants are followed.

We evaluate the applicability of Distributed Ledgers to our DT data shar-
ing requirements based on the blockchain applicability evaluation framework by
Wüst and Gervais [28]. As illustrated in Fig. 1, there is a need to store vari-
ous types of data as part of the DT state. Multiple parties interact with the
twin during its lifecycle who do not fully trust each other. These writers are
usually known in advance or change infrequently (i.e. the maintenance service
provider changes). These characteristics lead to the choice of a public or private
permissioned blockchain in the framework [28]. In our case, this choice depends
on whether public auditability is required or not. While use-case dependent, we
focus on private permissioned blockchains for the rest of this paper. If needed,
public read-only access to blockchain data can be enabled during implementation
for most permissioned blockchain frameworks (i.e. through a REST API).

4.2 System Architecture

The proposed DLT-based architecture for secure DT data sharing is shown
in Fig. 3. Every participant runs three components: a node of a Distributed
Hash Table (DHT), a node of the Distributed Ledger and a client appli-
cation. The DHT and Distributed Ledger make up the shared data storage,
while the client application is responsible for the user interface and backend logic
for retrieving and processing the data stored on the ledger and DHT. For owners

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 289

Fig. 3. DLT-based architecture for DT data sharing.

of twinned physical devices, a Device agent manages the physical devices and
coordinates their interactions with the system. As part of operational technol-
ogy, the Device agent functions as a bridge between the cross-organizational asset
management system and the physical devices controlled by a single organization.

Data storage systems based on distributed ledgers have two ways of storing
data: on-chain and off-chain [29]. On-chain storage is restricted to transactions
and the internal state storage of smart contracts. Due to full replication of on-
chain data, items larger than a few kilobytes in size need to be stored in a
different, off-chain location. Using a traditional database would however result
in a single point of failure or reintroduce a trusted party.

For this reason, we resort to a structured DHT for large data items. DHTs
are distributed key-value stores, where all key-value pairs are mapped to one or
more nodes. The DHT entries can be linked to the corresponding on-chain asset
based on the DHT key hash. By storing the hash on the blockchain, integrity of
the off-chain data can be verified after retrieving it from the DHT. To maintain
confidentiality and availability, data stored on the DHT is encrypted, sharded
and replicated. Correspondingly, an access control mechanism is needed to allow
authorized parties to access the data. The k-rAC scheme illustrates how a DHT
can implement the required functionality [11]. In k-rAC, access control is imple-
mented using access control lists (ACL) stored along with each key-value pair on
the DHT. We propose reusing the Distributed Ledger’s public key identities for
DHT authentication. A symmetric key is used for encryption, which is then avail-
able to authorized parties by encrypting it with their public key. The encrypted
access keys are distributed with each data item’s ACL. Manipulation of the ACL
is prevented by requiring a quorum of 2k + 1 nodes for write operations, where
k is the number of tolerated malicious nodes.

290 M. Dietz et al.

4.3 Data Storage

There are two types of descriptive data that need to be stored by the sys-
tem: a machine-readable specification and device-related unstructured data (i.e.
human-readable documents). The specification includes a description of the
device’s hardware components as well as their functions. The DT’s physical
properties are derived from this specification. For our work we assume that AML
is used to describe the physical asset. The AML specification is stored on the
ledger in a modifiable way. This approach guarantees that updates to the device
specification are observed by all parties. Distributed Ledgers can store complex
modifiable state by using smart contracts. We thus refer to the resulting contract
as the specification contract.

Unstructured data can be uploaded to the system and may subsequently
be annotated or modified by other parties. Due to its size it cannot easily be
parsed and stored in contracts. For this reason, it is stored off-chain and regis-
tered in the smart-contract with a document title and a hash of the contents.
To update a document, a new version must be uploaded to the DHT and the
smart contract reference updated. This ensures that changes to the documents
are traceable.

Sensor data needs to be stored off-chain due to its frequent updates and
the considerable amount of generated data. A history of the sensor data is kept
to allow for further analysis, e.g. predictive maintenance or troubleshooting.
The link to the on-chain data is established via a pointer to the off-chain storage
location, stored on-chain in the specification contract. To avoid having to update
the storage location hash every time new sensor data is uploaded to the DHT, we
take advantage of DHT feeds. This concept is inspired by the Ethereum network’s
DHT Swarm [7]. In Swarm, a feed is defined by a feed manifest with a unique
address on the network. The feed manifest’s owner (i.e. the physical device) is
the only user permitted to upload signed and timestamped data to this address.
Any data format can be used and a history of uploaded data is kept. The DHT
feed enables frequent sensor data sharing without having to update an on-chain
reference. Based on the feed, the client application may compare sensor updates
with expected values derived from the specification contract to detect anomalies.
Additionally, there is no need for directly accessing the physical device, which
may reside in a protected network. Instead, data updates are readily available
on the DHT for authorized participants.

Many organizations also have additional internal data sources or microser-
vices that provide structured data relevant to the Digital Twin. These data
sources can be included in the twin by adding references (i.e. an URI) to the
DT specification contract. This allows inclusion of legacy data sources and com-
plex data which cannot easily be stored on a DHT (i.e. relational data). If the
external data source requires authentication, it is the responsibility of the data
source provider to ensure access rights for the DT ledger’s identities.

Listing 1.1 shows a pseudocode representation of the data types stored in
the specification contract. The syntax is inspired by Ethereum’s Solidity smart
contract programming language. All data stored on the contract is readable

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 291

by all lifecycle participants. Besides general device metadata, the contract also
includes a program call queue for interaction with the physical device’s program
interfaces (see also Sect. 4.4). Since smart contracts must be deterministic and
thus cannot interact with files, the AML specification is stored in a string vari-
able. This variable can later be parsed and modified, as illustrated in Sect. 4.4.
Hash references to new original documents on the DHT are kept track of in
the documents mapping. The hash serves as an identifier, while the document

struct provides metadata. Updated versions of each document are stored in the
documentVersions mapping. The componentID and corresponding feed reference
of the sensor data stream on the DHT are stored in the sensorFeeds mapping.

/* metadata and specification*/
string deviceName

string deviceID

string deviceAML

string[] callProgramQueue

/* additional descriptive data */
struct Document {

uint timestamp

string description

address owner

}

struct ExternalSource{

string URI

address owner

}

mapping(string=>Document) documents

mapping(string=>string[]) documentVersions

ExternalSource[] externalSources

/* sensor data */
mapping(string=>string) sensorFeeds

Listing 1.1. Data structures of the
specification contract

/* descriptive data interfaces */

function addDocument(document)

function addDocumentVersion(string hash)

function removeDocument(string hash)

function addExternalSource(string URI)

function removeExternalSource(string URI)

/* sensor data interfaces */

function addSensorFeed(string componentID,

string reference)

function removeSensorFeed(string componentID)

/* interaction with the specification */

function insertAML(string amlCode, string

parentID, string afterID)

function removeAML(string ID)

function callProgram(string programName,

string parameters[])

Listing 1.2. Function interfaces of the
specification contract

4.4 Capabilities

We focus on the three capabilities required for accessing and publishing DT data:
DT interaction, access control and sync.

DT interaction refers to the information flows in Fig. 1, which allow users to
interact with the twin’s data. The specification contract implements this func-
tionality. It allows users to read and potentially modify the DT instance. The
relevant interfaces that can be called with transactions are shown in Listing 1.2.
New or updated references to documents may be appended by any authorized
user. The same applies to external data sources and sensor feed references to the
DHT. The specification can be manipulated by inserting or removing specific
AML segments, which are identified by their ID. To determine the position of
a new AML code segment in the AML document, the parent ID and the ID
of the preceding element need to be passed as parameters. The twin’s program

292 M. Dietz et al.

interfaces for setting device parameters can be accessed via callProgram. This
function checks authorization, finds the requested program in the AML specifi-
cation and places it in a queue for the Device agent to retrieve. The agent then
forwards the program call to the device for execution.

The access control capability is responsible for authentication and autho-
rization of user interactions with the DT data. For user authentication, accounts
are created on the blockchain and represented by their public key. An initial
solution could be provided by the framework’s built-in identity management,
for example Hyperledger Fabric’s Membership Service Provider (MSP) [1]. The
MSP lists the certificate authorities who may issue digital identities for the Dis-
tributed Ledger. The same identity can then be reused for authentication in
the DHT. Authorization is realized in a separate access control smart contract.
Any protected interaction with the Digital Twin is first authorized through that
contract. Such interactions are for example modifications of the twin’s proper-
ties, like changing parameters or modifying its specification. A query from the
client application provides an identity to the specification contract, which then
interacts with the authorization contract to determine if the user is allowed to
perform the action. Authorization is then granted or denied based upon a stored
role-permission mapping. Accordingly, the contract’s interfaces are based upon a
Role-based Access Control (RBAC) scheme. We do not describe the access con-
trol contract in detail here, as there are other works describing blockchain-based
access control schemes [5].

The sync capability requires regular interaction between the Device agent and
the Distributed Ledger. For synchronization, the Device agent pulls updates from
the real-world asset and uploads them to the off-chain DHT sensor data feed.
The Device agent monitors the ledger and pushes any modifications instructed
by committed on-chain transactions to the asset. The synchronization interval
depends on the use case.

Other DT capabilities like monitoring, simulation and analysis can be exe-
cuted off-chain by interacting with the local copy of the ledger. Simulation or
analysis instructions and results can be shared on the ledger as documents. This
would allow other parties to verify the results, should they desire to do so.

4.5 Setup Process

Initially, each lifecycle participant sets up one network node running both a DHT
and a Distributed Ledger node. These serve as local replicas of ledger data and
access points for off-chain data. They may also be used for transaction-based
interaction with the smart contracts. Additionally, an identity provider must be
set up to allow federated identities from all participating organizations based on
public key certificates.

Once the network is set up, a Digital Twin instance can be created on the
ledger by the device owner. The manufacturer should first provide the AML file
to the owner, who then proceeds to set up a Digital Twin sharing instance on
the ledger. The client application provides the interface to upload the file and
create a smart contract based on it. Before uploading, the owner also needs to

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 293

specify the access rights associated with the various parts of the specification.
Although use case dependent, sensible default values could be write access by
owner and maintainer and read access by everyone else.

In this way, any number of Digital Twin instances can be created by the
various parties on the network. Each instance is represented by a specification
contract. Subsequent modifications take place via authorized on-chain transac-
tions and are stored as part of the contract’s internal state. As a result, auditing
the twin is possible by (actively or retroactively) monitoring smart contract
transactions for anomalies.

5 Use Case

This chapter intends to show how the theoretical framework developed in Sect. 4
is traversed in a use case. To begin with, the overall setting of the use case
is described in Sect. 5.1, while the subsequent Sect. 5.2 iterates the use case
through the solution architecture. At last, a summary is given, focusing on the
automation degree in data sharing and the reading operation (Sect. 5.3).

5.1 Setting

The setting is chosen close to reality. The asset, the real-world counterpart to
the DT, is a bottling plant, where bottles are filled with beverages. The parties
involved in the asset lifecycle are a manufacturer, an owner, a maintainer of the
bottling plant and an external auditor that audits the safety of our bottling plant.
For our use case, we consider the following scenario: The bottles are flooding due
to a broken sensor in the bottling plant. Consequently, the maintainer detects
the damage and changes the broken sensor in the bottling plant.

This entails the following shared data interactions. At first, the specification
of the plant needs to be updated by replacing the broken sensor’s specification
entry with the newly added sensor. Additionally, the new sensor’s data stream
has to be integrated in place of the old sensor stream. Other documents concern-
ing the maintenance task might also be shared, such as a maintenance report.

While the maintainer is the only party sharing data in this scenario, the
owner should also be updated on the state of the bottling plant. Furthermore,
the manufacturer needs to be informed that the sensor is broken, so that an
analysis of the time and circumstances can be conducted. This way relevant
insights for future plant manufacturing can be gained. Additionally, the external
auditor needs to access the information about the maintenance task to review
the procedure in terms of safety compliance.

5.2 Framework Iteration

This use case triggers a specific logical order of events in the framework, which
are highlighted in Fig. 4 and described hereafter. The framework first comes into
play when the maintainer replaces the broken sensor.

294 M. Dietz et al.

Fig. 4. Use case tailored architecture for DT data sharing.

1. All devices are connected with the Device agent, which registers the
exchange of the broken sensor. Additionally, it gathers information about
the new sensor.

2. Following the new sensor connection, the Device agent forwards the new
incoming data stream of the sensor into the DHT. The location of the stored
sensor stream in the DHT is registered by the Device agent.

The Device agent then sends a transaction containing the new sensor
specification to the Distributed Ledger. This transaction invokes the spec-
ification contract, resulting in several updates. First, the old sensor entry
is removed and the new sensor specification given by the Device agent is
added. Secondly, the storage location of the sensor stream on the DHT is
added by a reference to the location. These three transactions concerning the
specification are stored on the Distributed Ledger.

3. Having performed the maintenance task, the maintainer writes a maintenance
report and pushes it onto the Client application.

4. The Client application adds the maintenance report by performing two
actions. Firstly, it adds the report to the off-chain DHT. Secondly, it stores
the reference to the DHT location of the report on the specification contract.
Thereby, the location is added to the entry of the sensor specification.

5.3 Results

In a nutshell, the recognition of new sensor and the AML update with the new
component is already accomplished by the Device agent without requiring
human interaction. The new data stream is automatically forwarded to the DHT
and the reference to the new storage location of the component’s data stream
is added to the specification contract. Additional unstructured non-specification

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 295

data (e.g. the maintenance report) can be added manually. The Client appli-
cation takes care of the necessary background work by inserting the file into the
DHT and adding the respective storage reference into the specification contract.

All participating parties can view the latest transactions on the ledger –
presented in a comprehensive way in the Client application. Advanced Client
applications could also notify the user whenever an ledger update takes place.

Considering security, the advantages of this framework shine when compared
to the alternative solution: A TTP could deliberately transfer shared informa-
tion and know-how to rival enterprises. For instance, confidential sensor data
or blueprints could be leaked to competitors, which may then deduce quality
issues of the rival product. The service of the TTP could also be compromised
by attackers, resulting e.g. in a violation of integrity so that the sharing parties
receive inconsistent asset versions.

6 Evaluation

To evaluate our framework, Sect. 6.1 discusses the suitability of the framework
in reference to the requirements. Finally, the results are discussed in Sect. 6.2.

6.1 Requirements Fulfillment

To sum up, our approach fulfills the requirements R1–R5. The following para-
graphs explain how each requirement was addressed in our solution architecture.

R1. Multi-party Sharing. The main argument for using Distributed Ledgers
is the involvement of multiple parties N who produce and consume data. Next to
the ledger, our approach provides a client application for all parties that accesses
the data on the ledger and the DHT. Therefore, our approach clearly fulfills R1.

R2. Data Variety Support. To enable the sharing of different data in various
formats, our approach provides a central documentation and two storage options.
The standardized asset description dspec is included in the Distributed Ledger
and serves as the basis of the DT within the specification contract. All other
data of Ddesc as well as the sensor data Dsensor are stored off-chain in the
DHT. Moreover, each stored data element in DHT is registered in the central
specification contract as a reference to the storage location of the data element.
For instance, a sensor in the specification contract contains a reference to the
storage position of its data stream in the DHT. Hence, R2 is met.

R3. Data Velocity Support. Modern sensor data streams’ frequency and
volume exceed the performance characteristics of current Distributed Ledger
frameworks. Since the data streams Dsensor do not describe main features of the
DT (dspec), they are stored off-chain in the DHT. This way, high throughput of
Dsensor is supported, while the sharing latency is also kept low (seconds). The
Distributed Ledger maintains verifiability by storing the hash reference to the
data stream on the DHT in the specification contract. This ensures no loss in
performance and data access through the DHT, supporting R3.

296 M. Dietz et al.

R4. Data Integrity and Confidentiality Mechanisms. With respect to data
integrity, the Distributed Ledger attaches every new data element (trace()) and
prevents manipulation of the data by replicating it among all involved parties. A
manipulation would result in a version mismatch or loss of consensus and could
be detected easily (audit()). The second storage component (DHT) also supports
integrity by storing the respective hash values to the data. A manipulation of
DHT data would also be detected by a mismatch between the hashes in the
nodes (audit()). However, there remains the problem of adding non-valid data,
which is a common issue in the area of DLT. Here, we rely on the parties’ interest
in sharing valid data and on mechanisms ensuring quality of input data that the
respective responsible party applies.

In terms of data confidentiality, our approach ensures that the data is read
only by authenticated and authorized parties. Authentication is ensured through
lifecycle party login to the client application (authenticate()). Access control
concerning the party and the data elements is realized through an ACL and
encryption for off-chain data and an authorization smart contract for on-chain
data (authorize()). In concrete terms, the ACLs specify access rights on a per-
document basis, while the smart contract stores authorization information for
all involved parties. Therefore, different confidentiality levels can be realized.

To conclude, our approach provides data integrity and confidentiality mech-
anisms (R4) – reinforcing data security in DT data sharing.

R5. Read and Write Operations. Read and write operations are managed
through the Client application. For read() operations, the Client application
fetches the requested data from the DHT and the ledger and presents the data
in a comprehensive way adjusted for the demanding party. In case of a write()
operation, the Client application triggers the right procedure to alter the smart
contract with a transaction and uploads additional asset-relevant data beyond
specification to the DHT. Consequently, our approach also fulfills R5.

6.2 Discussion

Keeping the requirements variety (R2) and velocity (R3) in mind, the question
arises why data volume is not considered a requirement. As literature is currently
not at consensus regarding the relevance of the Big Data feature volume [15] for
Digital Twins, we consider explicit support for data volume to be non-necessary.
Nevertheless, by storing documents off-chain, our approach can handle consid-
erable amounts of data. Future implementations of our concept may conduct
benchmark studies to explore scalability limits with regard to big data volumes.

It should be noted that our approach depends on multi-party participation.
The more independent parties maintain the Distributed Ledger and DHT, the
less vulnerable the data sharing is to manipulation. With regard to the access
control capability, a decentralized identity management solution with a shared
identity database could be an even more holistic, next-generation solution.

While we are aware that our approach currently lacks an implementation,
we nevertheless believe that the use case shows suitability for practice. Future

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 297

work will focus on implementing the framework. Here, challenges might include
adjusting a DHT framework to support authorization and data feeds (although
Swarm shows promise in this regard [7]), as well as selecting a suitable Dis-
tributed Ledger framework.

The Distributed Ledger and the concomitant smart contracts could also be
handled in a different way. For instance, the AML could be transformed into
classes and types in the smart contract, similar to the BPMN to Solidity trans-
formation in [27]. However, the effort clearly outweighs the utility as AML is
a very powerful standard allowing very complex descriptions. Moreover, not all
of the hypothetically generated classes and functions might be needed. Plus,
functions or classes might be newly added later on, which results in the need to
re-create the smart contract as they are currently not represented in the smart
contract. This clearly increases effort and downgrades utility.

Another issue is entailed by the possibility to directly alter variable values
referring to an actual function in our current version of the ledger. For instance,
consider a PLC device with various functions such as setting a conveyor belt’s
velocity (with an integer parameter). Without constraints, the changed velocity
could exceed safety bounds. Safety threats like this one, be they malicious or
accidental, need to be mitigated in a production system. Therefore, we suggest
integrating safety and security rules as proposed in [6]. They could be integrated
as part of the specification contract, with the Device agent checking conformance
of program calls on synchronization.

With respect to the current problems hampering secure DT data sharing,
our approach tackles the issues stated in Sect. 3 in the following ways:

– The usage of different tools that can be connected with our main data sharing
approach (External data sources, Fig. 3) is possible (application of different
tools)

– Our approach is tailored for the integration of data in multiple formats and
variety as stated in Sect. 4.3 (usage of various data formats)

– An agreement only on the standard describing the asset (e.g. AML) is required
to transform the main description of the asset into the specification smart con-
tract, while other standardized or non-standardized data can still be shared
via the DHT (missing standards)

– The proposed shared collaborative data basis is distributed among all involved
parties and the information flow is universal across the lifecycle phases (broken
information flow across lifecycle phases)

– The Distributed Ledger registers the data as well as the involved party sharing
the data, while mechanisms such as access control (Authorization contract,
Fig. 3) support confidentiality issues (clarification of the ownership of infor-
mation).

To sum up, the major part of the identified issues in the literature referring to
DT data sharing are diminished or solved by our approach.

298 M. Dietz et al.

7 Conclusion

DT data not only ties physical and virtual twin [23], it also enables integration
of the whole asset lifecycle, which is essential for realizing the DT paradigm.
Moreover, the exchange of asset-relevant data (DT data) is vital for achieving
the effects of a feedback loop. Closing the feedback loop in turn favors the devel-
opment of a circular economy.

However, maintaining data security becomes a major requirement when shar-
ing DT data between multiple parties, especially as the parties do not necessar-
ily trust each other. Our approach of applying DLT can clearly solve this issue
and enable secure multi-party data sharing. It provides confidentiality through
access control arranged by usage of a smart contract. Moreover, data integrity is
implicitly supported through the immutability of the original data in the ledger.

To conclude, our approach fulfills the requirements R1–R5 for secure DT
data sharing. Nevertheless, there remain minor drawbacks that need to be
addressed in future research (see Sect. 6.2). Our upcoming work will focus on
implementing our theoretical concept to demonstrate its feasibility in practice.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, pp. 30:1–30:15. ACM, New York (2018). https://doi.org/10.1145/
3190508.3190538

2. Banerjee, A., Dalal, R., Mittal, S., Joshi, K.P.: Generating digital twin models
using knowledge graphs for industrial production lines. In: Workshop on Industrial
Knowledge Graphs, No. June, pp. 1–5 (2017). http://ebiquity.umbc.edu/paper/
html/id/779/Generating-Digital-Twin-models-using-Knowledge-Graphs-for-
Industrial-Production-Lines

3. Baumgartner, R.J.: Nachhaltiges Produktmanagement durch die Kombina-
tion physischer und digitaler Produktlebenszyklen als Treiber für eine Kreis-
laufwirtschaft. In: Interdisziplinäre Perspektiven zur Zukunft der Wertschöpfung
(2018). https://doi.org/10.1007/978-3-658-20265-1 26

4. Boschert, S., Heinrich, C., Rosen, R.: Next generation digital twin. In: Proceed-
ings of TMCE 2018, No. May (2018). https://www.researchgate.net/publication/
325119950

5. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control. In:
IEEE Blockchain Conference 2018, pp. 1379–1386 (2018). https://doi.org/10.1007/
978-3-319-59665-5 15

6. Eckhart, M., Ekelhart, A.: Towards security-aware virtual environments for digi-
tal twins. In: Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security - CPSS 2018, pp. 61–72 (2018). https://doi.org/10.1145/3198458.3198464

7. Ethereum Swarm Contributors: Swarm 0.3 documentation (2019). https://
readthedocs.org/projects/swarm-guide/downloads/pdf/latest/

8. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and U.S.
air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference (2012). https://doi.org/10.2514/6.2012-1818

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
http://ebiquity.umbc.edu/paper/html/id/779/Generating-Digital-Twin-models-using-Knowledge-Graphs-for-Industrial-Production-Lines
http://ebiquity.umbc.edu/paper/html/id/779/Generating-Digital-Twin-models-using-Knowledge-Graphs-for-Industrial-Production-Lines
http://ebiquity.umbc.edu/paper/html/id/779/Generating-Digital-Twin-models-using-Knowledge-Graphs-for-Industrial-Production-Lines
https://doi.org/10.1007/978-3-658-20265-1_26
https://www.researchgate.net/publication/325119950
https://www.researchgate.net/publication/325119950
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1145/3198458.3198464
https://readthedocs.org/projects/swarm-guide/downloads/pdf/latest/
https://readthedocs.org/projects/swarm-guide/downloads/pdf/latest/
https://doi.org/10.2514/6.2012-1818

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 299

9. Greengard, S.: Building a Better Iot (2017). https://cacm.acm.org/news/218924-
building-a-better-iot/fulltext

10. ICS-CERT: Overview of cyber vulnerabilities. Technical report (2017). https://ics-
cert.us-cert.gov/content/overview-cyber-vulnerabilities

11. Kieselmann, O., Wacker, A., Schiele, G.: k-rAC - a fine-grained k-resilient access
control scheme for distributed hash tables. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security, ARES 2017, Reggio Calabria,
Italy, pp. 1–43. ACM, New York (2017). https://doi.org/10.1145/3098954.3103154

12. Litke, A., Anagnostopoulos, D., Varvarigou, T.: Blockchains for supply chain man-
agement: architectural elements and challenges towards a global scale deployment.
Logistics 3(1) (2019). https://doi.org/10.3390/logistics3010005

13. Malakuti, S., Grüner, S.: Architectural aspects of digital twins in IIoT systems. In:
Proceedings of the 12th European Conference on Software Architecture Compan-
ion Proceedings - ECSA 2018, pp. 1–2 (2018). https://doi.org/10.1145/3241403.
3241417

14. Meroni, G., Plebani, P.: Combining artifact-driven monitoring with blockchain:
analysis and solutions. In: Matulevičius, R., Dijkman, R. (eds.) CAiSE 2018.
LNBIP, vol. 316, pp. 103–114. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92898-2 8

15. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-
based production systems. Procedia Manuf. 11(June), 939–948 (2017). https://
doi.org/10.1016/j.promfg.2017.07.198

16. Ovtcharova, J., Grethler, M.: Beyond the Digital Twin - Making Analytics come
alive. visIT [Industrial IoT - Digital Twin], pp. 4–5 (2018). https://www.iosb.
fraunhofer.de/servlet/is/81714/

17. Ŕıos, J., Hernández, J.C., Oliva, M., Mas, F.: Product avatar as digital counterpart
of a physical individual product: literature review and implications in an aircraft.
In: Advances in Transdisciplinary Engineering (2015). https://doi.org/10.3233/
978-1-61499-544-9-657

18. Rubio, J.E., Roman, R., Lopez, J.: Analysis of cybersecurity threats in industry 4.0:
the case of intrusion detection. In: D’Agostino, G., Scala, A. (eds.) CRITIS 2017.
LNCS (LNAI and LNB), vol. 10707, pp. 119–130. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-99843-5 11

19. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE Commun.
Mag. (1994). https://doi.org/10.1109/35.312842

20. Schroeder, G.N., Steinmetz, C., Pereira, C.E., Espindola, D.B.: Digital twin
data modeling with automationML and a communication methodology for data
exchange. IFAC-PapersOnLine 49(30), 12–17 (2016). https://doi.org/10.1016/j.
ifacol.2016.11.115

21. Talkhestani, B.A., Jazdi, N., Schloegl, W., Weyrich, M.: Consistency check to syn-
chronize the Digital Twin of manufacturing automation based on anchor points.
Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2018.03.166

22. Tankard, C.: The security issues of the Internet of Things. Comput. Fraud Secur.
2015(9), 11–14 (2015). https://doi.org/10.1016/S1361-3723(15)30084-1

23. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven
product design, manufacturing and service with big data. Int. J. Adv. Manuf.
Technol. 94(9–12), 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

24. Uhlemann, T.H., Lehmann, C., Steinhilper, R.: The digital twin: realizing the
cyber-physical production system for industry 4.0. Procedia CIRP (2017). https://
doi.org/10.1016/j.procir.2016.11.152

https://cacm.acm.org/news/218924-building-a-better-iot/fulltext
https://cacm.acm.org/news/218924-building-a-better-iot/fulltext
https://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities
https://ics-cert.us-cert.gov/content/overview-cyber-vulnerabilities
https://doi.org/10.1145/3098954.3103154
https://doi.org/10.3390/logistics3010005
https://doi.org/10.1145/3241403.3241417
https://doi.org/10.1145/3241403.3241417
https://doi.org/10.1007/978-3-319-92898-2_8
https://doi.org/10.1007/978-3-319-92898-2_8
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198
https://www.iosb.fraunhofer.de/servlet/is/81714/
https://www.iosb.fraunhofer.de/servlet/is/81714/
https://doi.org/10.3233/978-1-61499-544-9-657
https://doi.org/10.3233/978-1-61499-544-9-657
https://doi.org/10.1007/978-3-319-99843-5_11
https://doi.org/10.1109/35.312842
https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/10.1016/j.procir.2018.03.166
https://doi.org/10.1016/S1361-3723(15)30084-1
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/10.1016/j.procir.2016.11.152

300 M. Dietz et al.

25. Usländer, T.: Engineering of digital twins. Technical report, Fraunhofer IOSB
(2018). https://www.iosb.fraunhofer.de/servlet/is/81767/

26. Voydock, V.L., Kent, S.T.: Security mechanisms in high-level network protocols.
ACM Comput. Surv. (1983). https://doi.org/10.1145/356909.356913

27. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

28. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Confer-
ence on Blockchain Technology (CVCBT), pp. 45–54 (2018). https://doi.org/10.
1109/CVCBT.2018.00011

29. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The blockchain as a software connector. In: Proceedings - 2016 13th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2016, pp. 182–191. IEEE
(2016). https://doi.org/10.1109/WICSA.2016.21

https://www.iosb.fraunhofer.de/servlet/is/81767/
https://doi.org/10.1145/356909.356913
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/WICSA.2016.21

Refresh Instead of Revoke Enhances
Safety and Availability: A Formal

Analysis

Mehrnoosh Shakarami(B) and Ravi Sandhu

Institute for Cyber Security (ICS), Center for Security and Privacy Enhanced
Cloud Computing (C-SPECC), Department of Computer Science,

University of Texas at San Antonio, San Antonio, USA
mehrnoosh.shakarami@my.utsa.edu, ravi.sandhu@utsa.edu

Abstract. Due to inherent delays and performance costs, the decision
point in a distributed multi-authority Attribute-Based Access Control
(ABAC) system is exposed to the risk of relying on outdated attribute
values and policy; which is the safety and consistency problem. This
paper formally characterizes three increasingly strong levels of consis-
tency to restrict this exposure. Notably, we recognize the concept of
refreshing attribute values rather than simply checking the revocation
status, as in traditional approaches. Refresh replaces an older value with
a newer one, while revoke simply invalidates the old value. Our lowest
consistency level starts from the highest level in prior revocation-based
work by Lee and Winslett (LW). Our two higher levels utilize the concept
of request time which is absent in LW. For each of our levels we formally
show that using refresh instead of revocation provides added safety and
availability.

Keywords: ABAC · Refresh · Consistency · Safety · Availability

1 Introduction

In Attribute-Based Access Control (ABAC), access decisions are made based on
attribute values of subjects, objects and environment with respect to a given
policy. Attribute values for subjects and objects are typically provisioned by an
Attribute Authority (AA) and presented in credentials as name, value pairs. A
credential must be trustworthy, perhaps by a cryptographic signature or trusted
delivery. Attribute values are susceptible to change. Ideally the decision point
should know real-time values, which is practically impossible due to inherent
delays of distributed systems and performance costs. This can lead to granting
access when it should be denied (safety violation) or denying access when it
should be granted (availability violation). The longer the gap between updates
of credentials, the higher the risk of relying on stale attribute values.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 301–313, 2019.
https://doi.org/10.1007/978-3-030-22479-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_16

302 M. Shakarami and R. Sandhu

In this paper we formally characterize three increasingly strong levels of con-
sistency to restrict the exposure of the decision point to stale attribute values. For
simplicity, we develop our formalism based on changing subject attribute values.
Extension to changing object and environment attribute values is straightfor-
ward. Extension to policy changes is more subtle. Policy changes may require
additional credentials come into play. While acquiring these additional creden-
tials the policy may change again. In principle, this could lead to an infinite
regress. In practice such an infinite regress is unlikely. Policies composed of mul-
tiple sub-policies specified by different authorities also raise issues of policy con-
flicts [5,17]. A formal treatment of policy changes is beyond our scope.

The closest prior work is by Lee and Winslett (LW) [15,16]. Our paper is
inspired by LW but presents a completely new perspective by considering refresh
instead of revocation. We build our levels on top of the highest consistency level
of LW, recasting it in the refresh framework. Taking request time into account,
we propose two higher consistency levels not available in LW.

Our main contribution is to develop a formal framework for safety, availability
and consistency problems of ABAC systems, via introducing the refresh scenario
instead of the traditional revocation check. As we will show, this enhanced possi-
bility of getting a new value rather than an invalid response enhances safety and
availability. We also define the concept of being satisfactory for an attribute
value with respect to a policy, which is first introduced in our work to the best
of our knowledge. Relying on the history of satisfactory attribute values, we
introduce additional flexibility to grant access to authorized users.

The paper is organized as follows. A review of related work and a comparison
to LW is given in Sect. 2. Section 3 documents our system model and assump-
tions. The formalism of our consistency levels along with guaranteed properties
by each specification is given in Sect. 4. Limitations and practical implications
are discussed in Sect. 5. Section 6 concludes the paper.

2 Related Work

There is a rich body of research work on consistency in distributed sys-
tems [1,2,8,20,24]. Many access control models are not completely compatible
with distributed systems in that they are not deployed for such systems in the
first place [10]. ABAC is well adjusted to distributed environments due to its
flexibility and granularity. In this paper, we consider an ABAC model to be in
place and define consistency as communicating credentials’ updates as quickly as
possible to the decision point. To the best of our knowledge there is very limited
directly related research in this arena. Especially there is no work done toward
utilizing the refresh operation to obtain recent information.

The closest to our research is LW in trust negotiation environments [14–16].
Another closely related research is on stale-safety which tries to safely uses stale
attributes [12,13]. Although the problem is similar, it mainly differs from our
work since it has been applied in a non-ABAC, single authority environment.
Policy staleness of cloud transactions proposed in [11].

Refresh Instead of Revoke Enhances Safety and Availability 303

Fig. 1. (a) LW revocation-based levels [15,16] (b) Our refresh-based levels

Ciphertext-Policy Attribute-Based Encryption [3,4] is broadly applicable in
decentralized multi-authority environments, but presents challenge to handle
attribute revocation [22,26–28]. Moreover, it imposes a heavy performance bur-
den which makes it impractical [6]. There are other researches concerning the
policy consistency in distributed environments [6,11,18,29] focusing on cloud
environments. In this paper, policy assumed to be known with high assurance.
There are research works utilizing revocation in authenticated dynamic dictio-
naries [7,21,25], which enable dissemination of information from a secure central
repository to multiple recepients.

Comparison to LW Model. LW presented the first organized work on consis-
tency in trust negotiation systems. They proposed four consistency levels based
on timeliness of credentials revocation checks. In common with our model they
considered every credential to have its lifetime specified by start time and end
time. While all levels in LW model utilize the notion of receive time of creden-
tials, we are agnostic to it. We consider decision time as central and utilize it
explicitly in all levels, whereas in LW it is explicit only in top two levels. Revo-
cation check in LW is replaced with refresh in our model, as will be discussed
in next section. An alternate formulation of LW without use of receive time is
given in [23], which includes an additional level based on request time.

Figure 1-(a) shows the levels in LW which are partially ordered. We do not
recommend using incremental and internal levels since in both cases decision
point may use a credential which is known to be expired or revoked. Our proposed
levels are shown in Fig. 1-(b) with a total order among levels. We set LW’s
highest level as the base level in our definitions. By taking request time into
account, we propose two additional stronger levels of consistency. We provide
further availability in our model by letting the decision point consider valid
authorization should the current and cached values of relevant credentials be
satisfactory, as defined in following sections.

3 System Model and Assumptions

We assume an ABAC authorization system in a distributed multi-authority envi-
ronment. For a particular access request, there is a single decision point which

304 M. Shakarami and R. Sandhu

determines whether or not the access is allowed by the access control policy based
on attribute values. For convenience we use the terms attribute and attribute
value interchangeably. The main focus of this paper is to limit the exposure
of the decision point to outdated attributes by enforcing timeliness of checking
subjects’ attributes freshness.

Fig. 2. (a) Revocation vs. Refresh (b) Comparing Grant vs. Deny

Table 1. Summary table of symbols

Symbol Meaning

treq request time

td decision time

ci ithcredential

tirevoc actual revocation time of ci (the AA always knows this time)

tiref,k time of k-th refresh of ci

tistart,k attribute start time of ci after k-th refresh

tiend,k attribute expiration time of ci after k-th refresh

kmax(t) latest refresh of ci before time t (ci is determined by context)

valikmax(t) the value of ci after kmax(t)-th refresh

tiref,kmax(t) time of kmax(t)-th refresh of ci

tistart,kmax(t) attribute start time of ci after kmax(t)-th refresh

tiend,kmax(t) attribute expiration time of ci after kmax(t)-th refresh

3.1 Refresh Vs. Revocation

Subject attributes might change during credential lifetime. A change could be
a new value, a new lifetime or a premature revocation. In all cases the decision
point needs to be updated about the latest changes of the attribute through

Refresh Instead of Revoke Enhances Safety and Availability 305

either revocation or refresh. In revocation, AA would represent the current status
of the credential as either Valid (no change) or Invalid (otherwise). However,
with refresh AA can indicate the credential’s status as Still-Good, New-Value
or Invalid. Still-Good and Invalid correspond to Valid or Invalid in revo-
cation scenario. New-Value reflects any change in credential’s start time, end
time or new value. So, Invalid status in revocation splits in two possibilities
of Invalid and New-Value in refresh (see Fig. 2-a). Thereby, refresh can allow
more accesses than revoke and deny fewer accesses (see Fig. 2-b).

Refresh function is defined as follows. T is the set of possible time stamps and
C represents the set of all credentials in the system. Table 1 defines the symbols
used in this definition and throughout the paper.

Refresh : C × T → {Invalid ,Still-Good ,New -Value} (1)

Refresh(ci, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Invalid ⇐⇒ (t ≥ t
i
end,kmax(t)) ∨ (t ≥ t

i
revoc)

New-V alue ⇐⇒ (t
i
start,kmax(t) �= t

i
start,kmax(t)−1)

∨(t
i
end,kmax(t) �= t

i
end,kmax(t)−1) ∨ (val

i
kmax(t) �= val

i
kmax(t)−1)

Still-Good ⇐⇒ (t
i
start,kmax(t) = t

i
start,kmax(t)−1)

∧(t
i
end,kmax(t) = t

i
end,kmax(t)−1) ∧ (val

i
kmax(t) = val

i
kmax(t)−1)

Following example highlights the benefits provided by considering refresh
rather than revocation. Although granting illegitimate access is considered as a
greater risk in many systems, availability is also important in which a legitimate
user should not be denied access.

Example 1. Authorization policy in a coding company grants read access to a
project’s code to managers and test engineers and read/write access to devel-
opers. Alice was a test engineer. But her role has changed to a developer in the
same project. Subsequently she submits a write request to the decision point.
In revocation, checking her cached role credential results in Invalid response
since she is no longer a test engineer. So her request would be denied. In refresh,
however, New-Value response along with a new credential asserting her new role
would be returned and access would be granted, as it should be based on policy.

Claim. If a subject can proceed to utilize a requested access in a revocation
scenario, it can proceed in a refresh scenario as well. But there are scenarios in
refresh-based systems which let the subject proceed, whereas it would be denied
in revocation-based systems.

Proof. If nothing changed about a required credential, revocation and refresh
would return Valid/Still-Good respectively. So, the first part of the claim fol-
lows. For the second part, it is possible that a required credential has changed
with respect to start/end time or the value. So AA response in revocation sce-
nario will be Invalid which prohibits subject’s access. However with refresh the
response would be New-Value, so access would be granted (see Fig. 2).

306 M. Shakarami and R. Sandhu

3.2 System Assumptions

Without loss of generality, we suppose that the policy is stated in Disjunctive
Normal Form (DNF), which is the disjunction of different conjuncts. The decision
point tries to find the first conjunct which satisfies the desired level of consistency.
This conjunct is called the View of the decision point at any specific time t with
respect to the policy P which we denote as V P,t

DP . We assume the decision point
can instantaneously check the policy and identify the view.

Definition 1. At any time t, we call the set of subject’s attributes included in
V P,t
DP as the relevant credentials.

We make following assumptions in this paper.

1. Attributes do not change as the result of attribute credentials usage, that is
we assume attributes to be immutable in sense of [19].

2. We will not utilize any expired credential. If any required credential is
beyond its end time, decision point polls AA to get a new credential for
the attribute.

3. We do not refresh any credential after it has been found to be Invalid.
4. There is one instantaneous decision time (td) and one instantaneous request

time (treq).
5. V

P,td
DP is the only view of our interest as described above.

6. If refresh returns a New-Value result, its start time cannot be prior to its
previous start time, i.e., tistart,k ≥ tistart,k−1.

7. AA will not return a credential along with New-Value which has not been
started yet, so, tiref,k ≥ tistart,k.

4 Consistency Levels Formal Characterization

4.1 Preliminaries

Satisfactory Values. We define an attribute to be satisfactory if and only
if its value fulfills the policy conditions. For instance if the policy requires the
security level to be at least 3, any security level credential with the value greater
than or equal to 3 is considered as satisfactory. Obviously the same credential
may not be satisfactory with respect to another policy. We formally define
satisfactory with respect to a policy P at the specific time t as follows.

Definition 2. The view at time t has the structure V P,t
DP =

∧
1≤i≤n F (i) in which

F (i) is an atomic expression specifying required conditions for ci’s value. We
define Sat as follows to determine satisfactory requirements for ci’s value.

SatP,t
ci = True ⇐⇒ F (valikmax(t)) = True (2)

Refresh Instead of Revoke Enhances Safety and Availability 307

Fig. 3. Interval consistency

Freshness. We rely on the freshness concept in refresh scenario, compared to
validity in revocation scenario. We formally define freshness via Fresh function as
follows. When Fresh is used in a boolean expression, we understand Fresh(ci, t) to
be False when its value is Unknown.

Fresh : C × T → {True,False,Unknown}

Fresh(ci, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

True ⇐⇒ (tistart,k ≤ t ≤ tiref,k)
∧ (Refresh(ci, tiref,k) �= Invalid)

Unknown ⇐⇒ (tiref,k < t < tiend,k) ∨ (t ≥ tiref,kmax(t))
False ⇐⇒ [(t ≥ tiref,k) ∧ (Refresh(ci, tiref,k = Invalid))]

∨[t ≥ tiend,kmax(t)])
(3)

Following example is used throughout the paper.

Example 2. In a company, project managers and testing engineers with the secu-
rity level of at least 5 can access project’s documents. The policy in DNF form is
P = [(role ∈ {manager , engineer}) ∧ (security-level ≥ 5)]. Bob is a project manager
since January 1st to January 25th based on a refresh at January 15th. A refresh
at January 21st shows his role has changed to testing engineer as of January
20th through March 20th. A refresh at January 15th shows his security level is
6 as of January 10th to March 20th. Another refresh at January 28th reveals
security level has been downgraded to 4 since January 26th through March 20th.

We now introduce three levels of consistency taking both old and new values
of relevant credentials into account. We provide specifications and consequent
properties guaranteed by each level in the rest of this section.

4.2 Interval Consistency

At this level, it is required to find overlap of freshness intervals (simultaneous
freshness) of relevant credentials before the decision time. In Example 2, suppose

308 M. Shakarami and R. Sandhu

Bob requests access to project documents on Jan 18th. Based on refresh results
at Jan 15th, decision point finds simultaneous freshness of relevant credentials
during Jan 10th-Jan 15th with satisfactory values. So the access will be granted.
The stipulated overlap could be found for most recent refresh results of relevant
credentials (Fig. 3-(a)) or by considering both old and new refresh results (Fig. 3-
(b)). In these and subsequent figures if any refresh shown on the first line, it
returns Still-Good while any other refresh returns New-Value. Moreover, in
all cases the values of the three credentials are satisfactory. In Fig. 3-(a) the
overlap is for the most recent refreshed values, whereas in Fig. 3-(b) the overlap
is for a mix of the refreshed values, one new and two older.

Specification. Every credential has been refreshed at least once before the
decision time and found to be fresh. Most recent values of all relevant credentials
are satisfactory with respect to the policy. Any overlap of freshness intervals for
the freshest/cached credentials is acceptable so long as the values are satisfactory.

Interval(V P,td
DP) ⇐⇒ (∃t ≤ td)(∀ci ∈ V P,td

DP)

[max
∀cj∈V

P,td
DP

tjstart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t)

∧ Fresh(ci, tiref,kmax(t)) ∧ Fresh(ci, tiref,kmax(td)
) ∧ SatP,t

ci ∧ SatP,td
ci

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)
]

(4)

Property 1. There is a time interval during which all relevant credentials were
simultaneously fresh with satisfactory values with respect to the policy.

Proof. Based on Eq. (4), there exists a time (t) prior to the decision time at
which the latest refresh of every relevant credential happens after all have been
started and before any of them ends. This implies all credentials are simultane-
ously fresh during [max∀ci∈V

P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t)].

Corollary 1. if t = td, latest values of relevant attributes have freshness overlap.

Comparing with Revocation-Based Scenario. Based on the Claim in
Sect. 3.1, revocation and refresh are the same in case of Valid and Still-Good
responses from AA. But if the result is New-Value, the corresponding revocation
result would be Invalid which denies the access. In Example 2, if Bob requests
access to the project’s documents on Jan 25th and decision point rechecks the
credentials, although Bob’s role has changed, he would get the access in the
refresh scenario whereas he would be denied in revocation scenario.

4.3 Interval Consistency with Request Time

In first level, the decision point relies on what avails of previous refresh results
for relevant credentials and access would be denied in case of any unrefreshed

Refresh Instead of Revoke Enhances Safety and Availability 309

Fig. 4. Interval consistency with request time

credential. By considering the request time we could compensate for missing
refreshes. In Example 2, if Bob requests for accessing project’s documents on Jan-
uary 14th, the access would be denied at first level since there is no refresh result
available for required credentials. At second level, the decision point refreshes
the credentials after the request time and then checks the consistency require-
ments. Figure 4 shows similar example where the top credential is refreshed after
request time.

Specification. Decision point refreshes any credential with missing refresh
results after the request time. Afterwards, relevant credentials should satisfy
the interval consistency (previous level) requirements.

IntervalWithReq(V P,td
DP) ⇐⇒ (∀ci ∈ V P,td

DP) [tiref,kmax(treq)
�= ⊥

∨ (∃tr treq < tr < td) Refresh(ci, tr)] ∧ Interval(V P,td
DP)

(5)

Proposition 1. We assume the set of relevant credentials would not change
during the short gap between request time and decision time, so, V P,treq

DP = V
P,td
DP .

In other words the policy will not frequently change in the system.

Property 1. There is a time interval during which all relevant credentials are
simultaneously fresh. Possible lack of refresh would not unnecessarily deny
access.

Proof. Use of the same requirement of Interval(V P,td
DP) guarantees the same prop-

erty of freshness overlap of relevant credentials. Any missing refresh results would
be compensated after request time. It is possible that the gap between the request
time and decision time does not last enough to compensate all the lacking infor-
mation, but we consider it as an administrative setting which is out of scope for
this paper to quantify.

310 M. Shakarami and R. Sandhu

Property 2. Every interval consistent view with request time satisfies the interval
consistency requirements as well.

Proof. The proof is trivial since this level is defined based on interval level.

Property 3. An interval consistent view may deny access allowed by interval
consistent with request time.

Proof. Since we do not consider request time in first level, there is no opportunity
to compensate possible missing refreshes which could enable access.

Comparing with Revocation-Based Scenario. Considering the formal
specification in Eq. (5), which is based on first level, the comparison is trivial.
If refresh is substituted with revocation, system’s availability would decrease as
discussed in Sect. 3.1. The same situation may happen with regard to Example 2
as discussed in Sect. 4.2.

4.4 Forward-Looking Consistency

This level provides simultaneous freshness of all relevant credentials after the
request time, considering both new and old credentials. Overlapping interval
could either include the request time (Fig. 5-(a)) or not (Fig. 5-(b)). In Exam-
ple 2, if Bob requests access to project’s documents on Feb 1st his credentials
would be refreshed afterwards revealing changes in role and security level leading
to deny. However in previous levels an unauthorized access may be granted.

Specification. Any relevant credential has to be refreshed at least once after
the request time. All relevant credentials have to be found simultaneously fresh
at or after the request time.

ForwardLooking(V P,td
DP) ⇐⇒ (∃t treq < t ≤ td)(∀ci ∈ V P,td

DP)[(treq < tiref,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t))

∧ Fresh(ci, tiref,kmax(t)) ∧ Fresh(ci, tiref,kmax(td)
) ∧ SatP,t

ci ∧ SatP,td
ci

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)
]

(6)

Property 1. There is a time interval during which all relevant credentials are
simultaneously fresh after the request time.

Proof. Based on Eq. (6), all relevant credentials are simultaneously fresh dur-
ing [max∀ci∈V

P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t))]. Part of this interval is
located after the request time since refresh has been done after it.

Refresh Instead of Revoke Enhances Safety and Availability 311

Fig. 5. Forward looking consistency

Property 2. Every forward-looking consistent view is interval consistent with
request time as well.

Proof. Comparing Eqs. (5) and (6) shows forward-looking consistency is a
restricted version of its preceding level, so the proof is trivial.

Property 3. Not every interval consistent with request time view is necessarily
forward-looking as well.

Proof. At second level of consistency, only some credentials need to be refreshed
after request time to compensate for lacking information. Whereas in forward-
looking consistency, all have to be refreshed after the request time.

Comparing with Revocation-Based Scenario. Changing credentials in
revocation scenario leads to hinder the access, whereas in refresh scenario, the
New-Value in case of any changes would let the subject proceed. In Example 2,
Bob’s request to access project’s documents at Jan 20th would be denied in a
revocation-based scenario, however in refresh scenario access would be granted.

5 Limitations and Practical Issues

We presented three levels of consistency, where each higher level provides
enhanced availability and safety at the cost of refreshing more frequently. We
compared qualitative benefits of each level. Quantifying cost-benefit is highly
implementation and application specific, and is beyond the scope of this paper.
Furthermore, there are issues related to manage the risks inherent to applying
ABAC in a distributed environment, since ABAC introduces new challenges in
selecting appropriate trust models [9]. Finally, the formal correctness and appro-
priateness of the proposed criteria notwithstanding, the underlying information
could be vulnerable to attack. The attack models would depend on the particular
protocols and data structures used to implement credential transfer and refresh.
As such they are out of scope for an abstract framework.

312 M. Shakarami and R. Sandhu

6 Conclusion

We formally characterize the safety and availability problem in multi-authority
distributed ABAC systems. Our major contribution is to utilize the concept of
refresh, which provides new attribute values rather than simply invalidating old
ones. We propose three consistency levels which are totally ordered in strictness.

Acknowledgements. This work is partially supported by NSF CREST Grant HRD-
1736209 and DoD ARL Grant W911NF-15-1-0518.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, MIT (1999)

2. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Comput. Surv. 13, 185–221 (1981)

3. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

4. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: ACM CCS (2009)

5. Cheminod, M., Durante, L., Valenza, F., Valenzano, A.: Toward attribute-based
access control policy in industrial networked systems. In: IEEE WFCS (2018)

6. Garrison, W.C., et al.: On the practicality of cryptographically enforcing dynamic
access control policies in the cloud. In: IEEE S&P (2016)

7. Goodrich, M.T., Shin, M., Tamassia, R., Winsborough, W.H.: Authenticated dic-
tionaries for fresh attribute credentials. In: Nixon, P., Terzis, S. (eds.) iTrust 2003.
LNCS, vol. 2692, pp. 332–347. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44875-6 24

8. Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evaluation of distributed
concurrency control. Proc. VLDB Endow. 10, 553–564 (2017)

9. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. NIST SP 800-162 (2019)

10. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Access control for emerging distributed
systems. IEEE Comput. 51, 100–103 (2018)

11. Iskander, M.K., Wilkinson, D.W., Lee, A.J., Chrysanthis, P.K.: Enforcing policy
and data consistency of cloud transactions. In: IEEE ICDCSW (2011)

12. Krishnan, R., Niu, J., Sandhu, R., Winsborough, W.H.: Stale-safe security prop-
erties for group-based secure information sharing. In: ACM FMSE (2008)

13. Krishnan, R., Sandhu, R.: Authorization policy specification and enforcement for
group-centric secure information sharing. In: Jajodia, S., Mazumdar, C. (eds.)
ICISS 2011. LNCS, vol. 7093, pp. 102–115. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25560-1 7

14. Lee, A.J., Minami, K., Winslett, M.: Lightweight consistency enforcement schemes
for distributed proofs with hidden subtrees. In: ACM SACMAT (2007)

15. Lee, A.J., Winslett, M.: Safety and consistency in policy-based authorization sys-
tems. In: CCS. ACM (2006)

16. Lee, A.J., Winslett, M.: Enforcing safety and consistency constraints in policy-
based authorization systems. In: TISSEC. ACM (2008)

https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/3-540-44875-6_24
https://doi.org/10.1007/3-540-44875-6_24
https://doi.org/10.1007/978-3-642-25560-1_7
https://doi.org/10.1007/978-3-642-25560-1_7

Refresh Instead of Revoke Enhances Safety and Availability 313

17. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng. 25, 852–869 (1999)

18. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 internet public
key infrastructure online certificate status protocol-OCSP (RFC 6960)

19. Park, J., Sandhu, R.: The UCONABC usage control model. In: ACM TISSEC
(2004)

20. Perrin, M.: Distributed Systems: Concurrency and Consistency. Elsevier, Amster-
dam (2017)

21. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated
dynamic dictionaries, with applications to cryptocurrencies. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 376–392. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 21

22. Sciancalepore, S., et al.: On the design of a decentralized and multiauthority access
control scheme in federated and cloud-assisted cyber-physical systems. IEEE IoT
J. 5, 5190–5204 (2018)

23. Shakarami, M., Sandhu, R.: Safety and consistency of subject attributes for
attribute-based pre-authorization systems. In: NCS. Springer, Heidelberg (2019)

24. Van Steen, M., Tanenbaum, A.S.: Distributed Systems (2017)
25. Tamassia, R., et al.: Independently verifiable decentralized role-based delegation.

IEEE Syst. Man Cybern.-Part A: Syst. Hum. 40, 1206–1219 (2010)
26. Yang, K., Jia, X.: Attributed-based access control for multi-authority systems in

cloud storage. In: IEEE ICDCS (2012)
27. Yang, K., Jia, X.: Expressive, efficient, and revocable data access control for multi-

authority cloud storage. IEEE Parallel Distrib. Syst. 25, 1735–1744 (2014)
28. Yang, K., et al.: DAC-MACS: effective data access control for multiauthority cloud

storage systems. IEEE Inf. Forensics Secur. 8, 1790–1801 (2013)
29. Zahoor, E., Ikram, A., Akhtar, S., Perrin, O.: Authorization policies specifica-

tion and consistency management within multi-cloud environments. In: Gruschka,
N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 272–288. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03638-6 17

https://doi.org/10.1007/978-3-319-70972-7_21
https://doi.org/10.1007/978-3-319-70972-7_21
https://doi.org/10.1007/978-3-030-03638-6_17

Source Code Security

Wrangling in the Power of Code Pointers
with ProxyCFI

Misiker Tadesse Aga(B), Colton Holoday, and Todd Austin

University of Michigan, Ann Arbor, USA
{misiker,choloday,austin}@umich.edu

Abstract. Despite being a more than 40-year-old dark art, control flow
attacks remain a significant and attractive means of penetrating appli-
cations. Control Flow Integrity (CFI) prevents control flow attacks by
forcing the execution path of a program to follow the control flow graph
(CFG). This is performed by inserting checks before indirect jumps to
ensure that the target is within a statically determined valid target set.
However, recent advanced control flow attacks have been shown to under-
mine prior CFI techniques by swapping targets of an indirect jump with
another one from the valid set.

In this article, we present a novel approach to protect against advanced
control flow attacks called ProxyCFI. Instead of building protections to
stop code pointer abuse, we replace code pointers wholesale in the pro-
gram with a less powerful construct – pointer proxies. Pointer proxies
are random identifiers associated with legitimate control flow edges. All
indirect control transfers in the program are replaced with multi-way
branches that validate control transfers with pointer proxies. As pointer
proxies are uniquely associated with both the source and the target of
control-flow edges, swapping pointer proxies results in a violation even
if they have the same target, stopping advanced control flow attacks
that undermine prior CFI techniques. In all, ProxyCFI stops a broad
range of recently reported advanced control flow attacks on real-world
applications with only a 4% average slowdown.

Keywords: CFG mimicry attacks · CFI · Pointer proxy

1 Introduction

For more than four decades, control flow attacks, in which attackers force pro-
grams into executing code sequences not anticipated by the developer, have
played an important role in the infiltration of vulnerable systems. These attacks
are particularly attractive to attackers because they immediately give them the
agency necessary to deploy attack payloads, leak important information, embed
a rootkit, launch an additional attack such as privilege escalation, etc. As such,
there has been much attention paid to reducing a system’s vulnerability to con-
trol flow attacks.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 317–337, 2019.
https://doi.org/10.1007/978-3-030-22479-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_17

318 M. T. Aga et al.

Early measures to stop control flow attacks include StackGuard [16], data
execution prevention (DEP) [1,2] and address space layout randomization
(ASLR) [3]. However, subsequent attacks have skirted this defenses [27,34,35].
CFI [10] follows a principled approach to mitigating control flow attacks by
enforcing the runtime execution path of a program to adhere to the statically
determined CFG. It does these by checking if the target of an indirect jump is
within a valid set of targets. However, prior proposed CFI solutions are either
impractical or ineffective. Some, which strictly follow a program’s CFG [28],
have high overheads that render them impractical to production systems. Others
attempt to reduce overheads by approximating the CFG with limited classes of
targets (e.g., two classes for function pointers and return addresses) [4,6,41,42],
but these do not protect against control flow attacks that swap targets while
remaining on the CFG [14,20,21,33].

In this work, we make the key observation that many of the vulnerabilities
in control flow stem from the excessive power inherent in code pointers. To stop
the tide of control flow attacks, we propose a novel approach to control flow
integrity, called ProxyCFI, that replaces all code pointers in the program with
pointer proxies. A pointer proxy is a unique random identifier (64-bits in our
implementation), which represents a forward or backward control flow edge in
the program. Consequently, all indirect jumps in the program (e.g., returns and
jumps-through-register) are replaced with multi-way branches that implement a
direct jump to the address associated with the pointer proxy. As pointer proxies
are a function of both the source and the target of an edge, swapping pointer
proxies results in a violation even if they have the same target.

To ensure that all execution flows stay on the program CFG for even third-
party ProxyCFI compliant code, a binary-level program verifier first validates
at load-time that programs and libraries have CFGs that are fully discoverable,
use only pointer proxies, and avoid all indirect jumps/returns. Finally, to thwart
attacks based on binary analysis, the verifier re-randomizes pointer proxies at
load time. In addition, the loader marks code sections unreadable, to protect
from active-read attacks that gather pointer proxies using memory leaks.

Table 1. Comparison of Code Pointers to Pointer Proxies. Pointer proxies
preserve program control integrity by reducing their capabilities. This table lists the
differences in capabilities between code pointers and pointer proxies. Ultimately, it is
the powerful nature of code pointers that enable many control flow attacks.

Code pointers Pointer proxies

Arithmetic allowed Yes No

Totally ordered Yes No

Trivial forgery attacks Yes No

Permit relative distance attacks Yes No

Replay attacks on returns and fptrs Yes Only from the same source address

More importantly, ProxyCFI has a number of powerful features to deter
attacks that mimic legitimate control flow (i.e., control flow attacks that seem-

Wrangling in the Power of Code Pointers with ProxyCFI 319

ingly remain on legitimate control flow edges), such as control flow bending
(CFB) [14]. These attacks exploits the fact that existing CFI techniques allow
executions to maliciously divert indirect branches if the target address is still in
the valid set of targets. ProxyCFI thwarts this as a pointer proxy is unique to
a particular source and target address which makes a pointer proxy used in one
function context invalid in another even if they share the same target addresses.

Table 1 lists the comparative capabilities of traditional code pointers versus
pointer proxies. As shown in the table, pointer proxies do not support arith-
metic manipulation; thus, relative-address based control flow attacks, such as
ASLR de-randomization attacks [34] would not be possible with pointer proxies.
Moreover, pointer proxies are much more difficult to forge, since their assign-
ment is not in anyway related to other pointer proxies, whereas pointer values
often reveal much information through relative address distances to other code
objects, facilitating relative address inspired attacks. Since pointer proxies are
unique to a given function, return address copy attacks, such as the return-into-
libc [37] and backward-edge active-set attacks [36], become more challenging, as
the pointer proxies of other functions (which are assigned at load-time) must
be leaked and then translated to the local function’s proxies (which have no
correlation even if the current function calls the intended target).

1.1 Contributions of This Paper

In this paper, we introduce ProxyCFI, a novel control flow integrity technology
that thwarts recent advanced control flow attacks while incurring low perfor-
mance overhead. Specifically, this paper makes the following contributions:

– We present ProxyCFI that provides an efficient and practical protection
against advanced code reuse attacks, with a threat model notably more
capable than that of traditional CFI techniques which must protect a shadow
stack [32] or pointer encryption technologies which must protect encryption
keys [17].

– We detail the implementation of ProxyCFI within the GNU GCC compiler
toolchain.

– We demonstrate the efficiency of the approach running a wide range of
CPU-centric and network-facing applications. In addition, we implement
two compile-time optimizations, which ultimately reduce the slowdown of
this technology to only 4% on average. In addition, our security analysis
shows that the technology stops real-world advanced control flow attacks
and demonstrates 100% coverage for the RIPE x86-64 control flow attack
suite [40].

2 Protecting Control Flow with ProxyCFI

In this section, we detail our threat model and the broad ProxyCFI concept,
then present how to build and verify programs (including shared libraries) with
pointer proxies.

320 M. T. Aga et al.

2.1 Threat Model

In this work, we assume a very powerful attacker who wants to redirect control
flow to a code sequence that deviates from the programmer-specified CFG. In
accomplishing their control flow attack, the attacker has read and write access
to any data location, including globals, stack and heap variables, as well as data
storage locations holding pointer proxies. The code segment of the program is
assumed to be non-writable.

Given this powerful attacker, ProxyCFI works to prevent the attacker from
hijacking control from the programmer-specified CFG. In addition, ProxyCFI
also gives protection against non-gadget code reuse attacks (e.g., COOP where
the attack does not leave the CFG of the program, but instead enlists the code
in a CFG mimicry attack [33]).

2.2 Pointer Proxies

To stop control flow attacks, we replace all code pointers with pointer proxies. A
pointer proxy is a random identifier (64-bits in our evaluated implementation),
where pointer proxy P represents an edge from a particular code exit point
to a code entry point. Wherever a code pointer would reside in the program
(e.g. in a jump table or on the stack as a return address), it is replaced by its
corresponding pointer proxy value P . Figure 1 illustrates a small code snippet
in which the code pointers have been replaced by pointer proxies. As seen in the
example, where code pointers would have been stored (e.g., on the stack for a
return address), they are replaced with pointer proxies (denoted by a $).

foo(void (*fptr)(int), int arg) {
if fptr == $7743d2ff

push $ae23afcc; jmp bar
else if fptr == $1f324a19

push $bc41c823; jmp baz
else

abort()
done:
}

void baz(int) {
// return;
add %rsp, $4
proxy = DWORD PTR[%rsp-4]
if proxy == $bc41c823

jmp done
else

abort()
}

foo(void (*fptr)(int), int arg) {
(*fptr)(arg);

}

void bar(int) {
return;

}

void baz(int) {
return;

}

void bar(int) {
// return;
add %rsp, $4
proxy = DWORD PTR[%rsp-4]
if proxy == $ae23afcc

jmp done
else

abort()
}

Vulnerable Code Pointer Proxy Instrumented Code

Fig. 1. Example Code Sequence using Pointer Proxies. Pointer proxies replace
code pointers in a program with random identifiers associated with legal control flow
edges. Multi-way direct branches translate pointer proxies into direct jumps.

At indirect jumps and returns, the pointer proxy is inspected, and then
using a multi-way direct branch, the appropriate code entry point associated
with the pointer proxy is jumped to. We call a multi-way direct branch, which
matches a pointer proxy and then directly jumps to the associated code target,
a sled. Direct jumps are not replaced with pointer proxies. Since our threat
model assumes that code cannot be written, any direct jump is inherently write-
protected, and thus no additional protections are required. Three multi-way

Wrangling in the Power of Code Pointers with ProxyCFI 321

branches can be seen in the example in Fig. 1. The indirect call to bar() and
baz() in function foo() is implemented with a multi-way branch that jumps to
bar() if the proxy $7743d2ff is encountered and jumps to baz when the pointer
proxy is $1f324a19. Additionally, both of the returns from functions bar() and
baz() are implemented with a multi-way branch.

Advanced control flow attacks such as control low bending [14] undermine
CFI by using a code pointer copied from one function context to jump to
addresses in some other function without violating CFI constraints. Pointer
proxies are uniquely assigned to control flow edges (i.e., a function of source and
destination), thus, the pointer proxies of function X are meaningless to function
Y . This powerful feature, which does not impact the usability of pointer proxies,
thwarts large number of advanced control flow attacks. This aspect is shown in
Fig. 1 in the returns of functions bar() and baz(). While both functions return to
the same address (i.e., label done), they each use a distinctly different pointer
proxy. As such, if each of the functions were to disclose each other’s pointer
proxy and return upon it, it would not match any target in the return’s multi-
way branch, and would result in a violation. To stop the potential forgery of
pointer proxies, all pointer proxy values are defined per-function, and they are
re-randomized at program load time by the verifier as detailed in Sect. 2.4.

2.3 Building Code with Pointer Proxies

Building code to work with pointer proxies requires replacing every place in the
program that uses a code pointer with a pointer proxy.

Hardening indirection with pointer proxies: All indirect branches (e.g., switch
jump tables, indirect calls, and returns), are replaced with a multi-way direct
branch sleds. Of course, to know what targets must be tested for in a sled, we
must fully anticipate all of the targets of each indirect branch. For locally sourced
indirect jumps, such as a switch statement jump table, we can easily anticipate
in the current compilation module all of the indirect jump targets. Indirect calls
and returns require more analysis as the locations (and pointer proxy values) may
come from another application module (e.g., a shared library). Consequently, the
compilation framework must support whole-program CFG analysis (including
the call graph). In our prototype implementation in the GNU GCC toolchain,
we utilize a two-pass compilation strategy, to first build the whole program CFG
and then to compile programs with fully enumerated multi-way direct branch
sleds. Details of this compilation strategy are covered in Sect. 3.

At indirect calls, the type of the target function is noted, and when the whole
program CFG is constructed, an indirect function call is assumed to possibly
happen to only same-typed function and has had its address taken. Similarly,
the return address sleds target the instruction after all actual and potential calls
to the returning function, where a potential call directly targets the function
or indirectly targets the function through a compatible function pointer. This
approach works quite well until a program declares a void * indirect function
call, which could potentially call any function in the program. Fortunately, our

322 M. T. Aga et al.

optimizations detailed in Sect. 3.2 perform well to reduce the overall impact of
these generic indirect function calls. To ensure that there is a valid sled entry for
code pointers used across modules, ProxyCFI performs whole program analysis
including shared libraries to ensure indirect calls from a shared library into
the executable have a corresponding sled entry to handle callback functions. A
similar analysis is performed for callbacks passed into shared libraries.

When Good Code Pointers Go Bad: ProxyCFI doesn’t support dangerous code
pointer operations such as code pointer arithmetic, which are characteristics of
a buggy program [29]. For example, we could manufacture a code pointer to
a private function in x86-64 GCC by simply adding the size of the preceding
function (in bytes) to its code pointer. In our prototype GNU GCC C/C++
implementation of ProxyCFI, we issue a security warning for these operations at
compile time and terminate the program if executed at runtime. While we were
able to create these problems in test programs, none of our benchmark programs
suffered from dangerous code pointer manipulations.

setjump() and longjmp() require special handling in the compiler because
these functions implement a unique user-directed program control flow transi-
tion. Together, these functions implement a superset of function pointer behav-
ior, such that a call to setjmp() can be the target of any other longjmp() in the
program. Both function pointers and longjmp() share an indirect jump, but a
longjmp should generate a multi-way direct branch including all of the pointer
proxies assigned to the instruction immediately after each call to setjmp(). Thus,
any tampering in the setjmp() control context cannot pull execution off the CFG.

2.4 Load-Time Program Verifier

Load-time Program Verifier ensures no legal control flow results in a violation
and no deviation from the CFG is missed. It maintains this by verifying that
programs utilize only pointer proxies for indirect branches via multi-way direct
branches that are fully enumerated by the programmer-specified CFG. If an
unexpected pointer proxy is encountered, the program is terminated.

Fig. 2. ProxyCFI Program Loader. This figure illustrates the process of loading a
ProxyCFI compliant program for execution.

Figure 2 shows how a binary or shared library is loaded and validated. The
verifier ensures that only pointer proxies are used for control transitions. If a

Wrangling in the Power of Code Pointers with ProxyCFI 323

code object passes verification, the verifier generates load-time assigned pointer
proxies, such that an attacker cannot anticipate any pointer proxy values even
with an active read attack on the program.

The psuedocode for the ProxyCFI code verifier is shown in Algorithm1. The
verifier performs reachability analysis on the code object’s CFG to validate that
it is (i) free of indirect control transfers and (ii) all control transfers point to
a valid instruction within the current code object or the entry point of another
code object for calls. To this end, it performs a depth-first traversal of the CFG of
the code object, inspecting all control transfer instructions. If indirect call/jump
or return instructions are encountered in the code object, it immediately fails
verification. For direct control transfer (i.e., direct call, direct jump, loop instruc-
tions), it analyzes the target address for any possible violations.

For direct jump instructions, the verifier checks that the target address points
to a valid instruction within the current code object. For direct function calls,
the verifier validates that the target is a valid code object entry point. Finally,
for multi-way branch sleds replacing an indirect call/jump and return, the ver-
ifier ensures that all targets are valid according to the CFG. Once the verifier
completes reachability analysis of the CFG without failure, the code is safe to
load and execute.

Algorithm 1. Load-time Program Verifier. The algorithm performs a reacha-
bility analysis of the CFG to identify any illegal jumps or uses of indirection.

1: procedure Verify(obj)
2: for all f in obj do
3: ep ←f.entry point
4: while ep �= ∅ do
5: e ← ep.pop()
6: if e.checked == True then
7: continue
8: else
9: br ←scan for next branch(e)

10: switch br do
11: case Indirect(br) or Invalid(br.target)
12: return Fail
13: case Direct Branch
14: ep.push({br.target, e.next})
15: case sled
16: inspect ({sled.proxies})
17: ep.push({sled.targets})
18: return Success

2.5 Deterring CFG Mimicry Attacks

A mimicry attack [38] on the CFG is one that implements attacker-directed
control without leaving the programmer-specified CFG. With the introduction
of powerful control flow integrity mechanisms, such as CFI [10] these non-gadget
code reuse-based attacks have quickly grown in number, including counterfeit

324 M. T. Aga et al.

OOP [33], control flow bending [14], and active-set backward-edge attacks [36].
ProxyCFI can provide protection against these attacks through per-function
pointer proxy namespaces and load-time pointer proxy assignment.

Per-function pointer proxy namespaces: Traditional full-fledged code pointers
represent a code location that is sharable with any other part of the program. It is
this property that allows an adversary to copy a code pointer from one function
and replay it in another, an approach that Counterfeit OOP [33] utilizes to
implement method-level code reuse that does not leave the CFG. Pointer proxies
deter CFG mimicry attacks by defining unique pointer proxy namespaces for each
function. Thus, if a function copies the pointer proxy from another function, for
example, by searching for pointer proxies up the stack, any attempt to use it
will always result in a violation when the multi-way branch sled executes. In
Fig. 1 although bar() and baz() both return to the same location, they each have
their own proxy namespace which have different proxy-to-edge mappings (i.e.,
$ae23afcc and $bc41c823).

Load-time assignment of pointer proxies: Pointer proxies are re-randomized
at load time to further deter mimicry attacks. This prevents offline analysis of
code to generate a translation table from pointer proxies to source and target
code addresses. Enforcing a non-readable code section and load-time assignment
of proxies significantly complicates CFG mimicry attacks.

2.6 Shared Libraries with Pointer Proxies

Shared libraries are an attractive target for control flow attacks as they are used
among multiple applications. Attacks that target libc, for example, can be reused
on any application that links to it. The classic attack is return-into-libc [37],
wherein the adversary overwrites the return address so that the program returns
to an exploitable libc function such as system(). In addition, most shared libraries
contain large enough codebases that leaves an attacker with wide selection of
gadgets for all classes of code reuse attacks, such as ROP [18], JOP [12], LOP
[25] and their variants [13,22].

Connections into and out of shared libraries must be managed by unshared
data or code that is generated dynamically. Returns and indirect calls are natural
solutions to entering and exiting shared libraries because they draw on unshared
data in the stack and the global offset table, respectively. As such, shared libraries
require special handling with ProxyCFI which works to remove indirection. One
solution to securing shared libraries is to forbid them – Intel chose this with
SGX [23]. However, we want to retain their advantages: modularity, reduced
page swapping, and simplified version management.

ProxyCFI compliant shared libraries use unshared code to manage control
flow in and out because indirection must be replaced with multi-way branches.
While calling a shared library function still goes through the procedure linkage
table (PLT), the indirect call within the PLT is dynamically replaced with a
pointer proxy sled. At load time, extra space in the caller’s address space is
mmap’ed for the code that channels control flow on return. Shared library func-

Wrangling in the Power of Code Pointers with ProxyCFI 325

tions have their returns statically replaced with a relative jump down to the
unshared multi-way branches.

Fig. 3. Shared Library Control Flow. ProxyCFI allocates linkage tables using
pointer proxies in the caller’s address space, which permit safe entry and exit from a
compliant shared library.

Our approach to deploying shared libraries with ProxyCFI is illustrated in
Fig. 3. We split the process of returning from a shared library into two stages,
which are associated with the selection linkage table (SLT) and the return linkage
table (RLT), respectively. Two pointer proxies are used to return from a shared
library, one for the SLT and one for the RLT. For each PLT entry to a shared
library function there is an RLT entry that contains a multi-way branch leading
back to each call site in the code object. If shared library function foo() is
called from multiple code objects, then each code object would have a separate
RLT entry for foo() in its own address space. While the RLT specifies how to
return within a code object, the SLT specifies which code object to return to.
To accomplish this, SLT entries contain a multi-way branch of absolute jumps
directed at RLT entries. Since the size of SLT entries varies based on the code
objects that use the shared library, a trampoline table facilitates static generation
of the relative jumps by forwarding control onto the appropriate SLT entry.

Using load-time assignment, it is possible to assign proxies for the tendrils
into a shared library in a way that creates pointer proxies when the library is
first loaded. Moreover, our approach allows the pointer proxies used to enter and
exit the shared library function to be unique to each address space that utilizes
the shared library. This ensures that an attacker cannot gather pointer proxy

326 M. T. Aga et al.

information from their own address space and use it to attack a program using
the same shared library.

3 ProxyCFI in GNU GCC

In this section, we detail the implementation of ProxyCFI in the GNU GCC
C/C++ toolchain. We present the overall compilation flow, and then dive into
the details of the optimizations implemented.

GCC
Frontend

Linker

Pointer Proxy Converter

CFG Discovery

Branch Enumera on

Hardened BinaryProfiler

Loader

Verifier

Run

INVALID

source

Fig. 4. Compilation Flow. The compilation occurs in two passes. In the first pass,
the entire CFG of the program is discovered. In the second pass, all legal program
entrypoints are assigned randomly selected pointer proxy identifiers, and all indirect
jumps, indirect calls, and returns are replaced with fully enumerated multi-way direct
branches. The linker resolves all jumps using compiler-generated global identifiers for
all entry points. The profiler instruments the code to count the most frequent targets of
multi-way branches, which is used for optimization. Finally, all code is passed through
the pointer proxy verifier, assigned load-time random pointer proxies and loaded into
execute-only pages before execution begins.

3.1 Compilation Flow

ProxyCFI instrumentation is done with a two-pass transformation on assem-
bly generated mid-compilation by the existing GCC infrastructure. All sites of
indirection are replaced with fully enumerated multi-way direct branches that
validate CFG transitions with pointer proxies. Figure 4 describes the overall flow
of ProxyCFI compilation.

– Pass 1. CFG Discovery: Assembly files are parsed for function labels,
(direct or indirect) call sites, and return sites. Return edges are constructed
by observing the target set for each direct and indirect call. Indirect call
target sets include only functions that have had their addresses taken and
have a matching type signature. Type information on function pointer calls
are passed from the GCC frontend to the ProxyCFI compiler core.

– Pass 2. Branch Enumeration: Since the CFG contains all transitions
between functions, multi-way branch targets are fully enumerated before
the second pass begins. For return sites, pointer proxies are chosen in the

Wrangling in the Power of Code Pointers with ProxyCFI 327

context of the called function and shared with the calling function’s indirect
call sled. Pointer proxies are generated in this way to deter CFG mimicry
attacks (see Sect. 2.5 for details).

After generating a binary, runtime analytics, which are generated by the
profiler, are passed back to the branch enumeration phase, at which point the
multi-way branch sleds are rewritten with optimizations. Load time invocation
of the verifier rewrites all pointer proxies before executing the program.

3.2 ProxyCFI Optimizations

Indirect jump and return sleds can become very long, especially for frequently
called functions. To address these potential concerns, we implemented two opti-
mizations: profile-guided sled sorting, and function cloning.

Profile-guided sled sorting. The main source of performance degradation with
ProxyCFI is the overhead incurred by the repeated comparisons used to imple-
ment multi-way direct branch sleds. The number of checks required is directly
proportional to the number of legitimate targets for the corresponding indirect
control transfer instruction. Yet, we observed that these sleds were highly biased
to only a few of the branch targets. Our sled sorting optimization takes advan-
tage of the biased distribution of multi-way branch targets by sorting the entries
in descending order of profiled execution count. As shown in Sect. 4, this opti-
mization significantly reduces the average depth a program must traverse into a
sled before finding the pointer proxy target.

Function Cloning. While profile-guided sorting of the sleds significantly reduces
performance degradation associated with multi-way branch sleds, the improve-
ments are limited for functions with more uniformly distributed sled profiles.
To combat this, we adapted function cloning [15] – an optimization that creates
specialized copies of functions – as a means to reduce overall sled lengths. For
sleds with more uniform distributions, this optimization significantly reduces the
performance overhead incurred by executing sleds. Figure 5 illustrates function
cloning. A function with near uniform sled distribution is cloned (e.g., function
f2 becomes identical functions f2 and f2 c1). Then, half of the call sites to the
cloned function are redirected to the cloned function.

This optimization also significantly reduces the attacker’s agency in selecting
CFG edges to exploit for CFG mimicry attacks [14,20,33].

4 Evaluation

In this section, we examine the performance and security of ProxyCFI. First, the
performance impact of ProxyCFI is assessed by examining the slowdown incurred
for many CPU-centric and network-facing benchmarks, with and without Prox-
yCFI optimizations. To gauge the security benefits, we performed penetration
testing with the RIPE control flow attack suite [40] and recent advanced control
flow attacks on real-world applications.

328 M. T. Aga et al.

Fig. 5. Function Cloning. Function cloning cuts the number of legitimate edges by
a factor of the number of clones. Legitimate edges 6 and 8 from f2 sled are no longer
legitimate after cloning.

4.1 Evaluation Framework

ProxyCFI build framework. Our ProxyCFI compiler framework was built on
GCC version 6.1.0. In our evaluations, we used Ubuntu 16.04 on x86-64. Using
x86-64 is essential in our implementation because our shared libraries rely heav-
ily on relative jumps to preserve code page sharing, which is significantly more
efficient in 64-bit x86. We customized GLIBC's loader to handle ProxyCFI com-
pliant shared libraries and mark code pages execute-only. Many modern pro-
cessors have hardware support for execute-only memory. For example, recent
Intel CPUs support unreadable code pages using the Memory Protection Keys
(MPK) feature.1 In our prototype implementation, we used this feature to make
the code section execute-only (i.e., disabled read/write access).

Benchmarks analyzed. We evaluated the performance and space overhead
incurred by ProxyCFI using the SPEC CPU 2006 benchmarks. In addition, we
evaluated the overhead on the network-facing application redis-server , run-
ning it with the standard redis-benchmark with 50 parallel clients and a 3-byte
payload. To isolate the performance overhead incurred by ProxyCFI-hardened
shared objects, we also ran microbenchmarks for varying shared library sled
depths. To evaluate the security guarantees provided by ProxyCFI, we analyzed
applications from all the major categories commonly targeted by control flow
hijacking attacks including multimedia processing, Javascript engines, document
rendering, network infrastructure and VM interpreters. Specifically, we analyzed
the following commonly attacked applications (detailed in Sect. 4.3):

MuPDF is a light weight PDF XPS and EPUB parsing and rendering engine.
MuPDF versions V1.3 and prior have a stack-based buffer overflow vulnerability
1 Execute-only memory is also supported on ARMv8 and above.

Wrangling in the Power of Code Pointers with ProxyCFI 329

(CVE-2014-2013) [8] that results in remote code execution via a maliciously
crafted XPS document.
bladeenc is a cross-platform MP3 encoder which is also used as a daemon for
encoding in distributed MP3 encoders/CDDB servers like abcde. bladeenc has
several vulnerabilities that lead to CFG mimicry attacks that could be exploited
remotely (CVE-2017-14648) [7].
dnsmasq is a DNS forwarder designed to provide DNS services to a small-scale
networks, and it is included in most Linux distributions. Versions of dnsmasq
prior to 2.78 have a stack-overflow vulnerability which enables a remote attacker
to send a maliciously crafted DHCPv6 request to hijack control flow on the
target system (CVE-2017-14493) [5].
Gravity is a dynamically typed concurrent scripting language written in C. The
Gravity runtime contains a stack-based buffer overflow that leads to remote code
execution (CVE-2017-1000437) [9].

4.2 Performance Analysis

We ran the SPEC CPU 2006 benchmarks performance analysis experiments
on an Intel Xeon Gold 6126 Processor with 24 cores and 32GB RAM running
Ubuntu 16.04 LTS Xenial Xerus

Figure 6 shows the performance overhead incurred by ProxyCFI instrumen-
tation. For compute-intensive applications, the näive implementation’s perfor-
mance overheads are non-trivial, since these programs have high average sled
depth. Average sled depth is a measure of how many pointer proxy tests are
required in a sled, on average, before a direct branch is taken. Ideally, we would
like this value to be close to 1 to lower the performance overhead for ProxyCFI.
For applications with heavy use of function calls such as perlbench, gobmk and
sjeng, the performance degradation for the unoptimized implementation is more
pronounced, having a average return sled depth of 27 for perlbench.

With optimizations, the average sled depth drops dramatically, as do the
performance overheads. For example, perlbench benefits significantly from
profile-guided sled sorting optimization. h264ref also benefits significantly from
optimizations, as it makes heavy use of generic function pointers with indirect
functional call sleds having up to 855 entries, of which only two are frequently tar-
geted. gcc, on the other hand, makes considerable use of both function calls (aver-
age sled depth of 32) and generic function pointer (with an average sled depth
of 26 for indirect calls). The performance benefit of the function cloning opti-
mization is more visible on gcc, as the probability distribution of taken branches
falls off slower than the other applications. For network-facing applications, the
performance overhead is insignificant due to their I/O-bound nature. The aver-
age performance overhead for redis-server is 0.25% and an average overhead of
0.93% for all of network-facing applications we evaluated.

Figure 7 shows the percentage increase in the binary size as a result of pointer
proxy instrumentation, both with and without optimizations. On average the
code size grows by 49% for our benchmarks with the worst case of 121% for
h264ref, due to the large amount of instrumentation required for its generic
function pointers. Finally, Fig. 8 shows the impact of ProxyCFI verification and

330 M. T. Aga et al.

load-time proxy randomization on program load times. As shown in the graph, it
has approximately linear relationship with code size, the longest being 1200ms,
consistent with previous works that perform load-time randomization [30,39].

0

5

10

15

20

25

30daehrevo
ecn a

mrof rep
%

Unop mized Pointer Proxy (prof.) Pointer Proxy (prof. + clon.)

65 57 44 51 110 39

Fig. 6. Performance Overhead of ProxyCFI. Unoptimized shows the performance
overhead without any optimization, while ProxyCFI (prof.) and ProxyCFI (prof. +
clon.) show performance with profile-guided sled sorting (prof.) and function cloning
(clon.) optimizations.

Shared library performance. We measured the cost of our shared library sup-
port infrastructure by microbenchmarking entries and exits to shared libraries
and comparing it against unprotected shared library calls. The average per-
cent slowdown for a shared library calls using optimized ProxyCFI compilation
is 1.48% and 2.31% respectively for the best and worst-case average sled hit
depths observed in our benchmark experiments.

4.3 Security Analysis

To assess the security strength of ProxyCFI, we first examine its ability to
stop control flow attacks in the RIPE attack suite, then we examine to what
extent ProxyCFI can stop real-world control flow attacks including CFG mimicry
attacks.

Penetration testing with RIPE: RIPE is a control flow attack testbed that
generates attacks by permuting five dimensions of attack: location (e.g., stack,
heap, ...), target (e.g., return address, function pointers, ...), overflow technique
(e.g., direct/indirect), and function of abuse (e.g., memcpy, ...) [40]. Native RIPE
targets 32-bit x86 code, thus, with the help of a recently implemented low-
fat pointer extension [19], we ported the RIPE test suite to x86-64. Our port
supports the following five dimensions: location, target (including setjmp() and
longjmp()), method, and overflow type. Permuting all RIPE dimensions totals
up to 850 unique tests. With ProxyCFI protections, 100% of the RIPE

Wrangling in the Power of Code Pointers with ProxyCFI 331

Fig. 7. Increase in Code Size. This graph shows the impact of ProxyCFI on code
size. The blue bars (left) represent unoptimized ProxyCFI programs, while the green
bar (right) represents optimized ProxyCFI programs. (Color figure online)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

500

1,000

Size [KB]

L
oa

d-
ti
m
e
[m

s]

Fig. 8. Load-time overhead vs. code size This graph shows the impact of pointer
proxy randomization on load-time.

attacks are stopped. In addition, ProxyCFI was able to detect the exact point
at which attacks escape the CFG.

Real-world vulnerabilities. To evaluate the effectiveness of ProxyCFI against
attacks on real-world applications, we included recent attacks reported on the
National Vulnerability Database (NVD) in our evaluation.

With ProxyCFI, we were able to stop all of the following real-world
attacks including CFG mimicry attacks.

In testing, we found that the declared violations enabled us to quickly identify
the root cause of the vulnerability. We analyzed four attacks.

MuPDF has a stack-based buffer overflow vulnerability in the
xps parse color() function which performs an unchecked strcpy() of a user sup-
plied (via XPS input) array to a fixed size buffer [8]. The exploit uses this bug

332 M. T. Aga et al.

to overwrite the return address and jump to an ROP gadget. With ProxyCFI
we were able to detect the stack pivot based on the corrupted pointer proxy.

Bladeenc's command line parser uses unchecked calls to strcpy() to copy
parameters to a 256-byte buffer that are exploited for arbitrary code execution
by using a carefully crafted command line arguments [7]. The exploit corrupts
a function pointer to jump to another function which is also in its legal target
set to hijack control flow via a CFG mimicry attack. We were able to detect the
exploit when trying to jump using a forged pointer proxy (which was interpreted
as invalid pointer proxy from the source address).

Dnsmasq has a vulnerability caused by an unchecked use of memcpy() in
the dhcp6 maybe relay() function to a 16-byte field of the variable state. This
bug allows an attacker to perform inter-object overflow to perform ROP attack.
Using ProxyCFI we were able to detect all of the exploits.

Gravity contains a stack-based buffer overflow in the function
operator string add() which can be used to write past the end of a fixed-sized
static buffer to achieve code execution. The exploit uses this vulnerability to
overwrite a return address using a malicious Gravity script. For the ProxyCFI
hardened version the attack was detected when the exploit tried to make an
indirect jump based on forged pointer proxy.

5 Related Work

Memory safety. Memory corruption attacks have been often used to hijack con-
trol flow, either by injecting code or reusing existing code. Data execution pre-
vention [1,2] is sidestepped entirely as reuse attacks need not inject code. Com-
prehensive memory safety techniques such as Softbound [31] can completely
eradicate memory exploitation, but they suffer from high overhead or compati-
bility issues, deeming them as yet impractical for widespread adoption.

Control flow integrity: A new wave of practical defenses emerged with a
focus on validating that execution adheres to a static, programmer specified
CFG. Control flow integrity (CFI) [10] was the first of these CFG defenses. The
defense inserts checks before indirect branches to make sure that all indirect
control transfers are within the statically discovered CFG. Various coarse-gained
variants have relaxed CFI constraints to achieve practical solutions through both
software and hardware approaches [4,6,41,42].

CCFIR [41] uses a load-time randomized springboard section to redirect all
indirect control flow transfers, which has been bypassed by a successive work
[21]. Intel CET [6] provides rudimentary hardware protection for forward edges
through its indirect branch tracking. Microsoft CFG enforces a weak form of CFI
by restricting indirect function calls to function entry points [4]. While these tech-
niques are valuable against straightforward code reuse techniques, CFG mimicry
attacks effectively bypass this CFI techniques. Unlike these coarse grained CFI
techniques, ProxyCFI provides fine grained protection, and also affords protec-
tion against CFG mimicry attacks. CCFI [28] is a fine-grained CFI technology
that protects code pointers by storing hash based message authentication code

Wrangling in the Power of Code Pointers with ProxyCFI 333

(MAC) alongside code pointers and checking the MAC before indirect branches.
While CCFI can protect against CFG mimicry attacks, its high performance
overhead (52% for SPEC’06) will undoubtedly limit its applicability in pro-
duction environments. Like CCFI, ProxyCFI provides fine-grained control flow
protection, while incurring significantly lower overheads (only 5.9% average slow-
down for SPEC’06).

Other control flow integrity works have proposed to completely remove
instructions employed for control flow hijacking attacks. Return-less kernels [26]
avoid use of ret instruction by replacing them with a lookup into a static return
table which provides protection solely against return-based attacks. Control-data
isolation (CDI) [11] rewrites both forward and backward edges with exclusively
direct branches. CDI would conceivably constrain execution to the programmer-
specified CFG, if it were to verify that all binaries adhered to CDI compila-
tion requirements. But since the approach still uses code pointers to identify
program pointers, the approach is readily attackable with control flow attacks
that do not leave the CFG, such as Counterfeit OOP [33]. Moreover, ProxyCFI
addresses CFG mimicry attacks by replacing code pointers with pointer proxies
that utilize per-function namespaces, which are assigned at program load-time
to an execute-only memory.

Code-Pointer Integrity (CPI) [24] provides memory safety for code pointers
by storing them in a safe region. CPI requires allocation of a safe data region
inaccessible to an attacker. ProxyCFI does not require any special data region
protections.

6 Conclusion

While significant effort has been spent to shut down control flow attacks, their
existence and value persists today, even 40 years after the first buffer overflow
attack. With ProxyCFI, we take the novel approach of replacing all of a pro-
gram’s code pointers with the much less powerful pointer proxy. A pointer proxy
is a random identifier representing a specific program entry point from the con-
text of a specific function. A control transfer with a pointer proxy utilizes a
multi-way direct branch which fully anticipates all of the potential jump targets.
As such, ProxyCFI provides much resistance to advanced control flow attacks
because it is difficult to forge/swap pointer proxies to mimic a legitimate CFG
transition. Our implementation of ProxyCFI is built into the GNU GCC C/C++
compiler toolchain, such that all code pointers are replaced with pointer proxies
including those contained within shared libraries. Analysis of our pointer proxy
implementation reveals that they introduce minimal slowdown when pointer-
proxy specific optimizations are applied, only an average 4% slowdown across a
wide range of benchmarks. Moreover, security analysis of ProxyCFI shows that
it stops all of the control flow attacks we tested, including 100% of the attacks
in the RIPE x86-64 attack suite and a wide range of real-world attacks including
CFG mimicry attacks.

334 M. T. Aga et al.

Looking ahead we see a number of avenues for growing the capabilities of
ProxyCFI. In particular, we would like to implement support for reassigning
pointer proxy values at runtime, and we would like to explore the use of pointer
proxies for a limited set of data pointers.

Acknowledgement. This work was supported by DARPA under Contract HR0011-
18-C-0019. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of DARPA.

A Redis-benchmark Results Breakdown

Table 2 shows the results of running redis-server with the standard redis-
benchmark using 50 parallel clients and a 3-byte payload.

Table 2. Results of running redis-benchmark ProxyCFI compliant redis-server versus
unhardened baseline

Command Baseline ProxyCFI

(request/sec) (request/sec)

PING INLINE 12320.9 12115.34

PING BULK 12881.67 12926.58

SET 12469.83 12158.05

GET 12941.73 13010.67

INCR 10514.14 11189.44

LPUSH 12227.93 12997.47

RPUSH 11592.86 11828.72

LPOP 12659.83 12255.46

RPOP 12804.1 12604.8

SADD 12218.96 12055.46

HSET 12023.57 11872.7

SPOP 11855.36 11552.39

LPUSH (needed to benchmark LRANGE) 12968.49 12600.12

LRANGE 100 (first 100 elements) 6506.82 6325.19

LRANGE 300 (first 300 elements) 2788.99 2690.05

LRANGE 500 (first 450 elements) 2403.4 2211.26

LRANGE 600 (first 600 elements) 1730.2 1652.59

MSET (10 keys) 10409.08 9959.79

Wrangling in the Power of Code Pointers with ProxyCFI 335

References

1. Data execution prevention (2003). Accessed 29 Feb 2018
2. Linux kernel 2.6.8 (2004). Accessed 29 Feb 2018
3. Windows ISV software security defenses (2010). Accessed 29 Feb 2018
4. Control flow guard (windows) - MSDN - Microsoft (2015). https://msdn.microsoft.

com/en-us/library/dn919635.aspx. Accessed 13 Apr 2018
5. Cve-2017-14493 (2017). https://www.cvedetails.com/cve/CVE-2017-14493/.

Accessed 12 Feb 2018
6. Intel control-flow enforcement technology (CET) (2017). https://software.intel.

com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-
preview.pdf. Accessed 13 Apr 2018

7. Bladeenc: Vulnerability statistics (2018). https://www.cvedetails.com/product/
2851/Bladeenc-Bladeenc.html. Accessed 05 Jan 2018

8. Cve-2014-2013 (2018). https://www.cvedetails.com/cve/CVE-2014-2013/. Acc-
essed 13 Apr 2018

9. Cve-2017-1000437 (2018). https://www.cvedetails.com/cve/CVE-2017-1000437/.
Accessed 05 Jan 2018

10. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
pp. 340–353. ACM (2005)

11. Arthur, W., Mehne, B., Das, R, Austin, T.: Getting in control of your control
flow with control-data isolation. In: Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, pp. 79–90. IEEE
Computer Society (2015)

12. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, pp. 30–40. ACM (2011)

13. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: Proceedings of the
15th ACM Conference on Computer and Communications Security, pp. 27–38.
ACM (2008)

14. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bending:
on the effectiveness of control-flow integrity. In: 24th USENIX Security Symposium
(USENIX Security 15), pp. 161–176. USENIX Association, Washington, DC (2015)

15. Cooper, K.D., Hall, M.W., Kennedy, K.: A methodology for procedure cloning.
Comput. Lang. 19(2), 105–117 (1993)

16. Cowan, C., et al.: Stackguard: automatic adaptive detection and prevention of
buffer-overflow attacks. In: USENIX Security Symposium, San Antonio, TX, vol.
98, pp. 63–78 (1998)

17. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard TM: protecting point-
ers from buffer overflow vulnerabilities. In: Proceedings of the 12th Conference on
USENIX Security Symposium, vol. 12, pp. 91–104 (2003)

18. Dai Zovi, D.: Practical return-oriented programming. In: SOURCE Boston (2010)
19. Duck, G.J., Yap, R.H.C, Cavallaro, L.: Stack bounds protection with low fat point-

ers (2017)
20. Evans, I., et al.: Control jujutsu: on the weaknesses of fine-grained control flow

integrity. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 901–913. ACM (2015)

21. Gktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: overcom-
ing control-flow integrity. In: 2014 IEEE Symposium on Security and Privacy, May,
pp. 575–589 (2014)

https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://www.cvedetails.com/cve/CVE -2017-14493/
https://software.intel.com/sites/default/files/managed /4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed /4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed /4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.cvedetails.com/product/2851/Bladeenc-Bladeenc.html
https://www.cvedetails.com/product/2851/Bladeenc-Bladeenc.html
https://www.cvedetails.com/cve/CVE-2014-2013/
https://www.cvedetails.com/cve/CVE-2017-1000437/

336 M. T. Aga et al.

22. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: Proceedings of the 23rd USENIX Conference on Security Symposium, pp. 417–
432. USENIX Association (2014)

23. Intel: Dynamic libraries (2015). Accessed 29 Feb 2018
24. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-

pointer integrity. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2014), pp. 147–163. USENIX Association, Broomfield
(2014)

25. Lan, B., Li, Y., Sun, H., Su, C., Liu, Y., Zeng, O.: Loop-oriented program-
ming: a new code reuse attack to bypass modern defenses. In: 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, pp. 190–197. IEEE (2015)

26. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with return-less kernels. In: Proceedings of the 5th European Conference on
Computer Systems, pp. 195–208. ACM (2010)

27. Liu, L., Han, J., Gao, D., Jing, J., Zha, D.: Launching return-oriented programming
attacks against randomized relocatable executables. In: 2011 IEEE 10th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), pp. 37–44. IEEE (2011)

28. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: cryptographically
enforced control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 941–951. ACM (2015)

29. C+ MISRA: Guidelines for the use of the C/C++ language in critical systems.
MIRA Limited, Warwickshire (2012)

30. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque control-
flow integrity. In: NDSS, vol. 26, pp. 27–30 (2015)

31. Nagarakatte, S., Zhao, J., Martin, M.N.K., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. ACM SIGPLAN Not. 44(6),
245–258 (2009)

32. Prasad, M., Chiueh, T.: A binary rewriting defense against stack based buffer
overflow attacks. In: USENIX Annual Technical Conference, General Track, pp.
211–224 (2003)

33. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 745–762. IEEE (2015)

34. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298–307. ACM (2004)

35. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: Proceedings of the Second European
Workshop on System Security, pp. 1–8. ACM (2009)

36. Theodorides, M., Wagner, D.: Breaking active-set backward-edge CFI. In: 2017
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 85–89. IEEE (2017)

37. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-
siveness of return-into-libc attacks. In: Sommer, R., Balzarotti, D., Maier, Gregor
(eds.) RAID 2011. LNCS, vol. 6961, pp. 121–141. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23644-0 7

https://doi.org/10.1007/978-3-642-23644-0_7

Wrangling in the Power of Code Pointers with ProxyCFI 337

38. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, pp. 255–264. ACM (2002)

39. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, pp. 157–168. ACM (2012)

40. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: run-
time intrusion prevention evaluator. In: Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC. ACM (2011)

41. Zhang, C., et al.: Practical control flow integrity and randomization for binary
executables. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 559–
573. IEEE (2013)

42. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX Security
Symposium, pp. 337–352 (2013)

CASFinder: Detecting Common Attack
Surface

Mengyuan Zhang1, Yue Xin1, Lingyu Wang1(B), Sushil Jajodia2,
and Anoop Singhal3

1 Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, Canada

wang@ciise.concordia.ca
2 Center for Secure Information Systems, George Mason University, Fairfax, USA

jajodia@gmu.edu
3 Computer Security Division, National Institute of Standards and Technology,

Gaithersburg, USA
anoop.singhal@nist.gov

Abstract. Code reusing is a common practice in software development
due to its various benefits. Such a practice, however, may also cause
large scale security issues since one vulnerability may appear in many
different software due to cloned code fragments. The well known con-
cept of relying on software diversity for security may also be compro-
mised since seemingly different software may in fact share vulnerable
code fragments. Although there exist efforts on detecting cloned code
fragments, there lack solutions for formally characterizing their specific
impact on security. In this paper, we revisit the concept of software diver-
sity from a security viewpoint. Specifically, we define the novel concept
of common attack surface to model the relative degree to which a pair
of software may be sharing potentially vulnerable code fragments. To
implement the concept, we develop an automated tool, CASFinder, in
order to efficiently identify common attack surface between any given
pair of software with minimum human intervention. Finally, we conduct
experiments by applying our tool to real world open source software
applications. Our results demonstrate many seemingly unrelated soft-
ware applications indeed share significant common attack surface.

1 Introduction

Code reusing is a common practice in today’s software industry due to the fact
that it may significantly accelerate the development process [7,10]. However,
such a practice also has the potential of leading to large scale security issues
because a vulnerability may be shared by many different software applications
due to the shared libraries or code fragments. A well known example is the Heart-
bleed vulnerability in OpenSSL, which caused widespread panic on the internet
since the vulnerable library was shared by many popular Web servers, including
Apache and Nginx [11]. In addition to shared libraries, the reusing of existing
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 338–358, 2019.
https://doi.org/10.1007/978-3-030-22479-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_18

CASFinder: Detecting Common Attack Surface 339

code fragments may also lead to similar vulnerabilities shared by different soft-
ware applications. Unlike libraries, such reused codes are typically not traced
by any official documentation, which makes it more difficult to understand their
security impact. Finally, this phenomenon may also compromise the well known
concept of relying on software diversity for security, since seemingly unrelated
software applications made by different vendors may in fact share common weak-
nesses.

The issue of identifying and characterizing the security impact of shared code
fragments has received little attention (a more detailed review of the related
work will be given in Sect. 6). Most existing vulnerability detection tools focus
on identifying vulnerabilities for a specific software application based on static
and/or dynamic analysis, with no indication whether different software may
be sharing similar vulnerabilities due to common libraries or reused codes [12].
On the other hand, existing efforts on software clone detection mostly focus
on identifying reused code fragments based on either the textual similarity or
functional similarity, with no indication of the security impact [41]. Clearly, there
exists a gap between the two, i.e., how can we leverage existing efforts on software
clone detection to characterize the likelihood that given software applications may
share similar vulnerabilities?

In this paper, we address the above issue through defining the novel concept
of common attack surface and developing an automated tool, CASFinder, to cal-
culate the common attack surface of given software applications. Specifically, we
first extend the well-known attack surface concept to model the relative degree
to which a pair of software may be sharing potentially vulnerable code frag-
ments. Such a formal model enables the quantification of software diversity from
the security point of view, and its results may be used as inputs to higher level
diversity methods (e.g., network diversity [47] and moving target defense [20]).
Second, we develop CASFinder which is an automated tool that takes the source
code of two software applications as the input and outputs their common attack
surface result in an XML file or to a database. Third, we conduct experiments
by applying our tool to a large number of real-world open source software appli-
cations belonging to seven different categories from Github. More than 80,000
combinations of software applications are analyzed, and our results demonstrate
many seemingly unrelated software applications indeed share a significant level of
common attack surface. In summary, the contribution of this paper is threefold.

– First, to the best of our knowledge, this is the first effort on formally modeling
the security impact of reused code fragments. The common attack surface
model may serve as a foundation and provide quantitative inputs to higher
level security-through-diversity methods.

– Second, the CASFinder tool makes it feasible to evaluate the common attack
surface between open source software applications, which may have many
practical use cases, e.g., providing useful references for security practitioners
to choose the right combinations of software applications in order to maximize
the overall software diversity in their networks, and reusing the knowledge

340 M. Zhang et al.

about existing vulnerabilities in one software to potentially identify similar
ones in other software.

– Third, our experimental results prove the possibility of similar vulnerabilities
shared by seemingly unrelated software applications made by different ven-
dors. We believe such a finding may help attract more interest to re-examining
the concept of software diversity and its security implication.

The remainder of this paper is organized as follows. Section 2 provides a
motivating example and background information. Section 3 defines the common
attack surface model. Section 4 designs and implements the CASFinder tool.
Section 5 evaluates the tool through experiments using real open source software.
Section 6 reviews related work and Sect. 7 concludes the paper and provides
future directions.

2 Preliminaries

In this section, we first present a motivating example in Sect. 2.1 and then provide
background knowledge and highlight the challenge in Sect. 2.2.

2.1 Motivating Example

As an example, consider an enterprise network with Web servers running either
the Apache HTTP server (Apache) or the Nginx HTTP server (Nginx), as well
as a Cyrus IMAP server (Cyrus). Assume all three software applications are of
the vulnerable versions that are affected by the Heartbleed vulnerability. This
vulnerability has reportedly affected an estimated 24–55% of popular websites
and gave attackers accesses to sensitive memory blocks on the affected servers,
which potentially contain encryption keys, usernames, passwords, etc. [11]. The
vulnerability is discovered inside the popular OpenSSL library, which is an exten-
sion of many Web and email server software applications for supporting the https
connections.

Specifically, Fig. 1 demonstrates how this vulnerability functions in relation
to the three software applications in our example. Those software simply hand
the encryption tasks to the OpenSSL extension, and the vulnerability appears
when the software make external calls to the OpenSSL extension. In establish-
ing the SSL connections, the API invocation SSL CTX new(method) is a func-
tion for establishing SSL content, SSL new() is for creating SSL sessions, and
SSL connect() for launching SSL handshakes. To exploit the Heartbleed vul-
nerability, attackers would craft a heartbeat request with a special length and
send it to the servers. This request would cause different software applications to
invoke the same library function memcpy() without any boundary check enabling
attackers to extract sensitive memory blocks from the servers.

CASFinder: Detecting Common Attack Surface 341

Fig. 1. An example of the Heartbleed vulnerability

The fact that this vulnerability exists inside the OpenSSL extension shared
by all three software means an attacker can compromise those different software
in a similar manner. This phenomenon is certainly not limited to this particular
vulnerability. In this example, since both the Apache and Nginx projects are
Web servers developed in C language, their similar functionality implies there is
a high chance that the developers of both projects would not only import the
same libraries, but also reuse the same or similar code fragments. In addition, as
will be shown through our experimental results, code reusing also exists among
software applications with very different functionalities. On the other hand, not
all server software that use SSL connections are affected by this vulnerability,
e.g., Microsoft IIS and Jetty are both immune to the vulnerability [11].

Clearly, there exists a need for identifying the software applications which
may share such a common vulnerability, and for characterizing the level of such
sharing since some software may share more than one such vulnerability. Such
a desirable capability may have many practical use cases. For instance, it may
allow similar software patches or fixes to be developed and applied to different
software applications in order to mitigate a common vulnerability, which may
significantly reduce the time and effort needed for developing such patches and
fixes. This capability may also allow administrators to better judge the amount
of software diversity in their networks, and to choose the right combinations of
software applications (e.g., Apache and IIS w.r.t. this particular vulnerability)
to increase the diversity. Finally, this capability would lead to a more refined
approach to moving target defense (MTD) [13] since it could potentially allow
us to quantify the amount of software diversity that is achieved by switching
between different software resources under a MTD mechanism.

2.2 Background

We take two steps towards measuring the potential impact of cloned codes on
security. The first step is to find similar code fragments in different software

342 M. Zhang et al.

applications. The second step is to characterize the security impact of such code
fragments. We first review some of the background concepts related to each step.

First, to detect similar code fragments between software, most clone detection
methods are based on either the textual similarity or the functional similarity,
and existing tools are mostly based on text, token, tree, graph, or metrics [41,42].
Among the existing tools, we have chosen CCFinder [23], a language-based
source code clone detection tool, to find cloned code fragments within given soft-
ware applications. As one of the leading token-based detection tools, CCFinder
has received the Clone Award in 2002, and it supports multiple languages, includ-
ing C, C++, Java, and COBOL. CCFinder first divides the given source code
into tokens using a lexical analyzer. It then normalizes some of those tokens
by replacing identifiers, constants and other basic tokens with generic tokens
representing their language role. Finally, it uses a suffix-tree based sub-string
matching algorithm to find common subsequences corresponding to clone pairs
and classes [23]. A key advantage of such a token-based tool is that it can toler-
ate minor code changes, such as formatting, spacing and renaming, in the reused
code.

However, the result from clone detection tools, including CCFinder, only
reveals similar code fragments between source codes, without indicating any
security impact. The primary challenge is therefore to model and quantify the
potential impact of clone detection on security in terms of leading to potential
vulnerabilities. To this end, a promising solution is to apply the attack surface
concept [36], which is a well known software security metric that measures the
degree of software security exposure. The measurement is taken as counts along
three dimensions, the entry and exit points (i.e., methods calling I/O functions),
channels (e.g., TCP and UDP), and untrusted data items (e.g., registry entries
or configuration files), and the counting results are then aggregated through
weighted summation. Attack surface measures the intrinsic properties of a soft-
ware application, e.g., how many times does each method invoke I/O functions
(which provides an estimate of security risks such as buffer overflow), regardless
of external factors such as the discovery of the vulnerability or the existence of
exploit code. Therefore, attack surface can potentially cover both known and
unknown vulnerabilities.

Therefore, we will combine clone detection (i.e., CCFinder) with attack sur-
face to quantify the likelihood that cloned code fragments may lead to potentially
similar vulnerabilities shared between different software applications. For sim-
plicity, we will focus on entry and exit points in this paper, and will consider
channels and untrusted data items in our future work. We also note that, since
it is not guaranteed that every entry or exit point will map to a vulnerability,
the attack surface concept is only intended as an estimation of the relative abun-
dance of vulnerabilities in software [36]. Consequently, our model and tool also
inherit this limitation, and the results will only indicate the potential, instead
of the actual existence, of common vulnerabilities.

Combining the result of clone detection with the attack surface concept is
not a straightforward task. We discuss a key challenge in the following. In Fig. 2,

CASFinder: Detecting Common Attack Surface 343

function handle response() and function quicksand mime() are both entry points
since they call I/O functions fseek() and ftell (from the standard C library). A
naive application of the attack surface concept here would indicate each function
count as one entry point and hence both have the same security implication.
However, such a coarse-grained application ignores the exact number of I/O
function calls (i.e., three calls in handle response() and two in quicksand mime())
whose difference may be significant in practice. In our model, we will take a more
refined approach to address such issues.

Fig. 2. Examples of entry points: /Simple-Webserverche/server.c handle response()
(Top) and /quicksand lite/libqs.c quicksand mime() (Bottom)

3 The Model of Common Attack Surface

In this section, we model the security implication of cloned code fragments
between software applications through two novel security metrics, namely, the
conditional common attack surface (ccas) and the probabilistic common attack
surface (pcas). Those two metrics are designed for different use cases as follows.

– The conditional common attack surface (ccas) is designed to be asymmetric
for use cases in which one software is of particular interest and evaluated
against all other software. For example, suppose a company has developed a
new Web server application and wants to understand any similarity between
their product and other existing Web servers such as Apache and Nginx. In
such a case, the key is to rank those other software applications based on the
relative percentage of shared attack surface, and the developer can apply the
metric ccas for this purpose.

– Second, in a different scenario, suppose an administrator wants to understand
the level of software diversity between all the software applications inside the
same network. In such a case, both software in comparison are considered
equally important, so the symmetric metric pcas would be more suitable,
which will yield a unique measurement of shared attack surface between any
pair of software. The following details the ccas and pcas metrics.

344 M. Zhang et al.

3.1 Conditional Common Attack Surface (CCAS) Metric

We first consider clone segments between two software applications identified
using CCFinder [23] through an example.

Example 1. Figure 3 demonstrates clone segments between a Web server appli-
cation SimpleWebserver and an ssh application SSHBen. In the figure, the Clone
id is a unique number labelling a group of related clones inside both software
applications. For instance, the code segments inside the solid line blocks indi-
cate the clone segments with the same Clone id 28, and the dashed line blocks
are for Clone id 78. Note that the same code may appear under different clone
ids, e.g., line 146 and 147 in Simple-Webserver appear under both clone ids.
Also note that, for Clone id 78, the matching between the two clone segments is
inexact [23] since strcat does not exist in SSHBen.

Fig. 3. An example of cloned segments

From the above example, it is clear that the clone segments belonging to the
same Clone id are not identical between the two software applications. Therefore,
the attack surface would be asymmetric as well. First, we define the Common
Attack Surface as the collection of I/O function calls inside the clone segments
as follows.

Definition 1 (Common Attack Surface). Given two software applications
A and B, the common attack surface of A w.r.t. B (or that of B w.r.t. A) under

CASFinder: Detecting Common Attack Surface 345

the Clone id i is defined as the multi-set (which preserves duplicates) of I/O
function calls that exist inside the clone segments of A under the Clone id i,
denoted as casi(A|B) (or casi(B|A)).

Example 2. To follow our example, we have

– cas28(SimpleWebserver|SSHBen) = 〈strcat, strcat, fopen〉,
– cas28(SSHBen|SimpleWebserver) = 〈strcat, strcat, strcat, fopen〉,
– cas78(SimpleWebserver|SSHBen) = 〈fopen, fseek, ftell〉, and
– cas78(SSHBen|SimpleWebserver) = 〈fopen, fseek, ftell, fopen, fseek, ftell,
fopen, fseek, ftell, fopen, fseek, ftell〉.
Since the attack surface concept is based on the number of entry and exit

points (i.e., methods invoking I/O functions), we follow the similar approach
to calculate the size of common attack surface by counting the number of I/O
function calls across different Clone ids, with those appearing under different
Clone ids counted only once. We demonstrate this through an example.

Example 3. For Clone id 78, this gives three for Simple-Webserver and 12 for
SSHBen. As to Clone id 28, we have three for Simple-Webserver and four
for SSHBen. Note that fopen is considered under both Clone ids for Simple-
Webserver, and hence we should count it only once. Based on those discussions,
we can calculate the total number of I/O function calls for both Clone ids as
five for Simple-Webserver and 16 for SSHBen.

Finally, we define the Conditional Common Attack Surface as the ratio
between the size of the common attack surface of a software application (w.r.t.
to another software) and the size of its entire attack surface (i.e., the total num-
ber of I/O function calls inside that software). This ratio indicates the degree
to which the software shares with others similar I/O function calls (entry/exit
points).

Definition 2 (Conditional Common Attack Surface). Given two software
applications A and B with totally n clone segments, and ASA and ASB as the
total number of I/O function calls inside A and B, respectively, the conditional
common attack surface of A w.r.t B (or that of B w.r.t. A), denoted as ccas(A|B)
(or ccas(B|A)), is defined as:

ccas(A | B) =
| ⋃n

i=1 cas(A | B) |
ASA

ccas(B | A) =
| ⋃n

i=1 cas(B | A) |
ASB

Example 4. The attack surface (i.e., the total number of I/O function calls)
of Simple-Webserver and SSHBen are 16 and 182, respectively. We thus
have ccas(SSHBen | SimpleWebserver) = 5

16 = 0.3125 and ccas(Simple-
Webserver | SSHBen)= 16

182 = 0.029. The results show that SSHBen con-
tains about 31% shared attack surface, whereas SimpleWebserver contains only

346 M. Zhang et al.

2.9%. By comparing a software application to many others, the developer of that
application may gain useful insights from such results in terms of vulnerability
discovery and security patch management.

3.2 Probabilistic Common Attack Surface Metric

The conditional common attack surface metric ccas is designed for evaluating
one software application against others. We now take a different approach of
defining a symmetric probabilistic common attack surface metric for two soft-
ware applications. Such a metric can be used to estimate the amount of effort
that a potential attacker may reuse while attempting to compromise both soft-
ware applications. The nature of such a use case implies the metric should be
symmetric.

We apply Jaccard index for this purpose, which is commonly defined as
J(A,B) = A∩B

A∪B and used for analyzing the similarity and diversity between
the two sets. To apply this metric in our case, we need to define both the inter-
section and union of the attack surface of two software applications. The common
attack surface defined in previous section (Definition 1) can be considered as the
intersection, but such a definition is not sufficient here since it is asymmetric in
nature. Instead, we will define the intersection between the attack surface of two
software applications using the standard multi-set intersection operation [43],
which is described below.

Definition 3 (Intersection of Multi-Sets [43]). Given two multi-sets A =
〈A, f〉 (where f is the multiplicity function such that for any a ∈ A, f(a) gives
the number of occurrences of a in the multiset) and B = 〈A, g〉, then their inter-
section, denoted as A∩B, is the multi-set 〈A, s〉, where for all a ∈ A:

s(a) = min(f(a), g(a)).

Example 5. Assume U ={a,a,a,b} and V = {a,a,b,b}, if we apply the multi-set
operation as defined above, we have U ∩V = {a,a,b}.

The union of the attack surface between two software applications can be
defined as ASA ∪ASB = ASA +ASB − cas(B | A) ∩ cas(A | B). With both the
union and intersection operations defined, we can now define the probabilistic
common attack surface metric as follows.

Definition 4 (Probabilistic Common Attack Surface Metric). Given
two software applications A and B, with their attack surface ASA and ASB and
the common attack surface cas(B|A) and cas(A|B), respectively, the probabilistic
common attack surface of A and B is defined as:

pcas(A.B) =
| cas(B | A) ∩ cas(A | B) |

| ASA ∪ ASB |

CASFinder: Detecting Common Attack Surface 347

Example 6. The size of attack surface in Simple-Webserver and SSHBen
is 16 and 182, respectively. From our previous discussions, we have cas
(SSHBen | SimpleWebserver) ∩ cas(SimpleWebserver | SSHBen) = 〈strcat,
strcat, fopen, fseek, ftell〉 whose size is 5, and hence pcas(SSHBen.Simple
Webserver) = 5

16+182−5 = 2.6%. Intuitively, this result indicates that, among
all the I/O function calls, about 2.6% are shared between the two software appli-
cations. Such a result, when applied to all pairs of software applications inside a
network, may allow administrators to estimate the degree of software diversity
in the network from a security point of view.

4 Design and Implementation

To automate the evaluation of common attack surface between software applica-
tions, we design and implement a tool, CASFinder. Figure 4 depicts the architec-
ture of CASFinder, which consists of three main components, the clone detection
module, the source code labeling module, and the visualization module. The fol-
lowing describes those modules in more details.

Fig. 4. The architecture

– The Clone Detection Module. As mentioned earlier, we choose CCFinder [23]
as the basis of our clone detection module. The following details challenges
and solutions for applying CCFinder. First, since our tool is developed and
operated under Linux, we apply only the back end of CCFinder. One chal-
lenge is that, since the default Linux version of CCFinder is designed to
work on Ubuntu 9, the newer versions of many libraries are no longer valid
for CCFinder. Therefore, several libraries need to be installed separately,

348 M. Zhang et al.

e.g., libboost-dev and libicu-dev, which will depend on the specific version of
the Linux system and can be determined based on the warnings and errors
produced by CCFinder. Second, various parameters can be fine tuned in
CCFinder to customize its execution mode [22]. In particular, the most impor-
tant parameters include b, the minimum length of the detected code clones,
and t, the minimum number of types of tokens involved. We have chosen
b = 20 and t = 8 based on experiences obtained through extensive experi-
ments. In addition, parameter w is used to determine whether CCFinder will
perform inner-file clone detection whose results contain clones between differ-
ent parts of the same software application, which is not our focus, and there-
fore w is set to be f-w-g+ to focus on inter-file clones. Finally, the default out-
put of the CCFinder is stored in a binary file with .ccfd extension. Since we do
not install any front end of CCFinder, we apply the command ./$PATH/ccfx
-p name.ccfd to translate the .ccfd file into a human-readable version. The
resultant file contains only the token information, which cannot be directly
mapped back to the source code files. Therefore, we have developed a script,
post-prettyprint.pl [38], to convert the token information into corresponding
line numbers in the source code.

– The Source Code Labeling Module. As mentioned above, the converted out-
put of CCFinder provides only the file name and line number of the clone
segments, without information needed for mapping them back to the original
source code. For the purpose of generating traceable output with source code
fragments, a mapping between the line number of the clone segments and the
source code needs to be established. This second module is designed for this
purpose by automatically retrieving a clone code segment from the source
code according to the result of CCFinder.

– The Visualization and CAS Calculation Module. The visualization module
generates the results of clone segments. The results include clone ID, file
path, function name, clone segment, start line number, and end line number.
The visualized output is organized as an XML tree with labels. The label
contents contains the source clone segments from CCFinder outputs. Label
funcname reveals the function names corresponding to the clone segments,
and label io contains the common I/O functions. To calculate the common
attack surface, we first need to identify the I/O functions. In our experiments,
we have obtained the list of I/O functions from the GNU C library [40] (glibc),
which is the GNU project’s implementation of C standard library, as the
database for examining the entry/exit points. In total, 256 I/O functions are
stored in our database, e.g., function memcpy or strcpy, which could take user
inputs as the source, and copy them directly to the memory block pointed to
by the destination. Such functions have caused many serious security flaws
including CVE-2014-0160 (i.e., the Heartbleed bug [8]). The final result of
common attack surface is calculated based on the I/O functions shared among
all software applications, and can be stored either in a file or into the database.

CASFinder: Detecting Common Attack Surface 349

5 Experiments

This section presents experimental results on applying our tool CASFinder to
real world open source software.

5.1 Dataset

To study the common attack surface among real world software applications,
we need a large amount of open-source software to apply our tool. For this
purpose, we have developed a script to automatically parse the download links
at the open-source software hosts. Our research shows that GitHub [15] provides
the customized API for users to search open-source software applications with
customized requirements and to download them automatically. The results are
presented in json code, which contains the download link of each application
together with other information. In our experiments, we have set the parameter
language to C programs, and use parameters q, sort, and order to specify the
query conditions and to customize the sequence of results. We have developed
the script to parse the json format output from the GitHub automatically and to
store the information of the software download link, authors, publish time, size,
and other descriptions into our local database. All the download links for each
software application are stored separately. Since Github has a limitation with
respect to the maximum requests in a certain amount of time, we design the
process to sleep for certain time after each query. Our experimental environment
is a virtual machine running Ubuntu 14.04, with the Intel core i3-4150 CPU
and 8.0 GB of RAM. We have applied our tool to totally 293 different software
applications belonging to seven categories. The software applications belong to
several categories as follows: 32 in Databases, 62 in Web servers, 25 in ssh servers,
79 in FTP servers, 41 in TFTP servers, 6 in IMAP servers, and 48 in firewalls.
Those amount to totally

(
293
2

)
= 42, 778 pairs of software applications tested

using our tool in the experiments.

5.2 Cross-Category Common Attack Surface

In this section, we apply the two proposed common attack surface metrics to
totally 42,778 pairs of real world software. The first set of experiments reveal
the existence of common attack surface between different categories of software
applications. To convert the results to a comparable scale, we have normalized
the absolute value of common attack surface reported by CASFinder by the size
of the software. Figure 5 shows the existence of common attack surface across
seven categories. The percentages on top of the bars inside each figure indicate
the level of common attack surface between the category mentioned in the title
of the figure and all the seven categories. We can observe that common attack
surface exists in all of the category combinations. For example, the DB category
has the highest level of common attack surface inside its own category (between
different software inside that category), 27.9%, and it also shares more than 9%
common attack surface with any other category.

350 M. Zhang et al.

Fig. 5. Common attack surface across categories

In summary, the results across all categories are shown in the heat map in
Table 1 where a darker color indicates a larger CAS value between the pair of
categories. A visible diagonal with the darkest color in the heat map indicates
the expected trend that different software in the same category yield the highest
level of common attack surface, most likely due to their similar functionality,
except for SSH. In fact, the category SSH has the lowest level of common attack
surface within its category. The reason is that the SSH category only contains 25
software applications, which is not sufficiently large to produce any reliable trend.
Due to similar reasons, we have omitted the results from the IMAP category in
the heat-map.

Table 1. HeatMap for common attack surface in different categories

After understanding the general existence of common attack surface among
the seven categories of software applications, we aim to study more specific trends
in our second sets of experiments. The left chart in Fig. 6 shows the accumulated
number of pairs of software applications in the absolute value of common attack
surface. The figure depicts only the results with a nonzero value, which include
totally 9,852 pairs (which amounts to about 1/8 of the total number of pairs).
We can observe that the accumulated number of pairs of software applications
increases quickly before the value of common attack surface reaches about 12 and
afterwards the accumulation flattens out. About 20% of software share common
clone segments, and 56% of the clone segments contain at least one common

CASFinder: Detecting Common Attack Surface 351

attack surface. The right chart in Fig. 6 depicts the relationship between common
attack surface and sizes of the software. We use the absolute values of common
attack surface in this experiment. For the sizes, we use the normalized combined
sizes log1000(AB)/1000 when software A is compared with software B. We can
observe that, with increasing sizes of the software, the value of common attack
surface generally increases. This is as expected since the number of I/O functions
would be roughly proportional to the size of the software.

Fig. 6. CAS in accumulated software application pairs (a), CAS trend vs size (b) (Color
figure online)

The left chart in Fig. 7 compares the average number of I/O functions and
the average common attack surface over several years. The blue bars indicate
the average number of I/O functions used in the software applications tested
in our experiments based on the publishing year. The average number of I/O
functions per software application does not have a simple trend and is used as a
baseline for comparison. We can observe a clear downward trend in the average
value of common attack surface over time, with software published around 2010
having a much higher value of common attack surface compared with more
recent years, regardless of the number of average I/O functions. We believe this
trend shows that code reusing plays a major role in common attack surface,
since the trend can be easily explained by the backward nature of code reusing
(i.e., programmers can only reuse older code). The right chart in Fig. 7 explores
the trend of the probabilistic common attack surface metric versus the size.
The value of the probabilistic common attack surface metric decreases since the
increase of the number of I/O functions in software applications is faster than
the increase of common attack surface.

In fact, those results match the results of existing vulnerability discovery
models, which generally show that larger software applications typically have
more vulnerabilities but a lower probability for having vulnerabilities per unit
of software size. For example, Google Chrome (with the number of lines at
14,137,145 [2]) has 1,453 vulnerabilities over nine years [9], while Apache (with

352 M. Zhang et al.

Fig. 7. CAS trend in years (a) and the probabilistic CAS metric (b) (Color figure
online)

the number of lines at 1,800,402) has 815 over 19 years. However, the probability
of having one vulnerability per unit of software size per year is 1.15 ∗ 10−3% for
Chrome and 2.4 ∗ 10−3% for Apache (i.e., the larger Chrome has less vulnerabil-
ities per unit of software size).

5.3 Common Attack Surface in the Same Category

We study the trend of common attack surface between software within the same
category in this section. Figure 8 depicts the common attack surface for different
sizes of software in the category WebServer and FTP, respectively, represented in
both scattered and trending results. The orange scattered points and the dotted
line indicate the result and the red dotted line is the same trend borrowed from
Fig. 6 for comparison. We can observe that the trend of common attack surface
in both categories increase with the size, which follows a similar trend as the
cross category result. However, the trend of WebServer increases faster than
the cross-category trend, which matches the results shown in Table 1. On the
other hand, the trend in the FTP category grows slightly slower than the cross
category trend, which can be explained by the fact that FTP shares a large
amount of common attack surface with WebServer and TFTP.

The left chart in Fig. 9 depicts the trend of common attack surface over
time in the same category. Each blue bar represents the average number of I/O
functions in the years in the same category of the experiments. The red line
shows the average number of common attack surface in those years. Compared
to Fig. 7, the common attack surface in the same category has higher values,
which also match the previous observations. The right chart in Fig. 9 reveals the
trend of the probabilistic common attack surface metric versus the size in the
same category, which shows a similar trend as the cross category result, although
the trend within the same category starts from a higher value around 0.20 (in
contrast, the cross-category metric starts from 0.06).

CASFinder: Detecting Common Attack Surface 353

(b)(a)

Fig. 8. Size trend in same category, WebServer (a) and FTP (b) (Color figure online)

)b()a(

Fig. 9. Common attack surface over time and vs size (Color figure online)

6 Related Work

There exist extensive research on clone code detection although many of these
tools are mainly for research purposes [42]. One of the popular tools in text-based
clone detection is the Dup [3]; if two lines of code are identical after removing
all whitespaces and comments, they are assigned as clone codes; the longest line
matches are the output, but the minimum length of the reported code can be
customized according to different needs. Another well-known approach [21] is
applying the fingerprint in order to identify the redundancy on a substring of
the source code. The fingerprinting calculation uses KARP-Rabins string match-
ing approach [25,26] to calculate the length of all n substrings. Ducasse devel-
oped [10] duploc which was designed to be a parsing free, language-independent
tool which first reads the source file and sequences of the lines, then removes
all comments and whitespace to create a set of condensed lines; afterward, a
comparison is made based on the hash result, where scatter-plots indicate the
visualization of a cloned result. Token-based clone detection is also one of the

354 M. Zhang et al.

widely applied methods. One of the representative tools in token-based detection
is CCFinder [23], which is applied in our work. Bakers Dup [3,4] implements
a similar approach as CCFinder. The detection process begins by tokenizing
the source code, then using a suffix-tree algorithm to compare tokens. Unlike
CCFinder, Dup does not apply transformation, but rather consistently renames
the identifier. Raimar Falke [30] develops a tool called iclones [16], which uses
suffix-trees to find clones in abstract syntax trees, which can operate in linear
time and space. CP-Miner [32] as a well-designed token-based clone detector, uses
frequent subsequence mining algorithms to detect tokenized segments. RTF [6]
is a token-based clone detector that uses string algorithms for efficient detection;
rather than using the more common suffix-tree, it utilizes more memory-efficient
suffix array.

One of the leading tools using AST-based algorithm is the CloneDR devel-
oped by Baxter [7] which can detect exact and near-miss clone through applying
hashing and dynamic algorithm. The ccdiml [39] developed by Bauhaus is similar
to the CloneDR in the way of dealing with hash and code sequences, but instead
of using AST, it applies IML algorithm in the comparing process. David and
Nicholas [14] develop a tool named Sim which uses a standard lexical analyzer
to generate a parsing-tree of two given software applications. The code similar-
ity is determined by applying the maximum common subsequence and dynamic
programming. One of the leading PDG-based tools is PDG-DUP presented by
Komondoor and Horwit [27] and Komondoor and Horwitz’s PDG-DUP [27] is
another leading PDG-based detection tool, which identifies clones together and
keeping the semantics of the source code to reflect software. As to metric-based
clone detection, Mayrand et al. [37] uses the tool Darix to generate the metric
and the clone identification is based on four values, which are name, layout,
expression and control flow. Kontogiannis [28] uses Markov models to compute
the dissimilarity of the code by applying the abstract pattern matching. Five
widely used metrics are applied in a direct comparison in [29]. There are also
some other approaches that using hybrid clone detections. In [30], the authors
apply the suffix trees to find clones in AST; this approach can find clones in
linear time and space.

The concept of attack surface is originally proposed for specific software,
e.g., Windows, and requires domain-specific expertise to formulate and imple-
ment [17]. Later on, the concept is generalized using formal models and becomes
applicable to all software [35]. Furthermore, it is refined and applied to large
scale software, and its calculation can be assisted by automatically generated
call graphs [33,34]. Attack surface has attracted significant attentions over the
years. It is used as a metric to evaluate Android’s message-passing system [24],
in kernel tailing [31], and also serves as a foundation in Moving Target Defense,
which basically aims to change the attack surface over time so to make attackers’
job harder [18,19]. The study on automating the calculation of attack surface is
another interesting domain, e.g., COPES uses static analysis from bytecode to
calculate attack surface and to secure permission-based software [5]. Stack traces
from user crash reports is used to approximate attack surface automatically [44].

CASFinder: Detecting Common Attack Surface 355

The correlation between attack surface and vulnerabilities has also been inves-
tigated, such as using attack surface entry points and reachability to assess the
risk of vulnerability [46]. A study about the relationship between attack surface
and the vulnerability density is given in [45], although the result is only based on
two releases of Apache HTTP Server. Despite such interest in attack surface, to
the best of our knowledge, the common attack surface between different software
has attracted little attention.

7 Conclusion

In this paper, we have defined the concept of common attack surface and imple-
mented an automated tool for evaluating the common attack surface between
given software applications. We have conducted experiments on real open source
software and examined the common attack surface both within and between
software categories. Our results have shown common attack surface to be perva-
sive among software. Our work still has some limitations which will lead to our
future work. First, since we rely on CCFinder our tool also inherits its limita-
tions, and one future direction is to explore other clone detection tools. Second,
we have focused on entry/exit points of attack surface, and one future direction
is to also consider channels and untrusted data items. Third, we have focused
on the C language in this work, and extending it to other languages with dif-
ferent entry and exit libraries is an interesting future direction. Forth, we plan
to extend the effort on correlating between common attack surface and known
vulnerabilities. We have focused on reused codes only, and a future direction is
to also consider their indirect impact on other parts of the software. Finally, one
interesting future direction is to evaluate common attack surface between two
binary files. Existing disassembling and de-compiling tools, such as IDA Pro [1],
could reverse the binary code to source code for further common attack surface
study.

Acknowledgment. Authors with Concordia University are partially supported by
the Natural Sciences and Engineering Research Council of Canada under Discovery
Grant N01035. Sushil Jajodia was supported in part by the National Institute of Stan-
dards and Technology grants 60NANB16D287 and 60NANB18D168, National Science
Foundation under grant IIP-1266147, Army Research Office under grant W911NF-13-
1-0421, and Office of Naval Research under grant N00014-15-1-2007.

References

1. Interactive disassembler. https://www.hex-rays.com/products/ida/
2. Open hub (2017). https://www.openhub.net/
3. Baker, B.S.: A program for identifying duplicated code. Comput. Sci. Stat. 24, 49

(1993)
4. Baker, B.S.: On finding duplication and near-duplication in large software systems.

In: Proceedings of 2nd Working Conference on Reverse Engineering, pp. 86–95.
IEEE (1995)

https://www.hex-rays.com/products/ida/
https://www.openhub.net/

356 M. Zhang et al.

5. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
Android. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pp. 274–277. ACM (2012)

6. Basit, H.A., Jarzabek, S.: Efficient token based clone detection with flexible tok-
enization. In: Proceedings of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 513–516. ACM (2007)

7. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: 1998 Proceedings of International Conference on Software
Maintenance, pp. 368–377. IEEE (1998)

8. Carvalho, M., DeMott, J., Ford, R., Wheeler, D.A.: Heartbleed 101. IEEE Secur.
Privacy 12(4), 63–67 (2014)

9. CVE Community. Common vulnerabilities and exposures (1999). https://cve.
mitre.org/

10. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: Proceedings of IEEE International Conference on Software
Maintenance, ICSM 1999, pp. 109–118. IEEE (1999)

11. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, pp. 475–488. ACM (2014)

12. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: a survey. ACM Comput. Surv.
(CSUR) 50(4), 56 (2017)

13. Ghosh, A.K., Pendarakis, D., Sanders, W.H.: Moving target defense co-chair’s
report-national cyber leap year summit 2009. Technical report, Federal Networking
and Information Technology Research and Development (NITRD) Program (2009)

14. Gitchell, D., Tran, N.: Sim: a utility for detecting similarity in computer programs.
In: ACM SIGCSE Bulletin, vol. 31, pp. 266–270. ACM (1999)

15. GitHub. Inc. A web-based hosting service for version control using Git. https://
github.com

16. Göde, N., Koschke, R.: Incremental clone detection. In: 13th European Confer-
ence on Software Maintenance and Reengineering, CSMR 2009, pp. 219–228. IEEE
(2009)

17. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Workshop
on Advanced Developments in Software and Systems Security (2003)

18. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S.:
Moving Target Defense II: Application of Game Theory and Adversarial Modeling.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-5416-8

19. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, 1st edn. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

20. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

21. Johnson, J.H.: Substring matching for clone detection and change tracking. In:
ICSM, vol. 94, pp. 120–126 (1994)

22. Kamiya, T.: Tutorial of CLI tool ccfx (2008). http://www.ccfinder.net/doc/10.2/
en/tutorial-ccfx.html

23. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7), 654–670 (2002)

https://cve.mitre.org/
https://cve.mitre.org/
https://github.com
https://github.com
https://doi.org/10.1007/978-1-4614-5416-8
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4614-0977-9
http://www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html
http://www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html

CASFinder: Detecting Common Attack Surface 357

24. Kantola, D., Chin, E., He, W., Wagner, D.: Reducing attack surfaces for intra-
application communication in Android. In: Proceedings of the Second ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices, pp. 69–80. ACM
(2012)

25. Karp, R.M.: Combinatorics, complexity, and randomness. Commun. ACM 29(2),
97–109 (1986)

26. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

27. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 3

28. Kontogiannis, K., Galler, M., DeMori, R.: Detecting code similarity using patterns.
In: Working Notes of 3rd Workshop on AI and Software Engineering, vol. 6 (1995)

29. Kontogiannis, K.A., DeMori, R., Merlo, E., Galler, M., Bernstein, M.: Pattern
matching for clone and concept detection. Autom. Softw. Eng. 3(1–2), 77–108
(1996)

30. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 13th Working Conference on Reverse Engineering, WCRE 2006, pp. 253–
262. IEEE (2006)

31. Kurmus, A., et al.: Attack surface metrics and automated compile-time OS kernel
tailoring. In: NDSS (2013)

32. Li, Z., Shan, L., Myagmar, S., Zhou, Y.: CP-miner: finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

33. Manadhata, P., Wing, J.: An attack surface metric. Technical report CMU-CS-05-
155 (2005)

34. Manadhata, P., Wing, J.: An attack surface metric. IEEE Trans. Softw. Eng. 37(3),
371–386 (2011)

35. Manadhata, P., Wing, J.: Measuring a system’s attack surface. Technical report
CMU-CS-04-102 (2004)

36. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

37. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: ICSM, vol. 96, p. 244 (1996)

38. Petersenna. Ccfinder core. https://github.com/petersenna/ccfinderx-core
39. Raza, A., Vogel, G., Plödereder, E.: Bauhaus – a tool suite for program analysis

and reverse engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe
2006. LNCS, vol. 4006, pp. 71–82. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767077 6

40. Rothwell, T.: The GNU C reference manual (2006). https://www.gnu.org/
software/gnu-c-manual/

41. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

42. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
Sch. Comput. TR 541(115), 64–68 (2007)

43. Syropoulos, A.: Mathematics of multisets. In: Calude, C.S., PĂun, G., Rozenberg,
G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 347–358. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45523-X 17

44. Theisen, C., Herzig, K., Morrison, P., Murphy, B., Williams, L.: Approximating
attack surfaces with stack traces. In: Proceedings of the 37th International Con-
ference on Software Engineering, vol. 2, pp. 199–208. IEEE Press (2015)

https://doi.org/10.1007/3-540-47764-0_3
https://github.com/petersenna/ccfinderx-core
https://doi.org/10.1007/11767077_6
https://doi.org/10.1007/11767077_6
https://www.gnu.org/software/gnu-c-manual/
https://www.gnu.org/software/gnu-c-manual/
https://doi.org/10.1007/3-540-45523-X_17

358 M. Zhang et al.

45. Younis, A.A., Malaiya, Y.K.: Relationship between attack surface and vulnerability
density: a case study on apache HTTP server. In: Proceedings on the International
Conference on Internet Computing (ICOMP), p. 1. The Steering Committee of
the World Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp) (2012)

46. Younis, A.A., Malaiya, Y.K., Ray, I.: Using attack surface entry points and reach-
ability analysis to assess the risk of software vulnerability exploitability. In: 2014
IEEE 15th International Symposium on High-Assurance Systems Engineering
(HASE), pp. 1–8. IEEE (2014)

47. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a
security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Trans. Inf. Forensics Secur. 11(5), 1071–1086 (2016)

Algorithm Diversity for Resilient Systems

Scott D. Stoller(B) and Yanhong A. Liu

Department of Computer Science, Stony Brook University, New York, USA
{stoller,liu}@cs.stonybrook.edu

Abstract. Diversity can significantly increase the resilience of systems,
by reducing the prevalence of shared vulnerabilities and making vulner-
abilities harder to exploit. Work on software diversity for security typi-
cally creates variants of a program using low-level code transformations.
This paper is the first to study algorithm diversity for resilience. We
first describe how a method based on high-level invariants and system-
atic incrementalization can be used to create algorithm variants. Exe-
cuting multiple variants in parallel and comparing their outputs pro-
vides greater resilience than executing one variant. To prevent differ-
ent parallel schedules from causing variants’ behaviors to diverge, we
present a synchronized execution algorithm for DistAlgo, an extension
of Python for high-level, precise, executable specifications of distributed
algorithms. We propose static and dynamic metrics for measuring diver-
sity. An experimental evaluation of algorithm diversity combined with
implementation-level diversity for several sequential algorithms and dis-
tributed algorithms shows the benefits of algorithm diversity.

1 Introduction

Diversity can significantly increase the resilience of systems, by reducing the
prevalence of shared vulnerabilities and making vulnerabilities harder to exploit.
The idea of intentionally introducing software diversity as a defense mechanism
has been around for decades, e.g., [5,6]. It is closely related to the well-known
moving target defense (MTD) strategy: running different variants of a program at
different times is MTD. Software diversity is an effective defense against attacks
whose success depends on details of the victim software. Without knowing those
details for the specific instance (variant) of the software being attacked, attackers
can still attempt such attacks (e.g., by making random guesses at those details),
but the probability of success is greatly reduced [16].

There is a large corpus of research on techniques for automatically introduc-
ing software diversity that increase resilience to various classes of attacks [16].
For example, Address Space Layout Randomization (ASLR), which randomizes
the starting addresses of segments in a process’s address space, is a classic form
of software diversity that increases resilience to some types of memory corruption
attacks.

The most common way to use software diversity to increase resilience is to
run a randomly selected variant each time the program is executed. With this
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 359–378, 2019.
https://doi.org/10.1007/978-3-030-22479-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_19

360 S. D. Stoller and Y. A. Liu

approach, the use of diversity alters, with high probability, the effect of an attack,
so the attack does not have the intended effect (e.g., gaining root privilege and
installing a rootkit) [16]. The attack might still have a less malicious and less
predictable but nevertheless undesirable effect (e.g., crash or incorrect output).

Another way is to run multiple variants of the application in parallel and
compare their outputs. We call this diversified replication. Any difference in the
outputs of the variants indicates misbehavior of one or more variants due to an
attack; this triggers defensive action. This approach provides greater resilience,
at the cost of more computational resources. It also provides greater resilience
than traditional replication, in which replicas are identical and exhibit the same
(incorrect) behavior when their vulnerabilities are exploited. Note that diversity
may lead to different behavior (and therefore attack detection) in two ways: (1)
it might cause a difference in the direct effect of the attack (e.g., which data
structure is overwritten) or, (2) even if the direct effect of the attack is the
same (e.g., the same data structure is overwritten), it might cause differences
in subsequent behavior, due to differences in the algorithms or implementations
used by the variants (e.g., one variant reads the affected data structure earlier
in its computation and hence before the attack, and another reads the affected
data structure later in its computation and hence after the attack).

This paper focuses on algorithm diversity for software resilience, in which dif-
ferent variants run different algorithms, i.e., perform different computations at
a high level. In contrast, all of the work surveyed in [16] creates implementation-
level diversity, changing details of the implementation without changing the algo-
rithm. Algorithm diversity can introduce new and larger differences between vari-
ants than implementation-level diversity and hence can provide greater resilience,
especially when used together with implementation-level diversity.

Algorithm variants may be obtained in a variety of ways, besides writing them
manually. For standard problems (e.g., dictionary ADT), they can be obtained
from algorithm libraries. A more general automated approach is to generate them
by starting with a high-level algorithm (or specification) and applying different
optimizations (algorithm improvements, automated using program analysis and
transformation). In particular, we have used a method based on systematic incre-
mentalization [18,19,22,27], which transforms programs to maintain high-level
invariants incrementally, and related optimizations to generate multiple variants
of many sequential algorithms and distributed algorithms [24–26].

Algorithm diversity and implementation-level diversity introduce different
kinds of variation and together offer more diversity than either alone. We intro-
duce diversity metrics that quantify the difference between—or equivalently, the
similarity of—variants. We consider a static metric, code diversity, based on
the instruction sequences in the compiled program, and two dynamic (behav-
ioral) metrics: trace diversity, based on the sequence of instructions executed,
and input access diversity, based on the sequence of accesses to input data. The
latter dynamic metric is motivated by the fact that invalid inputs are the pri-
mary attack vector for external attackers. A direction for future work is to aug-

Algorithm Diversity for Resilient Systems 361

ment these broad diversity metrics with more specialized metrics that quantify
resilience to specific classes of attacks.

Algorithm diversity can be applied to programs in any language. In this
paper, we focus on Python and DistAlgo [24,25], an extension of Python for high-
level, precise, executable specifications of distributed algorithms. In contrast,
existing work on automated software diversity primarily targets C programs or
(disassembled) machine code.

Python is interpreted—more precisely, CPython, the predominant implemen-
tation of Python, compiles Python to bytecode and then runs the bytecode in
an interpreter. Algorithm diversity applied to Python programs can be used
together with implementation-level diversity applied to Python programs and
the runtime system. This achieves greater total diversity and increases resilience
to vulnerabilities in the runtime system, because vulnerabilities manifest only
with specific inputs, and the runtime system’s inputs include Python programs
as well as network messages, UI events, etc. Diversity at the high-level lan-
guage level provides additional protection from data-only attacks [4,30], against
which many runtime-system-level defenses are less effective. Algorithm diversity
applied to Python programs can also provide resilience to functional faults in
the runtime system, if the runtime system does not correctly implement the
semantics of some built-in constructs or library functions in some (corner) cases.

Diversified replication requires synchronized execution (often called N -
version execution [1]) of the variants; otherwise, their executions might diverge
due to scheduling differences. Synchronized execution of distributed programs
generally requires synchronization of message delivery order. DistAlgo’s asyn-
chronous message handling requires additional synchronization, to ensure that
all variants handle corresponding messages at corresponding points in their exe-
cutions. We developed a synchronized execution framework for DistAlgo that
ensures this. Our framework can also suppport variants whose behaviors differ
in prescribed ways.

Measuring dynamic diversity for Python and DistAlgo programs required
development of new runtime monitoring tools, which are also more broadly use-
ful. We designed and implemented a tool that intercepts accesses to fields of
selected objects; we use it to log accesses to objects read as input, including
objects received in messages. Handling built-in types such as integers and strings
is tricky, because they are sometimes accessed directly by C code in the Python
interpreter, but essential, because they are commonly used in program inputs.

We also designed and implemented a tracing tool that reconstructs the exact
sequence of bytecode instructions executed by a Python program. It uses the
standard Python tracing module to record the sequence of source lines executed,
and then analyzes the compiled program to determine the sequence of bytecode
instructions corresponding to each source line. Supporting DistAlgo requires
some extra work, due to details of DistAlgo’s implementation by translation to
Python.

In summary, the contributions of this paper include:

362 S. D. Stoller and Y. A. Liu

– The first study of semi-automated algorithm diversity for software resilience,
using a method based on systematic incrementalization to generate algorithm
variants.

– A synchronized execution framework for DistAlgo and for high-level exe-
cutable specifications of distributed algorithms.

– Static and dynamic metrics for measuring diversity.
– A runtime monitoring tool for Python and DistAlgo that logs accesses to

fields of selected objects, including instances of built-in types.
– A tracing tool for Python and DistAlgo that reconstructs the exact sequence

of executed bytecode instructions.
– Experimental evaluation of algorithm diversity combined with imple-

mentation-level diversity for several sequential algorithms and distributed
algorithms, demonstrating that algorithm diversity can achieve more diver-
sity than implementation-level diversity, and the two together can achieve
even more.

2 Background on DistAlgo

Liu et al. [24,25] propose DistAlgo, a language for high-level, precise, executable
specifications of distributed algorithms, and study its use for specification, imple-
mentation, optimization, and simplification of such algorithms. For expressing
distributed algorithms at a high level, DistAlgo supports four main concepts by
building on an object-oriented programming language, Python: (1) distributed
processes that send messages, (2) control flow for handling received messages,
(3) high-level queries for synchronization conditions, and (4) configuration for
setting up and running. DistAlgo is specified precisely by a formal operational
semantics [24].

Processes that Send Messages. A process type P is defined by a class definition
for P that inherits from DistAlgo’s built-in process class. The definition of P
may contain, in addition to the usual definitions that may appear in Python
classes, definition of a setup method for taking in and setting up the values used
by the process, definition of a run method containing the main control flow of the
process, and definitions of receive handlers for handling messages, as described
below.

To create instances of P , DistAlgo provides a new P construct; it can option-
ally be preceded by the number of processes to create (the default is 1) and
followed by “at h” where h identifies the host where the process(es) should be
created (the default is the local host). After a new process has been created,
and its setup method called to initialize it, invoking its start method causes
execution of its run method.

Processes send messages using the statement send m to ps, where ps is a
process or set of processes.

Algorithm Diversity for Resilient Systems 363

Control Flow for Handling Received Messages. Received messages can be han-
dled asynchronously, using receive definitions, and synchronously, using await
statements. A receive definition has the form receive m from p: stmt . It han-
dles un-handled messages that match m from p, where m and p are patterns.
If matching succeeds, unbound variables in m (and p) are bound to the corre-
sponding component of the message (and the message’s sender, respectively),
and then stmt is executed.

To synchronize message handling with local computation, receive handlers
are executed only at yield points. The program point before or after any state-
ment can be declared as a yield point. In addition, there is an implicit yield point
before each await statement, for handling messages while waiting. By default,
any number of pending messages can be handled at a yield point.

An await statement has the form

await cond1: stmt1 or ... or condk: stmtk timeout t: stmt

It waits until one of cond1 , ..., condk is true or time t has elapsed, and then
nondeterministically selects one of stmt1 , ..., stmtk , stmt whose condition is true
and executes the selected statement. Each branch is optional.

High-Level Queries for Synchronization Conditions. DistAlgo provides con-
structs to express synchronization conditions in await statements as high-level
queries over message histories (or other sets or sequences). A query can be an
existential or universal quantification, a comprehension, or an aggregation. An
existential quantification has the form some v1 in s1 , ..., vk in sk | cond . It
returns true iff cond holds for some combination of values of variables that sat-
isfies all vi in si clauses. Universal quantification is similar, with keyword each
instead of some.

A comprehension has the form {e: v1 in s1, ..., vk in sk, cond}. It returns
the set of values of e for all combinations of values of variables that satisfy all
vi in si clauses and condition cond .

DistAlgo automatically maintains histories of messages sent and received by
each process in variables sent and received; they are automatically eliminated
if unused.

Configuration. Configuration for requirements such as use of logical clocks and
use of reliable and FIFO channels can be specified using DistAlgo’s configure
statement. For example, configure clock = Lamport specifies that Lamport’s
logical clocks are used; it configures sending and receiving of a message to update
the clock value, and defines a function logical_time() that returns the clock
value.

3 Creating Variants Using Incrementalization

Algorithm variants differ from each other due to different high-level invariants
they maintain and different ways of maintaining them. We describe the ideas

364 S. D. Stoller and Y. A. Liu

Fig. 1. Lamport’s algorithm (lines 6–19) plus setup in DistAlgo.

of transforming expensive queries into high-level invariants and using system-
atic incrementalization to generate efficient algorithms that maintain the query
results incrementally. Each resulting combination of ways of maintaining the
invariants forms an algorithm variant.

Example. We use as an example Lamport’s algorithm for distributed mutual
exclusion, described in his seminal paper that proposed logical clocks [14]. The
problem is for multiple processes to access a shared resource mutually exclusively,
in what is called a critical section, i.e., there can be at most one process in a
critical section at a time.

Each process can be expressed in DistAlgo as in Fig. 1 [24]. The process is set
up with sets s and q (lines 3–4). To run a task mutually exclusively, the process
sends a request and adds it to q (lines 6–8), waits for (i) own request (t,self)
to be before each other request (t2,p2) in q and (ii) having received an ack with
a time t2 later than t from each process p2 in s (lines 9–10) before doing the
task in critical section (line 11), and then removes the request from q and sends
a release (lines 12–13). When receiving a request or release, it sends back an ack
and adds to or removes from q (lines 14–19).

The two conditions in await are key to the algorithm to ensure mutual exclu-
sion, while the rest does basic sending and receiving of messages and bookkeeping
of q.

Algorithm Diversity for Resilient Systems 365

Incrementalization. Incrementalization transforms queries and updates to main-
tain high-level invariants, including invariants for intermediate and auxiliary
values, incrementally [22,24,26,27]. It can yield diverse algorithms.

For the example in Fig. 1, the two conditions in await are queries, consist-
ing of three quantifications including two that are nested; and assignments and
bookkeeping for s and q and implicitly adding to received at receive handlers
are updates.

The most direct algorithm can compute queries using iterations, in for-loops,
whereas an incremental algorithm can maintain the results of queries at updates
and look up the results as needed. An incrementalized algorithm maintains high-
level invariants not only for the query results but also for intermediate and
auxiliary values needed. Alternative invariants can often be used, yielding even
greater diversity.

For example, the condition on line 10 in Fig. 1 can be transformed into

count {p2: p2 in s, (‘ack’, t2, p2) in received, t2 > t} = count s

and then—with variables responded, number, and total holding the set value and
two count values, respectively, forming three invariants— transformed into:

number = total

Variable total is computed at set up of s, and responded and number at request,
and the following receive handler is added:

receive (‘ack’, t2, p2): # new message handler
if t2 > t: # comparison in the condition

if p2 in s: # membership in the condition
if p2 not in responded: # test before adding

responded.add(p2) # add to responded
number +:= 1 # increment number

The resulting algorithm differs significantly from direct iteration for the nested
quantifications. The condition on line 10 could also be transformed into two
nested count queries, and the condition on line 9 can be transformed into a
count query also, or an aggregate query using min, yielding different algorithms
for incremental maintenance. Details of these transformations are in [24].

In general, incrementalization can also transform nested loops that com-
pute aggregate values such as sum and min [7,23,26]. For recursive functions
as queries, the resulting incremental algorithm can still use recursion, forming
an optimized recursive algorithm, or use iteration, forming an optimized itera-
tive algorithm [20,26]. Additionally, more refined data structures can be used
to implement sets more efficiently [3,10,26], such as using one bit for each pro-
cess in the set responded above. Incrementalization also enables new additional
optimizations that are made possible as the results of systematic transforma-
tions [26].

366 S. D. Stoller and Y. A. Liu

4 Synchronized Execution for DistAlgo

A diversified process is a process with variants. A system may contain a mixture
of diversified and un-diversified processes. A gateway process is created for each
diversified process. It represents the variants of a diversified process to the rest
of the system, making them appear as a single process. The gateway intercepts
and forwards all inbound and outbound messages of all variants of the diversified
process. We focus on synchronization of DistAlgo constructs; other I/O events,
such as file accesses, can be synchronized using standard techniques.

Our synchronized execution framework consists of two parts: (1) an auto-
mated program transformation that (1a) ensures all messages are routed via
the gateway, and (1b) inserts synchronization with the gateway at yield points,
to ensure that all variants have yielded the same number of times before han-
dling their copies of a given inbound message, despite differences in message
latency and process execution speed; and (2) an algorithm run by the gateway
that determines when to forward messages and when to report divergence (i.e.,
differences in behavior). When divergence is reported, the system may initiate
application-specific defensive action.

We first present the core version of this approach, which assumes all variants
of a process have the same communication pattern, i.e., send the same messages
to the same destinations in the same order; we discuss later how to relax this
assumption.

Handling Outbound Messages. To route outbound messages via the gateway,
the transformation replaces all calls to DistAlgo’s send method with calls to
send_sync, and it inserts a definition of that method in every process class.
send_sync sends the original message and its original destination to the gate-
way. Processes often send their own process id in messages. Since each variant
of a diversified process has a unique process id, such messages will differ. To
accommodate this as normal behavior, not divergence, send_sync replaces all
occurrences of the variant’s process id in the message with the gateway’s process
id. This also reflects the principle that the gateway represents the variants to
the rest of the system. Pragmatically, it ensures that, if the recipient sends a
reply to the process id contained in the message, the reply goes to the gateway,
as desired.

The gateway stores un-forwarded outbound messages received from each vari-
ant in a separate FIFO queue. When all of the queues are non-empty, it compares
the messages (including their destinations) at the heads of the queues. If they
are identical, the gateway dequeues the message from all queues and forwards
one copy to the destination, otherwise it reports divergence. To ensure liveness
if some divergent variant fails to send a message, once one queue becomes non-
empty, the gateway waits a limited amount of time for all queues to become
non-empty; if this time limit is exceeded, the gateway reports divergence.

Synchronization at Yield Points and await Statements. The transformation
inserts a call to yield_sync(block, timeout) at every yield point, and it inserts

Algorithm Diversity for Resilient Systems 367

a definition of that method in every process class. The first argument block is
a boolean that indicates whether the yield point is associated with an await
statement. The second argument timeout , meaningful when the first argument
is True, is a timeout duration if the timeout clause is present in that await state-
ment and is None otherwise. The transformation also extends the setup method
to initialize a variable num_yields to zero. yield_sync increments num_yields,
sends a yield message containing block , timeout , and num_yields to the gateway
and waits for a yield-reply message from the gateway before returning.

The transformation for an await statement with timeout ensures the total
wait time is preserved, even though the waiting period may be split by interac-
tions with the gateway. It transforms await c1: s1 or . . . or ck : sk timeout t: s
into

1 start_time = time.time()
2 while not (c1 or ... or ck):
3 elapsed = time.time() - start_time
4 remaining = t - elapsed
5 if remaining ≤ 0:
6 break
7 yield_sync(True, remaining)
8 if c1: s1
9 elif c2: s2

10 . . .
11 elif ck: sk
12 else s

If the await statement has no timeout, then lines 1, 3–6, and 12 are omitted,
and the second argument of yield_sync is None.

Handling Inbound Messages. When the gateway receives an inbound message
m, it stores m in a queue of un-forwarded inbound messages, waits until it has
received yield messages with the same num_yields from all variants, forwards to
all variants and dequeues all un-forwarded inbound messages, and then sends a
yield-reply message to all variants. The gateway communicates with the variants
over FIFO channels, so all variants handle the forwarded messages before pro-
ceeding from the current yield point. In the copy of m to be forwarded to variant
p, the gateway replaces all occurrences of its own process id with p’s process id.

If the gateway has received a yield message from all variants, and has no
inbound message to forward to them, its behavior depends on the values of
block and timeout in the yield messages (if the values of block differ, or the
values of timeout differ by more than a small amount, divergence is reported).
If block=False, the gateway sends a yield-reply message to all variants, allowing
them to proceed. If block=True and timeout=None, the gateway waits until it
has received and forwarded an inbound message before sending a yield-reply
message, since the conditions in the await statements will remain false until the
variants’ states are updated by handling of an inbound message. If block=True

368 S. D. Stoller and Y. A. Liu

and timeout is a number, the gateway behaves as in the previous sentence, except
it will also send a yield-reply message after time timeout has elapsed.

Process Creation. The program transformation reads a configuration file that
specifies which process types are diversified and the types of their variants. For
each diversified process type P , a gateway type GatewayP is generated (basically,
this is done by instantiating template code with the type P and the types of
its variants), and process creation statements with type P are transformed to
create instances of GatewayP instead. The setup method of GatewayP creates an
instance of each of the specified variant types, and passes the gateway’s process
id to the variants as an additional argument to their setup methods, which are
transformed to accept this additional argument.

Relaxed Synchronization. The above approach effectively introduces a barrier
synchronization for a diversified process’s variants at each synchronization point.
This ensures the most timely detection of divergence. An alternative approach,
used in some other synchronized execution frameworks [13,33], is to allow one
variant (the “leader”) to get ahead, try to make the actions of the other processes
(the “followers”) consistent with the leader’s actions (e.g., by delivering the same
number of messages at the corresponding yield event), and reporting divergence
when this is not possible. This may provide speedup but allows a divergent
leader to perform divergent actions before the leader’s divergence is detected;
when this is unacceptable, such actions should not be allowed to have externally
visible effects until the followers catch up and agree on the actions.

Allowing Differences in Message Pattern. It may be desirable to relax the
requirement that corresponding messages sent by all variants of a process are
identical, in order to allow greater diversity. For example, Lamport’s distributed
mutual exclusion algorithm [14] sends in ack messages the current value of the
sender’s logical clock, whereas the variant in [17, Fig. 3] sends in ack messages
the logical time of the request being acknowledged. To support algorithm vari-
ants that have the same communication pattern but different message content,
we modify the gateway to omit the equality check on outbound messages when
the destination is a diversified process, in which case the gateway sends to the
other gateway an array containing the message from each variant, which forwards
each message in the array to its corresponding variant. The correspondence is
determined by indexing variants in the order that their types are listed in the
configuration file.

To support algorithm variants with different communication patterns, the
configuration file can specify that certain types of messages are un-synchronized.
When the gateway receives a message of an un-synchronized type from its i’th
variant, it immediately forwards the message to the destination’s gateway, which
forwards the message to its i’th variant. For example, for synchronized execu-
tion of Lamport’s distributed mutual exclusion algorithm and Ricart-Agrawala’s
distributed mutual exclusion algorithm [29], we specify that ack and release mes-
sages (used only in Lamport’s algorithm) and response messages (used only in

Algorithm Diversity for Resilient Systems 369

Ricart-Agrawala’s algorithm) are un-synchronized; the gateway still synchronizes
messages of other types.

5 Diversity Metrics and Runtime Monitoring Tools

5.1 Code Diversity

Since diversity is the complement of similarity, we measure code diversity with
a well-established document similarity metric, namely, n-gram similarity with
winnowing [31], which is used in the popular software plagiarism detection tool
Moss to measure similarity of program source code. We apply it to Python byte-
code, specifically, the sequence of bytecode instructions in a compiled program.
Bytecode similarity is more relevant than source-level similarity, because diver-
sity at the Python level aims to increase resilience to flaws in the runtime system,
and bytecode is the program representation used by the runtime system.

An n-gram is a sequence of n consecutive instructions, starting at any posi-
tion. The algorithm computes the hash of every n-gram in the compiled program,
and then (for scalability) selects a subset of those hashes and stores them in a
set called the program’s fingerprint. The number of selected hashes is controlled
indirectly by an algorithm parameter w called the window size. A window of size
w consists of the hashes of w consecutive n-grams in the program. The winnow-
ing algorithm is guaranteed to select at least one hash from each window of size
w, although it may select more.

A robust metric should have the property that a slightly modified program
has high similarity to the original program. In Python bytecode, local variables
and global variables are identified by index. Inserting one new global variable
at the beginning of the program causes renumbering of all global variables; this
could make the metric non-robust. To ensure robustness, we normalize variable
indices within each n-gram: we re-index the first global variable accessed in the
n-gram as 0, the second one as 1, etc., and similarly for local variables. For similar
reasons, we replace absolute line numbers used as targets in jump instructions
with a place holder.

We quantify code diversity (and similarity) of two programs as 1 minus the
Jaccard similarity of their fingerprints. Recall that the Jaccard similarity of sets
S and T is |S ∩ T |/|S ∪ T |. We use 1 minus Jaccard similarity so larger values
indicate greater diversity.

An alternative to n-gram similarity is Levenshtein distance (a.k.a. edit dis-
tance, namely, the minimum number of single-element insertions, deletions, and
substitutions needed to change one string to another) between the bytecode
sequences in the compiled programs. Levenshtein distance is less suitable here,
because it is sensitive to bytecode orderings in the compiled program that may
be unimportant at runtime. For example, permuting the order in which func-
tion definitions appear in the compiled program has no effect on the program’s
runtime behavior but has a large effect on the Levenshtein distance. Similarly,
swapping the branches in a conditional statement and negating the condition

https://theory.stanford.edu/~aiken/moss/

370 S. D. Stoller and Y. A. Liu

yields an equivalent program with high n-gram similarity to the original but (if
the branches are large) a large Levenshtein distance from the original.

5.2 Trace Diversity

Trace diversity measures the similarity of the sequences of bytecode instructions
executed by two programs. Our bytecode-level tracing tool uses the standard
Python trace module to obtain a source-level trace, and then translates it to
a bytecode trace. A “blacklist” of modules to be ignored during the conversion
can be specified; in experiments, we blacklist some system modules, such as
bootstrap and trace. For each source line mentioned in the trace, identified by
filename and line number, the translator compiles that .py file to a .pyc file, loads
the .pyc file using the marshal module to obtain a code object, repeatedly uses
the dis (disassembler) module to obtain the bytecode for the entire program as
a list of Instruction objects, and uses the source line number information in the
Instruction objects to determine the sequence of instructions corresponding to
each line of source code in that file. In the traces to be compared, we include
only the opcode and argument attributes of each Instruction; other attributes
(e.g., is_jump_target) are less important. We quantify similarity of two traces as
the Levenshtein distance (edit distance) between them divided by their average
length, for normalization.

5.3 Input Access Diversity

Input access diversity measures the similarity of sequences of accesses to input
data by two programs, quantified as Levenshtein distance between the sequences
divided by their average length, for normalization. The core of the imple-
mentation is a general tool to intercept accesses to attributes of selected
objects, by overriding the __getattribute__ method of appropriate classes. In
our use case, the overriding method logs the access and then calls the original
__getattribute__ method. For user-defined classes, this is easily accomplished
by inserting a definition of __getattribute__ in the class. This approach does
not work for built-in types such as int, string, and tuple, which are common
types of input data.

For each of these built-in classes, we define a new class, e.g. tracked_int
for int, that inherits from the built-in class and overrides the __getattribute__
method. In the remainder of the description, we focus on int; other built-in
types are handled similarly. The problem is that some accesses to attributes of
tracked_int are not logged, because attributes of built-in types are sometimes
accessed directly by C code in the CPython runtime system. For example, even
if x is a tracked_int, the addition operator in x+y compiles to the bytecode
instruction BINARY_ADD, which does not call __getattribute__ on either argument.

We overcome this problem by augmenting tracked_int to override all meth-
ods of int that access the integer value: __add__, __eq__, __le__, etc. If x is
a tracked_int, an expression like x+y now compiles to bytecode that uses the

Algorithm Diversity for Resilient Systems 371

CALL_FUNCTION instruction to explicitly invoke x’s __add__ method with argu-
ment y. The tracked_int.__add__ method logs the access to the first argument
(self), calls __getattribute__ on the second argument (so the access to it will
be logged, if it is a tracked_int), and then calls the built-in __add__ method.
Since we need to override these operations anyway, we augment log entries to
indicate which operation was performed on the accessed attribute.

If x is an int, not a tracked_int, then CALL_FUNCTION invokes the built-in
__add__ method, which is implemented by C code that accesses the second
argument without calling __getattribute__. Consequently, accesses to y are not
logged, even if y is a tracked_int. To overcome this remaining problem, we mod-
ify the program to replace the remaining uses of int with a new class my_int,
which inherits from int and overrides each two-argument method of int with a
method that calls __getattribute__ on the second argument and then calls the
original method. To accomplish this replacement, we bind the name int to our
class my_int, using the assignment int = my_int. As a result, a constructor call
such as int(1) returns an instance of my_int. The literal 1 still produces an int.
Therefore, we transform the source program to replace literals with constructor
calls, e.g., 1 with int(1).

The remaining aspects of input access tracking differ for Python and Dis-
tAlgo. These aspects are (1) determining which objects are tracked, and (2) cre-
ating meaningful identifiers for tracked objects. We could easily use the result
of Python’s built-in id function to identify objects, but it would be difficult to
compare input access traces from different variants (or even different runs of
the same variant), because the object identifiers in them would be unrelated.
Instead, we create object identifiers that can be compared meaningfully with
object identifiers in other logs, as described below. The identifier is stored in an
attribute of each tracked object.

Python. For Python programs, the user specifies which objects should be tracked
by modifying the program to make them instances of tracked classes. For conve-
nience, our tracker class provides a method that recursively traverses an object
or collection (dictionary, list, tuple, or set) and replaces all instances of track-
able built-in types (i.e., types for which a corresponding tracked type exists)
with instances of tracked types. In our benchmark programs, inserting one or
two calls to this method suffices. Tracked objects are identified by a sequence
number assigned in the order that the objects are created. When tracked objects
are used for data read as input, these identifiers are meaningful across logs from
different variants, because the variants are given the same inputs and hence read
the inputs in the same order.

DistAlgo. For DistAlgo programs, all messages are automatically considered as
inputs; additional inputs, if any, are handled as described above for Python
programs. Instances of trackable built-in types in messages are automatically
replaced with instances of tracked types. Our tracker class, which inherits from
DistAlgo’s process class, is automatically inserted as a parent class of every
process class in the given program. It overrides process.send with a method that

372 S. D. Stoller and Y. A. Liu

replaces all instances of trackable built-in types in the message with instances of
tracked types.

To create meaningful identifiers for tracked objects received in messages,
we observe that such an identifier should identify the message in which the
object was received. Our identifier for such an object is a tuple (host, procNum,
msgNum, objNum), where host is the host on which the sender is running, proc-
Num identifies the sending process relative to the host, msgNum identifies the
message relative to the sending process, and objNum identifies the object within
the message.

To avoid dependence on standard process identifiers that cannot be mean-
ingfully compared across executions, we identify processes by a sequence number
assigned in the order in which the processes are created. The tracker class over-
rides process.setup with a method that assigns the process sequence number;
tracker.setup stores the next available process sequence number in a local file.
msgNum is a per-sender sequence number assigned in the order in which mes-
sages are sent. The object sequence number objNum is assigned to each object in
the message in the order that the object is encountered in a depth-first traversal
of the message.

Input access logs for DistAlgo programs also contain entries corresponding
to receive events, so we can determine that a particular data item (possibly
received in a previous message and stored in a data structure) was accessed
while processing a particular message.

6 Evaluation

We evaluated our approach on several sequential and distributed algorithms,
using Python 3.7.2 and DistAlgo 1.1.0b13. Our software is available at https://
www.cs.stonybrook.edu/~stoller/software.

For each problem and each diversity metric, we measure the diversity achieved
(1) by algorithm diversity alone by averaging the diversity metric for each pair
of algorithms; (2) by implementation-level diversity (ILD) alone by averaging
the diversity metric for each pair of an algorithm and its ILD variant (i.e., the
variant obtained by applying ILD transformations to it); (3) by both forms of
diversity together by averaging the diversity metric for each pair of an algorithm
and the ILD variant of another algorithm. For code diversity, we used n = 5
(the value used in [31]), and we disabled winnowing (i.e., included all hashes in
the fingerprint), because the bytecode for our examples is not too large. Library
code is not included in our code diversity measurements.

Implementation-Level Diversity (ILD). We created ILD by applying these typi-
cal ILD transformations: (1) NOP insertion: after each line of code, insert a pass
statement with probability 0.05; (2) instruction reordering: for each two adjacent
independent lines of code, swap them with probability 0.5; (3) branch reordering:
for each if-statement, swap the branches and negate the condition (if there is no
else branch, pretend else: pass is present) with probability 0.5; (4) function

https://www.cs.stonybrook.edu/~stoller/software
https://www.cs.stonybrook.edu/~stoller/software

Algorithm Diversity for Resilient Systems 373

Table 1. Experimental results for sequential algorithms. In the “Level” column, “algo”
and “impl” denote algorithm and implementation-level diversity, respectively. The last
column contains averages.

Metric Level Reach Hanoi LCS Pat. search Sort Tree search Avg.

3 variants 4 variants 3 variants 3 variants 4 variants 6 variants

Code algo 0.80 0.58 0.65 0.81 0.79 0.83 0.74

Diversity impl 0.40 0.39 0.66 0.52 0.32 0.63 0.49

both 0.80 0.65 0.82 0.83 0.80 0.89 0.80

Input Access algo 1.04 0.54 0.58 0.28 0.77 0.35 0.59

Diversity impl 0 0.18 0.82 0.21 0 0 0.20

both 1.04 0.57 1.12 0.28 0.77 0.36 0.69

Trace algo 1.45 0.42 1.22 0.69 0.81 0.80 0.90

Diversity impl 0.05 0.30 0.60 0.23 0.11 0.14 0.23

both 1.45 0.45 1.39 0.70 0.82 0.82 0.94

(including receive handler) reordering: for each two adjacent independent def
statements, swap them with probability 0.5; (5) argument reordering: for each
function (excluding run, setup, and receive handlers), swap the first two argu-
ments, swap the third and fourth arguments, etc.; (6) field reordering: reorder
the assignment statements that initialize the fields in each class, by swapping the
first two, the third and fourth, etc. Applying more complicated implementation-
level diversity techniques is future work; it will require significant effort, because
existing implementations of those techniques do not handle Python.

6.1 Sequential Algorithms

Our experiments use these algorithms for these problems: (1) graph reacha-
bility: original (iterative) algorithm, incrementalized algorithm, and rule-based
algorithm (generated from rules using the method in [21]); (2) Hanoi Tower:
original recursive algorithm, optimized recursive algorithm, optimized iterative
algorithm, and optimized iterative algorithm with swap; (3) longest common
subsequence (LCS): original recursive algorithm, optimized recursive algorithm,
and optimized iterative algorithm; (4) pattern searching: naive algorithm, Knuth
Morris Pratt (KMP) algorithm, Rabin Karp algorithm; (5) sorting: heap sort,
quicksort, insertion sort, and merge sort; (6) tree search: recursive and iterative
algorithms for AVL trees, recursive algorithm for B-trees, iterative algorithm for
red-black trees, and recursive and iterative algorithms for (unbalanced) binary
search trees.

The results are in Table 1. We see from the last column that, for all three
metrics, algorithm diversity creates more diversity than ILD, and that the two
together create even more.

6.2 Distributed Algorithms

Our experiments use the following algorithms: (1) 2-phase commit (2PC); (2)
Hirschberg-Sinclair’s leader election (HSleader) [11]; (3) Lamport’s distributed

374 S. D. Stoller and Y. A. Liu

Table 2. Experimental results for distributed algorithms, with 2 variants for each
algorithm. In the “Level” column, “algo” and “impl” denote algorithm diversity and
implementation-level diversity, respectively.

Metric Level 2PC HSleader Lamutex Paxos RAmutex Average

Code algo 0.56 0.66 0.50 0.68 0.53 0.59

Diversity impl 0.19 0.18 0.08 0.30 0.27 0.21

both 0.59 0.68 0.53 0.68 0.54 0.60

Input Access algo 1.10 0.47 0.21 0.28 0.61 0.53

Diversity impl 0.08 0.04 0 0.03 0.17 0.06

both 1.09 0.52 0.21 0.30 0.61 0.55

Trace algo 0.20 0.35 0.13 0.54 0.21 0.29

Diversity impl 0.06 0.03 0.02 0.13 0.04 0.06

both 0.20 0.36 0.14 0.52 0.21 0.29

mutual exclusion (Lamutex) [14]; (4) Lamport’s basic Paxos [15]; (5) Ricart-
Agrawala’s distributed mutual exclusion (RAmutex) [29]. We used configurations
with 3 or 4 processes for each algorithm. There are two variants of each algorithm:
one variant that uses high-level queries over message histories, and one that
explicitly maintains the result of those queries (and related intermediate results
and auxiliary values), updating them in assignment statements, especially in
receive handlers.

When measuring the dynamic metrics, we avoid spurious differences between
the variants due to the platform’s scheduling variability by running all variants
in parallel using synchronized execution (for programs other than 2PC, due to a
bug that we are still resolving in the interaction between our program transfor-
mations for synchronized execution and input access tracing, when measuring
input access diversity, we instead avoided such spurious differences by running
the variants separately but each with the same pattern of injected message delays
that are larger than the platform’s scheduling variability and designed to avoid
races in message delivery order).

The results are in Table 2. We see from the last column that, for all three met-
rics, algorithm diversity creates significantly more diversity than ILD. The trace
diversity produced by ILD is considerably smaller than the input access diver-
sity it creates. These results are not inconsistent, because both are measured
as ratios, and input accesses constitute a small fraction of the program’s full
activity recorded in the bytecode trace. The results for trace diversity for algo-
rithm diversity for distributed algorithms are notably smaller than for sequential
algorithms, because the trace includes execution of DistAlgo runtime library for
networking, which is not diversified.

7 Related Work

Existing techniques for automated software diversity, including all those surveyed
in [16], create implementation-level diversity, changing details of the implemen-
tation without changing the algorithm. Typically this is done by applying rel-
atively simple local transformations, like those used in our evaluation. There

Algorithm Diversity for Resilient Systems 375

are also some complex global transformations, such as instruction set random-
ization. These transformations are fully automated and more easily applied to
large programs, but they are limited in that they do not create algorithm diver-
sity. For example, they do not change the pattern in which inputs are used by
the program.

Most work on automated software diversity for resilience transforms C pro-
grams or (disassembled) machine code, for broader applicability to systems code.
There is some work on automated diversity for programs in JIT-compiled high-
level languages, which diversifies the machine code generated by the JIT com-
piler. For example, librando does this for Java and JavaScript [12], and INSeRT
does this for JavaScript [32]. This low-level approach is suitable for creating
implementation-level diversity. Our methodology diversifies the high-level pro-
gram directly to create algorithm diversity.

In N -version programming [1], N versions of a system (or component) are
created by separate and independent manual design and implementation efforts
starting from the same requirements specification, and the versions are run in
parallel with synchronized execution. The goal is resilience in the presence of
design faults, since independent teams are less likely to make the same design
mistakes. Our work, like other work on software diversity, aims to mitigate soft-
ware vulnerabilities, not design errors. The two techniques could be used together
to address both. N -version programming may introduce algorithm diversity, but
not in a controlled way, and at the cost of significant manual effort. In contrast,
our approach is to create variants using a program transformation and optimiza-
tion method based on systematic incrementalization, which guides the process,
helps control how much diversity is introduced, and helps ensure correctness
compared to ad-hoc development of variants. Our program transformation sys-
tem InvTS [9,19] provides semi-automated support for the method, significantly
reducing manual effort.

Synchronized execution has been widely studied in the fault-tolerance com-
munity, where it is often called N -version execution. N -version execution frame-
works typically work at the system-call level, so they can be applied to software
running on a given operating system, regardless of the application programming
language. Our synchronized execution framework is applicable only to applica-
tions written in DistAlgo, but it is more portable and lighter weight. It can be
used on any OS supported by DistAlgo (Windows, macOS, Linux, and Android),
while system-call based approaches are highly OS-specific, e.g., Varan [13] and
Bunshin [33] are N -version execution frameworks for Ubuntu. It is lighter-weight
because a single high-level synchronization event is typically implemented by
multiple system calls.

7.1 Evaluation of Diversity Techniques

A few approaches are commonly used to evaluate implementation-level diversity
techniques. One is to estimate the probability of a successful memory-related
exploit (e.g., buffer overflow or format string attack) based on the informa-
tion about the diversified program that the attacker would need to guess, more

376 S. D. Stoller and Y. A. Liu

specifically, the type of information (e.g., the address of a specific object, or the
difference between the addresses of two specific objects) and the number of pos-
sible values of that type of information due to the randomization in the diversity
transformation. This approach is used in, e.g., [2,8].

Diversity techniques designed specifically to defend against ROP attacks are
typically evaluated using a coverage metric that measures the fraction of ROP
gadgets re-located by the transformation, and sometimes also an entropy metric
that measures the number of possible new positions of the ROP gadgets, reflect-
ing the probability of the attacker correctly guessing the new locations. This
approach is used in, e.g., [12,28]).

These approaches based on specific vulnerabilities in low-level languages are
unsuitable for evaluating diversity for interpreted languages, such as Java and
Python.

Acknowledgements. This material is based on work supported in part by ONR
Grant N00014-15-1-2208, NSF Grants CCF-1414078 and CNS-1421893, and DARPA
Contract FA8650-15-C-7561. We thank Thang Bui, Rahul Gadi, Shikhar Sharma, Sha-
laka Sidmul, Shubham Singhal, and Swetha Tatavarthy for their contributions to the
implementation and experiments.

References

1. Avizienis, A.: The N -version approach to fault-tolerant software. IEEE Trans.
Softw. Eng. 11(12), 1491–1501 (1985)

2. Bhatkar, S., DuVarney, D.C.: Efficient techniques for comprehensive protection
from memory error exploits. In: 14th USENIX Security Symposium. USENIX Asso-
ciation (2005)

3. Cai, J., Facon, P., Henglein, F., Paige, R., Schonberg, E.: Type analysis and data
structure selection. In: Möller, B. (ed.) Constructing Programs from Specifications,
North-Holland, pp. 126–164 (1991)

4. Chen, S., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are realistic
threats. In: 14th USENIX Security Symposium. USENIX, August 2005

5. Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12(6), 565–584 (1993)

6. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: 6th
Workshop on Hot Topics in Operating Systems (HotOS), pp. 67–72 (1997)

7. Gautam, Rajopadhye, S.: Simplifying reductions. In: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 30–41 (2006)

8. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: 21st USENIX
Security Symposium, pp. 475–490. USENIX Association (2012)

9. Gorbovitski, M., Liu, Y.A., Stoller, S.D., Rothamel, T.: Composing transforma-
tions for instrumentation and optimization. In: Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation, pp. 53–62 (2012)

10. Goyal, D.: A language theoretic approach to algorithms. Ph.D. thesis, Department
of Computer Science, New York University (2000)

Algorithm Diversity for Resilient Systems 377

11. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configu-
rations of processors. Commun. ACM 23(11), 627–628 (1980)

12. Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Librando: transparent code
randomization for just-in-time compilers. In: ACM Conference on Computer and
Communications Security, pp. 993–1004. ACM (2013)

13. Hosek, P., Cadar, C.: Varan the unbelievable: an efficient n-version execution frame-
work. In: 20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2015), pp. 339–353, March 2015

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

15. Lamport, L.: Paxos made simple. SIGACT News (Distrib. Comput. Column)
32(4), 51–58 (2001)

16. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, 18–21 May 2014, pp. 276–291 (2014)

17. Liu, Y.A.: Logical clocks are not fair: what is fair? A case study of high-level
language and optimization. In: Proceedings of the Workshop on Advanced Tools,
Programming Languages, and Platforms for Implementing and Evaluating Algo-
rithms for Distributed Systems, Egham, UK, July 2018

18. Liu, Y.A., Brandvein, J., Stoller, S.D., Lin, B.: Demand-driven incremental object
queries. In: Proceedings of the 18th International Symposium on Principles and
Practice of Declarative Programming, pp. 228–241. ACM Press (2016)

19. Liu, Y.A., Gorbovitski, M., Stoller, S.D.: A language and framework for invariant-
driven transformations. In: Proceedings of the 8th International Conference on
Generative Programming and Component Engineering, pp. 55–64. ACM Press
(2009)

20. Liu, Y.A., Stoller, S.D.: From recursion to iteration: what are the optimizations?
In: 2000 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM), Boston, January 2000. Published in ACM SIG-
PLAN Notices, February 2000

21. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and
space guarantees. ACM Trans. Program. Lang. Syst. 31(6), 1–38 (2009)

22. Liu, Y.A., Stoller, S.D., Gorbovitski, M., Rothamel, T., Liu, Y.E.: Incremental-
ization across object abstraction. In: Proceedings of the 20th ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 473–
486 (2005)

23. Liu, Y.A., Stoller, S.D., Li, N., Rothamel, T.: Optimizing aggregate array compu-
tations in loops. ACM Trans. Program. Lang. Syst. 27(1), 91–125 (2005)

24. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 12:1–12:41 (2017)

25. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the 27th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications, pp. 395–410
(2012)

26. Liu, Y.A.: Systematic Program Design: From Clarity To Efficiency. Cambridge
University Press, Cambridge (2013)

27. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4(3), 402–454 (1982)

28. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: 33rd IEEE
Symposium on Security and Privacy, pp. 601–615. IEEE Computer Society (2012)

378 S. D. Stoller and Y. A. Liu

29. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24(1), 9–17 (1981)

30. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: new data-only attacks and defenses.
In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017,
Paris, France, 26–28 April 2017, pp. 366–381. IEEE (2017)

31. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: 2003 ACM SIGMOD International Conference on Man-
agement of Data, pp. 76–85. ACM (2003)

32. Wei, T., Wang, T., Duan, L., Lu, J.: INSeRT: protect dynamic code generation
against spraying. In: International Conference on Information Science and Tech-
nology, pp. 323–328. IEEE, March 2011

33. Xu, M., Lu, K., Kim, T., Lee, W.: BUNSHIN: compositing security mechanisms
through diversification. In: USENIX Annual Technical Conference, pp. 271–283.
USENIX Association (2017)

Malware

Online Malware Detection in Cloud
Auto-scaling Systems Using Shallow

Convolutional Neural Networks

Mahmoud Abdelsalam1,2(B), Ram Krishnan1,3, and Ravi Sandhu1,2

1 Institute for Cyber Security and Center for Security and Privacy Enhanced
Cloud Computing, University of Texas at San Antonio,

San Antonio, TX, USA
{mahmoud.abdelsalam,ram.krishnan,ravi.sandhu}@utsa.edu

2 Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX, USA

3 Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, TX, USA

Abstract. This paper introduces a novel online malware detection app-
roach in cloud by leveraging one of its unique characteristics—auto-
scaling. Auto-scaling in cloud allows for maintaining an optimal number
of running VMs based on load, by dynamically adding or terminating
VMs. Our detection system is online because it detects malicious behav-
ior while the system is running. Malware detection is performed by uti-
lizing process-level performance metrics to model a Convolutional Neural
Network (CNN). We initially employ a 2d CNN approach which trains on
individual samples of each of the VMs in an auto-scaling scenario. That
is, there is no correlation between samples from different VMs during
the training phase. We enhance the detection accuracy by considering
the correlations between multiple VMs through a sample pairing app-
roach. Experiments are performed by injecting malware inside one of the
VMs in an auto-scaling scenario. We show that our standard 2d CNN
approach reaches an accuracy of �90%. However, our sample pairing
approach significantly improves the accuracy to �97%.

Keywords: Security · Auto-scaling · Online malware detection ·
Cloud IaaS · Deep learning · Convolutional Neural Networks

1 Introduction

Cloud computing characteristics [15] enable novel attacks and malware [5,9–12,
22]. In particular, cloud has become a major target for malware developers since
a large number of Virtual Machines (VMs) are similarly configured. Automatic
provisioning and auto configuration tools have led to the widespread use of auto-
scaling, where VMs scale-in/out on demand. Applications utilizing auto-scaling
architectures1 is one of the most prevalent in cloud. As a result, a malware
1 Amazon architecture references. https://aws.amazon.com/architecture/.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 381–397, 2019.
https://doi.org/10.1007/978-3-030-22479-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_20&domain=pdf
https://aws.amazon.com/architecture/
https://doi.org/10.1007/978-3-030-22479-0_20

382 M. Abdelsalam et al.

that infects one VM can be easily reused to infect other VMs that are similarly
configured or imaged. To that end, cloud has become a very interesting target
to most attackers.

In malware analysis, files are scanned before execution on the actual system
either through static or dynamic analysis. Once an executable/application is
deemed to be benign, it executes on the system without further monitoring. Such
methods often fall short in the case of cloud malware injection [11], a threat where
an attacker injects a malware to manipulate the victim’s VMs, because the initial
scan is usually bypassed or malware is injected into an already scanned benign
application. Consequentially, the need for online malware detection, where you
continuously monitor the whole system for malware, has become a necessity.

Few works [1,6,17,20,21] exist in the domain of online malware detection in
cloud. Typically, machine learning is used in online malware detection. First, a
set of system features are selected and used to build a model. Then, this model
is used for malware detection. Some works use system calls while others use
performance metrics. Although such works target cloud systems in some sense,
there is no real difference between standard online malware detection methods
and cloud-specific methods except in the features selected for machine learning,
where cloud-specific methods restrict the selection of features to those that can
only be fetched through the hypervisor. One can argue that such works focus on
malware detection in VMs running on a hypervisor.

However, what makes cloud computing powerful is the novel characteris-
tics that they support [15] such as on-demand self-service, resource pooling and
rapid elasticity via auto-scaling. In this paper, we explore malware detection
approaches that can leverage specific cloud characteristics. In particular, we focus
on auto-scaling. The high-level idea is that in an auto-scaling scenario, where
multiple VMs are spawned based on demand, each of those VMs is typically a
replica. This means the “behavior” of those VMs need to closely correspond with
each other. If a malware were to be injected online into one of those VMs, the
infected VM’s behavior will likely deviate at some point in time. Our work seeks
to detect such deviations when they occur. A sophisticated attacker can attempt
to simultaneously inject malware into multiple VMs, which could induce simi-
lar behavior across those VMs, and thereby escape our detection mechanisms.
This is an interesting challenge and we plan this for future work. This paper
focuses on malware detection when exactly one of the VMs in an auto-scaling
environment is compromised.

In terms of the approach, first, we introduce and discuss a cloud-specific
online malware detection approach. It applies 2d CNN, a deep learning approach,
for online malware detection by utilizing system process-level performance met-
rics. A 2d input matrix/image is represented as the unique processes × selected
features. We assume that similarly configured VMs should have similar behav-
ior, so we train a single model for VMs that belongs to the same group such
as the group of application servers in a 3-tier auto-scaling web architecture of
web servers, application servers and database servers. Next, we introduce a new
approach that leverages auto-scaling. Here, we consider correlations between

Online Malware Detection in Cloud Auto-scaling Systems 383

multiple VMs by pairing samples from pairs of those VMs. Samples collected
at the same time from multiple VMs are paired and fed into CNN as a single
sample.

CNN is chosen because of its simplicity and training speed as opposed to
other deep learning approach (e.g. Recurrent Neural Networks). Also, for the
sake of practicality, we show that even a shallow CNN (LeNet-5) trained only
for a few epochs can be effective for online malware detection. In summary the
contributions of this paper are two-fold:

– We introduce a 2d CNN based online malware detection approach for multiple
VMs.

– We improve 2d CNN by introducing a new approach by pairing samples from
different VMs to accommodate for correlations between those VMs.

To the best of our knowledge, our work is the first to leverage cloud-specific
characteristics for online malware detection. The remainder of this paper is orga-
nized as follows. Section 2 discusses related work on cloud-specific online mal-
ware detection. Section 3 explains the key intuition about the idea presented.
Section 4 outlines the methodology including the architecture of the CNN mod-
els. Section 5 describes the experiments conducted and results. Finally, Sect. 6
summarizes and concludes this paper.

2 Related Work

Many research works address the problem of online malware detection using
different set of features and machine learning algorithms. Some works [6,8,14]
focus on using systems calls while others [3,18,19] focus on using API calls.
Others [16,23] focus on using memory features or performance counters [7].

Only a few research works address the problem of cloud malware detection
since many of the standalone malware detection approaches work for detecting
malware in single VMs in the cloud as well. Most, if not all, of the cloud-specific
malware detection techniques falls under the online malware detection cate-
gory (including anomaly detection approaches). Furthermore, they all focus on
extracting features from the hypervisor since it adds another security layer.

Dawson et al. [6] focus on rootkits and intercept system calls through the
hypervisor to be used as features. Their system call analysis is based on a non
linear phase-space algorithm to detect anomalous behavior. Evaluation is based
on the dissimilarity among phase-space graphs over time.

Wang [20] introduced Entropy based Anomaly Testing (EbAT), an online
analysis system of multiple system-level metrics (e.g. CPU utilization and mem-
ory utilization) for anomaly detection. The proposed system used a light-weight
analysis approach and showed a good potential in detection accuracy and mon-
itoring scalability. However, the evaluation used did not show pragmatic and
realistic cloud scenarios.

Azmandian et al. [4] propose an anomaly detection approach where all fea-
tures are extracted directly from the hypervisor. Various performance metrics

384 M. Abdelsalam et al.

are collected per process (e.g., disk i/o, network i/o) and unsupervised machine
learning techniques like K-NN and Local Outlier Factor (LOF) are used.

Classification of VMs is used for anomaly detection. Pannu et al. [17] pro-
pose an adaptive anomaly detection system for cloud. It focused mainly on var-
ious faults within the cloud infrastructure. Although this work is not directly
addressing malware, such technique is valid for malware detection since mal-
ware can cause faults in VMs, thus worth mentioning. It used a realistic testbed
experimentation comprising 362-node cloud in a university campus. The results
showed a good potential with over 87% of anomaly detection sensitivity. One of
the drawbacks of this work lies within using two-class SVM. Therefore, it suffers
from a data imbalance problem (where there is an imbalance of data from var-
ious classes during the training period), which led to several false classification
of new anomalies.

The work by Watson et al. [21] is similar to [17] but directly addressed
detecting malicious behavior in the cloud. It tried to overcome the drawbacks in
[17] by using one class Support Vector Machine (SVM) for detection of malware
in cloud infrastructure. The approach gathers features at the system and network
levels. The system level features are gathered per process which includes memory
usage, memory usage peak, number of threads and number of handles. The
network level features are gathered using the CAIDA’s CoralReef2 tool. The
study shows high accuracy results; however, it uses known-to-be highly active
malware that easily skew the system’s resource utilization (e.g., by forking many
processes).

In our earlier work [1], we showed that malware can be effectively detected
using black-box VM-level performance and resource utilization metrics (such as
CPU and memory utilization). Although, the work showed promising results for
highly active malware (e.g., ransomware), it is not as effective for low-profile
malware that would not impact black-box level resource utilization significantly.
Subsequently, we introduced a CNN based online malware detection method for
low-profile malware [2]. This work utilized resource utilization metrics for various
processes within a VM. The method was able to detect low-profile malware with
accuracy of �90%. Although, this work yielded good results, it targeted a single
VM much like other related works. Unlike our prior work and other related
works, this paper targets malware detection when multiple VMs are running,
while leveraging specific cloud characteristics such as auto-scaling.

3 Key Intuition

In classification-based process-level online malware detection methods, a
machine learning model is trained on benign and malicious samples of processes
where the goal is to classify a new input sample. The data collection phase, usu-
ally, works by running a VM for some time (benign phase) and then injecting a
malware (malicious phase) while logging the required data. This is referred to as
a single run. The data set includes multiple runs with same/different malware
2 CoralReef Suite: https://www.caida.org/tools/measurement/coralreef/.

https://www.caida.org/tools/measurement/coralreef/

Online Malware Detection in Cloud Auto-scaling Systems 385

CNN Optimizer

….

Trained
CNN Model

Prediction

Testing samples C

Train samples

Fig. 1. Single VMs Single Samples (SVSS)

Fig. 2. Number of used voluntary context switches over 30 min for two different runs
of the same unique process.

which is later divided into training and test data sets. In other words, given
sample X at time t (Xt), the task is to compare Xt to previously seen samples
of the training data set. For a single run, we deal with individual samples of a
single VM. Thus, we refer to this approach as Single VMs Single Samples (SVSS)
which is shown in Fig. 1.

386 M. Abdelsalam et al.

Fig. 3. Number of used voluntary context switches over 30 min for one run of 10 VMs
in an auto-scaling scenario.

SVSS can work in an auto-scaling scenario where we have a trained model
for each auto-scaling tier; however, input samples will lose some information.
Note that multiple runs of a single VM is not the same as multiple VMs running
at the same time. The reason depends mostly on the architecture in place. If a
VM has some effects over another VM, then input samples from single VM in
multiple runs will lose this information. To that end, we extend SVSS and build
an auto-scaling testbed where we can learn from multiple VMs running at the
same time. We refer to it as Multiple VMs Single Sample (MVSS).

The MVSS approach, however, has a disadvantage in the context of process-
level performance metrics. Processes have a very dynamic nature, meaning spikes
are always happening. These spikes are mostly due to sudden events or traffic
surges. For example, Fig. 2 shows two different runs of the same process for the
number of voluntary context switches. No malware is running inside either of
the two VMs. During the training phase, two patterns will be learned, a smooth
recurring up and down pattern and a pattern where there can be some spikes.
During the testing phase, if either pattern is seen, it will be regarded as benign.

On the other hand, Fig. 3 shows one run of the same unique process in 10
VMs (belongs to the same group of VMs in an auto-scaling scenario). VMs are
running at the same time in an auto-scaling scenario. The red colored process
belongs to a VM where a malware was injected. There are two major spikes
in the figure. The first spike happened in the same unique process of all the
VMs. If one of the processes did not have that spike and it was classified as
benign, it might be a misclassification since such spike should happen to all
VMs at the same time. The second spike (caused by the malware injected) is
only observed in the infected VM which should be classified as malicious. In

Online Malware Detection in Cloud Auto-scaling Systems 387

simple words, observing a noticeable enough spike by a particular process should
be classified as malicious (i.e., second spike). However, sudden behavior changes
can happen (i.e., first spike) and flagging an observed spike always as malicious
can cause many misclassifications. As such, considering multiple VMs, spikes
that are observed in a particular process in all VMs at the same time shouldn’t
be classified as malicious since it can be caused by any sudden change in behavior
(e.g. sudden increase in the number requests to web server). MVSS and SVSS
will lose such correlations between VMs since they learn from individual samples
regardless the scenario.

Consequentially, we introduce a new approach where the correlation of mul-
tiple VMs is utilized by pairing samples (at the same time). In other words,
given sample X of VM vmi at time t (Xvmit

), the idea is to compare Xvmit
to

previously seen paired samples of multiple VMs. We refer to this approach as
Multiple VMs Paired Samples (MVPS).

Table 1. Process-level performance metrics

Metric
category

Description

CPU
information

CPU usage percent, CPU times in user space & kernel space, CPU times of
children processes in user space & system space

Context
switches

Number of context switches voluntary & involuntary

IO counters Number of read requests, write requests, read bytes, written bytes, read chars,
written chars

Memory
information

Amount of memory swapped out to disk, Proportional set size, Resident set
size, Unique set size, Virtual memory size, Number of dirty pages, Amount of
physical memory, text resident set, Memory used by shared libraries

Network
information

Number of received bytes, Number of sent bytes

Others Process status, Number of used threads, Number of opened file descriptors

4 Methodology

Detailed explanation of CNN is left out of this paper. However, it will suffice to
say that CNN is a deep learning approach used extensively in image recognition.
Hence, it takes 2d images as input. In our work, the first dimension represents
the processes in the system and the second dimension represents the features
collected for each process. Consider a sample X at a particular time t, that
records n features (performance metrics) per process for m processes in VM vm,
such that:

Xvmt
=

⎡
⎢⎢⎢⎢⎢⎣

f1 f2 . . . fn

p1
...

... . . .
...

...
...

...
. . .

...

pm
...

... . . .
...

⎤
⎥⎥⎥⎥⎥⎦

388 M. Abdelsalam et al.

(a) Total number of processes (b) Number of unique processes

(c) Total number of processes (d) Number of unique processes

Fig. 4. Total number of standard processes versus the number of unique processes in
VMs in an auto-scaling scenario. (Color figure online)

Table 1 shows the process-level performance features which can be fetched
through the hypervisor. CNN requires a specific process to remain in the same
row (in the input matrix) for all inputs in a single run. This means that process
ID (PID) can not simply be used directly. Processes get killed and get created
frequently so a PID identifying one process might identify a different process
later on. For that reason, we define a unique process which is identified by three
elements: process name (name), command line used to execute the process (cmd)
and hash of binary executable (if applicable). In addition, unique processes help
in smoothing the number of processes in a highly active server since most mal-
ware creates new non-unique processes. Figure 4 (a)–(b) and (c)–(d) show two
different experiments (each with a different malware) where the number of total
standard processes are compared to the number of unique processes. Red por-
tions are the start of malware execution. As shown in the figure, the total number
of processes in such a highly active VM does not help much in revealing the mal-
ware behavior as opposed to the number of unique processes. Throughout this
paper the terms process and unique process are used interchangeably where both
refer to unique process.

Online Malware Detection in Cloud Auto-scaling Systems 389

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train
samples

Test
samples

Fig. 5. Multiple VMs Single Sample (MVSS)

4.1 Malware Detection in Multiple VMs Using Single Samples
(MVSS)

This is a relatively straight-forward task. We target multiple VMs in an auto-
scaling scenario. Figure 5 shows the approach used in MVSS. In MVSS we have
samples Xvmitk

from multiple VMs running at the same time, where X is a
sample of VM vmi at time tk. Samples from many runs are collected and are fed
to the CNN optimizer where the learning process takes place. Then the trained
CNN model is used for predictions.

CNN Optimizer

….

Trained
CNN Model

Prediction

….

….

.

.

.

.

.

.

.

.

.

Train
samples

Test
samples

.

.

.

.

.

….

Samples Pairing

Fig. 6. Multiple VMs Paired Samples (MVPS) (Color figure online)

390 M. Abdelsalam et al.

4.2 Malware Detection in Multiple VMs Using Paired Samples
(MVPS)

The MVPS approach is inspired by the duplicate questions problem in online
Q&A forums like Stack Overflow and Quora. The problem focuses on determin-
ing semantic equivalence between questions pairs. It is a binary classification
problem where two questions Q1 and Q2 are given and the task is to determine
whether they are duplicates.

Based on the aforementioned assumption that VMs that belong to the same
group should behave similarly, we use the same analogy to tackle our problem.
To that end, we change the formalization of our problem by using the above
duplicate questions problem concept except, in our case, we are given two sam-
ples Xvmitk

and Xvmjtk
from different VMs, where Xvmitk

is a 2d matrix (image
in CNN terminology) that belongs to vmi at time tk and Xvmjtk

is a 2d matrix
that belongs to vmj at the same time tk. Figure 6 shows the pairing samples app-
roach. Our goal is to find whether Xvmitk

and Xvmjtk
are duplicates (similar).

This is done by pairing the two samples as an input to CNN. Two samples are
considered similar if they are benign, whereas two samples are considered not
similar if either one of them is malicious (red bordered samples are malicious).

By pairing samples, we are actually taking into account the correlations
between samples of different VMs. This is due to the fact that CNN works
by finding spatial correlation within images. MVPS works in an auto-scaling
scenario where there are at least two VMs of the same group. Note that it is
important that we only pair samples of the same time as pairing samples of dif-
ferent times might have completely different values if the behavior of the VMs
has changed over time. For example, a web server handling one request per sec at
time t1 will have a completely different behavior than a web server handling 100
requests per sec at time t2. Consequentially, pairing two samples taken at two
different times might mislead the classifier if the behavior of the VMs changed
over time.

Pairing all samples is a very time consuming operation. In addition, that will
introduce a class imbalance problem since we are only infecting a single VM.
Although, we believe that infecting multiple VMs is hard to occur at the exact
same time in practice, not the least because a malware needs time to infect
other similarly configured VMs. Like mentioned earlier we set this for future
work. Consequentially, as shown in Fig. 6, we pair a malicious sample with all
benign samples from other machines at a particular time. On the other hand,
we pair each benign sample sequentially with the sample of the following VM.

5 Experiment Setup and Results

5.1 CNN Model Architecture

A deep CNN model would require considerably larger processing power. In real-
ity, this might not be affordable. For the sake of practicality, we chose to work

Online Malware Detection in Cloud Auto-scaling Systems 391

Input layer

Convolution Layer 1 + ReLU

Max Pooling Layer 1

Convolution Layer 2 + ReLU

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU

Fully Connected Layer 2 + ReLU

Standardized Input Matrix

Output Prediction

Fully Connected Layer 3

Fig. 7. CNN Model (LeNet-5)

with a shallow CNN. We show that even a shallow CNN can achieve near opti-
mal results in our pairing approach. Figure 7 shows the CNN model used in this
work. We chose LeNet-5 [13] CNN model. Although, it is currently by no means
one of the state-of-the-art CNN models, its shallowness makes it one of the best
candidates in practice. Note that in the context of online malware detection, the
model might need to be trained multiple times based on the deployed workloads
in place. For example, a 3-tier web architecture and a Hadoop architecture might
need different trained models.

The CNN model receives a standardized 2d matrix. Lenet-5 CNN consists of
7 layers (excluding the input layer). The input layer is a 2d matrix of 120 × 45
(120 × 90 for MVPS), representing a sample of maximum 120 processes and 45
features. For empty processes (i.e., processes that do not run at the start time
but might start in the future), rows are padded with zeros. The first layer is a
convolutional layer with 32 kernels of size 5 × 5 with zero padding ending. This
results in a 32 feature maps of size 120×45. The second layer is a max pool layer
of size 2 × 2 which downsizes each dimension by a magnitude of 2, resulting in
a 32 feature maps of size 60 × 23 (60 × 45 for MVPS). The third layer, another
convolutional layer with 64 kernels of size 60 × 23, is followed by a max pool
layer which results in 64 down sized feature maps of size 30 × 12 (30 × 23 for
MVPS). Fifth and sixth layers are fully connected layers of size 1024 and 512,

392 M. Abdelsalam et al.

respectively. Last layer is another fully connected layer of size 2, representing
prediction class (malicious or benign).

ReLU activation is used after every convolutional and fully connected layer
(excluding the last fully connected layer). Adam Optimizer, a stochastic gradient
descent with automatic learning rate adaptation, is used to train the model.
Adam optimizer learning rate is a maximum change threshold to control how
fast the learning process can be (set to 1e−5). The optimizer works by minimizing
the loss function (mean cross entropy). Random grid search is used to tune the
CNN parameters (e.g., mini batch size).

LoadBalancer(Octavia)

Application server
(Wordpress)

Application server
(Wordpress)

DB server
(MySQL)

Client Client

Web server
(Apache)

Web server
(Apache)

LoadBalancer(Octavia)

….

….

….

Fig. 8. 3-tier Web Application

0 30 60

Time
(min)

Clean phase Malware injection Point.
113 Malware executables are
injected (one per experiment).

Period of malware
activity

Collect 28 different process performance metrics
every 10 seconds for 100 processes

Fig. 9. Data collection overview

Online Malware Detection in Cloud Auto-scaling Systems 393

5.2 Experimental Setup

Our experiments were conducted on an Openstack testbed. Figure 8 shows the
3-tier web architecture built on top of our testbed, with auto-scaling enabled
on the web and application server layers. The scalability policy is based on
the average CPU utilization of the total VMs of each tier (scalability group). It
scales-out if the average CPU utilization is above 70% and scales-in if the average
CPU utilization is less than 30%. The number of servers spawned in each tier
were between 2 and 10 based on the traffic load. Traffic was generated based on
ON/OFF Pareto distribution with parameters set according to the NS23 tool
defaults.

The data collection process is shown in Fig. 9. Each of our experiments was
1 h long. The first 30 min is the clean phase. The second 30 min is malicious phase
where a malware is injected. A set of 113 malware were used for each of the dif-
ferent experiments. Malware binaries were randomly obtained from VirusTotal4.
All firewalls were disabled and an internet connection was provided to avoid any
hindrance to the malware’s malicious intentions. Samples were collected at 10 s
intervals, so during a single experiment 360 samples were collected for one VM.

5.3 Evaluation

We use four evaluation metrics.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Fscore = 2 × Precision × Recall

Precision + Recall

Precision is the number of correct malware predictions. Recall is the num-
ber of correct malware predictions over the number of true malicious samples.
Accuracy is the measure of correct classification. F score is the harmonic mean of
precision and recall. True Positive (TP) refers to malicious activity that occurred
and was correctly predicted. False Positive (FP) refers to malicious activity that
did not occur but was wrongly predicted. True Negative (TN) refers to malicious
activity that did not occur and was correctly predicted. False Negative (FN)
refers to malicious activity that occurred but was wrongly predicted.

3 NS2 manual. http://www.isi.edu/nsnam/ns/doc/node509.html.
4 VirusTotal website. https://www.virustotal.com.

http://www.isi.edu/nsnam/ns/doc/node509.html
https://www.virustotal.com

394 M. Abdelsalam et al.

Fig. 10. Optimized MVSS CNN classifier results

5.4 MVSS and MVPS Results

Like most standard machine learning classification problems, data was split into
three sets: training (60%), validation (20%) and testing (20%) sets. We split on
the 113 experiments to 67, 23 and 23 respectively. This ensures that validation
and testing phases are exposed to unseen malware. After training the model on
the training set, validation set is used to tune the model parameters as well as
choosing the highest accuracy model. The model is evaluated on the validation
set after each epoch and the highest accuracy model is chosen. Then the testing
set is used to test the chosen model (optimized classifier).

Figure 10 shows the results of MVSS optimized classifier. The optimized clas-
sifier yields accuracy of �90% while precision, recall and fscore are �85% on the
test data set. This approach achieved good results compared to the similar sim-
ple 2d CNN approach in [2]. There are two reasons for this improvement. First,
increasing the number of data (113 malware experiments as opposed to 25). Sec-
ond, using data from multiple VMs as opposed to a single VM; however, we still
had to filter part of the data to balance our data sets (i.e., balance the ratio of
benign to malicious samples).

Figure 11 shows the results of MVPS optimized classifier. There is a signifi-
cant increase in the four evaluation metrics when compared to the MVSS clas-
sifier. The optimized chosen MVPS classifier had a highest accuracy of �98.2%
during the validation phase. It yielded a �96.9% accuracy on the test data set.
Fscore, recall and precision all jumped to �91% on the test data set. The main
reason for this high improvement is that the MVPS approach finds correlations
between the multiple VMs running at the same time which is very beneficial in
an auto-scaling scenario.

Online Malware Detection in Cloud Auto-scaling Systems 395

In both cases, mini-batch size of size 64 and learning rate of 1e − 5 yielded
the best results. The CNN model was trained only for 20 epochs. Note that we
do not use a dropout layer (to avoid over-fitting) since it is not useful when using
a shallow CNN trained for only a few epochs.

Fig. 11. Optimized MVPS CNN classifier results

6 Conclusion and Future Work

In this paper, we introduced an online malware detection approach to leverage
the behavior correlation between multiple VMs in an auto-scaling scenario. The
approaches introduced used 2d CNN for malware detection. First, we introduced
the MVSS method which targets multiple VMs using single individual samples.
MVSS achieved good results with an accuracy of �90%. Then, we introduced
MVPS which targets multiple VMs using paired samples. MVPS takes the previ-
ous approach a step forward by pairing samples from multiple VMs which helps
in finding correlations between the VMs. MVPS showed a considerable improve-
ment over MVSS with an accuracy of �96.9%. In the future, we plan to use
different use case scenarios such as Hadoop and Containers as well as perform
an analysis using different CNN models architecture. We also plan to perform
an analysis to evaluate the effectiveness of ordering the processes and features in
the input matrix. Finally, we plan to develop techniques to handle the situation
when multiple VMs are infected simultaneously by an attacker. One direction,
instead of using pairs of samples, is to use tuples of samples (3-tuple, 4-tuple or
more).

396 M. Abdelsalam et al.

Acknowledgment. This work is partially supported by NSF CREST Grant HRD-
1736209, DoD ARL Grant W911NF-15-1-0518, and NSF CAREER Grant CNS-
1553696.

References

1. Abdelsalam, M., Krishnan, R., Sandhu, R.: Clustering-based IaaS cloud monitor-
ing. In: 10th IEEE CLOUD. IEEE (2017)

2. Abdelsalam, M., Krishnan, R., Sandhu, R.: Malware detection in cloud infrastruc-
tures using convolutional neural networks. In: 11th IEEE CLOUD. IEEE (2018)

3. Alazab, M., Venkatraman, S., Watters, P., Alazab, M.: Zero-day malware detection
based on supervised learning algorithms of API call signatures. In: Proceedings of
the Ninth Australasian Data Mining Conference, vol. 121, pp. 171–182. Australian
Computer Society, Inc. (2011)

4. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. ACM SIGOPS Oper. Syst.
Rev. 45, 38–53 (2011)

5. Dahbur, K., Mohammad, B., Tarakji, A.B.: A survey of risks, threats and vulner-
abilities in cloud computing. In: ISWSA (2011)

6. Dawson, J.A., McDonald, J.T., Hively, L., Andel, T.R., Yampolskiy, M., Hubbard,
C.: Phase space detection of virtual machine cyber events through hypervisor-level
system call analysis. In: 2018 1st International Conference on Data Intelligence
and Security (ICDIS), pp. 159–167. IEEE (2018)

7. Demme, J., et al.: On the feasibility of online malware detection with performance
counters. In: ACM SIGARCH Computer Architecture News, vol. 41. ACM (2013)

8. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level
anomaly detector for Android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-
ACNS 2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33704-8 21

9. Gholami, A., Laure, E.: Security and privacy of sensitive data in cloud computing:
a survey of recent developments. arXiv preprint arXiv:1601.01498 (2016)

10. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vulner-
abilities. IEEE Secur. Privacy 9, 50–57 (2011)

11. Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks on cloud ser-
vices. In: IEEE CLOUD, pp. 276–279 (2010)

12. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues
in cloud computing. In: IEEE CLOUD (2009)

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Luckett, P., McDonald, J.T., Dawson, J.: Neural network analysis of system call
timing for rootkit detection. In: 2016 Cybersecurity Symposium (CYBERSEC),
pp. 1–6. IEEE (2016)

15. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
16. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Ponomarev, D.: Malware-

aware processors: a framework for efficient online malware detection. In: 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 651–661. IEEE (2015)

17. Pannu, H.S., Liu, J., Fu, S.: Aad: adaptive anomaly detection system for cloud
computing infrastructures. In: 2012 IEEE 31st Symposium on Reliable Distributed
Systems (SRDS), pp. 396–397. IEEE (2012)

https://doi.org/10.1007/978-3-642-33704-8_21
https://doi.org/10.1007/978-3-642-33704-8_21
http://arxiv.org/abs/1601.01498

Online Malware Detection in Cloud Auto-scaling Systems 397

18. Pirscoveanu, R.S., Hansen, S.S., Larsen, T.M., Stevanovic, M., Pedersen, J.M.,
Czech, A.: Analysis of malware behavior: type classification using machine learning.
In: 2015 International Conference on Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), pp. 1–7. IEEE (2015)

19. Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., Yagi, T.: Malware detection
with deep neural network using process behavior. In: COMPSAC, vol. 2. IEEE
(2016)

20. Wang, C.: EbAT: online methods for detecting utility cloud anomalies. In: Pro-
ceedings of the 6th Middleware Doctoral Symposium. ACM (2009)

21. Watson, M.R., et al.: Malware detection in cloud computing infrastructures. IEEE
TDSC 13, 192–205 (2016)

22. Xiao, Z., Xiao, Y.: Security and privacy in cloud computing. IEEE Commun. Surv.
Tutorials 15, 843–859 (2013)

23. Xu, Z., Ray, S., Subramanyan, P., Malik, S.: Malware detection using machine
learning based analysis of virtual memory access patterns. In: 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE (2017)

Redirecting Malware’s Target Selection
with Decoy Processes

Sara Sutton(B), Garret Michilli(B), and Julian Rrushi(B)

Department of Computer Science and Engineering, Oakland University,
Rochester, MI 48309, USA

{smsutton2,gdmichilli,rrushi}@oakland.edu

Abstract. Honeypots attained the highest accuracy in detecting mal-
ware among all proposed anti-malware approaches. Their strength lies in
the fact that they have no activity of their own, therefore any system or
network activity on a honeypot is unequivocally detected as malicious.
We found that the very strength of honeypots can be turned into their
main weakness, namely the absence of activity can be leveraged to easily
detect a honeypot. To that end, we describe a practical approach that
uses live performance counters to detect a honeypot, as well as decoy
I/O on machines in production. To counter this weakness, we designed
and implemented the existence of decoy processes through operating sys-
tem (OS) techniques that make safe interventions in the OS kernel. We
also explored deep learning to characterize and build the performance
fingerprint of a real process, which is then used to support its decoy
counterpart against active probes by malware. We validated the effec-
tiveness of decoy processes as integrated with a decoy Object Linking
and Embedding for Process Control (OPC) server, and thus discuss our
findings in the paper.

Keywords: Malware interception · Decoy processes ·
Operating system kernel · Deep learning

1 Introduction

Malware keep wreaking havoc in both general-purpose computing and industrial
control systems, despite various types of defense tools deployed against them.
Amongst those tools, honeypots showed exceptional promise. Malware detection
on honeypots is straightforward and unequivocal, since they have no activity
of their own. Any system or network operation is indicative of intrusion. High
interaction honeypots, in particular, provide the utmost protection. They run
operating system (OS) services that are identical to those on machines in pro-
duction. They also intentionally allow malware to run on the decoy machine.
These factors contribute to a deep insight into malware’s exploits and rootkit
operations, which the defender can turn into signature or rule-based detectors
to protect machines in production from the same or somewhat similar malware.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 398–417, 2019.
https://doi.org/10.1007/978-3-030-22479-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_21

Redirecting Malware’s Target Selection with Decoy Processes 399

Nevertheless, advanced malware select their targets wisely. They probe their
targets for inconsistencies that reveal decoys. In order to design better decoys,
we experimented with a practical approach that uses live performance counters
to detect a honeypot, as well as decoy I/O on machines in production. Decoy I/O
consists of phantom I/O devices and supporting mechanisms that are deployed
on machines in production [16]. Performance counters are data that characterize
the performance of a process, kernel driver, or the entire OS. Their intended use is
to help determine performance bottlenecks and fine-tune machine performance.
Performance counters are provided by the OS and hardware devices [3].

Contribution. This work defensively affects malware’s target selection by
means of decoy processes. It causes changes in malware’s findings in order to
enable a decoy to qualify as a valid target of attack. The existence of a decoy pro-
cess is projected onto a machine via instrumentation of data structures related
to performance counters in the OS kernel. The performance consistency of a
decoy process is attained via deep learning. We design and train a convolutional
neural network that can learn the performance profile of a real process, which
we use to support its decoy counterpart against active probes by malware. The
OS of reference in this work is Microsoft Windows.

Novelty. To the best of our knowledge, this work is the first to leverage OS-
level performance data to project a decoy process and protect it from adversarial
probes. We explored data structure instrumentation in our previous work to
emulate the existence of a decoy process [17]. Nevertheless, those data structures
were strictly related to processes and threads and hence only created partial
decoy process existence without run-time performance dynamics.

Saldanha and Mohanta from Juniper Networks proposed a deception method-
ology based on decoy processes called HoneyProcs, with a patent pending [1].
HoneyProcs aims at detecting malware that inject code into other processes.
HoneyProcs works by creating a real process, which tries to mimic a legitimate
process. Once the decoy process reaches a steady state, it stops making progress
with its execution, which leaves its state immutable. HoneyProcs uses such fixed
state as a baseline against any changes, including those caused by code injection.
HoneyProcs is vulnerable to the very same decoy detection technique that we
used in our honeypot experiment, which is discussed in detail later on in this
paper.

Real-time performance counters show that the resource utilization of a decoy
process freezes to constant or 0 values. For example, a simple analysis of the
working set of a decoy process reveals that its size, namely the number of its
memory pages that are currently present in physical main memory, remains
constant or decreases due to the global memory frame replacement algorithm.
This is abnormal, given that the working set is a moving window representing
memory localities. Similarly, the page fault rate of a decoy process swiftly drops
to 0, while a continuous 100% page hit rate simply is not possible due to demand
paging in virtual memory.

400 S. Sutton et al.

Organization. The remaining of this paper is organized as follows. Section 2
describes an experiment that reveals a detectability weakness of honeypots stem-
ming from their complete lack of activity. Section 3 visits the OS mechanisms
behind the display of decoy processes on a machine. Section 4 describes the deep
learning approach that protects a decoy process from malware probes. Section 5
reports on implementation, testing, and validation of this work. In Sect. 6 we
discuss research related to various aspects of this work. Section 7 summarizes
our findings and concludes the paper. The appendices desribe the threat model,
define what is out of scope, and discuss additional related works.

2 Honeypot Experiment

Stress Testing Decoy Covertness. The purpose of this experiment was to
assess the ability of honeypots and decoy I/O to protect their decoy function in
practice. The experiment was performed from a red team’s perspective. It was
done separately on a Windows honeypot, and then on a Windows machine in
production equipped with decoy I/O. The testbed was comprised of two desktops
and a laptop machine, all three of which were connected to a local area network
that was logically and physically isolated from any other networks.

0-Value Exploit. We simply ran metasploit [2] to launch a publicly known
exploit against the honeypot, leveraging a publicly known vulnerability. The
exploit returned a command prompt, i.e. a shell, which was usable to fetch and
run additional code. The test was detected as soon as the first packet reached
the honeypot machine. Nevertheless, none of the exploit, nor the vulnerability,
was of any value to the defender by virtue of all of this material being public and
hence already well known. What was left for the defender was to wait for the
testers’ next steps, namely operations like those referenced in the threat model.

Engaging Performance Probes. At this point, we actively collected perfor-
mance data regarding host processor utilization, memory use, and secondary
storage activity. We wrote a PowerShell script with the purpose of gathering
those performance data live and in real-time. A large number of samples are
collected every second until a data repository is filled. The script enabled us
to view a table of the names and process identifiers of all processes currently
running on the system, as well as view and store all the details and attributes
of a specific process of our choice.

Searching for Patterns of Absent/Low Resource Utilization. We found
that per-process performance analysis is much more accurate in spotting inac-
tivity than machine-wide performance analysis. The honeypot was characterized
by host processor time that was somewhat comparable to a machine in produc-
tion in low use. Processor time refers to the percentage of elapsed time that the
processor spends executing an active thread. A similar observation holds for the
amounts of time the processor spent executing user space code and kernel space

Redirecting Malware’s Target Selection with Decoy Processes 401

Fig. 1. Visual comparison between a process’ performance on the honeypot and its
performance on a machine in production.

code. In this experiment, the code that generated all this machine-wide activ-
ity consisted of our own script in user space, and honeypot monitoring tools in
kernel space.

The execution of all this code overall also generated interrupt arrival rates
and page fault rates that were hardly distinguishable from their counterparts
on a machine in production in low use. A complicating factor is that, at times,
multiple independent threat actors may land on a honeypot. Often cases mal-
ware even compete with each-other. The lack of attribution in machine-wide
performance parameters hinders honeypot inactivity detection. These findings
informed our decision to direct deep learning towards the performance profile of
specific processes rather than the machine as a whole.

When directing our script towards specific processes, in most cases we
obtained performance counters that indicated a total lack of any resource uti-
lization. In a few cases, performance counters revealed existent but low resource
utilization, which we deemed to be related to our own moves on the honeypot.
Processes on a honeypot simply do not make progress with their execution, con-
sequently their processor time is 0. New pages in memory are not referenced,
consequently no page faults occur. Human-machine interaction is absent and
thus interrupts do not occur. Secondary storage is not accessed, consequently
the data rate and the number of I/O operations per second are both null.

Our findings are illustrated in Fig. 1. The data plot on the left shows some of
the performance parameters of the Desktop Windows Manager (DWM) on the
honeypot, where patterns of absent or low resource utilization are clearly evident.
The visualized performance parameters, except the working set, are constantly
0. There are a few processor time spikes, however those are very minimal. It is
interesting to see how the working set, which is represented by the flat horizontal
line at the very top, never changed from 87420928. Of course, with no page faults
occurring, the working set could not change. In the data plot, we have applied
a log10 reduction of the working set to make it fit within the same plot as the
other performance parameters.

402 S. Sutton et al.

The data plot on the right shows the same performance parameters of the
DWM process, but this time on a machine in production. The working set and
the disk data per second have both been reduced log10. They are high and
variable.

Experiment Repeated on Decoy I/O. This time, the probes were directed
against a decoy process amongst real processes on a machine in production.
Decoy I/O consisted of a decoy network interface controller, which projected a
decoy network providing connectivity to a decoy Object Linking and Embedding
for Process Control (OPC) server, as in [17]. The decoy process was an OPC
client, which, just like HoneyProcs, maintained a consistent appearance. More
specifically, it appeared to load the same libraries, had the same size on disk, and
created the same number of threads, as its real counterpart. Nevertheless, when
probed over performance counters, the decoy OPC process was immediately
detected as in the honeypot experiment.

Multiple Performance Samples are Needed for Accuracy. It is normal
for a machine in production, and hence a valid malware target, to have periods
of inactivity or low use, which may be quite common. In this experiment, perfor-
mance probes were collected over an extensive time window to make sure that
production activity was observed if existent.

Fig. 2. Decoy process visibility via performance data instrumentation.

3 Decoy Processes

Make Visible, but Do Not Create. In this work, the idea is to only project or
display the existence of a process for malware to see rather than concretely create
that existence. In other words, we aim at making a process that is as visible as its
real counterpart, without having to spawn it. The rationale is simple. Spawning

Redirecting Malware’s Target Selection with Decoy Processes 403

a real process, albeit for use as a decoy, consumes real resources on the machine,
which adds to the overhead of running detection tools specific to decoy processes.
The data, code, and libraries of a decoy process would need to be stored in real
frames in main memory. As we discussed earlier in this paper, freezing execution
to create an immutable state is ineffective, therefore there would have to be real
activity, which would consume CPU cycles and secondary storage.

Own real activity comes with its own complexities, since it needs to be distin-
guished from malicious activity, thus bringing the malware detection challenge
almost in a form similar to conventional intrusion detection. The browsing pres-
ence of a decoy process is achieved by inserting a synthetic entry in the process
table in the OS kernel. Furthermore, most of the known techniques to hide a
malicious process are usable to create exactly the opposite effect, namely show
the existence of a process that does not exist. The task manager tool, the tasklist
command, and the ps command, all display an entry for the nonexistent process
in their output.

The visibility of a decoy process is attained as illustrated in Fig. 2. Perfor-
mance counters originate in drivers in the OS kernel. These drivers operate as
performance counter library (PERFLIB) providers, which furnish performance
data in response to queries. Performance data are accumulated in data struc-
tures, such as linked lists. We have written data structure instrumentation code,
which deposits synthetic performance data for a decoy process in the repository
of performance counters. These performance data, real and synthetic, are then
provided to a consumer in user space, including possible malware. This way we
project the existence of a decoy process by means of synthetic resource utilization
dynamics. Clearly the synthetic performance data need to be consistent, which
we address via a neural network and discuss in detail later on in this paper.

Timing the Replies to Performance Queries. Performance data are counted
in the OS kernel during specific time windows as related events occur. For exam-
ple, a counter of page faults is incremented each time a trap to the OS kernel
is made as a result of a reference to a page that is not present in physical main
memory. The counter’s value is not stored immediately in the repository of per-
formance counters. Instead, it is buffered until the counting period is complete.
Consumers of performance data in user space will not receive fresh counter data
until after the counting period. It is of paramount importance that the data
instrumentation driver depicted in Fig. 2 does not deposit the synthetic perfor-
mance data too fast or too slow in the repository of performance counters.

In this work, the synthetic performance data are decided and produced by a
neural network. This process takes relatively little time, since the neural network
is already fully trained at the time it is utilized as a source of such data. The
neural network needs the performance counters that pertain to all real processes
on the machine in order to function. The data instrumentation driver collects
these performance counters by accessing directly the repository where they are
stored. Once the neural network delivers the performance counters for a decoy
process to the data instrumentation driver, the latter buffers them until the end
of the counting period, at which point it stores them in the repository.

404 S. Sutton et al.

Safety. Making a nonexistent and hence a decoy process visible via synthetic
performance data is safe on honeypots. There are no humans who interact with
honeypots while the latter are in operation, consequently the risk of a user
interacting with a decoy process is null. The risk on a machine in production
equipped with decoy I/O is considerable. We rely on a safety measure from
related previous work [17], which is a filter driver integrated into the driver
stack of the monitor device. The driver filters out decoy entries from frames of
bytes bound for the monitor, before those data have traveled far enough to be
displayed on the monitor. Since we know the name and the performance data of
the decoy process a priori, we can have them filtered out from the user’s visual.

4 Performance Support for a Decoy Process

We now discuss how our approach learns the performance fingerprint of a real
process, to be able to perform performance recognition tasks in support of the
process’ decoy counterpart. We express details of our approach through the lenses
of deep learning. The reader is referred to [7] for a detailed discussion of deep
learning. In this paper, we base our reasoning on an OPC client process on a
machine in production. The rationale for selecting an OPC client as a subject
of deep learning and decoy process is connected to its integration with a decoy
I/O capability, which we developed in our previous work [17]. Nevertheless, we
deem that this work is applicable to all processes.

The rationale for solving the decoy process performance challenge on a
machine in production is that the latter presents an environment that is much
more complex than the environment of a honeypot. On a honeypot, most or all
processes can be configured to be decoy processes, whose performance param-
eters we can choose ourselves. This makes it easier to calculate their projected
resource utilization. On a machine in production, the performance of real pro-
cesses is beyond our control, therefore our approach needs to be robust enough
to work with any possible values they may have. And all this while malware are
probing for performance inconsistencies.

4.1 Heatmaps

Heatmap Design. We model the machine’s resource utilization as a heatmap,
where performance parameters are represented as a color with a given strength.
An example heatmap used in this work is depicted in Fig. 3. The higher a per-
formance parameter, the stronger its color in the heatmap. An excerpt from the
set of performance parameters that we used in this work is given in Table 1.
These parameters are taken from the whole resource utilization spectrum, in the
hope that they can enable our approach to learn the performance fingerprint
of a process. With performance parameters and real processes aligned along the
ordinate and abscissa, respectively, each heatmap cell visually indicates the value
of a performance parameter for a specific real process.

Redirecting Malware’s Target Selection with Decoy Processes 405

Table 1. Some of the performance counters visually assembled in heatmaps.

CPU Memory Secondary storage

User Time Page Faults/sec IO Read Operations/sec

Privileged Time Working Set IO Write Operations/sec

- Working Set Peak IO Other Operations/sec

- Pool Paged Bytes IO Read Bytes/sec

- Pool Nonpaged Bytes IO Write Bytes/sec

The idea is to train the neural network by feeding it a large number of images
generated by heatmaps. Each image of heatmap is labeled in such a way that
its class label, i.e. an object type associated with the heatmap, is an array of
color strengths, namely one color strength for each performance parameter of the
decoy process. If training succeeds, the neural network can be used for heatmap
recognition. The neural network reads a heatmap, which most likely was not seen
during the training phase, and produces in output a class label. The class label,
in turn, informs our approach as to what specific values to give the performance
counters of the decoy process.

Fig. 3. A performance heatmap for neural network consumption.

Adapting to the Performance of Real Processes. The decoy process, in
our case the decoy counterpart of an OPCExplorer process, exhibits performance
parameters that depend directly on the resource utilization of real processes on

406 S. Sutton et al.

the machine. When probed by malware, we take a screenshot of the perfor-
mance counters of real processes, metaphorically speaking, and turn them into
a heatmap for recognition by the neural network. All processes are taken into
account when estimating the performance parameters of the decoy process. We
only show a few in Fig. 3 to make the heatmap fit within the page borders. In
reality, heatmaps are much larger.

The resource utilizations of any processes created by malware are also
included in the heatmaps. Those processes are referred to as foreign processn
in the heatmaps, regardless of how they are named by the threat actors. Stan-
dard internal names for such processes prevent the neural network from getting
confused. Multiple processes may be created off the same executable file. For
example, the user may be running several chrome tabs, each of which runs as a
separate process. Of course, we include the performance of all such processes in
the heatmaps. This is what makes our approach cognizant of the current resource
utilization load on the machine.

Performance Correlation with Input Data. The heatmap of Fig. 3 contains
an explicit process activity indication at the very top. This is for the neural net-
work to include in its internal heatmap processing. The activity indicator ties
the performance fingerprint of the process to be mimicked with the input data
of that process. When fed with different input data, a real OPCExplorer process
may have totally different resource utilizations for the same resource utilization
load on the machine. The same heatmap leads to different performance param-
eters for different input data. We noticed that the performance of a process is
insensitive to small variations of input data. Instead, a better input categoriza-
tion is needed, which can indeed cause a visible change in resource utilization.

All processes have well defined operations in their design, which we find to be
meaningful enough to resource utilization to cause changes. In this work, we use
such operations to relate input with resource utilization. The operations that we
used within heatmaps pertaining to the OPCExplorer process are summarized
in Table 2. OPC consists of objects that are based on the Microsoft Distributed
Component Object Model (DCOM). COM enables objects on the same machine
to exchange data with each-other. DCOM is basically COM, but with the added
functionality of enabling objects that reside on different machines to exchange
data with each-other over the network.

An OPC object is a DCOM object. As all objects, an OPC object has meth-
ods and attributes. The attributes are also known as tags, or data points, which
represent parameters of a physical system. Examples include voltage, phase, and
current. An OPC server hosts OPC objects, which an OPC client can access in
reading or writing over the network. The reader is referred to [10] for a detailed
specification of OPC. Some of the operations in Table 2 refer to groups. These
are sets of tags, possibly from different OPC objects, which the system operator
has reasons to gather together when performing a given OPC task.

We assign numerical values to OPC operations, which we refer to as opcodes.
These are identifiers that we use to differentiate OPC operations from each-other.
Opcodes are then included in heatmaps for the neural network to process along

Redirecting Malware’s Target Selection with Decoy Processes 407

with the other data. For example, the heatmap of Fig. 3 shows an opcode of 1,
which corresponds to viewing OPC server properties on the OPC client.

During testing experience we noticed the I/O performance parameters includ-
ing I/O write and read operations from secondary storage are always 0 value as
those processes didn’t consume any I/O resources during our testing experi-
ment. These counters are included in the label construction, however they are
always of value zero and therefore do not effect classification. The collected label
measurements are used for training our neural network.

Table 2. Categories of operations on an OPC client as used in heatmaps.

OPC Server Ops Group-level Ops Tag Related Ops

View OPC server properties View group properties List tags of an OPC object

Add an alarm Change group properties Add a tag to an OPC object

- Create a new group Include a tag in a group

- Delete an existing group Remove a tag from a group

- - Read a tag

- - Write a tag

4.2 Deep Learning of Performance Fingerprints

Training Set and Labeling. As we run the OPCExplorer process to perform
the operations of Table 2 one at a time, we collect the performance counters
of all other processes on the machine. Those performance data enable us to
build heatmaps. We also collect the performance counters of the OPCExplorer
process, which collectively enable us to unequivocally establish a class label for
each heatmap. All these labeled heatmaps are used to train the neural network.

Test Set. We repeat the previous steps, but this time do not include the labeled
heatmaps in the actual training of the neural network. We set aside these labeled
heatmaps for later use, once the neural network is fully trained.

Algorithmic Approach. A convolutional neural network has multiple layers
of neurons which include at least one input layer and one output layer and some
number of hidden layers including Rectified liner unit, pooling, fully connected
and softmax. The hidden layers are used to adjust and scale the activation of
given features from the heatmap images. Thus, the number of layers are critical.

The inner workings of the convolutional neural network are given in Algo-
rithm 1. One of the most critical steps is the configuration of the layers of
this neural network. We add a standard input layer to load and initialize the
heatmaps from the training set for further processing. Several rectified linear
unit (ReLU) layers are also added to the neural network. ReLU layers increase
the pace and effectiveness of the performance fingerprint learning. They zero
out negative values and maintain positive values in convolved heatmaps under-
going processing. We also add several pooling layers, which reduce the number
of heatmap image parameters that the neural network needs to work with.

408 S. Sutton et al.

The neural network includes several batch normalization layers, which adjust
and scale the activations of given features from the heatmap images. The fully
connected layer produces a vector with size equal to the number of class labels.
Each element of this vector is the probability for a class label of the heatmap
image that was just processed by the neural network. Some of these probabilities
may be negative. Furthermore, the sum of all these probabilities may not be
1.0. The softmax layer corrects such anomalies, and thus normalizes the vector
in question into a probability distribution. The classification layer assigns the
correct class label to a heatmap image that was just processed, on the basis of
that probability distribution.

Once the training is complete, we run the neural network to classify heatmaps
from the test set. We compare the known class labels for those heatmaps with the
class labels produced by the neural network, in order to calculate the heatmap
recognition accuracy. If the attained level of accuracy is low, we add more layers
to the neural network and retrain it from scratch. We keep revising the neural
network design until we attain a satisfactory accuracy.

Algorithm 1. Algorithm to train and test a convolutional neural network
for heatmap classification.
1 Function Learn-Performance-Fingerprint (G, V);

Input : Training set of heatmaps G, testing set of heatmaps V .
Output: Convolutional neural network Π, heatmap recognition accuracy δ.

2 δ ← 0
3 for ∀ heatmap ν ∈ G do
4 Read ν into array α in memory;
5 Add Label(ν) to α;

6 end
7 while δ < 90 do
8 Empty Π if any layers present;
9 Define the input layer of Π;

10 Add count1 ReLU layers to Π;
11 Add count2 pooling layers to Π;
12 Add count3 batch normalization layers to Π;
13 Add a fully connected layer to Π;
14 Add a softmax layer to Π;
15 Add a classification layer to Π;
16 Select Π’s training options;
17 trainNetwork(Π);
18 for ∀ heatmap ε ∈ V do
19 δ ← Π(ε)
20 end
21 Increase count1, count2, and count3;

22 end

Redirecting Malware’s Target Selection with Decoy Processes 409

Usable Oracle. At this point, a fully trained neural network with high accuracy
can be queried by the data structure instrumentation code. A query contains a
heatmap that is representative of the resource utilization of all processes on the
machine, of course excluding the decoy OPCExplorer process. The response by
the neural network contains a class label, which the data structure instrumenta-
tion code can easily convert into performance data for the decoy OPCExplorer
process. Those data are reported to malware in the form of performance counters
in response to their probes.

5 Experimental Testing and Validation

Implementation. We wrote Matlab code to implement the deep learning app-
roach. We also wrote other Matlab code to generate heatmaps. We extended
the PowerShell script that we used in the honeypot experiment to collect live
performance data from all processes running on the machine. These data are
stored in files, which are then read by Matlab code to produce heatmaps. The
sample interval and number of samples collected are specified by the operator.
Increasing the number of samples collected per interval creates a heatmap with
greater density of data points. Labeling the heatmaps was a tedious task, which
we completed manually one heatmap at a time. To that end, we exercised the
OPC client operations referenced in Table 2 manually by interacting with the
OPC client software similarly to a system operator. As we ran those operations,
we measured the performance counters of the real OPCExplorer process, which
we then used for labeling heatmaps.

The need for manual and hence time consuming work limited the number of
heatmaps that we could label and use to train the neural network, which in turn
affects negatively the accuracy of the neural network itself. As an aside note,
in terms of future work, an artificial intelligence approach that uses a virtual
keyboard and mouse to drive the functionality of the OPC client software would
be most useful to improve the feasibility of this work.

Testing Against Live Malware. A large set of OPC malware samples involved
in the Dragonfly malware campaign have been publicly available for academic
research for quite some time. Those malware samples come in many versions.
Nevertheless, none of these samples appeared to analyze system or network activ-
ity on the compromised machine prior to attacking an OPC server. They perform
a network search for servers, identify those specific servers that host OPC objects,
and then simply pursue the tags in those objects over the network. BlackEnergy
style of malware attacks also seem to ignore system or network activity prior to
initiating keystroke interception, or prior to making VPN connections over the
network.

Extended/Revised Honeypot Experiment. Since the use of performance
counters to detect decoys is new, and thus there are no malware that use it, we
do not seem to have the means of testing this work against real-world malicious

410 S. Sutton et al.

code, as we have in our previous works. We had to return to the honeypot exper-
iment, which, at the beginning, had succeeded to detect the honeypot and decoy
I/O. We repeated the various experimental trials on a machine in production
equipped with decoy I/O. This time, the red team approach was equipped with
the details of the entire contribution made in this paper. In other words, the
red team was assumed to have awareness of the fact that system activity on
the machine might be due to decoy processes, and that the performance data
of those decoy processes are regulated by a deep learning algorithm based on
heatmap recognition.

Visually, decoy processes resemble their real counterparts. Most importantly,
they also have performance dynamics, which we assessed by putting the red team
in the best attack conditions possible. The thought processes are illustrated in
Fig. 4. More specifically, in our red team role, we had a replica of the machine
to be protected, with the only difference being that the OPCExplorer process
was real. We measured empirically the performance parameters of all processes,
including those of the real OPCExplorer process. As we were performing those
measurements on the replica, in some cases we intentionally left all processes in
low or moderate use, except the real OPCExplorer process.

Since most of the performance parameters of the other processes were low
or near constant, they perturbed the performance of the real OPCExplorer pro-
cess by a lesser amount than on a usual machine in production. We called these
performance measurements group 1 (G1). In other cases, we drove the other
processes such as to perform average or higher load tasks, and called the corre-
sponding performance measurements group 2 (G2) and 3 (G3), respectively. In
G2 and G3 conditions, the other processes affected the performance of the real
OPCExplorer process by a larger amount than in G1 conditions. Overall, these
maneuvers enabled us in our red team role to collect measurements that stati-
cally tied the performance of all processes on the replica with the performance
of the real OPCExplorer process.

Our convolutional neural network is trained to cope with any arbitrary
amount of effect that the other processes may have on the performance of the real
OPCExplorer process, and thus reproduce consistent performance parameters on
its decoy counterpart under all circumstances. The reason we are emphasizing
specific G1, G2, and G3 conditions, is that, from a testing or probing perspective,
our experience with this research suggests that the likelihood of seeing perfor-
mance parameters on a machine in production that are similar to those observed
and recorded on the replica varies across the G1, G2, and G3 spectra. After all,
the feasibility of these testing/probing techniques depends on the portability of
resource utilization dynamics from the replica onto the compromised machine,
i.e. the machine in production.

G1 conditions are the most favorable to a threat actor, since their occurrence
is statistically more common, especially on client machines in production. At
times, users commonly interact with a few application programs at a time. Some
users place higher demand on their machine, in which case G2 and G3 conditions
take place. Nevertheless, we found that, even when G2 and G3 conditions occur,

Redirecting Malware’s Target Selection with Decoy Processes 411

they are hardly stationary enough to resemble a specific predefined resource
utilization pattern characterized on the replica. A threat actor may attempt to
interact with processes in order to force their resource utilization to get close to
a precalculated resource utilization signature. However, we deem the following
adversarial actions to be out of reach:

– Non-invasively reduce the resource utilization of a process that is taking input
from the legitimate user. Thus, a threat actor may be able to adjust the
resource utilization of a process by increasing it. If the adjustment requires a
decrease, the threat actor is impotent.

– Interact with a process that has a graphical user interface (GUI). The reason
is simple, namely the legitimate user will certainly notice. Making process
AcroRd32 load a portable document format (PDF) file and scrolling over the
pages, or making Chrome browse a website, will display the respective GUI
components on the screen.

Instead of requiring our red team approach to adjust the resource utilization
of processes, if possible, and/or wait for a lucky resource utilization combination
to occur, we facilitated the red team assessment by creating usable G1, G2, and
G3 dynamics on the compromised machine. This is what we meant with putting
the red team in the best attack conditions possible earlier in this section. The
appearance of usable G1, G2, and G3 dynamics on the compromised machine
may be a rare event, but we assume it to be possible in order to favor the highest
strength of the red team assessment.

In some of the tests, we left most of the processes on the compromised
machine in low or moderate use. In other tests, we used same or similar stimuli
as on the replica to create G2 and G3 conditions that were close enough to the
performance signatures taken on the replica.

This is the culmination of the target validation on the compromised machine.
Since in our red team role we had prior knowledge of the performance of the
real OPCExplorer process within a precalculated resource utilization signature,
we could simply compare the expected performance of the OPCExplorer process
with the performance collected on the compromised machine. If the two diverged
by a non-negligible amount, the conclusion would be that we had landed on a
decoy. Some of the findings of these trials are depicted in Fig. 5.

The Performance Fingerprint of a Process is not Fixed. The data plots
in Figs. 5 and 6 show that, often cases, we get slightly different performance
data for a real process such as OPCExplorer, although the performance data
of the other processes do not change or change minimally. For example, under
identical or similar underlying performance dynamics, we measured a processor
user space time for real process OPCExplorer equal to 3.61. A few seconds later,
without any change of conditions, we measured 3.05. Consequently, a decoy
performance inconsistency has to be a considerable departure from patterns of
resource utilization, since small departures are normal.

Overall, our work is able to keep the performance data of a decoy process
within the normal variability of the performance fingerprint of its real counter-

412 S. Sutton et al.

Fig. 4. Assessing the accuracy of our convolutional neural network in protecting a
decoy OPCExplorer process from malware probes. (Color figure online)

part. We had cases of incorrect class labels produced by the neural network,
however those were relatively infrequent. We deem that those misses were due
to the small number of heatmaps in the training set. With a larger training set,
this work may attain a higher accuracy. We also had a few challenges during
the actual measurements of performance data. The OPC client software that
we worked with displayed hints and other help via pictures and other graphics
on its graphical user interface. We noticed that the reading and displaying of
those graphics one at a time, and for specific periods of time, did affect the
performance parameters that we were measuring.

Load Disturbance Attempts. In our red team role, we created processes
that requested large amounts of memory, consisted mostly of CPU bursts, or
generated heavy I/O traffic. We also created processes that changed the amount
of resources abruptly and quickly, from very high to very low, and then back to
very high. The neural network tolerated these disturbances, with no noticeable
class label changes.

6 Related Work

Several works have explored prediction models to estimate resource utilization at
runtime. Matsunaga et al. surveyed supervised machine learning to train data
points and predict execution time. However, the authors only attain detailed
estimated in relation to fixed input data [12]. In contrast, in our work we con-
sider any input data. Miu et al. examined features extracted from input data to
find specific instances that maximize the accuracy of predicted execution time
of a process. They used a combination of input features to learn regression mod-
els using C4.5 decision tree builders. Their method depends on learning from
historical data [13]. Li et al. predicted scheduling in a Round Robin manner in
the distributed stream data processing. For scheduling, a greedy algorithm is

Redirecting Malware’s Target Selection with Decoy Processes 413

Fig. 5. Sample I - Empirical measurements of performance data versus deep learning
class labels.

Fig. 6. Sample II - Empirical measurements of performance data versus deep learning
class labels.

used to assign threads to machine under the guidance of prediction results [11].
Amiri et al. reviewed prediction models, including machine learning methods, to
estimate performance and workload in the cloud [4].

Pietri et al. proposed a method to predict execution time for a parallel work-
flow based on its structure in the cloud [14]. Their approach divides tasks to
various levels based on their data dependency. Other related works focus on
using machine learning to build a framework for mobile devices that can find
features related to computational resource consumption from the input data
that are given to a program [9]. These works use program slicing and sparse
regression to extract pertinent information from program execution. Our work
is different in that it is load dependent, and hence can predict the resource
utilization parameters of a decoy process as other real processes continuously
change their own performance parameters.

414 S. Sutton et al.

7 Conclusions

Live real-time performance counters enable a deep insight into the performance
of a process. Our honeypot experiment showed that performance analysis of
processes can catch the many inconsistencies of high interaction honeypots and
decoy real processes, and can also be a threat to decoy I/O if left unaddressed.
We described interventions in the OS kernel that project the existence of a decoy
process, without having to spend resources on creating an actual process. We
devised a convolutional neural network that can learn the performance finger-
print of a process in support of its decoy counterpart. In conclusion, we validated
and quantified the ability of such decoy processes to sustain a realistic resem-
blance with a valid target of attack, thus possibly causing changes to malware’s
target selection.

Acknowledgment. This material is based on research sponsored by the USAFA and
Oakland University under agreement number FA7000-18-2-0022. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

The opinions, findings, views, conclusions or recommendations contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the USAFA or the U.S.
Government.

Appendix A: Threat Model

Probes Originate from the Inside. A malware sample has compromised a
machine, and is now assessing whether or not it is a decoy. We have observed that
this target validation assessment is commonly a precursor to attack operations
such as the following:

– Launching local exploits to escalate the current privilege.
– Installing rootkits to preserve access.
– Installing I/O interceptors to capture keystrokes, webcam traffic, file system

and network traffic.
– Accessing data and sending them to a threat actor over the network.
– Launching an exploit on the compromised machine against another target

over the network.

These operations are typically implemented as separate malware modules,
which follow the initial exploit. A multi-stage dropper downloads them onto
the compromised machine over the network from another machine under threat
actor’s control. A single-stage dropper comes with these modules incorporated
in it. The dropper itself is downloaded over the network similarly to the malware
modules.

Redirecting Malware’s Target Selection with Decoy Processes 415

The Initial Exploit May Yield Partial or 0 Value. On several occasions,
the initial exploit may go undetected, consequently the malware operations ref-
erenced previously are the defender’s opportunity to detect the malware based
on its contact with decoys. A common case of this occurrence is when the initial
exploit leverages a 0-day vulnerability on a machine in production equipped with
decoy I/O. When targeting a honeypot, the same exploit is certainly detected
upfront. Nevertheless, as we wrote earlier in this paper, it is possible to avoid
making network contact with a honeypot on the basis of its lack of network
activity. Some initial exploits yield no value to the defender, as in our honeypot
experiment.

Withstanding Probes is of Significance. Decoy processes and their perfor-
mance consistency, along with other types of consistency, are decisive on whether
malware fall into a trap, or step away from a decoy target, erase themselves and
hence disappear even before the defender sees any cues at all. An ineffective
decoy results in none of the malware modules or even the dropper ever being
brought onto the machine.

Appendix B: Out of Scope

The deep learning in this work needs to be hidden and protected from malware,
otherwise threat actors may manipulate its computations and evade it. One
solution is to run the deep learning on a virtual machine (VM), which is managed
by a hypervisor and is isolated from the host machine. The overhead of a VM
solution needs to be carefully assessed. Another solution is to run the deep
learning on a hardware sideboard physically isolated from the host machine.
This other solution comes with an added cost, which could be kept as low as
under $50 with the right hardware design.

A honeypot’s lack of network activity can be leveraged remotely to avoid
attacking it. A threat actor operating on a compromised machine in production
may select the next targets to be only those machines that the compromised
machine is observed to communicate with. Since, by definition, no machine in
production communicates with a honeypot, the threat actor will never hit a
honeypot.

Because of room limitations, and to be able to describe the main contribution
thoroughly, we do not include these efforts in this paper.

Appendix C: Additional Related Works

Several related works use stealth techniques to hide computer resources. Hook-
ing, which prevents a request from accessing resource usage, and Direct Kernel
Object manipulation (DKOM), which manipulates specific data in the OS ker-
nel. Butler et al. described a non-hooking method to implement a device to hide
and unlinked processes in EPROCESS blocks on Microsoft Windows [5]. On
the other hand, Tsai et al. identified DKOM that can target all resources of an

416 S. Sutton et al.

object directory, and thus alter and hide kernel objects that are commonly used
by the OS in memory [18].

Jones et al. presented a technique to detect a virtual machine monitor
(VMM)-based process that is maliciously hidden. This technique uses cross view
validation, and then patches the executable code in order to affect its execu-
tion. The authors can detect any hidden processes that are running within a
guest virtual machine. Their technique leverages CPU inflation, which is the
CPU time consumed by each process within VMM and the guest operating sys-
tem [8]. Unlike all these related works that we just discussed, our research stands
out through the emphasis placed on creating a decoy process in EPROCESS to
appeal to a threat actor, while hiding the decoy process from legitimate users.

As far as resource utilization prediction goes, we also use machine learning
to predict performance parameters for a decoy process. However, our work is
different than related works. As we mentioned earlier in this paper, our app-
roach is load dependent. The other related works do not make load dependent
estimations. Secondly, our work leverages input categorization based on process
operations. Along with heatmap design and deep learning, these factors provide
for a high level of accuracy, which is adequate to withstand malware probes.

Malware have a history of validating their targets prior to carrying out their
operations. Some of these malware detect debuggers and/or virtual machines.
An active debuger may be indicative of an execution environment operated by
defenders in support of dynamic code analysis. Furthermore, a virtual execution
environment is commonly used to host honeypots [6]. Similarly, some malware
detect CPU emulators, which are also used for dynamic code analysis and hon-
eypots [15]. As we wrote earlier in this paper, no other works appear to leverage
OS-level performance data to detect decoys as of this writing.

References

1. Honeyprocs: Going beyond honeyfiles for deception on endpoints. https://
forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-
for-Deception-on-Endpoints/ba-p/385830. Accessed 23 Feb 2019

2. Metasploit framework. https://www.metasploit.com/. Accessed 23 Feb 2019
3. Performance counters. https://docs.microsoft.com/. Accessed 23 Feb 2019
4. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for

resources provisioning in cloud. J. Netw. Comput. Appl. 82(C), 93–113 (2017)
5. Butler, J., Undercoffer, J.L., Pinkston, J.: Hidden processes: the implication for

intrusion detection. In: IEEE Systems, Man and Cybernetics SocietyInformation
Assurance Workshop, 2003, West Point, NY, USA, pp. 116–121, June 2003

6. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.
In: Proceedings of the IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, pp. 177–186 (2008)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://forums.juniper.net/t5/Threat-Research/HoneyProcs-Going-Beyond-Honeyfiles-for-Deception-on-Endpoints/ba-p/385830
https://www.metasploit.com/
https://docs.microsoft.com/
http://www.deeplearningbook.org

Redirecting Malware’s Target Selection with Decoy Processes 417

8. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-
cess detection and identification using Lycosid. In: Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
New York, NY, USA, pp. 91–100 (2008)

9. Kwon, Y., et al.: Mantis: efficient predictions of execution time, energy usage,
memory usage and network usage on smart mobile devices. IEEE Trans. Mob.
Comput. 14(10), 2059–2072 (2015)

10. Lange, J., Iwanitz, F., Burke, T.: OPC - From Data Access to Unified Architecture.
VDE VERLAG GMBH, 4th edn. (2010)

11. Li, T., Tang, J., Xu, J.: Performance modeling and predictive scheduling for dis-
tributed stream data processing. IEEE Trans. Big Data 2(4), 353–364 (2016)

12. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, Washington, DC,
USA, pp. 495–504 (2010)

13. Miu, T., Missier, P.: Predicting the execution time of workflow activities based on
their input features. In: Proceedings of the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, Washington, DC, USA, pp. 64–72
(2012)

14. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate
execution time of scientific workflows on the cloud. In: 9th Workshop on Workflows
in Support of Large-Scale Science, pp. 11–19, November 2014

15. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1 1

16. Rrushi, J.: Phantom I/O projector: entrapping malware on machines in production.
In: 12th International Conference on Malicious and Unwanted Software (MAL-
WARE), Fajardo, Puerto Rico, USA, pp. 57–66, October 2017

17. Rrushi, J.: DNIC architectural developments for 0-knowledge detection of OPC
malware. IEEE Trans. Dependable Secure Comput. 1 (2018)

18. Tsaur, W.-J., Chen, Y.-C., Tsai, B.-Y.: A new windows driver-hidden rootkit based
on direct kernel object manipulation. In: Hua, A., Chang, S.-L. (eds.) ICA3PP
2009. LNCS, vol. 5574, pp. 202–213. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03095-6 21

https://doi.org/10.1007/978-3-540-75496-1_1
https://doi.org/10.1007/978-3-642-03095-6_21
https://doi.org/10.1007/978-3-642-03095-6_21

Author Index

Abdelsalam, Mahmoud 381
Aga, Misiker Tadesse 317
Alsuwat, Emad 3
Alsuwat, Hatim 3
Anderson, Charles 83
Aonzo, Simone 121
Asada, Maho 164
Asano, Yasuhito 143
Austin, Todd 317

Bezawada, Bruhadeshwar 23, 83
Böhm, Fabian 221

Cao, Yang 143, 164
Caputo, Davide 121

De la Cadena, Wladimir 240
Dietz, Marietheres 281

Engel, Thomas 240

Farkas, Csilla 3

Holoday, Colton 317
Hranický, Radek 43

Jajodia, Sushil 338

Kaiser, Daniel 240
Kar, Diptendu Mohan 61
Krishnan, Ram 381
Kröger, Jacob Leon 102

Labrinidis, Alexandros 261
Le Métayer, Daniel 177
Lee, Adam J. 261
Lištiak, Filip 43
Liu, Yanhong A. 359

Manfredi, Salvatore 201
Merlo, Alessio 121

Michilli, Garret 398
Mikuš, Dávid 43
Mitseva, Asya 240

Panchenko, Andriy 240
Pardo, Raúl 177
Pernul, Günther 221, 281
Puchta, Alexander 221
Putz, Benedikt 281

Ranise, Silvio 201
Raschke, Philip 102
Ray, Indrajit 23, 61
Ray, Indrakshi 83
Rose, John 3
Rrushi, Julian 398
Ryšavý, Ondřej 43

Sandhu, Ravi 301, 381
Sciarretta, Giada 201
Shakarami, Mehrnoosh 301
Shirazi, Hossein 83
Singhal, Anoop 338
Stoller, Scott D. 359
Sutton, Sara 398

Takagi, Shun 143
Thoma, Cory 261
Tiwary, Kushagra 23

Valtorta, Marco 3
Verderame, Luca 121

Wang, Lingyu 338

Xin, Yue 338

Yoshikawa, Masatoshi 143, 164

Zhang, Mengyuan 338

	Preface
	Organization
	Contents
	Attacks
	Detecting Adversarial Attacks in the Context of Bayesian Networks
	1 Introduction
	2 Problem Setting
	3 Long-Duration Data Poisoning Attacks
	4 Framework for Detecting Data Poisoning Attacks
	5 Empirical Results
	5.1 One-Step Data Poisoning Attacks
	5.2 Long-Duration Data Poisoning Attacks
	5.3 Discussion: Detecting Data Poisoning Attacks

	6 Related Work
	7 Conclusion and Future Work
	A Causative, Long-duration Model Invalidation Attacks
	References

	AGBuilder: An AI Tool for Automated Attack Graph Building, Analysis, and Refinement
	1 Introduction
	2 Attack Graph Modeling Using PDDL
	3 Our Approach for Automated Attack Graph Generation and Refinement
	3.1 Automatically Generating PDDL Domain from Natural Language Textual Descriptions
	3.2 Incremental Building and Refinement of the Attack Graph

	4 AGBuilder Modules
	4.1 Knowledge Base Components
	4.2 AGBuilder Processing Modules
	4.3 Working Example of Explanation Constructor

	5 Related Work
	6 Conclusion and Future Work
	References

	On Practical Aspects of PCFG Password Cracking
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Paper

	2 Background and Related Work
	3 Enhancements to PCFG
	3.1 Key Observations
	3.2 Long Base Structures
	3.3 Calculating the Number of Password Candidates
	3.4 The New PCFG Manager
	3.5 Grammar Filtering

	4 Experimental Results
	4.1 The Performance of PCFG Manager
	4.2 The Impact of PCFG Filtering
	4.3 Evaluation

	5 Conclusion
	References

	That's My DNA: Detecting Malicious Tampering of Synthesized DNA
	1 Introduction
	2 Limitations of Earlier Work and Current Contributions
	2.1 Cyclic Shifts and Reverse Complement
	2.2 Mutations in Identifying Tags
	2.3 Signature Length

	3 DNA Signature Generation and Verification Procedure
	4 Allowing Mutations in Start and End Tags
	5 New Identity-Based Signature Scheme with Shorter Signature Size
	6 Conclusion and Future Work
	References

	Mobile and Web Security
	Adversarial Sampling Attacks Against Phishing Detection
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Proposed Approach and Key Contributions

	2 Related Work
	2.1 Machine Learning for Phishing Detection
	2.2 Learning in Adversarial Context

	3 Threat Model
	3.1 Attacker's Goal
	3.2 Attacker's Knowledge
	3.3 Attacker Influence

	4 Adversarial Sampling for Phishing
	4.1 Defining the Dataset
	4.2 Selecting Features for Manipulation
	4.3 Adversary Cost
	4.4 Vulnerability Level

	5 Experiments and Results
	5.1 Used Datasets
	5.2 Exp-1: Evaluation of Datasets
	5.3 Generating Adversarial Samples
	5.4 Exp-2: Robustness of Learning Model
	5.5 Exp-3: Dataset Vulnerability Level
	5.6 Comparing the Results with Previous Experiments

	6 Conclusion and Future Work
	References

	Is My Phone Listening in? On the Feasibility and Detectability of Mobile Eavesdropping
	Abstract
	1 Introduction
	2 Threat Model
	3 Microphone-Based Eavesdropping
	3.1 Microphone Access Permission
	3.2 User Notifications and Visibility

	4 Motion Sensor-Based Eavesdropping
	4.1 Experimental Research Findings
	4.2 Sampling Frequency Limits
	4.3 Sensor Access Permissions and Energy Efficiency

	5 Existing Mitigation and Detection Techniques
	5.1 App Inspections Conducted by Ecosystem Providers
	5.2 App Inspections Conducted by the Research Community

	6 Ecosystem Providers as Potential Adversaries
	7 Technical and Economic Feasibility
	8 Unauthorized Access to Smartphones
	9 Discussion
	10 Conclusion
	References

	Droids in Disarray: Detecting Frame Confusion in Hybrid Android Apps
	1 Introduction
	2 Technical Background
	2.1 Frame Confusion

	3 A Frame Confusion Detection Methodology
	3.1 Vulnerability Blueprint
	3.2 Detection Algorithm

	4 The FCDroid tool
	4.1 Implementation Challenges
	4.2 FCDroid Architecture

	5 Experimental Results
	6 Attacking and Exploiting the Frame Confusion
	7 Related Work
	8 Conclusion
	References

	Privacy
	Geo-Graph-Indistinguishability: Protecting Location Privacy for LBS over Road Networks
	1 Introduction
	2 Preliminary and Problem Setting
	2.1 Geo-Indistinguishability geospsi
	2.2 Problem Statement

	3 Evaluating Privacy and Utility of Geo-Indistinguishability
	3.1 Empirical Privacy Evaluation
	3.2 Utility

	4 Geo-Graph-Indistinguishability
	4.1 Definition
	4.2 Graph Exponential Mechanism
	4.3 Analyzing the Relationship Between GeoI and GeoGI
	4.4 Discussion

	5 Experiments
	5.1 Privacy Protection Level of GEM
	5.2 Utility of GEM

	6 Related Work
	6.1 Location Privacy on a Road Network
	6.2 State-of-the-Art Privacy Models

	7 Conclusion and Future Work
	8 Appendix
	8.1 Proofs
	8.2 dX-privacy
	8.3 Pseudocode of GEM

	References

	``When and Where Do You Want to Hide?'' – Recommendation of Location Privacy Preferences with Local Differential Privacy
	1 Introduction
	2 Preliminaries
	2.1 Matrix Factorization
	2.2 Local Differential Privacy
	2.3 Definition of the Location Privacy Preference

	3 Recommendation Method
	3.1 Framework
	3.2 Addition of Noise

	4 Evaluation
	4.1 Overview
	4.2 Dataset
	4.3 Metrics
	4.4 Evaluation Process
	4.5 Results

	5 Conclusion
	References

	Analysis of Privacy Policies to Enhance Informed Consent
	1 Introduction
	2 The Privacy Policy Language Pilot
	2.1 Basic Definitions
	2.2 Abstract Syntax of Pilot Privacy Policies
	2.3 Example: Vehicle Tracking

	3 Abstract Execution Model
	3.1 System State
	3.2 System Events

	4 Risk Analysis
	4.1 Automatic Risk Analysis with SPIN
	4.2 Case Study: Vehicle Tracking
	4.3 Usability

	5 Related Work
	6 Conclusion
	A Policy Subsumption
	B Active Policies and Transfer Rules
	C Policy Join
	References

	Security Protocol Practices
	Lost in TLS? No More! Assisted Deployment of Secure TLS Configurations
	1 Introduction
	2 Background
	2.1 TLS
	2.2 Vulnerabilities

	3 Tools Comparison
	3.1 Mobile Clients

	4 Mitigations Identification
	5 TLSAssistant
	5.1 Architecture

	6 Experimental Evaluation
	6.1 Use-Case: CIE 3.0
	6.2 User Study

	7 Conclusions and Future Work
	A Post-questionnaire
	B Report snippet
	References

	Contributing to Current Challenges in Identity and Access Management with Visual Analytics
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 IAM Challenges
	3.1 Approach for Identifying Challenges
	3.2 Literature Survey
	3.3 Practitioner's View
	3.4 IAM Challenges

	4 Applying Visual Analytics to IAM
	4.1 Data Sources
	4.2 Data Preparation
	4.3 Data Visualization

	5 Exemplary Use Cases
	5.1 Identities Not Managed Within a Central IAM (C1, C4)
	5.2 Identities with an Unusual Number of Entitlements (C3)
	5.3 Poor Data Quality in IAM Data (C4)

	6 Conclusion
	References

	Analysis of Multi-path Onion Routing-Based Anonymization Networks
	1 Introduction
	2 Related Work
	3 Multi-path in Anonymization Systems
	3.1 Conflux
	3.2 mTor
	3.3 MORE
	3.4 mUDP-OR

	4 Classifying Design Choices
	4.1 Traffic Management
	4.2 Circuit Construction
	4.3 Path Selection

	5 Performance Evaluation
	5.1 Private Local Network Experiment
	5.2 Larger-Scale Experiment
	5.3 Design Recommendations

	6 Anonymity Analysis
	6.1 Client Multi-path Circuits Compromise
	6.2 Using Multiple Entry Onion Routers

	7 Conclusions and Future Work
	References

	Distributed Systems
	Shoal: Query Optimization and Operator Placement for Access Controlled Stream Processing Systems
	1 Introduction
	2 Background and System Model
	2.1 Background on DDSPSs
	2.2 Access Controls

	3 Problem Description
	3.1 Problem Description
	3.2 Optimize-then-place Approach

	4 The Shoal Optimizer
	4.1 Online Optimization Approach
	4.2 Greedy and Hybrid Approaches
	4.3 Example

	5 Evaluation
	5.1 Online Optimizer
	5.2 Comparison to the State-of-the-Art

	6 Related Work
	7 Conclusion
	References

	A Distributed Ledger Approach to Digital Twin Secure Data Sharing
	1 Introduction
	2 Background
	3 Problem Statement
	3.1 Digital Twin Model
	3.2 A Formal Basis for Secure Digital Twin Data Sharing
	3.3 Requirements for Secure DT Data Sharing

	4 Solution Architecture
	4.1 Technology Selection
	4.2 System Architecture
	4.3 Data Storage
	4.4 Capabilities
	4.5 Setup Process

	5 Use Case
	5.1 Setting
	5.2 Framework Iteration
	5.3 Results

	6 Evaluation
	6.1 Requirements Fulfillment
	6.2 Discussion

	7 Conclusion
	References

	Refresh Instead of Revoke Enhances Safety and Availability: A Formal Analysis
	1 Introduction
	2 Related Work
	3 System Model and Assumptions
	3.1 Refresh Vs. Revocation
	3.2 System Assumptions

	4 Consistency Levels Formal Characterization
	4.1 Preliminaries
	4.2 Interval Consistency
	4.3 Interval Consistency with Request Time
	4.4 Forward-Looking Consistency

	5 Limitations and Practical Issues
	6 Conclusion
	References

	Source Code Security
	Wrangling in the Power of Code Pointers with ProxyCFI
	1 Introduction
	1.1 Contributions of This Paper

	2 Protecting Control Flow with ProxyCFI
	2.1 Threat Model
	2.2 Pointer Proxies
	2.3 Building Code with Pointer Proxies
	2.4 Load-Time Program Verifier
	2.5 Deterring CFG Mimicry Attacks
	2.6 Shared Libraries with Pointer Proxies

	3 ProxyCFI in GNU GCC
	3.1 Compilation Flow
	3.2 ProxyCFI Optimizations

	4 Evaluation
	4.1 Evaluation Framework
	4.2 Performance Analysis
	4.3 Security Analysis

	5 Related Work
	6 Conclusion
	A Redis-benchmark Results Breakdown
	References

	CASFinder: Detecting Common Attack Surface
	1 Introduction
	2 Preliminaries
	2.1 Motivating Example
	2.2 Background

	3 The Model of Common Attack Surface
	3.1 Conditional Common Attack Surface (CCAS) Metric
	3.2 Probabilistic Common Attack Surface Metric

	4 Design and Implementation
	5 Experiments
	5.1 Dataset
	5.2 Cross-Category Common Attack Surface
	5.3 Common Attack Surface in the Same Category

	6 Related Work
	7 Conclusion
	References

	Algorithm Diversity for Resilient Systems
	1 Introduction
	2 Background on DistAlgo
	3 Creating Variants Using Incrementalization
	4 Synchronized Execution for DistAlgo
	5 Diversity Metrics and Runtime Monitoring Tools
	5.1 Code Diversity
	5.2 Trace Diversity
	5.3 Input Access Diversity

	6 Evaluation
	6.1 Sequential Algorithms
	6.2 Distributed Algorithms

	7 Related Work
	7.1 Evaluation of Diversity Techniques

	References

	Malware
	Online Malware Detection in Cloud Auto-scaling Systems Using Shallow Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Key Intuition
	4 Methodology
	4.1 Malware Detection in Multiple VMs Using Single Samples (MVSS)
	4.2 Malware Detection in Multiple VMs Using Paired Samples (MVPS)

	5 Experiment Setup and Results
	5.1 CNN Model Architecture
	5.2 Experimental Setup
	5.3 Evaluation
	5.4 MVSS and MVPS Results

	6 Conclusion and Future Work
	References

	Redirecting Malware's Target Selection with Decoy Processes
	1 Introduction
	2 Honeypot Experiment
	3 Decoy Processes
	4 Performance Support for a Decoy Process
	4.1 Heatmaps
	4.2 Deep Learning of Performance Fingerprints

	5 Experimental Testing and Validation
	6 Related Work
	7 Conclusions
	References

	Author Index

