
Chapter 7
Application of TD Based Unsupervised
FE to Bioinformatics

May my wish never come true.
Rikka Takarada, SSSS.GRIDMAN, Season 1, Episode 12

7.1 Introduction

Because of continuous price reduction of multiomics data measurements, including
gene expression, promoter methylation, SNP, histone modification, and miRNA
expression, more number of experimental conditions come to be considered. For
example, if gene expression is measured for various tissues of patients, gene
expression has better to be formatted, not in matrix, but in tensor, as patients vs
tissue vs genes. In this case, TD rather than PCA is a suitable technology to apply.
On the other hand, in the previous chapter, we aimed various integrated analysis,
e.g., miRNA and mRNA expression, mRNA expression and methylation, mRNA
expression of two species. If genes or features are shared in the integrated analysis,
generation of case I or II tensor and application of TD to it is a suitable treatment.
In the following, we introduce some application of TD based unsupervised FE to
either of these cases.

7.2 PTSD Mediated Heart Diseases

The first example to be processed as tensor form is PTSD mediated heart dis-
eases. Although this disease has already been analyzed in the previous chapter
(Sect. 6.4.1), the data set analyzed there includes only one tissue, heart. Nonetheless,
if one would like to understand how PTSD mediates heart disease, we need to
know gene expression of both heart and brain. Fortunately, there is a such kind
of data set. In this section, I would like to demonstrate the usefulness of TD based
unsupervised FE applied to gene expression of multiple tissues aiming to understand
PTSD mediated heart disease based upon the recent publication [24].
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Table 7.1 Samples used in this study

Stress, days 5 10 5 10

Rest period 24 h 1.5 w 24 h 6w 24 h 1.5 w 24 h 6w

AY 3,2 5,4 3,4 3,4 HC 3,5 4,5 5,4 4,5

MPFC 4,5 5,5 3,4 4,4 SE 3,2 2,3 3,3 3,3

ST 5,5 5,5 5,4 4,4 VS 5,5 5,5 3,4 5,4

Blood 5,5 5,5 4,5 4,5 Heart 5,5 4,5 5,5 5,5

Hemibrain 5,5 4,5 5,5 5,5 Spleen 5,5 5,5 5,4 5,5

Numbers before/after comma are control/treated samples. h hours, w weeks, AY amygdala, HC
hippocampus, MPFC medial prefrontal cortex, SE septal nucleus, ST striatum, VS ventral striatum

The data set analyzed is composed of the following samples (Table 7.1). It
includes ten tissues under eight experimental conditions. This data set is formatted
as a five-mode tensor, xij1j2j3j4 ∈ R

43699×2×10×2×3, of the ith probe, subjected to
j1th treatment (j1 = 1: control, j1 = 2: treated [stress-exposed] samples), in the
j2th tissue [j2 = 1: amygdala (AY), j2 = 2: hippocampus (HC), j2 = 3: medial
prefrontal cortex (MPFC), j2 = 4: septal nucleus (SE), j2 = 5: striatum (ST),
j2 = 6: ventral striatum (VS), j2 = 7: blood, j2 = 8: heart, j2 = 9: hemibrain,
j2 = 10: spleen], with the j3th stress duration (j3 = 1: 10 days, j3 = 2: 5 days) and
j4th rest period after application of stress (j4 = 1: 1.5 weeks, j4 = 2: 24 h, j4 = 3:
6 weeks). Zero values are assigned to missing observations (e.g., measurements at
6 weeks after a 5-day period of stress are not available).

HOSVD algorithm (Fig. 3.8) is applied to xij1j2j3j4 as

xij1j2j3j4 =
43699∑

�5=1

2∑

�1=1

10∑

�2=1

2∑

�3=1

3∑

�4=1

G(�1, �2, �3, �4, �5)u
(j1)
�1j1

u
(j2)
�2j2

u
(j3)
�3j3

u
(j4)
�4j4

u
(i)
�5i

(7.1)

where u
(i)
�5i

∈ R
43699×43699, u

(j1)
�1j1

∈ R
2×2, u

(j2)
�2j2

∈ R
10×10, u

(j3)
�3j3

∈ R
2×2,

and u
(j4)
�4j4

∈ R
3×3 are singular value vectors and G(�1, �2, �3, �4, �5) ∈

R
43699×2×10×2×3 is a core tensor.
We need to specify which singular value vector attributed to genes, u(i)

�1
, is used

for gene selection. For this purpose, we investigate other singular value vectors,
u(jk)

�k
, 1 ≤ k ≤ 4. One of the important points is tissue specificity. What I would like

to find is a set of genes expressive in common between heart and brain. Because
1 ≤ j ≤ 6 and j = 9 correspond to brain and j = 8 corresponds to heart, we
need to find u(j2)

�2
expressive in common j = 1, 2, · · · , 6, 8, 9. Figure 7.1 shows

the singular value vectors, u(j2)
�2

, 1 ≤ �2 ≤ 10. Although no u(j2)
�2

fully satisfies

this requirement, u(j2)

4 relatively fulfills this requirement. u(j2)

4 are negatively signed
in common for j = 1, 2, 8, 9 that correspond to AY, HC, heart, and hemibrain.
Especially, because AY and HC are very important in PTSD [14], it is promising
that we can get singular value vector expressive in common AY, HC, and heart.
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Fig. 7.1 Singular value vectors, u(j2)
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, �1 = 1, 2. Red horizontal broken lines show baseline

The next important requirement is that control and stressed samples should be
oppositely expressive. This means, u(j1)

�11 = −u
(j1)

�12 . This requirement is easy to fulfill

because u
(j1)

�11 = −u
(j1)

�12 or u
(j1)

�11 = u
(j1)

�12 must be satisfied when there are only two

classes and mean is zero. Figure 7.2 shows the singular value vectors, u(j1)
�1

, �1 =
1, 2. As expected, �1 = 2 corresponds to the reversed sign between control and
stressed samples.

Because there are no known pre-defined desirable properties for experimental
conditions, i.e. stress and rest period, we should find G(2, 4, �3, �4, �5) with the
larger absolute values. Table 7.2 shows the top ranked G with larger absolute values.
Then we can find that �5 = 1, 4, 11 are associated with G(2, 4, �3, �4, �5) with the
larger absolute values. Thus we decided to attribute P -values using �5 = 1, 4, 11
with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>
∑

�5=1,4,11

(
u�5i

σ�5

)2
⎤

⎦ . (7.2)

P -values are corrected by BH criterion and 801 probes associated with adjusted
P -values less than 0.01 are selected.
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Table 7.2 Top-ranked
G(�1 = 2, �2 = 4, �3, �4, �5)

with greater absolute values

�3 �4 �5 G(2, 4, �3, �4, �5)

1 1 11 −35.0

1 1 1 −30.8

2 2 1 −30.3

2 3 4 −30.0

2 3 1 28.7

2 2 4 28.5

Table 7.3 Thirteen
combinations of tissues and
experimental conditions
where the selected 801 probes
are differentially expressed
between stress-exposed and
control samples

Stress duration 10 days 5 days

Rest period 24 h 6 weeks 24 h 1.5 weeks

AY © ©
HC © © ©
MPFC ©
Heart © ©
Hemibrain © ©
Spleen © © ©

MPFC: medial prefrontal cortex. ©: associated with
P -values that are computed by t test, adjusted by BH
criterion and less than 0.01

The first validation of selected 801 probes is to see if these are expressed
distinctly between control and stressed samples, selectively on only heart and
brain. In order to confirm this, we apply t test to the selected 801 probes between
control and stressed samples for all combination of tissues, rest and stressed period.
P -values are corrected by BH criterion and conditions associated with adjusted
P -values less than 0.01 are considered to be expressed distinctly and significantly
between control and stressed samples. Table 7.3 shows the results. The selected 801
genes are expressed distinctly between control and stressed samples, selectively in
heart, HC, and AY (it is also in spleen, because it is oppositely expressed toward
heart, HC, and AY as shown in Fig. 7.1).

Here we would like to emphasize the difficulty of gene selection in this data set.
As mentioned above, what we are aiming is quite abstract, i.e., “genes expressive
in common between brain and heart as well as distinctly between control and
stressed samples.” As a result, we realize that common expression between AY,
HC, and heart is possible (with the investigation of u(j2)

4 in Fig. 7.1). Generally, it is
impossible to know this combination in advance. When no clear purpose is given in
advance, supervised methods cannot perform well while unsupervised methods can.

In order to see how well other conventional supervised methods perform, we test
three methods, SAM, limma, and categorical regression analysis. The first example
to be compared with TD based unsupervised FE is categorical regression analysis.
For the data set shown in Table 7.1, the only possible way to apply categorical
regression is to treat it as 80 classes (10 tissues vs four experimental conditions vs
control and stressed samples). Although it is better to consider the pair of control and
stressed samples, it is impossible. Typically, although ratio might be taken, because
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Table 7.4 Results of gene selection based on categorical regression

Adjusted P -values P > 0.01 P < 0.01 P > 0.05 P < 0.05 P > 0.1 P < 0.1

Number of probes 2222 41,157 1986 41,713 1839 41,860

P -values are adjusted by BH criterion

Table 7.5 Results by SAM Delta p0 False Called FDR

1 0.1 0.011 38,538.08 43,379 0.0094

2 11.4 0.011 0.02 5424 3.9e−08

3 22.7 0.011 0 323 0

4 34.0 0.011 0 40 0

5 45.2 0.011 0 7 0

6 56.5 0.011 0 4 0

7 67.8 0.011 0 2 0

8 79.1 0.011 0 1 0

9 90.3 0.011 0 1 0

10 101.6 0.011 0 1 0

p0 is the ratio of the null hypothesis, FDR corresponds
to the adjusted P -values. Called is the number of genes
that break the null hypothesis. Expected number of false
positives is False × FDR × p0

it is not paired samples, i.e., there is no one-to-one correspondence, we cannot
take ratio. Table 7.4 shows the result of categorical regression analysis. Because of
treatment as 80 classes, genes associated with any kind of distinction are detected
(i.e., associated with significantly small adjusted P -values). As a result, almost all
genes are judged as distinct between some combinations. It is obvious that this result
is not desirable for our purpose, “genes expressive in common between brain and
heart distinctly between control and stressed samples,” at all, because of lack of
specificity. To screen these genes, we need some additional criterion that TD based
unsupervised FE does not require. Thus, TD based unsupervised is more fitted to
the present purpose than categorical regression.

Next, we apply SAM with assuming 80 classes to the data set shown in Table 7.1.
Table 7.5 shows the result of SAM. p0, which represents the contribution of null
hypothesis that no distinction exist among 80 classes, is 1%. This means, almost
all genes are distinctly expressive in either of these combinations. Although FDR
corresponds to the adjusted P -values, it is clear that all genes are associated with
FDR less than 0.01. Although this conclusion itself is coincident with that of
categorical regression, in this sense SAM is not useful to select “genes expressive in
common between brain and heart distinctly between control and stressed samples,”
either.

Finally, we apply limma to the data set shown in Table 7.1. Fortunately, limma
enables us to select genes that are distinct between any pairs of controls and samples.
Thus, we apply limma in two ways. One assumes 80 classes (case A in Table 7.6)
and the other assumes 40 classes (case B in Table 7.6) composed of forty (10
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Table 7.6 Results of gene selection based on limma

Adjusted P -values P > 0.01 P < 0.01 P > 0.05 P < 0.05 P > 0.1 P < 0.1

Case A : not considering differential expression

Number of probes 0 43,379 0 43,379 0 43,379

Case B: considering differential expression

Number of probes 25,992 17,387 17,745 25,634 13,542 29,837

P -values are adjusted by limma itself

Table 7.7 KEGG pathway enrichment by the 457 genes identified by TD based unsupervised FE

Category Term Genes count % P -value Adjusted P -value

KEGG_PATHWAY Ribosome 57 12.8 8.4 × 10−58 1.0 × 10−55

KEGG_PATHWAY Parkinson’s
disease

48 10.8 3.6 × 10−33 2.2 × 10−31

KEGG_PATHWAY Oxidative
phosphorylation

47 10.5 1.7 × 10−32 6.9 × 10−31

KEGG_PATHWAY Alzheimer’s
disease

50 11.2 2.5 × 10−28 7.5 × 10−27

KEGG_PATHWAY Huntington’s
disease

48 10.8 3.6 × 10−26 8.6 × 10−25

KEGG_PATHWAY Cardiac muscle
contraction

30 6.7 2.4 × 10−21 4.8 × 10−20

KEGG_PATHWAY Glycolysis/ glu-
coneogenesis

10 2.2 1.5 × 10−3 2.6 × 10−2

Adjusted P -values are by BH criterion

tissues vs four experimental conditions) pairwise combinations between control and
stress samples. Possibly because of its advanced feature, limma successfully denies
the detection of genes expressive distinct among any pairs of 80 classes (case A).
Nevertheless, limma still detects too many positives in 40 pairwise comparisons
(case B). As expected, because of lack of well-defined screening criterion, three
supervised methods are useless to find “genes expressive in common between brain
and heart as well as distinctly between control and stressed samples.” In conclusion,
none of the three conventional supervised methods are as useful as TD based
unsupervised FE for the present purpose.

Although TD based unsupervised FE successfully identifies genes expressive
distinct between control and stressed samples in tissue specific manner (Table 7.3),
if it is biologically useless, it cannot be considered to be successful. In order
to evaluate selected probes biologically, we try to identify protein coding genes
associated with these 801 probes. Then, we find 457 genes (because of lack of space,
we cannot list all of 457 genes, which is available as Additional file 5 [24], if the
readers are particularly interested in them). We upload 457 genes to DAVID. The
result is quite promising. Table 7.7 shows the enriched KEGG pathway associated
with adjusted P -values less than 0.05. They include four neurodegenerative diseases
as well as one cardiac problem. Thus, they are quite suitable to be candidate genes
that cause PTSD mediated heart diseases as those in Table 6.20 where PTSD
mediated heart disease is investigated by PCA based unsupervised FE.
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7.3 Drug Discovery From Gene Expression

Drug discovery is time-consuming and expensive processes. It starts from preparing
as many small molecules as possible. Then, tries to find one effective to target
diseases by exhausted search. The number of initially prepared molecule can be
104; testing this many number of compounds causes huge amount of money and
long period. If we can reduce the number of initial candidate small molecules to one
tenth, it benefits so much to reduce the time and cost required.

In this sense, the so-called in silico drug discovery develops with much expec-
tation to fulfill this requirement. In silico drug discovery is aiming to identify
candidate small molecules without wet experiments. With making full use of
recently developed computational power, including CPU with high speed comput-
ing, huge storage that can store massive information as well as recently developed
machine learning technique, in silico drug discovery enables us to prepare set of
more promising candidate small molecules as drugs.

Traditionally, there are two main streams of in silico drug discovery. One
is ligand-based drug design [1] (LBDD) and the other is structure-based drug
design [3] (SBDD). LBDD is aiming to identify new candidate drug compounds
based upon the similarity with known drugs. LBDD has huge varieties depending
upon how similarity is defined. The advantage of LBDD is that it has more trust, i.e.
larger probability to find true drug compounds, and requires smaller computational
resources than SBDD. The disadvantage of LBDD is that it requires the information
of known drugs and fails to find new drug candidates that lack similarity with known
drug. On the contrary, SBDD has the advantage that it can predict new candidate
drugs without the information of known drugs. The disadvantage of SBDD is
that it requires massive computation, because it must execute docking simulation
between drug candidate compounds and target proteins. Another disadvantage of
SBDD is that it needs protein tertiary structure to which individual candidate drug
compounds must bind. Experimental measurements of protein tertiary structure
itself are difficult tasks. Although it has become much easier because of the
invention of cryo-electron microscopy [10] than before, it still needs to pay much
amount of money and time. When there are no protein tertiary structures available,
protein tertiary structure itself must be computationally predicted [6]. The prediction
inevitably has inaccuracy that affects the prediction of binding affinity of small
molecules.

In order to compensate these disadvantages of LBDD and SBDD, the third option
is recently proposed: drug design from gene expression [5]. Post-treatment gene
expression can be used to screen candidate compounds for their ability to induce the
target phenotype. This approach is very useful once post-treatment gene expression
is available. In this section, we try to make use of TD based unsupervised FE to
predict new drug target with analyzing post-treatment gene expression [27].

Post-treatment gene expression is obtained from LINCS [20]. L1000 is highly
reproducible, comparable to RNA sequencing, and suitable for computational infer-
ence of the expression levels of 81% of non-measured transcripts. Gene expression
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profile is available in GEO with GEO ID GSE70138. Table 7.8 summarizes the
gene expression profiles. They include 13 cell lines to which 100–300 compounds
(denoted as “all compounds”) are treated. One problem of this data set is that it
includes only 978 genes’ expression profiles, because it is measured by Luminex
scanners. Gene expression profiles in individual cell lines are formatted as tensor,
xijk ∈ R

978×6×K ; i denotes gene (probe), j denotes dose density of drug compound,
and k stands for individual compounds among K total number of compounds
that correspond to “all compounds” in Table 7.8. HOSVD algorithm (Fig. 3.8) is
applied as

xijk =
978∑

�1=1

6∑

�2=1

K∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2i

u
(k)
�3k

(7.3)

where u(i)
�1

∈ R
978, u(j)

�2
∈ R

6, u(k)
�3

∈ R
K , are the singular value vectors, and

G(�1, �2, �3) ∈ R
978×6×K is a core tensor.

The first step is to identify genes whose expression is altered by drug treatment.
In order that, we try to identify which u(j) has monotonic dependence upon dose

Table 7.8 The number of the inferred compounds and inferred genes associated with significant
dose-dependent activity

Cell lines BT20 HS578T MCF10A MCF7 MDAMB231 SKBR3

Tumor Breast

Inferred genes 41 57 42 55 41 46

Inferred compounds 4 3 2 6 5 6

All compounds 110 106 106 108 108 106

Predicted targets 418 576 476 480 560 423

Cell lines A549 HCC515 HA1E HEPG2 HT29 PC3

Tumor Lung Kidney Liver Colon Prostate

Inferred genes 45 46 48 54 50 63

Inferred compounds 8 5 7 2 2 9

All compounds 265 270 262 269 270 270

Predicted targets 428 352 423 396 358 439

Cell lines A375
Tumor Melanoma
Inferred genes 43
Inferred compounds 6
All compounds 269
Predicted targets 421

The target proteins predicted by means of the comparison with the data showing upregulation of
the expression of individual genes (“predicted targets”) are also shown
The full list of inferred genes and predicted targets is available in Additional file 7 [27]. Inferred
compounds are presented in Table 7.9. “All compounds” rows represent the total number of
compounds used for the treatment of each cell line
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density. Figure 7.3 shows u(j)
�2

, 1 ≤ �2 ≤ 3 for 13 cell lines listed in Table 7.8. It

is obvious that u(j)

2 shows almost linear dependence upon dose independent of cell
lines. The next task is to identify G(�1, 2, �3) with larger absolute values in order
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Fig. 7.3 Singular value vectors, u(j)
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, 1 ≤ �2 ≤ 3. Red horizontal broken lines indicates baseline.
Black: �2 = 1, red: �2 = 2, green: �2 = 3
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to decide which u(i)
�1

and u(k)
�3

are used for selecting the combinations of genes and
compounds that commit linear dose dependence. Because

G(�1 ≤ 6, �2 ≤ 6, �3 ≤ 6) =
∑

�1≤6,�2≤6,�3≤6 G(�1, �2, �3)
2

∑
�1,�2,�3

G(�1, �2, �3)2 (7.4)

exceeds 0.95 for almost all cell lines, it is decided to employ (�1 ≤ 6, �2 = 2, �3 ≤
6) components for FE. Nonetheless, in the case of PC3 cells, (�1 ≤ 8, �2 = 2, �3 ≤
8), as an exception, are used for FE because the eighth component is found to have
non-negligible contributions in this cell line.

To identify the genes and compounds associated with a significant dose-
dependent activity, it is assumed that u�1≤6,i and u�3≤6,k follow independent normal
distributions and P -values are attributed to the ith gene and the kth compounds
using a χ2 distribution,

Pi = Pχ2

⎡

⎣>
∑

�1≤6

(
u

(i)
�1i

σ�1

)2⎤

⎦ (7.5)

and

Pk = Pχ2

⎡

⎣>
∑

�3≤6

(
u

(k)
�3k

σ�3

)2⎤

⎦ (7.6)

where σ�1 and σ�3 are the standard deviations of u
(i)
�1i

and u
(k)
�3k

, respectively. For
PC3 cells, �1 ≤ 8 and �3 ≤ 8 are used in the above equations. Pχ2 [> x] is the
cumulative probability that the argument is greater than x assuming a χ2 distribution
with eight degrees of freedom for PC3 cell lines and with six degrees of freedom
for other cell lines. Pi and Pk are adjusted by means of the BH criterion, and
compounds and genes associated with the adjusted P -value lower than 0.01 are
selected as those associated with a significant dose-dependent cellular response.
The number of selected genes and compounds are listed as “inferred genes” and
“inferred compounds” in Table 7.8, respectively. The above process is illustrated in
Fig. 7.4.

The next task is to identify proteins to which selected compounds bind. “inferred
genes” in Table 7.8 do not correspond to the proteins to which selected compounds
bind, because they are the genes whose mRNA expression is altered because of drug
treatment. Usually, mRNA expression of proteins to which selected compounds bind
is not altered because of drug treatment. Thus we need to infer proteins targeted
by drug treatment. In order that, we need additional external information that lists
the genes whose mRNA expression is altered because of a gene perturbation. Then
if “inferred genes” matched with genes mRNA expression is altered because of
the gene perturbation, we infer the perturbed gene as target protein (Fig. 7.5).
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Fig. 7.4 Starting from gene
expression profile formatted
as tensor, xijk , singular value

vectors, u(i)
�1

, u(j)
�2

, and u(k)
�3

,
are obtained. After
identifying �2 = 2 as
associated with linear dose
dependence (see Fig. 7.3),
�1 ≤ 6 and �3 ≤ 6 are
decided to be used for FE
because of larger contribution
defined in Eq. (7.4). Genes i

and compounds k are selected
using
u(i)

�1
, �1 ≤ 6, u(k)

�3
, �3 ≤ 6
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Fig. 7.5 After the drug (red hexagon) treatments, we can detect mRNAs with altered expression
(filled cyan circle) along with those without altered expression (filled green circle). We have no
information about proteins (circled A, B, and C). List of genes with altered expression can be
compared with genes with altered expression when genes A, B, or C is perturbed. Then, we can
identify compounds that might bind to protein A, because the list of genes whose mRNA expression
is altered are common
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There can be multiple resources from which we can retrieve the list of genes
whose mRNA expression is altered because of single gene perturbation. Here we
employ Enrichr [11] that collects multiple data resources in order to perform various
enrichment analyses. After uploading “inferred genes” to Enrichr, we list genes
associated with adjusted P -values less than 0.01 in the category of “Single gene
Perturbations from GEO up.” Their number corresponds to the number of “predicted
targets” in Table 7.8. This strategy is especially efficient for LINCS data set that
includes only expression of 978 genes. Employing the strategy in Fig. 7.5, we can
identify target proteins not included in these 978 genes.

Next we would like to evaluate if our prediction is correct, i.e., if “inferred
compounds” bind to “predicted targets.” In principle, it is impossible to check
the accuracy of our prediction without experiments. Thus, instead of execut-
ing experiments, we compare our prediction with known list of target proteins
of drug compounds. For this purpose, we employ two information resources,
drug2gene.com [19] and DSigDB [33]. Table 7.9 shows the results of Fisher’s exact
test that evaluates overlaps between “predicted targets” and known target proteins
of “inferred compounds.” If P -values computed by Fisher’s exact test is less than
0.05, it is significant (no correction considering multiple comparisons). It is obvious
that in most of the cases, our prediction significantly overlaps with known target
proteins of drug compounds. Thus, TD based unsupervised FE can be used for in
silico drug discovery from gene expression.

It is also interesting that “inferred compounds” are largely overlapped among
cell lines. Because two to nine compounds are identified in each of 13 cell lines,
the total number of identified compounds can be several tens. Nevertheless, the
number of compounds listed in Table 7.9 is as small as 19. In some sense, it might
be an evidence that our strategy is correct. It is reasonable that anti-cancer drugs are
effective to multiple cancers. Thus, large overlap of “inferred compounds” between
distinct cell lines makes sense. On the other hand, analyses based upon distinct
gene expression profiles unlikely results in largely overlapped results without any
biological reasons. Possibly, the result shown in Table 7.9 are trustable.

Although we employed single gene perturbation to infer target proteins from
the list of genes with altered expression caused by drug treatment, any other
database that can describe gene interaction should be usable. As an alternative,
we try “PPI Hub Proteins” in Enrichr instead of “Single gene Perturbations from
GEO up.” The primary difference between “PPI Hub Proteins” and “Single gene
Perturbations from GEO up” is the number of genes included. “PPI Hub Proteins”
includes only a few hundred genes, while “Single gene Perturbations from GEO
up” includes a few thousand genes. This suggests that the results using “PPI Hub
Proteins” might be less significant. Table 7.10 lists the results of Fisher’s exact test
of the comparison between predicted targets based upon “PPI Hub Proteins” and
drug2gene.com database. In contrast to the expectation, all cases have significant
overlap with drug2gene.com. This supports our expectation that any kind of gene–
gene interaction is usable together with TD based unsupervised FE for in silico drug
discovery from gene expression.



Table 7.9 Compound–gene interactions presented in Table 7.8 that significantly overlap with
interactions described in two data sets

Compounds (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Dabrafenib
©
©

Dinaciclib
© © © © © © ©
© © © © © © ©

CGP-60474
© © © © © © © ©
× × × × × × × ©

LDN-193189
© © ©
© © ©

OTSSP167
− − − − −
© © © © ©

WZ-3105
− − − − − − − −
© © © © © © © ©

AT-7519
© © © © ©
© © © © ©

BMS-387032
© © © ©
© © © ©

JNK-9L
©
©

Alvocidib
© © © © © © ©
− − − − − − −

GSK-2126458
− −
− −

NVP-BEZ235
© ©
× ×

Torin-2
× ×
© ©

NVP-BGT226
− − − −
− − − −

QL-XII-47
−
−

Celastrol
©
−

A443654
© ©
© ©

NVP-AUY922
× ©
− −

Radicicol
©
−

For each compound in the table, the upper row: the drug2gene.com data set is used for
comparisons [19], the lower row: the DSigDB data set is used for comparisons [33]. Columns
represent cell lines used in the analysis: (1) BT20, (2) HS578T, (3) MCF10A, (4) MCF7, (5)
MDAMB231, (6) SKBR3, (7) A549, (8) HCC515, (9) HA1E,(10) HEPG2, (11) HT29, (12) PC3,
(13) A375
©: a significant overlap between the data sets (P < 0.05); ×: no significant overlap between
the data sets; –: no data; blank: no significant dose–response relation is identified. The confusion
matrix and a full list of genes chosen in common are available in Additional file 3 [27].
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Table 7.10 A significant overlap demonstrated between compound–target interactions presented
in Table 7.8 and drug2gene.com

Compounds (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

© © ©
CGP-60474 © © © © © © © ©
LDN-193189 ©
AT-7519 © © © © ©
BMS-387032 © © © ©
Alvocidib © © © © © ©
NVP-BEZ235 ©
Celastrol ©
A443654 © ©
NVP-AUY922 © ©
Radicicol ©

In this case, the “PPI Hub Proteins” category in Enrichr is used. Labels (1) to (13) represent the
same cell lines as described in Table 7.9
The full list of confusion matrices and genes chosen in common is available in Additional file
3 [27]

It might be useful to demonstrate how more direct and simple approach fails.
One possible alternative simpler way is to apply linear regression

xijk = aik + bikDj (7.7)

where Dj is the j th dose density and aik and bik are regression coefficients. Then
simply select i and k associated with more significant P -values as in the case of TD
based unsupervised FE. In order to show that it cannot give us the reasonable set of
is and ks, we apply Eq. (7.7) to A375 cell lines ((13) in Tables 7.8, 7.9, and 7.10) as
an example. After correcting P -values that Eq. (7.7) gives by BH criterion, we find
that all compounds have adjusted P -values less than 0.01 with at least one of the
genes while all genes have adjusted P -values less than 0.01 with at least one of the
compounds. Thus, by simply requesting “adjusted P -values less than 0.01” as in the
case of TD based unsupervised FE, we cannot screen either genes or compounds.
We can still try to select “top ranked” genes or compounds. In order to show that
this cannot work well either, we apply two distinct criteria to select “top ranked”
compounds as

• Select top ranked 10 compounds having larger number of genes associated with
adjusted P -values less than 0.01.

• Suppose Pik is P -value that Eq. (7.7) gives. Select top ranked 10 compounds
having smaller

∑
i log Pik .

These two criteria rank compounds with more significant correlation with genes
through dose density in some sense. The result is a bit disappointing (Table 7.11).
Only three of top 10 compounds are chosen in common. This suggests that it is not
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Table 7.11 Compounds selected by P -values that Eq. (7.7) gives, for A375 cell line ((13) in
Tables 7.8, 7.9, and 7.10)

Compounds selected

Criterion 1

chelerythrine chloride, TGX-221, lapatinib, AS-601245, PIK-93, canertinib,
LDN-193189, MK-2206, PF-04217903, DCC-2036
Criterion 2

ALW-II-49-7, AZ20, BI-2536, canertinib, celastrol, chelerythrine chloride,
CHIR-99021, DCC-2036, dovitinib, GSK-1904529A

Bold ones are chosen in common

easy to select compounds in robust way simply based upon P -values that Eq. (7.7)
gives. Thus, TD based unsupervised FE is much better strategy without no additional
criterion than adjusted P -values than selection based upon P -values that Eq. (7.7)
gives.

Before ending this section, I would like to mention briefly why the results of TD
based unsupervised FE differ from that based upon linear regression, Eq. (7.7), so
much in spite of that both TD based unsupervised FE and linear regression try to
find the combinations of genes and compounds associated with dose dependence.
As can be seen in Fig. 7.3, u(j)

2 used for FE is not simple linear function of dose

density. In spite of that, the dependence of u(j)

2 upon dose density is quite universal,
in other words, independent of cell lines. TD is the only method that can successfully
identify this universal (independent of cell lines) functional form. There are no other
ways to find it in advance. This cannot be achieved by any other supervised method,
because any supervised method cannot avoid assuming something contradictory to
this universal functional form. Because of this superiority, TD based unsupervised
FE can achieve good performance shown in Tables 7.9 and 7.10.

7.4 Universarity of miRNA Transfection

miRNA transfection is a popular method that finds miRNA target genes experimen-
tally. Nevertheless, some doubt arises if transfected miRNA can work similar to
endogenous miRNAs [9], because it causes various unexpected effects that cannot
be seen by upregulation of endogenous miRNAs. Because the aim of miRNA trans-
fection experiments is to find miRNA target genes, only genes downregulated by the
transfection are searched. Nevertheless, it is quite usual to find that many mRNAs
are upregulated because of transfection. These upregulated mRNAs are usually
ignored, because it is not interpretable from the knowledge about conventional
miRNA functions. On the other hand, Jin et al. [9] argued that miRNA transfection
can cause non-specific changes in gene expression. To the best of my knowledge,
there are no studies that try to identify these non-specific effects in more positive
points of view.
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In this section, using TD based unsupervised FE, we are aiming to study how
universal these non-specific gene expression alterations by miRNA transfections
are. In order that, we collect multiple studies where multiple miRNA transfection
experiments are performed. In individual studies, genes whose expression is altered
in common over multiple miRNA transfection experiments are tried to be identified.
Then it is checked if genes identified in individual studies are common over multiple
studies. If so, sequence-nonspecific off-target regulation of mRNA does really exist
and might play some critical roles in biology, too.

The identification of genes altered in common by sequence-nonspecific off-
target regulation caused by miRNA transfection can be performed by TD based
unsupervised FE as follows [26]. In usual application of TD based unsupervised FE,
singular value vectors associated with desired sample dependence, e.g., distinction
between patients and healthy controls, are searched to identify genes associated
with such a dependence. On the contrary, in the present application, we are
aiming to seek singular value vectors “not” associated with the distinction between
transfected miRNAs, because lack of transfected miRNA dependence might be the
evidence that gene expression alteration caused by miRNA expression toward these
genes is because of sequence-nonspecific off-target regulation, no matter what the
biological reasons that cause it are. Table 7.12 lists 11 studies including the gene
expression profiles collected for the analysis in this study. It is obvious that they
are quite diverse. Not only used cell lines but also transfected miRNAs differ from

Table 7.12 Eleven studies conducted for this analysis

Exp GEO ID Cell lines (cancer) miRNA Misc Methods

1 GSE26996 BT549 (breast
cancer)

miR-200a/b/c PCA

2 GSE27431 HEY (ovarian
cancer)

miR-7/128 mas5 PCA

3 GSE27431 HEY (ovarian
cancer)

miR-7/128 plier PCA

4 GSE8501 Hela (cervical
cancer)

miR-7/9/122a/128a/132/133a
/142/148b/181a

TD

5 GSE41539 CD1 mice cel-miR-67, hsa-miR-590-3p,
hsa-miR-199a-3p

PCA

6 GSE93290 multiple miR-10a-5p, 150-3p/5p,
148a-3p/5p, 499a-5p, 455-3p

TD

7 GSE66498 multiple miR-205/29a/144-3p/5p,
210,23b,221/222/223

TD

8 GSE17759 EOC 13.31
microglia cells

miR-146a/b (KO/OE) TD

9 GSE37729 HeLa miR-107/181b (KO/OE) TD

10 GSE37729 HEK-293 miR-107/181b (KO/OE) TD

11 GSE37729 SH-SY5Y 181b (KO/OE) TD

More detailed information on how to process individual experiments in these eleven studies is
available in Appendix. Methods: PCA or TD based unsupervised FE is used
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experiments to experiments. Both KO (knock out) and OE (over expression) are
considered. Thus, if there are genes chosen in common among these eleven studies,
it is quite likely caused by sequence-nonspecific off-target regulation.

Because of their diversity, not only TD based unsupervised FE but also PCA
based unsupervised FE is used. If the number of samples used for individual
transfection in individual experiments does not match with one another, multiple
experiments in which distinct miRNAs are transfected are hardly formulated in
tensor forms. In these cases, PCA based unsupervised FE is employed instead. In
the following, individual data set and how to format them in either matrix or tensor
is discussed in a little bit detail in Appendix.

Table 7.13 shows the results. In spite of the heterogeneous data sets analyzed,
they are highly consistent with one another. Thus, there might be some universal
mechanisms that cause sequence-nonspecific off-target regulation.

From the data science point of view, it is important to see if other methods can
derive the set of genes associated with the same amount of consistency among 11
studies listed in Table 6.12. For the comparison, we select t test. What we aim
is essentially to find genes expressed distinctly between control and transfected
samples. This kind of two class comparisons can be done by t test, too. In order to
see if t test is inferior to TD and PCA based unsupervised FE, t test is applied to 11
studies. In this analysis, samples in individual studies are divided into two classes:
samples to which no miRNAs (or mock miRNA) were transfected and samples to
which miRNAs were transfected. Two-sided t test is applied to individual 11 studies.
Then, obtained P -values are adjusted by BH criterion. Then, probes associated with
adjusted P -values less than 0.01 are selected (Table 7.14). The result is a little
bit disappointing. For five out of 11 studies, t test cannot identify any differently
expressed genes. On the other hand, the numbers of selected genes vary from 35 to
11,060, which is contrast to the range of number of genes selected by PCA or TD
based unsupervised FE, ∼102 (Table 7.13). These numbers are unlikely biologically
trustable. This possibly shows the failure of methodology.

In order to further demonstrate the inferiority of t test to TD or PCA based
unsupervised FE, we try to reproduce the results of PCA or TD based unsupervised
FE in Table 7.13. Since the number of genes selected by t test is often 0 (Table 7.14),
the same number of top ranked genes with smaller P -values as those in PCA or TD
based unsupervised FE are selected in individual experiments based upon P -values
computed by t test even though P -values are not significant. It is obvious that the
selected genes by t test are less coincident with each other than the selected genes by
PCA or TD based unsupervised FE (Table 7.13) because odds ratios are smaller and
P -values are larger. Thus, also from the point of coincidence between 11 studies, t
test is inferior to TD or PCA based unsupervised FE.

Although PCA or TD based unsupervised FE successfully identifies sets of genes
highly coincident between heterogeneous eleven studies, if they are not biologically
reasonable, they are useless. In order to see biological values of selected genes,
we here show one evaluation, although many evaluations were performed in my
published paper [26] (I am not willing to show all of them here, because it might be
simply boring).
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Table 7.14 The number of genes selected by t test

Studies 1 2 3 4 5 6 7 8 9 10 11

Samples 6:6 3:4 6:4 18:18 2:2 16:16 19:19 18:18 6:12 6:12 4:4

Selected genes 11,060 0 0 0 0 35 280 55 5949 5730 0

Two numbers besides colon are the number of control and transfected samples, respectively

Table 7.15 is the result for KEGG pathway enrichment by uploading selected
genes to Enrichr. It is obvious that not only there are many significant enrichment
but also they are highly coincident between 11 studies. Thus, coincidence of selected
genes between eleven studies shown in Table 7.13 is also biologically reasonable. In
this sense, PCA or TD based unsupervised FE can identify biologically meaningful
genes chosen in common between heterogeneous studies including various miRNAs
transfected to various cell lines. Universal nature detected has seemingly biological
importance, too.

7.5 One-Class Differential Expression Analysis
for Multiomics Data Set

In general, there are two kinds of biological experiments, in vivo and in vitro. In vivo
means real biological experiments using living organisms, e.g., animals and plants.
Nevertheless, in vivo cannot be said as very economical, because it wastes whole
body even when we are interested in a specific tissue. For example, even if you are
interested in liver disease, in vivo experiments require to cultivate a whole body. You
may wonder if only liver can be separately cultivated, it would be more effective.
In vivo experiments recently have tendency to be avoided from the ethical point of
view, too, because they kill numerous animals. In vitro experiments can fulfill these
requirements more or less. in vitro makes use of cell lines, which is an immortalized
cell that is often made out of cancer cells. Once cell line is established, you can do
any kind of experiments in vitro using cell lines. Because cell lines can be cultivated
even in a dish, it is definitely cost effective and does not kill any animals.

One possible problem of in vitro is the lack of control samples. It is known that
cell lines differ from the tissue cells from which cell lines are established. Thus,
usually cell lines are compared between not treated and treated ones. Characterizing
immortalized cell lines themselves is not an easy task.

In this section, we propose the method that can characterize cancer cell line
from gene expression without comparing with something [22]. In this criterion,
genes are expressive in common over multiple cancer subtypes are searched and
are considered to be characteristic gene expression of cancer cell line. In this regard,
TD based unsupervised FE used to identify expressed gene in common over multiple
miRNAs transfection studies in the previous section is employed again.
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In addition to this, TD based unsupervised FE is used as a tool that integrates
omics data. The data set used is downloaded from DBTSS [21], which is a database
of transcriptional start sites (TSS), and includes RNA-seq, TSS-seq, and ChIP-seq
(histone modification, H3K27ac). These are observed in 26 NSCLC subtype cell
lines using HTS technology; DBTSS also stores various omics data set measured on
various cell lines and living organisms.

Before starting analysis, we briefly explain the difference among TSS-seq, RNA-
seq, and ChIP-seq. As it name says, TSS-seq tries to sequence RNA transcribed
from the region around TSS. Thus, TSS-seq basically counts how many times
transcription starts. On the other hand, RNA-seq counts the fragments taken from
any part of whole RNA. In this sense, RNA-seq counts the total amount of RNA
transcribed. Generally, TSS-seq and RNA-seq are positively correlated, although
there are no known functional forms that relate between these two, because the
function is affected by many factors, e.g., individual genes have various length and
some genes are long while others are short. If longer genes are more transcribed,
the ratio RNA-seq to TSS-seq becomes larger. In addition to this, individual genes
have isoforms, each of which has different length. This mechanism is called as an
alternative splicing. If more number of longer isoforms are transcribed from each
gene, it also contributes to the increased RNA-seq/TSS-seq ratio. Although there
are many detailed points that must be considered in order to relate RNA-seq to TSS-
seq, there is one clear point; TSS-seq and RNA-seq should be positively correlated.
Thus, seeking genes associated with both more TSS-seq counts and RNA-seq counts
can reduce the possibility that genes are wrongly identified as being upregulated or
downregulated, e.g., because of technical issues like miss amplification.

ChIP-seq is a different technology that detects to which part of DNA the protein
binds. Although I do not explain the details of the relationship between DNA and
proteins that bind to it, basically DNA binding protein can control the rate of
transcription. ChIP-seq can study this relationship by considering DNA binding
protein. Histone modification is more advanced feature. In order to suppress the
self-entanglements of lengthy DNA, long DNA string is wrapped around protein
core called histone. Because tightly wrapped DNA is hardly transcribed, how tightly
DNA is wrapped around histone can affect the amount of transcription drastically.
On the other hand, affinity between histone and DNA can be affected by chemical
modification of histone. Among various histone modification, acetylation of histone
tail is supposed to enhance the transcription by reducing the affinity between DNA
and histone. As a result, considering histone modification (H3K27ac) together with
RNA-seq and TSS-seq can further reduce the possibility of wrongly identified
up/downregulated genes. In the following, we try to seek genes simultaneously
associated with the increased TSS-seq, RNA-seq, and ChIP-seq that measureds
H3K27ac counts.

When formatting RNA-seq, TSS-seq, and ChIP-seq measurement data into
tensor form, how we can practically perform this is a problem. Fundamentally,
although it is possible to perform it in single nucleotide base, it results in too huge
tensor that requires too large memory to manage. In this case, it is better to employ
coarse graining approach that takes average over local chromosome regions. The
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problem is how long regions should be. If the length of the region is too large, each
region includes more than one (protein coding) genes. Then, increased or decreased
counts within each region might reflect more than one genes. This will result in low
interpretability. On the other hand, if the length of the region is too short, individual
(protein coding) genes are expressed over multiple region. It again results in low
interpretability. Thus, there should be somewhat optimal length of region. In this
section, I try 25,000 nucleotides as a length of region. Generally, the average length
of protein is ∼102. Because one amino acid is coded by three-nucleotide (codon), a
length of region that codes individual protein coding genes should be at most ∼103.
The regions that code protein coding genes are typically composed of both exon
and intron, which correspond to translated and non-translated regions, respectively.
Thus, the region of DNA that codes individual genes might be doubled. It is still
expected not to exceed ∼103 so much. In actuality, some literature reported that
average length of DNA regions that code human protein coding genes is still a little
bit shorter than ∼104 [8]. Nevertheless, if the region over which TSS-seq, RNA-seq
and ChiP-seq count data is averaged is as long as expected length of DNA region that
codes individual protein coding genes, boundaries between averaging region might
frequently fall into the mid of the DNA region that codes individual protein coding
region. Thus, the length of region averaging counts data should be a few times longer
than expected length of DNA region that codes individual protein coding region.
Based upon these considerations, 25,000 nucleotides region over which TSS-seq,
RNA-seq, and ChIP-seq counts are averaged is proposed.

In the data set having a type “human lung adenocarcinoma cell line 26 cell line”
in inhouse data category, RNA-seq, TSS-seq, and ChIP-seq data are used. Among
ChIP-seq data, only the H3K27ac is used (H3K27ac means that K27 position of
the 3rd histone (H3) is acetlyated). Counts are averaged over chromosomal regions
fragmented to regions of length of 25,000 nucleotides. Tensors are generated for
each chromosome separately. Then, tensor is the form of xijk ∈ R

N×26×3, where
N is the total number of regions of the length of 25,000 nucleotides within each
chromosome, j stands for 26 cell lines, and k stands for counts of TSS-seq, RNA-
seq, and ChIP-seq. HOSVD algorithm, Fig. 3.8, is applied to xijk as

xijk =
N∑

�1=1

26∑

�2=1

3∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.8)

where u
(i)
�1i

∈ R
N×N , u

(j)
�2j

∈ R
26×26, and u

(k)
�3k

∈ R
3×3 are singular value matrices

and G(�1, �2, �3) ∈ R
N×26×3 is a core tensor.

First, we need to find u(j)
�2

that is independent of 26 cell lines and u(k)
�3

that is

independent of RNA-seq, TSS-seq, and ChIP-seq. Figure 7.6 shows u(j)

1 . Excluding
X chromosome, it is highly independent of 26 cell lines. Then we decide to employ
�2 = 1. Figure 7.7 shows u(k)

1 . They are highly independent of TSS-seq, RNA-seq,
and ChIP-seq. Then we decide to employ �3 = 1.
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Fig. 7.6 u(j)

1 . The first row, from left to right, chromosome 1, 2, 3, the second row, from left to
right, chromosome 4, 5, 6 , and so on. The last row, from left to right, chromosome 22, X, Y. Red
broken line is baseline

Then we try to find which G(�1, 1, 1) has the largest absolute value and find that
G(1, 1, 1) has always the largest absolute values independent of chromosome. Thus,
u(i)

1 is used to attributed P -value to regions as

Pi = Pχ2

⎡

⎣>

(
u

(i)
1i

σ1

)2
⎤

⎦ . (7.9)

P -values are collected from 24 chromosome and are corrected by BH criterion.
Then 826 regions associated with adjusted P -values less than 0.01 are selected. 826
is very small compared with the total number of regions; because the total number
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Fig. 7.7 u(k)
1 . The first row, from left to right, chromosome 1, 2, 3, the second row, from left to

right, chromosome 4, 5, 6, and so on. The last row, from left to right, chromosome 22, X, Y. Red
broken line is baseline

of regions is about 3 × 109/2.5 × 104∼105 where 3 × 109 is the total length of
human genome while 2.5 × 104 is the length of individual regions, 826 corresponds
to as little as 0.8% of regions. This is reasonable because only a few percentages of
genome code protein coding genes.

In order to validate these selected regions, we upload 1741 Entrez genes associ-
ated with these 826 regions to DAVID. Entrez genes are gene ID manually curated
gene unique ID that is integer number [12]. Table 7.16 lists the KEGG pathway
enrichment associated with adjusted P -values less than 0.05. At a glance, they do
not look like related to cancers. Nevertheless, some of them are cancer related terms.
For example, the relationship between “antigen processing and presentation” and
cancer is often discussed [4]. Parkinson’s disease is often reported to be related
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Table 7.16 KEGG pathway enrichment by the 1741 Entrez genes identified by TD based
unsupervised FE

Category Term Genes count % P -value Adjusted P -value

KEGG_PATHWAY Ribosome 73 4.2 9.8 × 10−38 2.7 × 10−35

KEGG_PATHWAY Spliceosome 39 2.2 6.2 × 10−10 8.4 × 10−8

KEGG_PATHWAY Protein
processing in
endoplasmic
reticulum

41 2.4 8.0 × 10−8 7.3 × 10−6

KEGG_PATHWAY Antigen
processing and
presentation

22 1.3 8.0 × 10−6 5.5 × 10−4

KEGG_PATHWAY Pathogenic
Escherichia
coli infection

17 1.0 1.7 × 10−5 9.2 × 10−4

KEGG_PATHWAY Parkinson’s
disease

30 1.7 9.6 × 10−5 4.3 × 10−3

KEGG_PATHWAY Biosynthesis of
antibiotics

39 2.2 1.6 × 10−4 6.3 × 10−3

KEGG_PATHWAY Oxidative phos-
phorylation

26 1.5 1.0 × 10−3 3.5 × 10−2

KEGG_PATHWAY Bacterial
invasion of
epithelial cells

18 1.0 1.2 × 10−3 3.6 × 10−2

KEGG_PATHWAY Alzheimer’s
disease

30 1.7 1.7 × 10−3 4.6 × 10−2

Adjusted P -values are by BH criterion

to lung cancer [30]. Although we are not willing to discuss fully about the relations
between the detected KEGG pathway enrichment and NSCLC, it is obvious that TD
based unsupervised FE can detect set of genes including those related to NSCLC.

Although it is better to evaluate the performance of TD based unsupervised FE
based upon the comparison with other methods, it is not easy because there are no
control samples to be compared. Thus, alternatively we select genes based upon the
ratio of standard deviation to average over 26 cell lines, because the smaller ratio of
variance to mean might suggest smaller variability between 26 cell lines. For each of
TSS-seq, RNA-seq, and ChIP-seq, we select top 5% regions with smaller ratio. Then
regions chosen in common among TSS-seq, RNA-seq, and ChIP-seq are collected;
we find that 2041 Entrez genes are included in these regions chosen in common. This
number, 2041, is comparative with 1741 that is the number of Entrez genes selected
by TD based unsupervised FE. Thus, uploading these to DAVID is a suitable test
to see if TD based unsupervised FE is superior to this alternative method. Then
we find that only two KEGG pathways, “Spliceosome” and “Ubiquitin mediated
proteolysis” are associated with adjusted P -values less than 0.05. This suggests that
TD based unsupervised FE can identify far more biologically reasonable set of genes
than this alternative approach.
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7.6 General Examples of Case I and II Tensors

Before demonstrating individual cases using case I and case II tensor in detail,
we demonstrate various cases briefly based upon the recent publication [23]. As
shown in Table 5.3, matrices or low mode tensor can be combined to generate
(higher mode) tensor. In this section, we demonstrate how the combinations shown
in Table 5.3 work to select genes critical to the diseases or phenomena considered.

7.6.1 Integrated Analysis of mRNA and miRNA

Integrated analysis of mRNA and miRNA was also performed by PCA based
unsupervised FE (Sect. 6.4), which is once applied to mRNA and miRNA separately.
Then obtained two sets of PC loading attributed to sample were investigated to
seek those sharing common nature between two sets. After that, corresponding PC
scores attributed to mRNA and miRNA were used for FE. On the contrary, in the
application of TD based unsupervised FE to the integrated analysis of mRNA and
miRNA, mRNA and miRNA expression profiles are integrated in advance.

The analyzed data set is composed of mRNA and miRNA profiles which were
measured for multi-class breast cancer samples including normal breast tissues [7].
mRNA and miRNA expression profiles of multi-omics data are downloaded from
GEO using GEO ID GSE28884. At first, GSE28884_RAW.tar is downloaded and
expanded. For mRNA, 161 files whose names ended by the string “c.txt.gz” are
used. Each file is loaded into R by read.csv command and the second column
named “M” is employed as mRNA expression values. Probes not associated with
Human Genome Organisation (HUGO) gene names are discarded and 13,393
probes remain. One hundred and sixty one files whose names end by the string
“geo.txt.gz” are used for miRNA expression profiles; mRNA expression profiles
of the corresponding samples are also used. Each file is loaded into R by read.csv
command and the second column (“Count”) is summed using the same third column
(“Annotation”) values. If the resulting total sum is less than 10, it is discarded and
not used for further analysis.

Because the 161 samples are shared between miRNA and mRNA expression
profiles, the multi-omics data corresponds to case I data (Table 5.3). TD based
unsupervised FE is applied to the data set in order to identify disease critical genes
and latent relations between miRNA and mRNA, whose expression profiles are
xmRNA

i1j
∈ R

13393×161 and xmiRNA

i2j
∈ R

755×161, respectively. They can be formatted
as case I tensor as

xi1i2j = xmRNA

i1j
xmiRNA

i2j
. (7.10)

HOSVD, Fig. 3.8, is applied to xi1i2j as
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xi1i2j =
13393∑

�1=1

755∑

�2=1

161∑

�3=1

G(�1, �2, �3)u
(i1)
�1i1

u
(i2)
�2i2

u
(j)
�3j

(7.11)

where u
(i1)
�1i1

∈ R
13393×13393,u(i2)

�2i2
∈ R

755×755 and u
(j)
�3j

∈ R
161×161 are singular

value matrices and G(�1, �2, �3) ∈ R
13393×755×161 is a core tensor.

First we need to seek singular value vectors, u(j)
�3

∈ R
161, with significant

cancer subtype dependence. Figure 7.8 shows boxplots of u(j)
�3

, 1 ≤ �3 ≤ 5; it is
obvious that these singular value vectors have significant class (cancer subtypes)
dependence. The next step is to find G(�1, �2, 1 ≤ �3 ≤ 5) with larger absolute
values. Table 7.17 shows the top ranked G(�1, �2, 1 ≤ �3 ≤ 5)s; there are clearly
only 1 ≤ �1 ≤ 5 and 1 ≤ �2 ≤ 2, respectively. Thus, P -values are attributed to i1

and i2 using u
(i1)
�1i1

, 1 ≤ �1 ≤ 5 and u
(i2)
�2i2

, 1 ≤ �1 ≤ 2, respectively, as

Pi1 = Pχ2

⎡

⎣>

5∑

�1=1

(
u

(i1)
�1i1

σ�1

)2⎤

⎦ , (7.12)

Fig. 7.8 Boxplot of u(j)
�3

, 1 ≤ �3 ≤ 5 when HOSVD is applied as Eq. (7.11). P -values computed

by categorical regression. 1st: 2.39×10−5, 2nd: 5.83×10−14, 3rd: 1.36×10−24, 4th: 2.58×10−2,
5th: 2.12 × 10−5

Table 7.17 Top ranked 10 G(�1, �2, 1 ≤ �3 ≤ 5)s with larger absolute values among 1 ≤
�1, �2, �3 ≤ 10 in Eq. (7.11)

�1 1 2 4 3 5

�2 1 1 1 1 1

�3 1 2 4 3 5

G(�1, �2, �3) 1.67 × 105 −1.03 × 105 7.48 × 104 −6.64 × 104 6.23 × 104

�1 3 1 3 2 1

�2 2 2 1 2 2

�3 3 3 5 3 2

G(�1, �2, �3) 3.00 × 104 −2.87 × 104 −2.33 × 104 −2.02 × 104 −1.48 × 104
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Pi2 = Pχ2

⎡

⎣>

2∑

�2=1

(
u

(i2)
�2i2

σ�2

)2⎤

⎦ . (7.13)

Computed P -values are adjusted by BH criterion; i1s and i2s associated with
adjusted P -values less than 0.01 are selected. Then, 426 mRNA probes and 7
miRNAs are selected, respectively.

In order to evaluate selected 426 mRNAs biologically, we upload these mRNAs
to DAVID. Then we can find numerous enrichment. Tables 7.18 and 7.19 show the
results of GO term enrichment (adjusted P -values less than 0.05). BP is related to
biological feature, CC is related to the location within cell, and MF is function of
gene as molecules. Although we are not willing to summarize all of them, most
of them are reasonably related to cancers, e.g., immune related or cell surface
enrichment. Thus TD based unsupervised FE is likely successful to identify cancer
related genes.

In order to demonstrate superiority of type I tensor, we also employ type II tensor
as

xi1i2 =
∑

j

xi1i2j . (7.14)

Table 7.18 GO BP enrichment by the 426 ensembl genes identified by TD based unsupervised
FE

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_BP_DIRECT Immune response 36 11.4 2.7 × 10−14 5.6 × 10−11

GOTERM_BP_DIRECT Signal transduction 57 18.1 5.1 × 10−12 5.3 × 10−9

GOTERM_BP_DIRECT Type I interferon
signaling pathway

10 3.2 1.8 × 10−6 1.2 × 10−3

GOTERM_BP_DIRECT Collagen catabolic
process

10 3.2 1.8 × 10−6 1.2 × 10−3

GOTERM_BP_DIRECT Positive regulation of cell
proliferation

25 7.9 3.2 × 10−6 1.3 × 10−3

GOTERM_BP_DIRECT Cell–cell signaling 18 5.7 3.1 × 10−6 1.6 × 10−3

GOTERM_BP_DIRECT Response to estradiol 11 3.5 4.8 × 10−6 1.6 × 10−3

GOTERM_BP_DIRECT Defense response to virus 14 4.4 8.0 × 10−6 2.3 × 10−3

GOTERM_BP_DIRECT B cell receptor signaling
pathway

8 2.5 4.5 × 10−5 1.1 × 10−2

GOTERM_BP_DIRECT Positive regulation of
cAMP metabolic process

4 1.3 1.1 × 10−4 2.4 × 10−2

GOTERM_BP_DIRECT Response to peptide
hormone

7 2.2 1.2 × 10−4 2.4 × 10−2

(continued)
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Table 7.18 (continued)

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_BP_DIRECT Negative regulation of
apoptotic process

21 6.7 1.9 × 10−4 2.6 × 10−2

GOTERM_BP_DIRECT Defense response 8 2.5 1.8 × 10−4 2.6 × 10−2

GOTERM_BP_DIRECT T cell activation 7 2.2 1.7 × 10−4 2.7 × 10−2

GOTERM_BP_DIRECT T cell differentiation 6 1.9 1.7 × 10−4 2.8 × 10−2

GOTERM_BP_DIRECT Skeletal system
development

11 3.5 1.7 × 10−4 3.1 × 10−2

GOTERM_BP_DIRECT Chemokine-mediated
signaling pathway

8 2.5 2.6 × 10−4 3.3 × 10−2

GOTERM_BP_DIRECT Mast cell activation 4 1.3 2.9 × 10−4 3.4 × 10−2

GOTERM_BP_DIRECT Adaptive immune response 11 3.5 3.1 × 10−4 3.5 × 10−2

GOTERM_BP_DIRECT Cell surface receptor
signaling pathway

15 4.8 4.0 × 10−4 4.2 × 10−2

GOTERM_BP_DIRECT Cellular response to
interferon-alfa

4 1.3 4.3 × 10−4 4.3 × 10−2

GOTERM_BP_DIRECT Inflammatory response 18 5.7 4.5 × 10−4 4.3 × 10−2

GOTERM_BP_DIRECT Apoptotic process 23 7.3 5.2 × 10−4 4.5 × 10−2

GOTERM_BP_DIRECT Humoral immune response 7 2.2 5.0 × 10−4 4.6 × 10−2

GOTERM_BP_DIRECT Positive regulation of
neutrophil chemotaxis

5 1.6 5.5 × 10−4 4.6 × 10−2

GOTERM_BP_DIRECT Collagen fibril organization 6 1.9 6.0 × 10−4 4.8 × 10−2

GOTERM_BP_DIRECT Proteolysis 21 6.7 6.4 × 10−4 4.9 × 10−2

Adjusted P -values are by BH criterion

Applying SVD to xi1i2 , we get singular value vectors u
(i1)
�1i1

∈ R
13393×161 and

u
(i2)
�2i2

∈ R
755×161. In order to select singular vector used for FE, we need to know

dependence upon classes (in this case, cancer subtype). In order that, we need
singular value vectors attributed to samples. It is computed as Eqs. (5.12) and (5.13),

u
j ;i1
�1j

=
13393∑

i1=1

xi1j u
(i1)
�1i1

(7.15)

u
j ;i2
�2j

=
755∑

i2=1

xi2j u
(i2)
�2i2

(7.16)

Figure 7.9 shows boxplot of u
j ;i1
�1j

and u
j ;i2
�2j

for 1 ≤ �3 ≤ 5. It is obvious that these
singular value vectors have significant class (cancer subtypes) dependence.

Thus, P -values are attributed to i1 and i2 using u
(i1)
�1i1

and u
(i2)
�2i2

for 1 ≤ �3 ≤ 5,
respectively, as
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Table 7.19 GO CC and MF enrichment by the 426 ensembl genes identified by TD based
unsupervised FE

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_CC_DIRECT Extracellular space 84 26.7 1.60 × 10−26 4.90 × 10−24

GOTERM_CC_DIRECT Extracellular region 82 26 3.10 × 10−20 4.80 × 10−18

GOTERM_CC_DIRECT Extracellular exosome 97 30.8 9.00 × 10−13 9.20 × 10−11

GOTERM_CC_DIRECT External side of plasma
membrane

23 7.3 1.00 × 10−11 7.70 × 10−10

GOTERM_CC_DIRECT Cell surface 23 7.3 1.20 × 10−4 7.40 × 10−3

GOTERM_CC_DIRECT Extracellular matrix 15 4.8 4.80 × 10−4 1.80 × 10−2

GOTERM_CC_DIRECT Multivesicular body 5 1.6 4.40 × 10−4 1.90 × 10−2

GOTERM_CC_DIRECT Anchored component of
membrane

9 2.9 6.20 × 10−4 2.10 × 10−2

GOTERM_CC_DIRECT Cytosol 80 25.4 4.20 × 10−4 2.10 × 10−2

GOTERM_MF_DIRECT Protein homodimerization
activity

34 10.8 8.60 × 10−7 4.90 × 10−4

GOTERM_MF_DIRECT RAGE receptor binding 5 1.6 2.90 × 10−5 5.50 × 10−3

GOTERM_MF_DIRECT Chemokine activity 8 2.5 2.40 × 10−5 6.70 × 10−3

GOTERM_MF_DIRECT CXCR3 chemokine
receptor binding

4 1.3 5.40 × 10−5 7.60 × 10−3

GOTERM_MF_DIRECT Receptor binding 18 5.7 2.00 × 10−4 1.90 × 10−2

GOTERM_MF_DIRECT Serine-type
endopeptidase activity

15 4.8 2.00 × 10−4 2.20 × 10−2

GOTERM_MF_DIRECT Protein binding 187 59.4 2.90 × 10−4 2.30 × 10−2

GOTERM_MF_DIRECT Identical protein binding 28 8.9 4.00 × 10−4 2.80 × 10−2

Adjusted P -values are by BH criterion

Pi1 = Pχ2

⎡

⎣>

5∑

�1=1

(
u

(i1)
�1i1

σ�1

)2⎤

⎦ , (7.17)

Pi2 = Pχ2

⎡

⎣>

5∑

�2=1

(
u

(i2)
�2i2

σ�2

)2⎤

⎦ . (7.18)

P -values are adjusted by BH criterion. i1 and i2 associated with adjusted P -values
less than 0.01 are selected. Then, 374 mRNA probes and 21 miRNAs are selected.

In order to validate selected 374 mRNAs, we upload these mRNAs to DAVID.
Then we can find numerous enrichment. Table 7.20 shows the results of GO term
enrichment (adjusted P -values less than 0.05) as in Tables 7.18 and 7.19. Thus,
although the number of enrichment decreases than that in the type I tensor, still
there are many cancer related GO terms. Thus, type II tensor approach is still valid
enough biologically.
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Fig. 7.9 Boxplot of u
j ;i1
�1j (upper row) and u

j ;i2
�2j (lower row) for 1 ≤ �3 ≤ 5 computed by

Eqs. (7.15) and (7.16). P -values computed by categorical regression. Upper, 1st: 4.07 × 10−11,
2nd: 4.36×10−22, 3rd: 2.03×10−23, 4th: 4.14×10−4, 5th: 1.57×10−4. Lower, 1st: 3.36×10−27,
2nd: 3.91 × 10−13, 3rd: 7.39 × 10−9, 4th: 9.32 × 10−5, 5th: 2.82 × 10−5

Finally, in order to emphasize the superiority of TD based unsupervised FE
to conventional supervised methods, we apply categorical regression analysis to
mRNAs expression,

xi1j = ai1 +
∑

s

bi1sδjs (7.19)

where ai1 and bi1s are the regression coefficients. Based upon the results by
categorical regression analysis, because too many 16,917 mRNAs probes are
associated with adjusted P -values less than 0.01, we instead upload top ranked 500
mRNAs with smaller P -values to DAVID. As a result, only one GO CC enrichment,
cytoplasm, associated with adjusted P -values less than 0.05, 1.9×10−3, is detected.
Although more advanced methods than categorical regression might achieve better
performance, this drastic decrease of the number of detected GO terms enrichment
demonstrates the superiority over conventional supervised method. In this sense, TD
based unsupervised FE is outstanding, no matter which of type I or type II tensor is
used.
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7.6.2 Temporally Differentially Expressed Genes

Although type I and type II tensor approaches achieved good performance in
integrated analysis of multi-class multi-omics data set in the previous section, it is
better if we can demonstrate yet another example to which TD based unsupervised
FE can achieve better performance. In this subsection, we try to identify genes
temporally expressed distinctly between two classes.

The first data set analyzed is the comparison of NSCLC cell line H1975, with and
without EGF treatment [2]. EGF is a gene supposed to accelerate cell growth and
is known to be expressive frequently in cancers. Thus, EGF treatment is expected
to activate cancer cell lines. The data set is composed of two mRNA expression
profile, xcontrol

ij1
∈ R

39937×13 and xEGF

ij2
∈ R

39937×15, which are gene expressions of cell
lines without and with EGF treatment, respectively. j1 and j2 represent time points
after the treatment (Table 7.21). Because they share genes, xcontrol

ij1
and xEGF

ij2
can be

converted to case II type I tensor as

xij1j2 = xcontrol

ij1
xEGF

ij2
. (7.20)

HOSVD, Fig. 3.8, is applied to xij1j2 as

xij1j2 =
13∑

�1=1

15∑

�2=1

39937∑

�3=1

G(�1, �2, �3)u
(j1)
�1j1

u
(j2)
�2j2

u
(i)
�3i

(7.21)

At first, we need to find singular value vectors u(j1)
�1

∈ R
13 and u(j2)

�2
∈ R

15

that exhibit distinct temporal expression between them. Figure 7.10 shows time
development of u(j1)

�1
and u(j2)

�2
for �1 = �2 = 1, 2. Here the components of singular

value vectors sharing the time points are averaged within individual vectors, u
(j1)
�1j1

.

It is obvious that u(j1)

1 and u(j2)

1 do not exhibit any time dependence while u(j1)

2 and

u(j2)

2 do. Thus, there is a possibility that genes associated with u(j1)

2 and u(j2)

2 also
exhibit the temporal difference between control and EGF treated cells.

In order to select genes associated with u(j1)

2 and u(j2)

2 , we need to find
G(�1, �2, �3), �1 = 2 or �2 = 2 having larger absolute values; G(2, 1, 2) and
G(1, 2, 2) have larger absolute values (Table 7.22). Thus we decide to use u(i)

2 for
FE. P -values are attributed to i as

Table 7.21 List of samples in EGF treatment experiments

Time points (h) 0 0.5 1 2 4 6 8 12 18 24 48

Control 3 1 1 1 1 1 0 0 0 2 3

EGF treated 0 2 1 1 1 1 1 1 1 3 3
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Fig. 7.10 Singular value
vectors, Eq. (7.21). (a) u(j1)

1

(black) and u(j2)

1 (red). (b)

u(j1)

2 (black) and u(j2)

2 (red)
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Table 7.22 Top ranked 10 G(�1, �2, �3)s with larger absolute values among in Eq. (7.21)

�1 1 2 1 3 1

�2 1 1 2 1 3

�3 1 2 2 3 4

G(�1, �2, �3) −4.03 × 104 −1.56 × 103 1.49 × 103 1.05 × 103 −5.79 × 102

�1 4 2 5 1 4

�2 1 1 1 4 1

�3 5 3 6 6 4

G(�1, �2, �3) 4.24 × 102 4.16 × 102 3.25 × 102 3.19 × 102 −2.62 × 102

Pi = Pχ2

⎡

⎣>

(
u

(i)
2i

σ2

)2
⎤

⎦ . (7.22)

P -values are corrected by BH criterion and genes associated with adjusted P -values
less than 0.01 are selected. Then 552 mRNA probes are selected.

Next, we need to see if the selected 552 mRNA probes really exhibit temporal
difference between control and EGF treated cells. For this purpose, we compute
correlation coefficient between

(
xcontrol

i1 , . . . , xcontrol

i13 , xEGF

i1 , . . . , xEGF

i15

)
(7.23)

and
(
u

(j1)

2,1 , . . . , u
(j1)

2,13, u
(j2)

2,1 , . . . , u
(j2)

2,15

)
(7.24)

to see if 552 selected genes are coincident with u(j1)

2 and u(j2)

2 . Figure 7.11a shows
the histogram of correlation coefficients. Because there are two peaks at ±1, it is
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obvious that gene expression of selected 552 mRNA probes is highly coincident
with u(j1)

2 and u(j2)

2 .
Before comparing 552 genes directly between control and EGF treated cells, we

need shift and scale individual gene expression profiles such that they have same
baseline and amplitude. In order that, we apply the following linear regression

u
(j1)

2j1
= aix

control

ij1
+ bi (7.25)

u
(j2)

2j2
= aix

EGF

ij2
+ bi (7.26)

where ai and bi are the regression coefficients. Because regression coefficients are
shared between control and EGF treated ones, this does not reduce the difference
between these two. Then, we compare aix

control

ij1
+ bi and aix

EGF

ij2
+ bi of selected 552

mRNA probes (Fig. 7.11b). Not all, but the comparisons of five out of seven time
points excluding two time points, 4 and 24 h, after the EGF treatment are associated
with P -values less than 0.05. Thus, TD based unsupervised FE has the ability to
select genes associated with temporal distinction.

Next, we try to see if type II tensor approach works as well. Because case II
tensor share the feature whose number is generally much larger than the number of
samples, type II tensor where shared dimension is summed up can result in much
smaller number of components. Type II tensor is defined as
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Fig. 7.11 (a) Histogram of correlation coefficients between Eqs. (7.23) and (7.24) for case II type
I tensor, Eq. (7.20). (b) Boxplot of Eqs. (7.25) (black boxes filled with green) and (7.26) (red boxes
filled with blue) for case II type I tensor, Eq. (7.20). P -values computed by t test: 0.5 h:2.83×10−2,
1 h:6.81×10−8, 2 h:5.63×10−12, 4 h:3.5×10−1, 6 h:4.83×10−2, 24 h:5.0×10−1, 48 h:1.70×10−6
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xj1j2 =
39937∑

i=1

xij1j2 . (7.27)

where xij1j2 is defined in Eq. (7.20). The number of components in xj1j2 ∈ R
13×15

is 13 × 15 = 195, which is as small as 1/39937 of the number of components in
xij1j2 ∈ R

39937×13×15. Thus, if type II tensor approach works as well, it is very
effective. SVD is applied to xj1j2 as

xj1j2 =
∑

�

λ�u
(j1)
�j1

u
(j2)
�j2

(7.28)

Figure 7.12 shows the u(j1)
� and u(j2)

� for � = 1, 2. Basically, it looks similar to
Fig. 7.10. Thus we decide to employ � = 2 for FE. Then, singular value vectors
attributed to i can be computed as Eq. (5.14),

u
i;j1
�i =

13∑

j1=1

xcontrol

ij1
u

(j1)
�j1

(7.29)

u
i;j2
�i =

15∑

j2=1

xEGF

ij2
u

(j2)
�j2

(7.30)

Thus P -values are also attributed to i in two ways as

P
j1
i = Pχ2

⎡

⎣>

(
u

(i;j1)

2i

σ2

)2
⎤

⎦ , (7.31)

P
j2
i = Pχ2

⎡

⎣>

(
u

(i;j2)

2i

σ ′
2

)2
⎤

⎦ . (7.32)

P -values are corrected by BH criterion. mRNA probes associated with adjusted
P -values less than 0.01 are selected. Then, 482 and 487 mRNA probes, between
which 396 mRNA probes are chosen in common, are selected using P

j1
i and P

j2
i ,

respectively. Thus, in some sense, type II tensor approach can give the results
coincident between two approximations of singular value vectors attributed to i

using Eqs. (7.29) and (7.30), respectively.
Next, we need to see if the 396 mRNA probes chosen in common really exhibit

temporal difference between control and EGF treated cells as in the case of type
I tensor approach. The correlation coefficient between Eqs. (7.23) and (7.24) is
computed again to see the coincidence between gene expression and singular value
vectors (Fig. 7.13a). It is obvious that the peaks at ±1 is much steeper than that in
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Fig. 7.12 Singular value
vectors, Eq. (7.28). (a) u(j1)

1

(black) and u(j2)

1 (red). (b)

u(j1)

2 (black) and u(j2)

2 (red)
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Fig. 7.13 (a) Histogram of
correlation coefficients
between Eqs. (7.23)
and (7.24) for case II type II
tensor, Eq. (7.27). (b) Boxplot
of Eqs. (7.25) (black boxes
filled with green) and (7.26)
(red boxes filled with blue)
for case II type II tensor,
Eq. (7.27). P -values
computed by t test:
0.5 h:1.68 × 10−2,
1 h:2.56 × 10−5, 2 h:
3.83 × 10−7, 4 h:9.14 × 10−2,
6 h:7.30 × 10−4,
24 h:2.36 × 10−2,
48 h:5.55 × 10−38
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Fig. 7.11a. This suggests that type II tensor approach might be better than type I
tensor approach in spite of the smaller computational resources required.

In order to confirm the superiority of type II tensor approach, we again apply
linear regression Eqs. (7.25) and (7.26) replacing singular value vectors with those
obtained by type II tensor (Fig. 7.13b). Because six among seven time points
excluding 4 h after the EGF treatment are associated with P -values less than 0.05,
type II tensor approach is superior to type I tensor approach.

Finally, in order to validate 552 and 396 mRNA probes selected by type I and II
tensor approaches, respectively, we upload RefSeq mRNA IDs associated with these
probes to DAVID. Table 7.23 lists the KEGG pathways identified by DAVID for type
I and II tensor approach. Although common five KEGG pathways are associated
with adjusted P -values less than 0.05, P -values for type II tensor approach are
smaller than those for type I tensor approach. Because P -values are more likely
smaller for more number of genes uploads, smaller P -values attributed to KEGG
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Table 7.23 KEGG pathways identified by DAVID for genes associated with 552 (upper numbers)
and 396 (lower numbers) miRNA probes selected using type I, Eq. (7.20), and II, Eq. (7.27), tensor
approach

Category Term Count % P -value Adjusted P -value

KEGG_PATHWAY Cell cycle

{
29

28

9.0

12.1

7.2 × 10−24

3.7 × 10−29

1.0 × 10−21

3.2 × 10−27

KEGG_PATHWAY Oocyte meiosis

{
14

14

4.3

6.0

7.6 × 10−8

1.4 × 10−10

5.5 × 10−6

5.8 × 10−9

KEGG_PATHWAY DNA replication

{
8

9

2.5

3.9

2.8 × 10−6

3.2 × 10−9

1.4 × 10−4

9.3 × 10−8

KEGG_PATHWAY
Progesterone-mediated

oocyte maturation

{
8

9

2.5

3.9

9.2 × 10−4

4.0 × 10−6

3.3 × 10−2

8.6 × 10−5

KEGG_PATHWAY p53 signaling pathway

{
7

6

2.2

2.6

1.2 × 10−3

7.7 × 10−4

3.5 × 10−2

1.3 × 10−2

Adjusted P -values are by BH criterion

pathways by type II tensor approach where less number of genes are selected suggest
the superiority of type II tensor approach from the biological point of view.

Although type II approach is better than type I approach in this specific example,
because it is highly dependent upon data sets analyzed, it is difficult to know in
advance which is better.

7.7 Gene Expression and Methylation in Social Insects

As the first example of the application of case I tensor approach, we employ the
multi-omics analysis of social insects. Social insects, e.g., ants and bees, are known
to have castes where distinct phenotypes appear in spite of shared genome. Thus, it
is interesting to know what drives differentiation between castes.

One possible scenario is the alteration of epigenome [29], because epigenome
has plasticity that can mediate differentiation between castes. Most typical caste is
composed of queen and worker. The former, queen, concentrates on reproduction
while the latter, workers, serve to maintain colony. In spite of their strict difference
of phenotype, they are often known to be relatives. Thus, they share genome to
some extent with having distinct phenotype. This suggests that epigenome can play
potential roles in the differentiation of caste.

In this section, we try to identify genes associated with differential expression
and methylation between caste, especially queens and workers [25], because such
genes are potential candidates that can mediate distinct phenotypes between castes.
In order that, we employ TD based unsupervised FE that can integrate multi-omics
data sets. The data set analyzed [16] is composed of two insect species, bee (P.



7.7 Gene Expression and Methylation in Social Insects 253

Table 7.24 Number of samples in social insect study [16]

Methylation mRNA

Caste Control Queen Worker Queen Worker

P. canadensis 1 3 3 4 6

D. quadriceps 1 3 3 7 6

canadensis) and ant (D. quadriceps). Table 7.24 shows the number of samples
available from GEO with GEO ID GSE59525. As can be seen, it is a typical large
p small n data set.

Because the amount of gene expression is measured by the unit of Reads Per
Kilobase of exon per Million mapped reads (RPKM), it is used as it is. Because the
gene expression profile of P. canadensis was log2-ratio converted, it is expanded to
the original one as 2x where x is gene expression. On the other hand, we would like
to employ case II tensor format (Table 5.3) where genes are shared. Thus we need
to convert methylation profiles to be attributed to individual genes. In order that,
assuming ms1 and ms2 are methylation and nonmethylation values, respectively, at
locus s, then the relative methylation within the ith gene can be defined as

∑
s∈i ms1∑

s∈i

(
ms1 + ms2

) (7.33)

where
∑

s∈i is taken over s bases within DNA sequences corresponding to the ith
gene body; the reason why methylation not in promoter region but in the gene body
is summed up and is attributed to genes is because gene body methylation is believed
to affect gene expression in insects [32]. Relative methylation profile is formatted
as

x
metyl, bee

ik ∈ R
N×7, (7.34)

x
metyl, ant

ik ∈ R
N×7, (7.35)

where N is the number of genes. k = 1 corresponds to control samples. 2 ≤ k ≤ 4
and 5 ≤ k ≤ 7 correspond to queens and workers, respectively. On the other hand,
mRNA expression is formatted as

xmRNA, bee

ij ∈ R
N×10, (7.36)

xmRNA, ant

ij ∈ R
N×13. (7.37)

where 1 ≤ j ≤ 4 and 5 ≤ j ≤ 10 for bee correspond to queens and workers,
respectively, while 1 ≤ j ≤ 7 and 8 ≤ j ≤ 13 for ant correspond to queens and
workers, respectively. Then case II tensor is generated as

xbee

ijk = xmRNA, bee

ij x
metyl, bee

ik , (7.38)
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xant

ijk = xmRNA, ant

ij x
metyl, ant

ik , (7.39)

where xbee

ijk ∈ R
N×10×7 and xant

ijk ∈ R
N×13×7. HOSVD, Fig. 3.8, is applied to xbee

ijk

and xant

ijk as

xbee

ijk =
N∑

�1=1

10∑

�2=1

7∑

�3=1

G(�1, �2, �3)u
bee(i)
�1i

u
bee(j)
�2j

u
bee(k)
�3k

(7.40)

xant
ijk =

N∑

�1=1

13∑

�2=1

7∑

�3=1

G(�1, �2, �3)u
ant(i)
�1i

u
ant(j)
�2j

u
ant(k)
�3k

(7.41)

where u
bee(i)
�1i

∈ R
N×N , u

bee(j)
�2j

∈ R
10×10, u

bee(k)
�3k

∈ R
7×7, u

ant(i)
�1i

∈ R
N×N , u

ant(j)
�2j

∈
R

13×13, and u
ant(k)
�3k

∈ R
7×7.

Next, as usual, we need to find which singular value vectors are coincident
with the distinction between queens and workers. Figures 7.14a and b, 7.15a and
b show singular value vectors associated with highest distinction between queens
and workers. Unfortunately, singular value vectors of methylation do not exhibit
small enough P -values to be significant. Nevertheless, because selected genes might
exhibit significant distinct expression between queens and workers, we continue the
procedure. We seek G(�1, 1, 3) for P. canadensis and G(�1, 1, 5) for D. quadriceps
with larger absolute values.
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Table 7.25 The top 10 core
tensors, G, with large
absolute values

P. canadensis D. quadriceps

�1 G(�1, 1, 3) �1 G(�1, 1, 5)

9 −79.8 11 −54.8

10 75.4 12 4.1

7 −61.4 25 3.4

11 38.4 2 −2.9

5 −23.4 23 2.8

4 −16.0 9 2.4

12 −11.9 20 −2.2

1 −5.4 8 2.2

13 5.4 10 −1.7

6 −4.5 22 −1.4

Table 7.25 lists the top ranked Gs with larger absolute values. Then we decide
that ubee(i)

�1
, �1 = 9, 10 and uant(i)

11 are used for FE (Figs. 7.14c and 7.15c). P -values
are attributed to ith gene as

P bee

i = Pχ2

⎡

⎣>

10∑

�1=9

(
u

bee(i)
�1i

σ�1

)2⎤

⎦ , (7.42)

and
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Table 7.26 Statistical tests of the differences (between queens and workers) in gene expression
and methylation

t Wilcox KS

P. canadensis Gene expression 1.71 × 10−3 1.89 × 10−2 0.08

Methylation 1.74 × 10−4 5.06 × 10−3 1.02 × 10−3

D. quadriceps Gene expression 2.73 × 10−12 9.05 × 10−12 4.41 × 10−11

Methylation 0.3757 0.7163 0.4413

The genes identified by TD-based unsupervised FE are analyzed by t (the t test), Wilcox (the
Wilcoxon rank sum test), and KS (the Kolmogorov–Sinai test), all two-sided

P ant

i = Pχ2

⎡

⎣>

(
u

ant(i)
11i

σ11

)2
⎤

⎦ , (7.43)

P -values are adjusted by BH criterion. Genes associated with adjusted P -values less
than 0.01 are selected. As a result, 133 and 128 genes are selected for P. canadensis
and D. quadriceps, respectively.

The point is if selected genes are associated with distinct gene expression and
methylation between queens and workers simultaneously. Then we apply three sta-
tistical tests to 133 genes and 128 genes between queens and workers (Table 7.26).
Selected genes exhibit simultaneous distinct gene expression and methylation
between queens and workers for P. canadensis, but not for D. quadriceps. Thus
selected genes can be potential factors that can mediate caste differentiation for P.
canadensis, but not for D. quadriceps. Although we are not sure the lack of detection
for D. quadriceps is because of biological reason or failure of our methodology, at
least, our purpose is achieved for P. canadensis. In order to clarify this point, we
need to continue research.

In order to see if conventional supervised methods can do this, we apply t test
to gene expression and promoter methylation to find genes that exhibit significant
distinction between queens and workers. As a result, two genes for distinct gene
expression between queens and workers for D. quadriceps are associated with
adjusted P -vales less than 0.01. This poor performance is because of small number
of samples. Thus, TD based unsupervised FE has the ability to find significant genes
for large p small n problem, for which conventional supervised method fails.

Before closing this section, we would like to validate selected genes from the
biological point of view. Because these two insects are not included in popular
enrichment servers, e.g. DAVID or Enrichr, instead we download list of GO terms,1

PCAN.v01.GO.tsv for P. canadensis and DQUA.v01.GO.tsv for D. quadriceps.
Fisher’s exact test is performed in order to evaluate enrichment and computed P -
values are corrected by BH criterion. GO terms associated with adjusted P -values
less than 0.05 are searched. There are three GO terms, Lipid transporter activity

1Paper Wasp and Dinosaur Ant Project. Accessed 15 Jan. 2019. http://wasp.crg.eu/download.html.

http://wasp.crg.eu/download.html
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(GO:0005319), Lipid particle (GO:0005811), and Lipid transport (GO:0006869)
enriched in 133 genes selected for P. canadensis, while there are no GO terms
enriched in 128 genes selected for D. quadriceps. This might be reasonable because
128 genes selected for D. quadriceps are not associated with distinct methylation
between queens and workers (Table 7.26). Anyway, 133 genes selected for P.
canadensis, which is simultaneously associated with distinct gene expression and
methylation between queens and workers, are associated with a few GO term
enrichment. Thus, at least for P. canadensis, TD based unsupervised FE is useful
also from the biological point of view.

7.8 Drug Discovery From Gene Expression: II

In Sect. 7.3, we have already shown that TD based unsupervised FE successfully
identifies compounds that affect gene expression in dose-dependent manner and
their target proteins from only gene expression profiles in fully unsupervised
manner. Nevertheless, it is strictly restricted to cancers because gene expression
profiles are measured in cancer cell lines. The identifying drug compounds that are
effective to other diseases requires additional gene expression profiles treated by
compounds in specific diseases, e.g., model animals or cell lines originated from
the disease. Thus in the manner in Sect. 7.3, the effectiveness of methods is quite
limited.

In this section, with using case II tensor where genes are shared between two
matrices or tensors, we try to identify disease effective drugs without measuring
gene expression repeatedly for individual diseases. The study design is as follows
(Fig. 7.16). xij1j2 is the ith gene expression profiles of animals treated by j1
compound at the time point j2 after the treatment. xij3 is the human gene expression
profile of gene i at j3th patients or healthy control. Case II tensor xij1j2j3 is generated
as

xij1j2j3 = xij1j2xij3 (7.44)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 as

xij1j2j3 =
N1∑

�1=1

N2∑

�2=1

N3∑

�3=1

N4∑

�4=1

G(�1, �2, �3, �4)u
(j1)
�1j1

u
(j2)
�2j2

u
(j3)
�3j3

u
(i)
�4i

(7.45)

Then, u(j2)
�2

that exhibits time dependence and u(j3)
�3

that exhibits distinction between
healthy controls and patients are searched. After identifying �2 and �3, �1 and �4
associated with G(�1, �2, �3, �4) with larger absolute values are selected. Once, �1
and �4 are selected, P -values are attributed to i and j1 as



258 7 Application of TD Based Unsupervised FE to Bioinformatics

Fig. 7.16 Integrated analysis of gene expression profile of drug treated animals, xij1j2 and human
gene expression profiles of patients and healthy control, xij3 . i: genes, j1: compounds, j2: time
point after the treatment, j3: human samples

Pi = Pχ2

[
>

(
u�4i

σ�4

)2
]

, (7.46)

and

Pj1 = Pχ2

[
>

(
u�1j1

σ�1

)2
]

. (7.47)

P -values are corrected by BH criterion and i and j1 associated with adjusted P -
values less than 0.01 (filled pink circles and filled light green circles surrounded by
pink oval in Fig. 7.16) are supposed to be selected. Target proteins are decided by the
comparison with external databases (as shown in Fig. 7.5). This process results in
the set of drug candidates compounds and candidate target proteins. Figure 7.17 and
Table 7.27 summarize the process till selection of singular value vectors attributed to
genes and compounds. There are six diseases analyzed: heart failure, PTSD, acute
lymphoblastic leukemia (ALL), diabetes, renal carcinoma, and cirrhosis. In some
cases, modes of case II tensors are more than four because human gene expression
profiles are represented as not matrices but tensors.

Gene expression profiles of model animals are downloaded from DrugMa-
trix [15] where rats are treated as model animals and gene expression profiles
of various tissues are extracted. Corresponding human or rat disease expression
profiles are downloaded from GEO. For heart failure, human disease heart failure
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Fig. 7.17 Schematics that illustrate the procedure of TD-based unsupervised FE applied to the
various disease and DrugMatrix data sets. SVV: singular value vector. Selected four time points
(tps) are 1/4, 1, 3, and 5 days after treatment

gene expression profiles and rat heart gene expression profiles treated by drugs
are used. For PTSD, stressed mouse brain gene expression profiles and rat brain
gene expression profiles treated by drugs are used. For ALL, drug treated rat and
ALL human patients bone marrow gene expression profiles are used. For diabetes
and renal carcinoma, drug treated rat kidney gene expression profiles are used.
Diabetes and renal carcinoma human patients kidney gene expression profiles are
used for diabetes and renal carcinoma, respectively. For cirrhosis, drug treated rat
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Table 7.28 The number of genes, drugs, and target proteins identified by TD based unsupervised
FE

Predicted target

Disease Inferred genes Inferred compounds Up Down

Heart failure 274 43 556 449

PTSD 374 6 578 548

ALL 24 2 91 57

Diabetes 65 14 186 140

Renal carcinoma 225 14 229 177

Cirrhosis 132 27 510 488

liver gene expression profiles and cirrhosis human liver expression profiles are used.
See appendix for more details.

After selecting genes and drugs, genes are uploaded to Enrichr for target protein
identification. Genes enriched (adjusted P -values less than 0.01) in “Single gene
perturbation GEO up” and “Single gene perturbation GEO down” are selected as
target proteins. This process is similar to that illustrated in Fig. 7.5. Table 7.28
summarizes the number of identified genes, compounds, and target proteins.

In order to validate the relationship between drugs and target proteins predicted,
we compare them with DINIES [31] that stores known protein–drug interac-
tions. We upload drugs one by one to DENIES with parameters “chemogenomic
approach” and “with learning on all DBs” and can get list of target proteins. They
are merged into a list of proteins because individual proteins can be targeted by
multiple drugs. The obtained set of target proteins are compared with predicted
targets in Table 7.28. Here total proteins considered is limited to genes included
in “Single_Gene_Perturbations_from_GEO_all_list” of Enrichr. Table 7.29 shows
the results of evaluation by Fisher’s exact test and χ2 test. Ten out of twelve are
evaluated as significant (P -values less than 0.05) by either Fisher’s exact test or χ2

test. This suggests that TD based unsupervised FE can be used for the prediction
of target protein and diseases of drugs only from gene expression profile, in fully
unsupervised manner in the sense that it does not require any pre-knowledge about
disease–drug or protein–drug interaction.

7.9 Integrated Analysis of miRNA Expression
and Methylation

Unsupervised method is often useful when applied to something for which no
pre-knowledge is available. For example, two kinds of omics data might be
correlated with unknown reasons. To search this kind of hidden (latent) relationship,
unsupervised method is critically useful. In this section, we propose the application
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Table 7.29 Fisher’s exact test (PF ) and the uncorrected χ2 test (Pχ2 ) of known drug target
proteins regarding the inference of the present study

Single gene perturbations from GEO
up

Single gene perturbations from GEO
down

F T PF Pχ2 RO F T PF Pχ2 RO

Heart F 521 517
3.4 × 10−4 3.9 × 10−4 3.02

628 416
1.3 × 10−3 7.3 × 10−4 2.61

failure T 13 39 19 33

PTSD
F 500 560

3.8 × 10−2 3.1 × 10−2 2.67
532 529

6.1 × 10−3 4.5 × 10−3 3.81
T 6 18 5 19

ALL
F 979 89

2.7 × 10−1 3.0 × 10−1 2.19
1009 57

1.0 × 100 – –
T 10 2 12 0

Diabetes
F 889 177

1.2 × 10−2 7.1 × 10−3 3.00
936 130

3.6 × 10−4 2.0 × 10−5 5.13
T 15 9 14 10

Renal F 847 219
2.0 × 10−2 1.2 × 10−2 2.75

895 169
4.3 × 10−2 2.2 × 10−2 2.64

carcinoma T 14 10 16 8

Cirrhosis
F 572 490

1.1 × 10−2 8.1 × 10−3 2.91
595 467

1.6 × 10−3 1.1 × 10−3 3.81
T 8 20 7 21

Rows: known drug target proteins (DINIES). Columns: Inferred drug target proteins using “Single
Gene Perturbations from GEO up” or “Single Gene Perturbations from GEO down.” OR: odds
ratio

of case I type II tensor to investigate relationship between miRNA expression and
methylation, between which no direct relationships are biologically expected.

Promoter methylation of genes targeted by miRNAs can of course affect
expression of these genes. Nevertheless, there seem to be no biological reasons that
promoter methylation of genes targeted by miRNAs affects the expression of these
miRNAs themselves or vice versa. Thus, if we can find any correlations between
these two, it might be a starting point of finding new biological points of view.

In this section, we make use of TCGA data set [28]. The data set we analyze
is composed of eight normal ovarian tissue samples and 569 tumor samples. Our
data set includes expression data on 723 miRNAs as well as promoter methylation
profiles of 24,906 genes. They are formatted as matrices

x
methyl

ij ∈ R
24906×577 (7.48)

xmiRNA

kj ∈ R
723×577 (7.49)

They are converted to case I tensor because they share samples as

xijk = xmiRNA

kj x
methyl

ij (7.50)

Usually, HOSVD, Fig. 3.8, is supposed to be applied to xijk as
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xijk =
24906∑

�1=1

577∑

�2=1

723∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

. (7.51)

Unfortunately, xijk is too huge to apply HOSVD directly. Thus, instead, we derive
type II tensor as

xik =
577∑

j=1

xijk. (7.52)

Now it is a matrix. Thus we can apply PCA to it. Then we can have PC score u� ∈
R

723 attributed to miRNA and PC loading v� ∈ R
24906 attributed to methylation. The

singular value vectors attributed to sample j are computed in two ways as Eq. (5.15)

u
(j ;k)
�j =

∑

k

u�kx
miRNA
kj , (7.53)

u
(j ;i)
�j =

∑

i

v�ix
methyl

ij . (7.54)

The first thing to check is if there are any �s such that u(j ;k)
� ∈ R

577 and u(j ;i)
� ∈

R
577 satisfy the following requirements simultaneously;

• u(j ;i)
� and u(j ;k)

� are significantly correlated.

• u(j ;k)
� is expressed distinctly between healthy controls (j ≤ 8) and patients

(j > 8).
• u(j ;i)

� is expressed distinctly between healthy controls (j ≤ 8) and patients
(j > 8).

In order to validate these requirements visually, we show scatterplot for 1 ≤
� ≤ 9 (Fig. 7.18). More or less all nine scatterplots look like satisfying the above
requirements simultaneously. In order to select u� and v� used for miRNA and gene
selection, respectively, we need to identify which � satisfies the above requirements
best. In order that, we propose several measures. First, we select miRNAs and genes.
P -values are attributed as

Pk = Pχ2

[
>

(
u�k

σ�

)2
]

, (7.55)

Pi = Pχ2

[
>

(
v�i

σ ′
�

)2
]

. (7.56)
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Fig. 7.18 Scatterplots of u(j ;k)
� (horizontal) and u(j ;i)

� (vertical) for 1 ≤ � ≤ 9. Red filled circle:
eight normal controls (j ≤ 8), gray filled circles: ovarian cancer patients (j > 8)

P -values are adjusted by BH criterion and i and k associated with adjusted P -values
less than 0.01 are selected. Then we require genes and miRNA selected similar to
the above requirements as

• Selected genes and miRNAs are significantly correlated.
• Selected miRNAs are expressed distinctly between normal controls (j ≤ 8) and

patients (j > 8).
• Selected genes are methylated distinctly between normal controls (j ≤ 8) and

patients (j > 8).

In order that, we compute the followings:

(a) Correlation coefficient between u(j ;i)
� and u(j ;k)

� .
(b) P -value attributed to the above correlation coefficients.
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(c) P -values computed by t test that evaluates if u(j ;k)
� is distinct between normal

control (j ≤ 8) and patients (j > 8).
(d) P -values computed by t test that evaluates if u(j ;i)

� is distinct between normal
control (j ≤ 8) and patients (j > 8).

(e) Ratio of significantly correlated pairs of genes and miRNAs selected.
(f) Ratio of miRNA associated with adjusted P -values computed by t test that

evaluates if selected miRNAs are expressed distinctly between normal control
(j ≤ 8) and patients (j > 8).

(g) Ratio of genes associated with adjusted P -values computed by t test that
evaluates if selected genes are methylated distinctly between normal control
(j ≤ 8) and patients (j > 8).

(h) The number of selected miRNAs.
(i) The number of selected genes.

Here significant correlation is evaluated if associated BH criterion adjusted P -
values are less than 0.01 (see page 112 for how to compute P -values attributed
to correlation coefficients). Table 7.30 shows the result. � = 3 seems to be the best,
because � = 3 is the best for the sixth and the seventh measures and the second best
in the fifth measure; the fifth, sixth, and seventh measures are important because
they are direct evaluations of selected genes and miRNAs. Because the number of
selected genes and miRNAs do not vary depending on � so much, it is the best
to select � = 3. Because more than 88% of genes and miRNAs and their pairs
satisfy the desired requirements in the above (88% is the smallest ratio (percentage)
among requirements from (e) to (g) in Table 7.30), TD based unsupervised FE
can be considered to have ability to select miRNAs and genes satisfying desired
requirements mentioned above.

In order to see if other supervised methods can identify set of genes and miR-
NAs satisfying desired requirements, i.e., selected genes are methylated distinctly
between healthy control and patients, miRNAs selected are expressed distinctly
between healthy controls and patients, selected genes and miRNAs are significantly
correlated, we apply t test to select genes methylated distinctly between healthy

Table 7.30 Measures that evaluate which � satisfies the desired requirements best

� (a) (b) (c) (d) (e) (f) (g) (h) (i)

1 0.187 6.35 × 10−6 6.25 × 10−3 4.42 × 10−7 – 1.000 – 2 0

2 0.718 1.95 × 10−92 1.28 × 10−4 1.21 × 10−11 0.944 0.571 0.834 7 241

3 0.628 1.49 × 10−64 3.06 × 10−8 5.55 × 10−10 0.884 1.000 0.905 7 284

4 0.649 2.45 × 10−70 6.15 × 10−5 1.02 × 10−4 0.539 0.714 0.597 7 273

6 0.348 6.76 × 10−18 1.68 × 10−3 5.71 × 10−17 0.350 0.375 0.674 8 132

7 0.624 1.27 × 10−63 2.00 × 10−1 7.65 × 10−7 0.365 0.400 0.758 5 293

8 0.500 8.60 × 10−38 1.33 × 10−4 5.89 × 10−13 0.274 0.833 0.775 6 231

9 0.593 3.50 × 10−56 6.44 × 10−2 3.35 × 10−5 0.182 0.667 0.681 3 251

The number in the first row corresponds to the alphabetical list in the main text
Bold numbers are the best values within each category
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controls and patients and miRNA expressed distinctly between healthy controls and
patients. P -values are attributed to miRNAs and genes and adjusted by BH criterion.
Then, 214 miRNAs and 19,395 genes associated with adjusted P -values less than
0.01 are selected. In order to see how much ratio of significantly correlated pairs
among total 241×19395 = 4,829,355 pairs is, we compute correlation coefficients
between them and attribute P -values to these pairs (see page 112 for how to
compute P -values attributed to correlation coefficients). P -values are corrected by
BH criterion and 555,391 pairs are associated with adjusted P -values less than 0.01.
Because this is as small as 11.5% of 4829,355 pairs, t test is inferior to TD based
unsupervised FE to identify genes and miRNAs satisfying desired requirements.

This poor performance might be because of the too many genes and miRNAs
selected. P -values given by t test have strong tendency to reduce its value when
many samples are available. In this example, because as many as 575 samples are
available, even gene and miRNAs associated with small distinction are associated
with small enough P -values. In order to avoid this difficulty, we reduce the number
of genes and miRNAs selected by t test as many as those by TD based unsupervised
FE, by selecting to ranked seven miRNA and 284 methylation probes attributed to
genes based upon P -values computed by t test. Then among 7 × 284 = 1967 pairs,
as small as 50 pairs are associated with adjusted P -values less than 0.01 attributed
to correlation coefficient. Thus, only 2.5% of 1967 pairs are significantly correlated.
Thus, the ratio decreases instead of increasing in opposed to the expectation.

It might be possible to select genes and miRNAs starting from identifying
significantly correlated pairs before finding genes and miRNAs distinct between
healthy control and patients. Then correlation coefficients are computed among all
pairs of genes and miRNAs. P -values are attributed to correlation coefficient (see
page 112 for how to compute P -values attributed to correlation coefficients) and
are corrected by BH criterion. Then among 24,906 × 723 = 18,007,038 pairs,
1,197,772 pairs are associated with adjusted P -values less than 0.01. Unfortunately,
these pairs include all genes and miRNAs. Thus, starting from pairs significantly
correlated is not an effective strategy. This poor performance achieved by t test
as well as correlation analysis demonstrates the difficulty of identifying gene
and miRNAs satisfying desired requirement, i.e., selected genes are methylated
distinctly between healthy control and patients, miRNAs selected are expressed
distinctly between healthy controls and patients, selected genes and miRNAs are
significantly correlated, which is easily achieved by TD based unsupervised FE.

Before closing this section, genes and miRNA selected should be biologically
evaluated, too. First, 240 gene symbols associated with 284 probes are uploaded
to DAVID (Table 7.31). At a glance, although it does not look deeply related to
cancers, detailed investigation can alter this impression. This data is about ovarian
cancer. The most major subtype is surface epithelial-stromal tumor which is known
to be associated with keratinization [13]. Thus, the detection of keratinization as
the most enriched term is reasonable, while the third enriched one is also related to
keratinization. Because the fifth one, epidermis development, is the parent term of
keratinization, it is also understandable.
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Table 7.31 GO BP enrichment by the 274 gene symbols identified by TD based unsupervised FE
for ovarian cancer data from TCGA

Category Term Genes count % P -value
Adjusted
P -value

GOTERM_BP_DIRECT Keratinization 14 6.2 9.3E−15 1.1E−11

GOTERM_BP_DIRECT Peptide cross-linking 14 6.2 1.7E−14 9.6E−12

GOTERM_BP_DIRECT Keratinocyte differentiation 15 6.6 2.8E−13 1.1E−10

GOTERM_BP_DIRECT Acute-phase response 7 3.1 6.4E−6 1.8E−3

GOTERM_BP_DIRECT Epidermis development 9 4.0 8.0E−6 1.8E−3

Adjusted P -values are by BH criterion

Next, the selected seven miRNAs are uploaded to DIANA-mirpath for the
evaluation (Fig. 7.19). It is obvious that they are enriched with various cancers.
Thus, the selected seven miRNAs are supposed to be related to cancers.

In conclusion, TD based unsupervised FE successfully identifies reasonable
genes and miRNAs also from the biological point of view.

7.10 Summary

Because TD based unsupervised FE was more recently proposed than PCA based
unsupervised FE, the examples of applications of TD based unsupervised FE
introduced in this chapter are very limited. In spite of that, it still covers wide range
of applications tried in the previous chapter using PCA based unsupervised FE:
analysis of time course data set, integrated analysis of multi-omics data set, and
identification of disease causing genes. In addition to this, it has new application
target, e.g., application to in silico drug discovery.

The general procedure of application of TD based unsupervised FE is as follows.
If there are no tensors available, generate case I or case II tensor of type I.
Occasionally, it might be requires to generate type II tensor in order to reduce
the required computational memory. If generated type II tensor is matrix, apply
PCA. If not, apply HOSVD. If type II tensor is employed, generate missing singular
value vectors by multiplying original tensor to obtained singular value vectors. Seek
singular value vectors attributed to samples coincident with desired property, e.g.,
distinction between controls and treated samples. Then, in order to select singular
value vectors attributed to features used for FE, core tensor is investigated. Singular
value vectors that share core tensor with larger absolute values with singular value
vectors attributed to samples associated with desired properties are selected. P -
values are attributed to features using selected singular value vectors attributed to
features with assuming χ2 distributions. P -values are corrected by BH criterion and
features associated with adjusted P -values less than 0.01.

This general procedure can be applied to wide range of bioinformatics topics
depending upon what kind of singular value vectors attributed to samples are
selected. In this sense, TD based unsupervised FE is expected to be applicable to
wider range of biological problems other than those treated in this chapter.
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Fig. 7.19 Heatmap that summarize the results of DIANA-mirpath for the selected seven miRNAs,
with specifying “pathways union” option

Appendix

Universarity of miRNA Transfection

Study 1

This data set includes transfection of three miRNAs, miR-200a, 200b, and 200c.
The number of probes in microarray is as many as 43,376. For each of three,
two paired experiments of treated and control samples. Treated and control sample
measurement is performed by one microarray. Thus these two must be retrieved
from it (columns annotated as gProcessedSignal and rProcessedSignal). Then, it
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is possible to make a tensor, xij1j2j3 ∈ R
43376×3×2×2 where i stands for probes,

j1 stands for miRNAs, j2 stands for two replicates, and j3 stands for control vs
treated samples. Nevertheless, it is not suitable for this specific case. If the number
of components is two, automatically the two components of singular value vectors
are uj = uj ′ and uj = −uj ′ where j and j ′ are each of two categories. The
present purpose is to see if the components independent of category exist. This
means, the setup that always results in the components independent of category is
not good. Therefore, in this specific case, we format mRNA expression profiles as
xij ∈ R

43,376×12 where 1 ≤ j ≤ 6 and 7 ≤ j ≤ 12 are control and treated
samples, respectively. PCA is applied to xij such that PC score, u� ∈ R

43376, and
PC loading, v� ∈ R

12, are attributed to probes and samples, respectively. As a
result, we find that v2 represents distinct expression between control and treated
samples, but independent of miRNAs transfected (Fig. 7.20). This suggests that
there are non-negligible number of mRNAs affected by sequence-nonspecific off-
target regulation. P -values are attributed to probes using the second PC score u2
with assuming χ2 distribution as

Pi = Pχ2

[
>

(
u2i

σ2

)2
]

. (7.57)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Fig. 7.20 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 1
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Study 2

This data set includes two miR-7 transfection experiments, two miR-128 trans-
fection experiments, and three control experiments, normalized by mas5 proce-
dure [17]. As mentioned in the beginning of the previous chapter, microarray
technology measures photo emission of hybridized probes. Thus, various normal-
ization procedures are applied. mas5 is one of such popular procedures, although
I do not intend to explain mas5 in more detail, because it is beyond the scope of
this textbook. Because of unmatched number of experiments of treated and control
samples, they are difficult to be formatted in tensor. Thus it is instead formatted as
matrix, xij ∈ R

54675×7, where j = 1, 2 corresponds to miR-7 transfection j = 3, 4
corresponds to miR-128 transfection and 5 ≤ j ≤ 7 correspond to control samples.
PCA is applied to xij such that PC score, u� ∈ R

54675, and PC loading, v� ∈ R
7, are

attributed to probes and samples, respectively. The result is a bit disappointing. In
contrast to Fig. 7.20, we cannot find any PC loading that is constant independent
of miRNAs transfected. Figure 7.21 shows the second PC loading, v2, which
exhibits opposite signs between miR-7 transfection and miR-128 transfection. In
spite of that, Fig. 7.21 still suggests the possibility of sequence-nonspecific off-
target regulation. As mentioned previously, the only canonical function of miRNA
is to downregulate target mRNAs. With only this function, it is impossible to assign
opposite signs toward controls between miR-7 and miR-128 transfection as shown
in Fig. 7.21. Downregulation can result in only same signs towards controls. At
least, either of miR-7 or miR-128 transfection must be associated with sequence-
nonspecific off-target regulation that can cause upregulation. Thus, we keep the
selection of the second PC loading and assign P -values to probes as Eq. (7.57).

Fig. 7.21 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 2
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P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 3

This data set includes two miR-7 transfection experiments, two miR-128 transfec-
tion experiments, and six control experiments, normalized by plier procedure [18].
Plier is yet another procedure that normalizes microarray, although I do not intend
to explain plier in more detail, because it is beyond the scope of this textbook.
Because number of experiments of treated and control samples, they are difficult to
be formatted in tensor. Thus it is instead as matrix, xij ∈ R

54675×10, where j = 1, 2
corresponds to miR-7 transfection j = 3, 4 corresponds to miR-128 transfection
and 5 ≤ j ≤ 10 correspond to control samples. PCA is applied to xij such that PC
score, u� ∈ R

54675, and PC loading, v� ∈ R
10, are attributed to probes and samples,

respectively. The result is similar to study 2. In contrast to Fig. 7.20, we cannot find
any PC loading that is constant independent of miRNAs transfected. Figure 7.22
shows the second PC loading, v2, which exhibits opposite signs between miR-7
transfection and miR-128 transfection. As in the study 2, we keep the selection of
the second PC loading and assign P -values to probes as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Fig. 7.22 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 3
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Study 4

This data set includes two replicates of nine transfected miRNAs (miR-7/9/122a/
128a/132/133a/142/148b/181a) and corresponding 18 control samples. Thus, the
total number of samples is 36. This is successfully formatted as tensor, xijk ∈
R

23651×18×2 where i stands for probes, j stands for nine miRNAs transfection times
two biological replicates, and k is control and treated samples. We apply HOSVD
algorithm, Fig. 3.8, to xijk as

xijk =
23651∑

�1=1

18∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.58)

where u(i)
�1

∈ R
23651, u(j)

�2
∈ R

18, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
23651×18×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.23). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 6. P -values are attributed to probes using the sixth
PC score u(i)

6 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
6i

σ6

)2
⎤

⎦ . (7.59)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 5

This data set includes four profiles to which mock and cel-miR-67 miR-509/199a-
3p are transfected. We format it to matrix xij ∈ R

41539×4. PCA is applied to xij

and the second PC loading, v2, is selected as that exhibits distinction between
mock + cel-miR-67 and miR-509/199a-3p (Fig. 7.24). Although outcome cannot
be said very promising, because v2 is best fitted with the requirement, P -values are
attributed to probes using Eq. (7.57). P -values are corrected by BH criterion and
probes associated with adjusted P -values less than 0.01 are selected.

Study 6

This data set includes transfection of eight miRNAs, miR-10a-5p, 150-3p/5p, 148a-
3p/5p, 499a-5p, 455-3p. The number of probes in microarray is as many as 62,976.
The number of samples is 16 composed of combination of miRNAs and cell lines.
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Fig. 7.23 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained by HOSVD applied
to xijk made out of study 4

Not all miRNAs are used equally. For each of 16, two paired experiments of treated
and control samples. Treated and control sample measurement is performed by
one microarray. Thus these two must be retrieved from it (columns annotated as
gProcessedSignal and rProcessedSignal). This is successfully formatted as tensor,
xijk ∈ R

62976×16×2 where i stands for probes, j stands for combinations of eight
miRNAs transfection and cell lines, and k is control and treated samples. We apply
HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
62976∑

�1=1

16∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.60)

where u(i)
�1

∈ R
62976, u(j)

�2
∈ R

16, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
62976×16×2 is a core tensor. Now we need to find u(k)

�3
satisfying
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Fig. 7.24 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 5
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Fig. 7.25 The second singular value vector, u(k)
2 , attributed to the various combinations of control

and cell lines, and the first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained
by HOSVD applied to xijk made out of study 6

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.25). After investigating which G(�1, 1, 2) has the largest
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absolute value, we find that �1 = 7. P -values are attributed to probes using the
seventh PC score u(i)

7 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
7i

σ7

)2
⎤

⎦ . (7.61)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 7

This data set includes transfection of nine miR-205/29a/144-3p/5p, 210, 23b,
221/222/223. The number of probes in microarray is as many as 62,976. The
number of samples is 19 composed of combination of miRNAs and cell lines. Not
all miRNAs are used equally. For each of 19, two paired experiments of treated
and control samples. Treated and control sample measurement is performed by
one microarray. Thus these two must be retrieved from it (columns annotated as
gProcessedSignal and rProcessedSignal). This is successfully formatted as tensor,
xijk ∈ R

62976×19×2 where i stands for probes, j stands for combinations of eight
miRNAs transfection and cell lines, and k is control and treated samples. We apply
HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
62976∑

�1=1

19∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.62)

where u(i)
�1

∈ R
62976, u(j)

�2
∈ R

19, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
62976×19×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy this
requirement (Fig. 7.26). After investigating which G(�1, 1, 2) has the larger absolute
values, we find that �1 = 2, 3. P -values are attributed to probes using the second
and third PC scores u(i)

�1
, �1 = 2, 3 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

3∑

�1=2

(
u

(i)
�1i

σ�1

)2⎤

⎦ . (7.63)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.
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Fig. 7.26 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to the combinations of miRNAs and cell lines, obtained
by HOSVD applied to xijk made out of study 7

Study 8

This data set includes transfection of two miRNAs, miR-146a/b. The number of
probes in microarray is as many as 43,379. The number of samples is 18 composed
of six miR-146a OE, four miR-146b OE, and eight miR-146a KO. For each of 19,
two paired experiments of treated and control samples. Treated and control sample
measurement is performed by one microarray. Thus these two must be retrieved
from it (columns annotated as gProcessedSignal and rProcessedSignal). This is
successfully formatted as tensor, xijk ∈ R

43379×18×2 where i stands for probes,
j stands for combinations of eight miRNAs transfection and cell lines, and k is
control and treated samples. We apply HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
43379∑

�1=1

18∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.64)

where u(i)
�1

∈ R
43379, u(j)

�2
∈ R

18, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
43379×18×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.27). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 5. P -values are attributed to probes using the fifth
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Fig. 7.27 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained by HOSVD applied
to xijk made out of study 8

PC score u(i)
5 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
5i

σ5

)2
⎤

⎦ . (7.65)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 9

This data set includes transfection of two miRNAs, miR-107/181b. transfected to
HeLa cell lines. The number of probes in microarray is as many as 9987. The
number of samples is 18 composed of six controls, two anti-miR-107, four miR-107,
two anti-miR-181b, and four miR-181b transfected samples. This is successfully
formatted as tensor, xijk ∈ R

9987×16×3 where i stands for probes, j stands for
replicates, and k is control, miR-107 and miR-181b. We apply HOSVD algorithm,
Fig. 3.8, to xijk as

xijk =
9987∑

�1=1

6∑

�2=1

3∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.66)
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Fig. 7.28 The second
singular value vector, u(k)

2 ,
attributed to control, miR-107
and miR-181b transfection,
and the first singular value
vector, u(j)

1 , attributed to
miRNAs and replicates,
obtained by HOSVD applied
to xijk made out of study 9
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where u(i)
�1

∈ R
9987, u(j)

�2
∈ R

6, u(k)
�3

∈ R
3 are singular value vectors and

G(�1, �2, �3) ∈ R
9987×6×3 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32 = −u

(k)
�33; �3 = 2 turns out to satisfy this requirement. On the

other hand, we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to
satisfy this requirement (Fig. 7.28). After investigating which G(�1, 1, 2) has the
largest absolute value, we find that �1 = 2. P -values are attributed to probes using
the second PC score u(i)

2 with assuming χ2 distribution as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Study 10

Everything is the same as study nine other than that transfected cell line is HEK 293
cell line (see Fig. 7.29 for singular value vectors selected).
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Fig. 7.29 The second
singular value vector, u(k)

2 ,
attributed to control, miR-107
and miR-181b transfection,
and the first singular value
vector, u(j)

1 , attributed to
miRNAs and replicates,
obtained by HOSVD applied
to xijk made out of study 10
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Study 11

This data set includes transfection of a miRNA, miR-181b transfected to SH-SY5Y
cell line. The number of probes in microarray is as many as 9987. The number of
samples is eight composed of four controls, two anti-miR-181b, and two miR-181b
transfected samples. This is successfully formatted as tensor, xijk ∈ R

9987×4×2

where i stands for probes, j stands for replicates, and k is control and miR-181b.
We apply HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
9987∑

�1=1

4∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.67)

where u(i)
�1

∈ R
9987, u(j)

�2
∈ R

4, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
9987×4×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
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Fig. 7.30 The second
singular value vector, u(k)

2 ,
attributed to control and
miR-181b transfection, and
the first singular value vector,
u(j)

1 , attributed to miRNAs
and replicates, obtained by
HOSVD applied to xijk made
out of study 11
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this requirement (Fig. 7.30). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 2. P -values are attributed to probes using the
second PC score u(i)

2 with assuming χ2 distribution as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Drug Discovery From Gene Expression: II

Heart Failure

Human gene expression profiles are downloaded from GEO with GEO ID
57345. File used is GSE57345-GPL11532_series_matrix.txt.gz. Rat heart gene
expression profiles are downloaded from GEO with GEO ID GSE59905.
Files used are GSE59905-GPL5426_series_matrix.txt.gz, and GSE59905-
GPL5425_series_matrix.txt.gz. 3937 genes are shared between human and rat.
Case II tensor, xij1j2j3 , is generated as
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xij1j2j3 = xij1j2xij3 . (7.68)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between three
classes, healthy control, idiopathic dilated cardiomyopathy, ischemic stroke, by
applying categorical regression

u
(j3)
�3j3

= a�3 +
3∑

s=1

b�3sδj3s (7.69)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 2, 3, 5, 17, 313 are associated with adjusted P -values less than
0.01, raw P -values of which are 1.65 × 10−17, 1.00 × 10−39, 1.29 × 10−4, 4.97 ×
10−6 and 1.554 × 10−4. Among them we select �3 = 2, 3 because they have more
contribution than others. Figure 7.31a shows the u(j3)

�3
, 1 ≤ �3 ≤ 3.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.31b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.72,−0.82, 0.51, and −0.09. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with
larger absolute G(�1, 2, 2, �4) or G(�1, 2, 3, �4) in order to select compounds j1
and genes i associated with time dependence and distinction between patients
and healthy controls simultaneously. In order that, we list top 20 G(�1, 2, 2, �4)

or G(�1, 2, 3, �4) (Table 7.32). Because G gradually decreases, we cannot select
specific cut off. Thus, tentatively, we select �1 and �4 associated with top 10 Gs;
�1 = 2 and �4 = 21, 25, 27, 28, 33, 36, 37, 38, 41, 42. Figure 7.31c shows u(j1)

2 .

Forty three outlier drugs,
∣∣∣u(j1)

2j1

∣∣∣ > 0.1, blue parts, are selected, by visual inspection,

because P -values computed from u(j1)

2 and corrected by BH criterion cannot be less
than 0.01. On the other hand, P -values are attributed to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=21,25,27,28,33,36,37,38,41,42

(
u�4i

σ�4

)2
⎤

⎦ (7.70)

P -values are corrected by BH criterion and 274 genes associated with adjusted P -
values less than 0.01 are selected.

PTSD

PTSD model rat amygdala and hippocampus gene expression are downloaded
from GEO with GEO ID GSE60304. A file GSE60304_series_matrix.txt.gz
is used. Gene expression profiles of the brain for drug treatments of rats are
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Fig. 7.31 (a) u(j3)
�3

, 1 ≤ �3 ≤ 3, P -values are computed by categorical regression, Eq. (7.69). (b)

u(j2)
�2

, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol: �2 = 2, green cross symbol: �2 = 3,

blue diamond: �2 = 4. r: correlation coefficient. (c) Histogram of u(j1)

2 . Blue parts are selected
ones. Vertical red broken line is 0
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Table 7.32 Top 20 G(�1, 2, 2, �4) or G(�1, 2, 3, �4)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 2 3 2 2 3 3 2 3 3 2

�4 27 38 33 28 41 37 21 36 42 25

G(�1, 2, �3, �4) 66.2 −43.7 40.7 −40.2 38.2 −31.6 28.5 −26.8 −26.2 −26.2

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 2 3 2 2 3 3 2 2 2 3
�4 40 29 31 39 32 33 26 11 18 31
G(�1, 2, �3, �4) −25.5 25.2 −22.6 21.8 20.7 −19.7 −19.5 −18.2 −17.3 15.4

downloaded from GEO with GEO ID GSE59895. Files used are GSE59895-
GPL5425_series_matrix.txt.gz and GSE59895-GPL5426_series_matrix.txt.gz.
Case II tensor, xij1j2j3j4j5 , is generated as

xij1j2j3j4j5 = xij1j2xij3j4xij3j5 . (7.71)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3j4j5 .

In order to identify u(j4)
�4

and u(j5)
�5

associated with three classes, control samples,
minimal behavioral response samples, and extreme behavioral response samples, by
applying categorical regression,

u
(j4)
�j4

= a� +
3∑

s=1

b�sδj4s (7.72)

u
(j5)
�j5

= a� +
3∑

s=1

b�sδj5s (7.73)

where regression coefficients are shared between �4 = �5 = �. P -values computed
by categorical regression are corrected by BH criterion. Then, only � = 3 is
associated with adjusted P -values less than 0.05 (Fig. 7.32a).

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.32b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.75,−0.81,−0.30, and 0.50. Then �2 = 2 with

largest absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�6

associated
with larger absolute G(�1, 2, �3, 3, 3, �6) in order to select compounds j1 and
genes i associated with time dependence and distinction between patients and
healthy controls simultaneously. In order that, we list top 20 G(�1, 2, �3, 3, 3, �6)

(Table 7.33). Because G gradually decreases, we cannot select specific cut off.
Thus, tentatively, we select �1 and �4 associated with top 10 Gs; �1 = 2 and
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Table 7.33 Top 20 G(�1, 2, �3, 3, 3, �6)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 1 1 1 1 1 1 1 1 1 1

�6 81 84 88 77 85 75 83 90 90 102

G(�1, 2,

�3, 3, 3, �6)

−0.133 0.112 0.110 −0.078 0.075 −0.075 0.074 0.069 0.069 −0.063

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 1 1 2 2 2 1 2 2 1 2
�6 76 80 94 76 128 285 86 286 92 282
G(�1, 2,

�3, 3, 3, �6)

−0.063 0.062 0.054 −0.054 −0.053 −0.052 0.048 0.047 0.045 0.045

�6 = 75, 77, 81, 83, 84, 85, 88, 89, 90, 102. Figure 7.32c shows u(j1)

2 . Six outlier

drugs, u
(j1)

2j1
< −0.2 and u

(j1)

1j1
< −0.15, blue parts, are selected, by visual

inspection, because P -values computed from u(j1)

2 and corrected by BH criterion
cannot be less than 0.01. On the other hand, P -values are attributed to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�6=75,77,81,83,84,85,88,89,90,102

(
u�6i

σ�6

)2
⎤

⎦ (7.74)

P -values are corrected by BH criterion and 374 genes associated with adjusted P -
values less than 0.01 are selected.

ALL

Bone marrow gene expression profiles of drug treated rats are downloaded
from GEO with GEO ID GSE59894, and ALL human bone marrow gene
expression is from GEO with GEO ID GSE67684. Used files are GSE67684-
GPL570_series_matrix.txt.gz, GSE67684-GPL96_series_matrix.txt.gz, GSE59894-
GPL5425_series_matrix.txt.gz, and GSE59894-GPL5426_series_matrix.txt.gz. In
this case both gene expression profiles are time dependent. ALL human bone
marrow gene expression profiles are measured at four times points, 0, 8, 15, and 33
days after a remission induction therapy. Case II tensor, xij1j2j3j4 is obtained as

xij1j2j3j4 = xij1j2xij3j4 (7.75)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3j4 .
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We compute correlation coefficients between u(j3)
�3

and days after a remission
induction therapy, we decide to select �3 = 4 because it has the largest absolute
value of correlation coefficient (Fig. 7.33a).

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.33b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between u(j2)
�2

and (1/4,1,3,5) are 0.94,−0.20, 0.96, and 0.14. Then �2 = 3 with largest absolute
value is selected. Then we need to find u(j1)

�1
and u(i)

�5
associated with larger absolute

G(�1, 3, 4, �4, �5) in order to select compounds j1 and genes i associated with time
dependence and distinction between patients and healthy controls simultaneously. In
order that, we list top 20 G(�1, 3, 4, �4, �5) (Table 7.34). For �1 and �5, we decide
to select those associated with top 10 Gs. As a result, �1 = 2, 3, 5, 6, 9, 10 and
�5 = 1, 2, 3, 5 are selected. P -values are attributed to j1 and i as

Pj1 = Pχ2

⎡

⎣>
∑

�1=2,3,5,6,9,10

(
u�1i

σ�1

)2
⎤

⎦ , (7.76)

Pi = Pχ2

⎡

⎣>
∑

�5=1,2,3,5

(
u�5i

σ�5

)2
⎤

⎦ . (7.77)

P -values are corrected by BH criterion and two compounds and 24 genes associated
with adjusted P -values less than 0.01 are selected.
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Table 7.34 Top 20 G(�1, 3, 4, �4, �5)

Rank 1 2 3 4 5 6 7 8 9 10

�1 3 5 2 3 10 9 6 3 2 9

�4 4 4 4 7 4 4 4 5 4 4

�5 1 1 1 5 3 3 1 5 2 2

G(�1, 3, 4,

�4, �5)

260.6 −40.2 40.6 −20.9 20.7 20.4 −19.9 −18.0 16.8 −15.0

Rank 11 12 13 14 15 16 17 18 19 20
�1 8 6 14 3 3 13 12 2 1 3
�4 4 4 4 8 2 4 4 4 4 2
�5 6 4 2 5 5 4 2 3 4 1
G(�1, 3, 4,

�4, �5)

−13.9 13.3 13.2 −12.8 12.3 11.6 11.4 11.3 10.5 −10.5

Diabetes

Drug treated rat kidney gene expression profiles are downloaded from GEO
with GEO ID GSE59913. Human diabetic kidney gene expression profile are
downloaded from GEO with GEO ID GSE30122. Files used are GSE59913-
GPL5425_series_matrix.txt.gz, GSE59913-GPL5426_series_matrix.txt.gz, and
GSE30122_series_matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.78)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between four
classes, normal human glomeruli, normal human kidney, normal human tubuli, and
diabetic human kidney, by applying categorical regression

u
(j3)
�3j3

= a�3 +
4∑

s=1

b�3sδj3s (7.79)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 1, 4 are associated with adjusted P -values less than 0.01, raw
P -values of which are 2.69 × 10−9 and 1.66 × 10−9 and are selected. Figure 7.34a
shows the u(j3)

�3
, 1 ≤ �3 ≤ 4.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.34b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.60,−0.85, 0.53, and 0.20. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with
larger absolute G(�1, 2, 1, �4) or G(�1, 2, 4, �4) in order to select compounds j1
and genes i associated with time dependence and distinction between patients and
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Table 7.35 Top 20 G(�1, 2, 1, �4) or G(�1, 2, 4, �4)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 3 4 4 3 9 11 2 4

�3 1 4 1 1 4 4 1 1 1 1

�4 1 4 1 1 4 4 48 59 42 42

G(�1, 2, �3, �4) −1410 955 −75 74 −53 51 38 34 −34 34

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 9 2 9 11 9 6 11 9 4
�3 4 1 1 1 1 4 1 1 4 1
�4 40 29 31 39 32 33 26 11 18 31
G(�1, 2, �3, �4) −33 33 −32 31 31 −30 −30 −29 −29 28

healthy controls simultaneously. In order that, we list top 20 G(�1, 2, 1, �4) or
G(�1, 2, 4, �4) (Table 7.35). Because top two Gs are outstandingly large, we select
�1 = 2 and �4 = 1, 4 associated with top two Gs.

Figure 7.34c shows u(j1)

2 . Fourteen outlier drugs, u
(j1)

2j1
> 0.13, blue parts, are

selected, by visual inspection, because P -values computed from u(j1)

2 and corrected
by BH criterion cannot be less than 0.01. On the other hand, P -values are attributed
to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=1,4

(
u�4i

σ�4

)2
⎤

⎦ (7.80)

P -values are corrected by BH criterion and 65 genes associated with adjusted
P -values less than 0.01 are selected.

Renal Carcinoma

Drug treated rat kidney gene expression profiles are downloaded from GEO
with GEO ID GSE59913. Human renal cancer gene expression profile are
downloaded from GEO with GEO ID GSE40435. Files used are GSE59913-
GPL5425_series_matrix.txt.gz, GSE59913-GPL5426_series_matrix.txt.gz, and
GSE40435_series_matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.81)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between two
classes, normal and cancer kidney, by applying categorical regression
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, 1 ≤ �3 ≤ 4, P -values are computed by categorical regression, Eq. (7.79). (b)
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u
(j3)
�3j3

= a�3 +
2∑

s=1

b�3sδj3s (7.82)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 13, 15, 30, 33, 35 are associated with adjusted P -values less
than 0.05, raw P -values of which are 3.4 × 10−4, 1.1 × 10−3, 2.7 × 10−4,
1.1 × 10−4, and 2.4 × 10−4 and are selected. Figure 7.35a shows the u(j3)

�3
, �3 =

13, 15, 30, 33, 35.
Next we try to identify u(j2)

�2
associated with significant time dependence.

Figure 7.35b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.60,−0.84, 0.54, and 0.21. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with larger
absolute G(�1, 2, �3, �4), �3 = 13, 15, 30, 33, 35 in order to select compounds j1
and genes i associated with time dependence and distinction between patients and
healthy controls simultaneously. In order that, we list top 20 G(�1, 2, �3, �4), �3 =
13, 15, 30, 33, 35 (Table 7.36). For top 20 Gs, it is always that �1 = 2. On the
other hand, because G gradually changes, we cannot decide threshold values. Thus,
we tentatively decide that �4 = 186, 215, 233, 244, 251, 269, 274, 309, 312, 318
associated with top 10 Gs.

Figure 7.35c shows u(j1)

2 . Fourteen outlier drugs, u
(j1)

2j1
> 0.13, blue parts, are

selected, by visual inspection, because P -values computed from u(j1)

2 and corrected
by BH criterion cannot be less than 0.01. On the other hand, P -values are attributed
to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=186,215,233,244,251,269,274,309,312,318

(
u�4i

σ�4

)2
⎤

⎦ (7.83)

Table 7.36 Top 20 G(�1, 2, �3, �4), �3 = 13, 15, 30, 33, 35

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 13 13 13 13 15 15 13 13 13 15

�4 215 269 233 186 309 312 251 244 274 318

G(�1, 2, �3, �4) 5.63 −5.30 5.08 −5.06 −4.84 4.78 4.66 4.61 4.57 −4.56

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 13 15 15 15 15 13 15 13 13 15
�4 289 399 336 206 363 255 375 219 342 297
G(�1, 2, �3, �4) −4.53 4.43 4.37 4.24 −4.19 −4.05 4.04 −3.97 −3.88 3.86
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are selected ones. Vertical red broken line is 0
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P -values are corrected by BH criterion and 225 genes associated with adjusted P -
values less than 0.01 are selected.

Cirrhosis

Drug treated rat liver gene expression profiles are downloaded from GEO
with GEO ID GSE59923. Cirrhosis patient human liver gene expression
profile is downloaded from GEO with GEO ID GSE15654. File used are
GSE15654_series_matrix.txt.gz, GSE59923-GPL5424_series_matrix.txt.gz,
GSE59923-GPL5425_series_matrix.txt.gz, and GSE59923-GPL5426_series_
matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.84)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between three
classes, good, intermediate, and poor prognosis, by applying categorical regression

u
(j3)
�3j3

= a�3 +
3∑

s=1

b�3sδj3s (7.85)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 2, 6 are associated with adjusted P -values less than 0.01, raw
P -values of which are 2.3 × 10−14 and 1.0 × 10−9 and are selected. Figure 7.36a
shows the u(j3)

�3
, �3 = 2, 6.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.36b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.56,−0.78, 0.52 and 0.36. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with larger
absolute G(�1, 2, �3, �4), �3 = 2, 6 in order to select compounds j1 and genes
i associated with time dependence and distinction between patients and healthy
controls simultaneously. In order that, we list top 20 G(�1, 2, �3, �4), �3 = 2, 6
(Table 7.37). For top 20 Gs, it is always that �1 = 2. On the other hand, because G

gradually changes, we cannot decide threshold values. Thus, we tentatively decide
to select 2 ≤ �4 ≤ 10 associated with top 10 Gs.

Figure 7.36c shows u(j1)

2 . Twenty seven outlier drugs,
∣∣∣u(j1)

2j1

∣∣∣ > 0.075, blue

parts, are selected, by visual inspection, because P -values computed from u(j1)

2 and
corrected by BH criterion cannot be less than 0.01. On the other hand, P -values are
attributed to ith gene as
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Table 7.37 Top 20 G(�1, 2, �3, �4), �3 = 2, 6

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 2 6 6 6 6 6 2 6 2 2

�4 2 8 7 6 9 10 6 5 4 3

G(�1, 2, �3, �4) −945 310 278 194 −123 93 77 −76 −73 −67

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 6 6 6 6 6 6 6 2 6 2
�4 4 11 12 17 13 3 16 7 23 5
G(�1, 2, �3, �4) −59 49 43 40 33 −32 −31 27 25 −23

Pi = Pχ2

⎡

⎣>
∑

2≤�4≤10

(
u�4i

σ�4

)2
⎤

⎦ (7.86)

P -values are corrected by BH criterion and 132 genes associated with adjusted P -
values less than 0.01 are selected.
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