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Foreword

Machine learning techniques serve as powerful tools in bioinformatics, specifically
for predicting the structure and function of proteins and identifying disease-causing
mutations, biomarkers, potential drug-like molecules, and so on. However, it is
not straightforward to relate the features with performance. On the other hand, a
simple statistical analysis can provide insights to understand the relationship; for
example, the increase in long-range contacts slows down the folding of proteins,
positive charged residues tend to dominate in DNA-binding domains, etc. Hence,
linear algebra has the capability to reveal complicated genomic structures in a more
direct manner than machine learning.

Almost 10 years ago, Prof. Taguchi and I published a paper on predicting protein
folding types using principal component analysis (PCA), one of the liner algebra
methods. He has continued his research to investigate the applications of PCA on
various biological problems. Recently, he successfully moved to tensors. These
methods provide insights to understand the concepts due to the fact that the data
are easily interpreted and trace back the output from input features. It is amazing
that such a simple strategy can be applied to a wide range of biological problems
discussed in this book.

Prof. Taguchi has elegantly designed the book to understand the concepts easily.
He has provided mathematical foundations on all important aspects followed by
feature extractions. At the end of the book, he shows that PCA and tensors are
powerful tools, which perform similar to machine learning techniques in the study
of biological problems, namely, biomarker identification, gene expression, and
drug discovery, evidenced with his numerous high-quality publications in reputed
international journals.

In essence, this book is a valuable resource for students, research scholars,
and faculty members to simultaneously grasp the fundamentals and applications
of PCA and tensors. Although the applications listed in this book are limited to
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bioinformatics, the approach is extendable to other fields as well since they are
general linear methods, which are easily understandable.

With these appreciations, I recommend this well-written book to the readers.

Chennai, India M. Michael Gromiha
25 March 2019



Preface

He stole something unexpected. . . , your heart.
Inspector Zenigata, Lupin III: The Castle of Cagliostro, movie,
Episode 1

This is a book about very classical mathematical techniques: principal component
analysis and tensor decomposition. Because these two are essentially based upon
linear algebra, one might think that these are no more than textbook-level matters.
Actually, when I started to make use of them for the cutting-edge researches, many
reviewers who reviewed my manuscripts complained about the usage of these old-
fashioned techniques. They said, for example, “Why not use more modernized
methods, e.g., kernel tricks?” or “Principal component analysis is a very old method
for which no new findings can exist.” In spite of these criticisms, I have continuously
published numerous papers where I discussed how principal component analysis or
tensor decomposition can be used for data science in a completely new way.

The principal reason why such old techniques can work pretty well is because
of the topic targeted: feature selection in large p small n problem. Large p small
n problem means that there are huge number of variables of which very small
number of observations are available. In such situations, it is of course difficult
to know what has happened in the system, because there are not enough number of
points that cover the whole state space. This situation is also known as “the curse of
dimensionality” which means the lack of enough number of observations compared
with the number of dimensions. This problem remains unsolved over a long period.

In this book, I apply principal component analysis and tensor decomposition
in order to tackle this difficult problem. There are several reasons why these
two can work well in this difficult problem. At first, these two are unsupervised
methods. In contrast to the conventional supervised methods, unsupervised methods
are more robust. Especially, it is free from overfitting that can easily occur when
supervised methods are applied to small number of samples with large number of
dimensions, because unsupervised methods do not learn from labeling from which
supervised methods must learn. Second, unsupervised methods are more stable than
supervised methods, because unsupervised methods are independent of labeling.
Another advantage of principal component analysis and tensor decomposition is that
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they consider the interaction between variables not after the features are selected but
before they are selected.

The main purpose of this book is to perform feature selection that means selecting
small or limited number of critical variables among huge number of variables.
Although there have been numerous proposals for feature selection, there are very
few fitted to apply to the large p small n problems. One typical approach among
those not fitted to large p small n problems is a statistical test. When we would
like to find features that satisfy some required properties, statistical test can compute
the probability that the desired property can appear by chance. If some features
are associated with small enough probability, we can regard that the feature is truly
associated with this property. In large p small n problem, this strategy often fails.
Smaller number of samples can increase the probability that the desired property
can happen by chance. On the other hand, if the number of features are large,
small probability can happen by chance; if the number of features is as many as
104, features associated with the probability as small as 10−4 can appear with the
probability of 1 (i.e., almost always). Because of the same reason, even if we try to
find the features best fitted with the desired property, it might be simply accidental.

The basic idea to resolve these difficulties using principal component analysis
and tensor decomposition is as follows. First, before features are selected, a whole
data set is embedded into lower-dimensional space. Because feature selection
is performed within this lower-dimensional space, it is not a large p small n

problem anymore. Thus, it is also free from “the curse of dimensionality.” Then
the dimension in which feature selection is performed is selected with a variety of
methods fitted to desired properties. As can be seen in the later parts of this book,
this simple idea works surprisingly well.

In Chap. 1, I reintroduce basic concepts, including scalar, vector, matrix, and
tensor, from data science point of views. Chapters 2 and 3 introduce two embedding
methods by which dimensions are reduced, principal component analysis as a part
of matrix factorization and tensor decomposition, respectively. The following two
chapters explain how we can make use of these two for the feature selection with
applying them to synthetic data sets. The last two chapters are dedicated to the
applications of two methods to bioinformatics where large p small n problems are
very usual.

Although the application of the proposed methods is limited to genomic science,
because general workframe of the methodologies is very universal, the readers are
expected to apply these two to their own problems in data science. I am happy to
hear from their achievements when the methods proposed in this book are applied
to various problems.

Tokyo, Japan Y-h. Taguchi
March 2019
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Part I
Mathematical Preparations

In this part, we briefly introduce mathematical basics required for understanding
the content of this book. Most of the part is usually taught in the first grade
of undergraduate course at university. Thus, some readers might skip this part.
However, it tried to re-introduce basic mathematical concepts from the data science
point of views.



Chapter 1
Introduction to Linear Algebra

None can extinguish souls!
Momo Minamoto, Release the Spyce, Season 1, Episode 12

1.1 Introduction

Linear algebra is composed of simple arithmetic operations: addition, subtraction,
multiplication, and division. In spite of their simpleness, it is often powerful enough
to represent some complicated data set. In some sense, linear algebra is something
like scissors. Although scissors can do only one thing, cutting, it can be used for
various purposes if it is used by skilled persons. A piece of paper can be a beautiful
art called as a cutting picture that looks like a very complicated sculpture. A skilled
hairdresser can use scissors to change a female outlook so beautiful. Likewise,
linear algebra can be used to understand very complicated data set that is difficult
to understand otherwise, if you can make use of it so as to let it demonstrate the
maximum power. In this chapter, we prepare the knowledge that can be used in the
later chapters for the application as data science technology.

1.2 Scalars

1.2.1 Scalars

Scalars are numbers that take real values. In the data science context, scalars are
usually numbers that describe samples. Here samples correspond to some objects
that will be targeted under the investigation. The examples of pairs of samples and
associated scalars are

• person and weight
• food and price
• star and brightness
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Thus, in contrast to the generic algebra, scalars are not always able to be added
with each other; brightness cannot be added to price, price cannot be added to
weight, and so on. Not only addition, but also division, multiplication or subtraction
are not always possible, either. Arithmetic is possible only between same scalars;
brightness plus brightness, weight plus weight. In this sense, data science algebra is
more restricted than usual algebra.

In the data science, it is critically important to remember that all scalars analyzed
have origins in the real world; no scalars are purely ideal numbers. This is primarily
distinct from simple mathematical numbers that do not always have counterpart in
the real world. Scalars in data science always represent something that exists in the
real world.

Exercise
1.1 List ten pairs of samples and associated scalars.

1.2.2 Dummy Scalars

In contrast to scalars that describe samples, samples are often associated with
features that cannot be described with real values. Such examples are color.
Although it is possible to artificially attribute real values to colors, e.g., using
RGB (red, green, and blue) color model, it is empirically useless. In RGB color
system, colors are represented as combinations of three scalars. For example, red
corresponds to (1,0,0) and blue corresponds to (0,0,1). Formal addition of distinct
colors, e.g., red plus blue, results in completely distinct third color, (1,0,1), which
corresponds to pink. Thus, it does not make sense. More severely, there are generally
no ways to add distinct features. What comes if American is added to Japanese (in
this case, feature is nationality)? In order to avoid this difficulty, dummy scalars
are usually introduced. All features that cannot be described using real values are
converted to 1 or 0. If a sample has the feature, corresponding dummy scalar takes 1
otherwise 0. In the example of colors, the number of scalars is as many as number of
colors. If all samples under the investigation can take one hundred colors, we have
to prepare same number of dummy scalars and add 1 or 0 to them depending on
the color association with each sample. All samples with red have dummy scalar,
to which red color is attributed, of 1. Introduction of dummy scalars is critically
important since its introduction enables us to deal with any features that cannot be
easily represented by real values.

Exercise
1.2 List ten features that must be treated as dummy scalars.
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1.2.3 Generating New Features by Arithmetic

Although distinct scalars cannot be added with each other, in the real application we
need to generate new features from scalars. In order to perform arithmetic between
distinct scalars, multipliers are introduced. Suppose that there are three distinct
scalars, x, y, and z. In order to enable addition among these, multipliers α, β, and
γ are multiplied to scalars as αx, βy, and γ z. Now, it is possible to add them as
αx + βy + γ z. Multipliers have two functions. The first function is make scalars
non-dimensional. Non-dimensional scalars mean those without unit. For example, if
one would like to add weight, price, and brightness, the multipliers of these should
have unit of inverse of weight, price, and brightness. Then products of scalars and
associated multipliers are non-dimensional. In order to perform arithmetic between
scalars, introduction of multipliers is essential. The second function of multipliers is
to equalize the amount of scalars. If weight is measured in kg, it has values between
0 and 100. If price is defined in Japanese currency, yen, it typically has values
between 0 and 1,000,000. Brightness can be measured by various units. If lumen
is employed as unit, brightness typically takes values as large as several thousands.
Without multipliers, individual contributions of distinct scalars to newly generated
feature cannot be balanced. Thus, the introduction of multipliers is required in order
to control contributions of scalars to generated feature. Once scalars are multiplied
with multipliers, the product of scalars and multipliers can be arguments of any
arithmetic functions, e.g., sin and log. Thus, new features can be generated not only
by arithmetic but also using functions, e.g., log(αx + βy + γ z).

In this context, dummy scalars can also be combined with usual scalars that take
real values. In this sense, any of x, y, and z can be also dummy scalars. Since dummy
scalars are non-dimensional, multipliers associated with dummy scalars are also
non-dimensional.

Exercise
1.3 Generate ten new features using three scalars x, y, and z as well as three
associated multipliers α, β, and γ .

1.3 Vectors

1.3.1 Vectors

Vectors are composed of set of scalars. For convenience, the elements of vectors are
represented by adding suffix to scalars, e.g., xj , where x is scalar and j is suffix
that spans integers. With employing this notation, we are free from introducing the
numerous characters to represent a set of many scalars.

In order to be free from representing vectors as a set of many scalars with suffix,
we can introduce a vector notation, x,
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x = (x1, x2, . . . , xM) (1.1)

where M is the number of samples. In short, it is often represented as x ∈ R
M . This

says that there are M samples, each of which a scalar xj is attributed to. A typical
example of x is that there are M foods, each of which prices are attributed to, e.g.,
(Table 1.1) where M = 4 and x = (100, 1000, 300, 200).

Exercise
1.4 Generate some vectors that represent a set of samples.

It is very usual that samples are accompanied with more than one scalar. For
example, we can attribute weights to foods (Table 1.2).

Then, a set of foods is accompanied with additional vector, y = (200, 300, 100, 150).

1.3.2 Geometrical Interpretation of Vectors: One Dimension

It is often very useful to interpret the vectors geometrically. For example, x =
(100, 1000, 300, 200) can be considered to be coordinates of four points aligned
along a line (Fig. 1.1).

There are several advantages of the geometrical representation of vectors. At
first, it can give samples the order that can be easily visually recognized. By simply

Table 1.1 An example of
vector: foods vs prices

Foods Prices

Bread 100 yen

Beef 1000 yen

Pork 300 yen

Fish 200 yen

Table 1.2 Another example
of vector: foods vs weights

Foods Weights

Bread 200 g

Beef 300 g

Pork 100 g

Fish 150 g

0 100 200 300 1000

1 24 3

prices

suffix
Bread BeefPorkFish samples

500

Fig. 1.1 A geometrical interpretation of vector x = (100, 1000, 300, 200). Individual components
of the vector that correspond to prices of four samples are considered to be four coordinates of
four points aligned along a line. Prices considered to be coordinates are displayed above the line
while suffix that corresponds to four samples is displayed below the line. A red point represents an
imaginary sample with the price of 500 yen
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glancing the sequence of scalars, it is hard to recognize the rank order of scalars.
Second, the distances between samples can be introduced. Then, from the prices,
we can say that two pairs of samples, the pair of bread and fish and the pair of pork
and fish, are equally separated. If we specifically define measure of distance, say
Euclid distance, we can compute the distance between samples numerically as

distance between bread and beef =
√

(100 − 1000)2 = 900 (1.2)

distance between bread and fish =
√

(100 − 200)2 = 100 (1.3)

where Euclid distance between two points j and j ′ having coordinates of xj and
xj ′ , respectively, can be defined as

√(
xj − xj ′

)2 (1.4)

Using the numerical distances, we can quantitatively compare two pairs of samples
on how far they are apart from each other. In this case, bread is nine times apart
from beef than fish. These two points, the definition of rank order of samples and
numerical distances between pairs of samples, will turn out to be critical for data
science analysis.

An additional advantage of geometrical interpretation is that any point along the
line automatically has prices. For example, if a point is placed on the line with the
coordinate of 500 yen (a red point in Fig. 1.1), this point represents a sample with the
price of 500 yen. This allows us to think about an imaginary sample with this price
without specifying what it is. This is also a great advantage for data science, which
must predict something unknown. With geometrical representation, we can discuss
about samples with arbitrary scalars without specifying what it is. This abstraction
is very important as can be seen later.

Exercise
1.5 Draw geometrical representation of Table 1.2.

1.3.3 Geometrical Interpretation of Vectors: Two Dimensions

As denoted in Sect. 1.3.2, samples can be associated with more than one scalar
(Tables 1.1 and 1.2). In this case, geometrical representation must also be altered
from a line to a plane. Figure 1.2 shows geometrical representation of four foods
according to the scalars shown in Tables 1.1 and 1.2.

Now, using two scalars simultaneously, the relationship among four foods
becomes clearer. Beef is apart from other three, because it has the largest weight
and highest price. As in the one dimension, any points in the plane are automatically
associated with pairs of scalars: prices and weight. A red point in Fig. 1.2 represents
an imaginary sample associated with price of 500 yen and weight of 250 g.
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Fig. 1.2 A geometrical
interpretation of Tables 1.1
and 1.2. Horizontal axis and
vertical axis correspond to
prices (Table 1.1) and weights
(Table 1.2), respectively. A
red point represents an
imaginary sample with the
price of 500 yen and a weight
of 250 g

price

weight

100 300 1000

100

200

300

1(Bread)

2(Beef)

3(Pork)

4(Fish)

Table 1.3 Foods vs prices
using dollar as price

Foods Prices

Bread 1 dollar

Beef 10 dollars

Pork 3 dollars

Fish 2 dollars

If one thinks that there is nothing unclear, one might miss an important point:
scale. In Fig. 1.2, length that corresponds to 100 yen does differ from length that
corresponds to 100 g. Nevertheless, there are no reasons to make them equal to each
other. When length of 100 yen is made to be equal to 100 g, the plot will be elongated
toward horizontal direction. The problem is that there is no criterion to decide scale,
since prices can never be related to weight.

One may wonder that it is not a problem, since numerical distance can be defined
independent of scale. For example, the Euclidean distance between fish and pork in
the plane shown in Fig. 1.2 can be defined as

√
(200 − 300)2 + (150 − 100)2 � 111 (1.5)

that is independent of scale.

Exercise
1.6 Compute Euclidean distances of any pairs of samples (points) in Fig. 1.2.

Although it apparently seems to work, it actually does not. Suppose that we use
dollar instead of yen for prices. For example, if we can assume that 1 dollar costs
100 yen, Table 1.1 now becomes Table 1.3.

Then, the Euclidean distance between fish and pork is not about 111 but

√
(2 − 3)2 + (150 − 100)2 � 50 (1.6)

Now it is clear that there are many problems in two-dimensional representations.
At first, the distance cannot be determined independent of the unit of scalars. As
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soon as the foods are imported from Japan to the USA, the distances between foods
might change. It does not make sense. In addition to this, in the system of dollar-
gram unit, the prices are almost ignored on the computing distances. It also does not
make sense.

Unfortunately, there are no definite ways to address this problem uniquely. How
we should scale different scalars must be decided depending upon what we would
like to know from the data given. It is highly context dependent. Thus, we will
discuss this later when we apply mathematics to real data set.

1.3.4 Geometrical Interpretation of Vectors: Features

In the previous sections, geometrical representations were applied to samples, i.e.,
four foods. In Sect. 1.3.1, two vectors, x = (100, 1000, 300, 200) for prices and y =
(200, 300, 100, 150) for weights were defined, respectively. These two vectors can
also be interpreted as a geometrical representation of two features, price and weight
(Fig. 1.3). Excluding the omission of fish for easier visual recognition, Figs. 1.2
and 1.3 are mathematically equivalent. In spite of the mathematical equivalence, it
is not very popular to interpret vectors as geometrical representation of not samples
but features. This is primarily because we have to plot different scalars, i.e., prices
and weights, on the common axes. In Sect. 1.3.3, the ambiguity of scale was pointed
out. The problem of scale is more visible in the geometrical interpretation of vectors
for features (Fig. 1.3) than that for samples (Figs. 1.1 and 1.2). In the third (vertical)
axis in Fig. 1.3 that corresponds to pork, 300 yen is more distant from origin than
100 g. It is apparent that this spatial relationship between price and weight of bread
is not informative at all, since as soon as we use dollar (Table 1.3) instead of yen, the
price (now it is “only” three dollars) becomes closer to the origin than the weight
(100 g). Second, it is not recommended to plot distinct units (in this case, price
and weight) along the same axis in physical sciences where this kind of coordinate
representation was firstly developed (for example, energy and force can never be
plotted on the same axis).

In spite of these difficulties, the emphasis of the equivalence between two
geometrical representations (either that of samples or that of features) will turn out
to be practically very useful for the main topics of this book.

Exercise
1.7 Draw geometrical representations of prices and weights using combinations of
samples distinct from those used in Fig. 1.3, e.g., beef, pork, and fish.
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Fig. 1.3 An alternative
geometrical interpretation of
two vectors,
x = (100, 1000, 300, 200)

for prices and
y = (200, 300, 100, 150) for
weights. Because of the
limitation of the spatial
dimension that we can
recognize (up to three), the
fourth scalars in x and y that
represent Fish are omitted

Bread

Beef

Pork

200

1000300

300

100

Price

Weight
100

1.3.5 Generating New Features by Arithmetic

As has been down in scalars (Sect. 1.2.3), new features can be generated from
vectors, too, e.g., αx + βy + γ z, where α, β, and γ are multipliers similar to the
cases in scalars and x, y, and z are vectors. One distinction from generations of new
features using scalars is that function must be applied to individual new features
generated from scalars. Then, generating new feature with applying a function to
vector should be denoted as log(αxi + βyi + γ zi), which corresponds to the ith
scalar that consists of new features in the form of vectors.

Exercise
1.8 Generate new features in the vector form, using scalars shown in Tables 1.1
and 1.2 with arbitrary multipliers (and if possible, with applying functions to
scalars).

1.3.6 Dummy Vectors

As features that cannot be described with real values were treated as dummy scalars,
vectors can also be composed of dummy scalars. In some sense, dummy scalars
themselves could be interpreted as vectors. For example, three colors in RGB
representation, (1, 0, 0), (0, 0, 1) and (1, 1, 0), can be now geometrically interpreted
in three-dimensional vectors that consist of three integer scalars. They are also
geometrical representations of features introduced in Sect. 1.3.4. Thus, from these
points of views, i.e., unified treatment of dummy scalars with usual scalars that
can be treated as real numbers, introduction of geometrical vector representation of
features is critical, although it is rarely emphasized in the textbooks that introduce
data science.

In the later part of this book, we try to select a part of features from all features
for the practical reasons. Colors represented in geometrical vector representation are
very useful for this purpose, since these allow us to select, for example, only the first
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scalars of RGB representations. Such a decomposition of colors never be possible
without vector representations.1

On the other hand, in contrast to vector representation of scalars that can be
represented as real values, dummy vectors can be placed only at grid points whose
coordinates are composed of integer. Of course, as can be seen in RGB representa-
tion of colors, dummy scalars are often allowed to be extended to take real values as
well ((0.5, 0.5, 0) can make sense in RGB representation of colors), it is not always
true. For example, if the dummy scalars represent whether sample is book, chair,
or stick, although dummy scalars can be represented as (1, 0, 0), (0, 1, 0), (0, 0, 1),
(0.5, 0.5, 0) does not make sense at all, since (0.5, 0.5, 0) means a sample associated
with a feature composed of 50% book and 50% chair.

In contrast to vectors that can be represented as real numbers, e.g., prices and
weights, not all points in the geometrical representation of dummy scalars do not
have anything real. For example, the dummy vector that represents if a sample is
book, chair, or stick cannot take (1, 1, 0) since no samples cannot be book and chair
simultaneously.

Exercise
1.9 Think about dummy vectors assuming some.

1.4 Matrices

As vectors are composed of scalars, matrices, X, are composed of vectors, as

X =
(
xT

1 , xT
2 , . . . , xT

M

)
(1.7)

where M is the number of features, e.g., price, weight, and color. xT represents
transposition of a vector x where

xj = (x1j , x2j , . . . , xNj

)
(1.8)

corresponds to the vector of ith feature (M is the number of samples). When
prices in Table 1.1 and weights in Table 1.2 are represented as matrix, it should
be Table 1.4. In this case, a matrix X is

X =
(

100 1000 300 200
200 300 100 150

)
(1.9)

1Practically, employing only the first scalars in RGB representation is equivalent to the usage of
red sunglass through which only red color can penetrate. Now, colors are transformed to real values
that describe red color intensity of colors, although in this example only integers are allowed since
colors are treated as an example dummy scalars.
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and vectors are

x1 = (100, 200) (1.10)

x2 = (1000, 300) (1.11)

x3 = (300, 100) (1.12)

x4 = (200, 150) (1.13)

where N = 2 and M = 4. For example, x24 is 150, since xij corresponds to the ith
scalar attributed to j th sample.

Exercise
1.10 Write down the matrix X that corresponds to the table generated by merging
Tables 1.2 and 1.3.

1.4.1 Equivalences to Geometrical Representation

There are several advantages for matrix representation. The first advantage is coin-
cidence with geometrical representation. Matrix representation is highly coincident
with geometrical representations. When rows in Table 1.4 are considered to be
vectors as in equations, from (1.10) to (1.13), it is equivalent to Fig. 1.2; bread,
beef, pork and fish correspond to x1, x2, x3, and x4.

On the other hand, when columns in Table 1.4 are considered to be vectors as

xi = (xi1, xi2, . . . , xiM) (1.14)

i.e.,

x1 = (100, 1000, 300, 200) (1.15)

x2 = (200, 300, 100, 150) (1.16)

they are equivalent to Fig. 1.3; price corresponds to x1 and weight corresponds to x2.

Table 1.4 The matrix that
represents Tables 1.1 and 1.2
in the unified format

i

1 2

j Sample Prices (yen) Weight (g)

1 Bread 100 200

2 Beef 1000 300

3 Pork 300 100

4 Fish 200 150
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Thus, conversely X ∈ R
N×M can be considered to be either M-dimensional

vectors as many as N (Fig. 1.3) or N -dimensional vectors as many as M (Fig. 1.2).
Thus, matrix representation is not only convenient to represent a set of vectors
attributed to samples (Table 1.4) but also useful for geometrical representations.
Since two distinct geometrical representations (Figs. 1.2 and 1.3) are important for
the purpose of this book as mentioned in the above, matrix that can represent two
distinct geometrical representations in the unified way is very important and useful.

Exercise
1.11 Write down the two geometrical interpretations of matrix X generated in the
previous exercise.

1.4.2 Matrix Manipulation and Feature Generation

Any feature generation in the form, αx + βy + γ z, can be performed with matrix
manipulation; it is another advantage of matrix representation in data science.
Suppose x, y, z are vectors attributed to three features, e.g., price, weight, and color.
Define matrix X as

X =
⎛

⎝
x

y

z

⎞

⎠ (1.17)

Then, αx + βy + γ z can be represented as

αx + βy + γ z = αX = (α, β, γ )

⎛

⎝
x1 x2 · · · xM

y1 y2 · · · yM

z1 z2 · · · zM

⎞

⎠ (1.18)

with defining multiplier vector, α as

α = (α, β, γ ) (1.19)

In data science, it is very important to describe samples with newly generated
features. Otherwise, we cannot make use of newly generated features in order to
describe the relationship between samples. In order to describe samples with newly
generated features, we need generally at least new features as many as N that is the
number of original features. Thus, the number of multiplier vectors must be as many
as N as well. In this case, since there are three feature vectors, x, y, z, the number
of multiplier vectors must be three as well, i.e.,

α1 = (α1, β1, γ1) (1.20)

α2 = (α2, β2, γ2) (1.21)
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α3 = (α3, β3, γ3) (1.22)

With multiplier matrix, A, being defined as

A =
⎛

⎝
α1

α2

α3

⎞

⎠ =
⎛

⎝
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

⎞

⎠ (1.23)

new features, x′, y′, z′, that describe M samples can be obtained as matrix form

X′ =
⎛

⎝
x′
y′
z′

⎞

⎠ = AX =
⎛

⎝
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

⎞

⎠

⎛

⎝
x1 x2 · · · xM

y1 y2 · · · yM

z1 z2 · · · zM

⎞

⎠ (1.24)

Then j th sample is now described with new feature

⎛

⎜
⎝

x′
j

y′
j

z′
j

⎞

⎟
⎠ =

⎛

⎝
α1xj + β1yj + γ1zj

α2xj + β2yj + γ2zj

α3xj + β3yj + γ3zj

⎞

⎠ (1.25)

Now it is obvious that Euclidean distance between two samples j and j ′
computed using X differs from that using X′;

√
(xj − xj ′)2 + (yj − yj ′)2 + (zj − zj ′)2

�=
√

(x′
j − x′

j ′)2 + (y′
j − y′

j ′)2 + (z′
j − z′

j ′)2 (1.26)

Thus, by selecting A, we can gain more suitable features adapted for the purpose
(e.g., discrimination between samples that belong to more than two distinct groups).
The problem is how to tune the best A. This is nothing but one of the critical topics
that will be discussed in the later part of this book. It is also the reason why I decided
to write this book.

Table 1.5 is an example of generated new features X′ from X by X′ = AX with

A =
⎛

⎝
1 1

2 1
1
2 1 1
1 1 1

2

⎞

⎠ (1.27)

Figure 1.4 is the geometrical representation of X and X′ = AX shown in
Table 1.5. It reveals various problems associated with the generation of new features.
First, the separation of beef (red point) from other three foods is enhanced after
the new feature, X′, is generated. This means that generation of new feature can
alter relationships among samples drastically. Thus, we have to be careful when
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Table 1.5 An example of generation of new features

i

1 2 3

j Sample Prices (yen) Weight (g) Size (cm)

X

1 Bread 100 200 6

2 Beef 1000 300 10

3 Pork 300 100 6

4 Fish 200 150 14

i

1 2 3

j Sample First feature Second feature Third feature

X′

1 Bread 200 256 303

2 Beef 1160 810 1305

3 Pork 356 256 403

4 Fish 289 264 357
Upper: Original X, lower: generated X′ = XA where A is given in Eq. (1.27)
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Fig. 1.4 A geometrical interpretation of X (left) and X′ (right) shown in Table 1.5. Black: bread,
red: beef, green: pork, blue: fish

generating new features. It might cause artifacts. Second, the dependence upon
size (z-axis) in X is almost destroyed in X′. This is simply because the numerical
values of sizes shown in Table 1.5 for X are much smaller than prices and weights.
Basically, because A shown in Eq. (1.27) gives similar weights to three features,
price, weight, and size, to generate new feature, the dependence upon size is smeared
out. This is related to the problem of scale. Appreciate rescaling of individual
features will recover this problem. However, we have to be also careful if rescaling
is reasonable.
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Exercise
1.12 Generate new features using the matrix X shown in (1.9) with arbitrary
multiplier matrix A.

1.5 Tensors

1.5.1 Introduction of Tensors

As vectors are composed of scalars and matrices are composed of vectors, tensors
can be composed of matrices. Suppose Table 1.6 represents foods in two shops.

Now, we can define tensor, xijk , that describes the j th feature attributed to the ith
food in the kth shop. Visually, this can be represented as a cuboid (Fig. 1.5), whose
three edges correspond to i (features = price and weight), j (samples = foods), and
k (two shops).

Table 1.6 Two tables that
describe the list of foods in
two shops

i

1 2

j Sample Prices (yen) Weight (g)

k = 1

1 Bread 100 200

2 Beef 1000 300

3 Pork 300 100

4 Fish 200 150

i

1 2

j Sample Prices (yen) Weight (g)

k = 2

1 Bread 200 250

2 Beef 1500 200

3 Pork 200 150

4 Fish 100 1500

Fig. 1.5 A cuboid that
represents Table 1.5. Black
and gray numbers correspond
to k = 1 and k = 2,
respectively
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200 2501000 300
150

200
300100

100 200

k i
j



1.5 Tensors 17

We can even extend tensor further. For example, we can add days as the fourth
suffix, �. Then xijk� represents the ith feature attributed to the j th sample (food) in
the kth shop at the �th day. As you can easily suspect, this extension is unlimited.
We can add as many suffix as we hope as long as data is available. Additional suffix
can represent city, country, year, month, and so on.

As integration of scalars is named as vector, as that of vectors is named as matrix
and as that of matrices is named as tensor, we can name tensors with more than three
suffix alternatively. Nevertheless, we are not willing to do this, since it is unrealistic
to prepare infinite sequences of names attributed to tensors with distinct number of
suffix. Instead of that, we name the tensor with m suffix as m-mode tensor. Table 1.6
and Fig. 1.5 are the two distinct representations of three-mode tensor.

As long as we follow this convention, conversely, we can name scalars, vectors,
and matrices as tensors as well; i.e., scalars, vectors, matrices can be considered
to be zero, one, and two-mode tensors, although this kind of convention is rarely
employed. What I would like to emphasize is that scalars, vectors, matrices, and
tensors should be treated in the unified way, not in the distinct ways at least in the
data science. This is because in contrast to conventional sciences that make use of
these concepts, i.e., scalars, vectors, matrices, and tenors, distinction among these is
not associated with any real distinct meaning.

In physics, potential energy is scalar, velocity is vector, and stress is tensor. This
is simply because their physical realization inevitably requires them. Multiplications
between distinct layers are not arbitrary, but strictly decided. Product between
energy and vector does not make sense (although it may occasionally have meaning
of energy flow). In data science, we can generate any kind of new features as long
as they work. In this sense, in data science, scalars, vectors, matrices, and tensors
should be treated similarly. Thus, introduction of tenors is natural in data science.

Exercise
1.13 Generate a three-mode tensor whose components are xijk ∈ R

3×3×3.

1.5.2 Geometrical Representation of Tensors

In contrast to scalars, vectors, and matrices for which geometrical representations
can be obtained straightly, geometrical representation of tensors is harder. This is
primarily because we live in three-dimensional physical space. This difficulty has
partially already existed when we introduced the concept of matrices. For example,
if we have to represent 4 × 4 matrices geometrically, we cannot avoid dealing with
four-dimensional vectors which we cannot visually represent anymore.

This limitation is severer for tensors. If we hope to get geometrical representation
of data shown in Table 1.6, the most easiest way is to prepare two planes on each
of which four two-dimensional vectors are drawn; k = 1 and k = 2 correspond
to Figs. 1.2 and 1.6, respectively. One possible drawback of this geometrical
representation is the difficulty of comparison between k = 1 and k = 2, since even
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scale of horizontal and vertical axes differs between Figs. 1.2 and 1.6. Although k

takes only two values (k = 1, 2) in the present case, k can span over more shops. In
that case, geometrical representation might become more difficult to interpret.

In the following, this kind of “vectoralization” can be named as unfolding. In the
unfolding of the tensor xijk ∈ R

2×4×2 shown in Table 1.6 as well as Figs. 1.5, 1.2
and 1.6 can be expressed as a matrix Xi×(jk) whose elements are xi(jk) ∈ R

2×8

Xi×(jk) =
(

100 1000 300 200 200 1500 200 100
200 300 100 150 250 200 150 1500

)
= (x1, . . . , x8) (1.28)

Here, j (samples) and k (shops) are expanded as one suffix that are put in
parentheses together. The first four columns, i.e., x1 to x4, and the second four
columns, i.e., x5 to x8, correspond to Figs. 1.2 and 1.6, respectively. Then, the
tensor can be represented as a 2(features) × 8(= 4(samples) × 2(shops)) matrix
that is equivalent to eight two-dimensional vectors, x1 to x8,

In this unfolding, data set shown in Table 1.6 as well as Fig. 1.5 is represented
as eight points in the two-dimensional space spanned by two features (prices and
weight). It is obvious that there can be more unfolding. For example, xijk can also
be unfolded as a matrix Xk×(ij) whose elements are xk(ij) ∈ R

2×8,

Xk×(ij) =
(

100 1000 300 200 200 300 100 150
200 1500 200 100 250 200 150 1500

)
= (x1, . . . , x8) (1.29)

Here each column represents a combination of feature and sample. For example, the
first column, i.e., x1, represents prices (i = 1) of bread (j = 1) at two shops and the
seventh column, i.e., x7, represents weights (i = 2) of pork (j = 2) at two shops
(see Table 1.6).

Because these two unfolding, Eqs. (1.28) and (1.29), are occasionally represented
as two-dimensional vectors, geometrical representations are possible. However,
there is yet another unfolding, which is represented as a matrix Xj×(ik) whose
elements are xk(ij) ∈ R

4×4,

Fig. 1.6 A geometrical
interpretation of k = 2 in
Table 1.6. Horizontal axis and
vertical axis correspond to
prices and weights,
respectively

price

weight

200 1500

1500

1(Bred) 2(Beef)
3(Pork)

250

4(Fish)
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Xj×(ik) =

⎛

⎜⎜
⎝

100 200 200 250
1000 300 1500 200
300 100 200 150
200 150 100 1500

⎞

⎟⎟
⎠ = (x1, . . . , x4) (1.30)

Because they are represented as four four-dimensional vectors, x1 to x4, unfortu-
nately nothing can be represented visibly anymore. Here, x1 to x4 correspond to
(ik) = (11), (12), (21), and (22). In other words, they correspond to price at the
first shop, weight and the first shop, price at the second shop and the weight at the
second shop (see Table 1.6).

Generally, m-mode tensors have m kinds of representations of unfolding. This
makes difficult to interpret geometrical representation. Moreover, because unfolding
mixes more than one features into one, the interpretation becomes more difficult.
These difficulties of interpretation are possibly the reason why tensor is not
employed frequently in data science. In data science, how to interpret outcomes is
the central topic; if the introduction of tensor makes the interpretation more difficult,
it is not hard to imagine that people will avoid the tensor representation of data set.

Exercise
1.14 Unfold the three-mode tensor generated at the last exercise as Xi×(jk).

1.5.3 Generating New Features

In contrast to the matrix representation where generating new features can be easily
represented as linear algebra, generating new features in tensor representation of
data set is much harder.

The primary reason of this is mixture of the features. For example, in Eq. (1.30),
x1 and x3 represent prices while x2 and x4 represent weights. Thus, manipulation of
this matrix inevitably results in mixture of distinct features, i.e., price and weights.
On the other hand, x1 and x2 are the data at the first shop while x3 and x4 are
the data at the second shop. Thus, careless manipulation makes the interpretation of
generation of new features also difficult. Simple mixing of distinct columns includes
both mixture of price and weight and that between two shops.

In order to avoid these difficulties, it is better to generate new feature before
unfolding. This inevitably requires “tensor” algebra.

1.5.4 Tensor Algebra

As in the case of matrix, it is possible to introduce algebra to tensor. Addition and
subtraction are straightforward; simply adding or subtracting two corresponding
components of tensor: xijk and x′

ijk .
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Nevertheless, multiplication is not easy. In order to extend matrix multiplication
to tensor, we introduce tensor multiplication between three-mode tensor X whose
component is xijk and vector x whose length is as large as the first mode of X

{X ×i x}jk =
∑

i

xijkxi (1.31)

where {X}jk is the j th row and kth column component of generated matrix X.
Scalar, vector, and matrix can be considered to be zero, one, two-mode tensor.

Similarly, tensor multiplication includes scalar, vector, and matrix multiplication.
For example, inner product between two vectors can be represented as tensor
product between two one-mode tensor,

x · y =
∑

i

xiyi = x ×i y (1.32)

Matrix product can also be represented as multiplication between two two-mode
tensors,

{XY }ij =
∑

k

xikykj = {X ×k Y }ij (1.33)

Using tensor multiplication operator, we can easily generate new features as

X ′ = A ×i X (1.34)

Here xijk ∈ R
N×M×K is the element of X and A is the multiplier matrix whose

element is a�i ∈ R
N×N where new features are defined as

x′
�jk =

∑

i

a�ixijk (1.35)

In order to be coincident with matrix representation, Eq. (1.24), we introduce the
notation X ·k ∈ R

N×M which represent the matrix generated from X ∈ R
N×M×K .

In this representation, Eq. (1.34) can also be written

X ′·k = AX ·k (1.36)

Exercise
1.15 Execute Eq. (1.34) using a three-mode tensor X whose elements are xijk ∈
R

3×3×3 and a 3 × 3 matrix A.

In order for later use, we further introduce additional tensor multiplication. Zero
multiplication is defined as
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{
x ×0 y

}

ij
= xiyj (1.37)

Generally, multiplication of m-mode tensor and m′-mode tensor with the operator
×0results in (m + m′)-mode tensor.

We can further extend the operator ×0 into the other way as

{X ×k X ′}i1i2...im−1kj1j2...jm′−1
= xi1i2...im−1kx

′
kj1j2...jm′−1

(1.38)

where X and X ′ are m-mode and m′-mode tensors whose components are
xi1i2...im−1k and x′

kj1j2...jm′−1
, respectively. Thus, the multiplication of m-mode tensor

and m′-mode tensor with the operator ×k results in (m + m′ − 1)-mode tensor.
The number of suffix attached to the operator × does not have to be restricted to

one. When the number of suffix attached to the operator × is more than one, they
are defined as

{X ×k� X ′}i1i2...im−2j1j2...jm−2 =
∑

k�

xi1i2...im−2k�x
′
k�j1j2...jm−2

(1.39)

and

{X ×k� X ′}i1i2...im−2k�j1j2...jm−2 = xi1i2...im−2k�x
′
k�j1j2...jm′−2

(1.40)

These are (m+m′ −4)-mode tensor and (m+m′ −2)-mode tensor, respectively. In
this sense the operator to which lower suffix is added can be represented using the
operator to which upper suffix is added as

X ×k� X ′ =
∑

k�

X ×k� X ′ (1.41)

We can also add upper and lower suffix to the operator × together as

{X ×�
k X ′}i1i1...im−2j1kj2...jm′−2

=
∑

�

xi1i2...im−2�kx
′
k�j1j2...jm′−2

(1.42)

Adding multiple upper and lower suffix is straightforward.
There is one problem in adding both upper and lower suffix to the operator ×

when the same suffix is added as both lower and upper suffix. This is equivalent to
adding the suffix as lower suffix only, e.g.,

{X ×k
k X }i1i2...im−1j1j2...jm′−1

= {X ×k X ′}i1i2...im−1j1j2...jm′−1

=
∑

k

xi1i2...im−1kx
′
kj1j2...jm′−1

(1.43)
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Thus as a rule, when the same suffix appears as both upper and lower suffix, we
erase upper one since it does not make any changes.

×k
k → ×k (1.44)

The usefulness of these additional tensor multiplications from equations
from (1.37) to (1.44) might be unclear. For example, by applying (1.37) to
Eqs. (1.15) and (1.16), although we can get

xT
1 ×0 xT

2 =

⎛

⎜⎜
⎝

100
1000
300
200

⎞

⎟⎟
⎠×0

⎛

⎜⎜
⎝

200
300
100
150

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

20000 30000 10000 15000
200000 300000 100000 150000
60000 90000 30000 45000
40000 60000 20000 30000

⎞

⎟⎟
⎠

(1.45)
it is unclear how this generated matrix can help us to interpret the data; these
represent prices × weight that does not seemingly make any sense. In order to
make use of the matrix representation (1.45), we need mathematical technique to
be introduced later in this book.

Exercise
1.16 Generate a matrix with applying ×0 to a pair of arbitrary vectors.

Appendix

Rank

In this appendix, rank of matrix is briefly introduced because the concept of rank is
important in the next chapter. Suppose that matrix X ∈ R

N×M is represented as M

N -dimensional vectors, xj ∈ R
N , as

X = (x1, . . . , xj , . . . , xM

)
. (1.46)

If there are vectors, cj ∈ R
M ′

, 1 ≤ j ≤ M , such that

xj =
∑

j ′∈J

cjj ′xj ′ (1.47)

where J is a set of M ′ integers taken from [1,M] without repetitions; the smallest
M ′ is called as the rank of matrix, otherwise the rank of matrix is equal to M .
In other words, not all xj s are independent but at most M ′ out of M xj s are
independent. This means that xj s span not M dimensional space but at most
M ′(< M) dimensional space. Thus, the rank of tensor is at most min(M ,N ) because
the number of independent vectors cannot exceed the number of dimensions.



Chapter 2
Matrix Factorization

Don’t tie me down!
Zero Two, Darling in the FranXX, Season 1, Episode 12

2.1 Introduction

Similar to scalars that can be represented as a product of smaller numbers, e.g.,
18 = 3 × 3 × 2, matrices can also be represented as a product of smaller (lower
ranked) matrices. As can be seen in the following, there are no unique ways to
represent a matrix as a product of smaller matrices. Presenting a matrix as a product
of smaller matrices is called as matrix factorization (MF). What kind of MF should
be employed highly depends upon the purpose. In this chapter, I introduce some
MFs fitted for the later applications in this book.

2.2 Matrix Factorization

The aim of MF is to represent an N × M matrix X ∈ R
N×M as a matrix product of

a N × K matrix Y ∈ R
N×K and a K × M matrix Z ∈ R

K×M as

X = YZ (2.1)

Generally, whether Eq. (2.1) has at least a solution or not depends upon many
factors. When

(N + M)K ≥ NM (2.2)

stands, a MF can exit, because the number, NM , of equations that must be fulfilled
is smaller than the number of variables, (N + M)K . Even when Eq. (2.2) is not
satisfied, in some case when the rank of X is equal to or smaller than min(N,M),

© Springer Nature Switzerland AG 2020
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Eq. (2.1) can be performed. For example, in the case of Eq. (1.37), it is obvious that
Eq. (2.1) is possible with K = 1.

On the other hand, it is also obvious that Eq. (2.1) cannot always have the unique
solution. Let’s consider when X = I where I is a K×K unit matrix whose diagonal
components are 1 while other components are 0, i.e.,

I = AB (2.3)

where A and B are K × L and L × K matrices, respectively. Using this, Eq. (2.1)
can be rewritten as

X = YZ = YIZ = YABZ = (YA)(BZ) (2.4)

Now, a pair of YA and BZ is also a MF of an N × M matrix, X. Thus, in order
to perform MF, we need some additional restriction to Y and Z other than simple
requirement that Y and Z are N × K and K × M matrices, respectively. Depending
upon the restriction applied, there are several fashions of MF.

Although there are numerous MFs, most of them are limited to be applied to
square matrices, X. Because matrix representation of data set in data science is not
generally restricted to square matrix, here we consider only MFs applicable to non-
square matrices.

Exercise
2.1 For I ∈ R

2×2, generate A,B ∈ R
2×2 that satisfy Eq. (2.3).

2.2.1 Rank Factorization

Rank factorization is a MF applicable to any N × M non-square rank K matrix.
Thus, in this case, Eq. (2.2) does not need to be fulfilled.

Rank factorization is directly related to geometrical representation. Without
losing generality, we can assume N ≥ M (if not, we can consider the transposed
matrix). Then N × M matrix can be interpreted as M N -dimensional vectors as

X = (xT
1 , . . . xT

M) (2.5)

where xj ∈ R
N. Suppose that X is rank K matrix. Then, the number of independent

vectors in xj is K . Then each xj can be represented by linear combination of K

independent N dimensional vectors, ck ∈ R
N as

xj =
K∑

k=1

ckfkj (2.6)
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where fkj are coefficients of linear combination. If we define matrix F such that kth
row and j th column component is fkj and a matrix C ∈ R

N×K as

C = (cT
1 , . . . , cT

K) (2.7)

then we can write

X = CF (2.8)

This is nothing but rank factorization. Computing F is nothing but solving
simultaneously linear equations that correspond to Eq. (2.6), thus it is not difficult
at all.

Now the data set is not M points in N -dimensional space, but those in K(< N)-
dimensional space spanned by K cj s. In this sense, rank factorization is directly
related to geometrical representation of data set in the sense that rank factorization
is a projection of N dimensional space to K dimensional space.

Exercise
2.2 Apply rank factorization to Eq. (1.30) with

C =

⎛

⎜⎜
⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟⎟
⎠ (2.9)

2.2.2 Singular Value Decomposition

Singular value decomposition (SVD) is one of the special cases of rank factoriza-
tion. In SVD, an N × M matrix is represented not by a product of two matrices but
by a product of three matrices,

X = UΣV T (2.10)

where U is an N × N orthogonal matrix, V is an M × N orthogonal matrix,1 and
Σ is N × N diagonal matrix if N < M . Oppositely, if N > M , U is an N × M

orthogonal matrix, V is an M × M orthogonal matrix, and Σ is M × M diagonal
matrix. Here orthogonal matrix is that multiplication with its transposition results in
unit matrix, i.e.,

1The term “orthogonal matrix” can be used only for square matrix. In this sense, when U or V

is not a square matrix, it is not very correct to call them “orthogonal matrix,” but it is true that
Eq. (2.11) is satisfied even when U or V is not a square matrix, because column vectors of them
are orthogonal to each other.
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UT U = V T V = I (2.11)

Since a matrix X is represented not by a product of two matrices but by a product
of the matrices, arbitrarity of MF shown in Eq. (2.4) is removed because

X = UΣV T = UIΣV T = UABΣV T �= UAΣBV T . (2.12)

Thus, SVD can be a unique representative MF of a matrix X.
Here, I am not willing to mathematically prove the existence of SVD for arbitrary

matrix, because any fundamental linear algebra textbook should have a proof.
Instead of that, I briefly introduce SVD from data science point of views.

2.2.2.1 How to Compute SVD

Suppose that Eq. (2.10) is obtained. In the following we assume N < M . Then,

XXT = UΣV T
(
UΣV T

)T = UΣV T V ΣT UT = UΣ2UT (2.13)

XXT U = UΣ2UT U = UΣ2. (2.14)

Because Σ is a diagonal matrix, Σ can be expressed as

Σ =

⎛

⎜⎜⎜
⎝

λ1

λ2
. . .

λN

⎞

⎟⎟⎟
⎠

(2.15)

and N × N matrix U can be expressed using ui ∈ R
N ,

U = (uT
1 ,uT

2 , . . . ,uT
N) (2.16)

then Eq. (2.14) can be rewritten as

XXT ui = λ2
i ui , 1 ≤ i ≤ N. (2.17)

Thus, computing U is equivalent to the diagonalization of XXT if we also require
|ui | = 1 such that U is an orthogonal matrix as required, because eigenvectors, uis,
are known to be orthogonal to one another.

From Eq. (2.10),

XT =
(
UΣV T

)T = V ΣUT (2.18)
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XT UΣ−1 = V ΣUT UΣ−1 = V ΣΣ−1 = V (2.19)

V = XT UΣ−1. (2.20)

Thus we can get

vi = 1

λi

XT ui (2.21)

if we express M × N matrix V ∈ R
M×N using vi ∈ R

M as

V =
(
vT

1 , vT
2 , . . . , vT

N

)
. (2.22)

Then from Eqs. (2.17) and (2.21)

XT XXT ui = λ2
i X

T ui (2.23)

XT X · λivi = λ2
i · λivi (2.24)

XT Xvi = λ2
i vi . (2.25)

Thus, vi is an eigenvector of XT X. This means, V , defined by Eq. (2.22), is an
orthogonal matrix if we also require |vi | = 1.

Thus performing diagonalization of Eq. (2.17) together with applying Eq. (2.21),
or performing diagonalization of Eq. (2.25) together with applying Eq. (2.26),

ui = 1

λi

Xvi (2.26)

that is equivalent to

U = XV Σ−1, (2.27)

which can be derived as V = XT UΣ−1, we can perform SVD shown in Eq. (2.10).

Exercise
2.3 Apply SVD to

X =

⎛

⎜⎜
⎝

1 1
1 1

−1 1
1 −1

⎞

⎟⎟
⎠ (2.28)
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2.2.2.2 Applying SVD to Shop Data

Here we apply SVD to transposed matrix X1 = XT ∈ R
4×2 of the matrix X ∈ R

2×4

defined in Eq. (1.9).

XT
1 X1 =

(
XT
)T

XT = XXT =
(

100 1000 300 200
200 300 100 150

)
⎛

⎜⎜
⎝

100 200
1000 300
300 100
200 150

⎞

⎟⎟
⎠

=
(

1140000 380000
380000 162500

)
. (2.29)

We diagonalize XT
1 X1, Eq. (2.29). Eigen equation that eigenvalue λ should satisfy

is

∣∣∣∣
λ − 1140000 380000

380000 λ − 162500

∣∣∣∣ = 0 (2.30)

(λ − 1140000)(λ − 162500) − 3800002 = 0 (2.31)

λ2 − (1140000 + 162500)λ + 114000 · 162500 − 3800002 = 0 (2.32)

λ2 − 1302500λ + 185250000000 − 144400000000 = 0 (2.33)

λ2 − 1302500λ + 40850000000 = 0 (2.34)

λ± = 1302500 ± √
13025002 − 4 · 40850000000

2
(2.35)

= 1302500 ± √
1533106250000

2
(2.36)

= 1302500 ± 2500
√

245297

2
= 651250 ± 1250

√
245297 (2.37)

Eigenvector v = (v1, v2)
T should satisfy

(
λ± − 1140000 380000

380000 λ± − 162500

)
v = 0 (2.38)

(−488750 ± 1250
√

245297 380000
380000 488750 ± 1250

√
245297

)
v = 0 (2.39)

Then we get

v±
1 = 488750 ± 1250

√
245297

380000
v±

2 = 391 ± √
245297

304
v±

2 (2.40)
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In order that V = (v+, v−) is orthogonal matrix, |v+| = |v−| = 1.

(v±
1 )2 + (v±

2 )2 = 1 (2.41)
(

391 ± √
245297

304

)2

(v+
2 )2 + (v+

2 )2 = 1 (2.42)

3912 ± 2 · 391
√

245297 + 245297 + 3042

3042
(v±

2 )2 = 1 (2.43)

490594 ± 782
√

245297

92416
(v±

2 )2 = 1 (2.44)

v±
2 =

√
92416

490594 ± 782
√

245297
� 0.3244, 0.9459 (2.45)

v±
1 = 391 ± √

245297

304
v±

2 � 0.9459,−0.3244 (2.46)

u± can be computed via Eq. (2.26),

u± = 1

λ± X1v
± = 1

λ±

⎛

⎜⎜
⎝

100 200
1000 300

300 100
200 150

⎞

⎟⎟
⎠

(
v±

1
v±

2

)
. (2.47)

Here we consider what u± represent. Because X1 can be considered to be a
set of two four-dimensional vectors x1 ∈ R

4 and x2 ∈ R
4 as X1 = (x1, x2),

their relations should be represented in two-dimensional space, since there can be
only two independent vectors. In this sense, u± represent how x1 and x2 should be
combined to form two-dimensional space that represents the relation between x1
and x2.

In Fig. 1.3, we had to omit the fourth scalar, fish, in order to represent the
geometrical relationship between price (x1) and weight (x2). Nevertheless, we
can represent the relation between price and weight in the plane using u±. From
Eq. (2.47), we can get

(
λ+u+, λ−u−) = X1

(
v+, v−) (2.48)

Then

X1 = (λ+u+, λ−u−) (v+, v−)T = (v+
1 λ+u+ + v−

1 λ−u−, v+
2 λ+u+ + v−

2 λ−u−)

(2.49)
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Fig. 2.1 A geometrical
interpretation of price and
weight originally shown in
Fig. 1.3. v1 : price, v2: weight

v+

v-

0.9459

0.9459

0.3244
-0.3244 v

1

v
2

price

weight

since
(
v+, v−) is orthogonal matrix. Thus in the plane spanned by λ±u±, price

(x1) and weight (x2) can be two points having coordinates
(
v+

1 , v−
1

)
and

(
v+

2 , v−
2

)
,

respectively.
Figure 2.1 shows the geometrical interpretation of price and weight using the

results given by SVD. In contrast to Fig. 1.3 where fish must be inevitably omitted,
Fig. 2.1 does not omit anything but keeps all information. Instead of that, it is
difficult to interpret the meaning of axes, each of which simply represent foods:
bread, beef, pork, in Fig. 1.3. Two axes in Fig. 2.1 represents linear combination of
foods represented as the four-dimensional vectors, λ+u+ and λ−u−, respectively,
although we do not write down them here because they are at most confusing and
are not helpful for our understanding at all.

Thus, it turns out that there is a trade-off; if we would like to keep interpretability
of axes, we cannot represent the relation of features in the easily visible lower
dimensional space. On the other hand, if we would like to have geometrical
representation that can be easy to understand as shown in Fig. 2.1, we cannot avoid
to lose the interpretability of axes. In some sense, the purpose of data science is
to make balance between these two problems, i.e., interpretability of axes or that
of relation of features. Most of the popular methods ever proposed are aiming to
achieve this purpose. The fact that so many methods are proposed definitely suggests
that there is still not a unique (the best) solution for this problem. The purpose of
this book is also to add yet another solution to solve this problem effectively.

2.3 Principal Component Analysis

In the previous section, we demonstrated that SVD can give the plane that can
represent the relation between two features, price and weight, in lower dimensional
space, which is more easily interpreted than original four-dimensional space
spanned by four foods: bread, pork, beef, and fish. It is also shown that SVD can
be performed via diagonalization of matrix products, XT X or XXT . Apparently,
although they seem to be nothing but mathematical or technical relationships, they
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actually do not. Diagonalization of these two matrix products is deeply related to
principal component analysis (PCA) [2].

PCA is mathematically defined as the diagonalization of covariance matrix Sii′ ∈
R

N×N ,

Sii′ =
〈(

xij ′ − 〈xij

〉
j

)
·
(
xi′j ′ − 〈xi′j

〉
j

)〉

j ′ (2.50)

=
〈
xij ′xi′j ′ − 〈xij

〉
j
xi′j ′ − xij ′

〈
xi′j
〉
j

+ 〈xij

〉
j

〈
xi′j
〉
j

〉

j ′ (2.51)

= 〈
xij ′xi′j ′

〉
j ′ −

〈〈
xij

〉
j
xi′j ′

〉

j ′ −
〈
xij ′
〈
xi′j
〉
j

〉

j ′ +
〈〈
xij

〉
j

〈
xi′j
〉
j

〉

j ′ (2.52)

= 〈
xij ′xi′j ′

〉
j ′ − 〈xij

〉
j

〈
xi′j ′

〉
j ′ − 〈xij ′

〉
j ′
〈
xi′j
〉
j

+ 〈xij

〉
j

〈
xi′j
〉
j

(2.53)

= 〈
xij ′xi′j ′

〉
j ′ − 〈xij

〉
j

〈
xi′j ′

〉
j ′ (2.54)

where

〈
xij xi′j

〉
j

= 1

M

∑

j

xij xi′j (2.55)

〈
xij

〉
j

= 1

M

∑

j

xij (2.56)

and xij ∈ R
N×M .

It is obvious that Eq. (2.50) is equivalent to XXT if 〈xij 〉j = 0. Thus, PCA is
equivalent to SVD in special cases.

Exercise
2.4 Apply PCA to Eq. (2.28).

2.4 Equivalence Between PCA and SVD

As can be seen in the previous section, the difference between SVD and PCA is
simply if

〈
xij

〉
j

= 0 or not. Nonetheless, it is not frequently discussed from the view
point of data science how the difference affects the outcome. Suppose that S is the
matrix whose component is Sii′ given in Eq. (2.54). We also define vectors 〈Si〉,

〈Si〉 =
(〈

x1j

〉
j
,
〈
x2j

〉
j
, . . .

〈
xij

〉
j
, . . .

〈
xNj

〉
j

)
(2.57)

whose components are columnwise mean of X. Then using Eq. (2.10), S can be
decomposed as
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S = XXT

M
− 〈Si〉 ×0 〈Si〉 = 1

M
UΣV T

(
UΣV T

)T − 〈Si〉 ×0 〈Si〉

= U
Σ2

M
UT − 〈Si〉 ×0 〈Si〉 (2.58)

On the other hand, applying PCA to S, we should get

SU ′ = U ′Λ (2.59)

where U ′ ∈ R
N×N is an orthogonal matrix and Λ ∈ R

N×N is a diagonal matrix.
Then

S = U ′ΛU ′T (2.60)

Thus generally U �= U ′ and there are no ways to compute U ′ directly from U and
〈Si〉.

SVD can also be performed by the diagonalization of XT X. Covariance matrix
Sjj ′ ∈ R

M×M is redefined as

Sjj ′ = 〈xij xij ′
〉
i
− 〈xij

〉
i

〈
xij ′
〉
i

(2.61)

Then using

〈Sj 〉 = (〈xi1〉i , 〈xi2〉i , . . . ,
〈
xij

〉
i
. . . 〈xiM 〉i

)
(2.62)

we get

S = XT X

M
− 〈Sj

〉×0 〈Sj

〉 = 1

M

(
UΣV T

)T

UΣV T − 〈Sj

〉×0 〈Sj

〉

= V
Σ2

M
V T − 〈Sj

〉×0 〈Sj

〉
(2.63)

Applying PCA to S = XT X ∈ R
M×M , we get

SV ′ = V ′Λ (2.64)

where V ′ ∈ R
M×M is an orthogonal matrix and Λ ∈ R

M×M is a diagonal matrix.
Then

S = V ′ΛV ′T (2.65)

Again, generally V �= V ′ and there are no ways to generate V ′ only from the
information of V and 〈Sj 〉.
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Thus, although diagonalization of XT X is equivalent to that of XXT in SVD,
this does not stand for PCA because of columnwise or rowwise mean extraction.
Once mean is extracted from a matrix X columnwisely, it is impossible to
reproduce original matrix X or rowwisely mean extracted matrix. Since PCA is
more frequently employed than SVD in data science, this inequality between PCA
applied to Sii′ and Sjj ′ should be taken care of. From the data science point of
views, if columnwise or rowwise mean extraction should be performed is not easy
to decide in advance. It cannot be determined without the knowledge about the data
set to which PCA is applied. This knowledge is often quoted as domain knowledge,
which is often considered to be “untouched” by data scientists. Nonetheless, even
when simple linear algebra like PCA is considered, domain knowledge cannot be
avoided as shown in the above.

Exercise
2.5 Compare the solutions of problems 2.3 and 2.4.

2.5 Geometrical Representation of PCA

In contrast to SVD, PCA is often discussed from the geometrical point of views. In
this section, I would like to summarize some of the geometrical interpretations of
PCA, since it is also beneficial to interpret the geometrical representation of SVD.

2.5.1 PCA Selects the Axis with the Maximal Variance

Suppose that U ∈ R
N×N is an orthogonal matrix. X ∈ R

N×M is considered
to be M N -dimensional vectors as Eq. (2.5). Next, we apply columnwise mean
extraction, i.e.,

X̄ = X −
(
〈Si〉T , . . . , 〈Si〉T

)

︸ ︷︷ ︸
M

(2.66)

where the second term of the right-hand side is N ×M matrix. Multiplying U to X̄,
we get a new matrix X′ as

X′ = UT X̄ (2.67)

Thus

X′X′T

N
= 1

N
UT X̄(UT X̄)T = UT X̄X̄T

N
U = UT SU (2.68)
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where X̄X̄T

N
= S ∈ R

N×N is covariance matrix. If we can choose U such that X′X′T
N

is diagonal, Λ, this is nothing but PCA, Eq. (2.59).
In this calculation, Eq. (2.67) can be considered to be coordinate transformation

since

x′
ij =

∑

i′
uii′ x̄i′j (2.69)

What does the requirement that X′XT should be diagonal correspond to? As can be
seen below, it is equivalent to the condition that x′

ij should have maximal variances,
Sii . Because of mean extraction defined in Eq. (2.66),

〈
x̄ij

〉
j

= 0. (2.70)

Thus,

〈
x′
ij

〉

j
= 0 (2.71)

as well. Then Sii =
〈
x′
ij x

′
ij

〉

j
and maximizing Sii is equivalent to maximizing

∑

j

x′2
ij − λ

(
∑

i′
u2

ii′ − 1

)

=
∑

i1

∑

i2

uii1uii2

⎛

⎝
∑

j

x̄i1j x̄i2j − λδi1i2

⎞

⎠+ λ

(2.72)
where Eq. (2.69) is substituted. The terms multiplied by λ are required such that

ui = (ui1, ui2, . . . , uiN ) (2.73)

is a unit vector; this requirement must be fulfilled in order that U is orthogonal. In
order that, uii′ should satisfy

∂

∂uii1

⎧
⎨

⎩

∑

j

x′2
ij − λ

(
∑

i′
u2

ii′ − 1

)⎫⎬

⎭
=
∑

i2

uii2

⎛

⎝
∑

j

x̄i1j x̄i2j − λδi1i2

⎞

⎠ = 0

(2.74)
In order to have solutions other than the trivial solution, ui = 0, we need to solve
the eigenvalue problem,

∑

i2

uii2

∑

j

x̄i1j x̄i2j = λuii1 (2.75)

Or equivalently,
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NSU = UΛ (2.76)

which is nothing but PCA, Eq. (2.59), excluding a prefactor N in the left-hand side.
Thus applying PCA is nothing but generating the new feature x′

ij from x̄ij so as to
have maximum variance along the new axis.

Eigenvalue problem gives us more than one eigenvalues. The largest one
corresponds to the maximal Sii . We would like to discuss what the second largest
eigenvalue corresponds to. In the subspace to the eigenvector ui that corresponds to
the largest eigenvalues, try to find direction u′

i along which the largest variance is
given. This can be achieved by maximizing

∑

j

x′2
ij − λ

(
∑

i′
u′2

ii′ − 1

)

− α

(
∑

i′
uii′u

′
ii′

)

(2.77)

=
∑

i1

∑

i2

u′
ii1

u′
ii2

⎛

⎝
∑

j

x̄i1j x̄i2j − λδi1i2

⎞

⎠+ λ − α

(
∑

i′
uii′u

′
ii′

)

(2.78)

=
∑

i1

u′
ii1

∑

i2

⎛

⎝u′
ii2

∑

j

x̄i1j x̄i2j − u′
ii2

λδi1i2 − αuii2δi1i2

⎞

⎠+ λ (2.79)

The last term in Eq. (2.78) is required such that ui ⊥ u′
i .

Maximization is performed by

∂

∂u′
ii1

⎧
⎨

⎩

∑

i1

u′
ii1

∑

i2

⎛

⎝u′
ii2

∑

j

x̄i1j x̄i2j−u′
ii2

λδi1i2−αuii2δi1i2

⎞

⎠+λ

⎫
⎬

⎭
(2.80)

=
∑

i2

⎛

⎝u′
ii2

∑

j

x̄i1j x̄i2j − u′
ii2

λδi1i2 − αuii2δi1i2

⎞

⎠ = 0 (2.81)

∑

i2

u′
ii2

∑

j

x̄i1j x̄i2j − λu′
ii1

= αuii1 (2.82)

Multiplying uii1 and taking summation of i1, we get

∑

i2

u′
ii2

∑

i1

∑

j

x̄i1j x̄i2j uii1 − λ
∑

i1

uii1u
′
ii1

= α
∑

i1

u2
ii1

= α (2.83)

Because of Eq. (2.75), we get

∑

i2

u′
ii2

λuii2 − λ
∑

i1

uii1u
′
ii1

= α = 0 (2.84)
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Thus Eq. (2.82) is now

∑

i2

u′
ii2

∑

j

x̄i1j x̄i2j = λu′
ii1

(2.85)

This is the same eigenvalue problem as PCA. Because

∂

∂α

⎧
⎨

⎩

∑

j

x′2
ij − λ

(
∑

i′
u′2

ii′ − 1

)

− α

(
∑

i′
uii′u

′
ii′

)⎫⎬

⎭
=
∑

i′
uii′u

′
ii′ = 0

(2.86)
u′

i ⊥ ui . This is satisfied by restricting eigenvectors other than the first eigenvector.
Since the second eigenvector has maximum eigenvalues among those other than
the first eigenvector, the second eigenvector represents the direction that is both
associated with the maximum variance and perpendicular to the first eigenvectors.
As such, the nth eigenvalue, λn, is always equivalent to the maximal variance along
the axis included in the subspace perpendicular to all eigenvectors ui , i < n.

Thus, if we employ the first n eigenvectors, ui , i ≤ n, in order to represent
samples or features, it is the geometrical representation to include maximal variance
that can be expressed within n dimensional space. In this sense, PCA can be
considered to be a most effective (i.e., minimum loss of information) geometrical
representation of given data set expressed as a matrix.

Exercise
2.6 Compute variances along the directions parallel to the eigenvectors given in
problem 2.4.

2.5.2 PCA Selects the Axis with Minimum Residuals

In the previous section, it was shown that PCA can give us the most effective
geometrical representation within given number of dimension n. In this section,
though it is equivalent, the geometrical representation given by PCA supports
minimum residuals.

In order to compute residuals when Eq. (2.69) is employed, we need to find
projection of x̄j = (x̄1j , x̄2j , . . . , x̄Nj ) onto ui . The ith component of the projection
is computed as

∑

i′
uii′ x̄i′j (2.87)

Thus, the projection itself is defined as

(
uT

i · x̄j

)
ui (2.88)
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Then squared residual R2 can be computed as

R2 =
∑

j

{
x̄j −

(
uT

i · x̄j

)
ui

}2
(2.89)

=
∑

j

{
x̄T

j x̄j − 2
(
uT

i · x̄j

)2 +
(
uT

i · x̄j

)2
uT

i · ui

}
(2.90)

=
∑

j

{
x̄T

j x̄j −
(
uT

i · x̄j

)2
}

(2.91)

Since x̄T
j x̄j is constant, minimizing R2 is equivalent to maximizing

∑
j

(
uT

i · x̄j

)2
.

Because of Eq. (2.69),
∑

j

(
uT

i · x̄j

)2 = ∑
j x′T

j x′
j = NSii . Since PCA is proven

to maximize Sii , PCA is now proven to minimizing residuals, too. Thus, also in
this sense, PCA can be considered to be a most effective (i.e., minimum loss of
information) geometrical representation of given data set expressed as a matrix, too.

Exercise
2.7 Compute residuals around the directions of eigenvectors given in problem 2.4.

2.5.3 Non-equivalence Between Two PCAs

In the previous two subsections, I have shown two equivalent geometrical interpre-
tations of low dimensional representation given by the PCA, in the sense,

1. The geometrical space spanned by n principal components, ui , represents those
with the maximum variance.

2. The geometrical space spanned by n principal components, ui , represents those
with the minimum residuals.

On the other hand, in contrast to SVD, since PCA diagonalizes covariance
matrix, applying PCA to X and XT differ. This is because Sii′ defined by Eq. (2.54)
differs from Sjj ′ defined by Eq. (2.61). Then the next question is how these two n

dimensional representation if Sii′ or Sjj ′ is employed differ with each other.
Generally speaking, it is completely unpredictable. It is very easy to add some

matrix X0 that satisfies

〈x0
ij 〉j = 0 (2.92)

〈x0
ij 〉i �= 0 (2.93)

i.e., a matrix with zero columnwise mean and non-zero rowwise mean, to matrix X.
This procedure does not affect Sii′ at all while it changes Sjj ′ . Thus they do towards
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n dimensional representation, too. Therefore, we cannot expect any equivalence
between two PCAs diagonalizing Sii′ or Sjj ′ . This often matters in data sciences.
In contrast to the physical or social sciences where the target of study is clear, in
data science, even what should be targeted is decided in the data driven way. In
Fig. 2.1, the relation between weight and price can be viewed only after applying
SVD. It is impossible to decide how we apply PCA to data set in advance.

2.6 PCA as a Clustering Method

Usually, PCA is considered to be a kind of embedding method that represents the
relationship among objects as geometrical fashion as demonstrated in the previous
sections. Nonetheless, PCA can also be considered as a sort of clustering analysis
that represents the relationship between objects by grouping [1]. Although there
are many methods that cluster data points, clustering method whose equivalence
with PCA is proven is K-means. K-means is one of the so-called centroid methods
that define multiple centroids to be used as centers of generated clusters. K-means
requires to find centroids, mk ∈ R

N, k = 1, . . . , K when matrix X ∈ R
N×M is

considered to be a set of M N-dimensional vectors, xj ∈ R
N, j = 1, . . . ,M , that

minimizes

JK =
K∑

k=1

∑

j∈Ck

(
xj − mk

)2 (2.94)

where

mk = 1

nk

∑

j∈Ck

xj (2.95)

with nk being the number of j ∈ Ck . Equation (2.94) represents squared summation
of deviations between centroids and xj within each cluster Ck . Here each j is
supposed to belong to Ck whose centroid mk is the nearest to xj . Thus the task
is to identify a set of (mk, Ck), k = 1, . . . , K .

Suppose we define centroid subspace as that spanned by K centroids. Then the
projection to centroids can be defined as

Definition 2.1 The projection of any vector x to centroid subspace is

Sbx =
K∑

k=1

nk

(
mT

k · x
)

mk (2.96)
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where

Sb =
K∑

k=1

nkmk ×0 mk (2.97)

is the between center scattered matrix with nk being the number of j ∈ Ck . The
centroid subspace is generally considered to be the subspace in which K clusters
are visibly well separated. Thus, obtaining centroid subspace is essential to see how
K clusters are separated with each other.

In order to demonstrate that the projection onto the centroid subspace exhibits
the clustered structure, we applied it to artificial data set. This data set consists of
a matrix X ∈ R

10×30. All components xij obey normal distribution, N (μ, σ ), with
the mean of μ and the standard deviation of σ ; σ = 1 while mean, μ, varies as
follows:

μ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
2, 1 ≤ j ≤ 10, 1 ≤ i ≤ 5

−1, 11 ≤ j ≤ 20,

−1, 21 ≤ j ≤ 30, 1 ≤ i ≤ 5
1, 21 ≤ j ≤ 30, 6 ≤ i ≤ 10
0, otherwise

(2.98)

This says that js are divided into three clusters as C1 = {1 ≤ j ≤ 10}, C2 = {11 ≤
j ≤ 20} and C3 = {21 ≤ j ≤ 30} (see also Fig. 2.2). Although no xi represents
clear separation between three clusters, C1, C2, and C3 (see Fig. 2.3), it is rather

5 10 15 20 25 30

2
4

6
8

10

j

i

Fig. 2.2 Visualization of xij ∼ N (μ, 1), where μ is given by Eq. (2.98). Vertical red lines
represent boundary between clusters, C1, C2 and C3. The horizontal red line indicates the boundary
between 1 ≤ i ≤ 5 and 6 ≤ i ≤ 10. Yellow(blue) corresponds to larger(smaller) values
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Fig. 2.3 Pairwise scatterplot of xi ∼ N (μ, 1), 1 ≤ i ≤ 10 where μ is defined in Eq. (2.98). js
that belong to clusters C1, C2, and C3 are represented in black, red, and blue

obvious that Sbxi , 1 ≤ i ≤ 10 shown in Fig. 2.4 exhibits the more pronounced
cluster structure than xi (see also Appendix).

Now we would like to relate PCA to K-means.

Theorem 2.1 Cluster centroid subspace is spanned by the first K − 1 principal
directions, i.e.,

Sb =
K−1∑

k=1

λkuk ×0 uk (2.99)

where uk ∈ R
N is the kth principal component (PC) given by PCA.

Proof See Appendix ��
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Fig. 2.4 Pairwise scatterplot of Sbxi , 1 ≤ i ≤ 10 using Sb defined in Eq. (2.97). js that belong to
clusters C1, C2, and C3 are represented in black, red, and blue

In order to show equivalence of Sb defined in Eq. (2.99) presented by Theorem 2.1
and that defined in Eq. (2.97), we have shown the pairwise scatterplot of Sb ·xi using
Sb computed by Eq. (2.99) in Fig. 2.5. It is also obvious that scatter plots in Fig. 2.5
are coincident with the three clusters. In order to further emphasize the equivalence
between Eqs. (2.97) and (2.99), we have shown the scatterplot between N2 = 100
elements of Sbs defined by Eqs. (2.97) and (2.99), respectively in Fig. 2.6. The
lack of complete coincidence is because proof of Theorem 2.1 requires complete
clustering while it can never be fulfilled in the real data set.

Anyway, it is obvious that PCA can be used for cluster realization when there are
more or less clear clusters. In the general data science course, it is usually taught that
embedding methods including PCA can visualize something different from those by
clustering method. However, as we could see here, it is not very true since PCA can
also visualize clustering if there are clusters, by projecting data onto the space.
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Fig. 2.5 Pairwise scatterplot of Sbxi , 1 ≤ i ≤ 10 using Sb defined in Eq. (2.99). js that belong to
clusters C1, C2, and C3 are represented in black, red, and blue

Fig. 2.6 Pairwise scatterplot
of N2 = 100 elements of Sbs
defined in Eqs. (2.97)
and (2.99), respectively
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Exercise
2.8 Apply PCA to the matrix X,

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.100)

and see if three clusters can be seen. Use any kinds of script language, e.g., R or
python, to do this if necessary.

Appendix

Proof of Theorem 2.1

If we define vectors

hk = (0, . . . , 0,

nk︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T /n

1/2
k (2.101)

which represents the members that belong to kth cluster, mk can be rewritten as

mk = 1

nk

∑

j∈Ck

yj = 1√
nk

∑

j

hk(j)yj = 1√
nk

Yhk (2.102)

with defining

yj = xj − 〈xj 〉j (2.103)

and

Y = (y1, . . . , yM

)
. (2.104)

In the above, we redefined mk using yj instead of xj in order to relate K-means to
PCA more easily. Then Sb can be also rewritten as
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Sb =
K∑

k=1

Yhk ×0 Yhk = Y

(
K∑

k=1

hk ×0 hk

)

YT (2.105)

Jk , Eq. (2.94), can be rewritten with Eq. (2.95) as

Jk =
K∑

k=1

∑

j∈Ck

⎛

⎝xj − 1

nk

∑

j ′∈Ck

xj ′

⎞

⎠

2

(2.106)

=
K∑

k=1

∑

j∈Ck

⎛

⎝x2
j − 2

nk

∑

j ′∈Ck

xj · xj ′+ 1

n2
k

∑

j ′,j ′′∈Ck

xj ′ · xj ′′

⎞

⎠ (2.107)

=
K∑

k=1

∑

j∈Ck

x2
j−

2

nk

K∑

k=1

∑

j,j ′∈Ck

xj · xj ′+
K∑

k=1

(∑
j∈Ck

1

n2
k

)
∑

j ′,j ′′∈Ck

xj ′ · xj ′′ (2.108)

=
∑

j

x2
j − 1

nk

K∑

k=1

∑

j,j ′∈Ck

xj · xj ′ (2.109)

Using

X = (
x1, . . . , xj , . . . , xM

)
(2.110)

HK = (h1, . . . ,hK) (2.111)

Jk can be represented as

Jk = Tr
(
XT X

)
− Tr

(
HT

KXT XHK

)
(2.112)

Since Hk that minimizes Jk is not altered even if X is replaced with Y as

Jk = Tr
(
YT Y

)
− Tr

(
HT

KYT YHK

)
. (2.113)

Hk that minimizes Jk maximizes Tr (Sb), which is also represented as

Tr (Sb) = Tr
(
HT

KYT YHK

)
. (2.114)

There is a theorem:

Theorem 2.2 Let A be a symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn and
corresponding eigenvectors (v1, . . . , vn). The maximization of Tr(QAQ) subject
to constraints QT Q = IK has the solution Q = (v1, . . . , vK)R, where R is an
arbitrary K × K orthogonal matrix. And max Tr(QAQ) = λ1 + · · · + λK .
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Thus, max Sb can be given as

max
HK

Tr (Sb) = Tr
(
V T YT YV

)
= Tr

(
K−1∑

k=1

λkuk ×0 uk

)

(2.115)

since Yvk = λ
1/2
k uk , where V = (v1, . . . , vK). This completes the proof.

Although Ding and He [1] insist that it proves Eq. (2.99), it does not, because it
does not guarantee that there is a R such that RV = HK . Although all components
of HK must be 0 or 1 in order that HK represents clusters given by K-means,
Theorem 2.2 does not have such a restriction that Q must be represented as HKRT .
Actually, as can be seen in Fig. 2.6, Sb given by K-means, Eq. (2.97), does not
completely match with Sb given by PCA, Eq. (2.99), but deviates from Sb given by
PCA. Thus Sb given by PCA should be considered as not an alternative derivation,
but at most a good approximation of Sb given by K-means.
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Chapter 3
Tensor Decomposition

I painted her as an unapproachable enigma and never even
tried to see her for who she was.
Ichigo, Darling in the FranXX, Season 1, Episode 16

3.1 Three Principal Realizations of TD

As has been mentioned in the previous sections, among huge realizations of TD [2],
we discuss the three most popular ones: canonical polyadic (CP) decomposition,
Tucker decomposition, and tensor train decomposition.1 These three decompo-
sitions of tensor X ∈ R

N×M×K whose element is xijk are expressed as CP
decomposition

X =
L∑

�=1

λ�u
(i)
� ×0 u

(j)
� ×0 u

(k)
� (3.1)

and L is positive integer, λ� is weight, u
(i)
� ∈ R

N , u
(j)
� ∈ R

M , and u
(k)
� ∈ R

K .
Using Tucker decomposition,

X = G ×�1 U(i) ×�2 U(j) ×�3 U(k) (3.2)

where U
(i)
�1

∈ R
N×N ,U(j)

�2
∈ R

M×M ,U(k)
�3

∈ R
K×K are singular value vectors, and

G ∈ R
N×M×K is a core tensor. The components of U(i), U(j), U(k), and G are

denoted as u
(i)
�1i

, u
(j)
�2j

, u
(k)
�3k

, and G(�1, �2, �3), respectively.
Using tensor train decomposition,

1Although the detailed algorithms of individual TDs will be presented in the later sections, readers
might feel that they would like to try them in advance with reading prior sections that demonstrate
examples. In that case, see Appendix A where I list some of the implementations on various
platforms.

© Springer Nature Switzerland AG 2020
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X = G(i) ×�1 G(j) ×�2 G(k) (3.3)

where G(i) ∈ R
N×R1 , G(j) ∈ R

M×R1×R2 , and G(k) ∈ R
K×R2 with R1 and R2 being

positive integer. G(i)s’ components, G(j)s’ components, and G(k)s’ components are
denoted as G(i)(i, �1), G(j)(j, �1, �2), and G(k)(k, �2), respectively. Although we
employed three-mode tensor, xijk , in the above, the extension to the higher mode
should be straightforward.

All of these are in some sense the extension of SVD. In SVD, matrix X ∈ R
N×M

is represented as

X =
L∑

�=1

λ�u� ×0 v� (3.4)

where L = min(N,M) and u� ∈ R
N , v� ∈ R

M . It is obvious that CP decomposition
is straight extension of SVD toward higher mode tensors. One problem of CP
decomposition is that there are no ways to determine L in Eq. (3.1) a priori.

Tucker decomposition, Eq. (3.2), can also be considered to be the extension of
SVD to higher dimension, since Eq. (3.2) can also be represented as

X =
∑

�1

∑

�3

∑

�2

G(�1, �2, �3)u
(i)
�1

×0 u
(j)
�2

×0 u
(k)
�3

(3.5)

where

u
(i)
� = (u�1, . . . , u�i, . . . , u�N) (3.6)

u
(j)
� = (u�1, . . . , u�j , . . . , u�M) (3.7)

u
(k)
� = (u�1, . . . , u�k, . . . , u�K) (3.8)

Only difference from CP decomposition is that individual vectors appear more than
once in the right-hand side.

Tensor train decomposition can be interpreted as an extension of SVD because
Eq. (3.3) can be rewritten as

X =
R1∑

�1=1

R2∑

�2=1

G
(i)
�1

×0 G
(j)
�1,�2

×0 G
(k)
�2

(3.9)

where G
(i)
�1

∈ R
N , G

(j)
�1�2

∈ R
M , and G

(k)
�2

∈ R
K are

G
(i)
�1

=
(
G(i)(1, �1), . . . ,G

(i)(N, �1)
)

(3.10)
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G
(j)
�1�2

=
(
G(j)(1, �1, �2), . . . ,G

(j)(M, �1, �2)
)

(3.11)

G
(k)
�2

=
(
G(k)(1, �2), . . . ,G

(k)(K, �2)
)

(3.12)

Thus all of the three tensor decompositions listed in the above can be considered
to be linear combinations of vector product, a ×0 b ×0 c, although the number of
terms differs; L for CP decomposition, N × M × K for Tucker decomposition,
and R1 × R2 for tensor train decomposition. These three TDs have their own
pros and cons. CP decomposition has an advantage of interpretability; individual
vectors in the right hand of Eq. (3.1) appear only once, thus it is easy to understand
what each term means. A disadvantage of CP decomposition is that obtaining
CP decomposition is non-deterministic polynomial-time (NP) hard. Thus, no one
knows how long it takes until convergence. Tucker decomposition does not have
this disadvantage; it is expected to converge within polynomial time. Disadvantages
of Tucker decomposition are twofold. The first disadvantage is that it is hard
to interpret; because individual vectors in the right-hand side of Eq. (3.2) appear
multiple times, it is unclear what each vector represents. The second disadvantage
is non-uniqueness. In actuality, we may use any orthogonal matrix, R ∈ R

N×N

whose components are denoted as R��1 , that satisfies RT R = I with the components
RT being denoted as R�′

1�
, where I is a unit matrix whose components are δ�′

1�1
,

Eq. (3.2) is rewritten as, with denoting the components of G as G(�′
1, �2, �3),

X = G ×�′
1
I ×�1 U(i) ×�2 U(j) ×�3 U(k) (3.13)

= G ×�′
1

(
RT ×� R

)
×�1 U(i) ×�2 U(j) ×�3 U(k) (3.14)

=
{
G ×�′

1
RT
}

×�

{
R ×�1 U(i)

}
×�2 U(j) ×�3 U(k) (3.15)

If we define

G′(�, �2, �3) =
∑

�′
1

G(�′
1, �2, �3)R�′

1�
(3.16)

u′(i)
�i =

∑

�1

R��1u
(i)
�1i

(3.17)

Eq. (3.2) can be expressed as

X = G′ ×� U ′(i) ×�2 U(j) ×�3 U(k) (3.18)

which is nothing but an alternative representation of Tucker decomposition. It is also
obvious that there are infinitely many solutions of Tucker decomposition since we
can employ any orthogonal matrix R to derive alternative representations of Tucker
decomposition.
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Similarly, tensor train decomposition, Eq. (3.3), does not have uniqueness, either.
Using R, Eq. (3.3) can be rewritten as, with denoting the components of G(i) as
G(i)(i, �′

1),

X = G(i) ×�′
1
I ×�1 G(j) ×�2 G(k) (3.19)

= G(i) ×�′
1

(
RT ×� R

)
×�1 G(j) ×�2 G(k) (3.20)

=
{
G(i) ×�′

1
RT
}

×�

{
R ×�1 G(j)

}
×�2 G(k) (3.21)

If we define

G′(i)(i, �) =
∑

�′
1

G(i)(i, �′
1)R�′

1�
(3.22)

G′(j)
(j, �, �2) =

∑

�1

R��1G
(j)(j, �1, �2) (3.23)

Eq. (3.3) can be rewritten

X = G′(i) ×� G′(j) ×�2 G(k) (3.24)

which is nothing but an alternative representation of tensor train decomposition. It
is also obvious that there are infinitely many solutions of tensor train decomposition
since we can employ any orthogonal matrix R to derive alternative representations
of tensor train decomposition.

The advantage of tensor train decomposition is the small number of parameters.
For CP decomposition, Eq. (3.1), the number of parameters must be decided is
(N + M + K + 1)L and for Tucker decomposition, Eq. (3.2), the number of
parameters that must be determined is NMK + N2 + M2 + M2. On the other
hand, in tensor train decomposition, Eq. (3.3), the number of parameters that must
be decided is as many as NR1 + MR1R2 + KR2. In other words, the number
of parameters that must be determined in tensor train decomposition is much
smaller than the number of parameters that must be decided for CP and Tucker
decomposition. This means, if we need to obtain the tensor decomposition of higher
order modes, computational time and memory required is logarithmically small.
This does not mean unfortunately that tensor train decomposition is always superior
to CP decomposition and Tucker decomposition. There is no free lunch. In contrast
to CP decomposition and Tucker decomposition, the order of suffix must be fixed
in tensor train decomposition prior to executing tensor decomposition. In Eq. (3.3),
the order of suffix in the left-hand side is i → j → k and is not commutable.
This restriction of the suffix order does not exist in either CP decomposition or
Tucker decomposition. This restriction might prevent tensor train decomposition
from getting optimal solutions that can be obtained by CP decomposition or Tucker
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decomposition. At the moment, there are no guidelines on how to order suffix in
order to get optimal solutions in tensor train decomposition; if the parameter space
searched is narrow, the opportunity to get optimal solution is limited, too.

Exercise
3.1 Get CP decomposition, Tucker decomposition, and tensor train decomposition
of three-mode tensor, xijk = 1 ∈ R

3×3×3, though it might be trivial.

3.2 Performance of TDs as Tools Reducing the Degrees
of Freedoms

In contrast to the MF that are associated with geometrical representations, TD
generally lacks the interpretations based upon geometrical representation. Thus, it
is important how TD can help us to interpret complex data set from the data science
point of views. As an intuitive example that demonstrates the usefulness of TD as
data mining tools, we consider the following simple case

xijk = i + j + k (3.25)

In principle, we do not need any complicated procedures like TD to understand this
simple three-mode tensor. Because we know what the tensor, Eq. (3.25), represents,
it is also easy for us to understand how TD works when it is applied to this simple
tensor. For the simplicity, I use only the case xijk ∈ R

3×4×5. However, the essential
result obtained by this assumption will be kept for larger tensors, too.

3.2.1 Tucker Decomposition

We start this analysis with applying Tucker decomposition, Eq. (3.2), to the tensor
shown in Eq. (3.25). HOSVD algorithm (detailed explanation will be given later)
is employed to obtain Tucker decomposition. Excluding those having essentially
zero values with considering numerical accuracy, G(�1, �2, �3)s in Eq. (3.2) are in
Table 3.1. Thus, although the total number of G is 3 × 4 × 5 = 60, as little as eight
Gs have non-zero values. Therefore, singular value vectors that can contribute to
the decomposition, Eq. (3.2), are limited to 1 ≤ �1, �2, �3 ≤ 2. The number of them
is only six. Because u

(i)
�1

, u
(j)
�2

, and u
(k)
�3

have three, four, and five components, these
six vectors have in total 3 × 2 + 4 × 2 + 5 × 2 = 24 components. As a result, the
total number of real numbers composed of Tucker decomposition, Eq. (3.2), applied
to the tensor Eq. (3.25) is 8 + 24 = 32. This number, 32, is about half of the number
of elements of original tensor, 3×4×5 = 60. This means, TD is effective to reduce
the degrees of freedom in tensor, although it is not necessary because Eq. (3.25) is
easy to understand without any kind of data reduction.
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Table 3.1 Core tensors having non-zero values when Tucker decomposition, Eq. (3.2), is applied
to the tensor Eq. (3.25)

G(�1, �2, �3)

�1 = 1 �1 = 2

�2 = 1 �2 = 2 �2 = 1 �2 = 2

�3 = 1 −60.04 5.06 × 10−3 −8.57 × 10−3 −1.13

�3 = 2 6.32 × 10−3 1.57 −0.88 −0.32
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Fig. 3.1 Singular value vectors computed by applying Tucker decomposition, Eq. (3.2), to the
tensor Eq. (3.25). (a) u

(i)
�1

(b) u
(j)
�2

(c) u
(k)
�3

. open circle: �1, �2, �3 = 1, red triangle: �1, �2, �3 = 2

It is also important to see how the tensor Eq. (3.25) is decomposed by Tucker
decomposition (Fig. 3.1). Firstly, all of these vectors represent monotonic depen-
dence upon i, j , or k. This suggests that TD can capture fundamental dependence of
xijk in Eq. (3.25) upon i, j , or k, since Eq. (3.25) shows the monotonic dependence
upon i, j , or k as well.

In addition to this, TD can also be used as an approximation to the tensor. As can
be seen in Table 3.1, G(1, 1, 1) has the maximum absolute values among eight G

with non-zero values. Moreover, considering that Gs play a role of weight factors in

Eq. (3.2), G(1, 1, 1) have most of contributions since G(1,1,1)2
∑

�1,�2,�3
G(�1,�2,�3)

2 = 0.998.

In actuality, the scatterplot between xijk and the right-hand side of Eq. (3.2) with
only considering �1 = �2 = �3 = 1 shows almost complete reproduction (Fig. 3.2).

In conclusion, Tucker decomposition, Eq. (3.2), has the ability to reduce the
degrees of freedoms (about half of them) with keeping essential dependence upon
i, j, k (monotonic dependence).

Exercise
3.2 Draw something that corresponds to Fig. 3.2 with employing more terms than
�1 = �2 = �3 = 1.
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Fig. 3.2 Comparison
between xijk in Eq. (3.25) and
the recomputation from
Tucker decomposition,
Eq. (3.2), with considering
only �1 = �2 = �3 = 1. Red
broken line represents
diagonal line (i.e., complete
agreement)
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3.2.2 CP Decomposition

Next, we consider CP decomposition, Eq. (3.1). It is usual that CP decomposi-
tion, Eq. (3.1), is more interpretable than Tucker decomposition, Eq. (3.2). This
is because CP decomposition is a simple linear combination of tensor product
of individual vectors while individual vectors are repeatedly used in Tucker
decomposition, Eq. (3.2). Thus, apparently CP decomposition has more ability to
relate vectors one by one; it is expected to make interpretation easier than Tucker
decomposition.

Since we know that xijk in Eq. (3.25) can be well approximated by the single term
in the right-hand side of Eq. (3.2), we try to check if CP decomposition, Eq. (3.1),
can represent xijk in Eq. (3.25) with L = 1. Figure 3.3 shows the comparison
between xijk in Eqs. (3.25) and (3.1) with L = 1 when CP decomposition is
applied to xijk in Eq. (3.25). Figures 3.2 and 3.3 look identical; these two are really
identical within numerical accuracy. Thus, CP decomposition can approximate xijk

in Eq. (3.25) as well as Tucker decomposition did.
In order to estimate the degrees of freedom that CP decomposition can represent

xijk in Eq. (3.25) not approximately but completely, we try to find minimum L that
can perform complete CP decomposition. Then we found that L = 4 is minimum.
Thus, the total number of real numbers required is (3 + 4 + 5) × 4 = 48. Because
this number is larger than 34 which is the number of real values to obtain Tucker
decomposition that can perform complete decomposition, CP decomposition has
less ability to reduce the degrees of freedom than Tucker decomposition.

The difference between Tucker decomposition and CP decomposition takes place
when considering the second term. One might expect that Eq. (3.1) with L = 2
might be identical to summation of two terms composed of singular value vectors
shown in Fig. 3.1. Figure 3.4 shows u

(i)
� , u

(j)
� , and u

(k)
� for � = 1, 2. In contrast

to the expectation, Fig. 3.4 does not look like Fig. 3.1. In contrast to Fig. 3.1 where
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Fig. 3.3 Comparison
between xijk in Eq. (3.25) and
the recomputation from CP
decomposition, Eq. (3.1),
with L = 1. Red broken line
represents diagonal line (i.e.,
complete agreement)
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Fig. 3.4 Singular value vectors computed by applying CP decomposition, Eq. (3.1), to the tensor
Eq. (3.25) with L = 2. (a) u

(i)
� (b) u

(j)

� (c) u
(k)
� . Open circle: � = 1, red triangle: � = 2

Table 3.2 λ�s with L = 1 and L = 2 when CP decomposition, Eq. (3.1), is applied to the tensor
Eq. (3.25)

λ� L = 1 L = 2

� = 1 450.6 533.7

� = 2 – 83.7

singular value vectors associated with distinct �1, �2, �3 values look different, those
with distinct � look similar excluding parallel vertical displacements in Fig. 3.4.

Table 3.2 shows the λ�s with L = 1 and L = 2. The absolute ratio,
∣∣∣λ2
λ1

∣∣∣,
of weights between the first term, λ1, and the second term, λ2, when L = 2 is
comparatively larger than that between terms with the first and the second largest

absolute values in Table 3.1,
∣∣∣G(1,2,2)
G(1,1,1)

∣∣∣. It is coincident with the fact that singular

value vectors with � = 1, 2 in CP decomposition does not look distinct, because
similar singular value vectors unlikely have very distinct weights. On the other hand,
this suggests that CP decomposition fails to compute the additional small correction
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with keeping the contribution from the main term as large as Tucker decomposition
did.

Although actual numerical algorithms to execute various TDs are not yet
explained (see later part of this chapter), CP decomposition is not guaranteed to
converge to the unique solution (see the following sections). Thus, in contrast to
the apparent interpretability of CP decomposition, because TD itself is not unique
but depends upon the initial values for the iterative computation, CP decomposition
cannot be considered to have superior interpretability to Tucker decomposition.

Since the Tucker decomposition is easier to compute and has more converging
algorithm, I prefer Tucker to CP in the approximations shown in the following
application examples mentioned in this book in spite of the apparent interpretability
of CP decomposition.

Exercise
3.3 Draw something that corresponds to Fig. 3.3 with employing more terms than
L = 1.

3.2.3 Tensor Train Decomposition

Finally, I apply tensor train decomposition, Eq. (3.3), to xijk in Eq. (3.25). The result
is

G
(i)
�1,i

= (i, 1) (3.26)

G
(j)
�1,�2,j

=
(

1 0
j 1

)
(3.27)

G
(k)
�2,k

= (1, k) (3.28)

because

G
(i)
�1,i

×�1 G
(j)
�1,�2,j

×�2 G
(k)
�2,k

= (i, 1)

(
1 0
j 1

)(
1
k

)
= (i + j, i)

(
1
k

)
= i + j + k

(3.29)
The number of G(i) is three, that of G(j) is four and that of G(k) is five, thus
the total number of real numbers that compose tensor train decomposition is
2 × 3 + 4 × 4 + 2 × 5 = 32. Since this number is smaller than 34 and 48,
which are the minimum degrees of freedom to execute complete decomposition
when Tucker and CP decomposition are applied to xijk in Eq. (3.25), respectively,
tensor train decomposition has superior ability to reduce the degrees of freedom. In
this example, the amount of superiority might look small, but if we consider tensors
with the higher dimensions or modes, this difference matters.

On the other hand, tensor train decomposition has some disadvantages. The first
disadvantage is that Eq. (3.3) is not invariant when the order of i, j, k is exchanged.
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It is obvious that i, j, k must be exchanged when the order of i, j, k in Eqs. (3.26)–
(3.28) is exchanged. In actuality, the ability of reducing the number of freedoms
itself is also altered. If the order of i, j, k is modified as j, i, k such that the number
of matrices used is minimized, the total number of real numbers required decreases
from 32 to 2×4+4×3+2×5 = 30. This might be problematic for the application
of data science that requires interpretation of the obtained singular value vectors. If
the order of i, j, k matters, we have to decide this order in advance, or select the best
order after investigating the results. This is really problematic because the number
of possibility on how to order i, j, k grows exponentially if we have to consider
tensors with more number of modes. Selecting one of them might not be easy.

The second disadvantage is that tensor train decomposition does not have weight,
by which we can know the primary terms in decomposition as in the cases of CP
decomposition and Tucker decomposition. In the case of tensor train decomposition,
we have no ways to know which combination among Eq. (3.3) is dominant. For the
application of TD towards real data sets, it is not an ignorable point. Thus, in the
application that will be discussed in the later parts of this text, I do not employ tensor
train decomposition, either, as CP decomposition is not employed.

Exercise
3.4 Draw something that corresponds to Fig. 3.2 or 3.3 for tensor train decomposi-
tion.

3.2.4 TDs Are Not Always Interpretable

When applying TDs to xijk in Eq. (3.25), no matter how many degrees of freedom
are required, three TDs, CP decomposition, Tucker decomposition, and tensor
train decomposition can acquire essential feature of the tensor, i.e., monotonic
dependence upon i, j, k. Although readers might trust the usefulness of these TDs
as the tool for the application in data science, the situation is actually not so
straightforward. Instead of the xijk in Eq. (3.25) we consider the tensor

xijk =
(

i − N + 1

2

)
+
(

j − M + 1

2

)
+
(

k − K + 1

2

)
(3.30)

such that average over either i, j , or k is equal to zero. Although this may not
seem to dramatically change the results of TD, it actually does. Table 3.3 shows
the list of Gs with non-zero values when Tucker decomposition is applied to
xijk defined in Eq. (3.30). Compared with Table 3.1, although the number of Gs
with non-zero values is eight which is the same as that in Table 3.1, individual
absolute values of Gs are larger excluding G(1, 1, 1). This suggests that G(1, 1, 1)

cannot acquire most of the contributions in contrast to Table 3.3 but other Gs have
substantial contributions. Figure 3.5 shows the singular value vectors, which are
very different from those in Fig. 3.1 that represent monotonic dependence upon
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Table 3.3 Core tensors
having non-zero values when
Tucker decomposition,
Eq. (3.2), is applied to the
tensor Eq. (3.30)

G(�1, �2, �3)

�1 = 1 �1 = 2

�2 = 1 �2 = 2 �2 = 1 �2 = 2

�3 = 1 15.67 1.70 −1.71 5.69

�3 = 2 1.86 −3.69 3.39 −3.04
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Fig. 3.5 Singular value vectors computed by applying Tucker decomposition, Eq. (3.2), to the
tensor Eq. (3.30). (a) u

(i)
�1

(b) u
(j)
�2

(c) u
(k)
�3

. Open circle: �1, �2, �3 = 1, red triangle: �1, �2, �3 = 2

i, j, k. Singular value vectors in Fig. 3.5 have lost monotonic dependence upon
i, j, k in spite of that xijk itself in Eq. (3.30) still keeps monotonic dependence upon
i, j, k as in Eq. (3.25). This drastic change is caused because xijks in Eq. (3.30)
take both negative and positive values while those in Eq. (3.25) take positive
values only. Because the product between two negative values results in positive
values, expressing the distinct signs of xijk with the products of vectors is not
straightforward. Thus, singular value vectors inevitably lost the simple monotonic
dependence upon i, j, k.

Thus, from the point of data science, tensors whose elements are both negatively
and positively signed are not easy to be dealt with TDs. For the cases of matrix
factorization, extraction of means affected the outcomes in unpredictable ways (see
Sect. 2.5.3). Similarly, the outcomes of TDs are affected by whether means are
extracted or not, because of the effect discussed in the above. How to extract means
is also a key on the application of TD to real datasets, although this point is rarely
emphasized.

Exercise
3.5 Draw something that corresponds to Fig. 3.2 for Tucker decomposition applied
to Eq. (3.30).

3.3 Various Algorithms to Compute TDs

In this section, I introduce various algorithms to derive various TDs.
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3.3.1 CP Decomposition

Firstly, I introduce how to compute CP decomposition, Eq. (3.1). Before introducing
algorithm, I would like to mention about non-uniqueness of approximation of tensor
by CP decomposition as demonstrated when CP decomposition, Eq. (3.1), with
L = 2 is applied to xijk , Eq. (3.25), in the previous section. In §3.3 of Kolda and
Bader [2], there is an example of non-uniqueness when a specific three-mode tensor
is decomposed by CP decomposition with L = 2. The tensor X ∈ R

N×M×K has
the form of

X = a1 ×0 b1 ×0 c2 + a1 ×0 b2 ×0 c1 + a2 ×0 b1 ×0 c1 (3.31)

where A = (a1, a2) ∈ R
N×2, B = (b1, b2) ∈ R

M×2, and C = (c1, c2) ∈ R
K×2.

Then consider the specific form of CP decomposition with L = 2 as

Y = α
(
a1 + a2

α

)
×0
(

b1 + b2

α

)
×0
(
c1 + c2

α

)
− αa1 ×0 b1 ×0 c1 (3.32)

Then

||X−Y|| = 1

α

∣∣∣
∣∣∣a2 ×0 b2 ×0 c1 + a2 ×0 b1 ×0 c2 + a1 ×0 b2 ×0 c2

− 1

α
a2 ×0 b2 ×0 c2

∣∣∣∣

∣∣∣∣ (3.33)

can be made arbitrarily small. Thus, CP decomposition with L = 2 for Eq. (3.31)
can never be unique. The reason why this can happen is because two oppositely
signed arbitrarily large terms can result in small value with canceling each other. In
this sense, no matter what algorithm is employed for CP decomposition, there is no
unique approximation using CP decomposition.

Consequently, the algorithm of CP decomposition is inevitably empirical and
does not guarantee neither uniqueness nor convergence. Here I introduce a specific
algorithm that employs alternating least square (ALS). ALS is a general algorithm
that minimizes multi arguments functions by alternating one argument with fixing
other arguments. Suppose the case that minimization of the function f (x, y, z) is
difficult while f (x, y0, z0) with fixing y0 and z0 is easy (this also stands for y

and z). Then ALS algorithm repeatedly minimizes f (x, y0, z0), f (x0, y, z0), and
f (x0, y0, z) in turn until convergence. For example, let us consider the minimization
of f (x, y, z) = x2 + y2 + z2 with starting x = y = z = 1. Applying ALS to this
problem is as follows. At first, try to minimize f (x, 1, 1) = x2 + 2. It is obvious
that x = 0 minimizes x2 + 2. Then, x is decided to be 0. Then, we try to minimize
f (0, y, 1) = y2 + 1. It is again obvious y = 0 does. Then, y is decided to be 0.
Finally, we try to minimize f (0, 0, z) = z2. We get z = 0. The minimum value
f (0, 0, 0) = 0 can be obtained by ALS algorithm.
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In order to apply ALS to obtain CP decomposition, Eq. (3.1), we need some
mathematics [2]. At first, Eq. (3.1) needs to be rewritten in the unfolded matrix form,
Xi×(jk), of tensor X ∈ R

N×M×K

Xi×(jk) = Û (i) ×�

(
U(j) ×� U(k)

)�×(jk)

(3.34)

with introducing matrices Û (i) =
(
λ1u

(i)
1 , λ2u

(i)
2 , . . . , λLu

(i)
L

)
∈ R

N×L, U(j) =
(
u

(j)

1 ,u
(j)

2 , . . . ,u
(j)
L

)
∈ R

M×L and U(k) =
(
u

(k)
1 ,u

(k)
2 , . . . ,u

(k)
L

)
∈ R

K×L and
(
U(j) ×� U(k)

)�×(jk) ∈ R
L×MK is an unfolding of the tensor, U(j) ×� U(k) ∈

R
L×M×K . Then, we try to find Û (i) with fixing U(j) and U(k) such that

min
Û (i)

∣∣∣∣

∣∣∣∣X
i×(jk) − Û (i) ×�

(
U(j) ×� U(k)

)�×(jk)
∣∣∣∣

∣∣∣∣
F

(3.35)

where || · · · ||F is the Frobenius norm which is defined as the root of the squared
summation of matrix elements. This is the same as linear regression problem with
having NL elements of Û (i) as variables.

The solution of Eq. (3.35) can be obtained to compute Moore-Penrose pseudoin-
verse as

Û (i) = Xi×(jk) ×jk

[(
U(j) ×� U(k)

)�×(jk)
]†

(3.36)

where A† is the Moore-Penrose pseudoinverse of a matrix A. Moore-Penrose
pseudoinverse is known to give the solution of Ax = b as the form x = A†b

including the cases that A is not a square matrix. Computing A† from A is
implemented in various application software, thus it is not discussed in detail here.2

After getting Û (i) with Eq. (3.36), we normalize the columns of Û (i) to get U(i).
Then, U(i) is replaced with either U(j) or U(k) which can be obtained by repeating
the above procedure until the convergence.

In order to see how ALS works for CP decomposition, we apply this algorithm
to the simplest case. X is supposed to be a matrix instead of tensor as

X =
⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ (3.37)

In CP decomposition with L = 1, X is supposed to be decomposed as

2See Appendix for more details about Moore-Penrose pseudoinverse. Alternatively, one can simply
execute linear regression analysis, Eq. (3.35).
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X = a ×0 b (3.38)

where a, b ∈ R
3. Although it is nothing but SVD, since we simply would like to

demonstrate the usefulness of CP decomposition, it does not matter. Then we get

a1b1 = 1 (3.39)

a1b2 = 2 (3.40)

a1b3 = 3 (3.41)

a2b1 = 4 (3.42)

a2b2 = 5 (3.43)

a2b3 = 6 (3.44)

a3b1 = 7 (3.45)

a3b2 = 8 (3.46)

a3b3 = 9 (3.47)

In order to perform ALS, we need to express a by b and b by a. This can be done by
performing Eq. (3.39) + Eq. (3.40) + Eq. (3.41), Eq. (3.42) + Eq. (3.43) + Eq. (3.44),
Eq. (3.45) + Eq. (3.46) + Eq. (3.47), Eq. (3.39) + Eq. (3.42) + Eq. (3.45), Eq. (3.40)
+ Eq. (3.43) + Eq. (3.46), and Eq. (3.41) + Eq. (3.44) + Eq. (3.47). This results in

a = 1
∑

i bi

⎛

⎝
6

15
24

⎞

⎠ (3.48)

b = 1
∑

i ai

⎛

⎝
12
15
18

⎞

⎠ (3.49)

ALS can be performed, by computing a by Eq. (3.48) then b by Eq. (3.49) and repeat
them iteratively.

Starting from b =
⎛

⎝
1
1
1

⎞

⎠, after one iteration, we get

a =
⎛

⎝
2
5
8

⎞

⎠ (3.50)
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Fig. 3.6 Scatterplot of X,
Eq. (3.37), and the
approximation by CP
decomposition, a ×0 b where
a and b are given as
Eqs. (3.50) and (3.51). Red
broken lines indicate
complete match
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This satisfies Eqs. (3.48) and (3.49). Thus, they are converged solutions.
Next we would like to see how good it is. Figure 3.6 shows the comparison

between X, Eq. (3.37), and a ×0 b. It is obvious that they are highly coincident.
Thus, CP decomposition implemented using ALS works well.

Here readers should notice that we need initial values of U(i), U(j), and U(k)

in CP decomposition implemented using ALS (in the above example, we needed
to initialize b). Since uniqueness of approximate solution by CP decomposition
is not guaranteed as demonstrated in Eq. (3.33), CP decomposition cannot give
unique approximation but generally gives various approximations depending upon
initial values. From this point of view, employing CP decomposition for data
science is not recommended because data science requires interpretation of obtained
decomposition. If the results of CP decomposition have initial value dependence, it
is not easy to interpret the outcome uniquely.

In order to extend the above calculation to tensors, X ∈ R
N1×N1×···×Nm with

arbitrary number of modes m, Eq. (3.1) is generalized as

X =
L∑

�=1

λ�u
(i1)
� ×0 u

(i2)
� ×0 · · · ×0 u

(im)
� (3.52)

Figure 3.7 shows the generalized algorithm of CP decomposition aiming tensors
with arbitrary number of modes m, which is the straight extension of ALS based CP
decomposition algorithm described for the three-mode tensor in the above.
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Fig. 3.7 Algorithm of CP decomposition for tensors with arbitrary number of modes m

Exercise
3.6 Apply CP decomposition implemented using ALS to the tensor X ∈ R

2×2×2

Xij1 =
(

1 2
3 4

)
(3.53)

Xij2 =
(

5 6
7 8

)
(3.54)

3.3.2 Tucker Decomposition

Tucker decomposition, Eq. (3.2), is not as popular as CP decomposition that has
apparent ease to apply to dataset. As discussed in the previous section, this apparent
ease is not always true. Since I found that Tucker decomposition has numerous
advantages in spite of its unpopularity and I can almost always make use of it in the
applications described in the later part of this textbook, I would like to discuss about
it in more detail in this section.

There are two popular implementations of Tucker decomposition, ALS based
one and SVD based one. Since Tucker decomposition does not have uniqueness
at all as discussed in the above, these two distinct implementations generally
give distinct outcomes. The first one that makes use of ALS is named higher
orthogonal iteration of tensors (HOOI). HOOI, as its name says, computes TD
iteratively with orthogonalizing column vectors, because Tucker decomposition
requires the orthogonal matrices as outcomes, although CP decomposition does
not always require orthogonality between obtained singular value vectors. Using
U(i) ∈ R

L1×N , U(j) ∈ R
L2×M , and U(k) ∈ R

L3×K defined in the previous
subsection, Eq. (3.2) can be rewritten as

X = G ×�1 U(i) ×�2 U(j) ×�3 U(k) (3.55)
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In order to perform ALS, we need to express U(i) with U(j) and U(k). Since U(i),
U(j), and U(k) are orthogonal matrices, it can be easily done as follows. First, we
need to define a tensor Y ∈ R

N×�2×�3

Y = X×j U(j) ×k U(k) (3.56)

Since U(j) and U(k) are orthogonal matrices, U(j)×j U(j) = I and U(k)×kU(k) = I .
Then we get

Y = G ×�1 U(i) (3.57)

Applying SVD to unfolded matrix Y i×(�2�3) of Y, we get

Y i×(�2�3) = G�1×(�2�3) ×�1 U(i) (3.58)

Thus Eqs. (3.56)–(3.58) give the procedure to compute U(i) from U(k) and U(j).
Based upon ALS, we can repeatedly compute either of U(i), U(j) and U(k) from the
other two of them until these are converged. After the convergence, we can compute
G as

G = X×i U(i) ×j U(j) ×k U(k) (3.59)

because U(i), U(j), and U(k) are orthogonal matrices.
One might notice that HOOI also needs the initialization of U(i), U(j), and U(k).

In contrast to CP decomposition that has no ways to perform initialization uniquely,
Tucker decomposition can have unique way to decide the initialization. It is called as
higher order singular value decomposition (HOSVD). In order to perform HOSVD,
we apply SVD to unfolded matrix Xi×(jk) in order to obtain U(i), because we get
U(i) through getting the tensor Y ∈ R

L1×M×K and its unfolded matrix Y i×(jk) as

Xi×(jk) = Y �1×(jk) ×�1 U(i) (3.60)

Y = G ×�2 U(j) ×�3 U(k) (3.61)

Similarly, U(j) and U(k) can be obtained with applying SVD to unfolded matrices
Xj×(ik) and Xk×(ij), respectively. Finally, using obtained U(i), U(j), and U(k), we
can compute G as

G = X×i U(i) ×j U(j) ×k U(k) (3.62)

In order to extend the above computations to tensors with arbitrary modes m,
Eq. (3.2) is extended as

X = G ×�1 U(i1) ×�2 U(i2) ×�3 · · · ×�m U(im) (3.63)

where X,G ∈ R
N1×N2×···×Nm and U(iα) ∈ R

Nα×Nα , 1 ≤ α ≤ m.
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Fig. 3.8 Algorithm of HOSVD for tensors with arbitrary number of modes m

Fig. 3.9 Algorithm of HOOI for tensors with arbitrary number of modes. “. . .” means the
operation over modes excluding the selected ith mode for do loop

Figure 3.8 shows the HOSVD algorithm for tensors with general number of
modes and Fig. 3.9 shows the HOOI algorithm for tensors with general number
of modes starting from initialization by HOSVD. In these definitions, we can get
two algorithms to obtain Tucker decomposition, Eq. (3.2), for tensors with general
number of modes. They are also free from arbitrary initialization in contrast to CP
decomposition, because HOSVD does not need initialization while HOOI can be
initialized uniquely with HOSVD.

I would like to mention some additional comments for these two algorithms.
In Figs. 3.8 and 3.9, we do not specify the dimensions of U(i), U(j), . . .. If we
employ full rank, i.e., U(i) ∈ R

N×N , U(j) ∈ R
M×M , U(k) ∈ R

K×K . . ., HOSVD
and HOOI do not differ from each other, since initialization using HOSVD gives
complete solution, thus there is no way for HOOI to optimize. If we assign smaller
dimensions to U(i), U(j), . . ., there are possibilities that HOOI can optimize the
results by HOSVD. If HOOI differs from HOSVD, it is completely data dependent.
For the tensor Eq. (3.25), U(i), U(j), . . . whose ranks are much smaller than full
rank can give complete solution. Thus, we cannot say that assignment of smaller
dimensions to U(i), U(j), . . . always results in more optimal results by HOOI than
that by HOSVD.

One should also notice that HOSVD has superiority to CP decomposition
(Fig. 3.7) and HOOI (Fig. 3.9) because arbitrary U(i) can be computed independent
of others. Although anyway we cannot avoid computing other singular matrices,
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U(j), U(k), . . . because we cannot get G without computing all U(i), U(j), U(k), . . .,
it is a great advantage of HOSVD when considering applications.

Exercise
3.7 Apply HOSVD to the tensor X ∈ R

2×2×2

Xij1 =
(

1 2
3 4

)
(3.64)

Xij2 =
(

5 6
7 8

)
(3.65)

3.3.3 Tensor Train Decomposition

After recognizing how to compute Tucker decomposition, it is relatively easy to
understand how to compute tensor train decomposition [3] as well. Essentially, it
is iterative application of SVD to unfolded matrices of a tensor. In order to show
the algorithm that computes tensor train decomposition for the tensor with arbitrary
number of modes m, tensor train decomposition, Eq. (3.3), is generalized as

X = G(i1) ×�1 G(i2) ×�2 · · · ×�α−1 G(iα) ×�α · · · ×�m−1 G(im) (3.66)

where G(i1) ∈ R
N1×R1 , G(i2) ∈ R

N2×R1×R2 , · · · , G(iα) ∈ R
Nα×Rα−1×Rα , · · · ,

G(im) ∈ R
Nm×Rm−1 . The components of G(i1), G(iα), and G(im) are denoted as

G(i1)(i1, �1), G(iα)(iαRα−1, Rα), and G(im)(im, Rm−1), respectively.
Figure 3.10 shows the tensor train decomposition algorithm applied to tensor

with arbitrary number of modes m. In order to perform the algorithm shown in
Fig. 3.10, we need to know Rα, α ∈ [1,m − 1] in advance (R0 = 1). It is known
that [3]

Fig. 3.10 Algorithm of tensor train decomposition for tensors with arbitrary number of modes m
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Rα = rank
[
X(i1i2···iα)×(iα+1···im)

]
. (3.67)

In order to see how well the algorithm shown in Fig. 3.10 works, it is applied to
the tensor Eq. (3.25) with (R0, R1, R2, R3) = (1, 2, 2, 1) (Fig. 3.11). Here R1 and
R2 are estimated by Eq. (3.67) with applying SVD to unfolded matrices, Xi×(jk) and
X(ij)×k , respectively. If Fig. 3.11 is compared with Eqs. (3.26)–(3.28), it is a little bit
more complicated. However, if it is inserted to Eq. (3.3), it turns out that Eq. (3.25)
is reproduced completely. Thus, as far as the reduction of degrees of freedom is
considered, algorithm shown in Fig. 3.10 has the solution (Fig. 3.11) with the same
performance as Eqs. (3.26)–(3.28).

Using tensor train decomposition to obtain approximation is easy. Simply
employing Rα which is smaller than Eq. (3.67) such that SVD is truncated up
to the first Rα components. Of course, this truncated tensor train decomposition
is not guaranteed to be an optimal solution with fixed Rα, α ∈ [1,m]. If the
truncated tensor train decomposition does not work well, further optimization might
be required. In this case, it is rather straightforward to apply ALS to tensor train
decomposition computed by the algorithm shown in Fig. 3.10. In order that, we
need to introduce frame matrix G( �=iα) ∈ R

(N1···Nα−1Nα+1···Nm)×(Rα−1Rα) as

G( �=iα) =
[
G(i1) ×�1 · · · ×�α−2 G(iα−1)

×�α−1�αG(iα+1) · · · × �m−1G
(im)
](i1i2···iα−1iα+1···im)×(�α−1�α)

(3.68)

Then ALS that optimizes G(iα) with fixing G(iα′ ), α′ �= α can be done as

G(iα) = X×i1i2···iα−1iα+1···im [G( �=iα)]† (3.69)
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Fig. 3.11 Singular value vectors computed by applying tensor train decomposition (Fig. 3.10) to
the tensor Eq. (3.25). (a) G(i)(i, �1), Open circle: �1 = 1, red triangle: �1 = 2 (b) G(j)(j, �1, �2),
Open circle: (�1, �2) = (1, 1), red triangle: (�1, �2) = (2, 1), green circle : (�1, �2) = (1, 2), blue
triangle: (�1, �2) = (2, 2) (c) G(k)(k, �2), open circle: �2 = 1, red triangle: �2 = 2
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Fig. 3.12 Algorithm of tensor train decomposition with ALS for tensors with arbitrary number of
modes m

Figure 3.12 shows the algorithm of tensor train decomposition with ALS.
Unfortunately, the algorithm shown in Fig. 3.12 still does not guarantee globally
optimal solution.

Exercise
3.8 Apply tensor train decomposition to the tensor X ∈ R

2×2×2

Xij1 =
(

3 4
4 5

)
(3.70)

Xij2 =
(

4 5
5 6

)
(3.71)

3.4 Interpretation Using TD

In order to demonstrate how effective use of TD is to interpret the data set, we
apply TDs to data set shown in Table 1.6. We have already applied SVD to data set
with k = 1 in Table 1.6 in order to visualize the relation between price and weight
(Fig. 2.1). Here we show the integrated analysis of k = 1 and k = 2 with TD.
Because ks represent two shops, the integrated analysis by TD should represent how
similar two shops are as well as how much they differ from each other. Figure 3.13
shows the results of SVD applied to data sets shown in Table 1.6 (k = 2). The
difference between Figs. 2.1 and 3.13 represents the distinction between two shops
(k = 1 and k = 2). v+ axis represents the same contribution to price and weight
while v− axis represents the opposite contribution to them. k = 1 (shop 1, Fig. 2.1)
has more distinct contribution between v+ and v− while that of k = 2 (shop 2,
Fig. 3.13) is less. This represents the primary difference between k = 1 and k = 2
(two shops).

Next we apply Tucker decomposition (HOSVD algorithm, Fig. 3.8) to the data
set shown in Table 1.6 that is formatted as X ∈ R

4×2×2 where is stand for goods,
js stand for price (j = 1) and weight (j = 2), and ks stand for shops. Figure 3.14
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shows that scatterplot of U
(j)
�2j

; U
(j)

1j and U
(j)

2j correspond to v+ and v− in Figs. 2.1
and 3.13, respectively. It is rather obvious that Fig. 3.14 represents, in some sense,
“in between” feature of Figs. 2.1 and 3.13, because U

(j)

11 is larger than v+ for price in

Fig. 3.13 and smaller than that in Fig. 2.1, U(j)

21 is larger than v− for price in Fig. 3.13

and smaller than that in Fig. 2.1, U
(j)

12 is smaller than v+ for price in Fig. 3.13 and

larger than that in Fig. 2.1, and U
(j)

21 is larger than v− for price in Fig. 3.13 and
smaller than that in Fig. 2.1. Thus, integrated analysis using TD of two shops’ data
is seemingly successful.

The next question is how these factors, i.e., simultaneous and opposite effects
between price and weight, affect dataset. It can be also understood by investigating
Gs that represent the interaction between distinct three features, i.e., foods (bread,
beef, pork, and fish), properties (price and weight), and two shops. Table 3.4 shows
Gs. Gs associated with larger absolute values correspond to is associated with the
combination of foods, properties and shops singular vectors that contribute more to
the right-hand side of Eq. (3.55). It is obvious that two combinations, (�1�2, �3) =
(1, 1, 1) and (2, 2, 1), outperform other combinations. First, we investigate what
U(k) represents, because U

(k)
2k does not seem to be important at all. As can be seen

in Fig. 3.15c, �3 = 2 represents the distinction between two shops because U
(k)
21

Fig. 3.13 A geometrical
interpretation of price and
weight originally shown in
Table 1.6, k = 2. v1 : price,
v2: weight
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Fig. 3.14 A geometrical
interpretation of price and
weight originally shown in
Table 1.6 with applying
HOSVD (Fig. 3.8). U

(j)

�21 :

price, U
(j)

�22: weight. Red and
blue dots correspond to the
location of price and weight
in Figs. 2.1 and 3.13,
respectively
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Table 3.4 G(�1, �2, �3)s
computed by HOSVD
(Fig. 3.8) applied to data set
shown in Table 1.6

�2 = 1 �2 = 2

�3 1 2 1 2

�1

1 1964 −283 46 −208

2 −25 −275 1316 427

3 18 13 −42 141

4 17 126 28 −5

�1: foods (bread, beef, pork, and fish),
�2: properties (price and weight), �3:
two shops

Fig. 3.15 U(i), U(j) and
U(k) when HOSVD (Fig. 3.8)
is applied to dataset originally
shown in Table 1.6. (a) U(i),
foods, (b) U(j), properties,
(c) U(k), shops. Black:
�1 = �2 = �3 = 1, red:
�1 = �2 = �3 = 2 bread beef pork fish

(A) foods
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0.
5

0.
5

price weight

(B) properties

−
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4
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0.

8

k=1 k=2

(C) shops
−

0.
8

−
0.

2
0.

4

and U
(k)
22 are oppositely signed. Thus, the smaller absolute values of Gs associated

with �3 = 2 suggests the unimportance of the difference between two shops. In
Fig. 3.14, we demonstrated that the difference between two shops is comparatively
smaller than mean between two shops with comparing the results obtained by SVD
and those by HOSVD. Nevertheless, even without comparison between SVD and
HOSVD, by investigating the results by SVD and HOSVD independently, we can
easily recognize the unimportance of the difference between two shops as shown
here.

Next, we try to understand what the combinations (�1, �2) = (1, 1) and (2, 2)

mean. �2 = 1 and �2 = 2 (Fig. 3.15b) correspond to the coincidence and distinction
between price and weight as shown in Fig. 3.14. Thus, �1 = 1 and �2 = 1
(Fig. 3.15a) show that as well. U

(i)
1i shows the coincidence between four foods. On

the other hand, U(i)
2i shows the distinct signs between four foods, especially opposite

signs between fish and beef. From this analysis, we can understand that applying
TD to the dataset enables us to understand many characteristic features hidden in
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Fig. 3.16 U(i), U(j) and
U(k) when CP decomposition
with L = 2 is applied to
dataset originally shown in
Table 1.6. (a) u

(i)
� , foods, (b)

u
(j)
� , properties, (c) u

(k)
� ,

shops. Black: � = 1, red:
� = 2 bread beef pork fish
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dataset. This ability of TD will be further demonstrated in the application of TDs to
more extensive dataset in the following sections.

One might wonder how other TDs work as well. In order to see if CP
decomposition works as well, we apply CP decomposition to data set shown in
Table 1.6. The reason why we use L = 2 because we know that there are only two
important combinations of singular value vectors when HOSVD is applied to the
same dataset in the above. Figure 3.16 shows u

(i)
� ,u

(j)
� ,u

(k)
� . It is rather obvious

that they are coincident with Fig. 3.15 excluding some reversed signs that are not
critical. This might suggest that CP decomposition works as well, but we need to
remind that we assumed L = 2 based upon the results by HOSVD. In order to
see if we can identify that L = 2 is enough without the support of HOSVD, we
apply CP decomposition with L = 4 to the same data set (Fig. 3.17). The result
is rather disappointing. Not only it is not easily understood, but also there are no
ways to identify which �s are important. Since λ�s are 6052 (� = 1), 4109 (� = 2),
3810 (� = 3), and 9771.689 (� = 4), there are no outstandingly important ones
in contrast to Gs in Table 3.4 where only (�1, �2, �3) = (1, 1, 1) and (2, 2, 1)

have outstandingly large contributions. Thus, CP decomposition has less ability to
identify fewer number of important singular value vectors.

Finally, we apply tensor train decomposition, Fig. 3.10, to the same data set with
R1 = R2 = 2 that enables us to retain supposedly important two combinations. In
this setup, although js (properties, i.e., price and weight) must be associated with
R1 × R2 = 4 singular value vectors, there are no ways to restrict the number of sin-
gular value vectors attributed to j to two in the tensor train framework. Figure 3.18
shows the results of tensor train decomposition. Figure 3.18 is also coincident
with Fig. 3.15 where HOSVD is employed if excluding G(j)(j, �1, �2), (�1, �2) =
(2, 1), (2, 2). Nevertheless, we cannot exclude these two without the knowledge
from HOSVD, because there are no weight factors like λ�s for CP decomposition
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Fig. 3.17 U(i), U(j) and
U(k) when CP decomposition
with L = 4 is applied to
dataset originally shown in
Table 1.6. (a) u

(i)
� , foods, (b)

u
(j)
� , properties, (c) u

(k)
� ,

shops. Black: � = 1, red:
� = 2, green: � = 3, blue:
� = 4
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Fig. 3.18 G(i)(i, �1),
G(j)(j, �1, �2), and
G(k)(k, �2) when tensor train
decomposition with
R1 = R2 = 2 is applied to
dataset originally shown in
Table 1.6. (a) G(i)(i, �1),
foods, (b) G(j)(j, �1, �2),
properties, (c) G(k)(k, �2),
shops. Black: (a) �1 = 1, (b)
(�1, �2) = (1, 1), (c) �2 = 1,
red: (a) �1 = 2, (b)
(�1, �2) = (1, 2), (c) �2 = 1,
green: (b) (�1, �2) = (2, 1),
blue: (b) (�1, �2) = (2, 2)
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and Gs for HOSVD that can be used for the selection of important terms in TDs. In
this sense, tensor train decomposition is also inferior to HOSVD because it cannot
select primarily important two combinations.

3.5 Summary

In this section, I have introduced three popular TD methods, CP decomposition,
Tucker decomposition, and tensor train decomposition. All three TDs have their
own advantages and disadvantages.
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3.5.1 CP Decomposition

3.5.1.1 Advantages

The advantages of CP decomposition are as follows:

• Easy interpretability. CP decomposition can result in one-to-one correspondence
between singular value vectors. Thus, the interpretation is easier than the other
two methods.

• The number of terms in the right-hand side of decomposition can be decided
freely without any restriction.

• Because of freely decidable number of decomposition terms, truncation is
uniquely decided.

• It has weights, λ�, that can evaluate importance of each term.

3.5.1.2 Disadvantages

The disadvantages of CP decomposition are as follows:

• With using known algorithms, it is not guaranteed to converge to global optimum.
• In some worst cases, there is no global optimum in the sense complete solution

(i.e., no residuals) can achieve the limit when the absolute values of each terms
go to infinity.

• It needs to have initial values to start and it reaches the local minimums
depending upon the initial values.

• No known algorithm to converge within polynomial times.

3.5.2 Tucker Decomposition

3.5.2.1 Advantages

The advantages of Tucker decomposition are as follows:

• There are algorithms that can converge in polynomial times (e.g., HOSVD),
although convergence to the global minimum is not guaranteed.

• It has weight, G, that can evaluate importance of each term.
• ALS can be used to optimize the solution obtained by the method with the

guarantee of convergence within polynomial time.
• Although it is limited to the product of truncated rank of each mode, i.e.,∏m

α=1 Rα where Rα is the truncated rank of αth mode, truncation decomposition
is straightforward.

• We do not need to assign initial values to perform ALS since initial values can
be computed by HOSVD which requires only polynomial time.
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3.5.2.2 Disadvantages

The disadvantages of Tucker decomposition are as follows:

• Since all possible combinations of singular value vectors are present, selection
of important terms based upon weight G is inevitably subjective.

• In the full rank TD, i.e. Rα = Nα where Nα is the number of variables in αth
mode, the number of degrees of freedom increases to

∏m
α=1 Nα +∑m

α=1 N2
α from

that of original tensor,
∏m

α=1 Nα .
• It does not have unique solutions, because applying unitary transformation does

not alter the amount of residues.

3.5.3 Tensor Train Decomposition

3.5.3.1 Advantages

The advantages of tensor train decomposition are as follows:

• It has superior ability to reduce degrees of freedoms to other two TDs. In CP
decomposition, degrees of freedom is as many as L

∑m
α=1 Nα . That in Tucker

decomposition is as many as
∏m

α=1 Nα +∑m
α=1 N2

α . On the other hand, that of
tensor train decomposition is as many as N1R1 +∑m

α=1 Rα−1RαNα +NmRm−1.
Thus, degrees of freedom increases are only proportional to logarithmic order of
terms in decomposition.

• It has algorithm that converges in polynomial time.
• ALS can be applied to optimize the obtained solution.
• We do not need to assign initial values to perform ALS since initial values can

be computed by algorithm which requires only polynomial time.

3.5.3.2 Disadvantages

• It does not have unique solutions, because applying unitary transformation does
not alter the amount of residues.

• It does not have weight that evaluates importance of each term.

3.5.4 Superiority of Tucker Decomposition

Considering the advantages and disadvantages of three TDs, we decided to employ
Tucker decomposition implemented by HOSVD to be applied to real problems
in the following sections. It is primarily because it has weight to select relevant
terms. Tensor train decomposition does not have weight, thus it is not suitable
to employ the application that needs the interpretation of the outcome of TDs. In



74 3 Tensor Decomposition

other applications, e.g., image analysis, because it is not required to interpret TDs
themselves, tensor train decomposition does not have to be excluded. Nevertheless,
in this monograph, the application to the biological problem is the main topic. In
the application to biological problems, interpretability is important. Tensor train
decomposition that lacks the weight to evaluate each term is not suitable.

On the other hand, CP decomposition apparently has more interpretability than
Tucker decomposition because it provides one-to-one correspondence between
singular value vectors. The apparent superior interpretability of this method is not
fully trustable because of heavy initial value dependence. It is not also ideal one
because increasing L often results in distinct results obtained by smaller L. In this
case, it is unsure how large L should be.

Because of the above reasons, HOSVD is considered to be the best method that
can be applied to tensors when interpretability is important. In addition to this,
because HOSVD is natural extension of SVD to higher mode tensors, we can discuss
the application of SVD (or PCA) and that of HOSVD in the integrated manner.

Appendix

Moore-Penrose Pseudoinverse

Moore-Penrose pseudoinverse [1], which is denoted as A†, of matrix A satisfies the
following conditions:

• AA†A = A

• A†AA† = A†

• (A†A)T = A†A

• (AA†)T = AA†

Suppose we need to find x ∈ R
M that satisfies

Ax = b (3.72)

where A ∈ R
N×M and b ∈ R

N . It is known that there is a unique solution only
when N = M .

Moore-Penrose pseudoinverse can solve Eq. (3.72) because

x = A†b (3.73)

gives

• the unique solution of Eq. (3.72) when N = M .
• the x that satisfies Eq. (3.72) with minimum |x| when N < M (i.e., when no

unique solutions are available).
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• the x with minimum |Ax − b| when N > M (equivalent to the so-called linear
regression analysis).

When N < M , there are infinitely large number of solutions that satisfy
Eq. (3.72). Moore-Penrose pseudoinverse allows us to select one of them, which
has minimum |x|. On the other hand, when N > M , there are not always solutions
that satisfy Eq. (3.72). Moore-Penrose pseudoinverse allows us to select the solution
having the minimum |Ax − b|, i.e., the smallest residuals. Thus, by computing
Moore-Penrose pseudoinverse, we can always compute x that satisfies Eq. (3.72)
as much as possible in some sense.

How to compute A† is as follows. Apply SVD to A as

A = UΣV T (3.74)

U ∈ R
N×M,Σ, V ∈ R

M×M for N > M and U,Σ ∈ R
N×N, V ∈ R

M×N for
N < M . When U or V is not a square matrix, UT U = V T V = I , but UUT �= I

and V V T �= I . When U and V are square matrices, UT U = UUT = V T V =
V V T = I .

Then A† can be defined as

A† = V Σ−1UT (3.75)

It is not difficult to show that A† = V Σ−1UT satisfies the required conditions
because

AA† =
(
UΣV T

) (
V Σ−1UT

)
= UΣΣ−1UT = UIUT =

{
UUT ,N > M

I,N ≤ M

(3.76)
and

A†A =
(
V Σ−1UT

) (
UΣV T

)
= V Σ−1ΣV T = V IV T =

{
I,N ≥ M

V V T ,N < M

(3.77)
where V T V = I for N > M and UT U = I for N < M are used.

Then when N > M ,

AA†A = A
(
A†A

)
= AI = A, (3.78)

A†AA† =
(
A†A

)
A† = IA† = A† (3.79)

(
AA†

)T =
(
UUT

)T =
(
UT
)T

UT = UUT = AA† (3.80)

(
A†A

)T = IT = I = A†A (3.81)
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On the other hand, when N < M ,

AA†A =
(
AA†

)
A = IA = A, (3.82)

A†AA† = A†
(
AA†

)
= A†I = A† (3.83)

(
AA†

)T = IT = I = AA† (3.84)

(
A†A

)T =
(
V V T

)T =
(
V T
)T

V T = V V T = A†A (3.85)

When N = M , these are obvious because AA† = A†A = I .
The reason why we can treat Eq. (3.72) using Moore-Penrose pseudoinverse as

mentioned in the above is as follows. Define

x0 = A†b +
(
I − A†A

)
w (3.86)

with arbitrary vector w. Then because

Ax0 = AA†b +
(
A − AA†A

)
w = AA†b (3.87)

when AA† = I , i.e., N ≤ M , Ax0 = b, x0 is a solution of Eq. (3.72). This
corresponds to the cases where there are no unique solutions because the number of
variables, M , is larger than the number of equations, N . x0 can be a unique solution
only when A†A = I as well, i.e., N = M because of Eq. (3.86). This corresponds
to the cases where there is a unique solution because the number of variables, M , is
equal to the number of equations, N .

Here one should notice that A†b ⊥ (I − A†A
)
w because

(
I − A†A

)
w · A†b =

((
I − A†A

)
w
)T

A†b = wT
(
I − A†A

)T

A†b

= wT
(
I − A†A

)
A†b = wT (A† − A†AA†)b

= wT 0b = 0. (3.88)

Thus from Eq. (3.86)

|x0|2 =
∣∣∣A†b

∣∣∣
2 +

∣∣∣
(
I − A†A

)
w

∣∣∣
2

(3.89)

This means |x0| >
∣∣A†b

∣∣. Therefore, A†b is the solution that satisfies Eq. (3.72) and
has the smallest |x0| (in other words, the solution with the L2 regulation term).
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When AA† �= I , i.e., N > M , there are no solutions. This corresponds to the
cases where there are no solutions because the number of variables, M , is smaller
than the number of equations, N . In this case, x = A†b is known to be optimal
(i.e., the solution with minimum |Ax − b|). In order to prove this, first we need to
compute AT (AA†b − b) as

AT
(
AA†b − b

)
= AT

((
AA†

)T

b − b

)
=
((

AA†A
)T − AT

)
b

=
(
AA†A − A

)T

b = 0b = 0 (3.90)

With taking transposition of the above, we can also get

(
AA†b − b

)T

A = 0 (3.91)

Using these, we can show

|Ax − b|2 =
∣∣∣
(
Ax − AA†b

)
+
(
AA†b − b

)∣∣∣
2

(3.92)

=
∣∣∣Ax − AA†b

∣∣∣
2 +

(
Ax − AA†b

)T (
AA†b − b

)

+
(
AA†b − b

)T (
Ax − AA†b

)
+
∣∣∣AA†b − b

∣∣∣
2

(3.93)

=
∣∣∣Ax − AA†b

∣∣∣
2 +

(
x − A†b

)T

AT
(
AA†b − b

)

+
(
AA†b − b

)T

A
(
x − A†b

)
+
∣∣∣AA†b − b

∣∣∣
2

(3.94)

=
∣∣∣Ax − AA†b

∣∣∣
2 +

(
x − A†b

)T

0

+0
(
x − A†b

)
+
∣∣∣AA†b − b

∣∣∣
2

(3.95)

=
∣∣∣Ax − AA†b

∣∣∣
2 +

∣∣∣AA†b − b

∣∣∣
2

(3.96)

≥
∣∣∣AA†b − b

∣∣∣
2

(3.97)

This means that x = A†b is an optimal solution of Eq. (3.72).
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Part II
Feature Extractions

Feature extraction is a generation of new feature in the data-driven way. In this part,
two methods, PCA and TD are extensively considered. Although both are supposed
to be fully linear methods, because they decompose variables to products of new
variables, it can include non-linear transformation partly. In addition to this, both
have the ability to reduce degrees of freedom. They are discussed from the data
science point of views, with the applications to the data sets, for the usage in the
later chapters.



Chapter 4
PCA Based Unsupervised FE

There is no sound that I do not need.
Rio Kazumiya, Sound of the Sky, Season 1, Episode 3

4.1 Introduction: Feature Extraction vs Feature Selection

In this chapter, I mainly discuss about the situation where feature extraction or
feature selection is inevitable. When or under what kind of conditions, do we need
either or both of two? Here are some examples of such situations.

• Case 1: The number of features attributed to individual samples is larger than the
number of samples.

• Case 2: Features attributed to individual samples are not independent of one
another.

• Case 3: Some of the features attributed to samples are not related to some
properties that we would like to relate features to.

Although these above three cases are not comprehensive, they are good examples
by which we can discuss the reason why we need feature extraction and/or feature
selection. An example of case 1 is linear equations that can be represented as Ax =
b where A ∈ R

N×M, x ∈ R
M, b ∈ R

N and x represents variables, A represents
coefficients, and b represents constants. When N < M , not only there are no unique
solutions, but also there are always solutions, even when A and b are purely random
numbers. The fact that there are no unique solutions prevents us from interpreting
outcome, because there can be multiple distinct unique solutions. The fact that there
are always solutions means that there might be meaningless solutions. In this case,
we need feature extraction and/or feature selection such that we can have limited
number of features that is smaller than the number of samples. An example of case 2
is multicollinearity. In this case, although apparently, Ax = b is uniquely solvable,
it is actually not because coefficient matrix A is not regular (in other words, row
vectors are not independent of one another). In this case, we need to apply feature
extraction or feature selection in order to obtain reduced number of features that
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enables us to get unique solutions. An example of case 3 is that some elements of A

are zero. Especially, if A includes column vectors totally filled with zero, variables
that correspond to these columns are not related to b at all. When A is given, we can
simply discard these variables. Nevertheless, when A is required to be inferred from
x and b (e.g., linear regression analysis), it is impossible to exclude there variables
in advance. This might result in the incorrect estimation of A. In this case, we need
feature selection that enables us to exclude variables not related to b in advance.

From these examples, we can know that the need of feature selection and feature
extraction is very ubiquitous. So, the next question is which strategy is better to
address these problems. Unfortunately, the answer is highly context dependent and
cannot be decided based upon mathematical considerations. For example, let us
consider image analysis, e.g., face recognition. In this case, it is rather obvious that
not all pixels of digital images but only a limited number of them is useful for the
purpose. If small number of features generated from large number of pixels work
well, there is no need to go further. On the other hand, suppose that the problem is
the inference about bankruptcy, in other words, the prediction of who will bankrupt.
In this case, even if a newly generated feature composed of numerous personal
information, e.g., income, age, education history, address, and so on, works pretty
well, it might not be a final goal. This is because collecting these information might
cost or is impossible at all. If another feature composed of more limited number
of features works, even if the performance is a little bit less, another one might be
employed because of easiness to use. Thus, it is inevitable to specify situation that
we want to discuss.

As for the targeted field, I would like to say that the targeted field is bioinfor-
matics as the title of this book says. In bioinformatics analysis, it is very usual that
feature selection is more favorable than feature extraction because of the following
reasons. In bioinformatics analysis (or in biology although it means the same),
measuring individual features often costs. Thus, measuring less number of features
can reduce the cost spent to individual observations. This results in the increased
number of observations that often leads to better outcome. Even when measuring
individual features does not cost, e.g. in the case of high throughput measurements,
feature selection is often better than feature extraction, because each feature has
its own meaning. For example, if features are genes, the selected limited number
of genes are more interpretable than features generated by the combination of
large number of genes. Thus, in the following I assume the situation where feature
selection is more favorable than feature extraction even if not explicitly denoted.

4.2 Various Feature Selection Procedures

Although there are various ways to classify numerous number of previously
proposed feature selection procedures, I would like to employ the one shown in
Table 4.1. Feature selection strategies can be classified into two groups in two ways.
One way is supervised ones vs unsupervised ones. Not to mention, supervised ones
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Table 4.1 Classification of feature selections

One by one Collective

Supervised Statistical testsa Random forest, LASSO

Unsupervised Highly variable genes, bimodal genes PCA based unsupervised FE
at test, limma, SAM

are definitely more popular than unsupervised ones. This is because the purpose
of feature selection is usually purpose oriented. For example, if the study aims to
investigate diseases, it is natural to consider genes expressed differently between
patients and healthy controls. If the study aims to predict who will bankrupt, it is
reasonable to consider features related to something financial. On the other hand,
unsupervised feature selection might sound self-discrepancy, because it is unlikely
possible to select features without any clear purposes. In spite of that, unsupervised
feature selection is still possible. For example, it is natural to select features with
maximum variance, because large variance might reflect the ability of the feature
that represents diverse categories hidden in the considered sample. Thus, although
it is less popular, unsupervised feature selection is still possible. Another way to
classify feature selection strategies is one by one vs collective. The former means
that feature selection is performed without the consideration of interaction between
features. For example, when conventional statistical tests are applied to a feature of
samples composed of two categories, the P -value that rejects the null hypothesis
that a feature of members of two samples obeys the same distribution is computed.
Then, if P value is small enough, say less than 0.01, the feature is identified as
distinct between two categories. This means that each P -value attributed to each
feature is not affected by other features at all. On the other hand, the latter considers
the interaction between features. For example, when dummy variables are attributed
to each of two categories, we can make linear regression using arbitrary number of
features to predict dummy variables. In this case, the interaction between features
included into regression equation is considered. Then, features used to construct
regression equation with good performance are selected.

In order to demonstrate how differently feature selections that belong to four
categories listed in Table 4.1 work, I prepare two synthetic data sets. Both are
matrices xij ∈ R

N×M where i and j correspond to features’ index and samples’
index, respectively. In both data sets, the only first N1(< N) features, xij , i ≤ N1,
are distinct between two classes where j ≤ M

2 and j > M
2 belong to the first

and second class, respectively. xij is also drawn from Gaussian or mixed Gaussian
distribution whereN(μ, σ ) represents Gaussian distribution that has mean of μ and
standard deviation σ , respectively.

• Data set 1:

xij ∼
⎧
⎨

⎩

N(0, σ ) j ≤ M
2 , i ≤ N1

N(μ0, σ ) j > M
2 , i ≤ N1

1
2N(0, σ ) + 1

2N(μ0, σ ) i > N1.

(4.1)
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• Data set 2:

xij ∼
⎧
⎨

⎩

N(0, σ ) j ≤ M
2 , i ≤ N1

N(μ0, σ ) j > M
2 , i ≤ N1

N(μ1, σ ) i > N1.

(4.2)

Thus, the only difference between two synthetic data sets is if the N − N1 features
(i.e., i > N1) not distinct between two classes are drawn from bimodal [Eq. (4.1)] or
unimodal [Eq. (4.2)] distributions. Specifically, N = 100,M = 20, μ0 = 4, μ1 =
μ0
2 = 2, N1 = 10 and σ = 1 in the following. Performance is averaged over one

hundred independent trials. The number of features distinct between two categories,
N1, is assumed to be known in advance. μ1 is selected such that the sample mean
of ith feature, 〈xij 〉j defined by Eq. (2.56), does not differ between two models.

The statistical tests used belong to either of four categories. t test is employed
as a representative of one by one, supervised feature selection. P values computed
by t test are attributed to individual features. Top N1 features with smaller P values
are selected. As a representative of collective supervised feature selection, linear
regression is employed. The dummy variable yj ∈ [0, 1]M is given such that yj =
0, j ≤ M

2 and yj = 1, j > M
2 . Then using regression coefficient vector, ai ∈

R
N , Xa = y is assumed. a is computed with a = X†y using Moore-Penrose

pseudoinverse, X†, because there are no unique solutions due to N > M . Top N1
features with larger absolute ai are selected. As for representatives of one by one,
unsupervised feature selections, two methods are employed. One is highly variable
features. Sample variance of each feature,

1

M

⎛

⎝xij − 1

M

M∑

j=1

xij

⎞

⎠

2

, (4.3)

is computed and top N1 = 10 features associated with larger variance are selected.
Another is unimodal test. Unimodal test computes P -values that reject the null
hypothesis that xij s with fixed i are drawn from unimodal distribution; Hartigan’s
dip test, which rejects the null hypothesis that the distribution is unimodal [1] is used
for this purpose. Then top N1 = 10 features associated with smaller P -values are
selected. Finally, as a representative of collective unsupervised feature selections,
we employ PCA. PCA is applied to xij such that kth PC score vectors, uk ∈ R

N ,
are attributed to features. In other words, uk is computed as the eigenvectors of
Sii′ , Eq. (2.50), Sii′uk = λkuk where λk is eigenvalue. Then, top N1 = 10 features
associated with the larger absolute first PC score, |u1i |, are selected (the reason why
this procedure works as feature selection will be discussed later).

Table 4.2 shows the number of features that are distinct between two classes and
are also selected by individual methods. When tests are applied to data sets 1 and
2, two supervised methods samely achieved well although the collective method
achieved a little bit worse than one by one method. The performance achieved by
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Table 4.2 Performance of statistical tests applied to two synthetic data set 1 defined by Eq. (4.1)
and data set 2 defined by Eq. (4.2)

Supervised Unsupervised

One by one Collective One by one Collective

Data set t test Linear regression Variance Unimodal test PCA

1 10.00 9.88 1.20 1.68 8.75

2 10.00 9.79 9.99 5.68 10.00

1 (shuffled) 1.03 0.08 1.34 1.66 8.78

2 (shuffled) 0.94 0.89 10.00 5.76 10.00

Numbers represent mean number of features selected by each method, among N1 features distinct
between two classes, i < N1(= 10). Shuffled means that class labels are shuffled

unsupervised method is quite distinct between two data sets. Two unsupervised one
by one methods fail when data set 1 is considered while they performed better for
data set 2. This is reasonable because all N features obey the identical distribution
if class labels are not considered. Thus, unsupervised methods have no ways to
distinguish features with and without distinction between two classes. In this sense,
it is remarkable that PCA, an unsupervised and collective method, can perform
similarly well for both data sets 1 and 2.

One might wonder why unsupervised method must be considered, because
supervised methods perform better. This impression changes once the class labels
are shuffled. It is reasonable that no supervised methods work well. On the other
hand, it is also reasonable that the performance by unsupervised method does not
change because of class label shuffling. This suggests that unsupervised feature
selections are better choices when class labels are not available or not trustable.

Unsupervised collective feature selection, PCA, is successful for data set 1, for
which other unsupervised methods fail, and shuffled data set, for which supervised
collective methods fail. It is important why it can happen. In order to see this, we
investigate the first PC loading vectors, v1 ∈ R

M , which is defined as v1 = 1
λ1

XT u1
(see Eq. (2.21)). Figure 4.1 shows the first PC loading vectors. For all cases, uij s
with j ≤ M

2 take positive values while uij s with j > M
2 take negative value. Since

u1 = λ1Xv1, u1i reflects the difference between two classes. Thus, selecting is
associated with absolutely larger u1i can identify correctly features associated with
distinction between two classes for all four cases. This is the reason why PCA can
always perform well.

4.3 PCA Applied to More Complicated Patterns

In the previous section, feature selection with two classes was discussed. Neverthe-
less, it is the simplest case. There are many more complicated feature selections.
One direction is to have more classes than two. Another direction is to have
more than one classifications simultaneously. Here, let us discuss both together,
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Fig. 4.1 The first PC loading
vectors, v1 ∈ R

M , for data set
1, shuffled data set 1, data set
2, and shuffled data set 2.
Black and red bars
correspond to classes 1 and 2,
respectively
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i.e., feature extraction under the conditions having more than one classification
with more than two classes. In order to demonstrate feature selections under this
condition, we extend data set 2, Eq. (4.2), as follows.

Data set 3

xij ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(0, σ ) j ≤ M
2 , i ≤ N1

N(μ0, σ ) j > M
2 , i ≤ N1

N(0, σ ) j ≤ M
4 , N1 < i ≤ N1 + N2

N(μ1, σ ) M
4 < j ≤ M

2 , N1 < i ≤ N1 + N2

N(2μ1, σ ) M
2 < j ≤ 3M

4 , N1 < i ≤ N1 + N2

N(3μ1, σ ) j > 3M
4 , N1 < i ≤ N1 + N2

N(μ2, σ ) i > N1 + N2.

(4.4)

Features i ≤ N1 are composed of two classes, those N1 < i ≤ N1 + N2 are
composed of four classes, and those i > N1 + N2 are composed of no classes. Thus
the feature selection aims to identify which features are composed of how many
classes.

Now the problem is more difficult. For example, simply trying to identify which
features are composed of two classes does not help us to distinguish between
features composed of two classes and those composed of four classes, because four
classes can be also considered to be two classes if each two of four classes are
considered as one class. Thus in order to perform feature selections under such
a complicated condition, we usually need more detailed information about class
labeling.

It is not very easy to adapt to this situation. Suppose that we have already known
20 samples classified into the four classes as



4.3 PCA Applied to More Complicated Patterns 87

(A,A,A,A,A,B,B,B,B,B,C,C,C,C,C,D,D,D,D,D) (4.5)

or into the two classes as

(E,E,E,E,E,E,E,E,E,E, F, F, F, F, F, F, F, F, F, F ). (4.6)

Even if this is the case, identification of features with four classes is not straightfor-
ward. Simple linear regression analysis is not applicable, because we know only that
four classes differ from one another. In order to perform linear regression analysis,
we need to assign numbers to each of four classes. If we do not know practical
relationship between four classes, there are no ways to assign numbers to four
classes. Pairwise comparison between four classes might be possible, but might
not work well, because we need to integrate pairwise comparisons in order to rank
features. Suppose we try all possible six pairwise comparisons in Eq. (4.5), as

(A,B), (A,C), (A,D), (B,C), (B,D), (C,D). (4.7)

If we consider this is occasionally applied to Eq. (4.6), they correspond to compar-
isons of

(E,E), (E, F ), (E, F ), (E, F ), (E, F ), (F, F ). (4.8)

Thus, in contrast to the expectation, four out of six comparisons will report that
they differ. Thus, if difference between two classes, E and F, is greater than
that between pairs in four classes, A, B, C, and D, integration of six pairwise
comparison might report that Eq. (4.8) more fits to four classes than Eq. (4.7). In
the following, we consider occasions where integration of six pairwise comparisons
occasionally report that Eq. (4.8) is more likely to be four classes than Eq. (4.7). For
the simplicity, we assume that all pairwise comparisons (E,F) in Eq. (4.8) are higher
ranked than all pairwise comparisons in Eq. (4.7). The requirement that difference
between two classes among four classes should be smaller than that among two
classes is not unrealistic. It is very usual that values of features have both upper
and lower boundary. In this case, the distinction between two classes when samples
are classified into two classes is that between the upper and the lower halves. On
the other hand, the distinction between two classes when samples are classified into
four classes is that between any pairs of four quantiles. If region is divided into
two, the distinction is larger than that when region is divided into four. In this case,
the following happens (Table 4.3). Four pairwise comparisons (E,F) in Eq. (4.8) is
always higher ranked than corresponding four pairwise comparisons, (A,C), (A,D),
(B,C), and (B,D) in Eq. (4.7). On the other hand, two pairwise comparisons (E,E)

and (F, F ) in Eq. (4.8) are always lower ranked than corresponding two pairwise
comparisons, (A,B) and (C,D). There are N1 features composed of two classes
and N2 features composed of four classes. Thus mean rank of pairs (A,B) and
(C,D) are N2

2 because N2 features composed of four classes are ranked higher
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Table 4.3 Mean (expected) rank, mean lowest rank, and mean top ranks of pairwise comparisons

Integrated
rank

Pairs in Eq. (4.7) (A,B) (A,C) (A,D) (B,C) (B,D) (C,D)

Mean rank N2
2 N1 + N2

2 N1 + N2
2 N1 + N2

2 N1 + N2
2

N2
2 3N2 + 4N1

Pairs in Eq. (4.8) (E,E) (E, F ) (E, F ) (E, F ) (E, F ) (F, F )

Mean rank N+N2
2

N1
2

N1
2

N1
2

N1
2

N+N2
2 N +

2N1 + N2

Pairs in Eq. (4.7) (A,B) (A,C) (A,D) (B,C) (B,D) (C,D)

Mean lowest rank N2 N1 + N2 N1 + N2 N1 + N2 N1 + N2 N2 4N1 + 6N2

Pairs in Eq. (4.8) (E,E) (E, F ) (E, F ) (E, F ) (E, F ) (F, F )

Mean top rank N2+N−N1
2 1 1 1 1 N2+N−N1

2 N − N1 +
N2 + 4

Integrated rank is summation of ranks of six pairwise comparisons

than other features. Mean rank of (A,C), (A,D), (B,C), and (B,D) are N2
2 + N1

because N1 features composed of two classes are always ranked higher than N2
features composed of four classes. Mean rank of four pairs (E, F ) in Eq. (4.8) is N1

2
because N1 features composed of two classes are higher ranked than other features.
Mean rank of two pairs (E,E) and (F, F ) are N+N2

2 because N2 features composed
of four classes are higher ranked than others. Next, integrated rank is computed as
the summation over six pairwise comparisons. Then, integrated rank of features
composed of four classes is

2 × N2

2
+ 4 ×

(
N1 + N2

2

)
= 4N1 + 3N2 (4.9)

and integrated rank of features composed of two classes is

2 × N + N2

2
+ 4 × N1

2
= N + 2N1 + N2 (4.10)

In order that N2 features composed of four classes are higher ranked than N1
features composed of two classes based upon integrated rank in average, Eq. (4.9)
< Eq. (4.10). Thus

Eq. (4.10) − Eq.(4.9) > 0 (4.11)

N + 2N1 + N2 − (4N1 + 3N2) > 0 (4.12)

N − 2N1 − 2N2 > 0 (4.13)

N > 2(N1 + N2) (4.14)

is required. Otherwise, integrated rank based upon six pairwise comparisons,
Eq. (4.7), cannot select N2 features composed of four classes more likely than N1
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features composed of two classes. This means that total number of features distinct
between any pairs of classes must not exceed the half of total number of features.
This requirement is unlikely fulfilled always.

Equation (4.14) that cannot always be expected to be satisfied is only for
average. Even if Eq. (4.14) stands, at most only half of selected features is correctly
composed of four classes. If we require that there should not be any false positives,
requirement can become more strict (Table 4.3). In order that, we have to require that
top ranked features among those composed of two classes must be always ranked
lower than the lowest ranked features among those composed of four classes. The
rank of bottom ranked feature among those composed of four classes by the two
pairwise comparison (A,B) and (C,D) in Eq. (4.7) is N2 because there are N2
features that are composed of four classes and are ranked higher than other features.
The rank of feature ranked as bottom by the four pairwise comparisons (A,C),
(A,D), (B,C), and (B,D) in Eq. (4.7) among those composed of four classes is
N1+N2 because N1 features that are composed of two classes and are ranked higher
than N2 features composed of four classes. On the other hand, features ranked
as top by two pairwise comparisons (E,E) and (F, F ) in Eq. (4.8) among those
composed of two classes are ranked uniformly between N2 and N − N1. This is
because N2 features composed of four classes are higher ranked than N1 features
composed of two classes and there are N1 features ranked lower than top ranked
features among those composed of two classes. Thus, mean top ranked features
among those composed of two classes by two pairwise comparisons (E,E) and
(F, F ) in Eq. (4.8) is N−N1+N2

2 . The rank of feature ranked as top by four pairwise
comparisons (E, F ) in Eq. (4.8) among those composed of two classes is 1, because
N2 features composed of two classes are higher ranked than other features. Thus
integrated bottom rank among N2 features composed of four classes is

2 × N2 + 4 × (N1 + N2) = 4N1 + 6N2 (4.15)

while integrated top rank among N1 features composed of two classes is

2 ×
(

N − N1 + N2

2

)
+ 4 = N − N1 + N2 + 4. (4.16)

In order that there are no false positives, i.e., N2 features composed of four classes
is always ranked higher than N1 features composed of two classes, Eq. (4.16) >

Eq. (4.15),

Eq. (4.16) − Eq. (4.15) > 0 (4.17)

N − N1 + N2 + 4 − (4N1 + 6N2) > 0 (4.18)

N − 5N1 − 5N2 + 4 > 0 (4.19)

N + 4 > 5(N1 + N2). (4.20)



90 4 PCA Based Unsupervised FE

This means that the number of features composed of two classes and that of four
classes must be less than 10% of N if N1 = N2. This is a less likely fulfilled
requirement than Eq. (4.14). Thus integration of six pairwise comparisons unlikely
correctly identifies N2 features composed of four classes when features composed
of two classes coexist with them.

Because pairwise comparisons are not expected to work well to identify features
composed of multiple classes when more than two kinds of multiple classes
coexist, e.g. Eq. (4.4), usually any other alternative strategies are recommended to
employ; ones of such alternative strategies are categorical regressions. In categorical
regression, class labels are converted to dummy variables, δkj that takes 1 when j th
sample belongs to kth class otherwise 0. Then, categorical regression analysis of xij

is

xij = ai +
∑

k

bikδkj (4.21)

where ai and bik are the regression coefficients specific to ith feature. Pairwise
comparisons that assume four classes could not distinguish features composed of
four classes from those composed of two classes well. This problem does not exist
in categorical regression analysis anymore. Suppose the simplest cases correspond
to two classes, Eq. (4.6), and four classes, Eq. (4.5), as

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) (4.22)

and

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4) (4.23)

respectively. It is obvious that there are no residual errors when Eq. (4.21) assuming
four classes (Table 4.4) is applied to Eq. (4.22) if ai = 3

2 , bi1 = bi2 = − 1
2 ,

bi3 = bi4 = 1
2 . Because there are no residual errors when Eq. (4.21) assuming four

classes (Table 4.4) is applied to Eq. (4.23) as well if ai = 5
2 , bi1 = − 3

2 , bi2 = − 1
2 ,

bi3 = 1
2 , and bi4 = 3

2 , this cannot discriminate four classes from two classes.
Nevertheless, Eq. (4.21) assuming two classes (Table 4.4) can discriminate two

Table 4.4 δkj in categorical regression, Eq. (4.21), assuming either four classes, Eq. (4.5), and two
classes, Eq. (4.6), respectively

Four classes Two classes

k 1 ≤ j ≤ 5, 6 ≤ j ≤ 10, 11 ≤ j ≤ 15, 16 ≤ j ≤ 20, 1 ≤ j ≤ 10, 11 ≤ j ≤ 20

1 1 0 0 0 1 0

2 0 1 0 0 0 1

3 0 0 1 0

4 0 0 0 1
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classes from four classes. If a1 = 3
2 , bi1 = − 1

2 and bi2 = 1
2 , there are no residual

errors for Eq. (4.22). On the other hand, there are no solutions with no residual
errors when Eq. (4.21) assuming two classes (Table 4.4) is applied to Eq. (4.23).
Thus, integration of categorical regression analyses assuming four classes and two
classes can identify features composed of two classes and those composed of four
classes successfully.

In order to see if categorical regression analysis, Eq. (4.21), can identify features
composed of two classes and those composed of four classes simultaneously, we
apply categorical regression, Eq. (4.21), to data set 3, Eq. (4.4), as follows. First
we apply categorical regression, Eq. (4.21), assuming four classes to data set 3.
Because categorical regression assuming four classes are simultaneously coincident
with features composed of four classes and those composed of two classes, we
select top ranked N1 + N2 features, which is the total number of features that
are composed of either two or four classes, i.e. i ≤ N1 + N2. Then, we apply
categorical regression assuming two classes to data set 3. Because categorical
regression assuming two classes are coincident with only features composed of two
classes, we select top ranked N1 features, which is the total number of features
that are composed of two classes, i.e. i ≤ N1. Features selected by categorical
regression assuming two classes are considered as features composed of two classes.
On the other hand, features selected by categorical regression assuming four classes
but not selected by categorical regression assuming two classes are considered
as features composed of four classes. Table 4.5 shows the performance of this
integrated categorical regression assuming two classes and four classes when N =
100,M = 20, μ0 = 8, μ1 = μ2 = μ0

2 = 2, N1 = 10, N2 = 10 and σ = 1
in data set 3, Eq. (4.4). Performance is averaged over one hundred independent
trials. Categorical regression can identify features composed of two classes and four
classes completely.

In order to see if PCA based unsupervised FE is applicable, it is applied to the
same data set, too. In this case, we selected top 10 features and the second top
10 features (i.e., ranked between 11th and 20th) associated with absolutely larger
u1i . Since we do not know which one corresponds to two classes or four classes,
after investigating coincidence, we assign top 10 to four classes and the second
top 10 to two classes. PCA based unsupervised FE is also successful (Table 4.5).
The only disadvantage of PCA based unsupervised FE is that it cannot find the
correspondence between selected sets of features and the number of classes in
advance.

Table 4.5 Performance of
statistical tests applied to
synthetic data sets 3 defined
by Eq. (4.4)

Categorical regression PCA based unsupervised FE

Two classes Four classes Two classes Four classes

10.00 10.00 9.97 9.97

Numbers represent mean number of features distinct between
two classes, i < N1(= 10), and four classes, N1 < i ≤ N1 +
N2, among N1 features selected by each method, respectively
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Fig. 4.2 The first PC loading
vectors, v1 ∈ R

M , for data
set 3
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In order to see this, we can observe the first PC loading vector, v1 (Fig. 4.2). It
is obvious the first PC loading vector is coincident with four classes. This is the
reason why the top ranked 10 features are coincident with, not two classes, but four
classes. Although we do not repeat the application to shuffled data, it is obvious that
categorical regression does not work toward shuffled data because feature selection
is performed with class labeling. PCA based unsupervised FE is not affected by
shuffling, because PC score vectors, uks, which is used for feature selection, are not
affected by the order of samples, thus are not affected by the class labeling as well.
Thus, in this complicated situation, i.e., coexistence of features composed of two
classes and four classes, PCA based unsupervised FE is the most favorable method.

4.4 Identification of Non-sinusoidal Periodicity by PCA
Based Unsupervised FE

Identification of periodicity, no matter whether it is spatial or temporal, has ever
been central issue of data science. In order to identify periodicity, sinusoidal
regression is often used. Sinusoidal regression is defined as

xij = ai + bi sin

(
2π

T
j

)
+ ci cos

(
2π

T
j

)
(4.24)

where ai, bi, ci are regression coefficients specific to ith feature and T is period. In
the following, for the simplicity, T ∈ N. There are multiple practical problems on
regression analysis. At first, we need to know period T in advance in order to apply
regression analysis to data set. Of course, it is possible to estimate T from the data
set with considering T to be a fitting parameter as well. Nevertheless, there is no
known algorithm to find best T values, because any minimization algorithm applied
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to residues might fall in local minimum that differs from true T . Second, and more
critical problem is that not all periodicity is sinusoidal. Only requirement of xij to
be periodic with the period T is

xij = xij+T (4.25)

which does not restrict functional forms to be sinusoidal at all.
In order to see how well sinusoidal regression, Eq. (4.24), can work, we apply it

to the data set 4 with period of T

Data set 4

xij =
{

f(i+j) mod T + aεij i ≤ N1

aεij i > N1
(4.26)

where fj ∈ R
T and εij ∈ R

N×M are drawn from normal distributionN(0, σ ), mod
is modulo operation, and 0 < a < 1 is the coefficient that represents signal noise
ratio. Because of the term (i + j) mod T ,

{
xij

∣∣ 1 ≤ j ≤ M
}
s have distinct phases

from one another. Performance is averaged over 100 independent trials. Table 4.6
shows the performance when N = 100,M = 50, T = 10, a = 0.1, σ = 1, N1 =
10. It is as small as 5.72 which is hardly said to be a good performance. This low
performance is because of fj ’s non-sinusoidal functional form (Fig. 4.3).

Table 4.6 Performance of
statistical tests applied to
synthetic data sets 4 defined
by Eq. (4.26)

Sinusoidal regression PCA based unsupervised FE

5.72 10

Numbers represent mean number of features with
period T , i ≤ N1(= 10) among N1 features selected
by each method, respectively

Fig. 4.3 Typical fj mod T ∈
R

M(M = 50, T = 10) in
Eq. (4.26) (black) and its
sinusoidal regression,
Eq. (4.24) (red)
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Fig. 4.4 (a) A typical first PC loading (black), v1j , and second PC loading (red), v2j . (b)
Scatterplot of typical first PC score, u1i , and the second PC score, u2i , that correspond to PC
loading shown in (a)

Next, we apply PCA based unsupervised FE to data set 4, Eq. (4.26), as in
Sect. 4.2 excluding one point; instead of ranking features based on the absolute
value of the first PC score, |u1i |, features are ranked based upon squared sum of
the first and second PC scores u2

1i + u2
2i . Table 4.6 shows the performance which is

as large as 10, i.e., no errors.
The reason why we need to employ, not only the first PC score, u1i , but also the

second PC score, u2i , can be seen in Fig. 4.4. As can be seen in Fig. 4.4a, the first
and second PC loading represent periodic function of period T (= 10). And the first
10 pairs of the first and the second PC scores, uki, i ≤ N1(= 10), k ≤ 2, form
circular trajectory in the plain spanned by the first and the second PC (Fig. 4.4b).
This is because of the term (i + j) mod T in Eq. (4.26) that generates phase shift
between features xij , i ≤ N1(= 10). In some cases, the corresponding PC loading,
v1j and v2j , represent not the period T , but the period T

2 or T
3 . Nevertheless, in

data set 4, Eq. (4.26), only features i ≤ N1(= 10) can be coincident with higher
modes, T

2 or T
3 . Thus, these cases also can identify periodic features i ≤ N1(= 10)

correctly.
In the above explanation, we use circular trajectory shown in Fig. 4.4b to reasons

why we need to employ the first two PC scores for feature selection. Nevertheless,
in the practical application, the order of analysis can be reversed. First, we might
observe the pairwise scatterplots of PC scores to identify which pairs of features
have periodicity because periodic features should draw circular trajectory. Next,
we can see individual PC loading as in Fig. 4.4a in order to see period T . This
is possible because it is unsupervised method that assumes no specific periodic
functional forms in advance. In this sense, PCA based unsupervised FE is superior
to the sinusoidal regression to select periodic features.
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In order to see if PCA based unsupervised FE can recognize periodicity under
the more complicated situation, I modified data set 4, Eq. (4.26), such that cycles
with two period, T and T ′, coexist, i.e.

Data set 5

xij =
⎧
⎨

⎩

f(i+j) mod T + aεij i ≤ N1

g(i+j) mod T ′ + aεij N1 < i ≤ N2

aεij i > N2

(4.27)

where gj ∈ R
T ′

is drawn from normal distribution N(0, σ ). Figure 4.5 shows the
typical g that is far from sinusoidal profile (T ′ = 5, N2 = 20, other parameters
are the same as those in Eq. (4.26)). Figure 4.6 shows the typical first to fourth
PC scores, uk, 1 ≤ k ≤ 4, and PC loading, vk, 1 ≤ k ≤ 4. It is obvious that
Fig. 4.6a, c corresponds to period T ′ = 5 and Fig. 4.6b, d corresponds to period
T = 10, respectively. Thus, PCA based unsupervised FE basically has the ability
to identify features with two distinct periods even when they coexist. The problem
is that the first four PCs do not always correspond to two periods, T ′ = 5 and
T = 10, but other four PCs, e.g., the second, third, seventh, and eighth PCs,
correspond to these two periods, in contrast to data set 4, Eq. (4.26), where the first
two PC loading always correspond to period T = 10. Thus, in order to make use
of PCA to identify features with two distinct periods, we need to identify which PC
loading corresponds to two periods, T = 10 and T ′ = 5, respectively, by applying
sinusoidal regression, Eq. (4.24) with T = 10 and T = T ′ = 5. Thus, detailed
procedure is as follows:

1. Apply PCA to data set 5, xij (Eq. (4.27)).
2. Apply sinusoidal regression, Eq. (4.24), with T = T ′ = 5 to PC loading, vk and

select top two, k1 and k2.
3. Apply sinusoidal regression, Eq. (4.24), with T = 10 to PC loading, vk and select

top two, k′
1 and k′

2.

Fig. 4.5 Typical
gj mod T ′ ∈ R

M(T ′ = 5) in
Eq. (4.27) (black) and its
sinusoidal regression,
Eq. (4.24) with T = T ′ = 5
(red)
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Fig. 4.6 (a) Typical first PC loading (black), v1j , and the second PC loading (red), v2j . (b) Typical
third PC loading (black), v3j , and the fourth PC loading (red), v4j . (c) Scatterplot of typical first PC
score, u1i , and the second PC score, u2i , that correspond to PC loading shown in (a). (d) Scatterplot
of typical third PC score, u3i , and the fourth PC score, u4i , that correspond to PC loading shown in
(b). Black open circles: j ≤ N1(= 10), red open circles: N1 < j ≤ N2(= 20), green open circles:
N2 < j

4. Select top ranked N2(= 20) features using squared sum of two vkis, v2
k′

1i
+ v2

k′
2i

,

selected in step 3 (this is because PC score, uk with period T ′ = 5, identifies
features with periods T ′ = 5 and T = 10 as can be seen in Fig. 4.6c).

5. Select top ranked N1(= 10) features using squared sum of two vkis, v2
k1i

+ v2
k2i

,
selected in step 2 (this is because PC score, uk with period T = 10, identifies
only features with periods T = 10 as can be seen in Fig. 4.6d).

6. Identify features selected in step 5 as those with period T = 10.
7. Identify features selected in step 4 but not in step 5 as those with period T = 5.

Performance is averaged over 100 independent trials (Table 4.7). PCA based
unsupervised FE obviously can identify features with two distinct periods almost
completely.

In order to see if sinusoidal regressions, Eq. (4.24) with T = 10 and T =
T ′ = 5, can perform as well as PCA based unsupervised FE, we applied sinusoidal
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Table 4.7 Performance of
statistical tests applied to
synthetic data sets 5 defined
by Eq. (4.27)

Sinusoidal regression PCA based unsupervised FE

T = 10 T = T ′ = 5 T = 10 T = T ′ = 5

6.32 6.75 9.73 9.99

Numbers represent mean number of features with period
T = 10, i ≤ N1(= 10) among N1 features selected by
each method and that of features with period T = T ′ =
5, N1 < i ≤ N2(= 20) among N2 − N1(= 10) features
selected by each method, respectively

regression to data set 5, Eq. (4.27), too. Top 10(= N1 = N2 − N1) features were
selected with T = 10 and T = T ′ = 5, respectively (Table 4.7). Sinusoidal
regression is clearly inferior to PCA based unsupervised FE, possibly because of
non-sinusoidal nature of fj (Fig. 4.3) and gj (Fig. 4.5) in Eq. (4.27).

4.5 Null Hypothesis

In the above examples, the number of features considered, e.g., those composed of
multiple classes or those with specific period, is known in advance. Nevertheless,
in the real application, it is unrealistic to assume that the number of features that
should be selected is known in advance. In this case, usually P -values are attributed
to individual features. These P -values represent the possibility that observation can
happen accidentally under the null hypothesis that represents something opposite to
the nature that selected features should obey.

For example, when we search features composed of two classes, the P -values
represent the possibility that absolute difference of means between two classes
can become accidentally larger than observed values when all observations are
drawn from the same distribution (e.g., normal distribution with the same mean and
standard deviation). If P -values are small enough, we can consider these features
to be those composed of two classes, because the observed difference can unlikely
appear if there are no classes.

There are some issues in this strategy. The first one is how we can select the null
hypothesis. P -values are obviously dependent upon the selection of null hypothesis.
Thus, it is important to select “correct” null hypothesis to address proper P -values to
features. Unfortunately, there is no known established strategy to select the correct
null hypothesis. Null hypothesis, which should be rejected, cannot be observable.
Even if majority of features do not always follow null hypothesis, it might simply
mean that most of the features are associated with properties searched. Therefore,
only requirement is to present clearly null hypothesis together with the P -values
attributed to features.

Another issue is how small P -values should be. Generally, P -values are consid-
ered to be false ratio. In other words, if we select n features associated with P -values
smaller than p, there can be at most np features selected wrongly in spite of that they
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obey the null hypothesis. Thus, ideally, p should be as small as 1
n

such that there are
no false positives. Nonetheless, it is often unrealistic to require p < 1

n
especially

when n is large and data is noisy. Therefore, practically, p is set to be 0.01 or 0.05,
because it is enough if the 99% or 95% of selected feature are correct, for the usual
purpose.

The third and the most critical issue is the problem of multiple comparisons.
When there are N features to which P -values are attributed, P -values can be
accidentally as small as 1

N
. When N is large, e.g., N ∼ 104, it causes a problem.

Even if some features have P -values as small as 10−4, we cannot reject null
hypothesis. Thus, we cannot select these features as those associated with properties
searched, e.g., composed of two classes. In spite of that, it is often unrealistic to
require that P -values should be as small as 10−4. Although there are many ways
to address this difficulty, we employ Benjamini Hochberg (BH) criterion, because
it is known to work practically well, in the applications described in the following
chapters.

The basic idea of BH criterion is very simple. If the features obey null
hypothesis completely, e.g., apparently two classes features are drawn from the same
distribution, e.g., normal distribution, the distribution of P -values should be uniform
distribution ∈ [0, 1], because this is the definition of probability. Thus, if we order
P -values in ascending order, the ith largest P -value should be as large as i

N
. In

other words, if the ith largest P -value is smaller than i
N

, it unlikely occurs under
the null hypothesis.

Considering these discussions, BH criterion is as follows:

1. Order P -values attributed to ith feature, Pi , in ascending order.
2. Find the smallest i0 such that Pi0 >

i0
N

p where p is threshold P -values.
3. Select features, i ≤ i0, such that their attributed P -values are practically

supposed to be less than p.

Throughout the remaining part of this book, we employ this criterion to adjust
P -values with considering multiple comparisons as many as the number of
features, N .

4.6 Feature Selection with Considering P -Values

In order to perform feature selection with considering P -values, we select null
hypothesis for the distribution of PC score, uki , as normal distribution. In order
to assign P -values to features, we employ χ2 distribution as

Pi = Pχ2

[

>
∑

k

(
uki

σk

)2
]

(4.28)
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where Pχ2 [> x] is the cumulative probability that the argument is larger than x. The
summation is taken over PCs selected for identification of ith feature that fulfills
desired condition. The degrees of freedom of χ2 distribution is equal to the number
of PCs included in the summation. σk is the standard deviation of uki . Then features
associated with adjusted P -values less than 0.01 are selected.

Other methods compared with PCA based unsupervised FE in the previous
section can also attribute P -values to individual features. Using these P -values,
features associated with adjusted P -values less than 0.01 can be selected. This
enables us to compare performance between the various methods.

At first, we perform analysis shown in Table 4.2 with replacing identification of
features based upon top ranked N1(= 10) features with that based upon features
associated with adjusted P -values less than 0.01. Unfortunately, not all tests shown
in Table 4.2 can derive P -values. Evaluation based upon variance has no ways to
attribute to P -values, because no null hypothesis can exist. Regression analysis
cannot either, because complete fitting is always possible because the number of
features, N , is larger than the number of samples, M . Thus, only remaining three,
t test, unimodal test, and PCA based unsupervised FE can be employed. We do
not employ shuffling in this case, because the effect of shuffling was presented in
Table 4.2.

Evaluations based upon adjusted P -values do not always give us N1 features
selected. Thus, instead of presenting the number of correctly selected features as in
Table 4.2, we need to present confusion matrix, which is demonstrated in Table 4.8.
Suppose that there are two classes, positive set and negative set (in the case of feature
selection, positive corresponds to features with considered properties, e.g., those
composed of two classes, and negative corresponds to features without considered
properties, e.g., those without any classes). The number of positives predicted as
positive is true positive (TP). The number of positives predicted as not positive is
false negative (FN). The number of negatives predicted as positive is false positive
(FP). The number of negatives predicted as not positive is true negative (TN). If
FN = FP = 0, it is complete prediction.

Confusion matrices when three statistical tests are applied to data set 1, Eq. (4.1),
and data set 2, Eq. (4.2), are shown in Tables 4.9 and 4.10, respectively. The
performance is averaged over 100 independent trials. t test performs almost equally
between data sets 1 and 2, although the performance decreases as M decreases or
N increases. PCA based unsupervised FE totally fails for data set 1, while it is
successful for larger N in data set 2. Unimodal test has never been successful. One

Table 4.8 Confusion matrix Real

Prediction Positive Negative

Positive TP FP

Negative FN TN

TP true positive, FP false positive,
FN false negative, TN true negative
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Table 4.9 Confusion matrices when statistical tests are applied to synthetic data sets 1 defined by
Eq. (4.1) and features associated with adjusted P -values less than 0.01 are selected

t test Unimodal test PCA

i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Data set 1: N = 100,M = 20

Selected 10.00 0.10 0.03 0.08 0.00 0.00

Not selected 0.00 89.90 9.97 89.92 10.00 90.00

Data set 1: N = 100,M = 10

Selected 5.96 0.18 0.01 0.06 0.00 0.00

Not selected 4.04 89.82 9.99 89.94 10.00 90.00

Data set 1: N = 1000,M = 20

Selected 9.98 0.2 0.0 0.2 0.00 0.00

Not selected 0.02 989.8 10 989.8 10.00 990.00

Data set 1: N = 1000,M = 10

Selected 1.16 0.2 0.0 0.04 0.00 0.00

Not selected 8.84 989.8 10 989.96 10.00 990.00

N1 = 10

Table 4.10 Confusion matrices when statistical tests are applied to synthetic data sets 2 defined
by Eq. (4.2) and features associated with adjusted P -values less than 0.01 are selected

t test Unimodal test PCA

i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Data set 2: N = 100,M = 20

Selected 10.00 0.07 0.0 0.07 0.00 0.01

Not selected 0.00 89.93 10.00 89.93 10.00 89.99

Data set 2: N = 100,M = 10

Selected 6.08 0.06 0.00 0.00 0.00 0.00

Not selected 3.92 89.94 10.00 90.00 10.00 90.00

Data set 2: N = 1000,M = 20

Selected 9.98 0.1 0.00 0.00 9.97 0.07

Not selected 0.02 989.9 10.00 990.0 0.03 989.03

Data set 2: N = 1000,M = 10

Selected 1.09 0.01 0.0 0.04 9.4 0.00

Not selected 8.91 989.99 10 989.96 0.6 990.0

N1 = 10

remarkable point is that PCA based unsupervised FE can outperform t test when
N = 1000 and M = 10. This suggests that PCA based unsupervised FE might be
the best when N � M; the situation N � M is very usual in the bioinformatics.
This is the basic motivation that this textbook is written.

In spite of that PCA based unsupervised FE is an unsupervised method that does
not fully make use of available information while t test is a supervised method that
fully makes use of available information, the reason why PCA based unsupervised
FE can outperform t test when N � M is as follows. In t test, P -values increase
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as M decreases (i.e., less significant). On the other hand, the correction of P -values
considering multiple comparisons is enhanced as N increases. Thus, adjusted P -
values become larger (less significant) as N increases. This means, if N � M ,
t test hardly computes small enough P -values. On the other hand, in PCA based
unsupervised FE where P -values are computed by u1i which is less affected by
varying M , P -values are less dependent on M . In Table 4.10, TPs computed by
PCA based unsupervised FE do not change much between M = 10 and M = 20
when N = 1000. In addition to this, in this setup, N1 that represents the number
of positives remains unchanged while N increases. This means, the number of
negatives increases. Generally, negatives are associated with smaller absolute values
of u1i because u1i is associated with v1j that represents distinction between two
classes (Fig. 4.1). P -values are computed based upon normalized u1i , Eq. (4.28),
thus absolute values u1i attributed to positives become relatively larger as the
number of negatives increases. This process has the tendency that increasing the
number of negatives reduces P -values attributed to positives (i.e., more significant).
Because of that, in Table 4.10, PCA based unsupervised FE is successful only when
N = 1000.

This is the reason why PCA based unsupervised FE is employed for the feature
selection in bioinformatics where N � M is quite usual. P -values computed
by PCA based unsupervised FE is less affected by M that is typically small in
bioinformatics while P -values decrease for larger N that is typically very large in
bioinformatics. Thus, PCA based unsupervised FE is very fitted to the problems in
bioinformatics.

One might be interested in what will happen if selection based upon adjusted
P -values is applied to other examples discussed in the above. The answer is that it
is dependent upon various parameters. In the examples analyzed in this section,
PCA based unsupervised FE can outperform t test only when N = 1000 and
M = 10. Thus, whether it works well or not when it is applied to real data set
is also dependent upon the properties of data sets. The general tendency that PCA
based unsupervised FE works well only when N � M is universal independent of
the data sets considered. Thus, the discussion about in which situation PCA based
unsupervised FE that selects features based upon adjusted P -values works well is
postponed to the later chapters where PCA based unsupervised FE is applied to real
data sets. The readers can see many examples where PCA based unsupervised FE
works well or not in these later chapters.

4.7 Stability

Weaker sensitivity of PCA based unsupervised FE on the number of samples, M ,
naturally results in the stability of feature selection. The stability of feature selection
is defined as the robustness of feature selection when samples change. Suppose that
samples are drawn from some distributions. If selected features vary every time
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samples are drawn from distribution, it is problematic in biology where individual
features, e.g., genes, have meanings.

In PCA based unsupervised FE, P -values are less dependent upon the number of
samples. In other words, every time we select half of samples among the available
samples, P -values attributed to individual features do not change. If P -values
attributed to individual features do not change, the selected features do not change,
either. This is definitely equivalent to the stability. In the applications of PCA based
unsupervised FE to real data sets described in the following chapters, readers will
see many examples that PCA based unsupervised FE outperforms other methods
from the point of stability. This is yet another reason why PCA based unsupervised
FE is a recommended method to be used in bioinformatics.

4.8 Summary

In this chapter, I proposed to make use of PCA as a tool of feature selection.
PCA based unsupervised FE can identify features composed of multiple classes
better than conventional supervised methods, e.g., t test and categorical regression.
When it is applied to identification of non-sinusoidal periodic features, PCA
based unsupervised FE can outperform another conventional method, sinusoidal
regression. With attributing P -values to features under the null hypothesis that
PC scores obey χ2 distribution, PCA based unsupervised FE correctly identifies
features composed of two classes only when N � M , i.e., the number of features
is much larger than the number of samples.
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Chapter 5
TD Based Unsupervised FE

Although our world might have no reason to exist, it sounds
fantastic, because we can make the reason for ourselves.
Filicia Heideman, Sound of the Sky, Season 1, Spisode 7

5.1 TD as a Feature Selection Tool

In this chapter, I would like to make use of TD as a feature selection tool. Suppose
that xijk ∈ R

N×M×K represents the value of the ith feature of the samples having
j th and kth properties as

Data set 6:

xijk ∼
{
N(μ, σ ), i ≤ N1, j ≤ M

2 , k ≤ K
2

N(0, σ ), otherwise
(5.1)

In this example, j and k are supposed to be classified into two classes, j ≤ M
2 ,K ≤

M
2 and j > M

2 or j > K
2 for i ≤ N1. Then, xijk is drawn from normal distribution,

N(μ, σ ), with positive mean, μ > 0, only when j ≤ M
2 , k ≤ K

2 , otherwise μ = 0.
The purpose of feature selection is to find N1 features associated with two classes
shown in Eq. (5.1).

Tucker decomposition, Eq. (3.2), with HOSVD algorithm, Fig. 3.8, is applied to
data set 6, Eq. (5.1), with N = 1000,M = K = 6, N1 = 10, μ = 2, σ = 1, as

xijk =
N∑

�1=1

M∑

�2=1

K∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(5.2)

where u
(i)
�1

∈ R
N, v

(i)
�2

∈ R
M,u

(k)
�3

∈ R
K,G(�1, �2, �3) ∈ R

N×M×K . Figure 5.1a, b

shows a typical realization of u
(j)

1 and u
(k)
1 , respectively. It is obvious that these two

correctly reflect the distinction between j > M
2 , k > K

2 and j ≤ M
2 , k ≤ K

2 . Next,
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we would like to identify which u
(i)
�1

can be used for feature selection. In contrast

to PCA based unsupervised FE, it is not clear which u
(i)
�1

should be used, because

there is no one-to-one correspondence among u
(i)
�1

,u
(j)
�2

,u
(k)
�3

; instead of that, their
relationship is represented through the core tensor, G.

In order to see this relationship, we order G(�1, 1, 1) with descending order of
absolute values; Table 5.1 shows the core tensors, G(�1, 1, 1), sorted in this order.
Table 5.1 suggests that u

(i)
1 is most likely associated with u

(j)

1 and u
(k)
1 , because

G(1, 1, 1) has the largest absolute value among G(�1, 1, 1). Actually, u
(i)
1 shown

in Fig. 5.1c obviously has larger absolute values for i ≤ N1 than others. Thus, the
strategy proposed here, i.e., first find singular value vectors attributed to samples
and associated with desired class dependence, then identify singular value vectors,
attributed to features, that share G having larger absolute values with them, can
identify features with not known in advance j, k dependence in fully unsupervised
manner. The reason why it works so well is obvious. If we see u

(j)
�2

×0 u
(k)
�3

that is
shown in Fig. 5.1d, it is fully associated with the j, k dependence defined in Eq. (5.1)
that means only j, k < M

2 are drawn from normal distribution with positive mean
while others are drawn from those with zero mean.

Next issue might be if TD based unsupervised FE can outperform conventional
methods. As a representative of conventional methods, we employ again categorical
regression analysis, Eq. (4.21), that is modified to be adapted to co-existence of two
kinds of classes,

Table 5.1 G(�1, 1, 1)s that correspond to Fig. 5.1

�1 1 4 2 6

G(�1, 1, 1) −35.484412 2.137686 1.748955 −1.705922

Fig. 5.1 A typical realization
of u

(i)
1 ,u

(j)

1 ,u
(k)
1 when

Tucker decomposition,
Eq. (3.2), with HOSVD
algorithm, Fig. 3.8 is applied
to data set 6, Eq. (5.1) with
N = 1000,M = K =
6, N1 = 10, μ = 2, σ = 1.
(a) u

(j)

1 , (b) u
(k)
1 , black and

red circles correspond to
j ≤ M

2 , k ≤ K
2 and

j > M
2 , k > K

2 , respectively.
Red broken lines show
baseline. (c) u

(i)
1 . Red open

circle corresponds to i ≤ N1,
i.e., features associated with
j, k dependence. (d)
u

(j)

1 ×0 u
(k)
1 . Brighter squares

indicate larger values
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xijk = ai +
2∑

s=1

bisδsj +
2∑

s=1

cisδsk (5.3)

where ai, bis , cis are the regression coefficients. δsj and δsk are the function that
takes 1 only when sample j or k belongs to the sth class otherwise 0.

In order to perform feature selection, P -values need to be addressed to features.
For categorical regression analysis, P -values computed by categorical regression
analysis is used as it is. For TD based unsupervised FE,

Pi = Pχ2

⎡

⎣>

(
u

(i)
1i

σ1

)2
⎤

⎦ (5.4)

is used to attribute P -values to features where σ1 is the standard deviation of u
(i)
1i .

Both P -values, i.e., computed with TD based unsupervised FE and categorical
regression analysis, are corrected by BH criterion and features associated with
adjusted P -values less than 0.01 are selected. Table 5.2 shows the performances
achieved by TD based unsupervised FE and categorical regression, Eq. (5.3).
Performance is averaged over 100 independent examples. In contrast to TD based
unsupervised FE that can identify more than 60% of features associated with
searched j, k dependence, categorical regression, Eq. (5.3), could identify almost
no features. The cause of this drastic low performance is obvious. Equation (5.3)
assumes four classes, because j and k are composed of two classes, respectively.
Thus, two classes times two classes are equal to four classes. Nevertheless, Eq. (5.1)
obviously admits two classes, i.e., j ≤ M

2 , k ≤ K
2 versus others. This not

proper assumption in the model (categorical regression analysis) results in poor
performance. In actuality, if we employ categorical regression as

xijk = ai +
2∑

s=1

bisδsjk (5.5)

Table 5.2 Confusion matrices when statistical tests are applied to synthetic data sets 6 defined by
Eq. (5.1) and features associated with adjusted P -values less than 0.01 are selected

TD based unsupervised FE Categorical test(four classes)
Categorical
test(two classes)

Data set 6 i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Selected 6.34 0.00 0.63 0.00 7.35 0.00

Not selected 3.66 990 9.37 990 2.65 990

TD based unsupervised FE Categorical test(nine classes)
Categorical
test(two classes)

Data set 7 i ≤ N1 N1 < i i ≤ N1 N1 < i i ≤ N1 N1 < i

Selected 8.73 0.00 4.58 0.00 10.0 0.00

Not selected 1.27 990 5.42 990 0.00 990
N1 = 10. “categorical test(two classes)” corresponds to Eq. (5.3), “categorical test(four classes)”
corresponds to Eq. (5.5), and “categorical test(nine classes)” corresponds to Eq. (5.7)
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where δsjk is a function that takes 1 only when

s = 1: j ≤ M
2 and k ≤ K

2
s = 2: j > M

2 or k > K
2

otherwise 0 and ai, bsjk are the regression coefficients, categorical regression can
outperform TD based unsupervised FE as expected (Table 5.2). The only problem
is that it is usually impossible to assume two classes in spite of that there are four
classes based upon the apparent category. In this case, unsupervised method can
outperform supervised method.

In order to confirm these tendencies, we prepare additional synthetic data.
Data set 7:

xijk ∼
{
N(μ, σ ), i ≤ N1,

M
3 < j ≤ 2M

3 , K
3 < k ≤ 2K

3
N(0, σ ), otherwise .

(5.6)

Equation (5.3) is modified as

xijk = ai +
3∑

s=1

bisδsj +
3∑

s=1

cisδsk (5.7)

with three classes, 1 ≤ j ≤ M
3 or 1 ≤ k ≤ K

3 for s = 1, M
3 < j ≤ 2M

3 or
K
3 < k ≤ 2K

3 for s = 2, and 2M
3 < j ≤ M or 2K

3 < k ≤ K for s = 3. On the other
hand, Eq. (5.5) remains unchanged although δsjk takes 1 only when

s = 1: M
3 < j ≤ 2M

3 and K
3 < k ≤ 2K

3
s = 2: j ≤ M

3 or j > 2M
3 or k ≤ K

3 or k > 2K
3

otherwise 0. M = K = 12 and other parameters remain unchanged. As expected
(Table 5.2), the performances of categorical regressions applied to set 7 are
improved from those applied to data set 6, because the number of samples, MK ,
increases while the number of features, N , remains unchanged. In spite of these
improved performances of categorical regression analyses, TD based unsupervised
FE still outperforms three classes × three classes = nine classes categorical regres-
sion analysis, Eq. (5.7) (see Table 5.2). Thus, as far as apparent categories that do
not correctly reflect true category are considered, TD based unsupervised FE can
outperform supervised method. It is very usual in genomic data analysis that it is
unclear if apparent categories are coincident with true, but unknown, classes. This
is possibly the reason why TD based unsupervised FE often outperforms supervised
methods in the applications to bioinformatics that will be introduced in the later part
of this book.

It should be also emphasized that TD based unsupervised FE can outperform
supervised methods only when N � MK , i.e., the number of features is much
larger than the number of samples. Although we do not demonstrate this using more
synthetic data sets, one should remember this point when one would like to employ
TD based unsupervised FE.



5.2 Comparisons with Other TDs 107

5.2 Comparisons with Other TDs

Here I employed only Tucker decomposition, Eq. (3.2), with HOSVD algorithm,
Fig. 3.8, for feature selection. Since I have already argued the superiority of
Tucker decomposition toward other two TDs, CP decomposition and tensor train
decomposition, it might not be necessary to demonstrate superiority of Tucker
decomposition to other two TDs. Nevertheless, it is not meaningless to see what
we can get when the other two TDs are applied to data set 6.

First, tensor train decomposition, Eq. (3.3), with R1 = R2 = M = K = 6 is
applied to data set 6, whose results obtained by Tucker decomposition are shown in
Fig. 5.1 (Fig. 5.2). Figure 5.2 looks very similar to Fig. 5.1. In spite of that, tensor
train decomposition is still inferior to Tucker decomposition. First of all, we have no
idea how we should choose Ris that decide the rank of tensor train decomposition.
In the present case, we can try to find Ris that result in the same result as that in
Fig. 5.1. If not, we can have no ways to decide Ris. Second, we do not know how to
relate G(j)(j, 1, 1),G(k)(k, 1), and G(i)(i, 1) with one another, because there is no
core tensor that plays the role to connect singular vectors in Tucker decomposition
(Table 5.1) where we know what I should search. If not as in the present case, i.e.,
tensor train decomposition, we have no idea which core tensors given by tensor train
decomposition are selected for the feature selection.

Next, we apply CP decomposition, Eq. (3.1), with L = 1 to data set 6,
whose results obtained by Tucker decomposition are shown in Fig. 5.1. Figure 5.3
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Fig. 5.2 G(j)(j, 1, 1),G(k)(k, 1),G(i)(i, 1) when tensor train decomposition, Eq. (3.3), with
R1 = R2 = M = K = 6 is applied to data set 6, Eq. (5.1) whose results obtained by
Tucker decomposition are shown in Fig. 5.1. (a) G(j)(j, 1, 1), (b) G(k)(k, 1), black and red circles
correspond to j ≤ M

2 , k ≤ K
2 and j > M

2 , k > K
2 , respectively. Red broken lines show baseline.

(c) G(i)(i, 1). Red open circle corresponds to i ≤ N1, i.e., features associated with j, k dependence.
(d) G(j)(j, 1, 1) · G(k)(k, 1). Brighter squares indicate larger values
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Fig. 5.3 Two typical convergent realizations starting from different initial values of CP decom-
position, Eq. (3.1), with L = 1 applied to data set 6, Eq. (5.1), whose results obtained by Tucker
decomposition is shown in Fig. 5.1. (a) and (b) u

(j)

1 , black and red circles correspond to j ≤ M
2

and j > M
2 , respectively. (c) and (d) u

(k)
1 , black and red circles correspond to k ≤ K

2 and k > K
2 ,

respectively. (e) and (f) u
(i)
1 . Red open circle corresponds to i ≤ N1, i.e., features associated with

j, k dependence
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represents the two independent results starting from different initial values (one
should remember that CP decomposition need to be given by initial values from
where computation starts). At first, they clearly differ from each other. Second, the
second realizations, (b), (d), and (f), do not correspond to the distinction between
two classes and fail to identify features with not known in advance j, k dependence,
i ≤ N1. Thus, CP decomposition is inferior to Tucker decomposition because of
initial condition dependence as discussed earlier.

These comparisons suggest that Tucker decomposition is superior to tensor train
decomposition and CP decomposition as a tool of feature selection.

5.3 Generation of a Tensor From Matrices

In the previous section, we showed that TD based unsupervised FE can outperform
conventional supervised feature selection, categorical regression analysis, when the
number of features is much larger than the number of samples and true classification
is a complex function of apparent labeling. Although TD based unsupervised FE is
shown to be effective, it is unfortunately not so frequent that there are data sets
formatted as tensor, because getting tensor requires more observation than matrices.
In order to get N × M matrix that represents M samples with N features, required
number of observations is as many as the number of samples, i.e., M . On the other
hand, in order to get N × M × K tensors that correspond to N features observed
under the combination of M times and K times measurements, the required number
of observation is as many as K × M . If we need to have tensors with more modes,
the number of observation will increase, too. Thus, even if TD based unsupervised
FE is an effective method, we usually cannot have data set formatted as tensors, to
which TD based unsupervised FE is applicable.

In order to have more opportunities to which we can apply TD based unsuper-
vised FE, we can propose to generate tensors from matrices [1], which are obtained
more easily than tensors. Suppose that we have two matrices, xij ∈ R

N×M and
xik ∈ R

N×K , which represent i features under the j th experimental conditions and
the kth experimental conditions, respectively. A typical observation is that N health
conditions, blood pressure, body mass, body temperature, height, weight, etc. are
observed M individuals in Japan and K individuals in the USA. Then we can get
tensor xijk ∈ R

N×M×K by simply multiplying xij and xik ,

xijk = xij xik (5.8)

TD can be applied to xijk as usual. It does not have to be restricted to the product
of two matrices. We can generate m + 1 mode tensor by multiplying m matrices,
xij1 , xij2 , . . . , xijm as

xij1j2···jm =
m∏

s=1

xijs (5.9)
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On the other hand, we can consider the alternative cases where not features but
samples are common between two matrices. Suppose that for K individuals two
distinct N and M observations are performed and are recorded as matrices form,
xik ∈ R

N×K and xjk ∈ R
M×K . A typical example is that there are N goods in

kth shop and xik represents a price of ith good in kth shop. On the other hand, xjk

represents the number of customers at j th time point at kth shop. We can generate
tensor xijk ∈ R

N×M×K as

xijk = xikxjk (5.10)

Again we can employ more matrices as

xi1i2···imj =
m∏

s=1

xisj (5.11)

From the mathematical point of view, although there are no needs to distinguish
between equations Eqs. (5.11) and (5.9), they should be considered separately from
the data science point of view. Then hereafter we denote Eq. (5.11), i.e., the cases
sharing samples, as case I while Eq. (5.9), i.e., the cases sharing features, as case II,
respectively.

5.4 Reduction of Number of Dimensions of Tensors

It is possible to produce tensors from matrices. However, it increases the number of
features. When two matrices, xij ∈ R

N×M and xik ∈ R
N×K are multiplied in order

to generate a tensor xijk ∈ R
N×M×K (case II), the number of features increases

from N × (M + K) to N × M × K . Thus, we need some way to reduce the number
of dimensions of generated tensors. Here we propose taking summation of shared
features, i.e.,

x̃i1i2···im =
∑

j

xi1i2···imj (5.12)

x̃j1j2···jm =
∑

i

xij1j2···jm (5.13)

Then the number of dimensions increases from N × (M + K) not to N × M × K

but to M ×K for case II while from (N +M)×K not to N ×M ×K but to N ×M

for case I.
One might wonder how we can compute singular value matrices that correspond

to indices of which are taken summation when TD is applied to x̃i1i2···im or x̃j1j2···jm .
These missing singular value matrices are recovered by the following computations,
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Table 5.3 Distinction between cases and types

Type I Type II

Case I xi1i2···imj =
m∏

s=1

xis j Eq. (5.11) x̃i1i2···im =
∑

j

xi1i2···imj Eq. (5.12)

Case II xij1j2···jm =
m∏

s=1

xijs Eq. (5.9) x̃j1j2···jm =
∑

i

xij1j2···jm Eq. (5.13)

u
(i;js )
� = X(ijs) ×js u

(js )
� (5.14)

u
(j ;is )
� = X(jis ) ×is u

(is )
� (5.15)

where X(ijs) ∈ R
N×Ms and X(jis ) ∈ R

M×Ns , respectively. Thus, we have m singular
value matrices that correspond to is or js , instead of one singular value matrix.
This might look problematic. Nevertheless, practically, if m singular value matrices
obtained are mutually highly correlated, it is not practically problematic. Thus, case
to case, we might employ this approximate strategy. In order to distinguish these
tensors from the previous one, we call those generated after the partial summation
of index, Eqs. (5.12) and (5.13) as type II while those without partial summation,
Eqs. (5.9) and (5.11), as type I. Table 5.3 summarizes the distinction between cases
and types.

5.5 Identification of Correlated Features Using Type I Tensor

The purpose of introduction of tensors summarized in Table 5.3 is simply because
we would like to make use of TD based unsupervised FE when no tensors are
available. Nevertheless, we can make use of tensors listed in Table 5.3 for the
additional alternative purpose as bi-product: identification of mutually correlated
features. Suppose we have two sets of observations to K samples formatted as
matrices, xik ∈ R

N×K and xjk ∈ R
M×K . The question is to search pairs of features

between two sets.
The standard strategy is to compute pairwise correlation between xik and xjk ,

rij =
1
K

∑
k

(
xik − 1

K

∑
k′ xik′

) (
xjk − 1

K

∑
k′ xjk′

)

√
1
K

∑
k

(
xik − 1

K

∑
k′ xik′

)2
1
K

∑
k

(
xjk − 1

K

∑
k′ xjk′

)2
(5.16)

and to identify pairs of i and j associated with significant correlation. In the
following, we will show some synthetic data set where pairwise computation of
correlation does not work well while TD applied to a tensor generated from the
product of two matrices, xijk = xikxjk , can identify correlated pairs successfully.
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In order for this purpose, we prepare data set 8 as follows.
Data set 8:

xik ∼
{

k +N(μ, σ ) i ≤ N1

N(μ, σ ) otherwise
(5.17)

xjk ∼
{

k +N(μ, σ ) j ≤ M1

N(μ, σ ) otherwise
(5.18)

This means, only features i ≤ N1 and j ≤ M1 share the k dependence while no
other pairs are correlated. In this setup, the number of positive (correlated) pairs is
N1 × M1 among total number of pairs, N × M .

In order to see if pairwise correlation analysis can identify correlated pairs, we
compute Pearson’s correlation coefficients between all N × M pairs, xik and xjk .
Then computed correlation coefficient, rij , is converted to tij as

tij = rij (K − 2)√
1 − r2

(5.19)

that is known to obey t distribution with the degrees of freedom of K − 2. Then
P -values are computed using t distribution and are attributed to all of N × M pairs.
These P -values are corrected by BH criterion and pairs associated with adjusted P -
values less than 0.05 are considered to be correlated. Table 5.4 shows the confusion
matrix averaged over 100 independent trials when N = M = 100, N1 = M1 =
10,K = 6, μ = σ = 1. In this setup, the number of positive pairs is N1×M1 = 100.
It is obvious that there are more false positives (38.49) than true positives (15.47).
Thus, it unlikely works well. Next, we apply TD based unsupervised FE to data
set 8 with generating case I type I tensor (Table 5.4) as Eq. (5.10). We apply
HOSVD algorithm, Fig. 3.8, to data set 8. Figure 5.4a and b shows typical u

(i)
1

and u
(j)

1 obtained when HOSVD is applied to data set 8, respectively. These two
have obviously larger absolute values for i ≤ N1 and j ≤ M1 than i > N1 and
j > M1, respectively. This suggests that u

(i)
1 and u

(j)

1 can successfully identify
features with correlations (i ≤ N1 or j ≤ M1) from those without correlations
(i > N1 or j > M1). How it comes to be possible can be understood by observing
u

(k)
1 (Fig. 5.5). u

(k)
1 clearly reflects the dependence upon k shown in Eqs. (5.17)

Table 5.4 Confusion matrices when statistical tests are applied to synthetic data sets 8 defined by
Eqs. (5.17) and (5.18) and features associated with adjusted P -values less than 0.05 are selected for
pairwise correlation and 0.1 for TD based unsupervised FE

Pairwise correlation TD based unsupervised FE

Data set 8 i ≤ N1 and j ≤ M1 Otherwise i ≤ N1 N1 < i j ≤ M1 M1 < j

Selected 15.47 38.49 6.20 0.00 6.14 0.00

Not selected 84.53 9861.51 3.80 90.00 3.86 90.00
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Fig. 5.4 A typical realization of u
(i)
1 and u

(j)

1 when Tucker decomposition, Eq. (3.2), with
HOSVD algorithm, Fig. 3.8 is applied to data set 8, Eqs. (5.17) and (5.18) with N = M =
100, N1 = M1 = 10,K = 6, μ = σ = 1. (a) u

(i)
1 , red and black open circles correspond to

i ≤ N1 and i > N1, respectively. (b) u
(j)

1 , red and black open circles correspond to j ≤ M1 and
j > M1, respectively

Fig. 5.5 u
(k)
1 that

corresponds to u
(i)
1 and u

(j)

1
shown in Fig. 5.4

● ●

●
●

●

●
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0.
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0.

6
−

0.
4

−
0.

2
0.

0 u1k

k

and (5.18). Since G(1, 1, 1) is the largest among G(�1, �2, 1), u(i)
1 and u

(j)

1 naturally

assign larger absolute values to u
(i)
1i and u

(j)

1j that shares embedded k dependence,
i.e., i ≤ N1 or j ≤ M1.

In order to see if u
(i)
1i and u

(j)

1j are useful for the feature selection, P -values are
attributed to i as Eq. (5.4) and j as

Pj = Pχ2

⎡

⎢
⎣>

⎛

⎝
u

(j)

1j

σ ′
1

⎞

⎠

2
⎤

⎥
⎦ (5.20)

where σ ′
1 is the standard deviation of u

(j)

1j . Then is and js associated with adjusted
P -value less than 0.1 are selected (performances are averaged over 100 independent
trials). Table 5.4 shows the corresponding confusion matrices. Although the perfor-
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mance cannot be said very good, it is remarkable that there are no FP which are as
many as 38.49 in pairwise correlation analysis (Table 5.4). TD based unsupervised
FE also has more TPs than correlation analysis; 6.20 or 6.14 TPs among 10 positives
versus 15.47 TP among 100 positives.

Only from this specific example, we cannot conclude that TD based unsuper-
vised FE can always outperform the conventional methods. Nevertheless, in the
application to the real data set that will be shown later, we will see that TD based
unsupervised FE can achieve better performances than conventional supervised
methods.

5.6 Identification of Correlated Features Using Type II
Tensor

In the previous section, we can see that TD based unsupervised FE can correctly
recognize the features with mutual correlation that cannot be recognized by
conventional pairwise correlation analysis. In this section, we would like to see
if type II tensor, Eq. (5.12), can samely identify features with mutual correlations
using the same data set 8, Eqs. (5.17) and (5.18). In the present specific case, type II
tensor can be defined as

x̃ij =
K∑

k=1

xijk =
K∑

k=1

xikxjk. (5.21)

TD, or essentially it is SVD because HOSVD is equivalent to SVD when it is
applied to matrix, is applied to x̃ij . Figure 5.6 shows the comparison of u

(i)
1 and u

(j)

1
between type I and type II tensors. Although slight deviation can be observed, they
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Fig. 5.6 Comparison between u
(i)
1 and u

(j)

1 in Fig. 5.4 and those when SVD is applied to type II

tensor (matrix), x̃ij , defined in Eq. (5.21). (a) u
(i)
1 , red and black open circles correspond to i ≤ N1

and i > N1, respectively. (b) u
(j)

1 , red and black open circles correspond to j ≤ M1 and j > M1,
respectively
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Fig. 5.7 Comparison between u
(k:i)
1 and u

(k:j)

1 computed by Eqs. (5.22) and (5.23), respectively.

(a) u
(k:i)
1 (b) u

(k:j)

1 , (c) scatterplot of (a) and (b)

are coincident enough to recognize features with mutual correlations, i.e., i ≤ N1
and j ≤ M1, respectively. Thus as long as considering feature selection, replacing
type I tensor with type II tensor does not cause any problems.

Then we need to see if two vectors,

u
(k;i)
1 = X(ik) ×i u

(i)
1 (5.22)

u
(k;j)

1 = X(jk) ×j u
(j)

1 (5.23)

are coincident with each other and reflect k dependence when u
(i)
1 and u

(j)

1 are

computed from type II tensor (matrix), Eq. (5.21). Figure 5.7 shows u
(k:i)
1 and u

(k:j)

1 .
They are not only coincident with each other, but also reflecting k dependence in
Eqs. (5.17) and (5.18), respectively. Thus, replacing type I tensor with type II, at
least in the present case, does not likely cause any problems.

5.7 Summary

In this chapter, we proposed feature section using TD, named TD based unsu-
pervised FE. TD based unsupervised FE can outperform conventional supervised
method when the number of samples is much less than the number of features
and true classification is a complex function of apparent labeling. We also further
extended the concept of tensor such that we can make use of TD based unsupervised
FE even when only matrices are given. As a bi-product, we come to be able to
select features with mutual correlations even when conventional pairwise correlation
analysis fails. Nothing shown in this chapter are proven, but are only demonstrated
by synthetic data set. Nonetheless, we will see that TD based unsupervised FE can
work very well when it is applied to real examples, i.e., the applications toward
bioinformatics in the later part of this book.
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Part III
Applications to Bioinformatics

In this part, I explain the main purpose of this book, i.e., applications of PCA or TD
based unsupervised FE to bioinformatics. Although I know that readers might not
be very interested in biology, because data analyzed are real numbers formatted as
matrices and tensors, methods themselves should be able to be applied to other data
sets than biology. Starting from the introduction of fundamental knowledge required
in order to understand examples presented in this part, various applications of PCA
and TD based unsupervised FE will be discussed.



Chapter 6
Applications of PCA Based Unsupervised
FE to Bioinformatics

I do not need any other reason to be born than being your
friend.
Rikka Takarada, SSSS.GRIDMAN, Season 1, Episode 11

6.1 Introduction

PCA is an old technology. It has been invented more than a 100 years ago. Thus
many might think that it is nothing but textbook level matter (in other words, nothing
new to be worthwhile being investigated might not exist anymore). Especially,
because modernized many non-linear methods have been proposed, people think
that no linear methods can have any superiority toward these advanced technologies.
In spite of such a general belief, PCA still might be an effective method. In this
chapter, I propose to make use of PCA for unsupervised feature selection. The word
“unsupervised feature selection” might sound like discrepancy. If so, please look at
the following. I am sure that you can understand what I mean by this word and might
start to think that PCA is still an effective method and is worthwhile investigating
further.

6.2 Some Introduction to Genomic Science

Although it is unrealistic to fully explain fundamental genome biology required to
understand the contents in this chapter, I will try to outline very basic points here to
help readers to understand. Readers who would like to understand the contents more
deeply should consult with fully mentioned textbooks, e.g., Genome 4th Edition [7].
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6.2.1 Central Dogma

Although it has become a little bit old fashioned, the so-called central dogma
still remains a gold standard in genome science. Central dogma says that any
functional proteins are translated from mRNA (translation) which is transcribed
from DNA (transcription), not vice versa. Thus, fundamentally, study of DNA is
an essential part of genome science. DNA is the abbreviation of deoxyribonucleic
acid, which is a long chain of sequence composed of only four kinds of molecules:
cytosine, guanine, adenine, and thymine, which are often abbreviated as using
the first letters of words: C, G, A, and T. DNA is located in the nuclei of cells,
which functions as information transporter between generations as well as acts as
information resources from which cellular activities are decided. The way by which
DNA stores information is digital and is in some sense similar to digital information
in modernized computer or information science; it is fitted to be investigated with
information science. This similarity between DNA and information science is a key
factor from which bioinformatics was born.

DNA takes the form of double helix, which is generated by the pairing of two
complementary DNA sequences. Among four molecules that form DNA, T, C,
G, and A, A binds to T and G binds to C. Thus two DNA sequences that form
double helix store the same information, like positive films and negative films in
photography.

The objects fitted to be studied by information science in genome biology are not
only DNA but mRNA and protein as well. mRNA is an abbreviation of messenger
RNA and RNA is an abbreviation of ribonucleic acid. RNA is a partial copy of
lengthy DNA sequence whose total length is as many as three billion (3 × 109)
base pairs (in the case of human being). Only difference between DNA and RNA
other than length is that uracil (U) is used instead of T in RNA; thus, four molecules
that form RNA are A, U, G, and C. Protein is a long polymer composed of 20
amino acids, each of which is coded using triplet of nucleic acids in RNA and DNA
sequence; these triplets are called as codon. Because the number of total codon is
as many as 43 = 64 while total number of amino acids used for generating proteins
is as small as 20, multiple codons code the same amino acid. Some codons are also
used as terminator that marks the point where transcription ends.

Proteins translated from mRNA form complex structure to function as blocks
of organisms, enzyme that accelerates the chemical reactions, and vehicle that
transports something within body. The three-dimensional (tertiary) structures are
believed to be dependent upon only amino acid sequence, although the strict
relationship between amino acid sequence and protein tertiary structure has not yet
been known.

6.2.2 Regulation of Transcription

The mostly focused process in this and the next chapter is transcription [55]. There
are multiple reasons why transcription is mostly focused.
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• Because of high throughput technologies including microarray and high through-
put sequencing (HTS), RNA and DNA have become the easiest parts to be
measured.

• In contrast to the proteins whose tertiary structure is heavily related to the
functions, the functions of RNA and DNA are primarily related to sequence only.
Thus, we do not need to perform downstream analysis of the structures of RNA
and DNA so much.

• Non-coding RNAs which do not have any proteins translated from them have
many functions to regulate transcription itself.

Thus, DNA sequence, RNA sequence, and the amount of transcript (i.e., RNA)
are mainly measured and studied extensively. Thus, the application of PCA based
unsupervised FE is much easier to be applied to DNA and RNA sequence as well as
the mount of transcripts.

6.2.3 The Technologies to Measure the Amount of Transcript

Measuring the amount of RNA is essentially the count of the number of RNA
transcribed from DNA. There are two major methods of high throughput mea-
surements of the amount of RNA [54]; one is microarray and the other is high
throughput sequencing. Microarray is the technology that prepares numerous probes
that specifically bind to individual RNAs; the amount of RNA that binds to probe
is measured by photo emission from the fluorescent molecules that decorate RNA.
HTS employs more direct strategy to measure RNA. HTS tries to count the number
of RNA by sequencing each RNA. One point that must be taken into account is
that HTS can measure only fragments of individual RNAs, not a full length one.
Thus, after counting the number of fragments, each fragment must be annotated
in the reference of external resources (e.g., as a part of known gene). Although
there are numerous ways to sequence RNA, we are not willing to explain the
details of sequencing technology. Only essential point to be explained to understand
the contents in the book is that the output from microarray is real number while
the output from HTS is integer. In addition to this, although output from HTS is
guaranteed to be proportional to the amount of transcript, that from microarray
is not. The output of microarray is often translated to logarithmic values because
logarithmic values more likely obey Gaussian distribution, which is believed to be
a natural outcome.

6.2.4 Various Factors that Regulate the Amount of Transcript

Although it is not fully understood yet, various factors regulate transcription [54,
55]. In this subsection, I try to explain how some factors control gene expression via



122 6 Applications of PCA Based Unsupervised FE to Bioinformatics

regulation of transcription. Most important known factors that regulate transcription
are undoubtedly transcription factors (TFs). TFs are usually composed of proteins
that bind to DNA region known as prompter. TFs primarily control the transcription
initiation. One possible problem from the point of data analysis is that TFs are
proteins. As mentioned above, the most easiest factor to be measured is not protein
but RNA. Because of that, TFs are not frequently to be targets of investigations in
this and the next chapter. The second major factor that regulates transcription is
methylation. If promoter region is methylated, TF is forbidden to bind to the region.
As a result, the transcription of RNAs whose promoter is methylated is disturbed.
In addition to this, DNA methylation is heritable during DNA replication that takes
place in cell duplication. Thus DNA methylation can affect transcription for longer
period than other factors. The additional factors that can regulate transcription in the
post transcription process is microRNA (miRNA). miRNAs are RNAs not translated
to proteins but have functions; their functions are to destroy RNAs before translation
takes place. Each miRNA can identify each target mRNA by the complementary
binding to 8 bp length seed region within 3′ untranslated region (UTR) of mRNA
(the term 3′ is used to identify which edge of mRNA is targeted). UTR is region
of mRNA that are not translated to protein. Although there are more factors that
can affect transcription, DNA methylation and miRNA expression are mostly the
factors analyzed in this and the forthcoming chapters. mRNA that is not translated
to protein.

6.2.5 Other Factors to Be Considered

Some other factors that can affect transcription will be discussed time to time.
Single nucleotide polymorphism (SNP) is the replacement of single nucleotide in
DNA. Although there are many reasons that cause SNP, it is primarily caused
by miss-duplication of DNA during cell division. Until now, although SNP is
primarily considered to alter amino acid sequence of protein, it can also affect
transcription. For example, SNP in promoter region or 3′ UTR region can affect
the binding between TF and DNA or that between miRNA and mRNA, thus affect
the transcription. Although it is not extensively investigated, SNP and transcription
are mutually interacted.

Histone modification is another factor that regulates transcription. Histone is
protein around which DNA winds. This process is necessary in order that long DNA
chain does not get tangled up. DNA that tightly winds around histone cannot be
transcribed because no TFs can bind to it. Because histone modification that means
that small molecules bind to histone tale can affect how tightly DNA can wind round
histone, histone modification is additional factor that can affect transcription.

Finally, although it is not so frequently analyzed, proteome and metabolome can
be treated. Proteome is a set of protein translated. Their amount can be causes
or outcome of transcription. Metabolome is a set of compounds generated as a
consequence of chemical reaction to which some proteins take place as enzyme.
Thus, metabolome is, indirectly, affected by transcription.



6.3 Biomarker Identification 123

Integrated analysis of these factors is often annotated as multi-omics data
analysis, because it integrates genome, transcriptome, proteome, metabolome, i.e.,
several “-ome” data sets.

6.3 Biomarker Identification

Although PCA based unsupervised FE is applied to various bioinformatics topics,
we would like to start from identification of biomarker; biomarker is a kind of
disease marker that can tell you about your healthy status. When you can take health
check, various factors are measured from blood and urine. You will be warned
if some of the measured components have non-standard values. Identification of
biomarkers is very important to facilitate diagnosis, as medical knowledge is not
required. In this sense, most readers are not considered to be medical professionals,
so identifying biomarkers is likely to be the most understandable to readers. Thus,
beginning to explain the identification of biomarkers that require less medical
knowledge, readers who are not medical experts may not be as stressful.

6.3.1 Biomarker Identification Using Circulating miRNA

Circulating miRNA means miRNAs that circulate in the body. For example, blood
miRNA is a typical circulating miRNA. The reason why biomarkers are searched
within circulating miRNA is as follows. At first, obtaining circulating miRNA is
less painful than getting tissue miRNAs that are expected to be more likely directly
related to diseases than blood miRNA. In order to obtain tissue miRNA, one needs
surgery or needle biopsy that inevitably injures patients body and results in some
pain. In order to get blood, there need to be also needle but with less pain. Thus,
if we can find useful disease biomarker in the blood, it is very convenient. On the
other hand, identification of disease biomarker using circulating miRNA is more
challenging than that using tissue miRNA, because circulating miRNA reflects
whole body state that is not always related to specific disease. Thus, from the data
science point of view, identification of disease biomarker using circulating miRNA
might be challenging and interesting.

6.3.1.1 Biomarker Identification Using Serum miRNA

As the first example, we consider serum miRNAs [56]. Serum is the liquid
component of blood that does not include either blood vessels or clotting factors.
Serum is also supposed to contain all proteins (other than those contributing to
blood clotting), electrolytes, antibodies, antigens, hormones, and any exogenous
substances. Thus, it is suitable to search biomarker in it.
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Table 6.1 List of serum miRNAs samples

k Group Number of samples (Mk)

0 Controls 70

1 Lung cancer 32

2 Prostate cancer 23

3 Melanoma 35

4 Wilms tumors 5

5 Ovarian cancer 15

6 Gastric cancers 13

7 Pancreatic ductal adenocarcinoma 45

8 Other pancr. tumors and diseases 48

9 Pancreatitis 38

10 Chronic obstructive pulmonary disease 24

11 Periodontitis 18

12 Sarcoidosis 45

13 Acute myocardial infarction 20

14 Multiple sclerosis 23

Here we make use of serum miRNA data set that is publicly available [24].
It includes serum miRNAs measurements for 14 diseases and healthy controls
(Table 6.1). Although it does not always include enough number of samples in
individual diseases in the recent standards (because it was 6 years ago when I
performed this study), because I believe that it is a good intuitive example from
which the explanation starts, I introduce the application of PCA based unsupervised
FE to them. The expression of miRNAs was measured by microarray technology.
It includes only 863 human miRNAs, because it is an old study. Nowadays,
more number of human miRNAs are identified. For example, the most recent
miRBase [25] (http://www.mirbase.org/index.shtml, version 22), which is a primary
miRNA database that is periodically updated, includes as many as 1917 pre-
miRNAs, each of which usually includes two complementary miRNAs (Thus, the
most updated version includes c.a. 4000 miRNAs). The full data set of used gene
expression profiles is available from Gene Expression Omnibus (GEO) [44] with
GEO ID, GSE31568.

Although I am not interested in describing how to retrieve gene expression
from GEO, I briefly introduce about it. GEO includes multiple format of gene
expression: typically processed (normalized) one and raw one. The former is the
one after the correction assuming some hypothesis, e.g., background correction.
As mentioned above, microarray measures gene expression with light emission.
Thus, measurement of gene expression by microarray is quite indirect. In order to
compensate the errors and biases introduced by this technology, gene expression is
often corrected based upon some assumption. Nevertheless, as can be seen in the
below, PCA based unsupervised FE can make use of raw (unprocessed) data quite
successfully (throughout the application of PCA and TD based unsupervised FE, it
will not be very usual to use processed data).

http://www.mirbase.org/index.shtml
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Then, also in this case, I downloaded raw data set, GSE31568_raw.txt.gz.1

This file includes all miRNA expression listed in Table 6.1 as one file. The first
row excluding header line that includes GEO ID of individual samples annotates
distinction between controls and diseases. Then we generated gene expression
profiles as a form of matrix, x

(k)
ij ∈ R

863×(M0+Mk), that represents ith miRNA
expression of j th sample where M0(= 70) and Mk, 1 ≤ k ≤ 14 are the number
of controls and the kth disease samples, respectively.

In order to apply PCA based unsupervised FE to x
(k)
ij , PCA is applied to it such

that PC scores, u(k)
� ∈ R

863, are attributed to miRNAs and PC loading, v(k)
� ∈

R
M0+Mk , are attributed to samples. Unfortunately, we cannot identify PC loadings

associated with distinction between healthy controls and patients. Then, empirically,
we employ the following strategy to select miRNAs used for biomarkers. At first,
compute length, ri , of PC score as

ri =
√√√√

2∑

�=1

u2
�i . (6.1)

Then top ranked 10 miRNAs with larger ri are selected. Table 6.2 shows the list
of miRNAs selected for each of 14 pairs composed of controls and patients of
one of 14 diseases. Interestingly, miRNAs selected in each of 14 pairs are heavily
overlapped. In spite of that 140 miRNAs are selected in total, there are only twelve
miRNAs. Nine out of twelve miRNA are selected in all of fourteen pairs of control
and patients.

Although it is interesting that selected miRNAs are highly overlapped between
fourteen diseases, because no PC loading exhibits distinction between controls and
diseases, it might not be related to biology at all. In order to see this, we try to
make use of these miRNAs selected in order to discriminate between controls and
diseases. If they can, they are considered to be disease biomarkers.

In order that, we employ the following strategy. Instead of full size miRNA
expression profile matrix, x

(k)
ij ∈ R

863×(M0+Mk), we prepare reduced miRNA

expression profile, x
(k)
ij

′ ∈ R
10×(M0+Mk) that includes selected 10 miRNAs only.

Then PCA is applied to x
(k)
ij

′
again in order to get PC loading, v(k)

�

′ ∈ R
M0+Mk ,

attributed to samples. Then the first L PC loading, v(k)
�

′
, � ≤ L, are used to linear

discriminant analysis (LDA) in order to discriminate between controls and diseases.
Here LDA is a classical method to discriminate between multiple classes using

linear algebra. In order to perform LDA, we need to compute several variables. Then
new variable yj ∈ R

M0+Mk is defined as

yj = a ×�

(
v(k)
j

′ −
〈
v(k)
j

′〉

j

)
= a ×� δv(k)

j

′
(6.2)

1ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE31nnn/GSE31568/suppl/GSE31568_raw.txt.gz.

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE31nnn/GSE31568/suppl/GSE31568_raw.txt.gz
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with deciding a ∈ R
L such that yj discriminates controls and diseases where

v(k)
j

′ =
(
v(k)′

1j , v
(k)′

2j , . . . , v
(k)′

Lj

)
. (6.3)

In order to decide a, we need to compute in-class centroid as

〈yj 〉(k)
j =

{
1

Mk

∑Mk

j=1 yM0+j k �= 0
1

M0

∑M0
j=1 yj k = 0

(6.4)

which is also written as

〈yj 〉(k)
j =

⎧
⎪⎨

⎪⎩

a ×�

〈
δv(k)

j

′〉(k)

j
k �= 0

a ×�

〈
δv(0)

j

′〉(0)

j
k = 0

. (6.5)

The task is maximizing the difference between in-class centroid

�(k) =
(
〈yj 〉(k)

j − 〈yj 〉(0)
j

)2
(6.6)

= a ×�

[{〈
δv(k)

j

′〉(k)

j
−
〈
δv(0)

j

′〉(0)

j

}
×0
{〈

δv(k)
j

′〉(k)

j
−
〈
δv(0)

j

′〉(0)

j

}]
×�′ a

(6.7)

≡ a ×� ΣB ×�′ a (6.8)

relative to summation of in-class variances

�(0,k) =
〈(

yj − 〈yj ′ 〉(k)

j ′
)2
〉(k)

j

+
〈(

yj − 〈yj ′ 〉(0)

j ′
)2
〉(0)

j

(6.9)

= a ×�

[{
δv(k)

j

′ −
〈
δv(k)

j

′〉(k)

j

}
×0
{
δv(k)

j

′ −
〈
δv(k)

j

′〉(k)

j

}]
×�′ a (6.10)

+ a×�

[{
δv(0)

j

′−
〈
δv(0)

j

′〉(0)

j

}
×0
{
δv(0)

j

′−
〈
δv(0)

j

′〉(0)

j

}]
×�′ a (6.11)

≡ a ×� ΣW ×�′ a (6.12)

It is known that this task can be performed by maximizing

L(a, λ) = �(k) − λ
(
�(0,k) − 1

)
(6.13)

with respect to a and λ, which is also known as method of Lagrange multipliers.
It is equivalent to maximize �(k) with keeping �(0,k) = 1. In order to find a that
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maximizes L(a, λ), we require that derivatives of L(a, λ) with respect to a must be
zero.

∂L(a, λ)

∂a
= 2 (ΣB ×�′ a − λΣW ×�′ a) = 0. (6.14)

This is equivalent to eigenvalue problem

Σ−1
W ΣBa = λa (6.15)

and a can be obtained as the first eigenvector. LDA can be performed to find y0 such
that the distinction between two sets, yj < y0 and yj > y0, is maximally coincident
with distinction between controls and diseases.

Table 6.3 shows the performance measured using leave one out cross validation
(LOOCV). In LOOCV, one of M0 + Mk samples is removed from computing LDA,
and yj for removed one is computed by Eq. (6.4) using obtained a. Then, it is
discriminated if yj > y0 or yj < y0. This procedure is repeated for all M0 + Mk

samples.
The reason why LOOCV is required is as follows. If LDA is performed

considering all samples, it cannot be said to be true prediction since we know the
classification of the sample whose classification is tried to predict. In real situation,
biomarker must predict sample classification without knowing the answer. Thus
LDA should be performed excluding a sample of which classification is tried to
be predicted.

Table 6.3 Various performance achieved by LDA (with LOOCV) using PC loading computed by
10 miRNAs selected by PCA based unsupervised FE

k Group L Accuracy Specificity Sensitivity Precision

1 Lung cancer 5 0.784 0.800 0.750 0.632

2 Prostate cancer 5 0.806 0.800 0.826 0.576

3 Melanoma 10 0.867 0.857 0.886 0.756

4 Wilms tumors 7 0.867 0.886 0.600 0.273

5 Ovarian cancer 6 0.800 0.786 0.867 0.464

6 Gastric cancers 9 0.806 0.800 0.826 0.576

7 Pancreatic ductal
adenocarcinoma

2 0.765 0.743 0.800 0.667

8 Other pancr. tumors and diseases 7 0.814 0.771 0.875 0.724

9 Pancreatitis 8 0.933 0.786 0.921 0.700

10 Chronic Obstructive Pulmonary
Disease

2 0.713 0.671 0.833 0.465

11 Periodontitis 10 0.807 0.814 0.778 0.519

12 Sarcoidosis 10 0.835 0.800 0.889 0.741

13 Acute myocardial infarction 7 0.789 0.900 0.757 0.964

14 Multiple sclerosis 10 0.892 0.871 0.957 0.710
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In Table 6.3, there are many performance measures. Here I briefly explain them
based upon confusion matrix (Table 4.8) as

Accuracy = T P + T N

T P + T N + FP + FN
, (6.16)

Specificity = T N

T N + FP
, (6.17)

Sensitivity = T P

T P + FN
, (6.18)

Precision = T P

T P + FP
. (6.19)

Accuracy measures the ratio of the number of correctly predicted samples to the
number of total samples. Specificity measures the ratio of the number of correctly
predicted control samples to the number of control samples. Sensitivity measures
the ratio of the number of correctly predicted disease samples to the number of
disease samples. Precision measures the ratio of the number of correctly predicted
disease samples to the number of samples predicted as diseases.

Generally, the performance in Table 6.3 is quite well if we consider the
performance is achieved in the fully unsupervised manner. This suggests that PCA
based unsupervised FE can be useful even when it is applied to the real applications.

One might wonder if this performance must be evaluated based upon the
comparisons with other methods. Before starting to discuss this point, I would like
to point out one important point specific to this application. In this application,
selecting miRNAs as small as possible is important, because measuring more
miRNAs costs more in practical applications. In addition to this, the selected
miRNAs should not be dependent upon sets of samples considered. If the best
selected miRNAs vary from samples to samples, it becomes useless. From this point
of view, PCA based unsupervised FE is superior to other supervised methods. As
mentioned above, we can select miRNAs using all samples even including samples
whose classification is tried to predict because we did not use classification of
samples at all. In the real application, we can do as follows. Suppose we have both
samples with known classification and those without known classification. Then
apply PCA to all samples including both. Select top 10 miRNAs using distanced
computed with the first and the second PC scores shown in Eq. (6.1). PC loading
is recomputed using selected 10 miRNAs. These all processes can be done without
knowing sample classifications at all.

Actually, Keller et al. [24] failed to select a set of fixed 10 miRNAs, because
they needed to excluded samples to be predicted. This results in distinct set of
miRNAs selected depending upon the samples excluded. Thus, before comparing
performance by other methods with those by PCA based unsupervised FE, primarily
we have to know if other methods can select stable feature selection without strong
sample dependency.
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In order to evaluate stability we define the stability test as follows.

1. Select randomly 90% of samples within control M0 samples and disease Mk

samples, respectively.
2. Apply PCA to xij ∈ R

N×0.9(M0+Mk).
3. Select top 10 miRNAs using ri defined in Eq. (6.1).
4. Repeat the process over independent 100 trials and count miRNAs selected in all

100 trials

When applying this stability test to PCA based unsupervised FE, although there
are 140 miRNAs selected for pairwise 14 discrimination where 10 miRNAs are
selected, 129 miRNAs are always selected when the above stability test is applied to
PCA based unsupervised FE. Thus, feature selection with PCA based unsupervised
FE is quite stable.

Next we apply stability test to t test which Keller et al. [24] employed. In this
case, in step 3, P -values computed by t test are used for selecting miRNAs instead
of ri . Then only 40 miRNAs among 140 selected miRNAs are always selected. This
means that t test is quite inferior to PCA based unsupervised FE from the point of
stability.

In order to confirm the superiority of PCA based unsupervised FE towards
other supervised methods from the point of stability, we also apply stability test to
significance analysis of microarrays (SAM) [65], gene selection based on a mixture
of marginal distributions (gsMMD) [35], ensemble recursive feature elimination
(RFE) [1]. The performance of these advanced supervised methods from the point
of stability is quite disappointing. Among 140 miRNAs selected, only 30, 5, 1,
1, 0 miRNAs are always selected when stability test is applied to SAM, up- and
downregulation by gsMMD, RFE, ensemble RFE. It is quite obvious that more
advanced methods proposed to achieve better discrimination are inferior to PCA
based unsupervised FE from the point of stability.

We cannot emphasize too much the importance of stability of feature selection
here, although it is generally overlooked. As one can see in the below, PCA based
unsupervised FE is always outstanding over the conventional supervised methods
from this point of view, stability.

In order to clarify if this superiority of PCA based unsupervised FE is because of
its unsupervised nature, we try here additional unsupervised method, unsupervised
feature filtering (UFF) [67]. UFF is SVD based unsupervised method. Because SVD
is in some sense equivalent to PCA as mentioned in the earlier part of this book, UFF
has similar theoretical base to that of PCA based unsupervised FE. UFF makes use
of entropy computed by SVD. Entropy H is defined as

ρi = λ2
i∑N

i=1 λ2
i

(6.20)

H = − 1

log N

N∑

i=1

ρi log ρi (6.21)
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where N is the number of feature (in this example, the number of miRNAs). λi is
singular value when SVD is applied to xij . H represents how complicated structure
xij has. When λi is constant, i.e., there are no structures at all, ρi = 1

N
and H = 1.

On the other hand, when λi �= 0 only for one specific i, because ρi = 1 and ρi′ =
0, i′ �= i, H = 0. In UFF we compute H without ith feature as

Hi = − 1

log N

∑

i′ �=i

ρi′ log ρi′ . (6.22)

Then we have selected top 10 miRNAs having larger ΔHi = H −Hi . Interestingly,
stability test applied to UFF results in 111 always selected miRNAs among 140
miRNAs. This number is comparative with 129 miRNAs achieved by PCA based
unsupervised FE. Thus, the reason why PCA based unsupervised FE outperformed
other conventional supervised methods from the point of stability is likely because
of unsupervised nature.

Finally, we discuss the difference between two unsupervised methods: PCA
based unsupervised FE and UFF. In UFF, SVD must be repeated as many as times
equal to the number of features, which can often become 104 in the case that mRNAs
are considered as a feature. On the other hand, PCA based unsupervised FE requires
PCA only once. Thus computationally, UFF is far more challenging than PCA based
unsupervised FE. Thus as far as these two methods achieve competitively, there are
no needs to employ UFF than PCA based unsupervised FE.

Although the readers might be primarily interested in statistical methods them-
selves, not in biology, I briefly explain how we can evaluate the outcome also
using domain knowledge, i.e., the knowledge is outside the statistical analysis and
only in the biology. It is also important that the outcome driven from statistical
methods is coincident with the domain knowledge from the biological point of
view, because the coincidence with domain knowledge supports the reliability of
statistical methods employed.

Although it is not mathematical, the so-called literature search is a powerful
method. Simply searching database for the coincidence, one can easily get evidences
that support outcome. Among the diseases listed in Table 6.1 there are multiple
cancers included (lung cancer, prostate cancer, melanoma, Wilms tumor, ovarian
cancer, gastric cancer, pancreatic ductal adenocarcinoma). Thus, it is not a bad idea
to seek database with the words e.g., “cancer” and the name of specific miRNAs.
The most useful database for this purpose is pubmed2 that corrects titles and abstract
of the papers published in major biological journals. With the search of “cancer” and
“miR-425,” the readers can easily find that the miR-425 is known to be oncogenic,
i.e., expressive in cancer. Thus, inclusion of miR-425 into one of biomarkers for
diseases including many cancers is reasonable.

2https://www.ncbi.nlm.nih.gov/pubmed/.

https://www.ncbi.nlm.nih.gov/pubmed/
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On the other hand, it is not so straightforward. Since we have employed PCA
and LDA that are linear methods in order to select and construct biomarker, we can
easily evaluate if the expression of miR-425 contributes positively or negatively to
identify disease samples besides normal control.

From Eq. (2.21),

v(k)
�

′ = 1

λ′
�

X(k)′T u(k)
�

′
(6.23)

where λ′
� is the singular value which is obtained by square root of the �th eigenvalue

computed by PCA. X(k)′ is the matrix whose component is x
(k)
ij

′ ∈ R
10×(M0+Mk),

u(k)
�

′ ∈ R
10 is the PC score computed by applying PCA to X′.

v
(k)
�j

′ = 1

λ′
�

x(k)
j

′ ×i u(k)
�

′
(6.24)

where x(k)
j

′ =
(
x

(k)
1j

′
, . . . , x

(k)
10j

′)
.

yj = a ×�

{(
x(k)
j

′ −
〈
x(k)
j

′〉

j

)
×i U(k)′

}
(6.25)

where

U(k)′ =
(

u(k)
1

′

λ′
1

, . . . ,
u(k)

L

′

λ′
L

)

∈ R
10×L (6.26)

Then we can compute the contribution from the ith miRNA to yj as

yij =
(

a ×� u(k)
i

′) ·
(

x
(k)
ij

′ −
〈
x

(k)
ij

′〉

j

)
(6.27)

where

u(k)
i

′ =
(

u
(k)
1i

′

λ′
1

, . . . ,
u

(k)
Li

′

λ′
L

)

∈ R
L (6.28)

When yj > y0 corresponds to disease, i with a ×� u(k)
i

′
> 0 is considered to

contribute to disease positively, because upregulation of ith miRNA in j th sample
enhances the tendency that the j th sample is identified as disease sample.

Figure 6.1 shows a ×� u(k)
i

′
whose signs are assigned such that upregulation of

ith miRNA in j th sample enhances the tendency that the j th sample is identified
as disease sample. In contrast to expectation, miR-425 identified as oncogenic has
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Fig. 6.1 The contribution of the ith miRNA in the j th sample toward each disease, a ×� u(k)
i

′
,

whose sign is assigned such that upregulation contributes to identification that j th sample is
identified as disease. From left to right, diseases are lung cancer (red), other pancreatic tumors
and diseases (green), pancreatitis (blue), ovarian cancer (cyan), COPD (pink), ductal pancreatic
cancer (yellow), gastric cancer (gray), sarcoidosis (black), prostate cancer (red), acute myocardial
infarction (green), periodontitis (blue), multiple sclerosis (cyan), melanoma (pink), and Wilms
tumor (yellow)
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mainly negative values. Thus, although inclusion of miR-425 as disease biomarker
is reasonable, the effect is opposite to the expectation. This suggests that consulting
to domain knowledge is very useful to validate the outcome from statistical analysis.
This observation can be a start point why serum miRNA can have opposite sign to
that in tissues which really contributes to diseases. Although we are not willing to
discuss this point comprehensively, after further literature search, miR-486 is tumor
suppressor, miR-92a and miR-106b are oncogenic.

I would like to emphasize that the present strategy that relates a ×� u(k)
i

′
to the

outcome is helpful to interpret the functions of individual features. Thus, it should
be employed in any other data science research.

Another strategy that validates outcome obtained statistically is more biology
oriented in the sense that it makes use of biological knowledge fully. As mentioned
above, miRNAs have their own targets whose numbers range from tens to hundreds.
Because targeted mRNAs have their own functions, miRNAs can be validated along
the biological concepts if their target mRNAs functions are evaluated. It is called
enrichment analysis. Suppose that in total there are N genes among which N1 genes’
mRNAs are targeted by a specific miRNA. On the other hand, suppose that there
is a set of N2 genes that share some specific function. In this situation, suppose
that there are N12(≤ N1, N2) genes that not only are targeted by the considered
miRNAs but also have the specific function. Then Fisher’s exact test checks if the
number of overlap is more than that of those by accident or not. In order to perform
Fisher’s exact test, we need to make the table that represents this situation. Assuming
that whether an mRNA is targeted by the miRNA or not is not related to whether
the mRNA has the function or not, Fisher found [14] that the situation shown in
Table 6.4 occurs with the probability

P(N12) = (N − N1)!N1!(N − N2)!N2!
(N − N1 − N2 + N12)!(N2 − N12)!(N1 − N12)!N12! (6.29)

P -values can be computed by summing up probability equation (6.29) for N12 larger
than real observation. Fisher’s exact test can evaluate the accidental probability that
the miRNA’s target mRNAs are associated with the specific function. If P -values
corrected with multiple comparison criterion (e.g., BH criterion) is small enough,
we can insist that the specific miRNA is likely related to this function. This can be
done by uploading a set of miRNAs to DIANA-miRPath [68], a web server that
automatically evaluates these probabilities. In order to upload each miRNA listed

Table 6.4 Various performance achieved by LDA (with LOOCV) using PC loading computed by
10 miRNAs selected by PCA based unsupervised FE

k mRNAs without a function
mRNAs with a
function Total

mRNAs not targeted by a miRNA N − N1 − N2 + N12 N2 − N12 N − N1

mRNAs targeted by a miRNA N1 − N12 N12 N1

Total N − N2 N2 N
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Table 6.5 KEGG pathway enrichment analysis by DIANA-miRPath for 12 miRNAs listed in
Table 6.1

Adjusted Number of

Rank KEGG pathway P -value Genes miRNAs

1. Proteoglycans in cancer (hsa05205) 2.96 × 10−14 120 12

12. Prostate cancer (hsa05215) 1.35 × 10−6 60 12

14. Glioma (hsa05214) 9.41 × 10−6 41 12

15. Chronic myeloid leukemia (hsa05220) 1.12 × 10−5 48 12

16. Renal cell carcinoma (hsa05211) 1.36 × 10−5 45 12

22. Pathways in cancer (hsa05200) 4.49 × 10−5 201 12

25. Colorectal cancer (hsa05210) 1.34 × 10−4 39 12

26. Small cell lung cancer (hsa05222) 1.78 × 10−4 54 12

31. Pancreatic cancer (hsa05212) 3.59 × 10−4 43 12

34. Non-small cell lung cancer (hsa05223) 4.24 × 10−4 35 12

36. Central carbon metabolism in cancer (hsa05230) 4.83 × 10−3 39 12

37. Endometrial cancer (hsa05213) 5.62 × 10−3 31 12

40. Melanoma (hsa05218) 8.04 × 10−3 39 12

43. Transcriptional misregulation in cancer (hsa05202) 9.42 × 10−3 90 12

44. Bladder cancer (hsa05219) 9.77 × 10−3 25 12

60. Acute myeloid leukemia (hsa05221) 2.67 × 10−2 33 11

61. Thyroid cancer (hsa05216) 3.00 × 10−2 17 12

Twelve cancer related pathways among total 61 pathways detected are listed. The number of genes
is that of genes included in the union set of genes targeted by at least one of 12 miRNAs. The
number of miRNAs is that of miRNAs whose target genes are included in the pathway

in Table 6.1, one needs to add suffix such that it is adapted to the most recent
miRBase and “hsa” to specify species. For example, instead of uploading “miR-
425,” one must upload the name of “miR-425-5p.” “miR-320a” must be uploaded
as without suffix, “miR-320a.” The option that specifies miRNA target gene data
base is “Tarbase.”

Table 6.5 is the result when considering Kyoto Encyclopedia of Genes and
Genomes (KEGG) [23] pathway that evaluates genes based upon metabolic paths
that describe chemical reactions mediated via proteins coded by genes. Among 68
pathways associated with adjusted P -values less than 0.05, as many as 17 cancer
related pathways are included. This also supports the reliability of selected 12
miRNAs by PCA based unsupervised PCA.

6.3.2 Circulating miRNAs as Universal Disease Biomarker

In this section, occasionally, miRNAs used for biomarker that identifies if multiple
diseases are highly overlapped. It is the next question if it is occasional or not.
In order to see this, we need to see if miRNAs selected in this section can
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diagnose other diseases. For this purpose, we have collected miRNA expression
of other diseases from various studies [57]. We have collected seven blood
miRNA expressions from the GEO: Alzheimer’s disease (AD) (GSE46579) [26],
carcinoma (GSE37472) [30], coronary artery disease (CAD) (GSE49823), nasopha-
ryngeal carcinoma (NPC) (GSE43329), HCC (GSE50013) [41], breast cancer (BC)
(GSE41922) [8], and acute myeloid leukemia (AML) (GSE49665) [38] (Table 6.6).
This is really a heterogeneous data set. Not only collected diseases but also resources
as well as methods include multiple ones. Thus it is suitable to check if 12 miRNAs
can work as robust universal disease biomarker.

The procedure is almost similar. Excluding identification of 10 miRNAs using
PCA based unsupervised FE, 12 miRNAs are considered to be chosen in common

for seven diseases. Then, PC loading v(k)
�

′
for kth disease is computed with applying

PCA to xij
′ ∈ R

12×(M0+Mk). Then optimal top L v(k)
�

′
is used for discriminating

patients from controls with LDA. Performance is evaluated by LOOCV. Table 6.7
shows the performance towards seven diseases. The disease-wise mean performance
(Accuracy = 0.791, Sensitivity = 0.785, Specificity = 0.800) is almost the same
as (even a little bit better than) that in the previous study (Accuracy = 0.784,
Sensitivity = 0.750, Specificity = 0.800) [56]. This suggests that identification
of 12 miRNAs universally for 12 diseases is not accidental, but they are truly
useful for identification of wide range of diseases from healthy people. Thus, I
named them as universal disease biomarker (UDB). The possibility of UDB is not

Table 6.6 List of blood miRNA expression profiles used in validation for 12 miRNAs in Table 6.1
as a universal disease biomarker

Diseases

Alzheimer Carcinoma CAD NPC

GEO ID GSE46579 GSE37472 GSE49823 GSE43329

Number of
miRNAs

502 565 746 886

Total samples 70 56 26 50

Disease samples 48 30 13 31

Healthy control
samples

22 26 13 19

Methodology HTS qPCR RT-PCR Microarray

Source Whole blood Peripheral serum Plasma sample Plasma sample

GEO ID GSE50013 GSE41922 GSE49665

Number of
miRNAs

231 274 128

Total samples 40 54 65

Disease samples 20 32 52

Healthy control
samples

20 22 13

Methodology RT-PCR RT-PCR Microarray

Source Plasma sample Pre-operative serum Peripheral blood
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Table 6.7 Performance of PCA based LDA using 12 miRNAs in Table 6.1 toward seven diseases
with LOOCV

Diseases Accuracy Sensitivity Specificity L

AD 0.829 0.833 0.818 8

Carcinoma 0.768 0.730 0.800 11

CAD 0.846 0.846 0.846 3

NPC 0.740 0.806 0.632 12

HCC 0.700 0.700 0.700 9

BC 0.870 0.813 0.955 3

AML 0.784 0.769 0.846 8

Mean 0.791 0.785 0.800 –

Mean of previous study [56] 0.784 0.750 0.800 –

The “Mean of previous study” corresponds to the mean over the performance in Table 6.3.
L: optimal number of PC loading used for LDA

frequently recognized. Nevertheless, because blood miRNAs can reflect whole body
status, they can be UDB that can diagnose multiple diseases. Actually, we very
recently [58] identified 107 blood miRNAs that can successfully discriminate famil-
ial amyotrophic lateral sclerosis, sporadic amyotrophic lateral sclerosis, healthy
controls, and gene mutation holders. Among twelve miRNAs identified here, as
many as nine miRNAs (miR-30d, miR-19b, miR-106b, miR-425, miR-185, miR-
191, miR-92a, miR-16, and miR-140-3p) are included in the 107 miRNAs. Nine
out of twelve might not look like large enough, because 107 miRNAs are selected
from as many as 3391 miRNAs [58], the fact that selected 107 miRNAs has nine
overlaps with twelve miRNAs is highly significant (P = 4.5 × 10−4 by Fisher’s
exact test). Identification of UDB using circulating miRNAs should be searched
more extensively and seriously.

6.3.3 Biomarker Identification Using Exosomal miRNAs

In the previous subsubsection, we have shown that serum biomarker can discrim-
inate various diseases from normal controls. In this section, we would like to
demonstrate that blood miRNA can even work as disease progression biomarker.
miRNAs considered are those in exosome.

Exosome is a small vehicle composed of lipid bilayer membrane. It is released
from cells and includes various compounds originated from cells inside. As a result,
exosome is a good target by which we can know the state inside cells. The functions
of exosome are not yet fully understood. Although some reports say that exosome is
used to transfer some compounds from cells to cells, what the purpose is specifically
is not yet understood.

Recently, exosome is considered to be a candidate as biomarker, because it can
carry something out of cell inside. It is also reported that some cancers make use
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of functions of exosome. These suggest that compounds in exosome can reflect
the change inside cells coincident with disease initiation and progression. Exosome
also includes miRNAs originated from cells and are circulating in the blood. Thus,
exosomal miRNAs are good targets from which disease biomarkers are generated.

The targeted diseases are liver diseases, which are classified as hepatitis. Hep-
atitis is a kind of chronic inflammation disease caused by various causes. Hepatitis
itself is not lethal, but it becomes cirrhosis of the liver earlier or later, and finally
results in deadly liver cancer. Thus, treatment of hepatitis before cirrhosis of the liver
is critically important. Thus inference of hepatitis progression is very important. On
the other hand, because suitable therapy varies dependent upon disease causes, it
is also very important to diagnose disease cause. Therefore, the aim of constructing
biomarker is not only discrimination between healthy controls and hepatitis, but also
constructing biomarker that can discriminate hepatitis having different causes and
progression stages. Thus, the more advanced biomarker than that we have identified
in the previous subsubsection is required.

The data set is downloaded from GEO with GEO ID GSE33857 [33] (Table 6.8).
This data set includes three hepatitis: one caused by hepatitis B virus (HBV)
infection, one caused by hepatitis C virus (HCV) infection, and nonalcoholic
steatohepatitis (NASH). The microarray used for these measurements includes 887
miRNAs. Because each miRNA is measured by multiple probes, the number of
probes included is 14,192. Because feature selection below is performed not in
individual miRNAs base but in probe base, it is obvious that the number of features
(14,192) is much larger than the number of samples (104 for primary set).

Figure 6.2 illustrates the analysis flow of discrimination between CHB, CHC,
NASH, and healthy controls (unshaded part) for the primary set.

1. Expression profiles, xij ∈ R
N×(Mk+Mk′ ), of ithe miRNA and j th samples with

kth and k′th disease or normal sample with the number of samples Mk and Mk′ ,
respectively.

2. Apply PCA to xij such that PC loading, v� ∈ R
Mk+Mk′ , is attributed to samples.

3. Apply categorical regression analysis

v�j = a� +
∑

s∈{k,k′}
b�sδsj (6.30)

Table 6.8 List of exosome
miRNA expression profiles
used in this study

CHC CHB NASH normal

Primary sets

64 4 12 24

Validation sets

31 12 8 –

CHB chronic hepatitis B, CHC
chronic hepatitis C, NASH Nonal-
coholic steatohepatitis
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Fig. 6.2 Flowchart of discrimination between diseases using exosomal miRNAs. The performance
obtained with following this flowchart is in Table 6.10

to v� and attribute P -values to �s. P -values are adjusted by BH criterion and �s
associated with adjusted P -values less than 0.05 are selected (the cases without
�s that pass this filtering will be discussed later).

4. Attribute P -value to ith miRNA as

Pi = Pχ2

[

>
∑

�

(
u�i

σ�

)2
]

(6.31)

where the summation is taken over �s associated with adjusted P -values less than
0.05 and σ� is the standard deviation of u�i .

5. ith miRNA associated with adjusted P -values less than 0.01 are selected. With
using only selected N1 miRNAs, expression profile, xij

′ ∈ R
N1×(Mk+Mk′ ), are

composed.
6. PCA is again applied to xij

′ and v�
′ ∈ R

(Mk+Mk′ ) are obtained. Categorical
regression is applied to v�

′ as

v�j
′ = a�

′ +
∑

s∈{k,k′}
b�s

′δsj (6.32)

and �s with adjusted P -values less than 0.05 are used for LDA.
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7. kth and k′th diseases or normal samples are discriminated with LDA using �s
selected. LOOCV is employed for the cross validation.

There is one problem in the above process. When features are selected, it is
forbidden to use the information of samples to be discriminated. Nevertheless, in
Eqs. (6.30) and (6.32), all of the class labeling are used.

In order to see if exclusion of one sample to be discriminated (because we
employ LOOCV) can alter the selected miRNAs, we perform the following. When
PC loading is selected using Eqs. (6.30) and (6.32), one of Mk + Mk′ samples is
removed and P -values are recomputed and adjusted to select PC loading. Table 6.9
is the result for 100 trials. As can be seen, only three pairs, CHC vs normal, CHB
vs CHC, and NASH vs CHC, out of six possible pairs among four classes, CHB,
CHC, NASH and normal controls, have non-zero selected PC loading in Eq. (6.30)
(Please note, if no PC loading is selected in Eq. (6.30), the process is terminated and
Eq. (6.32) is not performed). As expected, PC loading is selected with high stability
for these three pairs. Thus, we decide to select PC loading shown in bold in Table 6.9
for these three pairs.

Table 6.10 shows the confusion matrices of the discrimination between CHC,
CHB, NASH, and normal controls. For these three pairs, CHC vs normal, CHB vs
CHC, and NASH vs CHC, performance is relatively well.

For other three pairs without CHC, i.e., CHB versus NASH, CHB versus normal,
NASH versus normal, because there is no PC loading associated with adjusted P -
values less than 0.05 (the “NO” branch to the question “Class label dependence?” in
Fig. 6.2), we cannot select miRNAs using Eq. (6.31). Instead, we attribute P -values
to miRNAs with Eq. (6.31) using 1 ≤ � ≤ 3. Then top 100 miRNAs with smaller
P -values are selected even if they are not significantly small. PC loading, v�

′ with

Table 6.9 Frequencies of PC
loading selected via
Eqs. (6.30) and (6.32) when
one of samples are
sequentially excluded among
100 trials

CHC vs normal

� 1 2 3 27

Eq. (6.30) 88 88 88 1

Eq. (6.32) 88 50 88 —

CHB vs CHC

� 2 3
Eq. (6.30) 20 68

� 1 3 4 5 6 12

Eq. (6.32) 68 1 1 67 3 1

NASH vs CHC

� 1 2 3
Eq. (6.30) 12 76 76

� 1 3 4
Eq. (6.32) 76 76 76

�s not shown are not selected. PC loading
shown in bold is selected and used for
selection of miRNA probes
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Table 6.10 Confusion matrix of discrimination between CHB, CHC, NASH, and normal controls

Primary seta

Predict CHC Normal Predict CHC CHB Predict CHC NASH

CHC 64 4 CHC 62 1 CHC 63 2

Normal 0 20 CHB 2 3 NASH 1 10

P -values 3.46 × 10−16 7.80 × 10−4 7.40 × 10−10

Odds ratio ∞ 71.4 234.2

Primary setb

Predict CHB NASH Predict CHB Normal Predict NASH Normal

CHB 2 3 CHB 2 9 NASH 9 7

NASH 2 9 Normal 2 15 Normal 2 17

P -values 5.55 × 10−1 1.00 × 100 8.79 × 10−3

Odds ratio 2.78 1.63 10.1

Validation set

Predict CHB NASH Predict CHC CHB Predict CHC NASH

CHB 18 6 CHC 74 3 CHC 73 8

NASH 4 12 CHB 21 17 NASH 22 12

P -values 3.21 × 10−3 1.90 × 10−7 2.24 × 10−3

Odds ratio 8.42 19.3 4.89

Columns: True, Rows: Prediction. P -values are computed by Fisher’s exact test
aN1 probes are selected based upon significance.
bTop N1(= 100) probes with smaller P -values are selected without considering significance.

applying PCA to xij
′ ∈ R

10×(Mk+Mk′ ). Using v�
′, 1 ≤ � ≤ 3, LDA is performed.

The results for these three pairs are also shown in Table 6.10. Performance for CHB
is not good.

In Table 6.11, we list miRNAs selected. As in the case of serum miRNAs, they are
highly overlapped. Thus, as miRNAs in serum, exosomal miRNAs have potential to
be UDB, too.

Finally, we try to validate the suitability of selected miRNAs in Table 6.11 using
validation set in Table 6.8. The procedure is as follows (shaded part in Fig. 6.2).

1. We construct expression profiles of selected N1 probes listed in Table 6.11,
xij

′ ∈ R
N1×(Mk+M ′

k+Mk′+M ′
k′ ), where M ′

k and M ′
k′ are the number of samples

in validation set (Table 6.8) of kth and k′th disease or control samples.
2. PC loading v�

′ is computed with applying PCA to xij
′.

3. a in Eq. (6.2) is computed using only v�
′ (�s used are the same as listed in

Table 6.9 for Eq. (6.32)) of Mk + Mk′ samples in primary set. In other words,
�(k) and �(0,k) are computed using only Mk + Mk′ samples in primary set.

4. Using obtained a, yj for M ′
k + M ′

k′ samples in validation set is computed using
Eq. (6.2).

5. M ′
k + M ′

k′ samples in validation set are discriminated between k and k′ using
obtained yj .
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Table 6.11 List of miRNAs included in N1 probes selected in order to compute v�
′ (Fig. 6.2) with

applying PCA to xij
′ ∈ R

N1×(Mk+Mk′ )

miRNAs

CHC
vs
normal

CHB vs
CHC

NASH
vs CHC

CHB
vs
NASH

CHB vs
normal

NASH
vs
normal

N1 176 140 170 100 100 100

miR-638 © © © © © ©
miR-320c © © © © © ©
miR-486-5p © © © © © ©
miR-451 © © © © © ©
miR-1974_v14.0 © © © © © ©
miR-1246 © © © © © ©
miR-720 © © © © ©
miR-762 © © © © ©
miR-630 © © © © ©
miR-92a © © © ©
miR-1275 © © ©
miR-1225-5p © ©
miR-1207-5p © ©
miR-1202 ©
miR-22 © ©
miR-532-3p ©
miR-1202 © ©
miR-122 ©
miR-1306 ©
miR-34b ©
miR-16 ©
miR-1 ©
miR-1271 ©

The exclusion of M ′
k + M ′

k′ samples in validation set for computing a is required in
step 3, because we should not use any information about to which category samples
in validation set belong; this information is not available in the real situation. On
the other hand, their expression profiles themselves are allowed to be used for
computing v�

′, because we have miRNA expression of validation set in advance
even if we do not know about labeling.

Table 6.10 also shows the results for these validation sets. The performance
is pretty good. Interestingly, CHB samples that cannot be well discriminated in
primary samples are well discriminated in the validation sample, in spite of that
it is usually expected that performance in validation set decreases than training set.
This suggests that probe selection by PCA based supervised FE can work pretty
well even if the number of samples available is small as demonstrated in synthetic
data set in the previous chapter. In conclusion, exosomal miRNA has the ability to
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Table 6.12 Number of samples having specific inflammation and fibrosis levels in CHC samples

Inflammation 1 2 3 Fibrosis 0 1 2 3

Number 36 18 9 Number 3 33 16 12

diagnose not only disease but also cause of diseases, because it can discriminate
among CHB, CHC, and NASH, which is hepatitis caused by different causes.

Next, we would like to see if exosomal miRNA can diagnose hepatitis pro-
gression. There are two features that describe hepatitis progression, inflammation
and fibrosis. Because hepatitis is a chronic inflammation, there might be no need
to explain why inflammation describes hepatitis progression. On the other hand,
fibrosis is not so direct measure. As mentioned above, hepatitis develops to cirrhosis.
Cirrhosis is fibrosis of liver. Thus, it is reasonable to consider fibrosis progression
to be disease progression measure of hepatitis. Both inflammation and fibrosis are
diagnosed for some CHC samples using integer grade.

Table 6.12 shows the frequency of inflammation and fibrosis grade levels
diagnosed. In order to infer these levels using exosomal miRNAs, we do as
follows:

1. PCA is applied to xij ∈ R
N×Mk where Mk is the total number of CHC

samples with inflammation or fibrosis diagnoses (Table 6.12). Unfortunately, we
cannot identify any PC loading, v� ∈ R

Mk , that is significantly associated with
inflammation or fibrosis levels.

2. After attributing Pis to miRNAs using Eq. (6.31) with � ≤ 3, top 100 probes with
smaller Pis are selected.

3. PCA is applied to miRNA expression profile including only selected 100 probes,
xij

′ ∈ R
100×Mk .

4. The obtained v�
′, � ≤ 2 as well as patient ages are used for LDA. In this

case, ages must be considered together with miRNA expression in order to get
significant results.

Table 6.13 shows the confusion matrices between predicted and true inflammation
and fibrosis. Although the number of used miRNAs increases to twice, it is still as
many as ∼10, which is less than 5% of total number of miRNAs in the array, 887. In
order to see if they are significant, we compute correlation coefficient between true
and predicted inflammation and fibrosis levels. Although the correlation is not very
high, they are associated with significant P -values (P = 0.02, see page 112 for how
to compute P -values attributed to correlation coefficients). Thus, we can expect that
exosomal miRNAs can diagnose hepatitis progression together with patients’ ages.

Multi-Class LDA Here we need to explain how LDA for two classes can be
extended to multi-classes because discrimination of inflammation or fibrosis levels
require multi-classes discrimination. At first, �(k) in Eq. (6.6) and �(0,k) in Eq. (6.9)
are replaced with
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Table 6.13 Confusion matrices between true (columns) and predicted (rows) inflammation and
fibrosis levels. Correlation coefficients with associated P -values as well as 21 miRNAs to which
top 100 probes are attributed are listed

True

Inflammation Fibrosis

Prediction 1 2 3 Prediction 0 1 2 3

1 28 10 4 0 1 2 0 0

2 5 6 2 1 2 23 9 6

3 3 2 3 2 0 3 5 2

3 0 5 2 4

Corr. = 0.29, P = 0.02 Corr. = 0.30, P = 0.02

miR-1225-5p miR-1275 miR-638 miR-320c miR-197_v14.0 miR-194* miR-630 miR-720 miR-
300 miR-1179 miR-373 miR-1181 miR-1246 miR-320d miR-532-3p miR-518d-3p miR-34b miR-
664 miR-668 miR-147 miR-664*

�inter =
∑

k �=k′

(
〈yj 〉(k)

j − 〈yj 〉(k′)
j

)2
(6.33)

and

�intra =
∑

k

〈(
yj − 〈yj ′ 〉(k)

j ′
)2
〉(k)

j

(6.34)

respectively. Then we get Eq. (6.15) with modified ΣW and ΣB . In contrast to the
two classes discrimination, we need the first S eigenvectors, ap, p ≤ S, for S classes
discrimination. Then y

p
j s are attributed to j th sample with substituting ap to a in

Eq. (6.2). yj is defined as

yj =
(
y1
j , y2

j , . . . , yS
j

)
(6.35)

and kth class centroid vector
〈
yj

〉(k)

j
is computed as in Eq. (6.4). The distance

between j th sample and kth centroid

dkj =
∣∣∣yj − 〈yj

〉(k)

j

∣∣∣ (6.36)

is computed. Finally, j th sample is classified into the kth class having the smallest
djk among S classes. �

In conclusion, we have found that exosomal miRNAs can not only discriminate
between healthy controls and hepatitis patients, but also diagnose hepatitis progres-
sion. The advantage of the usage of PCA based unsupervised FE is that we can
reduce the number of probes down to ∼102 from 14,192. As for the number of
miRNAs, it is ∼10 among 887 total miRNAs. Considering that it is the results of
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unsupervised methods, it is remarkable and demonstrates usefulness of PCA based
unsupervised FE in the real application.

6.4 Integrated Analysis of mRNA and miRNA Expression

In the previous section, circulating miRNA can be an effective biomarker. As
mentioned above, miRNAs can affect the biological processes through targeting
mRNAs. Thus, considering miRNA and miRNA expression might be more effective
to understand biological systems.

6.4.1 Understanding Soldier’s Heart From the mRNA
and miRNA

Soldier’s heart means that veterans often have heart problems without any phys-
iological abnormalities. Thus, it is believed to be post traumatic stress disorder
(PTSD) driven disorder. PTSD is a mental disorder caused by life-threatening
stresses, e.g., experiences in battlefields or encounters to disaster. Even after the
stresses passed out, human beings sometimes have mental problems, not to be
fully relaxed. PTSD not only affects mental sides, but also affects physical sides.
In this sense, it is critically important to know how life-threatening stress causes
gene expression anomaly in heart. In this subsection, we would like to fulfill this
requirement with analyzing miRNA and mRNA expression profiles in stressed mice
hearts [59].

Table 6.14 lists 48 samples for which mRNA and miRNA expression pro-
files are measured. These are downloaded from GEO ID GSE52875; the file
GSE52875_RAW.tar including individual 48 raw data files is downloaded. Individ-
ual 48 files whose file names start from “GSM” are loaded into R via read.csv func-
tion, and “gProcessedSignal” columns in each file are collected as one data.frame.
All probes having ControlType=0 are excluded for the further analyses.

Here we would like to emphasize the difficulty of feature selection in this case.
In the case of discrimination between diseases and healthy control, miRNAs should
be expressed distinctly between two classes. Even diagnosing disease progression,
the direction among multiple classes is clear; inflammation and fibrosis should

Table 6.14 Number of samples in miRNA and mRNA expression profiles of stressed mice hearts

Rest period 1 day 1 day 10 days

Stress expose period 1 day 2 days 3 days 10 days 5 days 42 days

Control/Stressed 0/4 4/4 0/4 4/4 4/4 4/4 4/4
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increase as disease progressed. In contrast to these cases where how expression is
expected to differ is more or less clear, how miRNA expression differs between 12
classes (5 controls and 7 stressed samples) is unclear. Of course, although miRNA
expression should differ between corresponding controls and stressed samples,
pairwise comparisons between five pairs of stressed samples and controls might
not be a good idea, because individual comparison might identify non-overlapping
sets of mRNAs and miRNAs. Because the aim of this study is to identify disease
causing mRNAs and miRNAs, identification of sets of non-overlapping mRNAs
and miRNAs is not desirable. Thus, how we can identify mRNAs and miRNAs that
contribute to diseases is not an easy problem.

Here, we apply PCA based unsupervised FE to mRNA expression and miRNA
expression separately. We denote mRNA and miRNA expression as xmRNA

ij ∈
R

59305×48 and xmiRNA

kj ∈ R
2640×48, respectively. Although the total number of

mRNAs measured is as many as 37,890, since some mRNAs are measured by
multiple probes, the total number of probes, 59,305, is much larger than the total
number of mRNAs. Although there are only 660 miRNAs measured, because they
are measured by as many as four probes, total number of probes is 2640. Although

xmRNA

ij is standardized, i.e.,
∑

i xmRNA

ij = 0,
∑

i

(
xmRNA
ij

)2 = 59,305, xmiRNA

kj are not.

PCA is applied to xmRNA

ij and xmiRNA

kj such that PC loading vmRNA

� ∈ R
48 and vmiRNA

� ∈ R
48

are attributed to 48 samples.
In order to see which PC loading is associated with distinction among 12 classes,

1 ≤ s ≤ 12, we apply categorical regression analysis

vmRNA

�j = amRNA

� +
12∑

s=1

bmRNA

�j δsj (6.37)

vmiRNA

�j = amiRNA

� +
12∑

s=1

bmiRNA

�j δsj (6.38)

where amRNA

� , bmRNA

� , bmiRNA

� , bmiRNA

� are the regression coefficients. P -values are
attributed to PC loading and corrected by BH criterion. As a result, PC loading
with � = 1, 2, 4, 10 for mRNA and � = 1, 2 for miRNA has adjusted P -values less
than 0.05. Figures 6.3 and 6.4 show the boxplots of PC loading, vmRNA

� , � = 1, 2, 4, 10
and those of PC loading, vmiRNA

� , � = 1, 2, respectively. It is obvious that PCA can
successfully identify PC loading associated with dependence upon 12 classes for
mRNA and miRNA. It might be difficult to identify such complicated dependence
with conventional supervised methods, because we need to specify the dependence
upon class labeling in advance, for supervised methods.

Although PCA can identify PC loading that is coincident with twelve classes,
the problem is if these coincidences are biologically reasonable or not. In order
to discuss this point, we need domain knowledge. As mentioned above, primary
function of miRNA is to destroy mRNA. Thus, miRNA expression should be
negatively correlated to mRNA expression. Hence, PC loading that corresponds
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Fig. 6.3 The first, second, fourth, and tenth PC loading, vmRNA
� , � = 1, 2, 4, 10, to which adjusted

P -values less than 0.05 are attributed. P -values above each plot are adjusted ones. Labels of
classes: C: control, T: stressed, the numbers adjusted to T or C: period of stress, XXd: days of
rest. See Table 6.14, too. Coloring is just for visibility and does not correspond to experimental
conditions
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Fig. 6.4 The first and second PC loading, vmiRNA
� , � = 1, 2, to which adjusted P -values less than

0.05 are attributed. P -values above each plot are adjusted ones. Labels of classes: C: control, T:
stressed, the numbers adjusted to T or C: period of stress, XXd: days of rest. See Table 6.14, too.
Coloring is just for visibility and does not correspond to experimental conditions
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to these two should as well. Figure 6.5a shows the scatterplot of the first PC
loading between miRNA and mRNA attributed to 48 samples. The correlation
coefficients are −0.37 with associated P -value of 9.54 × 10−3. Thus, as expected,
vmRNA

1j and vmiRNA

1j are significantly correlated. In order to further confirm the biological
reliability, summation over four replicates taken. Then the correlation between

〈
vmRNA

1j

〉(s)

j
= 1

4

∑

j∈s

vmRNA

1j (6.39)

and

〈
vmiRNA

1j

〉(s)

j
= 1

4

∑

j∈s

vmiRNA

1j (6.40)

is computed (Fig. 6.5b). If the negative correlation between miRNA and mRNA is
biologically reliable, taking summation over four replicates within each class, k,
should enhance the negative correlation. As expected, the correlation coefficient
decreases (absolute value increases) from −0.37 to −0.71 while associated P -value
decrease (from P = 9.54 × 10−3 to P = 6.28 × 10−3); significance increases.
Because the number of observations decreases from 48 to 12, it is reasonable even if
P -value associated with correlation coefficient increases (becomes less significant).
In spite of that, P -value actually decreases; this suggests that negative correlation
between miRNA and mRNA is likely biologically reliable. Table 6.15 shows the
correlation coefficients between other PC loading. Other than pairs including vmRNA

10j ,

Fig. 6.5 Scatterplot between
PC loading, (a) vmRNA

1j and

vmiRNA
1j (b)

〈
vmRNA

1j

〉(s)

j
and

〈
vmiRNA

1j

〉(s)

j
. Correlation

coefficients are (a)
−0.37, P = 9.54 × 10−3, (b)
−0.74, P = 6.28 × 10−3
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Table 6.15 Correlation coefficients between vmRNA
�j , � = 1, 2, 4, 10 and vmiRNA

�j , � = 1, 2, and those

between
〈
vmRNA
�j

〉(s)

j
, � = 1, 2, 4, 10 and

〈
vmiRNA
�j

〉(s)

j
, � = 1, 2

vmRNA
�j vmiRNA

�j

〈
vmRNA
�j

〉(s)

j

〈
vmiRNA
�j

〉(s)

j

� 1 2 � 1 2

1 −0.37 0.65 1 −0.73 0.78

2 0.64 −0.62 2 0.80 −0.83

4 0.12 −0.21 4 0.30 −0.26

10 0.13 0.07 10 0.15 0.09

Fig. 6.6 Scatterplots of PC
scores attributed to (a)
mRNA, umRNA

� , � = 1, 2,and
(b) miRNA, umiRNA

� , � = 1, 2.
Red dots are selected for
further analysis

all pairs of PC loading between miRNA and mRNA have at least one pair associated
with negative correlation. This suggests that PCA has the ability to identify expected
negative correlations between miRNA and mRNA; in spite of that, no requirements
for negative correlations are assumed during the selection of PC loading. This
suggests that PCA has the ability to identify biologically reasonable PC loading
in an unsupervised manner.

Next, in order to identify mRNAs and miRNAs that contributed to PTSD
mediated heart disease, because the first two PC loading has stronger mutual
correlations between miRNA and mRNA (Table 6.15) that are coincident with the
miRNA function that destroys mRNA, we show scatterplots of umRNA

� and umiRNA

�

(Fig. 6.6). It is obvious that the first PC scores have more contributions. Thus, I
decided to select miRNA and mRNA using the first PC scores. Nevertheless, the
second PC loading is positively correlated with the first ones (Table 6.15), mRNAs
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and miRNAs having larger contribution to the second one should be excluded. The
problem is that miRNAs and mRNAs having large contribution to the second PC
score should be excluded. In order to estimate this, we select top 100 mRNAs and
miRNAs simultaneously having the first PC score, umRNA

1j or umiRNA

1j , whose absolute
values are larger (i.e., highly ranked) and the second PC score, umRNA

2j or umiRNA

2j , whose
absolute values are less than a threshold value D. Figure 6.7 shows how D affects
the selection of top 100 mRNAs and miRNAs. We can see that too small D heavily
affects the selection while large enough D affects less. Then we decide to select
D = 20 for mRNAs and D = 5000 for miRNAs, respectively. As a result, 27
miRNAs (mmu-miR-451, -22, -133b, -709, -126-3p, -30c, -29a, -143, -24, -23b, -
133a, -378, -30b, -29b, -125b-5p, -675-5p, -16, -26a, -30e, -1983, -691, -23a, -690,
-207, and -669l, and mmu-let-7b and -7g) and 59 mRNAs (Table 6.16) are associated
with at least one of the selected probes.

We use seed matching to identify miRNA target genes, with the so-called 7mer-
m8 [48] detecting exact matches to positions 2-8 of mature miRNAs (seed + position
8). Among the 59 mRNAs, 24 are targeted by at least one of the 27 selected
miRNAs. In addition, 47 pairs of miRNAs and miRNA target genes are identified. In
total, there are 45/47 negative correlation coefficients between miRNAs and miRNA
target genes. We also examine the significance of correlation coefficients, with
26/47 pairs (more than half) associated with significant correlations (significance
is judged if P -values adjusted by BH criterion is less than 0.05 or not. Two
positive correlations are judged insignificant, because only negative correlation is
biologically meaningful. See page 112 for how to compute P -values attributed to
correlation coefficients), and confirm negative correlation between miRNAs and
miRNA target genes.

Next, we try to see if mRNAs and miRNAs selected are distinctly expressed
between stressed and control samples. Because only five experimental conditions
have both stressed and control samples (Table 6.14), we consider only these five
conditions. For mRNA, logarithmic ratio between stressed and control samples

20 40 60 80 100
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(A) mRNA

D

2000 6000 10000
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40
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D

Fig. 6.7 Dependence of selected (a) mRNAs and (b) miRNAs upon D, which is a threshold value
to exclude mRNAs and miRNAs having too large contribution to the second PC score. Horizontal
axis: D, Vertical axis: arbitrary gene ID. Gray: selected, white: not selected. Vertical red lines
indicated employed “D”
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Table 6.16 Selected 59 mRNAs

Refseq Gene symbol Refseq Gene symbol

NM_010859 Myl3 NM_007450 SLC25A4

NM_001083955 Hba-a2 NM_001164248 Tpm1

NM_001164171 Myh6 NM_010861 Myl2

NM_009943 Cox6a2 NM_008218 Hba-a1

NM_013593 Mb NM_001177307 Aldoa

NM_011619 Tnnt2 NM_144886 Exosc2

NM_008084 Gapdh NM_009944 Cox7a1

NM_175329 Chchd10 NM_001033435 Milr1

NM_010174 Fabp3 NM_001161419 Atp5g1

NM_016774 Atp5b NM_008617 Mdh2

NM_024166 Chchd2 NM_011540 Tcap

NM_007747 Cox5a NM_024223 CRIP2

NM_194341 SYNRG NM_175015 Atp5g3

NM_008220 Hbb-bt NM_009941 Cox4i1

NM_009429 TPT1 NM_008653 Mybpc3

NM_027519 medag NM_027862 Atp5h

NM_009964 Cryab NM_009406 Tnni3

NM_001100116 1700047I17Rik2 NM_026701 Pbld1

NM_023312 Ndufa13 NM_026614 Tnni3

NM_025352 Uqcrq NM_198415 Ckmt2

NM_170759 Zfp628 NM_029816 2610028H24Rik

NM_019883 UBA52 NM_025641 Uqcrh

NM_007505 Atp5a1 NM_177369 Myh8

NM_010888 Ndufs6 NM_007751 Cox8b

NM_010239 Fth1 NM_010212 Fhl2

NM_173011 Idh2 NM_007475 Rplp0

NM_023374 Sdhb NM_053071 Cox6c

NM_025983 Atp5e NM_080633 Aco2

NM_018858 Pebp1 NM_031165 Hspa8

NM_020582 Atp5j2

log

(
xmRNA

ijq

xmRNA

ij ′
q

)

(6.41)

for ith mRNA in selected 59 mRNAs is computed. Here (jq, j ′
q), q ≤ 4 are

the four pairs of stressed and control samples. Then, we apply t test to a set of
59 × 4 = 236 computed logarithmic ratio to see if their mean value is significantly
positive or negative. Table 6.17 shows the P -values. In not all but some conditions,
between control and stressed samples, mRNA expression is expressed differently
for selected 59 mRNAs. Because PCA based unsupervised FE does not require the
distinct expression between control and stressed samples, these suggest that PCA
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Table 6.17 P -vales computed by t tests applied to logarithmic ratio, Eq. (6.41)

Rest period 2 days 5 days 10 days

Stress expose period 1 day 1 day 10 days 1 day 42 days

PCA based unsupervised FE

Control < stress 6.79 × 10−14 7.41 × 10−8 0.77 1.0 0.03

Control > stress 1.0 1.0 0.22 2.35 × 10−8 0.97

Categorical regression

Control < stress 6.28 × 10−9 5.71 × 10−23 0.80 1.0 7.37 × 10−6

Control > stress 1.0 1.0 0.20 2.01 × 10−4 1.00

BAHSIC

Control < stress 1.00 1.00 1.00 1.0 1.05 × 10−3

Control > stress 6.97 × 10−4 7.98 × 10−10 5.45 × 10−15 5.43 × 10−4 1.00

based unsupervised FE can identify genes expressed distinctly between control and
stressed samples in an unsupervised manner.

Unfortunately, logarithmic ratio, Eq. (6.41), does not work well for miRNA
expression profile. Thus, I propose alternative. First, we apply t test to kth miRNA in
one of five experimental conditions between four control samples and four stressed
samples. We compute P -values, Pk , that rejects the null hypothesis that means of
four replicates are equal between control samples and stressed samples towards
alternative hypothesis that means of four replicates in control samples are less than
means of four replicates in stressed samples. Then, a set of logarithmic P -values,
log Pk , are compared between selected 27 miRNAs and other miRNAs by t test if
mean log Pk is distinct between selected 27 miRNAs and others (Table 6.18). This
test can address significant P -values to all five experimental conditions for which
both stressed and control samples are available.

PCA based unsupervised FE successfully identified mRNAs and miRNAs, which
are negatively and mutually correlated and distinctly expressed between some
pairs of control and stressed samples. Nevertheless, if other methods can perform
similarly, the usefulness of PCA based unsupervised FE is limited. Thus, it might be
important to compare the performance with other popular or conventional methods.

The first conventional methods tried is categorical regression analysis.

xmRNA

ij = ai +
12∑

s=1

bisδsj (6.42)

and

xmiRNA

kj = ak +
12∑

s=1

bksδsj (6.43)
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Table 6.18 P -values were computed by t tests; It was applied to logarithmic P -value, log Pk

between 27 selected miRNAs and other miRNAs applied to logarithmic P -value, log Pk , P -value is
the probability that rejects null hypothesis that means of four replicates are equal between controls
and stressed samples. The alternative hypothesis is that mean of four replicates in control samples
is less than that of stressed samples

Rest period 2 days 5 days 10 days

Stress expose period 1 day 1 day 10 days 1 day 42 days

PCA based unsupervised FE

Control > Stress 1.98 × 10−5 1.0 1.00 1.0 1.0

Control < Stress 1.0 3.15 × 10−13 4.39 × 10−4 1.02 × 10−3 5.67 × 10−4

Categorical regression

Control > Stress 0.98 0.07 0.49 2.21 × 10−3 0.4

Control < Stress 0.02 0.93 0.51 0.99 0.6

BAHSIC

Control > Stress 2.93 × 10−3 0.98 0.49 0.91 0.96

Control < Stress 1.00 0.02 0.51 0.09 0.04

If mean log Pk in selected 27 miRNAs is less than that in other miRNAs, the amount by which mean
miRNA expression of control samples are less than stressed samples in 27 miRNAs is greater than
that in other miRNAs and vice versa

where summation is taken over twelve classes, 1 ≤ s ≤ 12. Top ranked 100
probes with smaller P -values computed by categorical regression are selected. 23
mRNAs and 73 miRNAs are associated with top ranked 100 probes, respectively.
Although there are 181 pairs of miRNAs and miRNA target genes identified by seed
match, only 37 pairs are associated with significant negative correlations. 37/181 is
much less than that for PCA based unsupervised FE, 45/47. Table 6.17 shows the
results for t test applied to logarithmic ratio of 23 mRNAs selected by categorical
regression analysis. The performance is, at most, comparative with PCA based
unsupervised FE in Table 6.17. Nonetheless, the performance for identification of
miRNA expressed distinctly between control and stressed samples is obviously less
significant than that of PCA based unsupervised FE (Table 6.18). Thus, in average,
the ability of categorical regression analysis to identify negatively correlated pairs
of miRNAs and miRNAs that are expressed distinctly between control and stressed
samples is less than that of PCA based unsupervised FE.

In addition to the comparison with categorical regression analysis, I try another
more advanced FE, backward elimination using Hilbert-Schmidt norm of the cross-
covariance operator (BAHSIC) [45]. HSIC is the evaluation of coincidence between
features and class labeling based upon inner product. Inner product of feature
vectors between j th and j ′th samples is defined as

xj ×i xj ′ (6.44)

where

xj = (x1j , x2j , . . . , xij , . . . , xNj

)
(6.45)
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and

xj ′ = (x1j ′, x2j ′ , . . . , xij , . . . , xNj ′
)
. (6.46)

Similarly, inner product of class labeling vectors,

δj = (δ1j , δ2j , . . . , δsj , . . . , δSj

)
(6.47)

and

δj ′ = (δ1j ′, δ2j ′, . . . , δsj ′ , . . . , δSj ′
)

(6.48)

can be defined as

δj ×s δj ′ . (6.49)

Coincidence between xj ×i xj ′ and δj ×s δj ′ means that larger (smaller) xj ×i xj ′
should be associated with larger (smaller) δj ×s δj ′ . HSIC can qualitatively evaluate
this coincidence as

‖ Csj ‖2
HS = 〈

xj ×i xj ′ · δj ×s δj ′
〉
jj ′ + 〈xj ×i xj ′

〉
jj ′
〈
δj ×s δj ′

〉
jj ′

−2
〈〈

xj ×i xj ′′
〉
j ′′
〈
δj ′ ×s δj ′′

〉
j ′′
〉

jj ′ (6.50)

where the last term is added such that ‖ Csj ‖2
HS= 0 when features and class

labeling are totally independent. 〈·〉jj ′ is the average over j and j ′. BAHSIC makes
use of HSIC for FE. One of N features is excluded from the computation when HSIC
is computed. Then, a feature associated with the least decreased HSIC is removed.
Then the process is repeated until the desired number of features remain. In order
to accelerate the process, not one but more features (e.g., top 10%) are eliminated
before HSIC is recomputed for further feature elimination. BAHSIC is applied to
miRNA and miRNA expression with eliminating top 10% until 100 features remain.

The 100 probes selected by BAHSIC are associated with 37 mRNAs and 47
miRNAs, respectively. Although there are 169 pairs of miRNAs and miRNA target
genes identified by seed match, only 73 pairs are associated with significant negative
correlations. Although 73/169 is better than 37/181 by categorical regression,
it is much less than that for PCA based unsupervised FE, 45/47. Table 6.17
shows the results for t test applied to logarithmic ratio of 37 mRNAs selected by
BAHSIC. The performance is better than PCA based unsupervised FE in Table 6.17.
Nonetheless, the performance for identification of miRNA expressed distinctly
between control and stressed samples is obviously less significant than that of PCA
based unsupervised FE (Table 6.18). Thus, in average, the ability of BAHSIC to
identify negatively correlated pairs of miRNAs and miRNAs that are expressed
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distinctly between control and stressed samples is less than that of PCA based
unsupervised FE.

The advantage of PCA based unsupervised FE towards categorical regression
and BAHSIC is in some sense obvious. Categorical regression and BAHSIC can
identify mRNAs and miRNAs with significant category dependence. Thus, negative
correlation between miRNAs and mRNAs cannot be guaranteed. On the other
hand, PCA based unsupervised FE can provide PC loading by which we can see
if negative correlation is persisted. Thus, although PCA based unsupervised FE
itself is unsupervised method, because there are opportunities that we can screen
mRNAs and miRNAs with considering additional information (in this case, negative
correlation), PCA based unsupervised FE is more manageable method than other
two methods.

Next, we compare the stability of FE among these three methods (Table 6.19).
Because all 12 classes (Table 6.14) are composed of four replicates, stability test
is performed with eliminating one of four replicates randomly for all 12 classes.
Then, stability test is applied to three FEs and outcome is summed up over 100
independent trials. For PCA based unsupervised FE, 78 probes associated with
mRNAs and 27 probes associated miRNAs are always selected, respectively. There
are only ten probes associated with mRNAs that are not always selected. In addition
to this, no other probes that are associated with miRNAs are selected. This means,
independent of the ensemble, 27 miRNAs are always selected. In contrast to the
performance achieved by PCA based unsupervised FE, for categorical regression
analysis, 24 probes associated mRNAs and eight probes associated miRNAs are
always selected, respectively. Nevertheless, there are as many as 122 probes
associated with mRNAs and selected only once. 33 and 29 probes associated with
miRNAs were selected only once and twice, respectively. Thus, it is obvious that
stability of categorical regression as feature selection tool is much less than PCA
based unsupervised FE. For BAHSIC, no probes for mRNAs and 63 probes for
miRNAs are always selected, respectively. There are 31 probes associated with
miRNAs not selected always. Thus, it is again obvious that stability of BAHSIC
as feature selection tool is much less than PCA based unsupervised FE. As a result,
from the point of stability, PCA based unsupervised FE outperforms categorical
regression analysis and BAHSIC.

Finally, we evaluate selected genes biologically. Because readers might not be
so interested in biological background, I present here only one evaluation. As has
been done in biological validation of circulating miRNAs biomarker, enrichment
analysis is an easy way to evaluate obtained mRNAs. In contrast to the evaluation
of miRNAs, we have list of genes. Thus we can upload genes to the Database for
Annotation, Visualization and Integrated Discovery (DAVID) [21] that evaluates
sets of genes by enrichment analysis. We upload 24, 21, and 37 mRNAs that
are selected by PCA based unsupervised FE, categorical regression analysis, and
BAHSIC and are also simultaneously targeted by 27, 73, and 47 miRNAs selected
by these individual three methods (that is, the most confident set of mRNAs based
upon the integrated analysis of mRNA and miRNA expression by these three
methods).
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Table 6.20 KEGG pathway enriched by 24 mRNAs targeted by 27 miRNAs, identified by
DAVID

KEGG pathway Number of genes % P -values Adjusted P -values

Cardiac muscle contraction 7 30.4 2.30 × 10−9 3.20 × 10−8

Parkinson’s disease 7 30.4 5.80 × 10−8 4.10 × 10−7

Oxidative phosphorylation 6 26.1 2.30 × 10−6 1.10 × 10−5

Alzheimer’s disease 6 26.1 1.20 × 10−5 4.20 × 10−5

Huntington’s disease 6 26.1 1.20 × 10−5 3.50 × 10−5

Number of genes are genes included in pathway, % is the ratio genes included in pathway among
24 mRNAs. P -values and those adjusted by BH criterion were provided by DAVID.

Table 6.20 shows the results for mRNAs selected by PCA based unsupervised FE.
These are KEGG pathways related heart disease and neurodegenerative diseases. It
is quite reasonable because PTSD mediated heart disease should be associated with
both heart and brain problems. On the other hand, no KEGG pathway enrichment
is obtained by uploading mRNAs selected by categorical regression or BAHSIC.
These results suggest that PCA based unsupervised FE can outperform categorical
regression and BAHSIC also from the biological point of view.

6.4.2 Identifications of Interactions Between miRNAs
and mRNAs in Multiple Cancers

In the previous subsection, we decided to select 100 probes in advance. As a result,
this decision works pretty well. On the other hand, it is also possible to decide the
number of features selected in fully data driven way. In actuality, when genes (or
miRNAs) are selected based upon expression profile, it is very usual to select genes
based upon if these are differentially expressed genes (DEGs) or not. Although there
are no definition about what DEGs are, two criteria are often employed.

Statistical significance Several statistical tests are applied to check if genes are
differently expressed between two classes.

Fold change (FC) The ratio of amount of expression between two classes.

Because most of the statistical tests are scale invariant, i.e., even if the amount
expression is globally doubled, significance does not change. This scale invariance is
unlikely true, because gene expressed twice should have more important functions.
In order to compensate this difficulty, FC is employed. Generally speaking, DEGs
associated with more FC and more significance are better to be selected. On the
other hand, the employment of two independent criteria can cause uncertainty. There
can be several choices on how to balance two criteria.

This problem is critical for the selection of pairs of miRNAs and mRNAs. When
identifying mRNAs and miRNAs pairs, we require
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• miRNAs should be DEG between control and treated samples.
• mRNAs should be DEG between control and treated samples.
• miRNAs and mRNAs should be mutually negatively correlated.

Because these three requirements are independent, finding miRNAs and mRNAs
pairs fulfilling these three conditions is not an easy task. Simply applying these
three criteria parallelly to mRNAs and miRNAs might result in no intersections
between those satisfying each of three conditions. Especially, significant negative
correlations are hard to achieve because of too many pairs. Typically, the number of
miRNAs is 103 while the number of mRNAs is 104. Thus, the number of pairs is
as many as 107. This means that, if multiple comparison correction is considered,
P -values must be smaller than 10−2 × 10−7 = 10−9, which is unlikely satisfied
especially when large enough number of samples are not available. Nevertheless, if
the number of candidate mRNAs and miRNAs is reduced in advance by identifying
DEGs for miRNAs and mRNAs, required P -values associated with correlation
between miRNAs and mRNAs can be much larger. For example, we can reduce
the number of miRNAs and mRNAs down to 102 and 103, respectively, required
minimum P -values can increase up to 10−2 × 10−5 = 10−7. Then the combination
of P -values and FC for DEGs identification is often optimized without any proper
reasons such that desired number of negatively correlated miRNAs and mRNAs
pairs can be identified. Table 6.21 is a partial list of identification criteria of DEGs
for mRNAs and miRNAs. It is obvious that there is no de facto standard.

In this subsection, I would like to show [50] that employment of PCA based unsu-
pervised FE enables us to identify mutually negatively correlated pairs of miRNAs
and mRNAs that are expressive differently between controls and treated samples

Table 6.21 A part of significant DEG identification for mRNAs and miRNAs

Significance criteria

Cancer miRNA mRNA References

HCC FDR ≤ 0.01; log2 FC ≥ 1 [13]

NSCLC FDR < 0.1 by SAM [29]

ESCC From preceding studies FC > 1.5 [69]

FDR < 0.05 FC > 3;FDR < 0.001 [71]

FDR < 0.05 [31]

PC None [72]

CRC FDR < 0.05 [15]

CC FC > 1.2; FDR< 0.1 [27]

BC miRtest [4] No description [6]

PDA FDR∗ < 0.05; | log FC |> 1 [28]

Preceding studies
HCC hepatocellular carcinoma, NSCLC non-small cell lung cancer, ESCC esophageal squamous-
cell carcinomas, PC prostate cancer, CRC Colorectal cancer, CC Colon cancer, BC breast cancer,
PDA Pancreatic ductal adenocarcinoma
∗Bonferroni’s correction-adjusted P -value
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Fig. 6.8 Schematic figure that illustrates how to identify miRNAs–mRNAs pairs from expression
profile using PCA based unsupervised FE. PCA is applied to miRNAs and mRNAs profiles
such that PC scores, umiRNA

� and umRNA
� , are attributed to miRNAs and mRNAs, respectively. P -

values are computed using χ2 distribution as in Eqs. (6.52) and (6.51). mRNAs and miRNAs
associated with adjusted P -values less than 0.01 are selected. Then, mRNAs and miRNAs
expressed distinctly between normal tissues and cancers are selected as outliers. miRNA–mRNA
pairs are identified by TargetScan among these mRNA and miRNAs with reciprocal relationship
(i.e., mRNAs upregulated and miRNAs downregulated in cancer or mRNAs downregulated and
miRNAs upregulated in cancer)

with the unified criterion for multiple cancers, in contrast to the various criteria
depending upon the cancers as shown in Table 6.21. Figure 6.8 illustrates how to
identify miRNA-mRNA pairs from expression profiles. Table 6.22 summarizes the
results identified by PCA based unsupervised FE.

The more detailed procedure is as follows. Suppose we have mRNA expression
profile, xmRNA ∈ R

N1×M1 , and miRNA expression profile, xmiRNA ∈ R
N2×M2 . Here,

N1 and N2 are the number of mRNAs (probes) and miRNAs (probes), respectively.
M1 and M2 are the number of samples of mRNAs profiles and miRNAs profiles,
respectively. PCA is applied to mRNAs and miRNAs profiles, and PC loading,
vmRNA

� ∈ R
N1 and vmiRNA

� ∈ R
N2 are obtained. Then vmRNA

� ∈ R
N1 and vmiRNA

� ∈ R
N2

associated with significant distinction between normal tissues and cancers (P -values
computed by t test must be less than 0.05) are selected as shown in “�(P -value)s
used for FE” of Table 6.22. After identifying PC loading used for FE, P -values are
attributed to ith mRNA and miRNAs as
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Table 6.22 Summary of the investigated mRNA and miRNA expressions

Number of samples Number of probes

Cancers GEO ID Tumors Controls Selected Non-selected �(P -value)s used for FE

HCC

mRNA GSE45114 24 25 269 22,963 2 (7.5 × 10−9), 3 (7.2 × 10−5),
4 (2.1 × 10−6)

miRNA GSE36915 68 21 58 1087 1 (9.6×10−8), 3 (3.2×10−16),
4 (8.5 × 10−10)

NSCLC

mRNA GSE18842 46 45 1098 53,504 1 (5.5×10−10), 2 (3.9×10−30),
3 (1.04 × 10−2)

miRNA GSE15008 187 174 268 3428 1 (8.0×10−5), 2 (2.4×10−10),

3 (1.3×10−2), 4 (1.4×10−20),

5 (4.6×10−30), 6 (3.0×10−2)

ESCC

mRNA GSE38129 30 30 189 22,088 3 (2.1 × 10−18)

miRNA GSE13937 76 76 37 1217 2 (2.8 × 10−5), 3 (3.9 × 10−2),

4 (7.8 × 10−3), 5 (2.0 × 10−4),

6 (3.7 × 10−6), 7 (4.2 × 10−2)

Prostate cancer

mRNA GSE21032 150 29 399 43,020 3 (5.4 × 10−15)

miRNA GSE64318 27 27 23 700 1 (2.0 × 10−2), 2 (9.3 × 10−3),
4 (1.4 × 10−3)

Colon/colorectal cancer

mRNA GSE41258 186 54 309 21,974 1 (6.2 × 10−4), 2 (2.1 × 10−2),

3 (3.7×10−2), 4 (5.1×10−23),

5 (2.1 × 10−2)

miRNA GSE48267 30 30 12 839 5 (2.2 × 10−15)

Breast cancer

mRNA GSE29174 110 11 980 33,600 2 (3.3×10−20), 3 (8.0×10−21),

4 (1.1 × 10−6), 5 (2.5 × 10−2)

miRNA GSE28884 173 16 18 2258 1 (4.9×10−10), 2 (4.0×10−11)

Probes identified and not identified by PCA-based unsupervised FE are denoted as selected
and non-selected, respectively. �s are PC scores used for computation of P -values, Eqs. (6.51)
and (6.52). P -values associated with �s are computed by applying t test to PC loading to test if it is
distinct between normal tissues and cancers

P mRNA

i = Pχ2

[

>
∑

�

(
umRNA

�i

σ mRNA

�

)2
]

(6.51)

and

P miRNA

i = Pχ2

[

>
∑

�

(
umiRNA

�i

σ miRNA

�

)2
]

(6.52)
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Table 6.23 Summary of the biological validation of identified pairs

Cancer HCC NSCLC ESCC PC CCC/CC BC

Number of pairs 21 311 4 32 8 37

Pairs with previous studies 19 270 4 19 7 32

Number of pairs in starbase 9 144 2 12 3 17

“Pairs with previous studies” suggest that mRNA and miRNA are reported to be related to cancers
to which these pairs are identified. “Number of pairs in starbase” suggests the number of pairs
included in any cancers in starbase. More detailed information is available in Tables S1–S18 [50]

where summation is taken over �s selected (Table 6.22). miRNAs and mRNAs
associated with BH criterion adjusted P -values less than 0.01 are selected.

In order to identify reliable mRNAs and miRNAs pairs among selected mRNAs
and miRNAs, the following procedures are further performed. In order to fulfill the
requirement of reciprocal relationship between miRNAs and mRNAs expression,
mRNAs and miRNAs up/downregulated in cancers compared with normal tissue
are identified. This has been done by applying t test. Obtained P -values are adjusted
by BH criterion and mRNAs and miRNAs associated with adjusted P -values less
than 0.05 are selected. Reciprocal pairs of miRNAs and miRNAs, i.e., upregulated
miRNAs and downregulated mRNAs or upregulated mRNAs and downregulated
miRNAs are compared with pairs included in TargetScan [2] that stores list of
miRNA target mRNAs. In order to do this, Predicted_Targets_Info file that is
supposed to include all of human conserved targets is obtained and all pairs included
in this file remain as final candidate miRNAs and mRNAs. Table 6.23 summarizes
the biological validation of identified pairs. Most of the pairs in seven cancers other
than PC are composed of miRNAs and mRNAs that are previously reported to be
related to cancers to which miRNAs and mRNAs are identified. We also check
if pairs are in starbase [70] that stores the information of miRNA-mRNA pair.
Generally, half of pairs are included in starbase. This suggests that PCA based
unsupervised FE can identify limited number of mRNAs and miRNAs between
which biologically reliable reciprocal pairs can be identified. In this regard, PCA
based unsupervised FE is more effective than the standard strategy that requires
combinatorial usage of statistical test and FC. In addition to this, we can employ
unified criterion that adjusted P -values must be less than 0.01. To the best of
my knowledge, no other methods can perform identification of reliable number of
miRNAs and mRNAs by the unified criterion valuable for as many as six cancers,
i.e., six cancers listed in Table 6.23 other than PC.

6.5 Integrated Analysis of Methylation and Gene Expression

As can be seen in the previous section, integrated analysis of mRNAs and miRNAs
can give us the more reliable identification of mRNAs than selecting mRNAs based
upon only the criterion of DEG. Thus, it is better to consider something other than
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miRNA expression together with mRNA expression. One possible candidate is DNA
methylation which is known to suppress mRNA expression.

6.5.1 Aberrant Promoter Methylation and Expression
Associated with Metastasis

Metastasis is a developed stage of cancer. After metastasis takes place, cancer cell
starts to leave from original location where cancer initiates, to migrate to all over
the body and to grow there. Thus, once metastasis starts, therapy of cancer becomes
drastically difficult. Therefore, suppressing progression to metastasis is critically
important in cancer therapy. In this regard, we try to identify critical genes for cancer
progression to metastasis based upon the integrated analysis of mRNA expression
and promoter methylation [66]. Table 6.24 shows the number of samples used in this
study (files, GSE52143_series_matrix.txt.gz and GSE52144_series_matrix.txt.gz in
series matrix session in GEO are used for mRNA expression profiles and promoter
methylation profiles, respectively). There are two cell lines for which pre-/post-
metastasis samples available. Thus, there are four classes. Two and three biological
replicates are for methylation and mRNA, respectively. Before starting analysis, I
would like to emphasize the difficulty of the analysis. First of all, there are only
three and two biological replicates for mRNA expression profiles and promoter
methylation profiles, respectively, while there are as many as 33,297 probes and
27,578 probes for mRNA expression profiles and methylation profiles, respectively.
This means that identification of DEG and differentially methylated site (DMS) is
not easy.

We apply PCA to mRNA expression profile, xmRNA

ij ∈ R
33297×12, and promoter

methylation profiles, xmethyl

kj ∈ R
27578×8. Then we get PC loading attributed to mRNA

and miRNA samples, vmRNA

� and vmethyl

� , respectively. Figure 6.9 shows the obtained PC
loading. The first PC loading does not exhibit any sample dependence. Thus, it is
not useful to identify DEG and DMS. The second PC loading exhibits some sample
dependence. Nevertheless, it is coincident with the distinction between cell lines.
The third PC loading exhibits the distinction between pre- and post-metastasis as

Table 6.24 Samples used in
this study

Cell lines A549 HTB56

Metastasis Pre Post Pre Post Total

mRNA 3 3 3 3 12

methylation 2 2 2 2 8

pre: before metastasis, post: after metastasis.
Numbers are the number of biological repli-
cates. mRNAs expression profiles and promoter
methylation profiles are obtained via GEO ID:
GSE52143 and GSE52144, respectively
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Fig. 6.9 PC loading obtained
by applying PCA to mRNA
expression and promoter
methylation. Open triangle:
A549 cell line pre-metastasis,
red plus symbol: A549 cell
line post-metastasis, green
cross symbol: HTB56 cell
line pre-metastasis, blue
diamond: HTB56 cell line
post-metastasis. Left column:
the first, second, third, and
fifth PCs for mRNA. Right
column: the first, second,
third, and fourth PCs for
promoter methylation
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expected, but only for HTB56 cell lines. The fifth PC loading for mRNA and the
fourth PC loading for methylation exhibit the distinction between pre- and post-
metastasis as expected, but again only for A549 cell lines.

We attribute P -values to probe using corresponding PC scores using χ2 distribu-
tion as

P �
i = Pχ2

[

>

(
umRNA

�i

σ mRNA

�

)2
]

, � = 2, 3, 5 (6.53)

and

P �
k = Pχ2

[

>

(
umiRNA

�k

σ miRNA

�

)2
]

, � = 2, 3, 4. (6.54)

P -values are adjusted by BH criterion. Then probes associated with adjusted P -
values less than 0.01 are selected. Table 6.25 lists the number of probes selected. At
least, for all cases, PCA based unsupervised FE can identify probes with significant
P -values.

Because we are aiming to perform integrated analysis of mRNA expression and
promoter methylation, it is important to see if genes selected for mRNA expression
and promoter methylation are significantly overlapped. In order to do this, mRNA
probes and methylation probes are converted to list of genes to which probes
are attributed (the correspondence between probes and genes is available as files
GPL6244-24073.txt and GPL8490-65.txt in GEO). Table 6.26 shows the confusion
matrix and the results of Fisher’s exact test. For both cases, PCA based unsupervised
FE identifies mRNAs and promoter methylation sites with significant overlaps. On
the other hand, the overlap of genes associated with the progression from pre- to
post-metastasis is much less than those associated with distinction between two cell
lines. PCA based unsupervised FE is powerful enough method to detect this slight
overlap.

Figure 6.10 shows the scatterplot of PC loading shown in Fig. 6.9, which is
averaged over within each of four classes. PC loading other than the first PC loading
is mutually correlated between mRNA and methylation. This is coincident with
Table 6.26 where significant overlap of selected genes between mRNA expression
and promoter methylation is detected.

In order to confirm the superiority of PCA based unsupervised FE towards
conventional supervised methods, we apply t test as follows.

Table 6.25 The number of probes selected using P -values computed by Eqs. (6.53) and (6.54)

mRNA Methylation

� 2 3 5 2 3 4

Number of selected probes 422 261 248 512 369 270

�: PCs used for FES
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Table 6.26 Confusion matrices and associated with P -values and odds ratio

Distinction between cell lines

Methylation (� = 2) Not selected Selected P -value Odds ratio

mRNA Not selected 13,065 340 1.39 × 10−24 7.12

(� = 2) Selected 286 53

Distinction between pre- and post-metastasis for HTB56 cell line

Methylation (� = 3) Not selected Selected P -value Odds ratio

mRNA Not selected 13,252 313 0.04 2.24

(� = 3) Selected 170 9

Distinction between pre- and post-metastasis for A549 cell line

Methylation (� = 4) Not selected Selected P -value Odds ratio

mRNA Not selected 13,402 232 0.01 3.33

(� = 5) Selected 104 6

Fig. 6.10 Scatterplot of PC
loading in Fig. 6.9 averaged
within four classes. Broken
straight lines are linear
regression. Open triangle:
A549 cell line pre-metastasis,
red plus symbol: A549 cell
line post-metastasis, green
cross symbol: HTB56 cell
line pre-metastasis, blue
diamond: HTB56 cell line
post-metastasis
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1. Six samples in A549 cell lines vs six samples in HTB56 cell lines for mRNA
expression.

2. Four samples in A549 cell lines vs four samples in HTB56 cell lines for promoter
methylation.

3. Three samples in pre-metastasis vs three samples in post-metastasis for A549
mRNA expression.

4. Two samples in pre-metastasis vs two samples in post-metastasis for A549
promoter methylation.
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5. Three samples in pre-metastasis vs three samples in post-metastasis for HTB56
mRNA expression.

6. Two samples in pre-metastasis vs two samples in post-metastasis for HTB56
promoter methylation.

Among the above comparisons, 3. 4. and 6. Has no probes associated with adjusted
P -values less than 0.01. Comparison 5. has only 5 probes associated with adjusted
P -values less than 0.01. Thus, t test is useless for the identification of mRNAs
and promoter methylation distinct between pre- and post-metastasis. Comparison
1. and 2. have 7074 and 2186 probes associated with adjusted P -values less than
0.01. Nevertheless, there are not significant overlaps between genes to which these
probes are attributed (P = 0.57 and odds ratio is as small as 0.97). In addition to
this, we also apply categorical regression analysis assuming four classes to mRNA
expression and promoter methylation independently. It identifies 7501 and 6573
probes, respectively. Nevertheless, odds ratio of overlap detection between genes
associated with identified probes is 0.67, which is even smaller than the expectation,
1.0, for random selections. Thus, PCA based unsupervised FE can outperform
conventional supervised methods.

Finally, we need to validate identified genes biologically as usual. We upload
15 genes shown in Table 6.27 to the molecular signatures database (MSigDB) [47]
with specifying “C2: curated gene sets,” which is composed of “CGP: chemical
and genetic perturbations,” “CP: Canonical pathways,” “CP:BIOCARTA: BioCarta
gene sets,” “CP:KEGG: KEGG gene sets,” and “CP:REACTOME: Reactome gene
sets.” Tables 6.28 show the results. In total, as many as 46 gene sets are significantly
overlapped with uploaded 15 genes (false discovery rate (FDR) q-values are less
than 0.05). Twenty seven out of 46 gene sets are directly related to tumors and
cancers (asterisked). The fact that more than half of identified gene sets are cancer
and tumor related demonstrates the ability of PCA based unsupervised FE that can
select biologically reliable gene sets. In addition to this, it is rare that as small as
15 genes have such huge number of enriched terms, because P -values computed by
enrichment analysis have tendency to increase, i.e., to become less significant, as
the number of genes is smaller. This suggests that PCA based unsupervised FE has
the ability to identify small number of critical genes also from the biological point
of view.

6.5.2 Epigenetic Therapy Target Identification Based upon
Gene Expression and Methylation Profile

As mentioned in the previous subsection, cancer therapy is always difficult. In order
to challenge this difficult task, other than usual therapies, epigenetic therapy recently
collects many researchers’ interest, because epigenetic is expected to affect cancer
initiation and progression [40]. Thus, conversely, modifying epigenetic profile
might contribute to the cancer therapy [3]. One possible difficulty of epigenetic
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Table 6.27 List of nine genes chosen for the distinction between metastasis of HTB56 cell lines
in common between mRNA expression and promoter methylation, and six genes chosen for the
distinction between metastasis of A549 cell lines in common between mRNA expression and
promoter methylation

Refseq ID Gene symbol Gene name

Distinction between pre- and post-metastasis for HTB56 cell line

NM_153608 ZNF114 Zinc finger protein 114

NM_152457 ZNF597 Zinc finger protein 597

NM_152753 scube3 Signal peptide, CUB domain and EGF like domain
containing 3

NM_000793 DIO2 Deiodinase, iodothyronine type II

NM_002145 HOXB2 Homeobox B2

NM_032040 CCDC8 Coiled-coil domain containing 8

NM_004613 TGM2 Transglutaminase 2

NM_001275 CHGA Chromogranin A

NM_006762 LAPTM5 Lysosomal protein transmembrane 5

Distinction between pre- and post-metastasis for A549 cell line

NM_000201 ICAM1 Intercellular adhesion molecule 1

NM_005562 LAMC2 Laminin subunit gamma 2

NM_002996 CX3CL1 C-X3-C motif chemokine ligand 1

NM_020182 PMEPA1 Prostate transmembrane protein, androgen induced 1

NM_004633 IL1R2 Interleukin 1 receptor type 2

NM_022164 TINAGL1 Tubulointerstitial nephritis antigen like 1

therapy is identification of target genes. In contrast to small molecule drug that
has target proteins to which small molecule binds, epigenetic therapy generally
targets the alteration of epigenetic profiles, e.g., promoter methylation and histone
modification. Thus, it is unclear which genes are targeted by individual epigenetic
therapy. Because PCA based unsupervised FE has the ability to identify DEGs
associated with methylation alteration, PCA based unsupervised FE is expected to
be fitted to detect genes targeted by epigenetic therapy.

In this data set, we analyze mRNA expression and methylation profiles before
and after reprogramming, which means to add pluripotency to differentiated cells,
of various cancer cell lines. Here, pluripotency is the ability of cells that can
differentiate into any kind of cells. The reason why we analyze gene expression
profiles of reprogrammed cells is because methylation profiles altered during
reprogramming and associated with altered mRNA expression is the potential target
of epigenetic therapy. The data set we analyze [60] is taken from GEO with ID
GSE35913. They consist of eight cell lines, H1 (ES cell), H358 and H460 (NSCLC),
IMR90 (human Caucasian fetal lung fibroblast), iPCH358, iPCH460, iPSIMR90
(reprogrammed cell lines), and piPCH358 (re-differentiated iPCH358) with three
biological replicates. In total, there were three replicates × 8 cell lines × 2 properties
(gene expression and promoter methylation) = 48 samples. It is a typical multi-class
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Fig. 6.11 Hierarchical clustering (UPGMA) applied to set of 24 vmRNA
� (labeled as PC�) and 24

vmethyl

� (labeled as PCM�) with using negative signed Pearson’s correlation coefficients as distance.
vmRNA
� and vmethyl

� for � = 3 and 4, i.e., four edges on the left end, are paired with high correlations

data set, because there is no clear one-to-one correspondence. Then we apply PCA
based unsupervised FE as well as categorical regression analysis to this data set.

First, PCA is applied to mRNA expression, xmRNA

ij ∈ R
47321×24, and methylation

profiles, x
methyl

kj ∈ R
25728×24, and compute PC loading, vmRNA

� ∈ R
24 and vmethyl

� ∈ R
24,

which are attributed to samples. In order to perform integrated analysis of mRNA
expression and methylation profile, we need to know pairs of PC loading of mRNA
expression and promoter methylation associated with reciprocal relationship. For
this purpose, we apply unweighted pair group method using arithmetic average
(UPGMA) to set of 24 vmRNA

� and 24 vmethyl

� with using negative signed Pearson’s
correlation coefficients as distance. Figure 6.11 shows the result of UPGMA. It is
obvious that vmRNA

3 and vmethyl

3 , and vmRNA

4 and vmethyl

4 , are paired with high correlations
(correlation coefficient ∼ 0.9). Figure 6.12 shows the selected PC loading. It is
obvious that they have dependence upon eight classes. Especially, it is remarkable
that four classes that represent reprogrammed cells (“iPCH358,” “iPCH460,”
“iPSIMR90,” and “piPCH358”) have almost same values. Thus, mRNAs and
methylation associated with these PC loading likely exhibit the distinction between
pre- and post-reprogramming.

The algorithm of UPGMA is as follows. Suppose there are N features to be
clustered and pairwise distances dii′ ∈ R

N×N between ith and i′th features are
available.

1. Find a pair i and i′ with minimum distance dii′ .
2. Merge i and i′ into a newly generated pseudo feature i′′.
3. Compute pairwise distance between i′′ and i0 �= i, i′s as

di′′i0 = dii0 + di′i0
2

(6.55)

4. If there are more than one features, go back to step 1.
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Fig. 6.12 PC loading, vmRNA
� and vmethyl

� for � = 3, 4

Table 6.29 The number of
probes selected using
P -values computed by
Eqs. (6.53) and (6.54)

mRNA Methylation

� 3 4 3 4

Number of selected probes 283 310 200 199

In order to confirm the stability of the selection of pairs � = 3, 4, we
systematically remove one of 24 samples and apply UPGMA to 23 samples.
Although � = 3, 4 are not always clustered together, four PC loading that are most
similar to PC loading � = 3 or 4 when all 24 samples are used are always clustered
together. Thus, the selection of � = 3, 4 as features clustered together is robust.

Then we attribute P -values to probes using corresponding PC scores using
χ2 distribution as Eqs. (6.53) and (6.54) where �s listed beside these equations
are replaced with � = 3, 4. P -values are adjusted by BH criterion. Then probes
associated with adjusted P -values less than 0.05 are selected. Table 6.29 lists the
number of probes selected. At least, for all cases, PCA based unsupervised FE can
identify probes with significant P -values.

Because we are aiming to perform integrated analysis of mRNA expression and
promoter methylation, it is important to see if genes selected for mRNA expression
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Table 6.30 Confusion matrices and associated with P -values and odds ratio

Methylation Not selected Selected P -value Odds ratio

PCA based unsupervised FE: � = 3

mRNA Not selected 13,118 191 0.04 2.25

Selected 274 9

PCA based unsupervised FE: � = 4

mRNA Not selected 13,092 190 0.05 2.06

Selected 301 9

Categorical regression

mRNA Not selected 1180 6294 3.79 × 10−3 0.87

Selected 1080 5038

and promoter methylation are significantly overlapped. In order to do this, mRNA
probes and methylation probes are converted to the list of genes to which probes
are attributed (the correspondence between probes and genes is available as files
GPL8490-65.txt in GEO). Table 6.30 shows the confusion matrix and the results of
Fisher’s exact test. For both cases, PCA based unsupervised FE identifies mRNAs
and promoter methylation sites with significant overlaps. We also apply categorical
regressions and found that 11,332 and 5038 probes are associated with adjusted
P -values less than 0.05 for mRNA expression and promoter methylation. On the
other hand, the overlap of genes associated with categorical regression analysis has
odds ratio less than 1.0 (0.87), which suggests that overlaps are less than random
selection (the small P -value assigned means that overlap is significantly less than
that expected when the selection is random). Thus, categorical regression analysis
fails to identify genes associated with aberrant mRNA expression and promoter
methylation simultaneously. PCA based unsupervised FE is a powerful enough
method to detect this slight overlap.

Finally, we need to validate identified genes biologically. We upload 18 genes
shown in Table 6.31 to MSigDB [47] with specifying “C2: curated gene sets.”
In total, as many as 85 gene sets are significantly overlapped with uploaded 18
genes (false discovery rate (FDR) q-values are less than 0.05). It takes three
tables to display 46 gene sets (Tables 6.28 show the results). If we list all 85
gene sets here, it will take more than six tables which is simply annoying. Thus,
we are not willing to list all of them here. Forty five out of 86 gene sets are
listed because they are directly related to tumors and cancers. “C2: curated gene
sets” is composed of “CGP: chemical and genetic perturbations,” “CP: Canonical
pathways,” “CP:BIOCARTA: BioCarta gene sets,” “CP:KEGG: KEGG gene sets,”
and “CP:REACTOME: Reactome gene sets.” The fact that more than half of
identified gene sets are cancer and tumor related demonstrates the ability of PCA
based unsupervised FE that can select biologically reliable gene sets. In addition to
this, P -values computed by enrichment analysis generally has tendency to increase
as the number of genes is smaller. Thus, it is rare that as small as 18 genes have such
huge number of enriched gene sets. This suggests that PCA based unsupervised FE
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Table 6.31 List of nine genes chosen by PCA based unsupervised FE with � = 3, 4 in common
between mRNA expression and promoter methylation (Table 6.30)

Refseq ID Gene symbol Gene name

� = 3

NM_213606 SLC16A12 Solute carrier family 16 member 12

NM_004321 KIF1A Kinesin family member 1A

NM_015881 DKK3 Dickkopf WNT signaling pathway inhibitor 3

NM_014220 TM4SF1 Transmembrane 4 L six family member 1

NM_003012 SFRP1 Secreted frizzled related protein 1

NM_019102 HOXA5 Homeobox A5

NM_001458 FLNC Filamin C

NM_201525 ADGRG1 Adhesion G protein-coupled receptor G1

NM_001992 F2R Coagulation factor II thrombin receptor

� = 4

NM_000393 COL5A2 Collagen type V alpha 2 chain

NM_002727 SRGN Serglycin

NM_005558 LAD1 Ladinin 1

NM_012307 EPB41L3 Erythrocyte membrane protein band 4.1 like 3

NM_005562 LAMC2 Laminin subunit gamma 2

NM_000993 RPL31 Ribosomal protein L31

NM_201525 ADGRG1 Adhesion G protein-coupled receptor G1

NM_004360 CDH1 Cadherin 1

NM_002354 EPCAM Epithelial cell adhesion molecule

has the ability to identify small number of critical genes also from the biological
point of view.

Before closing this subsection, we would like to add a few biological supportive
evidences that 18 genes in Table 6.31 likely include genes targeted by epigenetic
therapy more directly.

The first evidence is the comparison with cell lines resistant to epigenetic ther-
apy [32]. Histone deacetylase (HDAC) inhibitor is one of the promising epigenetic
therapies. Histone acetylation is generally believed to accelerate gene transcription.
Thus, deacetylation is supposed to deactivate genes. In this regard, HDAC inhibitor
suppresses the deactivation of genes by histone deacetylase. Miyanaga et al. [32]
compared various cell lines to determine whether they were resistant to HDAC
inhibitors. We investigated SFRP1 expression, which is in Table 6.31, between
HDAC inhibitor-resistant cell lines and non-resistant cell lines for adenocarcinoma
and squamous cell carcinoma and found different levels of SFRP1 expression
(Table 6.32). SFRP1 expression is likely targeted by HDAC inhibitor because its
expression decreases in cells resistant to HDAC inhibitor that should reactivate
target genes. On the other hand, DKK3 which is also in Table 6.31 is not consistently
affected by HDAC inhibitor. Thus, SFRP1 is more likely to be a HDAC inhibitor
target in cancer therapy than DKK3 although both are in selected 18 genes
(Table 6.31).
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Table 6.32 Gene expression difference between no-resistant and resistant-cell lines to HDAC
inhibitor as well as alteration of histone acetylation treated by HDAC inhibitor

Gene expression

Adenocarcinoma

P -value Non-resistant cell lines Resistant cell lines

SFRP1 4.64 × 10−4 611.06 > 92.60

DKK3 6.73 × 10−2 263.27 > 30.59

Squamous cell carcinoma

SFRP1 7.42 × 10−3 304.53 > 49.53

DKK 4.61 × 10−1 261.38 < 506.25

Histone modification (H3K9K14ac)

Cell line P -value 0 h 2 h

(A549) 2.90 × 10−2 −1.29 < −0.52

SFRP1 (H1299) 4.06 × 10−2 −2.51 < −1.85

(CL1-1) 8.71 × 10−1 −1.38 < −1.34

(A549) 6.19 × 10−1 −1.17 < −1.01

DKK3 (H1299) 1.98 × 10−3 −1.70 < −0.48

(CL1-1) 1.48 × 10−1 −0.59 > −1.13

(A549) 1.71 × 10−3 −2.44 < −1.05

SALL4 (H1299) 5.23 × 10−1 −2.62 > −2.86

(CL1-1) 1.03 × 10−4 0.997 > −0.59

The second evidence is the alteration of histone acetylation by HDAC inhibitor
shown in Table 6.32; HDAC inhibitor reduces the histone acetylation of SFRP1 [61]
for A549 and H1299 cell lines that are generated from non-small cell lung cancer
(NSCLC), from which H358 and H640 whose gene expression and methylation
level are analyzed in this study are generated. DKK3 and SALL4 are less con-
sistently affected by HDAC inhibitor than SFRP1 for these two cell lines. On the
other hand, when HDAC inhibitor is used for CL1-1 cell lines that are generated
from cervix are not consistent at all for SFRP1, SALL4, and DKK3. Thus, SFRP1
is most likely a target of epigenetic therapy toward NSCLC. In conclusion, PCA
based unsupervised FE is an effective method to integrate methylation profile and
mRNA expression as in the integrated analysis of mRNA and miRNA expression.

6.5.3 Identification of Genes Mediating Transgenerational
Epigenetics Based upon Integrated Analysis of mRNA
Expression and Promoter Methylation

Transgenerational epigenetics (TGE) [63] is one of the recently established but
important topics on evolution. Because of central dogma, it is generally believed
that only heritable information is stored in DNA sequence. On the other hand, there
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might be some other ways that transfer information intergenetically. Epigenetics
that means alteration of genome without changing DNA sequence might transfer
information intergenetically. If so, it can be an alternative important factor that can
contribute to evolution. In spite of that, TGE is not completely understood.

One possible way to study TGE is to study the effect of endocrine disruptors
towards embryo. The reason is as follows. First of all, expose of embryo to endocrine
disruptors is known to cause some disease. Thus, at least, we can expect to detect
the effect of it no matter what it is. Second, by preparing the clone animals, we
can guarantee that expose to endocrine disruptors does not alter DNA sequence.
Third, by considering F3 generation, we can expect that DNA is not directly
exposed to endocrine disruptor (Fig. 6.13). Skinner et al. [43] performed this kind of
experiments. We apply PCA based unsupervised FE to their data set [49]. Data set
analyzed is downloaded from GEO with GEO ID GSE59511. Table 6.33 shows the
list of files used in this study. E13 and E16 correspond to 13 days and 16 days after
the fertilization, respectively. Eight mRNA expression profiles, xmRNA

ij ∈ R
27342×8,

are further converted to x̃mRNA

ij ∈ R
27342×8 as

x̃mRNA

i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x̃mRNA

i1
x̃mRNA

i2
x̃mRNA

i3
x̃mRNA

i4
x̃mRNA

i5
x̃mRNA

i6
x̃mRNA

i7
x̃mRNA

i8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E13 control rep 1
E13 treated rep 1

E13 control rep 2
E13 treated rep 2

E13 control rep 2
E13 treated rep 1

E13 control rep 1
E13 treated rep 2

E16 control rep 1
E16 treated rep 1

E16 control rep 2
E16 treated rep 2

E16 control rep 2
E16 treated rep 1

E16 control rep 1
E16 treated rep 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.56)

because we cannot get PC loading distinct between E13 and E16 otherwise and
promoter methylation is provided as ratio by the original studies’ researchers.
Methylation profiles, x

methyl

kj ∈ R
14162×6, are used as it is, because it is provided

as ratio between control and treated samples.
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F0 F1

F2

F3

Fig. 6.13 F1 generation is exposed to endocrine disruptor during F0 generation is pregnant (red
thunder mark). In F1 generation, both chromosomes are directly affected by endocrine disruptor
(gray rectangular). In F2 generation, all chromosome is a pair of chromosome affected directly
by endocrine disruptor (gray rectangular) and that not affected directly by endocrine disruptor
(white rectangular). In F3 generation, one fourth individuals (right end one) have no chromosomes
affected directly by endocrine disruptor (white rectangular)

Table 6.33 List of files used in this study

GSE43559 (gene expression) GSE59510 (promoter methylation)

GEO ID Description GEO ID Description

GSM1065332 PGC E13 F3-Control biological rep1 GSM1438556 E16-Vip2/Cip2

GSM1065333 PGC E13 F3-Control biological rep2 GSM1438557 E13-Vip2/Cip1

GSM1065334 PGC E13 F3-Vinclozolin biological rep1 GSM1438558 E13-Vip1/Cip1

GSM1065335 PGC E13 F3-Vinclozolin biological rep2 GSM1438559 E16-Vip1/Cip1

GSM1065336 PGC E16 F3-Control biological rep1 GSM1438560 E16-Vip2/Cip1

GSM1065337 PGC E16 F3-Control biological rep2 GSM1438561 E13-Vip2/Cip2

GSM1065338 PGC E16 F3-Vinclozolin biological rep1

GSM1065339 PGC E16 F3-Vinclozolin biological rep2

PCA is applied to x̃mRNA

ij and x
methyl

kj and PC loading, vmRNA

� ∈ R
8 and vmethyl

� ∈ R
6

attributed to samples are obtained. After investigation of obtained PC loading, we
find that vmRNA

2 and vmethyl

1 have distinction between E13 and E16 (Fig. 6.14).
P -values are attributed to probes using χ2 distribution as

Pi = Pχ2

[

>

(
umRNA

2i

σ mRNA

2

)2
]

, (6.57)

and

Pk = Pχ2

[

>

(
u

methyl

1k

σ
methyl

1

)2
]

. (6.58)
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Fig. 6.14 (a) vmRNA
2 (b)vmethyl

1 .
P -values are computed by t
test. Black open circle: E13,
red open circle: E16

●

●

●

●

●

●●

●

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

(A) PC2:mRNA
 P= 1.46e−03

E
13

E
16

●
●

●

●●●−
0.

4
0.

0
0.

2
0.

4

(B) PC1:methylation
 P= 3.32e−02

E
13

E
16

(A) (B) (C)

●●
●
●●●●●●

●

●
●
●

●
●

●
●

●●
●

500 1000 1500 2000

−
3.

0
−

2.
0

−
1.

0
0.

0

N'

lo
g 

10
(P

)

●
●

●
●

●●●
●●●●●

●
●●
●●●●●

500 1000 1500 2000

−
3.

0
−

2.
0

−
1.

0
0.

0

N'

lo
g 

10
(P

)

●
●
●●●

●
●

●

●●●
●●
●●●●●●●

500 1000 1500 2000

−
3.

0
−

2.
0

−
1.

0
0.

0

N'

lo
g 

10
(P

)

Fig. 6.15 P -values computed by Fisher’s exact that evaluates overlap between top N ′ selected
genes of mRNA and methylation by (a) PCA based unsupervised FE, (b) t test, (c) limma.
Horizontal broken line indicates P = 0.05

Unfortunately, no probes for methylation are associated with adjusted P -values less
than 0.05. Thus, we give up evaluating probes with P -values. Instead, we decide to
evaluate probes using overlap between mRNA and methylation. That is, we select
top N ′ probes with smaller P -values computed by Eqs. (6.57) and (6.58) for mRNA
and methylation, respectively. Then compute P -values with applying Fisher’s exact
test to evaluate overlaps of genes to which top N ′ probes are attributed for mRNA
and methylation. Annotation of mRNA probes is available in the file GPL6247-
249.txt. Annotation of methylation probes is in methylation profile files themselves.

In order to evaluate the number of genes chosen in common between mRNA
and methylation, we also compute P -values attributed to probes by two additional
methods; t test and Linear Models for Microarray Data (limma) [37]. Although
limma is a simple linear regression analysis using logarithmic values, it is known
to work pretty well for DEG identification. Figure 6.15 shows the dependence of
P -values computed by Fisher’s exact test upon N ′ that is the number of top ranked
genes with smaller P -values computed by PCA based unsupervised FE, t test, and
limma. In contrast to PCA based unsupervised FE which has P -values less than
0.05 for N ′ > 1000, t test does not fulfill this criterion N ′ ≤ 2000 while more
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advanced limma can have only one N ′ associated with P < 0.05. Thus, from the
point of integrated analysis of mRNA and methylation, PCA based unsupervised FE
outperforms other two conventional or popular methods for DEG identification.

Although PCA based unsupervised FE successfully integrates mRNA expression
and methylation profiles, if genes chosen in common between mRNA expression
and methylation are not biologically valid, it is useless. In order to evaluate
genes chosen in common between mRNA expression and methylation profiles,
we upload 63 genes (Table 6.34) selected by PCA based unsupervised FE when
N ′ = 1100, which is minimum N ′ associated with P < 0.05, to DAVID. Table 6.35
lists gene ontology (GO) terms identified by DAVID. Here, GO terms [62] are
composed of human curated list of genes supposed to have biological concepts
about biological process (BP), cellular components (CC), and molecular function
(MF). Most enriched GO terms are related to olfactory receptor activity, which is
known to be related to TGE [42]. Thus, not only PCA based unsupervised FE can
identify common genes between mRNA and methylation, but also identified GO
terms are reasonable. PCA based unsupervised FE is successful from the biological
point of view, too.

6.6 Time Development Analysis

Analysis of temporal data set is another important topic of not only data science
but also bioinformatics. For example, periodic motion often plays critical role
in biology. Typical examples where periodic motions play critical roles include
heartbeats, circadian rhythm, and cell division cycle. For all of them, keeping the
stability of periodicity is critically important. Thus, identification of genes that can
contribute to periodic motion is also critical. Another example is development or
disease progression. It is also important which genes drive these processes. From
the viewpoint of feature selection, the task is similar to those mentioned in the
previous sections: to identify genes having time dependence. The only difference
is that there is no clear definition of what the time dependences. In some sense,
it is very close to clustering. If we can find a set of genes that share similar time
dependence, it might be the evidence that these are critical time dependence. The
definition of periodicity is also unclear. Only definition of periodicity is that some
function of time t , f (t), should satisfy the condition that f (t + T ) = f (t) for all t

in order to be a periodic function of period T . Nevertheless, because the time points
measured are limited, it is usual that there are no pairs of points between whose time
interval is exactly T . In this case, sinusoidal regression is often employed, in spite
of that it is not guaranteed to capture all kinds of periodic motions because not all
periodic functions are sinusoidal.

In the following subsections, we will demonstrate how effective is to employ
PCA based unsupervised FE in order to identify genes with time dependence. As
mentioned above, it is quite difficult to assume the time dependent functional form
to identify time dependent genes in advance. Because of this difficulty, unsupervised
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Table 6.34 63 mRNAs selected by PCA based unsupervised FE

Refseq mRNA Gene symbol Description

NM_021866 CCR2 C-C motif chemokine receptor 2

NM_001000650 Olr624 Olfactory receptor 624

NM_001109617 PRAMEF27 PRAME family member 27

NM_017061 LOX Lysyl oxidase

NM_012523 CD53 Cd53 molecule

NM_001033998 ITGAL Integrin subunit alpha L

NM_022866 SLC13A3 Solute carrier family 13 member 3

NM_001109383 ANGPTL1 Angiopoietin-like 1

NM_001109118 ELOVL2 ELOVL fatty acid elongase 2

NM_001111269 LOC689064 Beta-globin

NM_001000551 Olr218 Olfactory receptor 218

NM_001107660 CAR1 Carbonic anhydrase I

NM_023968 npy2r Neuropeptide Y receptor Y2

NM_053994 PDHA2 Pyruvate dehydrogenase (lipoamide) alpha 2

NM_001111321 Vom2r80 Vomeronasal 2 receptor, 80

NM_020104 MYL1 Myosin, light chain 1

NM_001000646 Olr635 Olfactory receptor 635

NM_001001071 Olr862 Olfactory receptor 862

NM_001000648 Olr633 Olfactory receptor 633

NM_001109218 RGD1565355 Similar to fatty acid translocase/CD36

NM_001000600 Olr796 Olfactory receptor 796

NM_001013952 LOC300308 Similar to hypothetical protein 4930509O22

NM_013025 CCL3 C-C motif chemokine ligand 3

NM_001000566 Olr542 Olfactory receptor 542

NM_022218 CMKLR1 Chemerin chemokine-like receptor 1

NM_013158 DBH Dopamine beta-hydroxylase

NM_001109374 LRRTM1 Leucine rich repeat transmembrane neuronal 1

NM_021853 kcnt1 Potassium sodium-activated channel subfamily T member 1

NM_175586 TAAR7B Trace amine-associated receptor 7b

NM_001008946 Vom1r29 Vomeronasal 1 receptor 29

NM_001047891 RGD1310507 Similar to RIKEN cDNA 1300017J02

NM_001008947 Vom1r34 Vomeronasal 1 receptor 34

NM_020071 FGB Fibrinogen beta chain

NM_001080938 Tas2r124 Taste receptor, type 2, member 124

NM_012909 AQP2 Aquaporin 2

NM_030856 LRRN3 Leucine rich repeat neuronal 3

NM_001099492 Vom2r19 Vomeronasal 2 receptor, 19

NM_013149 AHR Aryl hydrocarbon receptor

NM_001011892 SERPINF2 Serpin family F member 2

NM_001012224 NFE2 Nuclear factor, erythroid 2

NM_001013177 Sult1c2a Sulfotransferase family, cytosolic, 1C, member 2a

(continued)
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Table 6.34 (continued)

Refseq mRNA Gene symbol Description

NM_053843 FCGR2A Fc fragment of IgG, low affinity IIa, receptor

NM_001106056 TRIM52 Tripartite motif-containing 52

NM_001000523 Olr1381 Olfactory receptor 1381

NM_001007729 PF4 Platelet factor 4

NM_001000080 Olr1583 Olfactory receptor 1583

NM_001107036 MPO Myeloperoxidase

NM_022696 HAND2 Heart and neural crest derivatives expressed 2

NM_001001053 Olr545 Olfactory receptor 545

NM_001024805 Hbe2 Hemoglobin, epsilon 2

NM_001000384 Olr408 Olfactory receptor 408

NM_001001362 Olr1059 Olfactory receptor 1059

NM_138537 LOC171573 Spleen protein 1 precursor

NM_001000896 Olr1726 Olfactory receptor 1726

NM_134326 ALB Albumin

NM_001001017 Olr1143 Olfactory receptor 1143

NM_017105 BMP3 Bone morphogenetic protein 3

NM_012893 ACTG2 Actin, gamma 2, smooth muscle, enteric

NM_001000619 Olr727 Olfactory receptor 727

NM_001012112 ANKRD9 Ankyrin repeat domain 9

NM_001001114 Olr1701 Olfactory receptor 1701

NM_001108651 HEBP1 Heme binding protein 1

NM_001014222 Dmrtc1c1 DMRT-like family C1c1

Table 6.35 GO terms detected by DAVID

Category Term Count % P -value Benjamini

GOTERM_BP_
DIRECT

GO:0007186 G-protein coupled
receptor signaling pathway

26 41.3 8.52 × 10−10 3.57 × 10−7

GOTERM_BP_
DIRECT

GO:0050911 detection of chem-
ical stimulus involved in sensory
perception of smell

16 25.4 3.00 × 10−5 6.26 × 10−3

GOTERM_CC_
DIRECT

GO:0016021 integral component
of membrane

33 52.4 2.35 × 10−4 2.07 × 10−2

GOTERM_CC_
DIRECT

GO:0072562 blood microparticle 5 7.94 5.80 × 10−4 2.55 × 10−2

GOTERM_MF_
DIRECT

GO:0004984 olfactory receptor
activity

16 25.4 5.83 × 10−5 6.91 × 10−3

GOTERM_MF_
DIRECT

GO:0004930 G-protein coupled
receptor activity

17 27.0 7.26 × 10−5 4.31 × 10−3

%: the ratio of genes annotated, Benjamini: P -values corrected by BH criterion
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nature of PCA based unsupervised FE works quite well. Let’s start to try to identify
genes that can drive cell division cycle.

6.6.1 Identification of Cell Division Cycle Genes

Cell division cycle is the primary process of living organisms. There are no
living organisms that do not perform cell division, because only through cell
division, living organism can develop or make the descendants. Thus, maintenance
of stability of cell division cycle is quite critical. In this sense, identification of
cell division cycle genes is very important for understanding living materials.
Fortunately, studying cell division cycle is not difficult, because cell division can
be observed even using unicellular organisms, which can often be cultured in Petri
dish. Although cell structure of unicellular organisms like bacteria generally differs
from that of multicellular organisms like human beings, fortunately there are some
unicellular organisms that share the cell structure with multicellular organisms, e.g.,
yeast. Because of this ease of experiment, there is a long history of study of cell
division cycles.

In this subsection, we try to reanalyze gene expression profiles of yeast during
mitotic cell division cycle (i.e., normal cell division cycle that is not related to repro-
ductive processes) [51]. One possible obstacle of this experiment is synchronization.
In natural state, individual yeasts perform cell division cycle with randomized phase.
In other words, cell division always takes place in some individual yeast cells. Under
such a condition, measuring gene expression might not exhibit any periodicity at
all. In order to avoid such a situation, all yeast cells must be synchronized before
experiments start. And almost only one possible way to perform synchronization
is arresting cell cycle [22]. There are multiple ways to arrest cell cycle, e.g. the
usage of mutant or cutting off the food supply. Cell cycle arresting has one problem;
after cell cycle releasing arresting, cell cycles start to be desynchronized; living
organisms have no benefits for cell cycle synchronization, which gradually vanishes
and return to randomized phase. If desynchronization is rapid, there are no ways
to observe gene expression of cell division cycle for longer period. This results in
again typical large p small n problem, i.e., small number of time points (often less
than 100) versus huge number of genes (a few thousands).

The first data set we analyze is yeast metabolic cycle [64]. Gene expression
profile, xij ∈ R

9335×36 composed of 36 times points and 9335 genes. Thirty six
time points are supposed to be composed of three cycles based upon external
observations. Thus, it corresponds to the observation over three cycles. It can be
downloaded as a file GSE3431_series_matrix.txt from GEO ID GSE3431. PCA is
applied to xij and PC loading v� ∈ R

36 is attributed to time points. Figure 6.16
shows the v�, � = 2, 3. As expected, they are coincident with three periodic cycles.
Although we never use the assumption that they are periodic motions, PCA correctly
identifies periodic motions. In addition to this, time dependence of periodic motion
is far from sinusoidal motion that is usually assumed. Furthermore, the functional
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Fig. 6.16 (a) The scatterplot
of v�, � = 2, 3. Blue filled
circle, j = 1, red filled circle:
j = 36, gray filled circle :
1 < j < 36. Horizontal axis:
� = 2 and vertical axis:
� = 3. (b) Time dependence
of PC loading v�, � = 2, 3.
Blue: � = 2, red:� = 3 ●
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shape of v2 and v3 differs from each other so much. Although individual genes are
expected to have time dependence of functional form of linear combination of v2 and
v3, these apparently differ from each other because of complete different functional
form of v2 and v3. Thus it completely differs from sinusoidal function for which
each gene shares same functional form excluding the time shift. This suggests the
limitation of employment of sinusoidal function to recognize periodic nature within
gene expression. No fitting of specific functional forms to gene expression cannot
identify periodic genes correctly.

In order to identify cell cycle regulated genes, we attribute P -values to ith genes
using χ2 distribution as

Pi = Pχ2

[

>

3∑

�=2

(
u�i

σ�

)2
]

, (6.59)

Pis are adjusted by BH criterion. Then we found that 298 probes are associated with
adjusted P -values less than 0.01 (Fig. 6.17).

It is not easy to evaluate selected genes without biological consideration, because
the functional form of PC loading, v�, � = 2, 3, is not a simple mathematical
function. One possible evaluation is linear regression analysis that tests if selected
genes are periodic or not. Then we perform two linear regression analyses,

xij = ai +
3∑

�=2

bi�v�j (6.60)

and

xij = a′
i + b′

i1 sin

(
2πj

12

)
+ b′

i2 cos

(
2πj

12

)
(6.61)

to selected 298 probes where ai, bi�, a
′
i , b

′
i1, b

′
i2 are regression coefficients.

Attributed P -values are corrected by BH criterion, and the largest (i.e., the least
significant) adjusted P -values are 0.004 and 0.01, respectively. Thus, PCA based
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Fig. 6.17 Scatterplot of PC
scores, u�, � = 2, 3. Points
colored other than gray are
selected 298 probes. Points
displayed with red, green, and
blue marks are three clusters
identified by K-means
assuming three clusters to
u�, � = 2, 3
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unsupervised FE can correctly identify genes having period 12 in fully unsupervised
manner.

One might wonder how we identify � = 2, 3 for periodic function without
assuming periodicity. We plot v� and v�′ and identify if they form limit cycle. In
order to evaluate the amount that each trajectory is limit cycle, we compute winding
number, which counts how many times each orbit moves round the origin anti-
clockwise direction (Fig. 6.18). It is obvious that v�, � = 2, 3 exhibit most clear
limit cycle. Because identification of limit cycle does not require the knowledge
about the periodicity in advance, we can identify v�, � = 2, 3 in fully unsupervised
manner. One possible bi-product of winding number analysis is the identification of
periodic motion other than period of 12. v�, � = 2, 4 exhibit period doubling (eight
letter shaped). Sinusoidal regression that assumes specific period cannot identify
these motions. It is another advantage of using unsupervised methods.

It is also possible to select genes based upon linear regression analysis. We
compare the performance of linear regression analysis with that by PCA based
unsupervised FE, by applying Eqs. (6.60) and (6.61) to not selected 298 but all
gene expression profiles. P -values are attributed to all genes with linear regression
analysis and obtained P -values are adjusted by BH criterion. Then we select gene
associated adjusted P -values less than 0.01. This results in as many as 5598 genes
by Eq. (6.60) and 4676 genes by Eq. (6.61), respectively, both of which are more
than half of total number of genes, 9335. Because it is too many, it is better to
be screened based upon additional criterion. Nevertheless, no suitable criteria as
FC when two classes are clearly defined are known for the detection of periodic
motion. Thus, reduction of number of genes is not straightforward. Because PCA
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Fig. 6.18 Upper triangle: Scatterplot of PC loading, v�, 1 ≤ � ≤ 4. Lower triangle: winding
number (anti-clockwise direction is positive)

based unsupervised FE can identify as small as 298 probes only with P -values, it is
more convenient than gene selection based upon linear regression analysis.

Finally, we would like to evaluate genes associated with the selected 298
probes biologically. Tu et al. [64] identified cell cycle regulated genes using linear
regression analysis, Eq. (6.61), which they call sinusoidal regression. Then, classify
them into three classes based upon the similarity of functional forms, with visual
inspection of time course expression. They also recognized that these three classes
are associated with specific biological function. In order to see if these three
classes are reproduced in the present results, we apply K-means to selected 298
probes with u�, � = 2, 3. Three colored clusters in Fig. 6.17 correspond to three
clusters obtained by K-means. Genes associated with probes in three clusters are
separately uploaded to DAVID. Table 6.36 lists the significant KEGG pathway
enrichment. Green and blue crosses in Fig. 6.17 correspond to two classes to which
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mitochondrial and ribosomal GO cellular component (CC) terms are enriched,
respectively. Red triangles in Fig. 6.17 are not very clear, but it is enriched by
the GO CC term of cell walls, which is deeply related to cell division. Thus, it is
coincident. Therefore, K-means clustering applied to 298 probes identified by PCA
based unsupervised FE reproduces the biological clusters of genes reported by Tu
et al. [64].

Another example of yeast cell division cycle to which PCA based unsupervised
FE is applied is data set stored in Cyclebase [39]. Cyclebase collected gene
expression profiles of four species, one plant (Arabidopsis thaliana), two yeasts
(Saccharomyces cerevisiae, Schizosaccharomyces pombe), and human (Homo sapi-
ens). For the yeast that we analyze in the present study, S. cerevisiae, there are eight
time course data sets available, one of which is excluded because there are only pre-
screened genes included. Profiles are available as a file budding_experiments.tsv,
which is downloadable from Cyclebase. Because PCA based unsupervised FE tries
to identify genes as outliers, we need all genes before screening, otherwise we
cannot identify outliers because of lack of non-outlier genes. As a result, we apply
PCA based unsupervised FE to remaining seven gene expression profiles (Figs. 6.19
and 6.20).

In contrast to Fig. 6.18, not all trajectories exhibit clear limit cycles. In that case,
we select pairs of PC loading associated with largest absolute winding numbers
for gene selection (the pairs of PCs selected are shown in captions in Figs. 6.19
and 6.20). Then, using selected pairs of PC loading, (�, �′), P -values are attributed
to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�1=�,�′

(
u�1i

σ�1

)2
⎤

⎦ (6.62)

Pi is adjusted by BH criterion. Genes associated with P -values less than 0.05 are
selected (Fig. 6.21). For each of seven expression profiles, PCA based unsupervised
FE identify more than 100 genes. In order to evaluate selected genes, we see how
much they are overlapped, because the selected genes should be largely overlapped
between seven set of genes if they are biologically valid. As in Fig. 6.21, 37 genes
are chosen in common at least six among seven experiments. If considering that
the total number of genes is at least several thousands (depending on microarrays
used in individual experiments), this coincidence is too strong to occur accidentally.
Thus, as far as coincidence is concerned, PCA based unsupervised FE is successful.

In order to see if other supervised methods can similarly achieve sufficient
coincidence between seven experiments, we apply sinusoidal regression to gene
expression profile, xij , as

xij = ai + bi1 sin

(
2πj

T

)
+ bi2 cos

(
2πj

T

)
. (6.63)
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Fig. 6.19 Scatterplot of PC loading, v�, 1 ≤ � ≤ 4 for Cyclebase. (�, �′) denotes PC used for
gene selection. (a) Cho et al. [11], (�, �′) = (2, 3). (b) Granovskaia et al. [17], G1 phase arrest
by α-factor,(�, �′) = (1, 2). (c) Granovskaia et al. [17], G1 phase arrest by temperature-sensitive
cdc28-13 mutant cells, (�, �′) = (2, 4). (d) Pramila et al. [34], α-Factor synchronization, (�, �′) =
(1, 2). Other notations are the same as Fig. 6.18

One problem is the decision of period T . For five out of seven experiments,
because the periods are denoted in Table 1 [16], we employ these values. For
Fig. 6.19b and c, because no information is available, we decide T with visual
inspection of v� and v�′ . P -values obtained by sinusoidal regression are adjusted
by BH criterion. Then genes associated with adjusted P -values less than 0.05 are
selected (Table 6.37). Although sinusoidal regression also can identify large enough
number of cell cycle regulated genes, the number of selected genes varies from
experiments to experiments. In order to evaluate the amount of coincidence among
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Fig. 6.20 (a) Pramila et al. [34], α-Factor synchronization: α38 data, (�, �′) = (1, 2). (b)
Spellman et al. [46], α factor arrest, (�, �′) = (1, 3). (c) Spellman et al. [46], arrest of a cdc15
temperature-sensitive mutant. (�, �′) = (2, 4). Other notations are the same as Fig. 6.19

seven experiments, we select top 150 genes with smaller P -values. Then, as small
as 12 genes are selected in at least six among seven experiments. Thus, PCA based
unsupervised FE can identify more common genes among seven experiments.

Finally, we evaluate 37 genes (Table 6.38) selected by PCA based unsupervised
FE biologically. Because DAVID does not identify any significant terms when 37
genes selected by PCA based unsupervised FE are uploaded, we instead employ
YeastMine [5] (Table 6.39), which includes more carefully curated biological
terms specifically for yeast. For comparisons, 36 top ranked genes in Cyclebase
(Tables 6.38 and 6.40) and 40 genes selected by sinusoidal regression, Eq. (6.63), in
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1 2 3 4 5 6 7

Seven independent experiments in cyclebase

PCA based unsupervised FE

1 2
gene
sets 3 4 5 6 7

142# of genes 138 162 152 144 133 130

37genes

Fig. 6.21 The results of PCA based unsupervised FE applied to seven yeast cell division cycle
gene expression in Cyclebase. Experiments one to seven correspond to Fig. 6.19a–d and Fig. 6.20e–
g, in this order

Table 6.37 The number of genes selected using P -values computed by Eq. (6.63)

Experiments

1 2 3 4 5 6 7

Number of genes measured 6214 6378 6378 6102 6145 6075 5673

Number of time points 17 41 44 24 24 18 24

Period T 8 14 20 12 12 9 10

Number of selected genes 364 3624 1164 1790 1951 298 354

at least five among seven experiments (from Tables 6.38, 6.39, 6.40 and 6.41) are
also uploaded.

Venn diagram of three gene sets is in Fig. 6.22. At most, one third of genes
are chosen in common. Thus, these three gene sets are quite distinct. It is also
obvious that 37 genes selected by PCA based unsupervised FE are most significantly
enriched by the cell cycle related genes. Thus, from the biological point of
view, PCA based unsupervised FE outperforms Cyclebase as well as conventional
sinusoidal regression.

In conclusion, although applications are limited to yeast cell division cycle, PCA
based unsupervised FE obviously has the superior ability to identify periodic genes
in fully unsupervised manner.

6.6.2 Identification of Disease Driving Genes

As can be seen in the section that describes biomarker identification (Sect. 6.4),
disease alters gene expression. Gene expression is also associated with disease
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Table 6.38 Genes selected by PCA based unsupervised FE, Cyclebase, and sinusoidal regression

Methods Genes

PCA based
unsupervised FE

AIM34, ALK1, AXL2, CDC5, CLB1, CLB2, CLB6, CLN1, CLN2,
CSI2, EGT2, GAS3, GIN4, HHO1, HHT1, HOF1, HST3, HTA1, HTA2,
KCC4, MCD1, MMR1, MNN1, MSH2, MSH6, PDS1, PHO3, POL30,
PRY2, RAD27, RFA1, RNR1, SFG1, SRC1, SWI5, TOS4, YOX1

Cyclebase AIM34, AXL2, BUD3, CLN2, CSI2, GAS3, HHO1, HHT1, HMLAL-
PHA2, HTA1, HTA2, HTB1, HTB2, KCC4, MATALPHA2, MCD1,
MNN1, MRC1, MSH6, NRM1, PDS1, POL30, PRY2, RFA1, SRC1,
SVS1, TOS4, TOS6, YRF1-1, YRF1-2, YRF1-3, YRF1-4, YRF1-5,
YRF1-6, YRF1-7, YRF1-8

Sinusoidal
regression

ALK1, ASF1, AXL2, BUD3, CDC21, CDC9, CLN2, CSI2, DSN1,
ERP3, GAS3, HHF1, HHF2, HHO1, HHT2, HTA1, HTA2, HTB1,
HTB2, KCC4, MCM5, MNN1, MSA1, MSH2, MSH6, NRM1, NUF2,
PDS1, POL30, PRY2, RAD27, RFA1, RFA2, RSR1, SGO1, SML1,
SPC98, TOF2, TOS4, WTM2

Genes in bold are 15 genes chosen in common over three methods

Table 6.39 Top five GO BP term/publication enrichments reported by YeastMine in 37 genes
identified by PCA based unsupervised FE

PCA based unsupervised FE

GO BP term p-Value #

Cell cycle [GO:0007049] 5.32 × 10−10 24

Cell cycle process [GO:0022402] 3.08 × 10−8 21

Mitotic cell cycle [GO:0000278] 4.45 × 10−8 17

Mitotic cell cycle process [GO:1903047] 2.23 × 10−7 16

Cell division [GO:0051301] 1.02 × 10−6 15

Publication PMID p-Value #

Clustering time-varying gene expression profiles using scale-space signals

[16452778] 9.74 × 10−24 20

Serial regulation of transcriptional regulators in the yeast cell cycle

[11572776] 6.14 × 10−17 16

Identification of a core set of signature cell cycle genes whose relative order of time to peak
expression is conserved across species

[22135306] 6.34 × 10−12 10

Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed
genes

[15155858] 3.71 × 10−10 9

Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle

[17010188] 4.17 × 10−10 12

#: number of genes associated with GO BP terms or mentioned in the publications. PMID: PubMed
ID
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Table 6.40 Top five GO BP term/publication enrichments reported by YeastMine in 36 top ranked
genes by Cyclebase

Cyclebase

GO BP term p-Value #

Chromosome organization [GO:0051276] 1.13 × 10−8 20

Telomere maintenance via recombination [GO:0000722] 3.34 × 10−8 8

DNA metabolic process [GO:0006259] 3.50 × 10−8 19

Telomere maintenance [GO:0000723] 2.07 × 10−6 9

Anatomical structure homeostasis [GO:0060249] 2.07 × 10−6 9

Publication PMID p-Value #

Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that
modulates genetic stability in distillery yeasts

[26384347] 9.74 × 10−24 20

Transcriptional effects of the potent enediyne anti-cancer agent Calicheamicin
gamma(I)(1)

[11880039] 1.11 × 10−11 7

Linking DNA replication checkpoint to MBF cell-cycle transcription reveals a distinct
class of G1/S genes

[22333912] 2.32 × 10−11 11

Mcm1p-induced DNA bending regulates the formation of ternary transcription factor com-
plexes

[12509445] 2.35 × 10−11 8

A genetic screen for yeast genes induced by sustained osmotic stress

[12868060] 1.82 × 10−10 7

#: number of genes associated with GO BP terms or mentioned in the publications. PMID: PubMed
ID

progression (Sect. 6.3.3). In this sense, it is not surprising even if we can identify
a set of genes that describes disease progression well. In this subsection, we try
to identify genes that discriminate time developments between dengue fever (DF)
and dengue hemorrhagic fever (DHF) [18]. DF is usually non-lethal mosquito-
borne virus disease. Nevertheless, it rarely develops to lethal DHF. Because DHF
usually develops only after remission of DF, it is supposed that if DHF develops
from DF is dependent upon the patients status. In spite of that, it is unclear what
kind of difference decides if DHF develops after patients start to recover from
DF. In this subsection, we try to apply PCA based unsupervised FE to patients
blood gene expression profiles in order to identify which genes are related to DHF
developments.



6.6 Time Development Analysis 197

Table 6.41 Top five GO BP term/publication enrichments reported by YeastMine in 40 genes
identified by sinusoidal regression, Eq. (6.63)

Sinusoidal regression

GO BP term p-Value #

Cell cycle [GO:0007049] 4.45 × 10−10 26

Cell cycle process [GO:0051276] 3.27 × 10−8 22

Chromosome organization [GO:0006259] 5.07 × 10−8 21

Cellular response to DNA damage stimu-
lus

[GO:0006974] 5.85 × 10−8 17

Chromatin assembly or disassembly [GO:0006333] 7.32 × 10−7 9

Publication PMID p-Value #

Clustering time-varying gene expression profiles using scale-space signals.

[16452778] 8.69 × 10−23 20

Histone h3 exerts a key function in mitotic checkpoint control.

[19917722] 3.69 × 10−15 9

Regulation of cell cycle-dependent gene expression in yeast.

[2201678] 5.846 × 10−15 11

Molecular biology. Nucleosomes help guide yeast gene activity.

[15961637] 6.85 × 10−14 8

Brownian dynamics simulation of directional sliding of histone octamers caused by DNA
bending.

[16802969] 6.85 × 10−14 8

#: number of genes associated with GO BP terms or mentioned in the publications. PMID: PubMed
ID

Fig. 6.22 Venn diagram of
genes in Table 6.38. PCA:
PCA based unsupervised FE,
CB: Cyclebase, Sin:
sinusoidal fitting

In this subsection, we apply PCA based unsupervised FE to five DF patients
blood gene expression profiles in order to identify genes that make DHF develop.
Five data sets analyzed are shown in Table 6.42 (Data sets 1–5) [52]. These five
data sets are quite distinct. In data set 1, which is composed of four classes, there
are healthy controls (HC), acute patients (AC), DF and DHF patients. On the other
hand, in data set 2, which is also composed of four classes, three are Acute and
Convalescent patients, both of which are composed of DF and DHF patients. In
the following, we would like to demonstrate that starting the analysis of these
quite distinct two data sets, genes chosen in common between two data sets can
describe distinct time development between DF and DHF. In order to show this, we
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apply PCA based unsupervised FE to data sets 1 and 2, and identify genes for both
data sets. Then, using genes chosen in common, we try to see how selected genes
describe distinct time developments between DF and DHF, using data sets 3–5.

At first, we apply PCA to data set 1, xij ∈ R
54715×56, and 2, xij ∈ R

23454×30,
after standardization,

∑
i xij = 0 and

∑
i x2

ij = N where N is the number of probes,
54,715 and 23,454, respectively. Selection of PCs used for gene selection is not
straightforward, because no single PC can discriminate four classes in Table 6.42.
Upper triangles of Fig. 6.23 shows the PC loading, v�, 1 ≤ � ≤ 4 for data set
1 and 2. With visual inspection, we decide to employ � = 2, 3 for both data set
because this combination is most coincident with clear clusters coincident with class
labels. On the other hand, it is obvious that there are no PC loading that discriminate
between DHF and DF. Two clusters are coincident with only the distinction between
sample with and without symptom. In order to support this decision quantitatively,
we perform LDA, Eq. (6.2), assuming two classes and compute accuracy, Eq. (6.16)
(lower triangles of Fig. 6.23). It is obvious that � = 2, 3 achieves the highest
accuracy.

Then we attribute P -values to probes assuming χ2 distribution as

Table 6.42 List of samples included in data set 1, 2, 3, 4, and 5

Data set 1 (GSE51808) Affymetrix HT HG-U133+ PM array plate

Healthy Controls (HC) Acute Patients (AC) DF DHF

9 19 18 10

Data set 2 (GSE13052) Sentrix HumanRef-8 expression BeadChip

Acute Convalescent

Uncomplicated (DF) 10 5

DSS∗ (DHF) 9 6

Data set 3 (GSE25001) Illumina HumanRef-8 v2.0 expression Beadchip

Acute 0-1 Disease (Fever) Follow up

DF 56 32 31 16

DHF 24 12 20 18

Data set 4 (GSE43777-GPL570) Affymetrix human genome U133 Plus 2.0 array

G0 G1 G2 G3 G4 G5 G6 G7

DF 0 2 5 8 9 5 11 12

DHF 0 0 3 8 10 5 11 12

Data set 5 (GSE43777-GPL201) Affymetrix human HG-focus target array

DF 2 5 21 18 22 22 24 45

DHF 0 0 0 1 3 1 1 3

DSS: Dengue Shock Syndrome. GSE51808: RMA normalization was performed using Expression
Console software. GSE13052: Intensity was acquired using Beadstudio software Intensity was
background normalized (Subtract the background value). GSE25001: Data was normalized by
Beadstudio software. GSE43777: RMA normalization was performed using Expression Console
software. For more details, see papers that reported these data sets
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Fig. 6.23 Upper triangle: Scatterplot of PC loading, v�, 1 ≤ � ≤ 4, for (a) Data set 1, open circle:
Convalescent Patient, red triangle: Dengue Fever, green plus symbol: Dengue Hemorrhagic, blue
cross symbol: Healthy control, (b) Data set 2, open circle: acute DSS, red triangle: acute uncom-
plicated, green plus symbol: convalescent DSS, blue cross symbol: convalescent uncomplicated.
Lower triangle: accuracy of two classes (with and without symptom) discrimination. (a) Open
circle + blue cross symbol vs red triangle + green plus symbol, (b) open circle + red triangle vs
green plus symbol + blue cross symbol
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P -values are adjusted by BH criterion and probes associated with adjusted P -values
less than 0.01 are selected. As a result, 879 and 275 probes are selected for data set 1
and 2, respectively (Fig. 6.24). Considering the fact that total number of probes are
104 while the number of selected probes are about 102, the regions where selected
probes (red dots) distribute is very huge and selected probes are really outliers. The
number of genes included in common in both sets of selected genes as many as 46
(Table 6.43). In order to check if as many as 46 chosen in common genes can occur
accidentally, we apply Fisher’s exact test (Table 6.44). It is obvious that 46 genes
are too large to occur accidentally.

In order to see if other conventional supervised feature selection methods can
work similarly, we test three methods, limma, categorical regression analysis, and
significance analysis of microarrays (SAM) [65], which is t test modified so as
to be fitted to microarray analysis. These three tests are performed under the two
assumptions of either four classes or two classes. Two classes are assumed to be
those with and without symptom, as shown in the caption of Fig. 6.23. Probes with
adjusted P -values less than 0.01 are selected. Table 6.45 shows the results. Because
the numbers of probes identified in data set 1 are too large, no methods are useful
to select small enough number of genes chosen in common between two data sets.
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Fig. 6.24 PC score, u�, � = 2, 3, for (a) data set 1 and (b) data set 2. Gray dots: not selected
probes, red dots: selected dots. Colored marks are PC loading, as shown in Fig. 6.23

Table 6.43 Forty six and forty one genes common between 879 and 275 genes selected by PCA
based unsupervised FE and categorical regression

46 genes associated with probes chosen in common by PCA based unsupervised FE

FBXO7 MX1 LY6E IFI27 TNFSF10 OAS1 CDC20 GYPC PI3 FCGR3A HBA1 HBA2 HBG1
HBG2 IFI44L IFIT3 CCR1 FPR1 STAT2 ISG15 OASL CD38 TNFRSF17 CXCR1 ZBP1 HBB
IFI35 MKRN1 APOBEC3A ALAS2 IL1RN RSAD2 ASCC2 IFIT2 ADIPOR1 SLC25A37
OAS3 SDF2L1 TMEM140 FKBP11 HERC5 ITM2C TXNDC5 STRADB SLC25A39 EPSTI1

41 genes associated with probes chosen in common by categorical regression

FBXO7 PSMB2 LGALS1 NMT1 TMX2 LRRC41 IDH3A BAG1 IFI27 UBE2S ATOX1 PI3
BAK1 MRPL28 CHAF1B HAGH PSMD11 XPNPEP1 TSPAN5 GART RTN1 YARS SLC43A3
ADIPOR1 DCXR MRPS18A SIL1 DPP3 GPN2 TESC KCTD14 GMPPB CAMK1D TACO1
OSBP2 STRADB SLC25A39 EHD4 TRIM69 HAVCR2 SESN3

Bold genes are common

Table 6.44 Confusion matrices and associated P -values and odds ratio

Data set 1 Not selected Selected P -value Odds ratio

PCA based unsupervised FE

Data set 2 Not selected 13,574 186 2.17 × 10−22 7.51

Selected 447 46

Categorical regression (2 classes)

Data set 2 Not selected 13,680 185 5.73 × 10−16 5.50

Selected 551 41

Although this definitely suggests the superiority towards these three conventional
methods, we can make use of them with taking into account the results of PCA
based unsupervised FE. PCA based unsupervised FE has already shown that 879 and
275 probes are large enough to have reasonable number of common genes between
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Table 6.45 Number of genes identified by SAM, limma, and categorical regression

Data set Sam Limma Categorical regression

Two classes Four classes Two classes Four classes Two classes Four classes

1 17,680 16,647 54,715a 13,506 15,447 13,941

2 2427 865 21,795 20,629 679 581

Two classes mean “DHF+DF” vs “CP+HC” for data set 1 (GSE51808) and “Acute” vs “Convales-
cent” for data set 2 (GSE13052)
a All probes

two data sets. Thus, we select top ranked 879 and 275 probes based upon P -values
computed by one of three methods in order to compare the performance with PCA
based unsupervised FE. SAM attributed P = 0 to more than 879 genes in data set 1.
Thus we cannot select top ranked 870 genes in data set 1 by SAM. Although limma
allowed us to identify specified top ranked genes, the number of common probes
is a few. Thus, neither SAM not limma can compete with PCA based unsupervised
FE. Categorical regression analysis identifies 32 and 41 probes in common between
879 and 275 probes for two classes and four classes cases, respectively. As many as
41 genes (Table 6.43) chosen in common is highly significant (Table 6.44). Thus,
categorical regression is comparable with PCA based unsupervised FE.

These two sets of genes selected by PCA based unsupervised FE and by
categorical regression analysis are quite distinct. There are only five genes chosen
in common between two sets. In order to see which gene set is better, we need to
evaluate them biologically. For this purpose, we employ data set 3 (Table 6.42). We
apply PCA to either 46 genes selected by PCA based unsupervised FE or 41 genes
selected by categorical regression in data set 3. If selected genes are reasonable,
samples with distinct labels should be separately located in the plane spanned by
PC loading. Figure 6.25 shows that scatterplot of PC loading obtained by applying
PCA to either 46 genes selected by PCA based unsupervised FE or 41 genes selected
by categorical regression in data set 3. There are four disease stages in data set
3; acute, [0-1] (0 or 1 days after the symptom), DIS (disease), and FOLLOWUP
(after remission). For both cases, disease progression can be seen in this order.
It is also interesting, in later stage, DHF and DF are distinct to some extent. In
order to further validate two gene sets, we apply t test to see how distinct DHF and
DF are quantitatively. Table 6.46 shows the result. DHF and DF are more distinct
when genes selected by PCA based unsupervised FE are used. Thus, PCA based
unsupervised FE selected more reasonable gene than categorical regression.

Basically, we believe that the above performance is good enough to demonstrate
the superiority of PCA based unsupervised FE over the conventional supervised
methods. Nevertheless, we would like to emphasize the robustness of the selected
46 genes by applying PCA to additional data set, data sets 4 and 5 (Table 6.42).
Figure 6.26 shows the scatterplots of PC loading, v�, � = 2, 3, obtained by applying
PCA to data set 4 and 5 with only 46 genes (Table 6.43) selected with PCA based
unsupervised FE applied to data set 1 and 2. The V letter shape seen in Fig. 6.25
is conserved for two data sets, too, although the distinction between DHF and DF
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Fig. 6.25 Scatterplot of PC loading v�, � = 2, 3, obtained by applying PCA to data set 3 using
only genes selected by PCA based unsupervised FE or categorical regression to data set 1 and 2.
(a) PCA based unsupervised FE (b) Categorical regression

Table 6.46 P -values computed by t test applied to the distinction of the second and the third PC
scores between “DSS” and “uncomplicated” patients in Fig. 6.25

ACUTE [0-1] DIS FOLLOWUP

PCA based unsupervised FE

PC2 2.14 × 10−1 5.62 × 10−1 7.87 × 10−3 4.15 × 10−3

PC3 7.23 × 10−1 1.07 × 10−1 6.41 × 10−3 9.73 × 10−3

Categorical regression

PC2 1.24 × 10−1 2.78 × 10−1 8.84 × 10−4 4.00 × 10−2

PC3 9, 16 × 10−1 1.26 × 10−2 5.48 × 10−2 6.49 × 10−2

is weaker. This is possibly because the number of samples is smaller (12 samples
in G7 stage of data set 4 while 16 or 18 samples in follow-up stage of data set 3).
Nevertheless, in G7 stage, the second PC loading, v2j , is still significantly distinct
(P = 0.05 and 0.04 with a t test and Wilcoxon signed-rank sum test, respectively).
Because 46 genes selected for data set 1 and data set 2 are valid to describe disease
progression in three independent data sets, data sets 3 to 5, 46 genes in Table 6.43
should be key genes that describe the distinction between DF and DHF.

In conclusion, PCA based unsupervised FE has superior ability to identify limited
number of genes that can describe DHF progression.

6.7 Gene Selection for Single Cell RNA-seq

Single cell RNA high throughput sequencing (scRNA-seq) is a newly developed
technology. scRNA-seq can measure RNA expression in single cell base [20]. In
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Fig. 6.26 Scatterplot of PC loading, v�, � = 2, 3, obtained by applying PCA to data set 4 (a) and
5 (b), using only 46 genes (Table 6.43) selected by PCA based unsupervised FE applied to data set
1 and 2. The correspondence between the colored crosses (+) and disease progression are black
(stage G1), red (stage G2), green (stage G3), blue (stage G4), cyan (stage G5), magenta (stage G6),
and gray (stage G7). Cyan solid and broken lines correspond to DF and DHF, respectively

contrast to the usual HTS that can measure gene expression profile only in tissue
base, scRNA-seq can measure gene expression profile within individual cells.

From the data science point of view, scRNA-seq is distinct from conventional
tissue based gene expression measurements in the following two points:

Larger number of samples In contrast to the conventional tissue based measure-
ments, because the number of samples is as many as number of cells, it can be as
large as 103.

Missing labeling Because geometrical information of individual cell within tissue
is missing during the process of library preparation, samples (cells) are not
basically labeled.

Because of these two primary differences, applying PCA based unsupervised FE to
scRNA-seq is challenging. As emphasized many times, PCA based unsupervised FE
is invented to be applied to large p small n problem. It is interesting to see if PCA
based unsupervised FE is useful even if the number of samples increases up to 103.
On the other hand, missing labeling is advantageous over PCA based unsupervised
FE, because it is designed to be fitted to unlabeled samples. Because of these pros
and cons, it is unclear if PCA based unsupervised FE is applicable to scRNA-seq.

In this section, we apply PCA based unsupervised FE to an scRNA-seq data
set [53]. scRNA-seq data is downloaded from GEO with GEO ID GSE76381. It
includes human embryo ventral midbrain cells between 6 and 11 weeks of gestation,
mouse ventral midbrain cells at six developmental stages between E11.5 to E18.5,
Th+ neurons at P19-P27, and fluorescence activated cell sorting (FACS)-sorted
putative dopaminergic neurons at P28-P56 from Slc6a3-Cre/tdTomato mice. That
is, it includes data set of brain development of human and mouse. The purpose
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of the analysis is to understand what is common between human and mouse brain
development, based upon gene expression analysis. PCA based unsupervised FE
is applied to these data sets separately. Here E denotes the number of days after
fertilization while P denotes postnatal days.

Usually, the first step is to identify which PC loading exhibits the desired class
dependence. Nevertheless, for scRNA-seq data, because no labeling is available for
samples, it is impossible to find which PC loading reflects something to be searched.
Then, we decide to select the first L PC scores, u�, � ≤ L, and attribute P -values to
gene i assuming χ2 distribution as

Pi = Pχ2

[

>

L∑

�=1

(
u�i

σ�

)2
]

. (6.65)

P -values are corrected by BH criterion and genes associated with adjusted P -values
less than 0.01 are selected. The problem is how to decide L. In this case, we select
the smallest L such that selected genes are as many as a few hundreds. Then, we
find that 116 and 118 genes are selected if L = 2 and L = 3 for human and mouse,
respectively.

The first evaluation of these two sets of selected genes is the amount of overlap
between them. Among 116 selected human genes and 118 mouse genes, as many
as 53 genes are chosen in common (Table 6.47). Unfortunately, in contrast to the

Table 6.47 Fifty three genes common between 116 human and 118 mice genes selected by PCA
based unsupervised FE

53 genes associated with probes chosen in common by PCA based unsupervised FE

ACTB ACTG1 ATP5E CALM2 COX7C EEF1A1 FAU FTH1 H2AFZ H3F3B HMGB1 HMGB2
HMGN2 HSP90AA1 HSP90AB1 MALAT1 MAP1B MARCKS MEG3 NGFRAP1 PABPC1
PPIA PTMA RPL18A RPL23 RPL24 RPL32 RPL35 RPL38 RPL39 RPL4 RPLP1 RPLP2
RPS12 RPS13 RPS16 RPS20 RPS24 RPS25 RPS28 RPS29 RPS3 RPS5 RPS6 RPSA SPARC
STMN1 STMN2 SUMO2 TMSB10 TMSB4X TUBA1A TUBA1B

44 genes associated with probes chosen in common by highly variable genes

ALDH1A1 APLN CARTPT CAV1 CCL2 CCL3 CCL4 CD93 CLDN5 COL4A1 COL4A2
CRABP1 CSF1R CX3CR1 DBH FLT1 FN1 HPGDS ICAM2 IGFBP3 IGFBP7 IL1B ITM2A
KDR NEFM NPY NTS P2RY12 PF4 PLEK RGS5 SLC2A1 SLC38A5 SLC6A2 SLC6A4
SLC7A1 SLC7A5 SNCG SPARCL1 SPP1 SRGN SST TPH2 VWF

21 genes associated with probes chosen in common by bimodal genes

AP2B1 AP2M1 ASH1L EIF4B FXR1 G3BP1 HNRNPH2 IK ILF3 MIDN NMT1 OCIAD1 PNN
PPIG PRPF6 PSMD11 RPS15 SETD5 SRP72 TAX1BP1 WAC

76 genes associated with probes chosen in common by dpFeature

ACTG1 ALDH1A1 ANK3 ARL6IP1 ATP1A2 ATP5E B2M BASP1 BGN CALD1 CALM2
CCL3 CCL4 CCNB1 CDK1 CELF4 CENPF CKS1B CKS2 CLDN5 COL4A1 COL4A2
COX7A2 COX7C CRMP1 CST3 CYR61 DCX DPYSL2 DPYSL3 DNRB EEF1A1 ELAVL2
ELAVL4 ESAM ETS1 FABP5 FABP7 FAU FGFBP3 FLT1 FN1 FOS FSTL1 GAP43 GNB2L1
GNG11 GPM6A GPM6B GRIA2 GSTP1 H2AFZ H3F3B HES1 HMGB1 HMGB2 HMGN2
HN1 HSP90AA1 IGFBP7 INA ITM2A KCNQ1OT1 KIF5C KPNA2 LGALS1 MALAT1
MAP1B MAP2 MEG3 MIAT MLLT11 MYL12A MYL6 NCAM1 NDUFA4



6.7 Gene Selection for Single Cell RNA-seq 205

Table 6.48 Confusion matrices and associated P -values and odds ratio

PCA based unsupervised FE

Human Mouse Not selected Selected P -value Odds ratio

Not selected 19,819 63 2.21 × 10−91 255.00

Selected 65 53

Highly variable genes

Data set 1 Not selected Selected P -value Odds ratio

Data set 2 Not selected 19,705 124 7.13 × 10−54 54.97

Selected 127 44

Bimodal genes

Data set 2 Data set 1 Not selected Selected P -value Odds ratio

Not selected 19,621 179 1.00 × 10−15 12.85

Selected 179 21

dpFeature

Data set 2 Data set 1 Not selected Selected P -value Odds ratio

Not selected 19,676 124 1.03 × 10−105 96.98

Selected 124 76

microarray, there are no definite number of “total genes” for scRNA-seq. Thus,
tentatively, we assume that there are 20,000 genes for mouse and human. Table 6.48
shows the confusion matrix and the result of Fisher’s exact test. In any case, overlap
is highly significant.

In order to compare the performance with other methods, first we consider highly
variable genes [9]. The procedure of how to perform highly variable genes is as
follows. First we perform regression analysis

log10

⎛

⎝

√
〈x2

ij 〉j − 〈xij 〉2
j

〈xij 〉j

⎞

⎠ = 1

2
log10

(
β

〈xij 〉j + α

)
+ εi (6.66)

where α and β are regression coefficients and εi is residual. P -values are attributed
to genes, i, assuming χ2 distribution as

Pi = Pχ2

[
>
( εi

σ ′
)2
]

. (6.67)

P -values are corrected by BH criterion. Genes associated with adjusted P -values
less than 0.01 are selected. We identify 168 human genes and 171 mouse genes
between which 44 genes are chosen in common (Table 6.47). Although it is a little
bit less significant than PCA based unsupervised FE, it is still highly significant
(Table 6.48).

Next, we compare PCA based unsupervised FE with bimodal genes [12].
Bimodal genes are selected based upon the P -values computed by Hartigan’s dip
test, which rejects the null hypothesis that the distribution is unimodal [19]. The
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concept behind bimodal genes is that if gene expression of a gene is unimodal,
it is unlikely that the expression is coincident with the distinction between two
classes. We attribute P -values to genes using this test. P -values are adjusted by BH
criterion. Then genes associated with adjusted P -values less than 0.01 are selected.
As a result, 11,344 human and 10,849 mouse genes are selected. Thus, it is obvious
that bimodel genes are too many. In order to see the coincidence between the two
gene sets, we select top ranked 200 human and mouse genes based upon P -value
computed by Hartigan’s dip test. This results in as small as 21 genes chosen in
common (Table 6.47). Thus, as far as consistency between human and mouse is
concerned, bimodel genes are inferior to either PCA based unsupervised FE or
highly variable genes (Table 6.48).

Finally, we compare PCA based unsupervised FE with dpFeature [36], which was
proposed very recently as an advanced tool to select genes in scRNA-seq. It selects
13,775 human and 13,362 mouse genes. Thus it cannot select reasonable number
of genes. In order to verify consistency between human and mouse, we selected top
ranked 200 genes and compare them. Then there are 76 common genes (Table 6.47).
The significance is comparable with PCA based unsupervised FE (Table 6.48).

Although biological validations of selected genes using enrichment analysis
are available elsewhere [53], I am not willing to discuss about it in detail here,
because coincidence between mouse and human can be a biological evaluation to
some extent; the results by enrichment analysis also support the superiority of PCA
based unsupervised FE to other three methods. In addition to this, Chen et al. [10]
evaluated biologically multiple gene selection methods applicable to scRNA-seq
using enrichment analysis; they concluded that PCA based unsupervised FE is at
least competitively good with other compared methods.

In conclusion, PCA based unsupervised FE is at least comparable with other
popular or conventional methods.

6.8 Summary

In this chapter, I demonstrated how we can make use of PCA based unsupervised
FE in the application to bioinformatics, especially, in the field of feature selection.
In all application examples, PCA is applied such that PC loading, v�, is attributed
to samples while PC score, u�, is attributed to features (genes, miRNAs). The next
step is to investigate PC loading, v�, in order to identify �s used for computing P -
values. This step is the most difficult. The simplest case is to apply linear regression
analysis to PC loading and to identify which PC loading is coincident with class
labeling. Nevertheless, it is not always possible. When class labeling is missing
or no PC loading is coincident with class labeling, simply � ≤ L is employed
(in this case, there are no definite ways to decide L). In some case, we need to
find a set of �s that are coincident with class labeling. In this case, we need to
draw scatterplot of PC loading, v�. When we aim to perform integrated analysis,
e.g., that between miRNAs and mRNAs or that between methylation and mRNAs,
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the coincidence of PC loading between these two. When samples are shared
between two, correlation coefficients and hierarchical clustering using correlation
coefficients are useful. If samples are not shared, we need to investigate PC loading
with more additional information, e.g., down/upregulated in treated samples towards
control samples simultaneously between these two features. Thus, although PCA
based unsupervised FE is powerful method, in contrast to other machine learning
technique, we need more deep understanding of data to be analyzed. This can be
pros or cons of PCA based unsupervised FE.
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Chapter 7
Application of TD Based Unsupervised
FE to Bioinformatics

May my wish never come true.
Rikka Takarada, SSSS.GRIDMAN, Season 1, Episode 12

7.1 Introduction

Because of continuous price reduction of multiomics data measurements, including
gene expression, promoter methylation, SNP, histone modification, and miRNA
expression, more number of experimental conditions come to be considered. For
example, if gene expression is measured for various tissues of patients, gene
expression has better to be formatted, not in matrix, but in tensor, as patients vs
tissue vs genes. In this case, TD rather than PCA is a suitable technology to apply.
On the other hand, in the previous chapter, we aimed various integrated analysis,
e.g., miRNA and mRNA expression, mRNA expression and methylation, mRNA
expression of two species. If genes or features are shared in the integrated analysis,
generation of case I or II tensor and application of TD to it is a suitable treatment.
In the following, we introduce some application of TD based unsupervised FE to
either of these cases.

7.2 PTSD Mediated Heart Diseases

The first example to be processed as tensor form is PTSD mediated heart dis-
eases. Although this disease has already been analyzed in the previous chapter
(Sect. 6.4.1), the data set analyzed there includes only one tissue, heart. Nonetheless,
if one would like to understand how PTSD mediates heart disease, we need to
know gene expression of both heart and brain. Fortunately, there is a such kind
of data set. In this section, I would like to demonstrate the usefulness of TD based
unsupervised FE applied to gene expression of multiple tissues aiming to understand
PTSD mediated heart disease based upon the recent publication [24].
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Table 7.1 Samples used in this study

Stress, days 5 10 5 10

Rest period 24 h 1.5 w 24 h 6w 24 h 1.5 w 24 h 6w

AY 3,2 5,4 3,4 3,4 HC 3,5 4,5 5,4 4,5

MPFC 4,5 5,5 3,4 4,4 SE 3,2 2,3 3,3 3,3

ST 5,5 5,5 5,4 4,4 VS 5,5 5,5 3,4 5,4

Blood 5,5 5,5 4,5 4,5 Heart 5,5 4,5 5,5 5,5

Hemibrain 5,5 4,5 5,5 5,5 Spleen 5,5 5,5 5,4 5,5

Numbers before/after comma are control/treated samples. h hours, w weeks, AY amygdala, HC
hippocampus, MPFC medial prefrontal cortex, SE septal nucleus, ST striatum, VS ventral striatum

The data set analyzed is composed of the following samples (Table 7.1). It
includes ten tissues under eight experimental conditions. This data set is formatted
as a five-mode tensor, xij1j2j3j4 ∈ R

43699×2×10×2×3, of the ith probe, subjected to
j1th treatment (j1 = 1: control, j1 = 2: treated [stress-exposed] samples), in the
j2th tissue [j2 = 1: amygdala (AY), j2 = 2: hippocampus (HC), j2 = 3: medial
prefrontal cortex (MPFC), j2 = 4: septal nucleus (SE), j2 = 5: striatum (ST),
j2 = 6: ventral striatum (VS), j2 = 7: blood, j2 = 8: heart, j2 = 9: hemibrain,
j2 = 10: spleen], with the j3th stress duration (j3 = 1: 10 days, j3 = 2: 5 days) and
j4th rest period after application of stress (j4 = 1: 1.5 weeks, j4 = 2: 24 h, j4 = 3:
6 weeks). Zero values are assigned to missing observations (e.g., measurements at
6 weeks after a 5-day period of stress are not available).

HOSVD algorithm (Fig. 3.8) is applied to xij1j2j3j4 as

xij1j2j3j4 =
43699∑

�5=1

2∑

�1=1

10∑

�2=1

2∑

�3=1

3∑

�4=1

G(�1, �2, �3, �4, �5)u
(j1)
�1j1

u
(j2)
�2j2

u
(j3)
�3j3

u
(j4)
�4j4

u
(i)
�5i

(7.1)

where u
(i)
�5i

∈ R
43699×43699, u

(j1)
�1j1

∈ R
2×2, u

(j2)
�2j2

∈ R
10×10, u

(j3)
�3j3

∈ R
2×2,

and u
(j4)
�4j4

∈ R
3×3 are singular value vectors and G(�1, �2, �3, �4, �5) ∈

R
43699×2×10×2×3 is a core tensor.
We need to specify which singular value vector attributed to genes, u(i)

�1
, is used

for gene selection. For this purpose, we investigate other singular value vectors,
u(jk)

�k
, 1 ≤ k ≤ 4. One of the important points is tissue specificity. What I would like

to find is a set of genes expressive in common between heart and brain. Because
1 ≤ j ≤ 6 and j = 9 correspond to brain and j = 8 corresponds to heart, we
need to find u(j2)

�2
expressive in common j = 1, 2, · · · , 6, 8, 9. Figure 7.1 shows

the singular value vectors, u(j2)
�2

, 1 ≤ �2 ≤ 10. Although no u(j2)
�2

fully satisfies

this requirement, u(j2)

4 relatively fulfills this requirement. u(j2)

4 are negatively signed
in common for j = 1, 2, 8, 9 that correspond to AY, HC, heart, and hemibrain.
Especially, because AY and HC are very important in PTSD [14], it is promising
that we can get singular value vector expressive in common AY, HC, and heart.
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The next important requirement is that control and stressed samples should be
oppositely expressive. This means, u(j1)

�11 = −u
(j1)

�12 . This requirement is easy to fulfill

because u
(j1)

�11 = −u
(j1)

�12 or u
(j1)

�11 = u
(j1)

�12 must be satisfied when there are only two

classes and mean is zero. Figure 7.2 shows the singular value vectors, u(j1)
�1

, �1 =
1, 2. As expected, �1 = 2 corresponds to the reversed sign between control and
stressed samples.

Because there are no known pre-defined desirable properties for experimental
conditions, i.e. stress and rest period, we should find G(2, 4, �3, �4, �5) with the
larger absolute values. Table 7.2 shows the top ranked G with larger absolute values.
Then we can find that �5 = 1, 4, 11 are associated with G(2, 4, �3, �4, �5) with the
larger absolute values. Thus we decided to attribute P -values using �5 = 1, 4, 11
with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>
∑

�5=1,4,11

(
u�5i

σ�5

)2
⎤

⎦ . (7.2)

P -values are corrected by BH criterion and 801 probes associated with adjusted
P -values less than 0.01 are selected.
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Table 7.2 Top-ranked
G(�1 = 2, �2 = 4, �3, �4, �5)

with greater absolute values

�3 �4 �5 G(2, 4, �3, �4, �5)

1 1 11 −35.0

1 1 1 −30.8

2 2 1 −30.3

2 3 4 −30.0

2 3 1 28.7

2 2 4 28.5

Table 7.3 Thirteen
combinations of tissues and
experimental conditions
where the selected 801 probes
are differentially expressed
between stress-exposed and
control samples

Stress duration 10 days 5 days

Rest period 24 h 6 weeks 24 h 1.5 weeks

AY © ©
HC © © ©
MPFC ©
Heart © ©
Hemibrain © ©
Spleen © © ©

MPFC: medial prefrontal cortex. ©: associated with
P -values that are computed by t test, adjusted by BH
criterion and less than 0.01

The first validation of selected 801 probes is to see if these are expressed
distinctly between control and stressed samples, selectively on only heart and
brain. In order to confirm this, we apply t test to the selected 801 probes between
control and stressed samples for all combination of tissues, rest and stressed period.
P -values are corrected by BH criterion and conditions associated with adjusted
P -values less than 0.01 are considered to be expressed distinctly and significantly
between control and stressed samples. Table 7.3 shows the results. The selected 801
genes are expressed distinctly between control and stressed samples, selectively in
heart, HC, and AY (it is also in spleen, because it is oppositely expressed toward
heart, HC, and AY as shown in Fig. 7.1).

Here we would like to emphasize the difficulty of gene selection in this data set.
As mentioned above, what we are aiming is quite abstract, i.e., “genes expressive
in common between brain and heart as well as distinctly between control and
stressed samples.” As a result, we realize that common expression between AY,
HC, and heart is possible (with the investigation of u(j2)

4 in Fig. 7.1). Generally, it is
impossible to know this combination in advance. When no clear purpose is given in
advance, supervised methods cannot perform well while unsupervised methods can.

In order to see how well other conventional supervised methods perform, we test
three methods, SAM, limma, and categorical regression analysis. The first example
to be compared with TD based unsupervised FE is categorical regression analysis.
For the data set shown in Table 7.1, the only possible way to apply categorical
regression is to treat it as 80 classes (10 tissues vs four experimental conditions vs
control and stressed samples). Although it is better to consider the pair of control and
stressed samples, it is impossible. Typically, although ratio might be taken, because
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Table 7.4 Results of gene selection based on categorical regression

Adjusted P -values P > 0.01 P < 0.01 P > 0.05 P < 0.05 P > 0.1 P < 0.1

Number of probes 2222 41,157 1986 41,713 1839 41,860

P -values are adjusted by BH criterion

Table 7.5 Results by SAM Delta p0 False Called FDR

1 0.1 0.011 38,538.08 43,379 0.0094

2 11.4 0.011 0.02 5424 3.9e−08

3 22.7 0.011 0 323 0

4 34.0 0.011 0 40 0

5 45.2 0.011 0 7 0

6 56.5 0.011 0 4 0

7 67.8 0.011 0 2 0

8 79.1 0.011 0 1 0

9 90.3 0.011 0 1 0

10 101.6 0.011 0 1 0

p0 is the ratio of the null hypothesis, FDR corresponds
to the adjusted P -values. Called is the number of genes
that break the null hypothesis. Expected number of false
positives is False × FDR × p0

it is not paired samples, i.e., there is no one-to-one correspondence, we cannot
take ratio. Table 7.4 shows the result of categorical regression analysis. Because of
treatment as 80 classes, genes associated with any kind of distinction are detected
(i.e., associated with significantly small adjusted P -values). As a result, almost all
genes are judged as distinct between some combinations. It is obvious that this result
is not desirable for our purpose, “genes expressive in common between brain and
heart distinctly between control and stressed samples,” at all, because of lack of
specificity. To screen these genes, we need some additional criterion that TD based
unsupervised FE does not require. Thus, TD based unsupervised is more fitted to
the present purpose than categorical regression.

Next, we apply SAM with assuming 80 classes to the data set shown in Table 7.1.
Table 7.5 shows the result of SAM. p0, which represents the contribution of null
hypothesis that no distinction exist among 80 classes, is 1%. This means, almost
all genes are distinctly expressive in either of these combinations. Although FDR
corresponds to the adjusted P -values, it is clear that all genes are associated with
FDR less than 0.01. Although this conclusion itself is coincident with that of
categorical regression, in this sense SAM is not useful to select “genes expressive in
common between brain and heart distinctly between control and stressed samples,”
either.

Finally, we apply limma to the data set shown in Table 7.1. Fortunately, limma
enables us to select genes that are distinct between any pairs of controls and samples.
Thus, we apply limma in two ways. One assumes 80 classes (case A in Table 7.6)
and the other assumes 40 classes (case B in Table 7.6) composed of forty (10
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Table 7.6 Results of gene selection based on limma

Adjusted P -values P > 0.01 P < 0.01 P > 0.05 P < 0.05 P > 0.1 P < 0.1

Case A : not considering differential expression

Number of probes 0 43,379 0 43,379 0 43,379

Case B: considering differential expression

Number of probes 25,992 17,387 17,745 25,634 13,542 29,837

P -values are adjusted by limma itself

Table 7.7 KEGG pathway enrichment by the 457 genes identified by TD based unsupervised FE

Category Term Genes count % P -value Adjusted P -value

KEGG_PATHWAY Ribosome 57 12.8 8.4 × 10−58 1.0 × 10−55

KEGG_PATHWAY Parkinson’s
disease

48 10.8 3.6 × 10−33 2.2 × 10−31

KEGG_PATHWAY Oxidative
phosphorylation

47 10.5 1.7 × 10−32 6.9 × 10−31

KEGG_PATHWAY Alzheimer’s
disease

50 11.2 2.5 × 10−28 7.5 × 10−27

KEGG_PATHWAY Huntington’s
disease

48 10.8 3.6 × 10−26 8.6 × 10−25

KEGG_PATHWAY Cardiac muscle
contraction

30 6.7 2.4 × 10−21 4.8 × 10−20

KEGG_PATHWAY Glycolysis/ glu-
coneogenesis

10 2.2 1.5 × 10−3 2.6 × 10−2

Adjusted P -values are by BH criterion

tissues vs four experimental conditions) pairwise combinations between control and
stress samples. Possibly because of its advanced feature, limma successfully denies
the detection of genes expressive distinct among any pairs of 80 classes (case A).
Nevertheless, limma still detects too many positives in 40 pairwise comparisons
(case B). As expected, because of lack of well-defined screening criterion, three
supervised methods are useless to find “genes expressive in common between brain
and heart as well as distinctly between control and stressed samples.” In conclusion,
none of the three conventional supervised methods are as useful as TD based
unsupervised FE for the present purpose.

Although TD based unsupervised FE successfully identifies genes expressive
distinct between control and stressed samples in tissue specific manner (Table 7.3),
if it is biologically useless, it cannot be considered to be successful. In order
to evaluate selected probes biologically, we try to identify protein coding genes
associated with these 801 probes. Then, we find 457 genes (because of lack of space,
we cannot list all of 457 genes, which is available as Additional file 5 [24], if the
readers are particularly interested in them). We upload 457 genes to DAVID. The
result is quite promising. Table 7.7 shows the enriched KEGG pathway associated
with adjusted P -values less than 0.05. They include four neurodegenerative diseases
as well as one cardiac problem. Thus, they are quite suitable to be candidate genes
that cause PTSD mediated heart diseases as those in Table 6.20 where PTSD
mediated heart disease is investigated by PCA based unsupervised FE.
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7.3 Drug Discovery From Gene Expression

Drug discovery is time-consuming and expensive processes. It starts from preparing
as many small molecules as possible. Then, tries to find one effective to target
diseases by exhausted search. The number of initially prepared molecule can be
104; testing this many number of compounds causes huge amount of money and
long period. If we can reduce the number of initial candidate small molecules to one
tenth, it benefits so much to reduce the time and cost required.

In this sense, the so-called in silico drug discovery develops with much expec-
tation to fulfill this requirement. In silico drug discovery is aiming to identify
candidate small molecules without wet experiments. With making full use of
recently developed computational power, including CPU with high speed comput-
ing, huge storage that can store massive information as well as recently developed
machine learning technique, in silico drug discovery enables us to prepare set of
more promising candidate small molecules as drugs.

Traditionally, there are two main streams of in silico drug discovery. One
is ligand-based drug design [1] (LBDD) and the other is structure-based drug
design [3] (SBDD). LBDD is aiming to identify new candidate drug compounds
based upon the similarity with known drugs. LBDD has huge varieties depending
upon how similarity is defined. The advantage of LBDD is that it has more trust, i.e.
larger probability to find true drug compounds, and requires smaller computational
resources than SBDD. The disadvantage of LBDD is that it requires the information
of known drugs and fails to find new drug candidates that lack similarity with known
drug. On the contrary, SBDD has the advantage that it can predict new candidate
drugs without the information of known drugs. The disadvantage of SBDD is
that it requires massive computation, because it must execute docking simulation
between drug candidate compounds and target proteins. Another disadvantage of
SBDD is that it needs protein tertiary structure to which individual candidate drug
compounds must bind. Experimental measurements of protein tertiary structure
itself are difficult tasks. Although it has become much easier because of the
invention of cryo-electron microscopy [10] than before, it still needs to pay much
amount of money and time. When there are no protein tertiary structures available,
protein tertiary structure itself must be computationally predicted [6]. The prediction
inevitably has inaccuracy that affects the prediction of binding affinity of small
molecules.

In order to compensate these disadvantages of LBDD and SBDD, the third option
is recently proposed: drug design from gene expression [5]. Post-treatment gene
expression can be used to screen candidate compounds for their ability to induce the
target phenotype. This approach is very useful once post-treatment gene expression
is available. In this section, we try to make use of TD based unsupervised FE to
predict new drug target with analyzing post-treatment gene expression [27].

Post-treatment gene expression is obtained from LINCS [20]. L1000 is highly
reproducible, comparable to RNA sequencing, and suitable for computational infer-
ence of the expression levels of 81% of non-measured transcripts. Gene expression
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profile is available in GEO with GEO ID GSE70138. Table 7.8 summarizes the
gene expression profiles. They include 13 cell lines to which 100–300 compounds
(denoted as “all compounds”) are treated. One problem of this data set is that it
includes only 978 genes’ expression profiles, because it is measured by Luminex
scanners. Gene expression profiles in individual cell lines are formatted as tensor,
xijk ∈ R

978×6×K ; i denotes gene (probe), j denotes dose density of drug compound,
and k stands for individual compounds among K total number of compounds
that correspond to “all compounds” in Table 7.8. HOSVD algorithm (Fig. 3.8) is
applied as

xijk =
978∑

�1=1

6∑

�2=1

K∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2i

u
(k)
�3k

(7.3)

where u(i)
�1

∈ R
978, u(j)

�2
∈ R

6, u(k)
�3

∈ R
K , are the singular value vectors, and

G(�1, �2, �3) ∈ R
978×6×K is a core tensor.

The first step is to identify genes whose expression is altered by drug treatment.
In order that, we try to identify which u(j) has monotonic dependence upon dose

Table 7.8 The number of the inferred compounds and inferred genes associated with significant
dose-dependent activity

Cell lines BT20 HS578T MCF10A MCF7 MDAMB231 SKBR3

Tumor Breast

Inferred genes 41 57 42 55 41 46

Inferred compounds 4 3 2 6 5 6

All compounds 110 106 106 108 108 106

Predicted targets 418 576 476 480 560 423

Cell lines A549 HCC515 HA1E HEPG2 HT29 PC3

Tumor Lung Kidney Liver Colon Prostate

Inferred genes 45 46 48 54 50 63

Inferred compounds 8 5 7 2 2 9

All compounds 265 270 262 269 270 270

Predicted targets 428 352 423 396 358 439

Cell lines A375
Tumor Melanoma
Inferred genes 43
Inferred compounds 6
All compounds 269
Predicted targets 421

The target proteins predicted by means of the comparison with the data showing upregulation of
the expression of individual genes (“predicted targets”) are also shown
The full list of inferred genes and predicted targets is available in Additional file 7 [27]. Inferred
compounds are presented in Table 7.9. “All compounds” rows represent the total number of
compounds used for the treatment of each cell line
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density. Figure 7.3 shows u(j)
�2

, 1 ≤ �2 ≤ 3 for 13 cell lines listed in Table 7.8. It

is obvious that u(j)

2 shows almost linear dependence upon dose independent of cell
lines. The next task is to identify G(�1, 2, �3) with larger absolute values in order
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Fig. 7.3 Singular value vectors, u(j)
�2

, 1 ≤ �2 ≤ 3. Red horizontal broken lines indicates baseline.
Black: �2 = 1, red: �2 = 2, green: �2 = 3
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to decide which u(i)
�1

and u(k)
�3

are used for selecting the combinations of genes and
compounds that commit linear dose dependence. Because

G(�1 ≤ 6, �2 ≤ 6, �3 ≤ 6) =
∑

�1≤6,�2≤6,�3≤6 G(�1, �2, �3)
2

∑
�1,�2,�3

G(�1, �2, �3)2 (7.4)

exceeds 0.95 for almost all cell lines, it is decided to employ (�1 ≤ 6, �2 = 2, �3 ≤
6) components for FE. Nonetheless, in the case of PC3 cells, (�1 ≤ 8, �2 = 2, �3 ≤
8), as an exception, are used for FE because the eighth component is found to have
non-negligible contributions in this cell line.

To identify the genes and compounds associated with a significant dose-
dependent activity, it is assumed that u�1≤6,i and u�3≤6,k follow independent normal
distributions and P -values are attributed to the ith gene and the kth compounds
using a χ2 distribution,

Pi = Pχ2

⎡

⎣>
∑

�1≤6

(
u

(i)
�1i

σ�1

)2⎤

⎦ (7.5)

and

Pk = Pχ2

⎡

⎣>
∑

�3≤6

(
u

(k)
�3k

σ�3

)2⎤

⎦ (7.6)

where σ�1 and σ�3 are the standard deviations of u
(i)
�1i

and u
(k)
�3k

, respectively. For
PC3 cells, �1 ≤ 8 and �3 ≤ 8 are used in the above equations. Pχ2 [> x] is the
cumulative probability that the argument is greater than x assuming a χ2 distribution
with eight degrees of freedom for PC3 cell lines and with six degrees of freedom
for other cell lines. Pi and Pk are adjusted by means of the BH criterion, and
compounds and genes associated with the adjusted P -value lower than 0.01 are
selected as those associated with a significant dose-dependent cellular response.
The number of selected genes and compounds are listed as “inferred genes” and
“inferred compounds” in Table 7.8, respectively. The above process is illustrated in
Fig. 7.4.

The next task is to identify proteins to which selected compounds bind. “inferred
genes” in Table 7.8 do not correspond to the proteins to which selected compounds
bind, because they are the genes whose mRNA expression is altered because of drug
treatment. Usually, mRNA expression of proteins to which selected compounds bind
is not altered because of drug treatment. Thus we need to infer proteins targeted
by drug treatment. In order that, we need additional external information that lists
the genes whose mRNA expression is altered because of a gene perturbation. Then
if “inferred genes” matched with genes mRNA expression is altered because of
the gene perturbation, we infer the perturbed gene as target protein (Fig. 7.5).
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Fig. 7.4 Starting from gene
expression profile formatted
as tensor, xijk , singular value

vectors, u(i)
�1

, u(j)
�2

, and u(k)
�3

,
are obtained. After
identifying �2 = 2 as
associated with linear dose
dependence (see Fig. 7.3),
�1 ≤ 6 and �3 ≤ 6 are
decided to be used for FE
because of larger contribution
defined in Eq. (7.4). Genes i

and compounds k are selected
using
u(i)

�1
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Fig. 7.5 After the drug (red hexagon) treatments, we can detect mRNAs with altered expression
(filled cyan circle) along with those without altered expression (filled green circle). We have no
information about proteins (circled A, B, and C). List of genes with altered expression can be
compared with genes with altered expression when genes A, B, or C is perturbed. Then, we can
identify compounds that might bind to protein A, because the list of genes whose mRNA expression
is altered are common
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There can be multiple resources from which we can retrieve the list of genes
whose mRNA expression is altered because of single gene perturbation. Here we
employ Enrichr [11] that collects multiple data resources in order to perform various
enrichment analyses. After uploading “inferred genes” to Enrichr, we list genes
associated with adjusted P -values less than 0.01 in the category of “Single gene
Perturbations from GEO up.” Their number corresponds to the number of “predicted
targets” in Table 7.8. This strategy is especially efficient for LINCS data set that
includes only expression of 978 genes. Employing the strategy in Fig. 7.5, we can
identify target proteins not included in these 978 genes.

Next we would like to evaluate if our prediction is correct, i.e., if “inferred
compounds” bind to “predicted targets.” In principle, it is impossible to check
the accuracy of our prediction without experiments. Thus, instead of execut-
ing experiments, we compare our prediction with known list of target proteins
of drug compounds. For this purpose, we employ two information resources,
drug2gene.com [19] and DSigDB [33]. Table 7.9 shows the results of Fisher’s exact
test that evaluates overlaps between “predicted targets” and known target proteins
of “inferred compounds.” If P -values computed by Fisher’s exact test is less than
0.05, it is significant (no correction considering multiple comparisons). It is obvious
that in most of the cases, our prediction significantly overlaps with known target
proteins of drug compounds. Thus, TD based unsupervised FE can be used for in
silico drug discovery from gene expression.

It is also interesting that “inferred compounds” are largely overlapped among
cell lines. Because two to nine compounds are identified in each of 13 cell lines,
the total number of identified compounds can be several tens. Nevertheless, the
number of compounds listed in Table 7.9 is as small as 19. In some sense, it might
be an evidence that our strategy is correct. It is reasonable that anti-cancer drugs are
effective to multiple cancers. Thus, large overlap of “inferred compounds” between
distinct cell lines makes sense. On the other hand, analyses based upon distinct
gene expression profiles unlikely results in largely overlapped results without any
biological reasons. Possibly, the result shown in Table 7.9 are trustable.

Although we employed single gene perturbation to infer target proteins from
the list of genes with altered expression caused by drug treatment, any other
database that can describe gene interaction should be usable. As an alternative,
we try “PPI Hub Proteins” in Enrichr instead of “Single gene Perturbations from
GEO up.” The primary difference between “PPI Hub Proteins” and “Single gene
Perturbations from GEO up” is the number of genes included. “PPI Hub Proteins”
includes only a few hundred genes, while “Single gene Perturbations from GEO
up” includes a few thousand genes. This suggests that the results using “PPI Hub
Proteins” might be less significant. Table 7.10 lists the results of Fisher’s exact test
of the comparison between predicted targets based upon “PPI Hub Proteins” and
drug2gene.com database. In contrast to the expectation, all cases have significant
overlap with drug2gene.com. This supports our expectation that any kind of gene–
gene interaction is usable together with TD based unsupervised FE for in silico drug
discovery from gene expression.



Table 7.9 Compound–gene interactions presented in Table 7.8 that significantly overlap with
interactions described in two data sets

Compounds (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Dabrafenib
©
©

Dinaciclib
© © © © © © ©
© © © © © © ©

CGP-60474
© © © © © © © ©
× × × × × × × ©

LDN-193189
© © ©
© © ©

OTSSP167
− − − − −
© © © © ©

WZ-3105
− − − − − − − −
© © © © © © © ©

AT-7519
© © © © ©
© © © © ©

BMS-387032
© © © ©
© © © ©

JNK-9L
©
©

Alvocidib
© © © © © © ©
− − − − − − −

GSK-2126458
− −
− −

NVP-BEZ235
© ©
× ×

Torin-2
× ×
© ©

NVP-BGT226
− − − −
− − − −

QL-XII-47
−
−

Celastrol
©
−

A443654
© ©
© ©

NVP-AUY922
× ©
− −

Radicicol
©
−

For each compound in the table, the upper row: the drug2gene.com data set is used for
comparisons [19], the lower row: the DSigDB data set is used for comparisons [33]. Columns
represent cell lines used in the analysis: (1) BT20, (2) HS578T, (3) MCF10A, (4) MCF7, (5)
MDAMB231, (6) SKBR3, (7) A549, (8) HCC515, (9) HA1E,(10) HEPG2, (11) HT29, (12) PC3,
(13) A375
©: a significant overlap between the data sets (P < 0.05); ×: no significant overlap between
the data sets; –: no data; blank: no significant dose–response relation is identified. The confusion
matrix and a full list of genes chosen in common are available in Additional file 3 [27].
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Table 7.10 A significant overlap demonstrated between compound–target interactions presented
in Table 7.8 and drug2gene.com

Compounds (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

© © ©
CGP-60474 © © © © © © © ©
LDN-193189 ©
AT-7519 © © © © ©
BMS-387032 © © © ©
Alvocidib © © © © © ©
NVP-BEZ235 ©
Celastrol ©
A443654 © ©
NVP-AUY922 © ©
Radicicol ©

In this case, the “PPI Hub Proteins” category in Enrichr is used. Labels (1) to (13) represent the
same cell lines as described in Table 7.9
The full list of confusion matrices and genes chosen in common is available in Additional file
3 [27]

It might be useful to demonstrate how more direct and simple approach fails.
One possible alternative simpler way is to apply linear regression

xijk = aik + bikDj (7.7)

where Dj is the j th dose density and aik and bik are regression coefficients. Then
simply select i and k associated with more significant P -values as in the case of TD
based unsupervised FE. In order to show that it cannot give us the reasonable set of
is and ks, we apply Eq. (7.7) to A375 cell lines ((13) in Tables 7.8, 7.9, and 7.10) as
an example. After correcting P -values that Eq. (7.7) gives by BH criterion, we find
that all compounds have adjusted P -values less than 0.01 with at least one of the
genes while all genes have adjusted P -values less than 0.01 with at least one of the
compounds. Thus, by simply requesting “adjusted P -values less than 0.01” as in the
case of TD based unsupervised FE, we cannot screen either genes or compounds.
We can still try to select “top ranked” genes or compounds. In order to show that
this cannot work well either, we apply two distinct criteria to select “top ranked”
compounds as

• Select top ranked 10 compounds having larger number of genes associated with
adjusted P -values less than 0.01.

• Suppose Pik is P -value that Eq. (7.7) gives. Select top ranked 10 compounds
having smaller

∑
i log Pik .

These two criteria rank compounds with more significant correlation with genes
through dose density in some sense. The result is a bit disappointing (Table 7.11).
Only three of top 10 compounds are chosen in common. This suggests that it is not
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Table 7.11 Compounds selected by P -values that Eq. (7.7) gives, for A375 cell line ((13) in
Tables 7.8, 7.9, and 7.10)

Compounds selected

Criterion 1

chelerythrine chloride, TGX-221, lapatinib, AS-601245, PIK-93, canertinib,
LDN-193189, MK-2206, PF-04217903, DCC-2036
Criterion 2

ALW-II-49-7, AZ20, BI-2536, canertinib, celastrol, chelerythrine chloride,
CHIR-99021, DCC-2036, dovitinib, GSK-1904529A

Bold ones are chosen in common

easy to select compounds in robust way simply based upon P -values that Eq. (7.7)
gives. Thus, TD based unsupervised FE is much better strategy without no additional
criterion than adjusted P -values than selection based upon P -values that Eq. (7.7)
gives.

Before ending this section, I would like to mention briefly why the results of TD
based unsupervised FE differ from that based upon linear regression, Eq. (7.7), so
much in spite of that both TD based unsupervised FE and linear regression try to
find the combinations of genes and compounds associated with dose dependence.
As can be seen in Fig. 7.3, u(j)

2 used for FE is not simple linear function of dose

density. In spite of that, the dependence of u(j)

2 upon dose density is quite universal,
in other words, independent of cell lines. TD is the only method that can successfully
identify this universal (independent of cell lines) functional form. There are no other
ways to find it in advance. This cannot be achieved by any other supervised method,
because any supervised method cannot avoid assuming something contradictory to
this universal functional form. Because of this superiority, TD based unsupervised
FE can achieve good performance shown in Tables 7.9 and 7.10.

7.4 Universarity of miRNA Transfection

miRNA transfection is a popular method that finds miRNA target genes experimen-
tally. Nevertheless, some doubt arises if transfected miRNA can work similar to
endogenous miRNAs [9], because it causes various unexpected effects that cannot
be seen by upregulation of endogenous miRNAs. Because the aim of miRNA trans-
fection experiments is to find miRNA target genes, only genes downregulated by the
transfection are searched. Nevertheless, it is quite usual to find that many mRNAs
are upregulated because of transfection. These upregulated mRNAs are usually
ignored, because it is not interpretable from the knowledge about conventional
miRNA functions. On the other hand, Jin et al. [9] argued that miRNA transfection
can cause non-specific changes in gene expression. To the best of my knowledge,
there are no studies that try to identify these non-specific effects in more positive
points of view.
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In this section, using TD based unsupervised FE, we are aiming to study how
universal these non-specific gene expression alterations by miRNA transfections
are. In order that, we collect multiple studies where multiple miRNA transfection
experiments are performed. In individual studies, genes whose expression is altered
in common over multiple miRNA transfection experiments are tried to be identified.
Then it is checked if genes identified in individual studies are common over multiple
studies. If so, sequence-nonspecific off-target regulation of mRNA does really exist
and might play some critical roles in biology, too.

The identification of genes altered in common by sequence-nonspecific off-
target regulation caused by miRNA transfection can be performed by TD based
unsupervised FE as follows [26]. In usual application of TD based unsupervised FE,
singular value vectors associated with desired sample dependence, e.g., distinction
between patients and healthy controls, are searched to identify genes associated
with such a dependence. On the contrary, in the present application, we are
aiming to seek singular value vectors “not” associated with the distinction between
transfected miRNAs, because lack of transfected miRNA dependence might be the
evidence that gene expression alteration caused by miRNA expression toward these
genes is because of sequence-nonspecific off-target regulation, no matter what the
biological reasons that cause it are. Table 7.12 lists 11 studies including the gene
expression profiles collected for the analysis in this study. It is obvious that they
are quite diverse. Not only used cell lines but also transfected miRNAs differ from

Table 7.12 Eleven studies conducted for this analysis

Exp GEO ID Cell lines (cancer) miRNA Misc Methods

1 GSE26996 BT549 (breast
cancer)

miR-200a/b/c PCA

2 GSE27431 HEY (ovarian
cancer)

miR-7/128 mas5 PCA

3 GSE27431 HEY (ovarian
cancer)

miR-7/128 plier PCA

4 GSE8501 Hela (cervical
cancer)

miR-7/9/122a/128a/132/133a
/142/148b/181a

TD

5 GSE41539 CD1 mice cel-miR-67, hsa-miR-590-3p,
hsa-miR-199a-3p

PCA

6 GSE93290 multiple miR-10a-5p, 150-3p/5p,
148a-3p/5p, 499a-5p, 455-3p

TD

7 GSE66498 multiple miR-205/29a/144-3p/5p,
210,23b,221/222/223

TD

8 GSE17759 EOC 13.31
microglia cells

miR-146a/b (KO/OE) TD

9 GSE37729 HeLa miR-107/181b (KO/OE) TD

10 GSE37729 HEK-293 miR-107/181b (KO/OE) TD

11 GSE37729 SH-SY5Y 181b (KO/OE) TD

More detailed information on how to process individual experiments in these eleven studies is
available in Appendix. Methods: PCA or TD based unsupervised FE is used
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experiments to experiments. Both KO (knock out) and OE (over expression) are
considered. Thus, if there are genes chosen in common among these eleven studies,
it is quite likely caused by sequence-nonspecific off-target regulation.

Because of their diversity, not only TD based unsupervised FE but also PCA
based unsupervised FE is used. If the number of samples used for individual
transfection in individual experiments does not match with one another, multiple
experiments in which distinct miRNAs are transfected are hardly formulated in
tensor forms. In these cases, PCA based unsupervised FE is employed instead. In
the following, individual data set and how to format them in either matrix or tensor
is discussed in a little bit detail in Appendix.

Table 7.13 shows the results. In spite of the heterogeneous data sets analyzed,
they are highly consistent with one another. Thus, there might be some universal
mechanisms that cause sequence-nonspecific off-target regulation.

From the data science point of view, it is important to see if other methods can
derive the set of genes associated with the same amount of consistency among 11
studies listed in Table 6.12. For the comparison, we select t test. What we aim
is essentially to find genes expressed distinctly between control and transfected
samples. This kind of two class comparisons can be done by t test, too. In order to
see if t test is inferior to TD and PCA based unsupervised FE, t test is applied to 11
studies. In this analysis, samples in individual studies are divided into two classes:
samples to which no miRNAs (or mock miRNA) were transfected and samples to
which miRNAs were transfected. Two-sided t test is applied to individual 11 studies.
Then, obtained P -values are adjusted by BH criterion. Then, probes associated with
adjusted P -values less than 0.01 are selected (Table 7.14). The result is a little
bit disappointing. For five out of 11 studies, t test cannot identify any differently
expressed genes. On the other hand, the numbers of selected genes vary from 35 to
11,060, which is contrast to the range of number of genes selected by PCA or TD
based unsupervised FE, ∼102 (Table 7.13). These numbers are unlikely biologically
trustable. This possibly shows the failure of methodology.

In order to further demonstrate the inferiority of t test to TD or PCA based
unsupervised FE, we try to reproduce the results of PCA or TD based unsupervised
FE in Table 7.13. Since the number of genes selected by t test is often 0 (Table 7.14),
the same number of top ranked genes with smaller P -values as those in PCA or TD
based unsupervised FE are selected in individual experiments based upon P -values
computed by t test even though P -values are not significant. It is obvious that the
selected genes by t test are less coincident with each other than the selected genes by
PCA or TD based unsupervised FE (Table 7.13) because odds ratios are smaller and
P -values are larger. Thus, also from the point of coincidence between 11 studies, t
test is inferior to TD or PCA based unsupervised FE.

Although PCA or TD based unsupervised FE successfully identifies sets of genes
highly coincident between heterogeneous eleven studies, if they are not biologically
reasonable, they are useless. In order to see biological values of selected genes,
we here show one evaluation, although many evaluations were performed in my
published paper [26] (I am not willing to show all of them here, because it might be
simply boring).
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Table 7.14 The number of genes selected by t test

Studies 1 2 3 4 5 6 7 8 9 10 11

Samples 6:6 3:4 6:4 18:18 2:2 16:16 19:19 18:18 6:12 6:12 4:4

Selected genes 11,060 0 0 0 0 35 280 55 5949 5730 0

Two numbers besides colon are the number of control and transfected samples, respectively

Table 7.15 is the result for KEGG pathway enrichment by uploading selected
genes to Enrichr. It is obvious that not only there are many significant enrichment
but also they are highly coincident between 11 studies. Thus, coincidence of selected
genes between eleven studies shown in Table 7.13 is also biologically reasonable. In
this sense, PCA or TD based unsupervised FE can identify biologically meaningful
genes chosen in common between heterogeneous studies including various miRNAs
transfected to various cell lines. Universal nature detected has seemingly biological
importance, too.

7.5 One-Class Differential Expression Analysis
for Multiomics Data Set

In general, there are two kinds of biological experiments, in vivo and in vitro. In vivo
means real biological experiments using living organisms, e.g., animals and plants.
Nevertheless, in vivo cannot be said as very economical, because it wastes whole
body even when we are interested in a specific tissue. For example, even if you are
interested in liver disease, in vivo experiments require to cultivate a whole body. You
may wonder if only liver can be separately cultivated, it would be more effective.
In vivo experiments recently have tendency to be avoided from the ethical point of
view, too, because they kill numerous animals. In vitro experiments can fulfill these
requirements more or less. in vitro makes use of cell lines, which is an immortalized
cell that is often made out of cancer cells. Once cell line is established, you can do
any kind of experiments in vitro using cell lines. Because cell lines can be cultivated
even in a dish, it is definitely cost effective and does not kill any animals.

One possible problem of in vitro is the lack of control samples. It is known that
cell lines differ from the tissue cells from which cell lines are established. Thus,
usually cell lines are compared between not treated and treated ones. Characterizing
immortalized cell lines themselves is not an easy task.

In this section, we propose the method that can characterize cancer cell line
from gene expression without comparing with something [22]. In this criterion,
genes are expressive in common over multiple cancer subtypes are searched and
are considered to be characteristic gene expression of cancer cell line. In this regard,
TD based unsupervised FE used to identify expressed gene in common over multiple
miRNAs transfection studies in the previous section is employed again.
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In addition to this, TD based unsupervised FE is used as a tool that integrates
omics data. The data set used is downloaded from DBTSS [21], which is a database
of transcriptional start sites (TSS), and includes RNA-seq, TSS-seq, and ChIP-seq
(histone modification, H3K27ac). These are observed in 26 NSCLC subtype cell
lines using HTS technology; DBTSS also stores various omics data set measured on
various cell lines and living organisms.

Before starting analysis, we briefly explain the difference among TSS-seq, RNA-
seq, and ChIP-seq. As it name says, TSS-seq tries to sequence RNA transcribed
from the region around TSS. Thus, TSS-seq basically counts how many times
transcription starts. On the other hand, RNA-seq counts the fragments taken from
any part of whole RNA. In this sense, RNA-seq counts the total amount of RNA
transcribed. Generally, TSS-seq and RNA-seq are positively correlated, although
there are no known functional forms that relate between these two, because the
function is affected by many factors, e.g., individual genes have various length and
some genes are long while others are short. If longer genes are more transcribed,
the ratio RNA-seq to TSS-seq becomes larger. In addition to this, individual genes
have isoforms, each of which has different length. This mechanism is called as an
alternative splicing. If more number of longer isoforms are transcribed from each
gene, it also contributes to the increased RNA-seq/TSS-seq ratio. Although there
are many detailed points that must be considered in order to relate RNA-seq to TSS-
seq, there is one clear point; TSS-seq and RNA-seq should be positively correlated.
Thus, seeking genes associated with both more TSS-seq counts and RNA-seq counts
can reduce the possibility that genes are wrongly identified as being upregulated or
downregulated, e.g., because of technical issues like miss amplification.

ChIP-seq is a different technology that detects to which part of DNA the protein
binds. Although I do not explain the details of the relationship between DNA and
proteins that bind to it, basically DNA binding protein can control the rate of
transcription. ChIP-seq can study this relationship by considering DNA binding
protein. Histone modification is more advanced feature. In order to suppress the
self-entanglements of lengthy DNA, long DNA string is wrapped around protein
core called histone. Because tightly wrapped DNA is hardly transcribed, how tightly
DNA is wrapped around histone can affect the amount of transcription drastically.
On the other hand, affinity between histone and DNA can be affected by chemical
modification of histone. Among various histone modification, acetylation of histone
tail is supposed to enhance the transcription by reducing the affinity between DNA
and histone. As a result, considering histone modification (H3K27ac) together with
RNA-seq and TSS-seq can further reduce the possibility of wrongly identified
up/downregulated genes. In the following, we try to seek genes simultaneously
associated with the increased TSS-seq, RNA-seq, and ChIP-seq that measureds
H3K27ac counts.

When formatting RNA-seq, TSS-seq, and ChIP-seq measurement data into
tensor form, how we can practically perform this is a problem. Fundamentally,
although it is possible to perform it in single nucleotide base, it results in too huge
tensor that requires too large memory to manage. In this case, it is better to employ
coarse graining approach that takes average over local chromosome regions. The
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problem is how long regions should be. If the length of the region is too large, each
region includes more than one (protein coding) genes. Then, increased or decreased
counts within each region might reflect more than one genes. This will result in low
interpretability. On the other hand, if the length of the region is too short, individual
(protein coding) genes are expressed over multiple region. It again results in low
interpretability. Thus, there should be somewhat optimal length of region. In this
section, I try 25,000 nucleotides as a length of region. Generally, the average length
of protein is ∼102. Because one amino acid is coded by three-nucleotide (codon), a
length of region that codes individual protein coding genes should be at most ∼103.
The regions that code protein coding genes are typically composed of both exon
and intron, which correspond to translated and non-translated regions, respectively.
Thus, the region of DNA that codes individual genes might be doubled. It is still
expected not to exceed ∼103 so much. In actuality, some literature reported that
average length of DNA regions that code human protein coding genes is still a little
bit shorter than ∼104 [8]. Nevertheless, if the region over which TSS-seq, RNA-seq
and ChiP-seq count data is averaged is as long as expected length of DNA region that
codes individual protein coding genes, boundaries between averaging region might
frequently fall into the mid of the DNA region that codes individual protein coding
region. Thus, the length of region averaging counts data should be a few times longer
than expected length of DNA region that codes individual protein coding region.
Based upon these considerations, 25,000 nucleotides region over which TSS-seq,
RNA-seq, and ChIP-seq counts are averaged is proposed.

In the data set having a type “human lung adenocarcinoma cell line 26 cell line”
in inhouse data category, RNA-seq, TSS-seq, and ChIP-seq data are used. Among
ChIP-seq data, only the H3K27ac is used (H3K27ac means that K27 position of
the 3rd histone (H3) is acetlyated). Counts are averaged over chromosomal regions
fragmented to regions of length of 25,000 nucleotides. Tensors are generated for
each chromosome separately. Then, tensor is the form of xijk ∈ R

N×26×3, where
N is the total number of regions of the length of 25,000 nucleotides within each
chromosome, j stands for 26 cell lines, and k stands for counts of TSS-seq, RNA-
seq, and ChIP-seq. HOSVD algorithm, Fig. 3.8, is applied to xijk as

xijk =
N∑

�1=1

26∑

�2=1

3∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.8)

where u
(i)
�1i

∈ R
N×N , u

(j)
�2j

∈ R
26×26, and u

(k)
�3k

∈ R
3×3 are singular value matrices

and G(�1, �2, �3) ∈ R
N×26×3 is a core tensor.

First, we need to find u(j)
�2

that is independent of 26 cell lines and u(k)
�3

that is

independent of RNA-seq, TSS-seq, and ChIP-seq. Figure 7.6 shows u(j)

1 . Excluding
X chromosome, it is highly independent of 26 cell lines. Then we decide to employ
�2 = 1. Figure 7.7 shows u(k)

1 . They are highly independent of TSS-seq, RNA-seq,
and ChIP-seq. Then we decide to employ �3 = 1.



236 7 Application of TD Based Unsupervised FE to Bioinformatics

●
●●●●●●●

●
●●●●●

●
●
●●●

●
●
●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●
●●●●●●

●●
●●●●●●●

●●●
●
●●

●
●
●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●
●●●

●●●●●●
●●●●●●●●●

●
●●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●
●
●●●●

●●●●●●
●●●●

●●●●●
●
●

0 5 10 15 20 25

−
0.

30
−

0.
05

●
●●●●●●

●●●●●●●●●
●●●

●●●
●●●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●
●●●

●
●●●●●●●●●●●●●●●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●
●●●●

●

●

●●●●●●●●
●●

●●
●

●
●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●
●
●●

●

●
●●●●●●

●●●
●●●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●
●●

●●●
●

●●●●●●●●●●●●●●●
●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●●●
●
●
●●●●●●●●

●
●●●●●●

●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●
●●●●●●

●●●
●
●●●●●●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●
●
●
●●●●●●

●●●●●●●
●●●

●●●●
●●

●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●●●●●●
●
●
●●

●
●●

●
●●●●●●

●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●
●●

●

●●
●
●●

●

●●●●●
●●●

●

●

●●●
●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●
●●●●●

●
●●●●●●●

●●●
●●●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●●●●
●●●●●●●

●●●
●●●●

●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●
●●●●●●

●●
●
●
●●●●

●
●●●●

●●

●●●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●●●●●
●●

●●●●
●●●

●●●
●
●
●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●●●●●●
●●●●●●

●●●
●
●
●●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●
●

●●●●●●●
●●●●●

●●
●

●
●●

●
●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●●●●
●●●●●

●●
●●●

●●●●
●
●
●●

●●
●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●
●●

●

●●●●●

●
●●●●●

●●●●●
●
●●

●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●●
●
●●●●●●●●●●●●●●

●●
●●●●●●●

0 5 10 15 20 25

−
0.

30
−

0.
05

●

●●

●

●

●

●

●

●●
●●

●
●
●●

●●

●
●
●

●

●
●
●
●

0 5 10 15 20 25

−
0.

30
−

0.
05

Fig. 7.6 u(j)

1 . The first row, from left to right, chromosome 1, 2, 3, the second row, from left to
right, chromosome 4, 5, 6 , and so on. The last row, from left to right, chromosome 22, X, Y. Red
broken line is baseline

Then we try to find which G(�1, 1, 1) has the largest absolute value and find that
G(1, 1, 1) has always the largest absolute values independent of chromosome. Thus,
u(i)

1 is used to attributed P -value to regions as

Pi = Pχ2

⎡

⎣>

(
u

(i)
1i

σ1

)2
⎤

⎦ . (7.9)

P -values are collected from 24 chromosome and are corrected by BH criterion.
Then 826 regions associated with adjusted P -values less than 0.01 are selected. 826
is very small compared with the total number of regions; because the total number
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Fig. 7.7 u(k)
1 . The first row, from left to right, chromosome 1, 2, 3, the second row, from left to

right, chromosome 4, 5, 6, and so on. The last row, from left to right, chromosome 22, X, Y. Red
broken line is baseline

of regions is about 3 × 109/2.5 × 104∼105 where 3 × 109 is the total length of
human genome while 2.5 × 104 is the length of individual regions, 826 corresponds
to as little as 0.8% of regions. This is reasonable because only a few percentages of
genome code protein coding genes.

In order to validate these selected regions, we upload 1741 Entrez genes associ-
ated with these 826 regions to DAVID. Entrez genes are gene ID manually curated
gene unique ID that is integer number [12]. Table 7.16 lists the KEGG pathway
enrichment associated with adjusted P -values less than 0.05. At a glance, they do
not look like related to cancers. Nevertheless, some of them are cancer related terms.
For example, the relationship between “antigen processing and presentation” and
cancer is often discussed [4]. Parkinson’s disease is often reported to be related
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Table 7.16 KEGG pathway enrichment by the 1741 Entrez genes identified by TD based
unsupervised FE

Category Term Genes count % P -value Adjusted P -value

KEGG_PATHWAY Ribosome 73 4.2 9.8 × 10−38 2.7 × 10−35

KEGG_PATHWAY Spliceosome 39 2.2 6.2 × 10−10 8.4 × 10−8

KEGG_PATHWAY Protein
processing in
endoplasmic
reticulum

41 2.4 8.0 × 10−8 7.3 × 10−6

KEGG_PATHWAY Antigen
processing and
presentation

22 1.3 8.0 × 10−6 5.5 × 10−4

KEGG_PATHWAY Pathogenic
Escherichia
coli infection

17 1.0 1.7 × 10−5 9.2 × 10−4

KEGG_PATHWAY Parkinson’s
disease

30 1.7 9.6 × 10−5 4.3 × 10−3

KEGG_PATHWAY Biosynthesis of
antibiotics

39 2.2 1.6 × 10−4 6.3 × 10−3

KEGG_PATHWAY Oxidative phos-
phorylation

26 1.5 1.0 × 10−3 3.5 × 10−2

KEGG_PATHWAY Bacterial
invasion of
epithelial cells

18 1.0 1.2 × 10−3 3.6 × 10−2

KEGG_PATHWAY Alzheimer’s
disease

30 1.7 1.7 × 10−3 4.6 × 10−2

Adjusted P -values are by BH criterion

to lung cancer [30]. Although we are not willing to discuss fully about the relations
between the detected KEGG pathway enrichment and NSCLC, it is obvious that TD
based unsupervised FE can detect set of genes including those related to NSCLC.

Although it is better to evaluate the performance of TD based unsupervised FE
based upon the comparison with other methods, it is not easy because there are no
control samples to be compared. Thus, alternatively we select genes based upon the
ratio of standard deviation to average over 26 cell lines, because the smaller ratio of
variance to mean might suggest smaller variability between 26 cell lines. For each of
TSS-seq, RNA-seq, and ChIP-seq, we select top 5% regions with smaller ratio. Then
regions chosen in common among TSS-seq, RNA-seq, and ChIP-seq are collected;
we find that 2041 Entrez genes are included in these regions chosen in common. This
number, 2041, is comparative with 1741 that is the number of Entrez genes selected
by TD based unsupervised FE. Thus, uploading these to DAVID is a suitable test
to see if TD based unsupervised FE is superior to this alternative method. Then
we find that only two KEGG pathways, “Spliceosome” and “Ubiquitin mediated
proteolysis” are associated with adjusted P -values less than 0.05. This suggests that
TD based unsupervised FE can identify far more biologically reasonable set of genes
than this alternative approach.
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7.6 General Examples of Case I and II Tensors

Before demonstrating individual cases using case I and case II tensor in detail,
we demonstrate various cases briefly based upon the recent publication [23]. As
shown in Table 5.3, matrices or low mode tensor can be combined to generate
(higher mode) tensor. In this section, we demonstrate how the combinations shown
in Table 5.3 work to select genes critical to the diseases or phenomena considered.

7.6.1 Integrated Analysis of mRNA and miRNA

Integrated analysis of mRNA and miRNA was also performed by PCA based
unsupervised FE (Sect. 6.4), which is once applied to mRNA and miRNA separately.
Then obtained two sets of PC loading attributed to sample were investigated to
seek those sharing common nature between two sets. After that, corresponding PC
scores attributed to mRNA and miRNA were used for FE. On the contrary, in the
application of TD based unsupervised FE to the integrated analysis of mRNA and
miRNA, mRNA and miRNA expression profiles are integrated in advance.

The analyzed data set is composed of mRNA and miRNA profiles which were
measured for multi-class breast cancer samples including normal breast tissues [7].
mRNA and miRNA expression profiles of multi-omics data are downloaded from
GEO using GEO ID GSE28884. At first, GSE28884_RAW.tar is downloaded and
expanded. For mRNA, 161 files whose names ended by the string “c.txt.gz” are
used. Each file is loaded into R by read.csv command and the second column
named “M” is employed as mRNA expression values. Probes not associated with
Human Genome Organisation (HUGO) gene names are discarded and 13,393
probes remain. One hundred and sixty one files whose names end by the string
“geo.txt.gz” are used for miRNA expression profiles; mRNA expression profiles
of the corresponding samples are also used. Each file is loaded into R by read.csv
command and the second column (“Count”) is summed using the same third column
(“Annotation”) values. If the resulting total sum is less than 10, it is discarded and
not used for further analysis.

Because the 161 samples are shared between miRNA and mRNA expression
profiles, the multi-omics data corresponds to case I data (Table 5.3). TD based
unsupervised FE is applied to the data set in order to identify disease critical genes
and latent relations between miRNA and mRNA, whose expression profiles are
xmRNA

i1j
∈ R

13393×161 and xmiRNA

i2j
∈ R

755×161, respectively. They can be formatted
as case I tensor as

xi1i2j = xmRNA

i1j
xmiRNA

i2j
. (7.10)

HOSVD, Fig. 3.8, is applied to xi1i2j as
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xi1i2j =
13393∑

�1=1

755∑

�2=1

161∑

�3=1

G(�1, �2, �3)u
(i1)
�1i1

u
(i2)
�2i2

u
(j)
�3j

(7.11)

where u
(i1)
�1i1

∈ R
13393×13393,u(i2)

�2i2
∈ R

755×755 and u
(j)
�3j

∈ R
161×161 are singular

value matrices and G(�1, �2, �3) ∈ R
13393×755×161 is a core tensor.

First we need to seek singular value vectors, u(j)
�3

∈ R
161, with significant

cancer subtype dependence. Figure 7.8 shows boxplots of u(j)
�3

, 1 ≤ �3 ≤ 5; it is
obvious that these singular value vectors have significant class (cancer subtypes)
dependence. The next step is to find G(�1, �2, 1 ≤ �3 ≤ 5) with larger absolute
values. Table 7.17 shows the top ranked G(�1, �2, 1 ≤ �3 ≤ 5)s; there are clearly
only 1 ≤ �1 ≤ 5 and 1 ≤ �2 ≤ 2, respectively. Thus, P -values are attributed to i1

and i2 using u
(i1)
�1i1

, 1 ≤ �1 ≤ 5 and u
(i2)
�2i2

, 1 ≤ �1 ≤ 2, respectively, as

Pi1 = Pχ2

⎡

⎣>

5∑

�1=1

(
u

(i1)
�1i1

σ�1

)2⎤

⎦ , (7.12)

Fig. 7.8 Boxplot of u(j)
�3

, 1 ≤ �3 ≤ 5 when HOSVD is applied as Eq. (7.11). P -values computed

by categorical regression. 1st: 2.39×10−5, 2nd: 5.83×10−14, 3rd: 1.36×10−24, 4th: 2.58×10−2,
5th: 2.12 × 10−5

Table 7.17 Top ranked 10 G(�1, �2, 1 ≤ �3 ≤ 5)s with larger absolute values among 1 ≤
�1, �2, �3 ≤ 10 in Eq. (7.11)

�1 1 2 4 3 5

�2 1 1 1 1 1

�3 1 2 4 3 5

G(�1, �2, �3) 1.67 × 105 −1.03 × 105 7.48 × 104 −6.64 × 104 6.23 × 104

�1 3 1 3 2 1

�2 2 2 1 2 2

�3 3 3 5 3 2

G(�1, �2, �3) 3.00 × 104 −2.87 × 104 −2.33 × 104 −2.02 × 104 −1.48 × 104
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Pi2 = Pχ2

⎡

⎣>

2∑

�2=1

(
u

(i2)
�2i2

σ�2

)2⎤

⎦ . (7.13)

Computed P -values are adjusted by BH criterion; i1s and i2s associated with
adjusted P -values less than 0.01 are selected. Then, 426 mRNA probes and 7
miRNAs are selected, respectively.

In order to evaluate selected 426 mRNAs biologically, we upload these mRNAs
to DAVID. Then we can find numerous enrichment. Tables 7.18 and 7.19 show the
results of GO term enrichment (adjusted P -values less than 0.05). BP is related to
biological feature, CC is related to the location within cell, and MF is function of
gene as molecules. Although we are not willing to summarize all of them, most
of them are reasonably related to cancers, e.g., immune related or cell surface
enrichment. Thus TD based unsupervised FE is likely successful to identify cancer
related genes.

In order to demonstrate superiority of type I tensor, we also employ type II tensor
as

xi1i2 =
∑

j

xi1i2j . (7.14)

Table 7.18 GO BP enrichment by the 426 ensembl genes identified by TD based unsupervised
FE

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_BP_DIRECT Immune response 36 11.4 2.7 × 10−14 5.6 × 10−11

GOTERM_BP_DIRECT Signal transduction 57 18.1 5.1 × 10−12 5.3 × 10−9

GOTERM_BP_DIRECT Type I interferon
signaling pathway

10 3.2 1.8 × 10−6 1.2 × 10−3

GOTERM_BP_DIRECT Collagen catabolic
process

10 3.2 1.8 × 10−6 1.2 × 10−3

GOTERM_BP_DIRECT Positive regulation of cell
proliferation

25 7.9 3.2 × 10−6 1.3 × 10−3

GOTERM_BP_DIRECT Cell–cell signaling 18 5.7 3.1 × 10−6 1.6 × 10−3

GOTERM_BP_DIRECT Response to estradiol 11 3.5 4.8 × 10−6 1.6 × 10−3

GOTERM_BP_DIRECT Defense response to virus 14 4.4 8.0 × 10−6 2.3 × 10−3

GOTERM_BP_DIRECT B cell receptor signaling
pathway

8 2.5 4.5 × 10−5 1.1 × 10−2

GOTERM_BP_DIRECT Positive regulation of
cAMP metabolic process

4 1.3 1.1 × 10−4 2.4 × 10−2

GOTERM_BP_DIRECT Response to peptide
hormone

7 2.2 1.2 × 10−4 2.4 × 10−2

(continued)
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Table 7.18 (continued)

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_BP_DIRECT Negative regulation of
apoptotic process

21 6.7 1.9 × 10−4 2.6 × 10−2

GOTERM_BP_DIRECT Defense response 8 2.5 1.8 × 10−4 2.6 × 10−2

GOTERM_BP_DIRECT T cell activation 7 2.2 1.7 × 10−4 2.7 × 10−2

GOTERM_BP_DIRECT T cell differentiation 6 1.9 1.7 × 10−4 2.8 × 10−2

GOTERM_BP_DIRECT Skeletal system
development

11 3.5 1.7 × 10−4 3.1 × 10−2

GOTERM_BP_DIRECT Chemokine-mediated
signaling pathway

8 2.5 2.6 × 10−4 3.3 × 10−2

GOTERM_BP_DIRECT Mast cell activation 4 1.3 2.9 × 10−4 3.4 × 10−2

GOTERM_BP_DIRECT Adaptive immune response 11 3.5 3.1 × 10−4 3.5 × 10−2

GOTERM_BP_DIRECT Cell surface receptor
signaling pathway

15 4.8 4.0 × 10−4 4.2 × 10−2

GOTERM_BP_DIRECT Cellular response to
interferon-alfa

4 1.3 4.3 × 10−4 4.3 × 10−2

GOTERM_BP_DIRECT Inflammatory response 18 5.7 4.5 × 10−4 4.3 × 10−2

GOTERM_BP_DIRECT Apoptotic process 23 7.3 5.2 × 10−4 4.5 × 10−2

GOTERM_BP_DIRECT Humoral immune response 7 2.2 5.0 × 10−4 4.6 × 10−2

GOTERM_BP_DIRECT Positive regulation of
neutrophil chemotaxis

5 1.6 5.5 × 10−4 4.6 × 10−2

GOTERM_BP_DIRECT Collagen fibril organization 6 1.9 6.0 × 10−4 4.8 × 10−2

GOTERM_BP_DIRECT Proteolysis 21 6.7 6.4 × 10−4 4.9 × 10−2

Adjusted P -values are by BH criterion

Applying SVD to xi1i2 , we get singular value vectors u
(i1)
�1i1

∈ R
13393×161 and

u
(i2)
�2i2

∈ R
755×161. In order to select singular vector used for FE, we need to know

dependence upon classes (in this case, cancer subtype). In order that, we need
singular value vectors attributed to samples. It is computed as Eqs. (5.12) and (5.13),

u
j ;i1
�1j

=
13393∑

i1=1

xi1j u
(i1)
�1i1

(7.15)

u
j ;i2
�2j

=
755∑

i2=1

xi2j u
(i2)
�2i2

(7.16)

Figure 7.9 shows boxplot of u
j ;i1
�1j

and u
j ;i2
�2j

for 1 ≤ �3 ≤ 5. It is obvious that these
singular value vectors have significant class (cancer subtypes) dependence.

Thus, P -values are attributed to i1 and i2 using u
(i1)
�1i1

and u
(i2)
�2i2

for 1 ≤ �3 ≤ 5,
respectively, as
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Table 7.19 GO CC and MF enrichment by the 426 ensembl genes identified by TD based
unsupervised FE

Category Term
Genes
count % P -value

Adjusted
P -value

GOTERM_CC_DIRECT Extracellular space 84 26.7 1.60 × 10−26 4.90 × 10−24

GOTERM_CC_DIRECT Extracellular region 82 26 3.10 × 10−20 4.80 × 10−18

GOTERM_CC_DIRECT Extracellular exosome 97 30.8 9.00 × 10−13 9.20 × 10−11

GOTERM_CC_DIRECT External side of plasma
membrane

23 7.3 1.00 × 10−11 7.70 × 10−10

GOTERM_CC_DIRECT Cell surface 23 7.3 1.20 × 10−4 7.40 × 10−3

GOTERM_CC_DIRECT Extracellular matrix 15 4.8 4.80 × 10−4 1.80 × 10−2

GOTERM_CC_DIRECT Multivesicular body 5 1.6 4.40 × 10−4 1.90 × 10−2

GOTERM_CC_DIRECT Anchored component of
membrane

9 2.9 6.20 × 10−4 2.10 × 10−2

GOTERM_CC_DIRECT Cytosol 80 25.4 4.20 × 10−4 2.10 × 10−2

GOTERM_MF_DIRECT Protein homodimerization
activity

34 10.8 8.60 × 10−7 4.90 × 10−4

GOTERM_MF_DIRECT RAGE receptor binding 5 1.6 2.90 × 10−5 5.50 × 10−3

GOTERM_MF_DIRECT Chemokine activity 8 2.5 2.40 × 10−5 6.70 × 10−3

GOTERM_MF_DIRECT CXCR3 chemokine
receptor binding

4 1.3 5.40 × 10−5 7.60 × 10−3

GOTERM_MF_DIRECT Receptor binding 18 5.7 2.00 × 10−4 1.90 × 10−2

GOTERM_MF_DIRECT Serine-type
endopeptidase activity

15 4.8 2.00 × 10−4 2.20 × 10−2

GOTERM_MF_DIRECT Protein binding 187 59.4 2.90 × 10−4 2.30 × 10−2

GOTERM_MF_DIRECT Identical protein binding 28 8.9 4.00 × 10−4 2.80 × 10−2

Adjusted P -values are by BH criterion

Pi1 = Pχ2

⎡

⎣>

5∑

�1=1

(
u

(i1)
�1i1

σ�1

)2⎤

⎦ , (7.17)

Pi2 = Pχ2

⎡

⎣>

5∑

�2=1

(
u

(i2)
�2i2

σ�2

)2⎤

⎦ . (7.18)

P -values are adjusted by BH criterion. i1 and i2 associated with adjusted P -values
less than 0.01 are selected. Then, 374 mRNA probes and 21 miRNAs are selected.

In order to validate selected 374 mRNAs, we upload these mRNAs to DAVID.
Then we can find numerous enrichment. Table 7.20 shows the results of GO term
enrichment (adjusted P -values less than 0.05) as in Tables 7.18 and 7.19. Thus,
although the number of enrichment decreases than that in the type I tensor, still
there are many cancer related GO terms. Thus, type II tensor approach is still valid
enough biologically.
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Fig. 7.9 Boxplot of u
j ;i1
�1j (upper row) and u

j ;i2
�2j (lower row) for 1 ≤ �3 ≤ 5 computed by

Eqs. (7.15) and (7.16). P -values computed by categorical regression. Upper, 1st: 4.07 × 10−11,
2nd: 4.36×10−22, 3rd: 2.03×10−23, 4th: 4.14×10−4, 5th: 1.57×10−4. Lower, 1st: 3.36×10−27,
2nd: 3.91 × 10−13, 3rd: 7.39 × 10−9, 4th: 9.32 × 10−5, 5th: 2.82 × 10−5

Finally, in order to emphasize the superiority of TD based unsupervised FE
to conventional supervised methods, we apply categorical regression analysis to
mRNAs expression,

xi1j = ai1 +
∑

s

bi1sδjs (7.19)

where ai1 and bi1s are the regression coefficients. Based upon the results by
categorical regression analysis, because too many 16,917 mRNAs probes are
associated with adjusted P -values less than 0.01, we instead upload top ranked 500
mRNAs with smaller P -values to DAVID. As a result, only one GO CC enrichment,
cytoplasm, associated with adjusted P -values less than 0.05, 1.9×10−3, is detected.
Although more advanced methods than categorical regression might achieve better
performance, this drastic decrease of the number of detected GO terms enrichment
demonstrates the superiority over conventional supervised method. In this sense, TD
based unsupervised FE is outstanding, no matter which of type I or type II tensor is
used.
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7.6.2 Temporally Differentially Expressed Genes

Although type I and type II tensor approaches achieved good performance in
integrated analysis of multi-class multi-omics data set in the previous section, it is
better if we can demonstrate yet another example to which TD based unsupervised
FE can achieve better performance. In this subsection, we try to identify genes
temporally expressed distinctly between two classes.

The first data set analyzed is the comparison of NSCLC cell line H1975, with and
without EGF treatment [2]. EGF is a gene supposed to accelerate cell growth and
is known to be expressive frequently in cancers. Thus, EGF treatment is expected
to activate cancer cell lines. The data set is composed of two mRNA expression
profile, xcontrol

ij1
∈ R

39937×13 and xEGF

ij2
∈ R

39937×15, which are gene expressions of cell
lines without and with EGF treatment, respectively. j1 and j2 represent time points
after the treatment (Table 7.21). Because they share genes, xcontrol

ij1
and xEGF

ij2
can be

converted to case II type I tensor as

xij1j2 = xcontrol

ij1
xEGF

ij2
. (7.20)

HOSVD, Fig. 3.8, is applied to xij1j2 as

xij1j2 =
13∑

�1=1

15∑

�2=1

39937∑

�3=1

G(�1, �2, �3)u
(j1)
�1j1

u
(j2)
�2j2

u
(i)
�3i

(7.21)

At first, we need to find singular value vectors u(j1)
�1

∈ R
13 and u(j2)

�2
∈ R

15

that exhibit distinct temporal expression between them. Figure 7.10 shows time
development of u(j1)

�1
and u(j2)

�2
for �1 = �2 = 1, 2. Here the components of singular

value vectors sharing the time points are averaged within individual vectors, u
(j1)
�1j1

.

It is obvious that u(j1)

1 and u(j2)

1 do not exhibit any time dependence while u(j1)

2 and

u(j2)

2 do. Thus, there is a possibility that genes associated with u(j1)

2 and u(j2)

2 also
exhibit the temporal difference between control and EGF treated cells.

In order to select genes associated with u(j1)

2 and u(j2)

2 , we need to find
G(�1, �2, �3), �1 = 2 or �2 = 2 having larger absolute values; G(2, 1, 2) and
G(1, 2, 2) have larger absolute values (Table 7.22). Thus we decide to use u(i)

2 for
FE. P -values are attributed to i as

Table 7.21 List of samples in EGF treatment experiments

Time points (h) 0 0.5 1 2 4 6 8 12 18 24 48

Control 3 1 1 1 1 1 0 0 0 2 3

EGF treated 0 2 1 1 1 1 1 1 1 3 3
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Fig. 7.10 Singular value
vectors, Eq. (7.21). (a) u(j1)

1

(black) and u(j2)

1 (red). (b)

u(j1)

2 (black) and u(j2)

2 (red)
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Table 7.22 Top ranked 10 G(�1, �2, �3)s with larger absolute values among in Eq. (7.21)

�1 1 2 1 3 1

�2 1 1 2 1 3

�3 1 2 2 3 4

G(�1, �2, �3) −4.03 × 104 −1.56 × 103 1.49 × 103 1.05 × 103 −5.79 × 102

�1 4 2 5 1 4

�2 1 1 1 4 1

�3 5 3 6 6 4

G(�1, �2, �3) 4.24 × 102 4.16 × 102 3.25 × 102 3.19 × 102 −2.62 × 102

Pi = Pχ2

⎡

⎣>

(
u

(i)
2i

σ2

)2
⎤

⎦ . (7.22)

P -values are corrected by BH criterion and genes associated with adjusted P -values
less than 0.01 are selected. Then 552 mRNA probes are selected.

Next, we need to see if the selected 552 mRNA probes really exhibit temporal
difference between control and EGF treated cells. For this purpose, we compute
correlation coefficient between

(
xcontrol

i1 , . . . , xcontrol

i13 , xEGF

i1 , . . . , xEGF

i15

)
(7.23)

and
(
u

(j1)

2,1 , . . . , u
(j1)

2,13, u
(j2)

2,1 , . . . , u
(j2)

2,15

)
(7.24)

to see if 552 selected genes are coincident with u(j1)

2 and u(j2)

2 . Figure 7.11a shows
the histogram of correlation coefficients. Because there are two peaks at ±1, it is
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obvious that gene expression of selected 552 mRNA probes is highly coincident
with u(j1)

2 and u(j2)

2 .
Before comparing 552 genes directly between control and EGF treated cells, we

need shift and scale individual gene expression profiles such that they have same
baseline and amplitude. In order that, we apply the following linear regression

u
(j1)

2j1
= aix

control

ij1
+ bi (7.25)

u
(j2)

2j2
= aix

EGF

ij2
+ bi (7.26)

where ai and bi are the regression coefficients. Because regression coefficients are
shared between control and EGF treated ones, this does not reduce the difference
between these two. Then, we compare aix

control

ij1
+ bi and aix

EGF

ij2
+ bi of selected 552

mRNA probes (Fig. 7.11b). Not all, but the comparisons of five out of seven time
points excluding two time points, 4 and 24 h, after the EGF treatment are associated
with P -values less than 0.05. Thus, TD based unsupervised FE has the ability to
select genes associated with temporal distinction.

Next, we try to see if type II tensor approach works as well. Because case II
tensor share the feature whose number is generally much larger than the number of
samples, type II tensor where shared dimension is summed up can result in much
smaller number of components. Type II tensor is defined as
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Fig. 7.11 (a) Histogram of correlation coefficients between Eqs. (7.23) and (7.24) for case II type
I tensor, Eq. (7.20). (b) Boxplot of Eqs. (7.25) (black boxes filled with green) and (7.26) (red boxes
filled with blue) for case II type I tensor, Eq. (7.20). P -values computed by t test: 0.5 h:2.83×10−2,
1 h:6.81×10−8, 2 h:5.63×10−12, 4 h:3.5×10−1, 6 h:4.83×10−2, 24 h:5.0×10−1, 48 h:1.70×10−6
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xj1j2 =
39937∑

i=1

xij1j2 . (7.27)

where xij1j2 is defined in Eq. (7.20). The number of components in xj1j2 ∈ R
13×15

is 13 × 15 = 195, which is as small as 1/39937 of the number of components in
xij1j2 ∈ R

39937×13×15. Thus, if type II tensor approach works as well, it is very
effective. SVD is applied to xj1j2 as

xj1j2 =
∑

�

λ�u
(j1)
�j1

u
(j2)
�j2

(7.28)

Figure 7.12 shows the u(j1)
� and u(j2)

� for � = 1, 2. Basically, it looks similar to
Fig. 7.10. Thus we decide to employ � = 2 for FE. Then, singular value vectors
attributed to i can be computed as Eq. (5.14),

u
i;j1
�i =

13∑

j1=1

xcontrol

ij1
u

(j1)
�j1

(7.29)

u
i;j2
�i =

15∑

j2=1

xEGF

ij2
u

(j2)
�j2

(7.30)

Thus P -values are also attributed to i in two ways as

P
j1
i = Pχ2

⎡

⎣>

(
u

(i;j1)

2i

σ2

)2
⎤

⎦ , (7.31)

P
j2
i = Pχ2

⎡

⎣>

(
u

(i;j2)

2i

σ ′
2

)2
⎤

⎦ . (7.32)

P -values are corrected by BH criterion. mRNA probes associated with adjusted
P -values less than 0.01 are selected. Then, 482 and 487 mRNA probes, between
which 396 mRNA probes are chosen in common, are selected using P

j1
i and P

j2
i ,

respectively. Thus, in some sense, type II tensor approach can give the results
coincident between two approximations of singular value vectors attributed to i

using Eqs. (7.29) and (7.30), respectively.
Next, we need to see if the 396 mRNA probes chosen in common really exhibit

temporal difference between control and EGF treated cells as in the case of type
I tensor approach. The correlation coefficient between Eqs. (7.23) and (7.24) is
computed again to see the coincidence between gene expression and singular value
vectors (Fig. 7.13a). It is obvious that the peaks at ±1 is much steeper than that in
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Fig. 7.12 Singular value
vectors, Eq. (7.28). (a) u(j1)

1

(black) and u(j2)

1 (red). (b)

u(j1)

2 (black) and u(j2)

2 (red)
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Fig. 7.13 (a) Histogram of
correlation coefficients
between Eqs. (7.23)
and (7.24) for case II type II
tensor, Eq. (7.27). (b) Boxplot
of Eqs. (7.25) (black boxes
filled with green) and (7.26)
(red boxes filled with blue)
for case II type II tensor,
Eq. (7.27). P -values
computed by t test:
0.5 h:1.68 × 10−2,
1 h:2.56 × 10−5, 2 h:
3.83 × 10−7, 4 h:9.14 × 10−2,
6 h:7.30 × 10−4,
24 h:2.36 × 10−2,
48 h:5.55 × 10−38

(a)

COR

F
re

qu
en

cy

−1.0 0.0 1.0

0
20

40
60

80
10

0

●●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●●●●

●●●
●

●
●●●

●●●

●

●

●

●
●

●

●
●
●
●

●

●

●
●

●● ● ●

●

●
●
●●●
●
●
●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●●●

●

−
0.

4
0.

0
0.

2
0.

4
0.

6

(b)

0.
5 1 2 4 6 24 48

Fig. 7.11a. This suggests that type II tensor approach might be better than type I
tensor approach in spite of the smaller computational resources required.

In order to confirm the superiority of type II tensor approach, we again apply
linear regression Eqs. (7.25) and (7.26) replacing singular value vectors with those
obtained by type II tensor (Fig. 7.13b). Because six among seven time points
excluding 4 h after the EGF treatment are associated with P -values less than 0.05,
type II tensor approach is superior to type I tensor approach.

Finally, in order to validate 552 and 396 mRNA probes selected by type I and II
tensor approaches, respectively, we upload RefSeq mRNA IDs associated with these
probes to DAVID. Table 7.23 lists the KEGG pathways identified by DAVID for type
I and II tensor approach. Although common five KEGG pathways are associated
with adjusted P -values less than 0.05, P -values for type II tensor approach are
smaller than those for type I tensor approach. Because P -values are more likely
smaller for more number of genes uploads, smaller P -values attributed to KEGG
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Table 7.23 KEGG pathways identified by DAVID for genes associated with 552 (upper numbers)
and 396 (lower numbers) miRNA probes selected using type I, Eq. (7.20), and II, Eq. (7.27), tensor
approach

Category Term Count % P -value Adjusted P -value

KEGG_PATHWAY Cell cycle

{
29

28

9.0

12.1

7.2 × 10−24

3.7 × 10−29

1.0 × 10−21

3.2 × 10−27

KEGG_PATHWAY Oocyte meiosis

{
14

14

4.3

6.0

7.6 × 10−8

1.4 × 10−10

5.5 × 10−6

5.8 × 10−9

KEGG_PATHWAY DNA replication

{
8

9

2.5

3.9

2.8 × 10−6

3.2 × 10−9

1.4 × 10−4

9.3 × 10−8

KEGG_PATHWAY
Progesterone-mediated

oocyte maturation

{
8

9

2.5

3.9

9.2 × 10−4

4.0 × 10−6

3.3 × 10−2

8.6 × 10−5

KEGG_PATHWAY p53 signaling pathway

{
7

6

2.2

2.6

1.2 × 10−3

7.7 × 10−4

3.5 × 10−2

1.3 × 10−2

Adjusted P -values are by BH criterion

pathways by type II tensor approach where less number of genes are selected suggest
the superiority of type II tensor approach from the biological point of view.

Although type II approach is better than type I approach in this specific example,
because it is highly dependent upon data sets analyzed, it is difficult to know in
advance which is better.

7.7 Gene Expression and Methylation in Social Insects

As the first example of the application of case I tensor approach, we employ the
multi-omics analysis of social insects. Social insects, e.g., ants and bees, are known
to have castes where distinct phenotypes appear in spite of shared genome. Thus, it
is interesting to know what drives differentiation between castes.

One possible scenario is the alteration of epigenome [29], because epigenome
has plasticity that can mediate differentiation between castes. Most typical caste is
composed of queen and worker. The former, queen, concentrates on reproduction
while the latter, workers, serve to maintain colony. In spite of their strict difference
of phenotype, they are often known to be relatives. Thus, they share genome to
some extent with having distinct phenotype. This suggests that epigenome can play
potential roles in the differentiation of caste.

In this section, we try to identify genes associated with differential expression
and methylation between caste, especially queens and workers [25], because such
genes are potential candidates that can mediate distinct phenotypes between castes.
In order that, we employ TD based unsupervised FE that can integrate multi-omics
data sets. The data set analyzed [16] is composed of two insect species, bee (P.
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Table 7.24 Number of samples in social insect study [16]

Methylation mRNA

Caste Control Queen Worker Queen Worker

P. canadensis 1 3 3 4 6

D. quadriceps 1 3 3 7 6

canadensis) and ant (D. quadriceps). Table 7.24 shows the number of samples
available from GEO with GEO ID GSE59525. As can be seen, it is a typical large
p small n data set.

Because the amount of gene expression is measured by the unit of Reads Per
Kilobase of exon per Million mapped reads (RPKM), it is used as it is. Because the
gene expression profile of P. canadensis was log2-ratio converted, it is expanded to
the original one as 2x where x is gene expression. On the other hand, we would like
to employ case II tensor format (Table 5.3) where genes are shared. Thus we need
to convert methylation profiles to be attributed to individual genes. In order that,
assuming ms1 and ms2 are methylation and nonmethylation values, respectively, at
locus s, then the relative methylation within the ith gene can be defined as

∑
s∈i ms1∑

s∈i

(
ms1 + ms2

) (7.33)

where
∑

s∈i is taken over s bases within DNA sequences corresponding to the ith
gene body; the reason why methylation not in promoter region but in the gene body
is summed up and is attributed to genes is because gene body methylation is believed
to affect gene expression in insects [32]. Relative methylation profile is formatted
as

x
metyl, bee

ik ∈ R
N×7, (7.34)

x
metyl, ant

ik ∈ R
N×7, (7.35)

where N is the number of genes. k = 1 corresponds to control samples. 2 ≤ k ≤ 4
and 5 ≤ k ≤ 7 correspond to queens and workers, respectively. On the other hand,
mRNA expression is formatted as

xmRNA, bee

ij ∈ R
N×10, (7.36)

xmRNA, ant

ij ∈ R
N×13. (7.37)

where 1 ≤ j ≤ 4 and 5 ≤ j ≤ 10 for bee correspond to queens and workers,
respectively, while 1 ≤ j ≤ 7 and 8 ≤ j ≤ 13 for ant correspond to queens and
workers, respectively. Then case II tensor is generated as

xbee

ijk = xmRNA, bee

ij x
metyl, bee

ik , (7.38)
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xant

ijk = xmRNA, ant

ij x
metyl, ant

ik , (7.39)

where xbee

ijk ∈ R
N×10×7 and xant

ijk ∈ R
N×13×7. HOSVD, Fig. 3.8, is applied to xbee

ijk

and xant

ijk as

xbee

ijk =
N∑

�1=1

10∑

�2=1

7∑

�3=1

G(�1, �2, �3)u
bee(i)
�1i

u
bee(j)
�2j

u
bee(k)
�3k

(7.40)

xant
ijk =

N∑

�1=1

13∑

�2=1

7∑

�3=1

G(�1, �2, �3)u
ant(i)
�1i

u
ant(j)
�2j

u
ant(k)
�3k

(7.41)

where u
bee(i)
�1i

∈ R
N×N , u

bee(j)
�2j

∈ R
10×10, u

bee(k)
�3k

∈ R
7×7, u

ant(i)
�1i

∈ R
N×N , u

ant(j)
�2j

∈
R

13×13, and u
ant(k)
�3k

∈ R
7×7.

Next, as usual, we need to find which singular value vectors are coincident
with the distinction between queens and workers. Figures 7.14a and b, 7.15a and
b show singular value vectors associated with highest distinction between queens
and workers. Unfortunately, singular value vectors of methylation do not exhibit
small enough P -values to be significant. Nevertheless, because selected genes might
exhibit significant distinct expression between queens and workers, we continue the
procedure. We seek G(�1, 1, 3) for P. canadensis and G(�1, 1, 5) for D. quadriceps
with larger absolute values.
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Table 7.25 The top 10 core
tensors, G, with large
absolute values

P. canadensis D. quadriceps

�1 G(�1, 1, 3) �1 G(�1, 1, 5)

9 −79.8 11 −54.8

10 75.4 12 4.1

7 −61.4 25 3.4

11 38.4 2 −2.9

5 −23.4 23 2.8

4 −16.0 9 2.4

12 −11.9 20 −2.2

1 −5.4 8 2.2

13 5.4 10 −1.7

6 −4.5 22 −1.4

Table 7.25 lists the top ranked Gs with larger absolute values. Then we decide
that ubee(i)

�1
, �1 = 9, 10 and uant(i)

11 are used for FE (Figs. 7.14c and 7.15c). P -values
are attributed to ith gene as

P bee

i = Pχ2

⎡

⎣>

10∑

�1=9

(
u

bee(i)
�1i

σ�1

)2⎤

⎦ , (7.42)

and
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Table 7.26 Statistical tests of the differences (between queens and workers) in gene expression
and methylation

t Wilcox KS

P. canadensis Gene expression 1.71 × 10−3 1.89 × 10−2 0.08

Methylation 1.74 × 10−4 5.06 × 10−3 1.02 × 10−3

D. quadriceps Gene expression 2.73 × 10−12 9.05 × 10−12 4.41 × 10−11

Methylation 0.3757 0.7163 0.4413

The genes identified by TD-based unsupervised FE are analyzed by t (the t test), Wilcox (the
Wilcoxon rank sum test), and KS (the Kolmogorov–Sinai test), all two-sided

P ant

i = Pχ2

⎡

⎣>

(
u

ant(i)
11i

σ11

)2
⎤

⎦ , (7.43)

P -values are adjusted by BH criterion. Genes associated with adjusted P -values less
than 0.01 are selected. As a result, 133 and 128 genes are selected for P. canadensis
and D. quadriceps, respectively.

The point is if selected genes are associated with distinct gene expression and
methylation between queens and workers simultaneously. Then we apply three sta-
tistical tests to 133 genes and 128 genes between queens and workers (Table 7.26).
Selected genes exhibit simultaneous distinct gene expression and methylation
between queens and workers for P. canadensis, but not for D. quadriceps. Thus
selected genes can be potential factors that can mediate caste differentiation for P.
canadensis, but not for D. quadriceps. Although we are not sure the lack of detection
for D. quadriceps is because of biological reason or failure of our methodology, at
least, our purpose is achieved for P. canadensis. In order to clarify this point, we
need to continue research.

In order to see if conventional supervised methods can do this, we apply t test
to gene expression and promoter methylation to find genes that exhibit significant
distinction between queens and workers. As a result, two genes for distinct gene
expression between queens and workers for D. quadriceps are associated with
adjusted P -vales less than 0.01. This poor performance is because of small number
of samples. Thus, TD based unsupervised FE has the ability to find significant genes
for large p small n problem, for which conventional supervised method fails.

Before closing this section, we would like to validate selected genes from the
biological point of view. Because these two insects are not included in popular
enrichment servers, e.g. DAVID or Enrichr, instead we download list of GO terms,1

PCAN.v01.GO.tsv for P. canadensis and DQUA.v01.GO.tsv for D. quadriceps.
Fisher’s exact test is performed in order to evaluate enrichment and computed P -
values are corrected by BH criterion. GO terms associated with adjusted P -values
less than 0.05 are searched. There are three GO terms, Lipid transporter activity

1Paper Wasp and Dinosaur Ant Project. Accessed 15 Jan. 2019. http://wasp.crg.eu/download.html.

http://wasp.crg.eu/download.html
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(GO:0005319), Lipid particle (GO:0005811), and Lipid transport (GO:0006869)
enriched in 133 genes selected for P. canadensis, while there are no GO terms
enriched in 128 genes selected for D. quadriceps. This might be reasonable because
128 genes selected for D. quadriceps are not associated with distinct methylation
between queens and workers (Table 7.26). Anyway, 133 genes selected for P.
canadensis, which is simultaneously associated with distinct gene expression and
methylation between queens and workers, are associated with a few GO term
enrichment. Thus, at least for P. canadensis, TD based unsupervised FE is useful
also from the biological point of view.

7.8 Drug Discovery From Gene Expression: II

In Sect. 7.3, we have already shown that TD based unsupervised FE successfully
identifies compounds that affect gene expression in dose-dependent manner and
their target proteins from only gene expression profiles in fully unsupervised
manner. Nevertheless, it is strictly restricted to cancers because gene expression
profiles are measured in cancer cell lines. The identifying drug compounds that are
effective to other diseases requires additional gene expression profiles treated by
compounds in specific diseases, e.g., model animals or cell lines originated from
the disease. Thus in the manner in Sect. 7.3, the effectiveness of methods is quite
limited.

In this section, with using case II tensor where genes are shared between two
matrices or tensors, we try to identify disease effective drugs without measuring
gene expression repeatedly for individual diseases. The study design is as follows
(Fig. 7.16). xij1j2 is the ith gene expression profiles of animals treated by j1
compound at the time point j2 after the treatment. xij3 is the human gene expression
profile of gene i at j3th patients or healthy control. Case II tensor xij1j2j3 is generated
as

xij1j2j3 = xij1j2xij3 (7.44)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 as

xij1j2j3 =
N1∑

�1=1

N2∑

�2=1

N3∑

�3=1

N4∑

�4=1

G(�1, �2, �3, �4)u
(j1)
�1j1

u
(j2)
�2j2

u
(j3)
�3j3

u
(i)
�4i

(7.45)

Then, u(j2)
�2

that exhibits time dependence and u(j3)
�3

that exhibits distinction between
healthy controls and patients are searched. After identifying �2 and �3, �1 and �4
associated with G(�1, �2, �3, �4) with larger absolute values are selected. Once, �1
and �4 are selected, P -values are attributed to i and j1 as
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Fig. 7.16 Integrated analysis of gene expression profile of drug treated animals, xij1j2 and human
gene expression profiles of patients and healthy control, xij3 . i: genes, j1: compounds, j2: time
point after the treatment, j3: human samples

Pi = Pχ2

[

>

(
u�4i

σ�4

)2
]

, (7.46)

and

Pj1 = Pχ2

[

>

(
u�1j1

σ�1

)2
]

. (7.47)

P -values are corrected by BH criterion and i and j1 associated with adjusted P -
values less than 0.01 (filled pink circles and filled light green circles surrounded by
pink oval in Fig. 7.16) are supposed to be selected. Target proteins are decided by the
comparison with external databases (as shown in Fig. 7.5). This process results in
the set of drug candidates compounds and candidate target proteins. Figure 7.17 and
Table 7.27 summarize the process till selection of singular value vectors attributed to
genes and compounds. There are six diseases analyzed: heart failure, PTSD, acute
lymphoblastic leukemia (ALL), diabetes, renal carcinoma, and cirrhosis. In some
cases, modes of case II tensors are more than four because human gene expression
profiles are represented as not matrices but tensors.

Gene expression profiles of model animals are downloaded from DrugMa-
trix [15] where rats are treated as model animals and gene expression profiles
of various tissues are extracted. Corresponding human or rat disease expression
profiles are downloaded from GEO. For heart failure, human disease heart failure
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Fig. 7.17 Schematics that illustrate the procedure of TD-based unsupervised FE applied to the
various disease and DrugMatrix data sets. SVV: singular value vector. Selected four time points
(tps) are 1/4, 1, 3, and 5 days after treatment

gene expression profiles and rat heart gene expression profiles treated by drugs
are used. For PTSD, stressed mouse brain gene expression profiles and rat brain
gene expression profiles treated by drugs are used. For ALL, drug treated rat and
ALL human patients bone marrow gene expression profiles are used. For diabetes
and renal carcinoma, drug treated rat kidney gene expression profiles are used.
Diabetes and renal carcinoma human patients kidney gene expression profiles are
used for diabetes and renal carcinoma, respectively. For cirrhosis, drug treated rat
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Table 7.28 The number of genes, drugs, and target proteins identified by TD based unsupervised
FE

Predicted target

Disease Inferred genes Inferred compounds Up Down

Heart failure 274 43 556 449

PTSD 374 6 578 548

ALL 24 2 91 57

Diabetes 65 14 186 140

Renal carcinoma 225 14 229 177

Cirrhosis 132 27 510 488

liver gene expression profiles and cirrhosis human liver expression profiles are used.
See appendix for more details.

After selecting genes and drugs, genes are uploaded to Enrichr for target protein
identification. Genes enriched (adjusted P -values less than 0.01) in “Single gene
perturbation GEO up” and “Single gene perturbation GEO down” are selected as
target proteins. This process is similar to that illustrated in Fig. 7.5. Table 7.28
summarizes the number of identified genes, compounds, and target proteins.

In order to validate the relationship between drugs and target proteins predicted,
we compare them with DINIES [31] that stores known protein–drug interac-
tions. We upload drugs one by one to DENIES with parameters “chemogenomic
approach” and “with learning on all DBs” and can get list of target proteins. They
are merged into a list of proteins because individual proteins can be targeted by
multiple drugs. The obtained set of target proteins are compared with predicted
targets in Table 7.28. Here total proteins considered is limited to genes included
in “Single_Gene_Perturbations_from_GEO_all_list” of Enrichr. Table 7.29 shows
the results of evaluation by Fisher’s exact test and χ2 test. Ten out of twelve are
evaluated as significant (P -values less than 0.05) by either Fisher’s exact test or χ2

test. This suggests that TD based unsupervised FE can be used for the prediction
of target protein and diseases of drugs only from gene expression profile, in fully
unsupervised manner in the sense that it does not require any pre-knowledge about
disease–drug or protein–drug interaction.

7.9 Integrated Analysis of miRNA Expression
and Methylation

Unsupervised method is often useful when applied to something for which no
pre-knowledge is available. For example, two kinds of omics data might be
correlated with unknown reasons. To search this kind of hidden (latent) relationship,
unsupervised method is critically useful. In this section, we propose the application
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Table 7.29 Fisher’s exact test (PF ) and the uncorrected χ2 test (Pχ2 ) of known drug target
proteins regarding the inference of the present study

Single gene perturbations from GEO
up

Single gene perturbations from GEO
down

F T PF Pχ2 RO F T PF Pχ2 RO

Heart F 521 517
3.4 × 10−4 3.9 × 10−4 3.02

628 416
1.3 × 10−3 7.3 × 10−4 2.61

failure T 13 39 19 33

PTSD
F 500 560

3.8 × 10−2 3.1 × 10−2 2.67
532 529

6.1 × 10−3 4.5 × 10−3 3.81
T 6 18 5 19

ALL
F 979 89

2.7 × 10−1 3.0 × 10−1 2.19
1009 57

1.0 × 100 – –
T 10 2 12 0

Diabetes
F 889 177

1.2 × 10−2 7.1 × 10−3 3.00
936 130

3.6 × 10−4 2.0 × 10−5 5.13
T 15 9 14 10

Renal F 847 219
2.0 × 10−2 1.2 × 10−2 2.75

895 169
4.3 × 10−2 2.2 × 10−2 2.64

carcinoma T 14 10 16 8

Cirrhosis
F 572 490

1.1 × 10−2 8.1 × 10−3 2.91
595 467

1.6 × 10−3 1.1 × 10−3 3.81
T 8 20 7 21

Rows: known drug target proteins (DINIES). Columns: Inferred drug target proteins using “Single
Gene Perturbations from GEO up” or “Single Gene Perturbations from GEO down.” OR: odds
ratio

of case I type II tensor to investigate relationship between miRNA expression and
methylation, between which no direct relationships are biologically expected.

Promoter methylation of genes targeted by miRNAs can of course affect
expression of these genes. Nevertheless, there seem to be no biological reasons that
promoter methylation of genes targeted by miRNAs affects the expression of these
miRNAs themselves or vice versa. Thus, if we can find any correlations between
these two, it might be a starting point of finding new biological points of view.

In this section, we make use of TCGA data set [28]. The data set we analyze
is composed of eight normal ovarian tissue samples and 569 tumor samples. Our
data set includes expression data on 723 miRNAs as well as promoter methylation
profiles of 24,906 genes. They are formatted as matrices

x
methyl

ij ∈ R
24906×577 (7.48)

xmiRNA

kj ∈ R
723×577 (7.49)

They are converted to case I tensor because they share samples as

xijk = xmiRNA

kj x
methyl

ij (7.50)

Usually, HOSVD, Fig. 3.8, is supposed to be applied to xijk as
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xijk =
24906∑

�1=1

577∑

�2=1

723∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

. (7.51)

Unfortunately, xijk is too huge to apply HOSVD directly. Thus, instead, we derive
type II tensor as

xik =
577∑

j=1

xijk. (7.52)

Now it is a matrix. Thus we can apply PCA to it. Then we can have PC score u� ∈
R

723 attributed to miRNA and PC loading v� ∈ R
24906 attributed to methylation. The

singular value vectors attributed to sample j are computed in two ways as Eq. (5.15)

u
(j ;k)
�j =

∑

k

u�kx
miRNA
kj , (7.53)

u
(j ;i)
�j =

∑

i

v�ix
methyl

ij . (7.54)

The first thing to check is if there are any �s such that u(j ;k)
� ∈ R

577 and u(j ;i)
� ∈

R
577 satisfy the following requirements simultaneously;

• u(j ;i)
� and u(j ;k)

� are significantly correlated.

• u(j ;k)
� is expressed distinctly between healthy controls (j ≤ 8) and patients

(j > 8).
• u(j ;i)

� is expressed distinctly between healthy controls (j ≤ 8) and patients
(j > 8).

In order to validate these requirements visually, we show scatterplot for 1 ≤
� ≤ 9 (Fig. 7.18). More or less all nine scatterplots look like satisfying the above
requirements simultaneously. In order to select u� and v� used for miRNA and gene
selection, respectively, we need to identify which � satisfies the above requirements
best. In order that, we propose several measures. First, we select miRNAs and genes.
P -values are attributed as

Pk = Pχ2

[

>

(
u�k

σ�

)2
]

, (7.55)

Pi = Pχ2

[

>

(
v�i

σ ′
�

)2
]

. (7.56)
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Fig. 7.18 Scatterplots of u(j ;k)
� (horizontal) and u(j ;i)

� (vertical) for 1 ≤ � ≤ 9. Red filled circle:
eight normal controls (j ≤ 8), gray filled circles: ovarian cancer patients (j > 8)

P -values are adjusted by BH criterion and i and k associated with adjusted P -values
less than 0.01 are selected. Then we require genes and miRNA selected similar to
the above requirements as

• Selected genes and miRNAs are significantly correlated.
• Selected miRNAs are expressed distinctly between normal controls (j ≤ 8) and

patients (j > 8).
• Selected genes are methylated distinctly between normal controls (j ≤ 8) and

patients (j > 8).

In order that, we compute the followings:

(a) Correlation coefficient between u(j ;i)
� and u(j ;k)

� .
(b) P -value attributed to the above correlation coefficients.
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(c) P -values computed by t test that evaluates if u(j ;k)
� is distinct between normal

control (j ≤ 8) and patients (j > 8).
(d) P -values computed by t test that evaluates if u(j ;i)

� is distinct between normal
control (j ≤ 8) and patients (j > 8).

(e) Ratio of significantly correlated pairs of genes and miRNAs selected.
(f) Ratio of miRNA associated with adjusted P -values computed by t test that

evaluates if selected miRNAs are expressed distinctly between normal control
(j ≤ 8) and patients (j > 8).

(g) Ratio of genes associated with adjusted P -values computed by t test that
evaluates if selected genes are methylated distinctly between normal control
(j ≤ 8) and patients (j > 8).

(h) The number of selected miRNAs.
(i) The number of selected genes.

Here significant correlation is evaluated if associated BH criterion adjusted P -
values are less than 0.01 (see page 112 for how to compute P -values attributed
to correlation coefficients). Table 7.30 shows the result. � = 3 seems to be the best,
because � = 3 is the best for the sixth and the seventh measures and the second best
in the fifth measure; the fifth, sixth, and seventh measures are important because
they are direct evaluations of selected genes and miRNAs. Because the number of
selected genes and miRNAs do not vary depending on � so much, it is the best
to select � = 3. Because more than 88% of genes and miRNAs and their pairs
satisfy the desired requirements in the above (88% is the smallest ratio (percentage)
among requirements from (e) to (g) in Table 7.30), TD based unsupervised FE
can be considered to have ability to select miRNAs and genes satisfying desired
requirements mentioned above.

In order to see if other supervised methods can identify set of genes and miR-
NAs satisfying desired requirements, i.e., selected genes are methylated distinctly
between healthy control and patients, miRNAs selected are expressed distinctly
between healthy controls and patients, selected genes and miRNAs are significantly
correlated, we apply t test to select genes methylated distinctly between healthy

Table 7.30 Measures that evaluate which � satisfies the desired requirements best

� (a) (b) (c) (d) (e) (f) (g) (h) (i)

1 0.187 6.35 × 10−6 6.25 × 10−3 4.42 × 10−7 – 1.000 – 2 0

2 0.718 1.95 × 10−92 1.28 × 10−4 1.21 × 10−11 0.944 0.571 0.834 7 241

3 0.628 1.49 × 10−64 3.06 × 10−8 5.55 × 10−10 0.884 1.000 0.905 7 284

4 0.649 2.45 × 10−70 6.15 × 10−5 1.02 × 10−4 0.539 0.714 0.597 7 273

6 0.348 6.76 × 10−18 1.68 × 10−3 5.71 × 10−17 0.350 0.375 0.674 8 132

7 0.624 1.27 × 10−63 2.00 × 10−1 7.65 × 10−7 0.365 0.400 0.758 5 293

8 0.500 8.60 × 10−38 1.33 × 10−4 5.89 × 10−13 0.274 0.833 0.775 6 231

9 0.593 3.50 × 10−56 6.44 × 10−2 3.35 × 10−5 0.182 0.667 0.681 3 251

The number in the first row corresponds to the alphabetical list in the main text
Bold numbers are the best values within each category
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controls and patients and miRNA expressed distinctly between healthy controls and
patients. P -values are attributed to miRNAs and genes and adjusted by BH criterion.
Then, 214 miRNAs and 19,395 genes associated with adjusted P -values less than
0.01 are selected. In order to see how much ratio of significantly correlated pairs
among total 241×19395 = 4,829,355 pairs is, we compute correlation coefficients
between them and attribute P -values to these pairs (see page 112 for how to
compute P -values attributed to correlation coefficients). P -values are corrected by
BH criterion and 555,391 pairs are associated with adjusted P -values less than 0.01.
Because this is as small as 11.5% of 4829,355 pairs, t test is inferior to TD based
unsupervised FE to identify genes and miRNAs satisfying desired requirements.

This poor performance might be because of the too many genes and miRNAs
selected. P -values given by t test have strong tendency to reduce its value when
many samples are available. In this example, because as many as 575 samples are
available, even gene and miRNAs associated with small distinction are associated
with small enough P -values. In order to avoid this difficulty, we reduce the number
of genes and miRNAs selected by t test as many as those by TD based unsupervised
FE, by selecting to ranked seven miRNA and 284 methylation probes attributed to
genes based upon P -values computed by t test. Then among 7 × 284 = 1967 pairs,
as small as 50 pairs are associated with adjusted P -values less than 0.01 attributed
to correlation coefficient. Thus, only 2.5% of 1967 pairs are significantly correlated.
Thus, the ratio decreases instead of increasing in opposed to the expectation.

It might be possible to select genes and miRNAs starting from identifying
significantly correlated pairs before finding genes and miRNAs distinct between
healthy control and patients. Then correlation coefficients are computed among all
pairs of genes and miRNAs. P -values are attributed to correlation coefficient (see
page 112 for how to compute P -values attributed to correlation coefficients) and
are corrected by BH criterion. Then among 24,906 × 723 = 18,007,038 pairs,
1,197,772 pairs are associated with adjusted P -values less than 0.01. Unfortunately,
these pairs include all genes and miRNAs. Thus, starting from pairs significantly
correlated is not an effective strategy. This poor performance achieved by t test
as well as correlation analysis demonstrates the difficulty of identifying gene
and miRNAs satisfying desired requirement, i.e., selected genes are methylated
distinctly between healthy control and patients, miRNAs selected are expressed
distinctly between healthy controls and patients, selected genes and miRNAs are
significantly correlated, which is easily achieved by TD based unsupervised FE.

Before closing this section, genes and miRNA selected should be biologically
evaluated, too. First, 240 gene symbols associated with 284 probes are uploaded
to DAVID (Table 7.31). At a glance, although it does not look deeply related to
cancers, detailed investigation can alter this impression. This data is about ovarian
cancer. The most major subtype is surface epithelial-stromal tumor which is known
to be associated with keratinization [13]. Thus, the detection of keratinization as
the most enriched term is reasonable, while the third enriched one is also related to
keratinization. Because the fifth one, epidermis development, is the parent term of
keratinization, it is also understandable.
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Table 7.31 GO BP enrichment by the 274 gene symbols identified by TD based unsupervised FE
for ovarian cancer data from TCGA

Category Term Genes count % P -value
Adjusted
P -value

GOTERM_BP_DIRECT Keratinization 14 6.2 9.3E−15 1.1E−11

GOTERM_BP_DIRECT Peptide cross-linking 14 6.2 1.7E−14 9.6E−12

GOTERM_BP_DIRECT Keratinocyte differentiation 15 6.6 2.8E−13 1.1E−10

GOTERM_BP_DIRECT Acute-phase response 7 3.1 6.4E−6 1.8E−3

GOTERM_BP_DIRECT Epidermis development 9 4.0 8.0E−6 1.8E−3

Adjusted P -values are by BH criterion

Next, the selected seven miRNAs are uploaded to DIANA-mirpath for the
evaluation (Fig. 7.19). It is obvious that they are enriched with various cancers.
Thus, the selected seven miRNAs are supposed to be related to cancers.

In conclusion, TD based unsupervised FE successfully identifies reasonable
genes and miRNAs also from the biological point of view.

7.10 Summary

Because TD based unsupervised FE was more recently proposed than PCA based
unsupervised FE, the examples of applications of TD based unsupervised FE
introduced in this chapter are very limited. In spite of that, it still covers wide range
of applications tried in the previous chapter using PCA based unsupervised FE:
analysis of time course data set, integrated analysis of multi-omics data set, and
identification of disease causing genes. In addition to this, it has new application
target, e.g., application to in silico drug discovery.

The general procedure of application of TD based unsupervised FE is as follows.
If there are no tensors available, generate case I or case II tensor of type I.
Occasionally, it might be requires to generate type II tensor in order to reduce
the required computational memory. If generated type II tensor is matrix, apply
PCA. If not, apply HOSVD. If type II tensor is employed, generate missing singular
value vectors by multiplying original tensor to obtained singular value vectors. Seek
singular value vectors attributed to samples coincident with desired property, e.g.,
distinction between controls and treated samples. Then, in order to select singular
value vectors attributed to features used for FE, core tensor is investigated. Singular
value vectors that share core tensor with larger absolute values with singular value
vectors attributed to samples associated with desired properties are selected. P -
values are attributed to features using selected singular value vectors attributed to
features with assuming χ2 distributions. P -values are corrected by BH criterion and
features associated with adjusted P -values less than 0.01.

This general procedure can be applied to wide range of bioinformatics topics
depending upon what kind of singular value vectors attributed to samples are
selected. In this sense, TD based unsupervised FE is expected to be applicable to
wider range of biological problems other than those treated in this chapter.
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Fig. 7.19 Heatmap that summarize the results of DIANA-mirpath for the selected seven miRNAs,
with specifying “pathways union” option

Appendix

Universarity of miRNA Transfection

Study 1

This data set includes transfection of three miRNAs, miR-200a, 200b, and 200c.
The number of probes in microarray is as many as 43,376. For each of three,
two paired experiments of treated and control samples. Treated and control sample
measurement is performed by one microarray. Thus these two must be retrieved
from it (columns annotated as gProcessedSignal and rProcessedSignal). Then, it
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is possible to make a tensor, xij1j2j3 ∈ R
43376×3×2×2 where i stands for probes,

j1 stands for miRNAs, j2 stands for two replicates, and j3 stands for control vs
treated samples. Nevertheless, it is not suitable for this specific case. If the number
of components is two, automatically the two components of singular value vectors
are uj = uj ′ and uj = −uj ′ where j and j ′ are each of two categories. The
present purpose is to see if the components independent of category exist. This
means, the setup that always results in the components independent of category is
not good. Therefore, in this specific case, we format mRNA expression profiles as
xij ∈ R

43,376×12 where 1 ≤ j ≤ 6 and 7 ≤ j ≤ 12 are control and treated
samples, respectively. PCA is applied to xij such that PC score, u� ∈ R

43376, and
PC loading, v� ∈ R

12, are attributed to probes and samples, respectively. As a
result, we find that v2 represents distinct expression between control and treated
samples, but independent of miRNAs transfected (Fig. 7.20). This suggests that
there are non-negligible number of mRNAs affected by sequence-nonspecific off-
target regulation. P -values are attributed to probes using the second PC score u2
with assuming χ2 distribution as

Pi = Pχ2

[

>

(
u2i

σ2

)2
]

. (7.57)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Fig. 7.20 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 1
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Study 2

This data set includes two miR-7 transfection experiments, two miR-128 trans-
fection experiments, and three control experiments, normalized by mas5 proce-
dure [17]. As mentioned in the beginning of the previous chapter, microarray
technology measures photo emission of hybridized probes. Thus, various normal-
ization procedures are applied. mas5 is one of such popular procedures, although
I do not intend to explain mas5 in more detail, because it is beyond the scope of
this textbook. Because of unmatched number of experiments of treated and control
samples, they are difficult to be formatted in tensor. Thus it is instead formatted as
matrix, xij ∈ R

54675×7, where j = 1, 2 corresponds to miR-7 transfection j = 3, 4
corresponds to miR-128 transfection and 5 ≤ j ≤ 7 correspond to control samples.
PCA is applied to xij such that PC score, u� ∈ R

54675, and PC loading, v� ∈ R
7, are

attributed to probes and samples, respectively. The result is a bit disappointing. In
contrast to Fig. 7.20, we cannot find any PC loading that is constant independent
of miRNAs transfected. Figure 7.21 shows the second PC loading, v2, which
exhibits opposite signs between miR-7 transfection and miR-128 transfection. In
spite of that, Fig. 7.21 still suggests the possibility of sequence-nonspecific off-
target regulation. As mentioned previously, the only canonical function of miRNA
is to downregulate target mRNAs. With only this function, it is impossible to assign
opposite signs toward controls between miR-7 and miR-128 transfection as shown
in Fig. 7.21. Downregulation can result in only same signs towards controls. At
least, either of miR-7 or miR-128 transfection must be associated with sequence-
nonspecific off-target regulation that can cause upregulation. Thus, we keep the
selection of the second PC loading and assign P -values to probes as Eq. (7.57).

Fig. 7.21 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

x_2j

m
iR

−
7

m
iR

−
7

m
iR

−
12

8

m
iR

−
12

8

C
on

tr
ol

C
on

tr
ol

C
on

tr
ol



7.10 Summary 271

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 3

This data set includes two miR-7 transfection experiments, two miR-128 transfec-
tion experiments, and six control experiments, normalized by plier procedure [18].
Plier is yet another procedure that normalizes microarray, although I do not intend
to explain plier in more detail, because it is beyond the scope of this textbook.
Because number of experiments of treated and control samples, they are difficult to
be formatted in tensor. Thus it is instead as matrix, xij ∈ R

54675×10, where j = 1, 2
corresponds to miR-7 transfection j = 3, 4 corresponds to miR-128 transfection
and 5 ≤ j ≤ 10 correspond to control samples. PCA is applied to xij such that PC
score, u� ∈ R

54675, and PC loading, v� ∈ R
10, are attributed to probes and samples,

respectively. The result is similar to study 2. In contrast to Fig. 7.20, we cannot find
any PC loading that is constant independent of miRNAs transfected. Figure 7.22
shows the second PC loading, v2, which exhibits opposite signs between miR-7
transfection and miR-128 transfection. As in the study 2, we keep the selection of
the second PC loading and assign P -values to probes as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Fig. 7.22 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 3
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Study 4

This data set includes two replicates of nine transfected miRNAs (miR-7/9/122a/
128a/132/133a/142/148b/181a) and corresponding 18 control samples. Thus, the
total number of samples is 36. This is successfully formatted as tensor, xijk ∈
R

23651×18×2 where i stands for probes, j stands for nine miRNAs transfection times
two biological replicates, and k is control and treated samples. We apply HOSVD
algorithm, Fig. 3.8, to xijk as

xijk =
23651∑

�1=1

18∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.58)

where u(i)
�1

∈ R
23651, u(j)

�2
∈ R

18, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
23651×18×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.23). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 6. P -values are attributed to probes using the sixth
PC score u(i)

6 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
6i

σ6

)2
⎤

⎦ . (7.59)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 5

This data set includes four profiles to which mock and cel-miR-67 miR-509/199a-
3p are transfected. We format it to matrix xij ∈ R

41539×4. PCA is applied to xij

and the second PC loading, v2, is selected as that exhibits distinction between
mock + cel-miR-67 and miR-509/199a-3p (Fig. 7.24). Although outcome cannot
be said very promising, because v2 is best fitted with the requirement, P -values are
attributed to probes using Eq. (7.57). P -values are corrected by BH criterion and
probes associated with adjusted P -values less than 0.01 are selected.

Study 6

This data set includes transfection of eight miRNAs, miR-10a-5p, 150-3p/5p, 148a-
3p/5p, 499a-5p, 455-3p. The number of probes in microarray is as many as 62,976.
The number of samples is 16 composed of combination of miRNAs and cell lines.
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Fig. 7.23 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained by HOSVD applied
to xijk made out of study 4

Not all miRNAs are used equally. For each of 16, two paired experiments of treated
and control samples. Treated and control sample measurement is performed by
one microarray. Thus these two must be retrieved from it (columns annotated as
gProcessedSignal and rProcessedSignal). This is successfully formatted as tensor,
xijk ∈ R

62976×16×2 where i stands for probes, j stands for combinations of eight
miRNAs transfection and cell lines, and k is control and treated samples. We apply
HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
62976∑

�1=1

16∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.60)

where u(i)
�1

∈ R
62976, u(j)

�2
∈ R

16, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
62976×16×2 is a core tensor. Now we need to find u(k)

�3
satisfying
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Fig. 7.24 The second PC
loading, v2, obtained by PCA
applied to xij made out of
study 5
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Fig. 7.25 The second singular value vector, u(k)
2 , attributed to the various combinations of control

and cell lines, and the first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained
by HOSVD applied to xijk made out of study 6

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.25). After investigating which G(�1, 1, 2) has the largest
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absolute value, we find that �1 = 7. P -values are attributed to probes using the
seventh PC score u(i)

7 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
7i

σ7

)2
⎤

⎦ . (7.61)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 7

This data set includes transfection of nine miR-205/29a/144-3p/5p, 210, 23b,
221/222/223. The number of probes in microarray is as many as 62,976. The
number of samples is 19 composed of combination of miRNAs and cell lines. Not
all miRNAs are used equally. For each of 19, two paired experiments of treated
and control samples. Treated and control sample measurement is performed by
one microarray. Thus these two must be retrieved from it (columns annotated as
gProcessedSignal and rProcessedSignal). This is successfully formatted as tensor,
xijk ∈ R

62976×19×2 where i stands for probes, j stands for combinations of eight
miRNAs transfection and cell lines, and k is control and treated samples. We apply
HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
62976∑

�1=1

19∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.62)

where u(i)
�1

∈ R
62976, u(j)

�2
∈ R

19, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
62976×19×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy this
requirement (Fig. 7.26). After investigating which G(�1, 1, 2) has the larger absolute
values, we find that �1 = 2, 3. P -values are attributed to probes using the second
and third PC scores u(i)

�1
, �1 = 2, 3 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

3∑

�1=2

(
u

(i)
�1i

σ�1

)2⎤

⎦ . (7.63)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.
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Fig. 7.26 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to the combinations of miRNAs and cell lines, obtained
by HOSVD applied to xijk made out of study 7

Study 8

This data set includes transfection of two miRNAs, miR-146a/b. The number of
probes in microarray is as many as 43,379. The number of samples is 18 composed
of six miR-146a OE, four miR-146b OE, and eight miR-146a KO. For each of 19,
two paired experiments of treated and control samples. Treated and control sample
measurement is performed by one microarray. Thus these two must be retrieved
from it (columns annotated as gProcessedSignal and rProcessedSignal). This is
successfully formatted as tensor, xijk ∈ R

43379×18×2 where i stands for probes,
j stands for combinations of eight miRNAs transfection and cell lines, and k is
control and treated samples. We apply HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
43379∑

�1=1

18∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.64)

where u(i)
�1

∈ R
43379, u(j)

�2
∈ R

18, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
43379×18×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
this requirement (Fig. 7.27). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 5. P -values are attributed to probes using the fifth
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Fig. 7.27 The second singular value vector, u(k)
2 , attributed to control and treated samples, and the

first singular value vector, u(j)

1 , attributed to miRNAs and replicates, obtained by HOSVD applied
to xijk made out of study 8

PC score u(i)
5 with assuming χ2 distribution as

Pi = Pχ2

⎡

⎣>

(
u

(i)
5i

σ5

)2
⎤

⎦ . (7.65)

P -values are corrected by BH criterion and probes associated with adjusted P -
values less than 0.01 are selected.

Study 9

This data set includes transfection of two miRNAs, miR-107/181b. transfected to
HeLa cell lines. The number of probes in microarray is as many as 9987. The
number of samples is 18 composed of six controls, two anti-miR-107, four miR-107,
two anti-miR-181b, and four miR-181b transfected samples. This is successfully
formatted as tensor, xijk ∈ R

9987×16×3 where i stands for probes, j stands for
replicates, and k is control, miR-107 and miR-181b. We apply HOSVD algorithm,
Fig. 3.8, to xijk as

xijk =
9987∑

�1=1

6∑

�2=1

3∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.66)
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Fig. 7.28 The second
singular value vector, u(k)

2 ,
attributed to control, miR-107
and miR-181b transfection,
and the first singular value
vector, u(j)

1 , attributed to
miRNAs and replicates,
obtained by HOSVD applied
to xijk made out of study 9
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where u(i)
�1

∈ R
9987, u(j)

�2
∈ R

6, u(k)
�3

∈ R
3 are singular value vectors and

G(�1, �2, �3) ∈ R
9987×6×3 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32 = −u

(k)
�33; �3 = 2 turns out to satisfy this requirement. On the

other hand, we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to
satisfy this requirement (Fig. 7.28). After investigating which G(�1, 1, 2) has the
largest absolute value, we find that �1 = 2. P -values are attributed to probes using
the second PC score u(i)

2 with assuming χ2 distribution as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Study 10

Everything is the same as study nine other than that transfected cell line is HEK 293
cell line (see Fig. 7.29 for singular value vectors selected).
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Fig. 7.29 The second
singular value vector, u(k)

2 ,
attributed to control, miR-107
and miR-181b transfection,
and the first singular value
vector, u(j)

1 , attributed to
miRNAs and replicates,
obtained by HOSVD applied
to xijk made out of study 10
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Study 11

This data set includes transfection of a miRNA, miR-181b transfected to SH-SY5Y
cell line. The number of probes in microarray is as many as 9987. The number of
samples is eight composed of four controls, two anti-miR-181b, and two miR-181b
transfected samples. This is successfully formatted as tensor, xijk ∈ R

9987×4×2

where i stands for probes, j stands for replicates, and k is control and miR-181b.
We apply HOSVD algorithm, Fig. 3.8, to xijk as

xijk =
9987∑

�1=1

4∑

�2=1

2∑

�3=1

G(�1, �2, �3)u
(i)
�1i

u
(j)
�2j

u
(k)
�3k

(7.67)

where u(i)
�1

∈ R
9987, u(j)

�2
∈ R

4, u(k)
�3

∈ R
2 are singular value vectors and

G(�1, �2, �3) ∈ R
9987×4×2 is a core tensor. Now we need to find u(k)

�3
satisfying

u
(k)
�31 = −u

(k)
�32; �3 = 2 turns out to satisfy this requirement. On the other hand,

we need to find u(j)
�2

satisfying u
(j)
�2j

= constant; �2 = 1 turns out to satisfy
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Fig. 7.30 The second
singular value vector, u(k)

2 ,
attributed to control and
miR-181b transfection, and
the first singular value vector,
u(j)

1 , attributed to miRNAs
and replicates, obtained by
HOSVD applied to xijk made
out of study 11
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this requirement (Fig. 7.30). After investigating which G(�1, 1, 2) has the largest
absolute value, we find that �1 = 2. P -values are attributed to probes using the
second PC score u(i)

2 with assuming χ2 distribution as Eq. (7.57). P -values are
corrected by BH criterion and probes associated with adjusted P -values less than
0.01 are selected.

Drug Discovery From Gene Expression: II

Heart Failure

Human gene expression profiles are downloaded from GEO with GEO ID
57345. File used is GSE57345-GPL11532_series_matrix.txt.gz. Rat heart gene
expression profiles are downloaded from GEO with GEO ID GSE59905.
Files used are GSE59905-GPL5426_series_matrix.txt.gz, and GSE59905-
GPL5425_series_matrix.txt.gz. 3937 genes are shared between human and rat.
Case II tensor, xij1j2j3 , is generated as
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xij1j2j3 = xij1j2xij3 . (7.68)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between three
classes, healthy control, idiopathic dilated cardiomyopathy, ischemic stroke, by
applying categorical regression

u
(j3)
�3j3

= a�3 +
3∑

s=1

b�3sδj3s (7.69)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 2, 3, 5, 17, 313 are associated with adjusted P -values less than
0.01, raw P -values of which are 1.65 × 10−17, 1.00 × 10−39, 1.29 × 10−4, 4.97 ×
10−6 and 1.554 × 10−4. Among them we select �3 = 2, 3 because they have more
contribution than others. Figure 7.31a shows the u(j3)

�3
, 1 ≤ �3 ≤ 3.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.31b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.72,−0.82, 0.51, and −0.09. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with
larger absolute G(�1, 2, 2, �4) or G(�1, 2, 3, �4) in order to select compounds j1
and genes i associated with time dependence and distinction between patients
and healthy controls simultaneously. In order that, we list top 20 G(�1, 2, 2, �4)

or G(�1, 2, 3, �4) (Table 7.32). Because G gradually decreases, we cannot select
specific cut off. Thus, tentatively, we select �1 and �4 associated with top 10 Gs;
�1 = 2 and �4 = 21, 25, 27, 28, 33, 36, 37, 38, 41, 42. Figure 7.31c shows u(j1)

2 .

Forty three outlier drugs,
∣∣∣u(j1)

2j1

∣∣∣ > 0.1, blue parts, are selected, by visual inspection,

because P -values computed from u(j1)

2 and corrected by BH criterion cannot be less
than 0.01. On the other hand, P -values are attributed to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=21,25,27,28,33,36,37,38,41,42

(
u�4i

σ�4

)2
⎤

⎦ (7.70)

P -values are corrected by BH criterion and 274 genes associated with adjusted P -
values less than 0.01 are selected.

PTSD

PTSD model rat amygdala and hippocampus gene expression are downloaded
from GEO with GEO ID GSE60304. A file GSE60304_series_matrix.txt.gz
is used. Gene expression profiles of the brain for drug treatments of rats are
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Fig. 7.31 (a) u(j3)
�3

, 1 ≤ �3 ≤ 3, P -values are computed by categorical regression, Eq. (7.69). (b)

u(j2)
�2

, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol: �2 = 2, green cross symbol: �2 = 3,

blue diamond: �2 = 4. r: correlation coefficient. (c) Histogram of u(j1)

2 . Blue parts are selected
ones. Vertical red broken line is 0
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Table 7.32 Top 20 G(�1, 2, 2, �4) or G(�1, 2, 3, �4)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 2 3 2 2 3 3 2 3 3 2

�4 27 38 33 28 41 37 21 36 42 25

G(�1, 2, �3, �4) 66.2 −43.7 40.7 −40.2 38.2 −31.6 28.5 −26.8 −26.2 −26.2

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 2 3 2 2 3 3 2 2 2 3
�4 40 29 31 39 32 33 26 11 18 31
G(�1, 2, �3, �4) −25.5 25.2 −22.6 21.8 20.7 −19.7 −19.5 −18.2 −17.3 15.4

downloaded from GEO with GEO ID GSE59895. Files used are GSE59895-
GPL5425_series_matrix.txt.gz and GSE59895-GPL5426_series_matrix.txt.gz.
Case II tensor, xij1j2j3j4j5 , is generated as

xij1j2j3j4j5 = xij1j2xij3j4xij3j5 . (7.71)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3j4j5 .

In order to identify u(j4)
�4

and u(j5)
�5

associated with three classes, control samples,
minimal behavioral response samples, and extreme behavioral response samples, by
applying categorical regression,

u
(j4)
�j4

= a� +
3∑

s=1

b�sδj4s (7.72)

u
(j5)
�j5

= a� +
3∑

s=1

b�sδj5s (7.73)

where regression coefficients are shared between �4 = �5 = �. P -values computed
by categorical regression are corrected by BH criterion. Then, only � = 3 is
associated with adjusted P -values less than 0.05 (Fig. 7.32a).

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.32b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.75,−0.81,−0.30, and 0.50. Then �2 = 2 with

largest absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�6

associated
with larger absolute G(�1, 2, �3, 3, 3, �6) in order to select compounds j1 and
genes i associated with time dependence and distinction between patients and
healthy controls simultaneously. In order that, we list top 20 G(�1, 2, �3, 3, 3, �6)

(Table 7.33). Because G gradually decreases, we cannot select specific cut off.
Thus, tentatively, we select �1 and �4 associated with top 10 Gs; �1 = 2 and
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Table 7.33 Top 20 G(�1, 2, �3, 3, 3, �6)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 1 1 1 1 1 1 1 1 1 1

�6 81 84 88 77 85 75 83 90 90 102

G(�1, 2,

�3, 3, 3, �6)

−0.133 0.112 0.110 −0.078 0.075 −0.075 0.074 0.069 0.069 −0.063

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 1 1 2 2 2 1 2 2 1 2
�6 76 80 94 76 128 285 86 286 92 282
G(�1, 2,

�3, 3, 3, �6)

−0.063 0.062 0.054 −0.054 −0.053 −0.052 0.048 0.047 0.045 0.045

�6 = 75, 77, 81, 83, 84, 85, 88, 89, 90, 102. Figure 7.32c shows u(j1)

2 . Six outlier

drugs, u
(j1)

2j1
< −0.2 and u

(j1)

1j1
< −0.15, blue parts, are selected, by visual

inspection, because P -values computed from u(j1)

2 and corrected by BH criterion
cannot be less than 0.01. On the other hand, P -values are attributed to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�6=75,77,81,83,84,85,88,89,90,102

(
u�6i

σ�6

)2
⎤

⎦ (7.74)

P -values are corrected by BH criterion and 374 genes associated with adjusted P -
values less than 0.01 are selected.

ALL

Bone marrow gene expression profiles of drug treated rats are downloaded
from GEO with GEO ID GSE59894, and ALL human bone marrow gene
expression is from GEO with GEO ID GSE67684. Used files are GSE67684-
GPL570_series_matrix.txt.gz, GSE67684-GPL96_series_matrix.txt.gz, GSE59894-
GPL5425_series_matrix.txt.gz, and GSE59894-GPL5426_series_matrix.txt.gz. In
this case both gene expression profiles are time dependent. ALL human bone
marrow gene expression profiles are measured at four times points, 0, 8, 15, and 33
days after a remission induction therapy. Case II tensor, xij1j2j3j4 is obtained as

xij1j2j3j4 = xij1j2xij3j4 (7.75)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3j4 .
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Fig. 7.32 (a) u(j3)
�3

, 1 ≤ �3 ≤ 3, P -values are computed by categorical regression, Eqs. (7.72) and

(7.73). (b) u(j2)
�2

, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol: �2 = 2, green cross symbol:

�2 = 3, blue diamond: �2 = 4. r: correlation coefficient. (c) Histogram of u(j1)

2 . Blue parts are
selected ones. Vertical red broken line is 0



286 7 Application of TD Based Unsupervised FE to Bioinformatics

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
ALL

r=−0.75,−0.24,−0.58,0.78

days
1 2 3 4 5

−
0.

5
0.

0
0.

5

ALL
r= 0.94,−0.20,0.96,0.14

time

Fig. 7.33 (a) u(j3)
�3
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, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol:
�2 = 2, green cross symbol: �2 = 3, blue diamond: �2 = 4. r: correlation coefficient

We compute correlation coefficients between u(j3)
�3

and days after a remission
induction therapy, we decide to select �3 = 4 because it has the largest absolute
value of correlation coefficient (Fig. 7.33a).

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.33b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between u(j2)
�2

and (1/4,1,3,5) are 0.94,−0.20, 0.96, and 0.14. Then �2 = 3 with largest absolute
value is selected. Then we need to find u(j1)

�1
and u(i)

�5
associated with larger absolute

G(�1, 3, 4, �4, �5) in order to select compounds j1 and genes i associated with time
dependence and distinction between patients and healthy controls simultaneously. In
order that, we list top 20 G(�1, 3, 4, �4, �5) (Table 7.34). For �1 and �5, we decide
to select those associated with top 10 Gs. As a result, �1 = 2, 3, 5, 6, 9, 10 and
�5 = 1, 2, 3, 5 are selected. P -values are attributed to j1 and i as

Pj1 = Pχ2

⎡

⎣>
∑

�1=2,3,5,6,9,10

(
u�1i

σ�1

)2
⎤

⎦ , (7.76)

Pi = Pχ2

⎡

⎣>
∑

�5=1,2,3,5

(
u�5i

σ�5

)2
⎤

⎦ . (7.77)

P -values are corrected by BH criterion and two compounds and 24 genes associated
with adjusted P -values less than 0.01 are selected.
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Table 7.34 Top 20 G(�1, 3, 4, �4, �5)

Rank 1 2 3 4 5 6 7 8 9 10

�1 3 5 2 3 10 9 6 3 2 9

�4 4 4 4 7 4 4 4 5 4 4

�5 1 1 1 5 3 3 1 5 2 2

G(�1, 3, 4,

�4, �5)

260.6 −40.2 40.6 −20.9 20.7 20.4 −19.9 −18.0 16.8 −15.0

Rank 11 12 13 14 15 16 17 18 19 20
�1 8 6 14 3 3 13 12 2 1 3
�4 4 4 4 8 2 4 4 4 4 2
�5 6 4 2 5 5 4 2 3 4 1
G(�1, 3, 4,

�4, �5)

−13.9 13.3 13.2 −12.8 12.3 11.6 11.4 11.3 10.5 −10.5

Diabetes

Drug treated rat kidney gene expression profiles are downloaded from GEO
with GEO ID GSE59913. Human diabetic kidney gene expression profile are
downloaded from GEO with GEO ID GSE30122. Files used are GSE59913-
GPL5425_series_matrix.txt.gz, GSE59913-GPL5426_series_matrix.txt.gz, and
GSE30122_series_matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.78)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between four
classes, normal human glomeruli, normal human kidney, normal human tubuli, and
diabetic human kidney, by applying categorical regression

u
(j3)
�3j3

= a�3 +
4∑

s=1

b�3sδj3s (7.79)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 1, 4 are associated with adjusted P -values less than 0.01, raw
P -values of which are 2.69 × 10−9 and 1.66 × 10−9 and are selected. Figure 7.34a
shows the u(j3)

�3
, 1 ≤ �3 ≤ 4.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.34b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.60,−0.85, 0.53, and 0.20. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with
larger absolute G(�1, 2, 1, �4) or G(�1, 2, 4, �4) in order to select compounds j1
and genes i associated with time dependence and distinction between patients and
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Table 7.35 Top 20 G(�1, 2, 1, �4) or G(�1, 2, 4, �4)

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 3 4 4 3 9 11 2 4

�3 1 4 1 1 4 4 1 1 1 1

�4 1 4 1 1 4 4 48 59 42 42

G(�1, 2, �3, �4) −1410 955 −75 74 −53 51 38 34 −34 34

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 9 2 9 11 9 6 11 9 4
�3 4 1 1 1 1 4 1 1 4 1
�4 40 29 31 39 32 33 26 11 18 31
G(�1, 2, �3, �4) −33 33 −32 31 31 −30 −30 −29 −29 28

healthy controls simultaneously. In order that, we list top 20 G(�1, 2, 1, �4) or
G(�1, 2, 4, �4) (Table 7.35). Because top two Gs are outstandingly large, we select
�1 = 2 and �4 = 1, 4 associated with top two Gs.

Figure 7.34c shows u(j1)

2 . Fourteen outlier drugs, u
(j1)

2j1
> 0.13, blue parts, are

selected, by visual inspection, because P -values computed from u(j1)

2 and corrected
by BH criterion cannot be less than 0.01. On the other hand, P -values are attributed
to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=1,4

(
u�4i

σ�4

)2
⎤

⎦ (7.80)

P -values are corrected by BH criterion and 65 genes associated with adjusted
P -values less than 0.01 are selected.

Renal Carcinoma

Drug treated rat kidney gene expression profiles are downloaded from GEO
with GEO ID GSE59913. Human renal cancer gene expression profile are
downloaded from GEO with GEO ID GSE40435. Files used are GSE59913-
GPL5425_series_matrix.txt.gz, GSE59913-GPL5426_series_matrix.txt.gz, and
GSE40435_series_matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.81)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between two
classes, normal and cancer kidney, by applying categorical regression
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, 1 ≤ �3 ≤ 4, P -values are computed by categorical regression, Eq. (7.79). (b)
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�2

, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol: �2 = 2, green cross symbol: �2 = 3,

blue diamond: �2 = 4. r: correlation coefficient. (c) Histogram of u(j1)

2 . Blue parts are selected
ones. Vertical red broken line is 0
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u
(j3)
�3j3

= a�3 +
2∑

s=1

b�3sδj3s (7.82)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 13, 15, 30, 33, 35 are associated with adjusted P -values less
than 0.05, raw P -values of which are 3.4 × 10−4, 1.1 × 10−3, 2.7 × 10−4,
1.1 × 10−4, and 2.4 × 10−4 and are selected. Figure 7.35a shows the u(j3)

�3
, �3 =

13, 15, 30, 33, 35.
Next we try to identify u(j2)

�2
associated with significant time dependence.

Figure 7.35b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.60,−0.84, 0.54, and 0.21. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with larger
absolute G(�1, 2, �3, �4), �3 = 13, 15, 30, 33, 35 in order to select compounds j1
and genes i associated with time dependence and distinction between patients and
healthy controls simultaneously. In order that, we list top 20 G(�1, 2, �3, �4), �3 =
13, 15, 30, 33, 35 (Table 7.36). For top 20 Gs, it is always that �1 = 2. On the
other hand, because G gradually changes, we cannot decide threshold values. Thus,
we tentatively decide that �4 = 186, 215, 233, 244, 251, 269, 274, 309, 312, 318
associated with top 10 Gs.

Figure 7.35c shows u(j1)

2 . Fourteen outlier drugs, u
(j1)

2j1
> 0.13, blue parts, are

selected, by visual inspection, because P -values computed from u(j1)

2 and corrected
by BH criterion cannot be less than 0.01. On the other hand, P -values are attributed
to ith gene as

Pi = Pχ2

⎡

⎣>
∑

�4=186,215,233,244,251,269,274,309,312,318

(
u�4i

σ�4

)2
⎤

⎦ (7.83)

Table 7.36 Top 20 G(�1, 2, �3, �4), �3 = 13, 15, 30, 33, 35

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 13 13 13 13 15 15 13 13 13 15

�4 215 269 233 186 309 312 251 244 274 318

G(�1, 2, �3, �4) 5.63 −5.30 5.08 −5.06 −4.84 4.78 4.66 4.61 4.57 −4.56

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 13 15 15 15 15 13 15 13 13 15
�4 289 399 336 206 363 255 375 219 342 297
G(�1, 2, �3, �4) −4.53 4.43 4.37 4.24 −4.19 −4.05 4.04 −3.97 −3.88 3.86
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, �3 = 13, 15, 30, 33, 35, P -values are computed by categorical regression,
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, 1 ≤ �2 ≤ 4, open triangle: �2 = 1, red plus symbol: �2 = 2, green cross

symbol: �2 = 3, blue diamond: �2 = 4. r: correlation coefficient. (c) Histogram of u(j1)

2 . Blue parts
are selected ones. Vertical red broken line is 0
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P -values are corrected by BH criterion and 225 genes associated with adjusted P -
values less than 0.01 are selected.

Cirrhosis

Drug treated rat liver gene expression profiles are downloaded from GEO
with GEO ID GSE59923. Cirrhosis patient human liver gene expression
profile is downloaded from GEO with GEO ID GSE15654. File used are
GSE15654_series_matrix.txt.gz, GSE59923-GPL5424_series_matrix.txt.gz,
GSE59923-GPL5425_series_matrix.txt.gz, and GSE59923-GPL5426_series_
matrix.txt.gz. Case II tensor, xij1j2j3 , is generated as

xij1j2j3 = xij1j2xij3 . (7.84)

HOSVD algorithm, Fig. 3.8, is applied to xij1j2j3 .

At first, we try to find u(j3)
�3

associated with significant distinction between three
classes, good, intermediate, and poor prognosis, by applying categorical regression

u
(j3)
�3j3

= a�3 +
3∑

s=1

b�3sδj3s (7.85)

P -values computed by categorical regression are corrected by BH criterion. Then
we found that �3 = 2, 6 are associated with adjusted P -values less than 0.01, raw
P -values of which are 2.3 × 10−14 and 1.0 × 10−9 and are selected. Figure 7.36a
shows the u(j3)

�3
, �3 = 2, 6.

Next we try to identify u(j2)
�2

associated with significant time dependence.

Figure 7.36b shows the u(j2)
�2

, 1 ≤ �2 ≤ 4. The correlation coefficients between

u(j2)
�2

and (1/4,1,3,5) are −0.56,−0.78, 0.52 and 0.36. Then �2 = 2 with largest

absolute value is selected. Then we need to find u(j1)
�1

and u(i)
�4

associated with larger
absolute G(�1, 2, �3, �4), �3 = 2, 6 in order to select compounds j1 and genes
i associated with time dependence and distinction between patients and healthy
controls simultaneously. In order that, we list top 20 G(�1, 2, �3, �4), �3 = 2, 6
(Table 7.37). For top 20 Gs, it is always that �1 = 2. On the other hand, because G

gradually changes, we cannot decide threshold values. Thus, we tentatively decide
to select 2 ≤ �4 ≤ 10 associated with top 10 Gs.

Figure 7.36c shows u(j1)

2 . Twenty seven outlier drugs,
∣∣∣u(j1)

2j1

∣∣∣ > 0.075, blue

parts, are selected, by visual inspection, because P -values computed from u(j1)

2 and
corrected by BH criterion cannot be less than 0.01. On the other hand, P -values are
attributed to ith gene as
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, �3 = 2, 6, P -values are computed by categorical regression, Eq. (7.85). (b)
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Table 7.37 Top 20 G(�1, 2, �3, �4), �3 = 2, 6

Rank 1 2 3 4 5 6 7 8 9 10

�1 2 2 2 2 2 2 2 2 2 2

�3 2 6 6 6 6 6 2 6 2 2

�4 2 8 7 6 9 10 6 5 4 3

G(�1, 2, �3, �4) −945 310 278 194 −123 93 77 −76 −73 −67

Rank 11 12 13 14 15 16 17 18 19 20
�1 2 2 2 2 2 2 2 2 2 2
�3 6 6 6 6 6 6 6 2 6 2
�4 4 11 12 17 13 3 16 7 23 5
G(�1, 2, �3, �4) −59 49 43 40 33 −32 −31 27 25 −23

Pi = Pχ2

⎡

⎣>
∑

2≤�4≤10

(
u�4i

σ�4

)2
⎤

⎦ (7.86)

P -values are corrected by BH criterion and 132 genes associated with adjusted P -
values less than 0.01 are selected.
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Appendix A
Various Implementations of TD

A.1 Introduction

Because TD is not a major technology, it might not be easy to find implementation
of TDs. Thus, we list a few of implementations in various platforms.

A.2 R

R is a major language used for data science. It has various implementations of TD.

A.2.1 rTensor

It is a part of CRAN. rTensor1 can be installed via standard install command,
install.packages. It includes the following:

• hosvd that executes Tucker decomposition using HOSVD algorithm.
• cp that executes CP decomposition.
• tucker that executes Tucker decomposition using HOOI algorithm.

1https://cran.r-project.org/web/packages/rTensor/index.html.
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A.2.2 ttTensor

It is a part of CRAN. ttTensor2

• TTSVD that executes tensor train decomposition.

A.3 Python

Python is a script language, which is recently adopted to machine learning.

A.3.1 HOTTBOX

HOTTBOX: Higher Order Tensors ToolBOX3

• HOSVD that executes Tucker decomposition using HOSVD algorithm.
• CPD that executes CP decomposition.
• HOOI that executes Tucker decomposition using HOOI algorithm.
• TTSVD that executes tensor train decomposition.

A.4 MATLAB

MATLAB is a software that aims matrix manipulations.

A.4.1 Tensor Toolbox

Tensor Toolbox4

• hosvd that executes Tucker decomposition using HOSVD algorithm.
• cp_als that executes CP decomposition.
• tucker_als that executes Tucker decomposition using HOOI algorithm.

2https://cran.r-project.org/web/packages/ttTensor/index.html.
3https://hottbox.github.io/stable/index.html.
4http://www.tensortoolbox.org.
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A.5 julia

julia is a script language that mainly aims statistical analysis.

A.5.1 TensorDecompositions.jl

TensorDecompositions.jl5 is a package that aims tensor decompositions.

• hosvd that executes Tucker decomposition using HOSVD algorithm.
• candecomp that executes CP decomposition.

A.6 TensorFlow

TensorFlow is a library for deep learning.

A.6.1 t3f

t3f6 is a package that aims tensor train decomposition.

5https://github.com/yunjhongwu/TensorDecompositions.jl.
6https://github.com/Bihaqo/t3f.
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Appendix B
List of Published Papers Related to the
Methods

Here is a comprehensive list of my papers where I applied PCA and TD based
unsupervised FE to various topics in genomic science. Some of them were also
cited in the preceding individual chapters.
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Glossary

Adjusted or corrected P -values P -values collected with considering multiple
comparisons.

BH criterion One of the methods that collect P -values obtained by some statis-
tical tests with considering multiple comparisons.

Categorical regression (analysis) Linear regression analysis that predict inde-
pendent variables from class labels represented as dummy variables as dependent
variables.

Cell division cycle The biological process that duplicates a cell into two. All
living organisms must perform cell division, because it is the only way for them
to increase the numbers.

Epigenetics The factor that can affect the amount of transcripts without modify-
ing genomic (DNA) sequence. Typical examples are DNA methylation, histone
modification, and non-coding RNAs.

Linear discriminant analysis The linear method that infers class labels from the
given feature variables, which is also applicable to multiple classes.

Multiomics The integration of distinct omics data, e.g., gene expression, pro-
moter methylation, metabolome, proteome, and SNP.

Sinusoidal regression Linear regression analysis assuming that a function obeys
sinusoidal shapes.

χ2 distribution The distribution that obeys sum of squared variables drawn from
N (0, 1).
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Solutions

Problems of Chap. 1

1.1

• book and pages
• water and temperature
• movie and running time
• stone and pieces
• human and height
• human and weight
• book and weight
• bottle and volume
• paper and thickness
• card and width

1.2 colors (red, blue, yellow, . . .), nations (Japan, USA, . . .), cities (Tokyo, Beijing,
Paris, . . .), towns (Atherton, Corte Madera, . . .), foods (apple, fish, . . .), names (Ben,
Taro, . . .), animals (lion, tiger, . . .), plants (cherry, sunflower, . . .), sports (baseball,
football, . . .), books (novel, fiction, . . .)

1.3 x +y +z, x −y −z, 2x +3y −4z, x +y −z, x +2y +z, x −y +z, 3z+2y +4z,
2x + 2y + 2z, x + 2y + z, x − y
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1.4

Persons Weight

Ben 34 kg

Tom 45 kg

Mac 70 kg

Naomi 64 kg

1.5
0 200100 300150

1 243

weights

suffix

Pork Fish BeefBread samples

1.6 Euclidean distance between beef and bread is

√
(1000 − 100)2 + (300 − 200)2 � 906 (B.1)

1.7

Fish

Beef

Pork

150

1000300

300

100

Price

Weight

200

1.8
Here is a new feature, 2 × weight + 3 × price.

Weight Price 2 × weight + 3 × price

Bread 200 100 700

Beef 300 1000 3600

Pork 100 300 1100

Fish 150 200 900
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1.9
Suppose, we would like to generate dummy vectors describing comic novels or

movies as

Title Hero Heroine Villain

Superman Clark Kent Lois Lane Lex Luthor

Batman Bruce Wayne Vicki Vale Joker

Spiderman Peter Parker Mary Jane Watson Green Goblin

1.10

X =
(

200 300 100 150
1 10 3 2

)
(B.2)

1.11

x1 = (200, 1) (B.3)

x2 = (300, 10) (B.4)

x3 = (100, 3) (B.5)

x4 = (150, 2) (B.6)

or

x1 = (200, 300, 100, 150) (B.7)

x2 = (1, 10, 3, 2) (B.8)

1.12

X =
(

100 1000 300 200
200 300 100 150

)
(B.9)

and

A =
(

1 1
2

1
2 1

)
(B.10)

then

X′ = AX =
(

200 1150 350 275
250 800 250 250

)
(B.11)
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1.13

x1jk =
⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ (B.12)

x2jk =
⎛

⎝
10 11 12
13 14 15
16 17 18

⎞

⎠ (B.13)

x3jk =
⎛

⎝
19 20 21
22 23 24
25 26 27

⎞

⎠ (B.14)

1.14

X =
⎛

⎝
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27

⎞

⎠ (B.15)

1.15
The three-mode tensor defined in exercise 1-13 is used as X . A is supposed to be

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ (B.16)

then

(A ×i X )1jk = (A ×i X )2jk = (A ×i X )3jk =
⎛

⎝
30 39 48
33 42 51
36 45 54

⎞

⎠ (B.17)

1.16

a = (1, 2, 3) (B.18)

and

b = (4, 5, 6) (B.19)

then

a ×0 b =
⎛

⎝
4 5 6
8 10 12
12 15 18

⎞

⎠ (B.20)
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Problems of Chap. 2

2.1

A =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ (B.21)

B =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ (B.22)

2.2

F =

⎛

⎜⎜
⎝

350 87.5 400 400
−100 37.5 −250 425
250 137.5 400 450
300 112.5 450 −225

⎞

⎟⎟
⎠ (B.23)

2.3

U =

⎛

⎜⎜
⎝

−0.5 −0.5
−0.5 −0.5
0.5 −0.5

−0.5 0.5

⎞

⎟⎟
⎠ (B.24)

Σ =
(

2 0
0 2

)
(B.25)

V =
(−1 0

0 −1

)
(B.26)

2.4

S =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 2 −2
0 0 −2 2

⎞

⎟⎟
⎠ (B.27)

then
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U =

⎛

⎜⎜⎜
⎝

0 0 0 1
0 0 1 0

− 1√
2

1√
2

0 0
1√
2

1√
2

0 0

⎞

⎟⎟⎟
⎠

(B.28)

and

SU =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0

−2
√

2 0 0 0
2
√

2 0 0 0

⎞

⎟⎟
⎠ (B.29)

2.5 They differ from each other because of mean extraction.

2.6

XT U =
( √

2 0 0 0
−√

2 0 0 0

)
(B.30)

Thus variance along the first direction is 4. Others are zero.

2.7 Residuals are zero.

2.8

●

−1.0 −0.5 0.0 0.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

PC1

P
C
2

●

●

The first vs the second PC scores. Black open circle: 1 ≤ i ≤ 3, red open circle:
4 ≤ i ≤ 6, green open circle: 7 ≤ i ≤ 9.
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Problems of Chap. 3

3.1
Suppose u = (1, 1, 1) and X is a tensor whose component is xijk = 1. Then,

X = u ×0 u ×0 u (B.31)

CP decomposition: In Eq. (3.1), L = 1, λ1 = 1, u(i)
1 = u(j)

1 = u(k)
1 = u.

Tucker decomposition: In Eq. (3.2), G(1, 1, 1) = 1 and other Gs are zero. u(i)
1 =

u(j)

1 = u(k)
1 = u. Other u(i)

�1
, u(j)

�2
, u(k)

�3
are zero.

Tensor train decomposition: In Eq. (3.3), R1 = R2 = 1. G(i)(i, 1) =
G(j)(j, 1, 1) = G(k)(k, 1) = 1.

3.2
When we add the term with �1 = 1, �2 = �3 = 2,

4 6 8 10 12

4
6

8
10

12

tensor

T
D

3.3
When L = 2,

4 6 8 10 12

4
6

8
10

12

tensor

T
D
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3.4 Because there are no ways to take partial summation of tensor train decompo-
sition, we cannot draw something that corresponds to these figures.

3.5

−2 0 2 4

−
3.

0
−

2.
0

−
1.

0
0.

0

tensor

T
D

3.6
Assume

X = a ×0 b ×0 c (B.32)

Then we get

a1b1c1 = 1 (B.33)

a1b2c1 = 2 (B.34)

a2b1c1 = 3 (B.35)

a2b2c1 = 4 (B.36)

a1b1c2 = 5 (B.37)

a1b2c2 = 6 (B.38)

a2b1c2 = 7 (B.39)

a2b2c2 = 8 (B.40)

From these, we get

a1 = 14

(b1 + b2)(c1 + c2)
(B.41)

a2 = 22

(b1 + b2)(c1 + c2)
(B.42)
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b1 = 16

(c1 + c2)(a1 + a2)
(B.43)

b2 = 20

(c1 + c2)(a1 + a2)
(B.44)

c1 = 10

(a1 + a2)(b1 + b2)
(B.45)

c2 = 26

(a1 + a2)(b1 + b2)
(B.46)

Starting

a = b = c =
(

1
1

)
(B.47)

In each iteration,

a =
( 7

2
11
2

)
, b =

(
1
1

)
, c =

(
1
1

)
(B.48)

a =
( 7

2
11
2

)
, b =

( 8
9

10
9

)
, c =

(
1
1

)
(B.49)

a =
( 7

2
11
2

)
, b =

( 8
9
10
9

)
, c =

( 5
9

13
9

)
(B.50)

This is the converged solution.

3.7

Xi×(jk) =
(

1 3 5 7
2 4 6 8

)
(B.51)

then

Xi×(jk)
(
Xi×(jk)

)T =
(

84 100
100 120

)
= 4

(
21 25
25 30

)
(B.52)

We would like to find eigenvalues and eigenvectors of

(
21 25
25 30

)
. In order that, we

need to solve eigen equation,
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∣∣∣∣
21 − λ 25

25 30 − λ

∣∣∣∣ = 0 (B.53)

(21 − λ)(30 − λ) − 252 = 0 (B.54)

λ2 − 51λ + 5 = 0 (B.55)

λ = 51 ± √
2581

2
(B.56)

On the other hand, if u is an eigenvector,

(
21 − λ 25

25 30 − λ

)(
u1

u2

)
= 0 (B.57)

then

u1 = λ − 30

25
u2 (B.58)

Since

λ − 30

25
= −9 ± √

2581

50
(B.59)

thus

u1 = −9 ± √
2581

50
u2 (B.60)

In order that |u| = 1,

u2
1 + u2

2 = 1 (B.61)
⎧
⎨

⎩
1 +

(
−9 ± √

2581

50

)2
⎫
⎬

⎭
u2

2 = 1 (B.62)

u1 = ±1
√

1 +
(−9±√

2581
50

)2
(B.63)

u2 = ±−9±√
2581

50√

1 +
(−9±√

2581
50

)2
(B.64)
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Then if we define

u+
1 = 1

√

1 +
(−9+√

2581
50

)2
(B.65)

u+
2 =

−9+√
2581

50√

1 +
(−9+√

2581
50

)2
(B.66)

u−
1 = 1

√

1 +
(−9−√

2581
50

)2
(B.67)

u−
2 =

−9−√
2581

50√

1 +
(−9−√

2581
50

)2
(B.68)

we can have

U(i) =
(

u+
1 u−

1
u+

2 u−
2

)
(B.69)

using the representation of Eq. (3.55). With applying similar computation to

Xj×(ik) =
(

1 2 5 6
3 4 7 8

)
(B.70)

and

Xk×(ij) =
(

1 2 3 4
5 6 7 8

)
(B.71)

we can get U(j) and U(k) as well. Then G can be computed by

G = X ×�1

(
U(i)

)T ×�2

(
U(j)

)T ×�3

(
U(k)

)T

(B.72)

3.8
Equations (3.26)–(3.28) are solutions.
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