
Chapter 5
TD Based Unsupervised FE

Although our world might have no reason to exist, it sounds
fantastic, because we can make the reason for ourselves.
Filicia Heideman, Sound of the Sky, Season 1, Spisode 7

5.1 TD as a Feature Selection Tool

In this chapter, I would like to make use of TD as a feature selection tool. Suppose
that xijk ∈ R

N×M×K represents the value of the ith feature of the samples having
j th and kth properties as

Data set 6:

xijk ∼
{N(μ, σ ), i ≤ N1, j ≤ M

2 , k ≤ K
2

N(0, σ ), otherwise
(5.1)

In this example, j and k are supposed to be classified into two classes, j ≤ M
2 ,K ≤

M
2 and j > M

2 or j > K
2 for i ≤ N1. Then, xijk is drawn from normal distribution,

N(μ, σ ), with positive mean, μ > 0, only when j ≤ M
2 , k ≤ K

2 , otherwise μ = 0.
The purpose of feature selection is to find N1 features associated with two classes
shown in Eq. (5.1).

Tucker decomposition, Eq. (3.2), with HOSVD algorithm, Fig. 3.8, is applied to
data set 6, Eq. (5.1), with N = 1000,M = K = 6, N1 = 10, μ = 2, σ = 1, as

xijk =
N∑

�1=1

M∑
�2=1

K∑
�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(5.2)

where u
(i)
�1

∈ R
N, v

(i)
�2

∈ R
M,u

(k)
�3

∈ R
K,G(�1, �2, �3) ∈ R

N×M×K . Figure 5.1a, b

shows a typical realization of u(j)

1 and u
(k)
1 , respectively. It is obvious that these two

correctly reflect the distinction between j > M
2 , k > K

2 and j ≤ M
2 , k ≤ K

2 . Next,
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104 5 TD Based Unsupervised FE

we would like to identify which u
(i)
�1

can be used for feature selection. In contrast

to PCA based unsupervised FE, it is not clear which u
(i)
�1

should be used, because

there is no one-to-one correspondence among u
(i)
�1

,u
(j)
�2

,u
(k)
�3

; instead of that, their
relationship is represented through the core tensor, G.

In order to see this relationship, we order G(�1, 1, 1) with descending order of
absolute values; Table 5.1 shows the core tensors, G(�1, 1, 1), sorted in this order.
Table 5.1 suggests that u(i)

1 is most likely associated with u
(j)

1 and u
(k)
1 , because

G(1, 1, 1) has the largest absolute value among G(�1, 1, 1). Actually, u(i)
1 shown

in Fig. 5.1c obviously has larger absolute values for i ≤ N1 than others. Thus, the
strategy proposed here, i.e., first find singular value vectors attributed to samples
and associated with desired class dependence, then identify singular value vectors,
attributed to features, that share G having larger absolute values with them, can
identify features with not known in advance j, k dependence in fully unsupervised
manner. The reason why it works so well is obvious. If we see u

(j)
�2

×0 u
(k)
�3

that is
shown in Fig. 5.1d, it is fully associated with the j, k dependence defined in Eq. (5.1)
that means only j, k < M

2 are drawn from normal distribution with positive mean
while others are drawn from those with zero mean.

Next issue might be if TD based unsupervised FE can outperform conventional
methods. As a representative of conventional methods, we employ again categorical
regression analysis, Eq. (4.21), that is modified to be adapted to co-existence of two
kinds of classes,

Table 5.1 G(�1, 1, 1)s that correspond to Fig. 5.1

�1 1 4 2 6

G(�1, 1, 1) −35.484412 2.137686 1.748955 −1.705922

Fig. 5.1 A typical realization
of u(i)

1 ,u
(j)

1 ,u
(k)
1 when

Tucker decomposition,
Eq. (3.2), with HOSVD
algorithm, Fig. 3.8 is applied
to data set 6, Eq. (5.1) with
N = 1000,M = K =
6, N1 = 10, μ = 2, σ = 1.
(a) u(j)

1 , (b) u(k)
1 , black and

red circles correspond to
j ≤ M

2 , k ≤ K
2 and

j > M
2 , k > K

2 , respectively.
Red broken lines show
baseline. (c) u(i)

1 . Red open
circle corresponds to i ≤ N1,
i.e., features associated with
j, k dependence. (d)
u

(j)

1 ×0 u
(k)
1 . Brighter squares

indicate larger values
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xijk = ai +
2∑

s=1

bisδsj +
2∑

s=1

cisδsk (5.3)

where ai, bis , cis are the regression coefficients. δsj and δsk are the function that
takes 1 only when sample j or k belongs to the sth class otherwise 0.

In order to perform feature selection, P -values need to be addressed to features.
For categorical regression analysis, P -values computed by categorical regression
analysis is used as it is. For TD based unsupervised FE,

Pi = Pχ2

⎡
⎣>

(
u

(i)
1i

σ1

)2
⎤
⎦ (5.4)

is used to attribute P -values to features where σ1 is the standard deviation of u
(i)
1i .

Both P -values, i.e., computed with TD based unsupervised FE and categorical
regression analysis, are corrected by BH criterion and features associated with
adjusted P -values less than 0.01 are selected. Table 5.2 shows the performances
achieved by TD based unsupervised FE and categorical regression, Eq. (5.3).
Performance is averaged over 100 independent examples. In contrast to TD based
unsupervised FE that can identify more than 60% of features associated with
searched j, k dependence, categorical regression, Eq. (5.3), could identify almost
no features. The cause of this drastic low performance is obvious. Equation (5.3)
assumes four classes, because j and k are composed of two classes, respectively.
Thus, two classes times two classes are equal to four classes. Nevertheless, Eq. (5.1)
obviously admits two classes, i.e., j ≤ M

2 , k ≤ K
2 versus others. This not

proper assumption in the model (categorical regression analysis) results in poor
performance. In actuality, if we employ categorical regression as

xijk = ai +
2∑

s=1

bisδsjk (5.5)

Table 5.2 Confusion matrices when statistical tests are applied to synthetic data sets 6 defined by
Eq. (5.1) and features associated with adjusted P -values less than 0.01 are selected

TD based unsupervised FE Categorical test(four classes)
Categorical
test(two classes)

Data set 6 i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Selected 6.34 0.00 0.63 0.00 7.35 0.00

Not selected 3.66 990 9.37 990 2.65 990

TD based unsupervised FE Categorical test(nine classes)
Categorical
test(two classes)

Data set 7 i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Selected 8.73 0.00 4.58 0.00 10.0 0.00

Not selected 1.27 990 5.42 990 0.00 990
N1 = 10. “categorical test(two classes)” corresponds to Eq. (5.3), “categorical test(four classes)”
corresponds to Eq. (5.5), and “categorical test(nine classes)” corresponds to Eq. (5.7)
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where δsjk is a function that takes 1 only when

s = 1: j ≤ M
2 and k ≤ K

2
s = 2: j > M

2 or k > K
2

otherwise 0 and ai, bsjk are the regression coefficients, categorical regression can
outperform TD based unsupervised FE as expected (Table 5.2). The only problem
is that it is usually impossible to assume two classes in spite of that there are four
classes based upon the apparent category. In this case, unsupervised method can
outperform supervised method.

In order to confirm these tendencies, we prepare additional synthetic data.
Data set 7:

xijk ∼
{N(μ, σ ), i ≤ N1,

M
3 < j ≤ 2M

3 , K
3 < k ≤ 2K

3
N(0, σ ), otherwise .

(5.6)

Equation (5.3) is modified as

xijk = ai +
3∑

s=1

bisδsj +
3∑

s=1

cisδsk (5.7)

with three classes, 1 ≤ j ≤ M
3 or 1 ≤ k ≤ K

3 for s = 1, M
3 < j ≤ 2M

3 or
K
3 < k ≤ 2K

3 for s = 2, and 2M
3 < j ≤ M or 2K

3 < k ≤ K for s = 3. On the other
hand, Eq. (5.5) remains unchanged although δsjk takes 1 only when

s = 1: M
3 < j ≤ 2M

3 and K
3 < k ≤ 2K

3
s = 2: j ≤ M

3 or j > 2M
3 or k ≤ K

3 or k > 2K
3

otherwise 0. M = K = 12 and other parameters remain unchanged. As expected
(Table 5.2), the performances of categorical regressions applied to set 7 are
improved from those applied to data set 6, because the number of samples, MK ,
increases while the number of features, N , remains unchanged. In spite of these
improved performances of categorical regression analyses, TD based unsupervised
FE still outperforms three classes × three classes = nine classes categorical regres-
sion analysis, Eq. (5.7) (see Table 5.2). Thus, as far as apparent categories that do
not correctly reflect true category are considered, TD based unsupervised FE can
outperform supervised method. It is very usual in genomic data analysis that it is
unclear if apparent categories are coincident with true, but unknown, classes. This
is possibly the reason why TD based unsupervised FE often outperforms supervised
methods in the applications to bioinformatics that will be introduced in the later part
of this book.

It should be also emphasized that TD based unsupervised FE can outperform
supervised methods only when N � MK , i.e., the number of features is much
larger than the number of samples. Although we do not demonstrate this using more
synthetic data sets, one should remember this point when one would like to employ
TD based unsupervised FE.
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5.2 Comparisons with Other TDs

Here I employed only Tucker decomposition, Eq. (3.2), with HOSVD algorithm,
Fig. 3.8, for feature selection. Since I have already argued the superiority of
Tucker decomposition toward other two TDs, CP decomposition and tensor train
decomposition, it might not be necessary to demonstrate superiority of Tucker
decomposition to other two TDs. Nevertheless, it is not meaningless to see what
we can get when the other two TDs are applied to data set 6.

First, tensor train decomposition, Eq. (3.3), with R1 = R2 = M = K = 6 is
applied to data set 6, whose results obtained by Tucker decomposition are shown in
Fig. 5.1 (Fig. 5.2). Figure 5.2 looks very similar to Fig. 5.1. In spite of that, tensor
train decomposition is still inferior to Tucker decomposition. First of all, we have no
idea how we should choose Ris that decide the rank of tensor train decomposition.
In the present case, we can try to find Ris that result in the same result as that in
Fig. 5.1. If not, we can have no ways to decide Ris. Second, we do not know how to
relate G(j)(j, 1, 1),G(k)(k, 1), and G(i)(i, 1) with one another, because there is no
core tensor that plays the role to connect singular vectors in Tucker decomposition
(Table 5.1) where we know what I should search. If not as in the present case, i.e.,
tensor train decomposition, we have no idea which core tensors given by tensor train
decomposition are selected for the feature selection.

Next, we apply CP decomposition, Eq. (3.1), with L = 1 to data set 6,
whose results obtained by Tucker decomposition are shown in Fig. 5.1. Figure 5.3
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Fig. 5.2 G(j)(j, 1, 1),G(k)(k, 1),G(i)(i, 1) when tensor train decomposition, Eq. (3.3), with
R1 = R2 = M = K = 6 is applied to data set 6, Eq. (5.1) whose results obtained by
Tucker decomposition are shown in Fig. 5.1. (a) G(j)(j, 1, 1), (b) G(k)(k, 1), black and red circles
correspond to j ≤ M

2 , k ≤ K
2 and j > M

2 , k > K
2 , respectively. Red broken lines show baseline.

(c) G(i)(i, 1). Red open circle corresponds to i ≤ N1, i.e., features associated with j, k dependence.
(d) G(j)(j, 1, 1) · G(k)(k, 1). Brighter squares indicate larger values
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Fig. 5.3 Two typical convergent realizations starting from different initial values of CP decom-
position, Eq. (3.1), with L = 1 applied to data set 6, Eq. (5.1), whose results obtained by Tucker
decomposition is shown in Fig. 5.1. (a) and (b) u(j)

1 , black and red circles correspond to j ≤ M
2

and j > M
2 , respectively. (c) and (d) u(k)

1 , black and red circles correspond to k ≤ K
2 and k > K

2 ,

respectively. (e) and (f) u(i)
1 . Red open circle corresponds to i ≤ N1, i.e., features associated with

j, k dependence
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represents the two independent results starting from different initial values (one
should remember that CP decomposition need to be given by initial values from
where computation starts). At first, they clearly differ from each other. Second, the
second realizations, (b), (d), and (f), do not correspond to the distinction between
two classes and fail to identify features with not known in advance j, k dependence,
i ≤ N1. Thus, CP decomposition is inferior to Tucker decomposition because of
initial condition dependence as discussed earlier.

These comparisons suggest that Tucker decomposition is superior to tensor train
decomposition and CP decomposition as a tool of feature selection.

5.3 Generation of a Tensor From Matrices

In the previous section, we showed that TD based unsupervised FE can outperform
conventional supervised feature selection, categorical regression analysis, when the
number of features is much larger than the number of samples and true classification
is a complex function of apparent labeling. Although TD based unsupervised FE is
shown to be effective, it is unfortunately not so frequent that there are data sets
formatted as tensor, because getting tensor requires more observation than matrices.
In order to get N × M matrix that represents M samples with N features, required
number of observations is as many as the number of samples, i.e., M . On the other
hand, in order to get N × M × K tensors that correspond to N features observed
under the combination of M times and K times measurements, the required number
of observation is as many as K × M . If we need to have tensors with more modes,
the number of observation will increase, too. Thus, even if TD based unsupervised
FE is an effective method, we usually cannot have data set formatted as tensors, to
which TD based unsupervised FE is applicable.

In order to have more opportunities to which we can apply TD based unsuper-
vised FE, we can propose to generate tensors from matrices [1], which are obtained
more easily than tensors. Suppose that we have two matrices, xij ∈ R

N×M and
xik ∈ R

N×K , which represent i features under the j th experimental conditions and
the kth experimental conditions, respectively. A typical observation is that N health
conditions, blood pressure, body mass, body temperature, height, weight, etc. are
observed M individuals in Japan and K individuals in the USA. Then we can get
tensor xijk ∈ R

N×M×K by simply multiplying xij and xik ,

xijk = xij xik (5.8)

TD can be applied to xijk as usual. It does not have to be restricted to the product
of two matrices. We can generate m + 1 mode tensor by multiplying m matrices,
xij1 , xij2 , . . . , xijm as

xij1j2···jm =
m∏

s=1

xijs (5.9)
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On the other hand, we can consider the alternative cases where not features but
samples are common between two matrices. Suppose that for K individuals two
distinct N and M observations are performed and are recorded as matrices form,
xik ∈ R

N×K and xjk ∈ R
M×K . A typical example is that there are N goods in

kth shop and xik represents a price of ith good in kth shop. On the other hand, xjk

represents the number of customers at j th time point at kth shop. We can generate
tensor xijk ∈ R

N×M×K as

xijk = xikxjk (5.10)

Again we can employ more matrices as

xi1i2···imj =
m∏

s=1

xisj (5.11)

From the mathematical point of view, although there are no needs to distinguish
between equations Eqs. (5.11) and (5.9), they should be considered separately from
the data science point of view. Then hereafter we denote Eq. (5.11), i.e., the cases
sharing samples, as case I while Eq. (5.9), i.e., the cases sharing features, as case II,
respectively.

5.4 Reduction of Number of Dimensions of Tensors

It is possible to produce tensors from matrices. However, it increases the number of
features. When two matrices, xij ∈ R

N×M and xik ∈ R
N×K are multiplied in order

to generate a tensor xijk ∈ R
N×M×K (case II), the number of features increases

from N × (M + K) to N × M × K . Thus, we need some way to reduce the number
of dimensions of generated tensors. Here we propose taking summation of shared
features, i.e.,

x̃i1i2···im =
∑
j

xi1i2···imj (5.12)

x̃j1j2···jm =
∑

i

xij1j2···jm (5.13)

Then the number of dimensions increases from N × (M + K) not to N × M × K

but to M ×K for case II while from (N +M)×K not to N ×M ×K but to N ×M

for case I.
One might wonder how we can compute singular value matrices that correspond

to indices of which are taken summation when TD is applied to x̃i1i2···im or x̃j1j2···jm .
These missing singular value matrices are recovered by the following computations,
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Table 5.3 Distinction between cases and types

Type I Type II

Case I xi1i2···imj =
m∏

s=1

xis j Eq. (5.11) x̃i1i2···im =
∑
j

xi1i2···imj Eq. (5.12)

Case II xij1j2···jm =
m∏

s=1

xijs Eq. (5.9) x̃j1j2···jm =
∑

i

xij1j2···jm Eq. (5.13)

u
(i;js )
� = X(ijs) ×js u

(js )
� (5.14)

u
(j ;is )
� = X(jis ) ×is u

(is )
� (5.15)

where X(ijs) ∈ R
N×Ms and X(jis ) ∈ R

M×Ns , respectively. Thus, we have m singular
value matrices that correspond to is or js , instead of one singular value matrix.
This might look problematic. Nevertheless, practically, if m singular value matrices
obtained are mutually highly correlated, it is not practically problematic. Thus, case
to case, we might employ this approximate strategy. In order to distinguish these
tensors from the previous one, we call those generated after the partial summation
of index, Eqs. (5.12) and (5.13) as type II while those without partial summation,
Eqs. (5.9) and (5.11), as type I. Table 5.3 summarizes the distinction between cases
and types.

5.5 Identification of Correlated Features Using Type I Tensor

The purpose of introduction of tensors summarized in Table 5.3 is simply because
we would like to make use of TD based unsupervised FE when no tensors are
available. Nevertheless, we can make use of tensors listed in Table 5.3 for the
additional alternative purpose as bi-product: identification of mutually correlated
features. Suppose we have two sets of observations to K samples formatted as
matrices, xik ∈ R

N×K and xjk ∈ R
M×K . The question is to search pairs of features

between two sets.
The standard strategy is to compute pairwise correlation between xik and xjk ,

rij =
1
K

∑
k

(
xik − 1

K

∑
k′ xik′

) (
xjk − 1

K

∑
k′ xjk′

)
√

1
K

∑
k

(
xik − 1

K

∑
k′ xik′

)2
1
K

∑
k

(
xjk − 1

K

∑
k′ xjk′

)2
(5.16)

and to identify pairs of i and j associated with significant correlation. In the
following, we will show some synthetic data set where pairwise computation of
correlation does not work well while TD applied to a tensor generated from the
product of two matrices, xijk = xikxjk , can identify correlated pairs successfully.
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In order for this purpose, we prepare data set 8 as follows.
Data set 8:

xik ∼
{

k + N(μ, σ ) i ≤ N1

N(μ, σ ) otherwise
(5.17)

xjk ∼
{

k + N(μ, σ ) j ≤ M1

N(μ, σ ) otherwise
(5.18)

This means, only features i ≤ N1 and j ≤ M1 share the k dependence while no
other pairs are correlated. In this setup, the number of positive (correlated) pairs is
N1 × M1 among total number of pairs, N × M .

In order to see if pairwise correlation analysis can identify correlated pairs, we
compute Pearson’s correlation coefficients between all N × M pairs, xik and xjk .
Then computed correlation coefficient, rij , is converted to tij as

tij = rij (K − 2)√
1 − r2

(5.19)

that is known to obey t distribution with the degrees of freedom of K − 2. Then
P -values are computed using t distribution and are attributed to all of N × M pairs.
These P -values are corrected by BH criterion and pairs associated with adjusted P -
values less than 0.05 are considered to be correlated. Table 5.4 shows the confusion
matrix averaged over 100 independent trials when N = M = 100, N1 = M1 =
10,K = 6, μ = σ = 1. In this setup, the number of positive pairs is N1×M1 = 100.
It is obvious that there are more false positives (38.49) than true positives (15.47).
Thus, it unlikely works well. Next, we apply TD based unsupervised FE to data
set 8 with generating case I type I tensor (Table 5.4) as Eq. (5.10). We apply
HOSVD algorithm, Fig. 3.8, to data set 8. Figure 5.4a and b shows typical u(i)

1

and u
(j)

1 obtained when HOSVD is applied to data set 8, respectively. These two
have obviously larger absolute values for i ≤ N1 and j ≤ M1 than i > N1 and
j > M1, respectively. This suggests that u(i)

1 and u
(j)

1 can successfully identify
features with correlations (i ≤ N1 or j ≤ M1) from those without correlations
(i > N1 or j > M1). How it comes to be possible can be understood by observing
u

(k)
1 (Fig. 5.5). u(k)

1 clearly reflects the dependence upon k shown in Eqs. (5.17)

Table 5.4 Confusion matrices when statistical tests are applied to synthetic data sets 8 defined by
Eqs. (5.17) and (5.18) and features associated with adjusted P -values less than 0.05 are selected for
pairwise correlation and 0.1 for TD based unsupervised FE

Pairwise correlation TD based unsupervised FE

Data set 8 i ≤ N1 and j ≤ M1 Otherwise i ≤ N1 N1 < i j ≤ M1 M1 < j

Selected 15.47 38.49 6.20 0.00 6.14 0.00

Not selected 84.53 9861.51 3.80 90.00 3.86 90.00
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Fig. 5.4 A typical realization of u
(i)
1 and u

(j)

1 when Tucker decomposition, Eq. (3.2), with
HOSVD algorithm, Fig. 3.8 is applied to data set 8, Eqs. (5.17) and (5.18) with N = M =
100, N1 = M1 = 10,K = 6, μ = σ = 1. (a) u(i)

1 , red and black open circles correspond to

i ≤ N1 and i > N1, respectively. (b) u(j)

1 , red and black open circles correspond to j ≤ M1 and
j > M1, respectively

Fig. 5.5 u
(k)
1 that

corresponds to u
(i)
1 and u

(j)

1
shown in Fig. 5.4
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and (5.18). Since G(1, 1, 1) is the largest among G(�1, �2, 1), u(i)
1 and u

(j)

1 naturally

assign larger absolute values to u
(i)
1i and u

(j)

1j that shares embedded k dependence,
i.e., i ≤ N1 or j ≤ M1.

In order to see if u
(i)
1i and u

(j)

1j are useful for the feature selection, P -values are
attributed to i as Eq. (5.4) and j as

Pj = Pχ2

⎡
⎢⎣>

⎛
⎝u

(j)

1j

σ ′
1

⎞
⎠

2
⎤
⎥⎦ (5.20)

where σ ′
1 is the standard deviation of u

(j)

1j . Then is and js associated with adjusted
P -value less than 0.1 are selected (performances are averaged over 100 independent
trials). Table 5.4 shows the corresponding confusion matrices. Although the perfor-
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mance cannot be said very good, it is remarkable that there are no FP which are as
many as 38.49 in pairwise correlation analysis (Table 5.4). TD based unsupervised
FE also has more TPs than correlation analysis; 6.20 or 6.14 TPs among 10 positives
versus 15.47 TP among 100 positives.

Only from this specific example, we cannot conclude that TD based unsuper-
vised FE can always outperform the conventional methods. Nevertheless, in the
application to the real data set that will be shown later, we will see that TD based
unsupervised FE can achieve better performances than conventional supervised
methods.

5.6 Identification of Correlated Features Using Type II
Tensor

In the previous section, we can see that TD based unsupervised FE can correctly
recognize the features with mutual correlation that cannot be recognized by
conventional pairwise correlation analysis. In this section, we would like to see
if type II tensor, Eq. (5.12), can samely identify features with mutual correlations
using the same data set 8, Eqs. (5.17) and (5.18). In the present specific case, type II
tensor can be defined as

x̃ij =
K∑

k=1

xijk =
K∑

k=1

xikxjk. (5.21)

TD, or essentially it is SVD because HOSVD is equivalent to SVD when it is
applied to matrix, is applied to x̃ij . Figure 5.6 shows the comparison of u(i)

1 and u
(j)

1
between type I and type II tensors. Although slight deviation can be observed, they
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Fig. 5.6 Comparison between u
(i)
1 and u

(j)

1 in Fig. 5.4 and those when SVD is applied to type II

tensor (matrix), x̃ij , defined in Eq. (5.21). (a) u(i)
1 , red and black open circles correspond to i ≤ N1

and i > N1, respectively. (b) u(j)

1 , red and black open circles correspond to j ≤ M1 and j > M1,
respectively
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Fig. 5.7 Comparison between u
(k:i)
1 and u

(k:j)

1 computed by Eqs. (5.22) and (5.23), respectively.

(a) u(k:i)
1 (b) u(k:j)

1 , (c) scatterplot of (a) and (b)

are coincident enough to recognize features with mutual correlations, i.e., i ≤ N1
and j ≤ M1, respectively. Thus as long as considering feature selection, replacing
type I tensor with type II tensor does not cause any problems.

Then we need to see if two vectors,

u
(k;i)
1 = X(ik) ×i u

(i)
1 (5.22)

u
(k;j)

1 = X(jk) ×j u
(j)

1 (5.23)

are coincident with each other and reflect k dependence when u
(i)
1 and u

(j)

1 are

computed from type II tensor (matrix), Eq. (5.21). Figure 5.7 shows u(k:i)
1 and u

(k:j)

1 .
They are not only coincident with each other, but also reflecting k dependence in
Eqs. (5.17) and (5.18), respectively. Thus, replacing type I tensor with type II, at
least in the present case, does not likely cause any problems.

5.7 Summary

In this chapter, we proposed feature section using TD, named TD based unsu-
pervised FE. TD based unsupervised FE can outperform conventional supervised
method when the number of samples is much less than the number of features
and true classification is a complex function of apparent labeling. We also further
extended the concept of tensor such that we can make use of TD based unsupervised
FE even when only matrices are given. As a bi-product, we come to be able to
select features with mutual correlations even when conventional pairwise correlation
analysis fails. Nothing shown in this chapter are proven, but are only demonstrated
by synthetic data set. Nonetheless, we will see that TD based unsupervised FE can
work very well when it is applied to real examples, i.e., the applications toward
bioinformatics in the later part of this book.



116 5 TD Based Unsupervised FE

Reference

1. Taguchi, Y.H.: Tensor decomposition-based unsupervised feature extraction applied to matrix
products for multi-view data processing. PLoS One 12(8), e0183933 (2017). https://doi.org/10.
1371/journal.pone.0183933

https://doi.org/10.1371/journal.pone.0183933
https://doi.org/10.1371/journal.pone.0183933

	5 TD Based Unsupervised FE
	5.1 TD as a Feature Selection Tool
	5.2 Comparisons with Other TDs
	5.3 Generation of a Tensor From Matrices
	5.4 Reduction of Number of Dimensions of Tensors
	5.5 Identification of Correlated Features Using Type I Tensor
	5.6 Identification of Correlated Features Using Type II Tensor
	5.7 Summary
	Reference


