Chapter 4 ®
PCA Based Unsupervised FE e

There is no sound that I do not need.
Rio Kazumiya, Sound of the Sky, Season 1, Episode 3

4.1 Introduction: Feature Extraction vs Feature Selection

In this chapter, I mainly discuss about the situation where feature extraction or
feature selection is inevitable. When or under what kind of conditions, do we need
either or both of two? Here are some examples of such situations.

e Case 1: The number of features attributed to individual samples is larger than the
number of samples.

e Case 2: Features attributed to individual samples are not independent of one
another.

e Case 3: Some of the features attributed to samples are not related to some
properties that we would like to relate features to.

Although these above three cases are not comprehensive, they are good examples
by which we can discuss the reason why we need feature extraction and/or feature
selection. An example of case 1 is linear equations that can be represented as Ax =
b where A € RV*M x ¢ RM b e RN and x represents variables, A represents
coefficients, and b represents constants. When N < M, not only there are no unique
solutions, but also there are always solutions, even when A and b are purely random
numbers. The fact that there are no unique solutions prevents us from interpreting
outcome, because there can be multiple distinct unique solutions. The fact that there
are always solutions means that there might be meaningless solutions. In this case,
we need feature extraction and/or feature selection such that we can have limited
number of features that is smaller than the number of samples. An example of case 2
is multicollinearity. In this case, although apparently, Ax = b is uniquely solvable,
it is actually not because coefficient matrix A is not regular (in other words, row
vectors are not independent of one another). In this case, we need to apply feature
extraction or feature selection in order to obtain reduced number of features that
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enables us to get unique solutions. An example of case 3 is that some elements of A
are zero. Especially, if A includes column vectors totally filled with zero, variables
that correspond to these columns are not related to b at all. When A is given, we can
simply discard these variables. Nevertheless, when A is required to be inferred from
x and b (e.g., linear regression analysis), it is impossible to exclude there variables
in advance. This might result in the incorrect estimation of A. In this case, we need
feature selection that enables us to exclude variables not related to b in advance.

From these examples, we can know that the need of feature selection and feature
extraction is very ubiquitous. So, the next question is which strategy is better to
address these problems. Unfortunately, the answer is highly context dependent and
cannot be decided based upon mathematical considerations. For example, let us
consider image analysis, e.g., face recognition. In this case, it is rather obvious that
not all pixels of digital images but only a limited number of them is useful for the
purpose. If small number of features generated from large number of pixels work
well, there is no need to go further. On the other hand, suppose that the problem is
the inference about bankruptcy, in other words, the prediction of who will bankrupt.
In this case, even if a newly generated feature composed of numerous personal
information, e.g., income, age, education history, address, and so on, works pretty
well, it might not be a final goal. This is because collecting these information might
cost or is impossible at all. If another feature composed of more limited number
of features works, even if the performance is a little bit less, another one might be
employed because of easiness to use. Thus, it is inevitable to specify situation that
we want to discuss.

As for the targeted field, I would like to say that the targeted field is bioinfor-
matics as the title of this book says. In bioinformatics analysis, it is very usual that
feature selection is more favorable than feature extraction because of the following
reasons. In bioinformatics analysis (or in biology although it means the same),
measuring individual features often costs. Thus, measuring less number of features
can reduce the cost spent to individual observations. This results in the increased
number of observations that often leads to better outcome. Even when measuring
individual features does not cost, e.g. in the case of high throughput measurements,
feature selection is often better than feature extraction, because each feature has
its own meaning. For example, if features are genes, the selected limited number
of genes are more interpretable than features generated by the combination of
large number of genes. Thus, in the following I assume the situation where feature
selection is more favorable than feature extraction even if not explicitly denoted.

4.2 Various Feature Selection Procedures

Although there are various ways to classify numerous number of previously
proposed feature selection procedures, I would like to employ the one shown in
Table 4.1. Feature selection strategies can be classified into two groups in two ways.
One way is supervised ones vs unsupervised ones. Not to mention, supervised ones
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Table 4.1 Classification of feature selections

One by one Collective
Supervised Statistical tests® Random forest, LASSO
Unsupervised Highly variable genes, bimodal genes PCA based unsupervised FE
at test, limma, SAM

are definitely more popular than unsupervised ones. This is because the purpose
of feature selection is usually purpose oriented. For example, if the study aims to
investigate diseases, it is natural to consider genes expressed differently between
patients and healthy controls. If the study aims to predict who will bankrupt, it is
reasonable to consider features related to something financial. On the other hand,
unsupervised feature selection might sound self-discrepancy, because it is unlikely
possible to select features without any clear purposes. In spite of that, unsupervised
feature selection is still possible. For example, it is natural to select features with
maximum variance, because large variance might reflect the ability of the feature
that represents diverse categories hidden in the considered sample. Thus, although
it is less popular, unsupervised feature selection is still possible. Another way to
classify feature selection strategies is one by one vs collective. The former means
that feature selection is performed without the consideration of interaction between
features. For example, when conventional statistical tests are applied to a feature of
samples composed of two categories, the P-value that rejects the null hypothesis
that a feature of members of two samples obeys the same distribution is computed.
Then, if P value is small enough, say less than 0.01, the feature is identified as
distinct between two categories. This means that each P-value attributed to each
feature is not affected by other features at all. On the other hand, the latter considers
the interaction between features. For example, when dummy variables are attributed
to each of two categories, we can make linear regression using arbitrary number of
features to predict dummy variables. In this case, the interaction between features
included into regression equation is considered. Then, features used to construct
regression equation with good performance are selected.

In order to demonstrate how differently feature selections that belong to four
categories listed in Table 4.1 work, I prepare two synthetic data sets. Both are
matrices x;; € RN*M wwhere i and j correspond to features’ index and samples’
index, respectively. In both data sets, the only first N1 (< N) features, x;;,i < Ny,
are distinct between two classes where j < % and j > % belong to the first
and second class, respectively. x;; is also drawn from Gaussian or mixed Gaussian
distribution where N (i, o) represents Gaussian distribution that has mean of © and
standard deviation o, respectively.

e Dataset 1:
N(, o) , 1 <Np

Xij ~ ) N(uo, o) L =N 4.1
INO,0) + SN (uo, o) i > Ni.

J=
j >

S
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e Data set 2:

N@©,0) j<¥, i<N
xij~ § N(uo,o) j >4, i <N (4.2)
N(pi,0) i > Nj.

Thus, the only difference between two synthetic data sets is if the N — N features
(i.e.,i > Np) not distinct between two classes are drawn from bimodal [Eq. (4.1)] or
unimodal [Eq. (4.2)] distributions. Specifically, N = 100, M = 20, uo = 4, u1 =
% = 2, Ny = 10 and 0 = 1 in the following. Performance is averaged over one
hundred independent trials. The number of features distinct between two categories,
Nj, is assumed to be known in advance. u] is selected such that the sample mean
of ith feature, (x;;); defined by Eq. (2.56), does not differ between two models.

The statistical tests used belong to either of four categories. ¢ test is employed
as a representative of one by one, supervised feature selection. P values computed
by ¢ test are attributed to individual features. Top N; features with smaller P values
are selected. As a representative of collective supervised feature selection, linear
regression is employed. The dummy variable y; € [0, 1™ is given such that y =
0,j < % and y; = 1,j > % Then using regression coefficient vector, a; €
RN, Xa = y is assumed. a is computed with @ = Xy using Moore-Penrose
pseudoinverse, X T because there are no unique solutions due to N > M. Top N
features with larger absolute a; are selected. As for representatives of one by one,
unsupervised feature selections, two methods are employed. One is highly variable
features. Sample variance of each feature,

2

1 | <
A R leij ; (4.3)
j:

is computed and top N; = 10 features associated with larger variance are selected.
Another is unimodal test. Unimodal test computes P-values that reject the null
hypothesis that x;;s with fixed i are drawn from unimodal distribution; Hartigan’s
dip test, which rejects the null hypothesis that the distribution is unimodal [1] is used
for this purpose. Then top N1 = 10 features associated with smaller P-values are
selected. Finally, as a representative of collective unsupervised feature selections,
we employ PCA. PCA is applied to x;; such that kth PC score vectors, uy € RN,
are attributed to features. In other words, uy is computed as the eigenvectors of
Siirs Eq. (2.50), S;;/ur = Aruy where Ay is eigenvalue. Then, top Ny = 10 features
associated with the larger absolute first PC score, |u;|, are selected (the reason why
this procedure works as feature selection will be discussed later).

Table 4.2 shows the number of features that are distinct between two classes and
are also selected by individual methods. When tests are applied to data sets 1 and
2, two supervised methods samely achieved well although the collective method
achieved a little bit worse than one by one method. The performance achieved by
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Table 4.2 Performance of statistical tests applied to two synthetic data set 1 defined by Eq. (4.1)
and data set 2 defined by Eq. (4.2)

Supervised Unsupervised
One by one | Collective One by one Collective
Data set t test Linear regression | Variance | Unimodal test | PCA
1 10.00 9.88 1.20 1.68 8.75
2 10.00 9.79 9.99 5.68 10.00
1 (shuffled) 1.03 0.08 1.34 1.66 8.78
2 (shuffled) 0.94 0.89 10.00 5.76 10.00

Numbers represent mean number of features selected by each method, among N features distinct
between two classes, i < N (= 10). Shuffled means that class labels are shuffled

unsupervised method is quite distinct between two data sets. Two unsupervised one
by one methods fail when data set 1 is considered while they performed better for
data set 2. This is reasonable because all N features obey the identical distribution
if class labels are not considered. Thus, unsupervised methods have no ways to
distinguish features with and without distinction between two classes. In this sense,
it is remarkable that PCA, an unsupervised and collective method, can perform
similarly well for both data sets 1 and 2.

One might wonder why unsupervised method must be considered, because
supervised methods perform better. This impression changes once the class labels
are shuffled. It is reasonable that no supervised methods work well. On the other
hand, it is also reasonable that the performance by unsupervised method does not
change because of class label shuffling. This suggests that unsupervised feature
selections are better choices when class labels are not available or not trustable.

Unsupervised collective feature selection, PCA, is successful for data set 1, for
which other unsupervised methods fail, and shuffled data set, for which supervised
collective methods fail. It is important why it can happen. In order to see this, we
investigate the first PC loading vectors, v] € RM  which is defined as v| = %X Ty,
(see Eq.(2.21)). Figure 4.1 shows the first PC loading vectors. For all cases, u;;s
with j < % take positive values while u;;s with j > % take negative value. Since
u; = A Xvyp, uy; reflects the difference between two classes. Thus, selecting is
associated with absolutely larger u1; can identify correctly features associated with
distinction between two classes for all four cases. This is the reason why PCA can
always perform well.

4.3 PCA Applied to More Complicated Patterns

In the previous section, feature selection with two classes was discussed. Neverthe-
less, it is the simplest case. There are many more complicated feature selections.
One direction is to have more classes than two. Another direction is to have
more than one classifications simultaneously. Here, let us discuss both together,



86 4 PCA Based Unsupervised FE
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i.e., feature extraction under the conditions having more than one classification
with more than two classes. In order to demonstrate feature selections under this
condition, we extend data set 2, Eq. (4.2), as follows.

Data set 3
N(,0) i<4, i <N
N (o, o) >4, i <N
N, o) ¥ Ni<i<N+MN
xij~ANu,o) Y<ji<d N<i<N+N 4.4)
NQui,o) ¥ <j<3 Ny <i <N+ N,
NQ@ui, o) J> N <i <N+ N,
N(u2, o) i> N+ N,

Features i < N are composed of two classes, those N < i < N; + N, are
composed of four classes, and those i > N 4+ N, are composed of no classes. Thus
the feature selection aims to identify which features are composed of how many
classes.

Now the problem is more difficult. For example, simply trying to identify which
features are composed of two classes does not help us to distinguish between
features composed of two classes and those composed of four classes, because four
classes can be also considered to be two classes if each two of four classes are
considered as one class. Thus in order to perform feature selections under such
a complicated condition, we usually need more detailed information about class
labeling.

It is not very easy to adapt to this situation. Suppose that we have already known
20 samples classified into the four classes as



4.3 PCA Applied to More Complicated Patterns 87

(A,A,A,A,A,B,B,B,B,B,C,C,C,C,C,D,D, D, D, D) 4.5)
or into the two classes as
(E,E,E,E,E,E,E,E,E,E,F,F,F,F,F,F,F,F,F,F). (4.6)

Even if this is the case, identification of features with four classes is not straightfor-
ward. Simple linear regression analysis is not applicable, because we know only that
four classes differ from one another. In order to perform linear regression analysis,
we need to assign numbers to each of four classes. If we do not know practical
relationship between four classes, there are no ways to assign numbers to four
classes. Pairwise comparison between four classes might be possible, but might
not work well, because we need to integrate pairwise comparisons in order to rank
features. Suppose we try all possible six pairwise comparisons in Eq. (4.5), as

(A,B),(A,C),(A, D), (B,C), (B, D), (C, D). 4.7)

If we consider this is occasionally applied to Eq. (4.6), they correspond to compar-
isons of

(E,E),(E,F),(E,F),(E,F),(E,F),(F,F). (4.8)

Thus, in contrast to the expectation, four out of six comparisons will report that
they differ. Thus, if difference between two classes, E and F, is greater than
that between pairs in four classes, A, B, C, and D, integration of six pairwise
comparison might report that Eq. (4.8) more fits to four classes than Eq. (4.7). In
the following, we consider occasions where integration of six pairwise comparisons
occasionally report that Eq. (4.8) is more likely to be four classes than Eq. (4.7). For
the simplicity, we assume that all pairwise comparisons (E,F) in Eq. (4.8) are higher
ranked than all pairwise comparisons in Eq. (4.7). The requirement that difference
between two classes among four classes should be smaller than that among two
classes is not unrealistic. It is very usual that values of features have both upper
and lower boundary. In this case, the distinction between two classes when samples
are classified into two classes is that between the upper and the lower halves. On
the other hand, the distinction between two classes when samples are classified into
four classes is that between any pairs of four quantiles. If region is divided into
two, the distinction is larger than that when region is divided into four. In this case,
the following happens (Table 4.3). Four pairwise comparisons (E,F) in Eq. (4.8) is
always higher ranked than corresponding four pairwise comparisons, (A,C), (A,D),
(B,C), and (B, D) in Eq. (4.7). On the other hand, two pairwise comparisons (E, E)
and (F, F) in Eq. (4.8) are always lower ranked than corresponding two pairwise
comparisons, (A, B) and (C, D). There are Ny features composed of two classes
and N, features composed of four classes. Thus mean rank of pairs (A, B) and
(C, D) are % because N features composed of four classes are ranked higher
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Table 4.3 Mean (expected) rank, mean lowest rank, and mean top ranks of pairwise comparisons

Integrated
rank
PairsinEq.(4.7) | (A,B) |(A,C) |(A,D) | (B,C) | (B,D) | (C,D)
Mean rank 2 N+ 2N+ 2N+ 32N+ 52 3N2+4N,
Pairs in Eq. (4.8) (E,E) |(E,F) |(E,F) |((E,F) |(E,F) |(F,F)
Mean rank % % % % % w N+
2N + N>
Pairs in Eq. (4.7) (A, B) (A,C) |(A,D) |(B,C) |(B,D) |(C,D)
Mean lowest rank| N> N1+ N> Ni + Ny Ni + N N1 + N> N> 4N+ 6N>
Pairs in Eq. (4.8) (E,E) |(E,F) |(E,F) |((E,F) |(E,F) |(F,F)
Mean top rank w 1 1 1 1 w N —N; +
Ny +4

Integrated rank is summation of ranks of six pairwise comparisons

than other features. Mean rank of (A, C), (A, D), (B, C), and (B, D) are % + Ny
because N; features composed of two classes are always ranked higher than N,
features composed of four classes. Mean rank of four pairs (E, F) in Eq. (4.8) is %
because N; features composed of two classes are higher ranked than other features.
Mean rank of two pairs (E, E) and (F, F) are N JEN 2 because N, features composed
of four classes are higher ranked than others. Next, integrated rank is computed as
the summation over six pairwise comparisons. Then, integrated rank of features

composed of four classes is

N N,
2x o= +4x (Nit+ = ) =4N1+3N, (4.9)

and integrated rank of features composed of two classes is

N+ N,
2

N
2 x +4x71=N+2N1+N2 (4.10)

In order that N, features composed of four classes are higher ranked than N
features composed of two classes based upon integrated rank in average, Eq. (4.9)
< Eq. (4.10). Thus

Eq. (4.10) — Eq.(4.9) > 0 @.11)
N +2N; 4+ Ny — (4N} +3N2) > 0 (4.12)
N —2N; —2N; > 0 (4.13)

N > 2(N; + Na) (4.14)

is required. Otherwise, integrated rank based upon six pairwise comparisons,
Eq. (4.7), cannot select Ny features composed of four classes more likely than N
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features composed of two classes. This means that total number of features distinct
between any pairs of classes must not exceed the half of total number of features.
This requirement is unlikely fulfilled always.

Equation (4.14) that cannot always be expected to be satisfied is only for
average. Even if Eq. (4.14) stands, at most only half of selected features is correctly
composed of four classes. If we require that there should not be any false positives,
requirement can become more strict (Table 4.3). In order that, we have to require that
top ranked features among those composed of two classes must be always ranked
lower than the lowest ranked features among those composed of four classes. The
rank of bottom ranked feature among those composed of four classes by the two
pairwise comparison (A, B) and (C, D) in Eq.(4.7) is N> because there are N,
features that are composed of four classes and are ranked higher than other features.
The rank of feature ranked as bottom by the four pairwise comparisons (A, C),
(A, D), (B,C), and (B, D) in Eq. (4.7) among those composed of four classes is
N1+ N, because N features that are composed of two classes and are ranked higher
than N, features composed of four classes. On the other hand, features ranked
as top by two pairwise comparisons (E, E) and (F, F) in Eq. (4.8) among those
composed of two classes are ranked uniformly between N, and N — Njp. This is
because N, features composed of four classes are higher ranked than N; features
composed of two classes and there are N features ranked lower than top ranked
features among those composed of two classes. Thus, mean top ranked features
among those composed of two classes by two pairwise comparisons (£, E) and
(F, F)inEq.(4.8) is w The rank of feature ranked as top by four pairwise
comparisons (E, F) in Eq. (4.8) among those composed of two classes is 1, because
N, features composed of two classes are higher ranked than other features. Thus
integrated bottom rank among N, features composed of four classes is

2x Np4+4x (Ny 4+ Ny) =4N| + 6N, 4.15)

while integrated top rank among N; features composed of two classes is
N — Ni+ N,
2x<%>+4=N—N1+N2+4. (4.16)

In order that there are no false positives, i.e., N, features composed of four classes
is always ranked higher than N features composed of two classes, Eq. (4.16) >
Eq. (4.15),

Eq. (4.16) — Eq. (4.15) > 0 4.17)
N =Ny +No+4—(@4N; +6Ny) >0 (4.18)
N —5N; —5N,+4>0 (4.19)

N +4 > 5(N; + N2). (4.20)
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This means that the number of features composed of two classes and that of four
classes must be less than 10% of N if Ny = N,. This is a less likely fulfilled
requirement than Eq. (4.14). Thus integration of six pairwise comparisons unlikely
correctly identifies N, features composed of four classes when features composed
of two classes coexist with them.

Because pairwise comparisons are not expected to work well to identify features
composed of multiple classes when more than two kinds of multiple classes
coexist, e.g. Eq. (4.4), usually any other alternative strategies are recommended to
employ; ones of such alternative strategies are categorical regressions. In categorical
regression, class labels are converted to dummy variables, &;; that takes 1 when jth
sample belongs to kth class otherwise 0. Then, categorical regression analysis of x;;
is

xjj =a; + Z b Sk (4.21)
k

where a; and b;; are the regression coefficients specific to ith feature. Pairwise
comparisons that assume four classes could not distinguish features composed of
four classes from those composed of two classes well. This problem does not exist
in categorical regression analysis anymore. Suppose the simplest cases correspond
to two classes, Eq. (4.6), and four classes, Eq. (4.5), as

a,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2) (4.22)
and
(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4) (4.23)

respectively. It is obvious that there are no residual errors when Eq. (4.21) assuming
four classes (Table 4.4) is applied to Eq.(4.22) if a; =

b3 = bjy = % Because there are no residual errors when Eq. (4.21) assuming four
classes (Table 4.4) is applied to Eq. (4.23) as well if a; = 3, bi1 = —3, bip = —3,
biz = % and bjy = %, this cannot discriminate four classes from two classes.
Nevertheless, Eq.(4.21) assuming two classes (Table 4.4) can discriminate two

3

Table 4.4 §;; in categorical regression, Eq. (4.21), assuming either four classes, Eq. (4.5), and two
classes, Eq. (4.6), respectively

Four classes Two classes
k |[1<j<5 |6<j<10, [11<j<15 |16<,;<20, 1<;<10, |11 <, <20
1 1 0 0 0 1 0
2 |0 1 0 0 0 1
3 /0 0 1 0
4 10 0 0 1
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classes from four classes. If a; = %, b1 = —% and b;y = %, there are no residual
errors for Eq.(4.22). On the other hand, there are no solutions with no residual
errors when Eq. (4.21) assuming two classes (Table 4.4) is applied to Eq. (4.23).
Thus, integration of categorical regression analyses assuming four classes and two
classes can identify features composed of two classes and those composed of four
classes successfully.

In order to see if categorical regression analysis, Eq. (4.21), can identify features
composed of two classes and those composed of four classes simultaneously, we
apply categorical regression, Eq. (4.21), to data set 3, Eq.(4.4), as follows. First
we apply categorical regression, Eq.(4.21), assuming four classes to data set 3.
Because categorical regression assuming four classes are simultaneously coincident
with features composed of four classes and those composed of two classes, we
select top ranked N; + N, features, which is the total number of features that
are composed of either two or four classes, i.e. i < N; + N,. Then, we apply
categorical regression assuming two classes to data set 3. Because categorical
regression assuming two classes are coincident with only features composed of two
classes, we select top ranked N; features, which is the total number of features
that are composed of two classes, i.e. i < Nj. Features selected by categorical
regression assuming two classes are considered as features composed of two classes.
On the other hand, features selected by categorical regression assuming four classes
but not selected by categorical regression assuming two classes are considered
as features composed of four classes. Table 4.5 shows the performance of this
integrated categorical regression assuming two classes and four classes when N =
100, M = 20,00 = 8,1 = 2 = 52 =2,N; = 10,N; = 10and 0 = 1
in data set 3, Eq.(4.4). Performance is averaged over one hundred independent
trials. Categorical regression can identify features composed of two classes and four
classes completely.

In order to see if PCA based unsupervised FE is applicable, it is applied to the
same data set, too. In this case, we selected top 10 features and the second top
10 features (i.e., ranked between 11th and 20th) associated with absolutely larger
u1;. Since we do not know which one corresponds to two classes or four classes,
after investigating coincidence, we assign top 10 to four classes and the second
top 10 to two classes. PCA based unsupervised FE is also successful (Table 4.5).
The only disadvantage of PCA based unsupervised FE is that it cannot find the
correspondence between selected sets of features and the number of classes in
advance.

Table 4.5 Performance of

statistical tests applied to
. Two classes | Four class Two classes | Four class
synthetic data sets 3 defined o classes | Four classes o classes | Four classes

by Eq. (4.4) 10.00 10.00 9.97 9.97
Numbers represent mean number of features distinct between

two classes, i < N1(= 10), and four classes, N| <i < N;+
N;, among N features selected by each method, respectively

Categorical regression PCA based unsupervised FE
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Fig. 4.2 The first PC loading o)
vectors, v; € RM | for data g 1 OOOO
set 3
o OOOOO
o o
£ o
S
@
o T
o 9]
a
J 0~0
e
™
=5 0.0
| 00O o
5 10 15 20

In order to see this, we can observe the first PC loading vector, v (Fig.4.2). It
is obvious the first PC loading vector is coincident with four classes. This is the
reason why the top ranked 10 features are coincident with, not two classes, but four
classes. Although we do not repeat the application to shuffled data, it is obvious that
categorical regression does not work toward shuffled data because feature selection
is performed with class labeling. PCA based unsupervised FE is not affected by
shuffling, because PC score vectors, uys, which is used for feature selection, are not
affected by the order of samples, thus are not affected by the class labeling as well.
Thus, in this complicated situation, i.e., coexistence of features composed of two
classes and four classes, PCA based unsupervised FE is the most favorable method.

4.4 Identification of Non-sinusoidal Periodicity by PCA
Based Unsupervised FE

Identification of periodicity, no matter whether it is spatial or temporal, has ever
been central issue of data science. In order to identify periodicity, sinusoidal
regression is often used. Sinusoidal regression is defined as

. (27, 2
Xij = a; + b; sin <?]) + ¢; cos <T]> (4.24)

where a;, b;, c; are regression coefficients specific to ith feature and 7 is period. In
the following, for the simplicity, 7 € N. There are multiple practical problems on
regression analysis. At first, we need to know period T in advance in order to apply
regression analysis to data set. Of course, it is possible to estimate 7' from the data
set with considering T to be a fitting parameter as well. Nevertheless, there is no
known algorithm to find best T values, because any minimization algorithm applied
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to residues might fall in local minimum that differs from true 7'. Second, and more
critical problem is that not all periodicity is sinusoidal. Only requirement of x;; to
be periodic with the period T is

Xij = Xij+T 4.25)

which does not restrict functional forms to be sinusoidal at all.
In order to see how well sinusoidal regression, Eq. (4.24), can work, we apply it
to the data set 4 with period of T
Data set 4
xij = { Sfi+j) mod T + a&ij l <N (4.26)
as;j i>N;

where f; € R” and ¢; j € RNXM are drawn from normal distribution N (0, o), mod
is modulo operation, and 0 < a < 1 is the coefficient that represents signal noise
ratio. Because of the term (i 4+ j) mod T, {x,- j| 1<j<M }s have distinct phases
from one another. Performance is averaged over 100 independent trials. Table 4.6
shows the performance when N = 100, M = 50,7 = 10,a =0.1,0 =1, N] =
10. It is as small as 5.72 which is hardly said to be a good performance. This low
performance is because of f;’s non-sinusoidal functional form (Fig. 4.3).

Tab.le' 4.6 Performgnce of Sinusoidal regression | PCA based unsupervised FE

statistical tests applied to

synthetic data sets 4 defined 5.72 10

by Eq. (4.26) Numbers represent mean number of features with
period T, i < Nj(= 10) among N; features selected
by each method, respectively

Fig. 4.3 Typical fjmoa7 € ™
RM(M =50, T = 10) in -
Eq. (4.26) (black) and its
sinusoidal regression, i’ 4
Eq. (4.24) (red)
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Fig. 4.4 (a) A typical first PC loading (black), vi;, and second PC loading (red), vz;. (b)
Scatterplot of typical first PC score, u;, and the second PC score, uy;, that correspond to PC
loading shown in (a)

Next, we apply PCA based unsupervised FE to data set 4, Eq.(4.26), as in
Sect. 4.2 excluding one point; instead of ranking features based on the absolute
value of the first PC score, |u;|, features are ranked based upon squared sum of
the first and second PC scores u%i + u%i. Table 4.6 shows the performance which is
as large as 10, i.e., no errors.

The reason why we need to employ, not only the first PC score, u;, but also the
second PC score, u;, can be seen in Fig.4.4. As can be seen in Fig. 4.4a, the first
and second PC loading represent periodic function of period 7' (= 10). And the first
10 pairs of the first and the second PC scores, uy;,i < Ni(= 10),k < 2, form
circular trajectory in the plain spanned by the first and the second PC (Fig. 4.4b).
This is because of the term (i + j) mod T in Eq. (4.26) that generates phase shift
between features x;;,i < Ni(= 10). In some cases, the corresponding PC loading,
v1; and vy, represent not the period 7', but the period % or % Nevertheless, in
data set 4, Eq. (4.26), only features i < Nj(= 10) can be coincident with higher
modes, % or % Thus, these cases also can identify periodic features i < Nj(= 10)
correctly.

In the above explanation, we use circular trajectory shown in Fig. 4.4b to reasons
why we need to employ the first two PC scores for feature selection. Nevertheless,
in the practical application, the order of analysis can be reversed. First, we might
observe the pairwise scatterplots of PC scores to identify which pairs of features
have periodicity because periodic features should draw circular trajectory. Next,
we can see individual PC loading as in Fig.4.4a in order to see period 7. This
is possible because it is unsupervised method that assumes no specific periodic
functional forms in advance. In this sense, PCA based unsupervised FE is superior
to the sinusoidal regression to select periodic features.
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In order to see if PCA based unsupervised FE can recognize periodicity under
the more complicated situation, I modified data set 4, Eq. (4.26), such that cycles
with two period, T and T’, coexist, i.e.

Data set 5

fi+pmodT +asgy; i < Nj
Xij =\ &i+j) mod T’ +agij NI <i <N (4.27)
as;j i >Ny

where g; € R?" is drawn from normal distribution N (0, o). Figure 4.5 shows the
typical g that is far from sinusoidal profile (T’ = 5, N» = 20, other parameters
are the same as those in Eq. (4.26)). Figure 4.6 shows the typical first to fourth
PC scores, ux, 1 < k < 4, and PC loading, v, 1 < k < 4. It is obvious that
Fig. 4.6a, ¢ corresponds to period T’ = 5 and Fig.4.6b, d corresponds to period
T = 10, respectively. Thus, PCA based unsupervised FE basically has the ability
to identify features with two distinct periods even when they coexist. The problem
is that the first four PCs do not always correspond to two periods, 7/ = 5 and
T = 10, but other four PCs, e.g., the second, third, seventh, and eighth PCs,
correspond to these two periods, in contrast to data set 4, Eq. (4.26), where the first
two PC loading always correspond to period 7 = 10. Thus, in order to make use
of PCA to identify features with two distinct periods, we need to identify which PC
loading corresponds to two periods, T = 10 and T’ = 53, respectively, by applying
sinusoidal regression, Eq.(4.24) with T = 10 and T = T’ = 5. Thus, detailed
procedure is as follows:

1. Apply PCA to data set 5, x;; (Eq. (4.27)).

2. Apply sinusoidal regression, Eq. (4.24), with T = T’ = 5 to PC loading, v} and
select top two, k1 and k».

3. Apply sinusoidal regression, Eq. (4.24), with T = 10 to PC loading, vy and select
top two, k| and k.

Fig. 4.5 Typical
gimodr € RM(T'=5)in
Eq. (4.27) (black) and its o |
sinusoidal regression, -
Eq.(424)withT =T' =5
(red)
° 9
o
=
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Fig. 4.6 (a) Typical first PC loading (black), vy ;, and the second PC loading (red), vz;. (b) Typical
third PC loading (black), v3;, and the fourth PC loading (red), vs;. (¢) Scatterplot of typical first PC
score, u1;, and the second PC score, u»;, that correspond to PC loading shown in (a). (d) Scatterplot

of typical third PC score, u3;, and the fourth PC score,

u4; , that correspond to PC loading shown in

(b). Black open circles: j < Nj(= 10), red open circles: N; < j < Np(= 20), green open circles:

Ny <j

4. Select top ranked N, (= 20) features using squared sum of two vg;s, v]f/l. + vi,i,
1 2

selected in step 3 (this is because PC score, u; with period T’ = 5, identifies
features with periods 7/ = 5 and T = 10 as can be seen in Fig. 4.6¢).

5. Select top ranked N (= 10) features using squared sum of two vy;s, v,%li + v,fzi,
selected in step 2 (this is because PC score, u; with period T = 10, identifies
only features with periods 7 = 10 as can be seen in Fig. 4.6d).

6. Identify features selected in step 5 as those with period T = 10.

7. Identify features selected in step 4 but not in step 5 as those with period T = 5.

Performance is averaged over 100 independent trials (Table 4.7). PCA based
unsupervised FE obviously can identify features with two distinct periods almost

completely.

In order to see if sinusoidal regressions,

Eq.(424) with T = 10 and T =

T’ =5, can perform as well as PCA based unsupervised FE, we applied sinusoidal
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Tal?le. 4.7 Performgnce of Sinusoidal regression | PCA based unsupervised FE
statistical tests applied to

— — I __ — — r
synthetic data sets 5 defined r=10 7=7=5 T=10 T=7"=5
by Eq. (4.27) 6.32 6.75 9.73 9.99

Numbers represent mean number of features with period
T = 10,i < Ni(= 10) among N features selected by
each method and that of features with period 7 = T’ =
5, N1 < i < Na(= 20) among N2 — N (= 10) features
selected by each method, respectively

regression to data set 5, Eq. (4.27), too. Top 10(= N; = Np — Nj) features were
selected with T = 10 and T = T’ = 5, respectively (Table 4.7). Sinusoidal
regression is clearly inferior to PCA based unsupervised FE, possibly because of
non-sinusoidal nature of f; (Fig.4.3) and g; (Fig.4.5) in Eq. (4.27).

4.5 Null Hypothesis

In the above examples, the number of features considered, e.g., those composed of
multiple classes or those with specific period, is known in advance. Nevertheless,
in the real application, it is unrealistic to assume that the number of features that
should be selected is known in advance. In this case, usually P-values are attributed
to individual features. These P-values represent the possibility that observation can
happen accidentally under the null hypothesis that represents something opposite to
the nature that selected features should obey.

For example, when we search features composed of two classes, the P-values
represent the possibility that absolute difference of means between two classes
can become accidentally larger than observed values when all observations are
drawn from the same distribution (e.g., normal distribution with the same mean and
standard deviation). If P-values are small enough, we can consider these features
to be those composed of two classes, because the observed difference can unlikely
appear if there are no classes.

There are some issues in this strategy. The first one is how we can select the null
hypothesis. P-values are obviously dependent upon the selection of null hypothesis.
Thus, it is important to select “correct” null hypothesis to address proper P-values to
features. Unfortunately, there is no known established strategy to select the correct
null hypothesis. Null hypothesis, which should be rejected, cannot be observable.
Even if majority of features do not always follow null hypothesis, it might simply
mean that most of the features are associated with properties searched. Therefore,
only requirement is to present clearly null hypothesis together with the P-values
attributed to features.

Another issue is how small P-values should be. Generally, P-values are consid-
ered to be false ratio. In other words, if we select n features associated with P-values
smaller than p, there can be at most np features selected wrongly in spite of that they
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obey the null hypothesis. Thus, ideally, p should be as small as % such that there are
no false positives. Nonetheless, it is often unrealistic to require p < % especially
when n is large and data is noisy. Therefore, practically, p is set to be 0.01 or 0.05,
because it is enough if the 99% or 95% of selected feature are correct, for the usual
purpose.

The third and the most critical issue is the problem of multiple comparisons.
When there are N features to which P-values are attributed, P-values can be
accidentally as small as % When N is large, e.g., N ~ 10%, it causes a problem.
Even if some features have P-values as small as 10~%, we cannot reject null
hypothesis. Thus, we cannot select these features as those associated with properties
searched, e.g., composed of two classes. In spite of that, it is often unrealistic to
require that P-values should be as small as 10~%. Although there are many ways
to address this difficulty, we employ Benjamini Hochberg (BH) criterion, because
it is known to work practically well, in the applications described in the following
chapters.

The basic idea of BH criterion is very simple. If the features obey null
hypothesis completely, e.g., apparently two classes features are drawn from the same
distribution, e.g., normal distribution, the distribution of P-values should be uniform
distribution € [0, 1], because this is the definition of probability. Thus, if we order
P-values in ascending order, the ith largest P-value should be as large as lﬁ In
other words, if the ith largest P-value is smaller than lN it unlikely occurs under
the null hypothesis.

Considering these discussions, BH criterion is as follows:

1. Order P-values attributed to ith featqre, P;, in ascending order.

2. Find the smallest io such that P;, > ’N" p where p is threshold P-values.

3. Select features, i < ip, such that their attributed P-values are practically
supposed to be less than p.

Throughout the remaining part of this book, we employ this criterion to adjust
P-values with considering multiple comparisons as many as the number of
features, N.

4.6 Feature Selection with Considering P-Values

In order to perform feature selection with considering P-values, we select null
hypothesis for the distribution of PC score, uy;, as normal distribution. In order
to assign P-values to features, we employ x 2 distribution as

N2
Pi=Pp [> 3 (?) } (4.28)
k

k
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where P,2[> x] is the cumulative probability that the argument is larger than x. The
summation is taken over PCs selected for identification of ith feature that fulfills
desired condition. The degrees of freedom of x? distribution is equal to the number
of PCs included in the summation. oy, is the standard deviation of uy;. Then features
associated with adjusted P-values less than 0.01 are selected.

Other methods compared with PCA based unsupervised FE in the previous
section can also attribute P-values to individual features. Using these P-values,
features associated with adjusted P-values less than 0.01 can be selected. This
enables us to compare performance between the various methods.

At first, we perform analysis shown in Table 4.2 with replacing identification of
features based upon top ranked Nj(= 10) features with that based upon features
associated with adjusted P-values less than 0.01. Unfortunately, not all tests shown
in Table 4.2 can derive P-values. Evaluation based upon variance has no ways to
attribute to P-values, because no null hypothesis can exist. Regression analysis
cannot either, because complete fitting is always possible because the number of
features, N, is larger than the number of samples, M. Thus, only remaining three,
t test, unimodal test, and PCA based unsupervised FE can be employed. We do
not employ shuffling in this case, because the effect of shuffling was presented in
Table 4.2.

Evaluations based upon adjusted P-values do not always give us N; features
selected. Thus, instead of presenting the number of correctly selected features as in
Table 4.2, we need to present confusion matrix, which is demonstrated in Table 4.8.
Suppose that there are two classes, positive set and negative set (in the case of feature
selection, positive corresponds to features with considered properties, e.g., those
composed of two classes, and negative corresponds to features without considered
properties, e.g., those without any classes). The number of positives predicted as
positive is true positive (TP). The number of positives predicted as not positive is
false negative (FN). The number of negatives predicted as positive is false positive
(FP). The number of negatives predicted as not positive is true negative (TN). If
FN=FP=0, it is complete prediction.

Confusion matrices when three statistical tests are applied to data set 1, Eq. (4.1),
and data set 2, Eq.(4.2), are shown in Tables 4.9 and 4.10, respectively. The
performance is averaged over 100 independent trials. ¢ test performs almost equally
between data sets 1 and 2, although the performance decreases as M decreases or
N increases. PCA based unsupervised FE totally fails for data set 1, while it is
successful for larger N in data set 2. Unimodal test has never been successful. One

Table 4.8 Confusion matrix Real

Prediction | Positive | Negative
Positive TP FP
Negative | FN TN

TP true positive, FP false positive,
FN false negative, TN true negative
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Table 4.9 Confusion matrices when statistical tests are applied to synthetic data sets 1 defined by
Eq. (4.1) and features associated with adjusted P-values less than 0.01 are selected

t test Unimodal test PCA
i <N Ny <i i <N Ny <i i <N Ny <i
Dataset 1: N = 100, M = 20
Selected 10.00 0.10 0.03 0.08 0.00 0.00
Not selected 0.00 89.90 9.97 89.92 10.00 90.00
Dataset 1: N =100, M = 10
Selected 5.96 0.18 0.01 0.06 0.00 0.00
Not selected 4.04 89.82 9.99 89.94 10.00 90.00
Data set 1: N = 1000, M = 20
Selected 9.98 0.2 0.0 0.2 0.00 0.00
Not selected 0.02 989.8 10 989.8 10.00 990.00
Data set 1: N = 1000, M = 10
Selected 1.16 0.2 0.0 0.04 0.00 0.00
Not selected 8.84 989.8 10 989.96 10.00 990.00

Ny =10

Table 4.10 Confusion matrices when statistical tests are applied to synthetic data sets 2 defined
by Eq. (4.2) and features associated with adjusted P-values less than 0.01 are selected

t test Unimodal test PCA
i <N Ny <i i <N Ny <i i < Nj Ny <i
Data set 2: N = 100, M = 20
Selected 10.00 0.07 0.0 0.07 0.00 0.01
Not selected 0.00 89.93 10.00 89.93 10.00 89.99
Dataset2: N =100, M = 10
Selected 6.08 0.06 0.00 0.00 0.00 0.00
Not selected 3.92 89.94 10.00 90.00 10.00 90.00
Data set 2: N = 1000, M = 20
Selected 9.98 0.1 0.00 0.00 9.97 0.07
Not selected 0.02 989.9 10.00 990.0 0.03 989.03
Dataset2: N = 1000, M = 10
Selected 1.09 0.01 0.0 0.04 9.4 0.00
Not selected 8.91 989.99 10 989.96 0.6 990.0

N1 =10

remarkable point is that PCA based unsupervised FE can outperform ¢ test when
N = 1000 and M = 10. This suggests that PCA based unsupervised FE might be
the best when N > M the situation N > M is very usual in the bioinformatics.
This is the basic motivation that this textbook is written.

In spite of that PCA based unsupervised FE is an unsupervised method that does
not fully make use of available information while # test is a supervised method that
fully makes use of available information, the reason why PCA based unsupervised
FE can outperform ¢ test when N > M is as follows. In t test, P-values increase
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as M decreases (i.e., less significant). On the other hand, the correction of P-values
considering multiple comparisons is enhanced as N increases. Thus, adjusted P-
values become larger (less significant) as N increases. This means, if N > M,
t test hardly computes small enough P-values. On the other hand, in PCA based
unsupervised FE where P-values are computed by u1; which is less affected by
varying M, P-values are less dependent on M. In Table 4.10, TPs computed by
PCA based unsupervised FE do not change much between M = 10 and M = 20
when N = 1000. In addition to this, in this setup, N; that represents the number
of positives remains unchanged while N increases. This means, the number of
negatives increases. Generally, negatives are associated with smaller absolute values
of uy; because uy; is associated with vy; that represents distinction between two
classes (Fig.4.1). P-values are computed based upon normalized u1;, Eq. (4.28),
thus absolute values u1; attributed to positives become relatively larger as the
number of negatives increases. This process has the tendency that increasing the
number of negatives reduces P-values attributed to positives (i.e., more significant).
Because of that, in Table 4.10, PCA based unsupervised FE is successful only when
N = 1000.

This is the reason why PCA based unsupervised FE is employed for the feature
selection in bioinformatics where N > M is quite usual. P-values computed
by PCA based unsupervised FE is less affected by M that is typically small in
bioinformatics while P-values decrease for larger N that is typically very large in
bioinformatics. Thus, PCA based unsupervised FE is very fitted to the problems in
bioinformatics.

One might be interested in what will happen if selection based upon adjusted
P-values is applied to other examples discussed in the above. The answer is that it
is dependent upon various parameters. In the examples analyzed in this section,
PCA based unsupervised FE can outperform ¢ test only when N = 1000 and
M = 10. Thus, whether it works well or not when it is applied to real data set
is also dependent upon the properties of data sets. The general tendency that PCA
based unsupervised FE works well only when N > M is universal independent of
the data sets considered. Thus, the discussion about in which situation PCA based
unsupervised FE that selects features based upon adjusted P-values works well is
postponed to the later chapters where PCA based unsupervised FE is applied to real
data sets. The readers can see many examples where PCA based unsupervised FE
works well or not in these later chapters.

4.7 Stability

Weaker sensitivity of PCA based unsupervised FE on the number of samples, M,
naturally results in the stability of feature selection. The stability of feature selection
is defined as the robustness of feature selection when samples change. Suppose that
samples are drawn from some distributions. If selected features vary every time
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samples are drawn from distribution, it is problematic in biology where individual
features, e.g., genes, have meanings.

In PCA based unsupervised FE, P-values are less dependent upon the number of
samples. In other words, every time we select half of samples among the available
samples, P-values attributed to individual features do not change. If P-values
attributed to individual features do not change, the selected features do not change,
either. This is definitely equivalent to the stability. In the applications of PCA based
unsupervised FE to real data sets described in the following chapters, readers will
see many examples that PCA based unsupervised FE outperforms other methods
from the point of stability. This is yet another reason why PCA based unsupervised
FE is a recommended method to be used in bioinformatics.

4.8 Summary

In this chapter, I proposed to make use of PCA as a tool of feature selection.
PCA based unsupervised FE can identify features composed of multiple classes
better than conventional supervised methods, e.g.,  test and categorical regression.
When it is applied to identification of non-sinusoidal periodic features, PCA
based unsupervised FE can outperform another conventional method, sinusoidal
regression. With attributing P-values to features under the null hypothesis that
PC scores obey yx? distribution, PCA based unsupervised FE correctly identifies
features composed of two classes only when N >> M, i.e., the number of features
is much larger than the number of samples.
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