
Hanne Riis Nielson
Emilio Tuosto (Eds.)

LN
CS

 1
15

33

21st IFIP WG 6.1 International Conference, COORDINATION 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 11533

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Hanne Riis Nielson • Emilio Tuosto (Eds.)

Coordination Models
and Languages
21st IFIP WG 6.1 International Conference, COORDINATION 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019
Proceedings

123

Editors
Hanne Riis Nielson
Technical University of Denmark
Kongens Lyngby, Denmark

Emilio Tuosto
Gran Sasso Science Institute
L’Aquila, Italy

University of Leicester
Leicester, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22396-0 ISBN 978-3-030-22397-7 (eBook)
https://doi.org/10.1007/978-3-030-22397-7

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-030-22397-7

Foreword

The 14th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Kongens Lyngby, Denmark, during June 17–21, 2019. It was
organized by the Department of Applied Mathematics and Computer Science at the
Technical University of Denmark.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprised three conferences:

– COORDINATION, the IFIP WG 6.1 21st International Conference on Coordina-
tion Models and Languages

– DAIS, the IFIP WG 6.1 19th International Conference on Distributed Applications
and Interoperable Systems

– FORTE, the IFIP WG 6.1 39th International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing
subjects, ranging from theoretical foundations and formal description techniques to
systems research issues.

In addition to the individual sessions of each conference, the event included several
plenary sessions that gathered attendants from the three conferences. This year, the
general chair and the DisCoTec Steering Committee joined the three DisCoTec
conferences in the selection and nomination of the plenary keynote speakers, whose
number was accordingly increased from the traditional three to five. The five keynote
speakers and the title of their talks are listed below:

– Prof. David Basin (ETH Zürich, Switzerland) – “Security Protocols: Model
Checking Standards”

– Dr. Anne-Marie Kermarrec (Inria Rennes, France) – “Making Sense of Fast Big
Data”

– Prof. Marta Kwiatkowska (University of Oxford, UK) – “Versatile Quantitative
Modelling: Verification, Synthesis and Data Inference for Cyber-Physical Systems”

– Prof. Silvio Micali (MIT, USA) – “ALGORAND – The Distributed Ledger for the
Borderless Economy”

– Prof. Martin Wirsing (LMU, Germany) – “Toward Formally Designing Collective
Adaptive Systems”

As is traditional in DisCoTec, an additional joint session with the best papers from
each conference was organized. The best papers were:

– “Representing Dependencies in Event Structures” by G. Michele Pinna
(Coordination)

– “FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps” by
Lakhdar Meftah, Romain Rouvoy and Isabelle Chrisment (DAIS)

– “Psi-Calculi Revisited: Connectivity and Compositionality” by Johannes Åman
Pohjola (FORTE)

Associated with the federated event were also two satellite events that took place:

– ICE, the 12th International Workshop on Interaction and Concurrency Experience
– DisCoRail, the First International Workshop on Distributed Computing in Future

Railway Systems

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2019 was only possible thanks to the
dedicated work of the Organizing Committee, including Francisco “Kiko” Fernández
Reyes and Francesco Tiezzi (publicity chairs), Maurice ter Beek, Valerio Schiavoni,
and Andrea Vandin (workshop chairs), Ann-Cathrin Dunker (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG 6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing infrastructure, the Nordic IoT Hub for their sponsorship, and the Technical
University of Denmark for providing meeting rooms and additional support.

June 2019 Alberto Lluch Lafuente

vi Foreword

Preface

This volume contains the papers presented at COORDINATION 2019 held in Lyngby
during June 17–21, 2019, as part of the federated DisCoTeC conference. Continuing a
tradition started in 1996, the proceedings of COORDINATION 2019 are published in
Springer’s Lecture Notes in Computer Science (LNCS). The conference’s main topics
of interest are related to architectures, models, and languages for the specification and
verification of coordination mechanisms of modern information systems. The
separation of concerns between coordination and computation is key to cope with the
complexity of modern systems which involve concurrency, distribution, mobility,
adaptiveness, and reconfigurability. In fact, the identification of suitable coordination
mechanisms allows us to cleanly separate local behavior from communication, increase
modularity, simplify reasoning, and ultimately enhancing software development.

The Program Committee (PC) of COORDINATION 2019 consisted of 28
prominent researchers from 14 different countries. A total of 35 abstracts were sub-
mitted to the conference and 15 papers were selected among the 25 actual submissions.
Each submission was assessed by at least three reviewers and this process was sup-
plemented by an in-depth discussion phase during which the merits of all the papers
were considered. The contributions published in this volume were selected according to
their quality, originality, clarity, and relevance. The program also includes the invited
talk of Prof. Martin Wirsing from the Ludwig-Maximilians-Universität München,
Germany; a short abstract of Martin’s speech entitled “Machine-Learning Techniques
for Systematically Engineering Adaptive Systems” is included in these proceedings.

Many people contributed to the success of COORDINATION 2019. We first of all
would like to thank the authors for submitting high-quality papers. We also thank the
PC members for their effort and time to read and discuss the papers. The reviews and
the comments were very thorough and constructive. The use of external reviewers,
whom we also thank, has been very limited to the few cases where specific expertise
was required.

This edition of the conference has been enriched by the organization of a “tool
track” and three special topics. We are grateful to Omar Inverso and Hugo Torres
Vieira, who took care of identifying an innovative reviewing process whereby tool
papers were selected according to the combination of an extended abstract and a short
video demonstration, after which full papers were produced to be included in these
proceedings. A special thank you also goes to the PC members who identified new
topics aiming to connect coordination to other research areas. In particular we thank
Laura Bocchi for suggesting the topic “From Coordination to Verification and Back,”
Chiara Bodei and Hugo Torres Vieira for the topic “Exploring the Frontiers Between
Coordination and Control Systems,” and Jean-Marie Jaquet for the topic “Coordination
of Emerging Parallel/Distributed Architectures.” As a result of the efforts of these PC
members, COORDINATION 2019 had one session dedicated to the emerging topics
and two sessions dedicated to tool papers.

Furthermore, we wish to thank the Steering Committee of Coordination and the
Steering Board of DisCoTeC for their support. The organization of COORDINATION
2019 would have been much harder without the assistance of the Organizing
Committee; we are indeed very grateful to Alberto Lluch Lafuente, the general chair of
DisCoTeC 2019, and to the publicity chairs, Kiko Fernández-Reyes and Francesco
Tiezzi. It was also a pleasure to collaborate with the other members of the Scientific
Committee: José Orlando Pereira, Jorge A. Pérez, Laura Ricci, and Nobuko Yoshida.

We are indebted to the conference attendees for keeping this research community
lively and interactive, and ultimately ensuring the success of this conference series.

Emilio Tuosto thanks the GSSI for the financial support provided.
Finally, we thank the providers of the EasyChair conference management system,

whose facilities greatly helped us run the review process and facilitate the preparation
of the proceedings. With respect to the latter, we also warmly thank Anna Kramer,
from Springer, for her help in producing the proceedings.

May 2019 Hanne Riis Nielson
Emilio Tuosto

viii Preface

Organization

Program Committee Chairs

Hanne Riis Nielson DTU COMPUTE, Denmark
Emilio Tuosto Gran Sasso Science Institute, Italy and University

of Leicester, UK

Steering Committee

Gul Agha University of Illinois at Urbana Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Rocco De Nicola IMT, School for Advanced Studies, Italy
Giovanna di Marzo

Serugendo
Université de Genève, Switzerland

Tom Holvoet KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien The University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Mieke Massink ISTI CNR, Italy
Wolfgang De Meuter Vrije Universiteit Brussels, Belgium
José Proença University of Minho, Portugal
Rosario Pugliese Università di Firenze, Italy
Hanne Riis Nielson DTU Compute, Denmark
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, California, USA
Emilio Tuosto GSSI, Italy and University of Leicester, UK
Vasco T. Vasconcelos University of Lisbon, Portugal
Gianluigi Zavattaro (Chair) University of Bologna, Italy
Mirko Viroli University of Bologna, Italy

Program Committee

Stephanie Balzer Carnegie Mellon University, USA
Simon Bliudze Inria, France
Laura Bocchi University of Kent, UK
Chiara Bodei University of Pisa, Italy
Roberto Bruni University of Pisa, Italy
Giovanna Di Marzo

Serugendo
Université de Genève, Switzerland

Fatemeh Ghassemi University of Tehran, Iran

Elisa Gonzalez Boix VUB, Belgium
Roberto Guanciale KTH, Sweden
Ludovic Henrio CNRS, France
Thomas Hildebrandt University of Copenhagen, Denmark
Omar Inverso Gran Sasso Science Institute, Italy
Jean-Marie Jacquet University of Namur, Belgium
Eva Kühn Vienna University of Technology, Austria
Michele Loreti University of Camerino, Italy
Mieke Massink CNR-ISTI, Italy
Hernan Melgratti Universidad de Buenos Aires, Argentina
Claudio Antares Mezzina University of Leicester, UK
Rumyana Neykova Brunel University London, UK
Luca Padovani University of Turin, Italy
Danilo Pianini University of Bologna, Italy
Christian W. Probst Unitec Institute of Technology, New Zealand
Rene Rydhof Hansen Aalborg University, Denmark
Gwen Salaün University of Grenoble Alpes, France
Meng Sun Peking University, China
Carolyn Talcott SRI International, USA
Hugo Torres Vieira IMT School for Advanced Studies Lucca, Italy
Takuo Watanabe Tokyo Institute of Technology, Japan

Additional Reviewers

Vincenzo Ciancia
Stefan Crass
Letterio Galletta
Gerson Joskowicz
Diego Latella
Yi Li
Frank Pfenning
Xiyue Zhang

x Organization

Machine-Learning Techniques for
Systematically Engineering Adaptive Systems

(Invited Talk)

Martin Wirsing

Ludwig-Maximilians-Universität München, München, Germany

Abstract. Many modern software systems are distributed and have to cope at
runtime with dynamically changing environments and possibly also with new
requirements [3]. Examples of such adaptive systems are autonomous robots,
robot swarms and also socio-technical systems such as smart city or smart health
care applications. The ASCENS project [1] has developed foundations for
building adaptive systems in a way that combines software engineering
approaches with the assurance about functional and non-functional properties
provided by formal methods and the flexibility, low management overhead, and
optimal utilisation of resources promised by autonomic, self-aware systems.

In this talk we review the engineering approach of ASCENS and by inte-
grating machine learning techniques we complement it to “AISCENS.”
The ASCENS life cycle for developing autonomous and adaptive systems is
presented and it is illustrated with two complementary approaches: the devel-
opment of a swarm of robots using “classical” software design methods [4] and
the use of simulation-based online planning for autonomously adapting the
behaviour of a robot [2]. In addition, a new machine learning approach for
synthesizing agent policies from hard and soft requirements is presented and the
performance-safety tradeoff for such requirements is discussed.

References

1. ASCENS: Autonomic Component Ensembles. Integrated Project, 2010-10-01 - 2015-03-31,
Grant agreement no: 257414, EU 7th Framework Programme. http://www.ascens-ist.eu/.
Accessed 25 Apr 2019

2. Belzner, L., Hennicker, R., Wirsing, M.: Onplan: a framework for simulation-based online
planning. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539, pp. 1–30.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28934-2_1

3. Jähnichen, S., De Nicola, R., Wirsing, M.: The meaning of adaptation: mastering the
unforeseen? In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 109–117.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_8

4. Wirsing, M., Hölzl, M.M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective
Autonomic Systems - The ASCENS Approach. LNCS, vol. 8998. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9

In cooperation with Lenz Belzner, Thomas Gabor, Rolf Hennicker, and Alexander Knapp.

http://www.ascens-ist.eu/
https://doi.org/10.1007/978-3-319-28934-2_1
https://doi.org/10.1007/978-3-030-03424-5_8
https://doi.org/10.1007/978-3-319-16310-9

Contents

Computational Models

Representing Dependencies in Event Structures. 3
G. Michele Pinna

Reversing P/T Nets . 19
Hernán Melgratti, Claudio Antares Mezzina, and Irek Ulidowski

Towards Races in Linear Logic . 37
Wen Kokke, J. Garrett Morris, and Philip Wadler

The share Operator for Field-Based Coordination 54
Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini,
and Mirko Viroli

Tools (1)

Scan: A Simple Coordination Workbench . 75
Jean-Marie Jacquet and Manel Barkallah

CHOReVOLUTION: Automating the Realization of Highly–Collaborative
Distributed Applications. 92

Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio,
and Massimo Tivoli

Exploring New Frontiers

ABEL - A Domain Specific Framework for Programming
with Attribute-Based Communication. 111

Rocco De Nicola, Tan Duong, and Michele Loreti

Bridging the Gap Between Supervisory Control and Coordination
of Services: Synthesis of Orchestrations and Choreographies 129

Davide Basile, Maurice H. ter Beek, and Rosario Pugliese

No More, No Less: A Formal Model for Serverless Computing 148
Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,
Fabrizio Montesi, Marco Peressotti, and Stefano Pio Zingaro

Coordination Patterns

Verification of Concurrent Design Patterns with Data 161
Simon Bliudze, Ludovic Henrio, and Eric Madelaine

Self-organising Coordination Regions: A Pattern for Edge Computing 182
Roberto Casadei, Danilo Pianini, Mirko Viroli, and Antonio Natali

Aggregate Processes in Field Calculus . 200
Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini,
and Ferruccio Damiani

Tools (2)

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 221
Agustín E. Martinez Suñé and Carlos G. Lopez Pombo

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 237
Roberto Guanciale

Coordination of Tasks on a Real-Time OS . 250
Guillermina Cledou, José Proença, Bernhard H. C. Sputh,
and Eric Verhulst

Author Index . 267

xiv Contents

Computational Models

Representing Dependencies
in Event Structures

G. Michele Pinna(B)

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
gmpinna@unica.it

Abstract. Event Structures where the causality may change dynami-
cally have been introduced recently. In this kind of Event Structures the
changes in the set of the causes of an event are triggered by modifiers
that may add or remove dependencies, thus making the happening of
an event contextual. Still the focus is always on the dependencies of the
event. In this paper we promote the idea that the context determined by
the modifiers plays a major rôle, and the context itself determines not
only the causes but also what causality should be. Modifiers are then
used to understand when an event (or a set of events) can be added
to a configuration, together with a set of events modeling dependencies,
which will play a less important rôle. We show that most of the notions
of Event Structure presented in literature can be translated into this new
kind of Event Structure, preserving the main notion, namely the one of
configuration.

1 Introduction

The notion of causality is an intriguing one. In the sequential case, the intuition
behind it is almost trivial: if the activity e depends on the activity e′, then
to happen the activity e needs that e′ has already happened. This is easily
represented in Petri nets [24], the transition e′ produces a token that is consumed
by the transition e (the net N ′). The dependency is testified by the observation
that the activity e′ always precedes the activity e. However this intuition does not
reflect other possibilities. If we abandon the sequential case and move toward
possibly loosely cooperating system the notion of causality become involved.
Consider the case of a Petri net with inhibitor arcs [13] where the precondition
of the transition e′ inhibits the transition e (the net N). The latter to happens
needs that the transition e′ happens first, and the observation testifies that
the activity e needs that e′ has already happened, though resources are not
exchanged between e′ and e. In both cases the observation that the event e′ must
happen first leads to state that e′ precedes e and this can be well represented
with a partial order relation among events.

Work partially funded by RAS (Regione Autonoma della Sardegna) - L.R. 7/2007 -
Project SardCoin, CUP: F72F16003030002).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-22397-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_1

4 G. M. Pinna

N N ′

e′

e

e′ e

This quite simple discussion suggests that the notion of causality may have
many facets. In fact, if the dependencies are modeled just with a well founded
partial order, inhibitor arcs can be used to model these dependencies, but the
notion of partial order does not capture precisely the subtleties that are con-
nected to the notion of causality.

To represent the semantics of concurrent systems the notion of event struc-
ture plays a prominent role. Event structures have been introduced in [18] and
[27] and since then have been considered as a cornerstone. The idea is simple: the
activities of a system are the events and their relationships are specified some-
how, e.g. with a partial order modeling the enabling and a predicate expressing
when activities are coherent or not. Starting from this idea many authors have
faced the problem of adapting this notion to many different situations which have
as a target the attempt to represent faithfully various situations. This has trig-
gered many different approaches. In [11] and [12] causal automata are discussed,
with the idea that the conditions under which an event may happen are specified
by a suitable logic formula, in [10] and [9] it is argued that a partial order may be
not enough or may be, in some situation, a too rigid notion, and this idea is used
also in [21] and [22] where the notion of event automata is introduced, and it is
used also in [20] where an enabling/disabling relation for event automata is dis-
cussed. Looking at the enabling relation, both bundle event structures [15] and
dual event structures [16] provide a notion of enabling capturing or -causality
(the former exclusive or -causality and the latter non exclusive or -causality).
Asymmetric event structures [6] introduces a weaker notion of causality which
models contextual arcs in Petri nets, or in the case circular event structures
[7] the enabling notion is tailored to model also circular dependencies. In flow
event structures [8] the partial order is required to hold only in configurations.
Finally we mention the approaches aiming at modeling the possibility that the
dependencies of an event may change either by dropping some of them or by
adding new ones [1]. This short and incomplete discussion (the event structures
spectrum is rather broad) should point out the variety of approaches present in
literature. It should be also observed that the majority of the approaches model
causality with a relation that can be reduced to a partial order, hence causality
is represented stating what are the events that should have happened before.

In this paper we introduce yet another notion of event structure. Triggered by
recent works on adding or subtracting dependencies among events based on the
fact that apparently unrelated events have happened [1,3], we argue that rather
than focussing on how to model these enrichment or/and impoverishment, it is

Representing Dependencies in Event Structures 5

much more natural to focus on the context on which an event takes place. In fact
it is a context that can determine the proper dependencies that are applicable
at the state where the event should take place and the context holds, and the
context can also be used as well to forbid that the event is added to the state. This
new relation resembles the one used in inhibitor event structures [5], but it differs
in the way the contexts are determined. In the case of inhibitor event structures
the presence of a certain event (the inhibiting context) was used to require that
another one was present as well (representing the trigger able to remove the
inhibition). Here the flavour is different as it is more prescriptive: it is required
that exactly a set of events is present and if this happens then also another one
should be present as well. It should be stressed that triggers and contexts may
exchange their role. Consider again the two nets depicted before, we may have
that in both cases the trigger is determined by the happening of the event e′ and
the context is the empty set, but we can consider as context the event e′ and
the trigger as the empty set. This simple relation, which we will call context-
dependency relation, suffices to cover the various notions presented in literature.
It is worth observing that determining the context and the triggers associated
to it is quite similar to trying to understand the dependencies. Consider the net
N ′′ below.

N ′′

e′

e

e′′

Here e may be added either to the empty set or to a set containing both
e′ and e′′. The context containing e′ only leads to require that the event e′′ is
present (in the spirit of the relation for inhibitor event structures), making e
dependent on e′′. However we could also have chosen to focus on contexts only
and in this case the context containing just e′ is ruled out among the contexts
in which, together with some others dependencies, e may take place, and in this
case the two contexts are ∅ and {e′, e′′}. As hinted above, it will turn out that
the context plays a more relevant role with respect to the dependencies, as the
context can be seen positively (it specifies under which conditions an event can
be added, together with the dependency) or negatively (it specifies under which
conditions an event can be added, and in this case the event cannot be added
simply stipulating that it depends on itself).

In this paper we will focus on event structures where the change of state
is always triggered by the happening of a single event, hence we will not con-
sider steps (i.e. non empty and finite subsets of events), and where the states
(configurations) are finite, though not always explicitly assumed. However the
generalization to steps is straightforward.

6 G. M. Pinna

Organization of the Paper: In the next section we will introduce and discuss
the new brand of event structure. In Sect. 3 we will review and briefly analyze
some notions of event structures presented in literature, namely prime event
structure [27], relaxed prime event structure and dynamic causality event struc-
ture [1], inhibitor event structure [5] and event structure for resolvable conflicts
[26], and, in Sect. 4, we show that the each event structure presented in Sect. 3
can be translated into this new kind of event structure. We will recall also the
notion event automata which will can used to compare the various notions of
event structure. We will end the paper with some conclusions and we will give
some hints for further developments.

Notation: Let A be a set, with let ρ we denote a sequence of elements belonging
to A, and with ε we denote the empty sequence. With ρ we denote the set of
elements of A appearing in ρ. Thus ρ = ∅ if ρ = ε and aρ′ = {a} ∪ ρ′ if ρ = aρ′.
Given a sequence ρ = a1 · · · an with len(ρ) we denote its length, with ρ0 we
sometime denote sequence ε and, if len(ρ) ≥ 1, for each 1 ≤ i ≤ len(ρ) with ρi
we denote the sequence a1 · · · ai. Let A be a set, with 2A we denote the subsets
of A and with 2A

fin the finite subsets of A.

2 Context-Dependent Event Structure

We introduce yet another notion of event structure, which is the main contribu-
tion of the paper.

We start recalling what an event is and we introduce the notion of configu-
ration. An event is an atomic individual action which is able to change the state
of a system. Event structures in particular are intended to model concurrent
systems by defining relationships among events such as causality and conflict,
establishing the conditions on which a certain event can be added to a state.
The state of a system modeled by an event structure is a subset of events (those
happened so far), and this set of events is called configuration. States can be
enriched by adding other information beside the one represented by the events
that have determined the state, either adding information on the relationship
among the various events in the state, e.g. adding dependencies among them
(the state is then a partial order, [25]) or adding suitable information to the
whole state.

We pursue this idea that the happening of an event depends on a set of
modifiers (the context) and on a set of real dependencies, which are activated
by the set of modifiers.

We recall that in this paper we will consider only unlabelled event structures.
To simplify the presentation we retain the classic binary conflict relation. Given
a subset X ⊆ E of events and a conflict relation #, which is an irreflexive and
symmetric relation, we say that X is conflict free iff ∀e, e′ ∈ X it holds that
¬(e # e′).

Definition 1. A context-dependent event structure (cdes) is a triple E =
(E,#,) where

Representing Dependencies in Event Structures 7

– E is a set of events,
– # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation,

and
– 	 ⊆ 2A×E, where A ⊆ 2E

fin×2E
fin , is a relation, called the context-dependency

relation (cd-relation), which is such that for each Z 	 e it holds that
• Z
= ∅, and
• for each (X,Y) ∈ Z it holds that X and Y are conflict-free.

Each element of the cd-relation 	 is called entry.

The cd-relation models, for each event, which are the possible contexts in which
the event may happen (the first component of each pair) and for each context
which are the events that have to be occurred (the second component). We
stipulate that dependencies and contexts are formed by non conflicting events,
though this is not strictly needed, as the relation can model also conflicts. How
this relation is used will become clear in the notion of enabling of an event. We
have to determine, for each Z 	 e, which of the contexts Xi should be considered.
To do so we define the context associated to each entry of the cd-relation. Given
Z 	 e, where Z = {(X1, Y1), . . . , (Xn, Yn)}, with Cxt(Z) we denote the set of
events

⋃|Z|
i=1 Xi, and this is the one regarding Z 	 e.

Definition 2. Let E = (E,#,) be a cdes and C ⊆ E be a subset of events.
Then the event e
∈ C is enabled at C, denoted with C[e〉, if for each Z 	 e, with
Z = {(X1, Y1), . . . , (Xn, Yn)}, there is a pair (Xi, Yi) ∈ Z such that Cxt(Z)∩C =
Xi and Yi ⊆ C.

Observe that requiring the non emptiness of the set Z in Z 	 e guarantees that
an event e may be enabled at some subset of events. The cd-relation could be
used to express conflicts: e # e′ could be modeled by adding {({e}, {e′})} 	 e′

and {({e′}, {e})} 	 e to the 	 relation, and the presence of just one of them
would model the asymmetric conflict. The conflicts modeled in this way are
persistent.

Definition 3. Let E = (E,#,) be a cdes. Let C be a subset of E. We say
that C is a configuration of the cdes E iff there exists a sequence of distinct
events ρ = e1 · · · en · · · over E such that

– ρ = C,
– ρ is conflict-free, and
– ∀1 ≤ i ≤ len(ρ). ρi−1[ei〉.
Denoting with Confcdes(E) the set of configurations of a cdes, we introduce the
relation among configurations. Given two configurations C and C ′ of a cdes
such that C ∪ {en+1} = C ′, we stipulate that C
→cdes C ′ iff C[en+1〉.

We illustrate this new kind of event structure with some examples.

Example 1. Consider three events a, b and c. All the events are singularly enabled
but a and b are in conflict unless c has not happened (we will see later that this
are called resolvable conflicts). Hence for the event a we stipulate

{(∅, ∅), ({c}, ∅), ({b}, {c})} 	 a

8 G. M. Pinna

that should be interpreted as follows: if the context is ∅ or {c} then a is enabled
without any further condition (the Y are the empty set), if the context is {b} then
also {c} should be present. The set Cxt({(∅, ∅), ({c}, ∅), ({b}, {c})}) is {b, c}.

Similarly, for the event b we stipulate

{(∅, ∅), ({c}, ∅), ({a}, {c})} 	 b

which is justified as above and finally for the event c we stipulate

{(∅, ∅), ({a}, ∅), ({b}, ∅)} 	 c

namely any context allows to add the event.
Below we depict the configurations and how they are related.

∅

{a}

{b}

{c}

{b, c}

{a, c}

{a, b, c}

Example 2. Consider three events a, b and c, and assume that c depends on a
unless the event b has occurred, and in this case this dependency is removed.
Thus there is a classic causality between a and c, but it can dropped if b occurs.
Clearly a and b are always enabled. The cd-relation is {(∅, ∅)} 	 a, {(∅, ∅)} 	 b
and {(∅, {a}), ({b}, ∅)} 	 c.

Example 3. Consider three events a, b and c, and assume that c depends on a
just when the event b has occurred, and in this case this dependency is added,
otherwise it may happen without Thus the classic causality relation between a
and c is added if b occurs. Again a and b are always enabled. The cd-relation is
{(∅, ∅)} 	 a, {(∅, ∅)} 	 b and {(∅, ∅), ({b}, {a})} 	 c.

These examples should clarify how the cd-relation is used and its expressivity.

3 Event Structures

We have introduced a new notion of event structure that we should confront
with the others presented in literature (at least some of them). Therefore we
review some of the various definitions of event structures.

Representing Dependencies in Event Structures 9

Prime Event Structures: Prime event structures are one among the first proposed
and the most widely studied [27], especially for the connections with prime
algebraic domains and causal nets. The dependencies among events are modeled
using a partial order relation, the incompatibility among events is modeled using
a symmetric and irreflexive relation, the conflict relation, and it is required that
the conflict relation is inherited along the partial order.

Definition 4. A prime event structure (pes) is a triple P = (E,≤,#), where
(a) E is a set of events, (b) ≤⊆ E × E is a well founded partial order called
causality relation, (c) # ⊆ E×E is an irreflexive and symmetric relation, called
conflict relation, such that e # e′ ≤ e′′ ⇒ e # e′′, and (c) ≤ ∩# = ∅.
Given an event e ∈ E, with �e� we denote the set {e′ | e′ ≤ e}, and the require-
ment that the partial order is well founded implies that for each e ∈ E, the set
�e� is finite. We say that C is a configuration of the pes P iff C is conflict free
and for each e ∈ C it holds that �e� ⊆ C. The set of configuration of a pes is
denoted with Confpes(P). Clearly (Confpes(P),⊆) is a partial order. With
→pes

we denote the relation over Confpes(P) × Confpes(P) defined as C
→pes C ′ iff
C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.

Relaxed Prime Event Structures: Some of the requirements of a pes, the one on
the dependencies among events (here called enabling) and the ore regarding the
conflicts among events (which does not need to be saturated), can be relaxed
yielding a relaxed prime event structure [1,3]. In this definition the events that
must be present in a state to allow the execution of another one are the events
in a (finite) subset called immediate causes and often denoted with ic.

Definition 5. A relaxed prime event structure (rpes) is a triple (E,→,#),
where (a) E is a set of events, (b) → ⊆ E× E is the enabling relation such that
∀e ∈ E the set ic(e) = {e′ | e′ → e} is finite, and (c) # ⊆ E × E is an irreflexive
and symmetric conflict relation.

The intuition is that the → relation plays the role of the causality relation and
the conflict relation models conflicts among events, as before. The immediate
causes can be seen as a mapping ic : E → 2E

fin . Let T = (E,→,#) be a rpes. Let
C be a subset of E. We say that C is a configuration of the rpes T iff there exists
a sequence of distinct events ρ = e1 · · · en · · · over E such that ρ = C, ρ is conflict
free, and for each 1 ≤ i ≤ len(ρ). ic(ei) ⊆ ρi−1. The set of configuration of a rpes
is denoted with Confrpes(T). In rpes the emphasis is put on the existence of an
ordering in which the events are added to a configuration, and this will be valid
for many of the kinds of event structures. (Confrpes(T),⊆) is a partial order.
With
→rpes we denote the relation over Confrpes(T) × Confrpes(T) defined as
C
→rpes C ′ iff C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.

A pes is also a rpes: the causality relation is the enabling relation and the
conflict relation is the same one. e is added to a configuration C when its causes
are in C and no conflict arises. Given a rpes T = (E,→,#), it is not difficult to
see that (E,→∗, #̂) is a pes, where →∗ is the reflexive and transitive closure of

10 G. M. Pinna

→ and #̂ is obtained by # stipulating that # ⊆ #̂ and it is closed with respect
to →∗, i.e. if e #̂ e′ →∗ e′′ then e #̂ e′′. Indeed, the fact that →∗ is a partial
order is guaranteed by the fact that each event is executable, that →∗ is well
founded is implied by the finiteness of causes for each event e ∈ E and #̂ is the
semantic closure of #: no new conflict is introduced.

Dynamic Causality Event Structures: We now review a notion of event structure
where causality may change [1,3]. The idea is to enrich a rpes with two relations,
one modeling the shrinking causality (some dependencies are dropped) and the
other the growing causality (some dependencies are added). The shrinking and
the growing causality relations are ternary relations stipulating that the hap-
pening of a specific event (the modifier) allows to drop or add a specific cause
(the contribution) for another event (the target).

We illustrate these relations with the aid of a number of auxiliary subsets of
events associated to these relations. Let E be a set of events. A shrinking causality
relation is a ternary relation � ⊆ E × E × E, and the elements of this relation
are denoted with e′ � [e → e′′]. Given e′ � [e → e′′], e′ is called modifier, e′′ target
and e contribution. ShrMod(e′′) = {e′ | e′ � [e → e′′]} is the set of modifiers for a
given target e′′ and Drop(e′, e′′) = {e | e′ � [e → e′′]} is the set of contributions
for a given modifier e′ and a given target e′′. Let H be a finite subset of E and let
e be an event, we define the set dc(H, e) =

⋃
e′∈H∩ShrMod(e) Drop(e

′, e) as the set
of dropped causes with respect to H for the event e. A growing causality relation
is a ternary relation � ⊆ E×E×E, and the elements of this relation are denoted
as e′ � [e → e′′] Given e′ � [e → e′′], e′ is called modifier, e′′ target and e
contribution. GroMod(e′′) = {e′ | e′ � [e → e′′]} is the set of modifiers for a given
target e′′ and Add(e′, e′′) = {e | e′ � [e → e′′]} is the set of contributions for a
given modifier e′ and a given target e′′. Let H be a finite subset of E and let e
be an event, we define the set ac(H, e) =

⋃
e′∈H∩GroMod(e) Add(e

′, e) as the set of
added causes with respect to H for the event e. The two relation of shrinking and
growing causality give the functions dc: 2E

fin ×E → 2E
fin . and ac: 2E

fin ×E → 2E
fin .

Definition 6. A dynamic causality event structure (dces) is a quintuple D =
(E,→,#,�,�), where (E,→,#) is a rpes, � ⊆ E × E × E is the shrinking
causality relation, � ⊆ E×E×E is the growing causality relation, and are such
that for all e, e′, e′′ ∈ E

1. e′ � [e → e′′] ∧ �e′′′ ∈ E. e′′′ � [e → e′′] =⇒ e → e′′,
2. e′ � [e → e′′] ∧ �e′′′ ∈ E.e′′′ � [e → e′′] =⇒ ¬(e → e′′),
3. e′ � [e → e′′] =⇒ ¬(e′ � [e → e′′]), and
4. ∀e, e′ ∈ E. �e′′, e′′′ ∈ E. e′′ � [e → e′] and e′′′ � [e → e′].

For further comments on this definition we refer to [1] and [3]. It should be
observed, however, that the definition we consider here is slightly less general of
the one presented there, as we add a further condition, the last one, which is
defined in [2] and does not allow that the same contribution can be added and
removed by two different modifiers. These are called in [2] single state dynamic

Representing Dependencies in Event Structures 11

causality event structures and rule out the fact that some causality (or absence
of) depends on the order of modifiers. Conditions 1 and 2 simply state that
in the case of the shrinking relation the dependency should be present, and in
the case of the growing the dependency should be absent; condition 3 says that
if a dependency is added then it cannot be removed, or a removed dependency
cannot be added, and the final condition express the fact that two modifiers, one
growing and the other shrinking, cannot act on the same dependency. Clearly a
dces where � and � are empty is a rpes.

Let D = (E,→,#,�,�) be a dces. Let C be a subset of E. We say that
C is a configuration of the dces iff there exists a sequence of distinct events
ρ = e1 · · · en over E such that (a) ρ = C, (b) ρ is conflict-free, and (c) ∀1 ≤ i ≤
len(ρ). ((ic(ei) ∪ ac(ρi−1, ei)) \ dc(ρi−1, ei)) ⊆ ρi−1. The set of configuration of a
dces is denoted with Confdces(D).

With
→dces we denote the relation over Confdces(D) × Confdces(D) defined
as C
→dces C ′ iff C ⊂ C ′, C ′ = C ∪ {e} for some e ∈ E and ((ic(e) ∪ ac(C, e)) \
dc(C, e)) ⊆ C.

Example 4. Consider the set of events {a, b, c, d, e}, with b → c, a � [b → c],
d � [e → c], a # e and d # b. a and d are the modifiers for the target c, the
happening of a has the effect that the cause b may be dropped, and the one of
d that the cause e should be added for c. If the prefix of the trace is bc (the
target c is executed before of one of its modifiers a and d) then the final part of
the trace is any either a or e, and as d # b we have that d cannot be added. If
the modifier a is executed before c then we have the traces ac (as the immediate
cause b of c is dropped by a) followed by b or d, and if the modifier d is executed,
then before adding c, we need e (the modifier d add the immediate cause e for
c), and in this case we cannot add b for sure as it is in conflict with d or a as
it is in conflict with e. If both modifiers a and d happen, then the event c is
permanently disabled, as it needs the contribution e (growing cause) which is in
conflict with a. Below are shown the configurations of this dces and the
→dces

relation.

∅

{a}

{e}

{b}

{d}

{a, c}

{a, b}

{b, c}

{e, b}

{e, d}

{a, b, c}

{e, b, c}

{e, d, c}

12 G. M. Pinna

A shrinking event structure (ses) is a dces where the � relation is empty and
a growing event structure (ges) is a dces where the � relation is empty.

Inhibitor Event Structures: Inhibitor event structure [5] are equipped with a
relation �� ⊆ 2E

1 × E × 2E
fin allowing to model conflicts (even asymmetric) as

well as temporary inhibitions. With 2E
1 we denote the subsets of events with

cardinality at most one (the empty set or singletons). The intuition behind this
relation is the following: given ��(a, e, A), the event e is enabled at a configura-
tion is whenever the configuration contains the set a, then its intersection with
A is non empty. Hence the event in a non empty a inhibits the happening of e
unless some event in A has happened as well. We stipulate that given ��(a, e, A)
the events in A are pairwise conflicting (denoted with #(A)). Two events e and
e′ are in conflict if ��({e′}, e, ∅) and ��({e}, e′, ∅). An or -causality relation <
is definable stipulating that A < e if ��(∅, e, A), and that if A < e and B < e′

for some e′ ∈ A then also B < e. This relation should be interpreted as follows:
A < e means that if e is present, then also an event in A should be present.

Definition 7. An inhibitor event structure (ies) is a pair I = (E,��), where
E is a set of events and �� ⊆ 2E

1 × E × 2E
fin is a relation such that for each

��(a, e, A) it holds that #(A) and a ∪ A
= ∅.
We briefly recall the intuition: consider an event e and a triple in the �� relation
��(a, e, A). Then e can be added provided that if the event in a is present also one
in A should be present. Let I = (E,��) be an ies. Let C be a subset of E. We say
that C is a configuration of the ies I iff there exists a sequence of distinct events
ρ = e1 · · · en · · · over E such that ρ = C and for each i ≤ n, for each ��(a, ei, A), it
holds that a ⊆ ρi−1 ⇒ ρi−1∩A
= ∅. The set of configuration of a ies is denoted
with Conf ies(I). With
→ies we denote the relation over Conf ies(I) × Conf ies(D)
defined as C
→ies C ′ iff C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.

Example 5. Consider three events a, b and c, ��({a}, c, {b}) and ��(∅, b, {a}).
The maximal event traces are cab and abc. The event c is inhibited when the
event a has occurred unless the event b has occurred as well. The configurations
are ∅, {a}, {c}, {a, b}, {a, c} and {a, b, c} and are reached as follows: ∅
→ies {a},
∅
→ies {c}, {a}
→ies {a, b}, {c}
→ies {a, c}, {a, b}
→ies {a, b, c} and {a, c}
→ies

{a, b, c}.

Event Structures with Resolvable Conflicts: We finally recall the notion of event
structure with resolvable conflicts [26].

Definition 8. An event structure with resolvable conflicts (rces) is the pair
R = (E,�) where E is a set of events and �⊆ 2E × 2E is the enabling relation.

No restriction is posed on the enabling relation. The intuition is that stipulating
X � Y one state that for all the events in Y to occur, also the events in the set
X should have occurred first.

The single event transition relation �⊆ 2E × 2E of a rces R = (E,�) is
given by X � Y ⇔ (X ⊆ Y ∧ |Y \ X| ≤ 1 ∧ ∀Z ⊆ Y. ∃W ⊆ X. W � Z).

Representing Dependencies in Event Structures 13

With this notion it is possible to define what a configuration is: it is a subset
X of events such that X � X. The requirement that X � X implies that
each subset of events is enabled in the configuration. Let R = (E,�) be a rces.
Let C be a subset of E. We say that C is a configuration of the ies I iff there
exists a sequence of distinct events ρ = e1 · · · en · · · over E such that for each
1 ≤ i ≤ len(ρ) it holds that ρi−1 and ρi are configurations, and ρi−1 � ρi. The
set of configuration of a rces is denoted with Confrces(R).

Given two configurations C and C ′ of a rces, such that C ∪{en+1} = C ′ and
C � C, we stipulate again that ρ
→dces ρ′, defining a relation over Confrces(R)×
Confrces(R). Observe that the enabling relation � is used not only to state under
which condition an event may happen but also to stipulate when an event is
deducible from a set of events, justifying also the deduction symbol used for this
relation. Observe also that
→rces is essentially �.

Example 6. Consider three events a, b and c, and ∅ � X where X ⊆ {a, b, c} with
X
= {a, b} and {c} � {a, b}. The intuition is that all the events are singularly
enabled but a and b are in conflict unless c has not happened. In fact {a, b} is
not a configuration as taking {a, b} as the Z ⊆ {a, b} of the notion of single
event transition relation, there is no subset of {a, b} enabling these two events.

The configurations and how they are reached are those of the Example 1.

4 Embedding and Comparing Event Structures

We now show that each of the event structure we have seen so far can be seen
as a cdes, and also how to compare them. For the sake of simplicity, we will
consider event structures where each event e is executable, namely that there is
at least a configuration containing it.

Comparing Event Structures: We start by devising how we can compare two
event structures of any kind. The intuition is obvious: two event structures are
equivalent iff they have the same configurations and the
→ relations defined on
configurations coincide. We recall the notion of event automaton [22].

Definition 9. Let E be a set of events. An event automaton over E (ea) is the
tuple E = 〈E,S,
→, s0〉 such that

– S ⊆ 2E, and
–
→⊆ S × S is such that s
→ s′ implies that s ⊂ s′.

s0 ∈ S is the initial state.

Event automata can easily express configurations of any kind of event struc-
ture, provided that for each kind a way to reach a configuration from
another is given. The kind of event structure is ranged over by μ, μ′ ∈
{pes, rpes,dces, ies,rces,cdes}.

Theorem 1. Let X be an event structure of kind μ over the set of events E.
Then Gµ(X) = 〈E,Confµ(X),
→µ, ∅〉 is an event automaton.

14 G. M. Pinna

Using event automata we can decide when two event structures are equivalent.

Definition 10. Let X and Y be event structures over the same set of events
E of kind μ and μ′ respectively. We say that X and Y are equivalent, denoted
with X ≡ Y , iff Gµ(X) = Gµ′(Y).

The expressivity is explicitly studied in [1] and [3]. Informally a kind of event
structure is more expressive with respect to another, when there is a configura-
tion of the former that cannot be a configuration of the latter, whatever is done
with the various relations among events. Incomparable means that neither one is
more expressive than the other or the vice versa. We shortly summarize part of
these findings, when considering finite configurations. pes and rpes are equally
expressive, whereas ses and ges are strictly more expressive than rpes, and are
incomparable one with respect to the other. These two are both less expressive
than dces and rces, which are incomparable. The relative expressivity of other
kinds of event structure has not been investigated.

Embedding Event Structures into cdes: We prove now a more general result,
namely that given any event automaton E , which is obtained by the configu-
rations of any kind of event structure, it is possible to obtain a cdes whose
configurations are precisely the ones of the event automaton E . We start iden-
tifying, in an ea, the events that are in conflict. The conflict relation we obtain
is a semantic conflict relation: two events are in conflict iff they never appear
together in a state.

Definition 11. Let E = 〈E,S,
→, s0〉 be an ea. We define a symmetric and
irreflexive conflict relation #ea as follows: e #ea e′ iff for each s ∈ S. {e, e′}
⊆ s.

In order to obtain the cd-relation we need some further definitions. Fixed
an event e, the first one identifies the states where this event can be added, and
the second one identifies the states where the event cannot be added.

Definition 12. Let E = 〈E,S,
→, s0〉 be an ea. To each event e ∈ E we associate
the subset of events {s ∈ S | s ∪ {e} ∈ S ∧ s
→ s ∪ {e}}, which we denote with
C(E , e).

Definition 13. Let E = 〈E,S,
→, s0〉 be an ea. To each event e ∈ E we associate
the set of configuration {s ∈ S | s ∪ {e}
∈ S}, which we denote with I(E , e).

Definition 12 characterizes when an event is enabled giving the allowing context,
whereas the Definition 13 gives the context where the event cannot be added, and
it is called negative context. These two sets are used to obtain the cd-relation.

Theorem 2. Let E = 〈E,S,
→, s0〉 be an ea. Then Fea(E) = (E,#,) is a
cdes, where # is the relation #ea of Definition 11, and for each e ∈ E we
have {(X, ∅) | X ∈ C(E , e)} ∪ {(X, {e}) | X ∈ I(E , e)} 	 e. Furthermore E ≡
Gcdes(Fea(E)).

The theorem has a main consequence, namely that event automata and cdes
are equally expressive.

Representing Dependencies in Event Structures 15

Example 7. Consider the rces of the Example 6. The associated event automa-
ton is the one depicted in the Example 1. It has no conflict as all the three events
are present in a configuration together. The associated cd-relation, obtained
using Definition 12 and Definition 13, is the following one, which is a little
different from the one devised in the Example 1 as here it is obtained from
an event automaton. {(∅, ∅), ({c}, ∅), ({c, b}, ∅), ({b}, {a})} 	 a because the set
C(Confrces(R), a) contains the sets ∅, {c} and {c, b}, whereas the set of the
negative context I(Confrces(R), a) contains just {b}, the one {(∅, ∅), ({c}, ∅),
({a, b}, ∅), ({a}, {b})} 	 b as C(Confrces(R), b) contains the sets ∅, {c} and
{a, c}, I(Confrces(R), b) contains {a}, and finally {(∅, ∅), ({a}, ∅), ({b}, ∅)} 	 c
as C(Confrces(R), c) contains the sets ∅, {a} and {b}, and I(Confrces(R), c) is
the empty set.

As a consequence of the Theorem 2 we have the following result.

Corollary 1. Let X be an event structure of type μ and let Gµ(X) be the asso-
ciated ea. Then Fea(Gµ(X)) is cdes, and X ≡ Fea(Gµ(X)).

The construction identifies properly the context in which an event is allowed
to happen, and this context becomes the main ingredient of the cd-relation, as
the construction does not give the causes but just the context. If on the one
hand this suggests that the context, rather than the causal dependencies, is the
relevant ingredient, on the other hand it is less informative with respect to the
usual causality definitions.

We review some kind of event structures, showing that a more informative
cd-relation can be indeed obtained. We will focus only on few of them.

pes: In this case the idea is that causes of an event are just the set of events
that should be present in the configuration.

Proposition 1. Let P = (E,≤,#) be a pes. Then Fpes(P) = (E,#,) is a
cdes, where {(∅, �e� \ {e})} 	 e for each e ∈ E. Furthermore P ≡ Fpes(P).

This is not the unique way to associate to the causality relation ≤ of a pes the 	
relation: one alternative would have been to add {(∅, {e′})} 	 e for each e′ < e
and another one would be {(�e� \ {e}, ∅)} 	 e showing that the events causally
before e are indeed the context allowing the event e to happen.

Example 8. Consider the pes ({a, b, c},≤,#) where a ≤ b (we omit the reflexive
part of the ≤ relation), a # c and b # c. The event traces are ε, a, ab and c,
and the associated configurations are ∅, {a}, {a, b} and {c} (the
→pes relation is
obvious). The conflict relation is the same and the cd-relation is {(∅, ∅)} 	 a,
{(∅, ∅)} 	 c and {(∅, {a})} 	 b. As noticed before we could have stipulated also
{({a}, ∅)} 	 b instead of {(∅, {a})} 	 b obtaining the same set of configurations
and the same transition graph.

dces: The intuition in this case consists in mixing the two approaches above.

Proposition 2. Let D = (E,#,→,�,�) be a dces. Fdces(D) = (E,#,) is
a cdes where the relation 	 is defined as {(X, (ic(e) \ (

⋃
e′∈X Drop(e′, e))) ∪

16 G. M. Pinna

⋃
e′∈X Add(e′, e)) | X ⊆ GroMod(e) ∪ ShrMod(e) 	 e for each e ∈ E. Further-

more D ≡ Fdces(G).

Example 9. Concerning the dces of the Example 4, the conflict rela-
tion is the one of the dces whereas the cd-relation is {(∅, ∅)} 	
a, {(∅, ∅)} 	 b, {(∅, ∅)} 	 e, {(∅, ∅)} 	 d and for c we have
{(∅, {b}), ({a}, ∅), ({d}, {b, e}), ({a, d}, {e})} 	 c.

ies: In the case of ies there are two main observations: one, there is no conflict
relation, and second, though there is some similarity between the �� relation
and the 	 relation, there is also a quite subtle difference. When adding an event
e to a configuration of an ies, and we have ��(a, e, A), one would simply add the
pairs (a, {e′}) for each e′ ∈ A (as the events in A are pairwise conflicting) but
this does not work in the case A is the empty set, as it has a different meaning
in the �� relation with respect to the 	 relation. In the former, it means that
the event in a inhibits the event e, whereas in the latter the pair (a, ∅) simply
says that if the context a is present then there is no further event needed. Taking
into account these differences, the translation is fairly simple. We first define the
conflict relation and then the relation 	, which is almost the same as the ��
relation.

Proposition 3. Let I = (E,��) be an ies. Fies(I) = (E,#,) is a cdes,
where e # e′ iff ��({e}, e′, ∅) and ��({e′}, e, ∅), and for each e ∈ E, if ��(a, e, A)
and A
= ∅ then {(∅, ∅)} ∪ {(a, {e′}) | e′ ∈ A} 	 e, if ��(a, e, A) and A = ∅ then
{(a, {e})} 	 e. Furthermore I ≡ Fies(I).

Example 10. The ies of the Example 5 induces the empty conflict relation, and
the cd-relation is {(∅, ∅)} 	 a, {(∅, {a})} 	 b and {(∅, ∅), ({a}, {b})} 	 c.

Higher Order Causality: The comparison with event structures with higher-order
dynamics of [14] is done indirectly, as these are equivalent to event structures
with resolvable conflicts. In this approach the relations � and � are generalized
to take into account set of modifiers, targets and contributions. The drawback is
that the happening of an event implies a recalculation of these relation, similarly
to what it is done in causal automata. In fact it is fairly obvious that given one
simple step transition graph (meaning that a configuration is reached by another
one adding just one event), it is always possible to obtain a cdes.

5 Conclusion

In this paper we have introduced a new brand of event structure where the main
relation, the cd-relation, models the various conditions under which an event
can be added to a subset of events. The relation is now defined as 	 ⊆ 2A × E,
where A ⊆ 2E × 2E, thus it stipulates for each event which are the context-
dependency pairs, but it can be easily generalized to subsets of events modeling
precisely, when events happen together (as it is done in [23] or [26]). The focus

Representing Dependencies in Event Structures 17

is on the contexts in which an event can be added, which may change, rather
that modeling the dependencies and how these may change. Here the choice is
whether it is better to focus on dependencies (and how they may change) or
on the context. The advantage of the latter is its generality, whereas the former
may be useful in pointing out relations among events.

It should be clear that this kind of event structures is capable of modeling
the same enabling situation for an event in various way, and it could be inter-
esting to understand if there could be an informative way canonically. In fact,
the canonical relation just focus on all the contexts in which an event can be
added, and the dependency set is less informative. Thus finding a way to identify
minimal contexts together with a set of dependencies may be useful, similarly
to what it has been discussed when associating pes to cdes.

It remains to stress that cdes can be generalized not only allowing steps
but also representing contexts in a richer way. Here we have considered contexts
as subset of events, but they can have a richer structure. This would allow
to characterize more precisely contexts, allowing, for instance, to drop the last
requirement we have placed on dces, as in this case the order in which the
modifiers appear may influence the dependencies. Finally we observe that the
idea of context is not new, for instance they have been considered in [17] or in
[4], and a comparison with these should be considered.

In this paper we have considered various event structures, still some inter-
esting notions remained out of the scope of this paper, like reversible event
structures [19], but we are confident that our approach can be used also in the
reversibility setting.

References

1. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039,
pp. 83–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 6

2. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures (technical report). CoRR abs/1504.00512 (2015)

3. Arbach, Y., Karcher, D.S., Peters, K., Nestmann, U.: Dynamic causality in event
structures. Logical Methods Comput. Sci. 14(1), 1–17 (2018)

4. Baldan, P., Bracciali, A., Bruni, R.: A semantic framework for open processes.
Theor. Comput. Sci. 389(3), 446–483 (2007)

5. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theor. Comput. Sci. 323(1–
3), 129–189 (2004)

6. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures and processes. Inf. Comput. 171(1), 1–49 (2001)

7. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: Circular causality in event
structures. Fundam. Inform. 134(3–4), 219–259 (2014)

8. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP
1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-53479-2 4

https://doi.org/10.1007/978-3-319-19195-9_6
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4

18 G. M. Pinna

9. Gaifman, H.: Modeling concurrency by partial orders and nonlinear transition sys-
tems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988.
LNCS, vol. 354, pp. 467–488. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0013031

10. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: Gries, D. (ed.) LICS 1987 Conference Proceedings, pp. 72–85.
IEEE Computer Society (1987)

11. Gunawardena, J.: Geometric logic, causality and event structures. In: Baeten,
J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 266–280. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54430-5 94

12. Gunawardena, J.: Causal automata. Theor. Comput. Sci. 101(2), 265–288 (1992)
13. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123, 1–16 (1995)
14. Karcher, D.S., Nestmann, U.: Higher-order dynamics in event structures. In:

Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
258–271. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 16

15. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Diaz, M., Groz, R. (eds.) FORTE 1992 Conference Proceedings. IFIP Transac-
tions, vol. C-10, pp. 331–346. North-Holland (1992)

16. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63141-0 22

17. Leifer, J.J., Milner, R.: Transition systems, link graphs and petri nets. Math.
Struct. Comput. Sci. 16(6), 989–1047 (2006)

18. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part 1. Theor. Comput. Sci. 13, 85–108 (1981)

19. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Logic Algebraic Methods Program. 84(6), 781–805 (2015)

20. Pinna, G.M.: Event structures with disabling/enabling relation and event
automata. Fundam. Inform. 73(3), 409–430 (2006)

21. Pinna, G.M., Poigné, A.: On the nature of events. In: Havel, I.M., Koubek, V. (eds.)
MFCS 1992. LNCS, vol. 629, pp. 430–441. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55808-X 42

22. Pinna, G.M., Poigné, A.: On the nature of events: another perspective in concur-
rency. Theor. Comput. Sci. 138(2), 425–454 (1995)

23. Pinna, G.M., Saba, A.: Modeling dependencies and simultaneity in membrane sys-
tem computations. Theor. Comput. Sci. 431, 13–39 (2012)

24. Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-
69968-9

25. Rensink, A.: Posets for configurations!. In: Cleaveland, W.R. (ed.) CONCUR 1992.
LNCS, vol. 630, pp. 269–285. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0084797

26. van Glabbeek, R., Plotkin, G.: Event structures for resolvable conflict. In: Fiala,
J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 550–561.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28629-5 42

27. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

https://doi.org/10.1007/BFb0013031
https://doi.org/10.1007/BFb0013031
https://doi.org/10.1007/3-540-54430-5_94
https://doi.org/10.1007/978-3-319-25150-9_16
https://doi.org/10.1007/3-540-63141-0_22
https://doi.org/10.1007/3-540-63141-0_22
https://doi.org/10.1007/3-540-55808-X_42
https://doi.org/10.1007/3-540-55808-X_42
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/BFb0084797
https://doi.org/10.1007/BFb0084797
https://doi.org/10.1007/978-3-540-28629-5_42
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

Reversing P/T Nets

Hernán Melgratti1(B), Claudio Antares Mezzina2,3(B), and Irek Ulidowski2(B)

1 University of Buenos Aires - Conicet, Buenos Aires, Argentina
hmelgra@dc.uba.ar

2 University of Leicester, Leicester, England
iu3@leicester.ac.uk

3 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
claudio.mezzina@uniurb.it

Abstract. Petri Nets are a well-known model of concurrency and pro-
vide an ideal setting for the study of fundamental aspects in concurrent
systems. Despite their simplicity, they still lack a satisfactory causally
reversible semantics. We develop such semantics for Place/Transitions
Petri Nets (P/T nets) based on two observations. Firstly, a net that
explicitly expresses causality and conflict among events, e.g., an occur-
rence net, can be straightforwardly reversed by adding reversal for each of
its transitions. Secondly, the standard unfolding construction associates
a P/T net with an occurrence net that preserves all of its computation.
Consequently, the reversible semantics of a P/T net can be obtained as
the reversible semantics of its unfolding. We show that such reversible
behaviour can be expressed as a finite net whose tokens are coloured by
causal histories. Colours in our encoding resemble the causal memories
that are typical in reversible process calculi.

1 Introduction

Reversible computing is attracting interest for its applications in many fields
including hardware design and quantum computing [30], the modelling of bio-
chemical reactions [12,25,26], parallel discrete event simulation [27] and program
reversing for debugging [8,11,16].

A model for reversible computation features two computation flows: the stan-
dard forward direction and the reverse one, which allows to reach back any past
state of the computation. Reversibility is well understood in a sequential setting
in which executions are totally ordered sets of events (see [17]): a sequential com-
putation can be reversed by successively undoing the last not yet undone event.
Reversibility becomes more challenging in a concurrent setting because there is
no natural way for totally ordering events. Often concurrency models account
for the causal dependencies among events, which are reflected as a partial order.
Reversing an execution consisting of a partially ordered set of events reduces to
successively undoing one of the maximal events not yet undone. This is at the
basis of the causally-consistent reversibility [6,15,23], which relates reversibility
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 19–36, 2019.
https://doi.org/10.1007/978-3-030-22397-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_2

20 H. Melgratti et al.

Fig. 1. Backward conflict and naive reversing.

with causality. Intuitively, this notion stipulates that any event can be undone
provided that all its consequences, if any, are undone beforehand. Reversibil-
ity in distributed systems such as in checkpoint/rollback protocols [29] and in
transactions [7,13] can be modelled by causal-consistent reversibility. The inter-
play between reversibility and concurrency has been widely studied in process
calculi [4,6,14,19,23], event structures [5,9,24,28] and lately Petri Nets [1,21].
Despite being a very basic model of concurrency, Petri nets still lack a satis-
factory causally-consistent reversible semantics. For instance, no current models
are able to handle cyclic nets.

A key point when reversing computation in Petri nets is to handle backward
conflicts, i.e., the fact that a token can be generated in a place because of different
causes. Consider the net in Fig. 1(a) showing the initial state of a system that
can either perform t1 followed by t3, or t2 followed by t4. The final state of a
complete computation is depicted in Fig. 1(b). The information in that state is
not enough to deduce whether the token in d has been produced because of t3
or t4. Even worse, if we “naively” reverse the net by just adding transitions in
the reverse direction, as shown in Fig. 1(c), the reverse transition will do more
than undoing the computation. In fact, the token in d can be put back either in
b or c regardless of the previous computation.

Analogous problems arise when a net is cyclic. Previous approaches [1,21] to
reversing Petri nets tackle backward conflicts by relying on a new kind of tokens,
called bonds that keep track of the execution history. Bonds are rich enough
for allowing other approaches to reversibility, such as out-of-order reversibil-
ity [12], but they cannot cope with cyclic nets. We propose here a reversible
model for p/t nets that can handle cyclic nets by relying on standard notions
in Petri net theory. We first observe that a Petri Net can be mapped via the
standard unfolding construction to an occurrence net, i.e., an acyclic net that
does not have backward conflicts and makes causal dependencies explicit. Then,
an occurrence net can be “simply” reversed by reversing each of its transitions.
Such construction gives a model that features causally-consistent reversibility.

Reversing P/T Nets 21

This is shown by proving that each reachable marking in the reversible version
of the occurrence net is a marking that can be reached by just forward com-
putational steps. We observe that the unfolding construction could produce an
infinite occurrence net. However, the unfolding can be seen as the definition of
a coloured net, where colours account for causal histories. Such interpretation
associates a p/t net with an equivalent coloured p/t net, which can be reversed
in the “simple” way. The correctness of the construction is shown by exhibiting a
one-to-one correspondence of its executions with the ones of the reversible ver-
sion of the unfolding. Interestingly, the colours used by the construction resemble
the memories common in reversible calculi [6,14].

We remark that our proposal deals with reversing (undoing) computation in
a Petri net and not with the classical problem of reversibility [3] which requires
every computation to be able to reach back the initial state of the system (but
not necessary by undoing the previous events). In this sense, the problem of
making a net reversible equates to adding a minimal amount of transitions that
make a net reversible [2]. Reversibility is a global property while reversing a
computation is a local one, as discussed in [2].

2 Background

2.1 Petri Nets

Petri nets are built up from places (denoting, e.g., resources and message types),
which are repositories for tokens (representing instances of resources), and tran-
sitions, which fetch and produce tokens. We consider the infinite sets P of places
and T of transitions, and assume that they are disjoint, i.e., P ∩ T = ∅. We let
a, a′, . . . range over P and t, t′, . . . over T . We write x, y, . . . for elements in P∪T .

A multiset over a set S is a function m : S → N (where N denotes the
natural numbers including zero). We write N

S for the set of multisets over S.
For m ∈ N

S , supp(m) = {x ∈ S | m(x) > 0} is the support of m, and |m| =∑
x∈S m(x) stands for its cardinality. We write ∅ for the empty multiset, i.e.,

supp(∅) = ∅. The union of m1,m2 ∈ N
S , written (m1 ⊕m2), is defined such that

(m1 ⊕ m2)(x) = m1(x) + m2(x) for all x ∈ S. Note that ⊕ is associative and
commutative, and has ∅ as identity. Hence, NS is the free commutative monoid
S⊕ over S. We write x for a singleton multiset, i.e., supp(x) = {x} and m(x) = 1.
Moreover, we write x1 . . . xn for x1⊕ . . .⊕xn. Let f : S → S′, we write f also for
its obvious extension to multisets, i.e., f(x0 . . . xn) = f(x0) . . . f(xn). We avoid
writing supp(_) when applying set operators to multisets, e.g., we write x ∈ m
or m1 ∩ m2 instead of x ∈ supp(m) or supp(m1) ∩ supp(m2).

Definition 1 (Petri Net). A net N is a 4-tuple N = (SN , TN , •_N ,_•
N) where

SN ⊆ P is the (nonempty) set of places, TN ⊆ T is the set of transitions and
the functions •_N ,_•

N : TN → 2SN assign source and target to each transition
such that •t 	= ∅ and t• 	= ∅ for all t ∈ TN . A marking of a net N is a multiset
over SN , i.e., m ∈ N

S. A Petri net is a pair (N,m) where N is a net and m is
a marking of N .

22 H. Melgratti et al.

We denote SN ∪ TN by N , and omit the subscript N if no confusion arises.
We abbreviate a transition t ∈ T with preset •t = s1 and postset t• = s2 as s1[〉s2.
Hereafter, we only consider nets whose transitions have non-empty presets. The
pre and postset of a place a ∈ S are defined respectively as •a = {t | a ∈ t•} and
a• = {t | a ∈ •t}. We let ◦N = {x ∈ N | •x = ∅} and N◦ = {x ∈ N | x• = ∅}
denote the sets of initial and final elements of N respectively. Note that we only
consider nets whose initial and final elements are places since transitions have
non-empty pre and postsets, i.e., •t 	= ∅ and t• 	= ∅ holds for all t.

Definition 2 (Net morphisms). Let N,N ′ be nets. A pair f = (fS : SN →
SN ′ , fT : TN → TN ′) is a net morphism from N to N ′ (written f : N → N ′)
if fS(•tN) = •(fT (t))N ′ and fS(t•N) = (fT (t))•N ′ for any t. Moreover, we say N
and N ′ are isomorphic if f is bijective.

The operational (interleaving) semantics of a Petri net is given by the least
relation on Petri nets satisfying the following inference rule:

(firing)

t = m [〉 m′ ∈ TN

(N,m ⊕ m′′) t−→ (N,m′ ⊕ m′′)

which describes the evolution of the state of a net (represented by the marking
m ⊕ m′′) by the firing of a transition m[〉m′ that consumes the tokens m in its
preset and produces the tokens m′ in its postset. We sometimes omit t in t−→
when the fired transition is uninteresting.

According to Definition 1, transitions consume and produce at most one token
in each place. On the other hand, p/t nets below fetch and consume multiple
tokens by defining the pre- and postsets of transitions as multisets.

Definition 3 (p/t net). A Place/Transition Petri net (p/t net) is a 4-tuple
N = (SN , TN , •_N ,_•

N) where SN ⊆ P is the (nonempty) set of places, TN ⊆ T
is the set of transitions and the functions •_N ,_•

N : TN → N
SN assign source

and target to each transition.A marking of a net N is multiset over SN , i.e.,
m ∈ N

S. A marked p/t net is a pair (N,m) where N is a p/t net and m is a
marking of N .

The notions of pre- and postset, initial and final elements, morphisms and
operational semantics are straightforwardly extended to p/t nets. Note that
Petri nets can be regarded as a p/t net whose arcs have unary weights.

Next, we introduce some notation for sequences of transitions. Let ‘;’ denote
concatenation of such sequences. For the sequence s = t1; t2; . . . ; tn, we write
(N,m0)

s−→ (N,mn) if (N,m0)
t1−→ (N,m1)

t2−→ . . .
tn−→ (N,mn); we call s a firing

sequence. We write (N,m0) −→∗ (N,mn) if there exists s such that (N,m0)
s−→

(N,mn), and εm for the empty sequence.

Definition 4. Let (N,m) be a p/t net. The set of reachable markings
reach(N,m) is defined as

{
m′ | (N,m) −→∗ (

N,m′)}.

Reversing P/T Nets 23

Fig. 2. p/t nets

We say a marked p/t net (N,m) is (1-)safe if every reachable marking is a
set, i.e., m′ ∈ reach(N,m) implies m′ ∈ 2SN .

Example 5. Figure 2 shows different p/t nets, which will be used throughout
the paper. As usual, places and transitions are represented by circles and boxes,
respectively. The nets O1 and N4 are Petri nets, and N1, N2 and N3 are p/t
nets which, when executing, may produce multiple tokens in some places.

2.2 Unfolding of P/T Nets

Our approach to reversing Petri nets relies on their occurrence net semantics,
which explicitly exhibit the causal ordering, concurrency, and conflicts among
events. We start by introducing several useful notions and notations. First, we
shall describe a flow of causal dependencies in a net with the relation ≺:

Definition 6. Let ≺ be {(a, t)|a ∈ SN ∧ t ∈ a•} ∪ {(t, a)|a ∈ SN ∧ t ∈ •a}. We
write
 for the reflexive and transitive closure of ≺.

Consider Fig. 2. We have a ≺ t1 and t1 ≺ c in O1 as well as t1
 t2 in N1.
Two transitions t1 and t2 are in an immediate conflict, written t1#0t2, when

t1 	= t2 and •t1 ∩ •t2 	= ∅. For example, t1 and t2 in N4 in Fig. 2 are in an
immediate conflict since they share a token in the place c. Correspondingly, for

24 H. Melgratti et al.

t2 and t3 in N1. The conflict relation # is defined by letting x#y if x 	= y and
there are t1, t2 ∈ T such that t1
 x, and t2
 y, and t1#0t2.

We are now ready to give the definition of an occurrence net following [10,20].

Definition 7 (Occurrence net). A net (N,m) is an occurrence net if

1. N is acyclic;
2. N is a (1-)safe net, i.e, any reachable marking is a set;
3. m = ◦N , i.e., the initial marking is identified with the set of initial places;
4. there are no backward conflicts, i.e., |•a| ≤ 1 for all a in SN ;
5. there are no self-conflicts, i.e, ¬(t#t) for all t in TN .

We use O to range over occurrence nets.

Example 8. The net O1 in Fig. 2 is an occurrence net, while the remaining nets
are not. N1 is not an occurrence net since there is a token in place c and c is
not an initial place of the net. N2 has a backward conflict since two transitions
produce tokens on the place d. N3 is cyclic, and N4 is cyclic and has a backward
conflict on c.

The absence of backward conflicts in occurrence nets ensures that each place
appears in the postset of at most one transition. Hence, pre- and postset relations
can be interpreted as a causal dependency. So,
 represents causality.

We say x, y ∈ N are concurrent, written x co y, if x 	= y and x 	
 y, y 	
 x, and
¬x#y. A set X ⊆ N is concurrent, written CO(X), if ∀x, y ∈ X : x 	= y ⇒ x co y,
and |{t ∈ TN | ∃x ∈ X, t
 x}| is finite. For example, the set {t1, t2} of firings in
O1 of Fig. 2 is concurrent, so we can write CO({t1, t2}).

Two transitions are coinitial if they start with the same marking, and cofinal
if they end up in the same marking. We now have a simple version of the Square
Lemma [6] for forward concurrent transitions. It will be helpful in proving our
Lemma 16 in the next section.

Lemma 9. Let t and t′ be coinitial concurrent transitions. Then, there exist
transitions t1 and t′1 such that t; t′1 and t′; t1 are cofinal.

The lemma says that if transitions t and t′ originate from one corner of a square,
and if they represent independent (concurrent) events, then the square completes
with two other independent transitions (t1 and t′1) meeting at the opposite corner
of the square. The order in which concurrent transitions are executed in a firing
sequence does not matter. Indeed, the order which should be preserved among
firings in a sequence is the causal order. We then consider sequences equivalent
up to the swapping of concurrent transitions. This corresponds to considering
the set of Mazurkiewicz traces induced by co as the independence relation.

Formally, trace equivalence ≡ is the least congruence over firing sequences s
such that ∀t1, t2 : t1 co t2 =⇒ t1; t2 ≡ t2; t1. The equivalence classes of ≡ are
the (Mazurkiewicz) traces. We use ω to range over such traces. We also will use
ε for the empty trace, and ; for the concatenation operator.

Reversing P/T Nets 25

Fig. 3. Unfolding rules.

Fig. 4. Unfoldings of p/t nets

For occurrence nets we have this standard property:

s1 ≡ s2 iff (O,m0)
s1−→ (O,mn) ⇐⇒ (O,m0)

s2−→ (O,mn) (1)

Two traces are coinitial if they start with the same marking, and cofinal if they
end up in the same marking. Hence, Eq. (1) tells us that two traces that are
coinitial and cofinal are then trace equivalent.

The unfolding of a net N is the least occurrence net that can account for all
the possible computations of N and makes explicit causal dependencies, conflicts
and concurrency between firings [20].

Definition 10 (Unfolding). Let (N,m) be a p/t net. The unfolding of N is
the occurrence net U [N,m] = (S, T, δ0, δ1) generated inductively by the inference
rules in Fig. 3 and the folding morphism (fS , fT) : U [N,m] → N defined such
that fS(a,_,_) = a and fT (t,_) = t.

Places are named by triples a(H, i) where: a is a place of N where tokens reside;
H is the set of immediate causes (i.e., the history of tokens); and i is a posi-

26 H. Melgratti et al.

tive integer used to disambiguate tokens with the same history. Transitions (or
events) are encoded as t(H), where H is as above and t is the fired transition.

Example 11. The unfoldings of the nets (N1, a ⊕ b ⊕ c ⊕ d), (N2, a ⊕ b ⊕ c) and
(N3, a) in Fig. 2 are shown in Fig. 4. Note that since O1 is an occurrence net
its unfolding is isomorphic to O1, thus it is omitted. Consider the occurrence
net U [N1, a ⊕ b ⊕ c ⊕ d]. The leftmost transition t2 is different from the other
transition t2 since they have different histories: the leftmost t2 is caused by the
tokens in b and c (which are available in the initial marking), whereas the other
t2 is caused only by the token in b and the token that is produced by the firing of
t1. Correspondingly, for the two transitions labelled t3. Consider U [N2, a⊕b⊕c].
After the transitions t1 and t2 have fired, there is a token in each of the places
labelled d. The token in the leftmost d has the history t1 and the token in the
other d has the history t2. Once t3 has fired, we can tell the copies of t3 apart
by inspecting their histories: the leftmost t3 is caused by a token in d with the
history t1 (as well as the token in c), whereas the other t3 is caused by d with
the history t2 and by c.

3 Reversing Occurrence Nets

Definition 12. Let O be an occurrence net. The reversible version of O is
−→

O =
(S −→

O
, T −→

O
, •_ −→

O
,_• −→

O
) defined such that

S −→
O

= SO T −→
O

= TO ∪ { −→
t | t ∈ TO}

•t −→
O

=

{
•tO if t ∈ TO

t•O otherwise
t• −→
O

=

{
t•O if t ∈ TO

•tO otherwise

Given a transition t we write ←−
t for a transition that reverses t. We shall call

transitions like −→
t1 and −→

t2 in Fig. 5 reverse (or backwards) transitions (or firings),
and use t, t1 and t2 to denote transitions or reverse transitions.

For
←−
O , we write (

−→
O,m)

t� (
−→

O,m′) for a forward firing when t ∈ TO, and
(

−→
O,m) t� (

−→
O,m′) for the reverse (or backward) firing when t 	∈ TO. We also let

t−→ be
t� ∪ t�. We will often refer to a firing (

−→
O,m) t−→ (

−→
O,m′) as t. Given a

firing t we indicate with ←−
t its inverse that is

(
−→

O,m)
−→

t� (
−→

O,m′) if (
−→

O,m′) t� (
−→

O,m)

(
−→

O,m)
−→

t� (
−→

O,m′) if (
−→

O,m′)
t� (

−→
O,m)

Hence, we have
⇔
t = t. We shall work with sequences of transitions and reverse

transitions, ranged over by s, s1 and s2. We say that a sequence is a forward
(resp. backward) sequence when all its firings are forward (resp. backward).

Next, we extend the notions of causality, conflict and concurrency to transi-
tions and reverse transitions in reverse versions of occurrence nets. We extend

Reversing P/T Nets 27

≺ in Definition 6 to cover reverse transitions in an obvious way using Defini-
tion 12. As a result, we obtain t
 −→

t and −→
t
 t. As for the conflict relation,

we define an immediate conflict between different −→
t1 and −→

t2 as • −→
t1 ∩ • −→

t2 	= ∅.
This is t1

• ∩ t2
• 	= ∅, meaning t1 and t2 are in backward conflict, which is ruled

out in occurrence nets. Hence, the immediate conflict relation is empty between
reverse transitions, and so is the conflict relation. The immediate conflict rela-
tion between t and

−→
t′ is defined as •t∩• −→

t′ 	= ∅. This is equivalent to •t∩ t′• 	= ∅,
which means t′
 t. Consequently, the conflict relation on transitions in

←−
O is

given by the conflict relation on the forward transitions, and can be defined
using the causality relation for pairs of a transition and reverse transition. This
allows us to define concurrent transitions in

←−
O . We say t co t′ if (a) t co t′ for

t, t′ ∈ TO, (b) t 	
 t′ and t′ 	
 t if t, t′ are reverse transitions, and (c) t 	
 t′, t′ 	
 t

and
−→

t′ 	
 t if t is a transition and t′ is a reverse transition.
Next, we show that

←−
O is a conservative extension of O.

Lemma 13. (O,m) t−→ (O,m′) iff (
−→

O,m)
t� (

−→
O,m′).

In general, a reversible occurrence net is not an occurrence net. This is
because adding reverse transitions may introduce backward conflict for these
transitions. Consider N1 in Fig. 2. We notice that initially t1 and t2 are in con-
flict. Then, in

−→
N 1 in Fig. 5, the place c with a token has two reverse transitions

in its preset, namely −→
t2 and −→

t3 , hence there is a backward conflict.

4 Properties

We now study the properties of the reversible versions of occurrence nets.
An important property of a fully reversible system is the Loop Lemma stating

that any reduction can be undone. Formally:

Lemma 14 (Loop Lemma). (
−→

O,m)
t� (

−→
O,m′) iff (

−→
O,m′)

−→
t� (

−→
O,m).

We can generalise the result of the Loop Lemma to sequences as follows:

Corollary 15. (
−→

O,m) −→∗ (
−→

O,m′) iff (
−→

O,m′) −→∗ (
−→

O,m).

Next, we have a lemma which is instrumental for the proof of causal-
consistent reversibility in reversible calculi [6,14]. Note that t and t′ can be
either forward or reverse transitions.

Lemma 16 (Square Lemma). Let t and t′ be coinitial concurrent transitions.
Then, there exist transitions t1 and t′1 such that t; t′1 and t′; t1 are cofinal.

In order to prove causal consistency we first define a notion of equivalence
on sequences of transitions and reverse transitions in reversible occurrence nets.
By following Lévy’s approach [18], we define the notion of reverse equivalence
on such sequences as the least equivalence relation � which is closed under

28 H. Melgratti et al.

composition with ; such that the following hold (recall that t, t′ are transitions
or reverse transitions):

t; t′ � t′; t if t co t′ t; −→
t � ε

−→
t ; t � ε

Reversible equivalence � allows us to swap the order of t and t′ in an execution
sequence as long as t, t′ are concurrent. Moreover, it allows cancellation of a
transition and its inverse. We have that ≡⊂�. The equivalence classes of � are
called traces; it is clear that they contain the Mazurkiewicz traces. Hence, we
shall use ω, ω1 and ω2 to range over such traces.

The following lemma says that, up to reverse equivalence, one can always
reach for the maximum freedom of choice, going backward, and only then going
forwards.

Lemma 17 (Parabolic Lemma). Let ω be a trace. There exist two forward
traces ω1 and ω2 such that ω � −→ω1;ω2.

Proof. By lexicographic induction on length of ω and on the distance between
the beginning of ω and the earliest pair of opposing firings in ω. The analysis
uses both the Loop Lemma (Lemma 14) and the Square Lemma (Lemma 16).

The following lemma says that, if two traces ω1 and ω2 are coinitial and
cofinal (e.g. they start from the same marking and end in the same marking)
and ω2 is a forward only trace, then ω1 has some forward firings and their reverse
ones that cancel each other. And this implies that ω1 is causally equivalent to a
forward trace in which all those pairs of fairing are cancelled out.

Lemma 18 (Shortening Lemma). Let ω1 � ω2 with ω2 forward. Then,
|ω2| ≤ |ω1|.

Proof. The proof is by induction on length of ω1, using Lemma 16 and Lemma 17.
In the proof, the forward trace ω2 is the main guideline for shortening ω1 into a
forward trace. Indeed, the proof relies crucially on the fact that ω1 and ω2 share
the same source and target and that ω2 is a forward trace.

Theorem 19 (Causal Consistency). Two traces ω1 and ω2 are reversible
equivalent iff they are coinitial and cofinal, namely

ω1 � ω2 iff (
−→

O,m0)
ω1−→ (

−→
O,mn) ⇐⇒ (

−→
O,m0)

ω2−→ (
−→

O,mn).

Proof. The “if” direction follows by definition of reverse equivalence and trace
composition. The “only if” direction exploits the properties the Square, Parabolic
and Shortening Lemmas.

With Theorem 19 we proved that the notion of causal consistency charac-
terises a space for admissible rollbacks which are: (1) consistent (in the sense
that they do not lead to previously unreachable configurations) and (2) flexible
enough to allow rearranging of undo actions. This implies that starting from an
initial marking, all the markings reached by mixed computations are markings
that could be reached by performing only forward computations. Hence, we have:

Reversing P/T Nets 29

Theorem 20. Let O be an occurrence net and m0 an initial marking. Then,

(
−→

O,m0) −→∗ (
−→

O,m′) ⇐⇒ (
−→

O,m0) �∗ (
−→

O,m′).

5 Reversing P/T Nets

This section takes advantage of the classical unfolding construction for p/t
nets and the reversible semantics of occurrence nets to add causally-consistent
reversibility to p/t nets.

Definition 21. Let (N,m) be a marked p/t net and U [N,m] its unfolding. The
reversible version of (N,m), written

−−−−→
(N,m), is

−−−−−→
U [N,m].

Example 22. The reversible version of the nets in Fig. 2 are shown in Fig. 5. We
remark that they are the reversible versions of the nets in Fig. 4, which are the
unfoldings of the original nets.

The following result states that a reversible net is a conservative extension
of its original version, i.e., reversibility does not change the set of reachable
markings. The result is a direct consequence of Lemma 13 and the fact that
unfoldings preserve reductions up-to the folding morphism U .

Lemma 23. (N,m) −→∗ (N,m′) iff
−−−−→

(N,m) �∗ (
−→

O,m′′) and m′ = fs(m′′),
where (fs, ft) : U [N,m] → N , defined such that fS(a,_,_) = a and fT (t,_) = t,
is the folding morphism.

We remark that the reversible version of a p/t is defined as the reversible
version of an occurrence net (i.e., its unfolding). Consequently, all properties
shown in the previous section apply to the reversible semantics of p/t nets.
In particular, Lemma 23 combined with Theorem 20 ensures that all markings
reachable by the reversible semantics are just the reachable markings of the
original P/T net.

6 Finite Representation of Reversible P/T Nets

As shown in Fig. 5(c), the reversible version of a finite net may be infinite. In
this section we show how to represent reversible nets in a compact, finite way
by using coloured Petri nets. We assume infinite sets X of variables and C of
colours, defined such that X ⊂ C. For c ∈ C, we write vars(c) for the set of
variables in c. With abuse of notation we write vars(m) for the set of variables
in a multiset m ∈ N

P×C . Let σ : X → C be a partial function and c a colour
(also, m ∈ N

P×C), we write cσ (resp., mσ) for the simultaneous substitution of
each variable x in c (resp., m) by σ(x).

30 H. Melgratti et al.

Fig. 5. Reversible p/t and Petri nets

Definition 24 (c-p/t net). A coloured place/transition net (c-p/t net) is a
4-tuple N = (SN , TN , •_N ,_•

N) where SN ⊆ P is the (nonempty) set of places,
TN ⊆ T is the set of transitions and the functions •_N ,_•

N : TN → N
SN×C

assign source and target to each transition defined such that vars(t•) ⊆ vars(•t).
A marking of a c-p/t net N is multiset over SN × C that does not contain
variables, i.e., m ∈ N

S×C and vars(m) = ∅. A marked c-p/t net is a pair
(N,m) where N is a p/t net and m is a marking of N .

c-p/t nets generalise p/t nets by extending markings to multisets of coloured
tokens, and transitions to patterns that need to be instantiated with appropriate
colours for firing, as formally stated by the firing rule below.

(coloured-firing)

t = m [〉 m′ ∈ TN

(N,mσ ⊕ m′′) t−→ (N,m′σ ⊕ m′′)

Reversing P/T Nets 31

The firing of a transition t = m [〉 m′ requires to instantiate m and m′ by
substituting variables by colours, i.e., the firing of t consumes the instance mσ
of the preset m and produces the instance m′σ of the postset of m′.

We now introduce an encoding that associates each p/t net N with an equiv-
alent c-p/t net �N�, whose tokens carry their execution history. We rely on the
set of colours C defined as the least set that contains X and it is closed under
the following rules.

(token)

h ∈ 2C n ∈ N

(h, n) ∈ C

(elem)

x ∈ T ∪ P h ∈ 2C

x(h) ∈ C

Colours resemble the unfolding construction (Fig. 3): the colours for tokens are
(h, n), where h denotes its (possible empty) set of causes and n is a natural num-
ber used for distinguishing tokens with identical causal history. Causal histories
are build from coloured versions of transitions (t(h)) and places (a(h)).

Definition 25 (P/T as C-P/T). Let N = (SN , TN , •_N ,_•
N) be a p/t net.

Then, �N� is the c-p/t defined such that �N� = (SN , TN , •_�N�,
•_�N�) and

– •t�N� = a1(x1) ⊕ . . . ⊕ an(xn) where •tN = a1 . . . an and ∀1 ≤ i ≤ n.xi ∈ X .
– t•�N� = {a({t(h)}, i) | a ∈ supp(t•N) ∧ 1 ≤ i ≤ t•N (a) ∧ h = •t�N�}.

A marked net (N,m) is encoded as �(N,m)� = (�N�, �m�) where �m� =
{a(∅, i) | a ∈ supp(m) ∧ 1 ≤ i ≤ m(a)}.

The encoding does not alter the structure of a net; it only adds colours to
its tokens. In fact, an encoded net has the same places and transitions as the
original net, and pre- and postsets of each transition have the same support.
Added colours do not interfere with firing because the preset of each transition
uses different colour variables for different tokens. The colour {t(h)} assigned
to each token produced by the firing of t describes the causal history of the
token, i.e., it indicates that the token has been produced by t after consuming
the tokens in the preset of t, which is denoted by h. The natural number i is
used for distinguishing multiple tokens produced by the same firing. Tokens in
the initial marking are coloured as (∅, i), i.e., they have empty causal history.

Example 26. The encoding of the nets in Fig. 2 are shown in Fig. 6. We com-
ment on the encoding of N1. The transition t1 = a[〉c in N1 is encoded as
a(x)[〉c(t1(a(x)), 1), i.e., the firing of t1 that consumes a token with colour h
from place a generates a token in c with colour (t1(a(h)), 1). The transition
t2 = b ⊕ c[〉e has two places in the preset and uses two variables x and y in its
encoded form b(x)⊕ c(y)[〉e(t2(b(x)⊕ c(y)), 1). Note that the colour of the token
produced in c carries the information of the tokens consumed from both places
b and c. The encoding for t3 is defined analogously.

32 H. Melgratti et al.

We illustrate a sequence of firings of �(N1, a ⊕ b ⊕ c ⊕ d)�.

(�N1�, a(∅, 1) ⊕ b(∅, 1) ⊕ c(∅, 1) ⊕ d(∅, 1))
t1−→ (�N1�, b(∅, 1) ⊕ c(t1(a(∅, 1)), 1) ⊕ c(∅, 1) ⊕ d(∅, 1))
t2−→ (�N1�, e(t2(b(∅, 1) ⊕ c(t1(a(∅, 1)), 1)), 1) ⊕ c(∅, 1) ⊕ d(∅, 1))

The firing of t1 consumes the token (∅, 1) from a and produces the token (t1(a
(∅, 1)), 1) in place c. The causal history of the token t1(a(∅, 1) indicates that the
token has been produced by the firing of t1 that consumed the token (∅, 1) from
a. The second reduction takes place because of the firing of t2. By inspecting the
causal history of the token produced in the place e we can conclude that t2 has
consumed the token previously generated by t1.

The following result shows that there is a tight correspondence between the
semantics of the coloured version of a p/t net and its unfolding.

Lemma 27. Let (N,m) be a marked p/t net and U [N,m] = (O,m′) its unfold-
ing. Then, �N,m�

s−→ (�N�,m′′) iff (O,m′) s−→ (O,m′′).

Proof. The if part follows by induction on the length of the reduction. The
base case follows by taking m′′ = m′ and noting that �N,m� = (�N�,m′). The
inductive step s = s′; t follows by applying inductive hypothesis on s′ to conclude
that �N,m�

s′
−→ (�N�,m′′′) iff (O,m) s′

−→ (O,m′′′). If) (�N�,m′′′) t−→ (�N�,m′′)

implies m′′′ = •t�N� ⊕ m′′′′ and m′′ = t•�N� ⊕ m′′′′. Since (O,m) s′
−→ (O,m′′′),

CO(•t). Then, by the unfolding construction we conclude (O,m′′′) t−→ (O,m′′).
The only if follows analogously.

The reversible version of �N� is defined as for occurrence nets, by adding
transitions that are the swapped versions of the ones in N .

Definition 28 (Reversible P/T net). Let N be a p/t net. The reversible
version of N is

−−→
�N�. The reversible version of a marked p/t net (N,m) is the

marked c-p/t net (
−−→

�N�, �m�).

Example 29. The net �
−→

N2�, the reversible version of �N2� from Fig. 6, is shown
in Fig. 7. We now illustrate the execution of �

−→
N2�.

(�
−→

N2�, a(∅, 1) ⊕ b(∅, 1) ⊕ c(∅, 1) ⊕ d(∅, 1))
t1−→(�

−→
N2�, b(∅, 1) ⊕ b(t1(a(∅, 1)), 1) ⊕ c(∅, 1) ⊕ d(∅, 1))

t2−→(�
−→

N2�, b(t1(a(∅, 1)), 1) ⊕ c(∅, 1) ⊕ e(b(∅, 1)c(∅, 1), 1), d(∅, 1))
−→

t1�(�
−→

N2�, a(∅, 1) ⊕ e(b(∅, 1)c(∅, 1), 1) ⊕ d(∅, 1))
−→

t2�(�
−→

N2�, a(∅, 1) ⊕ b(∅, 1) ⊕ c(∅, 1) ⊕ d(∅, 1))

Reversing P/T Nets 33

Fig. 6. p/t nets as c-p/t nets

Fig. 7. Reversible coloured net �
−→

N2�.

In the example above, the firing t2 can choose to consume either the token b(∅, 1)
or the token b(t1(a(∅, 1)), 1). Since the first one is chosen, then after t2 it is still
possible to undo t1. If t2 chose the second token, then in order to undo t1 we
would first undo t2, since firing −→

t1 is not enabled by the token a(∅, 1).

The following result states that the reductions of the reversible c-p/t of a net
are in one-to-one correspondence with the reductions of its reversible unfolding.

Theorem 30 (Correctness). Let (N,m) be a marked p/t net and U [N,m] =
(O,m′) its unfolding. Then, �

−→
N, �m��

s−→ (�N�,m′′) iff (
−→

O,m′) s−→ (
−→

O,m′′).

34 H. Melgratti et al.

7 Conclusions

We have presented a causally reversible semantics for Place/Transitions Petri
Nets (P/T nets) based on two observations. First, occurrence net can be straight-
forwardly reversed by adding for each transition its reverse. Second, the stan-
dard unfolding construction associates a P/T net with an occurrence net that
preserves all of its computation. Consequently, the reversible semantics of a P/T
net can be obtained as the reversible semantics of its unfolding. We have showed
that reversibility in reversible occurrence net is causal-consistent, that is it pre-
serves causality. The unfolding of an occurrence net can be infinite (e.g., it the
original P/T net is not acyclic). Therefore we have shown that the reversible
behaviour of reversible occurrence nets can be expressed as a finite net whose
tokens are coloured by causal histories. Colours in our encoding resemble the
causal memories that are typical in reversible process calculi [6,14].

Occurrence nets have a direct mapping into prime event structures. We shall
investigate in the future the relation between reversible event structures [5,9,24,
28] and our reversible occurrence nets. There is an alternative method for proving
causally-consistent reversibility in a reversible model of computation. It is based
on showing other properties than those in Sect. 4, mainly the well-foundedness
(lack of infinite reverse sequences) and Reverse Diamond properties [22,23]. It
would be worthwhile to prove the alternative properties for our reversible nets,
and compare the two approaches.

Acknowledgment. Research partly supported by the EU H2020 RISE programme
under the Marie Skłodowska Curie grant agreement No 778233. Partly supported by
UBACyT projects 20020170100544BA and 20020170100086BA, and CONICET project
PIP 11220130100148CO. Also, we thank COST Action IC1405 on Reversible Compu-
tation for partial support. The second author acknowledges the support of the Marie
Skłodowska Curie Action Individual Fellowship RCADE No 794405.

References

1. Barylska, K., Gogolińska, A., Mikulski, Ł., Philippou, A., Pia̧tkowski, M., Psara,
K.: Reversing computations modelled by coloured Petri nets. In: van der Aalst,
W.M.P., Bergenthum, R., Carmona, J. (eds.) ATED, vol. 2115, pp. 91–111. CEUR-
WS.org (2018)

2. Barylska, K., Koutny, M., Mikulski, Ł., Pia̧tkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018). https://
doi.org/10.1016/j.scico.2017.10.008

3. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups (preliminary report). In: Proceedings of
STOC, pp. 50–54. ACM (1976). https://doi.org/10.1145/800113.803630

4. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. In: Symposium on Logic in Computer Science, LICS, pp. 388–397. IEEE
Computer Society (2013)

5. Cristescu, I.D., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
223–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_14

https://doi.org/10.1016/j.scico.2017.10.008
https://doi.org/10.1016/j.scico.2017.10.008
https://doi.org/10.1145/800113.803630
https://doi.org/10.1007/978-3-319-25150-9_14

Reversing P/T Nets 35

6. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

7. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452_31

8. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

9. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled)
reversible CCS. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp.
102–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_7

10. Hayman, J., Winskel, G.: The unfolding of general Petri nets. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS. LIPIcs, vol. 2, pp. 223–234 (2008). https://
doi.org/10.4230/LIPIcs.FSTTCS.2008.1755

11. Hoey, J., Ulidowski, I., Yuen, S.: Reversing imperative parallel programs with
blocks and procedures. In: Proceedings of EXPRESS/SOS (2018)

12. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I.
(eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40578-0_2

13. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6_21

14. Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order π-calculus.
Theor. Comput. Sci. 625, 25–84 (2016). https://doi.org/10.1016/j.tcs.2016.02.019

15. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

16. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7_16

17. Leeman Jr., G.B.: A formal approach to undo operations in programming lan-
guages. ACM Trans. Program. Lang. Syst. 8(1), 50–87 (1986). https://doi.org/10.
1145/5001.5005

18. Lévy, J.: An algebraic interpretation of the λβK-calculus; and an application of a
labelled λ-calculus. Theor. Comput. Sci. 2(1), 97–114 (1976). https://doi.org/10.
1016/0304-3975(76)90009-8

19. Medic, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for
reversible π-calculi. In: Pérez, J.A., Tini, S. (eds.) Proceedings of EXPRESS/SOS.
EPTCS, vol. 276, pp. 87–103 (2018)

20. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

21. Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Uli-
dowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7_6

22. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. In: Proceedings
of SOS 2007. ENTCS, vol. 192, pp. 93–108 (2007)

23. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Pro-
gram. 73(1–2), 70–96 (2007). https://doi.org/10.1016/j.jlap.2006.11.002

https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1755
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1755
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1145/5001.5005
https://doi.org/10.1145/5001.5005
https://doi.org/10.1016/0304-3975(76)90009-8
https://doi.org/10.1016/0304-3975(76)90009-8
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1016/j.jlap.2006.11.002

36 H. Melgratti et al.

24. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Log. Algebr. Meth. Program. 84(6), 781–805 (2015). https://doi.org/10.1016/j.
jlamp.2015.07.004

25. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3_18

26. Pinna, G.M.: Reversing steps in membrane systems computations. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-
3_16

27. Schordan, M., Oppelstrup, T., Jefferson Jr., D., Barnes, P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257–280 (2018). https://doi.org/10.1007/s00354-018-0038-2

28. Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Com-
put. 36(3), 281–306 (2018). https://doi.org/10.1007/s00354-018-0040-8

29. Vassor, M., Stefani, J.-B.: Checkpoint/rollback vs causally-consistent reversibility.
In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_20

30. Vos, A.D., Baerdemacker, S.D., Rentergem, Y.V.: Synthesis of Quantum Circuits
vs. Synthesis of Classical Reversible Circuits. Synthesis Lectures on Digital Cir-
cuits and Systems, Morgan & Claypool Publishers (2018). https://doi.org/10.2200/
S00856ED1V01Y201805DCS054

https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/s00354-018-0038-2
https://doi.org/10.1007/s00354-018-0040-8
https://doi.org/10.1007/978-3-319-99498-7_20
https://doi.org/10.2200/S00856ED1V01Y201805DCS054
https://doi.org/10.2200/S00856ED1V01Y201805DCS054

Towards Races in Linear Logic

Wen Kokke1(B), J. Garrett Morris2, and Philip Wadler1

1 University of Edinburgh, Edinburgh, UK
wen.kokke@ed.ac.uk, wadler@inf.ed.ac.uk
2 University of Kansas, Lawrence, KS, USA

garrett@ittc.ku.edu

Abstract. Process calculi based in logic, such as πDILL and CP,
provide a foundation for deadlock-free concurrent programming, but
exclude non-determinism and races. HCP is a reformulation of CP which
addresses a fundamental shortcoming: the fundamental operator for par-
allel composition from the π-calculus does not correspond to any rule of
linear logic, and therefore not to any term construct in CP.

We introduce HCP−
ND, which extends HCP with a novel account of

non-determinism. Our approach draws on bounded linear logic to pro-
vide a strongly-typed account of standard process calculus expressions
of non-determinism. We show that our extension is expressive enough to
capture many uses of non-determinism in untyped calculi, such as non-
deterministic choice, while preserving HCP’s meta-theoretic properties,
including deadlock freedom.

Keywords: π-calculus · Linear logic · Session types ·
Non-determinism · Deadlock freedom

1 Introduction

Consider the following scenario:

Ami and Boé are working from home one morning when they each get a
craving for a slice of cake. Being denizens of the web, they quickly find
the nearest store which does home deliveries. Unfortunately for them, they
both order their cake at the same store, which has only one slice left. After
that, all it can deliver is disappointment.

This is an example of a race condition. We can model this scenario in the π-
calculus, where , and are processes modelling Ami, Boé and the store,
and and are channels giving access to a slice of cake and disappointment,
respectively. This process has two possible outcomes: either Ami gets the cake,
and Boé gets disappointment, or vice versa.

(x[].x[]. | x(y). | x(z).)

= ⇒
�

(| { /y} | { /z}) or (| { /y} | { /z})

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 37–53, 2019.
https://doi.org/10.1007/978-3-030-22397-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_3

38 W. Kokke et al.

While Ami or Boé may not like all of the outcomes, it is the store which is
responsible for implementing the online delivery service, and the store is happy
with either outcome. Thus, the above is an interaction we would like to be able
to model.

Now consider another scenario, which takes place after Ami has already
bought the cake:

Boé is really disappointed when she finds out the cake has sold out. Ami,
always looking to make some money, offers to sell the slice to her for a
profit. Boé agrees to engage in a little bit of back-alley cake resale, but
sadly there is no trust between the two. Ami demands payment first. Boé
would rather get her slice of cake before she gives Ami the money.

This is an example of a deadlock. We can also model this scenario in the π-
calculus, where is a channel giving access to some adequate amount of money.

(x(z).y[]. | y(w).x[].) �=⇒ �

The above process does not reduce. As both Ami and Boé would prefer the
exchange to be made, this interaction is desired by neither. Thus, the above is
an interaction we would like to exclude.

Session types [10] statically guarantee that concurrent programs, such as
those above, respect communication protocols. Session-typed calculi with logi-
cal foundations, such as πDILL [8] and CP [16], obtain deadlock freedom as a
result of a close correspondence with logic. These systems, however, also rule
out non-determinism and race conditions. In this paper, we demonstrate that
logic-inspired type systems need not rule out races.

We present HCP−
ND, an extension of CP with a novel account of non-

determinism and races. Inspired by bounded linear logic [9], we introduce a form
of shared channels in which the type of a shared channel tracks how many times
it is reused. As in the untyped π-calculus, sharing introduces the potential for
non-determinism. We show that our approach is sufficient to capture practical
examples of races, such as an online store, as well as other formal characteri-
zations of non-determinism, such as non-deterministic choice. However, HCP−

ND

does not lose the meta-theoretical benefits of CP: we show that it enjoys termi-
nation and deadlock-freedom.

An important limitation of our work is that types in HCP−
ND explicitly count

the potential races on a channel. It works fine when there are two or three races,
but not n for an arbitrary n. The latter case is obviously important, and we see
the main value of our work as a stepping stone to this more general case.

HCP−
ND is based on HCP [11,12]. HCP is a reformulation of CP which

addresses a fundamental shortcoming: the fundamental operator for parallel com-
position from the π-calculus does not correspond to any rule of linear logic, and
therefore not to any term construct in CP.

There are two versions of HCP: a version with delayed actions, introduced
by Kokke, Montesi, and Peressotti [12]; and a version without delayed actions,
introduced by Kokke, Montesi, and Peressotti [11], referred to as HCP−. In

Towards Races in Linear Logic 39

this work, we will base ourselves on the latter, as the former does not yet have
reduction semantics.

This paper proceeds as follows. In Sect. 2, we discuss recent approaches to
non-determinism in logic-inspired session-typed process calculi. In Sect. 3, we
introduce a variant of CP and prove progress and preservation. In Sect. 4, we
introduce HCP−

ND. In Sect. 5, we discuss cuts with leftovers. Finally, in Sect. 7, we
conclude with a discussion of the work done in this paper and potential avenues
for future work.

2 Non-determinism, Logic, and Session Types

Recent work extended πDILL and CP with operators for non-deterministic
behaviour [1,6,7]. These extensions all implement an operator known as non-
deterministic local choice. (This operator is written as P +Q, but should not be
confused with input-guarded choice from the π-calculus [14].) Non-deterministic
local choice can be summarised by the following typing and reduction rules:

P � Γ Q � Γ

P + Q � Γ

P + Q =⇒ P
P + Q =⇒ Q

Local choice introduces non-determinism explicitly, by listing all possible choices.
This is unlike the π-calculus, where non-determinism arises due to multiple pro-
cesses communicating on shared channels. We can easily implement local choice
in the π-calculus, using a nullary communication:

(x[].0 | x().P | x().Q)

=⇒
�

(P | x().Q) or (x().P | Q)

In this implementation, the process x[].0 will “unlock” either P or Q, leaving
the other process deadlocked. Or we could use input-guarded choice:

(x[].0 | (x().P + x().Q))

However, there are many non-deterministic processes in the π-calculus that
are awkward to encode using non-deterministic local choice. Let us recall our
example:

(x[].x[]. | x(y). | x(z).)

= ⇒
�

(| { /y} | { /z}) or (| { /y} | { /z})
This non-deterministic interaction involves communication. If we wanted to write
down a process which exhibited the same behaviour using non-deterministic local
choice, we would have to write the following process:

40 W. Kokke et al.

(x[].y[]. | x(z). | y(w).) + (y[].x[]. | x(z). | y(w).)

=⇒
�

(| { /y} | { /z}) or (| { /y} | { /z})
In essence, instead of modelling a non-deterministic interaction, we are enumer-
ating the resulting deterministic interactions. This means non-deterministic local
choice cannot model non-determinism in the way the π-calculus does. Enumer-
ating all possible outcomes becomes worse the more processes are involved in an
interaction. Imagine the following scenario:

Three customers, Ami, Boé, and Cat, have a craving for cake. Should cake
be sold out, however, well... a doughnut will do. They prepare to order
their goods via an online store. Unfortunately, they all decide to use the
same shockingly under-stocked store, which has only one slice of cake, and
a single doughnut. After that, all it can deliver is disappointment.

We can model this scenario in the π-calculus, where , , , and are four
processes modelling Ami, Boé, Cat, and the store, and , , and are three
channels giving access to a slice of cake, a so-so doughnut, and disappointment,
respectively.

(x[].x[].x[]. | x(y). | x(z). | x(w).)

=⇒
�

(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})
(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})
(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})

With the addition of one process, modelling Cat, we have increased the number
of possible outcomes enormously! In general, the number of outcomes for these
types of scenarios is n!, where n is the number of processes. This means that if we
wish to translate any non-deterministic process to one using non-deterministic
local choice, we can expect a factorial growth in the size of the term.

3 Hypersequent Classical Processes

In this section, we introduce HCP [11,12], the basis for our calculus HCP−
ND.

The term language for HCP− is a variant of the π-calculus [14].

Towards Races in Linear Logic 41

Definition 1 (Terms).

P ,Q,R :: = x↔y link
| 0 terminated process
| (νx)P name restriction, “cut”
| (P | Q) parallel composition, “mix”
| x[y].P output
| x(y).P input
| x[].P halt
| x().P wait
| x � inl.P select left choice
| x � inr.P select right choice
| x � {inl : P ; inr : Q} offer binary choice
| x � {} offer nullary choice

The variables x, y, z and w range over channel names. Occasionally, we use a, b,
and c to range over free channel names. The construct x↔y links two channels [5,
15], forwarding messages received on x to y and vice versa. The construct (νx)P
creates a new channel x, and the construct P | Q and composes two processes. In
x(y).P and x[y].P , round brackets denote input, square brackets denote output.
We use bound output [15], meaning that both input and output bind a new
name.

Terms in HCP− are identified up to structural congruence.

Definition 2 (Structural congruence). The structural congruence ≡ is the
congruence closure over terms which satisfies the following additional axioms:

(↔-comm) x↔y ≡ y↔x (ν-comm) (νx)(νy)P ≡ (νy)(νx)P
(|-comm) P | Q ≡ Q | P (|-assoc) P | (Q | R) ≡ (P | Q) | R
(halt) P | 0 ≡ P (scope-ext) (νx)(P | Q) ≡ P | (νx)Q if x �∈ P

Channels in HCP− are typed using a session type system which is a conservative
extension of linear logic.

Definition 3 (Types).

A,B,C :: = A ⊗ B independent channels | 1 unit for ⊗
| A � B interdependent channels | ⊥ unit for �

| A ⊕ B internal choice | 0 unit for ⊕
| A � B external choice | � unit for �

Duality plays a crucial role in both linear logic and session types. In HCP−,
the two endpoints of a channel are assigned dual types. This ensures that, for
instance, whenever a process sends across a channel, the process on the other
end of that channel is waiting to receive. Each type A has a dual, written A⊥.
Duality (·⊥) is an involutive function on types.

Definition 4 (Duality).

(A ⊗ B)⊥ = A⊥
� B⊥ 1⊥ = ⊥ (A � B)⊥ = A⊥ ⊗ B⊥ ⊥⊥ = 1

(A ⊕ B)⊥ = A⊥
� B⊥ 0⊥ = � (A � B)⊥ = A⊥ ⊕ B⊥ �⊥ = 0

42 W. Kokke et al.

Environments associate channels with types. Names in environments must be
unique, and environments Γ and Δ can only be combined (Γ ,Δ) if cn(Γ) ∩
cn(Δ) = ∅, where cn(Γ) denotes the set of channel names in Γ .

Definition 5 (Environments). Γ ,Δ,Θ :: = x1 : A1 . . . xn : An

HCP− registers parallelism using hyper-environments. A hyper-environment is
a multiset of environments. While names within environments must be unique,
names may be shared between multiple environments in a hyper-environment.
We write G | H to combine two hyper-environments.

Definition 6 (Hyper-environments). G,H :: = ∅ | G | Γ

Typing judgements associate processes with collections of typed channels.

Definition 7 (Typing judgements). A typing judgement P � Γ1 | . . . | Γn

denotes that the process P consists of n independent, but potentially entangled
processes, each of which communicates according to its own protocol Γi. Typing
judgements can be constructed using the inference rules below.
Structural rules

Ax
x↔y � x : A, y : A⊥

P � G | Γ, x : A | Δ,x : A⊥
Cut

(νx)P � G | Γ ,Δ

P � G Q � H
H-Mix

P | Q � G | H H-Mix00 � ∅

Logical rules
P � G | Γ , y : A | Δ,x : B ⊗

x[y].P � G | Γ ,Δ, x : A ⊗ B

P � G | Γ, y : A, x : B
(�)

x(y).P � G | Γ, x : A � B

P � G
1

x[].P � G | x :1
P � G | Γ

(⊥)
x().P � G | Γ, x : ⊥

P � G | Γ, x : A
(⊕1)

x � inl.P � G | Γ, x : A ⊕ B

P � G | Γ, x : B
(⊕2)

x � inr.P � G | Γ, x : A ⊕ B

P � Γ, x : A Q � Γ, x : B
(�)

x � {inl : P ; inr : Q} � Γ, x : A � B

(no rule for 0) (�)
x � {} � Γ, x : �

Furthermore, each logical rule has the side condition that x �∈ G.

Reductions relate processes with their reduced forms.

Definition 8 (Reduction). Reductions are described by the smallest relation
=⇒ on process terms closed under the rules below:

(↔) (νx)(w↔x | P) =⇒ P{w/x}
(β⊗�) (νx)(x[y].P | x(y).R) =⇒ (νx)(νy)(P | R)
(β1⊥) (νx)(x[].P | x().Q) =⇒ P | Q
(β⊕�1) (νx)(x � inl.P | x � {inl : Q; inr : R}) =⇒ (νx)(P | Q)
(β⊕�2) (νx)(x � inr.P | x � {inl : Q; inr : R}) =⇒ (νx)(P | R)

Towards Races in Linear Logic 43

P =⇒ P ′
(γν)

(νx)P =⇒ (νx)P ′
P =⇒ P ′

(γ|)
P | Q =⇒ P ′ | Q

P ≡ Q Q =⇒ Q′ Q′ ≡ P ′
(γ≡)

P =⇒ P ′

3.1 Example

HCP− uses hyper-sequents to structure communication, and it is this structure
which rules out deadlocked interactions. Let us go back to our example of a
deadlocked interaction from Sect. 1. If we want to type this interaction in HCP−,
we run into a problem: to communicate on x, we need to add name restrictions
on x and y, e.g.,

(νx)(νy)(x(z).y[]. | y(w).x[].).

However, there is no typing derivation for this term. We illustrate this with the
partial typing derivation below. In this derivation, there is no way to proceed and
type the final name restriction. The Cut rule needs a hypersequent separator
to eliminate, so that it only ever links up two independent processes, but the
bottom-most sequent has none. Furthermore, the two occurrences of x appearing
in the same environment make it ill-formed.

� Γ, z : ⊥
, : ⊗

y[]. � Γ, z : ⊥
, y :

�

x(z).y[]. � Γ, x : ⊥
, y :

� Δ, : , w : ⊥
⊗

x[]. � Δ, x : , w : ⊥
�

y(w).x[]. � Δ, x : , y : ⊥
H-Mix

(x(z).y[]. | y(w).x[].) � Γ, x : ⊥
, y : | Δ, x : , y : ⊥

Cut
(νy)(x(z).y[]. | y(w).x[].) � Γ,Δ, x : ⊥

, x :

3.2 Metatheory

HCP− enjoys subject reduction, termination, and progress [11].

Lemma 9 (Preservation for ≡). If P ≡ Q, then P � G iff Q � G.

Proof. By induction on the derivation of P ≡ Q.

Theorem 10 (Preservation). If P � G and P =⇒ Q, then Q � G.

Proof. By induction on the derivation of P =⇒ Q.

Definition 11 (Actions). A process P acts on x whenever x is free in the
outermost term constructor of P , e.g., x[y].P acts on x but not on y, and x↔y
acts on both x and y. A process P is an action if it acts on some channel x.

Definition 12 (Canonical forms). A process P is in canonical form if

P ≡ (νx1) . . . (νxn)(P1 | · · · | Pn+m+1),

such that: no process Pi is a cut or a mix; no process Pi is a link acting on a
bound channel xi; and no two processes Pi and Pj are acting on the same bound
channel xi.

44 W. Kokke et al.

Lemma 13. If a well-typed process P is in canonical form, then it is blocked
on an external communication, i.e., P ≡ (νx1) . . . (νxn)(P1 | · · · | Pn+m+1) such
that at least one process Pi acts on a free name.

Proof. We have P ≡ (νx1) . . . (νxn)(P1 | . . . | Pn+m+1), such that no Pi is a cut
or a link acting on a bound channel, and no two processes Pi and Pj are acting
on the same bound channel. The prefix of cuts and mixes introduces n channels.
Each application of cut requires an application of mix, so the prefix introduces
n+m+1 processes. Therefore, at least m+1 of the processes Pi must be acting
on a free channel, i.e., blocked on an external communication.

Theorem 14 (Progress). If P � Γ , then either P is in canonical form, or
there exists a process Q such that P =⇒ Q.

Proof. We consider the maximum prefix of cuts and mixes of P such that P ≡
(νx1) . . . (νxn)(P1 | . . . | Pn+m+1), and no Pi is a cut. If any process Pi is a link,
we reduce by (↔). If any two processes Pi and Pj are acting on the same channel
xi, we rewrite by ≡ and reduce by the appropriate β-rule. Otherwise, P is in
canonical form.

Theorem 15 (Termination). If P � G, then there are no infinite =⇒-
reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, measured in the size of the cut formula. Further-
more, each instance of the structural congruence preserves the size of the cut.
Therefore, there cannot be an infinite =⇒-reduction sequence.

4 Shared Channels and Non-determinism

In this section, we will discuss our main contribution: an extension of HCP−

which allows for races while still excluding deadlocks. We have seen in Sect. 3.1
how HCP− excludes deadlocks, but how exactly does HCP− exclude races? Let
us return to our example from Sect. 1, to the interaction between Ami, Boé and
the store.

(x[].x[]. | x(y). | x(z).)

= ⇒
�

(| { /y} | { /z}) or (| { /y} | { /z})
Races occur when more than two processes attempt to communicate simulta-
neously over the same channel. However, the Cut rule of HCP− requires that
exactly two processes communicate over each channel:

P � G | Γ, x : A | Δ,x : A⊥
Cut

(νx)P � G | Γ ,Δ

Towards Races in Linear Logic 45

We could attempt to write down a protocol for our example, stating that the
store has a pair of channels x, y : with which it communicates with Ami and
Boé, taking to be the type of interactions in which cake may be obtained, i.e.
of both and , and state that the store communicates with Ami and Boé
over a channel of type . However, this only models interactions such as
the following:

� Γ, x : ⊥ � Δ, y : ⊥
H-Mix

(|) � Γ, x : ⊥ | Δ, x : ⊥
⊗

y[x].(|) � Γ,Δ, y : ⊥ ⊗ ⊥
� Θ, x : , y :

�
y(x). � Θ, y : �

H-Mix
(y[x].(|) | y(x).) � Γ,Δ, y : ⊥ ⊗ ⊥ | Θ, y : �

Cut
(νy)(y[x].(|) | y(x).) � Γ,Δ, Θ

In this interaction, Ami will get whatever the store decides to send on x, and
Boé will get whatever the store decides to send on y. This means that this
interactions gives the choice of who receives what to the store. This is not an
accurate model of our original example, where the choice of who receives the cake
is non-deterministic and depends on factors outside of any of the participants’
control!

Modelling racy behaviour, such as that in our example, is essential to describ-
ing the interactions that take place in realistic concurrent systems. We would
like to extend HCP− to allow such races in a way which mirrors the way in which
the π-calculus handles non-determinism. Let us return to our example:

(x[].x[]. | x(y). | x(z).)

In this interaction, we see that the channel x is only used as a way to connect
the various clients, Ami and Boé, to the store. The real communication, sending
the slice of cake and disappointment, takes places on the channels , , y and
z. Inspired by this, we add two new constructs to the term language of HCP−

for sending and receiving on a shared channel. These actions are marked with a

 to distinguish them from ordinary sending and receiving.

Definition 16 (Terms). We extend Definition 1 as follows:

P ,Q,R :: = . . .

|
x[y].P client creation
|
x(y).P server interaction

As before, round brackets denote input, square brackets denote output. Note
that
x[y].P , much like x[y].P , is a bound output: both client creation and
server interaction bind a new name. The structural congruence, which identifies
certain terms, is the same as Definition 2.

46 W. Kokke et al.

In any non-deadlock interaction between a server and some clients, there
must be exactly as many clients as there are server interactions. Therefore, we
add two new dual types for client pools and servers, which track how many
clients or server interactions they represent.

Definition 17 (Types). We extend Definition 3 as follows:

A,B,C :: = . . .
| !nA pool of n clients
| ?nA n server interactions

The types !nA and ?nA⊥ are dual. Duality remains an involutive function.
We have to add typing rules to associate our new client and server interactions

with their types. The definition for environments will remain unchanged, but we
will extend the definition for the typing judgement. To determine the new typing
rules, we essentially answer the question “What typing constructs do we need
to complete the following proof?”

� Γ, y : ⊥
...

� Δ, y′ : ⊥
...

� Θ, z : , z′ :
...

(νx)((�x[y]. | �x[y′].) | �x(z).�x(z′).) � Γ,Δ, Θ

The constructs
x[y].P and
x(y).P introduce a single client or server action,
respectively—hence, channels of type !1 and ?1. However, when we cut, we want
to cut on both interactions simultaneously. We need rules for the contraction of
shared channel names.

4.1 Clients and Pooling

A client pool represents a number of independent processes, each wanting to
interact with the same server. Examples of such a pool include Ami and Boé
from our example, customers for online stores in general, and any number of
processes which interact with a single, centralised server.

We introduce two new rules: one to construct clients, and one to pool them
together. The first rule, (!1), interacts over a channel as a client. It does this
by receiving a channel y over a shared channel x. The channel y is the channel
across which the actual interaction will eventually take place. The second rule,
Cont!, allows us to contract shared channel names with the same type. When
used together with H-Mix, this allows us to pool clients together.

P � G | Γ, y : A
(!1)

x[y].P � G | Γ, x : !1A
P � G | Γ, x : !mA | Δ, y : !nA

Cont!
P{x/y} � G | Γ,Δ, x : !m+nA

Using these rules, we can derive the left-hand side of our proof by marking Ami
and Boé as clients, and pooling them together.

Towards Races in Linear Logic 47

� Γ, y : ⊥
(!1)

�x[y]. � Γ, y : !1
⊥

� Δ, y′ : ⊥
(!1)

�x′[y′]. � Δ, x′ : !1
⊥

H-Mix
(�x[y]. | �x′[y′].) � Γ, x : !1

⊥ | Δ, x′ : !1
⊥

Cont!
(�x[y]. | �x[y′].) � Γ,Δ, x : !2

⊥

4.2 Servers and Sequencing

Dual to a pool of n clients in parallel is a server with n actions in sequence. Our
interpretation of a server is a process which offers some number of interdependent
interactions of the same type. Examples include the store from our example,
which gives out slices of cake and disappointment, online stores in general, and
any central server which interacts with some number of client processes.

We introduce two new rules to construct servers. The first rule, (?1), marks
a interaction over some channel as a server interaction. It does this by sending
a channel y over a shared channel x. The channel y is the channel across which
the actual interaction will take place. The second rule, Cont?, allows us to
merge two (possibly interleaved) sequences of server interactions. This allows us
to construct a server which has multiple interactions of the same type, across
the same shared channel.

P � G | Γ, y : A
(?1)

x(y).P � G | Γ, x : ?1A
P � G | Γ, x : ?mA, y : ?nA

Cont?
P{x/y} � G | Γ, x : ?m+nA

Using these rules, we can derive the right-hand side of our proof, by marking
each of the store’s interactions as server interactions, and then contracting them.

� Θ, z : , z′ :
(?1)

�x′(z′). � Θ, z : , x′ : ?1 (?1)
�x(z).�x′(z′). � Θ, x : ?1 , x′ : ?1

Cont?
�x(z).�x(z′). � Θ, x : ?2

Thus, we complete the typing derivation of our example.

Definition 18 (Typing judgements). We extend Definition 7 as follows:

P � G | Γ, y : A
(!1)

�x[y].P � G | Γ, x : !1A

P � G | Γ, y : A
(?1)

�x(y).P � G | Γ, x : ?1A

P � G | Γ, x : !mA | Δ, y : !nA
Cont!

P{x/y} � G | Γ, Δ, x : !m+nA

P � G | Γ, x : ?mA, y : ?nA
Cont?

P{x/y} � G | Γ, x : ?m+nA

4.3 Running Clients and Servers

Finally, we need to extend the reduction rules to allow for the reduction of client
and server processes. The reduction rule we add is a variant of the reduction
rule for ⊗ and �, (β⊗�).

48 W. Kokke et al.

Definition 19 (Reduction). We extend Definition 8 as follows:

(β
) (νx)((
x[y].P |
x(z).Q) | R) =⇒ (νx)((νy)(P | Q{y/z}) | R)

The difference between (β
) and (β⊗�) is that the former allows reduction
to happen in the presence of an unrelated process R, which is passed along
unchanged. This is necessary, as there may be other clients waiting to interact
with the server on the shared channel x, which cannot be moved out of scope
of the name restriction (νx). When there is no unrelated process R, i.e., when
there is only a single client, we can rewrite by (halt) before and after applying
(β
).

So where does the non-determinism in HCP−
ND come from? Let us say we

have a term of the following form:

(νx)((
x[y1].P1 | · · · |
x[yn].Pn) |
x(y1). . . .
x(yn).Q)

As parallel composition is commutative and associative, we can rewrite this term
to pair any client in the pool with the server before applying (β
). Thus, like in
the π-calculus, the non-determinism is introduced by the structural congruence.

Does this mean that, for an arbitrary client pool P in (νx)(P |
x(z).Q), every
client in that pool is competing for the server interaction on x? Not necessarily,
as some portion of the clients can be blocked on an external communication. For
instance, in the term below, clients
x[yn+1].Pn+1 . . .
x[ym].Pm are blocked on
a communication on the external channel a:

νx.(((
x[y1].P1 | · · · |
x[yn].Pn)
| a().(
x[yn+1].Pn+1 | · · · |
x[ym].Pm))
|
x(y1). . . .
x(ym).Q)

If we reduce this term, then only the clients
x[y1].P1 . . .
x[yn].Pn will be
assigned server interactions, and we end up with the following canonical form:

νx.(a().(
x[yn+1].Pn+1 | · · · |
x[ym].Pm)
|
x(yn+1). . . .
x(ym).Q)

This matches our intuition and the behaviour of the π-calculus.

Alternative Syntax. If we choose to reuse the terms x[y].P and x(y).P for shared
channels, we could replace (β⊗�) with (β
), using the latter rule for both cases.

4.4 Metatheory

HCP−
ND enjoys subject reduction, termination, and progress.

Lemma 20 (Preservation for ≡). If P ≡ Q and P � G, then Q � G.

Proof. By induction on the derivation of P ≡ Q.

Theorem 21 (Preservation). If P � G and P =⇒ Q, then Q � G.

Towards Races in Linear Logic 49

Proof. By induction on the derivation of P =⇒ Q.

Definition 22 (Actions). A process P acts on x whenever x is free in the
outermost term constructor of P , e.g.,
x(y).P acts on x but not on y, and
x↔y acts on both x and y. A process P is an action if it acts on some channel
x. Two actions are dual when they introduce dual type constructors, e.g., x[y].P
is dual to x(z).Q, but x↔y is not dual to any action.

Definition 23 (Canonical forms). A process P is in canonical form if

P ≡ (νx1) . . . (νxn)(P1 | · · · | Pn+m+1),

such that: no process Pi is a cut or a mix; no process Pi is a link acting on a
bound channel xi; and no two processes Pi and Pj are acting on the same bound
channel xi with dual actions.

The new definition of canonical forms is slightly more precise than Definition 12:
we added the phrase “with dual actions”. With the addition of shared channels,
it has become possible to have a process which cannot reduce, but in which two
processes are waiting to act on the same channel, e.g., in (�x[y]. | �x[y′].).

Lemma 24. If a well-typed process P is in canonical form, then it is blocked
on an external communication, i.e., P ≡ (νx1) . . . (νxn)(P1 | · · · | Pn+m+1) such
that at least one process Pi acts on a free name.

Proof. We have P ≡ (νx1) . . . (νxn)(P1 | . . . | Pn+m+1), such that no Pi is a cut
or a link acting on a bound channel, and no two processes Pi and Pj are acting
on the same bound channel with dual actions. The prefix of cuts and mixes
introduces n channels. Each application of cut requires an application of mix, so
the prefix introduces n + m + 1 processes. Each application of Cont! requires
an application of mix, so there are at most m clients acting on the same bound
channel. Therefore, at least one of the processes Pi must be acting on a free
channel, i.e., blocked on an external communication.

Theorem 25 (Progress). If P � Γ , then either P is in canonical form, or
there exists a process Q such that P =⇒ Q.

Proof. We consider the maximum prefix of cuts and mixes of P such that P ≡
(νx1) . . . (νxn)(P1 | . . . | Pn+m+1), and no Pi is a cut. If any process Pi is a
link, we reduce by (↔). If any two processes Pi and Pj are acting on the same
channel xi with dual actions, we rewrite by ≡ and reduce by the appropriate
β-rule. Otherwise, P is in canonical form.

Theorem 26 (Termination). If P � G, then there are no infinite =⇒-
reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, measured in the size of the cut formula. Further-
more, each instance of the structural congruence preserves the size of the cut.
Therefore, there cannot be an infinite =⇒-reduction sequence.

50 W. Kokke et al.

4.5 HCP−
ND and Non-deterministic Local Choice

In Sect. 2, we discussed the non-deterministic local choice operator, which is used
in several extensions of πDILL and CP [1,6,7]. This operator is admissible in
HCP−

ND. We can derive the non-deterministic choice P + Q by constructing the
following term:

νx.((
x[y].y � inl.y[].0
|
x[z].z � inr.z[].0)
|
x(y).
x(z).y �

{inl : (νw)(z � {inl : z().w[].0; inr : z().w[].0} | w().P)
;inr : (νw)(z � {inl : z().w[].0; inr : z().w[].0} | w().Q) })

This term is a cut between two processes.

– On the left-hand side, we have a pool of two processes,
x[y].y �inl.y[].0 and

x[z].z � inr.z[].0. Each makes a choice: the first sends inl, and the second
sends inr.

– On the right-hand side, we have a server with both P and Q. This server has
two channels on which a choice is offered, y and z. The choice on y selects
between P and Q. The choice on z does not affect the outcome of the process
at all. Instead, it is discarded.

When these clients and the server are put together, the choices offered by the
server will be non-deterministically lined up with the clients which make choices,
and either P or Q will run.

While there is a certain amount of overhead involved in this encoding, it
scales linearly in terms of the number of processes. The reverse—encoding the
non-determinism present in HCP−

ND using non-deterministic local choice—scales
exponentially, see, e.g., the examples in Sect. 2.

5 Cuts with Leftovers

So far, our account of a non-determinism in client/server interactions only allows
for interactions between equal numbers of clients and server interactions. A nat-
ural question is whether or not we can deal with the scenario in which there
are more client than server interactions or vice versa, i.e., whether or not the
following rules are derivable:

� Γ, !n+mA � Δ, ?nA⊥

� Γ,Δ, !mA

� Γ, !nA � Δ, ?n+mA⊥

� Γ,Δ, ?mA⊥

These rules are derivable using a link. For instance, we can derive the rule for
the case in which there are more clients than servers as follows:

Towards Races in Linear Logic 51

P � Γ, x : !n+mA

Q � Δ, x : ?nA⊥ x↔w � x′ : ?mA⊥, w : !mA
H-Mix

(Q | x↔w) � Δ, x : ?nA⊥ | x′ : ?mA⊥, w : !mA
Cont!

(Q | x↔w) � Δ, x : ?n+mA⊥, w : !mA
H-Mix

(P | (Q | x↔w)) � Γ, x : !n+mA | Δ, x : ?n+mA⊥, w : !mA
Cut

(νx)(P | (Q | x↔w)) � Γ, Δ, w : !mA

6 Relation to Manifest Sharing

In Sect. 2, we mentioned related work which extends πDILL and CP with non-
deterministic local choice [1,6,7], and contrasted these approaches with ours. In
this section, we will contrast our work with the more recent work on manifest
sharing [2].

Manifest sharing extends the session-typed language SILL with two connec-
tives, ↑S

LA and ↓S
LA, which represent the places in a protocol where a shared

resource is acquired and released, respectively. In the resulting language, SILLS ,
we can define a type for, e.g., shared queues (using the notation for types intro-
duced in this paper):

queue A :: = ↑S
L(A⊥

� ↓S
L(queue A)) � ((A ⊕ ⊥) � ↓S

L(queue A))

The type queue A types a shared channel which, after we acquire exclusive access,
gives us the choice between enqueuing a value (A⊥) and releasing the queue, or
dequeuing a value if there is any (A ⊕ ⊥) and releasing the queue.

The language SILLS is much more expressive than HCP−
ND, as it has support

for both shared channels and recursion. In fact, Balzer, Pfenning, and Toninho [3]
show that SILLS is expressive enough to embed the untyped asynchronous π-
calculus. This expressiveness comes with a cost, as SILLS processes are not
guaranteed to be deadlock free, though recent work addresses this issue [4].

Despite the difference in expressiveness, there are some similarities between
HCP−

ND and SILLS . In the former, shared channels represent (length-indexed)
streams of interactions of the same type. In the latter, it is necessary for type
preservation that shared channels are always released at the same type at which
they were acquired, meaning that shared channels also represent (possibly infi-
nite) streams of interactions of the same type. In fact, in HCP−

ND, the type for
queues (with n interactions) can be written as !n(A⊥

� (A ⊕ ⊥)).
One key difference between HCP−

ND and SILLS is that in SILLS a server
must finish interacting with one client before interacting with another, whereas
in HCP−

ND the server may interact with multiple clients simultaneously.

7 Discussion and Future Work

We presented HCP−
ND, an extension of HCP− which permits non-deterministic

communication without losing the strong connection to logic. We gave proofs for
preservation, progress, and termination for the term reduction system of HCP−

ND.
We showed that we can define non-deterministic local choice in HCP−

ND.

52 W. Kokke et al.

Our formalism so far has only captured servers that provide for a fixed num-
ber of clients. More realistically, we would want to define servers that provide
for arbitrary numbers of clients. This poses two problems: how would we define
arbitrarily-interacting stateful processes, and how would we extend the typing
discipline of HCP−

ND to account for them without losing its static guarantees.
One approach to defining server processes would be to combine HCP−

ND with
structural recursion and corecursion, following the μCP extension of Lindley
and Morris [13]. Their approach can express processes which produce streams of
A channels. Such a process would expose a channel with the co-recursive type
νX.A� (1⊕X). Given such a process, it is possible to produce a channel of type
A � A � · · · � A for any number of As, allowing us to satisfy the type ?nA for
an arbitrary n.

We would also need to extend the typing discipline to capture arbitrary use
of shared channels. One approach would be to introduce resource variables and
quantification. Following this approach, in addition to having types ?nA and !nA
for concrete n, we would also have types ?xA and !xA for resource variables x.
These variables would be introduced by quantifiers ∀xA and ∃xA. Defining terms
corresponding to ∀xA, and its relationship with structured recursion, presents
an interesting area of further work.

Our account of HCP− did not include the exponentials ?A and !A. The
type !A denotes arbitrarily many independent instances of A, while the type ?A
denotes a concrete (if unspecified) number of potentially-dependent instances
of A. Existing interpretations of linear logic as session types have taken !A to
denote A-servers, while ?A denotes A-clients. However, the analogy is imperfect:
while we expect servers to provide arbitrarily many instances of their behaviour,
we also expect those instances to be interdependent.

With quantification over resource variables, we can give precise accounts
of both CP’s exponentials and idealised servers and clients. CP exponentials
could be embedded into this framework using the definitions !A ::= ∀n!nA and
?A :: = ∃n?nA. We would also have types that precisely matched our intuitions
for server and client behavior: an A server is of type ∀n?nA, as it serves an
unbounded number of requests with the requests being interdependent, while a
collection of A clients is of type ∃n!nA, as we have a specific number of clients
with each client being independent.

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30936-1 2

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP), 1–29 (2017). https://doi.org/10.1145/3110281

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1145/3110281

Towards Races in Linear Logic 53

3. Balzer, S., Pfenning, F., Toninho, B.: A universal session type for untyped asyn-
chronous communication. In: Schewe, S., Zhang, L. (eds.) 29th International Con-
ference on Concurrency Theory (CONCUR 2018). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 118, pp. 30:1–30:18. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/
LIPIcs.CONCUR.2018.30

4. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

5. Boreale, M.: On the expressiveness of internal mobility in name-passing cal-
culi. Theor. Comput. Sci. 195(2), 205–226 (1998). https://doi.org/10.1016/s0304-
3975(97)00220-x

6. Caires, L.: Types and logic, concurrency and non-determinism. In: Abadi, M.,
Gardner, P., Gordon, A., Mardare, R. (eds.) Essays for the Luca Cardelli Fest.
Microsoft Research (2014)

7. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 229–259. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 9

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach to
polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (1992). https://
doi.org/10.1016/0304-3975(92)90386-T

10. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

11. Kokke, W., Montesi, F., Peressotti, M.: Taking linear logic apart. In: Workshop on
Linearity & TLLA at FloC 2018, July 2018

12. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: a fully-abstract
semantics for classical processes. PACMPL 3(POPL), 24 (2019)

13. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types. In:
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pp. 434–447. ACM, New York (2016). https://doi.org/
10.1145/2951913.2951921

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992). https://doi.org/10.1016/0890-5401(92)90009-5

15. Sangiorgi, D.: π-calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1–2), 235–274 (1996). https://doi.org/10.1016/0304-3975(96)00075-
8

16. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2012, pp. 273–286.
ACM, New York (2012). https://doi.org/10.1145/2364527.2364568

https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1145/2364527.2364568

The share Operator for Field-Based
Coordination

Giorgio Audrito1 , Jacob Beal2 , Ferruccio Damiani1(B) ,
Danilo Pianini3 , and Mirko Viroli3

1 Dipartimento di Informatica, University of Torino, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

2 Raytheon BBN Technologies, Cambridge, MA, USA
jakebeal@ieee.org

3 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{danilo.pianini,mirko.viroli}@unibo.it

Abstract. Recent work in the area of coordination models and col-
lective adaptive systems promotes a view of distributed computations
as functions manipulating computational fields (data structures spread
over space and evolving over time), and introduces the field calculus
as a formal foundation for field computations. With the field calculus,
evolution (time) and neighbor interaction (space) are handled by sepa-
rate functional operators: however, this intrinsically limits the speed of
information propagation that can be achieved by their combined use. In
this paper, we propose a new field-based coordination operator called
share, which captures the space-time nature of field computations in a
single operator that declaratively achieves: (i) observation of neighbors’
values; (ii) reduction to a single local value; and (iii) update and con-
verse sharing to neighbors of a local variable. In addition to conceptual
economy, use of the share operator also allows many prior field calcu-
lus algorithms to be greatly accelerated, which we validate empirically
with simulations of a number of frequently used network propagation
and collection algorithms.

Keywords: Aggregate programming · Computational field ·
Information propagation speed · Spatial computing

1 Introduction

The number and density of networking computing devices distributed through-
out our environment is continuing to increase rapidly. In order to manage and
make effective use of such systems, there is likewise an increasing need for soft-
ware engineering paradigms that simplify the engineering of resilient distributed

This work has been partially supported by Ateneo/CSP project “AP: Aggregate Pro-
gramming” (http://ap-project.di.unito.it/). This document does not contain technol-
ogy or technical data controlled under either U.S. International Traffic in Arms Regu-
lation or U.S. Export Administration Regulations.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 54–71, 2019.
https://doi.org/10.1007/978-3-030-22397-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_4&domain=pdf
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0002-1663-5102
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-8392-5409
http://orcid.org/0000-0003-2702-5702
http://ap-project.di.unito.it/
https://doi.org/10.1007/978-3-030-22397-7_4

The share Operator for Field-Based Coordination 55

systems. Aggregate programming [11,37] is one such promising approach, pro-
viding a layered architecture in which programmers can describe computations
in terms of resilient operations on “aggregate” data structures with values spread
over space and evolving in time.

The foundation of this approach is field computation, formalized by the field
calculus [36], a terse mathematical model of distributed computation that simul-
taneously describes both collective system behavior and the independent, unsyn-
chronized actions of individual devices that will produce that collective behav-
ior [8]. Traditionally, in this approach each construct and reusable component is
a pure function from fields to fields—a field is a map from a set of space-time
computational events to a set of values—and each primitive construct handles
just one key aspect of computation: hence, one construct deals with time (i.e,
rep, providing field evolution) and one with space (i.e., nbr, handling neighbor
interaction). However, in recent work on the universality of the field calculus,
we have identified that the combination of time evolution and neighbor interac-
tion operators in the original field calculus induces a delay, limiting the speed of
information propagation that can be achieved efficiently [2].

In this paper, we address this limitation by extending the field calculus with
the share construct, combining time evolution and neighbor interaction into a
single new atomic coordination operator that simultaneously implements: (i)
observation of neighbors’ values; (ii) reduction to a single local value; and (iii)
update and converse sharing to neighbors of a local variable.

Following a review of the field calculus and its motivating context in Sect. 2,
we introduce the share construct in Sect. 3, empirically validate the predicted
acceleration of speed in frequently used network propagation and collection algo-
rithms in Sect. 4, and conclude with a summary and discussion of future work
in Sect. 5.

2 Background, Motivation, and Related Work

Programming collective adaptive systems is a challenge that has been recognized
and addressed in a wide variety of different contexts. Despite the wide variety
of goals and starting points, however, the commonalities in underlying chal-
lenges have tended to shape the resulting aggregate programming approaches
into several clusters of common approaches, as enumerated in [10]: (i) “device-
abstraction” methods that abstract and simplify the programming of individ-
ual devices and interactions (e.g., TOTA [29], Hood [39], chemical models [38],
“paintable computing” [13], Meld [1]) or entirely abstract away the network (e.g.,
BSP [35], MapReduce [18], Kairos [22]); (ii) spatial patterning languages that
focus on geometric or topological constructs (e.g., Growing Point Language [16],
Origami Shape Language [31], self-healing geometries [15,26], cellular automata
patterning [40]); (iii) information summarization languages that focus on collec-
tion and routing of information (e.g., TinyDB [28], Cougar [41], TinyLime [17],
and Regiment [32]); (iv) general purpose space-time computing models (e.g.,
StarLisp [27], MGS [20,21], Proto [9], aggregate programming [11]).

56 G. Audrito et al.

The field calculus [8,36] belongs to the last of these classes, the general pur-
pose models. Like other core calculi, such as λ-calculus [14] or π-calculus [30],
the field calculus was designed to provide a minimal, mathematically tractable
model of computation—in this case with the goal of unifying across a broad
class of aggregate programming approaches and providing a principled basis for
integration and composition. Indeed, recent analysis [2] has determined that the
current formulation of field calculus is space-time universal, meaning that it is
able to capture every possible computation over collections of devices sending
messages. Field calculus can thus serve as a unifying abstraction for programming
collective adaptive systems, and results regarding field calculus have potential
implications for all other works in this field.

That same work establishing universality, however, also identified a key lim-
itation of the current formulation of the field calculus, which we are addressing
in this paper. In particular, the operators for time evolution and neighbor inter-
action in field calculus interact such that for most programs either the message
size grows with the distance that information must travel or else information
must travel significantly slower than the maximum potential speed. The remain-
der of this section provides a brief review of these key results from [2]: Sect. 2.1
introduces the underlying space-time computational model used by the field
calculus, Sect. 2.2 provides a review of the field calculus itself, and Sect. 2.3
explains and illustrates the problematic interaction between time evolution and
neighbor interaction operators that will be addressed by the share operator in
the next section.

2.1 Space-Time Computation

Field calculus considers a computational model in which a program P is periodi-
cally and asynchronously executed by each device δ. When an individual device
performs a round of execution, that device follows these steps in order: (i)
collects information from sensors, local memory, and the most recent messages
from neighbors,1 the latter in the form of a neighboring value map φ : δ → v
from neighbors to values, (ii) evaluates program P with the information col-
lected as its input, (iii) stores the results of the computation locally, as well as
broadcasting it to neighbors and possibly feeding it to actuators, and (iv) sleeps
until it is time for the next round of execution. Note that as execution is asyn-
chronous, devices perform executions independently and without reference to
the executions of other devices, except insofar as they use state that has arrived
in messages. Messages, in turn, are assumed to be collected by some separate
thread, independent of execution rounds.

If we take every such execution as an event ε, then the collection of such
executions across space (i.e., across devices) and time (i.e., over multiple rounds)
may be considered as the execution of a single aggregate machine with a topology
based on information exchanges �. The causal relationship between events may
then be formalized as defined in [2]:

1 Stale messages may expire after some timeout.

The share Operator for Field-Based Coordination 57

Definition 1 (Event Structure). An event structure E = 〈E,�, <〉 is a
countable set of events E together with a neighboring relation �⊆ E × E and
a causality relation <⊆ E × E, such that the transitive closure of � forms the
irreflexive partial order < and the set {ε′ ∈ E|ε′ < ε} is finite for all ε (i.e., <
is locally finite).

1

2

3

4

5

de
vi
ce

time

0 2 3 5 6

0 1 0 4 6 8

0 3 5 7

0 1 2 3 6 8

1 2 7

Fig. 1. Example of a space-time event structure, comprising events (circles) and neigh-
bor relations (arrows). Colors indicate causal structure with respect to the doubly-
circled event (magenta), splitting events into causal past (red), causal future (cyan)
and concurrent (non-ordered, in black). The numbers written within events represent a
sample space-time value (cf. Definition 2) associated with that event structure. Figure
adapted from [2]. (Color figure online)

Figure 1 shows an example of such an event structure, showing how these
relations partition events into “causal past”, “causal future”, and non-ordered
“concurrent” subspaces with respect to any given event. Interpreting this in
terms of physical devices and message passing, a physical device is instantiated
as a chain of events connected by � relations (representing evolution of state
over time with the device carrying state from one event to the next), and any �
relation between devices represents information exchange from the tail neighbor
to the head neighbor. Notice that this is a very flexible and permissive model:
there are no assumptions about synchronization, shared identifiers or clocks,
or even regularity of events (though of course these things are not prohibited
either).

In principle, an execution at ε can depend on information from any event
in its past and its results can influence any event in its future. As we will see
in Sect. 2.3, however, this is problematic for the field calculus as it has been
previously defined.

Our aggregate constructs manipulate then space-time data values (see Fig. 1)
that map events to values for each event in an event structure:

Definition 2 (Space-Time Value). Let V be any domain of computational
values and E be a given event structure. A space-time value Φ = 〈E, f〉 is a pair

58 G. Audrito et al.

comprising the space and a function f : E → V that maps the events E of E to
values.

We can then understand an aggregate computer as a “collective” device manipu-
lating such space-time values, and the field calculus as a definition of operations
defined both on individual events and simultaneously on aggregate computers.

2.2 Field Calculus

The field calculus is a tiny universal language for computation of space-time
values. Figure 2 gives an abstract syntax for field calculus based on the pre-
sentation in [36] (covering a subset of the higher-order field calculus in [8],
but including all of the issues addressed by the share construct). In this syn-
tax, the overbar notation e indicates a sequences of elements (e.g., e stands
for e1, e2, . . . , en), and multiple overbars are expanded together (e.g., δ �→ �
stands for δ1 �→ �1, δ2 �→ �2, . . . , δn �→ �n). There are four keywords in this syn-
tax: def and if respectively correspond to the standard function definition and
the branching expression constructs, while rep and nbr correspond to the two
peculiar field calculus constructs that are the focus of this paper, respectively
responsible for evolution of state over time and for sharing information between
neighbors.

P ::= F e program
F ::= def d(x) {e} function declaration
e ::= x

∣∣ v
∣∣ f(e)

∣∣ if(e){e}{e} ∣∣ nbr{e} ∣∣ rep(e){(x) => e} expression
f ::= d

∣∣ b function name
v ::= �

∣∣ φ value
� ::= c(�) local value
φ ::= δ �→ � neighboring field value

Fig. 2. Abstract syntax of the field calculus, adapted from [36]

A field calculus program P is a set of function declarations F and the main
expression e. This main expression e simultaneously defines both the aggregate
computation executed on the overall event structure of an aggregate computer
and the local computation executed at each of the individual events therein. An
expression e can be:

– A variable x, e.g. a function parameter.
– A value v, which can be of the following two kinds:

• a local value �, defined via data constructor c and arguments �, such as a
Boolean, number, string, pair, tuple, etc;

• A neighboring (field) value φ that associates neighbor devices δ to local
values �, e.g., a map of neighbors to the distances to those neighbors.

The share Operator for Field-Based Coordination 59

– A function call f(e) to either a user-declared function d (declared with the def
keyword) or a built-in function b, such as a mathematical or logical operator,
a data structure operation, or a function returning the value of a sensor.

– A branching expression if(e1){e2} else {e3}, used to split a computation
into operations on two isolated event structures, where/when e1 evaluates to
true or false: the result is computation of e2 in the former area, and e3 in
the latter.

– The nbr{e} construct creates a neighboring field value mapping neighbors to
their latest available result of evaluating e. In particular, each device δ:
1. shares its value of e with its neighbors, and
2. evaluates the expression into a neighboring field value φ mapping each

neighbor δ′ of δ to the latest value that δ′ has shared for e.
Note that within an if branch, sharing is restricted to being between device
events within the subspace of the branch.

– The rep(e1){(x) => e2} construct models state evolution over time: the value
of x is initialized to e1, then evolved at each execution by evaluating e2.

Thus, for example, distance to the closest member of a set of “source” devices
can be computed with the following simple function:
def mux(b, x, y) { if (b) {x} {y} }
def distanceTo(source) {

rep (infinity) { (d) =>
mux(source, 0, minHood(nbr{d}+nbrRange()))

} }

Here, we use the def construct to define a distanceTo function that takes a
Boolean source variable as input. The rep construct defines a distance estimate
d that starts at infinity, then decreases in one of two ways. If the source variable
is true, then the device is currently a source, and its distance to itself is zero.
Otherwise, distance is estimated via the triangle inequality, taking the minimum
of a neighbor field value (built-in function minHood) of the distance to each
neighbor (built-in function nbrRange) plus that neighbor’s distance estimate
nbr{d} . Function mux ensures that all its arguments are evaluated before being
selected.

Additional illustrative examples and full mathematical details of these con-
structs and the formal semantics of their evaluation can be found in [36].

2.3 Problematic Interaction Between rep and nbr Constructs

Unfortunately, the apparently straight-forward combination of state evolution
with nbr and state sharing with rep turns out to contain a hidden delay, which
was identified and explained in [2]. This problem may be illustrated by attempt-
ing to construct a simple function that spreads information from an event as
quickly as possible. Let us say there is a Boolean space-time value condition ,
and we wish to compute a space-time function ever that returns true precisely
at events where condition is true and in the causal future of those events—
i.e., spreading out at the maximum theoretical speed throughout the network of
devices. One might expect this could be implemented as follows in field calculus:

60 G. Audrito et al.

def ever1(condition) {
rep (false) { (old) => anyHoodPlusSelf(nbr{old}) || condition }

}

where anyHoodPlusSelf is a built-in function that returns true if any value is
true in its neighboring field input (including the value old held for the current
device). Walking through the evaluation of this function, however, reveals that
there is a hidden delay. In each round, the old variable is updated, and will
become true if either condition is true now for the current device or if old was
true in the previous round for the current device or for any of its neighbors. Once
old becomes true, it stays true for the rest of the computation. Notice, however,
that a neighboring device does not actually learn that condition is true, but
that old is true. In an event where condition first becomes true, the value of
old that is shared is still false, since the rep does not update its value until after
the nbr has already been evaluated. Only in the next round do neighbors see
an updated value of old, meaning that ever1 is not spreading information fast
enough to be a correct implementation of ever.

We might try to improve this routine by directly sharing the value of
condition:
def ever2(condition) {

rep (false) { (old) => anyHoodPlusSelf(nbr{old || condition}) }
}

This solves the problem for immediate neighbors, but does not solve the
problem for neighbors of neighbors, which still have to wait an additional round
before old is updated.

In fact, it appears that the only way to avoid delays at some depth of neighbor
relations is by using unbounded recursion, as previously outlined in [2]:
def ever3(condition) {

rep (false) { (old) =>
if (countHood() == 0) { old || condition } {

ever3(anyHoodPlusSelf(nbr{old || condition}))
} } }

where countHood counts the number of neighbors, i.e., determining whether
any neighbor has reached the same depth of recursion in the branch. Thus, in
ever3 , neighbors’ values of cond are fed to a nested call to ever3 (if there
are any); and this process is iterated until no more values to be considered
are present. This function therefore has a recursion depth equal to the longest
sequence of events ε0 � . . . � ε ending in the current event ε, inducing a
linearly increasing computational time and message size and making the routine
effectively infeasible for long-running systems.

This case study illustrates the more general problem of delays induced by the
interaction of rep and nbr constructs in field calculus, as identified in [2]. With
these constructs, it is never possible to build computations involving long-range
communication that are as fast as possible and also lightweight in the amount
of communication required.

The share Operator for Field-Based Coordination 61

3 The Share Construct

In order to overcome the problematic interaction between rep and nbr, we pro-
pose a new construct that combines aspects of both:

share(e1){(x) => e2}
While the syntax of this new share construct is identical to that of rep, the two
constructs differ in the way the construct variable x is interpreted each round:

– in rep, the value of x is the value produced by evaluating the construct in
the previous round, or the result of evaluating e1 if there is no prior-round
value;

– in share, on the other hand, x is a neighboring field comprising that same
value for the current device plus any values of the construct produced by
neighbors in their most recent evaluation.

Notice that since x is a neighboring field rather than a local value, e2 is respon-
sible for processing it into a local value that can be shared with neighbors at the
end of the evaluation. Furthermore, notice that the value for δ in the field x cor-
responds exactly to the value that would be substituted in x for a corresponding
rep construct. Thus, a rep construct may as well be equivalently rewritten as a
share construct as follows:

rep(e1){(x) => e2} −→ share(e1){(x) => e2[x := localHood(x)]}
where localHood is a built-in operator that given a neighboring field φ returns
the value φ(δ) for the current device.

Whenever a field calculus program used x only as nbr{x} inside the e2 expres-
sion of a rep, however, the share construct can improve over rep. In this case,
the following non-equivalent rewriting improves the communication speed of an
algorithm, while preserving its computational efficiency and overall meaning:

rep(e1){(x) => e2[nbr{x}]} −→ share(e1){(x) => e2[x]}
In other words, share can be used to automatically improve communication
speeds of algorithms. Many algorithms with more varied uses of x (e.g., using
both x and nbr{x} in e2) can be similarly transformed into improved versions.

3.1 Typing and Operational Semantics

Formal typing and operational semantics for the share construct is presented in
Fig. 3 (bottom frame), as an extension to the type system and semantics given
in [36, Electronic Appendix]. The typing judgement A � e : T is to be read
“expression e has type T under the set of assumptions A”, where A is a set
of assumptions of the form x : T giving type T to variable x. The typing rule
[T-SHARE] requires e1 and e2 to have the same local (i.e. non-field) type L,
assuming x to have the corresponding field type field(L), and assigns the same
type L to the whole construct.

62 G. Audrito et al.

Value-trees and value-tree environments:
θ ::= v〈θ〉 value-tree
Θ ::= δ �→ θ value-tree environment

Auxiliary functions:

φ0[φ1] = φ2 where φ2(δ) =
{

φ1(δ) if δ ∈ dom(φ1)
φ0(δ) otherwise

ρ(v〈θ〉) = v

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n πi(θ) = • otherwise

For aux ∈ ρ, πi :

⎧⎨
⎩

aux(δ �→ θ) = δ �→ aux(θ) if aux(θ) �= •
aux(δ �→ θ) = • if aux(θ) = •
aux(Θ, Θ′) = aux(Θ), aux(Θ′)

Rules for typing and expression evaluation:
[T-SHARE] A 	 e1 : L A, x : field(L) 	 e2 : L

A 	 share(e1){(x) => e2} : L

[E-SHARE]
δ;π1(Θ);σ 	 e1 ⇓ θ1 φ′ = ρ(π2(Θ))
δ;π2(Θ);σ 	 e2[x := φ] ⇓ θ2 φ = (δ �→ ρ(θ1))[φ′]

δ;Θ;σ 	 share(e1){(x) => e2} ⇓ ρ(θ2)〈θ1, θ2〉

Fig. 3. Typing and operational semantics for the share construct.

Example 1 (Typing). Consider the body e of function ever as a paradigmatic
example (with assumptions A = condition : bool):
share (false) { (old) => anyHoodPlusSelf(old) || condition }

Clearly, A � false : bool. Assuming that anyHoodPlusSelf is a built-in of type
field(bool) → bool, we can also conclude that:

A, old : field(bool) � anyHoodPlusSelf(old)||condition : bool.

It follows that A � e : bool.

The evaluation rule is based on the auxiliary functions given in Fig. 3 (middle
frame). Function ρ(θ) extracts the root from a given value-tree, while function
πi(θ) selects the i-th sub-tree of the given value-tree. Both of them can be applied
to value-tree environments Θ as well, obtaining a neighboring field (for ρ) or
another value-tree environment (for πi). Furthermore, we use the notation φ0[φ1]
to represent “field update”, so that its result φ2 has dom(φ2) = dom(φ0) ∪
dom(φ1) and coincides with φ1 on its domain, or with φ0 otherwise.

The evaluation rule [E-SHARE] produces a value-tree with two branches (for
e1 and e2 respectively). First, it evaluates e1 with respect to the corresponding
branches of neighbors π1(Θ) obtaining θ1. Then, it collects the results for the
construct from neighbors into the neighboring field φ′ = ρ(π2(Θ)). In case φ′ does
not have an entry for δ, ρ(θ1) is used obtaining φ = (δ �→ ρ(θ1))[φ′]. Finally, φ
is substituted for x in the evaluation of e2 (with respect to the corresponding
branches of neighbors π2(Θ)) obtaining θ2, setting ρ(θ2) to be the overall value.

The share Operator for Field-Based Coordination 63

Example 2 (Operational Semantics). Consider the body of function ever:
share (false) { (old) => anyHoodPlusSelf(old) || condition }

Suppose that device δ = 0 first executes a round of computation without neigh-
bors (i.e. Θ is empty), and with condition equal to false. The evaluation of
the share construct proceeds by evaluating false into θ1 = false〈〉, gather-
ing neighbor values into φ′ = • (no values are present), and adding the value
for the current device obtaining φ = (0 �→ false)[•] = 0 �→ false. Finally,
the evaluation completes by storing in θ2 the result of anyHoodPlusSelf(0 �→
false)||false (which is false〈. . .〉2). At the end of the round, device 0 sends
a broadcast message containing the result of its overall evaluation, and thus
including θ0 = false〈false, false〈. . .〉〉.

Suppose now that device δ = 1 receives the broadcast message and then
executes a round of computation where condition is true. The evaluation of
the share constructs starts similarly as before with θ1 = false〈〉, φ′ = 0 �→
false, φ = 0 �→ false, 1 �→ false. Then the body of the share is evaluated
as anyHoodPlusSelf(0 �→ false, 1 �→ false)||true into θ2, which is true〈. . .〉.
At the end of the round, device 1 broadcasts the result of its overall evaluation,
including θ1 = true〈false, true〈. . .〉〉.

Then, suppose that device δ = 0 receives the broadcast from device 1 and
then performs another round of computation with condition equal to false. As
before, θ1 = false〈〉, φ = φ′ = 0 �→ false, 1 �→ true and the body is evaluated
as anyHoodPlusSelf(0 �→ false, 1 �→ true)||false which produces true〈. . .〉
for an overall result of θ2 = true〈false, true〈. . .〉〉.

Finally, suppose that device δ = 1 does not receive that broadcast and dis-
cards 0 from its list of neighbor before performing another round of computa-
tion with condition equal to false. Then, θ1 = false〈〉, φ′ = 1 �→ true,
φ = (1 �→ false)[1 �→ true] = 1 �→ true, and the body is evaluated as
anyHoodPlusSelf(1 �→ true)||false which produces true〈. . .〉.

3.2 The share Construct Improves Communication Speed

To illustrate how share solves the problem illustrated in Sect. 2.3, let us once
again consider the ever function discussed in that section, for propagating when
a condition Boolean has ever become true. With the share construct, we can
finally write a fully functional implementation of ever as follows:
def ever(condition) {

share (false) { (old) => anyHoodPlusSelf(old) || condition }
}

Function ever is simultaneously (i) compact and readable, even more so than
ever1 and ever2 (note that we no longer need to include the nbr construct);
(ii) lightweight, as it involves the communication of a single Boolean value each

2 We omit the part of the value tree that are produced by semantic rules not included
in this paper, and refer to [36, Electronic Appendix] for the missing parts.

64 G. Audrito et al.

round and few operations; and (iii) optimally efficient in communication speed,
since it is true for any event ε with a causal predecessor ε′ ≤ ε where condition
was true. In particular

– in such an event ε′ the overall share construct is true, since it does so
anyHoodPlusSelf(old) || true regardless of the values in old ;

– in any subsequent event ε′′ (i.e. ε′ � ε′′) the share construct is true since
old contains a true value (the one coming from ε′), and

– the same holds for further following events ε by inductive arguments.

In field calculus alone, such optimal communication speed can be achieved only
through unbounded recursion, as argued in [2] and reviewed above in Sect. 2.3.

The average improvement in communication speed of a routine being con-
verted from the usage of rep+nbr to share according to the rewriting proposed
at the beginning of this section can also be statistically estimated, depending on
the communication pattern used by the routine.

An algorithm follows a single-path communication pattern if its outcome in an
event depends essentially on the value of a single selected neighbor: prototypical
examples of such algorithms are distance estimations [4–6], which are computed
out of the value of the single neighbor on the optimal path to the source. In this
case, letting T be the average interval between subsequent rounds, the commu-
nication delay of an hop is T/2 with share (since it can randomly vary from 0
to T) and T/2 + T = 3/2T with rep + nbr (since a full additional round T is
wasted in this case). Thus, the usage of share allows for an expected three-fold
improvement in communication speed for these algorithms.

An algorithm follows a multi-path communication pattern if its outcome in
an event is obtained from the values of all neighbors: prototypical examples of
such algorithms are data collections [3], especially when they are idempotent
(e.g. minimums or maximums). In this case, the existence of a single commu-
nication path ε0 � . . . � ε is sufficient for the value in ε0 to be taken into
account in ε. Even though the delay of any one of such paths follows the same
distribution as for single-path algorithms (0 to T per step with share, T to 2T
per step with rep + nbr), the overall delay is minimized among each existing
path. It follows that for sufficiently large numbers of paths, the delay is closer
to the minimum of a single hop (0 with share, T with rep + nbr) resulting in
an even larger improvement.

4 Application and Empirical Validation

Having developed the share construct and shown that it should be able
to significantly improve the performance of field calculus programs, we have
also applied this development by extending the Protelis [34] implementation
of field calculus to support share (the implementation is a simple addi-
tion of another keyword and accompanying implementation code following the
semantics expressed above). We have further upgraded every function in the
protelis-lang library [19] with an applicable rep/nbr combination to use the

The share Operator for Field-Based Coordination 65

share construct instead, thereby also improving every program that makes use
of these libraries of resilient functions. To validate the efficacy of both our anal-
ysis and its applied implementation, we empirically validate the improvements
in performance for a number of these upgraded functions in simulation.

4.1 Evaluation Setup

We experimentally validate the improvements of the share construct through
two simulation examples. In both, we deploy a number of mobile devices, com-
puting rounds asynchronously at a frequency of 1 ±0.1 Hz, and communicating
within a range of 75 m. All aggregate programs have been written in Protelis [34]
and simulations performed in the Alchemist environment [33]. All the results
reported in this paper are the average of 200 simulations with different seeds,
which lead to different initial device locations, different waypoint generation, and
different round frequency. Data generated by the simulator has been processed
with Xarray [24] and matplotlib [25]. For the sake of brevity, we do not report the
actual code in this paper; however, to guarantee the complete reproducibility of
the experiments, the execution of the experiment has been entirely automated,
and all the resources have been made publicly available along with instructions.3

In the first scenario, we position 2000 mobile devices into a corridor room
with sides of, respectively, 200 m and 2000 m. All but two of the devices are free
to move within the corridor randomly, while the remaining two are “sources”
that are fixed and located at opposite ends of the corridor. At every point of
time, only one of the two sources is active, switching at 80 s and 200 s (i.e., the
active one gets disabled, the disabled one is re-enabled). Devices are programmed
to compute a field yielding everywhere the farthest distance from any device to
the current active source. In order to do so, they execute the following commonly
used coordination algorithms:

1. they compute a potential field measuring the distance from the active source
through BIS [6] (bisGradient routine in protelis:coord:spreading);

2. they accumulate the maximum distance value descending the potential
towards the source, through Parametric Weighted Multi-Path C [3] (an opti-
mized version of C in protelis:coord:accumulation);

3. they broadcast the information along the potential, from the source to every
other device in the system (an optimized version of the broadcast algorithm
found in protelis:coord:spreading, which tags values from the source with
a timestamp and propagates them by selecting more recent values).

The choice of the algorithms to be used in validation revealed to be critical.
The usage of share is able to directly improve the performance of algorithms
with solid theoretical guarantees; however, it may also exacerbate errors and
instabilities for more ad-hoc algorithms, by allowing them to propagate quicker
and more freely, preventing (or slowing down) the stabilization of the algorithm
result whenever the network configuration and input is not constant. Of the
3 https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/.

https://bitbucket.org/danysk/experiment-2019-coordination-aggregate-share/

66 G. Audrito et al.

set of available algorithms for spreading and collecting data, we thus selected
variants with smoother recovery from perturbation: optimal single-path distance
estimation (BIS gradient [6]), optimal multi-path broadcast [36], and the latest
version of data collection (parametric weighted multi-path [3], fine-tuning the
weight function).

We are interested in measuring the error of each step (namely, in distance vs.
the true values), together with the lag through which these values were generated
(namely, by propagating a time-stamp together with values, and computing the
difference with the current time). Moreover, we want to inspect how the improve-
ments introduced by share accumulate across the composition of algorithms. To
do so, we measure the error in two conditions: (i) composite behavior, in which
each step is fed the result computed by the previous step, and (ii) individual
behavior, in which each step is fed an ideal result for the previous step, as pro-
vided by an oracle.

Fig. 4. Performance in the corridor scenario, for both individual algorithms (top) and
the composite computation (bottom). Vertical axis is linear in [0, 1] and logarithmic
above. Charts on the left column show distance error, while the right column shows time
error. The versions of the algorithms implemented with share (warm colors) produce
significantly less error and converge significantly faster in case of large disruptions than
with rep (cold colors). (Color figure online)

Figure 4 shows the results from this scenario. Observing the behavior of the
individual computations, it is immediately clear how the share-based version
of the algorithm provides faster recovery from network input discontinuities and
lower errors at the limit. These effects are exacerbated when multiple algorithms
are composed to build aggregate applications. The only counterexample is the
limit of distance estimations, for which rep is marginally better, with a relative
error less than 1% lower than that of share.

The share Operator for Field-Based Coordination 67

Moreover, notice that the collection algorithm with rep was not able to
recover from changes at all, as shown by the linearly increasing delay in time
(and the absence of spikes in distance error). The known weakness of multi-path
collection strategies, that is, failing to react to changes due to the creation of
information loops, proved to be much more relevant and invalidating with rep
than with share.

Fig. 5. Snapshots of the Voronoi partitioning scenario using share (left) or rep (right).
Colored dots are simulated devices, with each region having a different color. Faster
communication with share leads to a higher accuracy in distance estimation, allowing
the share implementation to perform a better division into regions and preventing
regions from expanding beyond their limits. (Color figure online)

In the second example, we deploy 500 devices in a city center, and let them
move as though being carried by pedestrians, moving at walking speed (1.4m

s)
towards random waypoints along roads open to pedestrian traffic (using map
data from OpenStreetMaps [23]). In this scenario, devices must self-organize
service management regions with a radius of at most 200 m, creating a Voronoi
partition as shown in Fig. 5 (functions S and voronoiPatitioningWithMetric
from protelis:coord:sparsechoice). We evaluate performance by measuring
the number of partitions generated by the algorithm, and the average and max-
imum node distance error, where the error for a node n measures how far a
node is beyond of the maximum boundary for its cluster. This is computed as
εn = max(0, d(n, ln)−r), where d computes the distance between two devices, ln
is the leader for the cluster n belongs to, and r is the maximum allowed radius
of the cluster.

Figure 6 shows the results from this scenario, which also confirm the benefits
of faster communication with share. The algorithm implemented with share has
much lower error, mainly due to faster convergence of the distance estimates, and

68 G. Audrito et al.

Fig. 6. Performance in the Voronoi partition scenario: error in distance on the left,
leaders count with time on the right. Vertical axis is linear in [0, 0.1] and logarithmic
elsewhere. The version implemented with share has much lower error: the mean error
is negligible, and the most incorrect value, after an initial convergence phase, is close
to two orders of magnitude lower than with rep, as faster communication leads to
more accurate distance estimates. The leader count shows that the systems create a
comparable number of partitions, with the share-based featuring faster convergence.

consequent higher accuracy in measuring the distance from the partition leader.
Simultaneously, it creates a marginally lower number of partitions, by reducing
the amount of occasional single-device regions which arise during convergence
and re-organization.

5 Contributions and Future Work

We have introduced a novel share construct whose introduction allows a signif-
icant acceleration of field calculus programs. We have also made this construct
available for use in applications though an extension of the Protelis field calculus
implementation and its accompanying libraries, and have empirically validated
the expected improvements in performance through experiments in simulation.

In future work, we plan to study for which algorithms the usage of share
may lead to increased instability, thus fine-tuning the choice of rep and nbr
over share in the Protelis library. Furthermore, we intend to fully analyze
the consequences of share for improvement of space-time universality [2], self-
adaption [12], and variants of the semantics [7] of the field calculus. It also
appears likely that the field calculus can be simplified by the elimination of
both rep and nbr by finding a mapping by which share can also be used to
implement any usage of nbr. Finally, we believe that the improvements in per-
formance will also have positive consequences for nearly all current and future
applications that are making use of the field calculus and its implementations
and derivatives.

Acknowledgements. We thank the anonymous COORDINATION referees for their
comments and suggestions on improving the presentation.

The share Operator for Field-Based Coordination 69

References

1. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld:
a declarative approach to programming ensembles. In: IEEE International Con-
ference on Intelligent Robots and Systems (IROS 2007), pp. 2794–2800 (2007).
https://doi.org/10.1109/IROS.2007.4399480

2. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92408-3 1

3. Audrito, G., Bergamini, S., Damiani, F., Viroli, M.: Effective collective summarisa-
tion of distributed data in mobile multi-agent systems. In: International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1618–1626. ACM
(2019). https://dl.acm.org/citation.cfm?id=3331882

4. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: 11th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2017), pp. 91–100. IEEE (2017). https://doi.org/10.
1109/SASO.2017.18

5. Audrito, G., Damiani, F., Viroli, M.: Optimally-self-healing distributed gradient
structures through bounded information speed. In: Jacquet, J.-M., Massink, M.
(eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 59–77. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59746-1 4

6. Audrito, G., Damiani, F., Viroli, M.: Optimal single-path information propagation
in gradient-based algorithms. Sci. Comput. Program. 166, 146–166 (2018). https://
doi.org/10.1016/j.scico.2018.06.002

7. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of com-
putation domains in field calculus. In: 1st International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 192–197. IEEE (2016). https://
doi.org/10.1109/FAS-W.2016.50

8. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus of
computational fields. ACM Trans. Comput. Logic (TOCL) 20(1), 5:1–5:55 (2019).
https://doi.org/10.1145/3285956

9. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intell. Syst. 21, 10–19 (2006). https://doi.org/10.1109/MIS.2006.
29

10. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chap. 16, pp. 436–501. IGI Global
(2013). https://doi.org/10.4018/978-1-4666-2092-6.ch01

11. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

12. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the internet of things. ACM Trans. Auton. Adapt. Syst. (TAAS) 12(3), 12:1–
12:29 (2017). https://doi.org/10.1145/3105758

13. Butera, W.: Programming a paintable computer. Ph.D. thesis, MIT, Cambridge,
USA (2002)

14. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2),
346–366 (1932). https://doi.org/10.2307/1968337

15. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Workshop
on Adaptability in Multi-Agent Systems, RoboCup Australian Open (2003)

https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1
https://dl.acm.org/citation.cfm?id=3331882
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1007/978-3-319-59746-1_4
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1145/3285956
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.4018/978-1-4666-2092-6.ch01
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758
https://doi.org/10.2307/1968337

70 G. Audrito et al.

16. Coore, D.: Botanical computing: a developmental approach to generating inter
connect topologies on an amorphous computer. Ph.D. thesis, MIT, Cambridge,
MA, USA (1999)

17. Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.: Mobile
data collection in sensor networks: the tinylime middleware. Elsevier Pervasive
Mob. Comput. J. 4, 446–469 (2005). https://doi.org/10.1016/j.pmcj.2005.08.003

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

19. Francia, M., Pianini, D., Beal, J., Viroli, M.: Towards a foundational API for
resilient distributed systems design. In: 2017 IEEE 2nd International Workshops
on Foundations and Applications of Self* Systems (FAS* W), pp. 27–32. IEEE
(2017). https://doi.org/10.1109/FAS-W.2017.116

20. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology. Technical report, 72–2002, U. d’Evry, LaMI
(2002)

21. Giavitto, J.-L., Michel, O., Cohen, J., Spicher, A.: Computations in space and space
in computations. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.)
UPP 2004. LNCS, vol. 3566, pp. 137–152. Springer, Heidelberg (2005). https://
doi.org/10.1007/11527800 11

22. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor
networks using Kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh,
M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005).
https://doi.org/10.1007/11502593 12

23. Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

24. Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J.
Open Res. Softw. 5(1), 10 (2017). https://doi.org/10.5334/jors.148

25. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),
90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

26. Kondacs, A.: Biologically-inspired self-assembly of 2D shapes, using global-to-local
compilation. In: International Joint Conference on Artificial Intelligence (IJCAI),
pp. 633–638. Morgan Kaufmann Publishers Inc. (2003)

27. Lasser, C., Massar, J., Miney, J., Dayton, L.: Starlisp Reference Manual. Thinking
Machines Corporation (1988)

28. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny AGgregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, 131–146 (2002).
https://doi.org/10.1145/844128.844142

29. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Softw. Eng. Methodol. (TOSEM) 18(4),
1–56 (2009). https://doi.org/10.1145/1538942.1538945

30. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I. Inf.
Comput. 100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

31. Nagpal, R.: Programmable self-assembly: constructing global shape using
biologically-inspired local interactions and origami mathematics. Ph.D. thesis,
MIT, Cambridge, MA, USA (2001)

32. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks, DMSN 2004,
pp. 78–87. ACM (2004). https://doi.org/10.1145/1052199.1052213

33. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013). https://doi.org/
10.1057/jos.2012.27

https://doi.org/10.1016/j.pmcj.2005.08.003
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/FAS-W.2017.116
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/11502593_12
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1145/844128.844142
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27

The share Operator for Field-Based Coordination 71

34. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
ACM Symposium on Applied Computing 2015, pp. 1846–1853 (2015). https://doi.
org/10.1145/2695664.2695913

35. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

36. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
(TOMACS) 28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

37. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. In: Di Marzo Serugendo, G., Loreti,
M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 252–279. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92408-3 12

38. Viroli, M., Pianini, D., Montagna, S., Stevenson, G., Zambonelli, F.: A coordination
model of pervasive service ecosystems. Sci. Comput. Program. 110, 3–22 (2015).
https://doi.org/10.1016/j.scico.2015.06.003

39. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services. ACM Press (2004). https://doi.org/
10.1145/990064.990079

40. Yamins, D.: A theory of local-to-global algorithms for one-dimensional spatial
multi-agent systems. Ph.D. thesis, Harvard, Cambridge, MA, USA (2007). https://
doi.org/10.1145/601858.601861

41. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31, 9–18 (2002)

https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1016/j.scico.2015.06.003
https://doi.org/10.1145/990064.990079
https://doi.org/10.1145/990064.990079
https://doi.org/10.1145/601858.601861
https://doi.org/10.1145/601858.601861

Tools (1)

Scan: A Simple Coordination Workbench

Jean-Marie Jacquet(B) and Manel Barkallah

Nadi Research Institute, Faculty of Computer Science,
University of Namur, Rue Grandgagnage 21, 5000 Namur, Belgium

{jean-marie.jacquet,manel.barkallah}@unamur.be

Abstract. Although many research efforts have been spent on the the-
ory and implementation of data-based coordination languages, not much
effort has been devoted to constructing programming environments to
analyze and reason on programs written in these languages. This paper
proposes a simple workbench for describing concurrent systems using a
Linda-like language, for animating them and for reasoning on them using
a fragment of linear temporal logic. In contrast to some tools developed
for traditional process algebras like CCS, a key feature of our workbench
is that it maintains a direct relation between what is written by the user
and its internal representation in the workbench. Another feature, partic-
ularly useful for didactic purposes, is the production of trace examples,
replayable, when LTL formulae are satisfied.

Keywords: Coordination · Bach · Animation · Verification

1 Introduction

In the aim of building interactive distributed systems, a clear separation between
the interactional and the computational aspects of software components has been
advocated by Gelernter and Carriero in [14]. Their claim has been supported by
the design of a model, Linda [4], originally presented as a set of inter-agent
communication primitives which may be added to almost any programming lan-
guage. Besides process creation, this set includes primitives for adding, deleting,
and testing the presence/absence of data in a shared dataspace.

A number of other models, now referred to as coordination models, have
been proposed afterwards. The authors have themselves contributed to that
trend of research, as exemplified for instance in [1,2,7–10,15,17,21–23]. However,
although many pieces of work (including ours) have been devoted to the proposal
of new languages, semantics and implementations, few articles have addressed
the concerns of practically constructing programs in coordination languages, in
particular in checking that what is described by programs actually corresponds
to what has to be modeled.

Based on previous work by the first author on a Linda-like dialect, named
Bach, this paper aims at introducing a workbench to reason on programs written
in Bach extended with several facilities. More specifically, our goal is threefold:

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 75–91, 2019.
https://doi.org/10.1007/978-3-030-22397-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_5&domain=pdf
http://orcid.org/0000-0001-9531-0519
http://orcid.org/0000-0003-2608-5658
https://doi.org/10.1007/978-3-030-22397-7_5

76 J.-M. Jacquet and M. Barkallah

1

1

2

2

3

3

4

4

5

5

6

6

Fig. 1. Rush Hour Problem. On the left part, the game as illustrated at https://www.
michaelfogleman.com/rush. On the right part, the game modeled as a grid of 6 × 6,
with cars and trucks depicted as rectangles of different colors. (Color figure online)

– to allow the user to understand the meaning of instructions written in Bach,
by showing how they can be executed step by step and how the contents of
the shared space, central to coordination languages, can be modified so as to
release suspended processes;

– to allow the user to better grasp the modeling of real-life systems in Bach,
by connecting agents in Bach to animations, representing the evolution of the
modeled system;

– to allow the user to check properties by model checking temporal logic formu-
lae and by producing traces that can be replayed as evidences of the estab-
lishment of the formulae.

In building the workbench, we also aim at two main properties:

– the tool should be simple to deploy and to use. As a result, we shall build
it as a standalone executable file launched by a simple command line. We
shall also propose a simple process algebra that allows the user to concen-
trate on the key coordination and animation features and consequently avoid
him the burden of handling extra features typically required by sophisticated
commercial systems;

– the tool should maintain a direct relation between what is written by the user
and its internal representation. This property allows the user to better grasp
what is actually computed as well as to produce meaningful traces.

To make our developments more concrete, we shall use the rush hour puzzle
as a running example. This game, illustrated in Fig. 1, consists in moving cars
and trucks on a 6 × 6 grid, according to their direction, such that the red car
can exit. It can be formulated as a coordination problem by considering cars
and trucks as autonomous agents which have to coordinate on the basis of free
places.

The rest of this paper is organized as follows. Section 2 describes the func-
tionalities of Scan and, in doing so, provides an overview of the tool. Section 3
specifies the coordination language and temporal logic to be used in the tool.
Section 4 sketches how Scan is implemented. Section 5 compares our work with

https://www.michaelfogleman.com/rush
https://www.michaelfogleman.com/rush

The Scan Workbench 77

Fig. 2. The interactive blackboard window

related work. Finally, Sect. 6 draws our conclusion and suggests future work.
For illustration purposes, a video demonstrating the use of Scan is available at
https://staff.info.unamur.be/jmj/Scan/. A link is also proposed there to down-
load the workbench.

2 Scan Design and Overview

Following Linda, the Bach language relies on a shared space to coordinate pro-
cesses. It is this space that provides the decoupling of time and space of processes
which is central to so-called data-based coordination languages [26]. As a nat-
ural consequence, following the blackboard metaphor [13], according to which
a group of specialists iteratively updates knowledge on a blackboard starting
from a problem specification, Scan is articulated around a so-called interactive
blackboard. As depicted in Fig. 2, it starts by displaying the current contents
of the shared space and allows to interact directly through the tell, get and
clear buttons. Moreover, it offers to create four types of processes.

The first two processes, named respectively Autonomous Agent and Interac-
tive Agent, allow the user to enter instructions in Bach and to execute them. As
depicted in part (a) of Fig. 3, windows of the first kind, perform computations
step-by-step by letting the user choose which primitives to execute. In contrast,
as shown in part (b) of Fig. 3, windows of the second type execute computations
in one run if the run button is activated or step by step if the next button
is selected but in both cases with the Scan workbench deciding (in a random
manner) the primitives to be executed. It is worth noting that the execution in
the windows are made in a parallel fashion, hence the name agent to indicate
entities capable of concurrent activities.

The facilities offered by the interactive and autonomous agents are nice to
debug, at a low level, concurrent executions executed around the shared space,
possibly deadlocking on data not being available. However, they do not pro-
vide much insights on whether what is described in Bach really reflects what

https://staff.info.unamur.be/jmj/Scan/

78 J.-M. Jacquet and M. Barkallah

(a) The interactive agent window

(b) The autonomous agent window

Fig. 3. Interacting with the blackboard

the programmer intends to model. Moreover, they provide too many details on
the main execution steps leading to a solution of the problem under considera-
tion. To that end, Scan provides animations through a third kind of processes
launched by the new description button (see Fig. 2). As shown in part (a) of
Fig. 4, such animations are obtained by describing a so-called scene from a set
of pictures which are handled by means of primitives for inserting them on the
scene at specific places, making them visible or invisible, and making them move
to specific places. In doing so, these primitives allow to draw and animate, at
a high-level, pictures such as the one of part (b) of Fig. 4. Note that, as these
primitives may be inserted inside instructions of autonomous agents, the con-
current execution of these agents provides dynamic simulations of the problem
under consideration.

The Scan Workbench 79

(a) The description window

(b) The scene window

Fig. 4. Animation

Although nice, simulating graphically systems does not necessarily provide a
solution to the problem under consideration. The rush hour problem is a clear
example of that. To that end, the Scan workbench offers a fourth type of pro-
cesses, materialized by the new model checker button of Fig. 2 which generates
windows of the type depicted in Fig. 5. As illustrated in this figure, Scan allows
to verify formulae written in a fragment of linear temporal logic, to determine
traces of execution that establish the formulae and to replay these traces, includ-
ing the primitives that generate animations.

80 J.-M. Jacquet and M. Barkallah

Fig. 5. Model-checking

Although simple we believe that the Scan workbench meets the threefold goal
expressed in the introduction:

– by providing a view on the contents of the shared space and by means of
the interactive and autonomous agents, the user can better understand the
execution of programs written in Bach;

– the animation facilities provide a high-level view on what is actually com-
puted as well as an intuitive perception of the modeling of the problem under
consideration;

– the model checker facilities allow to check properties and, by using animation
facilities, to replay executions graphically as a form of visual proofs.

3 The Anim-Bach Language and Its Temporal Logic

The facilities offered by Scan being described, let us turn to the process algebra
to be used in the workbench. This algebra is subsequently referred to as Anim-
Bach.

The Scan Workbench 81

3.1 Definition of Data

Following Linda, the Bach language [10,16] uses four primitives for manipulating
pieces of information: tell to put a piece of information on a shared space, ask
to check its presence, nask to check its absence and get to check its presence
and remove one occurrence. In its simplest version, named BachT, pieces of
information consist of atomic tokens and the shared space, called the store,
amounts to a multiset of tokens. Although in principle sufficient to code many
applications, this is however too elementary in practice to code them easily. To
that end, we introduce more structured pieces of information which may employ
sets defined by the user. Concretely, such sets are defined by associating an
identifier with an enumeration of elements, such as in

set Cols = { 1 , 2 , 3 , 4 , 5 , 6} .
Rows = { 1 , 2 , 3 , 4 , 5 , 6} .

As the reader will have easily noticed, these two sets allow to identify an element
of the grid of the rush hour example by using the row and column coordinates.
We shall subsequently take the convention that the upper leftmost element of
the grid is on the first row and on the first column.

The fact that sets are written as enumerations reflects the fact that the
elements are naturally ordered by their order of appearance, which then allows
to compare them. Moreover, they implicitly define the pred and succ functions,
providing respectively the predecessors and successors of elements (if any).

In addition to sets, maps can be defined between them as functions that take
zero or more arguments. In practice, Scan uses mapping equations as rewriting
rules, from left to right in the aim of progressively reducing a complex map
expression into a set element.

As an example of a map, assuming that trucks take three cells and are iden-
tified by the upper and left-most cell they occupy, the operation down truck
determines the cell to be taken by a truck moving down:

map down truck : Rows −> Rows .
eqn down truck (1) = 4 . down truck (2) = 5 . down truck (3) = 6 .

Note from this example that mappings may be partially defined, with the respon-
sibility put on the programmer to use them only when defined.

Structured pieces of information to be placed on the store consist of flat
tokens as well as expressions of the form f(a1, · · · , an) where f is a functor
and a1, . . . , an are set elements. As an example, in the rush hour example, it is
convenient to represent the free places of the game as pieces of information of
the form free(i,j) with i a row and j a column.

In summary of this subsection, we may assume subsequently to be defined a
series of sets, a series of mappings, and a set of structured pieces of information,
say I. Thanks to the mapping definitions, we additionally assume a rewriting
relation � that rewrites any mapping expression into a set element. With this
defined, we can proceed with the definition of agents in Anim-Bach.

82 J.-M. Jacquet and M. Barkallah

3.2 Agents

The primitives of Anim-Bach consist of the tell, ask, nask and get primitives
already mentioned for Bach, which take as arguments elements of I. They can be
composed to form more complex agents by using traditional composition opera-
tors from concurrency theory: sequential composition, parallel composition and
non-deterministic choice. We add another mechanism: conditional statements of
the form c → s1 � s2, which computes s1 if c evaluates to true or s2 otherwise.
Conditions of type c are obtained from elementary ones, thanks to the classical
and, or and negation operators, denoted respectively by &, | and !. Elemen-
tary conditions are obtained by relating set elements or mappings on them by
equalities (denoted =) or inequalities (denoted =, <, <=, >, >=).

This being given, the statements of the Anim-Bach language, also called
agents by abuse of language, consist of the statements A generated by the fol-
lowing grammar:

A ::= Prim | Proc | A ; A | A || A | A + A | C → A � A

where Prim represents a primitive, Proc a procedure call and C a condition.
Procedures are defined similarly to mappings through the proc keyword by

associating an agent with a procedure name. As in classical concurrency theory,
we assume that the defining agents are guarded, in the sense that any call to
a procedure is preceded by the execution of a primitive or can be rewritten in
such a form.

As an example, the behavior of a vertical truck can be described as follows:

proc Vert ica lTruck (r : Rows , c : Cols) =
((r>1 & r<5) −> (get (f r e e (pred (r) , c)) ; t e l l (f r e e (succ (r) , c) ;

Vert i ca lTruck (pred (r) , c))
+
((r<5) −> (get (f r e e (down truck (r) , c)) ; t e l l (f r e e (r , c)) ;

Vert i ca lTruck (succ (r) , c))) .

The operational semantics of primitives and complex agents are respectively
defined through the transition rules of Figs. 6 and 7. Configurations consist of
agents (summarizing the current state of the agents running on the store) and a
multi-set of structured pieces of information (denoting the current state of the
store). In order to express the termination of the computation of an agent, the
set of agents is extended by a special terminating symbol E that can be seen as a
completely computed agent. For uniformity purposes, we abuse the language by
qualifying E as an agent. To meet the intuition, we shall always rewrite agents
of the form (E;A), (E || A) and (A || E) as A.

The rules of Fig. 6 follow the intuitive description of the primitives. Note how-
ever that before being processed, a structured piece of information t is rewritten
in u by means of the rewriting relation �.

The rules of Fig. 7 are quite classical. Rules (S), (P) and (C) provide the
usual semantics for sequential, parallel and choice compositions. As expected,
rule (Co) specifies that the conditional instruction C → A � B behaves as A if

The Scan Workbench 83

Fig. 6. Transition rules for the primitives

condition C can be evaluated to true and as B otherwise. Note that the notation
|= C is used to denote the fact that C evaluates to true. Finally, rule (Pc) makes
procedure call P (u) behave as the agent A defining procedure P with the formal
arguments x replaced by the actual ones u.

3.3 Animations

Animations are obtained in a twofold manner: on the one hand, by describing
the scene to be painted and, on the other hand, by primitives to place images,
to make them appear or disappear and to move them.

The description of a scene is obtained by defining the size of the canvas to
be used by the animation, the background image of the animation and a series
of images to be used. Such a definition takes the following form:

scene (640 ,640)
background = loadImage (Images/ the background img . png) .
r ed ca r = loadImage (Images/ r ca r . jpg) .
y e l l ow t ruck = loadImage (Images/ ytruck . g i f) .

where the file names are given with respect to the path in which Scan is executed.
Images are manipulated by means of the following primitives where coordi-

nates are expressed in pixels with respect to the canvas, with (0, 0) being the
upper-left corner of the canvas:

– place at(i,x,y): to place image identified by i at the coordinates (x, y)
– move to(i,x,y): to move image identified by i from its current position to

the new coordinates (x, y)
– hide(i): to hide image identified by i
– show(i): to make appear image identified by i

Such primitives are added to the tell, get, nask and ask primitives in the
definition of Anim-Bach.

84 J.-M. Jacquet and M. Barkallah

Fig. 7. Transition rules for the operators

It is worth observing that the map constructs (introduced before) allow to
declare coordinates in a symbolic manner making it easy to specify the position
of images.

3.4 A Fragment of Temporal Logic

Linear temporal logic is a logic widely used to reason on dynamic systems. The
Scan workbench uses a fragment of PLTL [12] with, as main goal, to check the
reachability of states.

As usual, the logic employed relies on propositional state formulae. In our
coordination context, these formulae are to be verified on the current contents of
the store. Consequently, given a structured piece of information t, we introduce
#t to denote the number of occurrences of t on the store and define as basic
propositional formulae, equalities or inequalities combining algebraic expressions
involving integers and number of occurrences of structured pieces of information.
An example of such a basic formulae is #free(1, 1) = 1 which states that the
cell of coordinates (1, 1) is free.

Propositional state formulae are built from these basic formulae by using the
classical propositional connectors. As particular cases, we use true and false to
denote propositional formulae that are respectively always true and false. Such
formulae are in fact shorthands to denote respectively p ∨ ¬p and p ∧ ¬p, for
some basic propositional formula p.

The fragment of temporal logic used in Scan is then defined by the following
grammar:

TF ::= PF |Next TF |PF Until TF

The Scan Workbench 85

where PF is a propositional formula. As will be explained in the next section,
it has been designed so as to allow for an efficient implementation.

As an example, if the red car indicates that it leaves the grid by placing out
on the store, a solution to the rush problem is obtained by verifying the formula

true Until (#out = 1)

4 Implementation

The Scan workbench has been implemented in Scala [24] on top of the Processing
library [27]. Scala is a programming language which combines the object-oriented
and functional paradigms and benefits from strong static type systems. Scala
source code is compiled to Java bytecode, which eases its interface with Java
libraries. Moreover, Scala includes powerful parsing facilities. All these prop-
erties make it well-suited to interpret the Anim-Bach language, which as can
be appreciated by the previous sections, can be easily described by recursive
definitions.

Processing is a graphical library built to teach programming to artists in a
visual context. Although it is generally used through a specific IDE, Processing
can be employed as a Java library, which is the case for Scan. Processing is based
on a key method, named draw, that is invoked several times per second (typi-
cally 60 times per second), which accordingly creates animations by modifying
parameters such as the coordinates of images.

The page limit does not allow to enter deeply in the code of the implementa-
tion. However, the following subsections should allow the reader to understand
the key elements of our implementation.

4.1 Internal Representation of Data

Scala case classes offer an elegant mechanism to represent data in an inter-
nal manner while keeping a close link to the textual representation in Anim-
Bach. For instance, an abstract class AB AG has been introduced to represent
agents of Anim-Bach. Case classes have then been defined to represent par-
ticular agents, such as AB AST Empty Agent() to represent the empty agent,
AB AST Primitive(primitive: String, stinfo: AB SI ELM) to represent a
primitive or AB AST Agent(op: String, agi: AB AG, agii: AB AG) to repre-
sent a composed agent using the operator op – for instance, || for the parallel
composition – and two subagents agi and agii.

Other structures are used similarly to code sets, structured pieces of infor-
mation, map equations, and temporal logic formulae.

As might be appreciated by this brief description, a close link is indeed made
between the internal representation and the textual description in Anim-Bach.
As a result, in contrast to tools such as mCRL2 [5], it is quite easy to provide
the user with messages directly connected to what he has written.

86 J.-M. Jacquet and M. Barkallah

4.2 Parsing Anim-Bach Constructs

As exposed in Chap. 33 of [24], Scala offers facilities to parse languages. The
main ingredients to do so are, on the one hand, a library to define parsers,
which basically allows to define the class AnimBachParsers as inherited from the
class RegexParsers, parsing regular expressions, and the possibility of applying
functions to the result of strings having been parsed.

4.3 The Store

The store is implemented as a mutable map in Scala. Initially empty, it is
enriched for each told structured piece of information by an association of it
to a number representing the number of its occurrences on the store. The imple-
mentation of the primitives follows directly from this intuition. For instance,
the execution of a tell primitive, say tell(t), consists in checking whether t is
already in the map. If it is then the number of occurrences associated with it
is simply incremented by one. Otherwise a new association (t,1) is added to
the map. Dually, the execution of get(t) consists in checking whether t is in
the map and, in this case, in decrementing by one the number of occurrences.
In case one of these two conditions is not met then the get primitive cannot be
executed.

The declaration of sets, map equations and procedure definitions are memo-
rized similarly through maps or lists for equations.

4.4 The Simulator

The simulator consists in repeatedly executing transition steps. In our imple-
mentation, this boils down to the definition of function run one, which assumes
given an agent in a parsed form and which returns a pair composed of a boolean
and an agent in parsed form. The boolean aims at specifying whether a transi-
tion step has taken place. In this case, the associated agent consists of the agent
obtained by the transition step. Otherwise, failure is reported with the given
agent as associated agent.

The function is defined inductively on the structure of its argument, say ag.
If ag is a primitive, then the run one function simply consists in executing the
primitive on the store. If ag is a sequentially composed agent agi ; agii, then the
transition step proceeds by trying to execute the first subagent agi. Assume this
succeeds and delivers ag′ as resulting agent. Then the agent returned is ag′ ; agii
in case ag′ is not empty or more simply agii in case ag′ is empty. Of course, the
whole computation fails in case agi cannot perform a transition step, namely in
case run one applied to agi fails.

The case of an agent composed by a parallel or choice operator is more subtle.
Indeed for both cases one should not always favor the first or second subagent. To
avoid that behavior, we use a boolean variable, randomly assigned to 0 or 1, and
depending upon this value we start by evaluating the first or second subagent.
In case of failure, we then evaluate the other one and if both fails we report a

The Scan Workbench 87

failure. In case of success for the parallel composition we determine the resulting
agent in a similar way to what we did for the sequentially composed agent. For
a composition by the choice operator the tried alternative is simply selected.

The computation of a procedure call and of a conditional statement are
performed similarly as one may expect.

4.5 The Scene

The scene and its animation are implemented by means of Processing. The dec-
laration of a scene induces dedicated declarations in the setup method used
by Processing. Moving an image is obtained by an update in the draw method
employed by Processing using a linear interpolation of the initial and final coor-
dinates. Placing images and hiding or showing them is achieved by modifications
of the corresponding variables and attributes.

4.6 Temporal Formulae

Scan temporal formulae are verified by means of a home-made program inspired
by the techniques proposed in [28]. It essentially uses a limited depth-first search
algorithm based on the simulator described in Subsect. 4.4 with a recursive rea-
soning on the temporal formulae. More concretely, the key function check lts
takes as arguments an integer I, a temporal formula F , an agent A and a trace
T . The first argument is the length of the remaining search allowed. The second
and third arguments are the temporal formula to be checked against the agent.
The path consists of the trace prefix already computed. The function returns a
boolean, stating whether the formula has been checked, together with a path,
describing the last path explored. It provides an execution witness of the truth
of the formula in case the return boolean is true.

The check lts function is coded by using a recursive reasoning on the for-
mula F :

– if F is a propositional formula, then the current contents of the store should
verify it. If this is the case, true is returned together with the path P . Oth-
erwise, false is returned together with P .

– if F is of the form Next TF and if I is strictly positive, then check lts is
successively called on the list of next possible agents returned by run one
with I−1 as integer, the agent produced by run one as agent, TF as formula
and P augmented with a reference to the computation step as path. In case
one of these calls succeed, namely returns true with the associated path, then
this result is returned. Otherwise or in case I = 0, then false is returned
together with the path P .

– the case where F is of the form PF Until TF is treated similarly. Either TF
holds on the current store, in which case true is returned together with P , or
PF holds in the current store and there is one successor agent (explored as
for the above case) for which TF holds. In this latter case, true is returned
together with the discovered path. In case none of the two situations holds,
then false is returned with the path P .

88 J.-M. Jacquet and M. Barkallah

It is worth noting that the algorithm is not complete. If it returns true then
the considered formula has been established and the returned path provides a
witness execution that can be replayed. Otherwise, because of the limited depth-
first search, false may be returned wrongly because the formula could have been
proven by using a more exhaustive search. Nevertheless such a simple algorithm
is in practice already useful to establish formulae.

Note also that, in case of success, the algorithm is sound because of the
limited form of the temporal formulae considered in Scan, which in particular,
does not involve negations.

5 Related Work

Although many pieces of work in the coordination community have been devoted
to the proposal of new languages, semantics and implementations, few articles
have addressed the concerns of practically constructing programs in coordina-
tion languages, in particular in checking that what is described by programs
actually corresponds to what has to be modeled. Notable exceptions include the
Extensible Coordination Tools [18], ReoLive [6], and TAPAs [3].

The Extensible Coordination Tools (ECT) has been developed for the
control-based coordination language Reo, a language quite different from Anim-
Bach. ECT consists of a set of plug-ins for the Eclipse platform that provide
graphical editing facilities of Reo connectors, the animation of these connectors
as well as model checking based on constraint automata or a translation to the
process algebra mCRL2 [5]. Although it is certainly less elaborated, our work
differs in several respects. First, it deals with tuple spaces instead of connec-
tors. Second, it allows to grasp the modeling of real-life systems by connecting
agents of Bach to animations at the application level. Consequently, although
one may animate connectors in ECT, one cannot animate the modeling of the
rush hour problem for instance, as we did with Anim-Bach. Finally, in contrast
to our work, model checking in ECT does not preserve a one-to-one link with
textual representations, in particular when mCRL2 is used.

ReoLive is also dedicated to Reo. It proposes similar tools but by means of
a set of web-based tools using ScalaJS. As a consequence, the above comparison
with ECT also applies to ReoLive.

TAPAs [3] is a tool developed essentially for CCSP with a plug-in for an
extension of the Klaim coordination language. It allows to graphically specify
systems and to verify their equivalence by means of bisimulations based equiva-
lences (strong, weak and branching) or decorated trace equivalences (weak and
strong variants of trace completed trace, divergence sensitive trace, must, test-
ing). It also allows to model check systems by using formulae of the µ-calculus.
The two main differences of our work with TAPAs are, on the one hand, our
concern for tuple-based coordination languages, and, on the other hand, the
facilities offered by Anim-Bach for animations. In contrast, as written above,
model checking in Anim-Bach is quite simple and is much less elaborated than
that of TAPAs. Future work will aim at improving this aspect.

The Scan Workbench 89

Declarative invariant assertions are proposed in [20] to detect inconsistencies
in models expressed in the Peer model, a coordination model based on shared
tuple spaces, messages and Petri nets. In addition to the fact that the Peer
Model is quite different from Anim-Bach, our work differs in two main respects.
On the one hand, assertions in [20] are verified at runtime whereas our temporal
formulae are checked statically. On the other hand, in contrast to our work, no
animation facilities are provided.

Although it includes facilities to view the evolution of the shared space,
TUCSON [25] does not provide facilities to animate computations nor to model-
check them.

Finally, a Linda workbench is presented in [11] with the goal of providing
a simple tool that allows users to experiment with a Linda-inspired language.
It is integrated with Netbeans and uses the JavaSpaces language, an extension
of Java supporting Linda primitives. It is hence named JavaSpaces Netbeans.
This workbench provides a tuple browser and a distributed debugger, including
record facilities to replay a sequence of tuple space operations. Although our
work provides facilities to explore and modify the tuple space, we do not provide
debugging facilities. In contrast however we provide animation facilities as well
as model checking facilities which are not included in JavaSpaces Netbeans.

6 Conclusion

The paper has introduced a workbench for reasoning on a Linda-like coordination
language at three levels: (i) by executing in a step by step or automatic manner
instructions while showing their impact on the shared space, (ii) by illustrating
computations by animations and (iii) by model checking properties by means of
temporal formulae.

The current version has been designed to be as simple as possible yet incorpo-
rating key ideas. As a result, it can be improved in many aspects, in particular,
by refining the interfaces, by integrating it in IDE’s, by improving the specifica-
tion of animations and by handling more sophisticated temporal logics, like the
µ−calculus [19].

References

1. Brogi, A., Jacquet, J.M.: On the expressiveness of Linda-like concurrent languages.
Electron. Notes Theoret. Comput. Sci. 16(2), 61–82 (1998)

2. Brogi, A., Jacquet, J.M.: On the expressiveness of coordination via shared datas-
paces. Sci. Comput. Program. 46(1–2), 71–98 (2003)

3. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: a tool for the analysis
of process algebras. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.)
Transactions on Petri Nets and Other Models of Concurrency I. LNCS, vol. 5100,
pp. 54–70. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89287-
8 4

4. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458
(1989)

https://doi.org/10.1007/978-3-540-89287-8_4
https://doi.org/10.1007/978-3-540-89287-8_4

90 J.-M. Jacquet and M. Barkallah

5. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

6. Cruz, R., Proença, J.: ReoLive: analysing connectors in your browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336–350.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 25

7. Jacquet, J.-M., Linden, I., Darquennes, D.: On density in coordination languages.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 189–203. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45364-9 16

8. Darquennes, D., Jacquet, J.M., Linden, I.: On the introduction of density in tuple-
space coordination languages. Sci. Comput. Program. 115, 149–176 (2013)

9. Darquennes, D., Jacquet, J.M., Linden, I.: On distributed density in tuple-based
coordination languages. In: Cámara, J., Proença, J. (eds.) Foundations of Coor-
dination Languages and Self-Adaptive Systems. EPTCS, vol. 175, pp. 36–53.
Springer, Rome (2015)

10. Darquennes, D., Jacquet, J.M., Linden, I.: On multiplicities in tuple-based coor-
dination languages: the bach family of languages and its expressiveness study. In:
Serugendo, G.D.M., Loreti, M. (eds.) Coordination 2018. LNCS, vol. 10852, pp.
81–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3 4

11. Dukielska, M., Sroka, J.: JavaSpaces NetBeans: a linda workbench for distributed
programming course. In: Ayfer, R., Impagliazzo, J., Laxer, C. (eds.) Proceedings of
the 15th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, pp. 23–27. ACM (2010)

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics (B), pp. 995–1072. Elsevier
(1990)

13. Erman, L., Hayes-Roth, F., Lesser, V., Reddy, D.: The Hearsay-II speech-
understanding system: integrating knowledge to resolve uncertainty. ACM Com-
put. Surv. 12(2), 213 (1980)

14. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

15. Jacquet, J.-M., De Bosschere, K., Brogi, A.: On timed coordination languages.
In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp.
81–98. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45263-X 6

16. Jacquet, J.M., Linden, I.: Coordinating context-aware applications in mobile ad-
hoc networks. In: Braun, T., Konstantas, D., Mascolo, S., Wulff, M. (eds.) Pro-
ceedings of the First ERCIM Workshop on eMobility, pp. 107–118. The University
of Bern (2007)

17. Jacquet, J.M., Linden, I.: Fully abstract models and refinements as tools to com-
pare agents in timed coordination languages. Theor. Comput. Sci. 410(2–3), 221–
253 (2009)

18. Kokash, N., Arbab, F.: Formal design and verification of long-running transac-
tions with extensible coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200
(2013)

19. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

20. Kühn, E., Radschek, S., Elaraby, N.: Distributed coordination runtime assertions
for the peer model. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINA-
TION 2018. LNCS, vol. 10852, pp. 200–219. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92408-3 9

https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/978-3-642-45364-9_16
https://doi.org/10.1007/978-3-319-92408-3_4
https://doi.org/10.1007/3-540-45263-X_6
https://doi.org/10.1007/978-3-319-92408-3_9
https://doi.org/10.1007/978-3-319-92408-3_9

The Scan Workbench 91

21. Linden, I., Jacquet, J.-M.: On the expressiveness of absolute-time coordination
languages. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION
2004. LNCS, vol. 2949, pp. 232–247. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24634-3 18

22. Linden, I., Jacquet, J.M.: On the expressiveness of timed coordination via shared
dataspaces. Electron. Notes Theor. Comput. Sci. 180(2), 71–89 (2007)

23. Linden, I., Jacquet, J.M., Bosschere, K.D., Brogi, A.: On the expressiveness of
relative-timed coordination models. Electron. Notes Theor. Comput. Sci. 97, 125–
153 (2004)

24. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, A comprehensive
step-by-step guide. Artemis (2016)

25. Omicini, A., Ricci, A., Rimassa, G., Viroli, M.: Integrating objective & subjec-
tive coordination in FIPA: a roadmap to TuCSoN. In: Armano, G., Paoli, F.D.,
Omicini, A., Vargiu, E. (eds.) Proceedings of the 4th AI*IA/TABOO Joint Work-
shop “From Objects to Agents”: Intelligent Systems and Pervasive Computing, pp.
85–91. Pitagora Editrice Bologna (2003)

26. Papadopoulos, G., Arbab, F.: Coordination models and languages. Technical report
SEN-R9834. Centrum voor Wiskunde en Informatica (CWI), ISSN 1386-369X
(1998)

27. Reas, C., Fry, B.: Processing: A Programming Handbook for Visual Designers. The
MIT Press, Cambridge (2014)

28. Reynolds, M.: A Traditional Tree-style Tableau for LTL. CoRR arXiv:1604.03962
(2016)

https://doi.org/10.1007/978-3-540-24634-3_18
https://doi.org/10.1007/978-3-540-24634-3_18
http://arxiv.org/abs/1604.03962

CHOReVOLUTION: Automating the
Realization of Highly–Collaborative

Distributed Applications

Marco Autili, Amleto Di Salle(B), Francesco Gallo, Claudio Pompilio,
and Massimo Tivoli

University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
{marco.autili,amleto.disalle,francesco.gallo,
claudio.pompilio,massimo.tivoli}@univaq.it

http://www.disim.univaq.it

Abstract. CHOReVOLUTION is a platform for the tool-assisted devel-
opment and execution of scalable applications that leverage the dis-
tributed collaboration of services specified through service choreogra-
phies. It offers an Integrated Development and Runtime Environment
(IDRE) comprising a wizard-aided development environment, a system
monitoring console, and a back-end for managing the deployment and
execution of the system on the cloud. We describe the platform by using
a simple example and evaluate it against two industrial use cases in the
domain of Smart Mobility & Tourism and Urban Traffic Coordination.

Keywords: Service choreographies · Distributed computing ·
Automated synthesis

1 Introduction

The Future Internet [20] reflects the changing scale of the Internet and its trend
toward the integration and cooperation of different domains supported by an
expanding network infrastructure. It relies on large-scale computing environments
that will increasingly be connected to a virtually infinite number of services.

This vision is embodied by reuse-based service-oriented systems, in which
services play a central role as effective means to achieve interoperability among
parties of a business process, and new systems can be built by reusing and
composing existing services.

Service choreographies are a form of decentralized composition that model
the external interaction of the participant services by specifying peer-to-peer
message exchanges from a global perspective. When third-party (possibly black-
box) services are to be composed, obtaining the distributed coordination logic
required to enforce the realizability of the specified choreography is a non-
trivial and error prone task. Automatic support is then needed. The need for

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 92–108, 2019.
https://doi.org/10.1007/978-3-030-22397-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_6

Synthesis of Highly–Collaborative Distributed Applications 93

choreographies was recognized in the Business Process Modeling Notation 2.0
(BPMN2) [24], which introduced Choreography Diagrams to offer choreogra-
phy modeling constructs. Choreography diagrams specify the message exchanges
among the choreography participants from a global point of view.

The CHOReVOLUTION H2020 EU project1 develops a platform for the gen-
eration and execution of scalable distributed applications that leverage the dis-
tributed collaboration of services and things by means of service choreographies.
In particular, it realizes an Integrated Development and Runtime Environment
(IDRE) that comprises a wizard-aided development environment, a system mon-
itoring console, and a back-end for managing the deployment and execution of
the system on the cloud.

The CHOReVOLUTION IDRE makes the realization of choreography-based
smart applications easier by sparing developers from writing code that goes
beyond the realization of the internal business logic. For “internal business logic”
we mean the one related to the provisioning of the single system functionali-
ties, as taken in isolation. That is, the distributed coordination logic, which is
needed to realize the global collaboration prescribed by the choreography specifi-
cation, is automatically synthesized by the IDRE. Thus, while coding, developers
can avoid to care about coordination aspects. Furthermore, developers can also
more easily reuse existing consumers/providers services. These aspects have been
appreciated by the industrial partners in that the approach permits to develop
distributed applications according to their daily development practices.

The IDRE is an open-source and free software, available under Apache
license. It is available as a ready-to-use bundle by the OW2 consortium from
https://l.ow2.org/idrevm, and all the documentation can be found at http://
www.chorevolution.eu/bin/view/Documentation/WebHome. The source code is
also available at https://gitlab.ow2.org/chorevolution.

The remainder of the paper is organized as follows. Section 2 describes the
development approach supported by CHOReVOLUTION. Section 3 describes
the components constituting the CHOReVOLUTION IDRE. Section 4 highlights
the use of the IDRE through a running example. Section 5 briefly evaluates the
two CHOReVOLUTION use cases, and Sect. 6 concludes the paper.

2 CHOReVOLUTION Approach

The CHOReVOLUTION synthesis process consists of a set of core code genera-
tion phases (see Fig. 1) that takes as input a choreography specification together
with a set of existing concrete services as possible candidates to play the chore-
ography roles and automatically generates a set of additional software entities.
When interposed among the services, these software entities “proxify” the partic-
ipant services to externally coordinate and adapt their business-level interaction,
as well as to bridge the gap of their middleware-level communication paradigms
and enforce security constraints.

1 http://www.chorevolution.eu.

https://l.ow2.org/idrevm
http://www.chorevolution.eu/bin/view/Documentation/WebHome
http://www.chorevolution.eu/bin/view/Documentation/WebHome
https://gitlab.ow2.org/chorevolution
http://www.chorevolution.eu

94 M. Autili et al.

Fig. 1. CHOReVOLUTION development process

Validation – This activity validates the correctness of the choreography speci-
fication against the constraints imposed by the BPMN2 standard specification.
The goal is to check practical constraints concerning both choreography realiz-
ability and its enforceability (see [4,13–15,21–23,26]).

Choreography Projection – Taking as input the BPMN2 Choreography Dia-
gram and the related Messages XML schema, this activity automatically extracts
all the choreography participants and applies a model-to-model (M2M) trans-
formation to derive the related Participant Models, one for each participant. A
participant model is itself a BPMN2 Choreography Diagram. It contains only
the choreography flows that involve the considered participant. The generated
participant models will be then taken as input by the Coordination Delegate
(CD) Generation activity.

Selection – This activity is about querying the Service Inventory in order to
select concrete services that can play the roles of the choreography participants.
Once the right services have been selected, the related description models will
be used to generate the Binding Components (BCs), Security Filters (SFs),
Adapters (As), and Coordination Delegates (CDs).

BC Generation – BCs are generated when the middleware-level interaction
paradigm of a selected service is different from SOAP [28], which is used by the
CDs as the middleware-level interaction paradigm [16].

Synthesis of Highly–Collaborative Distributed Applications 95

SF Generation – SFs are generated for those (selected) services having security
policies associated. SFs filter the services interactions according to the specified
security requirements.

Adapter Generation – When needed, adapters allow to bridge the gap among
the interfaces and interaction protocols of the selected services and the ones of
the (respective) participant roles they have to play, as obtained via projection.
In other words, adapters solve possible interoperability issues due to operation
names mismatches and I/O data mapping mismatches (see [9,10,27]).

CD Generation – CDs are in charge of coordinating the interactions among
the selected services so as to fulfill the global collaboration prescribed by the
choreography specification, in a fully distributed way (see [5–8,11,12]).

Choreography Architecture Generation – Considering the selected services
and the generated BCs, SFs, As, and CDs, an architectural description is auto-
matically generated, and a graphic representation of the choreographed system
is provided, where all the system’s architectural elements and their interdepen-
dencies are represented.

Fig. 2. CHOReVOLUTION IDRE overview

96 M. Autili et al.

Choreography Deployment Generation – The last activity of the develop-
ment process concerns the generation of the Choreography Deployment Descrip-
tion (called ChorSpec) out of the Choreography Architecture model. The deploy-
ment description will be used for deploying and enacting the realized choreog-
raphy.

3 CHOReVOLUTION IDRE

CHOReVOLUTION IDRE includes software tools for choreography modeling,
synthesis, security, identity management and cloud (with monitoring and overall
management at run-time).

As depicted in Fig. 2, the CHOReVOLUTION IDRE is layered into: (1) a
front–end layer; (2) a back–end layer; and (3) a cloud layer. The red boxes
in the figure contain the IDRE components developed within CHOReVOLU-
TION from scratch. In particular, they are: the CHOReVOLUTION Studio,
the CHOReVOLUTION Console, and the Synthesis Processor together with the
artifacts it generates. As detailed below, the components outside the boxes are
the ones developed within CHOReVOLUTION and built on top of existing open-
source projects. For instance, the Identity Manager extends the Apache Syncope
project [3]. It is worth noticing that the choice about the existing projects the
IDRE relies on comes from the partners of the CHOReVOLUTION consortium.
However, the IDRE is an extensible platform and, as such, in the future, it
may also support other technologies such as: Kubernetes for deployment and
enactment, IBM’s AIM for identity management.

(1) The Front–end layer consists of the following:

(1.1) – The CHOReVOLUTION Studio is an Eclipse-based IDE that allows
to (i) design a choreography exploiting BPMN2 Choreography Diagrams; (ii)
define all the details required to instrument the interaction among the services
involved in the choreography (e.g. service signatures, identity attributes and
roles); (iii) drive the generation of BCs, SFs, As, and CDs exploiting the auto-
mated generation facilities offered by the back–end layer.

(1.2) – The CHOReVOLUTION Console is a web-based application that
allows to (i) configure, administer and trigger actions on running services and
choreographies; (ii) monitor the execution of a choreography with respect to
relevant parameters, such as execution time of choreography tasks, number of
messages exchanged for the execution of tasks, end-to-end deadlines, etc.

(2) The Back–end layer consists of the following:

(2.1) – The Synthesis Processor implements the activities of the synthesis
process described in Sect. 2. In particular, it takes as input the BPMN2 chore-
ography diagram and the models of the participant services, and generates all
the needed additional software entities that are required to concretely realize
the choreography, i.e., CDs, As, SFs, and BCs. Finally, it generates a concrete

Synthesis of Highly–Collaborative Distributed Applications 97

description of the choreography (ChorSpec) that is passed to the Enactment
Engine (via the Identity Manager) for deployment and enactment purposes.

(2.2) – The Enactment Engine (EE) is a REST API that extends the Apache
Brooklyn project [2]. It automatically deploys the choreography based on the
choreography deployment description by using the Cloud Layer. The EE also
interacts with the Identity Manager to include into the deployment descrip-
tion the actual deployment and runtime details. Then, once a choreography is
deployed and running, the EE listens for command requests from the Identity
Manager for runtime choreography control. It is worth noticing that, although
choreography monitoring and control is performed by centralized IDRE compo-
nents (e.g., EE and IdM), the realization and running of the choreography still
remain fully distributed into the various artifacts generated by the Synthesis
Processor.

(2.3) – The Federation Server handles the runtime authentication and autho-
rization for services that uses different security mechanism at the protocol level
by storing various credentials on behalf of the caller.

(2.4) – The Identity Manager (IdM) is based on Apache Syncope project [3]
and it is responsible for managing users and services. In particular, the IdM is
able to query the services for supported application contexts and played roles;
force a specific application context for a certain service (put in “maintenance”
or disable/enable). The Service Inventory is a sub-component of the IdM. It acts
as a central repository for the description models of the services and things that
can be used during the synthesis process.

(3) The Cloud layer executes concrete service choreography instances on a
cloud infrastructure and adapts their execution based on the actual application
context. At execution time, for each choreography, in the CHOReVOLUTION
cloud, there are (i) a set of choreography instances at different execution states;
(ii) a set of virtual machines executing a custom-tailored mix of services and
middleware components to serve different parts of the choreography. VMs are
installed and configured with services according to selectable policies. Due to
the fact that EE is based on Apache Brooklyn, the CHOReVOLUTION IDRE
is not constrained to a specific Infrastructure as a Service (IaaS) platform (e.g.,
Open Stack [25], Amazon EC2 [1]).

The IDRE mainly targets three types of users described as follows.

Service providers interact with the CHOReVOLUTION Studio to define the
description models (i.e., interface and security models) of existing services and
then publish them into the Service Inventory. The benefit they obtain is to
foster and ease the reuse of their services by developers, hence increasing the
opportunities to be involved in new businesses.

Choreography developers interact with the CHOReVOLUTION Studio to
(i) model a choreography by using the Choreography Modeler. (ii) Realize the
modeled choreography through the automatic synthesis of BCs (for solving het-
erogeneity issues), CDs (for solving coordination issues), As (for solving inter-

98 M. Autili et al.

face mismatches), and SFs (to make the choreography secure). This is done by
exploiting the Synthesis Processor.

Choreography operators interact with the CHOReVOLUTION console to
(i) deploy and enact the generated choreography-based application through a
structured process that involves the back-end layer; (ii) monitor the status of
the execution cloud environment; (iii) monitor the execution of the choreography
instances and managing their lifecycle.

4 Running Example

This section describes a simple example, called Chor-eCOM, that is used as a
guide-through to explain the CHOReVOLUTION IDRE. The simple case study
falls within the e–commerce domain. It concerns the purchasing of one or more
products of different nature.

In our example, the customer is connected to the Internet through a web
client or a mobile app. The customer can select a list of items and, once the
payment has been performed, the order can be processed, and the invoice can be
sent back to her. Then, according to the delivery schedule, the items are packaged
and sent to the customer, who will in turn receive shipping information.

Figure 3 shows the Chor-eCOM example choreography specification by means
of a BPMN2 Choreography Diagram. A choreography diagram specifies the way
the choreography participants exchange information (messages) from a global
point of view. The main element of a choreography diagram is the choreography
task (e.g., Order Products task on left of Fig. 3). Graphically, BPMN2 diagrams
uses rounded-corner boxes to denote choreography tasks. Each of them is labeled
with the roles of the two participants involved in the task. The white box denotes
the initiating participant that decides when the interaction takes place. A task
is an atomic activity that represents an interaction by means of one or two
(request and optionally response) message exchanges (orderRequest) between
two participants (Order Processor and Scheduler).

Fig. 3. Chor-eCOM choreography diagram

Synthesis of Highly–Collaborative Distributed Applications 99

The use case starts with the mobile application Customer sending her
information together with the ordering data. From this information, Order
Processor sends the message scheduleRequest to the Scheduler partici-
pant for scheduling the order. Then, it initiates two parallel flows in order
to retrieve the information for delivering and paying the order (see the par-
allel branch represented as a rhombus marked with a “+”, with two outgoing
arrows, namely a Diverging Parallel Gateway, just after the choreography task
Organize Schedule). In particular, the top-most branch retrieves payment and
invoice information, while the bottom-most branch gathers delivery informa-
tion. Finally, the two parallel flows are joined together in order to notify order
information to the user by means of Notify Order Information choreography
task.

We used the choreography specification in Fig. 3 to realize a simple e–
commerce choreography–based system where a number of publicly available
services can be reused. They have been reused – as black-box third-party
software – to instantiate the roles of the participants Scheduler, Payment
System, Invoicer, and Carrier. The other participants (Order Processor and
Shipper) had to be developed from scratch, and here our synthesis method
comes into play. These participants represent the missing logic to be composed
and coordinated with the logic offered by the reused services. Note that, the
Customer participant represents the mobile app used by the user.

In the remainder of this section the Chor-eCOM example is used to show the
realization of a choreography-based system by highlighting the roles played by
the three types of users of the CHOReVOLUTION IDRE described in Sect. 3.

Service Provider – A service provider uses the IDRE in order to publish the
description models of the services into the Service Inventory. The IDRE allows
to deal with the heterogeneity of the services involved in a choreography. To this

Fig. 4. Service inventory

100 M. Autili et al.

extent, it provides a uniform description for any service or thing, given by means
of the Generic Interface Description Language (GIDL) [16] or the WSDL [29]
in case of SOAP services. GIDL supports interface description for any kind of
possible services (e.g., REST services) and thing. As already said in Sect. 2,
the published services are selected in order to play the participants roles of a
choreography. Then, the next phases will use the services models to synthesize
the additional software artefacts (i.e., BCs, SFs, CDs, As) of the choreography.

Referring to the Chor-eCOM example, the service provider has to create a
Service/Thing project inside the CHOReVOLUTION Studio by using a GIDL
description for the following services: Scheduler, Payment System, Invoicer,
and Carrier. Due to lack of space, we do not provide the steps to create and
publish services within the Service Inventory. At the end of this process, the
Service Inventory contains the following published services (see Fig. 4).

Choreography Developer – A choreography developer exploits the CHOReV-
OLUTION Studio to model a choreography and to realize it. For this purpose
the developer has to create a CHOReVOLUTION Synthesis project. Then, he or
she models the BPMN2 choreography diagram together with the XML messages
by using the Eclipse BPMN2 choreography modeler [18]. As already discussed in
Sect. 2, after the modeling phase, the choreography developer starts the synthesis
process. The first two activities of the process (i.e., Validation and Choreogra-
phy Projection) do not require any user interaction. Then, the choreography
developer starts a wizard interface that through several steps realizes the other
activities of the synthesis process.

Fig. 5. Selection activity

Selection – The first step of the wizard requires the choreography developer
to select, for each choreography participant, its corresponding service from the
Service Inventory. Referring to the simple example choreography, the choreogra-
phy developer has to select all the services published into the Service Inventory
as described previously, see Fig. 5.

Synthesis of Highly–Collaborative Distributed Applications 101

Fig. 6. BC generation activity

BC Generation – Figure 6 shows the step of the wizard used by the choreogra-
phy developer to configure the Binding Components generator for those selected
concrete services that do not use the SOAP [28] protocol. Moreover, the chore-
ography developer has to specify the interaction paradigm used by the client
participant of the choreography, by choosing either REST or SOAP.

Considering the Chor-eCOM example, since all the services selected in the
previous step are REST services, they are listed in the wizard together with their
GIDL description. Moreover, the example provides the purchase information
through a mobile application, so the choreography developer has to choose REST
as the interaction paradigm of the client participant (Customer).

Fig. 7. Adapter generation activity

102 M. Autili et al.

Fig. 8. Adapter mapping (Color figure online)

Fig. 9. CD generation activity

The SF Generation step is skipped because the existing services do not have
security constraints.

Adapter Generation – Figure 7 shows the view of the wizard used by the choreog-
raphy developer to solve interface mismatches. These mismatches can arise due
to a possible gap between the selected services and the (respective) participant
roles in the specified choreography. They concern operation names mismatches
and I/O data mapping mismatches.

The wizard shows all the choreography tasks that require the choreography
developer to specify the adaptation logic, they are grouped by their initiating
participant, see the left-most column in Fig. 7. By clicking on the button labeled
with “...” a new window is opened, as shown in Fig. 8.

Synthesis of Highly–Collaborative Distributed Applications 103

Fig. 10. Choreography architecture (Color figure online)

By interacting with this new dialog window, the choreography developer
specifies the mapping between the choreography task messages, reported on the
left-most column, and the service operations messages, reported on the right-
most column. The elements identified with the red shapes are mandatory to be
mapped, whereas those in orange are optional. First, the choreography developer
has to map the choreography task with a service operation, and then the related
Input and Output messages are auto-mapped. Furthermore, the items forming
the message(s) associated to the choreography task under study have to be
mapped with the related items forming the specific service message.

CD Generation – It concerns the generation of the Coordination Delegates. The
choreography developer has to specify the Correlations Tasks, i.e., a correlation
between two choreography tasks. The first task involves a client participant as
the initiating participant and a service as the receiving participant. The second
task of the correlation involves the same service as the initiating participant
and the same client as the receiving participant. In other words, a Correlation
Task serves to specify that, in the specified choreography, there are two different
tasks that are correlated. Note that these tasks are not necessarily consecutive in
the defined choreography flow. This means that the two interactions represented
by the two correlated tasks, between the considered client and service, will be
indeed realized by a single request-response operation (synchronous interaction)
on the service side. The first task corresponds to the invocation by the client
of the service’ operation and the second task corresponds to the reply by the
service to the invocation previously performed by the client.

Considering the Chor-eCOM example, the mobile application starts the
choreography by sending the ordering information and then it gets back all the
information related to the order. Thus, the choreography developer has to spec-
ify a correlation between the task Order Products and the task Notify Order
Information (see Fig. 9).

104 M. Autili et al.

Choreography Architecture Generation – Considering the selected services and
the generated BCs, SFs, ADs, and CDs, an architectural description is automat-
ically generated. A graphical representation (reported in Fig. 10) of the chore-
ographed system shows the architectural description related to the Chor-eCOM
example. As described in the previous steps, each selected service is a REST
service (R purple label) associated with a Binding Component (BC black label)
and an adapter (A dark blue label). The green and red boxes correspond to the
generated CDs. The blue box represents the mobile application.

Choreography Deployment Description Generation – The last activity of the syn-
thesis process concerns the generation of the Choreography Deployment Descrip-
tion (aka ChorSpec) out of the choreography architectural description. The gen-
eration is quite straightforward, and after this step the choreography developer
can upload the choreography specification to the Identity Manager.

After the upload of the choreography specification, the choreography is avail-
able in the CHOReVOLUTION console (see Fig. 11).

Choreography Operator – At the end of the synthesis phase, the choreogra-
phy is in the CREATED status on the CHOReVOLUTION Console (see Fig. 12).
At this point, the Operator can use the “gear” icon to deploy the choreography
into the Cloud by passing the ChorSpec to the Enactment Engine. After few
minutes the status changes to STARTED.

Once correctly enacted, the choreography operator can check the health of the
virtual machines running the choreography by clicking on the magnifying glass
icon. The choreography details page reports monitoring data collected from each
virtual machine, and these data can be used by the choreography operator to
take action to adapt the virtual machine pool to the expected load, see Fig. 12.

5 CHOReVOLUTION Case Studies Evaluation

CHOReVOLUTION has been evaluated through two use cases: Smart Mobility
and Tourism (SMT) and Urban Traffic Coordination (UTC).

The SMT use case has been implemented in cooperation with Softeco, the
industrial partner from the Genoa city (Italy). The main scope of the SMT
use case is to realize a Collaborative Travel Agent System (CTAS) through the

Fig. 11. Uploaded choreography

Synthesis of Highly–Collaborative Distributed Applications 105

Fig. 12. Monitoring a choreography

cooperation of several content and service providers, organizations and authori-
ties publicly available in Genoa. The SMT use case involves a mobile application
as an “Electronic Touristic Guide” that exploits CTAS in order to provide both
smart mobility and touristic information.

The Urban Traffic Coordination (UTC) use case has been implemented in
cooperation with RISE Viktoria, the industrial partner from the Götheborg city
(Sweden). As described in detail in [17], the main scope of the UTC use case
is to realize a Cooperative intelligent transport systems (C-ITS) that allows
vehicles and transport infrastructure to interconnect, share information and use
it to coordinate their actions. The C-ITS provides traffic coordination services
exploited through a mobile app for assisting drivers in an eco-friendly and com-
fortable driving experience.

We evaluated the CHOReVOLUTION IDRE by conducting an experiment
for each use case. The goal of the two experiments was to measure the time saving
for realizing, maintaining and evolving the two use cases with the CHOReVO-
LUTION approach when compared to the development approaches the partners
daily use. The considered development phases are: implementation, mainte-
nance and evolution. The implementation phase consists of the development
of a choreography-based system from scratch. The maintenance phase concerns
the implementation of updates through service substitution. The evolution phase
concerns the development effort required to tackle business goal changes through
the modification of the choreography specification. According to the considered
phases, the experiment aims to test the following hypotheses. The CHOReV-
OLUTION approach allows developers to implement (Hypothesis 1), main-
tain (Hypothesis 2), and evolve (Hypothesis 3) a choreography-based system
more quickly.

106 M. Autili et al.

Table 1. Overall calculation of time savings

EUs Implementation Maintenance Evolution Time saving

SMT use case

1 7 0,7 1 –

2 113
106 saved

10
9,3 saved

27
26 saved

141,3

3 58,5
51,5 saved

8,5
7,8 saved

14
13 saved

72,3

UTC use case

1 11 0,7 1,5 –

2 152
141 saved

12,5
11,8 saved

26,5
25 saved

177,8

The time saving is measured in terms of person-hour (ph). In particular,
regarding the SMT use case, we employed the following experimental units:

SMT Experimental unit 1 (SMT-EU1): CHOReVOLUTION approach –
full usage of the CHOReVOLUTION IDRE except for the development of the
mobile application, which is out of the scope.

SMT Experimental unit 2 (SMT-EU2): General-purpose enterprise-
oriented technology – full usage of the technologies daily adopted by the Softeco
partner, i.e., Microsoft .Net, C#, and Visual Studio.

SMT Experimental unit 3 (SMT-EU3): Domain-specific system integra-
tion platform – full usage of the proprietary platform developed by the Softeco
partner, i.e., emixer [19]. It is a content and system integrator that is specific
for the travel and mobility information domain.

With respect to the UTC use case, we defined two experimental units. The
UTC-EU1 is the same as the SMT-EU1. The second one is defined as follows

UTC Experimental unit 2 (UTC-EU2): General-purpose enterprise-
oriented technology – full usage of the development technology daily adopted
by the RISE partner, i.e., NodeJS and ExpressJS, and Microsoft Visual Studio.

The technologies of SMT-EU2, UTC-EU2, and SMT-EU3 were selected con-
sidering that the industrial partners were already skilled with them.

Table 1 summarizes the results of the experiment on the two use cases by
distinguishing the implementation, maintenance, and evolution phases. In par-
ticular, the EU2 and EU3 highlight in bold the ph saved by using our approach.

The industrial partners experienced a significant time decrease with respect
to the their daily development approaches.

6 Conclusions

This paper has presented the CHOReVOLUTION IDRE, an integrated plat-
form for developing, deploying, executing and monitoring choreography-based

Synthesis of Highly–Collaborative Distributed Applications 107

distributed applications. A simple explanatory example, has been used to show
the CHOReVOLUTION IDRE at work. We evaluated the IDRE against two
industrial use cases. During the evaluation, the industrial partners experienced
a significant time decrease with respect to their daily development approaches.
The results of the experiments indicate that CHOReVOLUTION has a great
potential in developing choreography-based applications and the two use cases
got a full benefit from it. More pilots and development cases will allow to consol-
idate the technical maturity of the product and pose the basis for a commercial
validation.

Acknowledgments. Supported by: (i) EU H2020 Programme under grant no. 644178
(CHOReVOLUTION - Automated Synthesis of Dynamic and Secured Choreographies
for the Future Internet), (ii) the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (INCIPICT), and (iii) the GAUSS national PRIN project (Contract no.
2015KWREMX).

References

1. Amazon: Amazon Elastic Compute Cloud (Amazon EC2). https://aws.amazon.
com/ec2/?nc2=h m1

2. Apache: Apache Brooklyn. https://brooklyn.apache.org/
3. Apache: Apache Syncope. https://syncope.apache.org/
4. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.

IEEE Softw. 32(1), 50–57 (2015)
5. Autili, M., Inverardi, P., Perucci, A., Tivoli, M.: Synthesis of distributed and adapt-

able coordinators to enable choreography evolution. In: de Lemos, R., Garlan, D.,
Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III.
Assurances. LNCS, vol. 9640, pp. 282–306. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-74183-3 10

6. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

7. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 37–52. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37057-1 4

8. Autili, M., Ruscio, D.D., Salle, A.D., Perucci, A.: CHOReOSynt: enforcing chore-
ography realizability in the future internet. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, 16–22 November 2014, pp. 723–726 (2014)

9. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: Model-driven adaptation
of service choreographies. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018, pp. 1441–1450 (2018)

10. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven
synthesis of adaptable choreographies. In: Proceedings of MODELS 2018 Work-
shops: ModComp, Copenhagen, Denmark, 14 October 2018, pp. 12–17 (2018)

11. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven
synthesis of evolvable service choreographies. In: 12th European Conference on
Software Architecture: Companion Proceedings, ECSA, pp. 20:1–20:6 (2018)

https://aws.amazon.com/ec2/?nc2=h_m1
https://aws.amazon.com/ec2/?nc2=h_m1
https://brooklyn.apache.org/
https://syncope.apache.org/
https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1007/978-3-642-37057-1_4

108 M. Autili et al.

12. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: Aiding the realization
of service-oriented distributed systems. In: Proceedings of the 34th Annual ACM
Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, 8–12 April 2019,
pp. 1701–1710 (2019)

13. Autili, M., Tivoli, M.: Distributed enforcement of service choreographies. In: Pro-
ceedings 13th International Workshop on Foundations of Coordination Languages
and Self-Adaptive Systems, FOCLASA 2014, pp. 18–35 (2014)

14. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 2011
(2011)

15. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012. ACM (2012)

16. Bouloukakis, G.: Enabling emergent mobile systems in the IoT: from middleware-
layer communication interoperability to associated QoS analysis. (Systèmes
Mobiles Émergents dans l’IoT: de l’Interopérabilité au niveau Middleware de Com-
munication à l’Analyse de la Qualité de Service Associée). Ph.D. thesis, Inria, Paris,
France (2017)

17. Chen, L., Englund, C.: Choreographing services for smart cities: smart traffic
demonstration. In: 85th IEEE Vehicular Technology Conference, VTC Spring 2017,
Sydney, Australia, 4–7 June 2017, pp. 1–5 (2017)

18. Eclipse: Eclipse BPMN2 Modeler, April 2018. https://www.eclipse.org/bpmn2-
modeler/

19. EMixer: EMixer. http://www.e-mixer.com
20. European Commission: Digital Agenda for Europe - Future Internet Research

and Experimentation (FIRE) initiative (2017). https://ec.europa.eu/digital-single-
market/en/future-internet-research-and-experimentation

21. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the
design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–
660 (2016)

22. Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA,
pp. 27–36 (2010)

23. Kazhamiakin, R., Pistore, M.: Analysis of realizability conditions for web service
choreographies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 61–76. Springer, Heidelberg (2006). https://
doi.org/10.1007/11888116 5

24. OMG: Business Process Model And Notation vol 2.0.2, January 2014. http://www.
omg.org/spec/BPMN/2.0.2/

25. OpenStack: Open Stack. https://www.openstack.org/
26. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process

algebra encodings. IEEE Trans. Serv. Comput. 5(3), 290–304 (2012)
27. Di Salle, A., Gallo, F., Perucci, A.: Towards adapting choreography-based service

compositions through enterprise integration patterns. In: Bianculli, D., Calinescu,
R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 240–252. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-49224-6 20

28. W3C: SOAP Version 1.2, April 2007. http://www.w3.org/TR/soap/
29. W3C: Web Services Description Language (WSDL) Version 2.0, June 2007.

https://www.w3.org/TR/wsdl20-primer/

https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/bpmn2-modeler/
http://www.e-mixer.com
https://ec.europa.eu/digital-single-market/en/future-internet-research-and-experimentation
https://ec.europa.eu/digital-single-market/en/future-internet-research-and-experimentation
https://doi.org/10.1007/11888116_5
https://doi.org/10.1007/11888116_5
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://www.openstack.org/
https://doi.org/10.1007/978-3-662-49224-6_20
http://www.w3.org/TR/soap/
https://www.w3.org/TR/wsdl20-primer/

Exploring New Frontiers

ABEL - A Domain Specific Framework
for Programming with Attribute-Based

Communication

Rocco De Nicola1(B), Tan Duong2(B), and Michele Loreti3(B)

1 IMT - School for Advanced Studies, Lucca, Italy
rocco.denicola@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy
tan.duong@gssi.it

3 University of Camerino, Camerino, Italy
michele.loreti@unicam.it

Abstract. Attribute-based communication is a promising paradigm for
modelling and programming complex interactions in open distributed
systems such as collective adaptive systems (CAS). This new paradigm
has been formalized in AbC , a kernel calculus with a minimal set of prim-
itives that can be used to model formally verifiable CAS. The calculus
assumes an underlying coordination infrastructure that has to guarantee
the wanted communication and leaves open the actual implementation of
the way communication partners are selected. The proposed implemen-
tations of messages exchange for AbC are either not in full agreement
with the original semantics or do miss detailed performance evaluations.
In this paper, we continue the search for efficient implementations of AbC
and present ABEL - a domain specific framework that offers program-
ming constructs with a direct correspondence to those of AbC . We use
Erlang to implement ABEL inter- and intra-components interaction that
together faithfully model AbC semantics and enable us to verify proper-
ties of ABEL program. We also consider a number of case studies and,
by experimenting with them, show that it is possible to preserve AbC
semantics while guaranteeing good performance. We also argue that even
better performances can be achieved if the “strong” AbC requirement on
the total order of message delivery is relaxed.

Keywords: Attribute-based communication · Process calculi ·
Distributed programming · Erlang

1 Introduction

Attribute-based communication, originally proposed in [12] is a novel paradigm
that allows the dynamic selection of communication groups while taking into
account run-time properties and status of interacting entities. At its core, the
paradigm relies on a pair of communication primitives. The command send(v)@π
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 111–128, 2019.
https://doi.org/10.1007/978-3-030-22397-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_7

112 R. De Nicola et al.

is used to send a tuple of values v to all components satisfying the predicate π.
The command receive(x)@π′ is used to receive a tuple of values on x with con-
tents satisfying the predicate π′. The interaction predicates are also parametrised
with local attributes and when their values change, the interaction groups do
implicitly change, allowing opportunistic interactions.

This paradigm was formalized in the AbC kernel calculus [3,5] to study
the impact of attribute-based communication in the realm of CAS [7]. In AbC ,
components are equipped with a set of attributes describing their features, which
can change at runtime. Component interactions is driven by conditions over
their states to enable anonymity, adaptivity and open-endedness. The expressive
power of AbC in terms of representing different communication paradigms, such
as point-to-point, group based, channel-based, and broadcast-based models has
been demonstrated in [5]. AbC communication model follows broadcast in the
style of [16]; output action can take place even without the presence of any
receivers while input action instead waits to synchronize with available messages.

The original semantics of AbC has been formulated in a way that when a
component sends a message, that message is delivered to all components in the
system in a single move and each individual receiver decides whether to use the
message or to discard it. This semantics implies a restriction on the ordering of
message delivery because only one component can send its message at a time.
That is, message delivery in AbC is performed according to a total order [8].

Some proposals have already been put forward to efficiently implement mes-
sage exchange for AbC . It has been implemented in Java [4], Google Go [1] and
Erlang [11]. However, these implementations are either not in full agreement
with the original semantics or do miss detailed performance evaluations. This
may give rise to doubts about efficiency and correctness and thus prevent the
adoption of attribute-based communication.

Indeed, there are a number of challenges to face when providing an imple-
mentation fully respecting the exact semantics of AbC . The first is posed by
the fact that its message passing model requires guaranteeing a total order on
message delivery. While various protocols for total order broadcast have been
proposed in the literature, see, e.g., [9,15], the anonymity and open-endedness
features of AbC makes then unsuitable in this context because components can-
not contribute to establishing an order. A closely related work in building total
order for AbC has recently been presented in [2] where a sequencer-based pro-
tocol is formalized and proved correct on different topologies of networks. How-
ever, there is still the possibility for the proposed protocol to give rise to unex-
pected behaviours due to the complex behaviour of AbC components. Moreover,
since AbC components contain parallel processes operating independently on a
shared, dynamic changing attribute environment, to simulate the right inter-
leaving semantics among processes, any implementation should carefully coordi-
nate processes, otherwise situations may arise where processes interfere without
exhibiting the wanted behaviour.

In this paper, we continue the search for efficient implementations of AbC and
present ABEL - a programming framework for systems whose elements interact

ABEL - A Domain Specific Framework for Programming 113

according to the AbC style. Our framework provides an execution environment
for AbC specifications, that supports AbC programming abstractions for writ-
ing and running programs, and, at the same time, fully preserves the original
semantics of AbC . More concretely:

1. We provide a set of attribute-based programming constructs, implemented as
an Erlang library that allows easily defining component programs.

2. We implement coordination mechanisms for intra- and inter-components
interactions in Erlang , each dealing with one of the parallel operators of
AbC and together guaranteeing the original semantics.

3. We demonstrate with experiments that better performances can be achieved
if the “strong” AbC requirement on the total order of message delivery is
relaxed.

We show that by starting from a given AbC specification, it is straightforward
to derive a corresponding Erlang program containing API calls. We also show
that the close correspondence between AbC and ABEL enables us to reason
about the execution code by using verification tools developed for AbC [10].
Moreover, by experimenting with a number of case studies, we show that it is
possible to preserve AbC semantics while guaranteeing good performance and
that by, slightly relaxing the ordering requirements, better ones can be obtained.

The rest of the paper is organized as follows. In Sect. 2 we briefly review the
AbC calculus, and provide examples illustrating its programming paradigm. In
Sect. 3, we present the API support for AbC . In Sect. 4, we describe the coor-
dination mechanisms used to handle intra- and inter-components interactions.
Section 5 reports our experiments on case studies, taking into account different
message ordering strategies. Section 6 concludes the paper by discussing the dif-
ference between our work and previous proposals, together with some conclusions
and hints to future works.

2 Programming with AbC

The AbC calculus provides concrete primitives that permit the construction of
formally verifiable models of CASs according to the attribute-based communica-
tion paradigm. A system is rendered as a collection of interacting components.
A component C is either a process P associated with an attribute environment
Γ and an interface I, or the parallel composition of two components.

(Components) C ::=Γ :I P | C1 ‖ C2

The environment Γ is a partial mapping from attribute names to values, repre-
senting the component state. The interface I ⊆ Dom(Γ) contains a set of names,
exposed for interaction purpose. The process P can be either an inactive process
0, a prefixing process α.P , an update process U , an awareness process 〈Π〉P ,
a choice process P1 + P2, a parallel process P1|P2, or a process call K (with a
unique definition K � P).

114 R. De Nicola et al.

(Processes) P ::= 0 | (Ẽ)@Π.U | Π(x̃).U | 〈Π〉P | P1 + P2 | P1|P2 | K

(Update) U ::= [a := E]U | P

(Expressions) E ::= v | x | a | this.a | f(Ẽ)

(Predicates) Π ::= tt | p(Ẽ) | Π1 ∧ Π2 | ¬Π

AbC prefixing actions exploit run-time attributes and predicates over them to
determine the internal behaviour of components and the communication part-
ners.

(Ẽ)@Π is an output action that evaluates expressions Ẽ under the local envi-
ronment and sends the result to those components whose attributes satisfy
predicate Π;

Π(x̃) is an input action that binds to the variables x̃ the message received from
any component whose attributes and the communicated values satisfy the
receiving predicate Π;

[a := E] is an update operation that assigns to attribute a the evaluation of
expression E under the local environment;

〈Π〉 blocks the following process until Π is satisfied under the local environment.

Attribute updates and awareness predicates are local to components and
their executions are atomic with the associated communication action.

An expression E may be a constant value v, a variable x, an attribute name a,
or a reference this.a to attribute a in the local environment. Predicate Π can be
either tt, or can be built using comparison operators �� between two expressions
and logical connectives ∧, ¬, Both expressions and predicates can take more
complex forms, of which we deliberately omit the precise syntax; we just refer
to them as n-ary operators on subexpressions, i.e., f(Ẽ) and p(Ẽ).

The original semantics of AbC has been formulated in a way that when a
component sends a message, this is delivered in a single move to all components
in the system. Atomically, each individual receiver decides whether to keep the
message or to discard it. This semantics imposes a restriction on the ordering
of message delivery because only one component at a time can send a message.
That is, message delivery in the original AbC is performed according to a total
order [8].

Even if this approach is useful to describe in an abstract way the AbC one-to-
many interactions, it may be considered too strong when large scaled distributed
systems are considered. To relax the total ordering formulation of the original
AbC semantics, we have extended AbC syntax to explicitly model the infras-
tructure responsible of message dispatching already used in [2].

To this goal we introduce the new category of servers. AbC systems are now
built by using servers of the form {·}ι,ω that are responsible for managing a
set of components. Each server is equipped with an input queue ι and an output
queue ω. The former is the queue of messages, coming from the environment,
that the server must deliver to the managed components. The latter is the queue
of messages that have been generated locally and that the server must forward
to other components. Each message m is a triple of the form (Γ, π, ṽ) where Γ

ABEL - A Domain Specific Framework for Programming 115

is the environment of the sending component, π is the target predicate used to
select the receivers, and ṽ is the tuple of sent values. In what follows we will use
q to denote a queue of messages, and [] to denote the empty queue. Moreover, we
will use m :: q (resp. q :: m) to represent an extended queue obtained by adding
message m at the beginning (resp. at the end) of q.

The syntax of AbC servers is the following:

(Servers) S ::= {M}ι,ω

(Managed Elements) M ::= C | S ‖ S

A server thus equips its managed element (which in turn can be either single AbC
component or recursively other servers) with input and output queues. Servers
communicate with one another by adding and withdrawing messages from their
queues, thereby relaxing the original synchronous semantics.

The operational semantics of AbC systems is defined via the transition rela-
tion −→⊆ Sys × Lab × Sys, where Lab is the set of transition labels λ defined by
the following syntax:

λ ::=Γ � Π(ṽ) | Γ � Π(ṽ) | τ

The transition label Γ �Π(ṽ) represents an output of ṽ executed by a component
with environment Γ that is sent to receivers satisfying Π. Input actions are
represented by label Γ �Π(ṽ) that represents the capability of a system to receive
message ṽ sent by a component with environment Γ to receivers satisfying Π.
Finally, τ represents internal/silent actions.

We have fully formalized the new semantics that relies on the two queues of
the servers. Due to lack of space, in Table 1 we only report some the rules of the
operational semantics that we consider more relevant.

The rules for parallel composition (‖) are the expected ones: Sync states
that S1 and S2, when in parallel, can both receive the same message; ComL and

Table 1. Operational semantics: relevant rules

S1
Γ�Π(ṽ)−−−−−→ S′

1 S2
Γ�Π(ṽ)−−−−−→ S′

2

S1 ‖ S2
Γ�Π(ṽ)−−−−−→ S′

1 ‖ S′
2

Sync

S1
Γ�Π(ṽ)−−−−−→ S′

1 S2
Γ�Π(ṽ)−−−−−→ S′

2

S1 ‖ S2
Γ�Π(ṽ)−−−−−→ S′

1 ‖ S′
2

ComL
S1

Γ�Π(ṽ)−−−−−→ S′
1 S2

Γ�Π(ṽ)−−−−−→ S′
2

S1 ‖ S2
Γ�Π(ṽ)−−−−−→ S′

1 ‖ S′
2

ComR

m = (Γ, ṽ, Π) M1
Γ�Π(ṽ)−−−−−→ M2

{M1}m::ι,ω τ−→ {M2}ι,ω
SerDIn

M1
Γ�Π(ṽ)M2−−−−−−−→

{M1}ι,ω τ−→ {M2}ι,ω::(Γ,ṽ,Π)
SerDOut

{M1}ι,ω Γ�Π(ṽ)−−−−−→ {M2}ι::(Γ,ṽ,Π),ω
SerIn

{M1}ι,(Γ,ṽ,Π)::ω Γ�Π(ṽ)−−−−−→ {M2}ι,ω

SerOut

116 R. De Nicola et al.

ComR state that messages sent by S1 (resp. S2) are received by S2 (resp. S1)
and the result of the synchronisation is an output label to allow other components
in parallel to receive the same message.

The rules describing behaviour of a server are SerDIn, SerDOut, SerIn
and SerOut. The first two rules model the interaction of the server with the
enclosed element, while the last two describe the interaction of the server with the
enclosing environment. Rule SerDIn states that the first message is consumed
from the input queue when the managed element M1 receives it. Rule SerDOut
states that a message is added at the end of the output queue whenever the
managed element M1 executes an output action. A message is added at the
end of the input queue whenever a new message is received from the enclosing
environment (rule SerIn). Conversely, a server sends a message by removing it
from the front of output queue (rule SerOut).

2.1 AbC at Work

In order to illustrate AbC primitives and assess our implementation we now
provide a couple of simple case studies that we will later use also for assessing
performances of our implementations.

Stable Matching. We consider a variant of the well-known stable matching prob-
lem (SMP) [13] that can be naturally expressed in terms of partners’ attributes
[10]. Solving an SMP problem amounts to finding a stable matching between
two equally-sized sets of elements, after each element has specified an ordering
of preferences over all members of the opposite set. The original algorithm [13]
goes through a sequence of proposals initiated by members of one group, say
M, according to their preference lists. Members of the other group, say W, after
receiving a proposal, do choose the best candidate between their current part-
ner and the one making advances. The algorithm guarantees the existence of a
unique set of pairs, which is stable, i.e. there is no pair of unmatched elements,
that prefer each other to their current partners. An AbC specification for this
algorithm can be found in [4].

Our variant allows participating agents to express their interests in potential
partners by relying on partner’s attributes rather than on their identities. In this
scenario, M components start by proposing to those W components that satisfy
their highest requirements, i.e., a predicate that specifies all wanted attributes.
If an M agent cannot find any partner for a given demand, it retries after weak-
ening the predicate by dropping one of the wanted attributes. W components are
reactive to proposals and perform “select and swap” partners as before. How-
ever, since a proposal may target multiple partners, the protocol needs extra
acknowledgement messages between agents of two types to select the partner.
And, an agent of type M relaxes a predicate Π only if all potential partners,
addressed by Π, rejected it.

In AbC the two types of components M and W are modelled as follows:

Mi � Γmi :{id,a1,a2,...} PM and Wj � Γwj :{id,b1,b2,...} PW

ABEL - A Domain Specific Framework for Programming 117

where the interfaces expose the names of attributes that represent the features
of the components and PM and PW their actual behaviour.

Below, we specify part of the system concerned components of type M , whose
behaviour combines 4 processes

PM � Q | P | A | R

An agent m that is looking for partners satisfying predicate Π1 has first to
learn about the number of potential partners, say c, satisfying this predicate.
This is taken care by process Q that first broadcasts a query message and then
collects interested replies (not detailed here). For each attempt, m keeps track
of the set bl of partners which have rejected it. As long as there are available
partners (c > |bl|), process P sends a ‘propose’ message containing the agent’s
characteristics (denoted by the sequence m̃sg) to predicate Π, excluding those
in bl.

P � 〈partner = 0 ∧ c > |bl| ∧ send = 1〉
(‘propose’, this.id, m̃sg)@(Π ∧ id /∈ this.bl).[send :=0]P + . . .

Other branches of P have a similar structure and will be used for proposing with
other requirements. Process A, reported below, handles multiple ‘yes’ messages
which may arrive in parallel. The continuation H chooses the sender (bound to
y) of the first message to match, confirms to y that it has been selected and
updates new partner. A ‘toolate’ message is sent to senders of subsequent ‘yes’
messages:

A � (x = ‘yes’)(x, y).(H | A)

H � (〈partner = 0〉(‘confirm’)@(id = y).[partner := y]0
+ 〈partner > 0〉(‘toolate’)@(id = y).0

The sent proposal may also be rejected. Process R collects messages of this type.
The arrivals of ‘no’ and ‘split’ requests cause the addition of the senders to the
set bl and enabling send. A ‘split’ message which originates from some matched
partner resets the current partner and opens the possibility for process P to
become active and retry.

R � (x = ‘split’)(x, y).[bl := bl ∪ {y}, send := 1, partner := 0]R
+ (x = ‘no’)(x, y).[bl := bl ∪ {y}, send := 1]R

Graph Colouring. We now consider a distributed graph colouring problem where
vertices exchange messages with their neighbours to collaborate on deciding a
colour (in our case a positive number) for each of them in such a way that
1 As an example, consider a user interested in finding a server that has some specific

resources. A possible communication predicate would be Π = (cores = this.pcores∧
mem = this.pmem) where cores and mem are two attributes of servers, and pcores
and pmem are two attributes of users.

118 R. De Nicola et al.

adjacent vertices do not get the same colour. The following AbC specification
is adapted from [6]. A graph is modelled naturally as a set of components Vi �
Γi :{id,nbr} PV , one for each vertex, with attribute id representing a unique
identifier, and nbr representing a set of neighbours ids. Vertices operate in rounds
and in each round they use a predicate (this.id ∈ nbr) to send messages to
neighbours. Vertices concurrently execute the four processes F, T, D, A until
they get assigned a ‘definitive’ colour.

Every non assigned vertex selects the first available colour which has not
been used by his neighbours, that is min{i /∈ this.used}. A try message of the
form (‘try’, c, r) is sent to inform others that the sending vertex wants to attain
colour c at round r.

F � (‘try’,min{i /∈ this.used}, this.r)@(this.id ∈ nbr).
[colour := min{i /∈ used}, counter := counter + 1]0

Each vertex counts the number of ‘try’ messages (including its own) using the
attribute counter. Process T collects ‘try’ messages from neighbours where it
records colours proposed from neighbours with greater ids in a set constraints
to avoid conflict. Other branches of T (not shown here) deal with ‘try’ messages
from neighbours operating in one round ahead, i.e., (this.r < z) for which the
relevant information are kept in attributes counter1, constraints1.

T � (x = ‘try’ ∧ this.id < id ∧ this.r = z)(x, y, z).
[counter := counter + 1, constraints := constraints ∪ {y}]T

+ (x = ‘try’ ∧ this.id > id ∧ this.r = z)(x, y, z).
[counter := counter + 1]T + . . .

After collecting all ‘try’ messages, i.e., (counter = |nbr| + 1), each vertex checks
whether the colour it proposed among neighbours is valid, encoded in process
A below. If this is the case2, the vertex sends a ‘done’ message of the form
(‘done’, c, r) to indicate that c has been taken at round r, setting assigned to
true and terminates. If the proposed colour leads to conflict, the vertex starts a
new round by sending a new ‘try’ message. At this point, the vertex has learnt
about neighbours and thus tries to take the best decision by selecting a new
colour excluding also constraints, i.e., min{i /∈ this.used∪this.constraints}.
During this new round, r + 1, the vertex does not count messages from those
vertices who might have sent a ‘try’ message (collected by process T above via
counter1) and from ‘done’ neighbours (collected by process D presented next).

2 It happens for those vertices whose ids are greatest among the unassigned neighbors.

ABEL - A Domain Specific Framework for Programming 119

A � 〈(counter = |nbr| + 1) ∧ colour /∈ constraints ∪ used〉
(‘done’, this.colour, this.r)@(this.id ∈ nbr).[assigned := tt]0

+ 〈(counter = |nbr| + 1) ∧ colour ∈ constraints ∪ used〉
(‘try’, min{i /∈ this.used ∪ this.constraints}, this.r + 1)@(this.id ∈ nbr).

[r := r + 1, counter := done + counter1 + 1, constraints := constraints1, . . .]A

Each vertex collects ‘done’ messages to update the set of used colours, and
counts ‘done’ neighbours in done. In addition, if the messages come from the
previous round, i.e., (this.r > z), the vertex treats them as ‘try’ messages in the
current round, and thus increments the counter.

D � (x = ‘done’ ∧ this.r = z)(x, y, z).
[done := done + 1,used := used ∪ {y}]D

+ (x = ‘done’ ∧ this.r > z)(x, y, z).
[done := done + 1,used := used ∪ {y}, counter := counter + 1]D

3 Programming Support for AbC

Our framework aims at providing a direct mapping from AbC specifications to
executable programs in Erlang , allowing experimentations with attribute-based
communication with little of efforts. An ABEL program is based on a sequence
of behaviour definitions for processes, and top-level commands for starting all
components. The running program is a set of concurrently executing components.

Creating Components. A component is set up in two steps: it is first created
and then assigned an initial behaviour. To create a new component, an attribute
environment Env and an interface I are provided to new component(Env,I),
which returns a unique address C. The command start beh(C, [BRef]) starts
the execution of a component C with an initial behaviour specified as a list of
behaviour references, whose actual definitions have been previously declared.
The term [elem] is used to indicate a list of type elem.

C = new component(Env, I),
start beh(C, [BRef])

In the above commands, environment Env is represented as a map whose keys
are atoms denoting attribute names. Interface I is a tuple of atoms denoting
public attributes, to which other components may want to use their values. In
particular, when sending a message, any component attaches also the portion of
the environment Env’ corresponding to Env but limited by the interface.

Behaviour Definition. The syntax for behaviour definition is given in Fig. 1.
Elements wrapped by 〈〉 are optional. A definition BDef is a function that has
as first parameter a component address C. The body of a definition is a sequence
of commands, which also require C as their first parameters.

120 R. De Nicola et al.

BDef ::= beh name(C, 〈param list〉) → Com.

BRef ::= fun(〈param list〉) → Beh(C, 〈param list〉) end
Act ::= {〈g〉, m, s, 〈u〉} Output

{〈g〉, r, 〈u〉} Input

Com ::= prefix(C, {Act, BRef}) Prefix

choice(C, [{Act, BRef}]) Choice

parallel(C, [BRef]) Parallel

Beh(C, 〈param list〉) Call

Fig. 1. ABEL API for process definitions.

Action Act gives the descriptions for AbC input and output actions. There
we use m to denote message, u to denote update and g, s, r to denote aware-
ness, sending and receiving predicates respectively. We now briefly explain the
different commands.

Prefix - takes as a parameter a pair containing a prefixing action Act and a
continuation BRef . The command executes Act and continues with BRef .
If Act is an output description, the command evaluates m into ṽ, the sending
predicate s into s′ and broadcast the triple (Env′, s′, ṽ) to all components
and possibly performs an attribute update u, whenever guard g (if specified)
is satisfied. If Act is an input description; the command returns a message and
optionally performs an attribute update u, whenever guard g (if specified) is
satisfied and the sender’s attributes and the communicated message satisfy
the receiving predicate r.

Choice - takes as parameter a list of pairs, each providing a description of the
prefixing action Act and a continuation in form of BRef . This command
executes one of the actions and continues with the behaviour associated to
that action.

Parallel - This command dynamically creates parallel processes, each of which
executes a behaviour indicated by a reference in the parameter list.

Process Call - executes the behaviour Beh.

The basic elements m, g, r, s, u are represented as follows.

Message. A message m to be sent is represented as a tuple. A message element
can be a function parameterized with the sender environment, i.e., fun(S) →
. . . end, for making it possible to refer to attribute values in S.

Predicates. An awareness predicate g is a unary function parameterized with
the environment of the executing component, i.e., fun(E) → . . . end. A sending
predicate s is a binary function parameterized with the sender and receiver
environments in that order, i.e., fun(S,R) → . . . end. A receiving predicate r is
a ternary function parameterized with the environments of the receiver and the
sender, and a communicated message in that order, i.e., fun(R,S,M) → . . . end.

ABEL - A Domain Specific Framework for Programming 121

Attribute Update. An update is represented as a list of pairs; in each pair, the
first element is an attribute name and the second is an expression to be used
for the update. The expression can be a function parameterized with the local
environment (to use also attribute values), and with the communicated message,
when in case the update is associated with a receive action.

As an example of using the presented API for deriving execution code from
AbC specifications, Fig. 2 presents the definitions in ABEL for processes F and
D in the graph coloring scenario (Example 2). Bold-faces are used to highlight
the structural correspondence between the ABEL code and the AbC one. The
rest of the code is used to specify predicates, messages and updates, which can
be addressed by automatic translation. Indeed, we have developed the translator
from AbC to ABEL and made it available with the ABEL implementation.

f(C) →
M = {‘try’, fun(S) → min colour(att(used,S)) end, fun(S) → att(round,S) end},
P = fun(S,R) → sets:is element(att(id,S),att(nbr, R)) end,
U = [{counter, fun(S) → att(counter,S) + 1 end},

{colour, fun(S) → min colour(att(used,S)) end}],
Act = {M,P,U},
prefix(C,{Act,nil}).

d(C) →
P1 = fun(R,S,M) → size(M) == 3 andalso element(1,M) == ‘done’

andalso att(round,S) == element(3,M)
end,

U1 = [{done, fun(R,M) → att(done,R) + 1 end},
{used, fun(R,M) → sets:add element(element(2,M),att(used,R)) end}],

Act1 = {P1, U1},
P2 = fun(R,S,M) → size(M) == 3 andalso element(1,M) == ‘done’

andalso att(round,S) > element(3,M)
end,

U2 = [{done, fun(R,M) → att(done,R) + 1 end},
{used, fun(R,M) → sets:add element(element(2,M),att(used,R)) end},
{counter,fun(R,M) → att(counter,R) + 1 end}],

Act2 = {P2, U2},
DRef = fun() → d(C) end,
choice(C,[{Act1,DRef},{Act2,DRef}]).

Fig. 2. Example code derived from the AbC processes F and D in graph colouring

4 Coordinating Components

In this section, we consider two alternative implementations for coordinating
AbC components. The first implementation is obtained by using an infrastruc-
ture similar to the one proposed in [2]; minor modifications have been introduced
to make the total ordering protocol more robust. The second one is obtained
from the former by relaxing some requirements on ordering preservation. For
both implementations we have a corresponding formal semantics. The first one
exactly captures the original total ordering AbC semantics first presented in [3]
while the second one is that briefly explained in Sect. 2.

122 R. De Nicola et al.

Fig. 3. An AbC component in ABEL Fig. 4. A tree-based infrastructure

An AbC system in ABEL consists of a set of components and an infras-
tructure with a set of nodes that collaborate on mediating message exchanges.
Components join the system via a globally named registration node which assigns
them to a node of the infrastructure. Figure 4 shows an example of a tree-
structure where each node (black) is responsible for a group of components
(white). The model assumes that a node only communicates with those con-
nected to it; likewise a component only communicates with the node they are
assigned to. In what follows, we describe the implementations with respect to
the behaviour of components and infrastructure nodes.

Coordinating Processes. An AbC component is an autonomous entity with
multiple processes operating on a shared environment. The behaviour of a com-
ponent is that of its processes. We have that (i) If more than one process offers
an output action, then only one of them will be allowed (ii) If more than one
process can actually input a message, again only one of them will succeed. (iii)
A component discards a message only if all of its processes discard that mes-
sage. (iv) Processes and environment influence each other, e.g., a change in the
environment caused by one process may enable or disable other processes.

This semantics suggests us considering the attribute environment as a reac-
tive process, rather than a static store. Figure 3 pictures the internal structure
of an AbC component. Processes P represent AbC processes that communi-
cate with a coordinator C by message passing via the API presented in Sect. 3.
Each process submits one action at a time, and continues only after receiving
an acknowledgment message. The coordinator keeps track of component envi-
ronment and decides the actual actions to be executed. The execution of an
action may require updating the environment if the action has an associated
update request. Actions that cannot be executed because of guards are stored
and retried when the environment is updated.

To model interleaving, a coordinator dynamically keeps track of the num-
ber of processes, of the set of submitted actions, and uses an input queue for
storing messages forwarded from infrastructure. Events that are handled by a
coordinator includes commands from processes, messages forwarded from the

ABEL - A Domain Specific Framework for Programming 123

infrastructure and other implicit information. We briefly explain the operations
performed for each event as below.

Parallel events The coordinator creates new processes, and updates the total
number of processes.

Sending events When the guard (if specified) is satisfied, the message is for-
warded to the infrastructure and the sending process is acknowledged, other-
wise, the sending action is added to the set of submitted ones.

Receiving events The action is added to the set of submitted actions.
Choice events The coordinator handles them like normal sending and receiv-

ing events, the acknowledgement message to the choice process is a continu-
ation behaviour.

Delivery events These events are internally generated when the input queue
is not empty and the number of submitted actions is equal to the number of
processes. Predicates of input actions are checked against messages extracted
from the queue, one by one until there is a match or the queue is empty. In
case of matching, the message is delivered to the receiving process.

Retry events These events are internally triggered when the environment
changes. Output actions and choices among output actions in the submit-
ted set are retried.

Coordination Strategies. As mentioned above we have implemented two dif-
ferent strategies for message exchange that may lead to different ordering of
message delivery, we call them synchronous and asynchronous.

Synchronous. Encapsulated in the infrastructure presented in [2] there is a
sequencer-based protocol that guarantees a total order of message delivery for
AbC components. The infrastructure, apart from broadcasting messages for com-
ponents, plays the role of a sequencer that allocates unique ids for components
messages. When a component is willing to send a message, it requests a fresh id
for the message. A component can deliver a message labeled with an id only if it
has delivered all messages with id′ < id. This means that messages are delivered
in the order of consecutive messages’ ids, which is total.

This protocol is used to coordinate ABEL components by relying on a tree-
based infrastructure as follows. Every component coordinator keeps a counter c,
initially set to 1.

To handle sending events, the coordinator, after checking the guard, requests
a fresh id if his previous one has already been used. The output action can take
place only if the fresh id matches the counter, otherwise it is postponed. If the
action is executed, c is incremented by 1.

To handle delivery events, the coordinator sends a message extracted from
the input queue if its id is equals to c, and increases the counter. If the message
is not consumed by any input action, the procedure repeats until the queue is
empty or there is no message with the expected id.

To handle retry events, the coordinator may send an empty message if there
is an unused fresh id which is equal to the local counter and if all components
processes can not send a message.

124 R. De Nicola et al.

When a non-root tree node receives an id request, it forwards the request to
its parent. The root replies its counter value for each request and increments the
counter. This fresh id is forwarded along the same path of the original request,
but in a reverse order. Eventually, the node which initiated the request receives
the fresh id and sends it to the requesting component. When a tree node receives
a data message, it forwards the messages to the other connected nodes and to
connected AbC components, except the sender. In addition, to guarantee that
the number of messages exchanged is bound, each node has an input queue for
storing incoming data messages and only forwards a message if its id equals to
the node’s counter.

Asynchronous. In this implementation, components can send the actual mes-
sages simultaneously via the infrastructure without asking and checking for fresh
ids. We rely on the tree structure as for the synchronous case but we do not take
advantage of it and could have used another structure. A component delivers
messages from its input queue in any order to its processes, while trying to filter
out as many ‘uninteresting’ messages as possible. In this case, tree nodes forward
messages as soon as they receive them and the root has no special role; which
makes the implementation simpler.

5 Experiments

In this section, we report on the performance evaluation of our Erlang proto-
type3 of ABEL by considering the two case studies, stable marriage and graph
colouring, whose AbC specifications have been sketched in Sect. 2. These AbC
specifications were model checked by following the approach presented in [10].

In particular, we have verified the termination and soundness properties for
the graph colouring problem, and the completeness, symmetry of matchings and
orchestration properties for stable matching problem.

The explicit-state model checker [14] helped us to verify early designs of
these case studies and to come up with correct specifications. From the verified
specifications we have then derived the ABEL programs introduced in Sect. 3.

For our experiments, we used a workstation with a dual Intel Xeon processor
E5-2687W (16 cores in total) and 128 GB of memory. The OS version is Linux
4.9.95-gentoo and the Erlang/OTP version is 21.2. In addition, the coordination
infrastructure is the tree-based one with a varying number of nodes and the the
previously outlined communication strategies. The tree-based infrastructure was
chosen as the default topology after considering the result in [2] showing that it
guarantees better performance over others.

5.1 Stable Marriage with Attribute

The input to this case study is randomly generated assuming some predefined
probabilities of attributes and preferences. First, we define their ranges, then
3 https://github.com/ArBITRAL/ABEL.

https://github.com/ArBITRAL/ABEL

ABEL - A Domain Specific Framework for Programming 125

we associate a probability to each value in the range so that the sum of the
probabilities is 1. In this way, an attribute (or preference) can take a concrete
value v with a probability p(v). In the experiment, we consider 2 attributes
and 2 preferences with ranges of 2 values. We select 10 different combinations
of probabilities, consider problem sizes of 100 and 200 pairs of elements, and
generate 100 instances for each problem size.

We ran the ABEL program to solve problem instances and took the average
of the execution times. We have also checked the completeness and stability
conditions on the outcomes of the program. Table 2 presents the numbers under
two different ordering strategies. These numbers are the average over 500 runs
with a tree of 7 nodes. The result shows that the interaction protocol for this
case study performs faster when using asynchronous messaging.

Table 2. Results of stable matching

Odering Execution times (in sec.)

Size = 100 Size = 200

Total order 5.65 54.63

No order 3.39 35.56

5.2 Graph Colouring

We conducted some experiments with several DIMACS graphs collected
from various public sources: flat300 28 0.col (300 vertices and 21695 edges),
dsjc500.1.col (500 vertices and 12458 edges), will199GPIA.col (701 vertices and
7065 edges) and dsjc1000.1.col (1000 vertices and 49629 edges). The datasets
chosen provides an increasing number of vertices which are considered as AbC
components.

The following metrics are considered: the running time in seconds, the total
number of messages exchanged between components and the infrastructure and
the total size of messages in MB. When measuring, vertices do not wait for each
other to report the completion of their colouring: as soon as a vertex decides
on a colour, it reports that colour, the number of messages exchanged (and
message size) to an external process. Tables 3 and 4 show the results of graph
colouring with total ordering and relaxed ordering, respectively. S is the number
of nodes used by the tree structure. The other columns show the numbers for
colour, round, messages and the total size in that order. The execution times are
computed as the average of 50 runs, the other numbers report the average over
the results of different number of nodes.

Overall, the ABEL code can perform colouring for experiment graphs without
any conflicts, and resulted in small speedups when increasing the number of
nodes. This is however more obvious with the larger graph. On the other hand, its
performance varies on different graphs. This might have to do with their specific
topologies. In general, in graphs with more edges, components are more likely

126 R. De Nicola et al.

Table 3. Results of graph colouring using total order

Graph Execution times (in sec.) #C #R #Msg
(in milli.)

Size
(in MB)S = 3 S = 7 S = 15 S = 31

flat300 28 0 4.57 4.22 4.19 4.4 46 44 1.5 7,141

dsjc500.1 4.22 3.65 3.34 3.39 20 19 2.15 4,008

will199GPIA 7.46 5.95 5.56 5.53 11 25 4.62 4,255

dsjc1000.1.col 32.02 27.19 25.94 24.97 32 30 12.5 42,324

Table 4. Results of graph colouring using relaxed order

Graph Execution times (in sec.) #C #R #Msg
(in milli.)

Size
(in MB)S = 3 S = 7 S = 15 S = 31

flat300 28 0 3.76 4.69 4.44 4.53 46 45 1.5 7,095

dsjc500.1 3.17 3.32 2.22 2.94 20 19 2.12 3,905

will199GPIA 6.53 4.03 3.02 2.81 11 25 4.5 4,070

dsjc1000.1.col 49.62 33.58 28.69 21.04 32 30 12.4 41,524

to face colour conflicts among neighbours and thus to require more interactions.
This leads to an increased number of rounds and message exchanges.

It can be seen from the results that both ordering strategies return similar
outcomes for the same input graphs. Although, in most cases, relaxed ordering
guarantees slightly better performance.

6 Concluding Remarks and Related Works

We have presented ABEL, an implementation of AbC in Erlang that builds on an
API that mimics AbC constructs. Our purpose is to develop and experiment with
systems featuring complex interactions according to the AbC paradigm. The API
is integrated seamlessly with underneath coordination mechanisms that together
simulate the original synchronous semantics of AbC and a less demanding one.
Because of the direct correspondence between the two formal semantics and our
actual implementations, we can perform formal verification of ABEL programs
by considering their AbC abstractions. Indeed, from AbC specifications we can
obtain verifiable models that can be provided as input to model checkers.

There have been other attempts at providing implementations of AbC . AEr-
lang [11] extends Erlang processes to allow attribute-based communication
beside the point-to-point one. However, the programming style is based on the
host language and it might not be immediate to derive AErlang programs from
AbC specifications. Furthermore, the lack of a corresponding formal semantics of
AErlang calls for alternative directions, not based on translations, when it comes
to reasoning on programs. Other AbC implementations such as [1,4] exhibit a
gap between AbC primitives and their programming constructs. More efforts
are needed to derive AbC code and automatic translations are not immediate.

ABEL - A Domain Specific Framework for Programming 127

We refer the readers to [11] for a more detailed account of related works on
concurrent languages and communication models.

In near future, we want to establish a formal relationship between ABEL and
AbC and prove the correctness of the API implementation, as well as the correct-
ness of the developed translation. This would require studying the operational
semantics of the inter- and intra- components coordinators, and formalizing the
translation rules. We also plan to integrate the model checking part within our
framework. Moreover, it might be useful to equip ABEL with other communica-
tion and synchronization abstractions; we have experienced that programming
complex distributed systems using only AbC send and receive may be difficult.

References

1. Abd Alrahman, Y., De Nicola, R., Garbi, G.: GoAt: attribute-based interaction in
Google Go. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp.
288–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5 19

2. Alrahman, Y.A., De Nicola, R., Garbi, G., Loreti, M.: A distributed coordina-
tion infrastructure for attribute-based interaction. In: Baier, C., Caires, L. (eds.)
FORTE 2018. LNCS, vol. 10854, pp. 1–20. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92612-4 1

3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 1

4. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by
relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 38

5. Alrahman, Y.A., De Nicola, R., Loreti, M.: A behavioural theory for interactions
in collective-adaptive systems. CoRR abs/1711.09762 (2017). arXiv:1711.09762

6. Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming the interactions of
collective adaptive systems by relying on attribute-based communication. CoRR
abs/1711.06092 (2017). arXiv:1711.06092

7. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep. Book Sprints for ICT Research (2013)

8. Baldoni, R., Cimmino, S., Marchetti, C.: Total order communications: a prac-
tical analysis. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005.
LNCS, vol. 3463, pp. 38–54. Springer, Heidelberg (2005). https://doi.org/10.1007/
11408901 4

9. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst. 9(3), 272–314 (1991). https://doi.org/10.
1145/128738.128742

10. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

11. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering Erlang
with attribute-based communication. Sci. Comput. Program. 168, 71–93 (2018)

https://doi.org/10.1007/978-3-030-03424-5_19
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-39570-8_1
https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1007/978-3-319-47166-2_38
http://arxiv.org/abs/1711.09762
http://arxiv.org/abs/1711.06092
https://doi.org/10.1007/11408901_4
https://doi.org/10.1007/11408901_4
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1007/978-3-319-68270-9_9

128 R. De Nicola et al.

12. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to auto-
nomic systems programming: the SCEL language. ACM Trans. Auton. Adapt.
Syst. (TAAS) 9(2), 7:1–7:29 (2014)

13. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

14. Ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

16. Prasad, K.V.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2–3),
285–327 (1995)

Bridging the Gap Between Supervisory
Control and Coordination of Services:

Synthesis of Orchestrations
and Choreographies

Davide Basile1(B) , Maurice H. ter Beek2 , and Rosario Pugliese1

1 University of Florence, Florence, Italy
{davide.basile,rosario.pugliese}@unifi.it

2 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

Abstract. We explore the frontiers between coordination and control
systems by discussing a number of contributions to bridging the gap
between supervisory control theory and coordination of services. In par-
ticular, we illustrate how the classical synthesis algorithm from super-
visory control theory to obtain the so-called most permissive controller
can be modified to synthesise orchestrations and choreographies of ser-
vice contracts formalised as contract automata. The key ingredient to
make this possible is a novel notion of controllability. Finally, we present
an abstract parametric synthesis algorithm and show that it generalises
the classical synthesis as well as the orchestration and choreography syn-
theses.

Keywords: Service contracts · Contract automata ·
Controller synthesis · Orchestration · Choreography

1 Introduction

Coordination of services describes how control and data exchanges are coor-
dinated in distributed service-based applications and systems. Their principled
design is identified as one of the primary research challenges for the next 10 years,
and the recent Service Computing Manifesto [22] points out that “Service sys-
tems have so far been built without an adequate rigorous foundation that would
enable reasoning about them” and, moreover, that “The design of service systems
should build upon a formal model of services”.

Two widely adopted approaches to the coordination of services are orches-
tration and choreography. Intuitively, an orchestration yields the description of a
distributed workflow from “one party’s perspective” [45], whereas a choreography
describes the behaviour of the involved parties from a “global viewpoint” [38].

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 129–147, 2019.
https://doi.org/10.1007/978-3-030-22397-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_8&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-1419-1405
https://doi.org/10.1007/978-3-030-22397-7_8

130 D. Basile et al.

In an orchestrated model, the service components are coordinated by a spe-
cial component, the orchestrator, which, by interacting with them, dictates the
workflow at runtime. In a choreographed model, instead, the service components
autonomously execute and interact with each other on the basis of a local control
flow expected to comply with their role as specified by the global viewpoint. Ide-
ally, a choreographed model is more efficient due to the absence of the overhead
of communications with the orchestrator. Any choreography can be trivially
transformed into an orchestration of services, by adding an idle orchestrator.
Similarly, by explicitly adding an orchestrator and its interactions with the ser-
vice components, and hence the relative overhead, it is possible to transform an
orchestration of services into a choreography.

In [13], two orchestrated and choreographed automata-based models of
services, called contract automata1 and communicating finite state machines,
respectively, were studied and related. The goal is to compose the automata
so that each service is capable of reaching an accepting (final) state by syn-
chronous/asynchronous one-to-one interactions with the other services in the
composition. The main difference relies on the fact that communicating machines
name the recipient service of each interaction upfront and use FIFO buffers to
interact with each other, whereas contract automata are oblivious of their part-
ners and an orchestration is synthesised to drive their interactions. In particular,
the model of contract automata was further developed in, e.g., [11,12,14].

The orchestration synthesis was borrowed from the synthesis of the most per-
missive controller (mpc) from Supervisory Control Theory [24,47] (SCT), whose
aim is to coordinate an ensemble of (local) components into a (global) system
that functions correctly. In the context of contract automata, this amounts to
refine the composition of service contracts into its largest sub-portion whose
behaviour is non-blocking and safe (a notion of service compliance). The adap-
tation of the mpc synthesis for synthesising an orchestration of services required
the introduction of a novel notion of semi-controllability. Basically, the assump-
tion of the presence of an unpredictable environment was dropped in favour of
a milder notion of predictable necessary service requests to be fulfilled.

In this paper, we report on the efforts to relate the mpc synthesis and the
orchestration synthesis of contract automata through a homogeneous formali-
sation. The need for semi-controllability is showcased with intuitive examples
and its expressiveness is evaluated with respect to standard SCT notions of
controllable and uncontrollable actions. Moreover, a novel choreography synthe-
sis algorithm is introduced as a refined version of the orchestration synthesis.
Finally, we show that all synthesis algorithms presented in this paper are gener-
alised into a single abstract synthesis algorithm from which each can be obtained
through a different instantiation.

The paper is organised as follows. Section 2 contains background notions
and results concerning contract automata and SCT. Sections 3 and 4 introduce
the synthesis of orchestrations and the novel synthesis of choreographies in the

1 Not to be confused with the contract automata of [7] meant to formalise legal con-
tracts among two parties expressed in natural language.

Synthesis of Orchestrations and Choreographies 131

setting of (modal service) contract automata. Section 5 demonstrates that all the
previously introduced syntheses algorithms are instantiations of a more abstract,
parametric synthesis algorithm. Section 6 discusses related work, while Sect. 7
concludes the paper and provides some hints for future work.

2 Background

In this section, we provide the background needed to appreciate our contributions
on the crossroads of supervisory control theory and coordination of services
formalised as modal service contract automata.

2.1 Contract Automata

A Contract Automaton (CA) represents either a single service (in which case it
is called a principal) or a multi-party composition of services performing actions.
The number of principals of a CA is called its rank. The states of a CA are vectors
of states of principals. In the following, notation �v stands for a vector and �v(i)
is the ith element. The transitions of CA are labelled with actions, which are
vectors of elements in the set of basic actions L = R ∪ O ∪ {•}, with R ∩ O = ∅
and • �∈ R ∪ O. Intuitively, R is the set of requests (depicted as non-overlined
labels on arcs, e.g. ins), O is the set of offers (depicted as overlined labels on
arcs, e.g. ins), and • is a distinguished symbol representing the idle action. An
action is then a vector �a of basic actions where there is either a single offer, or
a single request, or a single pair of request-offer that match, i.e. there exist i
and j such that �a(i) is an offer and �a(j) is the complementary request; all other
elements of the vector are the symbol •. Such action is called request , offer , or
match, respectively. A transition is also deemed request/offer/match according
to its labelling action. The goal of each principal is to reach an accepting (final)
state such that all its requests and offers are matched. In [14], CA were equipped
with modalities, i.e. necessary (�) and permitted (�) requests, respectively, and
the formalism was called Modal Service Contract Automata (MSCA), formally
defined below.

Definition 1 (MSCA [14]). Given a finite set of states Q = {q1, q2, . . .},
a Modal Service Contract Automata (MSCA) A of rank n is a septuple
〈Q, �q0, A

�, A�, Ao, T, F 〉, with set of states Q = Q1 × . . . × Qn ⊆ Q n, initial
state �q0 ∈ Q, A�, A� ⊆ R (pairwise disjoint) finite sets of permitted and nec-
essary requests, respectively, with set of requests Ar = A� ∪ A�, set of offers
Ao ⊆ O, set of final states F ⊆ Q, set of transitions T ⊆ Q × A × Q, where
A ⊆ (Ar ∪ Ao ∪ {•})n, partitioned into permitted transitions T� and necessary
transitions T�, s.t.: (i) given t = (�q,�a, �q ′) ∈ T , �a is either a request or an offer
or a match; (ii) ∀i ∈ 1 . . . n, �a(i) = • implies �q(i) = �q ′

(i); (iii) t ∈ T� iff �a is
either a request or a match on a ∈ A� or an offer on a ∈ Ao; otherwise t ∈ T�.

A principal is an MSCA of rank 1 such that Ar ∩co(Ao) = ∅, where the invo-
lution co : L → L establishing matching among requests and offers is such that

132 D. Basile et al.

(abusing notation) co(R) = O, co(O) = R, and co(•) = •. A step (w, �q) �a−→(w′, �q′)
occurs iff w = �aw′, w′ ∈A∗, and (�q,�a, �q′)∈T . Let →∗ be the reflexive and tran-
sitive closure of →. The language of A is L(A) = {w | (w, �q0) w−→∗(ε, �q), �q ∈ F }.
A step may be denoted �q �a−→ if w, w′, and �q′ are irrelevant, and (w, �q) → (w′, �q′)
if �a is. Unless stated differently, the MSCA A = 〈QA , �q0A , A�

A , A�
A , Ao

A , TA , FA〉 of
rank n is assumed to be given. Subscript A may be omitted if no confusion may
arise.

Composition of services is rendered through the composition of their MSCA
models by means of the composition operator ⊗. This operator basically inter-
leaves or matches the transitions of the component MSCA, but, whenever two
component MSCA are ready on their respective request/offer action, then the
match is forced to happen. Moreover, a match involving a necessary request is
itself necessary. In the resulting MSCA, states and actions are vectors of states
and actions of the component MSCA, respectively. The composition is non-
associative, i.e. pre-existing matches are not rearranged if a new MSCA joins
the composition afterwards.

In a composition of MSCA, typically various properties are analysed. We
are especially interested in agreement and strong agreement (a.k.a. in the liter-
ature as progress of interactions, deadlock freedom, compliance or conformance
of contracts). In an MSCA in strong agreement, all requests and offers must be
matched. Instead, the property of agreement only requires to match all requests.
An MSCA admits (strong) agreement if it has a trace satisfying the correspond-
ing property, and it is safe if all its traces are such.

2.2 Supervisory Control Theory

The aim of Supervisory Control Theory [24,47] (SCT) is to provide an algo-
rithm to synthesise a finite state automaton model of a supervisory controller
from given (component) finite state automata models of the uncontrolled sys-
tem and its requirements. The synthesised supervisory controller, if successfully
generated, is such that the controlled system, which is the composition (i.e.
synchronous product) of the uncontrolled system and the supervisory controller,
satisfies the requirements and is additionally non-blocking, controllable, and max-
imally permissive.

An automaton is non-blocking if from each state at least one of the so-called
marked states (distinguished stable states representing completed ‘tasks’ [47])
can be reached without passing through so-called forbidden states, meaning that
the system always has the possibility to return to an accepted stable state (e.g. a
final state). The algorithm assumes that marked states and forbidden states are
indicated for each component model. SCT distinguishes between observable and
unobservable, controllable and uncontrollable actions, where unobservable actions
are also uncontrollable. The supervisory controller is not permitted to directly
block uncontrollable actions from occurring; the controller is only allowed to dis-
able them by preventing controllable actions from occurring. Intuitively, control-
lable actions correspond to stimulating the system, while uncontrollable actions
correspond to messages provided by the environment, like sensors, which may be

Synthesis of Orchestrations and Choreographies 133

neglected but cannot be denied from existing. Finally, the fact that the resulting
supervisory controller is maximally permissive (or least restrictive) means that
as much behaviour of the uncontrolled system as possible is still present in the
controlled system without violating neither the requirements, nor controllability,
nor the non-blocking condition.

From the seminal work of Ramadge and Wonham [47], we know that a unique
maximally permissive supervisory controller exists, provided that all actions are
observable. This is called the most permissive controller (mpc); it coordinates
an ensemble of (local) components into a (global) system that works correctly.
The synthesis algorithm suffers from the same state space explosion problem as
model checking [35].

Intuitively, the synthesis algorithm for computing the mpc of a finite state
automaton A works as follows. The mpc is computed through an iterative pro-
cedure that at each step i updates incrementally a set of states R i containing
the bad states, i.e. those states that cannot prevent a forbidden state to be
eventually reached, and refines an automaton K i. The algorithm starts with an
automaton K 0 equal to A and a set R 0 containing all dangling states, where a
state is dangling if it cannot be reached from the initial state or cannot reach a
final state. At each step i the algorithm prunes in a backwards fashion transi-
tions with target state in R i or forbidden source state. The set R i is updated
by possibly adding source states of uncontrollable transitions of A with a bad
target state and dangling states. When no more updates are possible, the algo-
rithm terminates. Since A is finite state and the set R i can only increase at each
step, termination is ensured. Now, suppose that at its termination the algorithm
returns the pair (K s, R s). We have that the mpc is empty, if the initial state of
A is in R s; otherwise, the mpc is K s. We report below the standard synthesis
algorithm, but we homogenise the notation and simplify the formulation, to align
the algorithm with those presented in the next sections. For this purpose, we
assume the standard mpc synthesis to operate on MSCA where necessary transi-
tions (T�) are uncontrollable whilst permitted transitions (T�) are controllable.
We use 〈 〉 to denote the empty automaton. A state q ∈ Q is dangling iff � w
s.t. q0

w−→∗q or q w−→∗qf ∈ F . Dangling(A) denotes the set of dangling states of A .
Given two MSCA A and A ′, we say that A ′ is a sub-automaton of A , written
A ′ ⊆ A , whenever the components of A ′ are included in the corresponding ones
of A . Moreover, given two sets of states R and R′, we let (A , R) ≤ (A ′, R′) if
A ′ ⊆ A and R ⊆ R′. It is straightforward to show that (MSCA × 2Q,≤) is a
complete partial order (cpo).

The algorithm to compute the mpc is then defined in terms of the least fixed
point of a monotone function on the cpo (MSCA × 2Q,≤).

Definition 2 (Standard synthesis, adapted from [47]). Let A be an MSCA,
and let K 0 = A and R 0 = Dangling(K 0). We let the synthesis function f :
MSCA × 2Q → MSCA × 2Q be defined as follows:

f(K i−1, R i−1) = (K i, R i), with
TK i

= TK i−1 \ { (�q,�a, �q′) ∈ TK i−1 | �q′ ∈ R i−1 ∨ �q is forbidden }
R i = R i−1 ∪ { �q | (�q,�a, �q′)∈T�

A , �q′ ∈R i−1 } ∪ Dangling(K i)

134 D. Basile et al.

Theorem 1 (Standard mpc, adapted from [47]). The synthesis function
f is monotone on the cpo (MSCA × 2Q,≤) and its least fixed point is:

(K s, R s) = sup({ fn(K 0, R 0) | n ∈ N })
The mpc of A, denoted by KA , is:

KA=
{ 〈 〉 if �q0 ∈ R s

〈Q \ Dangling(K s), �q0, A�, A�, Ao, TK s
, F \ Dangling(K s)〉 otherwise

3 Synthesis of Orchestrations

In this section, we discuss how we revised the classical synthesis algorithm from
SCT (cf. Theorem 1) to obtain the mpc and synthesise orchestrations of MSCA.

Differently from standard SCT, all transitions of MSCA are observable, since
MSCA model the execution of services in terms of their requests and offers.
Originally, MSCA were capable of expressing only permitted requirements, cor-
responding to actions that are controllable by the orchestrator. Hence, in the
synthesis of the orchestration, all transitions labelled by actions violating the
property to be enforced were pruned, and all dangling states were removed
(cf. [11]).

While permitted requests of MSCA are in one-to-one correspondence with
controllable actions, interestingly this is not the case for necessary requests and
uncontrollable actions. A necessary (request) action is indeed a weaker constraint
than an uncontrollable one. This stems from the fact that traditionally uncon-
trollable actions relate to an unpredictable environment. However, the interpre-
tation of such actions as necessary service requests to be fulfilled in a service
contract, as is the case in the setting of MSCA, implies that it suffices that in
the synthesised orchestration at least one such synchronisation (i.e. match) actu-
ally occurs. This is precisely what is modelled by the notion of semi-controllable
actions, anticipated in [14] and introduced in [9,10], discussed next.

The importance of this novel notion in the synthesis algorithm is showcased
by an intuitive example. Consider the two MSCA interacting on the necessary
service request a depicted in Fig. 1 (left and middle), and their possible composi-
tion A depicted in Fig. 1 (right). Note that A models two possibilities of fulfilling
request a from the leftmost automaton by matching it with a service offer a of the
middle one. Note that a similar composition can be obtained in other automata-
based formalisms (such as, e.g., (timed) I/O automata [3,31,43]). Now assume
that a must be matched with a to obtain an agreement (i.e. it is necessary), and
that for some reason the bad state ✗ is to be avoided in favour of the successful
state ✓, i.e. in some sense we would like to express that a must be matched at
some point, rather than always. In most automata-based formalisms this is not
allowed and the resulting mpc is empty. In the MSCA formalism, it is possible
to orchestrate the composition of the two automata on the left in such a way
that the result is the automaton A on the right, but without the state ✗ and its
incident transition.

Synthesis of Orchestrations and Choreographies 135

Fig. 1. Two MSCA (left and middle) and a possible composition A of them (right)

In fact, in the MSCA formalism, A depicts a composition in which the
automata on the left can synchronise on a so-called semi-controllable action
a� either in their initial state or after the middle automaton has performed
some other action b�, ignoring in this case whether a bad or a successful state
is reached in the end. Indeed, the notion of semi-controllability is independent
from both the specific formalism being used and the requirement (e.g. agreement
in case of MSCA) to be enforced.

As far as we know, we were the first to define a synthesis algorithm, in [10],
that is capable of producing a controller that guarantees that at least one of
these two synchronisations actually occurs. Indeed, in the standard synthesis
algorithm (cf. Theorem 1), a can either be controllable and hence not necessary
as we want, or uncontrollable thus requiring that a must always be matched, a
stronger requirement than the one posed by declaring a as necessary.

To formalize the intuitions above2, a semi-controllable transition t becomes
controllable if in a given portion of A there exists a semi-controllable match
transition t′, with source and target states not dangling, such that in both t and
t′ the same principal, in the same local state, does the same request. Otherwise,
t is uncontrollable.

Definition 3 (Controllability). Let A be an MSCA and let t = (�q1,�a1, �q1
′) ∈

TA . Then:

– if �a1 is an action on a∈A� ∪ Ao, then t is controllable (in A) and part of
T�;

– if �a1 is a request or match on a ∈ A�, then t is semi-controllable (in A) and
part of T�.

Moreover, given A ′ ⊆ A, if t is semi-controllable and ∃ t′ = (�q2
�a2−→ �q2

′) ∈ T�
A′ in

A ′ s.t. �a2 is a match, �q2, �q2
′ �∈ Dangling(A ′), �q1(i) = �q2(i), and �a1(i) = �a2(i) = a,

then t is controllable in A ′ (via t′); otherwise, t is uncontrollable in A ′.

The algorithm for synthesising an orchestration enforcing agreement of
MSCA follows. The main adaptation of the mpc synthesis of Theorem 1 is that
transitions are no longer declared uncontrollable, but instead they can be either
controllable or semi-controllable. More importantly, a semi-controllable transi-
tion switches from controllable to uncontrollable only after it has been pruned in
a previous iteration, in which case its source state becomes bad. Finally, in this
2 We refer the interested reader to [9,10] for a full account.

136 D. Basile et al.

case there are no forbidden states but rather forbidden transitions (i.e. requests,
according to the property of agreement).

Definition 4 (MSCA orchestration synthesis, adapted from [14]). Let A
be an MSCA, and let K 0 = A and R 0 = Dangling(K 0). We let the orchestration
synthesis function fo : MSCA × 2Q → MSCA × 2Q be defined as follows:

fo(K i−1, R i−1) = (K i, R i), with
TK i

= TK i−1 \ { (�q −→ �q ′) = t ∈ TK i−1 | (�q ′ ∈ R i−1 ∨ t is a request)}
R i = R i−1 ∪ { �q | (�q −→) ∈ T�

A is uncontrollable in K i } ∪ Dangling(K i)

Theorem 2 (MSCA orchestration mpc, adapted from [14]). The orches-
tration synthesis function fo is monotone on the cpo (MSCA × 2Q,≤) and its
least fixed point is:

(K s, R s) = sup({ fn
o (K 0, R 0) | n ∈ N })

The (orchestration) mpc KA of A is:

KA =
{ 〈 〉 if �q0 ∈ R s

〈Q \ R s, �q0, A
�, A�, Ao, TK s

\ T ′, F \ R s〉 otherwise

where T ′ = { t = �q −→ ∈ K s | t is controllable in K s, �q ∈ R s }.

Semi-controllability. We now show, by means of an example, that the encoding
of an automaton A with semi-controllable actions into an automaton A ′ without,
such that the same synthesised controllers are obtained, results in an exponential
blow-up of the state space. More precisely, the encoding is intended to preserve
safety: the mpc of A equals that of A ′. The encoding is sketched in Fig. 2:
the automaton A ′ is obtained by turning all semi-controllable transitions of
the automaton A from Fig. 1 (right) into uncontrollable transitions in A ′. The
intuition for this construction is as follows. If the synchronisation on a specific
semi-controllable action a occurs in n different transitions in A (two in our
example), then the encoding creates an automaton that is the union of 2n − 1
automata (three in our example), which are obtained by all possible combinations
of pruning a subset of the n semi-controllable transitions of A , minus the one in
which all n semi-controllable transitions are pruned. In fact, without knowing
a priori the set of forbidden and successful states, it is impossible to provide a
more efficient encoding.

We explain why this is the case. Assume, by contradiction, that there exists
an encoding that results in a ‘smaller’ automaton A ′′, in which one of the 2n −1
combinations of pruned transitions (say, P) is discarded. It then suffices to spec-
ify as a counterexample a property in A such that all source states of transitions
in P are forbidden and all target states of the remaining semi-controllable tran-
sitions are successful. The synthesis of A against such a property would prune
exactly the semi-controllable transitions in P . Thus, in the synthesis of A ′′ such
an mpc would not be present, a contradiction.

Synthesis of Orchestrations and Choreographies 137

Fig. 2. Automaton A ′ uses uncontrollable transitions to encode automaton A from
Fig. 1 (right)

4 Synthesis of Choreographies

In the previous section we have seen that the orchestration of MSCA is rendered
as a particular mpc. The orchestrator is however implicit, in the sense that its
interactions with the principals are hidden. Basically, one could assume that
before interacting, each principal expects a message from the orchestrator and
answers with an acknowledgement after the interaction terminates. The main
intuition behind switching from an orchestrated to a choreographic coordination
of contracts is that there is no longer the need for such ‘hidden’ interactions.
Ideally, the principals moving autonomously are able to accomplish the behaviour
foreseen by the synthesis, which in this case acts as a global type. Differently
from the traditional choreographic approach, where the starting point is a global
type, in MSCA the global type is synthesised automatically.

The requirements for ensuring that the synthesised mpc is a (form of) chore-
ography were studied in [13,41]. Roughly, they amount to the so-called branching
condition requiring that principals perform their offers/outputs independently
of the other principals in the composition. To formalise it, we let snd(�a) = i
when �a is a match action or an offer action and �a(i) ∈ O.

Definition 5 (Branching condition [13]). An MSCA A satisfies the branch-
ing condition iff the following holds for each pair of states �q1, �q2 reachable in
A:

∀�a match action . (�q1 �a−→ ∧ snd(�a) = i ∧ �q1(i) = �q2(i)) implies �q2
�a−→.

The branching condition is related to a phenomenon known as ‘state sharing’
in other coordination models (cf., e.g., [18]) according to which system compo-
nents can influence potential synchronisations through their local (component)
states even if they are not involved in the actual global (system) transition.

In [13] it is proved that the mpc corresponds to a well-behaving choreography
if and only if it satisfies the branching condition and is strongly safe. Notably, in
case the two conditions are not satisfied, that paper does not provide any algo-
rithm for automatically synthesising a choreography, rather the contracts have
to be manually amended. Instead, in the remainder of this section, we introduce
an algorithm for automatically synthesising a well-behaving choreography.

138 D. Basile et al.

Fig. 3. Fragment of a possible service composition

The property to be enforced during the synthesis is strong agreement: all
offers and requests have to be matched, because all messages have to be read
(i.e. offers matched). Moreover, in the case of choreography, service contract
requests are always permitted whereas service contract offers can be necessary.
That is, their roles are swapped with respect to the case of orchestration.

In principle, the synthesis could trivially introduce a coordinator component
and its interactions to coordinate the principals. However, this would reduce
the choreography to a centralised coordination of contracts. To prevent this,
the synthesis can only remove and never add behaviour. Hence, a choreography
can only be synthesised if all principals are capable of interacting on their own
without resorting to a central coordinator.

Similarly to orchestration synthesis, indicating transitions as either control-
lable or uncontrollable does not suffice for synthesising a choreography. Moreover,
the notion of semi-controllability introduced for the orchestration case does not
suffice for expressing necessary offers. Indeed, orchestration synthesis does not
ensure the branching condition to be satisfied by the synthesised automaton, as
the following example shows.

In Fig. 3, a fragment of a service composition is shown. Two global states are
depicted, and in both the first service, say Alice, is in its initial local state (say,
q0). Alice performs an output (i.e. offer) a that can be directed to either Bob
(second service) or Carol (third service), from the initial global state, or only
to Bob from the other state. It is possible to reach either a successful (✓) or a
bad (✗) state, left unspecified for the moment. Notably, the output of Alice is
neither controllable nor uncontrollable nor semi-controllable by the synthesis.

Now assume that the a is controllable and from the initial global state both
interactions eventually lead to a bad state (✗). In this case, those transitions
are pruned by the synthesis, and the resulting automaton is wrongly approved.
Indeed, Alice has no mean to understand when her output a is enabled, because
she has not changed state. The branching condition, which is necessary for
obtaining a well-behaving choreography, would be violated. Note that this would
happen also if a were semi-controllable. In fact, to satisfy the branching condi-
tion, the synthesis should remove all outputs a.

Conversely, assume that the a is uncontrollable and that it is possible from
the initial global state to reach a successful state (✓) if the message a is received
by Bob. In this case, it would not be possible to prune the transition from the
initial state leading to ✗, because it is also uncontrollable. The synthesis would
thus be empty, a wrong rejection, because a choreography exists in which Alice
autonomously interacts with Bob.

Synthesis of Orchestrations and Choreographies 139

In conclusion, a necessary action is rendered neither as uncontrollable nor
semi-controllable and permitted actions require extra pruning operations dur-
ing the synthesis. A novel notion of semi-controllability for a necessary action
is required that is weaker than uncontrollable but stronger than the semi-
controllable notion used in the synthesis of orchestration. Basically, for the chore-
ography synthesis, a (semi-controllable) necessary transition t = (�q �a1−→) ∈ T� is
detected to be uncontrollable iff no necessary transition t′ = (�q �a2−→) ∈ T� exists
from the same source state such that in both t and t′ the same offer is provided
by the same principal, but possibly with different receivers. Formally:

Definition 6. Let A be an MSCA and let t = (�q,�a1, �q1
′) ∈ TA . Then:

– if �a1 is an action on a ∈ A�, then t is controllable (in A);
– if �a1 is an offer or a match on a ∈ A�, then t is semi-controllable (in A).

Moreover, given A ′ ⊆ A, if t is semi-controllable and ∃ t′ = (�q,�a2, �q2
′) ∈ T�

A′ s.t.
�a2 is a match, �q, �q2

′ �∈ Dangling(A ′), and snd(�a) = i and �a1(i) = �a2(i) = a, then
t is controllable in A ′ (via t′); otherwise, t is uncontrollable in A ′.

Hence, again a necessary transition is a particular type of transition that
switches from being controllable to uncontrollable in case a condition on the
global automaton is not met. Note that this condition is stronger than the one
required for the case of orchestration (semi-controllability), because for the case
of choreography transitions t and t′ in Definition 6 share the source state. More-
over, also in this case it can be shown that the encoding of this type of semi-
controllable transition into an uncontrollable one would result in an exponential
growth of the state space of the model.

Similarly to the orchestration synthesis in Definition 4, when a semi-
controllable transition previously removed by the synthesis switches from con-
trollable to uncontrollable, its source state is detected to be bad. Apart from
the different notion of semi-controllability, another difference with respect to
the orchestration synthesis is that each time a controllable transition is pruned,
all other transitions violating the branching condition must also be removed.
Finally, according to the property of strong agreement, both request and offer
transitions are forbidden. The formalisation is provided below.

Definition 7 (MSCA choreography synthesis). Let A be an MSCA, and
let K 0 = A and R 0 = Dangling(K 0). We let the choreography synthesis function
fc : MSCA × 2Q → MSCA × 2Q be defined as follows:

fc(K i−1, R i−1) = (K i, R i), with
TK i = TK i−1 \ ({ (�q −→ �q ′) = t ∈ TK i−1 | �q ′ ∈ R i−1 ∨ t is a request or an offer }

∪{ (�q1 �a−→) = t ∈ TK i−1 | ∃ �q2 : (snd(�a) = i ∧ �q1(i) = �q2(i))

∧ (�q2
�a−→) �∈ TK i−1 })

R i = R i−1 ∪ { �q | (�q −→) ∈ TA is uncontrollable in K i } ∪ Dangling(K i)

140 D. Basile et al.

Theorem 3 (MSCA choreography mpc). The choreography synthesis func-
tion fc is monotone on the cpo (MSCA × 2Q,≤) and its least fixed point is:

(K s, R s) = sup({ fn
c (K 0, R 0) | n ∈ N })

The (choreography) mpc KA of A is:

KA =
{ 〈 〉 if �q0 ∈ R s

〈Q \ R s, �q0, A
�, A�, Ao, TK s

\ T ′, F \ R s〉 otherwise

where T ′ = { t = �q −→ ∈ K s | t is controllable in K s, �q ∈ R s }.
Moreover, KA satisfies the branching condition.

Returning to the example in Fig. 3, the wrongly accepted case is removed
because, during the synthesis, the operation of pruning the transitions lead-
ing to bad states causes the removal of the remaining transition. Thus, the
obtained choreography is empty. Similarly, the wrongly rejected case is not possi-
ble because, assuming that the output from the initial state is necessary, this nec-
essary action is not rendered as uncontrollable as long as the output is matched
by some other principal from the same initial state.

5 Abstract Synthesis

We have presented in the previous three sections three slightly different synthesis
algorithms. As previously stated, in order to bridge the gap between standard
synthesis and orchestration and choreography syntheses, the controllable and
uncontrollable actions from SCT are related to permitted and necessary modal-
ities, respectively, of MSCA.

The main intuition is that the SCT assumption of an unpredictable environ-
ment responsible for the uncontrollable transitions is not realistic in the case of
coordination of services whose behaviour is known and observable. As a result,
necessary actions are not in correspondence with uncontrollable actions, but
rather require the introduction of a milder notion of controllability. The condi-
tion under which a controllable transition becomes uncontrollable varies depend-
ing on the particular synthesis algorithm (orchestration or choreography). Con-
versely, in the standard mpc synthesis such information is local, i.e. a transition
is declared to be uncontrollable.

In this section, we discuss an abstract synthesis algorithm that generalises
the previous algorithms by abstracting away the conditions under which a tran-
sition is pruned or a state is deemed bad. These two conditions, called pruning
predicate (φp) and forbidden predicate (φf) are parameters to be instantiated
by the corresponding instance of the synthesis algorithm (e.g. orchestration or
choreography). Predicate φp is used for selecting the transitions to be pruned.
Depending on the specific instance, non-local information about the automaton
or the set of bad states is needed by φp. Therefore, φp takes as input the current
transition to be checked, the automaton, and the set of bad states. If φp evaluates

Synthesis of Orchestrations and Choreographies 141

to true, then the corresponding transition will be pruned. Predicate φf is used
for deciding whether a state becomes bad. The input parameters are the same
as φp. However, φf only inspects necessary transitions (T�). If φf evaluates to
true, then the source state is deemed bad and added to the set Ri. The abstract
synthesis algorithm is formally defined below.

Definition 8 (Abstract synthesis). Let A be an MSCA, and let K 0 = A and
R 0 = Dangling(K 0). Given two predicates φp, φf : T × MSCA × Q → Bool ,
we let the abstract synthesis function f(φp,φf) : MSCA × 2Q → MSCA × 2Q be
defined as follows:

f(φp,φf)(K i−1, R i−1) = (K i, R i), with

TK i = TK i−1 \ { (�q �a−→) = t ∈ TK i−1 | φp(t,K i−1, R i−1) = true }
R i = R i−1 ∪ { �q | (�q −→) = t ∈ T �

A , φf (t,K i−1, R i−1) = true } ∪ Dangling(K i)

As in the previous cases, the mpc relative to the pair (φp, φf) is obtained by
computing the least fixed point (K s, R s) of f(φp,φf) and removing the states R s

from K s.
In the following, we show how to instantiate the abstract synthesis function

to the standard synthesis function, to the orchestration synthesis function, or to
the choreography synthesis function, and prove their correspondences.

Theorem 4 (Abstract mpc synthesis). The standard synthesis function of
Definition 2 coincides with the instantiation of the abstract synthesis function of
Definition 8 where, for a generic transition t = (�q,�a, �q′), predicates φp and φf

are defined as follows:

φmpc
p (t,K , R) = (�q′ ∈ R) ∨ (�q is forbidden)

φmpc
f (t,K , R) = (�q′ ∈ R)

Note that in Theorem 4 the predicates do not use any non-local informa-
tion related to the parameter K . For both orchestration and choreography two
different semi-controllability conditions are used to decide whether a state has
become forbidden. These conditions are translated into the corresponding for-
bidden predicates.

Theorem 5 (Abstract orchestration synthesis). The orchestration synthe-
sis function of Definition 4 coincides with the instantiation of the abstract syn-
thesis function of Definition 8 where, for a generic transition t = (�q,�a, �q ′), pred-
icates φp and φf are defined as follows:

φorc
p (t,K , R) = (t is a request) ∨ (�q′ ∈ R)

φorc
f (t,K , R) = � (�q2

�a2−→ �q2
′) ∈ T�

K : (�a2 is a match) ∧ (�q2, �q2′ �∈ Dangling(K))

∧ (�q(i) = �q2(i)) ∧ (�a(i) = �a2(i) = a)

142 D. Basile et al.

The pruning predicate of Theorem 5 does not use any information coming
from the global automaton K , whereas this is no longer the case for the forbidden
predicate that indeed specifies the semi-controllability condition for the necessary
transitions of an orchestration (cf. Definition 3).

Theorem 6 (Abstract choreography synthesis). The choreography synthe-
sis function of Definition 7 coincides with the instantiation of the abstract synthe-
sis function of Definition 8 where, for a generic transition t = (�q,�a, �q′), predicates
φp and φf are defined as follows:

φcor
p (t,K , R) = (t is a request or an offer) ∨ (�q ′ ∈ R)

∨(∃ �q2 ∈ QK : (snd(�a) = i) ∧ (�q(i) = �q2(i)) ∧ (�q2
�a−→�∈ TK))

φcor
f (t,K , R) = � (�q �a2−→ �q2

′) ∈ T�
K : (�a2 is a match) ∧ (�q, �q2′ �∈ Dangling(K))

∧(�a(i) = �a2(i) = a)

Notably, in Theorem6 both predicates require global information on the
whole automaton. Similarly to Theorem5, the forbidden predicate codifies the
semi-controllability condition of Definition 6. Moreover, the pruning predicate
removes all transitions violating the branching condition (cf. Definition 5).

We believe that the synthesis algorithms are related. In particular, we
conjecture that via a partial order of predicates, appropriately defined as
(φp1 , φf 1) ≤ (φp2 , φf 2) iff (φp1 → φp2) ∧ (φf 1 → φf 2), it can be proved that
(φorc

p , φorc
f) ≤ (φmpc

p , φmpc
f) and therefore K mpc

A ⊆ K orc
A . More generally, the cpo

of predicates permits to perform abstraction of syntheses, in the sense that the
lesser the pair of predicates the greater the corresponding synthesised automa-
ton. This can be useful to perform partial syntheses and skip unnecessary checks
or even potentially undecidable computations. For instance, given an MSCA A ,
from K orc

A = 〈 〉, we can conclude K mpc
A = 〈 〉 without actually computing it,

which could potentially require more computational effort.

6 Related Work

Our contributions to bridging the gap between SCT and coordination of ser-
vices concern adaptations of the classical synthesis algorithm from SCT in
order to synthesise orchestrations and choreographies of service contracts for-
malised as MSCA. In the literature, there exist many formalisms for mod-
elling and analysing (service) contracts, ranging from behavioural type systems,
including behavioural contracts [1,27,40] and session types [23,26,32,36,44], to
automata-based formalisms, including interface automata [2] and (timed) (I/O)
automata [3,31,43]. Foundational models for service contracts and session types
are surveyed in [8,17,37].

The MSCA formalism used in this paper differs fundamentally from these
models, which typically study notions of contract compliance involving only two

Synthesis of Orchestrations and Choreographies 143

parties, since MSCA primitively support multi-party compliance of contracts
that compete on offering or requesting the same service. Furthermore, the above
models do not consider modalities of services whereas MSCA provide primitive
support for permitted and necessary service actions, resulting in the introduction
of a novel notion of semi-controllability in the context of SCT. Modal Transition
Systems (MTS) and their extensions [39], as adopted for instance in Software
Product Line Engineering (SPLE [4,46]), like modal I/O automata [42] and MTS
with variability constraints [19], do natively distinguish may and must modali-
ties, but the other differences remain. In particular, they cannot explicitly handle
dynamic composition by allowing new services that join composite services to
intercept already matched actions.

We are only aware of two other applications of SCT to MTS. In [30], there
is no direct relation between may/must and controllable/uncontrollable, and
the modal automaton (i.e. MTS with final states) is seen as a predicate that
is satisfied if the plant automaton (i.e. the system to be refined against the
predicate) is a sort of alternate refinement of the predicate. Similarly, in [33], the
control objectives (i.e. the predicate) is a modal automaton, non-blockingness
is not considered, and another modal automaton describes which actions are
controllable and which are uncontrollable in the plant automaton. In this paper,
the predicate is an invariant (i.e. forbidden states and forbidden transitions are
given), the modal automaton (i.e. MSCA) is the plant, and a necessary transition
induces different notions of controllability according to the adopted coordination
paradigm.

SCT was first applied to SPLE in [20] by showing how the CIF 3 toolset [16]
can automatically synthesise a single (global, family) model representing an
automaton for each of the valid products of a product line from (i) a feature
constraint with attributes (e.g. cost), (ii) behavioural component models asso-
ciated with the features, and (iii) additional behavioural requirements like state
invariants, action orderings, and guards on actions (reminiscent of the Featured
Transition Systems of [28]). The resulting CIF 3 model satisfies all feature-related
constraints as well as all given behavioural requirements. Since CIF 3 allows the
export of such models in a format accepted by the mCRL2 model checker [29],
the latter can be used to verify arbitrary behavioural properties expressed in the
modal μ-calculus with data or its feature-oriented variant of [21]. An important
advantage is that both CIF 3 and mCRL2 can be used off-the-shelf, meaning that
no additional tools are required. Differently from our approach, all actions are
controllable and orchestration is not considered, whilst a prototype tool support-
ing orchestration synthesis for contract automata is presented in [12].

The only approach by others to bridge the gap between SCT and coordination
of services that we are aware of is that of [6], where services are formalised as so-
called Service Labelled Transition Systems (SLTS), which are a kind of guarded
automata with data. To this aim, SCT is adapted to deal with conditions and
variables as well as with a means to enforce services based on runtime informa-
tion. However, service composition through SLTS is based on the standard syn-
chronous product, whilst the contract composition expresses competing contracts.

144 D. Basile et al.

More importantly, in [6], input actions are considered uncontrollable whilst output
actions are controllable, in the standard view of a service interacting with the envi-
ronment. Our contribution induces novel notions of controllability to express nec-
essary requirements that are semi-controllable. The standard controller synthesis
algorithm is used in [34] to synthesise adapters between services. These adapters
act like proxies and are used to enforce properties such as deadlock-freedom. Com-
pared to our work, the interactions between services are driven by their contracts
rather than by adapters. The standard controller synthesis algorithm cannot be
applied for synthesising a correct composition of contracts.

We conclude this section by describing two further extensions of MSCA,
developed for different purposes, and for which we also defined adapted synthe-
sis algorithms. In [9], we present Featured Modal Contract Automata (FMCA).
Technically, we extend MSCA with a variability mechanism concerning struc-
tural constraints that operate on the service contract, used to define differ-
ent configurations. This reflects the fact that services are typically reused in
configurations that vary over time and need to dynamically adapt to changing
environments [48]. Configurations are characterised by which service actions are
mandatory and which forbidden. The valid configurations are those respecting all
structural constraints. We follow the well-established paradigm of SPLE, which
aims at efficiently managing a product line (family) of highly (re)configurable
systems to allow for mass customisation [4,46]. To compactly represent a prod-
uct line, i.e. the set of valid product configurations, we use a so-called feature
constraint, a propositional formula ϕ whose atoms are features [15], and we iden-
tify features as service actions (offers as well as requests). A valid product then
distinguishes a set of mandatory and a set of forbidden actions. Consequently, we
define an algorithm to compute the FMCA KAp

as the mpc for a valid product
p of an FMCA A . The main adaptation of the synthesis algorithm for MSCA
is to consider as bad states also those that cannot prevent a forbidden action
to be eventually executed and to discard the transitions labelled with actions
forbidden by p. Moreover, if some action that is mandatory in p is unavailable
in the automaton that results from the fixed point iteration, then the mpc is
empty. In [10], we introduced Timed Service Contract Automata (TSCA) as an
extension of the FMCA from [9] with real-time constraints. Formally, a config-
uration of a TSCA is a triple consisting of a recognised trace, a state, and a
valuation of clocks. The (finite) behaviour recognised by a TSCA are traces of
alternating time and discrete transitions, i.e. in a given configuration either time
progresses (a silent action in the languages recognised by TSCA) or a discrete
step to a new configuration is performed. Consequently, we define an algorithm
to compute the orchestration synthesis of TSCA. To respect the timing con-
straints, we use the notion of zones from timed games [5,25]. The resulting
synthesis algorithm resembles a timed game, but it differs from classical timed
game algorithms [5,25,31] by combining two separate games, viz. reachability
games (to ensure that marked states must be reachable) and safety games (to
ensure that forbidden states are never traversed). A TSCA might be such that
all bad configurations are unreachable (i.e. it is safe), while at the same time no
final configuration is reachable (i.e. the resulting orchestration is empty).

Synthesis of Orchestrations and Choreographies 145

7 Conclusion

In this paper, we have presented recent efforts in bridging the gap between
the most permissive controller synthesis from Supervisory Control Theory with
synthesis algorithms of orchestrations and choreographies of a formal model of
service contracts called modal service contract automata. We have introduced a
new algorithm capable of synthesising a safe non-blocking composition of service
contracts that is directly translatable into a choreographed formalism. We have
also introduced an abstract synthesis algorithm that generalises the synthesis
of the choreography, as well as that of the orchestration and that of the most
permissive controller.

The properties to be enforced in the algorithms that we have presented are
all invariants specified through either forbidden states or forbidden transitions.
Future work is needed to investigate the abstract syntheses under other non-
invariant properties. Finally, further work is necessary to formally demonstrate
that the different synthesis algorithms are related, as conjectured at the end of
Sect. 5.

References

1. Acciai, L., Boreale, M., Zavattaro, G.: Behavioural contracts with request-response
operations. Sci. Comp. Program. 78(2), 248–267 (2013)

2. de Alfaro, L., Henzinger, T.: Interface automata. In: ESEC/FSE, pp. 109–120.
ACM (2001)

3. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comp. Sci. 126(2), 183–
235 (1994)

4. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

5. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. IFAC Proc. 31(18), 447–452 (1998)

6. Atampore, F., Dingel, J., Rudie, K.: Automated service composition via supervi-
sory control theory. In: WODES, pp. 28–35. IEEE (2016)

7. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract automata: an
operational view of contracts between interactive parties. Artif. Intell. Law 24(3),
203–243 (2016)

8. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9_9

9. Basile, D., et al.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. (2019, under revision)

10. Basile, D., ter Beek, M.H., Legay, A., Traonouez, L.-M.: Orchestration synthesis for
real-time service contracts. In: Atig, M.F., Bensalem, S., Bliudze, S., Monsuez, B.
(eds.) VECoS 2018. LNCS, vol. 11181, pp. 31–47. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00359-3_3

11. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Meth. Comp. Sci. 12(4:6), 1–51 (2016)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1007/978-3-030-00359-3_3
https://doi.org/10.1007/978-3-030-00359-3_3

146 D. Basile et al.

12. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and
communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39570-8_5

13. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebr. Meth. Program. 85(3),
425–446 (2016)

14. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specifying
variability in service contracts. In: VaMoS, pp. 20–27. ACM (2017)

15. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844_3

16. van Beek, D.A., et al.: CIF 3: model-based engineering of supervisory controllers.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 575–580.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_48

17. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches:
from industrial standards to formal methods. In: ICIW. IEEE (2007)

18. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication require-
ments for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINA-
TION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59746-1_14

19. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016)

20. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis for
product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 856–873. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2_59

21. ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Family-based model checking
with mCRL2. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp.
387–405. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-
5_23

22. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

23. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In:
Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68265-3_5

24. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Heidelberg (2006). https://doi.org/10.1007/978-0-387-68612-7

25. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452_9

26. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. Log. Meth. Comp. Sci. 8(1:24), 1–45 (2012)

27. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009)

28. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-540-68265-3_5
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9

Synthesis of Orchestrations and Choreographies 147

29. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_15

30. Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal specifi-
cations of services. IFAC Proc. 43(12), 418–425 (2010)

31. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: HSCC, pp.
91–100. ACM (2010)

32. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14458-5_1

33. Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete
event systems. Discrete Event Dyn. Syst. 17(2), 211–232 (2007)

34. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthe-
sis. IEEE Trans. Serv. Comput. 5(1), 72–85 (2012)

35. Gohari, P., Wonham, W.M.: On the complexity of supervisory control design in
the RW framework. IEEE Trans. Syst. Man Cybern. B Cybern. 30(5), 643–652
(2000)

36. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

37. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

38. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web Services Choreography Description Language v1.0 (2005). https://www.w3.
org/TR/ws-cdl-10/

39. Křetínský, J.: 30 years of modal transition systems: survey of extensions and anal-
ysis. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 36–74.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_3

40. Laneve, C., Padovani, L.: An algebraic theory for web service contracts. Form.
Asp. Comput. 27(4), 613–640 (2015)

41. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

42. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_6

43. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Q. 2,
219–246 (1989)

44. Michaux, J., Najm, E., Fantechi, A.: Session types for safe web service orchestra-
tion. J. Log. Algebr. Program. 82(8), 282–310 (2013)

45. Peltz, C.: Web services orchestration and choreography. IEEE Comp. 36(10), 46–52
(2003)

46. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

47. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

48. Yi, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing Web
services: issues, solutions, and directions. VLDB J. 17(3), 735–572 (2008)

https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-14458-5_1
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1

No More, No Less
A Formal Model for Serverless Computing

Maurizio Gabbrielli1,2, Saverio Giallorenzo3(B), Ivan Lanese1,2,
Fabrizio Montesi3, Marco Peressotti3, and Stefano Pio Zingaro1,2

1 Inria, Sophia Antipolis Cedex, France
2 Università di Bologna, Bologna, Italy

{maurizio.gabbrielli,ivan.lanese,stefanopio.zingaro}@unibo.it
3 University of Southern Denmark, Odense, Denmark

{saverio,fmontesi,peressotti}@imada.sdu.dk

Abstract. Serverless computing, also known as Functions-as-a-Service,
is a recent paradigm aimed at simplifying the programming of cloud
applications. The idea is that developers design applications in terms of
functions, which are then deployed on a cloud infrastructure. The infras-
tructure takes care of executing the functions whenever requested by
remote clients, dealing automatically with distribution and scaling with
respect to inbound traffic.

While vendors already support a variety of programming languages
for serverless computing (e.g. Go, Java, Javascript, Python), as far as we
know there is no reference model yet to formally reason on this paradigm.
In this paper, we propose the first core formal programming model for
serverless computing, which combines ideas from both the λ-calculus
(for functions) and the π-calculus (for communication). To illustrate
our proposal, we model a real-world serverless system. Thanks to our
model, we capture limitations of current vendors and formalise possible
amendments.

1 Introduction

Serverless computing [24], also known as Functions-as-a-Service, narrows the
development of Cloud applications to the definition and composition of stateless
functions, while the provider handles the deployment, scaling, and balancing of
the host infrastructure. Hence, although a bit of a misnomer—as servers are of
course involved—the “less” in serverless refers to the removal of some server-
related concerns, namely, their maintenance, scaling, and expenses related to
a sub-optimal management (e.g. idle servers). Essentially, serverless pushes to
the extreme the per-usage model of Cloud Computing: in serverless, users pay
only for the computing resources used at each function invocation. This is why
recent reports [18,24] address serverless computing as the actual realisation of
the long-standing promise of the Cloud to deliver computation as a commodity.
AWS Lambda [4], launched in 2014, is the first and most widely-used serverless
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 148–157, 2019.
https://doi.org/10.1007/978-3-030-22397-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_9

A Formal Model for Serverless Computing 149

implementation, however many players like Google, Microsoft, Apache, IBM, and
also open-source communities recently joined the serverless market [3,16,19,21,
22,29]. Current serverless proposals support the definition of functions—written
in mainstream languages such as Go, Java, Javascript or Python—activated by
specific events in the system, like a user request to a web gateway, the delivery of
content from a message broker or a notification from a database. The serverless
infrastructure transparently handles the instantiation of functions, as well as
monitoring, logging, and fault tolerance.

Serverless offerings have become more and more common, yet the technology
is still in its infancy and presents limitations [6,18,24] which hinder its wide
adoption. For example, current serverless implementations favour operational
flexibility (asynchrony and scalability) over developer control (function composi-
tion). Concretely, they do not support the direct composition of functions, which
must call some stateful service in the infrastructure (e.g. a message broker) which
will take care of triggering an event bound to the callee. On the one hand, that
limitation is beneficial, since programmers must develop their functions as highly
fine-grained, re-usable components (reminiscent of service-oriented architectures
and microservices [12]). On the other hand, such openness and fine granularity
increases the complexity of the system: programmers cannot assume sequential
consistency or serialisability among their functions, which complicates reason-
ing on the semantics of the transformations applied to the global state of their
architecture. This holds true also when estimating resource usage/costs, due to
the complexity of unfolding all possible concurrent computations.

The above criticisms pushed us to investigate a core calculus for serverless
computing, to reason on the paradigm, to model desirable features of future
implementations, and to formalise guarantees over programs. In Sect. 2 we intro-
duce the Serverless Kernel Calculus (SKC); as far as we know, the first core
formal model for serverless computing. SKC combines ideas from both the λ-
calculus (for functions) and the π-calculus (for communication). In Sect. 2, we
also extend SKC to capture limitations of current serverless implementations.
In Sect. 3 we use our extension to model a real-world serverless architecture [1],
implemented on AWS Lambda. Finally, in Sect. 4 we discuss future developments
of SKC.

2 A Serverless Kernel Calculus
Our kernel calculus defines a serverless architecture as a pair 〈S, D〉, where S
is the system of running functions and D is a definition repository, containing
function definitions. The repository D is a partial function from function names
f to function bodies M . M includes function application (M M'), asynchronous
execution of new functions (async M), function names f, and values V . Values
include variables x, λ-abstractions λx.M , named futures [5,17,32] c, and the unit
value (). A system S contains running functions c � M , where c will contain
the result of the computation of the function M . Systems can be composed in
parallel | and include the empty system . Futures can be restricted in systems
via νc S.

150 M. Gabbrielli et al.

Fig. 1. SKC reduction semantics.

We assume futures to appear only at runtime and not in initial systems. More-
over, we consider a standard structural congruence ≡ that supports changing the
scope of restrictions to avoid name capture, and where parallel composition is
associative, commutative, and has as neutral element.

We define the semantics of our calculus using evaluation contexts E and Eλ,
to evaluate, respectively, systems and functions.

E ::= c � Eλ Eλ ::= [−] | (λx.M)Eλ | EλM

We report in Fig. 1 the semantics of serverless architectures 〈S, D〉, expressed
as reduction rules. Rule �β� is the traditional function application of λ-calculus.
Rule �ret� retrieves the body of function f from the definition repository D.
Rule �async� models the execution of new functions: it creates a fresh future c
and, in parallel, it executes function M so that c will store the evaluation of M .
When the evaluation of a function reduces to a value, rule �push� returns the
value to the associated future and removes both the terminated function and its
restriction. Rules �str�, �res�, and �lpar� perform the closure under, respec-
tively, structural congruence, restriction, and parallel composition. We include
in SKC standard components (conditionals, etc.) and extend evaluation contexts
(E) accordingly:

We define standard macros for fixpoint, let and let rec declarations, and
pairs.

fix � λf.(λx.f(xx))(λx.f(xx)) let x = M in M' � (λx.M') M

A Formal Model for Serverless Computing 151

let rec x = M in M' � let x = fix λx.M in M'

λ(x,y).M � λz.(λx.λy.M) (fst z) (snd z)

2.1 SKCσ - A Stateful Extension of SKC

SKC considers static definition repositories, i.e. no rules mutate the state of D.
We now present SKCσ, an extension of SKC which includes two primitives to
define transformations on definition repositories. As shown in Sect. 3, SKCσ is
powerful enough to encode stateful services, like databases and message queues.

M, M ′ ::= · · · | set f M | take f

The first primitive included in SKCσ is set f M , which updates the definition
repository D to map f to M : users can use the set primitive to deploy new
function definitions or update/override existing ones. The second primitive is
take f, which removes the definition of f from D, returning it to the caller. We
report below the semantics of the new primitives.

futures(M) = ∅
〈E [set f M], D〉 −−→ 〈E [f], D[f 	→M]〉 �set�

D(f) = M

〈E [take f], D〉 −−→ 〈E [let rec f=M in M], undef(D, f)〉 �take�

The only restriction on the application of rule �set� is that the body M of
the newly deployed function f does not contain futures (futures(M) is the set of
futures occurring in M). This preserves the semantics of restriction of futures in
function evaluations (cf. rules �async� and �push�). In the reductum, the rule
returns the name of the deployed function, useful to invoke it in the continuation.
Rule �take� removes the definition M of a deployed function f. For simplicity,
we define �take� applicable only if f is defined. In the reductum, the caller of the
take obtains the recursive let declaration of the function (useful for internal
application) while the association for f is removed from D by function undef.

2.2 SKCe - Event-Based Function Composition in SKC

We present an idiom of SKC, called SKCe, which models event-based function
composition. SKCe captures one of the main limitations of current serverless
vendors: the lack of support for direct function invocation, replaced by an event-
handling/event-triggering invocation model. Indeed, current serverless implemen-
tations, such as AWS Lambda, work as follows: they include infrastructural
stateful services, such as API gateways, that we can model using our stateful
extension SKCσ, and these services throw events. User-defined functions are
invoked as handlers of these events. User-defined functions can then invoke the
infrastructural services above. Notably, a user-defined function cannot directly

152 M. Gabbrielli et al.

invoke another user-defined function. We will see an instance of the event-based
pattern in Sect. 3, while we describe below event handling mechanisms.

We model events (e and variations thereof) inside SKC as function names
associated with peculiar function bodies in the repository D that asynchronously
evaluate the corresponding event handler and discard the handler result. For con-
venience, (i) we package the asynchronous call of an event handler in the helper
function callHandler below (hereafter, we assume that D contains callHandler)
and (ii) we write _ for unused variable symbols in binding constructs.

callHandler 	→ λh.λx.let _ = async (h () x) in ()

Event e is defined in D as and its event handler as
he 	→ Me; we wrap the name he in a lambda abstraction to avoid expansion
(via �Ret�) since function names are not values. Raising an event e with some
parameter v results in asynchronously executing the corresponding handler, as
shown by the derivation below (we abbreviate 〈S, D〉 −−→ 〈S′, D〉 as S −−→D S′

and label reductions with the names of the most relevant applied rules).

3 An Illustrative Example

Let SKCσe be the compound of SKCσ and SKCe presented in Sect. 2. Here,
we illustrate how SKCσe can capture real-world serverless systems by encod-
ing a relevant portion (depicted in Fig. 2) of Tailor [1], an architecture for user
registration, developed by Autodesk over AWS Lambda. Tailor mixes server-
less functions with vendor-specific services: API Gateways, key-value databases
(DynamoDB), and queue-based notification services (SNS). In the architecture,
each function defines a fragment of the logic of a user-registration procedure,
like the initiation of registration requests (talr-receptionist), request valida-
tion (talr-validator), etc. To model Fig. 2 in SKCσe, first, we install in D the
event handlers for the API Gateway, the DynamoDB, and SNS services1:

eAPI �→ callHandler(talr-receptionist) eSNS �→ callHandler([...])

eDDB �→ callHandler(talr-validator)

Then, we define the functions called by the handlers installed above, using
the same names of the AWS Lambda functions in Fig. 2. Handler eAPI calls func-
tion talr-receptionist, which validates the request and inserts the informa-
tion of the user in the key/value database. For brevity, we omit the behaviour
1 We omit the name of the function called by eSNS, excluded in the excerpt of Fig. 2.

A Formal Model for Serverless Computing 153

Fig. 2. Scheme of the Autodesk Tailor system. Top, excerpt considered in the example.
Bottom, full architecture (circled elements belong to the excerpt).

of talr-receptionist in case of invalid requests and the definition of auxiliary
functions validate_request, get_key, get_value in D:

talr-receptionist �→ λx.if validate_request x then

write_db (get_key x,get_value x) else [...]

Handler eDDB invokes function talr-validator, which retrieves from the database
the status of task x, checks if it is complete, and sends a notification on SNS.
We omit the definitions of functions check and compose_msg and of the else
branch.

We conclude illustrating the definitions of functions write_db, read_db, and
push in D, which exemplify how SKCσe can encode stateful, event-triggering
services. Keys are represented as function names and values are stored in D;

154 M. Gabbrielli et al.

thus keys are passed around wrapped in lambda abstractions (λ_.k) as done for
events.

write_db 	→ λ(x,v).eDDB (set (x ()) v) read_db 	→ λx.x ()

push 	→ λ(x,v).eSNS (set (x ()) v)

Function write_db takes a key (wrapped as x = λ_.k) and a value v as
parameters, writes on the database by setting to v the body of a function called k,
and notifies the write, invoking eDDB

2. Function read_db simply unwraps the key
thus enabling retrieval from D. Similarly to write_db, function push publishes
(set) a message v on an SNS topic (represented as a function name) and triggers
eSNS.

Remark 3.1. The example illustrates how SKC can capture (but not be restricted
by) one of the most prominent limitations of current serverless platform [18],
i.e. that i) user-defined functions can be only invoked by raising an event that
executes a new function (as done by callHandler, using the async primitive)
and ii) functions can invoke other functions only by interacting with some
event-triggering infrastructural service (e.g. a database, represented by function
write_db, or a notification queue, represented by function push).

4 Discussion and Conclusion

We propose SKC, the first core formal model to reason on serverless computing.
While the design of SKC strives for minimality, it captures the main ingredi-
ents [18,24] of serverless architectures: (i) the deployment and instantiation of
event-triggered, stateless functions and (ii) the desiderata of direct function-
to-function invocation based on futures—in Sect. 3 we show how this mecha-
nism is powerful enough to cover also the current setting of serverless vendors,
where function invocation must rely on third-party services that handle event
triggering.

Futures [5,17], which are the main communication mechanism in SKC, are
becoming one of the de-facto standards in asynchronous systems [13,15,35,37].
We considered using named channels (as in CCS/π-calculus [30,34]) instead of
futures, but we found them too general for the needs of the serverless model (they
are bi-directional and re-usable). Besides, futures can encode channels [32].

The work closest to ours is [23], appeared during the submission of this work,
in the form of a technical report. It presents a detailed operational semantics
that captures the low-level details of current serverless implementations (e.g.
cold/warm components, storage, and transactions are primitive features of their

2 More involved variants of the database are possible. E.g. to avoid clashes among
services using the same key for different elements, we can either use scoping or prefix
key names with service names—e.g. Tailor uses service-specific tables in DynamoDB.

A Formal Model for Serverless Computing 155

model) whereas SKC identifies a kernel model of serverless computing. Another
work close to SKC is [32], where the authors introduce a λ-calculus with futures.
Since the aim of [32] is to formalise and reason on a concurrent extension of
Standard ML, their calculus is more involved than SKC, as it contains primi-
tive operators (handlers and cells) to encode safe non-deterministic concurrent
operations, which can be encoded as macros in SKC. An interesting research
direction is to investigate which results from [23,32] can be adapted to SKC.

Being the first core framework to reason on serverless architectures, SKC
opens multiple avenues of future research. For example, current serverless tech-
nologies offer little guarantee on sequential execution across functions, which
compels the investigation of new tools to enforce sequential consistency [28] or
serialisability [33] of the transformations of the global state [18]. That challenge
can be tackled developing static analysis techniques and type disciplines [2,20]
for SKC. Another direction concerns programming models, which should give
to programmers an overview over the overall logic of the distributed functions
and capture the loosely-consistent execution model of serverless [18]. Choreo-
graphic Programming [10,31] is a promising candidate for that task, as choreogra-
phies are designed to capture the global interactions in distributed systems [26],
and recent results [9,11,14] confirmed their applicability to microservices [12], a
neighbouring domain to that of serverless architectures. Other possible research
directions, that we do not discuss for space constraints, include monitoring, var-
ious kinds of security analysis including “self-DDoS attacks” [25,27,36] and per-
formance analysis. This last one is particularly relevant in the per-usage model
of serverless architectures, yet requires to extend SKC with an explicit notion of
time in order to support quantitative behavioural reasoning for timed systems
[7,8].

Acknowledgements. This work was partially supported by the Independent
Research Fund Denmark, grant no. DFF-7014-00041.

References
1. Williams, A.: Tailor - the AWS Account Provisioning Service. https://github.com/

alanwill/aws-tailor. Accessed Feb 2019
2. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends

Program. Lang. 3(2–3), 95–230 (2016)
3. Apache: OpenWhisk. https://github.com/apache/incubator-openwhisk. Accessed

Feb 2019
4. AWS: Lambda. https://aws.amazon.com/lambda/. Accessed Feb 2019
5. Baker Jr., H.C., Hewitt, C.: The incremental garbage collection of processes. ACM

Sigplan Not. 12(8), 55–59 (1977)
6. Baldini, I., et al.: Serverless computing: current trends and open problems. In:

Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8_1

7. Brengos, T., Peressotti, M.: A uniform framework for timed automata. In: CON-
CUR. LIPIcs, vol. 59, pp. 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016)

https://github.com/alanwill/aws-tailor
https://github.com/alanwill/aws-tailor
https://github.com/apache/incubator-openwhisk
https://aws.amazon.com/lambda/
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1

156 M. Gabbrielli et al.

8. Brengos, T., Peressotti, M.: Behavioural equivalences for timed systems. Log. Meth-
ods Comput. Sci. 15(1), 17:1–17:41 (2019)

9. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

10. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 17–35.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_3

11. Dalla Preda, M., et al.: Dynamic choreographies: theory and implementation. Log.
Methods Comput. Sci. 13(2), 1–57 (2017)

12. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4_12

13. Ecmascript 2018 language specification. http://ecma-international.org/ecma-262/
9.0/index.html. Accessed Feb 2019

14. Giallorenzo, S., Montesi, F., Gabbrielli, M.: Applied choreographies. In: Baier, C.,
Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp. 21–40. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-92612-4_2

15. Goetz, B., et al.: Java Concurrency in Practice. Pearson Education, London (2006)
16. Google: Cloud Functions. https://cloud.google.com/functions. Accessed Feb 2019
17. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.

ACM Trans. Program. Languages Syst. (TOPLAS) 7(4), 501–538 (1985)
18. Hellerstein, J.M., et al.: Serverless computing: one step forward, two steps back.

In: CIDR (2019). www.cidrdb.org
19. Hendrickson, S., et al.: Serverless computation with OpenLambda. In: USENIX.

USENIX Association (2016)
20. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM

Comput. Surv. 49(1), 3:1–3:36 (2016)
21. IBM: Cloud Functions. https://www.ibm.com/cloud/functions. Accessed Feb 2019
22. Iron.io: IronFunctions. https://open.iron.io. Accessed Feb 2019
23. Jangda, A., et al.: Formal foundations of serverless computing. CoRR

abs/1902.05870 (2019). arXiv:1902.05870
24. Jonas, E., et al.: Cloud programming simplified: a berkeley view on serverless

computing. Technical report, EECS Department, University of California, Berkeley,
Feburary 2019

25. K-Optional Software: serverless out of Control. https://koptional.com/2019/01/
22/serverless-out-of-control/. Accessed Feb 2019

26. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web services choreogra-
phy description language version 1.0, W3C candidate recommendation. Technical
report, W3C (2005). http://www.w3.org/TR/ws-cdl-10

27. Kevin Vandenborne: serverless: a lesson learned. The hard way. https://sourcebox.
be/blog/2017/08/07/serverless-a-lesson-learned-the-hard-way/. Accessed Feb
2019

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

29. Microsoft: Azure Functions. https://azure.microsoft.com/services/functions.
Accessed Feb 2019

30. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

31. Montesi, F.: Kickstarting choreographic programming. In: Hildebrandt, T., Ravara,
A., van der Werf, J.M., Weidlich, M. (eds.) WS-FM 2014-2015. LNCS, vol. 9421,
pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33612-1_1

https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://ecma-international.org/ecma-262/9.0/index.html
http://ecma-international.org/ecma-262/9.0/index.html
https://doi.org/10.1007/978-3-319-92612-4_2
https://cloud.google.com/functions
www.cidrdb.org
https://www.ibm.com/cloud/functions
https://open.iron.io
http://arxiv.org/abs/1902.05870
https://koptional.com/2019/01/22/serverless-out-of-control/
https://koptional.com/2019/01/22/serverless-out-of-control/
http://www.w3.org/TR/ws-cdl-10
https://sourcebox.be/blog/2017/08/07/serverless-a-lesson-learned-the-hard-way/
https://sourcebox.be/blog/2017/08/07/serverless-a-lesson-learned-the-hard-way/
https://azure.microsoft.com/services/functions
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-33612-1_1

A Formal Model for Serverless Computing 157

32. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theor. Comput. Sci. 364(3), 338–356 (2006)

33. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

34. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

35. Summerfield, M.: Python in Practice: Create Better Programs Using Concurrency,
Libraries, and Patterns. Addison-Wesley, Reading (2013)

36. Wright, T.: Beware “RunOnStartup” in Azure Functions – a serverless hor-
ror story. http://blog.tdwright.co.uk/2018/09/06/beware-runonstartup-in-azure-
functions-a-serverless-horror-story/. Accessed Feb 2019

37. Williams, A.: C++ Concurrency in Action. Manning, New York (2017)

http://blog.tdwright.co.uk/2018/09/06/beware-runonstartup-in-azure-functions-a-serverless-horror-story/
http://blog.tdwright.co.uk/2018/09/06/beware-runonstartup-in-azure-functions-a-serverless-horror-story/

Coordination Patterns

Verification of Concurrent Design
Patterns with Data

Simon Bliudze1, Ludovic Henrio2, and Eric Madelaine3(B)

1 Inria Lille – Nord Europe, Villeneuve d’Ascq, France
simon.bliudze@inria.fr

2 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France
ludovic.henrio@ens-lyon.fr

3 Université Côte d’Azur, Inria, CNRS, I3S, 06902 Sophia-Antipolis, France
eric.madelaine@inria.fr

Abstract. We provide a solution for the design of safe concurrent sys-
tems by compositional application of verified design patterns—called
architectures—to a small set of functional components. To this end,
we extend the theory of architectures developed previously for the BIP
framework with the elements necessary for handling data: definition and
operations on data domains, syntax and semantics of composition opera-
tors involving data transfer. We provide a set of conditions under which
composition of architectures preserves their characteristic safety prop-
erties. To verify that individual architectures do enforce their associ-
ated properties, we provide an encoding into open pNets, an intermedi-
ate model that supports SMT-based verification. The approach is illus-
trated by a case study based on a previously developed BIP model of a
nanosatellite on-board software.

Keywords: Symbolic verification · Composition · Safety ·
Interaction models

1 Introduction

BIP (Behaviour-Interaction-Priority) [7] is a framework for the component-based
design of concurrent software and systems. In particular, the BIP tool-set com-
prises compilers for generating C/C++ code, executable by linking with one of
the dedicated engines, which implement the BIP operational semantics [14]. BIP
ensures that any property that holds on a BIP model will also hold on the gen-
erated code. The notion of BIP architecture was proposed in [5] as a mechanism
for ensuring correctness by construction during the design of BIP models. Archi-
tectures can be viewed as operators transforming BIP models. They formalise
design patterns, which enforce global properties characterising the coordination
among the components of the system. The architecture-based design process in
BIP takes as input a set of components providing basic functionality of the sys-
tem and a set of temporal properties that must be enforced in the final system.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 161–181, 2019.
https://doi.org/10.1007/978-3-030-22397-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_10

162 S. Bliudze et al.

For each property, a corresponding architecture is identified and applied to the
model, adding coordinator components and modifying the synchronisation pat-
terns between components. In [5], it was shown that application of architectures
is compositional w.r.t. safety properties, i.e. if two architectures guarantee two
properties, their composition ensures the conjunction of the properties but [5]
did not consider properties depending on data.

This article goes one step further in the proof of properties and in the com-
positionality of architectures, but this step is a significant one: the compositional
verification. To prove properties of BIP architectures it is necessary to have a
representation of the BIP architecture in a verifiable format. The verification
problem has two unbounded parameters: (1) By nature, architectures have holes
and are meant to interact with the interfaces of the component that will fill the
hole; the properties must hold for all (well-typed) components that can be put
inside the hole; (2) BIP interactions can transmit data, and properties might be
dependent of the data, the domain of the data is generally huge or unbounded
and the values of transmitted data might have a significant impact on the prop-
erties. We propose to rely on a translation of BIP architectures into open pNets.

Parameterised Networks of synchronised automata (pNets) is a formalism
for defining behavioural specification of distributed systems based on a param-
eterised and hierarchical model. It inherited from the work of Arnold on syn-
chronisation vectors [3]. It has been shown in previous work [27] that pNets
can represent the behavioural semantics of a system including value-passing and
many kinds of synchronisation methods, including various constructs and lan-
guages for distributed objects. The VerCors platform uses pNets to design and
verify distributed software components [19,28]. There is no bound on the num-
ber of elements inside a pNets or the valuation of parameters. When restricted
to finite instantiations, it becomes possible to us pNets for finite model-checking
approaches. Closed pNets were used to encode fully defined programs or systems,
while open pNets have “holes”, playing the role of process parameters. Such open
systems can represent composition operators or structuring architectures. It is
possible to reason, in an SMT engine, on the symbolic automaton that repre-
sents the behaviour of a pNets with holes and that communicates values [36].
The encoding of open pNets into Z3 that is under development is the starting
point of this article. We benefit from the possibility to reason on a pNet in an
SMT engine in order to prove properties on BIP architectures.

The main contributions of this paper are: (1) The addition of data to the
theory of BIP architectures, including a theorem about preservation of data
dependent properties by compositions. (2) An encoding of architectures with
data into open pNets, allowing for analysis of their temporal properties using
pNet’s software tools. The paper is illustrated by a running example based on
the failure monitor architecture from the CubETH nanosatellite on-board soft-
ware [34]. This running example also relies on the maximal progress assumption,
whereby larger interactions are preferred to smaller ones. Due to space limita-
tions, we only discuss this informally. However, proofs of the results provided in
the appendix formally account for maximal progress.

Verification of Concurrent Design Patterns with Data 163

The rest of the paper is structured as follows. In Sect. 2, we present notations
and background material on pNets. The theory of architectures with data is
presented in Sect. 3. In Sect. 4, we present the encoding into open pNets and
discuss verification of the running example. Section 5 discusses related work.
Section 6 concludes the paper.

2 General Notations and pNets Previous Results

Notations. We extensively use indexed structures over some countable indexed
sets, which are equivalent to mappings over the countable set. Thus, ai∈I

i denotes
a family of elements ai indexed over the set I. This notation defines both I
the set over which the family is indexed (called range), and ai the elements of
the family. E.g., ai∈{3} is the mapping with a single entry a at index 3; also
abbreviated (3 �→ a). When this is not ambiguous, we shall use notations for
sets, and typically write “indexed set over I”, even though formally we should
speak of maps; and write x ∈ ai∈I

i to mean ∃i ∈ I. x = ai. An empty family is
denoted ∅.

We assume the existence of a term algebra TΣ,V , where Σ is the signature
of the data and action constructors, and V a set of variables. Within TΣ,V , we
distinguish a set of data expressions EV , e ranges over expressions; and a set of
Boolean expressions BV ⊆ EV , g (guards) ranges over Boolean expressions. On
top of EV we build the action algebra ActV , with ActV ⊆ TΣ,V . We define AV
as the set of variable assignments of the form: (xi := ei)i∈I and let u range over
sets of assignments. The function vars(t) identifies the set of variables in a term.

We assume the existence of a universal data domain given as a partially-
ordered set (D,�), potentially encompassing several copies of any given data
type with different orders. We assume that (D,�) comprises both the unordered
set of Booleans B = ({tt, ff}, ∅) and the naturally ordered one B

� = ({tt, ff},
{ff � tt}), and similarly for integer and real numbers; as well as the set of
intervals ordered by inclusion. When speaking of an ordered sort, e.g. B

�, we
will assume that it forms a meet-semilattice and denote by ∧ the meet operator.

For a set of variables V ⊆ V, we denote D
V def= {σ : V → D} the set of

valuations of the variables in V and let σ range over valuations. Valuations
extend canonically to expressions, denoted σ(e). We define:

σ
[
(xi := ei)i∈I

]
(x) def=

{
σ(x), if x 	∈ xi∈I

i ,

σ(ei), if x = xi, for some i ∈ I .

For two valuations σ1, σ2 : V → D, we denote σ1
σ2 def=
{
x ∈ V

∣
∣ σ1(x) 	= σ2(x)

}

the set of variables that are assigned different values by the two valuations. As
usual, we write σ1 � σ2 iff σ1(x) � σ2(x), for all x ∈ V . An expression e is
monotonic if, for any two valuations σ1, σ2, σ1 � σ2 implies σ1(e) � σ2(e).
Similarly, an assignment (xi := ei)i∈I is monotonic if all expressions ei∈I

i are
monotonic. We denote B

�
V ⊂ BV , E

�
V ⊂ EV and A

�
V ⊂ AV the sets of monotonic

Boolean and generic expressions and assignments, respectively.

164 S. Bliudze et al.

Open pNets. This section briefly describes pNets, see [29] for more complete
description. pNets are tree-like structures, where the leaves are either param-
eterised labelled transition systems (pLTSs), expressing the behaviour of basic
processes, or holes, used as placeholders for unknown processes. Nodes of the tree
are synchronising artefacts using a set of synchronisation vectors that express
the possible synchronisation between parameterised actions of some components.

A pLTS is a labelled transition system with variables occurring inside states,
actions, guards, and assignments. Variables of each state are pairwise disjoint.
Each transition label of a pLTS consists of a parameterised action, a guard and
an update assignment. The parameters of actions are either input variables or
expressions. Input variables are bound when the action occurs; they accept any
value (of the correct type), thus providing a to input data from the environment.
Expressions are computed from the values of other variables. They allow provid-
ing aggregated values to the environment, without exposing all the underlying
variables. We define the set of parameterised actions a pLTS can use (a ranges
over action labels): α = a(?xi∈I

i , ej∈J
j), where ?xi∈I

i are input variables, ej∈J
j are

expressions.

Definition 1 (pLTS). A pLTS is a tuple pLTS � 〈〈S, s0,→〉〉 where: S is a set
of states; s0 ∈ S is the initial state; → ⊆ S ×L×S is the transition relation and
L is the set of labels of the form 〈α, g, u〉, where α is a parameterised action,
α ∈ ActV ; g ∈ BV is a guard over variables of the source state and the action,
and u ∈ AV assigns updated value for variables in the destination state.

A pNet composes several pNets, pLTSs, and holes. A pNet exposes global
actions resulting from the synchronisation of internal actions in some sub-pNets,
and some actions of the holes. As holes are process parameters, synchronisation
with a hole has an obvious concrete meaning when a process is put inside the
hole and emits the action. We also define a semantics for open pNets with holes
where open transitions express the fact that a pNet can performs a transition
provided one or several holes emit some actions. This synchronisation is speci-
fied by synchronisation vectors expressing the synchronous interaction between
actions inside sub-pNets and holes, data transmission is expressed classically
using action parameters. Actions involved in the synchronisation vectors do not
need to distinguish input variables, i.e. they have the form a(Expr j∈J

j).

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes: Q � pLTS | 〈〈Qi∈I

i , J,SV k∈K
k 〉〉 where

– Qi∈I
i is the family of sub-pNets;

– J is a set of indexes, called holes. I and J are disjoint: I∩J = ∅, I∪J 	= ∅
– SV k∈K

k is a set of synchronisation vectors. ∀k∈K,SV k =αl∈Ik�Jk

l → α′
k[gk],

where α′
k ∈ ActV , Ik ⊆ I, Jk ⊆ J , and vars(α′

k) ⊆
⋃

l∈Ik�Jk
vars(αl). The

global action is α′
k, gk is a guard associated to the vector.

The set of holes Holes(Q) of a pNet is the indexes of the holes of the pNet
itself plus the indexes of all the holes of its subnets (we suppose those indexes
disjoints). A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said

Verification of Concurrent Design Patterns with Data 165

to be open. The set of leaves of a pNet is the set of all pLTSs occurring in the
structure, as an indexed family of the form Leaves(Q) = 〈〈pLTSi〉〉i∈L.

The semantics of an open pNet is expressed as an automaton where each
transition coordinates the actions of several holes, the transition occurs if some
predicates hold, and can involve state modifications.

Definition 3 (Open transition). An open transition over a set of holes J
and a set of states S is a structure of the form:

···················
βj∈J

j , g, u

s
α−→ s′

Where s, s′ ∈ S and βj ∈ ActV is an action of the hole j; α is the resulting global
action; g is a predicate over the different variables of the terms, labels, and states
βj, s, α. u ∈ AV is a set of assignments that are the effects of the transition.
Open transitions are identified modulo logical equivalence on their predicate.

The red dotted rule expresses the implication stating that if the holes perform
the designated actions and the condition g is verified, then the variables are mod-
ified and the state changes. This implication however uses a simple logic with the
expressive power given by the predicate algebra (it must include logical proposi-
tions and equality). Proposition and inference rules of the paper use a standard
logic, while predicates inside the open transitions should use a more restricted
logic, typically a logic that could be handled mechanically and expressed by
terms that can be encoded in a simple syntax. Open transitions express in a
symbolic way, transitions that are not only parameterised with variables but
also actions of not yet known processes.

Definition 4 (Open automaton). An open automaton is a tuple (J,S, s0, T)
where: J is a set of indices, S is a set of states and s0 an initial state among
S, T is a set of open transitions and for each t ∈ T there exist J ′ with J ′ ⊆ J ,
such that t is an open transition over J ′, and S.

The semantics of an open pNet is an open automaton where the states are
tuples of states of the pLTSs at the leaves, denoted � . . . �. Each open transition
between two states contains (1) the actions of the holes involved in the transition,
(2) a guard built from the synchronisation vectors coordinating the holes and
the transitions involved; (3) assignments and global state change defined by the
pLTSs transitions involved; (4) a global action defined by the synchronisation
vector.

Example 1 (An open transition). The open transition

···
{E �→ ask}, t ∈ z, {t := t + 1}

�11 �
ask−−→ � 11�

emits a global action ask defined by the synchronisation vector 〈timeoutT ,
timeoutC ,−, ask〉 → ask . It requires the hole at label E to fire an ask action,

166 S. Bliudze et al.

with the condition t ∈ z. In this case, the global pNet loops on the state �11� that
has internal variables t and z local to the pLTS T (hence not appearing in the
synchronisation vector). The variable t is updated to the new value t+1. Figure 2
shows the complete pNet, whereas Fig. 3 shows a complete open automaton.

We used pNets to define a behavioural semantics for distributed compo-
nents [2] that allows the verification of correctness properties by model-checking.
More recently, a bisimulation theory has been formalised for open pNets [29].

3 The Theory of Architectures with Data

This section presents the extension of the theory of architectures [5] with data
and briefly discusses a special case of priority models, called maximal progress.
These extensions require us to define the framework in a manner that would allow
formulating and proving the property preservation result (Theorem1 below). In
[5], this result is obtained by requiring, in the definition of architecture composi-
tion, that an interaction among coordinated components be only possible if both
architectures “agree” that it should be enabled. With respect to data, the main
difficulty lies in ensuring that this “agreement” extends to the transferred data
values. A trivial extension would allow an interaction only if the data values
proposed by both architectures coincide. As this requirement is too restrictive,
we go beyond by assuming the data domains to be ordered and taking the meet
of the proposed values. The property preservation result then holds indepen-
dently of the proposed values, provided that guards and update assignments are
monotonic.

An important insight is that, although the requirement that guards and
update assignments be monotonic appears to be a limitation, it is, in fact, a gen-
eralisation of the usual setting. Indeed, the usual settings, where data domains
are not ordered, can be recovered here by considering trivial partial orders with
no two distinct elements being comparable. In such case, all expressions are
trivially monotonic.

The intuition behind the proof of the preservation of safety properties in
[5] is simple. The composition of two architectures combines the “constraints”
that they impose on the possible executions of the system: as stated above, an
interaction is only enabled if both architectures “agree”. In [6], it is shown that
this intuition extends well to priorities in the offer semantics of BIP. However,
this is not the case in the classical semantics. In this section, we informally
discuss the special case of the maximal progress priority models, where property
preservation does hold in the classical semantics of BIP.

Components and Composition

Definition 5 (Component). A component is a tuple (Q, q0, V, σ0, P, ε,−→),
where

– Q is a set of states, with q0 ∈ Q the initial state,

Verification of Concurrent Design Patterns with Data 167

– V is a set of component variables,
– σ0 : V → D is an initial valuation of the component variables,
– P is a set of ports; ε : P → 2V is the set of variables exported by each port,
– −→⊆ Q × (2P \ {∅}) × B

�
V × A

�
V × Q is a transition relation, with transitions

labelled by interactions, i.e. triples consisting of a non-empty set of ports, a
monotonic Boolean guard and a monotonic update assignment.

We call the triple (V, P, ε) the interface of the component. 1 Notations q
a,g,u−−−→ q′

and q
a,g,u−−−→ are as usual; for a component B, we denote QB, q0B, VB, σ0

B,
PB, and εB the corresponding constituents of B. We will skip the index on the
transition relations −→, since it is always clear from the context.

In this paper, we use a refined version of the Failure Monitor architec-
ture from [34] as a running example. Although Fig. 1 shows the full defini-
tion of this architecture, we will explain its various elements progressively.
Figure 1 shows components T (imer) and C(ontrol), with interfaces

(
{t, z}, {tick,

cancel, timeoutT },
{
tick �→ {t, z}

})
, and

(
{zone}, {reset, fail, resume, timeoutC},{

fail �→ {zone}
})

respectively. Variable t is implicitly assumed to be of type Inte-
ger (with trivial ordering). Variables z

def= [z.l, z.u] and zone def= [zone.l, zone.u]
are of type Integer Interval ordered by interval inclusion.

Component behaviour is defined by states and transitions. The initial states
t1 and s1, and valuations σ0

T = {t �→ 0, z �→ �}, σ0
C = {zone �→ [Min,Max]} are

shown by the incoming arrows
t:=0,z:=�−−−−−−→ t1 and

zone :=[Min,Max]−−−−−−−−−−−→ s1 where � =

(−∞,+∞). The constants Min and Max are the parameters of the architecture.

Fig. 1. The BIP specification of the failure monitor architecture

Transitions are labelled with ports of the corresponding components, Boolean
guards and update assignments on local variables. E.g., the loop transition

t1
tick,[t<z.u],t:=t+1−−−−−−−−−−−−→ t1. The guards and update assignments of the transitions

1 Only exported variables, belonging to a ε(p), appear in the component interface (see
Definition 7). We omit here this separation between internal and exported variables.

168 S. Bliudze et al.

of C are omitted. By default, an omitted guard is tt and an omitted assignment
is empty ∅. Clearly, all guards and update assignments are monotonic.

Definition 6 (Component semantics). The open semantics of a component
B = (Q, q0, V, σ0, P, ε,−→) is the LTS denoted [B] = (S, s0,−→), where S = Q ×
D

V , s0 = (q0, σ0) and −→ is the minimal transition relation satisfying the rule

q
a,g,u−−−→ q′ σ |= g σ′ = σ̃ [u] σ
σ̃ ⊆ ε(a)

(q, σ)
a,σ̃−−→ (q′, σ′)

. (1)

The closed semantics of B is given by the LTS denoted �B�, comprising only
those transitions of [B], where σ̃ = σ.

The use of the intermediate valuation σ̃ in the conclusion and the third
premise of (1) allows some variables to get new values before the transition is
fired. Thus the component is open to the exchange of data with its environment.
However, the fourth premise states that only the variables exported through the
ports participating in the interaction can be affected by the data transfer. The
closed semantics excludes this possibility of data exchange.

Definition 7 (Interaction model). For a finite set of component interfaces
(Vi, Pi, εi)i∈I , such that all Pi and all Vi are pairwise disjoint, let P =

⋃
i∈I Pi,

V =
⋃

i∈I Vi and ε : P → 2V such that, for any p ∈ Pi, ε(p) = εi(p).
An interaction model over (V, P, ε) is a set Γ ⊆ 2P × B

�
V × A

�
V , such that,

for any interaction (a, g, u) ∈ Γ , we have g ∈ B
�
ε(a) and u ∈ A

�
ε(a).

2

We assume that all sets of components and interfaces satisfy the disjointness
assumption above. We call the support of a set of ports a ⊆ P , denoted supp(a),
the set of the participating components. It is either the set {i ∈ I | a ∩ Pi 	= ∅}
(for P =

⋃n
i=1 Pi) or the set {B ∈ B | a ∩ PB 	= ∅} (for P =

⋃
B∈B PB). The

precise meaning of this notation will always be clear from the context.

Definition 8 (Composition). The composition of a finite set of components
B = (Qi, q

0
i , Vi, σ

0
i , Pi, εi,−→)i∈I with the interaction model Γ over (V, P, ε) is

the component Γ (B) = (Q, q0, V, σ0, P, ε,−→), where Q =
∏

i∈I Qi; q0 = (q0i)i∈I ;

σ0 : V → D is such that, for any v ∈ Vi, σ0(v) = σ0
i (v); and −→ is the minimal

transition relation satisfying the rule

∀i ∈ supp(a), qi
a∩Pi,gi,ui−−−−−−−→ q′

i ∀i 	∈ supp(a), qi = q′
i

g′ = g ∧
∧

i∈supp(a) gi u′ = u;ui∈supp(a)
i (a, g, u) ∈ Γ a 	= ∅

(qi)i∈I a,g′,u′
−−−−→ (q′

i)
i∈I

.

2 Notice that this definition allows (∅, tt, ∅) and (∅, ff, ∅) to be included in Γ .

Verification of Concurrent Design Patterns with Data 169

Intuitively, an interaction can be fired if all the involved components are ready
to fire their corresponding transitions. The other components do not change their
states. Both the interaction guard and those of the participating transitions must
be satisfied. The update assignment of the interaction is executed first, followed
by those of the components.

Specifying interaction models as sets of sets of ports is not practical due to
their potentially exponential size. An algebra of connectors was introduced in
[14] in order to structure interactions in BIP models. Connectors are hierarchi-
cal, tree-like structures with component ports at the leaves. They define sets of
interactions, based on the attributes of the nodes, which may be either trigger
(triangles in Fig. 1) or synchron (bullets in Fig. 1). If all sub-connectors of a
connector are synchrons, then an interaction is allowed by the connector only if
each subconnector can contribute. If at least one of the sub-connectors is a trig-
ger, then any interaction consisting of contributions of any set of sub-connectors
involving at least one of the triggers is allowed. The interaction model is defined
as the set of all interactions allowed by at least one of the connectors.

For instance, the connector T .tick�−−•(fail�−−•C.fail) of Fig. 1 is a two-level
hierarchical connector. In the subconnector fail�−−•C.fail, the port fail is a trig-
ger, whereas C.fail is a synchron. This subconnector allows two interactions:
{fail} and {C.fail, fail}. Similarly, at the top level, T .tick is a trigger, and the
subconnector is a synchron. The entire connector defines the following three
interactions (observe that � + T.t = � and T.z ∩ � = T.z):

(
{T.tick}, tt, ∅

)
,(

{fail, T.tick}, tt, ∅
)
,
(
{C.fail, fail, T.tick}, tt, T.z := T.z ∩ (C.zone + T.t)

)

In addition to interaction models, BIP relies on priority models that impose a
strict partial order on interactions. Intuitively, an interaction can be fired only if
all the higher-priority interactions available in the current state are disabled by
their respective guards. In the next sections, we will implicitly assume application
of the maximal progress priority μ, where (a, g, u) ≺μ (b, h, w) iff a ⊂ b and a 	= b.
For instance, the port T.tick will never fire alone if the port fail is also enabled.

Architectures. Architectures are partial BIP models, with dangling ports that
serve as placeholders for the eventual connection with operand components.

Definition 9 (Architecture). An architecture is a tuple A = (C, VA, PA, εA,
Γ), where

– PA and VA are sets of ports and variables, respectively;
– C is a finite set of components (called coordinators), such that

⋃
C∈C PC ⊆ PA

and
⋃

C∈C VC ⊆ VA; ports in PA \
⋃

C∈C PC , which do not belong to any of
the coordinators are called dangling;

– εA : PA → 2VA is an export function, such that εA(p) = εC(p), for any C ∈ C
and p ∈ PC and εA(p) ⊆ VA \

⋃
C∈C VC for any dangling port p; and

– Γ ⊆ 2PA × B
�
VA

× A
�
VA

is an interaction model over (VA, PA, εA).

Definition 10 (Application of an architecture). Let A = (C, VA, PA, εA,
Γ) be an architecture and let B be a set of components, such that VA ⊆

170 S. Bliudze et al.

V
def=

⋃
B∈B∪C VB, PA ⊆ P

def=
⋃

B∈B∪C PB and εA(p) = VA ∩ εB(p), for any
B ∈ B and p ∈ PA ∩ PB. The application of the architecture A to the
set of components B is the component A(B) def= μ

(
(Γ � P)(C ∪ B)

)
, where

Γ � P
def=

{
(a, g, u)

∣
∣ a ⊆ P, (a ∩ PA, g, u) ∈ Γ

}
is the interaction model over (V,

P, εA ∪
⋃

B∈B εB) and μ(. . .) denotes the application of maximal progress.

An architecture A enforces coordination constraints on the components in B.
The interface (VA, PA, εA) of an architecture A contains all ports of the coor-
dinators C and the dangling ports, which must belong to the components in B.
In the application A(B), the ports belonging to PA can only participate in the
interactions defined by the interaction model Γ of A. Ports which do not belong
to PA are not restricted and can participate in any interaction. The definition
of Γ � P requires that an interaction from Γ be involved in every interaction
belonging to Γ � P . To allow the ports from P \ PA to be fired independently
in A(B), one must have (∅, tt, ∅) ∈ Γ .

In our running example, there are four dangling ports. Intuitively, the archi-
tecture monitors the activation of the dangling port fail, then waits for a period
comprised between Min and Max and, unless resume is activated, asks for a
system reset through an invocation of the dangling port ask.

Definition 11 (Composition of architectures). Let Ai = (Ci, VAi
, PAi

, εAi
,

Γi), for i = 1, 2, be two architectures. The composition of A1 and A2 is the
architecture A1 ⊕ A2 = (C1 ∪ C2, VA1 ∪ VA2 , PA1 ∪ PA2 , εA1 ∪ εA2 , Γ), where

Γ =
{
(a, g1 ∧ g2, u1 ∧ u2)

∣
∣ (a ∩ PAi

, gi, ui) ∈ Γi, for i = 1, 2
}
. (2)

⊕ is associative and commutative.

It is well known that, since violations of safety properties are characterised
by finite executions, they can also be represented as state predicates: intuitively,
a safety property corresponds to the predicate characterising the set of states,
where this property is not violated.

For a component B, we denote S�B� and s0�B� the corresponding constituents
of �B� (see Definition 6).

Definition 12 (Properties). Let B be a component. A (safety) property of B
is a predicate Φ on S�B�, such that

(
(q, σ) |= Φ

)
∧ (σ′ � σ) implies (q, σ′) |= Φ.

A property Φ is initial if s0�B� |= Φ.

Although we define properties as state predicates, any appropriate logic can
be used to specify them. For instance, the property “There is always a pos-
sibility to reset the system after a single failure” (i.e. without additional fail-
ures having to occur in the meantime) enforced by the Failure Monitor archi-
tecture comprises the safety component that can be specified using CTL as
AG

(
fail → EX E [¬fail W reset]

)
. An architecture enforces its characteristic prop-

erty on its operand components. From this point of view, the set of coordinators
is not relevant, neither are their states. Thus, properties enforced by architec-
tures only involve the unrestricted composition of the operands:

Verification of Concurrent Design Patterns with Data 171

Definition 13 (Enforcing properties). Let A = (C, PA, VA, εA, Γ) be an
architecture; let B be a set of components and Φ an initial property of their
parallel composition Γ‖(B), with Γ‖ = {(a, tt, ∅) | a ⊆

⋃
B∈B PB}. We say that

A enforces Φ on B iff, for every state s = (sc, sb) reachable in �A(B)�, with
sc ∈

∏
C∈C S�C� and sb ∈

∏
B∈B S�B�, we have sb |= Φ.

In the following, when we say that an architecture enforces some property Φ,
Φ is supposed to be initial for the coordinated components. In [12], we formally
define upwards compatibility that ensures property preservation when composing
architectures. Informally, two architectures A1 and A2 are upwards compatible
iff, whenever their composition involves the fusion of two interactions a1 = a ∩
PA1 and a2 = a∩PA2 (see (2)) and one, say a1, is inhibited in a given state by a
larger interaction b1 ⊃ a1, there exists an interaction b2 ⊇ a2 that can be fused
with b1 to form an interaction enabled in the same state.

Theorem 1 (Preserving enforced properties). Let B be a set of compo-
nents; let Ai = (Ci, VAi

, PAi
, εAi

, Γi), for i = 1, 2, be two upwards compatible
architectures enforcing on B the properties Φ1 and Φ2 respectively. The compo-
sition A1 ⊕ A2 enforces on B the property Φ1 ∧ Φ2.

Theorem 1 implies that safe BIP systems can be designed compositionally : it
is sufficient to verify that (1) the applied architectures do enforce their character-
istic properties and (2) they are pairwise upwards compatible. To a large extent,
the latter can be carried out syntactically by analysing the structure of the con-
nectors that define the interaction models. The next section is devoted to the
encoding of architectures into pNets, addressing item 1 by symbolic verification.

4 Encoding of Architectures into Open pNets

We define the encoding of BIP architectures into pNets by associating to each
architecture A = (C, VA, PA, εA, Γ) with C = (QC , q0C , VC , σ0

C , PC , εC ,−→), for

each C ∈ C, and a partition D ⊆ 2PA of its dangling ports (i.e.
⊎

D∈D D = PA \⋃
C∈C PC), the corresponding pNet enc(A,D). For the sake of clarity, we define

the encoding without any priority model. Then, we provide a brief sketch of the
modifications necessary to encode maximal progress (implicitly assumed). Recall
that Γ is an interaction model over the interface (VA, PA, εA), i.e. these interface
elements are implicitly involved in the definition of Γ . We define enc(A,D) def=
〈〈(enc(C))C∈C ,D, enc(Γ)〉〉, where enc(C) and enc(Γ) are the encodings of a
coordinator C and the interaction model Γ respectively.

Below, we present both the encodings of coordinators and interaction models.
The key constraint is that we encode each connector by one synchronisation
vector. This is necessary to (1) preserve the structure of the system and (2) allow
the encoding of maximal progress.

Although somewhat technical, the encoding of coordinators is, in fact, pretty
straightforward, comprising three key ideas: (1) we introduce an additional tran-
sition (hence also an additional state) to explicitly initialise the variables; (2) we

172 S. Bliudze et al.

introduce additional input variables to manipulate the values provided to the
coordinator by the rest of the system for all exported variables; and (3) follow-
ing the classical technique [35], we simulate the absence of action by an additional
loop transition.

The encoding of connectors (interaction models) is more involved. Since a
connector represents a set of potential interactions, some ports may not partic-
ipate in all of them. To encode this possibility, we introduce, for each port, an
additional Boolean variable denoting whether the port participates in the inter-
action or not and, for each connector, a predicate characterising the interaction
pattern. Intuitively, the semantics of flat BIP connectors [14] depends on the
synchron/trigger annotations of ports. If all ports in a connector are synchrons,
the only allowed interaction is that comprising all the ports, i.e. they all have
to “agree to interact”. This case corresponds precisely to the semantics of syn-
chronisation vectors in pNets. If a connector has at least one trigger, then the
allowed interactions are those that comprise at least one trigger, i.e. they must be
“initiated by a trigger”. In a hierarchical connector, these principles are applied
recursively. Thus, we observe a “causality” relation among ports of a connector:
participation of a synchron in an interaction implies that of a trigger. Causal
Interaction Trees and Systems of Causal Rules, proposed in [15], formalise this
causality relation and provide transformations from connectors to Boolean pred-
icates and back. Since we use SMT techniques for the analysis of the resulting
pNet, the encoding presented below is optimised to reduce the number of vari-
ables by treating separately the “top-level” triggers (e.g. T.tick in the connector
T .tick�−−•(fail�−−•C.fail) in Fig. 1).

Encoding the Coordinators. The encoding of a coordinator C is a pLTS with:
(1) an initial state and an init transition that initialises all the variables to those
defined by the initial valuation σ0

C of C, (2) an action algebra that matches the
actions of the coordinator ports but adds, an additional Boolean action param-
eter, and also, for each exported variable x, a corresponding fresh input variable
?x′ to allow updates during interactions, (3) pLTS transitions that reflect the
original transitions of C with tt as parameter and (4) additional loop transitions
marked by ff. Formally, enc(C) def= 〈〈S, s0,−−−−→

enc(C)
〉〉, such that

– s0 	∈ QC is fresh and S = QC ∪ {s0},
– vars(s) = VC ∪{?x′ |x ∈ εC(p), p ∈ a, s

a−→}, for all s ∈ QC , and vars(s0) = ∅,

– let uinit def=
(
x := σ0

C(x)
)x∈VC and, for all s

a,g,u−−−→ s′ with u = (x := ex)x∈V

(with V ⊆VC), let u′ def=
(
x := ex

)x∈V \εC(a) ∪
(
x := ex

[
?x′

/x
])x∈V ∩εC(a), and

ε′
C(a) def= {?x′ |x ∈ εC(p), p ∈ a},

−−−−→
enc(C)

def=
{(

s, a
(
ε′
C(a), εC(a), tt

)
, g, u′, s′

) ∣
∣
∣ s

a,g,u−−−→ s′
}

∪
{(

s, a
(
ε′
C(a), εC(a), ff

)
, tt, ∅, s

) ∣
∣
∣ s ∈ QC ,∃s′ ∈ QC : s′ a−→

}

∪
{
(s0, init, tt, uinit , q0C)

}
.

Verification of Concurrent Design Patterns with Data 173

The loop transitions marked by ff will be used in the encoding of connectors.
Each BIP connector can define several interactions, i.e. ports involved in a con-
nector need not necessarily always participate. On the contrary, each action in a
pNet synchronisation vector must participate in the synchronisation. To address
this difference, we use the classical approach where non-participation of a port
in an interaction is simulated by an additional loop transition [35].

Figure 2 shows the encoding of the Failure Monitor architecture, including
the encodings of the two coordinators, i.e. enc(T) and enc(C). Notice that the
encoding in the figure is slightly optimised: some of the ports do not have an
associated Boolean value, nor the additional loop transitions. We will explain
this optimisation after we define the encoding of the interaction model.

Fig. 2. The open pNet encoding the failure monitor architecture (Fig. 1) without the
max progress priority model

Encoding the Interaction Model. The holes in enc(A,D) are indexed by the
elements of the partition D. For the encoding of our running example, we take
D =

{
{fail, resume}, {ask, reset}

}
. This corresponds to the intuition that the dan-

gling ports fail and resume will be provided by a monitored component, whereas
ask and reset correspond to the actions provided by the “environment” (other
components of the system) that are invoked in case of a persistent failure. As
for the encoding of the coordinators, in the synchronisation vectors of enc(Γ),
we will associate Boolean values to the actions corresponding to these ports.

The encoding of the interaction model is based on its representation as a
set of connectors. Indeed, as illustrated by the Failure Monitor architecture in
Fig. 1, each connector can define several allowed interactions, depending on its
hierarchical structure and the use of synchrons and triggers.

174 S. Bliudze et al.

We encode all interactions of a connector in one synchronisation vector. This
will allow us to also encode the maximal progress priority model. We use the
additional Boolean values associated to each port by the encoding of coordi-
nator components. For example, observe that the three ports in the connector
T .tick�−−•(fail�−−•C.fail) form a “causality chain”: C.fail can only participate
in an interaction if the dangling port fail participates, which in turn can only
happen if T .tick does so. These dependencies can be rewritten as Boolean impli-
cations C.fail ⇒ fail and fail ⇒ T.tick. The conjunction of these two implications
can be used as a guard for the synchronisation vector encoding this connector.

Within the scope of this connector, the port T .tick participates in all inter-
actions. Furthermore, it is not involved in any other connector. Hence, the loop
transition in enc(T) labelled by tick(ff) can never be taken and, therefore, can
be removed from the encoding. Since only the transition labelled by tick(tt) is
ever taken, the implication fail ⇒ T.tick is a tautology and can also be discarded.

We obtain the synchronisation vector SV0 shown in Fig. 2, where b0 and b1
are the Boolean values associated to the actions encoding the ports fail and C.fail.
The guard b1 ⇒ b0 encodes the causal relation between these ports. Notice that
all three ports are present in the synchronisation vector. Figure 2 shows the four
synchronisation vectors SV0–SV3 corresponding to the connectors in Fig. 1 and
an additional vector SV4, synchronising the init transitions of the two pLTSs.

In the general case, the encoding relies on the causal semantics of the algebra
of BIP connectors [15]. Disregarding the variables and data transfer, the Algebra
of Connectors AC(P) [13] provides a syntactic notation for the BIP connectors.
The causal semantics of the connectors, given in terms of the Algebra of Causal
Interaction Trees T (P), elicits the causal dependencies through an encoding
mapping τ : AC(P) → T (P). Another mapping R : T (P) → CR(P) encodes
causal interaction trees into systems of causal rules, which are Boolean implica-
tions similar to the ones in the example above. The AC(P), T (P) and CR(P)
representations of the connectors in Fig. 1 are shown in Table 1 (elements shown
in red can be removed for simplification as described in the example above).

Now we lift this encoding to the data-sensitive case. Below, we assume that,
as in Fig. 1, the interaction model is defined by a set of connectors, annotated
with Boolean guards and with update assignments. In particular, we assume
that the guards and update assignments are well-defined for any interaction
allowed by the connector. For example, the choice C.fail ? C.zone : � in the
update assignment T.z := T.z ∩

(
(C.fail ? C.zone : �) + T.t

)
associated to the

connector T .tick�−−•(fail�−−•C.fail) in Fig. 1 ensures that the assignment is well-
defined independently of whether C.fail participates or not. Let us denote by γ ⊂
AC(PA)×B

�
VA

×AVA
the set of connectors in the architecture A and by Px the set

of ports involved in the connector x ∈ γ. Then, the interaction model defined by
γ is Γ = {(a, g, u) | (x, g, u) ∈ γ, a ∈ ‖x‖} and the set of synchronisation vectors

Verification of Concurrent Design Patterns with Data 175

Table 1. Algebraic representations of the connectors in Fig. 1

Connector Causal Interaction Tree System of Causal Rules

fail C.failT .tick

T .tick

fail

C.fail

C.fail ⇒ fail ∧ T.tick

fail ⇒ T.tick

T.tick ⇒ tt

tt ⇒ T.tick

T .cancel C.resumeresume

resume

T .cancel C.resume

C.resume ⇒ resume ∧ T.cancel

T.cancel ⇒ resume ∧ C.resume

resume ⇒ tt

tt ⇒ resume

T .timeoutT C.timeoutCask

ask T .timeoutT C.timeoutC

C.timeoutC ⇒ ask ∧ T.timeoutT

T.timeoutT ⇒ ask ∧ C.timeoutC

ask ⇒ T.timeoutT ∧ C.timeoutC

tt ⇒ ask ∧ T.timeoutT ∧ C.timeoutC

C.resetreset

reset C.reset
C.reset ⇒ reset

reset ⇒ C.reset

tt ⇒ reset ∧ C.reset

encoding Γ is enc(Γ) def= {enc(x, g, u) | (x, g, u) ∈ γ}, with

enc(x, g, u) def=
({

p
(
εA(p), ε′

A(p), bp

) ∣
∣
∣ p ∈ Px ∩ P

})P∈PC∈C
C ∪D

→ α
(
bp∈Px
p

)

⎡

⎣
∧

R(τ(x))
[
bp/p

]
∧

∧

(x:=ex)∈u

(?x′ = ex) ∧
∧

x∈εA(x),x
∈u

(?x′ = x)

⎤

⎦ , (3)

with bp∈Px
p fresh Boolean variables, α a fresh name, τ : AC(PA) → T (PA) and

R : T (PA) → CR(PA) the two mappings [15] discussed above and illustrated in
Table 1,

[
bp/p

]
is the substitution that replaces in the expression that precedes

it all occurrences of all p by corresponding variables bp.
For the sake of clarity, we simplify the case study encoding in Fig. 2 by reusing

the port names of the original architecture instead of fresh names α. This is made
possible by the fact that each synchronisation vector involves at most one action
of interest (see the properties in [12]).

In the following theorem, we claim an isomorphism between the open
automaton semantics of a pNet encoding a BIP architecture and the LTS seman-
tics of this architecture applied to a set of simple components. We omit the formal
definition of this isomorphism relation. However, noting that open automata are,
essentially, symbolic representations of automata with data, we can summarise
it as follows: a transition belongs to the LTS iff a corresponding open transition
belongs to the open automaton and the source and target data values of the
LTS transition satisfy the predicate and implement the assignments of the open
transition.

176 S. Bliudze et al.

Theorem 2. The open automaton [enc(A,D)] corresponding to enc(A,D) is
isomorphic to the LTS �Γ

(
CA, (BD)D∈D)

� (see Definition 6), with, for each D ∈
D, the component BD

def= ({q}, q, VD, σ0
D,D, εD,−→), with a fresh state q and

VD =
⋃

p∈D

εA(p) , σ0
D(v) = ⊥, for all v ∈ VD ,

−→ =
{
(q, p, tt, ∅, q)

∣
∣ p ∈ D

}
, εD(p) = εA(p), for all p ∈ D .

Encoding of the Maximal Progress. We only present the key idea, which consists
in introducing an additional Boolean variable, for each port, for which we have
introduced one in enc(A,D). Intuitively, the Boolean variables introduced for
the encoding of interaction models determine whether it is the original transition
labeled by the port that is executed (tt), or rather the corresponding self-loop,
introduced by the encoding (ff). The new variables determine whether there is
an original transition labelled by p that could be executed from the same state,
i.e., with bp the variable introduced above for the encoding without maximal

progress, q
p(tt,bp)−−−−−→ q′ iff ∃q′′ : q

p(bp)−−−→ q′′ with bp = tt in enc(A,D). In the SV
guard, we have to check whether all ports leading to p in the causal interaction
tree τ(x) can be fired (see the second column of Table 1 for examples). If so, then
p must be fired, i.e. p(ff) must be blocked.

Fig. 3. The open automaton of the failure monitor architecture

Practical Experiments. The above encoding provides a mechanism for the sym-
bolic verification of architectures using our existing tool [36] to compute the
open automaton semantics of an open pNet. This tool computes open transi-
tions from pLTS behaviours and synchronisation vectors of the pNet, then uses
an SMT engine to check satisfiability of their predicates, minimising the size of
the resulting automaton.

In Fig. 3 we show the full open automaton obtained from the pNet in Fig. 2.
Due to space limitations, we do not show the details of the open transitions, but

Verification of Concurrent Design Patterns with Data 177

only the assignments of state variables, some useful parts of the predicates, and
the resulting action; full details can be found in [12]. This automaton has 12
transitions, including those encoding various possible firing of some interactions,
e.g. OT2 and OT3 for fail. Notice, however, that the global actions of these
open transitions have an additional Boolean parameter. In this context, model
checking should be understood after application of the encoding, namely here the
original fail event must be an effective “fail” of the hole “B”, that is a fail(true)
action in the open automaton.

Model-checking of open-automaton is out of the scope of this paper, though
the resulting automaton here is small enough to observe the kind of properties
we can prove. It is clear that our encoding allows to test specific values of state-
variables in formulas, like e.g.:

A [(z = �) W fail] ∧ AG
(
reset → A [(z = �) W fail]

)
. (4)

that says that as long as no failure has occured, the z variable of the T component
has the value �.

But we can also (as long as we get a proper axiomatisation of our data
operators in the SMT engine) handle more involved data properties, like here
the fact that a reset can only be requested within the specified delay after a
failure:

∀T0, T1 ∈ Z, AG
(
(fail ∧ T.t = T0) →

A
[(

(ask ∧ T.t = T1) → (T1 − T0 ∈ C.zone)
)
W (reset ∨ resume)

])
, (5)

Last, a detailed study shows that the safety property stated in Definition 12
does not hold, because of the fail loop on state 11. This is because we did not use
the maximal progress assumption here. If we do, we get the corrected behaviour
where OT7 disappears, and OT2 and OT10 are restricted to b0 = ff. This one
verifies all the properties listed above.

5 Related Work

The design methodology based on BIP architectures is inspired by the notion of
design patterns introduced in [24]. It is radically different insofar as BIP archi-
tectures posses formal semantics; their composition is well defined and preserves
their characteristic properties. This is a relatively novel trend with few compa-
rable works, whereof the most relevant is a theory formalising common architec-
tural styles, such as publisher-subscriber or blackboard, proposed in [32,33].

Although direct verification of BIP models is possible [4,9–11,37], none of
these previous works address compositional verification of parameterised BIP
systems with data and maximal progress priorities achieved in the present paper.

From a broader perspective, basic research on behaviour models and verifica-
tion algorithms for data-sensitive systems started in the nineties, with the sem-
inal work of Hennessy, Lin, and their colleagues on value-passing systems with

178 S. Bliudze et al.

assignments [26,30,31]. Later, many different works addressing various classes
of infinite-state systems and/or parameterised topologies have been published,
using combinations of approaches, often including predicate abstraction and
SMT satisfiability (e.g. [1,16,20,21,25]). With respect to these, we use symbolic
representations not only to get a finite representation of infinite spaces, but also
to express the (data-sensitive) synchronisations with the environment, making
our models suitable for compositional verification. Among these works, several
have shown the capacity of the SMT engines (either Z3 or Yikes) as servers
for solving verification conditions of the algorithms, for large case-studies (e.g.
[18,22]).

As compositional proof of safety is difficult, some approaches rely on theorem
proving to ensure the safety of component operations. Coqots and Pycots [17]
even manage to prove the safety of reconfiguration procedures which are known
to be highly difficult to verify, and massively parameterised. The approach relies
on a high expertise and significant efforts from the user. Here, we rely on auto-
matic verification thanks to the SMT solver but we cannot prove the safety of
the reconfiguration procedure.

In [23], the authors propose a compositional proof system for distributed
objects that is suitable for implementation within the KeY framework [8] and
uses a Hoare logic approach. Compared to this approach, we do not deal with
complex history-based specifications and use interaction specification and SMT-
reasoning instead of Hoare logic.

6 Conclusion

BIP architectures are composition tools that enforce safety properties; the com-
position of architectures entails the composition of the associated properties. We
have extended architectures with data-sensitive interactions, and proved that
this extension still guarantees the preservation of safety properties by archi-
tecture composition, under reasonable assumptions. This extends the original
compositional methodology offered by BIP architectures. Then we use pNets as
a semantic formalism to encode architectures with data. pNet is a low level coor-
dination model for open systems, in which composition preserves bisimulation
equivalences. pNet is equipped with tools computing its behavioural semantics in
terms of symbolic automata, allowing model-checking and equivalence checking
with algorithms relying on SMT engines. As a result, we obtain automatic and
compositional guarantees of safety properties with data where compositionality
is given by the BIP architectures, and pNet tools provide automatic verification
of the properties of each architecture.

The translational approach allows us to benefit from the methods and tools
developed separately in BIP and pNets communities, avoiding the additional
effort of designing the corresponding tools in both contexts from scratch.

The presented work opens a number of avenues for future work, among which
the most immediate ones consist in (1) developing tools that would implement
the discussed encoding and verification techniques; (2) studying the preservation

Verification of Concurrent Design Patterns with Data 179

of liveness properties by architecture composition under assumptions similar
to those discussed in [5] and (3) generalisation to priority models other than
maximal progress.

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theo-
ries. JSAT 8(1/2), 29–61 (2012). https://satassociation.org/jsat/index.php/jsat/
article/view/93

2. Ameur-Boulifa, R., Henrio, L., Kulankhina, O., Madelaine, E., Savu, A.:
Behavioural semantics for asynchronous components. J. Log. Algebr. Methods Pro-
gram. 89, 1–40 (2017). https://doi.org/10.1016/j.jlamp.2017.02.003, http://www.
sciencedirect.com/science/article/pii/S2352220817300287

3. Arnold, A.: Synchronised behaviours of processes and rational relations. Acta
Inform. 17, 21–29 (1982)

4. Aştefănoaei, L., Ben Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Composi-
tional verification of parameterised timed systems. In: Havelund, K., Holzmann,
G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 66–81. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 6

5. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. Form. Asp. Comput. 18(2), 207–231 (2016)

6. Baranov, E.: A semantic framework for architecture modelling. Ph.D. thesis, EPFL
(2017)

7. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011). https://doi.org/10.1109/MS.2011.27

8. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69061-0

9. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-finder: a tool for composi-
tional deadlock detection and verification. In: CAV, pp. 614–619 (2009). https://
doi.org/10.1007/978-3-642-02658-4 45

10. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-Finder 2: towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 32

11. Bliudze, S., et al.: Formal verification of infinite-state BIP models. In: Finkbeiner,
B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 25

12. Bliudze, S., Henrio, L., Madelaine, E.: Verification of concurrent design patterns
with data. Technical report, Inria (2019, to appear)

13. Bliudze, S., Sifakis, J.: The algebra of connectors–structuring interaction in BIP.
In: Proceedings of the 7th ACM & IEEE International Conference on Embed-
ded Software, EMSOFT 2007, pp. 11–20. ACM SigBED, Salzburg, October 2007.
https://doi.org/10.1145/1289927.1289935

14. Bliudze, S., Sifakis, J.: The algebra of connectors–structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/TC.
2008.26

https://satassociation.org/jsat/index.php/jsat/article/view/93
https://satassociation.org/jsat/index.php/jsat/article/view/93
https://doi.org/10.1016/j.jlamp.2017.02.003
http://www.sciencedirect.com/science/article/pii/S2352220817300287
http://www.sciencedirect.com/science/article/pii/S2352220817300287
https://doi.org/10.1007/978-3-319-17524-9_6
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-642-02658-4_45
https://doi.org/10.1007/978-3-642-02658-4_45
https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/978-3-319-24953-7_25
https://doi.org/10.1145/1289927.1289935
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26

180 S. Bliudze et al.

15. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Form. Meth-
ods Syst. Des. 36(2), 167–194 (2010). https://doi.org/10.1007/s10703-010-0091-z

16. Bruni, R., de Frutos-Escrig, D., Mart́ı-Oliet, N., Montanari, U.: Bisimilarity con-
gruences for open terms and term graphs via tile logic. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 20

17. Buisson, J., Calvacante, E., Dagnat, F., Leroux, E., Martinez, S.: Coqcots &
Pycots: non-stopping components for safe dynamic reconfiguration. In: CBSE 2014:
proceedings of the 17th International ACM SIGSOFT Symposium on Component-
Based Software Engineering, Lille, France, p. 1, June 2014. https://hal.archives-
ouvertes.fr/hal-00984365, https://doi.org/10.1145/2602458.2602459

18. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verifica-
tion of data-aware processes via array-based systems (extended version). CoRR
abs/1806.11459 (2018). http://arxiv.org/abs/1806.11459

19. Cansado, A., Madelaine, E.: Specification and verification for grid component-
based applications: from models to tools. In: de Boer, F.S., Bonsangue, M.M.,
Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 180–203. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04167-9 10

20. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

21. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

22. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. CoRR abs/1310.6847 (2013). http://arxiv.org/abs/1310.
6847

23. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of dis-
tributed systems: component reasoning for concurrent objects. J. Log. Algebr.
Program. 81(3), 227–256 (2012). https://doi.org/10.1016/j.jlap.2012.01.003. The
22nd Nordic Workshop on Programming Theory (NWPT 2010)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston (1994)

25. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of
array-based systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 6

26. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

27. Henrio, L., Madelaine, E., Zhang, M.: pNets: an expressive model for parameterised
networks of processes. In: 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP 2015). IEEE (2015)

28. Henrio, L., Kulankhina, O., Li, S., Madelaine, E.: Integrated environment for ver-
ifying and running distributed components. In: Stevens, P., W ↪asowski, A. (eds.)
FASE 2016. LNCS, vol. 9633, pp. 66–83. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49665-7 5

29. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent
processes. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
175–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 12

https://doi.org/10.1007/s10703-010-0091-z
https://doi.org/10.1007/3-540-44618-4_20
https://hal.archives-ouvertes.fr/hal-00984365
https://hal.archives-ouvertes.fr/hal-00984365
https://doi.org/10.1145/2602458.2602459
http://arxiv.org/abs/1806.11459
https://doi.org/10.1007/978-3-642-04167-9_10
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-41540-6_29
http://arxiv.org/abs/1310.6847
http://arxiv.org/abs/1310.6847
https://doi.org/10.1016/j.jlap.2012.01.003
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-662-49665-7_5
https://doi.org/10.1007/978-3-662-49665-7_5
https://doi.org/10.1007/978-3-319-39570-8_12

Verification of Concurrent Design Patterns with Data 181

30. Lin, H.: Symbolic transition graph with assignment. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 47

31. Lin, H.: Model checking value-passing processes. In: 8th Asia-Pacific Software Engi-
neering Conference (APSEC 2001). Macau, December 2001

32. Marmsoler, D.: Towards a theory of architectural styles. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pp. 823–825. ACM, New York (2014). https://doi.org/10.1145/2635868.
2661683

33. Marmsoler, D.: Hierarchical specification and verification of architectural design
patterns. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 149–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1 9

34. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis, J.:
Architecture-based design: A satellite on-board software case study. In: 13th Inter-
national Conference on Formal Aspects of Component Software (FACS 2016)
(2016)

35. Milner, R.: Calculi for synchrony and asynchrony. TCS 25(3), 267–310 (1983).
https://doi.org/10.1016/0304-3975(83)90114-7

36. Qin, X., Bliudze, S., Madelaine, E., Zhang, M.: Using SMT engine to generate
symbolic automata. In: 18th International Workshop on Automated Verification
of Critical Systems (AVOCS 2018). Electronic Communications of the EASST
(2018)

37. Qiang, W., Bliudze, S.: Verification of component-based systems via predicate
abstraction and simultaneous set reduction. In: Ganty, P., Loreti, M. (eds.) TGC
2015. LNCS, vol. 9533, pp. 147–162. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-28766-9 10

https://doi.org/10.1007/3-540-61604-7_47
https://doi.org/10.1145/2635868.2661683
https://doi.org/10.1145/2635868.2661683
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1007/978-3-319-28766-9_10
https://doi.org/10.1007/978-3-319-28766-9_10

Self-organising Coordination Regions:
A Pattern for Edge Computing

Roberto Casadei, Danilo Pianini(B), Mirko Viroli, and Antonio Natali

Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{roby.casadei,danilo.pianini,mirko.viroli,antonio.natali}@unibo.it

Abstract. Design patterns are key in software engineering, for they
capture the knowledge of recurrent problems and associated solutions
in specific design contexts. Emerging distributed computing scenarios,
such as the Internet of Things, Cyber-Physical Systems, and Edge Com-
puting, define a novel and still largely unexplored application context,
where identifying recurrent patterns can be extremely valuable to main-
stream development of language mechanisms, algorithms, architectures
and supporting platforms—keeping a balanced trade-off between gener-
ality, applicability, and guidance. In this work, we present a design pat-
tern, named Self-organising Coordination Regions (SCR), which aims to
support scalable monitoring and control in distributed systems. Specifi-
cally, it is a decentralised coordination pattern for partitioned orchestra-
tion of devices (typically on a spatial basis), which provides adaptivity,
resilience, and distributed decision-making in large-scale situated sys-
tems. It works through a self-organising construction of regions of space,
where internal coordination activities are regulated via feedback/control
flows among leaders and worker nodes. We present the pattern, provide
a template implementation in the Aggregate Computing framework, and
evaluate it through simulation of a case study in Edge Computing.

Keywords: Coordination · Distributed systems · Design patterns ·
Decentralised orchestration · Self-organisation · Edge computing

1 Introduction

Design Patterns are paramount in software engineering. They capture expert
knowledge by describing reasoned solution schemas for a well-defined class of
repeatedly occurring problems in specific contexts [8]. Patterns help harnessing
complexity by characterising systems of forces arising in a context, and strate-
gies to resolve them [1], while abstracting from implementation details, denoting
intents and properties of solutions, providing motivated guidance towards desired
configurations, and supporting documentation and team communication through
a common vocabulary [8]. Over time, several classes of patterns have been dis-
covered to assist designers and implementors of software-based systems, resulting
in catalogues of patterns, e.g., for object-oriented software [21], concurrency [40],
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 182–199, 2019.
https://doi.org/10.1007/978-3-030-22397-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_11

Self-organising Coordination Regions: A Pattern for Edge Computing 183

messaging [25], reactive systems [44], fault-tolerant software [23] etc. Moreover,
patterns can be classified into multiple taxonomies (e.g., by level of abstraction
into architectural, design patterns, and idioms [8]), can be related to each other
(e.g., by refinement, variance, and combination [8]), and can be presented using
different formats (e.g., Alexandrian [1], GoF [21], and POSA [8]).

In this paper, we consider the context of coordination in large-scale dis-
tributed systems. Specifically, we focus on scenarios – e.g., pervasive computing,
Collective Adaptive Systems (CAS), Internet of Things (IoT), Cyber-Physical
Systems (CPS), and Edge Computing – characterised by the following forces:

– Distribution. Having distributed components leads to concurrency, lack of
global clock, and independent (and often frequent) failure or unavailability of
components [14]—with corresponding implications.

– Situatedness. Components may be logically or physically immersed into an
environment such that their location and context are relevant, since their
inputs and outputs may be limited to the surroundings.

– Heterogeneity. Components may differ by their computational capabilities,
energy requirements, and general dependability.

– Large scale. Systems may be too large to be centrally orchestrated or manually
operated.

Given the rather intense research ongoing in these contexts, their broad scope,
complexity of the challenges, and proliferation of paradigms, some catalogues
of design patterns have emerged. Relevant examples include pattern catalogues
for multi-agent architectures [24] and ensemble structures [26], bio-inspired com-
puting [20], and decentralised control [49] and coordination [17] in self-adaptive
systems. They typically work at different levels of abstractions, from principles
and high-level behaviour components to mathematically-defined evolution rules,
and do not generally provide complete solutions for the complex problem of
scalable coordination of large-scale situated systems.

Accordingly, in this paper we provide three original contributions, namely,
we: (i) present a general, decentralised coordination design pattern for parti-
tioned orchestration that aims to provide adaptivity and resilience in large-scale
situated systems; (ii) improve over the existing instances by proposing a feed-
back loop dynamically resizing partitions, to be used e.g. for load balancing; (iii)
propose a possible implementation of the pattern in the Aggregate Computing
framework [4]; and (iv) show an application of the pattern in the context of edge
computing, through a case study.

The pattern we describe finds application in several scenarios where a sparse
set of leaders is expected to collect feedback from and enact decisions for a
subset of other participants—examples include distributed sensing [12], target
counting [37], group management for target tracking [32], decentralised ser-
vice orchestration [29], self-adaptative software [49], Wireless Sensor Networks
(WSN) [19,31], robot swarm control [48], crowd tracking and steering [4,10],
peer-to-peer clouds [13], and coordination in hierarchical thing/edge/fog/cloud
environments (as explored in this paper). We call this pattern Self-organising
Coordination Regions (SCR), since it works through an internally-regulated,

184 R. Casadei et al.

adaptive construction of regions where activity is coordinated via feedback/con-
trol flows among master and worker nodes. In other words, it leverages asym-
metry in complex coordination scenarios and accordingly proposes a tunable
trade-off between centralised and decentralised decision-making.

The rest of this paper is structured as follows, with content following roughly
the GoF pattern template form [21]. Section 2 provides context, a motivating
example and discusses related work and patterns. Section 3 presents the pattern
by providing its intent, synonyms, structure, dynamics as well as known uses,
consequences and methodological guidelines of its application. Section 4 shows an
implementation in the Aggregate Computing framework, and discusses variants.
Section 5 provides empirical evaluation. Finally, Sect. 6 concludes the paper.

2 Motivation

2.1 Motivating Scenario

Background: Edge Computing. Fog and edge computing [7,41,43] are emerg-
ing paradigms with the goal of bringing cloud-like functionality at the edge of
the network, i.e., close to end users and to where data is generated and used
(or, generally, to where computational intelligence is most needed—cf., IoT and
CPS). There are at least three cases in which this is highly desirable: (i) when
the cloud is not available, e.g., because of lack of Internet connectivity; (ii) when
the cloud is available but it cannot satisfy application requirements, because of
data privacy issues or lack of real-time guarantees due to large round-trip time to
remote data centres; (iii) when the cloud is available and suitable but it is costly,
e.g., in terms of subscription or network bandwidth. That is, edge computing is
in some cases a necessity, but in general it represents a complementary model
to cloud computing which enables a whole new set of possibilities ranging from
infrastructure-level optimisations (like exploiting idle edge devices or filtering
data before sending it to the cloud) to flexibility in service-level agreements and
resilience through decentralisation.

Case Study. As paradigmatic case study, consider a multimedia application that
requires computation over user-generated video stream and low-latency commu-
nication. Example applications are, e.g., metropolitan collaborative surveillance
[16] and multiplayer gaming. For the latter, pervasive usage of multi-view and
360-degree-view video streams is currently limited by delay intolerance and exces-
sive bandwidth usage [5]. Moreover, relevance of low-latency video processing will
likely increase in the future with advancements in mobile augmented reality tech-
nology [39]. One wants such multimedia application to execute on a smart urban
environment, where users, equipped with mobile devices (smartphones, or even
augmented-reality equipment) can move. The smart city is populated with a net-
work of static (non-mobile) edge servers, with which mobile devices can commu-
nicate. The goal is to adaptively select a subset of edge nodes (enough to sustain
the computation) to work as local leaders, gather and redirect the video streams
from user devices to one leader edge device, process the data gathered, and finally
spread the computation result back to the users.

Self-organising Coordination Regions: A Pattern for Edge Computing 185

2.2 Problem and Forces

The SCR pattern addresses the problem of coordination in situations where:

1. heterogeneity creates asymmetry in individual capabilities, or tasks are so
complex that collaboration is essential;

2. a locality principle holds, as context is key and cost is typically proportional
to the distance between sources, processes, and users;

3. neither full centralisation nor full decentralisation in control and decision
making is possible or desirable; and

4. the environment and system structure are dynamic (e.g., due to mobility or
failure).

2.3 Related Work and Patterns

The SCR pattern recurs in a number of scientific works and proposed solutions,
and is implemented variously.

Related Patterns and Abstractions. Related catalogues of design pattern
and abstractions include [17], addressing decentralised coordination in self-
organising emergent systems; [20], covering bio-inspired patterns; [49], focussing
on decentralised control in self-adaptive systems; and [45], providing a library
of reusable components of distributed behaviour. Some patterns there presented
constitute the foundations of the current work. Indeed, the SCR pattern is a
combination of three fundamental coordination (sub-)patterns:

– Multi-leader election. In distributed systems, it is sometimes useful to break
symmetry or introduce multiple local centralisation points to simplify deci-
sion making or coordination. This pattern consists in the election of multiple
leaders to uniformly cover a logical or physical space.

– Information propagation. Communication patterns that abstract from low-
level implementation or networking details are essential in distributed sys-
tems. This pattern consists of propagating information from one or more
sources outward, independently of the underlying system structure.

– Information collection. This pattern consists of collecting information from a
set of sources into one or more sinks, still abstracting from low-level details.

In order to account for situations where devices can fail or change, coherently
to the self-organisation principle, we should consider the above patterns as con-
tinuous processes (or, at least, as processes that are reactive [34] to failure or
change). This means that information (updates) must move continuously, as a
stream (logically, and despite potential optimisations), as captured by the infor-
mation flow abstraction, defined in [18] as follows:

An information flow is a stream of information from source localities
towards destination localities and this stream is maintained and regularly
updated to reflect changes in the system. Between sources and destinations,
a flow can pass other localities where new information can be aggregated
and combined into the information flow.

186 R. Casadei et al.

A common way to implement information flows is by activating processes that
create and maintain structures for the communication paths. One such example
is the gradient [2,15,17,33], a self-healing distributed data structure mapping
any node of the system to its hop-by-hop estimated distance from source points:
it provides an underlying carrier for controlling effective directions of propaga-
tion/collection of data flows. Information flows can be naturally expressed in the
library of [45], which fosters the definition of collective behaviour of an ensemble
of devices through a composition of self-organising patterns, drawing inspiration
from biology [20]. The aforementioned sub-patterns are “building blocks” in [4],
where are respectively called S (for Sparse-choice—i.e., a scattered selection
from the set of participating devices), G (for Gradient-cast—i.e., a multicast
diffusing information along a gradient), and C (for Converge-cast—i.e., a mul-
ticast aggregating information to a sink device).

A well-known organisational meta-pattern for self-adaptive systems is
MAPE [30]: it suggests structuring the system feedback control loop into four
components: Monitor, Analyse, Plan, and Execute. In [49], several MAPE pat-
terns are provided for organising the adaptation logic in decentralised self-
adaptive systems. These are related and operate in a similar design context,
but their focus is on internal organisation of system adaptivity rather than on
external, application design. In particular, the Regional Planning pattern [49]
consists in distributing Planning components to different “software regions” (i.e.,
loosely coupled software subsystems); there, they collect data from Analyse com-
ponents (which are fed by Monitoring components) and command Execute com-
ponents for enaction of planned adaptations. SCR subsumes Regional Planning:
it enables the design of self-adaptation control loops but goes beyond that, by
covering various assignments of responsibilities to the participants and being
directly usable for application logic as well; e.g., leaders in SCR may gather
regional data, resolve contention, or propagate events.

Known Uses. Various forms and uses of the SCR pattern can be found in
literature. In [29], SCR is used to design a decentralised service orchestration
system; there, a workflow specification is split for scalability and performance
into sub-workflows executed by multiple collaborating engines that are migrated
to different network regions based on placement analysis. In [19], SCR is applied
in the design of a WSN middleware, TCMote, where the system is organised in
(possibly hierarchical) sensor regions governed by leaders with higher capabil-
ities than the other region nodes (called motes); TCMote uses tuple channels
for one-to-many and many-to-one communication between region sensors and
the region leader in a single-hop. In the WSN middleware TS-Mid [31], tuple
space-based logical regions are used for power saving; there, regional leaders dis-
patch operations to normal nodes and transmit results to sink nodes. In [48], the
authors leverage dynamically selected, human-controlled leaders to guide robot
swarms towards goal regions. Other known uses of the pattern include distributed
sensing [12], target counting [37], group management for target tracking [32],
design of self-adaptation control loops [49] (as discussed above), crowd tracking
and steering [4,10] in opportunistic IoT, as well as peer-to-peer clouds [13].

Self-organising Coordination Regions: A Pattern for Edge Computing 187

Fig. 1. SCR from a structural perspective—see description in Sect. 3.1. Notation:
“gateway-like” nodes denote candidate leaders (red for active ones, grey for unelected
ones); small grey squares denote relays; small grey circles denote users/workers (Color
figure online)

3 Pattern Description

Intent. Support scalable control and monitoring of a distributed system, with
resiliency to failures and dynamicity, and balancing centralisation and decentral-
isation in decision making.

Name and Synonyms

– Self-organising Coordination Regions. This reflects the decentralised nature of
this pattern, as well as its support for coordination through scoped, endoge-
nous, emergent structures and dynamics.

– Decentralised Multi-Orchestration. This is also a suitable name, as the pattern
defines a decentralised coordination strategy for injecting multiple orchestra-
tion points into a system, creating corresponding system partitions regulated
through feedback loops.

– SGCG. This name denotes the chain of aggregate programming blocks that
provides a possible implementation schema of the pattern (see Sect. 4).

3.1 Structure and Participants

Structurally, the pattern is organised as of Fig. 1. The system is a network
of nodes on which spatially extended and dynamic structures, called regions,
emerge, each “containing” a subset of devices. These components can assume at
any time one or more of the following roles:

– Candidate leader : a device eligible for leader election—even though the pat-
tern itself makes no assumption on the network structure, on an edge deploy-
ment usually candidate leaders correspond to edge servers;

188 R. Casadei et al.

– Leader : the device responsible for obtaining information from and propagat-
ing decisions within a region;

– User (or worker): device which sends/receives information to/from the leader
of the region it is part of;

– Relay : non-user and non-candidate device participating in the computation.

Fig. 2. SCR from a dynamical perspective—see description in Sect. 3.2. Notation: solid
arrows represent required inputs or unavoidable perturbations; dashed lines denote
possible feedback loops

3.2 Dynamics and Collaborations

The pattern induces a computational behaviour organised in four phases:

1. Election of leaders. Leaders are elected from the set of candidates.
2. Formation of regions. Structures are created such that each user is assigned

to a single leader, and information can flow in both directions through proper
communication paths.

3. Information flow from users to leaders. User nodes stream data or updates
needed by leaders to achieve the system goals, and some processing can occur
en-route—examples include sensor data, local events, service requests, or feed-
back information for the assigned tasks.

4. Information flow from leaders to users. Leaders stream computation results
to all members of their managed region—it may be a decision to be enacted,
a collective view to be propagated, instructions to be assigned, and so on.

Note that these phases are only conceptually sequential: they are rather
dynamical processes that happen concurrently, are continuously revised, and
are related by input/output dependencies (see Fig. 2). Specifically, the leader
election phase can be thought as an active process black box that can react to
various perturbations to automatically revise the selection of leaders and shape
of regions; then, as regions change, the corresponding collection and propagation
processes need to adapt. Moreover, the system can be configured with feedback

Self-organising Coordination Regions: A Pattern for Edge Computing 189

loops: information propagated by leaders may produce an effect on workers that
can subsequently get perceived by leaders through collected data.

Variants and Extensions

– Leader election with pre-established regions. In some cases, the regions must
be decided before the corresponding leaders are elected.

– Connected leaders. In some scenario, communication between leaders is
desired to allow for global, system-wide coordination that goes beyond the
needs of individual regions.

– Hierarchical organisation. The pattern can be applied recursively: a region
can be split into sub-regions governed by sub-leaders, and so on.

– Overlapping regions. Multiple instances of the pattern may be concurrently
spawned with different regions, in order to provide in each device a superim-
posed view of its various “localities”. This requires the capability to execute
some parts of the distributed coordination algorithm concurrently.

3.3 Applicability

When to Apply. Use of the SCR pattern is encouraged in any of the following:

– A large-scale situated system needs to self-organise in such a way that its
components can be monitored and coordinated according to a view larger
than local, such as in complex situation recognition.

– A balance between centralisation and decentralisation is required to support
effective decision making in large-scale, dynamic contexts.

– All or part of the information should be processed nearby the users, because
of resource constraints like bandwidth, storage, energy, and so on.

– The underlying network structure is unknown, the system is open (new relays,
leader candidates and users can join and leave the system dynamically), fail-
ures are possible, or other events can dynamically change the network struc-
ture.

When Not to Apply. Adoption of the SCR pattern is discouraged (or would
lead to degenerate cases) in the following circumstances:

– Decision making can be carried out in a fully local way.
– Decision making must be entirely centralised (actually, this could be tackled

by electing a single leader, but more efficient solutions may exist for less
dynamic scenarios).

– The network structure is statically defined.

190 R. Casadei et al.

3.4 Consequences

The SCR pattern has the following consequences:

– Hybrid decision making. Decisions are taken considering a tunable subset of
the whole system, de-facto creating a hybrid between centralised and decen-
tralised decision making.

– Sub-network isolation. Unless an extended version of the pattern is deployed,
users belonging to different regions do not participate in the same sub-system
(i.e., they do not exchange data).

– Reduced dependence from deployment and network structure. SCR creates
a sort of dynamic, adaptive network overlay structure on top of the existing
communication infrastructure. By merely organising application logic on that
overlay, the specific shape of the underlying network can be abstracted away,
allowing for easier porting to diverse setups (e.g. cloud, edge, purely P2P).

– Eventual consistency. Temporal mobility, loss of messages, and device failures,
only temporarily affect the values collected in leaders, and hence, deviation
from the actual global view.

4 Implementation

In this section, we describe some possible variants in the implementation strategy
of the four phases described in previous section (Sect. 4.1), and then provide an
example specification in the framework of Aggregate Computing (Sect. 4.2).

4.1 Implementation Issues

Election of Leaders and Formation of Regions

– Consensus strategy. Consensus on leadership may involve centralised algo-
rithms, or resort to (more challenging) algorithms for distributed and asyn-
chronous systems [42].

– Candidate leaders. In general, there could be constraints or preferences con-
cerning which nodes can be selected as leaders: coordinators are usually
preferably static, dependable nodes with significant computational and net-
work resources, and little or no power saving concern—such as edge gateways
or fog nodes. Trust could also be used to rate and therefore include/exclude
nodes from the candidate set based on observed activity [9].

– Time of election. Leaders can be elected statically (i.e., before system execu-
tion) or be dynamically reconsidered, continuously or after a delay.

Self-organising Coordination Regions: A Pattern for Edge Computing 191

– Objectives. The goal is usually a configuration of leaders that must be valid
or optimised with respect to a particular property—e.g., uniformity in spa-
tial coverage (as of a smart city environment) or balancing of load (tasks,
workers).

– Adaptivity and resilience. A new leader election process must be activated
when the current leader configuration gets invalidated. E.g., this could happen
due to mobility, change of load, or failure of some leader.

Information Spreading

– Gossip. One way to implement spreading of information is through gossip pro-
tocols [6], which are suitable for letting information flow from leaders to users
under the condition that the generated information is monotonic (namely, it
can only change in a single direction). Whenever such an assumption does not
hold, gossip algorithms should get periodically reset (or overlapping replicates
of the algorithm should execute in parallel [36]).

– Gradient-based information cast. A class of algorithms for distributed infor-
mation spreading is rooted on the idea of carrying information along with a
monotonically-increasing (logical or physical) distance from the information
source. This is suitable both for generating regions once leaders are elected
(by selecting the closest leader) and for propagating information from lead-
ers to users. Several implementations of the algorithm exist, ranging from
distributed adaptive Bellman-Ford [15] to advanced versions and compound
algorithms taking into account aspects like time, speed, and acceleration of
devices [2].

Information Accumulation

– Gossip. Information accumulation is generally a tougher task than informa-
tion spreading. As for spreading, accumulation can be realised by gossiping
information such that the leader is reached with messages from all nodes in
the region: however, this effectively works only in the case of small regions.

– Spanning tree techniques. A more scalable technique is based on building a
spanning tree over the network (locally selecting as parent the closest neigh-
bour to the source), then accumulating along such tree towards the leader.
Spanning trees, however, are highly fragile to changes in the network: disrup-
tion and creation of links may lead to different configurations, making naive
versions of this algorithm unsuitable for mobile scenarios.

– Multi-path techniques. Multi-path techniques aggregate information along the
source using multiple spanning trees rather than a single one. They are usually
more robust to changes in the network structure, but take more time to
converge in case of stable networks [45].

192 R. Casadei et al.

4.2 Sample Code

We propose an implementation draft for the pattern in the paradigm of aggregate
computing [4,46]—used in next section as a basis for evaluating a smart city case
study. The reason for this choice is rooted in the rather straightforward mapping
between the sub-patterns of SCR and the building blocks available in existing
aggregate computing languages, which allow for a concise implementation.

Background: Computational Fields and Aggregate Computing [4,46].
Aggregate computing is founded on the idea of programming systems from a
global perspective, declaratively [47], by functional manipulation of (computa-
tional) fields data structures—time-evolving maps from devices to values. The
field calculus [3,46] is the formal, universal, minimal language for functionally
composing and manipulating fields, based on which domain-specific languages
(DSL) like ScaFi [12] and Protelis [38] have been introduced to specify, simulate
and run self-organising behaviours and collective coordination logic.

In the field calculus, a program describes a collective behaviour by neglect-
ing the single-device viewpoint. However, the operational semantics [3] defines
how the single device can “continuously” process the program and sustain the
overall system behaviour, by cyclic steps encompassing: (i) assessment of a local
context (previous state, environment perception, collection of input messages
received so far); (ii) interpretation of the aggregate program against such a con-
text (producing a new state, messages to be sent, and actions to be executed);
(iii) execution of actions and spread of messages to neighbours.

Pattern Implementation Schema. In ScaFi, a Scala-internal DSL for aggre-
gate programming, the pattern can be encoded as follows1 (for the implementa-
tion of the sub-patterns in ScaFi and details on the syntax, refer to [11]) (Fig. 3):

class SCR extends AggregateProgram with BlockG with BlockC with BlockS {

def main = {

// selects a field of leaders , with at least grain distance

val leader = branch(isCandidate) { S(grain) } { false }

// creates a gradient from leaders based on a given metric

val potential = distanceTo(leader , metric)

// gathers localInput values towards leaders by aggregation

val convergeCast = C(potential , localInput , aggregationFun)

// on leaders , takes a local decision based on received data

val decision = decisionMaking(leader , convergeCast)

// broadcast decisions and take action

val divergeCast = G(leader , metric, decision)

localAction(divergeCast)

}

}

1 Purple symbols are non-primitive aggregate building blocks, grey symbols are con-
figuration parameters, and bold symbols denote methods for local activity to be
tailored to the application.

Self-organising Coordination Regions: A Pattern for Edge Computing 193

Fig. 3. A snapshot of the simulation in execution. Edge servers are depicted as square
nodes, users as circular nodes. Leaders are black, big squares; unelected leaders (work-
ing as relays) are smaller, greyed squares. The colour of the circular dot identifies the
id of the region assigned to that node (Color figure online)

5 Evaluation

In this section, we present an example implementation of the pattern in the
context of smart cities and edge computing (as introduced in Sect. 2.1) and
evaluate it by simulation to reveal its intrinsic self-organisation character.

5.1 Scenario Description

We consider a scenario of multiple edge servers (specifically, 126) in the centre
of the Italian city of Cesena, all participating in the system as leader candidates.
Their positions form an irregular grid, and vary on different simulation runs. We
dynamically select a subset of these leader candidates to work as leaders, and let
the others participate in the system as relays. More precisely, the edge servers
elect a leader for every region of 200 m in radius, competing using the S building
block (namely, breaking symmetry using a device local id, and favouring already
established leaders if in a proper range).

The goal of the system is to collect data streams generated by users, aggregate
it, and diffuse to the whole region the number of streams being processed. Users
are modelled as devices moving along roads open to pedestrian traffic (data
obtained from OpenStreetMap [22]) at a constant speed of 1.4m

s . Bidirectional
communication is considered established between users and edge servers, and
among edge servers, if physical distance is within WiFi range (100 m). Users do
not directly communicate with each other. In our experiment, we let the system
run for 10 simulated minutes, then we simulate a disruptive event: elected leaders
fail with probability ρ—e.g. as would happen due to a city-wise power shortage.
After this event, we simulate 10 further minutes of system evolution.

194 R. Casadei et al.

Table 1. Free variables for the scenario in exam

Name Description Values

u Active user devices count [50, 100, 200, 500, 1000]

α Backoff algorithm parameter [0, 10−3, 10−2, 10−1, 1]

ρ Probability for a leader to shut down after 10 min [0, 0.25, 0.5, 0.75, 1]

fb Determines whether the feedback loop is enabled [true, false]

Table 2. Measures for the case study

Name Description Unit

E of feedback
adjustment

Mean of the feedback adjustment for every leader. It
measures how much the radius of the coordinated region is
extended. Lower values indicate bigger regions

m

σ of feedback
adjustment

Standard deviation of the feedback adjustment for every
leader. It is an indication of how much the radius of the
coordinated region varies among leaders. Higher values
indicate higher disparity in such values, meaning that the
feedback system is altering the region sizes more intensively

m

∑
of clients per

edge server
Overall number of users served. The value should ideally
match the number of users in the system. Higher values
indicate streams being processed by multiple leaders (due to
users changing region), lower values indicate non-served users

users

σ of clients per
edge server

Standard deviation of number of users served by each leader.
Indication of load balancing. Higher values indicate that
more computational capacity is required for some leaders
w.r.t. others. The lower, the better balanced is the load

users

We compare two implementations of the SCR pattern, a classic one (as
described in Sect. 4) and a version with a feedback loop. In the latter, leaders try
to coordinate and resize their regions in the attempt to cover approximately the
same number of users, so as to reduce disparities in elaboration load that would
cause slowdowns on overloaded edge servers. We implement self-organising adap-
tation of region size by feeding the information on the number of served users
back to the leader, and using it to dynamically change the region size (the more
users, the smaller the region), competing with other leaders. In order to prevent
sharp oscillations of the region sizes, with possible resonance phenomena, we
don’t feed the served user count back to the algorithm input directly, but we
filter it using an exponential backoff (a low pass filter), namely, the feedback
value is αut + (1 − α)ut−1, where ut is the count of served users at time t.

We first evaluate good values for α in our scenario, by looking at how different
values affect the size of regions and their stability. We then measure performance
and resilience for both the base and the optimal-α versions of the SCR pattern
varying the number of users and ρ, and observe the number of users served
in total and by each edge server. A summary of the free variables for the case
study is given in Table 1; measures are instead summarised and explained in
Table 2.

Self-organising Coordination Regions: A Pattern for Edge Computing 195

Fig. 4. Evaluation of the backoff parameter. Values are averaged along all values of u
and ρ. Not considering new values (α = 0) has a similar effect to disabling feedback
entirely. Plugging the feedback directly, without filtering, makes the system oscillate.
Other values show how α tunes the trade-off between reactivity and stability, with
α = 0.01 both smooth and with an impact on the system comparable to α = 0.1

The pattern has been implemented in Protelis [38], and simulations have been
performed using Alchemist [35]. We executed 100 replicas of the experiment for
each configuration in the cartesian product of the parameters values, varying
displacement of edge devices, initial position of users and their waypoints, and
execution times of devices. Data has been processed using Python xarray [27] and
matplotlib [28]. The experiments include a reference implementation of the SCR
pattern, they are entirely open-sourced, automated, and reproducible using the
instructions provided in a publicly accessible repository2. Confidence intervals
are not pictured in charts reported on this paper, but can be obtained by using
the full data and processing tools available in the aforementioned repository.

5.2 Results

We initially measure the benefits of using the feedback system and the impact
of different values for α. Results are depicted and described in Fig. 4, and show
how α = 10−2 is the best choice among the analysed values.

We then evaluate correctness and performance of the algorithm both without
and with feedback enabled (α = 10−2). Results presented in Fig. 5 show that
the system is able to serve all the users, actually serving some users twice at the
moment they cross the boundary between neighbouring regions.

Finally, we study resilience of the system to failures by analysing its behaviour
with different sudden disruptions hitting the leaders. Figure 6 shows the pattern
reaches stability in few seconds even when disruption is large, and regardless
of the feedback system. At disruption time, several nodes are not served and
several others get instead apparently overserved, as they are in an inconsistent
state and participating in multiple, quickly changing regions, with their streams

2 https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-
orchestration.

https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration
https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration

196 R. Casadei et al.

getting lost because of the time required to recover both regions and spanning
trees for data accumulation. The feedback system has a negligible impact on
resilience, but improves load balancing both before and after disruption.

Fig. 5. System correctness. Warm colours are results with feedback system disabled,
cold colours are results with feedback system enabled and α = 10−2. Both configu-
rations serve all the users, and actually slightly “overserve” them. This is due to the
fact that users joining a different region, have, for some time, their streams counted
also in the region they left due to network propagation and elaboration times. The
feedback system provides benefits in terms of load balancing, as depicted in the right
chart: the lower σ means lower disparity among leaders in the number of served users
(Color figure online)

Fig. 6. System resilience to disruption. Both the pattern configurations provide
resilience to disruptions. The system is able to find new leaders in few seconds even if
the whole set of previously selected leaders is shut off. The feedbacked system seems
to achieve slightly better performance for smaller disruptions, but takes more time to
stabilise in the worst case. As seen in Fig. 5, the feedbacked system achieves visible
better performance in terms of load balancing, both before and after the disruptive
event, regardless of its entity

Self-organising Coordination Regions: A Pattern for Edge Computing 197

6 Conclusion

In this paper, we introduce Self-organising Coordination Regions, an adaptive
coordination pattern for dynamic, opportunistic scenarios where neither com-
plete centralisation nor full decentralisation of control and decision making are
possible or desirable. The pattern fits a problem of potentially growing relevance,
and it is particularly suitable for edge systems and for deploying a coordination
stance that covers more than pure locality yet without requiring any global coor-
dinator. To show applicability and benefits, we also present a case study in edge
computing, showing that the pattern is able to create semi independent coordi-
nation regions, aggregate information, and propagate results to region members.
The pattern is also easily extensible: we show, e.g., how a simple feedback mecha-
nism could be devised to improve the load balancing across different leaders. We
believe the presented pattern, along with easy implementation on the Aggregate
Computing framework and its library of reusable blocks, can streamline pro-
totype and development of a wide class of advanced coordination mechanisms,
especially in the context of edge computing.

References

1. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. OUP, Oxford
(1977)

2. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: IEEE SASO (2017)

3. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019)

4. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9), 22–30 (2015)

5. Bilal, K., Erbad, A.: Edge computing for interactive media and video streaming.
In: 2nd International Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, May 2017

6. Birman, K.: The promise, and limitations, of gossip protocols. ACM SIGOPS Oper.
Syst. Rev. 41(5), 8 (2007)

7. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: 1st Workshop on MCC, pp. 13–16. ACM (2012)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Hoboken
(1996)

9. Casadei, R., Aldini, A., Viroli, M.: Towards attack-resistant aggregate computing
using trust mechanisms. Sci. Comput. Program. 167, 114–137 (2018)

10. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: Modelling
and simulation of opportunistic IoT services with aggregate computing. Futur.
Gener. Comput. Syst. 91, 252–262 (2019)

11. Casadei, R., Pianini, D., Viroli, M.: Simulating large-scale aggregate MASs with
Alchemist and Scala. In: FedCSIS Proceedings, pp. 1495–1504. IEEE (2016)

12. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:
Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

https://doi.org/10.1007/978-3-030-00302-9_4

198 R. Casadei et al.

13. Casadei, R., Viroli, M.: Coordinating computation at the edge: a decentralized,
self-organizing, spatial approach. In: Proceedings of 4th IEEE Fog and Mobile
Edge Computing Conference (2019, to appear)

14. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and
Design. Pearson Education, London (2005)

15. Dasgupta, S., Beal, J.: A Lyapunov analysis for the robust stability of an adaptive
bellman-ford algorithm. In: 55th Conference on Decision & Control (CDC). IEEE
(2016)

16. Dautov, R., Distefano, S., Bruneo, D., Longo, F., Merlino, G., et al.: Metropoli-
tan intelligent surveillance systems for urban areas by harnessing IoT and edge
computing paradigms. Softw.: Pract. Exp. 48(8), 1475–1492 (2018)

17. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-
organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins,
D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69868-5 3

18. De Wolf, T., Holvoet, T.: Designing self-organising emergent systems based on
information flows and feedback-loops. In: 1st SASO Conference, pp. 295–298. IEEE
(2007)

19. Diaz, M., Rubio, B., Troya, J.M.: A coordination middleware for wireless sensor
networks. In: Systems Communications, pp. 377–382. IEEE (2005)

20. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43–67 (2013)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional, Boston
(1994)

22. Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Perva-
sive Comput. 7(4), 12–18 (2008)

23. Hanmer, R.S.: Patterns for Fault Tolerant Software. Wiley, Hoboken (2013)
24. Hayden, S., Carrick, C., Yang, Q., et al.: Architectural design patterns for multia-

gent coordination. In: International Conference on Agent Systems, vol. 99 (1999)
25. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Prentice Hall, Upper Saddle

River (2004)
26. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.

Eng. Rev. 19(4), 281–316 (2004)
27. Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J.

Open Res. Softw. 5(1), 1–6 (2017)
28. Hunter, J.D.: Matplotlib: a 2D graphics environment. J. Open Res. Softw. 9(3),

90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
29. Jaradat, W., Dearle, A., Barker, A.: Towards an autonomous decentralized orches-

tration system. Concurr. Computat. Pract. Exper. 28(11), 3164–3179 (2016)
30. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 1,

41–50 (2003)
31. Lima, R., Rosa, N., Marques, I.: Ts-Mid: middleware for wireless sensor networks

based on tuple space. In: 22nd AINA Workshops, pp. 886–891. IEEE (2008)
32. Liu, J., Liu, J., Reich, J., Cheung, P., Zhao, F.: Distributed group management in

sensor networks: algorithms and applications to localization and tracking. Telecom-
mun. Syst. 26(2–4), 235–251 (2004)

33. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1) (2017)

https://doi.org/10.1007/978-3-540-69868-5_3
https://doi.org/10.1109/MCSE.2007.55

Self-organising Coordination Regions: A Pattern for Edge Computing 199

34. Magnaudet, M., Chatty, S.: What should adaptivity mean to interactive software
programmers? In: Symposium on Engineering Interactive Computing Systems, pp.
13–22. ACM (2014)

35. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013)

36. Pianini, D., Beal, J., Viroli, M.: Improving gossip dynamics through overlapping
replicates. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 192–207. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39519-7 12

37. Pianini, D., Dobson, S., Viroli, M.: Self-stabilising target counting in wireless sensor
networks using Euler integration. In: 11th SASO Conference. IEEE (2017)

38. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
ACM Symposium on Applied Computing (2015)

39. de Sá, M., Churchill, E.F.: Mobile augmented reality: a design perspective. In:
Huang, W., Alem, L., Livingston, M. (eds.) Human Factors in Augmented Reality
Environments, pp. 139–164. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-1-4614-4205-9 6

40. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects. Wiley,
Hoboken (2000)

41. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

42. Stoller, S.: Leader election in asynchronous distributed systems. IEEE Trans. Com-
put. 49(3), 283–284 (2000)

43. Vaquero, L., Rodero-Merino, L.: Finding your way in the fog: towards a compre-
hensive definition of fog computing. ACM CCR 44(5), 27–32 (2014)

44. Vernon, V.: Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka, 1st edn. Addison-Wesley Professional, Boston (2015)

45. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 1–28 (2018)

46. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. In: Di Marzo Serugendo, G., Loreti,
M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 252–279. Springer, Hei-
delberg (2018). https://doi.org/10.1007/978-3-319-92408-3 12

47. Viroli, M., Casadei, R., Pianini, D.: On execution platforms for large-scale aggre-
gate computing. In: ACM Conference on Pervasive and Ubiquitous Computing,
pp. 1321–1326 (2016)

48. Walker, P., Amraii, S.A., Chakraborty, N., et al.: Human control of robot swarms
with dynamic leaders. In: Conference on Intelligent Robots and Systems, pp. 1108–
1113. IEEE (2014)

49. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-1-4614-4205-9_6
https://doi.org/10.1007/978-1-4614-4205-9_6
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-642-35813-5_4

Aggregate Processes in Field Calculus

Roberto Casadei1(B) , Mirko Viroli1 , Giorgio Audrito2 ,
Danilo Pianini1 , and Ferruccio Damiani2

1 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{roby.casadei,mirko.viroli,danilo.pianini}@unibo.it

2 Università di Torino, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

Abstract. Engineering distributed applications and services in emerg-
ing and open computing scenarios like the Internet of Things, cyber-
physical systems and pervasive computing, calls for identifying proper
abstractions to smoothly capture collective behaviour, adaptivity, and
dynamic injection and execution of concurrent distributed activities.
Accordingly, we introduce a notion of “aggregate process” as a concurrent
field computation whose execution and interactions are sustained by a
dynamic team of devices, and whose spatial region can opportunistically
vary over time. We formalise this notion by extending the Field Calculus
with a new primitive construct, spawn, used to instantiate a set of field
computations and regulate key aspects of their life-cycle. By virtue of an
open-source implementation in the ScaFi framework, we show basic pro-
gramming examples and benefits via two case studies of mobile ad-hoc
networks and drone swarm scenarios, evaluated by simulation.

Keywords: Aggregate processes · Computational fields ·
Distributed computing · Collective coordination · Dynamic ensembles ·
Self-*

1 Introduction

Emerging scenarios like pervasive computing, Internet of Things (IoT), cyber-
physical systems (CPS) and edge computing, are leading towards a new refer-
ence computational fabric made of dense, large-scale networks of heterogeneous
devices. New opportunities for developing software services naturally arise that
fully leverage the pervasive availability of sensing, actuation, storage, compu-
tational power and networking. To help unveiling the true potentials of such
digitally empowered ecosystems, proper abstractions and development tech-
niques are needed to smoothly express collective coordination and computation
activities that can be transparently executed on opportunistic formations of
devices [10].

This work has been partially supported by Ateneo/CSP project “AP: Aggregate Pro-
gramming” (http://ap-project.di.unito.it/).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 200–217, 2019.
https://doi.org/10.1007/978-3-030-22397-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_12&domain=pdf
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0003-2702-5702
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0002-8392-5409
http://orcid.org/0000-0001-8109-1706
http://ap-project.di.unito.it/
https://doi.org/10.1007/978-3-030-22397-7_12

Aggregate Processes in Field Calculus 201

In such contexts, computational events might trigger multiple distributed
activities that are highly contextual and hence fundamentally related to their
space-time situation and physical environment. Openness and dynamism, then,
require such activities to be dependable, self-adaptive and self-organising in order
to maintain coherence and functionality across unpredictable and inevitable con-
text changes and adversary events, and to opportunistically activate wherever
and whenever their existence conditions hold—whether they are by-design or
emergent. For instance, for collaborative smartphone-based applications in a
smart city, such activities may include: a gossip process by which people in a
plaza share comments, a guidance process to make a group of friends gather
in a convenient point, a dispersal process for people creating bloat, a process to
advertise one’s presence to nearby users for the next minute, a process to provide
crowd-aware directions towards a point of interest, and so on [5,8,25,31,38].

According to this vision, we present the concept of aggregate process, denoting
a distributed computation sustained by a dynamic aggregation of devices—hence
using the term aggregate with the meaning of “pertaining to a collective”, i.e.,
in the sense of [5,35]. This abstraction can be useful to model transient col-
lective activities, which may concurrently span and overlap over the fabric cre-
ated by a mobile, large-scale deployment of devices; it is aimed to capture: (i)
aggregate stance, to promote pervasive adaptation, by abstracting the individual
device and seamlessly regulating the behaviour of an ensemble across scales, den-
sity, and heterogeneity; (ii) dynamicity and context-orientation, to conveniently
support the implementation of dynamic, distributed, spatio-temporal activities
where locality and context play a major role, and continuous change is the norm;
(iii) intrinsic resiliency, to specify and execute collective (inter-)actions indepen-
dently of large classes of environmental dynamics and faults. This notion, hence,
fosters a broader view of programming smart distributed environments like sorts
of distributed virtual machines for aggregate processes, supporting the dynamic
injection and execution of collective computations, their diffusion over an oppor-
tunistically selected region of space-time, and their inherent self-adaptation to
changes and faults by full abstraction over individual behaviours of devices.

To formally capture the features of aggregate processes, and experiment with
mechanisms to handle their life-cycle (process creation, disposal, logic and inter-
action), we adopt as basis framework the field calculus [4,35]—a coordination
model based on the notion of (computational) field (a time-evolving distributed
structure mapping devices to computational values) where coordination policies
are declaratively and compositionally expressed as pure functions from fields to
fields. As key contribution, aggregate processes are supported in the field calcu-
lus by a new primitive construct, spawn, yielding a field that, across space and
time, combines several independent but interacting “computational bubbles”
(process instances). Programming constructs to work with aggregate processes
are implemented in ScaFi [9,11] (https://github.com/scafi/scafi), a Scala-based
incarnation of field calculus: this is used to showcase the expressiveness of the
notion and to empirically evaluate the proposed abstraction through simulation
of two paradigmatic case studies of mobile ad-hoc networks and drone swarms.

https://github.com/scafi/scafi

202 R. Casadei et al.

The remainder of this paper is organised as follows. Section 2 presents field
calculus and its extension to support aggregate processes. Section 3 describes
implementation in ScaFi along with examples and programming techniques.
Section 4 provides evaluation of aggregate processes through synthetic experi-
ments. Section 5 concludes the paper with discussion of related and future work.

2 Founding Aggregate Processes by the Field Calculus

Founding the notion of aggregate processes requires a coordination model with
the power to declaratively express complex spatio-temporal behaviour possi-
bly involving large sets of networked devices. Among the various frameworks
enabling such a “macro-programming” paradigm, reviewed in Sect. 5, we con-
sider the field calculus [4] (FC). This is a minimal functional language that cap-
tures the foundational mechanisms for compositionally expressing the emergent
behaviour of a collective system by a global perspective. It provides constructs
to represent and manipulate (computational) fields, i.e., distributed and time-
evolving data structures that map device identities to computational values.

Arguably, FC represents a natural basis for technically developing a notion of
aggregate process—which in fact somewhat emerged from technical issues about
field computations. Indeed, FC enables an aggregate stance to programming: field
computations target a collective of devices as a whole, and the field semantics
formally provides a bridge from global behaviour to local activity of individ-
ual devices. Dynamicity and context-orientation are also directly supported: a
system is modelled as a logical network of devices connected through a neigh-
bouring relationship; devices can sample their portion of the environment and
communicate with neighbours to infer/propagate context and react to changes
in their surroundings. Moreover, the model also provides inherent resiliency, by
abstracting from networking issues and adopting an execution model where com-
putations are “continuously” re-evaluated in order to sustain field evolution in
spite of individual failures and outages.

In this section, we briefly introduce FC (Sect. 2.1—the reader interested in
full technical details should refer to [4]); then, we motivate the need for specific
mechanisms to support a true notion of “process” (Sect. 2.2); finally, we conclude
with the formalisation of a new primitive construct spawn (Sect. 2.3), responsible
for managing (i.e., activating, executing, closing) a dynamic number of field
computations (i.e., process instances).

2.1 Overview of Field Calculus

Figure 1 (first frame) presents the syntax and device semantics of FC, where the
grey-boxed parts correspond to the new spawn construct and will be explained
in Sect. 2.3. Following [24], the overbar notation denotes metavariables over
sequences and the empty sequence is denoted by “•”: e.g., for expressions, we let
e range over sequences of expressions, written e1, e2, . . . en (n ≥ 0). A program
P consists of a sequence of function declarations and of a main expression e.

Aggregate Processes in Field Calculus 203

Fig. 1. Syntax and device semantics for the field calculus (extended part in grey)

A function declaration F defines a (possibly recursive) function. It consists of
the name of the function d, of n ≥ 0 variable names x representing the formal
parameters, and of an expression e representing the body of the function. Expres-
sions e are the main entities of the calculus, and will evaluate to a whole field,
understood at the macro-level as a space/time-wide data structure, mapping
computational events (i.e., when and where a device executes a computation)
to values: the set of such computational events is called field domain. Expres-
sions include rather standard functional constructs, like: variables x, used as
function formal parameters; values v (described below); and anonymous func-

204 R. Casadei et al.

tion expressions (x)
τ

= > e, where x are the formal parameters, e is the body
and τ is a tag1. A value can be either a neighbouring value φ or a local value
�. Technically, a neighbouring value is a mapping from device identifiers (corre-
sponding to a device’s neighbourhood including the device itself) to local values,
while a local value can be: (i) a data value c(�), consisting of a data-constructor
applied to local value arguments (true, false, 0, 1, pair(1,2) and so on); or
(ii) a function value f, consisting of either a declared function name d, a closed
anonymous function, or a built-in function name b always working locally—used
to denote usual mathematical/logical operators (e.g., +, -, or), 0-ary sensors
(e.g., temperature, pressure, sns), or functions to turn neighbouring values to
local values (e.g. minimisation of values by minHood, or minimisation excluding
the device itself by minHoodPlus).

We model the computation of a device at each event by a big-step operational
semantics where the result of evaluation is a value-tree (vtree) θ, i.e., an ordered
tree of values that tracks the results of all evaluated subexpressions. The vtrees
produced by an evaluation are made available to neighbours (including the device
itself) for their forthcoming event through a broadcast. The evaluation of an
expression at a given time in a device is thus performed “against” the recently-
received vtrees of neighbours, as collected into a vtree environment Θ, mapping
device identifiers to vtrees. The syntax of vtrees and vtree environments is given
in Fig. 1 (second frame). The operational semantics judgement is of the form
δ;Θ;σ � e ⇓ θ, to be read “expression e evaluates to vtree θ on device δ w.r.t.
the vtree environment Θ and sensor state σ”, where: (i) δ is the identifier of the
current device; (ii) Θ is the neighbouring field of the vtrees produced by the most
recent evaluation of (an expression corresponding to) e on δ’s neighbours; (iii) σ
is a data structure containing enough sensor information to allow each non-pure
built-in to be computed; (iv) e is an expression; (v) the vtree θ represents the
values computed for all the expressions encountered during the evaluation of
e—in particular ρ(θ) is the resulting value of e.

Expressions include also constructs that are tailored to field computations. A
function call ef (e) adapts the standard call notion with the fact that ef is a field
and hence could evaluate to different functions at different events, in which case it
provides an advanced branching mechanism: the domain is partitioned in regions
by the identity of such functions (determined by tag τ for anonymous functions,
and by name for other functions), function application in each region applies the
single function being there, and finally juxtaposition is applied to all regions. The
function call mechanism is used to implement conventional branching, which also
splits the domain of computation into two non-overlapping regions defined by
where e evaluates to true or false (e1 is executed in isolation in the former, e2 is
in the latter, and the juxtaposition of the two sub-fields defines the overall result).
Namely, if(e){e1}{e2} is syntactic sugar for mux(e, ()

τ1
= > e1, ()

τ2
= > e2)(), where

1 Tags τ do not appear in source programs: when the evaluation starts, each anony-
mous function expression (x) = > e occurring in the program is converted into a
tagged anonymous function expression by giving it a tag that is uniquely deter-
mined by its syntactical representation—see [4] for a detailed explanation.

Aggregate Processes in Field Calculus 205

the built-in mux is simply a multiplexer (it takes three arguments, evaluates all of
them, and returns the second if the first has value true ot the third otherwise).
A rep-expression rep(e0){(x) = > e1} models fields evolving over time: the
result field is initially e0, and iteratively at each device function (x) = > e1 is
applied to obtain the value at an event based on the value at previous one—e.g.,
rep(0){(x) = > x + 1} is the field that counts the number of occurred events
at each device. Finally, a nbr-expression nbr{e} is used to model device-to-
neighbourhood interaction: at each device, it gives a local map from neighbours
to values (a so-called neighbouring value) filled with the most recent results of
evaluating e at each neighbour.

A key aspect of how the operational semantics is developed is called “align-
ment” [3,4]: to implement coherent sharing of values, an instance of operator nbr
(say it is localised in position p of the vtree), is such that it gathers values from
neighbours by retrieving them in the same position (p) of all vtrees contained in
Θ. This is the cornerstone technique to support a declarative and compositional
specification of interactions, and hence, of global level coordination.

2.2 On “Multiple Alignments”

Conceptually, and technically, FC is used to specify a “single field computation”
working on the entire available domain. As a paradigmatic example, consider
a gradient [2,25,34], namely, a field of hop-by-hop distances based on local
estimates metric (a field of neighbouring real values) from the closest node in
source (a field of boolean values):

def gradient(source, metric) {

rep(infinity)(distance =>

mux(source, 0, minHoodPlus(nbr{distance} + metric))) }

def limitedGradient(source, metric, area) {

if (area) {gradient(source, metric)} {infinity} }

If sns is a sensor giving true only at a device s (and false everywhere else) and
nbrRange is a sensor giving local estimate distances from neighbours (as a range
detector would support), then the main expression gradient(sns,nbrRange)
gives a field stabilising to a situation where each device is mapped to its (hop-
by-hop, nearest) distance to s [2,4,16,25,34]. If multiple devices are sources,
estimated distance considers the nearest source.

There are mechanisms in FC to tweak this “single field computation”
model. First of all, one could realise two computations by a field of pairs
of values, say pair(v1,v2): e.g., expression pair(gradient(sns1,nbrRange),
gradient(sns2,nbrRange)) would actually generate two completely indepen-
dent gradient computations. The same approach is applicable to realise an arbi-
trary number of computations, but this practically works only if the number
of such computations is small, known, and uniform across space and time,
otherwise, FC has no mechanism to capture the abstraction of “aligned iteration”
over a collection of values conceptually belonging to different computations.

206 R. Casadei et al.

A second key aspect involves the ability to restrict the domain of a com-
putation. It is true that, by branching, one can prevent evaluation of some
subexpressions—e.g., in function limitedGradient, if area is a boolean field
giving true to a small subdomain, then computation of gradient is limited
there. However, this approach has limitations as well: if one wants to limit a gra-
dient to span the ball-like area where distances from the source are smaller than
a given value, hence setting area to “gradient(source,metric) < range”,
there would be no direct way of avoiding computation of gradient outside that
limited ball, because the decision on whether an event is inside or outside the
ball has to be reconsidered everywhere and everytime.

So, technically, in FC there are no constructs to directly model, e.g., a
reusable function that turns a field of boolean sources into a collection of inde-
pendent gradients, one per source: that would require to create a field of lists of
reals, of arbitrary size across space-time, but crucially this would not correctly
support alignment. More generally, and although being universal [1], FC falls
short in expressing the situation in which a field computation is composed of
a set of subcomputations that is dynamic in the sense that has changing size
over space and time. But this is precisely what is needed to support aggregate
processes.

2.3 The spawn Construct Extension

We formalise our notion of aggregate process by extending FC with a spawn
mechanism essentially carrying on a multiple aligned execution of concurrent
computations, managing their life-cycle (i.e., activation, execution, disposal).
Syntactically (see Fig. 1), this is formed by a spawn-expression spawn(eb, ek, ei),
modelling a collection of aggregate processes. Expression eb models process
behaviour: it is a function (of informal type k → a → 〈v, bool〉) taking a process
key (i.e., an identifier) and an input argument, and returning a pair of an out-
put value and a boolean stating whether the process should be maintained alive
or not. Expression ek defines a field of process keysets to add at each location
(device); and ei is the input field to feed processes. The result of spawn is a
field of maps from process keys to values. As a result, we can precisely define an
aggregate process with key k as the projection to k of the field of maps resulting
from spawn, that is, the computational field associating each event to the value
corresponding to k at that event—as this may simply be absent at an event,
aggregate processes are to be considered partial fields over the whole domain.

The semantic details of spawn are presented in grey in Fig. 1. On the second
frame, we allow to express vtrees also as v �→ θ, i.e., as a map from keys to
vtrees. On the third frame, we define auxiliary functions ρ, πi, πk for extracting
from a vtree respectively: its root value, an ordered subtree by its index i, and
an unordered subtree by its key k. It also defines a filtering function F which
selects vtrees whose root is a pair pair(v, True), collapsing the root into v. All
of these functions can be extended to maps (see aux), which are intended to be
unordered vtree nodes for F , and vtree environments for ρ, πi and πk.

Aggregate Processes in Field Calculus 207

Finally, in fourth frame, we define the behaviour of construct spawn,
formalised by the big-step operational semantics rule [E-spawn]: the sub-
expressions e1, e2 and e3 are evaluated and their results stored in vtrees θ1,
θ2, θ3 forming the first branches of the final result. Then, a list of process keys k
is computed by adjoining (i) the keys currently present in the result ρ(θ2) of e2;
(ii) the keys that any neighbour δ′ broadcast in their last unordered sub-branch
π4(Θ(δ′)). To realise “multiple alignment”, for each key ki, the process ρ(θ1)
resulting from evaluation of e1 is applied to ki and the result ρ(θ3) of e3, pro-
ducing θi as a result. The map k �→ θ is then filtered by F , discarding evaluations
resulting in a pair(v, False), before being made available to neighbours. The
same results F (k �→ ρ(θ)) are also returned as the root of the resulting vtree.

3 Programming with Aggregate Processes

In this section, we show how the spawn construct formalised in Sect. 2.3 is imple-
mented in ScaFi [9,11], and describe, through examples, how aggregate pro-
cesses based on spawn can be programmed in practice.

Background: ScaFi—Field Calculus in Scala. ScaFi (Scala Fields) is a
development toolkit for aggregate systems in the Scala programming language. It
provides a Scala-internal domain-specific language (DSL) – i.e., an API masked
as an “embedded language”– and library of functions for programming with
fields, as well as other development tools (e.g., for simulation). In ScaFi, the
field constructs introduced in Sect. 2.1 are captured by the following interface:
trait Constructs {

def rep[A](init: => A)(fun: A => A): A

def nbr[A](expr: => A): A

def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

def branch[A](cond: => Boolean)(th: => A)(el: => A)

def mid: ID

...

}

Method branch stands for field construct if (as the latter is a reserved keyword
in Scala), nbr expressions are to be used within the expr passed to foldhood
(used to aggregate over neighbours), and mid is a sensor giving the local device
identifier. By ScaFi expressions one essentially defines “scripts” that specify
whole fields at the macro-level: then, such scripts will be properly executed by
each node/actor [11], following FC’s operational semantics. A full introduction
of ScaFi is outside the scope of this paper: it is deeply covered, e.g., in [9].

3.1 Aggregate Processes in ScaFi

The spawn primitive supports our notion of aggregate processes by handling acti-
vation, propagation, merging, and disposal of process instances (for a specified
kind of process). Coherently with the formalisation in Sect. 2, it has signature:

208 R. Casadei et al.

def spawn[K,A,R](process: K => A => (R,Boolean),

newKeys: Set[K],

args: A): Map[K,R]

It is a generic function, parametrised by three types: (i) K, the type of process
keys; (ii) A, the type of process arguments (or inputs); (iii) R, the type of process
result. The function accepts three formal parameters and works as formalised in
previous section. Note that a process key has a twofold role: it works both as a
process identifier (PID) and as initialisation or construction parameter. When
different construction parameters should result in different process instances, it is
sufficient to instantiate type K with a data structure type including both pieces
of information and with proper equality semantics. Function spawn accepts a
set of keys to allow generation of zero or more process instances in the current
round. Notice that if a new key already belongs to the set of active processes,
there will be no actual generation (or restart) but merging instead, since identity
is the same as an existing process instance. Finally, note also that the outcome of
spawn (a map from process keys to process result values) can in turn be used to
fork other process instances or as input for other processes; i.e., the basic means
for processes to interact is to connect the corresponding spawns with data.

In the following, we discuss programming and management of aggregate pro-
cesses activated through spawn.

3.2 Process Generation, Expansion/Shrinking, and Termination

Generating process instances is just a matter of creating a field of keysets that
become non-empty as soon as the proper space-time event has been recognised
(e.g., spatial conditions on sensors data and computation, or timers firing) [34].
Then, by spawn, every process instance is automatically propagated by all the
participating devices to their neighbours. However, it is possible to regulate the
shape of such “computational bubble” by dictating conditions by which a device
must return status false (i.e., meaning external to the bubble)—as mentioned,
this indicates the willingness to stop computing (i.e., participate in) the process.
That is, only devices that return status true (i.e., internal) will propagate the
process. Moreover, such a propagation happens continuously: so, a device that
exited from a process may execute it again in the future. In particular, the
border (or fence) of a process bubble is given by the set of all the devices that
are external but have at least one neighbour which is internal. As long as a
node is in the fence, it continuously re-acquires and immediately quits from
the process instance: this repeated evaluation of the border is what ultimately
enables a spatial extension of the process bubble (expansion). Conversely, a
process bubble gets restricted (shrinking) when internal nodes become external.

A process instance terminates when all the devices quit by returning status
false. Implementing process termination may not be trivial, since proper (local
or global) conditions must be defined so that the “collapsing force” can overtake
the “propagation force”; i.e., precautions should be taken so that external devices
do not re-acquire the process: the border should steadily shrink, also considering
temporary network partitions and transient recoverable failures from devices.

Aggregate Processes in Field Calculus 209

Example: Time Replication. In [29], a technique based on time replication
for improving the dynamics of gossip is presented. It works by keeping k running
replicates of a gossip computation executing concurrently, each alive for a certain
amount of time. New instances are activated with interval p, staggered in time.
The whole computation always returns the result of the oldest active replicate.
This is intended to improve the dynamics of algorithms, providing an intrinsic
refresh mechanism that smoothly propagates to the output. With spawn, it is
trivial to design a replicated function that provides process replication in time.
def replicated[A,R](proc: A => R)(argument: A, p: Double, k: Int) = {

val lastPid = clock(p, dt())

spawn[Long,A,R](pid => arg => (proc(arg), pid > lastPid+k),

Set(lastPid), argument)

}

clock is a distributed time-aware counter [29] (whose synchronicity depends
on the implementation) yielding an increasing number i at each interval p that
represents the PID of the i-th replica. Notably, in this case, every device can
locally determine when it must quit a process instance; moreover, the exit
condition based on PID numbering (pid > lastPid+k) prevents process reen-
trance. Section 4.2 provides an empirical evaluation of the behaviour of function
replicated.

Fig. 2. Graphical example of the evolution of a system of processes and the role of
statuses in statusSpawn. The green bubble springs into existence; the blue bubble dis-
solves after termination is initiated by a node; the orange bubble expands. Only output
nodes will yield a value. Bubbles may of course overlap (i.e., a node may participate,
with different statuses, to multiple processes) and the dynamics can be arbitrarily
complex (because of mobility, failures, and local decisions) (Color figure online)

210 R. Casadei et al.

3.3 More Expressive Process Definitions

Managing processes upon spawn revolves around specifying the logic for
input/output, creation, evolution, and termination of processes instances. One
approach to make such code more declarative consists of programming process
behaviour so as to specify additional information w.r.t. just a boolean status/flag:
more expressive Statuses can be mapped to the flag and can be used to acti-
vate advanced behaviours. To do so, a higher-level function statusSpawn can be
considered, based on a Status value that indicates the “stance” of the current
device w.r.t. the process instances at hand (see Fig. 2): Output corresponds to
flag true in spawn; External corresponds to flag false in spawn; Bubble means
the device participates to the process but is not interested in the output (i.e.,
the process entry can be discarded); and Terminated means the device is willing
to close the process instance (i.e., it triggers a shutdown behaviour).

Example: Multi-gradient. The problem described in Sect. 2.2 of activating a
spatially-limited gradient computation for each device where sensor isSrc gives
true, and deactivating it when it stops doing so, can be solved as follows:
statusSpawn[ID,Double,Double](src => limit =>

gradient(src==mid,nbrRange) match { // consider the usual gradient

case g if src==mid && !isSrc => (g, Terminated) // close if src quits

case g if g>limit => (g, External) // out of bubble

case g => (g, Output) // in bubble

},

newKeys = if(isSrc) Set(mid) else Set.empty,

args = maxExtension)

4 Case Studies

In this section, we exercise the constructs previously introduced by presenting
two application examples. One goal is to demonstrate the soundness of our imple-
mentation. Moreover, our empirical evaluation will also show that, orderly: (i)
in certain cases, aggregate processes can greatly limit the consumption of com-
putational resources while retaining a reasonable quality of service (QoS); (ii)
in certain cases, powerful meta-algorithms enabled by aggregate processes can
improve the dynamics of distributed computations. We implemented both sce-
narios with the Alchemist simulator [30], which already provides ScaFi support
[9]; the results are the average over 101 runs. For the sake of reproducibility,
the source code and instructions for running experiments are publicly available
(https://bitbucket.org/metaphori/experiment-spawn).

4.1 Opportunistic Instant Messaging

Motivation. The possibility of communicating by delivering messages regard-
less the presence of a conventional Internet access has recently gained attention

https://bitbucket.org/metaphori/experiment-spawn

Aggregate Processes in Field Calculus 211

as a mean to work around censorship (http://archive.is/C3niO) as well as in sit-
uations with limited access to the global network—e.g., in rural areas, or during
urban events when the network capability is overtaken. We here consider a sim-
ple messaging application where a source device (aka sender) wants to deliver a
payload to a peer device (aka recipient, target, or destination) in a hop-by-hop
fashion by exploiting nearby devices as relays. The source device only knows the
identifier of its recipient: it is not aware of its physical location, nor of viable
routes. Our goal is to show how aggregate processes can support this kind of
application (with multiple concurrent messages) while limiting the number of
devices involved in message delivery, leading to bandwidth savings (and energy
savings in turn).

Setup. We compare two aggregate implementations of such messaging system.
The first implementation, called flood chat, simply broadcasts the payload to all
neighbours. In spite of an in-place garbage collection system, however, this strat-
egy may end up dispatching the message towards directions far-off the optimal
path, burdening the network. The second implementation, spawn chat, leverages
spawn in order to reduce the impact on the network infrastructure by electing a
node as coordinator, then creating an aggregate process connecting the source
and the coordinator and the coordinator and the destination, and finally deliver-
ing the message along such support. In this experiment, we naively choose a coor-
dinator randomly, but better strategies could be deployed to improve over this
configuration. The experiment is simulated on a mesh network of one thousand
devices randomly deployed in the urban area of Cesena, in Italy. We simulate
the creation and delivery of messages among randomly chosen nodes, with one
message per second generated on average by the whole network in time window
[0, 250]; devices execute rounds asynchronously at an average of 1 Hz. We gather
a measure of QoS and a measure of resource usage. We use the probability of
delivering a message with time as a QoS measure, and we measure the number
of payloads sent by each node as a measure of impact on performance. In doing
so, we suppose payload makes up for the largest part of the communication (as
is typically the case when multimedia data are exchanged).

Results. Figure 3 shows experimental results. The two implementations achieve
a very similar QoS, with the flood implementation being faster on average. This
is expected, as flooding the whole network also implies sending through the
fastest path. The difference, however, is relatively small and, on the contrary, we
see the spawn chat affords a dramatic decrease in bandwidth usage (by properly
constraining the expansion of message delivery bubbles), despite the simplistic
selection of the coordinating device.

4.2 Reconnaissance with a Drone Swarm

Motivation. Performing reconnaissance of areas with hindrances to access and
movement such as forests, steep climbs, or dangerous conditions (e.g. extreme
weather and fire) can be a very difficult task for ground-based teams. In those

http://archive.is/C3niO

212 R. Casadei et al.

Fig. 3. Evaluation of the opportunistic chat algorithms. The figure on top shows similar
performance for the two algorithms, with the flood chat featuring a slightly better deliv-
ery time for the payloads (as it intercepts the optimal path among others). However,
as the bottom figure depicts, spawn chat requires orders of magnitude less resources
due to the algorithm executing on a bounded area (i.e., by involving only a subset of
system devices for each message delivery process).

Fig. 4. Code of the gossip algorithms used in the reconnaissance case study

cases, swarms of unmanned airborne vehicles (UAVs) could be deployed to
quickly gather information [6]. One scenario in which such systems are par-
ticularly interesting is fire monitoring [12]. With this case study, we show how
aggregate processes enable easy programming of a form of gossip that supports
a precise collective estimation of risk in dynamic scenarios.

Setup. We simulate a swarm of 200 UAVs in charge of monitoring the area of
Mount Vesuvius in Italy, which has been heavily hit by wildfires in 2017 (http://
archive.is/j3lsm). UAVs follow a simple exploration strategy: they all start from
the same base station on the southern side of the volcano, they visit a randomly
generated sequence of ten waypoints, and once done they come back to the
station for refuelling and maintenance. UAVs sense their surroundings once per

http://archive.is/j3lsm
http://archive.is/j3lsm

Aggregate Processes in Field Calculus 213

Fig. 5. Snapshot of the UAV swarm surveying the Vesuvius area as simulated in
Alchemist. Yellow dots are UAVs. Grey lines depict direct drone-to-drone commu-
nication. Drones travel at an average speed of 130 km

h
, in line with the cruise speed

performance of existing military-grade UAVs (see http://archive.is/8zar5), and com-
municate with other drones within 1 km distance in line-of-sight. Forming a dynamic
mesh network using UAV-to-UAV communication is feasible [19], although challenging
[22] (Color figure online)

second and assess the local situation by measuring the risk of fire. The goal
of the swarm is to agree on the area with the highest risk of fire and report
the information back to the station for deployment of ground intervention. A
snapshot of the drones performing the reconnaissance is provided in Fig. 5. In
this paper, we are not concerned with realistic modelling of fire dynamics: we
designed the risk of fire to be maximum in a random point of the surveyed area
for 20 min; the risk then drops (e.g. due to a successful fire-fighting operation),
with the new maximum (lower than the previous) being in another randomly
generated coordinate; after further 20 min the risk sharply increases again to
on a third random coordinate. We compare three approaches: (i) naive gossip,
a simple implementation of a gossip protocol; (ii) S+C+G, a more elaborated
algorithm – based on self-stabilising building blocks [34] – that elects a leader,
aggregates the information towards it, then spreads it to the whole network
by broadcast; (iii) replicated gossip, which replicates the first algorithm over
time (as per [29]) and whose implementation, shown in Fig. 4, uses function
replicated (defined in Sect. 3 upon spawn).

Results. Results are shown in Fig. 6. The naive gossip algorithm quickly con-
verges to the correct value, but then fails at detecting the conclusion of the dan-
gerous situation: it is bound to the highest peak detected, and so it is unsuitable
for evolving scenarios. S+C+G can adapt to changes, but it is very sensitive to
changes in the network structure: data gets aggregated along a spanning tree
generated from the dynamically chosen coordinator, but in a network of fast-
moving airborne drones such structure gets continuously disrupted. Here the
spawn-based replicated gossip performs best, as it conjugates the stability of the

http://archive.is/8zar5

214 R. Casadei et al.

Fig. 6. Evaluation of the gossip algorithms in the UAV reconnaissance scenario. The
figure on top shows expected values and measures performed by the competing algo-

rithms. The bottom figure measures the error as root mean square:

√∑
n (vn−a)2

n
where

n device count, a actual value, and vn value at the n-th device. The naive gossip cannot
cope with danger reduction, S+C+G cannot cope with the volatility of the network,
while replicated gossip provides a good estimate while being to cope with changes.

naive gossip algorithm with the ability to cope with reductions in the sensed val-
ues. The algorithm in this case provides underestimates, as it reports the highest
peak sensed in the time span of validity of a replicate, and drones rarely explore
the exact spot where the problem is located, but rather get in its proximity.

5 Conclusions, Related and Future Work

In this paper, we have proposed and implemented a notion of aggregate processes
to model dynamic, concurrent collective adaptive behaviours carried out by
dynamic formations of devices—hence extending over field calculus and ScaFi.

Various spacetime- and macro-programming models have been developed
across a wide variety of applications, which can potentially support mecha-
nisms of aggregate processes. The survey [35] describes the historical evolu-
tion of “aggregate computing” from research in distributed systems, coordi-
nation languages, and spatial computing. In particular, four main clusters of
approaches can be identified: (i) “bottom-up” approaches, such as TOTA [26],
and Hood [37], that abstract individual networked devices; (ii) languages for
expressing spatial and geometric patterns, such as GPL [14] and OSL [27]; (iii)
languages for streaming and summarising information over space-time regions,
such as Regiment [28] and TinyLime [15] and (iv) general purpose space-time

Aggregate Processes in Field Calculus 215

computing models, such as MGS [20], the field calculus [4], and the Soft Mu-
calculus for Computational fields (SMuC) [25]. Other works, often more generic
and less operational, include models and languages for programming ensembles,
such as SCEL [17], and process algebras (cf., the SAPERE approach [39]).

Multi-agent systems can bring agents together according to multiple organi-
sational paradigms [23]. With aggregate processes, it is possible to program the
logic of group formation so as to implement various grouping strategies. In the
messaging case study, e.g., a dynamic, goal-directed team of devices is formed
just to to connect senders with recipients, dissolving when the task is completed.

Related to the specifics of process execution, there are different models which
aims at simplifying programming of multiple computing nodes as well as analy-
sis of resulting programs. For instance, in the Bulk Synchronous Parallel (BSP)
model [33], computations are structured as sequences of rounds followed by
synchronisation steps; large-scale graph processing frameworks such as Apache
Giraph [13] are inspired by BSP. Modern distributed data processing models
(e.g., MapReduce [18] and derived ones) also abstract away network structure
and trade performance for constrained programming schemas. By another per-
spective, works on service computing [7] tailored to dynamic ad-hoc environ-
ments [21] are also relevant but usually neglect the collective dimension and
rarely consider open-ended situated activities. The service perspective connects
also to utility computing and related efforts for abstracting and automatically
managing networking and hardware infrastructure [32]—aggregate processes, by
admitting diverse computation partitioning schemas [36], foster this vision.

In future work, we would like to use processes for advanced distributed coor-
dination scenarios and implement a support for dynamic relocation of aggregate
processes across a full IoT/Edge/Fog/Cloud stack. Further experimentation will
be key to fully develop a theory of aggregate processes (e.g. in the style of π-
calculus and its derivatives) as well as fully-fledged API and platform support.

Acknowledgements. We thank the anonymous COORDINATION referees for their
comments and suggestions on improving the presentation of the paper.

References

1. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field cal-
culus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) 20th International Conference
on Coordination Models and Languages. LNCS, vol. 10852, pp. 1–20. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-92408-3 1

2. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: 11th International Conference on Self-adaptive and Self-
organizing Systems (SASO 2017), pp. 91–100. IEEE (2017)

3. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of com-
putation domains in field calculus. In: 1st International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 192–197. IEEE (2016)

4. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 51–555 (2019)

https://doi.org/10.1007/978-3-319-92408-3_1

216 R. Casadei et al.

5. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9), 22–30 (2015)

6. Beal, J., Usbeck, K., Loyall, J., Rowe, M., Metzler, J.: Adaptive opportunistic
airborne sensor sharing. ACM Trans. Auton. Adapt. Syst. 13(1), 6 (2018)

7. Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q.Z., et al.: A service computing
manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017)

8. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: Modelling
and simulation of opportunistic IoT services with aggregate computing. Futur.
Gener. Comput. Syst. 91, 252–262 (2018)

9. Casadei, R., Pianini, D., Viroli, M.: Simulating large-scale aggregate MASs with
Alchemist and Scala. In: FedCSIS Proceedings, pp. 1495–1504. IEEE (2016)

10. Casadei, R., Viroli, M.: Collective abstractions and platforms for large-scale self-
adaptive IoT. In: 3rd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), pp. 106–111. IEEE (2018)

11. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In:
Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–
122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9 4

12. Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest
fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci.
37(6), 351–360 (2006)

13. Ching, A., Edunov, S., Kabiljo, M., et al.: One trillion edges: graph processing at
facebook-scale. VLDB Endow. Proc. 8(12), 1804–1815 (2015)

14. Coore, D.: Botanical computing: a developmental approach to generating inter
connect topologies on an amorphous computer. Ph.D. thesis, MIT (1999)

15. Curino, C., Giani, M., Giorgetta, M., Giusti, A., et al.: Mobile data collection in
sensor networks: the TinyLime middleware. Pervasive Mob. Comput. 4, 446–469
(2005)

16. Viroli, M., Damiani, F.: Type-based self-stabilisation for computational fields. Log.
Methods Comput. Sci. 11(4), 1–53 (2015)

17. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

19. Frew, E., Brown, T.: Airborne communication networks for small unmanned air-
craft systems. Proc. IEEE 96(12), 2008–2027 (2008)

20. Giavitto, J.-L., Michel, O., Cohen, J., Spicher, A.: Computations in space and space
in computations. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.)
UPP 2004. LNCS, vol. 3566, pp. 137–152. Springer, Heidelberg (2005). https://
doi.org/10.1007/11527800 11

21. Groba, C., Clarke, S.: Opportunistic service composition in dynamic ad hoc envi-
ronments. IEEE Trans. Serv. Comput. 7(4), 642–653 (2014)

22. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communica-
tion networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016)

23. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (2004)

24. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/11527800_11

Aggregate Processes in Field Calculus 217

25. Montanari, U., Loreti, M., Lafuente, A.L.: Asynchronous distributed execution of
fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1:13), 1–46
(2017)

26. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56
(2009)

27. Nagpal, R.: Programmable self-assembly: constructing global shape using
biologically-inspired local interactions and origami mathematics. Ph.D. thesis,
MIT, Cambridge, MA, USA (2001)

28. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: WS on Data Management for Sensor Nets, pp. 78–87 (2004)

29. Pianini, D., Beal, J., Viroli, M.: Improving gossip dynamics through overlapping
replicates. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 192–207. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39519-7 12

30. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013)

31. Shi, W., Dustdar, S.: The promise of edge computing. IEEE Comput. 49(5), 78–81
(2016)

32. Truong, H.L., Dustdar, S.: Principles for engineering IoT cloud systems. IEEE
Cloud Comput. 2(2), 68–76 (2015)

33. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

34. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16 (2018)

35. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. In: Di Marzo Serugendo, G., Loreti,
M. (eds.) 20th International Conference on Coordination Models and Languages.
LNCS, vol. 10852, pp. 252–279. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-92408-3 12

36. Viroli, M., Casadei, R., Pianini, D.: On execution platforms for large-scale aggre-
gate computing. In: ACM UbiComp: Adjunct, pp. 1321–1326. ACM (2016)

37. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Conference on Mobile Systems, Applications, and
Services. ACM (2004)

38. Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Comput.
45(8), 76–78 (2012)

39. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-
inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015)

https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12

Tools (2)

Automatic Quality-of-Service Evaluation
in Service-Oriented Computing

Agust́ın E. Martinez Suñé1 and Carlos G. Lopez Pombo1,2(B)

1 Facultad de Ciencias Exactas y Naturales, Department of Computing,
Universidad de Buenos Aires, Buenos Aires, Argentina

aemartinez@dc.uba.ar
2 Instituto de Investigación en Ciencias de la Computación,

CONICET–Universidad de Buenos Aires, Buenos Aires, Argentina
clpombo@dc.uba.edu.ar

Abstract. Formally describing and analysing quantitative requirements
of software components might be important in software engineering; in
the paradigm of API-based software systems might be vital. Quantitative
requirements can be thought as characterising the Quality of Service –
QoS provided by a service thus, useful as a way of classifying and ranking
them according to specific needs. An efficient and automatic analysis of
this type of requirements could provide the means for enabling dynamic
establishing of Service Level Agreements – SLA, allowing for the automa-
tisation of the Service Broker .

In this paper we propose the use of a language for describing QoS
contracts based on convex specification, and a two-phase analysis pro-
cedure for evaluating contract satisfaction based on the state of the art
techniques used for hybrid system verification. The first phase of the pro-
cedure responds to the observation that when services are registered in
repositories, their contracts are stored for subsequent use in negotiating
SLAs. In such a context, a process phase of contract minimisation might
lead to great efficiency gain when the second, and recurrent, phase of
determining QoS compliance is run.

1 Introduction

Distributed software resulting from paradigms like Service-oriented Computing
– SOC, and emerging ones like Cloud/Fog computing and the Internet of Things
are transforming the world of software systems in order to support applications
able to respond and adapt to the changes of their execution environment, giv-
ing impulse to what is called the API’s economy. The underlying idea of the

C.G. Lopez Pombo’s—Research is supported by Universidad de Buenos Aires by grant
UBACyT 20020170100544BA, and Consejo Nacional de Investigaciones Cient́ıficas
y Técnicas by grant PIP 11220130100148CO. The authors want to thank to Marie
Sk�lodowska-Curie Research and Innovation Staff Exchange BehAPI – Behavioural
Application Program Interfaces.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 221–236, 2019.
https://doi.org/10.1007/978-3-030-22397-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_13

222 A. E. Martinez Suñé and C. G. Lopez Pombo

API’s economy is that it is possible to construct software artifacts by compos-
ing services provided by third parties and previously registered in repositories.
This envisages a generation of applications running over globally available com-
putational resources and communication infrastructure, which, at run-time, are
dynamically and transparently reconfigured by the intervention of a dedicated
Middleware with the capability to discover and bind a running application with
a certain requirement, to a service capable of fulfilling it, subject to the negoti-
ation of a Service Level Agreement – SLA, so they can collectively fulfill certain
business goals [4].

Requirements have usually been classified in functional and non-functional
depending on the nature of the attributes they capture. Functional requirements
are usually understood as those describing what the system has to do, while non-
functional ones generally express attributes that do not prescribe a particular
behaviour but characterise how the system carries out the behaviour described
by the functional ones. From non-functional requirements, we propose a fur-
ther classification by identifying a subset referred to as quantitative attributes.
We understand quantitative attributes as those that can be interpreted over a
particular metric space [1]. This characteristic carries the potential of admitting
some form of formal analysis, depending on the expressive power of the language
used in specifying requirements over them. The reader shall note that not every
metric space has associated formal methods of analysis but, from both practical
and theoretical point of view, the real numbers constitute a natural candidate
over which many quantitative attributes can be interpreted. As usual, require-
ments can be used as contracts between software components and satisfaction
of such contracts is dealt with by checking whether certain judgement of the
form Pr � Rq holds or not, where Pr is the provision contract and Rq is the
requirement contract.

From this perspective, those quantitative non-functional requirements for-
malised over attributes interpreted as real variables might be used to classify
functionally equivalent services by the Quality of Service – QoS they provide.
This means that while services might have the same functional behavior, they
could differ on their non-functional one (for example, a service may offer low
speed computation at a very low cost while another, functionally equivalent one,
might be faster but more onerous), a phenomena that could be useful as a way
of classifying and ranking them according to specific needs; a motivation shared
with other works like [14].

Identifying and formally describing quantitative properties of a system is not
novel, examples of this range from the well known formalisation of the time/space
required by an algorithm by means of the asymptotic growth of functions [2,
Part. I, Chap. 2], to a very prolific research field dedicated to the verification of
hybrid systems. Hybrid systems [6] are dynamic artifacts exhibiting both discrete
and continuous behaviour. In general, the continuous aspects of such systems are
formalised as constraints over variables taking their values from the real numbers.
There is a plethora of analysis techniques that have been proposed for this type
of systems, with the vast majority focussing on those aspects laying within the

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 223

boundary of what is decidable [8]. A relatively new approach to the analysis of
hybrid systems’ specification, due to Pappas et al. [13], integrates SMT-solving
[10] with convex constraints [5], under the name of SMC – Satisfiability Modulo
Convex Optimization.

In this work we developed an efficient two phase procedure for evaluating
quantitative SLA based on SMC, but adapted to profit from the fact that con-
tracts (both provision Pr and requirement Rq) can be minimised in a prepro-
cessing phase, referred to as Minimisation through Convex Optimisation – MCO,
when the service is registered in the repository. The expectation is that such pre-
processing might produce an efficiency gain when Pr � Rq is checked to evaluate
if an SLA is met. Moreover, as finding the minimum size contract requires, at
least, enumerating all boolean assignments satisfying a SAT problem, we pro-
pose an approach in which contract minimisation can be performed as semantics
preserving incremental partial minimizations.

The paper is organised as follows: in Sect. 2 we concentrate both the definition
of the formal framework we will use to specify QoS contracts as quantitative
requirements, and present our proposal for its analysis, at the same time we state
the research questions we want to answer; in Sect. 3 we present the experimental
design and results supporting the answers to each of the research questions.
Finally in Sect. 4 we draw some conclusions and point out some further lines of
research.

2 Formalisation and Analysis of QoS Contracts

In this section we concentrate on formalising QoS contracts by identifying quan-
titative non-functional requirements and, in analogy to the continuous elements
in hybrid system specification, by interpreting each of the attributes as a real
variable. Thereafter, we present state of the art analysis techniques for this kind
of formal specifications and our proposal for the optimisation of the procedure
based on a preprocess of contract minimisation.

In [13], Pappas et al. adopt monotone SMC formulae as specification lan-
guage; we will refer to this specifications as convex specification. Monotone SMC
formulae are defined as quantifier-free formulae in conjunctive normal form, with
atomic propositions ranging over a subset of the propositional variables and con-
vex constraints.

Definition 1 (Convex specification, Sect. 3.2, [13]). Let X be a set of real
variables and P a set of propositional variables, then a monotone SMC formula
is any formula that can be produced by the following grammar:

224 A. E. Martinez Suñé and C. G. Lopez Pombo

formula ::= {clause ∧}∗clause
clause ::= ({literal ∨}∗literal)
literal ::= p | ¬p | � | ⊥ | conv constraint, where p ∈ P

conv constraint ::= equation | inequality
equation ::= f(x0, . . . , xarity(f)) = 0

, where f is an affine function and x0, . . . , xarity(f) ∈ X .
inequality ::= f(x0, . . . , xarity(f)) relation 0

, where f is a convex function and x0, . . . , xarity(f) ∈ X .
relation ::= < | ≤

Then a convex specification over X and P is a tuple 〈〈X ,P〉 , α〉, where α is a
monotone SMC formula over X and P.

In the grammar above, affine function and convex function denote, as one
could guess, affine and convex functions, respectively. Monotone SMC formulae
only admit convex constraints as atoms, in contrast to generic SMC formulae
over convex constraints [11], reverse convex constraints are not allowed1. As it is
mentioned in [13], monotonicity (i.e. the lack of negation to convex constraints)
is key to guarantee that whenever a convex specification has a model, it is found
by solving one (or more) convex optimization problems.

The following example illustrates a specification written in the language pre-
sented in Definition 1.

Example 1 (Service requirement). Let us consider a context of an API-based
software application requiring a service accessed and paid for, for the time it
is used. In that context we consider as relevant quantitative attributes the cost
(formed by: a. perSec: the cost (in a given currency) of the service per second
elapsed while the communication session is open, and b. costMb: the cost (in
the same currency) per megabyte of information processed); and execution time
(formed by: a. maxWait : the maximum waiting time in seconds for the server
to effectively attend a request, b. maxTimeGb: the maximum amount of time in
seconds the service will execute for processing one gigabyte, and c. netSpeedMb:
an upper bound in seconds for transferring one megabyte). Additionally, costs
may change if the system requiring the service has some kind of promo-
tional code. Then, such attributes can be formalised by a convex specification
〈〈X ,P〉 , α〉 where X = {perSec, costMb,maxWait ,maxTimexGb,netSpeedMb},
P = {promotionMode}, and where α is the conjunction of the following formu-
lae2:

0 < maxWait ≤ 100
(1000 ≤ maxTimexGb ≤ 3000) ∧ (0.05 ≤ netSpeedMb ≤ 0.15)
promotionMode =⇒ 0.0 ≤ perSec < 0.1
¬promotionMode =⇒ 0.1 ≤ perSec ≤ 0.3
costMb < 0.5

1 Note that linear convex constraints could admit negations but, as the negation of a
linear convex constraints can be rewritten as a linear convex constraint itself, there
is no need for any special treatment.

2 The reader shall note that there is no impediment in translating the specification
below to a formula recognisable by the grammar presented in Definition 1.

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 225

In [13, Definition 3.4] the authors define the monotone convex expansion of a
convex specification 〈〈X ,P〉 , α〉 as a new convex specification 〈〈X , ̂P〉, α̂〉 where:

– ̂P = P ∪ V, where V =
{

v
f(

→
x) R 0

| f(
→
x) R 0 appears in α

}

and

– α̂ = αB ∧ [∧

vC∈V (¬vC ∨ C)
]

, where αB = α |vC

C , the result of substituting
every occurrence of an affine/convex constraint C in the monotone SMC
formula α by the fresh new propositional variable vC ∈ V associated to C,
called the propositional abstraction of α.

Thereafter, in [13, Proposition 3.5], the authors prove that: 1. α and α̂ are equi-
satisfiable (i.e. for every satisfying assignment for α̂, there exists a satisfying
assignment for α) and if α̂ is unsatisfiable, then so is α, 2. any satisfying boolean
assignment for αB reduces the satisfiability problem of α̂ to a conjunction of
convex constraints, and 3. the satisfiability problem of α̂ reduces to a finite
disjunction (one for every satisfying boolean assignment for αB) of finite con-
junctions of convex constraints.

Roughly speaking, the analysis method proposed by Pappas et al. in [13],
sketched in Fig. 1, reduces to enumerating every possible satisfying boolean
assignments γ : ̂P → {0, 1} for αB , and then using a convex constraint solver
for testing the feasibility of the set of convex constraints {C | γ(vC) = 1}.

Fig. 1. SMCO analysis procedure

Updating the SAT-solver’s clause database by injecting a new clause, as
it is done in Line 3(2)2 requires the next assignment to satisfy the clauses in
SAT-solver database, plus the new one. Minimising an assignment γV (the sub-
assignment of γ considering only variables in V), as stated also in Line 3(2)2,
produces a clause γmin

V (subassignment of γV such that {C | γmin(vC) = 1})
which is (potentially) smaller that γV , minimal and still unfeasible. It is reason-
ably evident that the smaller the amount of variables involved in γmin

V , the bigger
the pruning of the search space, because no boolean assignment containing such
partial assignment will be considered further in the enumeration of satisfying

226 A. E. Martinez Suñé and C. G. Lopez Pombo

boolean assignments. We will return to this point in Sect. 3 where we discuss
some implementation notes. It is worth noting that clause minimisation, used
to produce more efficient unsatisfiability certificates during the enumeration of
satisfying boolean assignments, is orthogonal to the main contribution of this
work on the minimisation of QoS contracts.

This type of automatic analysis is usually understood as a refutation method
aiming at finding counterexamples to properties. Assume 〈〈X ,P〉 , α〉 is a sat-
isfiable3 convex specification of a system and β a desirable property written in
the same language then, if α ∧ ¬β (a formula equivalent to ¬(α =⇒ β)) is
satisfiable, one can conclude that β does not follows from α, and the satisfying
assignment constitutes a counterexample.

2.1 From QoS Contracts to an Efficient Determination of SLA

Service-Oriented Computing relies on a notion of software system as a dynamic
entity built up from services discovered and bound in run-time. To make this
possible, services must be previously registered in public repositories from where
they can be procured by a Service broker as required by a dedicated Middleware
who dynamically reconfigures the executing application by binding it to the
service. This process of dynamic reconfiguration is triggered automatically by
an application reaching a point in its execution where a continuation depends
exclusively on the intervention of an external service.

Consider the case of a (satisfiable) QoS requirement contract Rq . A service
with a (satisfiable) QoS provision contract Pr will be a good candidate only
if Pr =⇒ Rq holds; or equivalently, the formula Pr ∧ ¬Rq is not satisfiable.
Assuming that such a formula can be seen as a convex specification (i.e. a for-
mula that can be produced by the grammar in Definition 1), then it is possible to
perform the interoperability check by executing the algorithm of Fig. 1 to deter-
mine compliance between the application’s QoS requirement contract and the
service’s QoS provision contract. Although from a theoretical point of view there
is no objection to applying this procedure for determining SLA, from a practical
perspective, this interoperability check is expected to be performed over many
candidates, in order to guarantee that the service chosen by the service broker
is the optimum according to the status of the repository.

Such a use context imposes strong efficiency considerations over this type of
analysis, and coping with them requires reducing the execution time for perform-
ing the analysis as much as possible, even at the expense of investing a bigger
amount of time preprocessing the contracts in advance when the services are reg-
istered in the repository. Returning to our example, assume that Pr and ¬Rq are
satisfiable convex specifications denoting provision QoS contract and the nega-
tion of a requirement QoS contract, respectively; both PrB and ¬RqB might have

3 It is important for the specification to be satisfiable in order to ensure the existence
of logical models, which in the case of this particular language, are boolean assign-
ments. The existence of a model can be interpreted as the existence of a concrete
implementations of the system satisfying the specification.

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 227

plenty of satisfying boolean assignments γPr (resp. γ¬Rq) leading to non-feasible
sets of convex constraints {C | γPr (vC) = 1} (resp. {C | γ¬Rq(vC) = 1}), sug-
gesting that contracts admit some relative minimisation that can be performed
by updating the solver’s clause database by injecting a new clause characterising
such unfeasibility information. Ideally this process of Minimisation through Con-
vex Optimisation – MCO must traverse the whole space of boolean assignments
of the propositional abstraction of the contract, determining which of them leads
to a feasible set of convex constraints. This observation motivates the idea of a
two phase analysis approach based on the algorithm of Fig. 1, in which the first
phase aims at the minimisation of QoS contracts, performed only once when a
service is registered in a repository, and the second phase is the analysis of QoS
contract compliance, executed for SLA negotiation.

A Two Phase Analysis Algorithm of Convex Specifications. Our pro-
posal for the analysis of QoS contract compliance is motivated by the spe-
cific usage scenario of SOC, where specifications are expected to be reused in
many analysis. Such a context imposes that time consumption to check whether
Pr ∧ ¬Rq is satisfiable or not, has to be as tight as possible due to the fact that
such a check has to be performed over every candidate satisfying the functional
requirements. To cope with such demand, we devised a preprocess (referred to as
minimisation phase) aiming at the minimisation of QoS contracts, represented
by a convex specification, and a second phase (referred to as check phase) that
implements the exact same analysis than the algorithm of Fig. 1.

Our first research questions aims at relating the performance of the algorithm
in Fig. 1 as distributed by Pappas et al. and our reimplementation when satis-
fying boolean assignments are iterated by using Z3 and Minisat as SAT-solvers.

RQ1: Is there any performance gain in a Z3-based implementation of the check
phase with respect to that of the algorithm shown in Fig. 1? What about between
a Minisat-based implementation with respect to the Z3-based implementation
of the check phase?

Next we present and evaluate the main contribution of the paper, being
the implementation of a QoS contract MCO procedure, aiming at preprocessing
QoS contracts in order to prune a significant portion of the space of satisfying
boolean assignments of its propositional abstraction. Such minimisation pro-
cedure is motivated by two observations about the algorithm of Fig. 1: 1. the
analysis procedure relies on enumerating all possible models of the propositional
abstraction of the QoS contract, and 2. line 3(2)2 of the algorithm of Fig. 1 alters
the enumeration process by using the unfeasibility information obtained from the
convex analysis, transformed into a minimal boolean clause, acting as an unfea-
sibility certificate. The algorithm for QoS contract MCO is based on performing
convex analysis to test the feasibility of the set of convex constraints determined
by each satisfying boolean assignment. The single difference with SMCO analy-
sis procedure is that, while in Line 3(2)1 of the algorithm of Fig. 1 the problem
is reported as satisfiable and the search for more satisfying assignments ends,
MCO discards that satisfying boolean assignment to return to the enumeration

228 A. E. Martinez Suñé and C. G. Lopez Pombo

and continue the search for boolean assignments that lead to non-feasible sets
of constraints.

Given a QoS contract, consisting of a monotone SMC formula α, the reader
might note that the minimisation process visits all satisfying boolean assign-
ments of the propositional abstraction αB in order to determine which of them
are declared feasible by the convex solver so they must remain as satisfying
boolean assignments, and which of them must be pruned from the space of mod-
els of the specification. Then we can design a two phase convex analysis algo-
rithm by considering: 1. a single time application of the process of QoS contract
MCO phase of both, a provision contract Pr , and the negation of a require-
ment contract ¬Rq , yielding ̂Pr and ̂¬Rq respectively, and 2. a second phase of
searching for a satisfying boolean assignment for the propositional abstraction
of ̂Pr ∧ ¬̂Rq that leads to feasible set of convex constraints (i.e. the result of
applying the algorithm shown in Fig. 1).

An important concern regarding the MCO procedure, is that, as we men-
tioned before, minimising a QoS contract requires visiting all possible boolean
assignments satisfying the propositional abstraction of the formula ̂Pr ∧¬̂Rq . It
is trivial to see that this procedure is of an exponential nature due to the fact
that the size of the space of satisfying boolean assignments of a boolean formula
is (potentially) exponential with respect to the amount of boolean variables4.
Having said that, efficiency improvement resulting from potential optimisations
of the process cannot change such a high complexity bound. A direct conse-
quence of this observation is that, even if minimisation is considered as a one
time preprocess, full scalability is, by any means, unreachable.

The remaining research questions aims at evaluating the performance of our
proposal of a two phase procedure for checking QoS contract compliance. To
accomplish that, the comparison of the three different implementations of the
SMCO analysis procedure done to answer RQ1 will serve to set a baseline for
the experimental evaluation of the main contribution of this work, being the
comparison of the time required for checking QoS contract after performing a
Minimization Through Convex Optimisation phase.

The second research question aims at identifying whether there is a bound
to the size of the QoS contracts that can be fully minimised.

RQ2: What is the size of QoS contracts that can be fully minimised in 3 h?
A close look to the proposed minimisation procedure exposes that if it were

stopped at any iteration, right before continuing the enumeration of satisfying
boolean assignments, the resulting QoS contract shares every feasible model with
the original one.

Proposition 1. Let 〈〈X ,P〉 , α〉 be a convex specification, αB the propositional
abstraction of α and δ a function mapping variables in V to their correspond-
ing convex or affine constraint appearing in α. Let [αBi]0≤i≤n be a sequence of
boolean formulae where αB0 = αB, αBi+1, for all i < n − 1, is the result of a

4 To be precise, the problem of enumerating all possible satisfying assignment of a
SAT-formula is, at least, in the complexity class #P.

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 229

single iteration of the minimisation algorithm to αBi and αBn is the result at
the end of the algorithm.

Then, every convex specification 〈〈X ,P〉 , αBi〉, where 0 ≤ i ≤ n, share the
same feasible models.

An interesting fact derived from the previous proposition is that the process
of QoS contract minimisation can be performed incrementally, one iteration at
a time, leading to a succession of partially minimised QoS contracts, leading us
to our third research question.

RQ3: How does the nature of the problem change considering successive partial
minimisations of a given specification?

3 Implementation and Experimental Results

In this section we present the answers to the research questions posed in Sect. 2
through experimental evaluation. First we will provide some details about the
implementation of the algorithms, the hardware configuration of the experimen-
tal setup and the dataset used for the experimental evaluation.

Notes on the Implementation. In this section we will briefly discuss some
aspects of the implementation of the algorithms presented in the paper. The
implementation developed by Pappas et al. in [13] of the algorithm of Fig. 1
uses Z3 [12] as SAT-solver. Having said that, we developed two versions of our
algorithms, one also using Z3 to check wheter the reimplementation of the algo-
rithm does not introduce any significant difference in performance, a second one
resorting to Minisat [3], a well-known SAT-solver whose minimality has made it
one of the most efficient ones available.

Checking feasibility of sets of constraints was implemented using IBM ILOG
CPLEX Optimization Studio [9] since it is one of the most powerful convex
optimization softwares that is available for research and educational purposes.

The algorithm orchestrating the enumeration of satisfying boolean assign-
ments of the propositional abstraction of the contracts with the convex solving
of the set of convex constraints determined by corresponding assignment, as
well as all the framework needed for the generation of instances according to the
experimental design and their systematic execution were developed in Python 2.7
(https://www.python.org) resorting to the existent libraries needed to integrate
the various tools mentioned above.

Hardware Configuration. Experiments were run over an x86 64 architecture
processor Intel(R) Core(TM) i5 CPU 750 at 2.67GHz (CPU MHz: 2661 – CPU
max MHz: 2661 – CPU min MHz: 1197) with 3 level cache (L1d cache: 32K, L1i
cache: 32K – L2 cache: 256K – L3 cache: 8192K), 8 Gb of SDRAM at 1333 MHz,
and running SMP Debian Linux 4.9.88-1+deb9u1 (2018-05-07). Each individual
instance was run for at most 3 h, unless it is noted, as we believe that what
is feasible within that time frame provides enough information to validate our
answers. Whenever the analysis of a problem instance, or the construction of

https://www.python.org

230 A. E. Martinez Suñé and C. G. Lopez Pombo

the solving infrastructure, exceded the time limit, the corresponding cell in the
tables was marked with “TO” denoting that the process reached the timeout, and
whenever the limit was a consequence of the exhaustion of the system memory
leading the machine to a sate of trashing was marked with “OoM” denoting the
system run out of memory.

Notes on the Experimental Setting. A first note on the experimental designs
we need to put forward is that we did not use the experimental setting distributed
by the authors of [13] for the following reasons: (1) specifications are constructed
hardcoding the solver instance and not providing any interface allowing users to
feed a specification in any standard language, making very difficult to test the
tool over different data sets, and (2) there is no report on the time needed to
construct the solver instance which, after profiling the implementations based
on Z3, are proven to be not negligible due to the fact that part of the solving
is performed during the addition of the clauses, sometimes consuming more
time than the invocation of the solve itself (see column “Initialisation time” of
Table 1).

3.1 Experimental Evaluation

In this section we evaluate the research questions posed previously and show
experimental data supporting our answers.

RQ1: Is there any performance gain in a Z3-based implementation of the check
phase with respect to that of the algorithm shown in Fig. 1? What about between
a Minisat-based implementation with respect to the Z3-based implementation
of the check phase?

Experimental Design: QoS provision contracts were obtained by first generating
random SAT instances of satisfiable provision contracts, PrB using the number of
boolean and real variables as parameters. The dataset is formed by QoS contracts
with boolean variables ranging from 50 to 350, stepping every 50 variables. The
number of clauses is 80 times the number of boolean variables. From the total
amount of variables we randomly choose 50% to which we associated randomly
generated linear convex constraints. Convex constraints were considered to apply
over 5 to 30 real variables stepping every 5 variables. Satisfiable contracts ¬RqB

are obtained from: (1) negating PrB , (2) pushing negations to the atoms, and
(3) reversing the linear constraints (producing also linear constraints). In this
way, PrB ∧ ¬RqB results satisfiable from the boolean point of view, but having
no feasible convex model. This lack of counterexamples for Pr =⇒ Rq aims
at stressing the checking procedure forcing it to traverse the whole space of
solutions.

The upper limit in the number of boolean variables respond to the fact that
generating a CNF boolean formula ¬PrB as a QoS requirement contract, using
Tseitin’s transformation [15], yields a boolean formula quadratically bigger than
PrB , both in the number of clauses and variables. If we consider that a proposi-
tional abstraction of a provides contract PrB of 400 boolean variables and 32000

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 231

clauses results in a 35 Mb file, the construction of a QoS contract equivalent
to ¬PrB yields a CNF formula of approximately 30000 boolean variables and
9500000 clauses, consuming approximately 1 Gb. The analysis was performed
over 8 instances of each combination of boolean variables and real variables to
try palliating the variance among cases. The time was split in two, the time
needed to setup the checking infrastructure, and the analysis time itself, as the
use of Z3 showed that a significant part of the analysis takes place during the
initialisation of the SMT-solver with the clauses.

Table 1. Comparison of different implementations of algorithm for checking an unsat-
isfiable formula

bool. vars Initialisation # real variables
in provides Solver time (approx.) 5 10 15 20 25 30

22.87168.67182.87117.67117.67184.751051CMS
Z3 check 170 167.82 177.82 177.55 177.01 176.84 177.5550
Minisat check 4 3.21 2.23 2.13 2.12 2.12 2.12

46.258124.458126.218171.657102.208107.5751036CMS
Z3 check 640 1589.20 1819.81 1843.83 1954.84 1925.89 1931.48100
Minisat check 17 16.47 19.89 11.90 10.01 9.11 8.70
SMC 1680 4243.10 TO TO TO TO TO
Z3 check 1820 4580.25 TO TO TO TO TO150
Minisat check 45 21.32 174.12 79.92 47.76 26.66 23.60
SMC 3100 TO TO TO TO TO TO
Z3 check 3120 TO TO TO TO TO TO200
Minisat check 77 35.53 236.32 906.17 488.88 102.78 60.34
SMC 4920 TO TO TO TO TO TO
Z3 check 5010 TO TO TO TO TO TO250
Minisat check 127 45.93 321.73 1231.22 2929.81 1052.29 405.59
SMC OoM – – – – – –
Z3 check 7300 TO TO TO TO TO TO300
Minisat check 186 60.05 431.87 1714.84 4423.42 8259.39 4720.92
SMC OoM – – – – – –
Z3 check OoM – – – – – –350
Minisat check OoM – – – – – –

Experimental Results: Table 1 shows the running time comparison between the
original implementation of SMCO algorithm presented in [13], reviewed in Fig. 1,
and the implementations of the check phase based on Z3 and Minisat. The layout
of the table is: 1. the first column shows the amount of boolean variables in the
provision contract, 2. the second one shows the solver used to solve the problem,
3. the third column shows the time required for initialising the solver until the
exact moment before it is ready to solve the problem, and 4. columns fourth to
nine show the average time required to solve the instances of the corresponding
number of real variables. Figure 2 shows boxplots graphs containing the run-time
information for the first two rows of Table 1 exposing the relative stability of the
algorithms. Figure 2a and b show the running time of the tool using the algorithm
in Fig. 1 and the Z3-based implementation of the check phase algorithm, while
Fig. 2c and d show the running time using the Minisat-based implementation.

232 A. E. Martinez Suñé and C. G. Lopez Pombo

(a) 50 boolean vars. in provides using Z3 (b) 100 boolean vars. in provides using Z3

(c) 50 bool. vars. in provides using Minisat (d) 100 bool. vars. in provides using Minisat

Fig. 2. Compliance analysis of QoS contracts over 50 and 100 boolean variables in
provides (total problem size of +4000 and +8000 bool. vars. respectively)

Conclusions and Discussion: Observing the running times obtained from execut-
ing the three implementations of SMCP algorithm for checking an unsatisfiable
formula shown in Table 1 we derive the following conclusions: 1. running time
grows exponentially at a rate of 2.37 on the number of boolean variables, 2.
observing the rows it is possible to appreciate that the time required to analyse
the satisfiability of the instances grows until it finds a maximum, then decrease
until it stabilises in what seems to be a plateau. As for every row the CNF used
is the same, also prescribing the amount of convex constraints, this phenomenon
seems to expose a relation between the number of constraints and the number
of real variables over which those constraints are expressed. It is also observable
that decrease, and further stabilisation, of the time is mimicked by the number
of iterations of the algorithm. Having said this, we believe that understand-
ing this particular phenomenon has no impact on the experiment conducted to
answer this research question, 3. there is no consistent and significant difference
between the performance of the SMCP original implementation by Pappas et al.
and our implementation based on Z3 as boolean solver. The experimental data
shows a running time difference no bigger than 10%. This difference might be
a byproduct of having developed a more abstract implementation of the convex
specification encapsulating an iterator for the satisfying boolean assignments of
the propositional abstraction, 4. the Minisat-based implementation greatly out-

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 233

performs both Z3-based implementations taking only approximately 2% of the
time required by the latter, considering setting up the analysis infrastructure
and analysing compliance altogether.

An important observation about the answer given to RQ1, is that only the
Minisat-based implementation of the check phase algorithm can produce a sig-
nificant amount of experimental data useful enough to evaluate our proposal of
a two phase QoS contract compliance analysis procedure; thus RQ2 and RQ3
will be answered only evaluating the performance of the Minisat-based imple-
mentation of both phases of the procedure.

RQ2: What is the size of QoS contracts that can be fully minimised in 3 h?

Experimental Design: The dataset used to run the experiment was generated
using the same criteria used for generating the dataset used to run the experi-
ment performed to answer RQ1 but considering a finer granularity in the axis of
boolean variables (stepping every 5) and starting from 30 variables, as the run-
ning time of the minimisation phase of instances with less than 30 was negligible.
In those cases in which the minimisation process did not find any unfeasible con-
vex model thus, not producing any minimisation, the running time is reported
tagged with (nm), indicating “no minimisation”.

Experimental Results: Table 2 shows the running time of the minimisation phase.
A side by side comparison of the time required by the analysis algorithm, over
minimised and not minimised instances, is of no interest in this case as the cost
associated to the process of full minimisation of QoS contracts is so high that
even the smaller instance of Table 1 of 50 boolean variables and 5 real variables
could not be minimised within the time bound of 3 h.

Conclusions and Discussion: Results shown in Table 2 expose that a näıve app-
roach to minimisation is not viable as the cost of full minimisation might be too
high, even for very small contracts.

RQ3: How does the nature of the problem change considering successive partial
minimisations of a given specification?

Experimental Design: To provide an answer to this research question we per-
formed partial minimisations (from 0 min to 3 h stepping every 30 min) of every
pair of QoS contracts of those cells of rows 200, 250 and 300 of Table 1 where the

Table 2. Running time of the Minisat-based minimisation algorithm

real variables
boolean vars 5 10 15 20 25 30

30 186.68 (nm) 200.40 (nm) 203.18 (nm) 206.43 (nm) 209.94 (nm) 212.82
35 691.26 (nm) 852.93 (nm) 921.20 (nm) 930.37 (nm) 944.27 (nm) 953.85
40 5606.34 (nm) 9519.08 (nm) 9682.34 (nm) 9814.39 (nm) 10004.27 (nm) 7234.67
45 TO TO TO TO TO TO

234 A. E. Martinez Suñé and C. G. Lopez Pombo

number of real variables ranges between 5% and 10% of the number of boolean
variables. Then, we performed the compliance analysis in order to identify how
analysis time decreases while more time is invested in the minimisation proce-
dure.

Results: Figure 3 show graphs of the evolution of time required by the check
phase over partially minimised QoS contracts, considering the snapshots taken
every 30 min of minimisation. Table 3 shows the comparison of the solving time
required by partially minimised QoS contracts up to 3 h.

(a) 200/15 variables (b) 250/20 variables (c) 300/25 variables

(d) 200/20 variables (e) 250/25 variables (f) 300/30 variables

Fig. 3. Solving times for partial minimisations (from 0 min to 3 h stepping every 30min)
of provides and requires QoS contracts

Conclusions and Discussion: Observing the graphs in Fig. 3 we derive the follow-
ing conclusions: 1. the running time required by the check phase decreases while
the amount of time invested in minimisation grows. For QoS contracts over 200
boolean variables, the time required by the check phase drops dramatically to
a plateau after only 30 min. of minimisation. In the case of QoS contracts over
250 boolean variables, the pattern is exactly the same but requiring between
60 to 90 min. of minimisation. Finally, for QoS contracts over 300 boolean vari-
ables, this phenomenon can be seen only for instances over 25 real variables after
150 min. but in the case of 30 real variables we can witness cases that cannot
be checked within 3 h time when QoS contracts are not minimised, that can be
checked after 60 min. of minimisation phase, 2. the growth on the number of real
variables for instances over the same number of boolean variables shows more
dispersion (in the time required for the check phase) over instances minimised
for short periods of time, but rapidly collapsing to the plateau,

Automatic Quality-of-Service Evaluation in Service-Oriented Computing 235

Table 3. Comparison of solving time required between not minimised and minimised
contracs (3 h)

bool. vars Initialisation # real variables
in provides time (approx.) 10 15 20 25 30

not minimised 43 171.35 94.01 – – –
minimised 44 15.13 38.59 – – –150
percentage 102.3 8.8 41 – – –
not minimised 77 – 896.46 444.53 – –
minimised 80 – 50.31 139.34 – –200
percentage 103.90 – 5.6 31.3 – –
not minimised 127 – – 2930.41 1310.06 –
minimised 130 – – 173.81 429.67 –250
percentage 102.36 – – 5.9 32.7 –
not minimised 186 – – – 8083.04 3400.33 / TO
minimised 189 – – – 560.94 2265.39300
percentage 101.61 – – – 6.9 66.6

The results in Table 3 show how 3 h of minimisation phase dramatically
reduce the cost of the check phase. The reduction naturally depends on the
size of the problem under analysis; it is easy to see that bigger problems show
smaller reductions over the same amount of time invested in the minimisation
phase.

4 Conclusions

We proposed the use of a formal language for QoS contract specification together
with an associated two phase compliance checking procedure, based on the algo-
rithm proposed by Pappas et al. in [13] for hybrid system verification, adapted
to the concrete scenario of SLA negotiation for the automatic reconfiguration of
software systems found in distributed environments such as SOC.

Research questions were posed and experiments were conducted to answer
them. The dataset was designed in order to stress the technique by forcing
the problem instances to be unsatisfiable thus, requiring the exhaustion of the
space of potential solutions; the evaluation of the tool under satisfiable instances
remains to be addressed. The experimental results shown in the answering of
RQ2 evidenced that full minimisation of contracts might be unreachable as
time and memory consumption, even for small case studies, result too high. To
mitigate such demand we proposed the use of incremental minimisation and the
experimental results shown in the answering of RQ3 evidenced that a relatively
small amount of time invested in a first phase of QoS contract MCO dramatically
reduces the time required by a second phase dedicated to check compliance of
minimised versions of the QoS contracts.

236 A. E. Martinez Suñé and C. G. Lopez Pombo

References

1. Bryant, V.: Metric Spaces: Iteration and Application. Mathematical Systems The-
ory. Cambridge University Press, Cambridge (1985)

2. Cormen, T.H., Clifford, S., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to algorithms. MIT Press, Cambridge (2001)

3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

4. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding. Formal Aspects Comput. 23(4), 433–463 (2011)

5. Grünbaum, B.: Convex polytopes, Graduate Texts in Mathematics, vol. 221.
Springer, Berlin, Germany (1967). https://doi.org/10.1007/978-1-4613-0019-9

6. Henzinger, T.A.: The theory of hybrid automata. In: Vardi, M.Y., Clarke, E.M.
(eds.) Proceedings of Eleventh Annual IEEE Symposium on Logic in Computer
Science, 1996. LICS 1996, pp. 278–292. IEEE Computer Society, July 1996. see
also [7]

7. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13. see also [6]

8. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

9. IBM: IBM ILOG CPLEX Optimization Studio (2004). https://www.ibm.com/
analytics/data-science/prescriptive-analytics/cplex-optimizer

10. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

11. Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: CalCS: SMT
solving for non-linear convex constraints. In: Bloem, R., Sharygina, N. (eds.) Inter-
national Conference on Formal Methods in Computer-Aided Design, FMCAD
2010, pp. 71–79. IEEE, October 2010

12. Microsoft Research: Z3: An efficient SMT solver. http://research.microsoft.com/
projects/z3/

13. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex optimization. In: Proceedings of
the 20th International Conference on Hybrid Systems: Computation and Control,
pp. 19–28. ACM Press, New York (2017)

14. Strunk, A.: QoS-aware service composition: a survey. In: Brogi, A., Pautasso, C.,
Papadopoulos, G.A. (eds.) Proceedings of 8th IEEE European Conference on Web
Services (ECOWS 2010), pp. 67–74. IEEE Computer Society, December 2010

15. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation
(Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/
10.1007/978-3-642-81955-1 28

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/978-3-642-59615-5_13
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://research.microsoft.com/projects/z3/
http://research.microsoft.com/projects/z3/
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

DiRPOMS: Automatic Checker
of Distributed Realizability of POMSets

Roberto Guanciale(B)

KTH, Stockholm, Sweden
robertog@kth.se

Abstract. DiRPOMS permits to verify if the specification of a dis-
tributed system can be faithfully realised via distributed agents that
communicate using asynchronous message passing. A distinguishing fea-
ture of DiRPOMS is the usage of set of pomsets to specify the distributed
system. This provides two benefits: syntax obliviousness and efficiency.
By defining the semantics of a coordination language in term of pomsets,
it is possible to use DiRPOMS for several coordination models. Also, DiR-
POMS can analyze pomsets extracted by system logs, when the coordina-
tion model is unknown, and therefore can support coordination mining
activities. Finally, by using sets of pomsets in place of flat languages,
DiRPOMS can reduce exponential blows of analysis that is typical in
case of multiple threads due to interleaving. (Demo video available at
https://youtu.be/ISYdBNMxEDY. Tool available at https://bitbucket.
org/guancio/chosem-tools/).

Keywords: Pomsets · Choreography · Realisability · CFSMs

1 Introduction

Choreographic approaches advocate two views of the same distributed system:
a global view that describes ordering conditions and constraints under which
messages are exchanged, and local views that are used by each party to build
their components. Here, the global view is a specification that is realised by
combination of the local systems. As observed in [1], a source of problems is
that there are some global specifications that are impossible to implement using
distributed agents in a given communication model.

DiRPOMS is a tool designed to analyze realisability of choreographies. A
choreography is formalized as a set of pomsets, were each pomset represents the
causalities of events in one single branch of execution. Local views are modeled
via finite state machines that communicate via asynchronous message passing.
DiRPOMS checks realizability by verifying two closure conditions of the input
pomsets and outputs the corresponding counterexamples:

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 237–249, 2019.
https://doi.org/10.1007/978-3-030-22397-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_14&domain=pdf
https://youtu.be/ISYdBNMxEDY
https://bitbucket.org/guancio/chosem-tools/
https://bitbucket.org/guancio/chosem-tools/
https://doi.org/10.1007/978-3-030-22397-7_14

238 R. Guanciale

The first use case of our tool is design time analysis, where an architect checks
if a choreography is realizable. In this case, violations of the closure conditions
(i.e. the counterexamples) enable to identify behaviors that are not included in
the choreography but are necessary in any distributed system that implements
it (using finite state machines and asynchronous message passing). The usage of
set of pomsets allows this analysis to be syntax oblivious, since the semantics of
several existing choreographic models (i.e. [6,8,11]) can be expressed using set
of pomsets.

The second use case is choreography mining. In this case an analyst extracts
a hypotheses choreography from (partial) execution logs of a distributed sys-
tem. Here, violations of the closure conditions enable to identify behaviors of
the distributed system that are not included in the logs, so supplementing par-
tial information regarding the system under test and reducing the number of
executions needed to extract a model of the system.

The paper is organized as follows. In Sect. 2 we present the models for local
and global views and in Sect. 3 we briefly recall the theory supporting our
tool. Section 4 presents some examples of faulty choreographies, which cannot
be implemented using communicating finite state machines. Section 5 shows an
example of choreography mining, where the tool is used to identify missing traces
from a partial execution log. Usage, implementation, and evaluation of the tool
are presented in Sects. 6, 7, and 8.

2 Local and Global Views of Choreographies

We assume a set P of distributed participants (ranged over by A, B, etc.) and
a set M of messages (ranged over by m, x, etc.). Participants communicate by
exchanging messages over channels, that are elements of the set C = (P × P).
The set of (communication) labels L, ranged over by l and l′, is defined by

L = L ! ∪ L? where (outputs) L ! = C × {!} × M and (inputs) L? = C × {?} × M

we shorten (A,B, !,m) as AB!m and (A,B, ?,m) as AB?m. The subject of out-
put and input are the sender (sbj

(
AB!m

)
= A) and receiver (sbj

(
AB?m

)
= B)

respectively.
Local systems are modeled in terms of communicating fine state machines [1].

Definition 1. An A-communicating finite state machine (A-CFSM) M =
(Q, q0, F,→) is a finite-state automaton on the alphabet {l ∈ L | sbj

(
l
)

= A}
such that, q0 ∈ Q is the initial state, and F ⊆ Q are the accepting states. A
(communicating) system is a map S assigning an A-CFSM to each participant
A ∈ P .

Figure 1 presents a system with three participants: A, B, and C. Participant
C always sends message x to B. Participant A sends two messages to B: the first
message is x or y; the second message is always z. Participant B receives the first
message from A and C in any order, then it receives the second message of A.

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 239

Fig. 1. A system consisting of CMFSs. Initial states are A0, B0, and C0. Accepting
states are A3, B5, and C1.

A configuration of a communicating system consists of a state-map �q, which
maps each participant to its local state, and buffer-map �b, which maps each
channel and message to the number of outputs that have been consumed. A
configuration is accepting if all buffers are empty and the local state of each
participant is accepting while it is a deadlock if no accepting configuration is
reachable from it. The initial configuration is the one where, for all A ∈ P , �q(A)
is the initial state of the corresponding CFSM and all buffers are empty.

The semantics of communicating systems is defined in terms of a labeled
transition relation between configurations. Each transition models one action
performed by one machine: an output, which adds a message to a channel,
or an input, which consumed a pending message from a channel. Formally
〈�q;�b〉 l=⇒〈�q′; �b′〉 if there is a message m ∈ M such that either (1) or (2) below
holds:

1. l = AB!m, q(A) l−→ q′(A), q′(C) = q(C) for all C �= A ∈ P , and �b′(AB) =
�b(AB)[m 	→ �b(AB)(m) + 1]

2. l = AB?m, q(B) l−→ q′(B), q′(C) = q(C) for all C �= B ∈ P , �b(AB)(m) > 0 and
b′(AB) = b(AB)[m 	→ b(AB)(m) − 1]

where, f [x 	→ y] represents updating of a function f in x with a value y.

Definition 2. The language of a communicating system S is the set L(S) ∈ L�

of sequences l0 . . . ln−1 such that exist a trace labeled with l0 . . . ln−1 that start in
the initial configuration and ends in an accepting configuration.

The notion of realisability is given in terms of the relation between the lan-
guage of the global view and the one of a system of local views “implementing”
it [1].

Definition 3 (Realisability). A language L ⊆ L� is weakly realisable if there
is a communicating system S such that L = L(S); when S is deadlock-free we
say that L is safely realisable.

We model the global views in terms of sets of pomsets, where each pomset
models one branch of execution.

Definition 4 (Pomsets [4]). A labelled partially-ordered set (lposet) is a triple
(E ,≤, λ), with E a set of events, ≤⊆ E × E a reflexive, anti-symmetric, and

240 R. Guanciale

Fig. 2. A set of two pomsets that represents the global view of the system of Fig. 1

transitive relation on E, and λ : E → L a labelling function mapping events in
E to labels in L.

A partially-ordered multi-set (of actions), pomset for short, is an isomor-
phism class of lposets, where (E ,≤, λ) and (E ′,≤′, λ′) are isomorphic if there is
a bijection φ : E → E ′ such that e ≤ e′ ⇐⇒ φ(e) ≤′ φ(e′) and λ = λ′ ◦ φ.

Pomsets allow to represent scenarios where the same communication occurs
multiple times. Intuitively, ≤ represents causality; if e < e′ then e′ is caused by
e. Note that λ is not required to be injective: λ(e) = λ(e′) means that e and e′

model different occurrences of the same action. In the following, [E ,≤, λ] denotes
the isomorphism class of (E ,≤, λ), symbols r, r′, . . . (resp. R,R′, . . .) range over
(resp. sets of) pomsets, and we assume that pomsets r contain at least one lposet
which will possibly be referred to as (Er, ≤r, λr). The projection r�A of a pomset
r on a participant A ∈ P is obtained by restricting r to the events having subject
A. We will represent pomsets as (a variant of) Hasse diagrams of the immediate
predecessor relation.

A pomset is well-formed if (1) for every output AB!m there is at most one
immediate successor input AB?m, (2) for every input AB?m there exists exactly
one immediate predecessor output AB!m, (3) if an event immediately precedes
an event having different subjects then these events are matching output and
input respectively, (4) ordered output events with the same label cannot be
matched by inputs that have opposite order. A pomset is complete if there is no
output event in without a matching input event.

Definition 5. Given a pomset r = [E ,≤, λ], a linearization of r is a string in
L� obtained by considering a total ordering of the events E that is consistent with
the partial order ≤, and then replacing each event by its label. The language of a
pomset (L(r)) the set of all linearizations of r. The language of a set of pomsets
R is simply defined as L(R) =

⋃
r∈R L(r).

The set of pomsets of Fig. 2 represents the global view of the system of Fig. 1,
i.e. the two views have the same language. The two pomsets represents two
different scenarios (i.e. branches): in the left scenario A sends x, in the right
scenario A sends y.

3 Realisability Conditions

Our tool uses the verification conditions for realisability identified in [5]. These
conditions requires to introduce the following definitions.

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 241

Definition 6 (Inter-participant Closure). Let (rA)A∈P be the tuple where
rA = rA �A for all A ∈ P . The inter-participant closure �((rA)A∈P) is the set
of all well-formed pomsets

[⋃
A∈P ErA , ≤I ∪⋃

A∈P ≤rA ,
⋃

A∈P λrA

]
where ≤I⊆

{(eA, eB) ∈ ErA × ErB ,A,B ∈ P
∣
∣ λrA(eA) = AB!m, λrB(eB) = AB?m}.

The inter-participant closure takes one pomset for every participant and gen-
erates all “acceptable” matches between output and input events. We use the
following tuple of pomsets (rA, rB) to illustrate the inter-participant closure.

rA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AB!x

e1 e2

AB!x AB!x

e3 e4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

rB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AB?x

e5 e6

AB?x

AB?x

e7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Pomset rA represents a fork while pomset rB represents a join. The inter-
participant closure of (rA, rB) consists of four well-formed pomsets:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Definition 7 (More permissive relation). A pomset r′ is more permissive
than pomset r, written r � r′, when Er = Er′ , λr = λr′ , and ≤r⊇≤r′ .

The more permissive relation guarantees language inclusion, i.e. if r � r′ then
L(r) ⊆ L(r′).

Definition 8 (Prefix pomsets). A pomset r′ = [E ′,≤′, λ′] is a prefix of pom-
set r = [E ,≤, λ] if there exists a label preserving injection φ : E ′ → E such that
φ(≤′) =≤ ∩(E × φ(E ′)).

A prefix of a pomset r is a pomset on a subset of the events of r that preserves
the order and labelling of r.

The realisability conditions presented in [5] are two closure conditions, which
are formalized by the following theorem.

Theorem 1. If R satisfies CC2-POM then L(R) is weak realisable, if R also
satisfies CC3-POM then its language is safe realisable, where

– CC2-POM(R) � for all tuples (rA)A∈P of pomsets of R, for every pomset
r ∈ �((rA�A)A∈P), there exists r′ ∈ R such that r � r′.

242 R. Guanciale

– CC3-POM(R) � for all tuples of pomsets (r̄A)A∈P such that r̄A is a prefix of
a pomset rA ∈ R for every A, and for every pomset r̄ ∈ �((r̄A�A)A∈P) there is
a pomset r′ ∈ R and a prefix r̄′ of r′ such that r̄ � r̄′.

Intuitively CC2-POM requires that if all the possible executions of a pomset
cannot be distinguished by any of the participants of R, then those executions
must be part of the language of R. Similarly, CC3-POM requires that if all
partial executions cannot be distinguished by any of the participants of R, then
those executions must be a prefix of the language of R.

4 Realisability by Examples

In this section we give some examples of the problems related to implement-
ing pomset-based choreographers using CFSMs. Distributed choices can prevent
faithful implementations in case of lack of coordination. For example, the set R1

models two branches. Participants A and C should both send the message x or
both send the message y. However, A and C do not coordinate to achieve this
behaviour; this makes it impossible for them to distributively commit to a com-
mon choice. R1 satisfies CC2-POM. However, pomset r1, which represents the
case A and C do not agree on the message to deliver, is in the inter-participant
closure of prefixes and violates CC3-POM.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡
⎣

AB!x

AB!z

A B?x

AB?z

c B?x c B!x

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

AB!y

AB!z

A B?y

c B?y

AB!z

c b!y

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎡
⎣

AB!y

AB!z

A B?y C B!x

⎤
⎦

R1 r1

A different problem affects R2. Here the two branches describe different orders
of the same set of events. The behaviour of A (and D) is the same in both
branches: A (resp. D) concurrently sends message x (resp. y) to B and C. The
behaviours of B and C differ: in the left branch they first receive the message from
A then the one from D, in the right branch, they have the same interactions but in
opposite order. This choreography cannot be realised since, intuitively, it requires
B and C to commit on the same order of reception without communicating with
each other. Pomset r2, which captures the case when B and C do not agree on
the order of message reception, is in the inter-participant closure and violates
CC2-POM.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AB!x AB?x

DB?y DB!y

A C?xA C!x

DC?y DC!y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

DB?y DB!y

AB?xAB!x

DC!yDC?y

A C?xA C!x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

DB?y DB!y

AB?xAB!x

A C?x A C?x

DC!yDC?y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R2 r2

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 243

The last example demonstrates problems led by the usage of the same mes-
sage in the concurrent threads. The set R3: consists of a single pomset, which
represents two concurrent sub-choreographies. The usage of message x in both
threads can cause the following problem: (1) the left thread of A executes AC!l1
and AB!x; (2) after the output BC!r2, the right thread of B executes the input
AB?x, so “stealing” the message x generated by the left thread of A and meant
for the left thread of B; (3) the right thread of B executes BC!r3. Pomset r3, which
represents this case, is in the inter-participant closure and violates CC2-POM.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AC!l1

B C!l2

A B?xAB!x

B C!l3

A C?l1

B C?l2

A C?l3

A C!r1 A C?r1

B C!r2

A B?xAB!x

B C!r3

B C?r2

A C?r3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AC!l1

B C!l2

A B?xAB!x

B C!l3

A C?l1

B C?l2

A C?l3

A C!r1 A C?r1

B C!r2

A B?xAB!x

AB!r3

B C?r2

A C?r3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R3 r3

5 Identifying Missing Execution Logs for Choreography
Mining

Choreography (and process) mining [10] consists of extracting a hypothesis chore-
ography from a partial execution log of a distributed system. In this section we
show that violations of the closure conditions can be used to identify behaviors
of the distributed system that are not included in the log. Therefore the closure
conditions can support the mining and testing activities.

Let the partial execution log of the system of Fig. 1 contains the following
traces
A log | B log | C log
−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−
AB! x ; AB! z | AB?x ;CB?x ;AB? z | CB! x
AB! x ; AB! z | CB?x ;AB?x ;AB? z | CB! x
AB! y ; AB! z | AB?y ;CB?x ;AB? z | CB! x

A choreography that precisely represents these traces is the following set of
pomsets:

⎧
⎨

⎩

⎡

⎣
AB!x

AB!z

A B?x

AB?z

C B?x C B!x

⎤

⎦ ,

⎡

⎣
AB!y

AB!z

A B?y

AB?z

C B?x C B!x

⎤

⎦

⎫
⎬

⎭

This set of pomsets satisfies CC2-POM, but it does not satisfy CC3-POM. The
following pomset is in the inter-participant closure of prefixes and violates CC3-
POM:

⎡

⎣
AB!y

AB!z

C B?x C B!x

⎤

⎦

244 R. Guanciale

This pomset represents the fact that there must be an execution of the system
where A sends y and B receives the first message from C, i.e.:

A log | B log | C log
−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−
AB! y ; AB! z | CB?x ; . . . | CB! x

This information can be used to fix the hypothesis choreography, by enabling
the traces that are necessarily part of the behaviors of the distributed system.
The set of pomsets of Fig. 2 satisfies both closure conditions and its language
includes the initial partial execution log.

6 Tool Usage

DiRPROM is written in Python and provides a set of API to build and manip-
ulate pomsets and to check the closure conditions. The API can be invoked by
any Python development environment (in the demo video we use org-mode [9]
for analyzing the examples using literate programming).

A typical DiRPOM session starts by defining the set of pomsets modeling
the choreography. Pomsets can be loaded using the existing formats (including
GEXF, GraphML, and JSON), be generated by translating other choreography
models, or be dynamically generated. For example, the following snippet creates
R1 as input choreography:

a choreog raphy i s a l i s t o f pomsets
g l o b a l v i e w = []

a pomset i s a d e f i n e d u s i n g a d i r e c t e d graph
l e f t pomset o f R1
gr1 = nx . DiGraph ()
add pa i r (gr1 , A, B, n , m) c r e a t e s two node ”out−n” and ” in−n”
l a b e l e d wi th AB!m and AB?m, connec t s the two ev en t s and r e t u r n s
the p a i r (out−n , in−n)
abx = add pa i r (gr1 , ”a” , ”b” , 1 , ”x”)
cby = add pa i r (gr1 , ”c” , ”b” , 2 , ”x”)
abz = add pa i r (gr1 , ”a” , ”b” , 3 , ” z”)
Inpu t pomsets do not need to be t r a n s i t i v e (t r a n s i t i v e c l o s u r e
i s done i n t e r n a l l y)
gr1 . add edge (abx [1] , abz [1])
gr1 . add edge (cby [1] , abz [1])
gr1 . add edge (abx [0] , abz [0])
g l o b a l v i e w . append (gr1)

r i g h t pomset o f R2
gr2 = nx . DiGraph ()
abx = add pa i r (gr2 , ”a” , ”b” , 1 , ”y”)
cby = add pa i r (gr2 , ”c” , ”b” , 2 , ”y”)
abz = add pa i r (gr2 , ”a” , ”b” , 3 , ” z”)
gr2 . add edge (abx [1] , cby [1])
gr2 . add edge (cby [1] , abz [1])
gr2 . add edge (abx [0] , abz [0])
g l o b a l v i e w . append (gr2)

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 245

The closure condition CC2-POM can be checked using

cc2c = c c 2 c l o s u r e (g l o b a l v i e w) # cc2c i s the l i s t o f pomsets
c c 2 r e s = cc2pom (cc2c , g l o b a l v i e w)

The result cc2res is a map that yields for each index i of cc2c the index of
global_view matching it or None if cc2c[i] is a counterexample. Similarly
closure condition CC3-POM can be checked using

(cc3c , p r e f) = c c 3 c l o s u r e (g l o b a l v i e w) # cc3c and p r e f i x a r e l i s t s
c c 3 r e s = cc3pom (cc3c , p r e f)

The list pref contains the list of prefixes of the input choreography, and the
result cc3res maps each index of cc3c to an index of pref or None. The counter
examples can be rendered using:
e r r o r s = coun t e r e xamp l e s (cc3c , c c 3 r e s)
debug graphs (e r r o r s , ” output−f o l d e r ”) # gen e r a t e s p i c t u r e s o f e r r o r s

DiRPOM also provides a command line utility, which uses GraphML format
for input and output of pomsets. The left pomset of R1 can be defined by the
following GraphML file:

<? xml v e r s i o n=’ 1 .0 ’ encod ing=’ ut f−8 ’ ?>
<graphml>

<key a t t r . name=” l a b e l ” a t t r . t ype=” s t r i n g ” f o r=”node” i d=”d0” />
<graph e d g e d e f a u l t=” d i r e c t e d ”>

<node i d=”b−2”><data key=”d0”>CB?x</ data></node>
<node i d=”b−3”><data key=”d0”>AB?z</ data></node>
<node i d=”b−1”><data key=”d0”>AB?x</ data></node>
<node i d=”a−1”><data key=”d0”>AB! x</ data></node>
<node i d=”a−3”><data key=”d0”>AB! z</ data></node>
<node i d=”c−2”><data key=”d0”>CB! x</ data></node>
<edge sou r c e=”b−2” t a r g e t=”b−3” />
<edge sou r c e=”b−1” t a r g e t=”b−3” />
<edge sou r c e=”a−1” t a r g e t=”a−3” />
<edge sou r c e=”a−1” t a r g e t=”b−1” />
<edge sou r c e=”a−3” t a r g e t=”b−3” />
<edge sou r c e=”c−2” t a r g e t=”b−2” />

</ graph>
</ graphml>

Each GraphML must contain a key element, specifying the existence of the node
attribute label of type string. Each node has a unique identifier and a data
sub-element, which defines the node label. The following command executes the
analysis of a choreography:

dirpom [i n pu t] [output1] [output2] −−draw −−graphml

The parameter input specifies the path of a directory that contains one
GraphML file for each pomset of the choreography. The tool produces one
GraphML file in the output1 and output2 for each violation of CC2-POM and
CC3-POM respectively. Additionally, if the --draw option is specified, the tool
renders the counterexamples as .png in the same directories.

246 R. Guanciale

7 Tool Implementation

DiRPROM relies on the NetworkX package for graph operations. In fact, pom-
sets are represented as direct labelled acyclic graphs. The tool consists of five
modules:

– utils: provides export of pomsets to png and utilities to build pomsets
– pomset: provides functions to process pomsets, e.g. query lists of participants

and messages, projections per participant or message, transitive closure and
reduction, enumeration of prefixes, enumeration of linearizations

– inter_closure: implements inter-participant closure
– ccpom: generates the two closure sets and verifies the closure conditions
– dirpom: provides the command line utility

In order to demonstrate the implementation of the analyses and the internal
API, we report the implementation of CC3-POM:
de f c c 3 c l o s u r e (g raphs) :

r e t r i e v e s the l i s t o f p r i n c i p a l s i n g raphs
p r i n c i p a l s = pomset . g e t a l l p r i n c i p a l s (g raphs)
p r o j e c t s the i n pu t g raphs on p r i n c i p a l s and y i e l d s a map mapping
p r i n c i p a l s to l i s t o f ” l o c a l ” pomsets (a v o i d s d u p l i c a t e s)
l o c a l t h r e a d s = pomset . g e t p r i n c i p a l t h r e a d s (graphs , p r i n c i p a l s)
l o c a l p r e f i x e s = {}
f o r p i n p r i n c i p a l s :
computes a l l p r e f i x e s o f a l l g raphs i n l o c a l t h r e a d s [p]
(a vo i d s d u p l i c a t e s)
l o c a l p r e f i x e s [p] = pomset . g e t p r e f i x e s (l o c a l t h r e a d s [p])

gen e r a t e s a l l t u p l e s i n the p roduc t o f l o c a l p r e f i x e s
t u p l e s = i n t e r c l o s u r e . make tup l e s (l o c a l p r e f i x e s)
computes the i n t e r−p a r t i c i p a n t c l o s u r e o f a l l the t u p l e s
(a vo i d s d u p l i c a t e s)
i p c = i n t e r c l o s u r e . i n t e r p r o c e s s c l o s u r e (t u p l e s)
computes a l l p r e f i x e s o f the i n pu t g raphs (a v o i d s d u p l i c a t e s)
p r e f i x e s = pomset . g e t p r e f i x e s (g raphs)
r e t u r n (ipc , p r e f i x e s)

de f cc3pom (ipc , p r e f i x e s) :
matches = {}
f o r i i n range (l e n (i p c)) :

matches [i] = None
f o r j i n range (l e n (g raphs)) :
checks i f graph [j] i s more p e rm i s s i v e than i p c [i]
i f (pomset . i s m o r e p e rm i s s i v e (graph [j] , i p c [i])) :

matches [i] = j
b reak

r e t u r n matches

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 247

8 Tool Evaluation

The main primitive of NetworkX used by the tool is subgraph_is_ismorphic,
which returns trueiff r1 is (label-preserving) isomorphic to a subgraph of r2. If r1
and r2 have the same number of nodes and the predicates holds then r2 � r1.

impor t networkx . a l g o r i t hm s . i somorph i sm as i s o
nm = i s o . c a t e g o r i c a l n o d e ma t c h (’ l a b e l ’ , ’ ’)

d e f i s m o r e p e rm i s s i v e (g1 , g2) :
i f l e n (g1 . nodes ()) != l e n (g2 . nodes ()) :

r e t u r n Fa l s e
m = i s o . GraphMatcher (g1 , g2 , nm)
r e t u r n m. s u b g r a p h i s i s omo r p h i c ()

The complexity of finding a label-preserving graph isomorphism is in general
exponential in the number of events. However, since the graphs are acyclic, the
complexity can be bound to the number of concurrently-repeated actions: i.e.
events that have the same label, are unordered, and have the same number of
predecessor with the same label (e.g. AB!x in R3). If there are no concurrently
repeated actions then isomorphism of pomsetes can be checked in polynomial
time with respect to the number of events.

We report the performance of our tool for the examples. The experiments
have been executed on a Intel 2.2 GHz i7 with 16 GB of RAM. The table reports
the size of the closures, the number of counterexamples, and the processing time
in milliseconds.

CC2-POM errors ms CC3-POM errors ms

R1 2 0 3 38 10 64
R2 2 1 9 100 18 340
R3 2 1 16 668 258 9297

In general the evaluation of closure conditions is fast for simple examples. How-
ever, the number of prefixes to check in CC3-POM can be large when participant
have several concurrent threads.

One of the advantages of checking CC�-POM with respect to previous
work [1] is that the former does not require the explicit computation of the lan-
guage of the family of pomsets, which can lead to combinatorial explosion due
to interleavings. In fact, in case of concurrency, the number of prefixes is usually
smaller than the number of possible linearizations of a pomset. For example, the
following pomset consists of two independent threads, each one consisting of n
sequential and distinguished events

⎡

⎣
e1 e2 . . . en

e′
1 e′

2
. . . e′

n

⎤

⎦

The closure condition in [1] requires to directly compute the language of the
pomset, which has 2n words. Instead, the prefix of the pomset are (n + 1)2.

248 R. Guanciale

As a further example, the set of pomsets R3 contains one pomset and has two
actions that occur in both threads: AB!x and AB?x. The inter-participant clo-
sure has exactly two pomsets: the element of R3 itself and r3. The left and right
subpomsets of R3, which represent the two threads, have 32 different lineariza-
tions, each one consisting of 8 events. Therefore the language of R3 consists of
32∗32∗28 = 218 words. On the other hand, analyzing CC3-POM for R3 requires
to check 668 prefixes.

9 Concluding Remarks

Realisability of specifications is of concern for both practical and theoretical
reasons. Several works (e.g., [2,3,7]) defined constraints to guarantee soundness
of the implementation of choreographies. These approaches address the problem
for specific languages and use conditions that rely on the syntactical structure
of the specification. DiRPOMS provides a language independent tool to check
realisability of choreographies. Therefore, it can be used for several choreographic
models, as long as their semantics can be expressed via set of partial orders.

There two main limitations of DiRPOMS that we plan to address. First, our
tool cannot analyze recursive choreographies, since their pomset based semantics
is infinite. Even if loops are bounded, naive loop unrolling can easily generate
large sets of pomsets which are intractable. Secondly, CC�-POM conditions are
sufficient but not necessary conditions for realisability. In fact, the same set
of traces can be expressed using different sets of pomsets by exploring different
interleavings. We are currently investigating a notion of normal forms for families
of pomsets that can be used to guarantee that our conditions are necessary.

We are also working on optimizing our tool. In particular we think that it is
possible to demonstrate equivalence between CC3-POM and a different formula-
tion, which requires to check only a subset of prefixes. For instance, in verifying
CC3-POM for R3, the analysis of the prefix

[
AC!l1 A C!r1

]
covers also the cases of

the prefixes
[

AC!l1

]
and

[
AC!r1

]
.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts.
IEEE Trans. Softw. Eng. 29(7), 623–633 (2003). https://doi.org/10.1109/TSE.
2003.1214326

2. Bocchi, L., Melgratti, H., Tuosto, E.: Resolving non-determinism in choreographies.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 493–512. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 26

3. Carbone, M., Honda, K., Yoshida, N.: A calculus of global interaction based on
session types. Electron Notes Theor. Comput. Sci. 171(3), 127–151 (2007). https://
doi.org/10.1016/j.entcs.2006.12.041

4. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: LICS, pp. 72–85 (1987)

5. Guanciale, R., Tuosto, E.: Realisability of pomsets via communicating automata.
CoRR abs/1810.02469 (2018). http://arxiv.org/abs/1810.02469

https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1007/978-3-642-54833-8_26
https://doi.org/10.1016/j.entcs.2006.12.041
https://doi.org/10.1016/j.entcs.2006.12.041
http://arxiv.org/abs/1810.02469

DiRPOMS: Automatic Checker of Distributed Realizability of POMSets 249

6. Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional message sequence charts.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 34

7. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695. Extended version
of a paper presented at POPL08

8. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

9. Schulte, E., Davison, D., Dye, T., Dominik, C., et al.: A multi-language computing
environment for literate programming and reproducible research. J. Stat. Softw.
46(3), 1–24 (2012)

10. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes, vol. 2. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19345-3

11. WSCDL Version 1.0 (2005). https://www.w3.org/TR/ws-cdl-10/

https://doi.org/10.1007/3-540-45319-9_34
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://www.w3.org/TR/ws-cdl-10/

Coordination of Tasks on a Real-Time OS

Guillermina Cledou1(B), José Proença1,2(B), Bernhard H. C. Sputh3,
and Eric Verhulst3

1 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
mgc@inesctec.pt

2 CISTER, ISEP, Porto, Portugal
pro@isep.ipp.pt

3 Altreonic NV, Lubbeek, Belgium
{bernhard.sputh,eric.verhulst}@altreonic.com

Abstract. VirtuosoNextTM is a distributed real-time operating sys-
tem (RTOS) featuring a generic programming model dubbed Interact-
ing Entities. This paper focuses on these interactions, implemented as
so-called Hubs. Hubs act as synchronisation and communication mecha-
nisms between the application tasks and implement the services provided
by the kernel as a kind of Guarded Protected Action with a well defined
semantics. While the kernel provides the most basic services, each care-
fully designed, tested and optimised, tasks are limited to this handful
of basic hubs, leaving the development of more complex synchroniza-
tion and communication mechanisms up to application specific imple-
mentations. In this work we investigate how to support a programming
paradigm to compositionally build new services, using notions borrowed
from the Reo coordination language, and relieving tasks from coordina-
tion aspects while delegating them to the hubs. We formalise the seman-
tics of hubs using an automata model, identify the behaviour of existing
hubs, and propose an approach to build new hubs by composing simpler
ones. We also provide tools and methods to analyse and simplify hubs
under our automata interpretation. In a first experiment several hub
interactions are combined into a single more complex hub, which raises
the level of abstraction and contributes to a higher productivity for the
programmer. Finally, we investigate the impact on the performance by
comparing different implementations on an embedded board.

1 Introduction

When developing software for resource-constrained embedded systems, optimis-
ing the utilization of the available resources is a priority. In such systems, many
system-level details can influence time and performance in the execution, such as
interactions with the cache, mismatches between CPU clock speed, the speed of
the external memory, and connected peripherals, leading to unpredictable execu-
tion times. VirtuosoNext [16] is a Real Time operating system developed by the
company Altreonic that runs efficiently on a range of small embedded devices,
and is accompanied by a set of visual development tools – Visual Designer –

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
H. Riis Nielson and E. Tuosto (Eds.): COORDINATION 2019, LNCS 11533, pp. 250–266, 2019.
https://doi.org/10.1007/978-3-030-22397-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22397-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-22397-7_15

Coordination of Tasks on a Real-Time OS 251

that generates the application framework from a visual description and provides
tools to analyse the timing behaviour in detail.

The developer is able to organise a program into a set of individual tasks,
scheduled and coordinated by the VirtuosoNext kernel. The coordination of tasks
is a non-trivial process. A kernel process uses a priority-based preemptive sched-
uler deciding which task to run at each time, with hub services used to syn-
chronise and pass data between tasks. A fixed set of hubs is made available by
the Visual Designer, which are used to coordinate the tasks. For example, a
FIFO hub allows one or more values to be buffered and consumed exactly once,
a Semaphore hub uses a counter to synchronise tasks based on counting events,
and a Port hub synchronises two tasks, allowing data to be copied between the
tasks without being buffered. However, the set of available hubs is limited. Cre-
ating new hubs to be included in the mainline distribution is difficult since each
hub must be carefully designed, model checked, implemented and tested. It is
still possible for users to create specific hubs in their installations, however they
would need to fully implement them, losing the assurances of existing hubs.

This paper starts by formalising hubs using an automata model, which we
call Hub Automata, inspired in Reo’s parametrised constraint automata seman-
tics [1]. This formalism brings several advantages. On the one hand, it brings
a generic language to specify hubs, which can be interpreted by VirtuosoNext’s
kernel task. New hubs can be built by specifying new Hub Automata, or by
composing the Hub Automata from existing hubs. On the other hand, it allows
existing (and new) hubs to be formally analysed, estimating performance and
memory consumption, and verifying desired properties upfront. Furthermore,
we show that by using more specific hubs one can shift some of the coordina-
tion burden from the tasks to the hubs, leading to easier and less error prone
programming of complex protocols, as well as leaving room for optimizations. In
some cases it can also reduce the amount of context switches between application
tasks and the kernel task of VirtuosoNext, improving performance.

We implemented a prototype implementation, available online,1 to compose
hubs based on our Hub Automata semantics, and to analyse and simplify them.
We also compared the execution times on an embedded system between different
orchestration scenarios of tasks, one using existing hubs and another using a more
refined hub built out of the composition of hubs, evidencing the performance
gains and overheads of using composed hubs.

Summarising, our key contributions are the formalisation of coordinating
hubs in VirtuosoNext (Sect. 3), a compositional semantics of hubs (Sect. 4), and
a set of tools to compose and analyse hubs, together with a short evaluation of
the execution times of a given scenario using composed hubs (Sect. 5).

2 Distributed Tasks in VirtuosoNext

A VirtuosoNext system is executed on a target system, composed of process-
ing nodes and communication links. Orthogonally, an application consists of a
1 http://github.com/arcalab/hubAutomata.

http://github.com/arcalab/hubAutomata

252 G. Cledou et al.

1 while(true){
2 test(SemaB)
3 put(Actuate)
4 signal(SemaA)
5 }

1 while(true){
2 get(Actuate)
3 }

1 while(true){
2 signal(SemaB)
3 test(SemaA)
4 put(Actuate)
5 }

Fig. 1. Example architecture in VirtuosoNext, where two tasks communicate with an
actuator in a round robin sequence through two semaphores and a port.

number of tasks coordinated by hubs. Unlike links, hubs are independent of the
hardware topology. When building application images, the code generators of
VirtuosoNext map tasks and hubs onto specific nodes, taking into account the
target platforms. A special kernel task, running on each node, controls the sched-
uler of tasks, the hub services, and the internode communication and routing.

This section starts by giving a small overview of how tasks are built and
composed, followed by a more detailed description over existing hubs.

2.1 Example of an Architecture

A program in VirtuosoNext is a fixed set of tasks, each running on a given
computational node, and interacting with each other via dedicated interaction
entities, called hubs. Consider the example architecture in Fig. 1, where tasks
Task1 and Task2 send instructions to an Actuator task in a round robin sequence.
SemaphoreA tracks the end of Task1 and the beginning of Task2, while SemaphoreB

does the reverse, and port Actuate forwards the instructions from each task to the
Actuator. In this case two Semaphore hubs were used, depicted by the diamond
shape with a ‘+’, and a Port hub, depicted by a box with a ‘P’. Tasks and hubs
can be deployed on different processing nodes, but this paper will consider only
programs deployed in the same node, and hence omit references to nodes. This
and similar examples can be found in the VirtuosoNext’s manual [13].

2.2 Task Coordination via Hubs

Hubs are coordination mechanisms between tasks, which can be interacted with
via put and get service requests to transfer information from one task to another.
This can be a data element, the notification of an event occurrence, or some logi-
cal entity that needs to be protected for atomic access. A call to a hub constitutes
a descheduling point in the tasks’ execution. The behaviour depends on which
hub is selected, e.g. tasks can simply synchronise (with no data being trans-
ferred) or synchronise while transferring data (either buffered or non-buffered).
Other hubs include the Resource hub, often used to request atomic access to a
resource, and hubs that act as gateways to peripheral hardware.

Coordination of Tasks on a Real-Time OS 253

Table 1. Examples of existing Hubs in VirtuosoNext

aHere, MAX represents L1 UINT32 MAX in VirtuosoNextTM, which is 232 − 1.

Any number of tasks can make put or get requests to a given hub. Such
requests will be queued in waiting lists (at each corresponding hub) until they
can be served. Waiting lists are ordered by task priority – requests get served
by following such an order. In addition, requests can use different interaction
semantics. As such, the interaction can be blocking, non-blocking or blocking with
a time-out, which will determine how much time, if any, a task will wait on a
request to succeed – indefinitely, none, or a certain amount of time, respectively.

There are various hubs available, each with its predefined semantics [13].
Table 1 describes some of them and their put and get service request methods.

3 Deconstructing Hubs

This section formalises hubs, using an automata model with variables, providing
a syntax (Sect. 3.1) and a semantics (Sect. 3.2).

3.1 Syntax

We formalise the behavioural semantics of a hub using an automata model, which
we call Hub Automata. We start by introducing some preliminary concepts.

254 G. Cledou et al.

Definition 1 (Guard). A guard φ ∈ Φ is a logical formula given by the gram-
mar below, where x ∈ X is a variable, x denotes a sequence of variables, and
pred ∈ Pred is a predicate.

φ := � | ⊥ | pred(x) | φ ∨ φ | φ ∧ φ | ¬φ

We say Φ(X) is the set of all possible guards over variables in X .

Definition 2 (Update). An update u ∈ U is an assignment of variables x ∈ X
to expressions e ∈ E, a sequence of updates, or updates in parallel, given by the
grammar below, where d ∈ D is a data value, and f ∈ F is a deterministic
function without side-effects.

u := x ← e | u;u | u|u (update)

e := d | x | f(x) (expression)

We write U(X) to denote the set of all updates over variables in X .

For example, the update a ← 2; (b ← c + 1 | c ← getData()) is an update
that starts by setting a to 2, and then sets b to c + 1 and c to getData() in
some (a-priori unknown) order. Note that the order of evaluation of the parallel
assignments will affect the final result. We avoid non-determinism by following
up dependencies (e.g., c ← getData() should be executed before b ← c+1) and
by requiring that the order of executing any two independent assignments does
not affect the result. This will be formalised later in the paper.

Hubs interact with the environment through ports that represent actions.
Let P be the set of all possible ports uniquely identified. For a p ∈ P, p̂ is a
variable holding a data value flowing through port p. We use P̂ to represent the
set of all data variables associated to ports in P.

Definition 3 (Hub Automata). A Hub Automaton is a tuple H =
(L, �0, P,X , v0,→) where L is a finite set of locations, �0 is the initial location,
P = PI 	 PO, is a finite set of ports, with PI and PO representing the disjoint
sets of input and output ports, respectively, X is a finite set of internal variables,
v0 : X → D is the initial valuation that maps variables in X to a value in D,
and →⊆ L × Φ(X ∪ P̂) × 2P × U(X ∪ P̂) × L is the transition relation.

For a given transition (l, g, ω, u, l′) ∈→, also written l
g,ω,u−−−→ l′, l is the source

location, g is the guard defining the enabling condition, ω is the set of ports
triggering the transition, u is the update triggered, and l′ is the target location.

Informally, a Hub Automaton is a finite automaton enriched with variables
and an initial valuation of such variables; and where transitions are enriched
with multi-action transitions, and logic guards and updates over variables. A
transition l

g,ω,u−−−→ l′ is enabled only if (1) all of its ports ω are ready to be
executed simultaneously, and (2) the current valuation satisfies the associated
guard g. Performing this transition means applying the update u to the current
valuation, and moving to location l′. This is formalised in the following section.

Coordination of Tasks on a Real-Time OS 255

Figure 2 depicts the Hub Automata for each of the hubs described in Sect. 2.2,
except the Resource hub (for space restrictions). Consider, for example, the Hub
Automaton for the FIFO hub, implemented using an internal circular queue, with
size N and with elements of type T . Initially, the FIFO is at location idle and its
internal variables are assigned as follows: c �→ 0, f �→ 0, p �→ 0, and bfi �→ null for
all i ∈ {0 . . . N −1}. Here c is the current number of elements in the queue, f and
p are the pointers to the front and last empty place of the queue, respectively, and
each bfi holds the value of the i-th position in the queue. The FIFO can enqueue
an element —if the queue is not full (c < N)—storing the incoming data value
in bfp , and increasing the c and p counters; or it can dequeue an element—if the
queue is not empty (c ≥ 1), updating the corresponding variables.

Note that more than one task can be using the same port of a given hub.
In these cases VirtuosoNext selects one of the tasks to be executed, using
its scheduling algorithm. The semantics of this behaviour is illustrated in the
automaton of Port†, that uses multiple incoming and outgoing ports, denoting
all possible combinations of inputs and outputs. This exercise can be applied to
any other hub other than the Port hub.

Hub Automata can be used to describe new hubs to restrict synchronous
interactions between tasks. Figure 2 includes two hubs that do not exist in
VirtuosoNext (hubs with *): a Duplicator broadcasts a given input to two out-
puts atomically, and a Drain receives two inputs synchronously without storing
any value.

3.2 Semantics

We start by defining guard satisfaction, used by the semantics of Hub Automata.

Definition 4 (Guard Satisfaction). The satisfaction of a guard g by a vari-
able valuation v, written v |= g, is defined as

v |= � always v |= φ1 ∧ φ2 if v |= φ1 and v |= φ2

v |= ⊥ never v |= φ1 ∨ φ2 if v |= φ1 or v |= φ2

v |= ¬φ if v �|= φ v |= pred(x) if pred(v(x)) evaluates to true

Definition 5 (Update application). Given a serialisation function σ that
converts general updates into sequences of assignments, the application of an
update u to a valuation v is given by v[σ(u)], where v[–] is defined below.

v[x ← e](x) = e
v[x ← e](y) = v(y) if x �= y

v[u1;u2](x) = (v[u1])[u2](x)

The serialisation function σ is formalised in Sect. 4.3, after describing how
to compose Hub Automata. We will omit σ when not relevant. The execution
of an automaton is defined as sequences of steps that do not violate the guards,
and such that each step updates the current variable valuation according to the
corresponding update.

256 G. Cledou et al.

Fig. 2. Automata semantics of hubs – from VirtuosoNext except those with ∗. Port†

captures how VirtuosoNext interprets multiple calls to the same port.

Definition 6 (Semantics of Hubs). The semantics of a Hub Automaton H =
(L, �0, P,X , v0,→) is given by the rule below, starting on configuration (�0, v0).

�
g,p,u−−−→ �′ v |= g v′ = v[u]

(�, v)
p−→ (�′, v′)

(seq)

Coordination of Tasks on a Real-Time OS 257

For example, the following is a valid trace of a Fifo hub with size 3 (Fig. 2).
(idle, {c �→ 0, f �→ 0, p �→ 0, bf0 �→ null, bf1 �→ null, bf2 �→ null})

enqueue−−−−−→ (idle, {c �→ 1, f �→ 0, p �→ 1, bf0 �→ 42, bf1 �→ null, bf2 �→ null})
dequeue−−−−−→ (idle, {c �→ 0, f �→ 1, p �→ 1, bf0 �→ 42, bf1 �→ null, bf2 �→ null})

4 Reconstructing Hubs

Two hubs can be composed to form a more complex one, following the same
ideas as in Reo [1]. The composition is done on top of two simpler operations:
product and synchronisation. This section starts by defining these two operations,
followed by an example and by a suitable definition of serialisation of updates.

4.1 Hub Composition

The product takes two hubs with disjoint ports and variables, and produces a
new hub where they behave in an interleaving or synchronous fashion, i.e. fully
concurrent. The synchronisation operation is conducted over a Hub Automaton
H and it links two ports a and b in P such that they can only operate in a
synchronous manner.

Definition 7 (Product of Hub Automata). Let H1 and H2 be two Hub
Automata with disjoint sets of ports and variables. The product of H1 and H2,
written H1 × H2, is a new Hub Automaton defined as

H = (L1 × L2, (l01 , l02), P1 ∪ P2,X1 ∪ X2, v01 ∪ v02 ,−→)

where −→ is defined as follows:

l1
g1,ω1,u1−−−−−→ l′1

(l1, l2)
g1,ω1,u1−−−−−→(l′1, l2)

l2
g2,ω2,u2−−−−−→ l′2

(l1, l2)
g2,ω2,u2−−−−−→(l1, l′2)

l1
g1,ω1,u1−−−−−→l′1 l2

g2,ω2,u2−−−−−→l′2
(l1, l2)

g1∧g2 , ω1∪ω2 , u1|u2−−−−−−−−−−−−−→(l′1, l
′
2)

Definition 8 (Synchronisation of Hub Automata). Let H be a Hub
Automaton, a and b two ports in P , and xab a fresh variable. The synchro-
nisation of a and b is given by Δa,b(H), defined below.

Δa,b(H) = (L, l0, (P\{a, b}),X ∪ {xab}, v0,−→′)

−→′ = {l
g,ω,u−−−→ l′ | a �∈ ω and b �∈ ω} ∪

{l
g′,ω′,u′
−−−−−→ l′ | l

g,ω,u−−−→ l′, a ∈ ω, b ∈ ω, ω′ = ω\{a, b},

g′ = g[xab/â][xab/b̂], u′ = u[xab/â][xab/b̂]}
where g[x/y] and u[x/y], are the logic guard and the update that result from
replacing all appearances of variable y with x, respectively.

The composition of two Hub Automata consists of their product followed by
the synchronisation of their shared ports.

258 G. Cledou et al.

Fig. 3. Example of composition between two Hub Automata, where a DataEvent
automaton is composed with a Duplicator automaton by synchronising on actions read
and put (left), resulting in the composed automaton on the right.

Definition 9 (Composition of Hub Automata). Let H1 and H2 be two Hub
Automata with disjoint sets of ports and variables, and let {(a0, b0), . . . , (an, bn)}
be a finite (possibly empty) set of ports bindings, such that for each pair (ai, bi)
for 0 ≤ i ≤ n we have that (ai, bi) ∈ PIH1

×POH2
or (ai, bi) ∈ POH1

×PIH2
. The

composition of H1 and H2 over such a set is defined as follows.

H1 ��(a0,b0),...,(an,bn) H2 = Δa0,b0 . . . Δan,bn(H1 × H2)

Intuitively, composing two automata means putting them in parallel (×),
and then restrict their behaviour by forcing shared ports to go together (Δ).
The first step joins concurrent transition into new transitions, placing updates
in parallel. This emphasises the need for a serialisation process that guarantees a
correct evaluation order of values to data in ports, which is the focus of Sect. 4.3.

Figure 3 shows the composition of two Hub Automaton: a DataEvent, and a
Duplicator with two output points. The composed automaton (right) illustrates
the behaviour of the two hubs when synchronised over the actions read and put :
whenever a data event is raised and the buffer updated, the hub can be tested
simultaneously by two tasks through get1 and get2 . Both tasks will receive the
stored data in the DataEvent Hub, before setting the event to false. Synchronised
ports are removed from the composed model, and variables associated to such
ports are renamed accordingly, i.e. ̂read and ̂put , are both renamed to xread-put .

4.2 Example: Round Robin Tasks

Consider the example architecture in Fig. 1, consisting of 3 independent hubs.
Such architectures with independent hubs can be combined into a single hub, but
it brings little or no advantage because it will produce all possible interleavings
and state combinations. In this case, the joint automaton has 1 state and 26
transitions, representing the possible non-empty combinations of transitions from
the 3 hubs. More concretely, the set of transitions is the union of the 5 sets below,
abstracting away data, where pi , si and ti denote the put , signal and test actions
of task i, respectively, and g denotes the get action of the actuator.

P = {p1 |g , p2 |get}
A‖B = {s1 , s2 , t1 , t2}

A&B = {x1 |x2 | x1 ∈ {s1 , t1} , x2 ∈ {s2 , t2}}
P&A‖B = {pi |g |x | i ∈ {1, 2}, x ∈ A‖B}
P&A&B = {pi |g |x | i ∈ {1, 2}, x ∈ A&B}

Coordination of Tasks on a Real-Time OS 259

Fig. 4. Alternative architecture for the example in Fig. 1 – Reo connector (left) and
its Hub Automaton (right) after updates have been serialised and simplified.

We propose an alternative hub that exploits shared ports (Fig. 4), built by
composing a set of primitives from Fig. 2, which further restricts the behaviour
of the coordinator. More specifically, when a task sends a data value to the
actuator, the coordinator interprets it as the end of its round. Furthermore, it
requires each task to send only when the other is ready to start – a different
behaviour could be implemented to buffer the end of a task round (as in Fig. 1).

4.3 Serialisation of Updates

Recall that the application of an update u (Definition 5) requires a serialisation
function σ that converts an update with parallel constructs into a sequence of
assignments. This subsection proposes a serialisation algorithm that preserves
dependencies between variables, and rejects updates that have variables with
circular dependencies. It uses an intermediate dependency graph that is traversed
based on Kahn’s algorithm [9], and later discards intermediate assignments.

Consider the transition (true, idle)
get1 |get2 ,u1 |u2−−−−−−−−−→(false, idle) from Fig. 3,

where u1 = xread-put ← bf and u2 = ̂get1 ← xread-put ; ̂get2 ← xread-put . Here,
u2 depends on a variable produced by u1. Thus, a serialisation of u1|u2 is
us = u1;u2. Once serialised, us has an intermediate assignment, xread-put ← bf ,
which can be removed by replacing appearances of xread-put with bf , leading to
̂get1 ← bf ; ̂get2 ← bf , reducing the number of assignments and variables needed.

Building Dependency Graphs. A dependency graph is a directed graph
D = (N,L), where N is a set of nodes, each representing an update of the form
x ← e, and L ⊆ N × N is a set of links between nodes, where a link (n,m)
indicates that n must appear before m in a sequence of assignments. Given D1

and D2, their composition, D1 �� D2 = (N1 ∪ N2, L1 ∪ L2) is a new dependency
graph.

Given a dependency graph D = (N,L), we say a node n is a leaf (leafL(n))
if �(m,o)∈L · o = n, or a a root (rootL(n)) if �(o,m)∈L · o = m. We first define
struct(u) recursively to consider dependencies between assignments imposed
by the structure of the update (i.e., imposed by ; and |), defined as follows.

260 G. Cledou et al.

Algorithm 1. Dependency Graph for an update u

input : An update u with parallel options ui for i = 1..n
output : A Dependency Graph for u

1 graphs ← ⋃n
i=1 struct(ui);

2 toVisit ← graphs;
3 foreach g ∈ graphs do
4 toVisit ← toVisit \ {g};
5 newLinks ← newLinks ∪ {links(n,m) | n ∈ Ng,m ∈ ⋃

v∈toVisit Nv};

6 newNodes ← the set of all nodes from all g ∈ graphs;
7 newLinks ← newLinks ∪ the set of all links from all g ∈ graphs;
8 return A dependency graph with newNodes and newLinks;

struct(x ← e)

({x ← e}, {})

struct(u1 | u2)

struct(u1) �� struct(u2)
struct(u1 ; u2), struct(u1) = (N1, L1), struct(u2) = (N2, L2)

(N1 ∪ N2, L1 ∪ L2 ∪ {(n,m) | n ∈ N1, leafL1(n),m ∈ N2, rootL2(m)})

Secondly, we create dependency links between nodes of different subgraphs of u
(generated by |) based on their dependency on variables. These links between
two nodes n and m, noted as links(n,m), are created as follows: from n to m
if m depends on a variable produced by n; from m to n if n depends on a variable
produced by m; and both ways if both conditions apply.

The complete algorithm to build a dependency graph is given in Algorithm1.
If the graph is not acyclic, Kahn’s algorithm will return a topological order.

Simplification of Updates. This step considers all transitions of the automa-
ton to find and remove unnecessary and intermediate assignments. We consider
unnecessary assignments: assignments to internal variables that are never used
on the right-hand side (RHS) of an assignment nor on a guard; and assignments
that depend only of internal variables that are never assigned (undefined vari-
ables). We consider intermediate assignments, assignments to internal variables
that are followed by (eventually in the same sequence) an assignment where the
variable is used on the RHS, and such that the variable is never used on guards.

5 Evaluation

We compare the two architectures from Sect. 4.2, using a variation of these, and
provide both an analytical comparison, using different metrics, and a perfor-
mance comparison, executing them in an embedded board.

Scenarios. We compare four different scenarios in our evaluation, using the
architectures from Sect. 4.2, and compile and execute them on a TI Launchpad
EK-TM4C1294XL2 board with a 120 MHz 32-bit ARM Cortex-M4 CPU.
2 http://www.ti.com/tool/EK-TM4C1294XL.

http://www.ti.com/tool/EK-TM4C1294XL

Coordination of Tasks on a Real-Time OS 261

Fig. 5. Architectural view of scenarios S2-ports (left) and Saltern (right).

– Sorig the initial architecture as in Fig. 1;
– Scustom using a custom-made hub that follows the automaton in Fig. 4 without

any data transfer;
– Saltern using a custom-made hub that acts as Scustom, but discarding the

start queues, and assuming that tasks start as soon as possible (Fig. 5 right);
and

– S2-ports simple architecture with two ports, each connecting a task to the
actuator, also discarding the start queue, whereas the actuator is responsible
to impose the alternating behaviour (Fig. 5 left).

Observe that Saltern and S2-ports are meant to produce the same behaviour,
but only the latter is compiled and executed. While Saltern assumes that the
actuator is oblivious of who sends the instructions, S2-ports relies on the actuator
to perform the coordination task.

Analytic Comparison. We claim that the alternative architecture requires
less memory and requires less context switches (and hence is expected to execute
faster). Memory can be approximated by adding up the number of variables and
states. The original example uses a stateless hub (a Port) and two Semaphores,
each also stateless but with an integer variable each—hence requiring the stor-
age of 2 integers. The refined example requires 2 states and no variables (after
simplification), hence a single bit is enough to encode its state.

Table 2 lists possible sequence of context switches for each of the 4 proposed
scenarios, for each round where both tasks send an instruction to the actuator.
Observe that Sorig requires the most context switches for each pair of values sent
(17), while S2-ports and Saltern require the least (9).

Note that conceptually the original architecture further requires the tasks to
be well behaved, in the sense that a task should not signal/test a semaphore more
times than the other task tests/signals it. In the refined architecture functionality
is better encapsulated: tasks abstract from implementing coordination behaviour
and focus only on sending data to the actuator, while the coordinator handles
the order in which tasks are enabled to send the data. This contributes to a
better understanding of the behaviour of both the tasks and the coordination
mechanism. In addition, by knowing the semantics of each hub and by looking
at the architecture in Fig. 1 is not enough to determine the behaviour of the
composed architecture, but it requires to look at the implementation of the

262 G. Cledou et al.

Table 2. Possible sequence of context switches between the Kernel task (executing the
hubs) and the user tasks for each scenario.

Sorig Scustom S2-ports & Saltern

1 Kernel −→ Actuator Kernel −→ Actuator Kernel −→ Actuator

2 Actuator
get−−→ Kernel Actuator

get−−→ Kernel Actuator
get−−→ Kernel

3 Kernel −→ Task2 Kernel −→ Task1 Kernel −→ Task1

4 Task2
signalB−−−−→ Kernel Task1

put−−→ Kernel Task1
put−−→ Kernel

5 Kernel −→ Task1 Kernel −→ Task2 Kernel −→ Actuator

6 Task1
testB−−−→ Kernel Task2

start−−−→ Kernel Actuator
get−−→ Kernel

7 Kernel −→ Task1 Kernel −→ Actuator Kernel −→ Task2

8 Task1
put−−→ Kernel Actuator

get−−→ Kernel Task2
put−−→ Kernel

9 Kernel −→ Actuator Kernel −→ Task2 Kernel −→ Actuator

10 Actuator
get−−→ Kernel Task2

put−−→ Kernel (Repeat from #2)

11 Kernel −→ Task1 Kernel −→ Task1

12 Task1
signalA−−−−→ Kernel Task1

start−−−→ Kernel

13 Kernel −→ Task2 Kernel −→ Actuator

14 Task2
testA−−−→ Kernel (Repeat from #2)

15 Kernel −→ Task2

16 Task2
put−−→ Kernel

17 Kernel −→ Actuator

18 (Repeat from #2)

tasks to get a better understanding of what happens. However, in Fig. 4 these
two premises are sufficient to understand the composed behaviour.

Measuring Execution Times on the Target Processor. We compiled,
executed, and measured the execution of 4 systems: (1) Sorig, (2) a variation of
Scustom implemented as a dedicated task, which we call Task [Scustom], (3) a vari-
ation of Scustom that abstracts away from the actual instructions (implemented
as a native hub, which we call NoData[Scustom])!b, and (4) S2-ports. The results
of executing 1000 rounds using our TI Launchpad board are presented below,
whereas the end of each round consists of the actuator receiving an instruction
from both tasks (i.e., 500 values from each task).

Sorig Task [Scustom] NoData [Scustom] S2-ports

Time (ms) 41.88 64.27 32.19 21.16

Coordination of Tasks on a Real-Time OS 263

These numbers provide some insight regarding the cost of coordination. On
one hand, avoiding the loop of semaphores can double the performance (Sorig vs.
S2-ports). On the other hand, replacing the loop of semaphores by a dedicated
hub that includes interactions with the actuator can reduce the execution time
to around 75% (Sorig vs. NoData[Scustom]). Note that this dedicated hub does
not perform data communication, and the tasks do not send any data in any of
the scenarios. Finally, Task [Scustom] reflects the cost of building a custom hub as
a user task, connected to the coordinated tasks using extra (basic) hubs, which
can be seen as the price for the flexibility of complex hubs without the burden
of implementing a dedicated hub.

Online Analysis Tools. We implemented a prototype that composes, simpli-
fies, and analyses Hub Automata, available online,3 and depicted in Fig. 6. The
generated automata can be used to produce either new hubs or dedicated tasks
that perform coordination. These generated automata can also be formally anal-
ysed to provide key insight information regarding the usefulness and drawbacks
of such a hub. Our current implementation allows specifications of composed
hubs using a textual representation based on ReoLive [3,14], and produces (1)
the architectural view of the hub, (2) the simplified automaton of the hub, and
(3) a summary of some properties of the automaton, such as required memory,
size estimation of the code, information about which hubs’ ports are always ready
to synchronise, and minimum number of context switches for a given trace.

Fig. 6. Screenshot of the online analyser for VirtuosoNext’s hubs.

3 http://github.com/arcalab/hubAutomata.

http://github.com/arcalab/hubAutomata

264 G. Cledou et al.

6 Related Work

The global architecture of VirtuosoNext RTOS, including the interaction with
hubs, has been formally analysed using TLA+ by Verhulst et al. [16]. More
concretely, the authors specify a set of concrete hubs, their waiting lists, and
the priority of requests, and use the TLC model checker to verify a set of safety
properties over these. Our approach uses a formalism focused on the interactions,
abstracting away waiting lists, and aims at the analysis and code generation of
more complex hubs built compositionally.

The automata model proposed here is mainly inspired by Reo’s paramiterised
constraint automata [1] and constraint automata with memory cells [8], both
used to reason about data-dependent coordination mechanism. In the former
states can store variables which are updated or initialised when transiting, while
the latter treats variables as first-class objects, as in here, allowing to efficiently
deal with infinite data domains. Both approaches use data constraints as a way to
assign values to ports, and define updates as a way to modify internal variables.
Here, we treat both variables more uniformly, requiring a serialization method,
and postponing it until obtaining the final composed automaton.

The composition and the restrictions imposed here on the input and output
ports are similar to those introduced by Interface Automata [4] to deal with
the composition of open systems. However, [4] imposes additional restrictions to
ensure automata compatibility, i.e. whenever an automaton is ready to send an
output, which is an input of the other, the latter should be able to receive it.

Finite-memory automata [10] and nominal automata [12,15] are models that
deal with infinite alphabets, focusing on the expressiveness of their variants
and on the decidability of some of their properties, which is not the goal of
this paper. Finite-memory automata uses substitution instead of equality tests
over the input alphabet with the support of a finite set of registers (variables)
associated to the automata, and nominal automata are based on nominal sets,
which can be seen as infinite sets with a finite representation.

Formal analysis of RTOS are more typically focused on the scheduler, which
is not the focus of this work. For example, theorem provers have been used to
analyse schedulers for avionics software [7]. Carnevali et al. [2] use preemptive
Time Petri Nets to support exact scheduling analysis and guide the development
of tasks with non-deterministic execution times in an RTOS with hierarchical
scheduling. Dietrich et al. [5] analyse and model check all possible execution
paths of a real-time system to tailor the kernel to particular application scenarios,
resulting in optimisations in execution speed and robustness. Dokter et al. [6]
propose a framework to synthesise optimised schedulers that consider delays
introduced by interaction between tasks. Scheduling is interpreted as a game
that requires minimising the time between subsequent context switches.

7 Conclusions

This paper proposes an approach to build and analyse hubs in VirtuosoNext,
which are services used to orchestrate interacting tasks in a Real Time OS that

Coordination of Tasks on a Real-Time OS 265

runs on embedded devices. In VirtuosoNext, complex coordination mechanisms
are the responsibility of the programmer, who can use a set of fundamental hubs
to coordinate tasks, but have to implement more complex interaction mecha-
nisms as application specific code, deteriorating readability and maintainability.

Our proposed formal framework provides mechanisms to design and imple-
ment complex hubs that can be formally analysed to provide the same level of
assurance that predefined hubs provide. Currently, the framework allows to build
complex hubs out of simpler ones, and analyse some aspects of the hubs such as:
memory used, estimated lines of codes, and always available ports.

Preliminary tests on a typical set of scenarios have confirmed our hypothesis
that using dedicated hubs to perform custom coordination can result in perfor-
mance improvements. In addition, we claim that moving coordination aspects
away from tasks enables a better understanding of the tasks and hubs behaviour,
and provides better visual feedback regarding the semantics of the system.

Ongoing work to extend our formal framework includes: runtime behaviour
analysis, by taking into account the time-sensitive requests made to hubs and
some contracts that tasks are expected to obey; variability support to anal-
yse and improve the development of families of systems in VirtuosoNext, since
VirtuosoNext provides a simple and error-prone mechanism to allow topologies
to be applied to the same set of tasks; code refactoring and generation
applied to existing (on-production) VirtuosoNext programs, probably adding
new primitive hubs, by extracting the coordination logic from tasks and into
new complex hubs; and analysis extension to support a wider range of analy-
sis to Hub Automata, such as the number of context switches required to perform
certain behaviour, or the model checking of liveness and safety properties using
mCRL2 (c.f. [3,11]).

Acknowledgements. This work is financed by the ERDF – European Regional
Development Fund through the Operational Programme for Competitiveness and Inter-
nationalisation – COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project
POCI-01-0145-FEDER-029946 (DaVinci). This work is also partially supported by
National Funds through FCT, within the CISTER Research Unit (UID/CEC/04234);
also by the Norte Portugal Regional Operational Programme (NORTE 2020) under
the Portugal 2020 Partnership Agreement, through ERDF and also by national funds
through the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE).

References

1. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

2. Carnevali, L., Lipari, G., Pinzuti, A., Vicario, E.: A formal approach to design
and verification of two-level hierarchical scheduling systems. In: Romanovsky, A.,
Vardanega, T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp. 118–131. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21338-0 9

https://doi.org/10.1007/978-3-642-21338-0_9

266 G. Cledou et al.

3. Cruz, R., Proença, J.: ReoLive: analysing connectors in your browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336–350.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 25

4. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NSS, vol. 195, pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/1-
4020-3532-2 3

5. Dietrich, C., Hoffmann, M., Lohmann, D.: Global optimization of fixed-priority
real-time systems by rtos-aware control-flow analysis. ACM Trans. Embed. Com-
put. Syst. 16(2), 35:1–35:25 (2017). https://doi.org/10.1145/2950053

6. Dokter, K., Jongmans, S.-S., Arbab, F.: Scheduling games for concurrent sys-
tems. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS,
vol. 9686, pp. 84–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39519-7 6

7. Ha, V., Rangarajan, M., Cofer, D., Rues, H., Dutertre, B.: Feature-based decom-
position of inductive proofs applied to real-time avionics software: an experience
report. In: Proceedings of the 26th International Conference on Software Engineer-
ing. ICSE 2004. pp. 304–313. IEEE Computer Society, Washington (2004). http://
dl.acm.org/citation.cfm?id=998675.999435

8. Jongmans, S.S., Kappé, T., Arbab, F.: Constraint automata with memory cells
and their composition. Sci. Comput. Prog. 146, 50–86 (2017). https://doi.org/
10.1016/j.scico.2017.03.006, http://www.sciencedirect.com/science/article/pii/
S0167642317300552. special issue with extended selected papers from FACS 2015

9. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(1962). https://doi.org/10.1145/368996.369025

10. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

11. Kokash, N., Krause, C., de Vink, E.P.: Reo+ mCRL2: a framework for model-
checking dataflow in service compositions. FAC 24(2), 187–216 (2012)

12. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 255–269. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 17

13. NV, A.: OpenComRTOS-Suite Manual and API Manual (1.4.3.3). http://www.
altreonic.com/sites/default/files/OpenComRTOS API-Manual.pdf

14. Proença, J., Madeira, A.: Taming hierarchical connectors. In: Fundamentals of
Software Engineering - 8th International Conference, FSEN 2019. LNCS, Tehran,
Iran (2019, to appear)

15. Schröder, L., Kozen, D., Milius, S., Wißmann, T.: Nominal automata with
name binding. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 124–142. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 8

16. Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B.H., Mezhuyev, V.: Formal Devel-
opment of a Network-Centric RTOS: software engineering for reliable embedded
systems. Springer Science & Business Media (2011). https://doi.org/10.1007/978-
1-4419-9736-4

https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1145/2950053
https://doi.org/10.1007/978-3-319-39519-7_6
https://doi.org/10.1007/978-3-319-39519-7_6
http://dl.acm.org/citation.cfm?id=998675.999435
http://dl.acm.org/citation.cfm?id=998675.999435
https://doi.org/10.1016/j.scico.2017.03.006
https://doi.org/10.1016/j.scico.2017.03.006
http://www.sciencedirect.com/science/article/pii/S0167642317300552
http://www.sciencedirect.com/science/article/pii/S0167642317300552
https://doi.org/10.1145/368996.369025
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-642-28729-9_17
http://www.altreonic.com/sites/default/files/OpenComRTOS_API-Manual.pdf
http://www.altreonic.com/sites/default/files/OpenComRTOS_API-Manual.pdf
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-1-4419-9736-4
https://doi.org/10.1007/978-1-4419-9736-4

Author Index

Audrito, Giorgio 54, 200
Autili, Marco 92

Barkallah, Manel 75
Basile, Davide 129
Beal, Jacob 54
Bliudze, Simon 161

Casadei, Roberto 182, 200
Cledou, Guillermina 250

Damiani, Ferruccio 54, 200
De Nicola, Rocco 111
Di Salle, Amleto 92
Duong, Tan 111

Gabbrielli, Maurizio 148
Gallo, Francesco 92
Giallorenzo, Saverio 148
Guanciale, Roberto 237

Henrio, Ludovic 161

Jacquet, Jean-Marie 75

Kokke, Wen 37

Lanese, Ivan 148
Lopez Pombo, Carlos G. 221
Loreti, Michele 111

Madelaine, Eric 161
Martinez Suñé, Agustín E. 221
Melgratti, Hernán 19
Mezzina, Claudio Antares 19
Montesi, Fabrizio 148
Morris, J. Garrett 37

Natali, Antonio 182

Peressotti, Marco 148
Pianini, Danilo 54, 182, 200
Pinna, G. Michele 3
Pompilio, Claudio 92
Proença, José 250
Pugliese, Rosario 129

Sputh, Bernhard H. C. 250

ter Beek, Maurice H. 129
Tivoli, Massimo 92

Ulidowski, Irek 19

Verhulst, Eric 250
Viroli, Mirko 54, 182, 200

Wadler, Philip 37

Zingaro, Stefano Pio 148

	Foreword
	Preface
	Organization
	Machine-Learning Techniques for Systematically Engineering Adaptive Systems (Invited Talk)
	Contents
	Computational Models
	Representing Dependencies in Event Structures
	1 Introduction
	2 Context-Dependent Event Structure
	3 Event Structures
	4 Embedding and Comparing Event Structures
	5 Conclusion
	References

	Reversing P/T Nets
	1 Introduction
	2 Background
	2.1 Petri Nets
	2.2 Unfolding of P/T Nets

	3 Reversing Occurrence Nets
	4 Properties
	5 Reversing P/T Nets
	6 Finite Representation of Reversible P/T Nets
	7 Conclusions
	References

	Towards Races in Linear Logic
	1 Introduction
	2 Non-determinism, Logic, and Session Types
	3 Hypersequent Classical Processes
	3.1 Example
	3.2 Metatheory

	4 Shared Channels and Non-determinism
	4.1 Clients and Pooling
	4.2 Servers and Sequencing
	4.3 Running Clients and Servers
	4.4 Metatheory
	4.5 HCP-ND and Non-deterministic Local Choice

	5 Cuts with Leftovers
	6 Relation to Manifest Sharing
	7 Discussion and Future Work
	References

	The share Operator for Field-Based Coordination
	1 Introduction
	2 Background, Motivation, and Related Work
	2.1 Space-Time Computation
	2.2 Field Calculus
	2.3 Problematic Interaction Between rep and nbr Constructs

	3 The Share Construct
	3.1 Typing and Operational Semantics
	3.2 The share Construct Improves Communication Speed

	4 Application and Empirical Validation
	4.1 Evaluation Setup

	5 Contributions and Future Work
	References

	Tools (1)
	Scan: A Simple Coordination Workbench
	1 Introduction
	2 Scan Design and Overview
	3 The Anim-Bach Language and Its Temporal Logic
	3.1 Definition of Data
	3.2 Agents
	3.3 Animations
	3.4 A Fragment of Temporal Logic

	4 Implementation
	4.1 Internal Representation of Data
	4.2 Parsing Anim-Bach Constructs
	4.3 The Store
	4.4 The Simulator
	4.5 The Scene
	4.6 Temporal Formulae

	5 Related Work
	6 Conclusion
	References

	CHOReVOLUTION: Automating the Realization of Highly–Collaborative Distributed Applications
	1 Introduction
	2 CHOReVOLUTION Approach
	3 CHOReVOLUTION IDRE
	4 Running Example
	5 CHOReVOLUTION Case Studies Evaluation
	6 Conclusions
	References

	Exploring New Frontiers
	ABEL - A Domain Specific Framework for Programming with Attribute-Based Communication
	1 Introduction
	2 Programming with AbC
	2.1 AbC at Work

	3 Programming Support for AbC
	4 Coordinating Components
	5 Experiments
	5.1 Stable Marriage with Attribute
	5.2 Graph Colouring

	6 Concluding Remarks and Related Works
	References

	Bridging the Gap Between Supervisory Control and Coordination of Services: Synthesis of Orchestrations and Choreographies
	1 Introduction
	2 Background
	2.1 Contract Automata
	2.2 Supervisory Control Theory

	3 Synthesis of Orchestrations
	4 Synthesis of Choreographies
	5 Abstract Synthesis
	6 Related Work
	7 Conclusion
	References

	No More, No Less
	1 Introduction
	2 A Serverless Kernel Calculus
	2.1 SKC - A Stateful Extension of SKC
	2.2 SKCe - Event-Based Function Composition in SKC

	3 An Illustrative Example
	4 Discussion and Conclusion
	References

	Coordination Patterns
	Verification of Concurrent Design Patterns with Data
	1 Introduction
	2 General Notations and pNets Previous Results
	3 The Theory of Architectures with Data
	4 Encoding of Architectures into Open pNets
	5 Related Work
	6 Conclusion
	References

	Self-organising Coordination Regions: A Pattern for Edge Computing
	1 Introduction
	2 Motivation
	2.1 Motivating Scenario
	2.2 Problem and Forces
	2.3 Related Work and Patterns

	3 Pattern Description
	3.1 Structure and Participants
	3.2 Dynamics and Collaborations
	3.3 Applicability
	3.4 Consequences

	4 Implementation
	4.1 Implementation Issues
	4.2 Sample Code

	5 Evaluation
	5.1 Scenario Description
	5.2 Results

	6 Conclusion
	References

	Aggregate Processes in Field Calculus
	1 Introduction
	2 Founding Aggregate Processes by the Field Calculus
	2.1 Overview of Field Calculus
	2.2 On ``Multiple Alignments''
	2.3 The spawn Construct Extension

	3 Programming with Aggregate Processes
	3.1 Aggregate Processes in ScaFi
	3.2 Process Generation, Expansion/Shrinking, and Termination
	3.3 More Expressive Process Definitions

	4 Case Studies
	4.1 Opportunistic Instant Messaging
	4.2 Reconnaissance with a Drone Swarm

	5 Conclusions, Related and Future Work
	References

	Tools (2)
	Automatic Quality-of-Service Evaluation in Service-Oriented Computing
	1 Introduction
	2 Formalisation and Analysis of QoS Contracts
	2.1 From QoS Contracts to an Efficient Determination of SLA

	3 Implementation and Experimental Results
	3.1 Experimental Evaluation

	4 Conclusions
	References

	DiRPOMS: Automatic Checker of Distributed Realizability of POMSets
	1 Introduction
	2 Local and Global Views of Choreographies
	3 Realisability Conditions
	4 Realisability by Examples
	5 Identifying Missing Execution Logs for Choreography Mining
	6 Tool Usage
	7 Tool Implementation
	8 Tool Evaluation
	9 Concluding Remarks
	References

	Coordination of Tasks on a Real-Time OS
	1 Introduction
	2 Distributed Tasks in VirtuosoNext
	2.1 Example of an Architecture
	2.2 Task Coordination via Hubs

	3 Deconstructing Hubs
	3.1 Syntax
	3.2 Semantics

	4 Reconstructing Hubs
	4.1 Hub Composition
	4.2 Example: Round Robin Tasks
	4.3 Serialisation of Updates

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Author Index

