
Supervised and
Unsupervised
Learning for Data
Science

Michael W. Berry
Azlinah Mohamed
Bee Wah Yap Editors

Unsupervised and Semi-Supervised Learning
Series Editor: M. Emre Celebi

Unsupervised and Semi-Supervised Learning

Series Editor

M. Emre Celebi, Computer Science Department, Conway, Arkansas, USA

Springer’s Unsupervised and Semi-Supervised Learning book series covers the
latest theoretical and practical developments in unsupervised and semi-supervised
learning. Titles – including monographs, contributed works, professional books, and
textbooks – tackle various issues surrounding the proliferation of massive amounts
of unlabeled data in many application domains and how unsupervised learning
algorithms can automatically discover interesting and useful patterns in such
data. The books discuss how these algorithms have found numerous applications
including pattern recognition, market basket analysis, web mining, social network
analysis, information retrieval, recommender systems, market research, intrusion
detection, and fraud detection. Books also discuss semi-supervised algorithms,
which can make use of both labeled and unlabeled data and can be useful in
application domains where unlabeled data is abundant, yet it is possible to obtain a
small amount of labeled data.

Topics of interest in include:

− Unsupervised/Semi-Supervised Discretization
− Unsupervised/Semi-Supervised Feature Extraction
− Unsupervised/Semi-Supervised Feature Selection
− Association Rule Learning
− Semi-Supervised Classification
− Semi-Supervised Regression
− Unsupervised/Semi-Supervised Clustering
− Unsupervised/Semi-Supervised Anomaly/Novelty/Outlier Detection
− Evaluation of Unsupervised/Semi-Supervised Learning Algorithms
− Applications of Unsupervised/Semi-Supervised Learning

While the series focuses on unsupervised and semi-supervised learning,
outstanding contributions in the field of supervised learning will also be considered.
The intended audience includes students, researchers, and practitioners.

More information about this series at http://www.springer.com/series/15892

http://www.springer.com/series/15892

Michael W. Berry • Azlinah Mohamed
Bee Wah Yap
Editors

Supervised and Unsupervised
Learning for Data Science

123

Editors
Michael W. Berry
Department of Electrical Engineering
and Computer Science
University of Tennessee at Knoxville
Knoxville, TN, USA

Azlinah Mohamed
Faculty of Computer & Mathematical
Sciences
Universiti Teknologi MARA
Shah Alam, Selangor, Malaysia

Bee Wah Yap
Advanced Analytics Engineering Centre,
Faculty of Computer
and Mathematical Sciences
Universiti Teknologi MARA
Shah Alam, Selangor, Malaysia

ISSN 2522-848X ISSN 2522-8498 (electronic)
Unsupervised and Semi-Supervised Learning
ISBN 978-3-030-22474-5 ISBN 978-3-030-22475-2 (eBook)
https://doi.org/10.1007/978-3-030-22475-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22475-2

Preface

Supervised and unsupervised learning algorithms have shown a great potential
in knowledge acquisition from large data sets. Supervised learning reflects the
ability of an algorithm to generalize knowledge from available data with target or
labeled cases so that the algorithm can be used to predict new (unlabeled) cases.
Unsupervised learning refers to the process of grouping data into clusters using
automated methods or algorithms on data that has not been classified or categorized.
In this situation, algorithms must “learn” the underlying relationships or features
from the available data and group cases with similar features or characteristics.
When small amounts of labeled data are available, the learning is specified as
“semi-supervised.” This volume provides both foundational knowledge for novice
or beginning researchers in machine learning and new techniques for improving
both the accuracy and computational complexity of supervised and unsupervised
learning in the context of relevant and practical applications.

Part I of this volume is dedicated to the discussion of state-of-the-art algorithms
used in supervised and unsupervised learning paradigms. In Chap. 1, Alloghani et al.
provide a systematic literature review of scholarly articles published between 2015
and 2018 that address or implement supervised and unsupervised machine learning
techniques in different problem-solving paradigms. In Chap. 2, C. Lursinsap
addresses recent approaches to overcome commonly observed problems in big data
analytics, such as data overflow, uncontrollable learning epochs, arbitrary class
drift, and dynamic imbalanced class ratios. In Chap. 3, T. Panitanarak discusses
recent improvements in the performance of graph-based shortest path algorithms
that are commonly used in machine learning. Finally, in Chap. 4, R. Lowe and M.
Berry illustrate the use of tensor-based algorithms for the unsupervised learning of
influence in text-based media.

Part II of this volume highlights the various applications of learning algorithms
including cancer diagnosis, social media and text mining, and prediction of stress-
strain parameters in civil engineering. In Chap. 5, Prasetyo et al. demonstrate the
use of support vector machines (SVMs) in cancer survival data analysis. In Chap. 6,
D. Martin et al. discuss the use of latent semantic analysis (LSA) for unsupervised
word sense disambiguation in textual documents. In Chap. 7, Pornwattanavichai

v

http://dx.doi.org/10.1007/978-3-030-22475-2_1
http://dx.doi.org/10.1007/978-3-030-22475-2_2
http://dx.doi.org/10.1007/978-3-030-22475-2_3
http://dx.doi.org/10.1007/978-3-030-22475-2_4
http://dx.doi.org/10.1007/978-3-030-22475-2_5
http://dx.doi.org/10.1007/978-3-030-22475-2_6
http://dx.doi.org/10.1007/978-3-030-22475-2_7

vi Preface

et al. explain how hybrid recommendation systems with latent Dirichlet analysis
(LDA) can improve the unsupervised topic modeling of tweets. Finally, in Chap.
8, Jebura et al. demonstrate the use of artificial neural networks (ANNs) to predict
nonlinear hyperbolic soil stress-strain relationship parameters in civil engineering
models.

Some of the research described in this volume was supported by the US
Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Robinson Pino, program manager, under contract number DE-AC05-
00OR22725.

Knoxville, TN Michael W. Berry
Shah Alam, Selangor, Malaysia Bee Wah Yap
Shah Alam, Selangor, Malaysia Azlinah Mohamed

http://dx.doi.org/10.1007/978-3-030-22475-2_8

Contents

Part I Algorithms

1 A Systematic Review on Supervised and Unsupervised Machine
Learning Algorithms for Data Science . 3
Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina,
Abir Hussain, and Ahmed J. Aljaaf

2 Overview of One-Pass and Discard-After-Learn Concepts
for Classification and Clustering in Streaming Environment
with Constraints . 23
Chidchanok Lursinsap

3 Distributed Single-Source Shortest Path Algorithms
with Two-Dimensional Graph Layout . 39
Thap Panitanarak

4 Using Non-negative Tensor Decomposition for Unsupervised
Textual Influence Modeling . 59
Robert E. Lowe and Michael W. Berry

Part II Applications

5 Survival Support Vector Machines: A Simulation Study and Its
Health-Related Application . 85
Dedy Dwi Prastyo, Halwa Annisa Khoiri, Santi Wulan Purnami,
Suhartono, Soo-Fen Fam, and Novri Suhermi

6 Semantic Unsupervised Learning for Word Sense Disambiguation 101
Dian I. Martin, Michael W. Berry, and John C. Martin

vii

viii Contents

7 Enhanced Tweet Hybrid Recommender System Using
Unsupervised Topic Modeling and Matrix Factorization-Based
Neural Network . 121
Arisara Pornwattanavichai, Prawpan Brahmasakha na sakolnagara,
Pongsakorn Jirachanchaisiri, Janekhwan Kitsupapaisan,
and Saranya Maneeroj

8 New Applications of a Supervised Computational Intelligence
(CI) Approach: Case Study in Civil Engineering . 145
Ameer A. Jebur, Dhiya Al-Jumeily, Khalid R. Aljanabi,
Rafid M. Al Khaddar, William Atherton, Zeinab I. Alattar,
Adel H. Majeed, and Jamila Mustafina

Index . 183

Part I
Algorithms

Chapter 1
A Systematic Review on Supervised
and Unsupervised Machine Learning
Algorithms for Data Science

Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain,
and Ahmed J. Aljaaf

1.1 Introduction

The demand for advanced data analytics leading to the use of machine learning
and other emerging techniques can be attributed to the advent and subsequent
development of technologies such as Big Data, Business Intelligence, and the
applications that require automation. As Sandhu [1] explains, machine learning
is a subset of artificial intelligence, which uses computerized techniques to solve
problems based on historical data and information without unnecessarily requiring
modification in the core process. Essentially, artificial intelligence involves cre-
ation of algorithms and other computation techniques that promote smartness of
machines. It encompasses algorithms that think, act, and implement tasks using
protocols that are otherwise beyond human’s reach.

M. Alloghani (�)
Applied Computing Research Group, Liverpool John Moores University, Liverpool, UK

Abu Dhabi Health Services Company (SEHA), Abu Dhabi, UAE
e-mail: M.AlLawghani@2014.ljmu.ac.uk; mloghani@seha.ae

D. Al-Jumeily · A. Hussain
Applied Computing Research Group, Liverpool John Moores University, Liverpool, UK

J. Mustafina
Kazan Federal University, Kazan, Russia
e-mail: dnmustafina@kpfu.ru

A. J. Aljaaf
Applied Computing Research Group, Liverpool John Moores University, Liverpool, UK

Centre of Computer, University of Anbar, Anbar, Iraq
e-mail: A.J.Kaky@ljmu.ac.uk; a.j.aljaaf@uoanbar.edu.iq

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_1&domain=pdf
mailto:M.AlLawghani@2014.ljmu.ac.uk
mailto:mloghani@seha.ae
mailto:dnmustafina@kpfu.ru
mailto:A.J.Kaky@ljmu.ac.uk
mailto:a.j.aljaaf@uoanbar.edu.iq
https://doi.org/10.1007/978-3-030-22475-2_1

4 M. Alloghani et al.

Machine learning is a component of artificial intelligence although it endeavors
to solve problems based on historical or previous examples [2]. Unlike artificial
intelligence applications, machine learning involves learning of hidden patterns
within the data (data mining) and subsequently using the patterns to classify or
predict an event related to the problem [3]. Simply, intelligent machines depend
on knowledge to sustain their functionalities and machine learning offers such a
knowledge. In essence, machine learning algorithms are embedded into machines
and data streams provided so that knowledge and information are extracted and
fed into the system for faster and efficient management of processes. It suffices
to mention that all machine learning algorithms are also artificial intelligence
techniques although not all artificial intelligence methods qualify as machine
learning algorithms.

Machine learning algorithms can either be supervised or unsupervised although
some authors also classify other algorithms as reinforcement, because such tech-
niques learn data and identify pattern for the purposes of reacting to an environment.
However, most articles recognize supervised and unsupervised machine learning
algorithms. The difference between these two main classes is the existence of
labels in the training data subset. According to Kotsiantis [4], supervised machine
learning involves predetermined output attribute besides the use of input attributes.
The algorithms attempt to predict and classify the predetermined attribute, and
their accuracies and misclassification alongside other performance measures is
dependent on the counts of the predetermined attribute correctly predicted or
classified or otherwise. It is also important to note the learning process stops
when the algorithm achieves an acceptable level of performance [5]. According
to Libbrecht and Noble [2], technically, supervised algorithms perform analytical
tasks first using the training data and subsequently construct contingent functions for
mapping new instance of the attribute. As stated previously, the algorithms require
prespecifications of maximum settings for the desired outcome and performance
levels [2, 5]. Given the approach used in machine learning, it has been observed
that training subset of about 66% is rationale and helps in achieving the desired
result without demanding for more computational time [6]. The supervised learning
algorithms are further classified into classification and regression algorithms [3, 4].

Conversely, unsupervised data learning involves pattern recognition without the
involvement of a target attribute. That is, all the variables used in the analysis are
used as inputs and because of the approach, the techniques are suitable for clustering
and association mining techniques. According to Hofmann [7], unsupervised learn-
ing algorithms are suitable for creating the labels in the data that are subsequently
used to implement supervised learning tasks. That is, unsupervised clustering
algorithms identify inherent groupings within the unlabeled data and subsequently
assign label to each data value [8, 9]. On the other hand, unsupervised association
mining algorithms tend to identify rules that accurately represent relationships
between attributes.

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 5

1.1.1 Motivation and Scope

Even though both supervised and unsupervised algorithms are widely used to
accomplish different data mining tasks, the discussion of the algorithms has been
mostly done singly or grouped depending on the need of learning tasks. More
importantly, literature reviews that have been conducted to account for supervised
and unsupervised algorithms either handle supervised techniques or unsupervised
ones with limited focus on both approaches in the same. For instance, Sandhu [1]
wrote a review article on machine learning and natural language processing but
focused on supervised machine learning. The author did not conduct a systematic
review and, as such, the article does not focus on any specific period or target any
given database. Baharudin et al. [10] also conducted a literature review on machine
learning techniques though in the context of text data mining and did not implement
any known systematic review methodology. Praveena [11] also conducted a review
of papers that had implemented supervised learning algorithms and, as such, did
implement any of the known systematic review approaches. However, Qazi et al.
[12] conducted a systematic review although with a focus on the challenges that
different authors encountered while implementing different classification techniques
in sentimental analysis. The authors reviewed 24 papers that were published
between 2002 and 2014 and concluded that most review articles published during
the period focused on eight standard machine learning classification techniques for
sentimental analysis along with other concept learning algorithms. Unlike these
reviews, the systematic review here conducted focused on all major stand-alone
machine learning algorithms, both supervised and unsupervised published during
the 2015–2018 period.

1.1.2 Novelty and Review Approach

The systematic review relied on Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) tool to review studies that have used different
supervised and unsupervised learning algorithms to address different issues [13].
The approach used in the search was such that different papers published between
2013 and 2018 dealing with the use of machine learning algorithms as methods
of data analysis were included. The identification and subsequent inclusion and
exclusion of the articles reviewed was based on whether the paper is peer-reviewed,
scholarly, full-text, and year of publication that ranges between 2015 and 2018 [13–
15]. The search was conducted on EBSCO and ProQuest Central Databases. The
search queries used are as follows, and they were implemented in the two databases.
In conventional PRISMA review, it is a requirement to check and identify the search
criteria in the title and the structure of the abstract alongside introduction (rationale
and objectives) and methods including information sources, data items, summary
measures, and synthesis results [16]. However, such an approach was adopted, and

6 M. Alloghani et al.

Table 1.1 Summary of the queries used to search ProQuest Central and EBSCO databases

Query

(“Machine learning”) AND (Supervised Learning AND Unsupervised Learning)
(“Data mining”) AND (Supervised machine learning algorithms)
(“Supervised Machine Learning”) AND (“Unsupervised Machine Learning”)

applied to published articles instead of being implemented on review articles. Table
1.1 summarizes the search queries that were run in the two databases.

The inclusion criteria deferred for both databases with EBSCO relying on date of
publication and full-text to narrow the search, while ProQuest Central search filters
included Abstract (AB), Document Text (FT), Document Title (TI), and Publication
Title (PUB). An instance of search implemented in ProQuest Central with some of
the above criteria is as shown below.

ft(Supervised machine learning) AND ft(Unsupervised machine
learning) OR ti(Supervised machine learning) AND ti(Unsupervised
machine learning) OR pub(Supervised machine learning) AND
pub(Unsupervised machine learning)

1.2 Search Results

The search and screening results based on PRISMA and elements of meta-analysis
are presented in the following section. The major steps used to arrive at the final
articles and subsequent analysis included screening (rapid title screening), full test
screening, data extraction including extraction of the characteristics of the study,
and meta-analysis based on specific check lists and aspects of the machine learning
algorithm used.

1.2.1 EBSCO and ProQuest Central Database Results

The search results obtained from the two databases before the commencement of
the review process were as follows. The EBSCO search identified 144 articles that
were published between 2015 and 2018. Of the 144 documents, 74 had complete
information including name of authors, date of publication, name of journal, and
structured abstracts. However, only 9 of the 74 articles had full-text and, as such,
selected for inclusion in the review process. As for the search results from ProQuest
Central, the initial search yielded over 19,898 results, but application of the filters
reduced 3301 articles, of which 42 were reviews and 682 covered classification
techniques, while 643 covered or had information related to algorithms in general.
However, the subject alignment of the research papers was not considered because
of the wide spectrum of application of the algorithms such that both supervised

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 7

Fig. 1.1 The distribution of ProQuest Central Search Results as per the top ten publication titles
(journals)

and unsupervised methods were also applied in other subjects. The distribution the
search result based on top ten journals is as shown in Fig. 1.1.

Figure 1.1 shows that PloS One had the highest number of articles published
on supervised and unsupervised machine learning. Sensors and Scientific Reports
(Nature Publisher Group) had 213 and 210 articles. Multimedia Tools and Appli-
cations (172), Remote Sensing (150), and International Journal of Computer Vision
(124) had over 100 articles. Even though Mathematics Problems in Engineering
and Internal Computer Vision had 61 and 58 articles, the two publications were
better placed at exploring the mathematical and algorithmic aspects of supervised
and unsupervised machine learning algorithms. The inclusion and exclusion criteria
focused on the algorithms as well as their mathematical discourse and application
in different fields.

Based on the PRISMA checklist, a total of 84 articles were included in the study
and their content analyzed for the implementation of supervised and unsupervised
machine learning techniques.

The final number of articles used in the review is 84, although 20 of them under-
went meta-analysis when each study was vetted for clarity of the objectives and
study questions. Regarding study questions and the effectiveness of the approached
used to implement the chosen machine learning algorithms resulted in exclusion of
1290 articles (Fig. 1.2). The rest (1985) met the required study question criteria but
also screened for the comprehensiveness of the literature search, data abstraction,
evaluation of the results, and the applicability of results [17–19]. It is imperative to
note that publication bias and disclosure of funding sources were not considered as
part of the screen process. The 84 articles met these meta-analysis requirements and
were subsequently included in the analysis (Fig. 1.2).

8 M. Alloghani et al.

Fig. 1.2 The PRISMA flow diagram for the search conducted on ProQuest Central and EBSCO
and the final number of studies included the analysis

It is crucial to note that of the 84 articles that were included in the study, 3 were
published in 2013 and 3 were published in 2014 but were not filtered out by the data
of publication restriction.

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 9

2015 2016

5

25

31

17

Year of Publication

N
u

m
b

er
 o

f
A

rt
ic

le
s

2017 2018

Fig. 1.3 Distribution of articles based on year of publication

1.2.2 Distribution of Included Articles

The articles used in the study consisted of Feature, Journal Articles, General
Information, Periodical, and Review types with a distribution represented in the
following chart.

From Fig. 1.3, 78 articles were published between 2015 and 2018, while the
missing articles were published in 2013 [20–22] and 2014 [23–25] and their
inclusion can be associated to publication biasness, which is also observed in the
type of documents or study. According to the search, inclusion, and inclusion
criteria, the final results ought to have only journal articles, but others were features,
general information, periodicals, and reviews. The six papers that were published
between 2013 and 2014 were included, because they met all the criteria required
for meta-analysis and the indexed meta-data showed that the papers were published
in 2015. Regarding the misinformation, we can deduce that the publications had an
inaccuracy of about 7.2%.

1.3 Discussion

The 84 articles discussed different supervised and unsupervised machine learning
techniques without necessarily making the distinction. According to Praveena [11],
supervised learning requires an assistance born out of experience or acquired
patterns within the data and, in most cases, involves a defined output variable [26–
30]. The input dataset is segregated into train and test subsets, and several papers
address the concept of training datasets based on the desired outcome [31–34]. All
the algorithms that use supervised learning approach acquire patterns within the

10 M. Alloghani et al.

training dataset and subsequently apply them to the test subset with the object of
either predicting or classifying an attribute [35–37]. Most of the authors described
the workflow of a supervised machine learning and, as it also emerged from the
review, decision tree, Naïve Bayes, and Support Vector Machines are the most
commonly used algorithms [8, 38–42].

1.3.1 Decision Tree

It is important to recall that supervised learning can either be based on a classi-
fication or regression algorithm, and decision tree algorithm can be used as both
although it is mainly used for classification as noted in these articles [20, 43–45].
The algorithm emulates a tree, and it sorts attributes through groupings based on
data values [46]. Just like a conventional tree, the algorithm has branches and nodes
with nodes representing variable group for classification and branches, assuming
the values that the attribute can take as part of the class [47, 48]. The pseudocode
illustrating the decision tree algorithm is as shown below. In the algorithm, D is the
dataset, while x and y are the input and target variables, respectively [49, 50].

Algorithm 1.1: Decision Tree

Protocol DT Inducer (D, x, y)

1. T = Tree Growing (D, x, y)
2. Return Tree Pruning (D, T)

Method Tree Growing (D, x, y)

1. Create a tree T
2. if at least one of the Stopping Criteria is satisfied then;
3. label the root node as a leaf with the most frequent value of y in D as

the correct class.
4. else;
5. Establish a discrete function f(x) of the input variable so that splitting

D according to the functions outcomes produces the best splitting
metric

6. if the best metric is greater or equal to the threshold then;
7. Mark the root node in T as f(x)
8. for each outcome of f(x) at the node do;
9. Subtree = T ree Growing

(
δf (x)=t1 ,D, x, y

)

10. Connect the root of T to Subtree and label the edge t1
11. end for
12. else
13. Label the root node T for a leaf with the frequent value of y in D as

the assigned class
14. end if

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 11

15. end if
16. Return T

Protocol Tree Pruning (D, T, y)

1. repeat
2. Select a node t in T to maximally improve pruning evaluation procedure
3. if t �= 0 then;
4. T = pruned (T, t)
5. end if
6. until t = 0
7. Return T

As illustrated in the pseudocode, Decision Tree achieves classification in three
distinct steps. Firstly, the algorithm induces both tree growing and tree pruning
functionalities [51]. Secondly, it grows the tree by assigning each data value to a
class based on the value of the target variable that is the most common one at the
instance of iteration [52, 53]. The final step deals with pruning the grown tree to
optimize the performance of the resultant model [19, 53, 54]. Most of the reviewed
studies involved application of decision trees for different applications, although
most involved classification cancer and lung cancer studies, clinical medicine
especially diagnosis of conditions based on historical data as well as some rare
forms of artificial intelligence applications [40, 52, 55–57]. Most of the studies have
also recognized decision tree algorithms to be more accurate when dealing with data
generated using the same collection procedures [43, 44, 52].

1.3.2 Naïve Bayes

The Naïve Bayes algorithm has gained its fame because of its background on
Bayesian probability theorem. In most texts, it is considered a semisupervised
method, because it can be used either in clustering or classification tasks [58, 59].
When implemented as a technique for creating clusters, Naïve Bayes does not
require specification of an outcome and it uses conditional probability to assign
data values to classes and, as such, is a form of unsupervised learning [47, 60–
62]. However, when used to classify data, Naïve Bayes requires both input and
target variables and, as such, is a supervised learning technique [55, 63, 64]. As a
classifier, the algorithm creates Bayesian networks, which are tree generated based
on the condition probability of an occurrence of an outcome based on probabilities
imposed on it by the input variables [65, 66]. The pseudocode for the Naïve Bayes
algorithm is presented below [49, 67, 68].

12 M. Alloghani et al.

Algorithm 1.2: Naïve Bayes Learner

Input: training set Ts, Hold-out set Hs, initial components, Ic, and convergence
thresholds ρEM and ρadd

Initial M using one component
I ← Ic.
repeat

Add I components to M thereby initializing M using random
components drawn from the training set Ts
Remove the I initialization instances from Ts
repeat

E-step: Proportionally assign examples in Ts to resultant mixture
component using M
M-Step: Calculate maximum likelihood parameters using the input

data.
if log P (Hs/M) is the best maximum probability, then save M in
Mbest
every 5 cycles of the two steps, prune low-weight components of M

until P (Hs/M) fails to increase by the ratio ρEM
M←Mbest
Prune low weight components of M
I ← 2I.

until P (Hs/M) fails to increase by the ratio ρadd
Execute both E: step and M: step twice on Mbest using examples from Hs

and Ts
Return M←Mbest

As the pseudocode illustrates, Naïve Bayes algorithm relies on Bayes’ theorem
represented mathematical below to assign independent variables to classes based on
probability [31, 58].

P (H |D) = P(H)P (D|H)

P (D)
(1.1)

In Eq. (1.1), the probability of H when the probability of D is known is defined
in terms of the product probability of H, probability of D given the probability of
H divided by the probability of D. The H and D are events with defined outcome
and they can represent Heads and Tails in coil tossing experiments [12, 45, 69, 70].
The extension of the theorem in supervised learning is of the form represented in
Eq. (1.2).

P (H |D) = P (xi, . . . , xn|H) =
∏

i

P (xi |H) (1.2)

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 13

In the above equation, xi, . . . , xn represents the input attribute, for which
conditional probabilities are computed based on the known probabilities of the
target variables in the training dataset [71–73]. The algorithm has been discussed
in different contexts and its application is mainly attributed to the creation of data
labels for subsequent unsupervised learning verifications [16, 74, 75].

1.3.3 Support Vector Machine

The support vector machines (SVMs) algorithm was also common among the
search results articles. The articles that explored the applications of SVM did so
with the objective of evaluating its performance in different scenarios [30, 58,
73, 76]. All the applications of SVM are included toward classification and the
tenet of the algorithm is computation of margins [53, 77, 78]. Simply, SVM draws
margins as boundary between the classes in the provided dataset. Its principle is
to create the margins such that the distance between each class and the nearest
margin is maximized and in effect leading to the minimum possible classification
error [68, 78–80]. The margins are defined as the distance between two supporting
vectors separated by a hyperplane. The pseudocode for the SVM algorithm is as
demonstrated below. The algorithm assumes that the data are linearly separable so
that the weight associated with support vectors can be drawn easily and the margin
computed [62, 70]. The assumption makes regularization possible [49, 81].

Algorithm 1.3: Support Vector Machine

Input: S, λ, T, k
Initialize: Choose w1 such that ‖w1‖ ≤ √

λ

FOR t = 1,2 . . . ,T
Select At ⊆ S, in which |At| = k
Set A+

t = {(x, y) ∈ At : y (wt , x) < 1}
Set δt = 1

λt

Set wt+0.5 = (1 − δtλ)wt + δt
k

∑
(x,y)∈A+

t
yx

Set wt+1 =
{

1,
1/

√
λ

‖wt+0.5‖
}

wt+0.5

Output: wT + 1

The implementation of the algorithm and its accuracy is dependent on its ability
to margin violations and subsequent misclassification of classes on either side of the
vectors. The margin is based on the following set of equations:

WTx + b = 1
WTx + b = 0

WTx + b = −1
(1.3)

14 M. Alloghani et al.

In Eq. (1.3), the three sets of equation describe the hyperplane separating two
linear support vectors WTx + b = 1 and WTx + b = − 1, and all the classes
within the two support vectors are classified accurately, while those outside the
support vectors violate the margin [25, 81, 82]. Consequently, the larger the distance
between the support vectors, the higher the chances that points are correctly
classified.

As for unsupervised learning algorithms, most of the studies either discussed,
cited, or implemented k-means, hierarchical clustering, and principal component
analysis, among others [20, 55, 73, 83, 84]. Unlike supervised learning, unsuper-
vised learning extract limited features from the data, and it relies on previously
learned patterns to recognize likely classes within the dataset [85, 86]. As a result,
unsupervised learning is suitable for feature reduction in case of large dataset and
clustering tasks that lead to the creation of new classes in unlabeled data [80, 87,
88]. It entails selection and importation of data into appropriate framework followed
by selection of an appropriate algorithm, specification of thresholds, review of the
model, and subsequent optimization to produce desired outcome [89, 90]. Of the
many unsupervised learners, k-means was widely discussed among the authors and
as such was also previewed in the review.

1.3.4 k-Means Algorithms

The algorithm has been used in different studies to create groups or classes in
unlabeled datasets based on the mean distance between classes [91, 92]. The
technique initiates and originates the classes or labels that are subsequently used
in other prospective analysis [69]. A pseudocode for the k-means algorithm is as
shown in the illustration below [15, 61].

Algorithm 1.4: k-Means Learner

Function k-means ()
Initialize k prototypes (w1 . . . , wk) so that the weighted distance between

the clusters becomes wj = il,j ∈ {1, . . . , k},l ∈ {1, . . . , n}
Associate each cluster Cj with the prototype weight wj
Repeat

for each input vector il;,l ∈ {1, . . . , n}
do

Assign il to cluster Cj∗ with the nearest wj∗
for each cluster Cj∗ : j ∈ {1, . . . , k}, do;

Update the prototype wj to be centroid of the sample
observations in the current Cj∗ ; wj = ∑

il∈cj
il/

∣∣Cj

∣∣

Calculate the error function

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 15

E =
k∑

j=1

∑

il∈Cj

∣∣il − wj

∣∣2

until E becomes constant or does not change significantly.

The pseudocode demonstrates the process of assigning data values to classes
based on their proximity to the nearest mean with the least error function [93–96].
The error function is computed as the difference between the mean and the assigned
cluster mean [97, 98].

1.3.5 Semisupervised and Other Learners

Even though the search was focused and narrowed down to supervised and
unsupervised learning techniques, it emerged that research preferred using dif-
ferent methods for the purposes of comparing the results and verification of the
classification and prediction accuracy of the machine learning models [75, 99,
100]. Some of the studies used supervised and unsupervised machine learning
approaches alongside reinforcement learning techniques such as generative models,
self-training algorithms, and transudative SVM [101–103]. Other studies focused
on ensemble learning algorithms such as boosting and bagging, while other studies
defined different perceptions related to neural networks. [59, 66, 104–107]. Finally,
some of the studies addressed algorithms such as k-Nearest Neighbor as an instance-
based learning but could not categorize it as either supervised or unsupervised
machine learning algorithm because of the limitations of the applications [41, 108–
110].

1.4 Conclusion and Future Work

Even though the search results yielded over 3300 qualified papers, the filtering
processes based on title screening, abstract screening, full text screening, and data
extraction coupled with meta-analysis reduced the number of articles to 84. Despite
the narrowing the search results to supervised and unsupervised machine learning
as key search words, the results contained articles that addressed reinforced learners
and ensembled learners among other techniques that review did not focus. The trend
is understandable, because machine learning and data science is evolving and most
of the algorithms are undergoing improvements, hence the emergence of categories
such as reinforced and ensembled learner. Hence, future systematic review prospect
should focus on these emerging aggregations of learners and assess through research
progress based on authorship, regions, and applications to identify the major driving
forces behind the growth.

16 M. Alloghani et al.

References

1. Sandhu, T. H. (2018). Machine learning and natural language processing—A review. Inter-
national Journal of Advanced Research in Computer Science, 9(2), 582–584.

2. Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6), 321–332.

3. Alpaydın, E. (2014). Introduction to machine learning. Cambridge, MA: MIT Press.
4. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques.

Informatica, 31, 249–268.
5. MathWorks. (2016). Applying supervised learning. Machine Learning with MATLAB.
6. Ng, A. (2012). 1. Supervised learning. Machine Learning, 1–30.
7. Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis.

Machine Learning, 42, 177–196.
8. Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization

of continuous features. In Machine Learning Proceedings.
9. Marshland, S. (2015). Machine learning: An algorithm perspective. Boca Raton, FL: CRC

Press.
10. Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for

text-documents classification. Journal on Advance in Information Technology, 1(1), 4–20.
11. Praveena, M. (2017). A literature review on supervised machine learning algorithms and

boosting process. International Journal of Computer Applications, 169(8), 975–8887.
12. Qazi, A., Raj, R. G., Hardaker, G., & Standing, C. (2017). A systematic literature review on

opinion types and sentiment analysis techniques: Tasks and challenges. Internet Research,
27(3), 608–630.

13. Hutton, B., et al. (2015). The PRISMA extension statement for reporting of systematic
reviews incorporating network meta-analyses of health care interventions: Checklist and
explanations. Annals of Internal Medicine, 163(7), 566–567.

14. Zorzela, L., Loke, Y. K., Ioannidis, J. P., Golder, S., Santaguida, P., Altman, D. G., et al.
(2016). PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ
(Online), 352, i157.

15. Shamseer, L., et al. (2015). Preferred reporting items for systematic review and meta-analysis
protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349, g7647.

16. Moher, D., et al. (2015). Preferred reporting items for systematic review and meta-analysis
protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.

17. Stroup, D. F., et al. (2000). Meta-analysis of observational studies in epidemiology: A
proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE)
group. JAMA, 283(15), 2008–2012.

18. Bloch, M. H., Landeros-Weisenberger, A., Rosario, M. C., Pittenger, C., & Leckman, J.
F. (2008). Meta-analysis of the symptom structure of obsessive-compulsive disorder. The
American Journal of Psychiatry, 165(12), 1532–1542.

19. Fujimoto, M. S., Suvorov, A., Jensen, N. O., Clement, M. J., & Bybee, S. M. (2016). Detecting
false positive sequence homology: A machine learning approach. BMC Bioinformatics, 17,
101.

20. Mani, S., et al. (2013). Machine learning for predicting the response of breast cancer to
neoadjuvant chemotherapy. Journal of the American Medical Informatics Association, 20(4),
688–695.

21. Kovačević, A., Dehghan, A., Filannino, M., Keane, J. A., & Nenadic, G. (2013). Combining
rules and machine learning for extraction of temporal expressions and events from clinical
narratives. Journal of the American Medical Informatics Association, 20(5), 859–866.

22. Klann, J. G., Anand, V., & Downs, S. M. (2013). Patient-tailored prioritization for a pediatric
care decision support system through machine learning. Journal of the American Medical
Informatics Association, 20(e2), e267–e274.

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 17

23. Gultepe, E., Green, J. P., Nguyen, H., Adams, J., Albertson, T., & Tagkopoulos, I. (2014).
From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a
clinical decision support system. Journal of the American Medical Informatics Association,
21(2), 315–325.

24. Mani, S., et al. (2014). Medical decision support using machine learning for early detection of
late-onset neonatal sepsis. Journal of the American Medical Informatics Association, 21(2),
326–336.

25. Nguyen, D. H. M., & Patrick, J. D. (2014). Supervised machine learning and active learning in
classification of radiology reports. Journal of the American Medical Informatics Association,
21(5), 893–901.

26. Deo, R. C. (2015). Machine learning in medicine HHS public access. Circulation, 132(20),
1920–1930.

27. Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach.
The Journal of Economic Perspectives, 31(2), 87–106.

28. Wu, M.-J., et al. (2017). Identification and individualized prediction of clinical phenotypes
in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.
NeuroImage, 145, 254–264.

29. Oudah, M., & Henschel, A. (2018). Taxonomy-aware feature engineering for microbiome
classification. BMC Bioinformatics, 19, 227.

30. Palma, S. I. C. J., Traguedo, A. P., Porteira, A. R., Frias, M. J., Gamboa, H., & Roque, A. C. A.
(2018). Machine learning for the meta-analyses of microbial pathogens’ volatile signatures.
Scientific Reports, 8, 1–15.

31. Jaspers, S., De Troyer, E., & Aerts, M. (2018). Machine learning techniques for the automa-
tion of literature reviews and systematic reviews in EFSA. EFSA Supporting Publications,
15(6), 1427E.

32. Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al Najada, H. (2015).
Survey of review spam detection using machine learning techniques. Journal of Big Data,
2(1), 1–24.

33. Dinov, I. D. (2016). Methodological challenges and analytic opportunities for modeling and
interpreting Big Healthcare Data. Gigascience, 5, 12.

34. Dimou, A., Vahdati, S., Di Iorio, A., Lange, C., Verborgh, R., & Mannens, E. (2017).
Challenges as enablers for high quality Linked Data: Insights from the Semantic Publishing
Challenge. PeerJ Computer Science, 3, e105.

35. Trilling, D., & Boumans, J. (2018). Automatische inhoudsanalyse van Nederlandstalige data.
Tijdschrift voor Communicatiewetenschap, 46(1), 5–24.

36. Van Nieuwenburg, E. P. L., Liu, Y., & Huber, S. D. (2017). Learning phase transitions by
confusion. Nature Physics, 13(5), 435–439.

37. Hoyt, R., Linnville, S., Thaler, S., & Moore, J. (2016). Digital family history data mining with
neural networks: A pilot study. Perspectives in Health Information Management, 13, 1c.

38. Dobson, J. E. (2015). Can an algorithm be disturbed? Machine learning, intrinsic criticism,
and the digital humanities. College Literature, 42(4), 543–564.

39. Downing, N. S., et al. (2017). Describing the performance of U.S. hospitals by applying big
data analytics. PLoS One, 12(6), e0179603.

40. Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning
techniques using DNS query data. Future Internet, 10(5), 43.

41. Kothari, U. C., & Momayez, M. (2018). Machine learning: A novel approach to predicting
slope instabilities. International Journal of Geophysics, 2018, 9.

42. Thompson, J. A., Tan, J., & Greene, C. S. (2016). Cross-platform normalization of microarray
and RNA-seq data for machine learning applications. PeerJ, 4, e1621.

43. Ahmed, M. U., & Mahmood, A. (2018). An empirical study of machine learning algorithms
to predict students’ grades. Pakistan Journal of Science, 70(1), 91–96.

44. Carifio, J., Halverson, J., Krioukov, D., & Nelson, B. D. (2017). Machine learning in the string
landscape. Journal of High Energy Physics, 2017(9), 1–36.

18 M. Alloghani et al.

45. Choudhari, P., & Dhari, S. V. (2017). Sentiment analysis and machine learning based
sentiment classification: A review. International Journal of Advanced Research in Computer
Science, 8(3).

46. Lloyd, S., Garnerone, S., & Zanardi, P. (2016). Quantum algorithms for topological and
geometric analysis of data. Nature Communications, 7, 10138.

47. Pavithra, D., & Jayanthi, A. N. (2018). A study on machine learning algorithm in medical
diagnosis. International Journal of Advanced Research in Computer Science, 9(4), 42–46.

48. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence
in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21),
2657–2664.

49. Kaytan, M., & Aydilek, I. B. (2017). A review on machine learning tools. 2017 International
Artificial Intelligence and Data Processing Symposium, 8(3), 1–4.

50. Lynch, C. M., van Berkel, V. H., & Frieboes, H. B. (2017). Application of unsupervised
analysis techniques to lung cancer patient data. PLoS One, 12(9), e0184370.

51. Beck, D., Pfaendtner, J., Carothers, J., & Subramanian, V. (2017). Data science for chemical
engineers. Chemical Engineering Progress, 113(2), 21–26.

52. Heylman, C., Datta, R., Sobrino, A., George, S., & Gratton, E. (2015). Supervised machine
learning for classification of the electrophysiological effects of chronotropic drugs on human
induced pluripotent stem cell-derived cardiomyocytes. PLoS One, 10(12), e0144572.

53. Torkzaban, B., et al. (2015). Machine learning based classification of microsatellite variation:
An effective approach for Phylogeographic characterization of olive populations. PLoS One,
10(11), e0143465.

54. Guo, Z., Shao, X., Xu, Y., Miyazaki, H., Ohira, W., & Shibasaki, R. (2016). Identification of
village building via Google earth images and supervised machine learning methods. Remote
Sensing, 8(4), 271.

55. Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., & Liu, Y. (2018). Aquatic toxic analysis by
monitoring fish behavior using computer vision: A recent progress. Journal of Toxicology,
2018, 11.

56. Fuller, D., Buote, R., & Stanley, K. (2017). A glossary for big data in population and
public health: Discussion and commentary on terminology and research methods. Journal
of Epidemiology and Community Health, 71(11), 1113.

57. Gibson, D., & de Freitas, S. (2016). Exploratory analysis in learning analytics. Technology,
Knowledge and Learning, 21(1), 5–19.

58. Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and
metabolic pathway modeling. Metabolites, 8(1), 4.

59. Tan, M. S., Chang, S.-W., Cheah, P. L., & Yap, H. J. (2018). Integrative machine learning
analysis of multiple gene expression profiles in cervical cancer. PeerJ, 6, e5285.

60. Meenakshi, K., Safa, M., Karthick, T., & Sivaranjani, N. (2017). A novel study of machine
learning algorithms for classifying health care data. Research Journal of Pharmacy and
Technology, 10(5), 1429–1432.

61. Dey, A. (2016). Machine learning algorithms: A review. International Journal of Computer
Science and Information Technology, 7(3), 1174–1179.

62. Zhao, C., Wang, S., & Li, D. (2016). Determining fuzzy membership for sentiment classifi-
cation: A three-layer sentiment propagation model. PLoS One, 11(11), e0165560.

63. Mossotto, E., Ashton, J. J., Coelho, T., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2017).
Classification of paediatric inflammatory bowel disease using machine learning. Scientific
Reports, 7, 1–10.

64. Lau, O., & Yohai, I. (2016). Using quantitative methods in industry. Political Science and
Politics, 49(3), 524–526.

65. Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big
data processing. EURASIP Journal on Advances in Signal Processing, 2016, 1–16.

66. Parreco, J. P., Hidalgo, A. E., Badilla, A. D., Ilyas, O., & Rattan, R. (2018). Predicting central
line-associated bloodstream infections and mortality using supervised machine learning.
Journal of Critical Care, 45, 156–162.

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 19

67. Wuest, T., Irgens, C., & Thoben, K.-D. (2016). Changing states of multistage process chains.
Journal of Engineering, 2016, 1.

68. Tarwani, N. (2017). Survey of cyberbulling detection on social media big-data. International
Journal of Advanced Research in Computer Science, 8(5).

69. Martinelli, E., Mencattini, A., Daprati, E., & Di Natale, C. (2016). Strength is in numbers:
Can concordant artificial listeners improve prediction of emotion from speech? PLoS One,
11(8), e0161752.

70. Liu, N., & Zhao, J. (2016). Semi-supervised online multiple kernel learning algorithm for big
data. TELKOMNIKA, 14(2), 638–646.

71. Goh, K. L., & Singh, A. K. (2015). Comprehensive literature review on machine learning
structures for Web spam classification. Procedia Computer Science, 70, 434–441.

72. Mishra, C., & Gupta, D. L. (2017). Deep machine learning and neural networks: An overview.
IAES International Journal of Artificial Intelligence, 6(2), 66–73.

73. Yan, X., Bai, Y., Fang, S., & Luo, J. (2016). A kernel-free quadratic surface support vector
machine for semi-supervised learning. The Journal of the Operational Research Society,
67(7), 1001–1011.

74. Yared, R., & Abdulrazak, B. (2016). Ambient technology to assist elderly people in indoor
risks. Computers, 5(4), 22.

75. Osborne, J. D., et al. (2016). Efficient identification of nationally mandated reportable cancer
cases using natural language processing and machine learning. Journal of the American
Medical Informatics Association, 83(5), 605–623.

76. Kolog, E. A., Montero, C. S., & Tukiainen, M. (2018). Development and evaluation of an
automated e-counselling system for emotion and sentiment analysis. Electronic Journal of
Information Systems Evaluation, 21(1), 1–19.

77. Rafiei, M. H., Khushefati, W. H., Demirboga, R., & Adeli, H. (2017). Supervised deep
restricted Boltzmann machine for estimation of concrete. ACI Materials Journal, 114(2),
237–244.

78. Almasre, M. A., & Al-Nuaim, H. (2017). Comparison of four SVM classifiers used with depth
sensors to recognize Arabic sign language words. Computers, 6(2), 20.

79. Hashem, K. (2018). The rise and fall of machine learning methods in biomedical research.
F1000Research, 6, 2012.

80. Torshin, I. Y., & Rudakov, K. V. (2015). On the theoretical basis of metric analysis of
poorly formalized problems of recognition and classification. Pattern Recognition and Image
Analysis, 25(4), 577–587.

81. Petrelli, M., & Perugini, D. (2016). Solving petrological problems through machine learning:
The study case of tectonic discrimination using geochemical and isotopic data. Contributions
to Mineralogy and Petrology, 171(10), 1–15.

82. Min-Joo, K., & Kang, J.-W. (2016). Intrusion detection system using deep neural network for
in-vehicle network security. PLoS One, 11(6). https://doi.org/10.1371/journal.pone.0155781

83. Alicante, A., Corazza, A., Isgrò, F., & Silvestri, S. (2016). Unsupervised entity and relation
extraction from clinical records in Italian. Computers in Biology and Medicine, 72, 263–275.

84. Shanmugasundaram, G., & Sankarikaarguzhali, G. (2017). An investigation on IoT healthcare
analytics. International Journal of Information Engineering and Electronic Business, 9(2),
11.

85. Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised
extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.

86. Rastogi, R., & Saigal, P. (2017). Tree-based localized fuzzy twin support vector clustering
with square loss function. Applied Intelligence, 47(1), 96–113.

87. Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017). Machine
learning meets complex networks via coalescent embedding in the hyperbolic space. Nature
Communications, 8, 1–19.

88. Saeys, Y., Van Gassen, S., & Lambrecht, B. N. (2016). Computational flow cytometry:
Helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology,
16(7), 449–462.

http://dx.doi.org/10.1371/journal.pone.0155781

20 M. Alloghani et al.

89. Gonzalez, A., Pierre, & Forsberg, F. (2017). Unsupervised machine learning: An investigation
of clustering algorithms on a small dataset (pp. 1–39).

90. Necula, S.-C. (2017). Deep learning for distribution channels’ management. Informatica
Economică, 21(4), 73–85.

91. Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary per-
formance evaluation of K-means, KNN and em unsupervised machine learning methods for
network flow classification. International Journal of Electrical and Computer Engineering,
6(2), 778–784.

92. Alalousi, A., Razif, R., Abualhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary per-
formance evaluation of K-means, KNN and EM unsupervised machine learning methods for
network flow classification. International Journal of Electrical and Computer Engineering,
6(2), 778–784.

93. Alanazi, H. O., Abdullah, A. H., & Qureshi, K. N. (2017). A critical review for developing
accurate and dynamic predictive models using machine learning methods in medicine and
health care. Journal of Medical Systems, 41(4), 1–10.

94. Almatarneh, S., & Gamallo, P. (2018). A lexicon based method to search for extreme opinions.
PLoS One, 13(5), e0197816.

95. Assem, H., Xu, L., Buda, T. S., & O’sullivan, D. (2016). Machine learning as a service for
enabling Internet of things and people. Personal and Ubiquitous Computing, 20(6), 899–914.

96. Azim, M. A., & Bhuiyan, M. H. (2018). Text to emotion extraction using supervised machine
learning techniques. TELKOMNIKA, 16(3), 1394–1401.

97. Sirbu, A. (2016). Dynamic machine learning for supervised and unsupervised classification
ES. Machine Learning.

98. Wahyudin, I., Djatna, T., & Kusuma, W. A. (2016). Cluster analysis for SME risk analysis
documents based on pillar K-means. TELKOMNIKA, 14(2), 674.

99. Davis, S. E., Lasko, T. A., Chen, G., Siew, E. D., & Matheny, M. E. (2018). Calibration drift
in regression and machine learning models for acute kidney injury. Journal of the American
Medical Informatics Association, 24, 1052–1061.

100. Wallace, B. C., Noel-Storr, A., Marshall, I. J., Cohen, A. M., Smalheiser, N. R., &
Thomas, J. (2017). Identifying reports of randomized controlled trials (RCTs) via a hybrid
machine learning and crowdsourcing approach. Journal of the American Medical Informatics
Association, 24(6), 1165–1168.

101. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum
machine learning. Nature, 549(7671), 195–202.

102. Bisaso, K. R., Anguzu, G. T., Karungi, S. A., Kiragga, A., & Castelnuovo, B. (2017). A survey
of machine learning applications in HIV clinical research and care. Computers in Biology and
Medicine, 91, 366–371.

103. Bauder, R., Khoshgoftaar, T. M., & Seliya, N. (2017). A survey on the state of healthcare
upcoding fraud analysis and detection. Health Services and Outcomes Research Methodology,
17(1), 31–55.

104. Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving
the prediction of survival in cancer patients by using machine learning techniques: Experience
of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–
172.

105. Breckels, L. M., Mulvey, C. M., Lilley, K. S., & Gatto, L. (2018). A bioconductor workflow
for processing and analysing spatial proteomics data. F1000Research, 5, 2926.

106. Saad, S. M., et al. (2017). Pollutant recognition based on supervised machine learning for
indoor air quality monitoring systems. Applied Sciences, 7(8), 823.

107. Fiorini, L., Cavallo, F., Dario, P., Eavis, A., & Caleb-Solly, P. (2017). Unsupervised machine
learning for developing personalised behaviour models using activity data. Sensors, 17(5),
1034.

1 A Systematic Review on Supervised and Unsupervised Machine Learning. . . 21

108. Bunn, J. K., Hu, J., & Hattrick-Simpers, J. R. (2016). Semi-supervised approach to phase
identification from combinatorial sample diffraction patterns. JOM, 68(8), 2116–2125.

109. Cárdenas-López, F. A., Lamata, L., Retamal, J. C., & Solano, E. (2018). Multiqubit and
multilevel quantum reinforcement learning with quantum technologies. PLoS One, 13(7),
e0200455.

110. Chen, R., Niu, W., Zhang, X., Zhuo, Z., & Lv, F. (2017). An effective conversation-based
botnet detection method. Mathematical Problems in Engineering, 2017, 4934082.

Chapter 2
Overview of One-Pass
and Discard-After-Learn Concepts
for Classification and Clustering
in Streaming Environment
with Constraints

Chidchanok Lursinsap

2.1 Introduction

Tremendous amount of data have been rapidly generated since the advancement
of internet technology. Achieving the faster learning speed of these streaming data
than the speed of data generation with limited memory size is a very challenging
problem. The term learning in our context refers to both classification and cluster-
ing. In addition to this learning speed race, the streaming environment induced the
problem of dynamic data imbalance ratio and class drift in the classification domain
[3, 10]. But for clustering, there are no problem of dynamic imbalance ratio. Only
the special class drift in forms of expired data is concerned. The size of learning
data chunk at any time is a priori unknown to the learning process. There have been
several attempts proposed to handle this classification and clustering challenges.

Most proposed methods for solving streaming data learning are based on the
concept of incremental learning where a neuron is gradually added to the network
to improve the accuracy [1, 7, 9, 15, 18, 25, 27, 28]. This incremental learning is
simple but it encounters the problem of data overflow memory. New incoming data
must be mixed with the previously learned data. Consequently, the learning speed
significantly drops when the amount of data temporally increases. Other constraints
such as arbitrary class drift, expired data in clusters, and dynamic imbalance ratio
have not been fully included as a part learning algorithm. These constraints actually
occur in various applications [21].

C. Lursinsap (�)
Advanced Virtual and Intelligent Computing Center, Department of Mathematics and Computer
Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

The Royal Institute of Thailand, Bangkok, Thailand

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-22475-2_2

24 C. Lursinsap

In this paper, we provided the overview of one-pass learning and discard-after-
learn concept introduced in our previous series of studies [11, 12, 14, 20, 21, 23,
24]. These two concepts were designed to solve the problems of classification and
clustering of streaming data with the constraints on data overflow, arbitrary class
drift, dynamic imbalance ratio, data expiration. Moreover, a set of new mathematical
shapes and new recursive functions for updating the parameters of these shapes were
proposed.

The rest of this paper is organized into nine sections. Section 2.2 defines the
constraints and conditions of the learning environment. Section 2.3 summarizes
the concept of one-pass and discard-after-learn for classification and clustering.
Section 2.4 discusses the structure of malleable hyper-ellipsoid function. Section 2.5
explains how to update the parameters of malleable hyper-ellipsoid. Section 2.6
analyzes the time and space complexities for computing the proposed functions.
Section 2.7 introduces a new network structure called dynamic stratum structure to
solve arbitrary concept drift problem. Section 2.8 proposed a new hyper-cylindrical
structure to solve data expiration in dynamic clustering. Section 2.9 discusses
the advantages and disadvantages of the proposed concept and network structure.
Section 2.10 concludes the paper.

2.2 Constraints and Conditions

This study concerns classification and clustering learning in streaming data envi-
ronment. Both types of learning involve the following similar and different sets of
constraints and conditions.

Classification Generally, there are two different environments of training data.
The first environment regards the stationary characteristics of training data. These
characteristics involve the fixed amount of training data and the fixed target for each
datum throughout a learning process. The second environment is opposite to the first
environment. The training data enter a learning process as a stream of single datum
or a stream of data chunks with different sizes. Each datum may reenter the learning
process with a new target. Notice that the first environment is no longer interesting
because of the tremendous amount of data produced in the internet per unit time. The
non-stationary behavior of the second environment induces the following several
challenging constraints:

1. Data overflow. Since the data enter the learning process as a stream, it is possible
that the data can overflow the memory and make the learning process impossible.
Some data may be lost if the learning time is slower than the incoming speed of
data stream.

2. Class drift. This is a situation when a datum temporally changes its class due
to various reasons such as changing types of deposit account, career promotion.
The features of datum are fixed but its target is changed. No assumption of class-

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 25

Fig. 2.1 An example of removing expired data and splitting the cluster into two clusters

drift probability is concerned. By this situation, the state of being alive or dead
of datum is a special case of class drift.

3. Class imbalanced ratio. The amount of data of all classes entering the learning
process is not equal. Furthermore, different sets of classes may occur in an
incoming data chunk at any learning time.

Clustering The constraints for clustering are similar to those of classification in the
aspects of data overflow and class drift. The situation of class imbalance ratio never
exists in clustering problem. Data overflow in clustering constraint is exactly the
same as that of classification. But for class drift, the only difference is that a datum
is in only two states which are either alive or dead. A datum is labeled as dead if it is
no longer in the learning process. For example, if a bank customer closed his deposit
account, then his personal data are considered as dead data. The state of either alive
or dead of any datum is assumed to be provided by the trainer prior to the learning
process. Any dead datum must be disappeared and removed from its present cluster.
Obviously, removing any dead data from its present cluster can change the topology
of data distribution in the cluster. Figure 2.1 shows an example of removing some
dead data. The present cluster is topologically split into two clusters.

2.3 Concept of One-Pass and Discard-After-Learn
for Classification and Clustering

Data overflow is the first main problem to be solved. The conditions of data overflow
in this study are defined as follows. Let M and Cti be the available size of memory
used for learning process and the incoming data chunk at time ti , respectively. The
size of each Cti is denoted by |Cti |. Memory is partitioned into three main portions
for storing the learning algorithm, buffering the incoming data chunk, and using
as miscellaneous and temporary storage during the learning process. Data overflow
implies that M <

∑
ti∈N Cti , where N is the total time used to input all data chunks

26 C. Lursinsap

Fig. 2.2 An example of how the concept of discard-after-learn works for classification

by one chunk at a time. In this review, it is assumed that, for any ti , Cti < M and
time period [ti+1 − ti] is less than or equal to the learning time of Cti .

For classification of streaming data in d dimensions, each chunk Cti is captured
by a malleable hyper-ellipsoid function (MHEF) in the form of covariance matrix.
This matrix obviously represents the direction of data distribution and the distri-
bution width in each dimension. In the scenario of streaming data, if all incoming
data are stored in the memory, then it is possible that the situation of data overflow,
i.e. M <

∑
ti∈N Cti , can occur. To alleviate this consequence, once Cti is captured,

all data in Cti are discarded forever. Only the covariance matrix of size d2 is kept.
Figure 2.2 illustrates this concept. There are three classes denoted by colors red,
blue, and green MHEFs.

At time t1, one datum of class square enters the learning process. This datum
is captured by a MHEF and discarded afterwards. A datum of class star enters the
process at time t2. Since it is not in the same as the previous datum, a new MHEF
is introduced to capture this datum. At time t3, one datum of class square enters
the process. It is captured by a new MHEF first whose location is close to another
MHEF of the same class. Thus, these two MHEFs are merged into one larger MHEF

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 27

and the previous MHEFs are discarded as shown at time t4 by the dashed MHEF.
A MHEF with dashed boundary denotes the just happening result of merging two
MHEFs. The merging process also occurs at time t5. At time a new datum of class
circle enters the process but its location is within the MHEF of the same class. In
this case, there is no need to introduce a new MHEF for this datum. The datum
is just discarded from the MHEF as shown at time t7. To make the concept of
discard-after-learn possible, the structure of MHEF must be rotatable, expandable,
and transposable without disturbing the captured data.

For clustering of streaming data, the concept of discard-after-learn with MHEF
structure can be adapted. In clustering problem, two touching MHEFs with similar
degree of information measure and similar direction of data distribution are merged
into a larger MHEF. Even though they touch each other but their directions of
data distribution may not be congruent. In this case, they are not labeled as the
same cluster. Figure 2.3 shows an example of this concept. There are three clusters
denoted by red, blue, and green colors. The first data chunk enters the clustering
process at time t1. It is captured by a blue MHEF and all data are discarded
afterwards. At time t2, there are two small data chunks entering the learning process

Fig. 2.3 An example of how the concept of discard-after-learn is adapted for clustering

28 C. Lursinsap

at the same time. These two chunks are far apart. So each of them is captured by
one MHEF (red and green MHEFs). At this moment, it is assumed that each of
them is from different cluster. At time t3, three small data chunks enter the process.
Each chunk is then captured by one MHEF. Notice that although two blue MHEFs
are close to each other but the directions of data distribution of both MHEFs are
not congruent. So these two MHEFs are not merged into a larger one because the
region of new MHEF may cover the much space which may be the location of a
new cluster. The red clusters also possess this limitation. Only the green clusters are
merged into one larger MHEF.

2.4 Structure of Malleable Hyper-ellipsoid Function

Let c ∈ Rd be the center and λj be the width in dimension j of a malleable hyper-
ellipsoid. The malleable hyper-ellipsoid function (MHEF) capturing a datum xk is
defined as follows:

H(xk) =
d∑

j=1

((xk − c)T vj)
2

λ2
j

− 1 (2.1)

vj is the j th eigenvector and λj is the j th eigenvalue computed from the following
covariance matrix Mi . Let X = {x1, . . . , xn} be the set of data captured by the
MHEF.

M = 1

n

n∑

i=1

(xi − c)(xi − c)T (2.2)

M = 1

n

n∑

i=1

xixT
i − ccT (2.3)

Notice that vector vj is used to rotate the MHEF according to the direction of data
distribution and c is used to transpose MHEF from the origin to the center of X.
Datum xk is inside (xk − ci) if (xk − ci) < 0 and outside if (xk − ci) > 0. But if
(xk − ci) = 0, then the class of xk is indeterminate. The shape of MHEF can be
expanded by computing the new eigenvalues from the new covariance matrix based
on new incoming chunk of data. Function H(xk) can be written in the following
generic structure where r is a constant.

H(xk) =
d∑

j=1

((xk − c)T vj)
2

λ2
j

− r (2.4)

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 29

This structure can be easily transformed into a hyper-spherical function by setting
λj = 1 and retaining the constant r as its radius. Hence, using this MHEF is more
practical due to its generic mathematical structure. The technique of updating the
present covariance matrix and center by using only new incoming data and the
present covariance matrix as well as center will be discussed next.

2.5 Updating Malleable Hyper-ellipsoid Function

There are two parameters of MHEF which are the center and covariance matrix
to be updated during the learning process. Since all captured data of any MHEF
are completely discarded, updating the center and covariance matrix by using only
incoming data must deploy the following structure of recursive function.

2.5.1 Recursively Updating Center

Let c(new) and c(old) be the newly updated center and the old center, respectively.
The size of incoming data chunk may have only one datum or more than one datum.
In case of one incoming datum, let xn+1 be a new incoming datum and {x1, . . . , xn}
be the set of present data. The updated c(new) is computed by the following equation:

c(old) = 1

n

n∑

i=1

xi (2.5)

c(new) = n

n + 1
c(old) + xn+1

n + 1
(2.6)

Equation (2.6) can be modified to update the center in case of multiple data as
follows. Let μ be the center of incoming data chunk {xn+1, . . . , xn+m} of size m.

μ = 1

m

m∑

i=1

xn+i (2.7)

c(new) = 1

n + m
(n · c(old) + m · μ) (2.8)

2.5.2 Recursively Updating Covariance Matrix

The directions of data distribution and the variance in each direction can be directly
computed from the covariance matrix. Let M(new) and M(old) be the newly updated

30 C. Lursinsap

covariance matrix and the old covariance matrix, respectively. Suppose there is only
one new incoming datum xn+1.

M(new) = n

n + 1
M(old)

xn+1xT
n+1

n + 1
− c(new)(c(new))T

+c(old)(c(old))T − c(old)(c(old))T

n + 1
(2.9)

In case of an incoming data chunk {xn+1, . . . , xn+m}, the newly updated covariance
matrix can be computed as follows. Let μ be the center of the incoming data chunk.

μ = 1

m

m∑

i=1

xn+i (2.10)

M(new) = n

m
(M(old) + c(old)(c(old))T)

+ 1

n + m

m∑

i=1

xn+ixT
n+i − μμT (2.11)

2.5.3 Merging Two Covariance Matrices

Two MHEFs must be merged to reduce the redundant MHEFs if they lie in the same
direction. After merging them, center and the covariance matrix of a new MHEF
must be computed from the centers and covariance matrices of two merged MHEFs
as follows. Let

1. c be the center of new MHEF after merging two MHEFs.
2. c1 and c2 be the centers of the first and second MHEFs, respectively.
3. M be the new covariance matrix after merging MHEFs.
4. M1 and M2 be the covariance matrices of the first and second MHEFs,

respectively.
5. n1 and n2 be the number of data captured by the first and second MHEFs,

respectively.

c = n1c1 + n2c2

n1 + n2
(2.12)

M = n1M1

n1 + n2
+ n2M2

n1 + n2

+ n1n2

(n1 + n2)2
(c1 − c2)(c1 − c2)

T (2.13)

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 31

2.6 Analysis of Time and Space Complexities of Updating
Computation

The time and space complexities for computing and updating the center and
covariance matrix are separately analyzed as follows:

1. Computing and updating center: For only one incoming datum, the space
complexity to compute the center is obviously equal to O(n) where n is the size
of the first training data set. The time complexity is O(n)+m ·O(1) = O(n+m)

where m is the number of incoming data after the first training data set. But for
incoming data chunk, the upper bound of memory size is assumed to be O(n)

and the each next incoming data chunk is m ≤ n. Thus, the space complexity to
compute the center is equal to O(n) because the center μ of incoming data chunk
must be computed first.

2. Computing and updating covariance matrix: For only one incoming datum, the
time to compute the covariance matrix of the first training data set of size n is
O(nd2) with the space complexity of O(nd). After the first covariance matrix,
the covariance matrix is updated by Eq. (2.11) with time complexity of O(d3) for
each incoming datum. But in case of following incoming data chunk, as given in
Eq. (2.11), the covariance matrix of the incoming chunk must be computed first
with time complexity of O(md2). Then, the old covariance matrix is updated
with time complexity of O(md2) + O(d2). The space complexity is O(nd).

3. Computing new center and covariance matrix after merging two MHEFs: The
size of each covariance matrix is of O(d2), where d is the number of dimensions.
The time complexity to compute the new center is O(d). For the new covariance
matrix in Eq. (2.13), adding two matrices takes O(d2) and computing (c1 −
c2)(c1 − c2)

T takes O(d3). The space complexity is O(d2).

2.7 Applying Discard-After-Learn to Arbitrary Class Drift

Arbitrary class drift is a scenario when a datum can be assigned to any classes at
any time with no assumption of the probability of class change. This means that
the probability is unknown in advance. A datum maintains its features throughout
the learning process of streaming environment. Only its class is arbitrarily and
temporally changed due to some reasons. When a datum has a class drift, a new
MHEF of the corresponding class is introduced to capture the datum and the datum
is discarded afterwards. This implies that if this datum keeps changing its class, then
there must be a stack of MHEF capturing this datum. The difficulty of this class drift
is how to keep track of the recent class of any datum. To solve this problem, a new
structure called dynamic stratum was introduced. The structure has two strata, lower
and upper. Each stratum contains a set of MHEFs of several classes. When a datum
enters the learning process, it is assigned to the lower stratum. But when its class is
changed, it is moved to the upper stratum. To determine the recent class of a queried

32 C. Lursinsap

Table 2.1 An example of class drift and the stratum assignment of class-drift datum

(a) Incoming data and their classes
at different time sequence

Time Incoming data

(x1, x2) class

t1 (3,4) 1

(7,8) 2

(1,2) 1

(6,9) 3

(4,6) 2

t2 (7,8) 3
(2,3) 4

(1,2) 3
t3 (3,4) 2

(8,9) 4

(b) The stratum assignment of data

Time Data Class Stratum

t1 (3,4) 1 Lower

(7,8) 2 Lower

(1,2) 1 Lower

(6,9) 3 Lower

(4,6) 2 Lower

t2 (3,4) 1 Lower

(7,8) 3 Upper
(1,2) 3 Upper
(6,9) 3 Lower

(4,6) 2 Lower

(2,3) 4 Lower

t3 (3,4) 2 Upper
(7,8) 3 Upper

(1,2) 3 Upper

(6,9) 3 Lower

(4,6) 2 Lower

(2,3) 4 Lower

(8,9) 4 Lower

datum, the upper stratum is searched first. If there exists a MHEF covering the
location of feature vector of the queried datum, then the class of MHEF is indicated
as the class of queried datum. But if there is no such MHEF, the lower stratum is
searched by the same concept. Table 2.1 illustrates an example of class drift when
all data are in a 2-dimensional space. Table 2.1a is the incoming data chunk at time
t1. At time t2, data (7,8) and (1,2) have class drifts and a new datum (2,3) enters the
process. At time t3, datum (3,4) changes its class from 1 to 2 and one new datum
(8,9) appears. The assignment of MHEFs of all data based on their class drift to
different stratum at each time step is clarified in Table 2.1b.

The sequence of capturing each datum according to Table 2.1 is illustrated in
Fig. 2.4. After the class of a datum is changed, the center and covariance matrix
capturing this datum prior to the class drift must be updated. This is the process of
removing a datum from MHEF. Let xk be a datum having a class drift. The new
center and covariance matrix are updated as follows:

M(new) = (−c(new) + xk)(c(new) − xk)
T

n

+ n

n − 1
M(old) (2.14)

c(new) = n

n − 1
c(old) − xk

n − 1
(2.15)

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 33

Fig. 2.4 The sequence of capturing data by MHEFs according to the class drift in Table 2.1

In case of removing a data chunk having multiple class drifts, the center and
covariance matrix can be updated as follows. Let c(out) and M(out) be the center
and covariance matrix of data chunk to be removed after class drift, respectively.
The size of removed chunk is m.

M(new) = n

n − m
M(old) − m

n − m
M(out) (2.16)

− nm

(n − m)2
(c(old) − c(out))(c(old) − c(out))T

c(new) = n

n − m
(nc(old) − mc(out)) (2.17)

34 C. Lursinsap

The time complexity of updating the covariance matrix is still O(d3) for each
removed chunk. Furthermore, the space complexity is O(d2) + O(max(n,m)).

2.8 Applying Discard-After-Learn to Expired Data in
Clustering

The problem of class drift does not exactly occur in clustering. The only possibility
is that the lives of some data in some existing clusters may expire due to some
reasons. Similar to the class drift, the probability of expiration is unknown. Once
a datum is expired, it must be removed from the cluster. It is assumed that the
information of any expired datum is provided to the learning process in terms
of feature vector and its status of being existent or expired. If there are many
expired data, the corresponding MHEF must be split into two smaller MHEFs.
But in discard-after-learn concept, all clusters data are completely discarded. This
makes splitting a MHEF rather complex because of its hyper-elliptical shape. Some
information may be lost after splitting. To alleviate this problem, a hyper-cylindrical
shape was introduced. This shape is not a mathematical function but rather a set with
some attributes. The definition of a hyper-cylindrical shape is the following. Let c
be the center of hyper-cylindrical shape whose radius is r and length is L.

Definition 1 Hyper-cylindrical shape (HCS) C = {xi | xi ∈ Rd; 1 ≤ i ≤ n} such
that

1. ||(xi − c) · v|| ≤ L/2.
2. ||xi − c|| − ||(xi − c) · v|| ≤ r .

v is the eigenvector computed from the covariance matrix of data set captured by
this HCS whose eigenvalue is maximum. Figure 2.5 illustrates the structure of
hyper-cylindrical shape in a 2-dimensional space. This shape is suitable to cope

Fig. 2.5 Hyper-cylindrical
shape and its center c, radius
r , and length L in a
2-dimensional space. xi is a
datum captured by the
hyper-cylinder

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 35

Fig. 2.6 An example of splitting a hyper-cylinder into two smaller hyper-cylinders because of
expired data

with expired data because its shape can be easily split into two smaller hyper-
cylindrical shapes by re-computing the length of each split hyper-cylinder as shown
in the example of Fig. 2.6. The information regarding expired data is occasionally
provided during the clustering process.

2.9 Discussion

The concept of one-pass learning and discard-after-learn is very practical and
efficient in terms of time and space complexities. According to the experimental
results reported in [11, 12, 20, 21, 23, 24], the number of neurons deployed in
all experiments is significantly less than the other methods [2, 4–6, 8, 13, 16–
18, 22, 26, 27]. It is noticeable that the learning process based on this concept does
not involve any cost function to adjust the synaptic weights. This implies that there
is no effect of large-error domination from any class. Hence, it is possible to adapt
this concept to cope with dynamic imbalance ratio in a streaming environment. Our
experimental results reported in [20] confirm that capability.

Although the proposed concept is rather versatile, the initial width of MHEF
is still not efficient enough. Furthermore, the accuracy may be sensitive to the
incoming order of data from different classes. These disadvantages require further
study.

2.10 Conclusion

A new concept of one-pass learning with discard-after-learn and the relevant
mathematical functions for learning streaming data previously introduced in [11,
12, 20, 21, 23, 24] are summarized. This approach achieved the lower bounds of

36 C. Lursinsap

time and space complexities of neural learning. The accuracy of this approach is
also significantly higher than the accuracy of other approaches. Furthermore, the
modified version of this concept is introduced to construct a new network structure
called dynamic stratum for handling arbitrary class drift problem.

Acknowledgement This work is supported by Thailand Research Fund under grant number
RTA6080013.

References

1. Abdulsalam, H., Skillicorn, D. B., & Martin, P. (2011, January). Classification using streaming
random forests. IEEE Transactions on Knowledge and Data Engineering, 23(1), pp. 22–36.

2. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving
data streams. In Proceedings of the 29th International Conference on Very Large Data Bases
(pp. 81–92).

3. Brzezinski, D., & Stefanowski, J. (2014, January). Reacting to different types of concept
drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and
Learning Systems, 25(1), 81–94.

4. Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving
data stream with noise. In SIAM International Conference on Data Mining (pp. 328–339).

5. Ditzler, G., Rosen, G., & Polikar, R. (2014, July). Domain adaptation bounds for multiple
expert systems under concept drift. In Proceedings of the International Joint Conference on
Neural Networks (pp. 595–601).

6. Elwell, R., & Polikar, R. (2011, October). Incremental learning of concept drift in non-
stationary environments. IEEE Transactions on Neural Networks, 22(10), 1517–1531.

7. Furao, S., & Hasegawa, O. (2008, December). A fast nearest neighbor classifier based on self-
organizing incremental neural network. Neural Networks, 21(10), 1537–1547.

8. Hahsler, M., & Dunham, M. H. (2010). rEMM: Extensible Markov model for data stream
clustering in r. Journal of Statistical Software, 35(5).

9. He, H., Chen, S., Li, K., & Xu, X. (2011, December). Incremental learning from stream data.
IEEE Transactions on Neural Networks, 22(12), 1901–1914.

10. Hoens, T. R., Polikar, R., & Chawla, N. V. (2012, April). Learning from streaming data with
concept drift and imbalance: An overview. Progress in Artificial Intelligence, 1(1), 89–101.

11. Jaiyen, S., Lursinsap, C., Phimoltares, S. (2010, March). A very fast neural learning for
classification using only new incoming datum. IEEE Transactions on Neural Networks, 21(3),
381–392.

12. Junsawang, P., Phimoltares, S., & Lursinsap, C. (2016). A fast learning method for streaming
and randomly ordered multi-class data chunks by using one-pass-throw-away class-wise
learning concept. Expert Systems with Applications, 63, 249–266.

13. Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The ClusTree: Indexing micro-clusters
for anytime stream mining. Knowledge and Information Systems, 29(2), 249–272.

14. Laohakiat, S., Phimoltares, S., & Lursinsap, C. (2016). Hyper-cylindrical micro-clustering for
streaming data with unscheduled data removals. Knowledge-Based Systems, 99, 183–200.

15. Ozava, S., Pang, S., & Kasabov, N. (2008, June). Incremental learning of chunk data for online
pattern classification systems. IEEE Transactions on Neural Networks, 19(6), 1061–1074.

16. Pang, S., Ban, T., Kadobayashi, Y., & Kasabov, N. K. (2012). LDA merging and splitting with
applications to multi-agent cooperative learning and system alteration. IEEE Transactions on
Systems, Man, and Cybernetics. Part B, Cybernetics, 42(2), 552–564.

2 Overview of One-Pass and Discard-After-Learn Concepts for Classification. . . 37

17. Pang, S., Ozawa, S., & Kasabov, N. (2005). Incremental learning discriminant analysis
classification of data streams. IEEE Transactions on Systems, Man, and Cybernetics-part B:
Cybernetics, 35(5), 905–914.

18. Shen, F., & Hasegawa, O. (2008). A fast nearest neighbor classifier on self-organizing
incremental neural network. Neural Networks, 21, 1537–1547.

19. Singla, P., Subbarao, K., & Junkins, J. L. (2007, January). Direction-dependent learning
approach for radial basis function networks. IEEE Transaction on Neural Networks, 18(1),
203–222.

20. Thakong, M., Phimoltares, S., Jaiyen, S., & Lursinsap, C. (2017). Fast learning and testing for
imbalanced multi-class changes in streaming data by dynamic multi-stratum network. IEEE
Access, 5, 10633–10648.

21. Thakong, M., Phimoltares, S., Jaiyen, S., & Lursinsap, C. (2018). One-pass-throw-away
learning for cybersecurity in streaming non-stationary environments by dynamic stratum
networks. PLoS One, 13(9), e0202937.

22. Tu, L., Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM
Transactions on Knowledge Discovery from Data, 3(3), 12:1–12:27.

23. Wattanakitrungroj, N., Maneeroj, S., & Lursinsap, C. (2017). Versatile hyper-elliptic clustering
approach for streaming data based on one-pass-thrown-away learning. Journal of Classifica-
tion, 34, 108–147.

24. Wattanakitrungroj, N., Maneeroj, S., & Lursinsap, C. (2018). BEstream batch capturing with
elliptic function for one-pass data stream clustering. Data & Knowledge Engineering, 117,
53–70.

25. Wu, X., Li, P., & Hu, X. (2012, September). Learning from concept drifting data streams with
unlabeled data. Neurocomputing, 92, 145–155.

26. Xu, Y., Shen, F., & Zhao, J. (2012). An incremental learning vector quantization algorithm for
pattern classification. Neural Computing and Applications, 21(6), 1205–1215.

27. Zheng, J., Shen, F., Fan, H., & Zhao, J. (2013, April). An online incremental learning support
vector machine for large-scale data. Neural Computing and Applications, 22(5), 1023–1035.

28. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., & Holmes, G. (2015, March). Evaluation
methods and decision theory for classification of streaming data with temporal dependence.
Machine Learning, 98(3), 455–482.

Chapter 3
Distributed Single-Source Shortest Path
Algorithms with Two-Dimensional Graph
Layout

Thap Panitanarak

3.1 Introduction

With the advance of online social networks, World Wide Web, e-commerce, and
electronic communication in the last several years, data relating to these areas has
become exponentially larger day by day. This data is usually analyzed in a form of
graphs modeling relations among data entities. However, processing these graphs
is challenging not only from a tremendous size of the graphs that is usually in
terms of billions of edges, but also from real-world graph characteristics such as
sparsity, irregularity, and scale-free degree distributions that are difficult to manage.
For example, we can construct a graph from Twitter users who retweet a popular
message. For users (or vertices) who are well-known (e.g., celebrities), the numbers
of retweets (edges) from these users is very large compared to most regular users.
Thus, the graph will have a few vertices with very high degree, while most vertices
have very low degree in general.

Large-scale graphs are commonly stored and processed across multiple machines
or in distributed environments due to a limited capability of a single machine.
However, current graphs analyzing tools, which have been optimized and used on
sequential systems cannot directly be used on these distributed systems without
scalability issues. Thus, novel graph processing and analysis are required, and
parallel graph computations are mandatory to be able to handle these large-scale
graphs efficiently.

Single-source shortest path (SSSPs) is a well-known graph computation that has
been studied for more than half a century. It is one of the most common graph

T. Panitanarak (�)
Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok,
Thailand
e-mail: thap.p@chula.ac.th

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_3&domain=pdf
mailto:thap.p@chula.ac.th
https://doi.org/10.1007/978-3-030-22475-2_3

40 T. Panitanarak

analytical analyses for many graph applications such as networks, communication,
transportation, electronics, and so on. There are many SSSP algorithms that have
been proposed such as well-known Dijkstra’s algorithm [1] and Bellman-Ford
algorithm [2, 3]. However, these algorithms are designed for serial machines, and
do not efficiently work on parallel environments. As a result, many researchers have
studied and proposed parallel SSSP algorithms or implemented SSSP as parts of
their parallel graph frameworks. Some well-known graph frameworks include the
Parallel Boost Graph Library [4], GraphLab [5], PowerGraph [6], Galois [7], and
ScaleGraph [8]. More recent frameworks have been proposed based on Hadoop
systems [9] such as Cyclops [10], GraphX [11], and Mizan [12]. For standalone
implementations of SSSP, most recent implementations usually are for GPU parallel
systems such as [13–15]. However, high-performance GPU architectures are still
not widely available and they also require fast CPUs to speed up the overall
performance. Some SSSP implementations on shared memory systems include
[16–18].

In this chapter, we focus on designing and implementing efficient SSSP algo-
rithms for distributed memory systems. While the architectures are not relatively
new, there are few efficient SSSP implementations for this type of architectures.
We are well aware of the recent SSSP study of Chakaravarthy et al. [19] that is
proposed for massively parallel systems, IBM Blue Gene/Q (Mira). Their SSSP
implementations have applied various optimizations and techniques to achieve very
good performance such as direction optimization (or a push-pull approach), pruning,
vertex cut, and hybridization. However, most techniques are specifically for SSSP
algorithms and can only be applied to a limited variety of graph algorithms. In our
case of SSSP implementations, most of our techniques are more flexible and can
be extended to many graph algorithms, while still achieving good performance. Our
main contributions include

• Novel SSSP algorithms that combine advantages of various well-known SSSP
algorithms.

• Utilization of a two-dimensional graph layout to reduce communication overhead
and improve load balancing of SSSP algorithms.

• Distributed cache-like optimization that filters out unnecessary SSSP updates and
communication to further increase the overall performance of the algorithms.

• Detailed evaluation of the SSSP algorithms on various large-scale graphs.

3.2 Overviews

3.2.1 Single-Source Shortest Path Algorithms

Let G = (V, E, w) be a weighted, undirected graph with n = |V| vertices, m = |E|
edges, and integer weights w(e) > 0 for all e ∈ E. Define s ∈ V called a source vertex,
and d(v) to be a tentative distance from s to v ∈ V (initially set to ∞). The single

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 41

source shortest path (SSSP) problem is to find δ(v) ≤ d(v) for all v ∈ V. Thus, δ(v)
is the shortest path from s to v. Define d(s) = 0, and d(v) = ∞ for all v that are not
reachable from s.

Relaxation is an operation to update d(v) using many well-known SSSP algo-
rithms such as Dijkstra’s algorithm and Bellman-Ford. The operation updates d(v)
use a previously updated d(u) for each (u, v) ∈ E. An edge relaxation of (u, v) is
defined as d(v) = min {d(v), d(u) + w(u, v)}. A vertex relaxation of u is a set of
edge relaxations of all edges of u. Thus, a variation of SSSP algorithms is generally
based on the way the relaxation has taken place.

The classical Dijkstra’s algorithm relaxes vertices in an order starting from a
vertex with the lowest tentative distance first (starting with s). After all edges of
that vertex are relaxed, the vertex is marked as settled; that is, the distance to such
vertex is the shortest possible. To keep track of a relaxing order of all active vertices
v (or vertices that have been updated and are to be relaxed), the algorithm uses a
priority queue that orders active vertices based on their d(v). A vertex is added to the
queue only if it is visited for the first time. The algorithm terminates when the queue
is empty. Another variant of Dijkstra’s algorithm for integer weight graphs that is
suited for parallel implementation is called Dial’s algorithm [20]. It uses a bucket
data structure instead of a priority queue to avoid the overhead from maintaining
the queue while still giving the same work performance as Dijkstra’s algorithm.
Each bucket has a unit size, and holds all active vertices that have the same tentative
distance as a bucket number. The algorithm works on buckets in order, starting from
the lowest to the highest bucket numbers. Any vertex in each bucket has an equal
priority and can be processed simultaneously. Thus, the high concurrency of the
algorithm can be obtained by the presence of these buckets.

Another well-known SSSP algorithm, Bellman–Ford, allows vertices to be
relaxed in any order. Thus, there is no guarantee if a vertex is settled after it has
been once relaxed. Generally, the algorithm uses a first-in-first-out (FIFO) queue to
maintain the vertex relaxation order, since there is no actual priority of vertices. A
vertex is added to the queue when its tentative distance is updated, and is removed
from the queue after it is relaxed. Thus, any vertex can be added to the queue
multiple times whenever its tentative distance is updated. The algorithm terminates
when the queue is empty. Since the order of relaxation does not affect the correctness
of the Bellman–Ford algorithm, it allows the algorithm to provide high concurrency
from simultaneous relaxation.

While Dijkstra’s algorithm yields the best work efficiency since each vertex is
relaxed only once, it has very low algorithm concurrency. Only vertices that have
the smallest distance can be relaxed at a time to preserve the algorithm correctness.
In contrast, Bellman–Ford requires more works from (possibly) multiple relaxations
of each vertex. However, it provides the best algorithm concurrency, since any
vertex in the queue can be relaxed at the same time. Thus, the algorithm allows
simultaneously relaxations, while the algorithm’s correctness is still preserved.

The �-stepping algorithm [21] compromises between these two extremes by
introducing an integer parameter � ≥ 1 to control the trade-off between work
efficiency and concurrency. At any iteration k ≥ 0, the �-stepping algorithm relaxes

42 T. Panitanarak

the active vertices that have tentative distances in [kΔ, (k + 1)� − 1]. With
1 < � < ∞, the algorithm yields better concurrency than the Dijkstra’s algorithm and
lower work redundancy than the Bellman–Ford algorithm. To keep track of active
vertices to be relaxed in each iteration, the algorithm uses a bucket data structure that
puts vertices with the same distant ranges in the same bucket. The bucket k contains
all vertices that have the tentative distance in the range [kΔ, (k + 1)� − 1]. To make
the algorithm more efficient, two processing phases are introduced in each iteration.
When an edge is relaxed, it is possible that the updated distance of an adjacency
vertex may fall into the current bucket, and it can cause cascading reupdates as in
Bellman–Ford. To minimize these reupdates, edges of vertices in the current bucket
with weights less than � (also called light edges) are relaxed first. This forces any
reinsertion to the current bucket to happen earlier, and, thus, decreasing the number
of reupdates. This phase is called a light phase, and it can iterate multiple times until
there is no more reinsertion, or the current bucket is empty. After that, all edges of
vertices, which are previously relaxed in the light phases with weights greater than
� (also called heavy edges), are then relaxed. This phase is called a heavy phase. It
only occurs once at the end of each iteration, since, with edge weights greater than
�, the adjacency vertices from updating tentative distances are guaranteed not to
fall into the current bucket. The �-stepping algorithm can be viewed as a general
case of SSSP algorithms with the relaxation approach. The algorithm with � = 1 is
equivalent to Dijkstra’s algorithm, while the algorithm with � = ∞ yields Bellman–
Ford.

Figure 3.1a, b shows the number of phases and edge relaxations, respectively,
with different � values on two graphs, graph500 with scale 27 (227 vertices) and
it-2004. The Dijkstra’s algorithm and Bellman–Ford are shown with � equal to

1 8 16 32 64 128 256 Infty
100

101

102

103

104

Δ

N
um

be
r o

f p
ha

se
s

graph500
it−2004

1 8 16 32 64 128 256 Infty
0

1

2

3

4

5

6 x 108

Δ

N
um

be
r o

f r
el

ax
at

io
ns

graph500
it−2004

(a) Number of phases (b) Number of edge relaxations

Fig. 3.1 The effect of � in the �-stepping algorithm on the numbers of phases (a) and edge
relaxations (b)

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 43

0 20 40 60 80 100
100

102

104

106

108

1010

Phase number

N
um

be
r o

f r
el

ax
at

io
ns

Light Phase
Heavy Phase

0 20 40 60 80 100
100

102

104

106

108

1010

Phase number
N

um
be

r o
f r

el
ax

at
io

ns

Light Phase
Heavy Phase

(a) graph500 (b) it-2004

Fig. 3.2 The number of relaxations on the first 100 phases of the �-stepping algorithm with
� = 32 on graph500 (a) and it-2004 (b)

1 and ∞, respectively, as they are equivalent algorithms. Increasing � results in
decreasing the number of phases as each phase with larger � can relax more
vertices. Thus, the larger the �, the more the concurrency of the algorithm.
However, increasing � also yields higher number of edge relaxations as it increases
a chance of each vertex to be relaxed multiple times. Thus, the larger the �, the less
the work efficiency. Note that it-2004 has higher numbers of phases because of its
large graph diameter compared to graph500.

Figure 3.2 shows the numbers of relaxations on the first 100 phases of �-stepping
algorithm with � = 32 on graph500 and it-2004. Note that graph500 and it-2004
require 123 and 954 phases to complete the SSSP execution, respectively. The
results of both graphs show that the first half of the algorithm is dominated by light
phase relaxations, while the latter half is dominated by heavy phase relaxations.
During early phases, most of vertices are still unsettled, and result in more work
in light phases. At some points where a large portion of vertices is settled, more
work is shifted to heavy phases as the number of reinsertion of unsettled vertices
decreases.

3.2.2 Two-Dimensional Graph Layout

Most distributed graph computations utilize distributed adjacency lists of vertices,
which are usually presented by a compressed sparse row format to make an efficient
use of memory. Because of its simplicity and flexibility to extend to distributed
graph computations, it is widely used as an underlying graph data structure. For
example, to distribute a graph with n vertices among p processors, nonoverlapping

44 T. Panitanarak

n/p vertices along with their corresponding outgoing edges can be assigned to each
processor. This approach can be viewed as a one-dimensional (1D) graph layout,
since it is generally a partition of the graph adjacency matrix by row into p sub-
matrices. Each submatrix contains nonoverlapping n/p rows. While this approach
works well in general, there are two major flaws that can degrade the overall
performance. First, it has high communication overhead, because data relating to
vertex adjacencies is distributed among all processors. Any update to the vertices
will affect all other processors. Thus, all processors are required to participate in
the update usually in the form of an all-to-all collective communication. Secondly,
the 1D graph layout only considers an equal distribution of vertices of a graph.
While each processor gets approximately the same number of vertices, there is no
guarantee that the number of edges in each partition is equally distributed. This can
lead to load imbalance issues for graph algorithms that require edge traversal. The
problem is more pronounced, specifically, in power-law real-world graphs, since
these graphs contain very few high-degree vertices, while most of vertices have
very low degrees. Even though there are some techniques that have been used in
many graph frameworks and algorithms to handle the load-balancing issue such as
dynamic load balancing and vertex cut [11], they also introduce more complexity
and computation from additional data structures to maintain the originality of the
problem.

A two-dimensional (2D) graph layout had been previously studied in [22] for
parallel breadth-first search. This approach partitions an adjacency matrix of graph
vertices into grid blocks instead of a traditional row partition, 1D graph layout. The
2D layout reduces communication space and also provides better edge distributions
of a distributed graph than the 1D layout as any dense row of the high degree vertices
can now be distributed across multiple processors instead of only one processor as
in the 1D layout. The adjustment has also taken place on the underling graph data
structures. Thus, it can be extended to other distributed graph algorithms efficiently
and effectively. To illustrate the advantage of the 2D layout, consider partitioning
a sparse adjacency matrix of a graph into grid blocks of r rows and c columns.
Each interprocessor communication still occurs only on one dimension either along
the row or column. Thus, the interprocessor communication space is now reduced.
If an n × n sparse adjacency matrix of a graph is partitioned into p = r × c
partitions, with the traditional 1D layout, each set of n/p consecutive rows of the
matrix is assigned to one partition (see Fig. 3.3a). Alternatively, we can partition the
adjacency matrix into grid blocks, and assign each block to one processor (see Fig.
3.3b). With p = r × c processors, the communication space can be reduced from
r × c to only r for any row communication such as an all-to-all communication.
Furthermore, this approach provides better load balancing of both vertices and edges
of a graph as any dense row of any high degree vertex can now be distributed across
multiple processors instead of residing on one processor as in the 1D layout.

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 45

Fig. 3.3 The comparison of the (a) one- and (b) two-dimensional graph layouts

3.3 Novel Parallel SSSP Implementations

3.3.1 General Parallel SSSP for Distributed Memory Systems

We consider SSSP implementations with 1D layout in [23], which are based on
a bulk-synchronous �-stepping algorithm for distributed memory systems. The
algorithm is composed of three main steps, a local discovery, an all-to-all exchange,
and a local update for both light and heavy phases. In the local discovery step,
each processor looks up to all adjacencies v of its local vertices u in the current
bucket, and generates corresponding tentative distances dtv = d(u) + w(u, v) of
those adjacencies. Note that, in the light phase, only adjacencies with light edges
are considered, while, in the heavy phase, only adjacencies with heavy edges
are processed. For each (u, v), a pair (v, dtv) is generated, and stored in a queue
called QRequest. The all-to-all exchange step distributes these pairs in QRequest
to make them local to processors so that each processor can use this information
to update a local tentative distance list in the local update step. An edge relaxation
is part of the local update step that invokes updating vertex tentative distances, and
adding/removing vertices to/from buckets based on their current distances.

3.3.2 Parallel SSSP with 2D Graph Layout

To apply the 2D graph layout for the �-stepping algorithm, each of the three steps
needs to be modified according to the changes in the vertex and edge distributions.
While the vertices are distributed in similar manner as in the 1D graph layout,
edges are now distributed differently. Previously in the 1D layout, all edges of local
vertices are assigned to one processor. However, with the 2D layout, these edges are

46 T. Panitanarak

Fig. 3.4 The main SSSP operations with the 2D layout. (a) Each color bar shows the vertex
information for active vertices owned to each processor Pi, j. (b) The row-wise all-gather
communication gathers all information of actives vertices among the same processor rows to
all processors in the same row. (c) Each processor uses the information to update the vertex
adjacencies. (d, e) The column-wise all-to-all and transpose communications group the information
of the updated vertices owned by the same processors and send this information to the owner
processors. (f) Each processor uses the received information to update its local vertex information

now distributed among row processors that have the same row number. Figure 3.4a
illustrates the partitioning of vertices and edges for the 2D layout.

In the local discovery step, there is no need to modify the actual routine. The
only work that needs to be done is merging all current buckets along the processor
rows by using a row-wise all-gather communication. The reason is that the edge
information (such as edge weights and adjacencies) of local vertices owned by each
processor is now distributed among the processor rows. Thus, each processor with
the same row number is required to know all the active vertices in the current bucket
of their neighbor processor rows before the discovery step can take place. After the
current buckets are merged (see Fig. 3.4b), each processor can now simultaneously
work on generating pairs (v, dtv) of its local active vertices (see Fig. 3.4c).

In the all-to-all exchange step, the purpose of this step is to distribute the
generated pairs (v, dtv) to the processors that are responsible for maintaining the
information relating to vertices v. In our implementation, we use two subcommu-
nications: a column-wise all-to-all exchange and a send-receive transposition. The
column-wise all-to-all communication puts all information pairs of vertices owned

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 47

by the same owner onto one processor. Figure 3.4d shows a result of this all-to-all
exchange. After that, each processor sends and receives these pair lists to the actual
owner processors. The latter communication can be viewed as a matrix transposition
as shown in Fig. 3.4e.

In the local update step, there is no change within the step itself, but only
in the data structure of the buckets. Instead of only storing vertices in buckets,
the algorithm needs to store both vertices and their current tentative distances so
that each processor knows the distance information without initiating any other
communication. Figure 3.4f illustrates the local update step. Since all pairs (d, dtv)
are local, each processor can update the tentative distances of their local vertices
simultaneously.

The complete SSSP algorithm with the 2D graph layout is shown in Algorithm
3.1. The algorithm initialization shows in the first 10 lines. The algorithm checks for
the termination in line 11. The light and heavy phases are shown in lines 12–25 and
lines 26–35, respectively. The termination checking for the light phases of a current
bucket is in line 12. The local discovery, all-to-all exchange, and local update steps
of each light phase are shown in lines 13–19, 20, and 22, respectively. Similarly for
each heavy phase, its local discovery, all-to-all exchange, and local update steps are
shown in lines 26–31, 32, and 34, respectively. Algorithm 3.2 shows the relaxation
procedure used in Algorithm 3.1.

Algorithm 3.1: Distributed SSSP with 2D Graph Layout

1: for each u do
2: d[u] ← ∞
3: end for
4: current ← 0
5: if onwer(s) = rank then
6: d[s] ← 0
7: end if
8: if onwerRow(s) = rankRow then
9: Bucket[current] ← Bucket[current] ∪ (s, 0)
10: end if
11: while Bucket �= ∅ do //Globally check
12: while Bucket[current] �= ∅ do //Globally check
13: for each (u, du) ∈ Bucket[current] do
14: for each (u, v) ∈ LightEdge do
15: dtv ← du + w(u, v)
16: QRequest ← QRequest ∪ (v, dtv)
17: end for
18: QHeavy ← QHeavy ∪ (u, du)
19: end for
20: Alltoallv(QRequest, row); Transpose(QRequest)
21: for each (v, dtv) ∈ QRequest do
22: Relax(v, dtv)

48 T. Panitanarak

23: end for
24: Allgatherv(Bucket[current], col)
25: end while
26: for each (u, du) ∈ QHeavy do
27: for each (u, v) ∈ HeavyEdge do
28: dtv ← du + w(u, v)
29: QRequest ← QRequest ∪ (v, dtv)
30: end for
31: end for
32: Alltoallv(QRequest, row); Transpose(QRequest)
33: for each (v, dtv) ∈ QRequest do
34: Relax(v, dtv)
35: end for
36: current ← current + 1 //Move to next bucket
37: Allgatherv(Bucket[current], col)
38: end while

Algorithm 3.2: Relax(v, dtv)

1: if d[v] > dtv then
2: old ← d[v]/�; new ← dtv/�
3: Bucket[old] ← Bucket[old] − (v, d[v])
4: Bucket[new] ← Bucket[new] ∪ (v, dtv)
5: d[v] ← dtv
6: end if

3.3.3 Other Optimizations

To further improve the algorithm performance, we apply other three optimizations, a
cache-like optimization, a heuristic � increment, and a direction optimization. The
detailed explanation is as follows:

Cache-like optimization: We maintain a tentative distance list of every unique
adjacency of the local vertices as a local cache. This list holds the recent values of
tentative distances of all adjacencies of local vertices. Every time a new tentative
distance is generated (during the discovery step), this newly generated distance
is compared to the local copy in the list. If the new distance is shorter, it will be
processed in the regular manner by adding the generated pair to the QRequest,
and the local copy in the list is updated to this value. However, if the new
distance is longer, it will be discarded, since the remote processors will eventually
discard this request during the relaxation anyway. Thus, with a small trade-off of

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 49

additional data structures and computations, this approach can significantly avoid
unnecessary work that involves both communication and computation in the later
steps.

Heuristic Δ increment: The idea of this optimization is from the observation of
the �-stepping algorithm that the algorithm provides a good performance in
early iterations when � is small, since it can avoid most of the redundant
work in the light phases. Meanwhile, with a large �, the algorithm provides a
good performance in later iterations, since most of vertices are settled so that
the portion of the redundant work is low. Thus, the benefit of the algorithm
concurrency outweighs the redundancy. The algorithm with � that can be
adjusted when needed can provide better performance. From this observation,
instead of using a fix � value, we implement algorithms that starts with a small
� until some thresholds are met, and then, the � is increased (usually to ∞) to
speed up the later iterations.

Direction-optimization: This optimization is a heuristic approach first introduced in
[24] for breadth-first search (BFS). Conventional BFS usually proceeds in a top-
down approach such that, in every iteration, the algorithm checks all adjacencies
of each vertex in a frontier whether they are not yet visited, adds them to the
frontier, and then marks them as visited. The algorithm terminates whenever
there is no vertex in the frontier. We can see that the algorithm performance
is highly based on processing vertices in this frontier. The more vertices in the
frontier, the more work that needs to be done. From this observation, the bottom-
up approach can come to play for efficiently processing of the frontier. The idea
is that instead of proceeding BFS only using the top-down approach, it can be
done in a reverse direction if the current frontier has more work than the work
using the bottom-up approach. With a heuristic determination, the algorithm can
alternately switch between the top-down and bottom-up approaches to achieve
an optimal performance. Since the discovery step in SSSP is done in a similar
manner as BFS, Chakaravarthy et al. [19] adapt a similar technique called a
push–pull heuristic to their SSSP algorithms. The algorithms proceed with a
push (similar to the top-down approach) by default during heavy phases. If a
forward communication volume of the current bucket is greater than a request
communication volume of aggregating of later buckets, the algorithms switch to
a pull. This push–pull heuristic considerably improves an overall performance of
the algorithm. The main reason of the improvement is because of the lower of
the communication volume; thus, the consequent computation also decreases.

3.3.4 Summary of Implementations

In summary, we implement four SSSP algorithms:

1. SP1a: The SSSP algorithm based on �-stepping with the cache-like optimiza-
tion.

2. SP1b: The SP1a algorithm with the direction optimization.

50 T. Panitanarak

3. SP2a: The SP1a algorithm with the 2D graph layout.
4. SP2b: The SP2a algorithm with the � increment heuristic.

The main differences of each algorithm are the level of optimizations that
additionally increases from SP#a to SP#b that is the SP#b algorithms are the SP#a
algorithms with more optimizations, and from SP1x to SP2x that is the SP1x
algorithms use the 1D layout while the SP2x algorithms use the 2D layout.

3.4 Performance Results and Analysis

3.4.1 Experimental Setup

Our experiments are run on a virtual cluster using StarCluster [25] with the MPICH2
complier version 1.4.1 on top of Amazon Web Service (AWS) Elastic Compute
Cloud (EC2) [26]. We use 32 instances of AWS EC2 m3.2xlarge. Each instance
consists of eight cores of high-frequency Intel Xeon E5-2670 v2 (Ivy Bridge)
processors with 30 GB of memory. The graphs that we use in our experiments are
listed in Table 3.1. The graph500 is a synthetic graph generated from the Graph500
reference implementation [27]. The graph generator is based on the RMAT random
graph model with the parameters similar to those used in the default Graph500
benchmark. In this experiment, we use the graph scale of 27 with edge factor of
16; that is, the graphs are generated with 227 vertices with an average of 16 degrees
for each vertex. The other six graphs are real-world graphs that are obtained from
Stanford Large Network Dataset Collection (SNAP) [29], and the University of
Florida Sparse Matrix Collection [28]. The edge weights of all graphs are randomly,
uniformly generated between 1 and 512.

We fix the value of � to 32 for all algorithms. Please note that this value might not
be the optimal value in all test cases, but, in our initial experiments on the systems,
it gives good performance in most cases. To get the optimal performance in all
cases is not practical, since � needs to be changed according to the systems such
as CPU, network bandwidth and latency, and numbers of graph partitions. For more
discussion about the � value, please see [23].

Table 3.1 The list of graphs used in the experiments

Graph Number of vertices (millions) Number of edges (billions) Reference

graph500 134 2.1 [27]
it-2004 41 1.1 [28]
sk-2005 50 1.9 [28]
friendster 65 1.8 [29]
orkut 3 0.12 [29]
livejournal 4 0.07 [29]

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 51

3.4.2 Algorithm and Communication Cost Analysis

For SSSP algorithms with the 2D layout, when the number of columns increases,
the all-to-all communication overhead also decreases, and the edge distribution
is more balanced. Consider processing a graph with n vertices and m edges on
p = r × c processors. The all-to-all and all-gather communication spaces are
usually proportional to r and c, respectively. In other words, the maximum number
of messages for each all-to-all communication is proportional to m/c, while the
maximum number of messages for each all-gather communication is proportional to
n/r. In each communication phase, processor Pi, j needs to interact with processors
Pk, j for the all-to-all communication where 0 ≤ k < r, and with processors Pi, l for
the all-gather communication where 0 ≤ l < c. For instance, by setting r = 1 and
c = p, the algorithms do not need any all-to-all communication, but the all-gather
communication now requires all processors to participate.

During the SSSP process on scale-free graphs, there are usually a few phases of
the algorithms that consume most of the computation and communication times
due to the presence of few vertices with high degrees. Figure 3.5a, b and c, d
shows the average, minimum, and maximum vertices to be requested and sent,
respectively, for relaxations during the phase that consumes the most time of the
algorithms SP1a, SP1b, and SP2a on graph500 and it-2004 with 256 MPI tasks.
Note that we use the abbreviation SP2a-R × C for the SP2a algorithm with R and
C processor rows and columns, respectively. For example, SP2a-64 × 4 is the SP2a
algorithm with 64 row and 4 column processors (which are 256 processors in total).
The improvement of load balancing of the requested vertices for relaxations can
easily be seen in Fig. 3.5a, b as the minimum and maximum number of the vertices
decreases on both graphs from SP1a to SP1b and SP1a to SP2a. The improvement
from SP1a to SP1b is significant as the optimization is specifically implemented for
reducing the computation and communication overheads during the high-requested
phases. On the other hand, SP2a still processes on the same number of vertices,
but with lower communication space and better load balancing. Not only the load
balancing of the communication improves, but the number of (average) messages
among interprocessors also reduces, as we can see in Fig. 3.5c, d. However, there
are some limitations of both SP1b and SP2a. For SP1b, the push–pull heuristic may
not trigger in some phases as the costs of push and pull approaches are slightly
different. In contrast, for SP2a, although increasing the number of columns improves
load balancing and decreases the all-to-all communication in every phase, it also
increases the all-gather communication proportionally. There is no specific number
of columns that gives the best performance of the algorithms, since it depends on
various factors such as the number of processors, the size of the graph, and other
system specifications.

52 T. Panitanarak

0

0.5

1

1.5

2
x 107

N
um

be
r o

f r
eq

ue
st

in
g

ve
rti

ce
s

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Min.
Avg.
Max.

0

0.5

1

1.5

2
x 107

N
um

be
r o

f r
eq

ue
st

in
g

ve
rti

ce
s

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Min.
Avg.
Max.

(a) The number of requested
vertices: graph500

(d) The number of sent
vertices: graph500

(e) The number of sent
vertices: it-2004

(b) The number of requested
vertices: it-2004

0

1

2

3

4

5

6

7
x 106

N
um

be
r o

f r
eq

ue
st

in
g

ve
rti

ce
s

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Min.
Avg.
Max.

0

1

2

3

4

5

6

7
x 106

N
um

be
r o

f r
eq

ue
st

in
g

ve
rti

ce
s

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Min.
Avg.
Max.

Fig. 3.5 The numbers of (a, b) requested and (c, d) sent vertices during the highest relaxation
phase of the SP2a algorithm on graph500 and it-2004 using different combinations of processor
rows and columns on 256 MPI tasks

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 53

3.4.3 Benefits of 2D SSSP Algorithms

Figure 3.6 shows the algorithm performance in terms of traversed edges per second
(TEPS) on Amazon EC2 up to 256 MPI tasks. Although SP1b can significantly
reduce computation and communication during the high-requested phases, its over-
all performance is similar to SP2a. The SP2b algorithm gives the best performance
in all cases, and it also gives the best scaling when the number of processors
increases. The peak performance of SP2b-32 × 8 is approximately 0.45 GTEPS that
can be observed on graph500 with 256 MPI tasks, which is approximately 2× faster
than the performance of SP1a on the same setup. The SP2b algorithm also shows
good scaling on large graphs such as graph500, it-2004, sk-2005, and friendster.

3.4.4 Communication Cost Analysis

Figure 3.7 shows the breakdown execution time of total computation and com-
munication of each algorithm. More than half of the time for all algorithms is
spent on communication as the networks of Amazon EC2 are not optimized for
high performance computation. The improvement of SP1b over SP1a is from
the reduction of computation overhead as the number of processing vertices in
some phases is reduced. On the other hand, SP2a provides lower communication
overhead over SP1a as the communication space is decreased from the use of
the 2D layout. The SP2b algorithm further improves the overall performance
by introducing more concurrency in the later phases, resulting in lower both
communication and communication overhead during the SSSP runs. Figure 3.8
shows the breakdown communication time of all algorithms. We can see that when
the number of processor rows increases, it decreases the all-to-all communication,
and slightly increases the all-gather and transpose communications. In all cases,
SP2b shows the least communication overhead with up to 10× faster for the all-to-
all communication and up to 5× faster for the total communication.

3.5 Conclusion and Future Work

We propose scalable SSSP algorithms based on the �-stepping algorithm. Our algo-
rithms reduce both communication and computation overhead from the utilization of
the 2D graph layout, the cache-like optimization, and the � increment heuristic. The
2D layout improves the algorithm performance by decreasing the communication
space, thus reducing overall communication overhead. Furthermore, the layout also
improves the distributed graph load balancing, especially, on scale-free graphs. The
cached-like optimization avoids unnecessary workloads for both communication
and communication by filtering out all updated requests that are known to be

54 T. Panitanarak

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

(a)

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

(b)

(c)

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

64 128 256
0

1

2

3

4

4.5 x 108

Number of MPI tasks

TE
PS

SP1a
SP1b
SP2a−64×4
SP2a−32×8
SP2b−64×4
SP2b−32×8

(d)

(e) (f)

Fig. 3.6 The performance (in TEPS) of SSSP algorithms up to 256 MPI tasks. (a) graph500, (b)
it-2004, (c) sk-2005, (d) friendster, (e) orkut, (f) livejournal

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 55

0

5

10

15

20

25
Ti

m
e(

s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

0

5

10

15

20

25

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

0

5

10

15

20

25

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

0

5

10

15

20

25

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

0

5

10

15

20

25

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

0

5

10

15

20

25

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

Computation
Communication

(a)

(d)

(e) (f)

(b)

(c)

Fig. 3.7 The communication and computation times of SSSP algorithms on 256 MPI tasks. (a)
graph500, (b) it-2004, (c) sk-2005, (d) friendster, (e) orkut, (f) livejournal

56 T. Panitanarak

0

5

10

15

20
Ti

m
e(

s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

0

5

10

15

20

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

0

5

10

15

20

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

0

5

10

15

20
Ti

m
e(

s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

0

5

10

15

20

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

0

5

10

15

20

Ti
m

e(
s)

SP1a
SP1b

SP2a−128x2

SP2a−64x4

SP2a−32x8

SP2a−16x16

all−to−all
all−gather + transpose

(a)

(d)

(e) (f)

(b)

(c)

Fig. 3.8 Communication breakdown of SSSP algorithms on 256 MPI tasks. (a) graph500,
(b) it-2004, (c) sk-2005, (d) friendster, (e) orkut, (f) livejournal

3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional. . . 57

discarded. Finally, by increasing the � values during the algorithms progress, we
can improve the concurrency of the algorithms in the later iterations.

Currently, our algorithm is based on the bulk-synchronous processing for
distributed memory systems. We plan to extend our algorithms to also utilize
the shared memory parallel processing that can further reduce the interprocessing
communication of the algorithms.

Acknowledgments The author would like to thank Dr. Kamesh Madduri, an associate professor
at Pennsylvania State University, USA, for the inspiration and kind support.

References

1. Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische
Mathematik, 1(1), 269–271.

2. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16, 87–90.
3. Ford, L. A. (1956). Network flow theory. Tech. Rep. Report P-923. Santa Monica, CA: The

Rand Corporation.
4. Gregor, D., & Lumsdaine, A. (2005). The Parallel BGL: A generic library for distributed graph

computations. Parallel Object-Oriented Scientific Computing, 2, 1–18.
5. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., & Hellerstein, J. M. (2012).

Distributed GraphLab: A framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8), 716–727.

6. Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012). PowerGraph: Distributed
graph-parallel computation on natural graphs. In: OSDI (Vol. 12, p. 2).

7. Galois. Retrieved July 15, 2018, from http://iss.ices.utexas.edu/?p=projects/galois.
8. Dayarathna, M., Houngkaew, C., & Suzumura, T. (2012). Introducing ScaleGraph: An X10

library for billion scale graph analytics. In Proceedings of the 2012 ACM SIGPLAN X10
Workshop (p. 6). New York: ACM.

9. White, T. (2012). Hadoop: The definitive guide. Newton, MA: O’Reilly Media.
10. Chen, R., Ding, X., Wang, P., Chen, H., Zang, B., & Guan, H. (2014). Computation and

communication efficient graph processing with distributed immutable view. In Proceedings of
the 23rd International Symposium on High-Performance Parallel and Distributed Computing
(pp. 215–226). New York: ACM.

11. Xin, R. S., Gonzalez, J. E., Franklin, M. J., & Stoica, I. (2013). Graphx: A resilient distributed
graph system on Spark. In First International Workshop on Graph Data Management
Experiences and Systems (p. 2). New York: ACM.

12. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., & Kalnis, P. (2013). Mizan:
A system for dynamic load balancing in large-scale graph processing. In Proceedings of the
8th ACM European Conference on Computer Systems (pp. 169–182). New York: ACM.

13. Davidson, A. A., Baxter, S., Garland, M., & Owens, J. D. (2014). Work-efficient parallel GPU
methods for single-source shortest paths. In International Parallel and Distributed Processing
Symposium (Vol. 28).

14. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., & Owens, J. D. (2015). Gunrock: A high-
performance graph processing library on the GPU. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (pp. 265–266.. PPoPP 2015).

15. Zhong, J., & He, B. (2014). Medusa: Simplified graph processing on GPUs. IEEE Transactions
on Parallel and Distributed Systems, 25(6), 1543–1552.

http://iss.ices.utexas.edu/?p=projects/galois

58 T. Panitanarak

16. Madduri, K., Bader, D. A., Berry, J. W., & Crobak, J. R. (2007). An experimental study of a
parallel shortest path algorithm for solving large-scale graph instances. In Proceedings of the
9th Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 23–35). Society for
Industrial and Applied Mathematics.

17. Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., & Haridasan, M. (2012).
Managing large graphs on multi-cores with graph awareness. In Proceedings of USENIX
Annual Technical Conference (ATC).

18. Shun, J., & Blelloch, G. E. (2013). Ligra: A lightweight graph processing framework for shared
memory. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (pp. 135–146). PPoPP’13.

19. Chakaravarthy, V. T., Checconi, F., Petrini, F., & Sabharwal, Y. (2014). Scalable single
source shortest path algorithms for massively parallel systems. In Proceedings of IEEE 28th
International Parallel and Distributed Processing Symposium (pp. 889–901).

20. Dial, R. B. (1969). Algorithm 360: Shortest-path forest with topological ordering. Communi-
cations of the ACM, 12(11), 632–633.

21. Meyer, U., & Sanders, P. (2003). �-stepping: A parallelizable shortest path algorithm. Journal
of Algorithms, 49(1), 114–152.

22. Buluç, A., & Madduri, K. (2011). Parallel breadth-first search on distributed memory systems.
In: Proceedings of High Performance Computing, Networking, Storage and Analysis (SC).

23. Panitanarak, T., & Madduri, K. (2014). Performance analysis of single-source shortest path
algorithms on distributed-memory systems. In SIAM Workshop on Combinatorial Scientific
Computing (CSC) (p. 60). Citeseer.

24. Beamer, S., Asanović, K., & Patterson, D. (2013). Direction-optimizing breadth-first search.
Scientific Programming, 21(3–4), 137–148.

25. StarCluster. Retrieved July 15, 2018, from http://star.mit.edu/cluster/.
26. Amazon Web Services. Amazon elastic compute cloud. Retrieved July 15, 2018, from http://

aws.amazon.com/ec2/.
27. The Graph 500. Retrieved July 15, 2018, from http://www.graph500.org.
28. The University of Florida Sparse Matrix Collection. Retrieved July 15, 2018, from https://

www.cise.ufl.edu/research/sparse/matrices/.
29. SNAP: Stanford Network Analysis Project. Retrieved July 15, 2018, from https://

snap.stanford.edu/data/.

http://star.mit.edu/cluster/
http://aws.amazon.com/ec2/
http://www.graph500.org
https://www.cise.ufl.edu/research/sparse/matrices/
https://snap.stanford.edu/data/

Chapter 4
Using Non-negative Tensor
Decomposition for Unsupervised Textual
Influence Modeling

Robert E. Lowe and Michael W. Berry

4.1 Introduction

Nam cum pictor praecogitat quae facturus est, habet quidem in intellectu sed nondum
intelligit esse quod nondum fecit. – Anselm of Canterbury [7]

In the eleventh century, Anselm of Canterbury wrote what has since come to be
known as the ontological argument for the existence of God [7]. Anselm’s argument
was based on the assumption that all ideas, or more specifically, all thoughts
originate either from perceptions of the outside world or from images formed within
the imagination. From this he provides an argument for the existence of a divine
being. The research presented here follows this same epistemological assumption to
a much less trivial end. Instead of proving divine influence, the present work shall
attempt to measure the influence present in the written works of less divine beings.

The basic assumption made about text documents is the same assumption that
Anselm made about the origin of thoughts. Every word, phrase, sentence, paragraph,
and theme in a document must come from one of two sources. Either the author
created the thought from within their own mind, and as such this counts as a literary
contribution, or the author adopted ideas from some outside source. These sources
can take on many forms. In the case of academic writing, the author is likely to

R. E. Lowe
Division of Mathematics and Computer Science, Maryville College, Maryville, TN, USA
e-mail: robert.lowe@maryvillecollege.edu

M. W. Berry (�)
Department of Electrical Engineering and Computer Science, University of Tennessee at
Knoxville, Knoxville, TN, USA
e-mail: mberry@utk.edu

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_4&domain=pdf
mailto:robert.lowe@maryvillecollege.edu
mailto:mberry@utk.edu
https://doi.org/10.1007/978-3-030-22475-2_4

60 R. E. Lowe and M. W. Berry

have been influenced primarily by the various books and papers that they have read
over the course of their research. Another form of influence is a coauthor (though
in the case of academic literature, coauthors are almost always explicitly stated.)
Of course, the influence over the text in a paper is not constrained merely to the
literature that the author has cited, but is ultimately a reflection of an author’s entire
life experience and background. In the case of literary writing, such as a novel or
play, a reasonable assumption is that an author is influenced by other works within
their genre as well as by the society in which they live.

Given that every written document is influenced by at least a small set of
outside documents, the present work attempts to model and quantify this influence
by separating documents into a set of factors and then searching for common
factors among the documents. The desired result has two parts. First, a weight is
assigned to each factor indicating its importance in the target work. Second, the
factors themselves should carry enough semantic meaning to identify the ideas and
elements of style which have been transferred from a source document to a target
document. In this chapter, we highlight the work originally discussed in [22] on the
identification of influencing factors and the quantification of the influence they exert
on a target document.

The usefulness of such a measurement should be readily apparent to anyone
working in any academic field. In modern research, the performance of participants
is rooted in an attempt to measure that person’s influence over their chosen field.
Traditional approaches to this problem involve counting citations over a specific
window of time [1] while more modern approaches tend to involve some document
semantics [11, 16]. Measuring influence in a written document can also be applied
in situations where authorship is in question. Given a corpus of works of confirmed
provenance, and a disputed document, influence modeling can identify the possible
influence of each author. Thus textual influence modeling can be used to answer the
question of authorship where it is disputed, or could potentially be used to identify
plagiarized passages [22].

4.2 Modeling Influence

At a high level, an influence model identifies elements that appear to have been
incorporated into a target document from a source document. These elements are
numerous. For example, they could include elements of style, topics, phrases,
or ideas. A human reader seems to be able to identify these elements on an
intuitive level, as can be seen readily whenever a reader says one author sounds
like another. This operation is also in effect when tracing ideas through written
academic literature. In either case, the text of a target document along with its corpus
of cited documents seems to provide sufficient evidence to identify potential sources
of influence in the target document.

4 Non-negative Tensor Decomposition for Influence Modeling 61

The chief problem with an intuitive model such as the one outlined in the
previous paragraph is that it is highly subjective. Every conclusion reached by
human scholars in such a system must appeal to intuition and logic, and so deter-
mining the strength of any perceived relationships present in the corpus presents a
difficult challenge. In recent years, the emerging field of computational stylistics has
offered several techniques for quantifying these elements of style which can serve
as markers of influence [3, 6, 10]. In so much as it can, computational stylistics has
the principal goal of using textual evidence to answer the question of authorship.
The current state-of-the-art techniques for addressing these questions rely upon
statistical analysis of word frequencies within documents [10]. The typical approach
is to use a set of marker words to determine the likelihood of an author’s contribution
to a target document. Those words that are more likely to occur in the works of
one author are ascribed to them if the word has sufficient classifying power, which
is usually determined by the statistical significance of the word’s frequency. This
current approach offers only a coarse level of determination. Computational stylistic
analysts can identify words that are more likely to come from one author’s work,
and they in turn identify whether that author appears to have contributed to a target
document. Thus the current techniques only inform the probability of an author’s
contribution as a dichotomy. Each potential author was either a contributor or they
were not. The objective of the model outlined in this work is to extend this model to
include more detail. As opposed to determining whether an author has contributed
to a target work directly, this model assumes that influence is present in multiple
forms; the present model seeks to identify the strength of influence, as well as to
identify the specific nature of those influences.

4.2.1 Tensors and Decompositions

In order to analyze a document, it must first be quantified in some way that allows
for analysis. The model we consider represents documents using tensors. The term
“tensor” has been broadly applied across multiple fields to describe several different
types of related objects. For the purposes of factor analysis, a tensor is simply
an extension of matrices into a higher number of modes. In tensor terminology a
“mode” is a dimension along which the tensor can be indexed. A scalar is a mode
zero tensor, a vector is a mode one tensor, and a matrix is a mode two tensor. When
the number of modes exceeds two, it is customary to refer to the array simply as a
tensor. A detailed account of the tensor operations performed by this model is given
in the next section. For a complete treatment of tensors as they pertain to factor
analysis, see Tamara Kolda’s tutorial [19].

The underlying principle of tensor analysis is polyadic decomposition, which
was first described by Frank Hitchcock in 1927 [15]. When a tensor is expressed in
polyadic form, it is expressed as the sum of rank 1 tensors, which is usually written
as the outer product of vectors. (This is also referred to as the tensor product of
vectors, which is in line with the geometric interpretation of tensors as the outer

62 R. E. Lowe and M. W. Berry

product of vector spaces.) Each polyadic factor in a tensor of m modes is the
tensor product of m vectors. For example, given a 3-mode tensor T ∈ R

I×J×K , its
polyadic decomposition into r factors is a set of factors which satisfies Eq. 4.1. For
the sake of convenience, the remainder of this discussion will assume a three-mode
tensor, however everything discussed here can readily be extended to any number
of modes.

T ≈
r∑

i=1

ai ⊗ bi ⊗ ci (4.1)

The tensor, or outer, product a ⊗ b used in Eq. 4.1 results in a tensor where the
modes are the concatenation of the modes of a and b. For instance, if a and b are
vectors of size i and j respectively, a⊗b results in a 2-mode tensor with dimensions
i × j . In the case of building a 3-mode tensor, three vectors are needed, and the
elements of the product result are computed as in Eq. 4.2. A graphical representation
of this product is shown in Fig. 4.1. Of note is how each vector serves as scaling
values for a mode.

Tijk = aibj ck (4.2)

Fig. 4.1 Tensor product
representations [22]. (a)
Mode vectors. (b) a ⊗ b. (c)
a ⊗ b ⊗ c

4 Non-negative Tensor Decomposition for Influence Modeling 63

The notion of the tensor product also gives rise to the notion of tensor rank.
Tensor rank is not the same as matrix rank, and is in fact much more difficult
to compute. Perhaps the easiest way to understand the notion of tensor rank is to
think recursively. A rank 1 tensor is a tensor which can be constructed completely
from the tensor product of 1-mode tensors (vectors). The tensor described in Eq. 4.2
and Fig. 4.1 is therefore a rank-1 tensor, as are all the factors in the polyadic
decomposition. A tensor of general rank r is the result of the summation of r rank-
1 tensors. The rank of a tensor T is therefore defined as the minimum number of
rank-1 tensors needed to sum to T .

Hitchcock’s paper mainly presents the polyadic decomposition from a purely
mathematical perspective, with applications to studying tensor invariants and tensor
rank. In fact, as later papers show, the problem of determining the rank of a tensor
is NP-Complete [14]. Polyadic decomposition began to see other uses when it was
rediscovered in 1970 by Richard Harshman [12], Carroll and Chang [8]. Harshman
coins the term “PARAFAC,” a portmanteau of “Parallel Factors” while Carroll and
Chang refer to the model as “CANDECOMP” in place of “Canonical Decompo-
sition.” Both papers present the model as a means of studying psychological data
by treating the tensor factors as explanatory variables for the variance in the tensor
data. In recent years, tensor analysis has begun to take root in other fields such as
chemometrics [4] and text mining [3]. In several modern treatments, the polyadic
decomposition is referred to as “CPD” or “Canonical Polyadic Decomposition.”
For the purposes of factor analysis, factors are often normalized, without loss of
generality [3, 4], yielding the decomposition shown in Eq. 4.3.

T ≈
r∑

i=1

λia
′
i ⊗ b′

i ⊗ c′
i (4.3)

Here λi is a scalar where λi = norm(ai ⊗ bi ⊗ ci). This is desirable because
the factors in this form are proportional profiles [12] with all of the magnitude
of the factor contained in λi . As can be clearly seen from Eq. 4.3, λi is also an
expression of the influence that factor i exerts over the tensor T . For this reason,
factors are typically expressed in order from largest λi to the smallest λi . Thus these
factor norms serve a similar purpose as eigenvalues in principal component analysis
(PCA), or as singular values in singular value decomposition (SVD).

In fact, the similarities between PCA, SVD, and CPD do not end with the
inclusion of weights! Nor is it true that CPD is the only tensor decomposition.
The closest competing decomposition is the Tucker decomposition, first proposed
in 1963 and fully formed in 1966 [19]. Given tensor T , the Tucker decomposition
yields the factor matrices A ∈ R

I×P , B ∈ R
J×Q, and C ∈ R

K×R . The model
also contains a so-called core tensor G ∈ R

P×Q×R . These factors are fit to satisfy
Eq. 4.4, where G ×n M is the n-mode product of tensor G and matrix M.

T ≈ G ×1 A ×2 B ×3 C (4.4)

64 R. E. Lowe and M. W. Berry

An element-wise version of the tucker decomposition is shown in Eq. 4.5. For a
complete treatment of the n-mode tensor matrix product, see the Kolda tutorial [19].

tijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqraipbjqckr (4.5)

As was shown by Henk Kiers, the relationship between PCA, Tucker decompo-
sition, and CPD is hierarchical [18]. While Kiers’s paper focuses on 3-way analysis,
his results extend to any number of modes. Because a tensor can be unfolded along
any dimension to form a two-dimensional matrix, it is always possible to use PCA
to find explanatory factors for tensor data. In fact, Tucker-3 is a constrained version
of PCA. The exact nature of these constraints is beyond the scope of the present
discussion, however they are a direct result of the presence of a core tensor. A
simplified summary is that the core tensor’s dimensions predetermines the number
of factors to be discovered. CPD, in turn, is a constrained variant of the Tucker
decomposition. While the CPD is usually written without a core tensor, it can be
thought of as having an identity tensor as its core. The identity tensor is simply a
tensor with ones along its super-diagonal and zeros everywhere else. (Or stated more
formally, an identity tensor is a tensor containing ones where i1 = i2 = . . . = in
for all n modes and zeros in all other positions.) Also, in CPD, P = Q = R (and so
on if there are more than three modes). Tucker decomposition allows for each mode
to have a different number of factors, while CPD does not. As can be expected,
the more constraints placed upon the explanatory model of the tensor come at the
expense of quality of fit. Hence, PCA will always provide the best fit, Tucker will
either be as good or worse than PCA, and CPD will always be as good or worse than
a Tucker model [4, 18].

So then if the tensor decomposition models provide a worse fit, the question
becomes why are they important? The answer lies in several properties of the tensor
decompositions. First, tensor decompositions retain the structure of the original
data [12, 19]. Unfolding a tensor into a matrix loses semantic information about
the variables being analyzed, and extracting intuitive semantics from the resultant
PCA model is difficult and usually impossible [4]. Also, in the case of CPD, the
factors are unique under rotation so long as the number of factors extracted is greater
than or equal to the rank of the tensor [13]. Another desirable property of the CPD
is that it does not partition space by hyper-surfaces. Instead, it creates a sort of
implicit set of axes for factor separation by providing a proportional profile along
the tensor’s basis [13]. Thus if several tensors of like dimensions are decomposed,
their factors can be logically thought of as existing within the same space. This
allows for comparison among the factors to be carried out, unlike under PCA where
the factor space of each matrix is a projection into a new space, making comparison
of factors from disparate matrices difficult to perform in a meaningful way.

In some instances of tensor analysis, it can be convenient to apply additional
constraints to the model. The most common constraint applied to CPD is a non-
negativity constraint [4, 19, 21]. This is done for a variety of reasons, most notably

4 Non-negative Tensor Decomposition for Influence Modeling 65

as a form of dimension reduction and when analyzing data which are naturally
predisposed to be non-negative. We consider both outcomes necessary for the model
under consideration. First, the tensors used in this model are extremely sparse, and
so introducing negative factors makes the search space for factors so large that fitting
the model becomes intractable. Second, the tensors used in this model represent
frequency data, which means that negative values in the factors would have no valid
semantic meaning.

4.2.2 Representing Documents as Tensors

The text documents to be analyzed are represented as tensors by dividing them into
phrases of length n. These phrases, commonly referred to as n-grams, are counted
and their frequencies are entered into a tensor. Each word in the corpus vocabulary
is assigned an index, and the tensors n modes refer to these indexes. For example,
suppose n = 3. The document tensor D would have 3 modes. The entry dijk refers
to the frequency of the n-gram consisting of words i, j , and k from the corpus
vocabulary.

The tensors produced by this encoding will be cubic. Given a vocabulary
consisting of v words, the resultant tensor will have v indexes in each mode. The
tensor can represent the frequency of all possible n-grams, and as such will be
extremely sparse as very few of these n-grams are likely to appear in a document.
When decomposed into polyadic form, these tensors will yield sets of related words
as well as related n-grams that appear in the same factors.

4.2.3 Modeling Influence

The basic model applied to the document begins with the decomposition of a
document into its individual factor tensors.

D =
∑

Fi (4.6)

where Fi ∈ F is a factor of the tensor D, (Fi = ai ⊗bi ⊗ci). As has been previously
noted, the model becomes more expressive by separating out a normalizing value λi

from each fi . Thus, the decomposed document becomes

D =
∑

λiF ′
i , (4.7)

where F ′
i = 1

|Fi |Fi and λi = |Fi |. This is desirable for two reasons. Given that
all tensors within the corpus have the same dimensions, and that all are decomposed
using Non-Negative CPD, the factors occupy the same type of space as the factors of

66 R. E. Lowe and M. W. Berry

other documents. By normalizing them into a proportional model of the document,
the factors become directly comparable irrespective of the magnitude of influence
they exert in their source document.

Let C be a corpus of documents, encoded as tensors Dj ∈ C. Let Dt be the
target document to be studied, and all other documents in S = C −Dt are treated as
source documents for Dt . The goal of the influence model is to ascribe the factors
of Dt to a factor from each source document Ds ∈ S and assign weights to each of
the source document influences. Each document in C is decomposed as per Eq. 4.7.
Dt is also decomposed into its components. This produces sets of factors F′

s and
Λs for each source document as well as F′

t and Λt for the target document. By
measuring the similarity of each factor f ′

t ∈ F′
t and source factors f ′

s ∈ F′
s in

every F′
s , each factor can be ascribed to originating in a source document Ds or

as being original to Dt . Using the similarity measurements between the f ′
t and f ′

s

factors, each corresponding ft factor of Dt is categorized as either belonging to one
of several sets: F s

t for all factors of Dt ascribed to some factor of Ds and Fn
t for all

factors with no matching source.
For each of these factor sets, tensors can be formed by summing over the set.

For every Fs
t , the tensor F s

t is the sum of all components of document t ascribed to
document s.

Hence, the model of the target document can be expressed as

Dt ≈
|S|∑

s=1

F s
t + Fn

t . (4.8)

Normalizing as in the previous equations, the target document’s model becomes

Dt ≈
|S|∑

s=1

λs
tF ′s

t + λn
t F ′n

t . (4.9)

These new factor tensors, which are no longer necessarily rank 1 tensors, contain
the proportions of related n-grams, separated into components according to their
attributed source. This comprises the sought-after semantic model of the document.

Given these new factors, the influence of each document is extracted by

Λt = (λ1, λ2, . . . λ|S|, λt) . (4.10)

Weights for each document are then extracted as their proportion of importance
to the target document.

W = 1
∑

Λt

Λt (4.11)

4 Non-negative Tensor Decomposition for Influence Modeling 67

Note that the weights from the source documents are not used. Essentially, the
only purpose the source document factors serve is to classify the factors of the
target document. Having accomplished the classification step, constructed the model
in Eq. 4.9, and extracted the weights in Eq. 4.11, the target document has been
decomposed into a set of tensors which identify both the semantic shape of each
contribution and its corresponding weight.

4.2.4 Summary of Influence Modeling Procedure

Generating the influence model can be subdivided into the following steps:

1. Encode each document in the corpus as a tensor.
2. Decompose each document using non-negative CPD.
3. Classify each factor of the target document Dt as either belonging to a source

document or as an original contribution of the author.
4. Extract weights from each subset of factors to determine the influence of each

class of factors.

An overview of each of these steps is provided in Sect. 4.4 and the reader is
referred to [22] for a more detailed discussion of the modeling procedure.

4.3 Related Work

Much of the inspiration for frequency based analysis for authorship detection comes
from the work of John Burrows and Hugh Craig [5, 6, 10]. In their papers, Burrows
and Craig utilize a variety of numerical techniques to explore marker words, and
they use frequencies of marker words coupled with T-distribution sampling to
provide an argument for attributing authorship of disputed works. They explore a
variety of literary works, ranging from poetry to Shakespeare’s plays. (Most of their
focus is on Elizabethan and Victorian era works.) In these studies, the frequencies
explored are based on single marker words, and the words are extracted based on
how unique they are to the authors in question.

For n-gram classification, Noriaki’s Kawamae’s paper has shown that n-grams
are capable of building a generative topic model of a corpus of documents [17].
Kawamae’s work shows that a combination of n-gram and word frequencies reveals
information about a corpus’s structure, especially hierarchical information pertain-
ing to topics within the corpus. Kawamae’s model builds a tree with probabilistic
relationships which are then used to infer information about the structure of a
corpus, and shows that n-grams provide a sufficient basis for modeling the transfer
of ideas through a corpus.

Another related n-gram study was performed by Antonia et al. [2]. In this paper,
Antonia et al. attempt to reproduce marker word studies using n-gram frequencies in

68 R. E. Lowe and M. W. Berry

place of word frequencies. They were able to show that n-gram frequencies are able
to identify stylistic signatures of contributors to a text document. When n = 1, their
model is equivalent to marker words, and as they increase n, they retest to determine
how expressive the model is. They noted that there is no one length that seems to
give the best performance in all cases when analyzing English language documents.
Their results show that 1-, 2-, and 3-gram analysis tends to work well, but when
exploring longer phrases the power of the model drops off. Even in instances where
1-grams or 2-grams are best, 3-grams are still a reasonable choice and are their
recommendation for testing. The analysis performed in Antonia et al.’s work was
conducted using delta and zeta tests as was established in the standard marker word
approach. As such, only the most frequent n-grams of each author were explored,
and they were only used as an evidentiary marker of an author’s participation.

4.4 Influence Model

The influence model is governed by a document list and a set of parameters. The
inputs to the model are described in Table 4.1. The document list contains a list of
all of the documents in the corpus and is comprised of potential source documents
and one target document. The target document is placed at the end of the document
list by convention.

The generated model’s output consists of the set of factors which have been
found to influence the target document, the weights of each document’s influence
on the target document, and the set of factors found from the decomposition of
the document tensors. The output variables of the generated model are described in
Table 4.2.

Table 4.1 Model input

Parameter Explanation

docs A list of documents in the corpus. The target document is the final
entry in the list

n The number of modes to use in tensor construction

nf actors The number of factors for tensor decomposition

threshold The threshold value for factor matching

Table 4.2 Model output

Parameter Explanation

W Set of weights of each factor of the target document

Wi is the weight of target document factor i

S The set of source indexes for each factor

Si is the index of the source factor, 0 if the factor is unique to the
target document

F The set of all document factor tensors

4 Non-negative Tensor Decomposition for Influence Modeling 69

input : docs, n, nf actors, threshold

output: W, S, F

prepare(docs);
V ← build_vocabulary(docs);
C ← ∅;
foreach d in docs do

D ← build_tensor (d, n, V);
C ← C ∪ {D};

end
Λ,F ← extract_factors(C, nf actors);
M ← build_distance_matrix(F);
λ ← the entries in Λ corresponding to the target document.;
W, S ← extract_influence(|docs|, M ,F,λ, threshold);
return W, S, F;

Algorithm 1: Influence model construction

4.4.1 Approach Overview and Document Preparation

The overall algorithm is described in Algorithm 1. The principal activities in the
model building process are document preparation, tensor construction, and influence
extraction.

The first step is to prepare the document corpus for processing. Documents are
left mostly intact with the only filtering being to remove punctuation, numbers, and
convert all letters to lowercase. The document strings are then treated as a list of
lowercase words and will be treated as such for the rest of this discussion. Note
that none of the words, including stop words, of the document are removed during
filtering, and no stemming is performed. The reason for this is that these elements
go to the style of the author. In fact, both stop words and un-stemmed words have
been shown to be powerful markers for authorship and style [2, 6, 24].

In order to build tensors, a vocabulary is first extracted from the corpus. The
vocabulary is simply the set of all words within the corpus. The set V contains a
single entry for each word. The index of each word is used in the next step to create
tensor representation of each document.

4.4.2 Tensor Construction

Following the preparation of the corpus and vocabulary extraction, the next step
is key to the construction of the tensor model. In this step, each document is
represented as a tensor. The tensor is constructed with n modes where each mode
contains |V| dimensions. For example, 3-mode tensor over a 30-word vocabulary
would result in a 30 × 30 × 30 tensor. This is used to count the frequency of n-
grams within each document. Thus, entry Dijk counts the number of occurrences of
the phrase ViVj Vk within the document.

70 R. E. Lowe and M. W. Berry

input : d , n, V, n

output: D
D ← Tensor with dimension |V| × |V| . . . ×n |V|;
Fill D with 0;
len ← number of words in d;
for i ← 1 to len − n do

/* Compute Tensor Element Index */
index ← list of n integers;
for j ← 1 to n do

index[j] ← index of word d[i] in V;
end
/* Update Frequency of This n-gram */
D[index] ← D[index] + 1;

end
return D

Algorithm 2: Build tensor

Fig. 4.2 Sliding window

The construction of this tensor is detailed in Algorithm 2. The tensor is
constructed using a sliding window, beginning with the first word of the document
and proceeding until n words from the end of the document. This process is
illustrated in Fig. 4.2.

The resultant tensor is typically very sparse as it counts the frequency of all
possible n-grams over the vocabulary V, of course few (if any) documents would
use every possible n length combination of its vocabulary as most of these phrases
would be nonsensical. Thus the set of tensors C produced by Algorithm 2 is a set
of sparse tensors representing the document corpus. The last tensor in the set is
the representation of the target document as it has been placed at the end of the
document list, as mentioned previously.

4 Non-negative Tensor Decomposition for Influence Modeling 71

4.4.3 Tensor Decomposition

The next step in the process is to decompose each document tensor into rank-
1 components. As noted in Sect. 4.1, several decompositions exist which can
accomplish this task. Because the data the present model consumes is frequency
counting, the tensors comprising the corpus are all strictly non-negative. This
arrangement naturally lends itself to non-negative factorization. Moreover, as these
tensors are expected to be very sparse, any factorization that admits negative
numbers would likely take an intractably long time to converge as the standard
methods of decomposition would explore many combinations of factors which sum
to zero. In fact, the magnitude of these alternating negative and positive factors
would necessarily dominate the model and would make comparison of factors very
difficult while providing no useful information about the underlying document.
Therefore, not only is non-negative factorization a logical choice, it is also a
necessary choice to ensure the expressiveness of the resultant model.

The method of non-negative factorization employed in this model is the Colum-
nwise Coordinate Descent (CCD) method described in Ji Liu et al.’s paper [21].
The CCD method decomposes a tensor A into a core tensor C and a set of factor
matrices U1...m where m is the number of modes. The result of this decomposition
is shown in Eq. 4.12. The objective of the model is to minimize the error tensor
E , and CCD accomplishes this by iteratively solving for Ui by holding the other
factor matrices constant. The optimal solution for each entry of Ui is determined by
a differential equation which is solved iteratively as it has no closed form solution.
The key advantage to the CCD method is that rows in each column are independent,
and so entire columns can be solved in parallel. CCD also allows for L1 sparsity
constraints to be applied, though this is not used in the present model. (The L1
penalty is set to 0 for this model.)

A = (C ×1 U1 ×2 . . . ×m Um) − E (4.12)

Note that the CCD model is a non-negative version of the Tucker decomposition.
By constraining the CCD model to use a square identity tensor (of dimension n×n×
. . . n) for C, the model becomes equivalent to the non-negative canonical polyadic
decomposition. Each Ui matrix will contain n columns, and when this product is
carried out, it can be rewritten as the sum of the tensor product of the columns of U .
That is, the equivalent CP model can be expressed using Eq. 4.13.

A =
n∑

i=1

U1:,i ⊗ U2:,i ⊗ . . . ⊗ Um
:,i − E (4.13)

Having extracted the rank-1 tensors which approximate A, the last remaining
step is to normalize these factors. The norm used in this model is the L1 norm.

72 R. E. Lowe and M. W. Berry

Separating these out, the final approximation of each document tensor is shown in
Eq. 4.14.

A ≈
r∑

i=1

λiFi (4.14)

The L1 norm is used here, and in the distance calculation in a later step, because
it produces a sparse solution. The tensors being factored in this model are already
sparse, and the non-negative decomposition produces factors which are also sparse.
Using the L2 norm would tend to allow large differences between the factors to
dominate the model’s selection of related factors when the differences between
factors are computed. Because the lower sensitivity of the L1 norm is desired in
the distance calculation, it is also used here. Doing so sets the range of distances
between factors to the interval [0, 2].

The entire process of the construction of these factors is shown in Algorithm 3.
The result is an L1-normalized set of rank-1 tensors.

As noted in Sect. 4.1, the number of factors determines the uniqueness of the
decomposition. In the case of canonical polyadic decomposition, the solution is
unique if the number of factors exceeds the tensor rank. However, computing the
tensor rank is intractable, and so it must be approximated through trial and error.
One rule of thumb for a 3-mode tensor (used in this case study) is that its expected
minimal rank is given in Eq. 4.15 [9].

input : C, nf actors

output: Λ, F

F ← ∅;
Λ ← ∅;
nmodes ← number of modes in C[1];
foreach D in C do

U ← ccd_ntfd(D, nf actors);
for i = 1 to nf actors do

/* Build the Factor */
T ← U[1][:, i];
for m = 2 to nmodes do

T ← T ⊗ U[m][:, i];
end
/* Compute the norm and normalize the factor */
λ ←L1_norm(T);
T ← T /λ;
/* Insert the factor and norm into the list */
F ← F ∪ {T };
Λ ← Λ ∪ {λ};

end
end
return Λ, F

Algorithm 3: Extract factors

4 Non-negative Tensor Decomposition for Influence Modeling 73

R =
⌈

IJK

I + J + K − 2

⌉
(4.15)

However, this estimate assumes a generic tensor and not a sparse tensor! In fact,
in every instance of the document tensors used here, this minimal rank would far
exceed the number of non-zero elements. This leaves trial and error as the only
choice for determining the number of factors in this model given the current state
of knowledge of sparse tensor rank. The approach used to find this number begins
with assuming that the non-zero elements, nnz, of the document tensor were packed
into a dense tensor with dimensions 3

√
nnz × 3

√
nnz × 3

√
nnz. This starting point is

then computed using Eq. 4.16. From this point, decompositions are attempted with
increasing rank until the fit begins to become worse, or until the error ratio drops
below 20% (Eq. 4.17). (Of course a different threshold could be used if desired.)

R0 =
⌈

nnz

3 3
√

nnz − 2

⌉
(4.16)

|D − D̂|
|D| (4.17)

Extending the starting point from Eq. 4.16 for tensors of arbitrary, n, modes
yields Eq. 4.18. However, the rank of sparse tensors is very much an open question.
There is no real theoretical basis for these equations other than sensible conjectures.
The process of finding the number of modes is, for now, confined to a process of
trial and error. The objective is always to find a model that fits reasonably well,
and until the problem of sparse tensor rank is solved this is all that can be achieved
without an exhaustive search of all possible ranks. These starting points do seem to
yield good results in practice, and as 3-grams have been shown [22] to work best for
author classification [2], 3-mode tensors (and Eq. 4.16) are used to test our model.

R0 =
⌈

nnz

n n
√

nnz − 2

⌉
(4.18)

4.4.4 Factor Classification

Having extracted factors from the document corpus, the next step is to classify each
of the target document’s factors as either belonging to the set F s

t (target factors with
sources) or Fn

t (target factors without sources). In order to do this, the similarity of
each factor pair must be measured. Because each factor has the same dimensions,
and each factor’s modes represent indexes over the same vocabulary, they can
be compared by distance from each other within the factor space. Algorithm 4

74 R. E. Lowe and M. W. Berry

input : F
output: M

M ← Matrix with dimension |F| × |F|;
for i = 1 to |F| do

for j = 1 to |F| do
M[i, j] ← L1_norm(F[i] − F[j]);

end
end
return M

Algorithm 4: Build distance matrix

accomplishes this task by finding the L1 distance between each pair of factors. The
result is a matrix M where Mij is the L1 distance between Fi and Fj . Of course, this
matrix will have zeroes on the diagonal. Because each factor is non-negative and
already L1 normalized, 0 ≤ Mij ≤ 2, where 0 is a perfect match and 2 indicates
maximum distance.

In actuality, only the entries corresponding to the target document factors are
necessary. That is, M[i, j] is only needed where i is the index of a target factor
and j is the index of a potential source factor. The entire distance matrix is useful
for studying the distribution of factor distances which is useful in finding model
thresholds as well as quantifying the uniqueness of each factor.

The final task to be performed in constructing the model is to identify which
source factors are closest to each target factor and compute the corresponding
weights of those factors. This task is carried out by Algorithm 5. The basic strategy
is for each factor in the target document to be assigned the source factor with the
minimum distance. The only issue with this approach is it would always assign
a source to a target factor, even though some target factors are expected to have
no relatable source. For this reason, two steps are needed. First, the minimum is
found, second it is compared against a threshold. If the minimum value is below
this threshold, the factor is assigned a source. If, on the other hand, the minimum
distance is above the threshold, it is not assigned a source.

The threshold value is a heuristic parameter which controls the matching of
factors. Recall that the factors are L1-normalized, and the distance computed
between the factors is the L1-distance. If two factors are a perfect match, this results
in a distance of 0. If they are completely disparate, the result will be a maximum
distance of 2. This latter arrangement implies that no non-zero entries in the factor
tensors were found in the same position and would therefore signify completely
unrelated factors. A sensible default setting for this threshold is 0.2 as this requires
a 90% agreement of the entries. Another approach to selecting a threshold value
is to examine the distribution of distances within the distance matrix and use that
information to select the threshold. A threshold value of 0.2 was recommended in
[22].

4 Non-negative Tensor Decomposition for Influence Modeling 75

input : ndocs, M , F, λ, threshold

output: W, S

/* Compute Weights */
sum ← ∑

λ;
W ← λ/sum;
S ← list of integers of size |λ|;
/* Classify Factors */
nf actors ← |λ|;
for i = 1 to nf actors do

min ← M[row, 1];
minIndex ← 1;
row ← i + nf actors ∗ (ndocs − 1);
for j = 1 to nf actors ∗ ndocs do

if M [row,j]< min then
min ← M[row, j];
minIndex ← j ;

end
end
if min ≤ threshold then

S[i] ← minIndex;
else

S[i] ← 0;
end

end
return W, S;

Algorithm 5: Extract influence

input : ndocs, S, W
output: I, author

I ← List of 0 repeated ndocs − 1 times;
for i = 1 to ndocs do

if S[i] = 0 then
author = author + W[i];

else
j ← Document number corresponding with S[i];
I[j] ← I[j] + W[i];

end
end

Algorithm 6: Final summation

The result of the classification operation is the set W which is simply the
normalized set of λ values for the target document, and the set S where entry Si

is the index of the factor which is the source for target factor i. If target factor i has
no assignable source, then a value of 0 is written to position Si .

After the factors have been matched, the final output of the model can be
summarized by summing the influence of each source document and author
contribution factor using Algorithm 6.

76 R. E. Lowe and M. W. Berry

4.5 Implementation

Implementing the model described in the previous section comes with several
challenges. The biggest challenge is the size of the tensors, as well as a lack of
good support for sparse tensors in available software. Several packages were tried,
but ultimately a custom tensor library was needed to support these tensors. The
attempted software packages were Tensor Flow (Python), Tensor Toolbox (Matlab),
SciPy/NumPy (Python). While all three packages provide support for sparse tensors,
their operations are not well optimized for sparse tensor usage. Also, in some
cases, tensors were converted into dense tensors before operations were performed.
Unconstrained vocabularies can often have tens of thousands of words, which leads
to a tensor which far exceeds the capacity of any machines available for this project.
Before these libraries were abandoned, constrained vocabularies were attempted.

4.5.1 Constraining Vocabularies

As already stated, the tensors used in this model are very sparse. Essentially, every
word in a document is the beginning of a new phrase, and so every document
tensor will contain the same number of non-zero entries as there are words in the
document. (With the exception being the last n-gram as each word following the first
in the n-gram cannot be the start of a new n-gram.) Storing the frequency counts of
these documents is trivial, but the model needs them in their positions within the
tensor in order to decompose the documents into factors. Most of the complexity
therefore lies with the dimensionality of the tensor which is driven by the size of the
vocabulary.

Looking at the vocabularies in several documents during preliminary experi-
ments showed that each document only had about five hundred to one thousand
frequent words. By sorting the vocabulary in descending order by frequency, the
vocabulary can be shortened with minimal disturbance to the structure of the
document and the makeup of most of the n-grams. Constraining the vocabulary to
600 words when building a 3-gram tensor results in a tensor which has 216,000,000
potential entries. Even in dense format, this can be comfortably accommodated by
the memory of even a modest modern desktop machine. However, a problem still
remains with this approach. Decompositions of a tensor of this size, typically into
100–200 factors, requires too much time. When using Matlab on an 8-core 3.4 GHz
Intel Linux machine with 16 GB of RAM, non-negative factorization tended to
require about 2 h of elapsed wall-clock time, and so a faster method was still
needed even in the constrained case. Searching for the optimal number of factors
by multiple factorings proved even more challenging. This is especially challenging
when considering that this model requires the decomposition of multiple documents
within a corpus.

4 Non-negative Tensor Decomposition for Influence Modeling 77

To address the problems of time and memory constraints, a new C-based software
library was created [22]. This library, called sptensor, was written in ANSI C since
it provides enough control for optimizing memory usage and it is well situated
to have libraries for other languages bound to it. The sptensor library is designed
to only represent sparse tensors, and so it has the opposite problem the common
tensor libraries have. Dense tensors in sptensor are fairly inefficient both in time
and space complexity. However, for our target application the library performs quite
well. Where Matlab factorization of tensors over constrained vocabularies typically
requires 1–2 h to complete on a modest desktop computer (3.4GHz), sptensor can
accomplish the task in 5–10 min. This speedup allowed for the construction and
testing of the model to proceed.

4.6 A Conference Paper Case Study

For a real-world case study, a conference paper was pulled from the ACM Digital
library. This was the first paper listed in the first conference listed in their regional
conference proceedings. This paper cites four other papers and two websites. The
two websites were used to pull data, and so they are not included in the corpus.
In addition to the four cited papers, two unrelated papers are included to test if the
model will select factors from these unrelated papers. The complete corpus, listed
with the target paper last, is shown in Table 4.3. Documents 1–4 are the papers
cited by the target paper, documents 5–6 are unrelated papers, and document 7 is
the target paper.

Table 4.3 Conference paper corpus

Num Document information

1 Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic
representation of time series, with implications for streaming algorithms. In Proc.
DMKD 2003, pages 2–11. ACM Press, 2003

2 Andreas Schlapbach and Horst Bunke. Using hmm based recognizers for writer
identification and verification. In Proc. FHR 2004, pages 167–172. IEEE, 2004

3 Yusuke Manabe and Basabi Chakraborty. Identity detection from on-line
handwriting time series. In Proc. SMCia 2008, pages 365–370. IEEE, 2008

4 Sami Gazzah and Najoua Ben Amara. Arabic handwriting texture analysis for
writer identification using the DWT-lifting scheme. In Proc. ICDAR 2007, pages
1133–1137. IEEE, 2007

5 Kolda, Tamara Gibson. Multilinear operators for higher-order decompositions.
2006

6 Blei, David M and Ng, Andrew Y and Jordan, Michael I. Latent Dirichlet
allocation. 2007

7 Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits Using
Symbolic Aggregate Approximation. Proceedings of the ACM Southeast
Conference 2017

78 R. E. Lowe and M. W. Berry

Table 4.4 Conference model
parameters

n nf actors threshold

3 150 0.2

Table 4.5 Conference
classification results

Document Influence Number of matched factors

1 0.21 10

2 0.09 9

3 0.06 3

4 0.06 1

5 0.00 0

6 0.00 0

Author 0.57 127

21.51

(b)(a)

Factor Distance Factor Distance
0.5021.510.50

0

2000

4000

6000

8000

0

200

400

600

800

1000

1200
C

ou
nt

C
ou

nt

Fig. 4.3 Factor distance distribution. (a) All factor distances. (b) Target factor distances

The entire corpus consists of 45,152 words with the vocabulary truncated to 600
words (see Sect. 4.5.1). The 600 words were the most frequent words across the
corpus. The other parameters are shown in Table 4.4.

Again, 0.2 is used as the threshold as it is a good default setting. The decomposi-
tion of the 7 documents into 150 factors was carried out on a machine with a 3.9 GHz
8-core Intel processor and 15 GB of RAM. The decomposition and construction
of normalized tensors took approximately 2.5 h to complete. Calculation of the
distance matrix and classifying the factors required another hour and a half. The
results are shown in Table 4.5.

The distribution of the factor distances is shown in Fig. 4.3. The vertical red
line on the graphs shows the threshold for factor matching. Figure 4.3a shows the
distribution of factor distances for the entire factor matrix while Fig. 4.3b shows the
distribution of the distances from the target factors. Note that both distributions are
tri-modal. The two spikes on the far right correspond to factors from the unrelated
documents, which shows that they are well separated from the target document’s
factors and from each other.

Given the separation of the factors, and that the model excluded two obviously
unrelated papers, the model appears to have produced the desired results. For final

4 Non-negative Tensor Decomposition for Influence Modeling 79

verification, the text of the documents in question will now be summarized. The tar-
get paper details an algorithm which is used to identify handwritten characters [23].
The algorithm presented is an extension of another algorithm, Symbolic Aggregate
Approximation (SAX), which was first presented in Lin et al.’s paper [20]. Because
the target paper is an extension of this one, a reasonable assumption would be that it
would be heavily influenced by this source. This is precisely what the model stated
in that this paper was assigned a weight of 0.21, and had a total of ten matching
factors. The remaining citations that were found to influence the document present
competing algorithms, and are primarily mentioned in the target paper’s related
works section. A summary of one of the most influential of the 10 matched factors
is shown in Table 4.6. This is the factor 56 (out of 150) in the decomposition of the

Table 4.6 First 30 non-zero
entries of factor 56

Word 1 Word 2 Word 3 Proportion

is the sax 0.000887

into the data 0.000886

symbols the sax 0.000874

digits the timeseries 0.000865

digits the data 0.000857

with the sax 0.000856

from the square 0.000852

however the sax 0.000844

up the sax 0.000844

characters the sax 0.000844

becomes the sax 0.000844

note the sax 0.000843

using the sax 0.000841

for the square 0.000838

into the sax 0.000838

from the svc 0.000833

from the paa 0.000832

author the square 0.000828

on the author 0.000824

for the svc 0.000819

for the paa 0.000818

on the accuracy 0.000814

on the array 0.000814

digits the sax 0.00081

author the svc 0.000809

author the paa 0.000808

on the distance 0.000806

on the x 0.000806

from the timeseries 0.000804

of the author 0.000802

80 R. E. Lowe and M. W. Berry

target document and represents a weight of 0.04. The factor was sorted in decreasing
order by proportion and only the first 30 n-grams are shown. (The actual factor
contains 11,661 n-grams, most of which have very small proportional entries.) Note
most of the n-grams are discussing the SAX algorithm, and various properties of
it. In fact, this is what is found in the other nine factors, they all discuss different
elements of SAX.

Another property of the target paper that bears examination is the makeup of the
text itself. The paper is 4 pages long, the first page being devoted to frontmatter
and the related works. The second page contains the conclusion of the related works
section, which occupies approximately 25% of the page. The rest of the second page,
and the entirety of the third page have the author’s contributions and the conclusion.
Half of the fourth page has the final conclusion paragraph, and then the bibliography.
By rough estimate, therefore, the paper contains 1.75 pages of what is essentially the
summary of existing work. This leaves 2.25 pages of original material, which means
that a cursory analysis of the paper would imply that the author has contributed 56%
of the text of the paper. The model’s output weight for the author’s contributions of
57% is in line with this rough estimate.

As these results show, the model makes a set of reasonable matches, and it does
not select unrelated documents. The actual makeup of the factors is much more
complex, however ideas can be traced through them. Unfortunately, these factors
are much too large to be included verbatim in this chapter. However, the factors that
were matched from paper one all deal with a technique which generates a symbolic
representation of a time series. This technique serves as the basis for the invention in
the target paper, and is mentioned several times with many of the same explanations
used in the first paper. Thus the model has not only avoided unrelated information,
it has given a greater weight to the paper which had the greatest semantic influence
on the work being studied.

4.7 Conclusions and Future Work

Experimentation has shown that the factors discovered by non-negative tensor
decomposition do in fact contain related n-grams. Moreover, the factors are unique
enough that a match, or a near match within some heuristic bound, provides
evidence of a relationship between factors. The related factors also make sense on
an intuitive level, each having a clear semantic relationship to both target and source
material.

The quantifications of the influencing factors also perform as expected. While no
ground truth is available for a weighted mixture of source documents to the target
documents, inspecting the documents in the corpus shows that the model’s output
reasonably matches the expectations of a human reader.

The immediate future plans for this research involve the further development
of the sptensor library. Further optimization through the use of parallelization is
planned. Following that, library bindings to higher level languages will be created.

4 Non-negative Tensor Decomposition for Influence Modeling 81

Another application of the model is to replicate the studies conducted by
Craig and Burrows [6, 10]. Addressing the problem of Shakespearean authorship
using this model poses several unique challenges, not least of which is due to
the inconsistencies in Elizabethan spelling (which necessitates the decomposition
over full vocabularies). Additional applications will also be explored, including
establishing chronologies of documents via topological sorting and modeling the
influence flow through a hierarchical network of documents.

The effects of constrained vocabularies are another area which needs to be
addressed. Following the authorship studies, another future effort will be to address
the effect of the vocabulary size on the output of the model. Other aspects warranting
further study are the effects of the various parameters of the model.

Finally, another possible extension of the model would be to the task of
plagiarism detection. In this paradigm, the model could examine not only plagiarism
from one source document, but would be able to take into account many potential
documents of origin.

References

1. Adler, R., Ewing, J., & Taylor, P. (2009). Citation statistics. Statistical Science, 24(1), 1–14.
2. Antonia, A., Craig, H., & Elliott, J. (2014). Language chunking, data sparseness, and the value

of a long marker list: Explorations with word n-grams and authorial attribution. Literary and
Linguistic Computing, 29(2), 147–163.

3. Bader, B., Berry, M. W., & Browne, M. (2007). Discussion tracking in Enron email using
PARAFAC. In M. W. Berry & M. Castellanos (Eds.), Survey of Text Mining, chapter 8 (pp. 147–
163). Berlin: Springer.

4. Bro, R. (1997). Parafac. Tutorial and applications. Chemometrics and Intelligent Laboratory
Systems, 38(2), 149–171.

5. Burrows, J. (2006). All the way through: Testing for authorship in different frequency strata.
Literary and Linguistic Computing, 22(1), 27–47.

6. Burrows, J., & Craig, H. (2017). The joker in the pack?: Marlowe, Kyd, and the co-authorship
of Henry VI, part 3. In G. Taylor & G. Egan (Eds.), The New Oxford Shakespeare Authorship
Companion, chapter 11 (pp. 194–217). Oxford: Oxford University Press.

7. Cantuariensis, A. (c. 1078). Proslogion. Ordo Sancti Benedicti.
8. Carroll, J. D., & Chang, J.-J. (1970). Analysis of individual differences in multidimensional

scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3),
283–319.

9. Comon, P., Luciani, X., & De Almeida, A. L. (2009). Tensor decompositions, alternating least
squares and other tales. Journal of Chemometrics, 23(7–8), 393–405.

10. Craig, H., & Kinney, A. F. (2009). Sheakespeare, Computers, and the Mystery of Authorship.
Cambridge: Cambridge University Press.

11. Dietz, L., Bickel, S., & Scheffer, T. (2007). Unsupervised prediction of citation influences. In
Proceedings of the 24th International Conference on Machine Learning (pp. 233–240). New
York: ACM.

12. Harshman, R. A. (1970). Foundations of the parafac procedure: Models and conditions for an
“explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16.

13. Harshman, R. A., & Lundy, M. E. (1994). Parafac: Parallel factor analysis. Computational
Statistics & Data Analysis, 18(1):39–72.

14. Håstad, J. (1990). Tensor rank is NP-complete. Journal of Algorithms, 11(4), 644–654.

82 R. E. Lowe and M. W. Berry

15. Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1–4), 164–189.

16. Jiang, Z., Liu, X., & Gao, L. (2014). Dynamic topic/citation influence modeling for chronolog-
ical citation recommendation. In Proceedings of the 5th International Workshop on Web-scale
Knowledge Representation Retrieval & Reasoning (pp. 15–18). New York: ACM.

17. Kawamae, N. (2016). N-gram over context. In Proceedings of the 25th International Con-
ference on World Wide Web (pp. 1045–1055). New York: International World Wide Web
Conferences Steering Committee.

18. Kiers, H. A. (1991). Hierarchical relations among three-way methods. Psychometrika, 56(3),
449–470.

19. Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review,
51(3), 455–500.

20. Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time series,
with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop
on Research Issues in Data Mining and Knowledge Discovery (pp. 2–11). New York: ACM.

21. Liu, J., Liu, J., Wonka, P., & Ye, J. (2012). Sparse non-negative tensor factorization using
columnwise coordinate descent. Pattern Recognition, 45(1), 649–656.

22. Lowe, R. E. (2018). Textual Influence Modeling Through Non-Negative Tensor Decomposition.
PhD thesis, University of Tennessee, Knoxville.

23. Serfass, D. (2017). Dynamic biometric recognition of handwritten digits using symbolic
aggregate approximation. In Proceedings of the SouthEast Conference (pp. 1–4). New York:
ACM.

24. Stamatatos, E. (2011). Plagiarism detection based on structural information. In Proceedings
of the 20th ACM International Conference on Information and Knowledge Management
(pp. 1221–1230). New York: ACM.

Part II
Applications

Chapter 5
Survival Support Vector Machines:
A Simulation Study and Its
Health-Related Application

Dedy Dwi Prastyo, Halwa Annisa Khoiri, Santi Wulan Purnami, Suhartono,
Soo-Fen Fam, and Novri Suhermi

5.1 Introduction

The support vector machine (SVM) is applied in many fields and has become a
state-of-the-art classification method. In its development, the SVM is extended to
support vector regression (SVR), which is employed for a prediction of cross-
section independent observations. Recently, the SVR has been applied to forecast
time-series data that are typically auto-correlated. The feature selection in SVR, for
both cross-section and time-series data, has become a new issue that is attracting
much attention from researchers and practitioners.

One of the main field applications of SVM or SVR is health. The SVM and its
extension are employed to discriminate patients who potentially suffer from specific
diseases. One of the most popular applications in health is survival data analysis.
Many statistical methods have been developed to analyze survival data. These
methods can be categorized into parametric, semi-parametric, and non-parametric
approaches.

The parametric approach to survival analysis requires knowledge about the
distribution of survival time. This requirement sometimes cannot be met in real
applications because the goodness-of-fit test fails to find the distribution under
the null hypothesis. This requirement can be considered a drawback [1–3]. There-
fore, semi-parametric approaches are introduced. One of the most popular semi-
parametric models is the Cox proportional hazards model (Cox PHM). However,

D. D. Prastyo (�) · H. A. Khoiri · S. W. Purnami · Suhartono · N. Suhermi
Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
e-mail: dedy-dp@statistika.its.ac.id

S.-F. Fam
Faculty of Technology Management and Technopreneurship, Universiti Teknikal Malaysia
Melaka, Durian Tunggal, Melaka, Malaysia

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_5&domain=pdf
mailto:dedy-dp@statistika.its.ac.id
https://doi.org/10.1007/978-3-030-22475-2_5

86 D. D Prastyo et al.

the Cox PHM has a proportional hazard (PH) assumption that needs to be satisfied.
This assumption sometimes fails to be met in real data. In such a case, the non-
parametric approach can play a role.

The SVM is one of the popular non-parametric approaches in classification that
has a global optimal solution [4]. The SVM is then extended for regression [5].
Previous studies [2, 3, 6, 7] employed and extended SVR for survival data analysis.
Later, the least square-SVM (LS-SVM) is applied to survival data, the so-called
survival least square support vector machine (SURLS-SVM), because it has equality
constraints [8] instead of inequality constraints as in the SVM. The SURLS-SVM
employs a prognostic index instead of a hazard function.

Many existing articles do not explain the effect of each predictor on the
performance of the SURLS-SVM. Feature selection can be employed to explain
the contribution of each predictor. The feature selections commonly used in SVM
are the filter and wrapper approaches. Goli et al. [9] applied it to breast cancer data.
In this work, the SURLS-SVM is applied to cervical cancer (CC) data with Cox
PHM as a benchmark model as in Khotimah et al. [10, 11] with a more detailed
explanation. The empirical results show that the SURLS-SVM outperforms the Cox
PHM before and after feature selection.

5.2 SURLS-SVM for Survival Analysis

One of the main functions calculated in survival data analysis is the survival
function defined as the probability of failure time greater than time t, denoted as
S(t) = P(T > t) = 1 − F(t), with T denoting failure time and F(t) its cumulative
distribution function. Another important function is the hazard function h(t), which
shows the failure rate instantaneously after objects survive until time t. The
relationship between hazard function and survival function is h(t) = f (t)/S(t), with
f (t) being the first derivative of F(t), also known as the probability density function
(pdf). Given that there are features x that affect the hazard function, one of the most
popular models for building a relationship between hazard function and features as
input is the Cox PHM as in (5.1) below:

h (t, x) = h0(t) exp
(
β′x

)
, (5.1)

with h0(t) being the baseline hazard and β′ = (β1, β2, . . . , βd) a vector of
coefficients.

The SVM for classification is obtained by solving the following optimization
problem [4, 5, 12]:

min
w,b,ξ

1

2
‖ w ‖2 + γ

n∑

i=1

ξi (5.2)

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 87

subject to yi(xi
′ w + b) ≥ 1 − ξ i; ξ i ≥ 0. The optimization in (5.1) can be extended

to find a non-linear classifier by transforming optimization lying in data space
(xi ∈ Rd) to feature space (higher dimension, H) using the kernel trick [12],
i.e. ϕ(xi):Rd→H . Owing to the drawback in SVM optimization, the least square
(LS) idea is then applied to the LS-SVM [8], which is more efficient. The LS-SVM
can be solved using linear programming with the objective function formulated in
(5.3) as follows:

min
w,ξ

1

2
‖ w ‖2 + 1

2
γ

n∑

i=1

ξ2
i (5.3)

subject to yi[ϕ(xi)′w + b] = 1 − ξ i; i = 1, 2, . . . , n.
The rapid development in survival data analysis attracts the attention of

researchers to extend the SVM such that it complies with survival data analysis.
The survival SVM (SUR-SVM) extends Eq. (5.1) into Eq. (5.4) as follows [6]:

min
w,ξ

1

2
w′w + γ

2

∑

i

∑

i<j

vij ξij ; γ ≥ 0 (5.4)

subject to w ′ϕ(xj) − w ′ϕ(xi) ≥ 1 − ξ ij; ∀ i < j; ξ ij ≥ 0; ∀ i < j. The indicator variable
νij plays a role as an indication of whether or not two subjects are comparable. It is
formulated in Eq. (5.5) as follows [6, 7]:

vij =
{

1; (
δi = 1, ti < tj

)
or

(
δj = 1, tj < ti

)

0; otherwise
, (5.5)

where δ is censored status with value δ = 1 when an event occurs and δ = 0 for
censoring.

The least-square version of SUR-SVM is so-called survival least square SVM
(SURLS-SVM). It has equality constraints that make it simpler. Rather than
modeling the hazard function as in Cox PHM, the SURLS-SVM uses the prognostic
index (also known as the health index in the literature) [2, 6] to predict the rank of
observed survival time given the known features. The prognostic function is defined
as follows:

u (x) = wT ϕ (x) , (5.6)

with u : Rd → R, the w is weight vector, and ϕ(x) is feature mapping. The prognostic
function increases when the failure time increases. Let two samples (i, j) and the
event deaths have a prognostic index (u(xi), u(xj)) and survival time (ti, tj). If ti < tj,
then u(xi) < u(xj) is expected.

In survival data analysis, the prediction of survival time is difficult. Therefore, the
study can be carried out by predicting the rank of the prognostic index corresponding

88 D. D Prastyo et al.

to the observed survival time [13]. The Eq. (5.7) formulates the optimization of
SURLS-SVM [6]:

min
w,ξ

1

2
w′w + γ

2

∑

i

∑

i<j

vij ξij
2; γ ≥ 0 (5.7)

subject to w ′ϕ(xj) − w ′ϕ(xi) = 1 − ξ ij; ∀ i < j, with γ being a regularization
parameter and νij is an indicator variable as defined in eq. (5.5). The ranking is
obtained if w ′ϕ(xj) − w ′ϕ(xi) > 0 is satisfied. The next procedure can be read in
Prastyo et al. [14].

5.3 Data Description and Methodology

The procedure to generate survival time follows the algorithm proposed by Bender
et al. [15]. Prastyo et al. [14] performed a simulation by generating 17 features,
survival time, and censored status. The censored state (1 for death and 0 for alive)
is generated on an increasing percentage from 10% to 90% in 10% increments. The
survival time is generated based on the Cox model with Weibull distribution. The
coefficients corresponding to each feature are set. The features are the combination
of a categorical and a continuous scale. To impose non-linearity on a features
pattern, the two interactions between predictors are considered. The performance
of the model is measured using the concordance index (C-index).

The performance of the proposed approach is measured using the C-index
produced from the prognostic index [2, 3, 6, 14]. The higher the C-index delivered
the better the performance of the method. The performance can be improved by
applying feature selection to gain essential predictors. There are several feature
selection methods such as filter methods, wrapper methods, and embedded methods
[13]. In this study, the feature selection is done with the wrapper method using
backward selection. The backward elimination is selected because this method can
identify suppressor variables, while forward and stepwise elimination cannot. The
suppressor features have a significant effect when all of them are included in the
model [16].

The backward elimination procedure is started by choosing all features as
input. Next, removing each feature and calculating the C-index resulted from each
all-minus-one-features input. For example, if there are four features (x1, x2, x3, x4),
then the all-minus-one-features are the set of (x2, x3, x4), (x1, x3, x4), (x1, x2, x4)
and (x1, x2, x3). Based on the difference between the C-index calculated from
all features and all-minus-one-features, remove the least significant feature, i.e.,
a missing feature that causes the C-index to increase the most. The procedure is
repeated for removal of the next feature. The algorithm terminates when the C-index
cannot be improved further. The performance of the proposed approach is validated
by the simulation study involving feature selection with backward elimination. The
simulation is repeated 100 times.

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 89

This study extends the previous work [14] in terms of the simulation setting. In
addition to the percentage censorship, the empirical results of the effect of features
dimension and sample size on the performance of SURLS-SVM are provided.
Furthermore, the tuning parameters in SURLS-SVM are optimized using a grid
search with C-index as an evaluation criterion.

The application of SURLS-SVM to health data refers to the work of Prastyo et
al. [14], who applied the proposed method to a cervical cancer (CC) case study with
412 records. Recall the information in Prastyo et al. [14]; the inclusion criteria in
the data are: (1) female patients, (2) the event of interest is death, and (3) patients’
complete medical records are used as a predictor. The data are right-censored.
Twenty-seven patients died (7%), and 385 (93%) patients survived. All features are
described as follows:

• P1: Age
• P2: Complication status
• P3: Anemia status
• P4: Type of treatment {chemotherapy, transfusion, chemotherapy and transfu-

sion, others}
• P5: Stadium level
• P6: Age at marriage as the proxy for first sexual intercourse
• P7: Age at first menstrual period
• P8: Menstruation cycle
• P9: Duration of menstruation
• P10: Parity
• P11: Family planning status
• P12: Education level (elementary school, junior high school, senior high school

or higher).

5.4 Empirical Results

5.4.1 Effect of Features Dimension and Sample Size

By using the same simulation setup as in Prastyo et al. [14], data with a linear
pattern are analyzed using Cox PHM and SURLS-SVM. Figure 5.1 displays its
performance measures. The data sets have 0.5 censoring rates, using the kernel
parameter and regularization parameters 0.5 and 0.1 respectively for SURLS-SVM.
The plots on the left side exhibit performance measures of Cox PHM and SURLS-
SVM when using a sample size of 100 whereas the plots on the right side are for
a sample size of 1000. The SURLS-SVM has better performance than Cox for all
numbers of features (for sample sizes of both 100 and 1000). The hazard ratio of
Cox PHM has higher value than the one of SURLS-SVM for all different number of
features. When using a sample size of 100, the hazard ratio of Cox PHM is almost
the same as that of SURLS-SVM for data with 15 and 17 features. The hazard ratio
of Cox PHM decreases sharply for six and eight features, whereas that of SURLS-

90 D. D Prastyo et al.

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

6 8 15 17

C
on

co
rd

an
ce

 In
de

x

C
on

co
rd

an
ce

 In
de

x

Lo
gr

an
k

T
es

t

Lo
gr

an
k

T
es

t

H
az

ar
d

R
at

io

H
az

ar
d

R
at

io

Number of featureNumber of feature

1.0

0.8

0.6

0.4

0.2

0.0

400

300

200

100

0

17

17

15

15

Cox
SURLSSVM

8

86171586

171586 171586

0

10

20

30

40

50

6

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

(a)

(c)

(e) (f)

(d)

(b)

Fig. 5.1 Performance of Cox proportional hazards model (PHM) and survival least square support
vector machine (SURLS-SVM) on data with a linear pattern using 6, 8, 15, and 17 features for a
sample size of 100 (a, c, and e) and for a sample size of 1000 (b, d, and f)

SVM increases slightly as the number of features increases. In the sample size of
1000, the hazard ratio of Cox is higher than that of SURLS-SVM.

Figure 5.2 visualizes the performance measures of data with a non-linear pattern
generated using various numbers of features (6, 8, 15, and 17) with a censoring
percentage of 0.5. The left plots exhibit performance measures of a sample size of
100. The C-index and hazard ratio of SURLS-SVM outperform those of Cox PHM.

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 91

86

0.0

0.2

0.4

0.6

0.8

1.0

15 17

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

(a)

(c)

(e) (f)

(d)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

co
rd

an
ce

 In
de

x

C
on

co
rd

an
ce

 In
de

x

6 8 15 17

6 8 15 17 6 8 15 17

6 8 15 176 8 15 17

Lo
gr

an
k

T
es

t

Lo
gr

an
k

T
es

t

100

80

60

40

20

0

1000

800

600

400

200

0

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

H
az

ar
d

R
at

io

H
az

ar
d

R
at

io

Number of feature Number of feature

Fig. 5.2 Performance of Cox PHM and SURLS-SVM on data with a non-linear pattern using 6,
8, 15, and 17 features for a sample size of 1000 (a, c, and e) and for a sample size of 1000 (b, d,
and f)

The values of the C-index and hazard ratio do not depend on the features dimension.
The log-rank of SURLS-SVM is not always higher than that of Cox PHM. When
using 8 and 17 features, the SURLS-SVM yields a slightly better result. However,
it does not happen in data with 6 and 15 features (where Cox PHM is much better
than SURLS-SVM). The right side of Fig. 5.2 displays performance measures when
using a 1000 sample size. It shows the same information obtained from 100 samples
on the left side, except for the log-rank test.

92 D. D Prastyo et al.

5.4.2 Effect of Censoring Percentage

Figure 5.3 displays performance measures of data with a linear pattern using
six features with a different censoring percentage. The left plots produce the
performance measures of a sample size of 100. The C-index of SURLS-SVM
always yields a better result than that of Cox PHM at all censoring percentage
levels. The hazard ratio of Cox PHM outperforms SURLS-SVM in a high censoring

0.1 0.3 0.5 0.7 0.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.3 0.5 0.7 0.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
on

co
rd

an
ce

 In
de

x

C
on

co
rd

an
ce

 In
de

x

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

Cox
SURLSSVM

(a)

(c)

(e) (f)

(d)

(b)

0

20

40

60

80

100

0.1 0.3 0.5 0.7 0.9

Lo
g

R
an

k
T

es
t

Lo
g

R
an

k
T

es
t

500

400

300

200

100

0

0.1 0.3 0.5 0.7 0.9

1.0

0.8

0.0

0.2

0.4

0.6

0.1 0.30.1 0.5 0.7 0.9

1.0

0.8

0.0

0.2

0.4

0.6

0.3 0.5 0.7 0.9

H
az

ar
d

R
at

io

H
az

ar
d

R
at

io

Censoring percentage Censoring percentage

Fig. 5.3 Performance of Cox PHM and SURLS-SVM on data with a linear pattern using different
censoring percentages for a sample size of 100 (a, c, e) and for a sample size of 1000 (b, d, f)

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 93

percentage (greater than 0.3). The SURLS-SVM indicates a better result when it is
applied to data with a low censoring percentage (on the plot it is less than 0.3).
The hazard ratio of SURLS-SVM decreases as a censoring percentage increase,
except when the censoring percentage is equal to 0.9, but the hazard ratio of Cox
PHM is relatively constant. The log-rank of Cox PHM shows a better result than
SURLS-SVM when the censoring percentage is less than 0.3, and it decreases as
the censoring percentage increases. The SURLS-SVM has a better result than Cox
PHM in data with a censoring level greater than 0.3. For data with a high censoring
rate, SURLS-SVM is more appropriate than Cox PHM. The right side of Fig. 5.3
displays the performance measures of data with a linear pattern using a sample size
of 1000. It presents similar information as depicted by the plot for 100 samples on
the left side.

Figure 5.4 displays the performance index of data with the non-linear pattern on a
different censoring percentage using six predictor variables. On the left side (sample
size of 100), the C-index of SURLS-SVM is much higher than that of Cox PHM
for all censoring levels. It increases as the censoring percentage increases and only
slightly decreases when the censoring percentage is equal to 0.5. The log-rank test of
Cox PHM is much better when it is applied to a low censoring portion, and SURLS-
SVM outperforms Cox PHM at a high censoring level. When the censoring levels
are 0.6 and 0.7, the log-rank of Cox PHM and SURLS-SVM is slightly different.

The log-rank of Cox PHM decreases as the censoring percentage increases, in
contrast to SURLS-SVM, except that it decreases at a censoring level of 0.9. The
hazard ratio of SURLS-SVM is higher than that of Cox PHM at 0.1 up to a censoring
level of 0.8 and slightly different from Cox PHM when the censoring percentages
are 0.8 and 0.9. The hazard ratio of SURLS-SVM decreases as the censoring level
increases, whereas the hazard ratio of Cox PHM is relatively constant. The right
side of Fig. 5.4 (a sample size of 1000, a non-linear pattern, six features) displays
similar information to that reported from the 100 samples visualized on the left side.

5.4.3 Effect of Sample Size

The effects of the features dimension and sample size, in addition to the censoring
percentage, are analyzed in subsections 5.4.1 and 5.4.2 respectively. This part
focuses only on the effect of sample size on the performance of the SURLS-SVM.
The simulation study was conducted based on three different sample sizes.

Performance measures based on sample size are displayed in Fig. 5.5. The
generated data use a censored percentage of 0.5 with 17 features. The C-index of
SURLS-SVM outperforms Cox PHM on data with the linear and non-linear pattern.
The difference in C-index between the two models is significant. The sample size
increases, but the C-index is almost constant, except for Cox PHM on data with the
linear approach, when the sampling size increases as the C-index increases. From
the plot in Fig. 5.5b, when Cox PHM is applied to data with a linear pattern, the
hazard ratio of Cox PHM outperforms that of SURLS-SVM, but when Cox PHM is

94 D. D Prastyo et al.

0.30.1 0.5 0.7 0.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.30.1 0.5 0.7 0.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Cox
SURLSSVM

Cox
SURLSSVM

C
on

co
rd

an
ce

 In
de

x

C
on

co
rd

an
ce

 In
de

x

(a) (b)

Cox
SURLSSVM

Cox
SURLSSVM

(c) (d)

0

200

800

600

400

1200

1000

0

20

40

60

80

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Lo
g

R
an

k
T

es
t

Lo
g

R
an

k
T

es
t

Cox
SURLSSVM

(e)

0.1

1.0

0.8

0.0

0.2

0.4

0.6

0.3 0.5 0.7 0.9

H
az

ar
d

R
at

io

Censoring percentage

Cox
SURLSSVM

(f)

0.1

1.0

0.8

0.0

0.2

0.4

0.6

0.3 0.5 0.7 0.9

H
az

ar
d

R
at

io

Censoring percentage

Fig. 5.4 Performance of Cox PHM and SURLS-SVM on data with a non-linear pattern using
different censoring percentages for a sample size of 100 (a, c, e) and for a sample size of 1000 (b,
d, f)

used on data with the non-linear pattern, the hazard ratio of Cox PHM is less than
that of SURLS-SVM.

The hazard ratio of SURLS-SVM is not much different when applied to small
data with the linear and non-linear patterns. In Fig. 5.5c, a log-rank test of SURLS-
SVM in the two data patterns are slightly different. The Cox PHM outperforms
SURLS-SVM when it is applied to data with the non-linear pattern, but for data

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 95

Fig. 5.5 (a–c) Performance
Performance of Cox PHM
and SURLS-SVM on data
with a linear and non-linear
pattern using different sample
sizes

100

100 1000 5000

1000 5000

Cox_Linear
SURLSSVM_Linear
Cox_Nonlinear
SURLSSVM_Nonlinear

Cox_Linear
SURLSSVM_Linear
Cox_Nonlinear
SURLSSVM_Nonlinear

Cox_Linear
SURLSSVM_Linear
Cox_Nonlinear
SURLSSVM_Nonlinear

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0 (a)

(b)

(c)5000

4000

3000

2000

1000

0

100 1000 5000

Sample size

Lo
g

R
an

k
H

az
ar

d
R

at
io

C
on

co
rd

an
ce

 In
de

x

with a linear pattern, the value of the log-rank test of Cox PHM is less than that of
SURLS-SVM.

In this simulation study, the performance of the two methods is analyzed based
on a different number of features or predictors, various censoring percentages, and

96 D. D Prastyo et al.

different sample sizes. Each performance measure yields a different result on a
different number of features. The hazard ratio and log-rank test of SURLS-SVM
are not always better than those of Cox PHM. The SURLS-SVM indicates a better
log-rank test when it is applied to data with a non-linear pattern, whereas Cox PHM
yields a better hazard ratio from data with a linear pattern. The SURLS-SVM is
always better than Cox PHM with regard to the C-index when it is applied to data
with both the linear and the non-linear pattern.

There are a few papers that explain comparing the performance measures Cox
PHM and SURLS-SVM. Smola and Scholköpf and Van Belle et al. [5, 7] compared
Cox PHM and some survival methods, one of them SURLS-SVM. They used breast
cancer data as an experimental dataset, and it obtained that SURLS-SVM does
not always display better results than Cox PHM. In the current study, based on a
percentage of censoring level, the SURLS-SVM appears much a better result only
with regard to the C-index.

The difference in the C-index between Cox PHM and SURLS-SVM on data with
a linear pattern is less than on data with a non-linear pattern (Fig. 5.5b). This fact
indicates that if the goal is to know the ranking of the prognostic index on data with
a non-linear pattern, then SURLS-SVM produces a more accurate ranking than Cox
PHM.

The better log-rank test of SURLS-SVM is obtained from high censoring
percentage data with the linear and non-linear pattern. Although the better hazard
ratio of SURLS-SVM is obtained from a low censoring percentage on data with a
linear pattern, SURLS-SVM is applied to data with a non-linear pattern and displays
a better hazard ratio for all different censoring rates, except for 0.9. Sample size does
not significantly influence the performance of SURLS-SVM.

In the current study, the SURLS-SVM and Cox PHM yield different results
depending on censoring percentage based on the value of the log-rank test and
hazard ratio. It indicates that they are not proper performance measures. From Figs.
5.1 through 5.4, although SURLS-SVM outperforms Cox PHM or vice versa, both
models have a significant log-rank test value. Thus, SURLS-SVM and Cox PHM
can divide patients into high- and low-risk. SURLS-SVM is not always better than
Cox PHM because it divides groups into high and low risk based only on the mean
or median of the prognostic index. If the prognostic index of the object is larger than
the mean, the object is classed as high risk and labeled 1, otherwise it is designated
low-risk and marked 0. Labeling 0 and 1 do not take into account the size of the
difference between the prognostic index of the object using the mean or median;
thus, a small or large difference between the prognostic index and the mean or
median is assumed to be the same value.

5.4.4 Discussion of the Results of the Simulation

Mahjub et al. [2] employed machine learning with a regression approach to analyze
survival data from five experiments and artificial data. They reported that in some

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 97

experimental data sets, standard SVR (SSVR) has a slightly better performance
than Cox PHM in all performance measures, but SSVR does not always have
better results than Cox PHM in different censoring percentages. This study finds
that the C-index of SURLS-SVM is still better than that of Cox PHM in all
different censoring percentages; thus, the C-index is the best performance measure
for comparing SURLS-SVM and Cox PHM because the results are consistent.
The SURLS-SVM use a ranking approach and C-index can explain precisely the
relation between survival time (or failure time) and prognostic index prediction
instead of survival time prediction. The C-index is consistent because the prognostic
index is not labeled by mean or median, but the labeling is based on concordance
between survival time and prognostic index by considering censored status. Based
on Figs. 5.3a, b and 5.4a, b, the difference in C-index between SURLS-SVM and
Cox PHM is high in data with a non-linear pattern. However, when the SURLS-
SVM and Cox PHM are applied to data with a linear pattern, the difference in
C-index decreases. The difference in C-index increases as the censoring percentage
increases. In Figs. 5.1a, b and 5.2a, b, the difference in C-index does not decrease
significantly. Therefore, some predictors do not significantly affect the C-index.

This study finds that a better model cannot be explained only from log-rank and
hazard ratio, but it can be described precisely by C-index. The sample sizes do not
matter, but when applied to the data with a sample size of 1000, all performance
measures are more stable. Various censoring percentages of data with sample sizes
of 100 and 1000 produce the same pattern plots. Based on sample size, SURLS-
SVM always outperforms Cox PHM based on C-index, but Cox PHM obtains better
values of hazard ratio and log-rank. The results of SURLS-SVM obtained from data
with the linear and non-linear patterns are slightly different, but Cox PHM produces
many different results when it is applied to data with the linear and non-linear trends.
Therefore, SURLS-SVM yields more consistent performance than Cox PHM.

Khotimah et al. [10] applied additive SURLS-SVM to simulated data along with
the real application to predict cervical cancer status. They also applied feature
selection using a backward elimination technique based on C-index increments.
The simulation study showed that additive SURLS-SVM performs better when
the censoring percentage is small. The recent feature selection techniques, such as
Lasso and Elastic-net as applied by Haerdle et al. [12], in addition to SCAD and
Elastic-SCAD, can be a potential technique to be employed to improve the work of
Shieh [16]. Future research work can also consider time-changing features of the
object observed until the event of interest happened—the work of Prastyo et al. [17]
employed Bayesian multiple-period logit to analyze survival data with time-varying
features. As logit and SVM are two main methods in classification, it is possible to
extend the survival SVM to multiple-period survival SVM.

In Prastyo et al. [14] it was shown that the C-index of SURLS-SVM is much
higher than that of Cox PHM; hence, the SURLS-SVM is better than Cox PHM
at all censoring percentages. The lowest C-index is obtained when the data contain
10% of censored data. High censoring percentage data mean that there are many
events happening; hence, the probability of an increase in mis-ranking. The C-index
is produced by the prognostic index; hence, the prognostic index of SURLS-SVM

98 D. D Prastyo et al.

is obtained by parameter optimization, whereas the Cox PHM only uses an estimate
of the parameter, which certainly contains an error when it is predicted.

Backward elimination is applied to the same data to obtain features that give a
significant effect of increasing the C-index. The increase in the C-index is achieved
when the feature selection is employed. To see how the SURLS-SVM and backward
elimination can detect this condition, replication was simulated. It was replicated
100 times on a censoring percentage of 10% because this has the lowest C-index
when all predictors are included in the model. The measure that was used to consider
the eliminating predictor is the C-index.

5.4.5 Application to Health Data

The full description of the application to health data (CC) can be seen in Prastyo
et al. [14]. The two predictors of CC, i.e., stage and level of education, are merged
because they do not have sufficient data based on cross-tabulation for each predictor.
The stage does not satisfy the PH assumption. This condition indicates that Cox
PHM is not appropriate for analyzing these data; hence, the analysis requires another
model, i.e., SURLS-SVM. Furthermore, the results of estimation parameters and
testing significantly for each predictor yield three significant predictors, i.e., type
of treatments (chemotherapy and transfusion), stage, and level of education (junior
high school).

The C-index increases after backward elimination is applied. The first predictor
to be eliminated is anemia status (P3), followed by family planning status (P11), and
the age at first menstrual period (P7). The C-index for each predictor after backward
elimination is 97.09%, 97.14%, and 97.17% respectively.

The predictor that gives the highest effect is age (P1) because it has the highest
difference. Therefore, the order of predictors based on effected C-index are age
(P1), the age at marriage (P6), stage (P5), menstrual cycle (P8), type of treatment
(P4), parity (P10), and the last is features that do not have a decreasing C-index, i.e.,
complication status (P2), length of menstruation (P9), and level of education (P12).

This study uses C-index instead of the significant level; hence, the predictors
that give the smallest increase in C-index are eliminated. On the other hand, the
feature selection can delete redundant predictors from the final model, and then
the C-index of the final model can be increased. To validate how feature selection
works on SURLS-SVM, this paper use replication (on simulated data) with the same
scenario; furthermore, the result of replication shows that the irrelevant predictors
(predicting which has a zero coefficient) are often included in the model. This is
caused by main-confounder and sub-main confounder features, where they have an
interaction that generates survival time, but they are not included in the analysis.

This work can be expanded by considering interaction of features in the analysis
and by working on a more advanced method of feature selection, for example, fea-
ture selection with a regularization approach [18] as part of an embedded approach,
which has a more straightforward step. Model-based feature selection [19],

5 Survival Support Vector Machines: A Simulation Study and Its Health-. . . 99

i.e. feature selection based on the information from parametric model, may also
be considered to give more intuitive reasoning. Even the proposed method in this
paper belongs to the non-parametric approach, the information from parametric
approach typically can improve the performance of the proposed method.

5.5 Conclusion

The simulation study shows evidence that SURLS-SVM outperforms Cox PHM
based on the C-index criterion in any number of features. This result does
not always happen when other performance measures, log-rank or hazard ratio,
are used. However, the SURLS-SVM is better than Cox PHM in most of the
scenario combinations, in particular, in the censoring percentage, the SURLS-SVM
outperforms Cox PHM at all censored level data based on the C-index criterion. The
feature selection of SURLS-SVM contributes to performance improvement. Also,
the replication procedure informs that the irrelevant predictors can be selected as
relevant features in SURLS-SVM because of the confounding effect. In application
to the cervical cancer dataset, the significant features in Cox PHM are also the
features that improve the C-index of SURLS-SVM once the backward elimination
has been applied.

Acknowledgement Authors thank the reviewers for their advice. This research (2017–2019) is
supported by PDUPT research scheme financed by DRPM DIKTI (through ITS), Indonesian
Ministry of Research, Technology and Higher Education. The second author is grateful for LPDP
scholarship.

References

1. Kleinbaum, D. G., & Klein, M. (2012). Survival analysis: A self-learning text (3rd ed.).
London: Springer.

2. Mahjub, H., Faradmal, J., Goli, S., & Soltanian, A. R. (2016). Performance evaluation of
support vector regression models for survival analysis: A simulation study. IJACSA, 7(6), 381–
389.

3. Van Belle, V., Pelckmans, K., Suykens, J. A., & Van Huffel, S. (2007). Support vector machines
for survival analysis. In Proceedings of the third international conference on computational
intelligence in medicine and healthcare (CIMED), Plymouth.

4. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on computational learning theory (pp.
144–152). Pittsburgh: ACM.

5. Smola, A. J., & Scholköpf, B. (2004). A tutorial on support vector regression, statistics, and
computing. Statistics and Computing, 14(3), 192–222.

6. Van Belle, V., Pelckmans, K., Suykens, J. A., & Van Huffel, S. (2010). Additive survival least-
squares support vector machines. Statistics in Medicine, 29(2), 296–308.

7. Van Belle, V., Pelckmans, K., Suykens, J. A., & Van Huffel, S. (2011). Support vector methods
for survival analysis: A comparison between ranking and regression approaches. Artificial
Intelligence in Medicine, 53(2), 107–118.

100 D. D Prastyo et al.

8. Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machines classifiers.
Neural Processing Letters, 9(3), 293–300.

9. Goli, S., Mahjub, H., & Faradmal, J. (2016). Survival prediction and feature selection in
patients with breast cancer using support vector regression. Computational and Mathematical
Methods in Medicine, 2016, 1–12.

10. Khotimah, C., Purnami, S. W., Prastyo, D. D., Chosuvivatwong, V., & Spriplung, H. (2017).
Additive survival least square support vector machines: A simulation study and its application
to cervical cancer prediction. In Proceedings of the 13th IMT-GT international conference
on mathematics, statistics and their applications (ICMSA), AIP conference proceedings 1905
(050024), Kedah.

11. Khotimah, C., Purnami, S. W., & Prastyo, D. D. (2018). Additive survival least square support
vector machines and feature selection on health data in Indonesia. In Proceedings of the
international conference on information and communications technology (ICOIACT). IEEE
Xplore.

12. Haerdle, W. K., Prastyo, D. D., & Hafner, C. M. (2014). Support vector machines with
evolutionary model selection for default prediction. In J. Racine, L. Su, & A. Ullah (Eds.), The
Oxford handbook of applied nonparametric and semiparametric econometrics and statistics
(pp. 346–373). New York: Oxford University Press.

13. Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers and
Electrical Engineering, 4(1), 16–28.

14. Prastyo, D. D., Khoiri, H. A., Purnami, S. W., Suhartono, & Fam, S. F. (2019). Simulation
study of feature selection on survival least square support vector machines with application to
health data. In B. W. Yap et al. (Eds.), Soft computing and data science 2018 (SCDS2018)
(Communications in computer and information science) (Vol. 937, pp. 1–12). Singapore:
Springer.

15. Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox
proportional hazards models. Statistics in Medicine, 24(11), 1713–1723.

16. Shieh, G. (2006). Suppression situations in multiple linear regression. Educational and
Psychological Measurement, 66(3), 435–447.

17. Prastyo, D. D., Miranti, T., & Iriawan, N. (2017). Survival analysis of companies’ delisting
time in Indonesian stock exchange using Bayesian multiple-period logit approach. Malaysian
Journal of Fundamental and Applied Sciences, 13(4-1), 425–429.

18. Haerdle, W. K., & Prastyo, D. D. (2014). Embedded predictor selection for default risk
calculation: A southeast Asian industry study. In D. L. K. Chuen & G. N. Gregoriou (Eds.),
Handbook of Asian finance: Financial market and sovereign wealth fund (Vol. 1, pp. 131–148).
San Diego: Academic Press.

19. Suhartono, Saputri, P. D., Amalia, F. F., Prastyo, D. D., & Ulama, B. S. S. (2017). Model
selection in feedforward neural networks for forecasting inflow and outflow in Indonesia. In
A. Mohamed, M. Berry, & B. Yap (Eds.), Soft computing and data science 2017 (SCDS2017)
(Communications in computer and information science) (Vol. 788, pp. 95–105). Singapore:
Springer.

Chapter 6
Semantic Unsupervised Learning for
Word Sense Disambiguation

Dian I. Martin, Michael W. Berry, and John C. Martin

6.1 Introduction

A fundamental characteristic of language is lexical ambiguity. Words with more
than one meaning are used commonly throughout text. The 121 most frequently
used words in the English language have an average of 7.8 different meanings, or
senses, associated with each of them, and these words appear approximately 20% of
the time in text [1]. When these words are read in context, there is little ambiguity
to a human reader. Determining the senses of a word being used in a given passage
of text, a process known as word sense disambiguation, is rather simple task for
a human reader, but a difficult one to accomplish using automated, algorithmic
systems [1–4].

6.1.1 Word Sense Disambiguation

For any given word, there exists one or more senses, where a word sense is the
particular meaning associated with that word in a given context of usage. The
complete definition of a word encompasses all the possible meanings or senses
of a word, but generally, only one sense is intended when a word is used. Word

D. I. Martin (�) · J. C. Martin
Small Bear Technologies, Inc., Thorn Hill, TN, USA
e-mail: Dian.Martin@SmallBearTechnologies.com; John.Martin@SmallBearTechnologies.com

M. W. Berry
Department of Electrical Engineering and Computer Science, University of Tennessee at
Knoxville, Knoxville, TN, USA
e-mail: mberry@utk.edu

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_6

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_6&domain=pdf
mailto:Dian.Martin@SmallBearTechnologies.com
mailto:John.Martin@SmallBearTechnologies.com
mailto:mberry@utk.edu
https://doi.org/10.1007/978-3-030-22475-2_6

102 D. I. Martin et al.

senses can be considered either coarse-grain or fine-grain, depending on the level
of detailed distinction that is required to divide them. Coarse-grain senses exhibit
major, unrelated differences in meaning, where fine-grain senses have more subtle
distinctions between them, and they are frequently interrelated. Words that possess
only coarse-grain senses are called homographs, while words that have mainly fine-
grained senses are polysemous words [5].

Often words possess both coarse- and fine-grain senses. The word bank is a
classic example of a word having both types of senses. Examining course-grain
senses, the word bank may be viewed as having two clear distinct senses as a noun
with one meaning being “a slope beside a body of water,” while another sense being
“a financial institution.” However, the word bank when taken in the sense of “a
financial institution” can be divided into more subtle, fine-grained, distinctions such
as “the physical building where financial transactions are performed,” “the financial
institution that accepts deposits and participates in different lending activities,” “a
reserve of money,” or “a container for keeping money” [1]. Consider the textual
phrase “I am going to put my money in the bank.” There are several possible
interpretations for the sense of the word bank: Is the money being put in a piggy
bank? Is the money going to be deposited at a financial institution? Or is bank
referencing a fund that is being put aside for future use or emergencies. Determining
the level of granularity for the word sense depends on the application and context of
the word being used.

Interestingly, human readers seem to be able to make sense distinctions innately
and accurately, easily differentiating between multiple senses of an ambiguous word
when given sufficient context. Of course, individual humans also have differences
in their ability to perform this disambiguation task based on their cognitive model,
exposure to spoken and written language, and domain-specific vocabulary. Even for
human experts, lexicographers, determining the number of senses of a word and
giving those senses a definition is a challenging and subjective task [6].

6.1.2 History and Approaches

Formal WSD research began with the work in computational linguistics and
artificial intelligence (AI) in the 1940s and early 1950s. In his 1950 paper “Com-
puting Machinery and Intelligence,” Alan Turing described the primary indicator
of the existence of intelligence as possessing the ability to understand language
[7]. Language understanding requires the ability to disambiguate the meaning of
words [8]. Research addressing the task of WSD originated in the field of Natural
Language Processing (NLP) [5], computational linguistics [9], and in machine
translation. Often, there is one word in a given language that has the potential to
translate into multiple words in another language [5].

The WSD problem involves two major tasks: defining the possible sense
definitions for a word (sense discovery) and then identifying which sense of a word

6 Semantic Unsupervised Learning for Word Sense Disambiguation 103

is being used for a given context (sense identification). Original work in WSD was
performed manually by human lexicographers. Initial attempts to automate WSD
began to appear in the 1970s. Over time, four major categories of WSD approaches
have developed: dictionary- or knowledge-based methods, supervised methods,
minimally supervised methods, and unsupervised methods also called word sense
discrimination [2, 4, 6, 9–12]. Dictionary- or knowledge-based methods rely on
existing dictionaries or some a priori lexical knowledge base, such as WordNet
[13], that has been built up manually to inform their processing decisions for
the identification task. Supervised methods for WSD use sense-annotated corpora
produced by human lexicographers for training an automated system, which is
then used for the identification task. Semisupervised or minimally supervised
methods involve building a disambiguation model based on small amount of human
annotated text or word-aligned bilingual corpora and then bootstrapping from this
seed data to build additional sense indicators, which are then used to identify a sense
used in a given context. Unsupervised methods for WSD use no external information
and work directly with raw nonannotated corpora to induce the senses for words.

Currently, the best results for automated WSD are achieved using supervised
methods [4, 12, 14], but these methods require extensive sense-tagging training data
to be available beforehand. This sense-tagging data requirement poses a problem
both in time and expense, along with the lack of flexibility in dealing with ever-
changing language. Knowledge-based, supervised, and semisupervised methods all
require significant a priori knowledge, and the systems based upon these methods
must be custom-built by humans for a specific target language. Also, these systems
are limited in the number of terms for which they can distinguish senses, which
poses problems when using larger amounts of text, new domains, or new languages,
and yet, recent findings suggest that WSD algorithms work best on large volumes
of data [2]. Unfortunately, unsupervised systems for WSD still lag in their accuracy
when compared to other types of systems [15–17].

6.2 Latent Semantic Analysis

One approach to WSD is to utilize Latent Semantic Analysis (LSA) to construct
an underlying learning system or AI system that is then employed for the sense
discovery and sense identification tasks. The learning system provides a basis for
clustering words based on contexts given in a corpora or textual document collection
and provides an automated platform for inducing and distinguishing word sense in
a given text corpus. The process also provides additional insight into the learning
system being used that can be leveraged to fine-tune or fit the learning system for
other uses.

The LSA-based learning system, as illustrated in Fig. 6.1, processes input text,
which is used to train the system to learn language using a mathematical technique,
producing the cognitive model represented by the LSA semantic space. Use of

104 D. I. Martin et al.

Fig. 6.1 Visual representation of the LSA-based learning system [3]

the system is facilitated by functions to interrogate or probe the cognitive model.
This cognitive model represents the underlying semantic relationships between
words and is an analog to the human understanding of language [18–20]. Many
applications have shown that the performance of LSA-based learning systems on
certain cognitive tasks has simulated human knowledge as well as the understanding
of words and meanings of text [20–26]. The cognitive model is produced as a high-
dimensional vector space representing the semantic relationships between items of
the input text. The LSA cognitive model exploits patterns of word usage across
a corpus to learn the meaning of words relative to each other within that body
of text [20, 24, 25, 27]. Research in the field of LSA has reported that, given a
context in which an ambiguous word is used, LSA can determine its sense for
information comparison purposes [23, 28, 29]. For more detailed explanation of the
mathematical derivation of the LSA-based learning system and the cognitive model,
see Martin et al. [20], Martin and Berry [18], and Martin [3].

6.3 LSA-WSD Approach

The use of an unsupervised LSA-based learning system for WSD (LSA-WSD) has
some promising advantages in that the supporting technology for this approach
is fully automated, usable for any word, applicable to other languages, and may
be updated easily to account for changes in language usage. Also, the LSA-WSD
process can be used to characterize the knowledge represented in the LSA cognitive
model being employed. The LSA-WSD system makes use of the cognitive model

6 Semantic Unsupervised Learning for Word Sense Disambiguation 105

from the LSA-based learning system along with a technique called Semantic Mean
Clustering (SMC) for inducing word senses and a Context Comparison (CC) method
for disambiguating individual words in context.

6.3.1 Sense Discovery

Given an LSA cognitive model, also known as the LSA semantic space, the initial
task in LSA-WSD approach is sense discovery: determining the senses associated
with a given word within the model. This is necessary as not all possible word senses
will be represented in a specific model. The ideal input corpus would provide a
general linguistic framework that supplied all the typical word senses that might be
encountered, but this corpus could be augmented or targeted for a particular domain
or may underrepresent the word knowledge of a typical user of that language. Sense
discovery results are only as good as the learning system upon which the induction
is obtained, because the ability to distinguish senses depends on the knowledge
contained within the learning system.

The LSA-WSD system uses a modified clustering technique (SMC) that exploits
the properties of the LSA cognitive model for relating semantically similar items
to perform sense discovery. It is based on the concept that each term vector in an
LSA semantic space carries all the possible meanings or senses for a term [23].
The challenge for sense discovery is then to separate these senses into individually
identified senses. Examining the top s synonym words related to a given target
word, the SMC technique is used to produce synonym clusters (synclusters), which
represent possible senses for the target word. This sense discovery method can be
applied to any word, and the method can also be extended to different domains and
languages while dynamically adapting to the content being analyzed.

6.3.2 Sense Identification

After senses have been induced, the second task of the LSA-WSD approach is
to distinguish the sense in which a word is being used within a particular input
context. This is done using the Context Comparison method. This method processes
an input context sentence, removes the target word, and maps the result into the
LSA semantic space to identify the closest syncluster, which represents one of
the previously discovered senses for the word. The closest cluster would serve to
identify the sense of the target word as used in this context, disambiguating the
sense of the word in question.

106 D. I. Martin et al.

6.3.3 Semantic Mean Clustering

For the LSA-WSD approach, a clustering model was developed that integrates
aspects of connectivity-based clustering and centroid-based clustering called
Semantic Mean Clustering (SMC) [3]. The SMC technique leverages the fact
that cosine measurements in the LSA cognitive model represent a similarity of
meaning and have certain thresholds and bounds that can be interpreted with some
useful implications. A centroid model for representing the clusters was needed to
generalize the meaning mapping of the terms. For this synclustering application, it
is not necessarily important that the individual items have a close relationship with
each other, but that they have a relationship to certain meanings as manifested in
the centroid. Additionally, the actual meanings of the terms that are found should
drive the number of clusters identified. This requires that cluster membership for
specific items has the ability to change as the cluster definition encompassed in
the centroid evolves for each term that is processed. SMC is similar to k-means
clustering in that it is based on centroids, but different in that it is not initialized
with a random grouping of item clusters. The clustering outcome is reproducible,
and there is no predefined value for k. The number of clusters is determined by
the associations captured in the cognitive model. Like hierarchical clustering, SMC
produces reproducible results and allows the data to drive the decision of how
many clusters there are, but it differs in that items are assigned to a cluster by their
similarity to cluster centroids and not their measurement to other items.

The SMC algorithm takes one input parameter, the cluster inclusion threshold,
which defines the minimum similarity measurement required when comparing an
item to the cluster centroid. Due to the constant recalculation of the cluster centroid,
the cluster assignment for an item is not permanent until the entire process has
been completed. During processing, as new items get added and the centroid for the
cluster is recomputed, any item can fall outside of the similarity threshold for its
cluster; therefore, multiple passes are required to reprocess any items that fall out
of their initial cluster assignments. This reprocessing of fallout items is performed
until all items have been assigned membership in some cluster. The complexity of
the clustering used by the SMC algorithm is in the worst-case scenario not greater
than O(kn), where k < n, but in practice, only one fallout reprocessing pass has
been observed with a small number of fallout items to be occasionally necessary. In
comparison, the complexity for hierarchical clustering is generally O(n2), with the
worst case being O(n3), and the complexity for k-means clustering is O(n2).

The SMC algorithm using the LSA cognitive model for synclustering is defined
as follows [3]:

For each synonym in the top k terms closest to the given target word:

1. Project the term in the LSA semantic space.
2. Compare the term mapping to all identified cluster trajectories.

(a) If this is the first item, it will be recorded as the first cluster trajectory (see
Fig. 6.2, left).

6 Semantic Unsupervised Learning for Word Sense Disambiguation 107

Fig. 6.2 Steps in SMC cluster construction [3]

(b) If the item mapping is not close to, outside of the similarity threshold of, any
previously identified cluster trajectories, then the item mapping is recorded
as a new cluster trajectory (see Fig. 6.2, middle).

(c) If the item mapping is close, within a certain similarity threshold, to an
existing cluster trajectory, then it is grouped with items associated with the
nearest cluster trajectory and the cluster trajectory (centroid) is updated by
averaging all the member item mappings (see Fig. 6.2, right).

After the full set of items is processed, each item is then examined to
determine if any of them fall outside of the similarity threshold.

3. If an item falls outside the similarity threshold for the cluster trajectory of which
it is a member:

(a) The item is removed from the cluster group membership and the cluster
trajectory is recalculated.

(b) The item is cataloged for reprocessing.

4. If an item is within the similarity threshold for the cluster trajectory of which it
is a member, no action is necessary.

Repeat steps 1 and 2 with the items cataloged for reprocessing and then repeat
steps 3 and 4 until no fallout items are identified.

The SMC process automatically determines the number and formation of the
clusters where each cluster is a group of items, in this case the top terms closest
to the given target word within the cognitive model, falling within a set similarity
threshold of the centroid and representing a consolidated semantic trajectory within
the LSA cognitive model as depicted in Fig. 6.3. Each cluster represents a sense
identified within the LSA-based learning system for the target word.

108 D. I. Martin et al.

Fig. 6.3 Clustered
trajectories identified by
SMC [3]

6.4 Sense Discovery Using Synclustering

Synclustering is predicated on the idea of attempting to separate the senses for a
target word embedded within its term vector by clustering the synonyms of that
word based upon their similarity measurement with each other. In the cognitive
model, synonyms are words that are close in their mapping, indicating a semantic
relationship. These words may or may not be linguistic synonyms that are mutually
replaceable. These synonyms indicate what associations of meaning exist for the
target word within the cognitive model.

To perform synclustering, all the words present in the LSA-based learning
system are examined to find the words closest to the target word using the cosine
measurement for similarity. These top k synonym words are then clustered using
the SMC algorithm to produce candidate word sense clusters (WSCs) for the target
word. Once the candidate WSCs are induced, the closest word to the centroid of
each of these clusters is taken to be the identifier, or descriptor, for the sense the
cluster represents.

6.4.1 Experimentation Parameters

For these experiments, two document collections were used as input into the
learning system, creating two different cognitive models. One document collection
consisted of 3.5 million paragraph-sized text, derived from educational materials

6 Semantic Unsupervised Learning for Word Sense Disambiguation 109

Table 6.1 Target words used
in experiments for word sense
discovery and identification
[3]

Words 1–6 Words 7–12 Words 13–18

Bank Interest Pretty
Batch Keep Raise
Build Line Sentence
Capital Masterpiece Serve
Enjoy Monkey Turkey
Hard Palm Work

(books, periodicals, etc.). Each text was previously noted with an associated Lexile
level, which is an estimate of the reading difficulty level for the text ranging from
elementary to adult [30, 31]. They are representative of texts encountered by a
typical learner of language over time and consist of reading material often used in
American schools [30, 32]. The other collection used was the Reuters Text Retrieval
Corpus (RTRC) RCV1 collection [33] consisting of over 800,000 English language
news articles, published by Reuters during the 1996–1997 timeframe.

A LSA semantic space, or cognitive model, was constructed from an approxi-
mately 200,000 document set for each of these corpora. The subset of documents
from the grade level reading corpus included items ranging from elementary to adult
difficulty level with each level being equally represented or chosen. The subset of
documents from the news collection corpus contained varied content deemed to be
typical for adult reading level. These document sets were selected to serve as a basis
for linguistic meaning and thus allowed for an adequate base LSA semantic space,
a sufficiently large representation of a typical adult cognitive model [20, 34].

Once the two cognitive models were created, additional parameters for syn-
clustering were set. The number of synonyms related to the target word to
use in synclustering was varied to test the clustering with 100 and 200 words.
Synclustering was performed on the 18 target words, shown in Table 6.1. This set
consists of words with coarse- and fine-grained senses and includes mostly nouns
and verbs with a few adjectives and adverbs. Two cluster inclusion thresholds were
tested, 0.3 and 0.4. These thresholds yielded good results, and testing of other
threshold values was left for future work.

6.4.2 Observations and Results

Using the grade-level learning system, the top 100 closest words, or synonyms, to
the target word bank, are shown in Table 6.2 prior to clustering in the order of
their proximity to bank. Casing is not considered so that all words are processed in
lowercase, including proper nouns.

Simply inspecting the words manually, it is interesting to note that the top 36
words are associated in some way with a riverbank or a body of water. The first
term that is not clearly in that sense category is the word deposit. This word is
ambiguous, because it can refer to a deposit on the bank of a river or to a money

110 D. I. Martin et al.

Table 6.2 The top 100 closest words to the word bank in the grade-level learning system [3]

Terms 1–20 Terms 21–40 Terms 41–60 Terms 61–80 Terms 81–100

Bank Levee Riverbed Riffles Waterfall
Banks Gorge Barges Snags Waded
Downstream Flatboat Paddled Money Overhanging
Riverbank Bend Tributaries Shallows Crossing
Upstream Boatmen Thames Creek Sandbars
River Canoe Midstream Conononka Portage
Rapids Steamboat Canal Savings Bills
Downriver Footbridge Countercurrents Flowing Swift
Dam Flood Monongahela Bottomland Sawmills
Upriver Ferrymen Paddle Creeks Paddling
Bridge Dammed Reeds Watercourse Mississippi
Flowed Bottomlands Cash Poled Damming
Current Sandbar Ferryman Wading Meander
Raft Flatboats Boatman Riverside Murky
Tributary Robb Riverbanks Narmada Platte
Barge Stream Dams Rhadamnanthus Riverboat
Steamboats Deposit Rafts Cocytus Uminpeachable
Muddy Loan Headwaters Radarscope Potomac
Eddies Willows Silt Insecttortured Marshy
Bluffs Nashua Poling Shallow Spanned

deposit. Some of the term associations, reported in the list, are not immediately
obvious; however, the words such as Nashua, Thames, Monongahela, Conononka,
etc. are actually proper names of rivers. Those words should be associated with the
river sense of bank. The only other terms in the list that would not be associated
in some way with a riverbank or river are loan (ranked 38th), cash (ranked 52nd),
money (ranked 63rd), savings (ranked 67th), and bills (ranked 87th). These terms
suggest an association of money or money-related items with the word bank. From
manual inspection of the top 100 synonyms to bank, there are two definite senses
for the word bank that emerge, suggesting that synclustering might be expected to
induce two senses from this list.

Using the grade-level learning system, the synclustering of these 100 words did
yield two distinct clusters for the word bank (see Table 6.3). The two senses induced
were a cluster for the “riverbank” sense of bank and one for the “money” sense. With
cosine similarities of 0.78 and 0.51, the two clusters have centroids that are relatively
close to the target word bank. A cosine of 1.0 would indicate that the mapping of
the associated cluster is identical to the mapping for the target word. The cosine
values associated with these candidate WSCs indicate that the cluster for the river
sense is more closely associated with bank than the cluster for the money sense in
this grade-level learning system.

In contrast, using the news learning system, synclustering produced somewhat
different results for the word bank. First, the synonyms for bank in the news learning

6 Semantic Unsupervised Learning for Word Sense Disambiguation 111

Table 6.3 The WSCs discovered using synclusters on the top 100 synonyms for the word bank in
the grade-level learning system [3]

Word sense
cluster Number in WSC WSC descriptor

Next
closest
words

Cosine between bank
and WSC centroid

WSC 1 93 Downstream River
Rapids
Upstream
Riverbank

0.78

WSC 2 6 Money Bills
Cash
Savings
Loan

0.51

Table 6.4 The WSCs using synclusters when clustering the top 100 synonyms for the word bank
in the news learning system [3]

Word sense
cluster Number in WSC WSC descriptor

Next
closest
words

Cosine between bank
and WSC centroid

WSC 1 88 Banks Banking
Deposits
Bankers
Lending

0.78

WSC 2 9 Rates Interest
Reserve
Mortgage
Discount

0.36

WSC 3 1 Finance 0.21
WSC 4 1 Manages 0.21

system were different than the ones identified in the grade-level system, and using
the same parameters with the WSI method, the top 100 synonyms to bank and
a cluster inclusion threshold of 0.3, there were four candidate WSCs induced for
the news learning system as described in Table 6.4. All four of them relate to the
financial institution sense for the word bank. Only one, WSC 1, shows a strong
association with the target word bank, having a cosine of 0.78 between the word
bank and the centroid. The other three clusters, with cosine similarities of 0.36, 0.21,
and 0.21, are more distant, suggesting that they may not represent usable senses
for bank. The descriptors for each WSC suggests that there is really the only one
primary sense for the bank that is understood by this learning system, though the
second cluster could be taken to indicate a sense related to mortgages, which would
be a fine-grained sense of the word.

Another target word that was examined was the word palm. Using the top 100
synonyms and a cluster inclusion threshold of 0.3, there were 12 candidate WSCs
induced for palm using the grade-level learning system, while only 2 candidate
WSCs were induced for the news learning space. Using the grade-level learning
system, centroids for three of the candidate WSCs had a cosine similarity measure

112 D. I. Martin et al.

Table 6.5 The WSC results for using synclusters on the word palm [3]

Grade-level learning system News learning system
WSC label # in cluster Cosine to centroid WSC label # in cluster Cosine to centroid

Hand 29 0.65 Beach 3 0.55
Trees 40 0.50 Cigarette 96 0.47
Gripping 5 0.43

with the target word palm that was greater than 0.4, while the remaining ones
had cosine similarities of less than 0.31, suggesting that there were three senses
associated with palm by the synclustering process, as shown in Table 6.5. Upon
inspection, the induced senses correspond to the three coarse-grain senses of the
dictionary definition of palm: (1) An unbranched, evergreen tree, (2) Inner surface
of a hand between the wrist and the fingers, and (3) To hide or hold something in
one’s hand [35]. Using the news learning systems, the candidate WSCs induced
two different senses for palm. One cluster appears to correspond to Palm Beach in
Florida, which is not surprising as the cognitive model was constructed from news
articles. News articles mention locations often. The other cluster has an interesting
label of cigarette, indicating something to do with a hand; however, examining other
words in the cluster are tobacco, smokers, smoking, Lorillard (name of a Tobacco
company), and other names of people, suggesting an association of the meaning of
palm with smoking.

For the target word sentence, synclustering produced only one candidate WSC
for both learning systems. The grade-level learning system produced a WSC candi-
date with the descriptor of “spelling,” while the news learning system produced a
candidate WSC with the descriptor of “prison.” The centroid cosine similarity to the
target word sentence was high, greater than 0.96, for both cases. When the number of
synonyms used for clustering was also expanded to the top 200, there was no change
in the candidate WSC for either learning system. The grade-level learning system
learned the definition of sentence as a group of words written together expressing a
complete thought, and the news learning system learned the definition of sentence
as a punishment assigned to a person in court.

Candidate WSCs induced for the word line produced 12 clusters using the
grade-level learning system and 24 clusters with the news learning system. The
news learning system did not find any clusters with a cosine similarity between
the centroid and the target word of more than a 0.33, and after reviewing the top
candidate, WSCs indicated no clear sense for line in the cognitive model constructed
from the news input text. In contrast, the grade-level learning system induced some
strong senses for line. Of the 12 candidate WSCs that were generated, 5 of them had
a cosine similarity between their centroid and the target word that exceeded 0.43,
as shown in Table 6.6. A manually produced description of the sense is shown that
was derived by considering the other words associated with each WSC.

For all 18 of the target words examined, synclustering produced reasonable
results, which reflected the word knowledge contained in the cognitive models

6 Semantic Unsupervised Learning for Word Sense Disambiguation 113

Table 6.6 The WSC results using synclusters on the top 200 words for the word line using the
grade-level learning system [3]

WSC label # in cluster Cosine to centroid Manual description of the sense

Zone 137 0.66 A line marked on a field or court that relates to
the rules of a game or sport like a goal line or
zone line

Assonance 6 0.63 A line of poetry
Bait 21 0.53 A line on a fishing rod
Horizontal 18 0.49 A mathematical term for a line or lines in

particular directions
Ahead 7 0.44 A line marking the starting or finishing point

in a race

that were used in the sense induction process. While not all the words resulted
in clearly identifiable word senses, several such as bank, palm, sentence, and line
showed promising results with clearly usable-induced senses for the subsequent
task of word sense disambiguation. Empirical evidence suggests that candidate
WSCs should have a cosine similarity between the centroid and the target word
that exceeds 0.35 to be considered as a usable sense cluster for the word. As would-
be expected coarse-grained senses appear to be more easily identified, however,
some fine-grained senses were induced such as with the word line using the grade-
level learning system. It was apparent in all cases that the two cognitive models
were not equal in the represented word knowledge. While they showed agreement
for several words in the senses induced, there were also some striking differences
as can be observed with the words sentence and line. The grade-level learning
system produced more broad-based and consistent results and was thus used in the
subsequent sense identification task.

Testing different threshold parameters and selection quantities for the input
synonyms led to the identification of a 0.3 clustering threshold and a selection of
100 synonyms as the best performing configuration. Further research is ongoing to
refine these input criteria to optimize results. Synclustering for automatic word sense
induction provides a means to induce senses and a way to examine and analyze the
underlying LSA-based learning system.

6.5 Sense Identification Using the Context Comparison
Method

The next task for the LSA-WSD approach is the identification of the sense of a target
word in a context, also known as disambiguation. Sense identification amounts to
the determination of the syncluster best representing the sense of the target word
in the given sentence. The synclusters induced in the sense discovery task are each
described by a centroid vector that maps the average of all the component term

114 D. I. Martin et al.

vectors in the cluster and by a representative word that corresponds with the closest
component vector to the cluster centroid.

Given a target word, the Context Comparison (CC) method takes the given
context sentence minus the target word, projects this modified context sentence
into the cognitive model, and then identifies the closest syncluster centroid using
the cosine similarity measure. The reason the modified context is used is that the
context words surrounding the target word in the sentence carry the information
that suggests the sense of the target word within that usage. The algorithm for the
CC method is as follows [3]:

1. Copy the input sentence sentA into sentB.
2. Remove the target word from sentB.
3. Project sentB into the LSA semantic space.
4. For each syncluster:

(a) Compute the cosine similarity measure between the projection for sentB and
the centroid vector for the syncluster.

(b) Record the cosine similarity.

5. Determine the highest cosine similarity recorded and take the corresponding
syncluster as the identified word sense.

6.5.1 Experimentation Parameters

The experiments for the sense identification task were conducted on the grade-
level learning system. The sense discovery target words, and their corresponding
word senses as determined by synclustering, were used in the disambiguation
experiments to test the efficacy of the Context Comparison method. Results for the
following target words were collected: bank, palm, line, raise, and serve. To evaluate
WSD performance, test sentences for each of the target words were randomly
selected from different sources including the grade-level corpus, online dictionaries,
and WordNet [13]. Ten test sentences were then hand-annotated to identify the
correct word sense used in each sentence. These ten were specifically selected to
ensure coverage of all the different senses that had been previously induced by
synclustering for each target word. Additional sentences containing different senses
for the target word than those represented by the synclusters for each word, as well
as ambiguous sentences, were added to the final test-set for each word. This sentence
selection resulted in a test-set of 12 or more sentences for each of the target words
with a human-generated correct word sense identification. Example test sentences
for the words line are shown in Table 6.7.

6 Semantic Unsupervised Learning for Word Sense Disambiguation 115

Table 6.7 Test sentences used in the WSD task for the word line and their annotated sense
determined by a human rater [3]

Annotated WSC label Sentences using line in this sense

zone Jackie stepped to the line and dropped in both foul shots.
Jim plowed forward to stop the quarterback from reaching the goal
line.

assonance The pattern of stressed and unstressed syllables discernible in a line of
poetry has been analyzed in order to determine whether the line
follows an iambic or a dactylic or an anapestic metrical arrangement.
Each stanza has eight lines.

bait He reeled in the line and bent the pole.
He cast out his line.

horizontal The curved line represents the variation of voltage in the signal.
Draw a horizontal line above the vertical line.

ahead Matthew dashed across the finish line.
I crossed the finish line, jogged to a stop, and kneeled on the cinders,
breathing deeply.

Different Sense The workers would build them on a moving assembly line.
Ambiguous Sense Hold the line a minute, Diane.

6.5.2 Observations and Results

For each target word, each of the ten test sentences matching an induced sense
was processed to identify a sense for the target word using the CC method. The
results were compared to the human-generated sense identification to determine
correctness. The results for five of the target words can be seen in Fig. 6.4.

For the target word bank, there were two induced senses resulting from syn-
clustering (see Table 6.3). The CC method only incorrectly identified the sense for
bank in one case by identifying the downstream sense for the sentence “It was a
bank robbery in progress..” The correct sense of bank in the sentence was money.
The computed cosine similarity was 0.14 for the downstream sense and 0.13 for the
money sense. Both of these nearly equivalent cosines are small, suggesting a low
degree of confidence in the result for the target word in this sentence. The additional
test sentence contains a different sense (not corresponding to one of the induced
senses): “Chuck was listening to the whistles and trills and adjusting dials on a bank
of electronic equipment.” This sentence makes use of the target word bank in the
sense of a group or set of similar things. The CC method selected downstream as the
sense, with a corresponding cosine similarity measurement of −0.02. With a cosine
value near zero (indicating two vectors are unrelated), it can be interpreted that the
CC method did not recognize the sense of the word bank in this sentence. This would
be expected given that the operative sense for bank in this context had not been
learned by the underlying learning system. The same sort of observation was noted
for the ambiguous sentences, “That bank’s not safe.” and “Rosa had waved to her at
the bank..” The calculated cosine values for each of the ambiguous sentences were

116 D. I. Martin et al.

Fig. 6.4 The number of correctly identified word senses for the target words used in ten different
context sentences [3]

0.05 and 0.04, respectively, suggesting that no sense could be strongly identified,
indicating ambiguity that would require more contexts.

For the target word line, there were five senses induced by synclustering (see
Table 6.6). The CC method was able to identify the correct sense for the ten test
sentences containing line that had a matching-induced sense. For the additional
sentences with an unlearned sense or ambiguous usage, the CC method produced
cosine measurements near zero for the sentences, again suggesting low confidence
in the sense identification produced for those contexts. However, interestingly, given
the available learned senses to choose from, with the ambiguous sentence “Hold
the line a minute, Diane.,” the CC method identified the sense bait (fishing line),
which from a human perspective is the most reasonable out of the given five induced
senses: goal line, fishing line, finish line, poetry line, or mathematical line.

Examining the target word palm and its three induced senses, hand, gripping,
and trees, the CC method identified 70% of the senses correctly, missing the correct
identification for the sense of palm in the following three sentences:

1. Yellow sap oozed onto my palm.
2. She stroked my golden curls with a hand so large it seemed to palm my whole

head.
3. I suspected that he had palmed a playing card.

The first sentence uses the word palm in the hand sense, but the CC method
identified the sense as trees with a cosine value of 0.23 between the trees syncluster
centroid and the original context sentence with the target word removed. While the
word sap in the sentence suggests the tree sense, human readers recognize that the
sentence uses palm in the context of a hand. For the other two sentences (2 and
3), it is clear that the gripping sense for the word palm was used. The CC method
identified the sense for palm in sentence 2 as the hand sense with a cosine similarity

6 Semantic Unsupervised Learning for Word Sense Disambiguation 117

value of 0.51 and a cosine value of 0.23 for the sense of gripping, indicating the
identification of the incorrect hand sense. For sentence 3, the CC method produced
cosine similarities near zero for all senses (0.03, −0.02, and −0.04), indicating that
no sense could be discerned with a high degree of confidence. For sentences with
unlearned or ambiguous usage of the word palm, the results were similar to those
observed for bank and line. The cosine similarity values were near zero in each case,
indicating the sense was not identifiable with any degree of confidence.

The CC method identified the correct senses of 80% of the test sentences for the
target words raise. For the word raise, the sense was misidentified as the money
sense for the following two sentences:

1. With the new job also came a big raise in pay.
2. The federal reserve board is expected to raise interest rates.

Both sentences were identified as using raise in the support sense, which is
the sense related to support of or interest in something. Intuitively, it would seem
that the CC method should identify these sentences as using the word raise in the
money sense. Further investigation into the cluster reveals that there are no words
suggesting increase in the money sense cluster. As a matter of fact, the word increase
did not appear in the top 100 synonyms for raise, but out of those top 100 synonyms,
the word closest in meaning to the word increase is the word improve ranked 92nd.
The word improve is included in the support syncluster, and that is the sense that
was identified for both sentences. This gives evidence that the learning system did
not induce a strong sense of money, like a pay raise, for the word raise.

In the results for the target word serve, the CC method identified the correct
sense in 80% of the test cases. Of the two cases where the sense identification
was incorrect, one was the sentence “The woman will serve on a jury for a murder
trial.” In this case, the correct sense was the public sense. The sense was incorrectly
identified, but the correct public sense was ranked a very close second. The other
sentence, “Two additional spheres attached to the bottom of the station would serve
as observation points for studying the undersea environment.,” again incorrectly
identified the sense. The separation between the identified sense and the correct
sense is a fine-grained distinction, and in this case, the error could be attributed to
the human rater. For sentences with unlearned or ambiguous usage for the word
serve, the CC method again, as evidenced by the near-zero cosine values, indicated
that the sense of the target word was not identifiable.

For the sense identification task, the CC method did well in correctly identifying
the sense of each of the target words in various contexts. Additionally, the cosine
similarity measure produced by the CC method appears to provide information
about the confidence of the sense identification and to be an indication of when
a sense cannot be clearly determined. More experimentation with this method is
needed to further develop these promising results. The confidence in the sense
identification is a measure of the learning embodied in the LSA semantic space
being used for the WSD tasks, and these observations can be used to further refine
the characterizations of the cognitive model that is being employed.

118 D. I. Martin et al.

6.6 Conclusion and Future Research

The experiments using the LSA-WSD system for measuring word sense discov-
ery and word sense identification produced promising results. The synclustering
approach leverages the word knowledge contained in the cognitive model to induce
word senses for a given learning system and target word. The results suggest that
candidate WSCs should have a cosine similarity between the centroid and the target
word that exceeds 0.35 to be considered as a sense cluster for the word. While
coarse-grained senses were more easily identified, a few fine-grained senses were
discovered as well. The more general grade-level learning system produced more
broad-based and consistent results for WSI.

It is worth noting that the LSA-WSD approach can be used as an unsupervised
system, or as a semisupervised system, for WSI. The software produced for this
research allows the user to judge the WSCs derived using synclustering. The user
has the ability to refine the candidate WSCs by choosing a specific cosine cluster
inclusion threshold as well as the number of top terms to use for clustering to capture
the best senses for the target word derived from the learning system. Also, the user
can indicate through input parameters which candidate WSCs to keep as induced
senses to be used for the sense identification task.

For the sense identification task, the CC method performed well, identifying
the correct sense for a given target word within the context sentences 84% of the
time, and the associated cosine similarity measure provided information suggesting
a degree of confidence for the sense identification. The cosine similarity measure
also served as an indicator of when a sense could not be clearly determined.

The development of the LSA-WSD system has successfully produced a viable
unsupervised learning system for automating both the sense discovery and sense
identification tasks of WSD. The flexibility and adaptability of the system allows
for the LSA-WSD system to be used for different applications and purposes. The
system can also help to define the body of knowledge and use of language captured
in the underlying learning system and to guide the creation of these systems for
general application.

References

1. Agirre, E., & Edmonds, P. (2007a). Introduction. In E. Agirre & P. Edmonds (Eds.), Word
sense disambiguation: Algorithms and applications (pp. 1–22). New York: Springer Science
& Business Media.

2. Bhala, R. V., & Abirami, S. (2014). Trends in word sense disambiguation. Artificial Intelligence
Review, 42(2), 159–171. https://doi.org/10.1007/s10462-012-9331-5

3. Martin, D. I. (2018). A semantic unsupervised learning approach to word sense disambiguation
(Doctoral dissertation). Retrieved from http://trace.tennessee.edu/utk_graddiss/4950.

4. Pal, A. R., & Saha, D. (2015). Word sense disambiguation: A survey. arXiv Preprint
arXiv:1508.01346. https://doi.org/10.5121/ijctcm.2015.5301.

http://dx.doi.org/10.1007/s10462-012-9331-5
http://trace.tennessee.edu/utk_graddiss/4950
http://dx.doi.org/10.5121/ijctcm.2015.5301

6 Semantic Unsupervised Learning for Word Sense Disambiguation 119

5. Yarowsky, D. (2000). Word-sense disambiguation. In R. Dale, H. Somers, & H. Moisl (Eds.),
Handbook of natural language processing (pp. 629–654). Boca Raton, FL: CRC Press.

6. Pedersen, T. (2007). Unsupervised corpus-based methods for WSD. In E. Agirre & P. Edmonds
(Eds.), Word sense disambiguation: Algorithms and applications (pp. 133–162). New York:
Springer Science & Business Media.

7. Turing, A. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460.
8. Hirst, G. (2007). Foreword. In E. Agirre & P. Edmonds (Eds.), Word sense disambiguation:

Algorithms and applications (pp. xvii–xxix). New York: Springer Science & Business Media.
9. Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: An introduction to

natural language processing, computational linguistics, and speech recognition (2nd ed.).
Englewood Cliffs, NJ: Prentice Hall.

10. Agirre, E., & Edmonds, P. (Eds.). (2007b). Word sense disambiguation: Algorithms and
applications. Springer Science & Business Media, New York.

11. Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24(1),
97–123.

12. Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys (CSUR),
41(2), 10. https://doi.org/10.1145/1459352.1459355

13. Fellbaum, C. (2012). WordNet. In The encyclopedia of applied linguistics. Chichester: John
Wiley & Sons.

14. Zhou, X., & Han, H. (2005). Survey of word sense disambiguation approaches. In FLAIRS
Conference (pp. 307–313).

15. Navigli, R., & Lapata, M. (2010). An experimental study of graph connectivity for unsu-
pervised word sense disambiguation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(4), 678–692. https://doi.org/10.1109/TPAMI.2009.36

16. Pilehvar, M. T., & Navigli, R. (2014). A large-scale pseudoword-based evaluation framework
for state-of-the-art word sense disambiguation. Computational Linguistics, 40(4), 837–881.

17. Tomar, G. S., Singh, M., Rai, S., Kumar, A., Sanyal, R., & Sanyal, S. (2013). Probabilistic
LSA for unsupervised word sense disambiguation. International Journal of Computer Science
Issues, 10(5(2)), 127–133.

18. Martin, D. I., & Berry, M. W. (2007). Mathematical foundations behind latent semantic
analysis. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook
of latent semantic analysis (pp. 35–56). Mahwah, NJ: Lawrence Erlbaum Associates.

19. Martin, D. I., & Berry, M. W. (2010). Latent semantic indexing. In M. J. Bates & M. N. Maack
(Eds.), Encyclopedia of library and information sciences (ELIS) (3rd ed., pp. 2195–3204).
Oxford: Taylor & Francis.

20. Martin, D. I., Martin, J. C., & Berry, M. W. (2016). The application of LSA to the evaluation of
questionnaire responses. In M. E. Celebi & K. Aydin (Eds.), Unsupervised learning algorithms
(pp. 449–484). Cham, Switzerland: Springer International Publishing.

21. Landauer, T. K. (1998). Learning and representing verbal meaning: The latent semantic
analysis theory. Current Directions in Psychological Science, 7(5), 161–164.

22. Landauer, T. K. (2002). On the computational basis of learning and cognition: Arguments from
LSA. In Psychology of learning and motivation (Vol. 41, pp. 43–84). Amsterdam: Elsevier.

23. Landauer, T. K. (2007). LSA as a theory of meaning. In T. K. Landauer, D. S. McNamara, S.
Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 3–34). Mahwah, NJ:
Lawrence Erlbaum Associates.

24. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
Review, 104(2), 211–240.

25. Landauer, T. K., Foltz, P. W., & Laham, D. (1998a). An introduction to latent semantic analysis.
Discourse Processes, 25(2–3), 259–284.

26. Landauer, T. K., Laham, D., & Foltz, P. W. (1998b). Learning human-like knowledge by
singular value decomposition: A progress report. In M. I. Jordan, M. J. Kearns, & S. A.
Solla (Eds.), Advances in neural information processing systems (pp. 45–51). Cambridge: MIT
Press.

http://dx.doi.org/10.1145/1459352.1459355
http://dx.doi.org/10.1109/TPAMI.2009.36

120 D. I. Martin et al.

27. Deerwester, S., Dumais, S. T., Furnas, G., Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the American Society for Information Science, 41(6),
391–407.

28. Kintsch, W. (2007). Meaning in context. In T. K. Landauer, D. S. McNamara, S. Dennis, & W.
Kintsch (Eds.), Handbook of latent semantic analysis (pp. 89–105). Mahwah, NJ: Lawrence
Erlbaum Associates.

29. Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2007). Handbook of
latent semantic analysis. Mahwah, NJ: Lawrence Erlbaum Associates.

30. Landauer, T. K., Kireyev, K., & Panaccione, C. (2011). Word maturity: A
new metric for word knowledge. Scientific Studies of Reading, 15(1), 92–108.
https://doi.org/10.1080/10888438.2011.536130

31. Landauer, T. K., & Way, D. (2012). Improving text complexity measurement through the
Reading Maturity Metric. Presented at the National Council on Measurement in Education,
Vancouver, Canada.

32. Biemiller, A., Rosenstein, M., Sparks, R., Landauer, T. K., & Foltz, P. W. (2014). Models
of vocabulary acquisition: Direct tests and text-derived simulations of vocabulary growth.
Scientific Studies of Reading, 18(2), 130–154. https://doi.org/10.1080/10888438.2013.821992

33. Lewis, D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5, 361–397.

34. Martin, J. C. (2016). Quantitative metrics for comparison of hyper-dimensional LSA spaces
for semantic differences (Doctoral dissertation). Retrieved from http://trace.tennessee.edu/
utk_graddiss/3942.

35. English Oxford Living Dictionaries. (n.d.). Retrieved from https://en.oxforddictionaries.com/.

http://dx.doi.org/10.1080/10888438.2011.536130
http://dx.doi.org/10.1080/10888438.2013.821992
http://trace.tennessee.edu/utk_graddiss/3942
https://en.oxforddictionaries.com/

Chapter 7
Enhanced Tweet Hybrid Recommender
System Using Unsupervised Topic
Modeling and Matrix
Factorization-Based Neural Network

Arisara Pornwattanavichai, Prawpan Brahmasakha na sakolnagara,
Pongsakorn Jirachanchaisiri, Janekhwan Kitsupapaisan,
and Saranya Maneeroj

7.1 Introduction

In recent years, digital information has tended to be bigger and more complicated.
Thus, it is harder for a human to analyze this information manually. From
these problems, recommender systems (RS) were introduced to handle the large,
complicated information and to suggest interesting information for people based on
personal preference. RS constitute one application of machine learning that can be
both supervised learning and unsupervised learning.

In everyday life, item recommendations are classified into two types: non-
personalized and personalized. The non-personalized recommendation is a simple
recommendation where items are recommended to all users without considering any
historical user profile. This recommendation can be elicited from manual selections
based on the popularity of items or from the new products. As the recommendations
in this system are easy to implement and do not require a user profile to recommend,
it has provided low efficiency and a lack of personalization, and the recommended
items may not be suitable for everyone. Personalized recommendations analyze an
individual user’s behavior to make a suggestion to each user. Recommended items
are items that have been frequently viewed, rated, or purchased by the user. This
helps to increase sales, provided that the high accuracy of the recommendation
matches the individual user’s interest. Although this recommendation requires a

A. Pornwattanavichai · P. B. n. sakolnagara · P. Jirachanchaisiri · J. Kitsupapaisan
S. Maneeroj (�)
Advanced Virtual and Intelligent Computing Center (AVIC), Department of Mathematics
and Computer Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok,
Thailand
e-mail: arisara.p@math.sc.chula.ac.th; prawpan.b@math.sc.chula.ac.th;
pongsakorn.j@math.sc.chula.ac.th; janekhwan.k@math.sc.chula.ac.th; saranya.m@chula.ac.th

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_7&domain=pdf
mailto:arisara.p@math.sc.chula.ac.th
mailto:prawpan.b@math.sc.chula.ac.th
mailto:pongsakorn.j@math.sc.chula.ac.th
mailto:janekhwan.k@math.sc.chula.ac.th
mailto:saranya.m@chula.ac.th
https://doi.org/10.1007/978-3-030-22475-2_7

122 A. Pornwattanavichai et al.

user profile before making a recommendation, many industries and researchers still
mainly focus on personalized recommendations. Nowadays, this research field often
calls personalized recommendations.

Recommendation techniques in RS can be mainly divided into content-based
filtering (CBF) and collaborative filtering (CF). To recommend an item to a target
user, CBF suggests an item similar to items that the target user liked in the past. On
the other hand, CF suggests items of other users in the system who are similar to the
target user; they are called neighbors.

The recommendation system is applied in various domains. One of the most
popular domains in RS is a social network. The social network is the huge sources
network and fast access that influences human life. Twitter is a social network in
which the messages by which people communicate on Twitter are compact, simple,
and fast. A user in the system can write up to 280 characters for posting and this
action is called “tweeting.” Twitter allows the user to receive messages from users
that follow them, and these messages are also called “Tweets”. Every interaction
between users appears in the timeline of each user. Moreover, Twitter allows tweet
to be repeated by the other user, and this action is called “retweeting.” Nowadays,
there are many Twitter messages on a user’s timeline. Sometimes, Tweets do not
match user preference. Thus, there is much research on RS that focus on the Twitter
domain.

Twitter recommendations have a similar algorithm to documents including
review recommendations. To recommend this type of content, LDA is a probabilistic
generative model that is used to extract the latent topic by using observed content,
which can be used to group similar content. Thus, many researchers aim to apply
LDA to CBF or CF in the Twitter domain. Each researcher tries to embed the user
and item to document and word with different recommendation assumptions. After
that, model parameters from LDA are applied to make recommendations.

Nonetheless, both techniques have limitations. CBF recommends overspecial-
ized items and these items are recommended to a target user repeatedly. However,
the limitation of CBF is that items that recommended by CBF are repetitious. On
the other hand, CF requires large quantities of data to find appropriate neighbors for
making effective recommendations. Thus, if the quantity of data is not sufficient,
the sparsity problem [1] and the cold-start problem [2] may occur. Therefore, using
only CF or CBF is not enough to make effective recommendations.

From the limitations of CF and CBF, we propose an improved Twitter recom-
mendation method by applying LDA on a hybrid recommendation, a technique
that combines both CBF and CF to make effective recommendations. First, the
input of this work consists of information from Twitter, which is collected as a
user–tweet matrix and user–user matrix. Second, we apply the CBF process by
estimating a preference of a target user with regard to each tweet to fulfill the
user–tweet preference matrix using LDA, which is unsupervised topic modeling.
Next, in the CF part, generalized matrix factorization (GMF), a supervised matrix
factorization (MF)-based neural network (NN), is applied to the user–user matrix to
find the similarity between the target user and others in the system, and is formed
as a user–user similarity matrix. The completed user–tweet preference matrix and

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 123

the user–user similarity matrix from CBF and CF are used to predict the preference
of the target user of each tweet. To evaluate the proposed model, we compared our
proposed method with other research on the same dataset that uses LDA with either
CF or CBF, which are the improved collaborative filtering algorithm using the topic
model [3] and the user interest prediction in microblog using the recommendation
method [4] respectively. The results show that the proposed method outperforms in
terms of accuracy and coverage.

7.2 Related Works

In this section, we present related works including RS, Twitter and Tweets RS, latent
Dirichlet allocation (LDA), RS based on LDA, and generalized matrix factorization
(GMF).

7.2.1 Recommender System

An RS is an engine that is created to suggest items that may interest a target user.
The suggestions of the RS are based on information about the target user that the
user gave to the system in the past. The information contains many ratings that the
target user gave within a specific domain, such as movies, music, and products. In
RS, this information can be used as training data for either supervised learning or
unsupervised learning such as classification or clustering problems. Recently, RS
has been a popular engine implemented on many e-commerce websites to learn the
preference of their customers and deliver suitable products to each person.

There are two main techniques of RS: CBF and CF [5]. CBF suggests an item
similar to items that the target user liked in the past attempting to extract a preference
of the target user and information on the items, which are called user profile and item
profile respectively. For example, the inputs of CBF are an item-attribute matrix and
user–item matrix as shown in Table 7.1.

Table 7.1 (top) shows the explicit information in the system that is attributed to
each item and Table 7.1 (bottom) shows items that the user reached. From this table,

Table 7.1 Item-attribute
matrix (top) and user–item
matrix (bottom)

Item/attribute Set of actors Director Genre

i1 John, Scott Emma Romance
i2 Kim, John Edcar Action
i3 Jane, Jim Emma Action
i4 Jim, Scott, Luiz Jodan Fantasy

User/item i1 i2 i3 i4
u1 0 1 0 0

124 A. Pornwattanavichai et al.

Table 7.2 User–item rating
matrix

User/item i1 i2 i3 i4
u1 2 3 – 3
u2 3 – 2 –
u3 – 3 5 4
u4 5 1 4 1

the user profile and item profile can be extracted. After that, the distance between
the item profile and user profile is measured using cosine distance or Euclidean
distance. The item with the shortest distance is then recommended to the target user.

There are some advantages to CBF. First, CBF does not need much information.
Furthermore, CBF starts recommending at an early stage and can recommend
unique taste items for the target user. However, CBF is also problematic, because
CBF only recommends the item that is of a similar type to the items that the target
user has rated in the past. Therefore, an item that does not look similar to them is
not recommended, and items that are recommended to the target user are not varied.
This problem is called the serendipitous problem.

The other main technique is CF, which solves the serendipitous problem by
recommending items of other users in the system who are similar to the target user.
The input of CF is a user–item rating matrix, which is shown in Table 7.2. It shows
the explicit information in the system, which consists of ratings that users made in
the past. The first step is to find neighbors who have a similar preference to the target
user. From this scenario, it assumes that the target user is user u, v is another user
in the system. The similarity between user u and user v can be measured by various
equations. Cosine similarity is one of the simplest equations that can calculate the
similarity between users.

To calculate the similarity between users, only co-rated items can be used. Cosine
similarity is shown as Eq. (7.1).

cosine (u, v) =
∑

i ruirvi√∑
i r2

ui

√∑
i r2

vi

(7.1)

From Eq. (7.1), i denotes a co-rated item between user u and user v, rui denotes a
rating that user u gave to item i, and rvi denotes the rating that user v gave to item i.

After calculating the similarity between user u and others, top-k users that are
most similar to user u are used as the neighbors of the target user to calculate
predicted ratings in the next step. To predict the target item rating, let Ni(u) denote
neighbors as the set of users u and wuv denotes a weight of user u and user v, which
is a similiarity between them. The predicted rating r̂ui denotes a predicted rating
that user u may rate on item i, r̂ui can be calculated as Eq. (7.2).

r̂ui =
∑

v∈Ni(u) wuvrvi
∑

v∈Ni(u) | wuv | (7.2)

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 125

The advantage of CF is that CF provides a variety of items. CF can recommend
the items from many types depending on other users. However, CF has some
limitations of sparsity. Neighbors cannot be detected if most of the users have not
rated the same items. Although neighbors can be detected if they have not rated the
target item, the rating of the target item cannot be predicted. This problem is called
the cold-start problem. To solve the CF problem and keep the advantages of CBF, a
hybrid recommendation that combines CBF and CF has been introduced [6].

In recent years, RS has become very popular and is applied in many fields such as
the film industry [7–9], the music industry [10, 26], and social networking [11–13].
One of the social networks that RS has an influence on is Twitter.

7.2.2 Twitter

Twitter is a social networking service where users can post messages known as
“Tweets” [14]. Users can post Tweets and read other users’ Tweets. The relation type
used on Twitter is many-to-many; thus, the relationship between two users may not
be the same. Besides, each user can subscribe to many users to receive their Tweets,
this is known as “following,” and each user can have more than one subscriber,
known as “followers.” Furthermore, each Tweet can be re-posted by other users
to their timeline, known as a “retweeting.”. When you choose to follow another
user, that user’s Tweets appear on your Twitter page sequentially. The Tweets that
appear on the main Twitter page are the mixture of Tweets from users who have been
followed. Nowadays, Twitter is becoming a social network with much information,
with millions of Tweets. Thus, many researchers are interested in analyzing and
experimenting on many Twitter accounts. One of way of doing this is with an RS.

The recommendation technique of Twitter is similar to the way it recommends
documents, reviews, and texts. The most common ways of recommending Tweets
are by using CBF or CF. Some of the research that is relevant to Twitter recommen-
dations is presented in this section.

User Interest Prediction in Microblog Using the Recommendation Method

In their work Jiantao and Ning [4] use LDA and MF to find the preference that the
user assigns to each Tweet. First, the researchers use LDA to extract the user–topic
distribution and the topic–Tweet distribution.

From the need to improve accuracy, they use MF on user–topic distribution to
find the new user–topic distribution, which is more accurate than the normal user–
topic distribution received from LDA. The equation of MF is shown in Eq. (7.3)
where P is a Top-1 matrix, Q is the user–topic distribution, and R is the new user–
topic distribution.

R ≈ P × QT (7.3)

126 A. Pornwattanavichai et al.

Then, they compare the new user–topic distribution with the topic–tweet distri-
bution that is derived from LDA to find the user–tweet preference matrix, which
told how much preference value the user had assigned to each Tweet using cosine
similarity. For cosine similarity, Eq. (7.4) shows where A is the new user–topic
distribution and B is the tweet–topic distribution.

sim (A,B) = ‖A‖ ‖B‖ cos θ (7.4)

In their work, they only use data from the user–topic matrix to compare with the
topic–tweet matrix to find the user–tweet preference matrix. Therefore, it can be
concluded that they apply CBF to recommend Tweets.

Collaborative Personalized Tweet Recommendation

In their work Chen et al. [15] use collaborative ranking, latent factor, and explicit
features to recommend Tweets to the target user. Retweets that users prefer are
collected and computed to get the preference Tweet and make the recommendation.
The collaborative ranking is a modified latent factor model with a ranking criterion.
Since they want to increase the recommendation accuracy, the latent factor is used
as other parameters in their model.

The latent factor is the feature that shows the possibility of retweeting. There
are two types of factors, which are the word latent factor and the Tweet owner’s
latent factor. The word latent factor is probabilistic of a word that is about any topic.
This factor figures out the user’s preferred topics. The Tweet owner’s latent factor
explains the possibility that a publisher of the Tweet prefers any topic. This factor
illustrates the similarity of the topics’ preference between the user and the Tweet’s
owner.

In their work, they recommend tweets by using the latent factor, which is the
similarity between the Tweet’s owner and the user. Therefore, we can conclude that
they apply the CF method to recommend Tweets.

7.2.3 Latent Dirichlet Allocation

Probabilistic topic models are algorithms that are aimed at extracting a hidden
structure from a collection of documents. It uses probability to explain a hidden
structure inside the documents. LDA is one of the probabilistic topic models that
assumes that the document exhibits multiple hidden structures, called latent topics.
For LDA, documents and words are the observed variables, and latent topics are
inferred by computing their distribution, which is conditioned on the document [16].

Latent Dirichlet allocation is unsupervised learning because LDA takes input
only a word document co-occurrence matrix and learns a document and word

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 127

distribution over latent topics. Over the past 10 years, LDA has also been extended
to a supervised learning algorithm called supervised LDA (sLDA) [17].

From a mathematical viewpoint, a generative process of LDA can be described
in three ways: generative processes, probabilistic graphical models, and joint
probability distribution. Before explaining the details of each of these, we denote
each notation as follows: N, M, and K are the number of words, document, and
latent topic; W and D are a set of words N vocabulary and M document; β and θ are
topic–word and document–topic multinomial distribution; zn is a topic assignment
of the nth word; η and α are Dirichlet prior distributions of β and θ .

The first way to describe LDA is as a generative process. Assume that the latent
topics are pre-defined before any data are generated. For each document, each word
can be generated without considering grammar and its order by the process shown
in Table 7.3. Also, it can be represented as a probabilistic graphical model as in
Fig. 7.1 and as joint probability distribution as in Eq. (7.5).

P (Z,W, θ, β | α, η) = P (β | η) P (θ | α) P (Z | θ) P (W | Z, β)

= ∏K
k=1P (βk | η)

[∏M
d=1P (θd | α)

(∏N
w=1P

(
Zd,w | θd

)

P
(
Wd,w | β1:K,Zd,w

))]

(7.5)

Table 7.3 Generative process and mathematical term of latent Dirichlet allocation

Generative process Mathematical term

1. For each topic, randomly choose a topic distribution over
words

1. For k = 1 . . . K,
βk~DIR(η)

2. For each document, randomly choose a topic distribution over
documents

2. For d = 1 . . . D,
θd~DIR(α)

3. For each word index, 3. For each wd ∈ d:
3.1. Randomly choose a topic from document–topic
distribution. After that, assign a topic to each word index

3.1. zwd
∼ Multi (θd)

3.2. Randomly choose a word from the drawn topic in 3.1
from a topic–word distribution

3.2. wd ∼ Multi
(
βzwd

)

DIR Dirichlet distribution, Multi multinomial distribution

Fig. 7.1 Graphical model of
latent Dirichlet allocation

128 A. Pornwattanavichai et al.

For LDA learning, the generative process is reversed and the posterior distri-
bution of the latent variables are learned given the observed data. The posterior
distribution of LDA can be shown in Eq. (7.6).

P (Z, β, θ) = P (Z,W, β, θ | α, η)

P (W |α, η)
(7.6)

However, computing Eq. (7.6) is intractable because we cannot sum the joint
distribution over all possible topics. Thus, there are approximation algorithms for
LDA, including the sampling-based algorithm such as Gibbs sampling [18] and a
variational algorithm.

In RS, LDA is adapted in many recommendation tasks. For example, LDA is
used to extract features from sparse rating data. Moreover, LDA is also used with
item reviews or comments to find topics of documents and make a recommendation
based on these topics. In the next section, we present research that applies LDA to
the recommendation task.

7.2.4 Recommender System with LDA

The disadvantages of CBF and CF recommendation are described above. Many
researchers applied LDA to the RS to minimize those disadvantages and to improve
accuracy [19, 20]. Research relevant to Tweet recommendations and applying LDA
to either CF or CBF is introduced in this section.

Content-Based Filtering with LDA

Recommendations Based on LDA Topic Model in Android Applications

In their work, Pan et al. [21] recommend an application by measuring the similarity
between the two applications. Thus, they measure the similarity between applica-
tions by the probability of the application’s topics using Kullback–Leibler (KL)
divergence. Therefore, they use the LDA process to find the probability distribution
of an application’s topic. First, they apply an application description as the input of
the first LDA process to get application–topic distribution based on the application’s
content. After that, they apply application–topic distribution from the first LDA
process as prior probability and users’ comments as the input of the second LDA
process. Finally, they obtain the probability of the application’s topics.

After that, they compare the probability of the application’s topics to find the
distribution similarity using KL divergence. Finally, they choose the applications
that have a higher similarity value with an application that the target user has ever
used in the past to recommend to the target user. As they compare the similarity

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 129

value between two applications like comparing similarity values between the user
profile and item profile, their work uses CBF with LDA.

Online Topic Model for Twitter Considering Dynamics of User Interests
and Topic Trends

In their work, Sasaki et al. [22] improve the LDA model based on the topic tracking
model (TTM) so that it should be able to estimate the dynamics of user interests and
topic trends.

The TTM is a probabilistic consumer purchase behavior model based on Twitter
LDA (the modified LDA model that assumes that a single Tweet consists of a
single topic, and that Tweets consist of a topic and common words) for tracking
the interests of each user and the trends in each topic. TTM assumes that the mean
of user interests at the current time is the same as that at the previous time unless
new data are observed.

To improve the Twitter LDA model with TTM, they change the user–topic
parameter (θk) and topic–Tweet parameter (βk) to θ t, u, k and β t, v, k . The θ t, u, k

represents the probability that user u is interested in topic k at time t, whereas β t, v, k

represents the probability that word v is chosen in topic k at time t (t is a discrete
variable and can be arbitrarily set as the unit time interval, e.g., at 1 day or 1 week).
Moreover, the researchers say that π in the Twitter LDA model is common for all
users, meaning that the rate between common words and topic words is the same
for each user. However, this assumption could be incorrect, and the rate could differ
with each user. Thus, they change π to πu to infer the generative process of Tweets
more efficiently.

For the recommendation process, they first collect all Tweets that user u posts
in t time (they set t as 1 day). Next, they use Gibbs sampling of latent values and
maximum joint likelihood to estimate parameters. After that, they bring θ t, u, k to
predict the topic trends that users are interested in at time t. Then, repeat this process
in the next t time (next day).

In their work, they try to estimate the dynamics of user interests and topic trends
by using the user–topic parameter and a topic–Tweet parameter that change from
time to time. Therefore, we can conclude that they use LDA in the way of CBF.

Collaborative Filtering with LDA

Improved Collaborative Filtering Algorithm Using the Topic Model

The work of Na et al. [3] is concerned with a collaborative filtering recommender
system (CF-RS), which has been introduced to recommend top-N items to the target
user. Items act as documents and users act as words. Items are represented as a
random mixture of latent topics; each topic is characterized by a distribution of
users.

130 A. Pornwattanavichai et al.

First, they apply the item–user matrix as the input of LDA. Thus, the outputs
are the distribution of topic–user and the distribution of item–topic. Next, they
apply these two distributions to find the user–topic distribution. After that, they find
similarities between users by measuring the user–topic distribution of a pair of users
in KL divergence.

Therefore, they obtain the user’s neighbor according to similarity by considering
the nearest neighbor. The K-users that are most similar to the target user are treated
as the user’s neighbors. The rating of the target user on the target item is predicted
using a weighted average on the ratings of neighbors on the target item where the
weight is a similarity between the target user and neighbor.

Their work uses LDA to find distributions of user–topic and use it to find
similarity between users (to find a user’s neighbors) and then recommend items
of the user’s neighbor to the user. Thus, it is a combination of LDA and CF.

Collaborative Topic Modeling for Recommending Scientific Articles

In their work, Wang and Blei [23] apply collaborative topic regression (CTR) to
recommend scientific articles to the user by combining traditional CF with topic
modeling (LDA), which emphasizes the dataset such that some users have never
rated any items and some items have never been rated by any user.

They generate the CTR method, which combines LDA with probabilistic model
of MF (PMF). CTR combines PMF with topic modeling by using topic proportions
from LDA instead of latent item vectors from MF.

However, it still has some limitations of recommendation such that two articles
have a similar topic proportion, but they influence a different target user group.
Therefore, CTR adds a latent variable that offsets the topic proportion to modeling
the ratings of the user that can be detected this situation. Then, they apply the EM
algorithm to decompose the documents and learn the topics. If some users have
never rated any items, the predicted rating is considered from a latent vector of the
target user and another user in the system. Otherwise, it is considered from the latent
vector of the target user and topic proportion of the item if some users have never
rated any items. They apply another user’s preference to predict the user–article
rating. Therefore, their work uses CF.

Many previous researchers have applied LDA to either CF or CBF. However, both
CF and CBF have disadvantages. The disadvantages of CBF are overspecialized
items and that items from the recommendation system are proposed repeatedly
to a target user. Thus, CBF cannot recommend a variety of items. On the other
hand, the disadvantages of CF require many data to find appropriate neighbors for
making effective recommendations. Moreover, sparsity and the cold-start problem
may appear if the system has inadequate data. Therefore, using only CF or CBF
is not sufficient for making effective recommendations. From the limitations of CF
and CBF, we propose improving the Tweet recommendation method by applying
LDA to both CF and CBF to make more effective recommendations.

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 131

7.2.5 Generalized Matrix Factorization

Generalized matrix factorization (GMF) is a part of neural MF [24], which predicts
data based on MF and an NN. MF has a limitation caused by estimating complex
user–item interactions in the low-dimensional latent space with a simple dot
product. However, using a large number of latent factors may solve this problem,
but it will cause overfitting and sparse settings. Thus, this limitation can be solved
by combining this task by learning the interaction function using an NN with non-
linearity. Therefore, GMF was introduced to predict unknown data from observed
data, which is supervised learning. As the GMF process is based on MF and an NN,
the basic concept of MF and NN are illustrated in Sections “Matrix Factorization”
and “Neural Network”.

Matrix Factorization

Matrix factorization is often used to find the latent feature from the interaction
between user and item. The concept of MF is decomposing a matrix into two lower
dimension matrices and then multiplying them back to get the original matrix.

Normally, MF input comes with a zero value. MF is used to predict zero values
in the matrix, but the value that is predicted from the process has to be consistent
with the other non-zero value. Thus, behind the MF process, there is an intuition,
namely a latent feature that can help us to solve this problem.

The mathematical description of the MF process is shown in Eq. (7.7), where U
is a set of users, D is a set of items R is a user–item rating matrix whose size is
|U | × | D|. There are U users and D items. R is a user–item rating matrix. First,
they define a number of latent features K. Next, they find matrix P(| U| ×K) and
Q(| D| ×K), which P and QT are able to compose to be matrix R as in Eq. (7.7).

R ≈ P × QT = R̂ (7.7)

Each row of matrix P (pi) represents the vector of the relations between a user
and latent features. Each column of the matrix QT (qj) represents the vector of the
relations between an item and latent features. Next, they predict the rating (r̂ij) that
user ui gives to items dj, which is calculated by the dot product of these two vectors
as in Eq. (7.8).

r̂ij = pT
i qj =

∑k

k=1
pikqkj (7.8)

The next part is the description of the MF process. First, they find matrix P and
Q by randomly initializing values into these two matrices. Then, they find the dot
product of these two matrices. They get matrix R̂, which is a predicted matrix.
Second, they find an error between R and R̂ in each position by Eq. (7.9).

132 A. Pornwattanavichai et al.

eij = (
rij − r̂ij

)2 =
(

rij −
∑K

k=1
pikqkj

)2

(7.9)

After that, they update each pik and qkj by Eq. (7.10) in every position of the
matrix, where p′

ik , q ′
kj are values of each element in a new round and α is a constant

that is the rate of approaching the minimum.

p′
ik = pik + α

∂

∂pik

e2
ij = pik + α

(
2eij qkj − βpik

)

q ′
kj = qkj + α

∂

∂qkj

e2
ij = qkj + α

(
2eijpik − βqkj

)
(7.10)

Neural Network

An NN is a kind of machine learning technique that simulates the functioning of the
human nervous system. An NN can be divided into three layers, including an input
layer, a hidden layer, and an output layer. The main process of the NN is to learn
optimized parameters, which are weight and bias from the dataset. After that, these
parameters are used to process test dataset to obtain the final output.

To explain more about the learning process, first, the parameters of the NN are
randomly initialized and used to compute with the input layer to obtain a predicted
value in the output layer. After that, the NN uses the error, which is the difference
between the actual value and the predicted value to adjust the parameters in the next
iteration. This process is repeated until the minimum error is reached. Finally, the
parameters are used to carry out any tasks of the NN, including classification.

Nowadays, a deep neural network (DNN), or deep learning, which is layered
stacks of an NN, plays a crucial role in the success in many fields including RS.
Thus, an NN can be simply categorized into four types based on network topology.
First, the perceptron, which is only the input and output layer. Second, a multi-layer
perceptron (MLP), or feedforward NN, which contains one or more hidden layer
from perceptron. The MLP can be extended to deep feedforward NN, depending
on the number layers used. Third, a convolutional neural network that employs a
convolution operation to process grid-like data. Fourth, a recurrent NN, which has
special architecture for processing sequential data [25].

Generalized matrix factorization is an MLP that represents the MF process by
taking input as a one-hot vector from implicit feedback. It tries to minimize the
difference between actual user–item feedback and predicted feedback to obtain the
weight of the NN for prediction.

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 133

7.3 The Proposed Method

From the ability of LDA to extract latent data, LDA is widely used in Twitter
recommendations. However, the previous common research used LDA with either
CF or CBF. On the other hand, if we bring the advantage of CBF, which does
not require much data to reduce the cold-start problem, and the advantage of CF,
which can recommend a variety of items, this may improve the efficiency of the
recommendation. For this reason, we begin this improvement recommendation
research that can recommend interesting Tweets to each user by using LDA with
a hybrid recommendation (CBF and CF) on Twitter.

In this section, we first explain how we prepare data in data preparation. Then, we
describe our CBF process and CF process. Finally, we show the prediction process
of the user’s preference for the target Tweet. The overall process of our proposed
method is illustrated in Fig. 7.2.

7.3.1 Data Preparation

To prepare our data, we collected 11,685 Tweet messages by 3436 Twitter users.
The average number of ratings of each user is 16. We call these data original data.
Then, we created a user–tweet matrix and a user–user matrix. The user–tweet matrix
represents the relationship between all users and all Tweets in binary form. If user u
never tweets or retweets Tweet t, the value in position (u, t) in the user–tweet matrix
is 0. Otherwise, the value is 1. The user–tweet matrix is shown in Fig. 7.3 (left).

The user–user matrix represents the relationship between any pair of users in
binary form. If user u does not follow user v, the value in position (u, v) in the
user–user matrix is 0. Otherwise, the value is 1. This matrix is shown in Fig. 7.3
(right).

Fig. 7.2 Overall process of
our proposed method

User-tweet matrix

LDA

User-user matrix

GMF

Predict user-tweet preference equation

Rating that user give to tweet

Original Data

134 A. Pornwattanavichai et al.

Fig. 7.3 The user–tweet matrix (left) and user–user matrix (right)

7.3.2 Content-Based Filtering Part

The CBF part is where we want to estimate the preference value of user toward item
especially in the zero slot of the original user–tweet matrix (Fig. 7.3) by creating
pseudo rating to fulfill this matrix by using LDA. First, we apply the original user–
tweet matrix as input to find the user–topic distribution matrix (θ). Each row and
each column of θ represents a user and topic respectively. Moreover, we find the
topic–Tweet distribution matrix (β), where each row and each column represents
each topic and each Tweet respectively, as in Fig. 7.4.

Next, we apply θ and β to Eq. (7.11), which is a dot product of θ and β. Each
position in the matrix is called u – t pref erencei,j which estimates the preference
value of user i to Tweet j. The process of CBF is illustrated as shown in Fig. 7.4.

u − t pref erencei,j = θi1β1j + θi2β2j + · · · + θitβtj (7.11)

The procedures in this section relate only to the user’s Tweet that each user has
tweeted or retweeted before. Therefore, this process is CBF.

q

Fig. 7.4 Our content-based filtering process. LDA latent Dirichlet allocation

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 135

7.3.3 Collaborative Filtering Part

In this step, we consider generating values in the original user–user matrix as the
probability of a relationship between a pair of users that users will follow another
user in the system. Moreover, from the concept, if any user follows another user
this means that both users tend to have a similar preference, or they are similar.
Therefore, we consider the probability of a following relation between users as a
similarity value between them. However, the original user–user matrix has a large
amount of sparse data. To avoid this problem, we apply GMF [24] to reduce sparse
data in the original user–user matrix (Fig. 7.3). In this step, we apply the original
user–user matrix to the GMF process (Fig. 7.5) to obtain the predicted user–user
matrix, which fulfills the sparse data in the original user–user matrix by predicting
the following relation between a pair of users as their similarity. The test set was
extracted from both the original user–user matrix and the user–item matrix, which
considers only Twitter users from user number 0 to 1027. We mainly focus on the
test set as the output data in our work. Thus, the test set was used in both the CF
and CBF parts. In the CBF part, we apply the user–tweet matrix to be the input
of LDA. In the CF part, we apply the user–user matrix as a test set of GMF. The
training set includes only a user–user matrix, where Twitter user numbers 1028–
3436 are selected. The user–user matrix from the training set is only used in GMF
for learning optimal parameters such as weight and bias of GMF. After the learning
phase of GMF, we use the test set for prediction and obtain results as the relationship
among all users in the system.

At the beginning of GMF, we initialize NN parameters as follows: the learning
rate is equal to 0.001, and the optimizer is ADAM. GMF takes inputs as a one-
hot vector of two users, and then performs vector embedding of user u and user v
as latent vectors pu and qv, and performs an element-wise product between them.
Next, the product is passed to network with the sigmoid activation function to obtain
predicted user–user relations. Then, it calculates error to adjust the NN weight.
This step is repeated until we obtain suitable parameters for predicting user–user
relations.

u v
Similarity between user u

and other user v

Fig. 7.5 Our collaborative filtering process. GMF generalized matrix factorization

136 A. Pornwattanavichai et al.

In more detail, we apply vectors pu and qv to the mapping function of the first
layer by element-wise product as in Eq. (7.12). After we obtain a vector pu

⊙
qv

from Eq. (7.12), we project this vector to the output layer in Eq. (7.13). Finally, we
obtain the output as the similarity value between user u and user v

∅1 (pu, qv) = pu

⊙
qv (7.12)

ŷu,v = aout

(
hT

(
pu

⊙
qv

))
(7.13)

Where ŷ(u,v) denotes the similarity that user u gives to user v, hTand aout denote
the activation function and output layer weights respectively, and

⊙
is the element-

wise product. In this work, we use a sigmoid activation function as in Eq. (7.14).

S(x) = 1

1 + e−x
= ex

ex + 1
(7.14)

After we finish GMF, we obtain a predicted user–user matrix without unknown
data where the values in the matrix are the probability of showing how similar users
are to each other, as shown in Fig. 7.5. Then, we rank top k maximum similarities
between the target user and the other users to get the neighbor list. Which is used in
the next part.

In this step, we consider the process of estimating the similarity between any pair
of users to find the user’s neighbors. Thus, this step is the CF procedure.

7.3.4 Prediction Step

In this step, we focus on predicting Tweets that the target user may like most by
applying a user–tweet preference matrix generated from the CBF part and the user–
user similarity matrix, which is the output of GMF from the CF part, together.
First, we pick Tweet t and find the pseudo-preference value that target user u gives
to Tweet t using the user–tweet preference matrix generated from the CBF part,
denoted as ratingu, t. From the CF part, we obtain top-k neighbors of the target
user u from both GMF and other users in the system who have ever tweeted or
retweeted the target Tweet t. As some neighbors from GMF did not interact with
all target Tweets, the prediction of the target Tweet cannot be calculated. Therefore,
we mainly consider other users who have ever interacted with the target Tweet to be
more user’s neighbors.

After that, we can obtain the similarity value between target user u and neighbor
vi, denoted as simu,vi

from the user–user matrix and obtain the pseudo-preference
value that user u’s neighbor (vi) gives to Tweet t by the user–tweet matrix from
LDA from the CBF part, denoted as ratingvi ,t

. When we have obtained simu,vi
and

ratingvi ,t
, we multiply them to obtain simu,vi

× ratingvi ,t
and sum this value from

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 137

all neighbors N of user u. Then, we divide it by the summation of simu,vi
from all

neighbors of user u (N). Thus, we have already got the value of the CF part. Next,
we multiply the value of CF part by 0.4 and sum it with ratingu, t, which is the value
from the CBF part that was multiplied by 0.6. After we obtained two values from
both the CF and CBF parts, they are calculated as Put in Eq. (7.15).

Put = 0.4

(∑N
i=1 simu,vi

× ratingvi ,t∑N
i=1 simu,vi

)

+ 0.6
(
ratingu,t

)
(7.15)

where simu,vi
denotes the preference value the target user u has toward the neighbor

vi, and ratingu, t denotes the pseudo-preference value that a user u gives to Tweet t.
Then, Put of all Tweets from each user u would be ranked into a top-N Tweet, which
the system will recommend to the target user u.

In conclusion, we provide Eq. (7.15) as the hybrid recommendation equation for
predicting user–item rating, which combines both the CBF and CF parts. We give
each part a different weight. Because we think the way to estimate the target user
item rating is based on him/herself using his/her rating history is not from estimating
like the target user neighbors which were predicted from user–user matrix by GMF.
Thus, we mainly focus on the CBF part. Therefore, we weight the CBF part by 0.6,
which is greater than the CF part, which is weighted by 0.4.

In this step, our process finds the top 10 Tweets to recommend to the target user
by considering the user–tweet preference matrix and predicted user–user matrix
generated from the CBF and CF parts respectively. Thus, this process is a hybrid
procedure.

7.4 Experimental Results

To evaluate the effectiveness of the proposed method, it is presented by comparing
our method with those of other researchers who use LDA with either CBF or CF.

7.4.1 Dataset

The Dataset in our research consists of 11,685 Tweets provided by 3436 users. We
separate 1028 users and another 2408 users to use as a test set and a training set
respectively. More details of the dataset are shown in Table 7.4.

138 A. Pornwattanavichai et al.

Table 7.4 Dataset
characteristics

Dataset characteristics Number

Number of users 1028
Number of tweets 11,685
Number of ratings 16,312
Minimum and maximum tweets per user 1 and 341
Average number of tweets per user 16

7.4.2 Evaluation Metrics

To compare the efficiency of our research, we choose the mean absolute error
(MAE) and coverage as our metrics. The MAE is the mean of the errors between the
predicted data and the actual data. If the research has a low MAE value, it means a
high prediction accuracy. The equation of MAE is shown as Eq. (7.16), where ru, i

is the real rating that the user u gives to item i, r̂u,i is the predicted rating from the
model that the user u would give to item i, and n is the number of the data in the test
set.

MAE (ui) =
∑n

i=1

∣∣ru,i − r̂u,i

∣∣

n
(7.16)

Coverage is used to measure the percentage of items in the test set that the system
can recommend. The equation of coverage is shown as Eq. (7.17), where I is the set
of items in the test set, Ip is the set of items for which a prediction model can be
made.

Prediction coverage =
∣∣Ip

∣∣

|I | × 100 (7.17)

7.4.3 Experimental Results

The results of the proposed method, which is the result of the LDA combined with
the hybrid recommendation, are compared with research that uses LDA with either
the CBF or the CF technique. Research involving only the CBF is the user interest
prediction in microblog using the recommendation method Jiantao and Ning [4] and
research that includes only the CF is the improved collaborative filtering algorithm
using the topic Model Na et al. [3]. Both forms of research are described in Sections
“User Interest Prediction in Microblog Using the Recommendation Method” and
“Collaborative Filtering with LDA”, respectively. Along with the results of the
proposed method, those of the two forms of research are implemented on the same
dataset to avoid bias.

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 139

Table 7.5 The mean absolute error (MAE) and coverage results

Research titles MAE Coverage

The proposed method (hybrid with LDA) 0.018 100%
User interest prediction in microblog using the recommendation method
(CBF with LDA)

0.260 100%

Improved collaborative filtering algorithm using the topic model (CF with
LDA)

0.995 11.27%

LDA latent Dirichlet allocation, CBF content-based filtering, CF collaborative filtering

0.018

0.26

0.995

0
0.2
0.4
0.6
0.8

1
1.2

Proposed
Method

CBF with
LDA

CF with
LDA

M
A

E

MAE of Hybrid with LDA, CBF with
LDA and CF with LDA

MAE

100 100

11.27

0
20
40
60
80

100

Proposed
Method

CBF with
LDA

CF with
LDA

Pe
rc

en
ta

ge

Coverage of Hybrid with LDA, CBF
with LDA, and CF with LDA

Coverage

Fig. 7.6 Mean absolute error (MAE; left) and coverage (right) comparison

According to Table 7.5, the proposed method obtained the lowest MAE. There-
fore, the proposed method has higher accuracy than the other two forms of research.
However, coverage of the proposed method obtained 100%, whereas the CF with
LDA [3] predicted only 11.27%. We summarize the experimental results in Fig. 7.6.

7.5 Discussion

The experimental results from Sect. 7.4 show that the proposed method, which is
hybrid RS with LDA, achieves greater effectiveness than the two forms of research
in terms of MAE and coverage. In this section, we discuss the proposed method’s
strength over the previous research in terms of applying LDA with either CBF or
CF.

140 A. Pornwattanavichai et al.

7.5.1 Comparison Between the Proposed Method and User
Interest Prediction in Microblog Using
the Recommendation Method (CBF with LDA)

The experimental results indicate that the proposed method has lower MAE than the
work of Jiantao and Ning [4]. This improvement comes from the proposed method’s
consideration of targeting the user’s neighbors.

In the recommendation model of Jiantao and Ning [4] CBF is performed in
three steps. First, they use LDA on Twitter to find the user–topic and topic–Tweet
distribution. Then, they use singular value decomposition (SVD) to reconstruct
user–topic distribution. Finally, they make a CBF recommendation from the pre-
dicted user–topic distribution. However, using only information from a target
user without information from neighbors leads to poor recommendations because
the recommended Tweets will be historical Tweets in which the target user has
expressed their preferences. Moreover, learning user–topic distribution in LDA
causes errors, but applying SVD to the estimated user–topic distribution from LDA,
which again contains errors, will lead to more errors in the reconstruction from
SVD.

In contrast, the proposed method makes a CBF recommendation by using results
from LDA directly on the user–tweet preference matrix. It helps to reduce errors
from user–topic distribution reconstruction from SVD. Furthermore, the proposed
method is enhanced by using neighbors derived from the predicted user–user matrix
from GMF to perform CF. To determine the importance of the predicted rating from
CBF and CF, we trust that using the target user’s information to estimate their
preference (CBF) will be more precise than the rating from the neighbors (CF).
Thus, the proposed method has assigned weight to the rating from CBF more than
that from CF. Moreover, using both pieces of information brings the advantages of
CBF and CF to the proposed method.

Recommendations from the proposed method are balanced between the target’s
user preference and the neighbors’ preference. Some Tweets that the target user
may prefer but are not related to the target user’s content are recommended by
the neighbors. In other words, using information from the neighbor allows the
target user to explore new items that have more variety and that are maybe
unexpectedly preferred by the target user. These would help to increase the accuracy
of recommendations.

In part of the coverage, Jiantao and Ning [4] reaches 100% because they perform
CBF by applying user–topic distribution from LDA. In the same way, the proposed
method performs CBF by applying the predicted user–tweet preference matrix.
These distributions, which are applied in both the work of Jiantao and Ning [4] and
the proposed method, can be estimated by a sampling algorithm. Thus, applying
LDA to the user–tweet interaction matrix and performing CBF on the LDA results
can achieve 100% recommendation coverage.

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 141

7.5.2 Comparison Between the Proposed Method
and the Improved Collaborative Filtering Algorithm
Using the Topic Model (CF with LDA)

The experimental results also indicate that the proposed method has a lower MAE
than the work of Na et al. [3]. This improvement comes from the better neighbor
detection of the proposed method.

The proposed method and the work of Na et al. [3] have different techniques
for neighbor detection. The work of Na et al. [3] detects the target user’s neighbors
by comparing the user–topic distribution of a pair of users. If the target user and
another user have a high degree of similarity of user–topic distribution, this user
will be a neighbor of the target user. However, this interaction matrix shows the
relation between the user and the Tweet, not the user following relation, which is
the main characteristic and information of Twitter. Thus, by using the user–tweet
relation to estimate the user–user relation may not be good enough to find precise
user similarity.

On the contrary, the proposed method finds neighbors by comparing similarity
from the dense user–user matrix from GMF. The input of GMF is observed from
the user–user matrix, which shows the user–user following relation. For an example
of the relation, if user A on Twitter prefers another user, namely user B, user A will
follow user B because user A wants to follow Tweets from user B. Thus, by using
similarity from the predicted user–user matrix, which comes from the user–user
following relation, leads to a better user relation than similarity from a user–topic
distribution that comes from the relation between user and item only.

For coverage, the proposed method is higher than that of Na et al. [3]. Their work
is applied to Tweets by using binary ratings in which 0 indicates that the user does
not tweet a tweet whereas 1 indicates that the user does tweet a Tweet. By applying
binary data, the rating from the recommendation equation of that work can often be
zero. This leads to a sparse matrix and causes two problems. If the neighbors cannot
be found, the system cannot recommend the item to the target user. Although the
system can find a few neighbors, these neighbors are low-quality neighbors and lead
to an inaccurate recommendation. These effects cause low coverage in the results.

In contrast, the proposed method finds similarity by using the predicted user–
user matrix from GMF. Therefore, the proposed method can obtain neighbors from
this matrix with certainty. Moreover, we apply pseudo-ratings of the target user to
perform CBF, whose rating can be computed from LDA certainty. Thus, applying
GMF to find the predicted user–user matrix and using pseudo-ratings achieve 100%
coverage.

142 A. Pornwattanavichai et al.

7.6 Conclusion

We propose a new Tweet recommendation method, namely the enhanced Tweet
hybrid recommender system using unsupervised topic modeling and matrix
factorization-based neural network. The proposed method recommends Tweets
for the target user by using unsupervised topic modeling, namely LDA and matrix
factorization-based NN, namely GMF. LDA is applied in the CBF part to estimate
user’s preference in Tweets to fulfill the user–tweet preference matrix. In the CF
part, GMF, a supervised MF-based NN, is used to predict similarity between users.
The top-k users who are most similar to the target user will be the target user’s
neighbors. The fulfilled user–tweet preference matrix from CBF and the similarity
between the target user and their neighbors from CF are combined to predict the
rating that the target user will give to Tweet t. The top-N Tweets that have the
highest rating will be recommended to the target user. From the evaluation, we
found that the proposed method has a higher accuracy rate and greater coverage
than the current recommender systems that apply LDA with either CBF or CF.

References

1. Guo, G. (2012). Resolving data sparsity and cold start in recommender systems. Paper
presented at the proceedings of the 20th international conference on user modeling, adaptation,
and personalization, Montreal.

2. Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new user
cold-starting problem. Information Sciences, 178, 37–51.

3. Na, L., Ying, L., Xiao-Jun, T., Hai-Wen, W., Peng, X., & Ming-Xia, L. (2016). Improved
collaborative filtering algorithm using topic model. In 17th international conference on parallel
and distributed computing, applications and technologies (PDCAT), 16–18 Dec 2016 (pp. 342–
345).

4. Jiantao, Z., & Ning, S. (2014). User interest prediction in microblog using recommendation
method. In IEEE 7th joint international information technology and artificial intelligence
conference (pp. 367–370).

5. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17, 734–749.

6. Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2010). Recommender systems handbook.
New York: Springer-Verlag.

7. Agrawal, S., & Jain, P. (2017). An improved approach for movie recommendation system.
Paper presented at the international conference on I-SMAC (IoT in social, mobile, analytics
and cloud), 10–11 Feb 2017.

8. Arora, G., Kumar, A., Devre, G. S., & Ghumare, A. (2014). Movie recommendation system
based on users’ similarity. International Journal of Computer Science and Mobile Computing,
3, 765–770.

9. Ilhami, M., & Suharjito. (2014). Film recommendation systems using matrix factorization
and collaborative filtering. In International conference on information technology systems and
innovation (ICITSI) (pp. 1–6).

7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic. . . 143

10. Shakirova, E. (2017). Collaborative filtering for music recommender system. In IEEE confer-
ence of Russian young researchers in electrical and electronic engineering (EIConRus), 1–3
Feb 2017 (pp. 548–550).

11. Anandhan, A., Shuib, L., Ismail, M. A., & Mujtaba, G. (2018). Social media recommender
systems: Review and open research issues. IEEE Access, 6, 15608–15628.

12. Jonnalagedda, N., & Gauch, S. (2013). Personalized news recommendation using Twitter. In
2013 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent
agent technologies (IAT) (pp. 21–25).

13. Nguyen, D. L., & Le, T. M. (2016). Recommendation system for Facebook public events based
on probabilistic classification and re-ranking. In 8th international conference on knowledge
and systems engineering (KSE), 6–8 Oct 2016 (pp. 133–138).

14. Younghoon, K., & Kyuseok, S. (2014). TWILITE: A recommendation system for Twitter using
a probabilistic model based on latent Dirichlet allocation. Information Systems, 42, 59–77.

15. Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., & Yu, Y. (2012). Collaborative personalized
tweet recommendation. Paper presented at the proceedings of the 35th international ACM
SIGIR conference on Research and Development in information retrieval, Oregon

16. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research, 3, 993–1022.

17. Blei, D. M., & McAuliffe, J. D. (2007). Supervised topic models. Paper presented at the
proceedings of the 20th international conference on neural information processing systems,
Vancouver.

18. Steyvers, M., & Griffiths, T. (2007). Latent semantic analysis: A road to meaning. In T.
Landauer, S. D. McNamara, & W. Kintsch (Eds.), Probabilistic topic models. Mahwah, NJ:
Laurence Erlbaum.

19. Chang, T.-M., & Hsiao, W.-F. (2013). LDA-based personalized document recommendation. In
Pacific Asia conference on information systems. Korea: Association for Information Systems.

20. Godin, F., Slavkovikj, V., Neve, W. D., Schrauwen, B., & Van der Walle, R. (2013). Using
topic models for twitter hashtag recommendation. Paper presented at the proceedings of the
22nd international conference on world wide web, Rio de Janeiro.

21. Pan, T., Zhang, W., Wang, Z., & Xu, L. (2016). Recommendations based on LDA topic model
in android applications. In IEEE international conference on software quality, reliability and
security companion (QRS-C), 1–3 Aug 2016 (pp. 151–158).

22. Sasaki, K., Yoshikawa, T., & Furuhashi, T. (2014). Online topic model for twitter considering
dynamics of user interests and topic trends. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP) (pp. 1977–1985). Association for Compu-
tational Linguistics.

23. Wang, C., & Blei, D. M. (2011). Collaborative topic modeling for recommending scientific
articles. Paper presented at the proceedings of the 17th ACM SIGKDD international conference
on knowledge discovery and data mining, San Diego.

24. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative
filtering. Paper presented at the proceedings of the 26th international conference on world
wide web, Perth.

25. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Adaptive computation and
machine learning series. Cambridge, MA: MIT Press.

26. Kodama, Y., Gayama, S., Suzuki, Y., Odagawa, S., Shioda, T., Matsushita, F., et al. (2005).
Music recommendation system. In International conference on consumer electronics (ICCE),
8–12 Jan 2005 (pp. 219–220).

Chapter 8
New Applications of a Supervised
Computational Intelligence (CI)
Approach: Case Study in Civil
Engineering

Ameer A. Jebur, Dhiya Al-Jumeily, Khalid R. Aljanabi, Rafid M. Al Khaddar,
William Atherton, Zeinab I. Alattar, Adel H. Majeed, and Jamila Mustafina

8.1 Introduction

Artificial neural networks (ANNs) can be classified as computational systems
based on a simplified analogy to mimic the processing information of the human
brain. An ANN network comprises of three interconnected layers, following the
order: input layer, hidden layer(s), and output layer(s). Information in each layer
is processed by the neurons that communicate with the neurons in the next layer
throughout the network connections weights (wij) and biases [1, 2]. Specified a
dataset of independent input and output parameters, the candidate ANN model can

A. A. Jebur (�)
Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK

Department of Civil Engineering, Al-Mustansiriya University, Baghdad, Iraq
e-mail: A.A.Jebur@2015.ljmu.ac.uk

D. Al-Jumeily
Department of Computer Science, Liverpool John Moores University, Liverpool, UK

K. R. Aljanabi
Department of Civil Engineering, University of Anbar, Ramadi, Iraq

R. M. Al Khaddar · W. Atherton
Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK

Z. I. Alattar · A. H. Majeed
Department of Civil Engineering, Al-Mustansiriya University, Baghdad, Iraq
e-mail: A.A.Jebur@2015.ljmu.ac.uk

J. Mustafina
Kazan Federal University, Kazan, Russia

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2_8

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22475-2_8&domain=pdf
mailto:A.A.Jebur@2015.ljmu.ac.uk
mailto:A.A.Jebur@2015.ljmu.ac.uk
https://doi.org/10.1007/978-3-030-22475-2_8

146 A. A. Jebur et al.

be trained: the network connection weight of the various neurons is updated during
the training process in order the for the trained ANN model to model out in which
the difference between the measured and the predicted values is minimal. During
the data preprocessing, it is a common practice to divide the dataset being studied
into three groups: training, testing, and cross-validation subset [3].

The training aim is to determine the network internal parameters by adjusting
the connection weight (wij) and network bias (bj) at each epoch during the training
process. The testing set is placed to evaluate the reproducibility of the model being
developed. It should be noted that the testing dataset was not involved during the
training and it is identified to assess the generalization ability of the developed
ANN model [4]. The cross-validation set is piloted to test the model performance,
and to halt the process of learning once the network error starts to increase as a
consequence of overfitting [5, 6].

In this chapter, artificial neural networks (ANNs) are used to predict the nonlinear
hyperbolic soil stress–strain parameters (k and Rf). A database of actual laboratory
measurements of these parameters is used to develop and verify the candidate ANN
models. Supervised Feed-forward multilayer perceptions (MLPs) robust model,
trained with the back-propagation algorithm technique, is employed in this process,
as it has a high capability of data mapping and proved to be an accurate data-
driven tool to solve a wide range of nonlinear engineering problems as they deliver
a reliable model, which could be continuously updated (the network connections
weights and biases) as a new dataset becomes available [7, 8]. MLPs trained with
back-propagation algorithm have been applied successfully to reliably solve many
geotechnical engineering problems [5]. Hence, they have been used in this work.

The objectives of this chapter are to

1. Examine the feasibility of three supervised ANN models for predicting the
nonlinear soil stress–strain parameters (log k and Rf).

2. Study the influence of ANN geometry and internal parameters on the perfor-
mance of ANN models.

3. Conduct comprehensive statistical analyses study to identify the main effective
independent input parameters and to highlight the contribution of each input
parameter on the ANN model outputs (k and Rf).

4. Develop a novel empirical equations that the geotechnical engineer for prediction
of the hyperbolic nonlinear stress–strain parameters for soils tested under uncon-
solidated undrained conditions, this offer high efficiency solution to be used
in the soil–structure interaction design stage instead of conducting expensive,
tedious, and time-consuming trail axial tests type unconsolidated undrained (UU)
tests in order to determine the main soil stress–strain parameters (k and Rf).

8 New Applications of a Supervised Computational Intelligence (CI). . . 147

8.2 Prediction of Hyperbolic Nonlinear Soil Stress–Strain
Parameters (log k and Rf) by a Supervised Artificial
Neural Network (ANN)

8.2.1 Development of ANN Models

The data used to calibrate and validate the neural network models are obtained from
the literature, they include laboratory measurements to determine the nonlinear soil
stress–strain parameters that are vital in the soil–structure design process, and these
are k, n, and Rf. The data cover a range of soil types. The database comprises
a total of (83) cases recorded, and can be found in the literature. Full details of
the database are given in Appendix 1. The steps for developing ANN models,
as outlined in the following algorithm, are used as a guide in this work. These
include the determination of model inputs and outputs, preprocessing and division
of the available data, scaling of data, the determination of appropriate network
architecture, and optimization of the connection weights. A PC-based commercial
software system called Neuframe Version 4.0 (Neusciences 2014) is used, in which
optimal network architecture is determine by trial and error.

A variety of ANN topologies have been developed to solve problems in many
applications. One of the most popular and robust ANN configurations is the
error back-propagation algorithm [9–12]. The error feed-forward back-propagation
technique has been proven to be a highly efficient tool in modeling nonlinear
relationships [13, 14]. The algorithm updates the ANN weights in such a way that
the error of the network output is decreased as set in the original goal. An ANN is
constructed in such a way that each processing element in a specific layer is fully
connected to the next layer. Alternatively stated, every single node in the input layer
will send its output to every neuron in the middle layer; consequently, every neuron
in the input layer will then send its output to every neuron in the model output layer
[15].

The multilayer back-propagation ANN learning process comprises of two pro-
cessing elements passing through the different network layers: a forward pass and
backward pass, by computing the gradient for each connection weight and bias
utilizing the chain rule, as seen in Fig. 2.8. During the forward step, the synaptic
network weights are all assumed to be fixed, whereas at the backward pass, the
synaptic network weights are adjusted according to an updated error. This iteration
procedure is repeated during the training process, which propagates the term of
error needed for weight adjustment until the trained network can provide a set of
connection weights, which has the input/output mapping that contains the minimum
error value. Among the enhancements to the error back-propagation algorithm that
have been produced, one method involves the use of the learning rate. The learning
rate parameter (η) can be categorized as the factor that initiates the step size that
the ANN takes in negative through the weight spaces in an attempt to minimize the
training error magnitude. The momentum term (α) is another factor that needs to
be considered in any ANN training process [16]. The objective of the α value is to

http://dx.doi.org/10.1007/978-3-030-22475-2_2\#Fig8

148 A. A. Jebur et al.

increase the step size when the weight space direction is the same as the previous
step direction and vice versa. The Algorithm of Error in Back-propagation technique
can be summarized in the following procedure:

1. Initialize the network connections weight between the measured and the
predicted values.

2. Repeat the following steps until some criteria.
3. Sum up weighted inputs and apply the transfer function to compute the output

of hidden layer:

hi = f

n∑

i=1

(
xi wij

) + θj (8.1)

hi = hidden neuron output
xi = input signal
wij = connection weight between input neuron i and hidden neuron j
f = the activation function
θ j = bias on hidden neuron

4. Sum weighted output of hidden layer and apply the activation function to
compute the output layer:

yk = f

n∑

i=1

(
hj wjk

) + θk (8.2)

yk = independent output
wik = connection weight between hidden nodes j and k

5. Back-propagation combinations

δk = (dk − yk) f
(∑

jhjwjk + θk

)
(8.3)

f = the derivation of the activation function
dk = the desired output of the neuron

6. Calculate of the weight correction term

�wjk(n) = ηδkhj + α�wjk (n − 1) (8.4)

�wjk(n) = adjustment on connection weight between nodes j and k
η = learning rate
α = momentum term
hj = actual output of hidden neuron
δk = back-propagation error
�wjk(n − 1) = previous weight correction

8 New Applications of a Supervised Computational Intelligence (CI). . . 149

7. Sum delta input for each hidden unit and calculate error term

δj =
∑

kδkwjk f
(∑

ixiwij

)
(8.5)

8. Calculate weight correction term

�wij (n) = ηδjxi + α�wij (n − 1) (8.6)

9. Update weights

wjk (new) = wjk (old) + �wjk (8.7)

wij (new) = wij (old) + �wij (8.8)

10. Compute the sum square error

SSE = 1

2

∑

K

(dk − yk)
2 (8.9)

K = number of output neurons
11. End

8.2.2 Model Inputs and Outputs

It is generally accepted that four parameters have the most significant impact on the
hyperbolic parameters, and are thus used as the ANN model inputs. These include
the following:

1. Plasticity index, (PI) %
2. Unit weight (γ dry) kN/m3

3. Confining stress (CS) kN/m2

4. Water content (wc) %

The outputs of the model are logarithm of modulus number, modulus exponent,
and failure ratio (log k, n, and Rf). As one output for each network, a code is used
in this chapter to identify the names of the different models developed. The code
consists of two parts separated by hyphen. The first part represents an abbreviation
of the current output (i.e., logarithm of modulus number, modulus exponent, and
failure ratio (log k and Rf)). The second part denotes the model number; for example,
“log k − 1” represents logarithm of modulus number, model number (1). The
available data extracted from the database are given in Appendix 2.

150 A. A. Jebur et al.

8.2.3 Preprocessing and Data Division

Data processing is very important in using neural nets successfully. It determines
what information is presented to create the model during the training phase. It can
be in the form of data scaling, normalization, and transformation. Transforming the
input data into some known forms (e.g., log., exponential, etc.) may be helpful to
improve ANN performance. Thus, the modulus number is transformed to (log k).
The next step in the development of ANN models is dividing the available data
into their subsets (training, testing, and validation). Cross-validation is used as the
stopping criteria in this study. Consequently, the data are randomly divided into three
sets: training, testing, and validation, as is the standard practice in the development
of ANN models in geotechnical engineering. In total, 80% of the data are used
for training and 20% are used for validation. The training data are further divided
into 70% for the training set and 30% for the testing set. These subsets are also
divided in such a way that they are statistically consistent and thus represent the
same statistical population. In order to achieve this, several random combinations of
the training, testing, and validation sets are tried until three statistically consistent
data sets are nearly obtained. The statistics of the training, testing, and validation
sets for the ANN models are shown in Tables 8.1 and 8.2 for the nonlinear stress–
strain parameters (log k and Rf).

Table 8.1 Input and output statistic for ANN model of stress–strain parameters for soil tested
under unconsolidated undrained conditions (UU-test) for (log k)

Input variables Output

Data set
Statistical
parameters

Plasticity
index (%)

Unit
weight
(kN/m3)

Water
content
(%)

Confining
stress
(kN/m3) log k

Training set Max. 45.000 18.380 28.600 946.739 3.949
Min. 1.000 10.630 8.710 193.651 1.000
Mean 18.533 16.493 17.131 381.310 2.225
S.D.∗ 8.142 1.605 4.340 192.484 0.621
Range 44.000 7.750 19.890 753.088 2.949

Testing set Max. 36.000 19.000 27.400 860.672 3.949
Min. 1.000 14.450 8.710 207.500 1.556
Mean 18.810 16.548 17.334 409.004 2.406
S.D.∗ 9.862 1.298 5.371 181.228 0.656
Range 35.000 4.550 18.690 653.172 2.393

Validation set Max. 38.000 20.170 31.100 1452.380 3.699
Min. 1.000 10.060 8.300 107.584 1.204
Mean 19.529 16.506 17.394 412.029 2.290
S.D.∗ 9.805 2.318 6.733 337.503 0.731
Range 37.000 10.110 22.800 1344.796 2.495

∗ SD = Standered Deviation

8 New Applications of a Supervised Computational Intelligence (CI). . . 151

Ta
bl

e
8.

2
N

ul
lh

yp
ot

he
si

s
te

st
fo

r
A

N
N

in
pu

tv
ar

ia
bl

e
an

d
ou

tp
ut

s
fo

r
so

il
te

st
ed

un
de

r
un

co
ns

ol
id

at
ed

un
dr

ai
ne

d
co

nd
iti

on
s

(U
U

-t
es

t)
fo

r
lo

g
k

V
ar

ia
bl

e
an

d
da

ta
se

t
T

-v
al

ue
L

ow
er

cr
iti

ca
lv

al
ue

U
pp

er
cr

iti
ca

lv
al

ue
t-

te
st

F
-v

al
ue

L
ow

er
cr

iti
ca

lv
al

ue
U

pp
er

cr
iti

ca
lv

al
ue

F
-t

es
t

Pl
as

tic
ity

in
de

x
(P

I)
(%

)
Te

st
in

g
−0

.2
5

−2
.0

0
2.

00
∗

0.
68

0.
49

2.
27

∗

V
al

id
at

io
n

−0
.8

3
−2

.0
0

2.
00

∗∗
0.

69
0.

47
2.

49
∗

D
ry

un
it

w
ei

gh
t(

kN
/m

3
)

Te
st

in
g

−0
.2

9
−2

.0
0

2.
00

∗
1.

53
0.

49
2.

27
∗

V
al

id
at

io
n

−0
.0

5
−2

.0
0

2.
00

∗
0.

48
0.

47
2.

49
∗

W
at

er
co

nt
en

tω
o

(%
)

Te
st

in
g

−0
.3

4
−2

.0
0

2.
00

∗
0.

65
0.

49
2.

27
∗

V
al

id
at

io
n

−0
.3

7
−2

.0
0

2.
00

∗
0.

42
0.

47
2.

49
∗∗

C
on

fin
in

g
st

re
ss

(k
N

/m
2
)

Te
st

in
g

−1
.1

5
−2

.0
0

2.
00

∗
1.

13
0.

49
2.

27
∗

V
al

id
at

io
n

−0
.9

2
−2

.0
0

2.
00

∗
0.

33
0.

47
2.

49
∗∗

lo
g

k

Te
st

in
g

−2
.0

0
−2

.0
0

2.
00

∗
0.

90
0.

49
2.

27
∗

V
al

id
at

io
n

−0
.7

2
−2

.0
0

2.
00

∗
0.

72
0.

47
2.

49
∗

K
ey

:∗
=

A
cc

ep
t,

∗∗
=

R
ej

ec
t

152 A. A. Jebur et al.

Table 8.3 Input and output statistic for ANN model of stress–strain parameters for soil tested
under unconsolidated undrained conditions (UU-test), for (Rf)

Input variables Output

Data set
Statistical
parameters

Plasticity
index (%)

Unit weight
(kN/m3)

Water content
(%)

Confining
stress
(kN/m3) Rf

Training set Max. 45.000 18.540 28.800 946.739 1.000
Min. 4.000 10.060 8.710 193.651 0.570
Mean 18.489 16.391 17.414 404.518 0.844
S.D.∗ 8.209 1.789 4.442 214.763 0.100
Range 41.000 8.480 20.090 753.088 0.430

Testing set Max. 36.000 20.170 28.600 860.672 0.95
Min. 1.000 14.520 8.300 107.584 0.520
Mean 19.190 16.654 17.043 372.336 0.841
S.D.∗ 10.038 1.356 5.771 179.117 0.115
Range 35.000 5.650 20.300 753.088 0.430

Validation set Max. 38.000 19.720 31.100 1452.380 0.970
Min. 4.000 11.590 9.600 193.651 0.550
Mean 19.176 16.644 17.006 395.893 0.866
S.D.∗ 9.429 1.840 6.096 300.119 0.110
Range 34.000 8.130 21.500 1258.729 0.420

The statistical parameters considered include the maximum, minimum, mean,
standard deviation, and range. To examine how representative the training, testing,
and validation sets are with respect to each other, t-test and F-test are carried out.
The t-test examines the null hypothesis of no difference in the means of two data
sets and the F-test examines the null hypothesis of no difference in the variances
of the two sets. For a given level of significance, test statistics can be calculated to
test the null hypotheses for the t-test and F-test, respectively. Traditionally, a level
of significance equal to 0.05 was selected. Consequently, this level of significance
is used in this study. This means that the confidence level (CI) is 95%. This is in
agreement with previous study conducted by Jebur et al. [17]. The results of the t-
test and F-tests are given in Tables 8.3 and 8.4 for the logarithm of modulus number
(log k), and the failure ratio (Rf), respectively. Results indicate that all data, training,
testing, and validation sets are generally representative of a single population.

8.2.4 Scaling of Data

Once the available data have been divided into their subsets, the input and output
variables are preprocessed by scaling them to eliminate their dimension and to
ensure that all variables receive equal attention during training. Scaling has to be
commensurate with the limits of the transfer functions used in the hidden and
output layers (i.e., −1.0 to 1.0 for tanh transfer function and 0.0 to 1.0 for sigmoid

8 New Applications of a Supervised Computational Intelligence (CI). . . 153

Ta
bl

e
8.

4
N

ul
lh

yp
ot

he
si

s
te

st
fo

r
A

N
N

in
pu

tv
ar

ia
bl

e
an

d
ou

tp
ut

s
fo

r
so

il
te

st
ed

un
de

r
un

co
ns

ol
id

at
ed

un
dr

ai
ne

d
co

nd
iti

on
s

(U
U

-t
es

t)
fo

r
R

f

V
ar

ia
bl

e
an

d
da

ta
se

t
T

-v
al

ue
L

ow
er

cr
iti

ca
lv

al
ue

U
pp

er
cr

iti
ca

lv
al

ue
t-

te
st

F
-v

al
ue

L
ow

er
cr

iti
ca

lv
al

ue
U

pp
er

cr
iti

ca
lv

al
ue

F
-t

es
t

Pl
as

tic
ity

in
de

x
(P

I)
(%

)
Te

st
in

g
−0

.6
2

−2
.0

0
2.

00
∗

0.
67

0.
49

2.
27

∗

V
al

id
at

io
n

−0
.5

8
−2

.0
0

2.
00

∗
0.

76
0.

47
2.

49
∗

D
ry

un
it

w
ei

gh
t(

kN
/m

3
)

Te
st

in
g

−1
.2

4
−2

.0
0

2.
00

∗
1.

74
0.

49
2.

27
∗

V
al

id
at

io
n

−1
.0

0
−2

.0
0

2.
00

∗
0.

95
0.

47
2.

49
∗

W
at

er
co

nt
en

tω
o

(%
)

Te
st

in
g

0.
59

−2
.0

0
2.

00
∗

0.
59

0.
49

2.
27

∗

V
al

id
at

io
n

0.
59

−2
.0

0
2.

00
∗

0.
53

0.
47

2.
49

∗

C
on

fin
in

g
st

re
ss

(k
N

/m
2
)

Te
st

in
g

1.
24

−2
.0

0
2.

00
∗

1.
44

0.
49

2.
27

∗

V
al

id
at

io
n

0.
26

−2
.0

0
2.

00
∗

0.
51

0.
47

2.
49

∗

R
f

Te
st

in
g

0.
51

−2
.0

0
2.

00
∗

0.
76

0.
49

2.
27

∗

V
al

id
at

io
n

−1
.5

9
−2

.0
0

2.
00

∗
0.

84
0.

47
2.

49
∗

K
ey

:∗
=

A
cc

ep
t

154 A. A. Jebur et al.

transfer function). The simple linear mapping of the variables, extremes to the neural
network’s practical extremes, is adopted for scaling, as it is the most commonly used
method. As part of this method, for each variable x with minimum and maximum
values of x(max) and x(min), respectively, the scaled value xnorm

i is calculated as
follows:

xnorm
i = xi(actual) − xi(min)

x(max) − x(min)

(8.10)

xi(actual) = xnorm
i (xmax − xmin) + xi(min) (8.11)

8.2.5 Model Architecture, Optimization, and Stopping Criteria

One of the most important and difficult tasks in the development of ANN models is
determining the model architecture (i.e., the number and connectivity of the hidden
layer nodes). A network with one hidden layer can approximate any continuous
function, provided that sufficient connection weights are used [18]. Consequently,
one hidden layer is used in this study. The general strategy adopted for finding
the optimal network architecture and internal parameters that control the training
process is as follows: a number of trials are carried out using the default parameters
of the software used with one hidden layer and 1, 2, 3,, 9 hidden layer nodes.
It should be noted that 9 is the upper limit for the number of hidden layer nodes
needed to map any continuous function for a network with (4) input parameters [19]
and, consequently, is used in this work.

The network that performs best with respect to the testing set is retrained with
different combinations of momentum terms, learning rates, and transfer functions
in an attempt to improve model performance. Since the back-propagation algorithm
uses a first-order gradient descent technique to adjust the connection weights, it
may get trapped in a local minimum if the initial starting point in weight space
is unfavorable. Consequently, the model that has the optimum momentum term,
learning rate, and transfer function is retrained a number of times with different
initial weights until no further improvement occurs. Using the default parameters of
the software, a number of networks with different numbers of hidden layer nodes
are developed and the results are shown graphically in Figs. 8.1 and 8.2 and are
summarized in Tables 8.5 and 8.6 for ANN models named (log k − 1 to log k − 9),
and (Rf − 1 to Rf − 9).

For model named (log k), Fig. 8.1 shows that the lowest RMSE value is combined
with a hidden layer network with (7) nodes. However, it is believed that, the network
with (1), hidden layer nodes is considered optimal, to prediction error is not far from
the network with (7) hidden layer nodes, the error difference being only (0.04),
coupled with smaller number of connection weights. However, it is believed that
the network with (1), hidden layer nodes is considered optimal, to predict error is

8 New Applications of a Supervised Computational Intelligence (CI). . . 155

Fig. 8.1 Performance of the ANN models with different hidden layer nodes for testing (Learning
rate = 0.2, Momentum term = 0.8), for log k

Fig. 8.2 Performance of the ANN models with different hidden layer nodes for testing (Learning
rate = 0.2, Momentum term = 0.8) for Rf

not far from the network with (6) hidden layer nodes, the error difference being only
(0.07), coupled with smaller number of connection weights. For models named (Rf),
Fig. 8.2 shows that the network with (1), hidden layer node is considered optimal,
which has the lowest RMSE value for testing data.

The effect of the internal parameters controlling the back-propagation (i.e.
momentum term and learning rate) on model performance is investigated for the
model with one hidden layer nodes for (log k − 1), and (Rf − 1), resulting in models
log k − 10 to log k − 18 (Table 8.5), and Rf − 10 to Rf − 18 (Table 8.6). The effect
of the momentum term on model performance is shown graphically in Figs. 8.3
and 8.4.

156 A. A. Jebur et al.

Ta
bl

e
8.

5
St

ru
ct

ur
e

an
d

pe
rf

or
m

an
ce

of
A

N
N

m
od

el
s

de
ve

lo
pe

d
fo

r
m

od
ul

us
nu

m
be

r
(k

)

Pa
ra

m
et

er
ef

fe
ct

M
od

el
no

.

N
o.

of
hi

dd
en

no
de

s
L

ea
rn

in
g

ra
te

M
om

en
tu

m
te

rm

T
ra

ns
fe

r
fu

nc
tio

n
on

hi
dd

en
la

ye
r

T
ra

ns
fe

r
fu

nc
tio

n
on

ou
tp

ut
la

ye
r

C
or

re
la

tio
n

co
ef

fic
ie

nt
Pe

rf
or

m
an

ce
m

ea
su

re

R
M

SE
M

A
E

T
S

V
T

S
V

T
S

V

lo
g

k
−

1
1

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
34

46
0.

80
1

0.
54

25
0.

59
19

4
0.

39
45

7
0.

60
73

4
0.

44
51

2
0.

31
86

6
1.

26
73

lo
g

k
−

2
2

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
43

12
5

0.
54

85
0.

61
99

0.
55

79
7

0.
64

63
4

0.
55

04
4

0.
43

11
2

0.
47

98
1

0.
45

52

lo
g

k
−

3
3

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
44

75
6

0.
57

74
−0

.3
95

8
0.

56
6

0.
50

92
5

0.
73

15
2

0.
44

97
1

0.
39

78
7

0.
60

01

D
ef

au
lt

pa
ra

m
et

er
lo

g
k

−
4

4
0.

2
0.

8
Ta

nh
Si

gm
oi

d
−0

.3
95

6
−0

.7
28

−0
.7

46
6

0.
62

18
1

0.
69

02
3

0.
73

64
0.

49
27

4
0.

52
11

2
0.

60
8

lo
g

k
−

5
5

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
53

92
0.

66
83

0.
33

97
0.

51
43

4
0.

47
42

8
0.

70
20

3
0.

41
74

5
0.

39
22

3
0.

57
94

lo
g

k
−

6
6

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
44

35
1

0.
65

36
0.

55
73

0.
55

75
4

0.
48

04
0.

60
92

1
0.

43
28

0.
39

68
3

0.
47

01

lo
g

k
−

7
7

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
68

77
4

0.
84

01
0.

65
98

0.
43

78
8

0.
34

88
5

0.
51

51
9

0.
35

20
7

0.
28

13
4

0.
42

67

lo
g

k
−

8
8

0.
2

0.
8

Ta
nh

Si
gm

oi
d

−0
.6

04
−0

.7
66

8
−0

.3
47

6
0.

66
12

1
0.

67
01

4
0.

73
86

6
0.

55
32

5
0.

52
07

0.
60

94

lo
g

k
−

9
9

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
52

06
0.

50
48

0.
71

57
0.

53
36

5
0.

64
08

8
0.

64
44

6
0.

43
51

5
0.

47
42

1
0.

52
65

lo
g

k
−

10
1

0.
2

0.
01

Ta
nh

Si
gm

oi
d

0.
53

26
4

0.
52

17
0.

52
96

0.
51

65
6

0.
66

81
5

0.
60

23
8

0.
41

59
3

0.
50

23
3

1.
26

73

lo
g

k
−

11
1

0.
2

0.
05

Ta
nh

Si
gm

oi
d

0.
35

57
6

0.
69

01
0.

44
98

0.
60

39
5

0.
48

72
8

0.
63

26
3

0.
47

46
0.

41
05

2
1.

26
73

M
om

en
tu

m
te

rm
lo

g
k

−
12

1
0.

2
0.

1
Ta

nh
Si

gm
oi

d
0.

51
87

9
0.

52
17

0.
57

55
0.

52
21

5
0.

66
81

5
0.

57
97

7
0.

39
55

3
0.

50
23

3
1.

26
73

lo
g

k
−

13
1

0.
2

0.
15

Ta
nh

Si
gm

oi
d

0.
55

50
3

0.
57

78
0.

68
7

0.
51

08
1

0.
55

30
7

0.
50

19
9

0.
39

93
3

0.
42

36
9

1.
26

73

lo
g

k
−

14
1

0.
2

0.
2

Ta
nh

Si
gm

oi
d

0.
51

09
5

0.
69

01
0.

68
85

0.
54

77
9

0.
48

72
8

0.
49

52
8

0.
42

93
2

0.
41

05
2

1.
26

73

lo
g

k
−

15
1

0.
2

0.
4

Ta
nh

Si
gm

oi
d

0.
67

80
5

0.
83

87
0.

64
97

0.
44

85
3

0.
41

42
0.

53
41

0.
38

01
0.

34
75

1.
26

73

lo
g

k
−

16
1

0.
2

0.
6

Ta
nh

Si
gm

oi
d

0.
66

97
6

0.
82

9
0.

65
15

0.
45

69
2

0.
34

09
8

0.
52

47
7

0.
36

21
5

0.
26

82
5

1.
26

73

lo
g

k
−

17
1

0.
2

0.
9

Ta
nh

Si
gm

oi
d

0.
67

77
6

0.
83

82
0.

65
25

0.
44

53
9

0.
39

93
7

0.
52

97
2

0.
37

51
4

0.
33

59
1

1.
26

73

lo
g

k
−

18
1

0.
2

0.
95

Ta
nh

Si
gm

oi
d

0.
67

72
3

0.
83

73
0.

65
87

0.
44

38
8

0.
38

88
9

0.
52

21
2

0.
37

04
0.

32
48

2
1.

26
73

lo
g

k
−

19
1

0.
05

0.
8

Ta
nh

Si
gm

oi
d

0.
37

41
2

0.
51

76
0.

45
13

0.
56

77
8

0.
65

65
5

0.
63

10
5

0.
43

09
5

0.
49

21
9

1.
26

73

8 New Applications of a Supervised Computational Intelligence (CI). . . 157

L
ea

rn
in

g
ra

te
lo

g
k

−
20

1
0.

02
0.

8
Ta

nh
Si

gm
oi

d
0.

55
31

1
0.

51
94

0.
56

45
0.

52
08

5
0.

65
98

3
0.

61
48

8
0.

42
59

8
0.

49
53

1.
26

73

lo
g

k
−

21
1

0.
1

0.
8

Ta
nh

Si
gm

oi
d

0.
40

60
5

0.
52

53
−0

.3
38

2
0.

56
49

8
0.

66
65

7
0.

71
78

3
0.

43
61

9
0.

50
10

8
1.

26
73

lo
g

k
−

22
1

0.
15

0.
8

Ta
nh

Si
gm

oi
d

0.
51

12
7

0.
53

56
−0

.3
27

9
0.

52
95

1
0.

66
60

3
0.

71
80

9
0.

41
83

1
0.

50
06

6
1.

26
73

lo
g

k
−

23
1

0.
4

0.
8

Ta
nh

Si
gm

oi
d

0.
52

12
2

0.
56

08
0.

59
36

0.
52

33
0.

65
07

8
0.

55
26

4
0.

41
13

2
0.

48
65

7
1.

26
73

lo
g

k
−

24
1

0.
6

0.
8

Ta
nh

Si
gm

oi
d

0.
72

80
6

0.
87

14
0.

70
85

0.
72

80
6

0.
27

16
4

0.
49

73
1

0.
33

47
2

0.
23

97
9

1.
26

73

lo
g

k
−

25
1

0.
8

0.
8

Ta
nh

Si
gm

oi
d

0.
72

97
5

0.
87

5
0.

69
06

0.
42

16
8

0.
35

73
5

0.
49

42
7

0.
35

53
6

0.
29

93
4

1.
26

73

lo
g

k
−

26
1

0.
9

0.
8

Ta
nh

Si
gm

oi
d

0.
72

93
1

0.
87

31
0.

70
29

0.
41

45
3

0.
33

47
9

0.
48

62
8

0.
34

94
7

0.
28

27
3

1.
26

73

lo
g

k
−

27
1

0.
95

0.
8

Ta
nh

Si
gm

oi
d

0.
72

55
6

0.
86

68
0.

71
72

0.
46

23
7

0.
27

82
9

0.
52

90
4

0.
35

54
8

0.
23

21
1

1.
26

73

lo
g

k
−

28
1

0.
99

0.
8

Ta
nh

Si
gm

oi
d

0.
72

98
5

0.
87

57
0.

67
74

0.
43

13
7

0.
38

05
7

0.
50

44
2

0.
36

32
9

0.
31

64
6

1.
26

73

T
ra

ns
fe

r
fu

nc
tio

n
lo

g
k

−
29

1
0.

2
0.

8
Si

gm
oi

d
Si

gm
oi

d
0.

35
64

0.
51

52
−0

.3
55

0.
57

14
5

0.
67

46
1

0.
71

65
3

0.
43

97
5

0.
50

72
1.

26
73

lo
g

k
−

30
1

0.
2

0.
8

Ta
nh

Ta
nh

0.
44

28
2

−0
.4

42
9

0.
46

84
0.

58
08

2
0.

76
06

0.
65

08
3

0.
46

71
3

0.
55

90
2

1.
26

73

lo
g

k
−

31
1

0.
2

0.
8

Si
gm

oi
d

Ta
nh

0.
16

62
7

0.
51

96
−0

.3
74

4
0.

62
29

3
0.

55
31

8
1.

26
72

9
0.

51
42

2
0.

43
69

6
1.

26
73

158 A. A. Jebur et al.

Ta
bl

e
8.

6
St

ru
ct

ur
e

an
d

pe
rf

or
m

an
ce

of
A

N
N

m
od

el
s

de
ve

lo
pe

d
fo

r
fa

ilu
re

ra
tio

(R
f)

Pa
ra

m
et

er
ef

fe
ct

M
od

el
no

.

N
o.

of
hi

dd
en

no
de

s
L

ea
rn

in
g

ra
te

M
om

en
tu

m
te

rm

T
ra

ns
fe

r
fu

nc
tio

n
on

hi
dd

en
la

ye
r

T
ra

ns
fe

r
fu

nc
tio

n
on

ou
tp

ut
la

ye
r

C
or

re
la

tio
n

co
ef

fic
ie

nt
Pe

rf
or

m
an

ce
m

ea
su

re

R
M

SE
M

A
E

T
S

V
T

S
V

T
S

V

R
f
−

1
1

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
74

46
5

0.
75

97
6

0.
75

06
2

0.
06

85
1

0.
07

06
4

0.
07

83
1

0.
05

58
9

0.
05

63
8

0.
46

82
4

R
f
−

2
2

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
53

65
2

0.
64

54
4

0.
71

99
5

0.
08

61
9

0.
08

47
8

0.
08

74
0.

06
87

3
0.

06
84

1
0.

07
30

5

R
f
−

3
3

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
40

02
5

0.
75

65
4

0.
67

75
2

0.
09

28
5

0.
07

71
8

0.
09

09
8

0.
07

37
1

0.
06

51
1

0.
07

61
9

D
ef

au
lt

pa
ra

m
et

er
R

f
−

4
4

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
49

75
3

0.
63

79
7

0.
66

51
7

0.
10

01
0.

10
89

6
0.

11
11

4
0.

08
41

4
0.

09
56

1
0.

10
17

7

R
f
−

5
5

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
53

58
2

0.
63

88
7

0.
70

54
0.

10
06

7
0.

09
62

6
0.

10
64

7
0.

08
41

0.
08

33
0.

09
75

5

R
f
−

6
6

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
52

87
8

0.
66

44
8

0.
69

24
4

0.
09

01
1

0.
08

43
5

0.
09

65
3

0.
07

27
3

0.
06

80
5

0.
08

39
1

R
f
−

7
7

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
53

01
8

0.
74

18
6

0.
67

04
4

0.
09

63
3

0.
08

20
2

0.
10

45
7

0.
07

97
4

0.
07

57
2

0.
09

43
6

R
f
−

8
8

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
54

39
3

0.
64

94
1

0.
67

03
5

0.
08

31
5

0.
08

06
1

0.
08

26
5

0.
06

21
9

0.
06

33
9

0.
06

23
4

R
f
−

9
9

0.
2

0.
8

Ta
nh

Si
gm

oi
d

0.
52

09
8

0.
73

34
5

0.
72

02
7

0.
08

83
8

0.
07

94
8

0.
08

99
2

0.
07

13
7

0.
06

59
5

0.
07

80
6

R
f
−

10
1

0.
2

0.
01

Ta
nh

Si
gm

oi
d

0.
52

89
1

0.
63

85
6

0.
75

06
1

0.
08

49
0.

08
17

8
0.

07
93

3
0.

06
53

6
0.

06
44

0.
46

82
4

R
f
−

11
1

0.
2

0.
05

Ta
nh

Si
gm

oi
d

0.
46

29
1

0.
71

26
8

0.
75

29
9

0.
08

78
5

0.
07

57
5

0.
07

41
3

0.
06

62
3

0.
06

40
6

0.
05

67
4

M
om

en
tu

m
te

rm
R

f
−

12
1

0.
2

0.
1

Ta
nh

Si
gm

oi
d

0.
58

75
0.

66
17

1
0.

75
30

6
0.

08
10

4
0.

07
97

1
0.

07
38

4
0.

06
38

7
0.

06
12

9
0.

05
63

1

R
f
−

13
1

0.
2

0.
15

Ta
nh

Si
gm

oi
d

0.
54

07
2

0.
74

05
8

0.
75

08
4

0.
08

37
4

0.
07

32
8

0.
07

83
2

0.
06

64
6

0.
06

09
0.

06
29

7

R
f
−

14
1

0.
2

0.
2

Ta
nh

Si
gm

oi
d

0.
54

18
9

0.
71

11
2

0.
74

91
1

0.
08

38
7

0.
07

54
8

0.
07

78
8

0.
06

35
7

0.
06

39
6

0.
06

30
6

R
f
−

15
1

0.
2

0.
4

Ta
nh

Si
gm

oi
d

0.
45

62
5

0.
64

82
0.

75
03

7
0.

08
87

8
0.

08
28

3
0.

07
93

0.
06

83
8

0.
06

54
0.

06
46

3

R
f
−

16
1

0.
2

0.
6

Ta
nh

Si
gm

oi
d

0.
56

72
3

0.
74

20
9

0.
75

11
5

0.
08

18
0.

07
24

6
0.

07
72

5
0.

06
37

6
0.

05
95

1
0.

06
15

1

R
f
−

17
1

0.
2

0.
9

Ta
nh

Si
gm

oi
d

0.
56

65
0.

62
05

6
0.

74
85

2
0.

08
25

1
0.

08
34

6
0.

06
69

7
0.

06
18

6
0.

06
43

7
0.

04
83

R
f
−

18
1

0.
2

0.
95

Ta
nh

Si
gm

oi
d

0.
00

33
8

0.
74

73
7

0.
74

80
5

0.
09

31
8

0.
06

90
3

0.
06

54
2

0.
06

62
1

0.
05

4
0.

04
61

2

R
f
−

19
1

0.
00

5
0.

8
Ta

nh
Si

gm
oi

d
0.

56
64

8
0.

61
85

0.
74

96
6

0.
08

12
4

0.
08

31
5

0.
07

43
1

0.
06

26
3

0.
06

76
1

0.
46

82
4

R
f
−

20
1

0.
02

0.
8

Ta
nh

Si
gm

oi
d

0.
59

17
2

0.
61

37
4

0.
74

97
9

0.
08

02
7

0.
08

44
8

0.
07

52
2

0.
06

30
9

0.
07

03
6

0.
05

84
5

8 New Applications of a Supervised Computational Intelligence (CI). . . 159

R
f
−

21
1

0.
1

0.
8

Ta
nh

Si
gm

oi
d

0.
56

68
2

0.
61

80
3

0.
75

00
7

0.
08

19
0.

08
36

5
0.

07
61

2
0.

06
38

0.
06

82
0.

05
98

1

R
f
−

22
1

0.
15

0.
8

Ta
nh

Si
gm

oi
d

0.
56

10
5

0.
61

66
1

0.
74

67
9

0.
08

39
5

0.
08

62
6

0.
08

00
4

0.
06

69
1

0.
07

04
8

0.
06

42
8

L
ea

rn
in

g
ra

te
R

f
−

23
1

0.
4

0.
8

Ta
nh

Si
gm

oi
d

0.
43

43
7

0.
62

31
7

0.
75

00
2

0.
09

04
5

0.
08

44
9

0.
07

15
7

0.
06

89
0.

06
96

1
0.

05
34

7

R
f
−

24
1

0.
6

0.
8

Ta
nh

Si
gm

oi
d

0.
56

32
0.

61
77

2
0.

75
39

0.
09

09
8

0.
09

26
1

0.
09

47
7

0.
07

52
1

0.
07

75
0.

08
43

9

R
f
−

25
1

0.
8

0.
8

Ta
nh

Si
gm

oi
d

0.
51

59
3

0.
73

27
8

0.
74

66
8

0.
09

32
7

0.
08

79
3

0.
09

33
2

0.
07

61
3

0.
07

37
7

0.
08

28
1

R
f
−

26
1

0.
9

0.
8

Ta
nh

Si
gm

oi
d

0.
52

18
2

0.
61

68
8

0.
75

19
7

0.
08

64
1

0.
08

93
3

0.
07

29
9

0.
06

23
9

0.
06

84
8

0.
05

38
3

R
f
−

27
1

0.
95

0.
8

Ta
nh

Si
gm

oi
d

0.
51

53
9

0.
65

22
5

0.
74

03
6

0.
08

74
6

0.
08

02
9

0.
07

48
3

0.
06

74
1

0.
06

30
3

0.
05

71
4

R
f
−

28
1

0.
99

0.
8

Ta
nh

Si
gm

oi
d

0.
51

48
5

0.
75

31
6

0.
72

62
8

0.
09

63
6

0.
07

51
3

0.
07

74
0.

06
92

0.
05

53
5

0.
05

22
8

T
ra

ns
fe

r
fu

nc
tio

n
R

f
−

29
1

0.
2

0.
8

Si
gm

oi
d

Si
gm

oi
d

0.
40

54
7

0.
62

95
2

0.
71

49
2

0.
09

07
7

0.
08

30
8

0.
08

11
8

0.
06

96
8

0.
06

69
3

0.
46

82
4

R
f
−

30
1

0.
2

0.
8

Ta
nh

Ta
nh

0.
53

84
2

0.
58

13
6

0.
70

83
5

0.
08

61
7

0.
09

05
5

0.
08

16
1

0.
06

10
7

0.
06

97
1

0.
46

82
4

R
f
−

31
1

0.
2

0.
8

Si
gm

oi
d

Ta
nh

0.
40

58
5

0.
74

19
0.

71
5

0.
10

47
8

0.
07

52
1

0.
07

15
8

0.
07

55
6

0.
05

50
9

0.
46

82
4

160 A. A. Jebur et al.

Fig. 8.3 Effect of various momentum terms on ANN performance for testing (Hidden nodes = 1
and learning rate = 0.2), for log k

Fig. 8.4 Effect of various momentum terms on ANN performance for testing (Hidden nodes = 1
and learning rate = 0.2), for Rf

It can be seen that the performance of the ANN model is relatively insensitive
to momentum terms, particularly in the range (0.6–0.98) for log k. Figures 8.5 and
8.6 show that the effect of different learning rates on the models, as shown below, is
relatively sensitive to learning rates in the range (0.4–0.99) for log k, and (0.1–0.96)
for Rf, while the performance will be insensitive to learning rates, for log k in the
range (0.0–0.4). Thus, the optimum values for momentum term and learning rate
used are 0.80 and 0.20, respectively. The effect of using different transfer functions

8 New Applications of a Supervised Computational Intelligence (CI). . . 161

Fig. 8.5 Effect of various learning rates on ANN performance for testing (Hidden nodes = 1 and
Momentum term = 0.8), for log k

Fig. 8.6 Effect of various learning rates on ANN performance for testing (Hidden nodes = 1 and
Momentum term = 0.8), for Rf

is shown in Tables 8.5 and 8.6 (models 29–31). It can be seen that the performance
of ANN models is relatively insensitive to transfer functions although a slightly
better performance is obtained when the hyperbolic tangent (tanh) transfer function
is used for the hidden layer, and the sigmoid transfer function is used for the output
layer.

Ismail and Jeng [20] reported similar observations for the case of predicting
settlement of shallow foundations on cohesionless soils by artificial neural networks.
Furthermore, Al-Janabi [21] also stressed similar observations for the case of
predicting dissolved gypsum and leaching strain during leaching process by artificial

162 A. A. Jebur et al.

neural networks and prediction of ultimate bearing capacity of shallow foundation
on cohesionless soils by using back-propagation neural networks.

8.2.6 Parametric Study

In order to confirm the generalization ability and robustness of models, logarithm
of modulus number, modulus exponent, and failure ratio, (log k − 1 and Rf − 1),
an additional validation approach is proposed. The approach includes carrying out
a parametric study in which the response of the ANN model output to changes in
its inputs is investigated. The first three input variables (i.e., plasticity index, dry
unit weight, and water content), except one (i.e., confining stress), are fixed to their
mean values used for training and a set of synthetic data, between the minimum
and maximum values used for model training, and are generated for the input that
is not set to a fixed value at different intervals. The synthetic data are generated
by increasing their values in increments equal to 25% of the total range between
the minimum and maximum values. The response of the model is examined. This
process is repeated using another input variable and so on until the model response
is tested for all input variables. The robustness of the model can be determined by
examining how well the predicted logarithm of modulus number, modulus exponent,
and failure ratio are in agreement with the known underlying physical process over
a range of inputs.

The above approach is applied to models (log k − 1, and Rf − 1) and the
results are shown in Figs. 8.7, 8.8, and 8.9. It can be seen that the behavior of
models (log k − 1, and Rf − 1) is expected, which indicates that the models
may be considered to be robust. For example, the figures show that the logarithm

Fig. 8.7 Result of parametric study of log k model under different plasticity indices

8 New Applications of a Supervised Computational Intelligence (CI). . . 163

Fig. 8.8 Result of parametric study of log k model under different dry unit weights

Fig. 8.9 Result of parametric study of log k model under different water contents

of modulus number increases as plasticity index is increased. Also, there is an
increase in the logarithm of modulus number as dry unit weight increases: see
Figs. 8.8 and 8.12, respectively. On the other hand, in Fig. 8.9, the logarithm of
modulus number decreases as the water content is increased in range to (20)%
after which it remains constant. Figure 8.10 shows the relationship between the
logarithm of modulus number and the confining stress. It can be noticed that
the logarithm of modulus number remarkably decreases as the confining stress is
increased.

Figures 8.11 and 8.12 show that the variation of failure ratio (Rf) with the increase
in plasticity index and a decrease in dry unit weight respectively is too small, while
the failure ratio decreases with the increase in water content as shown in Fig. 8.13.
On the other hand, Fig. 8.14 shows that the failure ratio (Rf) increases with increase

164 A. A. Jebur et al.

Fig. 8.10 Result of parametric study of log k model under different confining stresses

Fig. 8.11 Result of parametric study of (Rf) model under different plasticity indices

in the confining stress. Note: The preceding observations are logical and agree with
physical behavior of soil sample.

8.2.7 Sensitivity Analysis of the ANN Model Inputs

In an attempt to identify which of the input variables has the most significant impact
on the logarithm of modulus number, modulus exponent, and failure ratio (log k and
Rf), a sensitivity analysis is carried out on the ANN models (log k and Rf). A simple
and innovative technique proposed by Garson [22] is used to interpret the relative

8 New Applications of a Supervised Computational Intelligence (CI). . . 165

Fig. 8.12 Result of parametric study of (Rf) model under different dry unit weights, (kN/m3)

Fig. 8.13 Result of parametric study of (Rf) model under different water contents, (ωo)%

Fig. 8.14 Result of parametric study of (Rf) model under different confining stresses, (kN/m2)

166 A. A. Jebur et al.

Table 8.7 The optimum connection weight for model log k

Connection weights

Hidden nodes
Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content
ωo (%)

Confining stress
(kN/m2) log k

Hidden-1 2.425 3.139 −6.346 −1.8 1

Table 8.8 The absolute value of the connection weight for each model input parameter

Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content ωo
(%)

Confining stress
(kN/m2)

Hidden-1 2.425 3.139 6.346 1.8

Table 8.9 The optimum connection weight for each model input parameter divided by the sum of
all input parameter

Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content ωo
(%)

Confining stress
(kN/m2)

Hidden-1 0.176 0.229 0.462 0.131

importance of the input variables by examining the connection weights of the trained
network. For a network with one hidden layer, the technique involves a process of
partitioning the hidden output connection weights into components associated with
each input node. For models (log k and Rf), the method is illustrated as follows. The
models have four input nodes and one output node for each model with connection
weight, as follows (Table 8.7).

The computational process proposed by Garson [22] is as follows:

1. For each hidden node I, get the products pij (where j represents the column
number of the weight mentioned above) by multiplying the absolute value of the
hidden-output layer connection weight by the absolute value of the hidden-input
layer connection weight of each input variable j. As an example (Table 8.8):

P11 = 2.425 × 1.00 = 2.425

2. For each hidden node I, divide pij by the sum of all input variables to obtain Qij.
As an example (Table 8.9):

Q11 = 2.425/ (2.425 + 3.139 + 6.346 + 1.8)

Q11 = 0.176

3. Divide Qij by the sum for all input variables to get the relative importance of all
output weights attributed to the given input variable.

4. As an example, the relative importance (see Tables 8.10, 8.11 and 8.12, respec-
tively) for input node 1 is equal to:

(0.176 × 100) / (0.176 + 0.229 + 0.462 + 0.131) = 17.6%

8 New Applications of a Supervised Computational Intelligence (CI). . . 167

Table 8.10 Sensitive analyses of input variables for model of (log k)

For log k − 1
Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content
ωo (%)

Confining stress
(kN/m2)

Relative
importance (%)

17.6 22.9 46.2 13.1

Table 8.11 Sensitive analyses of input variables for model of (n)

For n − 1
Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content
ωo (%)

Confining stress
(kN/m2)

Relative
importance (%)

9.586 48 24.37 18

Table 8.12 Sensitive analyses of input variables for model of (Rf)

For Rf − 1
Plasticity index
(PI) (%)

Dry unit weight
(kN/m3)

Water content
ωo (%)

Confining stress
(kN/m2)

Relative
importance (%)

40 9.1 7 43.7

Input Layer

I

I

5 6

I

I

Hidden Layer Output Layer

Fig. 8.15 Structure of the ANN optimal model (log k − 1)

8.3 ANN Model Equations

8.3.1 ANN Model Equation for log k

The small number of connection weights obtained for the optimal ANN model
(log k − 1) enables the network to be translated into relatively simple formula.
To demonstrate this, the structure of the ANN model is shown in Fig. 8.15, while
connection weights and threshold levels are summarized in Table 8.13.

168 A. A. Jebur et al.

Table 8.13 Weights and threshold levels for the ANN optimal model (log k − 1)

Hidden layer
wji (weight from node I in the input
layer to nodes j in the hidden layer) Hidden layer

Nodes I = 1 I = 2 I = 3 I = 4 Threshold θ j

J = 5 2.42 3.139 −6.346 −1.8 −0.984
Output Output
Layer Layer
Nodes I = 5 – – – Threshold θ j

J = 6 1.00 −0.411

Using the connection weight and the threshold levels shown in Table 8.13, the
predicted logarithm of modulus number (log k) can be expressed as follows:

log k = 1

1 + e(0.411−1×tanh x)
(8.12)

In which

X = θ5 + w51 × I1 + w52 × I2 + w53 × I3 + w54 × I4 (8.13)

X = θ5 + w51 × PI + w52 × γdry + w53 × ωo + w54 × σ3 (8.14)

{X} = {θ} + [W] {I } (8.15)

where
I1 = Plasticity index %; I2 = Dry unit weight (kN/m3); I3 = Water content %

and I4= Confining stress (kN/m2).
It should be noted that before using Eq. (8.11), all input variables need to be

scaled between 0.0 and 1.0 using Eq. (8.9), and all data range in the ANN model,
see Table 8.1. It should also be noted that the predicted value of (log k) obtained
from Eq. (8.9) is scaled between 0.0 and 1.0 and in order to obtain the actual value
of log k has be re-scaled using Eq. (8.10) and the data range in Tables 8.5 and
8.6. The procedure for scaling and the substituting the values of the weights and
threshold levels from Table 8.10, Eq. (8.12), and Eq. (8.13) can be rewritten as
follows:

log k = 2.949

1 + e(0.411−1×tanh x)
+ 1 (8.16)

8 New Applications of a Supervised Computational Intelligence (CI). . . 169

And

X = 10−3 (
55 × PI + 310 × γdry − 278 × ωo − 1.3 × σ3

) − 1.708 (8.17)

A numerical example is provided to better explain the implementation of
modulus number formula. The equation is tested against different types of the result
by Wong and Duncan [23], which are given below:

Plasticity index % = 1
Dry unit weight (kN/m3) = 16.65
Water content ωo % = 11.6
Confining stress (kN/m2) = 349.648
From Eq. (8.16). x = −0.1708
From Eq. (8.19)

log k = 2.949

1 + e(0.411−1×tanh x)
+ 1 = 2.05 (8.18)

The predicted value is compared well with measured value (log k = 2.04).
Appendix 2, case No. (45).

8.3.2 ANN Model Equation for Rf

The small number of connection weights obtained for the optimal ANN model
(Rf − 1) enables the network to be translated into relatively simple formula. To
demonstrate this, the structure of the ANN model is shown in Fig. 8.16, while
connection weights and threshold levels are summarized in Table 8.14.

Input Layer

4

3

5 6

2

1

Hidden Layer Output Layer

Fig. 8.16 Structure of the ANN optimal model (Rf − 1)

170 A. A. Jebur et al.

Table 8.14 Weights and threshold levels for the ANN optimal model, (Rf − 1)

Hidden layer
wji (weight from node I in the input layer to
nodes j in the hidden layer) Hidden layer

Nodes I = 1 I = 2 I = 3 I = 4 Threshold θ j

J = 5 0.883 −0.2 0.153 −0.96 0.033
Output Output
Layer Layer
Nodes I = 5 – – – Threshold θ j

J = 6 3.45- 0.753

Using the connection weight and the threshold levels shown in Table 8.14, the
prediction of failure ratio (Rf) can be expressed as follows:

Rf = 1

1 + e(−0.753+3.45×tanh x)
(8.19)

in which

X = θ5 + w51 × I1 + w52 × I2 + w53 × I3 + w54 × I4 (8.20)

X = θ5 + w51 × PI + w52 × γdry + w53 × ωo + w54 × σ3 (8.21)

{X} = {θ} + [W] {I } (8.22)

It should be noted that before using Eq. (8.17), all input variables need to be
scaled between 0.0 and 1.0 using Eq. (8.9) and all data range in the ANN model, see
Table 8.14. It should also be noted that the predicted value of (Rf), obtained from
Eq. (8.14), is scaled between 0.0 and 1.0 and in order to smooth the data get high
generalization ability and to obtain the actual value of (Rf) and has been re-scaled
using Eq. (8.10) and the data range in Table 8.2 [5, 24, 25]. Equations (8.14) and
(8.15), can be re-written as follows:

Rf = 1

1 + e(−0.753+3.45×tanh x)
+ 0.52 (8.23)

And

X = 10−3 (
3.5 × PI − 19.7 × γdry + 6 × ωo − 0.7 × σ3

) + 0.236 (8.24)

A numerical example is provided to better explain the implementation of failure
ratio formula. The equation is tested against different types of the result by Wong
and Duncan [23], which are given below:

8 New Applications of a Supervised Computational Intelligence (CI). . . 171

Plasticity index % = 19
Dry unit weight (kN/m3) = 17
Water content ωo % = 16.2
Confining stress (kN/m2) = 946.74
From Eq. (8.22). x = −0.276
From Eq. (8.23)

Rf = 0.48

1 + e(−0.753+3.45×tanh (−0.276))
+ 0.52 = 0.924

The predicted value is compared well with the measured value (Rf = 0.92).
Appendix 2, case No. 14.

8.4 Validity of the ANN Models Equation

To assess the validity of the derived equations for the logarithm of modulus number,
modulus exponent, and failure ratio (log k, n and Rf) models, the equations are
used to predict these values on the basis of all, training, and validation data sets
used. The predicted values of the (log k and Rf), are plotted against the measured
(observed) values, (log k and Rf), in Figs. 8.17 and 8.18, respectively for the three
data sets.

8.5 Comparison Between Measured and Predicted
Stress–Strain Relationship

In this section, the reliability and the performance of the proposed ANNs method
is further examined graphically using unseen experimental dataset that has not been
involved in the process of learning. Figures 8.19 and 8.20 depict the comparison
between the predicted nonlinear soil stress–strain parameters and compared with
experimental results to determine the nonlinear soil stress–strain parameters con-
ducted by Boscardin et al. [26]. Based on hyperbolic parameters under different
factors (plasticity index, dry unit weight, water content, and confining stress), as
shown below. ANNs, models equations developed to find hyperbolic parameters,
logarithm of modulus number (log k), and failure ratio (Rf). According to the results,
significant agreement can be observed between the measured versus predicted
values with low scatter around equality line, which confirms that the trained network
has the ability to successfully reproduce the results of the experimental soil stress–
strain parameters with high consistency.

172 A. A. Jebur et al.

Fig. 8.17 Comparison of predicted and measured logarithm of modulus number for (a) training
data set, (b) testing data set, (c) validation data set

8.6 Concluding Remarks

The analyses carried out in this study have given rise to the following results and
conclusions:

1. Several factors affect the hyperbolic stress–strain relationship parameters, such
as plasticity index (PI), dry unit weight (γ d), water content (ωo), and confining
stress.

2. ANNs have the ability to predict the hyperbolic stress–strain relationship param-
eters, modulus number (log k), modulus exponent (n), and failure ratio (Rf), with
a good degree of accuracy within the range of data used for developing ANN
models.

8 New Applications of a Supervised Computational Intelligence (CI). . . 173

Fig. 8.18 Comparison of predicted and measured failure ratios for (a) training data set, (b) testing
data set, (c) validation data set

Fig. 8.19 Comparison between measured and predicted stress–strain relationship for (ML) soil

174 A. A. Jebur et al.

Fig. 8.20 Comparison between measured and predicted stress–strain relationship for (CL) soil

3. Study the impact of the internal network parameters on model performance,
which indicates that

ANN performance is sensitive to the number of hidden layer nodes, momen-
tum terms, learning rate, and transfer functions.

4. The results of parametric study carried out in this work show that the ANN
model developed. This indicates that the model could reliably be considered to
be robust.

5. The sensitivity analysis indicated the following:

Logarithm of Modulus Number (log k): The results indicate that the water
content has the most significant effect on the prediction of the logarithm
of modulus number followed by dry unit weight with a relative importance
of 46.2% and 22.9%, respectively. The results also indicate that plasticity
index, and confining stress, have relative importance (17.6%, 13.1%) respec-
tively.

Failure Ratio (Rf): The results of sensitivity analysis indicate that the confining
stress has the most significant effect on the predicted failure ratio, followed
by plasticity index with a relative importance 43.7% and 40%, respectively.
The results also indicate that dry unit weight and water content have moderate
impact on the failure ratio with a relative importance equal to 9.1% and 7%,
respectively.

Acknowledgments The authors would like to acknowledge the Iraqi Ministry of Higher Educa-
tion and Scientific Research and Wasit University for the grant provided to carry out this research
under the grant agreement number 162575, dated 28/05/2013, with the Liverpool John Moores
University, university reference number (744221).

8 New Applications of a Supervised Computational Intelligence (CI). . . 175

A
.1

A
pp

en
di

x
1

C
as

e
no

.
R

ef
er

en
ce

U
ni

fie
d

so
il

cl
as

si
f.

C
oh

es
io

n
(k

N
/m

2
)

Fr
ic

tio
n

an
gl

e
PI

(%
)

D
ry

un
it

w
ei

gh
tγ

d
(k

N
/m

3
)

W
at

er
co

nt
en

t
ω

c
(%

)

C
on

fin
in

g
st

re
ss

(k
N

/m
2
)

lo
g

k
n

R
f

1
W

on
g

an
d

D
un

ca
n

[2
3]

M
L

19
3.

68
19

4
17

.4
15

.6
86

0.
67

2
2.

30
1

0.
59

0.
86

2
W

on
g

an
d

D
un

ca
n

[2
3]

M
L

41
.9

64
30

4
17

.5
12

.7
86

0.
67

2
1.

43
14

1.
43

0.
72

3
W

on
g

an
d

D
un

ca
n

[2
3]

M
L

45
.1

92
31

1
16

.6
5

11
.6

34
9.

64
8

2.
38

02
0.

31
0.

83
4

W
on

g
an

d
D

un
ca

n
[2

3]
M

L
20

.4
44

31
1

16
.6

5
13

.6
40

3.
44

2.
43

14
0.

38
0.

82
5

W
on

g
an

d
D

un
ca

n
[2

3]
M

L
58

.1
04

27
1

16
.6

5
16

.6
40

3.
44

2
0.

84
0.

77
6

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
57

.0
28

29
20

17
.4

16
.7

71
5.

43
3

2.
41

5
0.

6
0.

87
7

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
12

9.
12

14
20

17
.1

3
19

.5
49

4.
88

6
1.

59
11

0.
48

0.
58

8
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

10
2.

22
0

23
17

.1
5

19
.1

19
3.

65
1

1.
81

95
0

0.
75

9
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

45
.1

92
0

23
16

.6
5

21
.2

19
3.

65
1

1
0.

03
0.

52
10

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

7.
6

31
22

16
.3

3
21

.7
19

3.
65

1
1.

55
63

0
0.

57
11

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
98

.9
92

17
16

16
.8

7
11

.5
21

5.
16

8
2.

81
29

−0
.6

8
0.

9
12

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
16

1.
4

6
16

17
.4

6
14

.3
37

6.
54

4
2.

82
61

−0
.1

4
0.

93
13

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
13

9.
88

24
16

17
.4

5
16

.8
37

6.
54

4
2.

63
35

0.
1

0.
93

14
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

19
3.

68
13

16
18

11
.5

37
6.

54
4

3.
38

02
−0

.7
4

0.
92

15
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

20
4.

44
32

16
18

.3
6

14
.5

37
6.

54
4

3.
30

1
−0

.3
0.

97
16

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
16

1.
4

18
16

17
.4

1
8.

71
37

6.
54

4
3.

94
94

−1
.1

0.
94

17
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

13
9.

88
29

16
19

.1
11

.7
37

6.
54

4
3.

69
9

−0
.2

8
0.

95
18

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
68

.8
64

25
15

16
.8

1
12

.5
40

3.
44

2.
50

51
−0

.2
1

0.
8

19
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

53
.8

2
15

16
.8

1
14

.5
34

9.
64

8
2.

27
88

0.
02

0.
81

20
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

10
7.

6
1

30
17

.1
3

17
.2

34
9.

64
8

1.
86

92
0.

23
0.

87

(c
on

tin
ue

d)

176 A. A. Jebur et al.

C
as

e
no

.
R

ef
er

en
ce

U
ni

fie
d

so
il

cl
as

si
f.

C
oh

es
io

n
(k

N
/m

2
)

Fr
ic

tio
n

an
gl

e
PI

(%
)

D
ry

un
it

w
ei

gh
tγ

d
(k

N
/m

3
)

W
at

er
co

nt
en

t
ω

c
(%

)

C
on

fin
in

g
st

re
ss

(k
N

/m
2
)

lo
g

k
n

R
f

21
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

10
7.

6
1

30
16

.3
6

17
34

9.
64

8
1.

83
25

−0
.0

5
0.

84
22

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
48

.4
2

25
30

16
.4

2
20

34
9.

64
8

1.
43

14
0.

18
0.

85
23

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
61

.3
32

4
16

17
.3

3
14

.6
34

9.
64

8
2.

50
51

0.
29

0.
85

24
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

16
1.

4
3

32
15

.5
4

23
.2

34
9.

64
8

2.
30

1
0.

29
0.

89
25

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
12

9.
12

1
32

14
.6

8
23

.3
40

3.
44

2
0.

18
0.

86
26

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
68

.8
64

22
32

14
.5

3
26

.7
34

9.
64

8
1.

72
43

0.
14

0.
9

27
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

90
.3

84
22

16
17

.9
15

.1
34

9.
64

8
2.

20
41

0.
34

0.
79

28
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

59
.1

8
28

16
17

15
34

9.
64

8
2.

46
24

0.
27

0.
91

29
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

83
.9

28
25

12
16

13
.5

34
9.

64
8

2.
83

25
−0

.3
6

0.
84

30
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

16
1.

4
6

12
17

13
.3

34
9.

64
8

2.
77

82
0.

18
0.

68
31

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
79

.6
24

18
12

16
.4

2
19

.3
34

9.
64

8
1.

36
17

0.
32

0.
61

32
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

97
.9

16
20

12
17

16
.7

34
9.

64
8

2.
44

72
0.

6
0.

93
33

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
71

.0
16

8
12

16
.2

5
16

.3
34

9.
64

8
2.

34
24

0.
23

0.
9

34
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

13
9.

88
13

25
16

.8
18

.6
34

9.
64

8
2.

14
61

0.
2

0.
84

35
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

10
7.

6
2

25
16

.3
1

17
.1

34
9.

64
8

2.
07

92
0.

09
0.

83
36

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
86

.0
8

24
25

16
.5

19
.7

34
9.

64
8

1.
67

21
0.

33
0.

82
37

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
16

1.
4

8
25

17
13

.9
34

9.
64

8
2.

97
77

−0
.1

5
0.

9
38

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
16

1.
4

4
25

17
.3

3
16

.9
34

9.
64

8
2.

67
21

0
0.

95
39

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
72

.0
92

23
23

15
.8

20
.8

34
9.

64
8

1.
87

51
0.

44
0.

88
40

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
19

3.
68

12
23

16
.8

14
.8

34
9.

64
8

2.
92

43
−0

.1
9

0.
84

41
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

12
9.

12
29

23
16

.2
17

.4
34

9.
64

8
2.

43
14

0.
6

0.
87

42
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

15
0.

64
13

23
16

14
.2

34
9.

64
8

3.
04

14
−0

.3
6

0.
83

43
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

15
0.

64
2

23
16

.7
1

17
.5

34
9.

64
8

2.
61

28
0.

15
0.

87
44

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
82

.8
52

1
27

15
.6

8
24

32
2.

75
2

1.
75

59
0.

43
0.

86
45

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

4.
37

2
2

18
15

.9
6

22
.9

21
5.

16
8

2.
04

14
0.

43
0.

9

8 New Applications of a Supervised Computational Intelligence (CI). . . 177

46
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

11
8.

36
1

20
15

.8
6

22
.7

43
0.

33
6

2
0.

27
0.

89
47

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

6.
52

4
3

24
15

.7
23

.9
43

0.
33

6
2.

20
41

0.
54

0.
97

48
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

11
8.

36
2

24
15

.8
3

22
.7

43
0.

33
6

2.
11

39
0.

46
0.

91
49

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
83

.9
28

0
24

15
.5

22
.7

43
0.

33
6

1.
72

43
0.

41
0.

85
50

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
12

9.
12

0
26

15
.6

2
23

.4
86

0.
67

2
2.

38
02

0
0.

95
51

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

2.
22

12
24

17
.1

9
18

.1
86

0.
67

2
2.

20
41

0
0.

93
52

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
17

2.
16

20
18

18
.3

8
12

.2
40

3.
44

2.
17

61
0.

16
0.

79
53

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
21

5.
2

20
20

17
.7

5
13

82
3

2.
64

35
0.

17
0.

85
54

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
26

9
16

19
18

.5
4

13
.1

82
3

2.
64

35
0.

34
0.

86
55

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

7.
6

11
19

18
16

.2
39

2.
68

1
2.

04
14

0.
94

0.
91

56
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

15
0.

64
9

19
17

.9
6

16
.6

27
4.

33
9

1.
82

61
0.

71
0.

77
57

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
10

7.
6

3
19

17
.6

5
17

.3
27

9.
71

8
1.

56
82

0.
37

0.
65

58
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

23
6.

72
4

19
17

16
.2

94
6.

73
9

1.
85

13
1.

06
0.

98
59

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
65

.6
36

0
19

14
.4

28
.8

21
5.

16
8

1.
96

38
0.

21
0.

89
60

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
39

.8
12

1
38

15
.7

3
31

.1
19

3.
65

1
1.

32
22

0
0.

65
61

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
54

.8
76

1
36

14
.7

7
28

.6
19

3.
65

1
1.

82
61

0.
02

0.
79

62
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

67
.7

88
0

45
10

.6
3

26
.5

21
5.

16
8

1.
81

29
0.

14
0.

77
63

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
12

9.
12

2
36

14
.4

5
27

.4
86

0.
67

2
1.

55
63

0.
72

0.
91

64
W

on
g

an
d

D
un

ca
n

[2
3]

SC
27

9.
76

26
36

14
.5

2
24

.4
86

0.
67

2
1.

71
6

0.
66

0.
89

65
W

on
g

an
d

D
un

ca
n

[2
3]

SC
19

3.
68

4
11

19
.7

2
9.

6
14

52
.3

8
3.

59
11

−0
.0

8
0.

93
66

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
98

.9
92

31
18

20
.1

7
8.

3
10

7.
58

4
2.

70
76

0.
37

0.
64

67
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

16
1.

4
17

16
16

.8
7

11
.5

21
5.

16
8

2.
81

29
−0

.6
8

0.
9

68
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

13
9.

88
6

16
17

.4
6

14
.3

37
6.

54
4

2.
82

61
−0

.1
4

0.
93

69
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

19
3.

68
24

16
17

.4
5

16
.8

37
6.

54
4

2.
63

35
0.

1
0.

93
70

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
20

4.
44

13
16

18
.0

4
11

.5
37

6.
54

4
3.

38
02

−0
.7

4
0.

92

(c
on

tin
ue

d)

178 A. A. Jebur et al.

C
as

e
no

.
R

ef
er

en
ce

U
ni

fie
d

so
il

cl
as

si
f.

C
oh

es
io

n
(k

N
/m

2
)

Fr
ic

tio
n

an
gl

e
PI

(%
)

D
ry

un
it

w
ei

gh
tγ

d
(k

N
/m

3
)

W
at

er
co

nt
en

t
ω

c
(%

)

C
on

fin
in

g
st

re
ss

(k
N

/m
2
)

lo
g

k
n

R
f

71
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

16
1.

4
32

16
18

.3
6

14
.5

21
5.

16
8

3.
30

1
−0

.3
0.

97
72

W
on

g
an

d
D

un
ca

n
[2

3]
C

L
13

9.
88

18
16

17
.4

1
8.

71
37

6.
54

4
3.

94
94

−1
.1

0.
94

73
W

on
g

an
d

D
un

ca
n

[2
3]

C
L

68
.8

64
29

16
19

11
.7

37
6.

54
4

3.
69

9
−0

.2
8

0.
95

74
B

os
ca

rd
in

[2
6]

M
L

28
34

4
18

.0
5

12
.1

20
7.

5
2.

64
35

0.
4

0.
95

75
B

os
ca

rd
in

[2
6]

M
L

24
32

4
17

.1
12

.1
20

7.
5

2.
30

1
0.

26
0.

89
76

B
os

ca
rd

in
[2

6]
M

L
21

30
4

16
.1

5
12

.1
20

7.
5

2.
04

14
0.

25
0.

85
77

B
os

ca
rd

in
[2

6]
M

L
17

28
4

15
.2

12
.1

20
7.

5
1.

87
51

0.
25

0.
8

78
B

os
ca

rd
in

[2
6]

M
L

0
23

4
11

.5
9

12
.1

20
7.

5
1.

20
41

0.
95

0.
55

79
B

os
ca

rd
in

[2
6]

C
L

62
13

15
15

.6
7

21
20

7.
5

2.
07

92
0.

45
1

80
B

os
ca

rd
in

[2
6]

C
L

48
15

15
14

.8
5

21
20

7.
5

1.
87

51
0.

54
0.

94
81

B
os

ca
rd

in
[2

6]
C

L
41

14
15

14
.0

2
21

20
7.

5
1.

69
9

0.
6

0.
9

82
B

os
ca

rd
in

[2
6]

C
L

35
13

15
13

.2
21

20
7.

5
1.

54
41

0.
66

0.
87

83
B

os
ca

rd
in

[2
6]

C
L

0
19

15
10

.0
6

21
20

7.
5

1.
20

41
0.

95
0.

75

8 New Applications of a Supervised Computational Intelligence (CI). . . 179

B.1 Appendix 2

Input variables Output variables

Case no. PI

Dry unit
weight
(kN/m3)

Water
content
ωo (%)

Confining
stress
(kN/m2) Rf n log k

1 4 17.4 15.6 860.672 0.86 0.59 2.30103
2 4 17.5 12.7 860.672 0.72 1.43 1.43136
3 1 16.65 11.6 349.648 0.83 0.31 2.38021
4 1 16.65 13.6 403.44 0.82 0.38 2.43136
5 1 16.65 16.6 403.44 0.77 0.84 2
6 20 17.4 16.7 715.433 0.87 0.6 2.41497
7 20 17.13 19.5 494.886 0.58 0.48 1.59106
8 23 17.15 19.1 193.651 0.75 0 1.81954
9 23 16.65 21.2 193.651 0.52 0.03 1
10 22 16.33 21.7 193.651 0.57 0 1.5563
11 16 16.87 11.5 215.168 0.9 −0.68 2.81291
12 16 17.46 14.3 376.544 0.93 −0.14 2.82607
13 16 17.45 16.8 376.544 0.93 0.1 2.63347
14 16 18 11.5 376.544 0.92 −0.74 3.38021
15 16 18.36 14.5 376.544 0.97 −0.3 3.30103
16 16 17.41 8.71 376.544 0.94 −1.1 3.94939
17 16 19.1 11.7 376.544 0.95 −0.28 3.69897
18 15 16.81 12.5 403.44 0.8 −0.21 2.50515
19 15 16.81 14.5 349.648 0.81 0.02 2.27875
20 30 17.13 17.2 349.648 0.87 0.23 1.86923
21 30 16.36 17 349.648 0.84 −0.05 1.83251
22 30 16.42 20 349.648 0.85 0.18 1.43136
23 16 17.33 14.6 349.648 0.85 0.29 2.50515
24 32 15.54 23.2 349.648 0.89 0.29 2.30103
25 32 14.68 23.3 403.44 0.86 0.18 2
26 32 14.53 26.7 349.648 0.9 0.14 1.72428
27 16 17.9 15.1 349.648 0.79 0.34 2.20412
28 16 17 15 349.648 0.91 0.27 2.4624
29 12 16 13.5 349.648 0.84 −0.36 2.83251
30 12 17 13.3 349.648 0.68 0.18 2.77815
31 12 16.42 19.3 349.648 0.61 0.32 1.36173
32 12 17 16.7 349.648 0.93 0.6 2.44716
33 12 16.25 16.3 349.648 0.9 0.23 2.34242
34 25 16.8 18.6 349.648 0.84 0.2 2.14613
35 25 16.31 17.1 349.648 0.83 0.09 2.07918
36 25 16.5 19.7 349.648 0.82 0.33 1.6721
37 25 17 13.9 349.648 0.9 −0.15 2.97772

(continued)

180 A. A. Jebur et al.

Input variables Output variables

Case no. PI

Dry unit
weight
(kN/m3)

Water
content
ωo (%)

Confining
stress
(kN/m2) Rf n log k

38 25 17.33 16.9 349.648 0.95 0 2.6721
39 23 15.8 20.8 349.648 0.88 0.44 1.87506
40 23 16.8 14.8 349.648 0.84 −0.19 2.92428
41 23 16.2 17.4 349.648 0.87 0.6 2.43136
42 23 16 14.2 349.648 0.83 −0.36 3.04139
43 23 16.71 17.5 349.648 0.87 0.15 2.61278
44 27 15.68 24 322.752 0.86 0.43 1.75587
45 18 15.96 22.9 215.168 0.9 0.43 2.04139
46 20 15.86 22.7 430.336 0.89 0.27 2
47 24 15.7 23.9 430.336 0.97 0.54 2.20412
48 24 15.83 22.7 430.336 0.91 0.46 2.11394
49 24 15.5 22.7 430.336 0.85 0.41 1.72428
50 26 15.62 23.4 860.672 0.95 0 2.38021
51 24 17.19 18.1 860.672 0.93 0 2.20412
52 18 18.38 12.2 403.44 0.79 0.16 2.17609
53 20 17.75 13 823 0.85 0.17 2.64345
54 19 18.54 13.1 823 0.86 0.34 2.64345
55 19 18 16.2 392.681 0.91 0.94 2.04139
56 19 17.96 16.6 274.339 0.77 0.71 1.82607
57 19 17.65 17.3 279.718 0.65 0.37 1.5682
58 19 17 16.2 946.739 0.98 1.06 1.85126
59 19 14.4 28.8 215.168 0.89 0.21 1.96379
60 38 15.73 31.1 193.651 0.65 0 1.32222
61 36 14.77 28.6 193.651 0.79 0.02 1.82607
62 45 10.63 26.5 215.168 0.77 0.14 1.81291
63 36 14.45 27.4 860.672 0.91 0.72 1.5563
64 36 14.52 24.4 860.672 0.89 0.66 1.716
65 11 19.72 9.6 1452.38 0.93 −0.08 3.59106
66 18 20.17 8.3 107.584 0.64 0.37 2.70757
67 16 16.87 11.5 215.168 0.9 −0.68 2.81291
68 16 17.46 14.3 376.544 0.93 −0.14 2.82607
69 16 17.45 16.8 376.544 0.93 0.1 2.63347
70 16 18.04 11.5 376.544 0.92 −0.74 3.38021
71 16 18.36 14.5 215.168 0.97 −0.3 3.30103
72 16 17.41 8.71 376.544 0.94 −1.1 3.94939
73 16 19 11.7 376.544 0.95 −0.28 3.69897
74 4 18.05 12.1 207.5 0.95 0.4 2.64345
75 4 17.1 12.1 207.5 0.89 0.26 2.30103

(continued)

8 New Applications of a Supervised Computational Intelligence (CI). . . 181

Input variables Output variables

Case no. PI

Dry unit
weight
(kN/m3)

Water
content
ωo (%)

Confining
stress
(kN/m2) Rf n log k

76 4 16.15 12.1 207.5 0.85 0.25 2.04139
77 4 15.2 12.1 207.5 0.8 0.25 1.87506
78 4 11.59 12.1 207.5 0.55 0.95 1.20412
79 15 15.67 21 207.5 1 0.45 2.07918
80 15 14.85 21 207.5 0.94 0.54 1.87506
81 15 14.02 21 207.5 0.9 0.6 1.69897
82 15 13.2 21 207.5 0.87 0.66 1.54407
83 15 10.06 21 207.5 0.75 0.95 1.20412

References

1. Abad, S., Yilmaz, M., Armaghani, D. J., & Tugrul, A. (2018). Prediction of the durability of
limestone aggregates using computational techniques. Neural Computing and Applications, 29,
423–433.

2. Douma, O. B., Boukhatem, B., Ghrici, M., & Tagnit-Hamou, A. (2017). Prediction of
properties of self-compacting concrete containing fly ash using artificial neural network.
Neural Computing and Applications, 28, S707–S718.

3. Shirazi, A. Z., & Mohammadi, Z. (2017). A hybrid intelligent model combining ANN and
imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater
environment. Neural Computing and Applications, 28, 3455–3464.

4. Millie, D. F., Weckman, G. R., Young II, W. A., Ivey, J. E., Carrick, H. J., & Fahnenstiel,
G. L. (2012). Modeling microalgal abundance with artificial neural networks: Demonstration
of a heuristic ‘grey-box’ to deconvolve and quantify environmental influences. Environmental
Modelling and Software, 38, 27–39.

5. Jebur, A. A., Atherton, W., Al Khaddar, R. M., & Loffill, E. (2018b). Settlement prediction of
model piles embedded in sandy soil using the Levenberg–Marquardt (LM) training algorithm.
Geotechnical and Geological Engineering, 36(5), 2893–2906.

6. Tarawneh, B. (2017). Predicting standard penetration test N-value from cone penetration test
data using artificial neural networks. Geoscience Frontiers, 8(1), 199–204.

7. Moayedi, H., & Rezaei, A. (2017). An artificial neural network approach for under-
reamed piles subjected to uplift forces in dry sand. Neural Computing and Applications.
https://doi.org/10.1007/s00521-017-2990-z

8. Singh, G., & Walia, B. S. (2017). Performance evaluation of nature-inspired algorithms for
the design of bored pile foundation by artificial neural networks. Neural Computing and
Applications, 28, 289–298.

9. Alizadeh, B., Najjari, S., & Kadkhodaie-Ilkhchi, A. (2012). Artificial neural network modeling
and cluster analysis for organic facies and burial history estimation using well log data: A
case study of the South Pars Gas Field, Persian Gulf, Iran. Computers and Geosciences, 45,
261–269.

10. Mohammed, M. A., Ghani, M. K. A., & Hamed, R. I. (2017). Analysis of an electronic methods
for nasopharyngeal carcinoma: Prevalence, diagnosis, challenges and technologies. Journal of
Computational Science, 21, 241–254.

11. Tarawneh, B. (2013). Pipe pile setup: Database and prediction model using artificial neural
network. Soils and Foundations, 53(4), 607–615.

http://dx.doi.org/10.1007/s00521-017-2990-z

182 A. A. Jebur et al.

12. Yadav, A. K., Malik, H., & Chandel, S. S. (2014). Selection of most relevant input parameters
using WEKA for artificial neural network based solar radiation prediction models. Renewable
and Sustainable Energy Reviews, 31, 509–519.

13. Feng, Y., Barr, W., & Harper, W. F. (2013). Neural network processing of microbial fuel
cell signals for the identification of chemicals present in water. Journal of Environmental
Management, 120, 84–92.

14. Jaeel, A. J., Al-wared, A. I., & Ismail, Z. Z. (2016). Prediction of sustainable electricity
generation in microbial fuel cell by neural network: Effect of anode angle with respect to flow
direction. Journal of Electroanalytical Chemistry, 767, 56–62.

15. Nguyen-Truong, H. T., & Le, H. M. (2015). An implementation of the Levenberg–Marquardt
algorithm for simultaneous-energy-gradient fitting using two-layer feed forward neural net-
works. Chemical Physics Letters, 629, 40–45.

16. Kriesel, D. (2011). Brief introduction to neural networks [Online]. University of Bonn, Ger-
many. Retrieved July 20, 2018, from http://www.dkriesel.com/_media/science/neuronalenetze-
en-zeta2-2col-dkrieselcom.pdf.

17. Jebur, A. A., Atherton, W., & Al Khaddar, R. M. (2018a). Feasibility of an evolutionary
artificial intelligence (AI) scheme for modelling of load settlement response of concrete piles
embedded in cohesionless soil. Ships and Offshore Structures, 13(7), 705–718.

18. Chokshi, P., Dashwood, R., & Hughes, D. J. (2017). Artificial Neural Network (ANN)
based microstructural prediction model for 22MnB5 boron steel during tailored hot stamping.
Computers and Structures, 190, 162–172.

19. Caudill, M. (1988). Neural networks primer. Part III. AI Expert, 3(6), 53–59.
20. Ismail, A., & Jeng, D. S. (2011). Modelling load settlement behaviour of piles using High-

Order Neural Network (HON-PILE model). Engineering Application of Artificial Intelligence,
24(5), 813–821.

21. Al-Janabi, K. R. (2006). Laboratory leaching process modeling in gypseous soils using
Artificial Neural Networks (ANNs). PhD thesis, Building and Construction Engineering
Department, University of Technology, Iraq.

22. Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6, 46–51.
23. Wong, K. S., & Duncan, J. M. (1974). Hyperbolic stress–strain parameters for nonlinear

finite element analyses of stresses and movements in soil masses. La Jolla, CA: College of
Engineering, Office of Research Services, University of California.

24. Abdellatif, M. E. M. (2013). Modelling the impact of climate change on urban drainage system.
PhD thesis, Faculty of Engineering and Technology, Liverpool John Moores University,
Liverpool, UK.

25. Jebur, A. A., Atherton, W., Alkhadar, R. M., & Loffill, E. (2017). Piles in sandy soil: A
numerical study and experimental validation. Procedia Engineering, 196, 60–67.

26. Boscardin, M. D., Selig, E. T., Lin, R.-S., & Yang, G.-R. (1990). Hyperbolic parameters for
compacted soils. Journal of Geotechnical Engineering, 116, 88–104.

http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf

Index

A
Artificial neural networks (ANNs)

data preprocessing, 146
failure ratios, 171, 173, 174
hyperbolic nonlinear soil stress-

strain parameter prediction
(see Hyperbolic nonlinear soil
stress-strain parameter prediction)

interconnected layers, 145
internal network parameters, 174
logarithm of modulus number, 171, 172,

174
model equation for log k, 167–169
model equation for Rf , 169–171
stress–strain relationship, 171, 173, 174
testing set, 146
trained model, 146

B
Bellman–Ford algorithm, 40–42
Breadth-first search (BFS), 49

C
Canonical polyadic decomposition (CPD), 63,

64
CBF, see Content-based filtering
CF, see Collaborative filtering
Class drift, 23–25, 31–34
Class imbalanced ratio, 25
Collaborative filtering (CF)

activation function, 136
advantage, 125

cosine similarity, 124
flow diagram, 135
generalized matrix factorization, 122
with LDA, 129–130, 141
limitations, 122
NN parameters, 135
output layer weights, 136
serendipitous problem, 124
user–item rating matrix, 124
user–tweet preference matrix, 122, 135
user–user similarity matrix, 122, 135

Columnwise Coordinate Descent (CCD)
method, 71

Concordance index (C-index), 88–93, 96–98
Conference paper case study, 77–80
Content-based filtering (CBF)

advantages, 124, 125
flow diagram, 134
item-attribute matrix, 123
with LDA, 128–129, 140
limitation, 122
topic–Tweet distribution matrix, 134
user–item matrix, 123
user–tweet preference matrix, 122
user–user similarity matrix, 122

Context Comparison (CC) method, 105,
114–117

Cox proportional hazards model (Cox PHM)
censoring percentage, 92–94
hazard ratio, 89–91
non-linear pattern, 90, 91
performance measures, 89, 90
sample size effect, 93–96

© Springer Nature Switzerland AG 2020
M. W. Berry et al. (eds.), Supervised and Unsupervised Learning for Data Science,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-22475-2

183

https://doi.org/10.1007/978-3-030-22475-2

184 Index

D
Data mining, 4, 5
Data overflow, 23–26
Decision tree, 10–11
�−stepping algorithm, 41–43
Dial’s algorithm, 41
Dijkstra’s algorithm, 40–42
Discard-after-learn concept

classification
class drift, 24–25
class imbalanced ratio, 25
data overflow, 24
MHEF (see Malleable hyper-ellipsoid

function (MHEF))
clustering

class imbalance ratio, 25
data overflow, 25
dead data removal, 25
MHEF (see Malleable hyper-ellipsoid

function (MHEF))
Dynamic imbalance ratio, 23, 24, 35
Dynamic stratum, 24, 31, 36

E
EBSCO databases, 5, 6, 8

F
First-in-first-out (FIFO) queue, 41

G
Generalized matrix factorization (GMF), 122,

131–132, 135
Grade-level learning system

closest words/synonyms, 109, 110
parameters, 111
synclustering, 110, 111
word line, 112, 113
word palm, 111, 112
WSC candidate, 112

Graph500, 42, 43, 50, 51, 53–55

H
Hadoop systems, 40
Hyperbolic nonlinear soil stress-strain

parameter prediction
algorithm of error, 148–149
cross-validation, 150
database, 147, 175–178
data processing, 150
effect of momentum, 155, 160

error back-propagation algorithm, 147, 154
error feed-forward back-propagation

technique, 147
failure ratio, 155, 158–159
first-order gradient descent technique, 154
F -test, 152
hidden layer nodes, 154, 155
hyperbolic tangent (tanh) transfer function,

161
learning rates, 147, 160, 161
model inputs and outputs, 149, 179–181
modulus number, 155–157
momentum term, 147
multilayer back-propagation, 147
Neuframe Version 4.0, 147
null hypothesis test, 150, 151, 153
parametric study, 162–165
RMSE value, 154, 155
scaling of data, 152, 154
sensitivity analysis, 164, 166–167
soil–structure design process, 147
statistical parameters, 152
training, testing, and validation sets, 150
t-test, 152
unconsolidated undrained conditions,

152

I
Incremental learning, 23

K
Kawamae’s model, 67
k-means algorithms, 14–15
k-nearest neighbor, 15

L
Large-scale graphs, 39
Latent Dirichlet allocation (LDA), 122

approximation algorithms, 128
collaborative filtering, 129–130, 141
content-based filtering, 128–129, 140
Dataset, 137, 138
generative process, 127
graphical model, 127
joint probability distribution, 127
latent topics, 126
mathematical term, 127
mean absolute error, 138, 139
posterior distribution, 128
probabilistic graphical model, 127
sLDA, 127

Index 185

Latent Semantic Analysis (LSA)
advantages, 104
CC method, 105
cognitive tasks, 104
description, 103
sense discovery

experimentation parameters, 108–109
grade-level learning system, 109–113
synclustering, 105, 108
target words, 109

sense identification
CC method, 114, 117
correctly identified word senses, 115,

116
description, 113
downstream sense, 115
experimentation parameters, 114, 115
synclustering, 116
word bank, 115
word palm, 116, 117

SMC, 105–108
unsupervised based learning system, 104
visual representation, 103, 104

LDA, see Latent Dirichlet allocation
Literary writing, 60
LSA, see Latent Semantic Analysis

M
Malleable hyper-ellipsoid function (MHEF)

classification of streaming data, 26
discard-after-learn concept

arbitrary class drift, 31–34
center and covariance matrix, 32
clustering of streaming data, 27–28
to expired data, 34–35
schematic diagram, 27
sequence of capturing data, 32, 33
size of removed chunk, 33

merging covariance matrix, 30
recursively updating center, 29
structure, 28–29
time and space complexities, 31
updated covariance matrix, 29–30

Mean absolute error (MAE), 138, 139
MHEF, see Malleable hyper-ellipsoid function

N
Naïve Bayes algorithm, 11–13
Natural language processing, 5
Neuframe Version 4.0, 147
Non-negative tensor decomposition, see

Textual influence modeling

O
One-pass learning

classification
class drift, 24–25
class imbalanced ratio, 25
data overflow, 24
MHEF (see Malleable hyper-ellipsoid

function (MHEF))
clustering

class imbalance ratio, 25
data overflow, 25
dead data removal, 25
MHEF (see Malleable hyper-ellipsoid

function (MHEF))

P
Parallel SSSP, 40

cache-like optimization, 48–49
direction-optimization, 49
for distributed memory systems, 45
heuristic � increment, 49
1D layout, 50
with 2D graph layout, 45–48

Pattern recognition, 4
Plasticity index (PI), 149, 162–164, 174
Preferred Reporting Items for Systematic

Reviews and Meta-Analyses
(PRISMA) tool, 5, 7, 8

Principal component analysis (PCA), 63, 64
ProQuest central databases, 5–8

R
Real-world graph characteristics, 39
Recommender system (RS)

CBF (see Content-based filtering)
CF (see Collaborative filtering)
data preparation, 133–134
e-commerce websites, 123
generalized matrix factorization, 122

description, 131
limitation, 131
mathematical description, 131
neural network, 132
zero values, 131

item-attribute matrix, 123
non-personalized recommendation, 121
personalized recommendation, 121
prediction step, 136–137
Twitter

collaborative personalized tweet
recommendation, 126

followers, 125

186 Index

Recommender system (RS) (cont.)
following, 125
LDA (see Latent Dirichlet allocation)
retweeting, 125
review recommendations, 122
topic–Tweet distribution, 125–126
tweeting, 122
Tweets, 125
user–topic distribution, 125–126

user–item matrix, 123, 124
user–tweet preference matrix, 122

Reinforcement learning techniques, 15
RMAT random graph model, 50
RS, see Recommender system

S
Semantic mean clustering (SMC), 105–108
Single-source shortest path (SSSP) algorithms

advantages, 53, 54
algorithm and communication cost

analysis, 51, 52
applications, 40
Bellman–Ford algorithm, 40–42
breakdown communication time, 53, 56
communication cost analysis, 53, 55
�−stepping algorithm, 41–43
Dial’s algorithm, 41
Dijkstra’s algorithm, 40–42
distributed cache-like optimization, 40
edge relaxation, 41
experimental setup, 50
FIFO queue, 41
parallel environments (see Parallel SSSP)
processing phases and edge relaxations, 42
source vertex, 40
two-dimensional graph layout, 40, 43–45
vertex relaxation, 41

Singular value decomposition (SVD), 63
SSSP algorithms, see Single-source shortest

path algorithms
Stanford Large Network Dataset Collection

(SNAP), 50
StarCluster, 50
Supervised LDA (sLDA), 127
Support vector machines (SVMs) algorithm,

13–14
Survival least square support vector machine

(SURLS-SVM)
backward elimination, 88, 98
censored state, 88
for cervical cancer prediction, 97
C-index, 88–93, 96–98
Cox PHM

censoring percentage, 92–94
hazard ratio, 89–91
non-linear pattern, 90, 91
performance measures, 89, 90
sample size effect, 93–96

feature selection, 88, 97
for health data application, 89, 98–99
prognostic index, 97
survival data analysis, 86–88
survival time, 88
tuning parameters, 89

Synclustering, 108
Systematic review methodology, 5

T
Tamara Kolda’s tutorial, 61
Textual influence modeling

algorithm, 69
computational stylistics, 61
conference paper case study, 77–80
constraining vocabularies, 76–77
construction, 69
corpus of documents, 66
decomposed document, 65
elements of style, topics, phrases/ideas, 60
factor classification, 73–75
Kawamae’s model, 67
literary writing, 60
marker words, 61
model input, 68
model of target document, 66
model output, 68
n-grams, 66–68
software packages, 76
sought-after semantic model, 66
T-distribution sampling, 67
tensors and decompositions

CANDECOMP, 63
CCD method, 71
construction, 69–70
CPD, 63, 64
extract factors, 72
factor analysis, 61
L1 norm, 72
L2 norm, 72
of m modes, 62
3-mode tensor, 72, 73
non-negative factorization, 71
non-zero elements, 73
notion of tensor rank, 63
PARAFAC, 63
polyadic decomposition, 61–62
principal component analysis, 63, 64

Index 187

product representations, 62
rank-1 tensors, 71
SVD, 63
Tamara Kolda’s tutorial, 61
text documents, 65
trial and error, 73
Tucker decomposition, 63, 64

Tucker decomposition, 63, 64
Twitter

collaborative personalized tweet
recommendation, 126

followers, 125
following, 125
LDA (see Latent Dirichlet allocation)
retweeting, 125
review recommendations, 122
topic–Tweet distribution, 125–126
tweeting, 122
Tweets, 125
user–topic distribution, 125–126

W
Word sense disambiguation (WSD)

coarse-grain senses, 102
description, 101
dictionary/knowledge-based methods, 103
domain-specific vocabulary, 102
fine-grain senses, 102
history, 102
homographs, 102
LSA (see Latent Semantic Analysis)
semisupervised/minimally supervised

methods, 103
sense discovery, 102
sense identification, 103
sense-tagging data, 103
supervised methods, 103
unsupervised methods, 103
word bank, 102

	Preface
	Contents
	Part I Algorithms
	1 A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science
	1.1 Introduction
	1.1.1 Motivation and Scope
	1.1.2 Novelty and Review Approach

	1.2 Search Results
	1.2.1 EBSCO and ProQuest Central Database Results
	1.2.2 Distribution of Included Articles

	1.3 Discussion
	1.3.1 Decision Tree
	1.3.2 Naïve Bayes
	1.3.3 Support Vector Machine
	1.3.4 k-Means Algorithms
	1.3.5 Semisupervised and Other Learners

	1.4 Conclusion and Future Work
	References

	2 Overview of One-Pass and Discard-After-Learn Conceptsfor Classification and Clustering in Streaming Environmentwith Constraints
	2.1 Introduction
	2.2 Constraints and Conditions
	2.3 Concept of One-Pass and Discard-After-Learn for Classification and Clustering
	2.4 Structure of Malleable Hyper-ellipsoid Function
	2.5 Updating Malleable Hyper-ellipsoid Function
	2.5.1 Recursively Updating Center
	2.5.2 Recursively Updating Covariance Matrix
	2.5.3 Merging Two Covariance Matrices

	2.6 Analysis of Time and Space Complexities of Updating Computation
	2.7 Applying Discard-After-Learn to Arbitrary Class Drift
	2.8 Applying Discard-After-Learn to Expired Data in Clustering
	2.9 Discussion
	2.10 Conclusion
	References

	3 Distributed Single-Source Shortest Path Algorithms with Two-Dimensional Graph Layout
	3.1 Introduction
	3.2 Overviews
	3.2.1 Single-Source Shortest Path Algorithms
	3.2.2 Two-Dimensional Graph Layout

	3.3 Novel Parallel SSSP Implementations
	3.3.1 General Parallel SSSP for Distributed Memory Systems
	3.3.2 Parallel SSSP with 2D Graph Layout
	3.3.3 Other Optimizations
	3.3.4 Summary of Implementations

	3.4 Performance Results and Analysis
	3.4.1 Experimental Setup
	3.4.2 Algorithm and Communication Cost Analysis
	3.4.3 Benefits of 2D SSSP Algorithms
	3.4.4 Communication Cost Analysis

	3.5 Conclusion and Future Work
	References

	4 Using Non-negative Tensor Decomposition for Unsupervised Textual Influence Modeling
	4.1 Introduction
	4.2 Modeling Influence
	4.2.1 Tensors and Decompositions
	4.2.2 Representing Documents as Tensors
	4.2.3 Modeling Influence
	4.2.4 Summary of Influence Modeling Procedure

	4.3 Related Work
	4.4 Influence Model
	4.4.1 Approach Overview and Document Preparation
	4.4.2 Tensor Construction
	4.4.3 Tensor Decomposition
	4.4.4 Factor Classification

	4.5 Implementation
	4.5.1 Constraining Vocabularies

	4.6 A Conference Paper Case Study
	4.7 Conclusions and Future Work
	References

	Part II Applications
	5 Survival Support Vector Machines: A Simulation Study and Its Health-Related Application
	5.1 Introduction
	5.2 SURLS-SVM for Survival Analysis
	5.3 Data Description and Methodology
	5.4 Empirical Results
	5.4.1 Effect of Features Dimension and Sample Size
	5.4.2 Effect of Censoring Percentage
	5.4.3 Effect of Sample Size
	5.4.4 Discussion of the Results of the Simulation
	5.4.5 Application to Health Data

	5.5 Conclusion
	References

	6 Semantic Unsupervised Learning for Word Sense Disambiguation
	6.1 Introduction
	6.1.1 Word Sense Disambiguation
	6.1.2 History and Approaches

	6.2 Latent Semantic Analysis
	6.3 LSA-WSD Approach
	6.3.1 Sense Discovery
	6.3.2 Sense Identification
	6.3.3 Semantic Mean Clustering

	6.4 Sense Discovery Using Synclustering
	6.4.1 Experimentation Parameters
	6.4.2 Observations and Results

	6.5 Sense Identification Using the Context Comparison Method
	6.5.1 Experimentation Parameters
	6.5.2 Observations and Results

	6.6 Conclusion and Future Research
	References

	7 Enhanced Tweet Hybrid Recommender System Using Unsupervised Topic Modeling and Matrix Factorization-Based Neural Network
	7.1 Introduction
	7.2 Related Works
	7.2.1 Recommender System
	7.2.2 Twitter
	User Interest Prediction in Microblog Using the Recommendation Method
	Collaborative Personalized Tweet Recommendation

	7.2.3 Latent Dirichlet Allocation
	7.2.4 Recommender System with LDA
	Content-Based Filtering with LDA
	Collaborative Filtering with LDA

	7.2.5 Generalized Matrix Factorization
	Matrix Factorization
	Neural Network

	7.3 The Proposed Method
	7.3.1 Data Preparation
	7.3.2 Content-Based Filtering Part
	7.3.3 Collaborative Filtering Part
	7.3.4 Prediction Step

	7.4 Experimental Results
	7.4.1 Dataset
	7.4.2 Evaluation Metrics
	7.4.3 Experimental Results

	7.5 Discussion
	7.5.1 Comparison Between the Proposed Method and User Interest Prediction in Microblog Using the Recommendation Method (CBF with LDA)
	7.5.2 Comparison Between the Proposed Method and the Improved Collaborative Filtering Algorithm Using the Topic Model (CF with LDA)

	7.6 Conclusion
	References

	8 New Applications of a Supervised Computational Intelligence (CI) Approach: Case Study in Civil Engineering
	8.1 Introduction
	8.2 Prediction of Hyperbolic Nonlinear Soil Stress–Strain Parameters (log k and Rf) by a Supervised Artificial Neural Network (ANN)
	8.2.1 Development of ANN Models
	8.2.2 Model Inputs and Outputs
	8.2.3 Preprocessing and Data Division
	8.2.4 Scaling of Data
	8.2.5 Model Architecture, Optimization, and Stopping Criteria
	8.2.6 Parametric Study
	8.2.7 Sensitivity Analysis of the ANN Model Inputs

	8.3 ANN Model Equations
	8.3.1 ANN Model Equation for log k
	8.3.2 ANN Model Equation for Rf

	8.4 Validity of the ANN Models Equation
	8.5 Comparison Between Measured and Predicted Stress–Strain Relationship
	8.6 Concluding Remarks
	B.1 Appendix 2
	References

	Index

