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Abstract. Visualization is arguably the most powerful manual analytic method.
However, as enterprise data have grown in size and complexity, supporting fast
and intuitive data visualization has been become increasingly difficult. In par-
ticular, when the data being analyzed have many dimensions (e.g., feature
vectors having many attributes), conventional methods, when they can be used
at all, often make representational compromises that produce non-intuitive and
misleading graphical products.

Three conventional methods for displaying sets of high-dimensional vectors
on a flat computer display are described: pair-plots, feature-winnowing, and
parallel coordinate plots. These are compared with two methods the authors
have formulated, Recursive Stereographic Projection (RSP), and Tensor Pro-
jection (TP), for producing visual displays of high-dimensional discrete data that
are fast, intuitive, navigable, and informative, and tend to preserve geometric
characteristics of the original high-dimensional data such as, occlusion, prox-
imity, intersection, relative scale, spatial extent, shape, and coherence.

Several real-world examples of intuitive 2-dimensional renderings of high-
dimensional data are given. Suggestions for future research are made, and ref-
erences provided.

Keywords: Data visualization - High-dimensional data - Data mining

1 Feature Vectors and Feature Spaces

Vectors and vector-valued functions will be indicated by underscoring, e.g., V, A(x);
the norm of a vector is denoted |V|. The set of real numbers is denoted by R, and N-
dimensional Euclidean space by RN.

A feature is a numeric value chosen to encode an attribute of an entity being
modeled (e.g., size, quality, age, color, etc.). While features can be numbers, symbols,
or complex data objects, they are usually coded in numeric form before modeling is
performed.
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Once features have been designated, a feature space can be defined for a domain by
placing the features of each entity into an ordered array in a systematic way.

Each instance of an entity having the given features is then represented by a single
point in n-dimensional Euclidean space, called its feature vector. The space in which
the feature vectors reside is the feature space.

1.1 The Particular Benefits of Visualization
Visual analysis has significant advantages over tabular and chart-based analysis:

1. Visualization allows the analyst to develop “intuition” about the intelligence
domain, detection of known and emerging patterns, and characterization of entity
behaviors. When an analyst is able to see data, she develops an intuitive under-
standing of it that can be obtained in no other way.

2. Visualization can lead to the direct discovery of domain “rules”.

3. Visualization is an effective way to scan large amounts of data for “significant
differences” between classes. If the icons representing interesting behaviors are well
separated from uninteresting behaviors along some axis, this will be visually
apparent. The feature that axis represents, then, accounts for some of the difference
between interesting and uninteresting behaviors.

4. Visualization is a good technique for detecting poorly conditioned data. When data
are plotted, errors in data preparation often show up as unexpected irregularities in
the visual pattern of the data.

5. Visualization is a good technique for selecting a data model. For example, data that
is normally distributed will have a characteristic shape. Visual analysis lets the
analyst “see” which of several models might be most reasonable for a population
being studied.

6. Visualization is a good technique for spotting outliers and missing data. When data
are visualized, outliers (data not conforming to the general pattern of the popula-
tion) are often easy to pick out. Missing records may show up as “holes” in a
pattern, and missing fields within a record often break patterns in easily detectable
ways.

1.2 Visualization Methods

The most effective pattern recognition equipment known to man is “wetware”: the mass
of neurons between the users’ ears. Manual knowledge discovery is facilitated when
data are presented in a form that allows the human mind to interact with them at an
intuitive level. Visual data presentation provides a high-bandwidth, naturally intuitive
gate to the human mind.

Data visualization is more than depiction of data in interesting plots. The goal of
visualization is to help the analyst gain intuition about the data being observed.
Therefore, visualization applications frequently assist the user in selecting display
formats, viewer perspectives, and data representation schemas that foster deep intuitive
understanding. Of particular importance is the fact that visualization allows fast mental
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correlation of many attributes at once: it makes the joint distribution of features
accessible.

Several conventional techniques exist for the visualization of 2 and 3-dimensional
data: scatter-plots of features by pairs, histograms, relationship trees, bar charts, pie
charts, tables, etc. Modern visualization tools often include other capabilities (e.g.,
searching, sorting, scaling). Advanced functions might include:

drill-down

hyper-links to related data sources

multiple simultaneous data views

roam/pan/zoom

select/count/analyze objects in display

dynamic/active views (e.g., Java applets)

using animation to depict a sequence or process

creative use of color

statistical summarization

use of glyphs (icons indicating additional information about displayed objects)

When data have more than 3-dimensions, however, they become more difficult to
conceptualize. Graphical techniques for representing high-dimensional data are often
challenging to implement and use.

2 Classical Methods

e Many conventional methods have been developed for the representation of high-
dimensional data. Most rely on some non-geometric way to retain some of the
information lost when dimensions are suppressed:

e Using “glyphs”: indicating two features as spatial x-y coordinates, and other fea-
tures using aliases such as color, shape, size, etc. This simple type of display is often
supported by conventional OLAP tools.

e Performing orthographic projection (“feature winnowing”): using spatial dimen-
sions to plot two or three features, while ignoring the rest

e Using trees and graphs to encode dimensions in different regions of the display
(e.g., quadtrees)

e Plotting data in parallel coordinates, so that dimensions are spread horizontally
across the display

2.1 Pair Plots

Pair plots are an extreme instance of feature-winnowing: plot the data in just two of the
available N features and ignore the rest. As such, pair plots are not actually a method
for visualizing high-dimensional data; but they are the most common approach to the
dimensionality problem in practice.

When this approach is taken, there are two common strategies to mitigate infor-
mation loss. Strategy 1 is to select the two features that are the most informative when
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used together. Strategy 2 is to plot thumbnails of every one of the N-choose-2 possible
pairs of features.

These strategies have their own inherent problems. For Strategy 1, users will often
choose to plot the data using the two features most highly correlated with the data being
sought. However, since the most informative features are often correlated with each
other, this strategy amounts to plotting data using redundant features, and often yields
sub-optimal results.

For Strategy 2, the number of pair plots grows quadratically in the number of
features; with just N = 10 features, the number of pair plots is already up to 45. Plotting
data in pairs hides the contextual links between groups of features, so all 45 plots must
be mentally re-contextualized by the user... who is likely plotting the data to learn the
context in the first place. Further, it is a nasty (but little known) statistical fact that N
columns of data can be pairwise correlated in every pair, but jointly uncorrelated. Since
it is the joint-correlation that is the repository of reliable information, the pair plot
approach can result in both imaginary and overlooked discoveries. Figure 1 is a pair
plot of 5,000 vectors having 5 features each. There are 100 classes, but much dis-
criminating information has been lost.

File displayed: db.csv
Uectors: 5000

2 Xti 0 80~ icks 0.3821496
0.9711418, 0 , T2 ).998628, 0.96576481

Fig. 1. 100 clusters projected onto features 1 and 2 only
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2.2 The Bad News About Feature-Winnowing

Does N-dimensional visualization show me anything I can’t see in lower dimensions?
That is, how much damage is done by simply discarding a single feature, going from
N-dimensions to N — 1 dimensions? The following very real example shows that the
loss of information can be substantial, even for very simple data sets.

For this example, we are given a data set of 4-dimensional feature vectors that is
known to consist of five classes: A, B, C, D, and E, each containing over 1,000 vectors.
The vectors of each class form tight and distinct clusters that do not intersect any of the
others. If our graphics tools only support up to three dimensions, one of the features of
our 4-dimensional space will have to be removed (Fig. 2).

Fig. 2. Plot of feature vectors after feature-winnowing into 3-dimensional space (the coordinate
axes can be seen extending out from the body of cluster B)

Plotted using Plotted using
features 1,2, &3 features 1,2, & 4
Plotted using Plotted using

features 1,3, & 4 features 2, 3, & 4

Fig. 3. Display the data in several projections to insure that something isn’t “lost” by leaving
out a “good” dimension.
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To determine which feature to remove, each of the four possible projections is
visualized in three dimensions; it doesn’t seem to matter which is removed. However,
cluster E is not visible in any of the renderings.

There are four 3-D feature-winnowing results:

Plot the data in features 1, 2, and 3 (Fig. 3, upper-left plot)
Plot the data in features 1, 2, and 4 (Fig. 3, upper-right plot)
Plot the data in features 1, 3, and 4 (Fig. 3, lower-left plot)
Plot the data in features 2, 3, and 4 (Fig. 3, lower-right plot)

bl

No matter which of the four features is dropped, we obtain essentially the same
view of the data, with the positions of the clusters permuted. But none of these views
shows cluster E. Where is it?

If, instead of throwing away a feature, the data are viewed using one of the geo-
metrically faithful N-dimensional visualizers in the data’s native 4-dimensional space,
the presence of cluster E is immediately revealed: a fifth, coherent 1,000-point cluster
that cannot be seen in any 3D feature-winnowing. For this data set, removal of any of
the four features causes all class E vectors to be located at the center of one of the other
classes. Not only has it become invisible, its class identity has been lost (Fig. 4).

Coordinate P
axes 3
B -~
&
D T

Fig. 4. Cluster E Cannot be seen in any lower-dimensional winnowing

No matter which subset of 1, 2, or 3 features is used to plot this data, the user will
never see cluster E as a separate aggregation. From every 3D perspective, it is in the
same place as one of the other three larger clusters and is obscured. However, In the
data’s native 4-dimensional space, all five clusters are easily visible.

The phenomenon illustrated here happens in practice with real data; this kind of
occlusion is often present to some degree in large, high-dimensional data sets. This is
one of the things that makes pattern processing in these spaces difficult.

2.3 Parallel Coordinates (Inselberg Plots)

A 150+ year-old technique revived and extended by Alfred Inselberg beginning in
1959, Parallel coordinates retain all dimensions. To produce graphical displays, a
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separate vertical axis is used for each dimension. A feature vector is no longer a point
in space, but a trace of end-to-end line segments across the display.

It is customary for the leftmost vertical axis to receive the first feature, then moving
to the right for features 2 through N. Highly coherent clusters show up as bands of
traces across the display.

Parallel coordinate plots have proven to be quite useful in applications. If each class
of vectors is colorized, or plotted on a different horizontal axis, these plots provide an
excellent method of looking for highly discriminating features. In Fig. 5, for example,
class 1 is on the top plot, and class 2 is on the bottom plot. It is readily seen that
features 5, 6, and 8 might be used to distinguish class 1 from class 2.

Parallel coordinates, since they do not retain an intuitive analogy with the under-
lying data geometry require experience to interpret. The notions of cluster proximity,
occlusion, shape, and spatial context are mostly lost.

Fig. 5. Parallel Coordinate plot of classes (CURRENT, ATTRIT)

3 Geometrically Intuitive Methods

Two methods will now be presented that the authors have formulated and applied to
many real-world problems involving the visualization of discrete data (sets of feature
vectors) having from 3 to 100 dimensions: Recursive Stereographic Projection (RSP),
Tensor Projection (TP).
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These methods render colorized graphical displays of high-dimensional discrete
data that:

e are informative while remaining geometrically intuitive
support on-screen data annotation (e.g., lasso clusters, pseudo-color visual artifacts)
TP is fast enough that desktop machines can smoothly navigate 100-dimensional
data sets having 50,000 points. RSP can smoothly navigate 20-dimensional data
sets having 5,000 points.

e can stream data frames to disc to create movies of high-dimensional data sets in
their native spaces tend to preserve geometric characteristics of the original high-
dimensional data such as, occlusion, proximity, intersection, relative scale, spatial
extent, shape, and coherence

3.1 Recursive Stereographic Projection (RSP)

As the name implies, Recursive Stereographic Projection (RSP) implements N-
dimensional visualization using a recursive stereographic projection, a mathematical
analogy between a sphere and a plane missing one point.

A positive real value r is chosen for the radii of the spheres by means of which the
projections are done. The viewer is positioned at (r, 0, O, ..., 0).

Each down-projection follows the same pattern (Fig. 6):

e A hyperplane to receive the projected data is perpendicular to the position vector of
the viewer, and at distance equal to the r on the far side of the origin.

e All features vectors are z-scored coordinate-by-coordinate. Each vector is then
normalized to length r. These two steps project the entire data set onto the N — 1
dimensional sphere centered at (1/2.0.0.,...0) having radius 1/2. This places the data
at the center of the display, which is where the algorithm maps the origin.

e The recursion proceeds by stereographically projecting each data point from the
viewer location at the topmost point of the sphere onto a target hyperplane.

e Each projection reduces the dimension of the data by 1. The recursion is repeated on
each data point until a set of two-dimensional data are obtained. This pair is plotted
on the display as the location of the original point.

Visual navigation is accomplished by moving the feature vectors. For example,
rotating a feature vector about the line (r, 0, O, ..., 0) is a fast matrix multiplication. In
our implementation, this can be done on a laptop machine quickly enough to support
smooth motion for 20 or fewer dimensions and 5,000 or fewer vectors. By repeating
this operation using a small rotation angle, a “fly-around” survey of the data from
various viewer perspectives is created.
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Viewer Location = (1,0,0,...,0)

f \
/ \\ Note: notto scale!
/ \
,x" \‘\. (To change viewer perspective,
/ \ we rotate the data on input. Thus
/f \ the viewer location is fixed. This
/ \ greatly simplifies the algorithm.)

Data Sphere (RN)

= X1- -1

Projection Hyperspace (RN-1)

Fig. 6. Each projection to the next lower dimension is a projection from the normalized data on
the surface of a ball, and the hyperplane beneath the ball. This is a one-point perspective
projection, relative distances are scaled by how far they are from the viewer.

As an example of the utility of this visualizer, consider the following application.

Work was underway on an important system for detecting and classifying opposing
military vehicles from a distance of several miles. A sensor was developed to collect
“signatures” from the vehicles so that human analysts, and eventually intelligent
software, would be able to create catalogs of distant military threats so that the evolving
posture of adversaries could be assessed in real-time.

Vehicle signatures were first collected at a test range. Sometimes the signatures
were easy to match to vehicles, but there were quite a few instances for which dan-
gerous offensive vehicles looked like trucks. Sending light armor to engage a “line of
trucks” which turns out to be a column of tanks is a fatal mistake (Fig. 7).
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almost identical!
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What do you do when your sensor data says two What do you do when your sensor data says
things are totally differerent, but you want them two things are virtually identical, but you want
to be classified as instances of the same thing? them to be classified as totally different?

Fig. 7. Just how bad is the confusion between classes when this sensor is used? Exactly what is
happening in the feature space that is leading to this problem?

In this instance, the use of N-dimensional visualization based upon RSP was used
to view a 32-dimensional coding of the signature waveforms for a large number of test
vehicles.

When visualized in its native 32-dimensional space, the signature data presents as
three coherent, overlapping clusters. The “branch” at the upper left consists almost
entirely of vectors of classl; the “branch” at the upper right consists almost entirely of
vectors of class2. The clump at the bottom, consisting of about 25% of the data in even
class proportions, is an unresolvable mixture (Fig. 8).

Fig. 8. In 32-dimensional space, it was easy to see what was happening
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Using this knowledge, we construct a classifier by segmenting the data using two
perpendicular hyperplanes and labeling the bounded regions as in Fig. 8.

This classifier will have a classification accuracy of about 75% from the class1 and
class2 regions, which are heterogeneous by class. Randomly assigning a class decision
to points from the balanced mixture will be correct about 12.5% of the time, giving an
overall classification accuracy on the training data of 87.5%

It is unlikely that a classifier would be built this way, but the value here is that it
establishes the fact that any classifier that does not have a classification accuracy of at
least 87.5% on this training set is inferior. Further, we knew that it would not be
necessary to redesign the sensor (a massive expense) but could obtain reasonable
performance with modest software tweaking.

3.2 Tensor Projection (TP)

For clarity, we pose an illustrative example (Fig. 9). Other instances are analogous.
Consider the example of a 9-dimensional feature vector V = (f}, f5, ..., fo) in R’.
Let B = (by, by, by) and A = (a;, a,, a3) be vectors of real parameters,

Form a tensor product to induce a mapping from R” to R%, where V — X = (xy, X,):

/~ N
i H 8 (a1
bi 0 b3 X1
* |fa f5 fe| * |ay| -
0 b O Xs
\f7 fs f9/ a3

Fig. 9. This tensor product provides a parametric linear mapping from the feature space to R?

To render the vector V in R9 on a flat display, we plot (x1, x2).
In general, given a feature vector W = (W, W, ..., W) in RM, we form a tensor
product as above:

e Begin with the N-by-N identity matrix Iy, where N is the smallest perfect
square > M. Set K = yN.

e load W into Iy in some standard order (we use row-major order).

e Select at parameter vector B in R and creating two rows as above with the top row
having O in the even positions, and the bottom row having O in the odd positions,
with the coordinates of B interleaved as above. (Exactly how this interleaving is
chosen is somewhat arbitrary, of course).

e Select parameter vector A in R¥, place it into the column vector to the right of Iy.

e Plot the resulting tensor product (X, X,) for W.
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The coordinates of A and B provide parameters that the user can manipulate to
modify the mapping for feedback in real time.

The TP high-dimensional visualization creates geometrically faithful views of data
points as they actually reside in their high-dimensional space. Nearness, occlusion, and
perspective are preserved.

We have implemented the GUI concept depicted in Fig. 10.

Initially, all the data are at the center of the display, because all parameters are set to
0.

The boxes at the upper left-hand corner of the large rectangular display box have a
blue boundary. These are the transformation parameter controls (a;, a,, etc.). The white
line is “zero”; values above the white line are positive, and values below the white line
are negative.

The last (rightmost) bar is the “zoom” bar. It allows you to zoom in or out of the
central region of the display. A negative zoom value will produce a mirror image of the
corresponding positive zoom value.

Holding down the left mouse button, the user drags a transformation parameter
color bar up and down. This sets the corresponding transformation parameter. Different
parameter values give different projections of the feature data, changing the display
accordingly, in real-time.

The boxes along the upper right-hand corner of the large rectangular display box
have a red boundary. These are the navigation parameter controls (b;, b,, etc.). For all
but the bottom bar, the white line is “zero”; values to the right of the white line are
positive, and values to the left of the white line are negative.

This positive-negative paradigm does not apply to the bottom bar. The last (bot-
tommost) bar is the “icon size” bar. It allows you to change the size of the icons used to
represent data points. The values range from O (1 pixel) to a maximum positive radius.

Holding down the left mouse button, the user drags a navigation parameter color
bar left and right. This sets the corresponding navigation parameter. Different param-
eter values effectively allow you to view the data from different locations, changing the
display accordingly, in real-time.

Figure 10 is a screen shot of an implementation of a TP display after loading a file
containing 100 clusters each consisting of 20 points in a 100-dimensional space. The
clusters are plainly visible, and intuitive. What can’t be seen on this screen-shot is the
fact that TP allows the user to rotate and “flex” the data in various ways, zoom, change
the icon size, and save lower dimensional representations of the data.

Dimension reduction for visualization produces successively lower-dimensional
representations of the data, which can be saved for analysis or as feature winnowing
products.

As an example of the utility of this visualizer, consider the following application.

Face-to-face interactions among groups of people follow certain conventions.
These conventions provide an orderly structure for effective communication. This
results in the formation of a variety of associations/relationships, such as “cliques”, as
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Fig. 10. TP allows on-screen scaling of coordinates so that clusters can be easily identified

people gather around and/or disperse driven by interests, demographics, and goals.
These associations have been studied extensively, and analysis of the resulting social
structures can be used to characterize the interests, goals, and even personalities of
those involved.

Interactions among the participants on social media platforms also give rise to
complex social structures, which are the basis of social engineering, forensic data
mining, and behavior analysis.

When viewed graphically, certain types of social media interaction become
immediately apparent: cliques can be analyzed visually, complex interactions that
would otherwise defy detection can be seen, and forecasting and planning are
enhanced. In particular, visualization of high-dimensional social media structures can
be used to support profiling for marketing products, assessing and influencing public
opinion, and estimating malware risk and susceptibility.

FACT: Human and BOT behaviors often look very different in this type of
visualization.

A large collection of social media posts was numericized using text processing
techniques. The resulting feature space was then visualized using the TP visualizer,
showing a clear difference between BOT behaviors and human behaviors on this social
media platform. This has phenomenon has since been observed visually in this way on
other social media platforms (Fig. 11).
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Flattened Clump
Social Media
BOTS

Main Body is
Human Activity

(much more
diverse)

Fig. 11. The lack of diversity of a wide variety of BOTS is clearly seen in this 10-dimensional space

4

Future Work

Build a user interface, allowing users to interact with the machine space. Func-
tionality would include zooming in and out and spin the sphere to discover the
range of solutions for the machine. Allow the user to manually “game” the col-
oration: adjusting the color boundaries of the model by accuracy to see how
accurate a machine can get before it is not efficient.

Use described visual methods not just for forensics, but for design as well. In an
interface similar to the one described above, a user could be given the ability to
select a machine by mouse click.

Optimize the rendering process for speed to support direct user interaction.
Additional cross-paradigm experimentation using other reasoning paradigms, such
as Self Organizing Maps.

Use for analysis of known pathologies (such as local extrema).
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