
Chapter 1
Introduction

Joseph Louis Lagrange was one of the greatest mathematicians of the eighteenth
and early nineteenth centuries and he has left a remarkable legacy in both the fields
of physics and mathematics. This volume begins by recounting the biographical
highlights of his life and his contributions.

In the present chapter one of the cornerstones of the book in the form of
the direction cosines and their relationship to the Euler angles is presented and
elaborated upon. The direction cosines play an important role in the approach by
Prof. Ranjan Vepa and are used extensively in Chap. 4.

1.1 Introductory Remarks

Joseph Louis Lagrange, originally Giuseppe Lodovico Lagrangia, was of
French and Italian descent and was born in Turin in 1736 (see Rouse Ball
[30, pp. 330–339]). Lagrange had originally intended to study law but while at
college in Turin, he came across a tract by Halley which roused his enthusiasm
for the analytical method. He thereupon applied himself to mathematics, and in
his 17th year he became professor of mathematics in the royal military academy
at Turin. Without assistance or guidance he entered upon a course of study which
in 2 years placed him on a level with the greatest of his contemporaries. With the
aid of his pupils he established a society which subsequently developed into the
Turin Academy. Most of his earlier papers appear in the first five volumes of its
transactions. At the age of 19 he communicated a general method of dealing with
“isoperimetrical problems,” known now as the calculus of variations to Euler. This
commanded Euler’s admiration, and the latter, for a time, courteously withheld
some researches of his own on this subject from publication, so that the youthful
Lagrange might complete his investigations and lay claim to being the first to posit
the calculus of variations. Lagrange did quite as much as Euler towards the creation
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2 1 Introduction

of the calculus of variations. The subject, as developed by Euler lacked an analytic
foundation, and this Lagrange supplied. He separated the principles of this calculus
from geometric considerations by which his predecessor had derived them. Euler
had assumed as fixed, the limits of the integral, i.e. the extremities of the curve to
be determined, but Lagrange removed this restriction and allowed all co-ordinates
of the curve to vary at the same time. In 1766 Euler introduced the name “calculus
of variations,” and did much to improve this science along the lines marked out by
Lagrange.

In the year 1766, Euler left Berlin for St. Petersburg, and he pointed to Lagrange
as being the only man capable of filling his place. D’Alembert recommended him
at the same time. Frederick the Great thereupon sent a message to Turin, expressing
the wish of “the greatest king of Europe” to have “the greatest mathematician” at his
court. Lagrange went to Berlin, and remained there for 20 years. Frederick the Great
held him in high esteem, and frequently conversed with him on the advantages of
perfect regularity of life. This led Lagrange to cultivate regular habits. He worked
no longer each day than experience taught him he could, without breaking down.
His papers were carefully thought out before he began writing, and when he wrote
he did so without a single correction. During the 20 years in Berlin he crowded the
transactions of the Berlin Academy with memoirs, and also wrote the epoch-making
work called the Mécanique Analytique. The approach used by Lagrange will be the
subject matter of this volume and will be presented in the subsequent chapters.

Newton’s laws were formulated for a single particle and can be extended to
systems of particles and rigid bodies. The equations of motion are expressed in
terms of physical coordinates and forces, both quantities conveniently represented
by vectors. For this reason, Newtonian mechanics is often referred to as vectorial
mechanics. The main drawback of Newtonian mechanics is that it requires one free-
body diagram for each of the masses in the system, thus necessitating the inclusion
of reaction forces, the latter resulting from kinematical constraints ensuring that
the individual bodies act together as a system. These reaction and constraint
forces play the role of unknowns, which makes it necessary to work with a
surplus of equations of motion, one additional equation for every unknown force.
J.L. Lagrange reformulated Newton’s Laws in a way that eliminates the need to
calculate forces on isolated parts of a mechanical system. A different approach to
mechanics, referred to as analytical mechanics, or analytical dynamics, considers
the system as a whole, rather than the individual components separately, a process
that excludes the reaction and constraint forces automatically. This approach, due
to Lagrange, permits the formulation of problems of dynamics in terms of two
scalar functions, the kinetic energy and the potential energy, and an infinitesimal
expression, the virtual work performed by the non-conservative forces. Analytical
mechanics represents a broader and more abstract approach, as the equations of
motion are formulated in terms of generalized coordinates and generalized forces,
which are not necessarily physical coordinates and forces, although in certain cases
they can be chosen as such. Any convenient set of variables obeying the constraints
on a system can be used to describe the motion. In this manner, the mathematical
formulation is rendered independent of any special system of coordinates. There are
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only as many equations to solve as there are physically significant variables (see
Meirovitch [24, pp. 262–263]).

1.2 Direction Cosines and Euler Angles of Rotation

The relationship between direction cosines and Euler angles is presented as
background material to be used in the subsequent portions of this text. This chapter
has been adopted from Wells [51, pp. 139–141 and Appendix A, pp. 343–344]. The
direction cosines l, m, n of line Ob, relative to axes X, Y,Z are just l = x/r,m =
y/r, n = z/r , where x, y, z are the X, Y,Z coordinates of the tip of r , where
r = √

(x2 + y2 + z2) (see Fig. 1.1). It then follows that (x2 + y2 + z2)/r2 =
(x2 + y2 + z2)/(x2 + y2 + z2) = 1.

Assuming that coordinates X1, Y1, Z1 form an inertial coordinate frame, while
coordinates X, Y,Z are attached to a translating and rotating body, the angles
between the X coordinate and coordinates X1, Y1, Z1 are θ11, θ12, θ13, respectively.
Hence the direction cosines between coordinate X and coordinates X1, Y1, Z1 are
α11 = cos θ11, α12 = cos θ12, α13 = cos θ13, respectively (see Fig. 1.2). The same
relationships between the X coordinate and coordinates X1, Y1, Z1 exist as for line
Ob, that is:

α2
11 + α2

12 + α2
13 = 1 (1.1)

We can similarly show that the direction cosines between coordinate Y and
X1, Y1, Z1, that is α21, α22, α23 and between coordinate Z and X1, Y1, Z1, that is

Fig. 1.1 Definition of direction cosines l, m, n
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Fig. 1.2 Body translating and rotating, while X, Y,Z frame rotates about O relative to the body

Fig. 1.3 Sketch of body, fixed at O, but free to rotate in any manner about this point

α31, α32, α33, respectively, obey the same relationship as in Eq. 1.1 or:

α2
21 + α2

22 + α2
23 = 1; α2

31 + α2
32 + α2

33 = 1 (1.2)

Consider that the body in Fig. 1.3 is fixed at O, but is free to rotate in an arbitrary and
random fashion about this point. All quantities under consideration will be measured
relative to the fixed inertial axis system X, Y,Z. At a given instant of time, the
body is undergoing rotation about some line Oa with an angular velocity of ω. As
a consequence of this rotation, the mass particle m′ possesses a linear velocity v
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normal to the Oa − m′ plane, of magnitude v = ωh, where h is the normal distance
from m′ to the rotating Oa axis. The axis of rotation Oa has direction cosines with
respect to the fixed coordinate system X, Y,Z of l, m, n, respectively. Similarly,
the velocity vector v has direction cosines α1, α2, α3 with respect to the X, Y,Z

axes and its components along the X, Y,Z axes are, respectively, vx, vy , and vz.
From the discussion related to Fig. 1.1 above, it follows that: α1 = vx/v, α2 =
vy/v, α3 = vz/v. Similarly, ω is also composed of components along the X, Y,Z

axes, that is: ω = [ωx, ωy, ωz]. The direction cosines may then be shown to be:
l = ωx/ω,m = ωy/ω, n = ωz/ω. Recall that ω is directed along the line Oa.
Now the velocity of the mass particle m′ may be written in the form: v = ω × r ,
where r = xî + yĵ + zk̂ and ω = ωxî + ωyĵ + ωzk̂. Performing the above vector
multiplication results in:

vx = ωyz − ωzy; vy = ωzx − ωxz; vz = ωxy − ωyx (1.3)

However, α1 = vx/v = vx/ωh. This implies that:

α1 = ωyz − ωzy

ωh
= ωyz

ωh
− ωzy

ωh
= mz − ny

h
(1.4)

due to the fact that l = ωx/ω ,m = ωy/ω, and n = ωz/ω. Hence the direction
cosines α1, α2, and α3 may be written as:

α1 = vx/v = ωyz − ωzy

ωh
= ωyz

ωh
− ωzy

ωh
= mz − ny

h

α2 = vy/v = ωzx − ωxz

ωh
= ωzx

ωh
− ωxz

ωh
= nx − lz

h

α3 = vz/v = ωxy − ωyx

ωh
= ωxy

ωh
− ωyx

ωh
= ly − mx

h
(1.5)

The body in Fig. 1.2 is assumed to be rotating and translating with respect to the
inertial coordinate frame X1, Y1, Z1. The X, Y,Z coordinate system, with its origin
attached to the rigid body, at O, rotates in a random fashion relative to the body. The
X′, Y ′, Z′ axes whose origin is also located at O remain parallel to the inertial axes
X1, Y1, Z1. The coordinates of m′ with respect to the X, Y,Z and X′, Y ′, Z′ axes,
respectively, are: x, y, z and x′, y′, z′.

Letting ω represent the angular velocity of the body while u stands for the linear
velocity of m′, each measured relative to X′, Y ′, Z′, the components of the vectors
ω and u, along the X′, Y ′, Z′ axes are designated as ω′

x, ω
′
y, ω

′
z and u′

x, u
′
y, u

′
z,

respectively. Then akin to the fact established earlier that vx = ωyz − ωzy; vy =
ωzx−ωxz; vz = ωxy−ωyx, we have: u′

x = ω′
yz

′−ω′
zy

′; u′
y = ω′

zx
′−ω′

xz
′; u′

z =
ω′

xy
′ − ω′

yx
′. Allowing ux, uy, uz to be the components of u along the momentary

positions of the X, Y,Z axis frame, we can write:
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ux = u′
xα11 + u′

yα12 + u′
zα13

uy = u′
xα21 + u′

yα22 + u′
zα23

uz = u′
xα31 + u′

yα32 + u′
zα33 (1.6)

where α11, α12, α13 are the direction cosines of X relative to X′, Y ′, Z′,
α21, α22, α23 are the direction cosines of Y relative to X′, Y ′, Z′, and α31, α32, α33
are the direction cosines of Z relative to X′, Y ′, Z′. Equation 1.6 may be understood
by taking the partial derivative of ux with respect to u′

x , which results in: ∂ux

∂u′
x

= α11.

In other words, the cosine of the angle between ux and u′
x is the same as the cosine

of the angle between the X axis and the X′ axis. This statement also holds for the
cosine of the angle between the X and the Y ′ axes, etc. Another interpretation of the
above equation is that ux is the sum of the geometric projections onto the X axis of
the velocities u′

x, u
′
y and u′

z. A similar situation holds for uy and uz. Thus we have:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

uy = (ω′
yz

′ − ω′
zy

′)α21 + (ω′
zx

′ − ω′
xz

′)α22 + (ω′
xy

′ − ω′
yx

′)α23

uz = (ω′
yz

′ − ω′
zy

′)α31 + (ω′
zx

′ − ω′
xz

′)α32 + (ω′
xy

′ − ω′
yx

′)α33 (1.7)

The relationship between the X′ coordinate relative to X, Y,Z coordinates may
similarly be shown to be of the form: x′ = xα11 + yα21 + zα31 where α11, α21, α31
are the direction cosines of X′ relative to X, Y,Z. We may show that for all three
coordinates X′, Y ′, Z′ relative to the X, Y,Z coordinates, the relationship is the
following:

x′ = xα11 + yα21 + zα31

y′ = xα12 + yα22 + zα32

z′ = xα13 + yα23 + zα33 (1.8)

where α11, α21, α31 are the direction cosines of X′ relative to X, Y,Z, α12, α22, α32
are the direction cosines of Y ′ relative to X, Y,Z, and α13, α23, α33 are the direction
cosines of Z′ relative to X, Y,Z. Similarly, for angular rates ω′

x, ω
′
xω

′
x , we have:

ω′
x = ωxα11 + ωyα21 + ωzα31

ω′
y = ωxα12 + ωyα22 + ωzα32

ω′
z = ωxα13 + ωyα23 + ωzα33 (1.9)
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Using the identities:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

uy = (ω′
yz

′ − ω′
zy

′)α21 + (ω′
zx

′ − ω′
xz

′)α22 + (ω′
xy

′ − ω′
yx

′)α23

uz = (ω′
yz

′ − ω′
zy

′)α31 + (ω′
zx

′ − ω′
xz

′)α32 + (ω′
xy

′ − ω′
yx

′)α33 (1.10)

and the values for x′, y′z′ and ω′
x, ω

′
y, ω

′
z in Eqs. 1.8 and 1.9, we have:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

⇒ ux = (ω′
y[xα13 + yα23 + zα33] − ω′

z[xα12 + yα22 + zα32])α11

+ (ω′
z[xα11 + yα21 + zα31] − ω′

x[xα13 + yα23 + zα33])α12

+ (ω′
x[xα12 + yα22 + zα32] − ω′

y[xα11 + yα21 + zα31])α13

(1.11)

It turns out that the coefficient which multiplies x is zero, or ∂ux

∂x
= 0. This may be

seen from the following expression:

∂ux

∂x
= α13(α12[α11ωx + α21ωy + α31ωz] − α11[α12ωx + α22ωy + α32ωz])

− α12(α13[α11ωx + α21ωy + α31ωz] − α11[α13ωx + α23ωy + α33ωz])
+ α11(α13[α12ωx + α22ωy + α32ωz] − α12[α13ωx + α23ωy + α33ωz])

= (α13α12 − α12α13)[α11ωx + α21ωy + α31ωz]
+ (α11α13 − α13α11)[α12ωx + α22ωy + α32ωz]
+ (α11α12 − α12α11)[α13ωx + α23ωy + α33ωz] = 0

thus implying that ux is of the form:

ux = α11α23α32ωzy − α11α22α33ωzy + α12α21α33ωzy − α12α23α31ωzy

− α13α21α32ωzy + α13α22α31ωzy + α11α22α33ωyz − α11α23α32ωyz

− α12α21α33ωyz + α12α23α31ωyz + α13α21α32ωyz − α13α22α31ωyz

= (ωyz − ωzy)[α11α22α33 − α12α21α33]
+ (ωyz − ωzy)[α13α21α32 − α11α23α32]
+ (ωyz − ωzy)[α12α23α31 − α13α22α31]
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which may be simplified as follows:

ux = (ωyz − ωzy)

⎛

⎝(α11α22 − α12α21)︸ ︷︷ ︸
=α33

α33 + (α13α21 − α11α23)︸ ︷︷ ︸
=α32

α32

+ (α12α23 − α13α22)︸ ︷︷ ︸
=α31

α31)

⎞

⎠ =
(
α2

31 + α2
32 + α2

33

)

︸ ︷︷ ︸
=1

(ωyz − ωzy) (1.12)

since ux = ωyz − ωzy. Similarly uy and uz are:

uy = (ωzx − ωxz)

⎛

⎝(α12α31 − α11α32)︸ ︷︷ ︸
=α23

α23 + (α11α33 − α13α31)︸ ︷︷ ︸
=α22

α22

+ (α13α32 − α12α33)︸ ︷︷ ︸
=α21

α21)

⎞

⎠ =
(
α2

23 + α2
22 + α2

21

)

︸ ︷︷ ︸
=1

(ωzx − ωxz)

uz = (ωyx − ωxy)

⎛

⎝(α22α31 − α21α32)︸ ︷︷ ︸
=α13

α13 + (α21α33 − α23α31)︸ ︷︷ ︸
=α12

α12

+ (α23α32 − α33α22)︸ ︷︷ ︸
=α11

α11)

⎞

⎠ =
(
α2

13 + α2
12 + α2

11

)

︸ ︷︷ ︸
=1

(ωyz − ωzy)

The identities for α31, α32, and α33 appear in Wells’ book [51, pp. 343] and will be
developed in the sequel.

Let i1, i2, i3 be the orthogonal unit vectors along the X1, Y1, Z1 axes, respec-
tively, and e1, e2, e3 be the orthogonal unit vectors along the X, Y,Z axes. The
direction cosines between the i1 and e1, e2, and e3 unit vectors are accordingly:
α11, α21 and α31. The i1, i2, and i3 vectors may then be written in terms of the e1, e2,
and e3 vectors and the corresponding direction cosines between the two systems of
unit vectors as follows:

i1 = α11e1 + α21e2 + α31e3

i2 = α12e1 + α22e2 + α32e3

i3 = α13e1 + α23e2 + α33e3 (1.13)
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Similarly, the e1, e2, and e3 unit vectors may be expressed in terms of the i1, i2, i3
unit vectors and the corresponding direction cosines between the two systems of
unit orthogonal vectors as follows:

e1 = α11i1 + α12i2 + α13i3

e2 = α21i1 + α22i2 + α23i3

e3 = α31i1 + α32i2 + α33i3 (1.14)

Since the unit vectors are orthogonal we have: e1 · e2 = 0; e1 · e3 = 0; e2 · e3 =
0; e1 · e1 = 1; e2 · e2 = 1; e3 · e3 = 1. Similarly for the i1, i2, i3 orthogonal unit
vectors we have: i1 ·i2 = 0; i1 ·i3 = 0; i2 ·i3 = 0; i1 ·i1 = 1; i2 ·i2 = 1; i3 ·i3 = 1.
The dot products of the vectors i1 · i1, i2 · i2 and i3 · i3 will yield the following:

i1 · i1 = (α11e1 + α21e2 + α31e3) · (α11e1 + α21e2 + α31e3)

⇒ 1 = α2
11 + α2

21 + α2
31

i2 · i2 = (α12e1 + α22e2 + α32e3) · (α12e1 + α22e2 + α32e3)

⇒ 1 = α2
12 + α2

22 + α2
32

i3 · i3 = (α13e1 + α23e2 + α33e3) · (α13e1 + α23e2 + α33e3)

⇒ 1 = α2
13 + α2

23 + α2
33 (1.15)

Similarly the dot products of the vectors i1 · i2, i1 · i2 and i2 · i3 result in:

i1 · i2 = (α11e1 + α21e2 + α31e3) · (α12e1 + α22e2 + α32e3)

⇒ 0 = α11α12 + α21α22 + α31α31

i1 · i3 = (α11e1 + α21e2 + α31e3) · (α13e1 + α23e2 + α33e3)

⇒ 0 = α11α13 + α21α23 + α31α33

i2 · i3 = (α12e1 + α22e2 + α32e3) · (α13e1 + α23e2 + α33e3)

⇒ 0 = α12α13 + α22α23 + α32α33 (1.16)

The same procedure is employed on the e1, e2, and e3 vectors, that is:

e1 · e1 = (α11i1 + α12i2 + α13i3) · (α11i1 + α12i2 + α13i3)

⇒ 1 = α2
11 + α2

12 + α2
13

e2 · e2 = (α21i1 + α22i2 + α23i3) · (α21i1 + α22i2 + α23i3)

⇒ 1 = α2
21 + α2

22 + α2
23
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e3 · e3 = (α31i1 + α32i2 + α33i3) · (α31i1 + α32i2 + α33i3)

⇒ 1 = α2
31 + α2

32 + α2
33

e1 · e2 = (α11i1 + α12i2 + α13i3) · (α21i1 + α22i2 + α23i3)

⇒ 0 = α11α21 + α12α22 + α13α23

e1 · e3 = (α11i1 + α12i2 + α13i3) · (α31i1 + α32i2 + α33i3)

⇒ 0 = α11α31 + α12α32 + α13α33

e2 · e3 = (α21i1 + α22i2 + α23i3) · (α31i1 + α32i2 + α33i3)

⇒ 0 = α21α31 + α22α32 + α23α33 (1.17)

The following has been assumed:

(a) X1, Y1, Z1 is a fixed and stationary coordinate system.
(b) X, Y,Z is a body fixed coordinate system where the body rotates around some

fixed point O.
(c) The direction cosines between the X coordinate and coordinates X1, Y1, Z1 are

α11, α12, α13.
(d) Similarly, for the direction cosines between the Y coordinate and coordinates

X1, Y1, Z1, we have: α21, α22, α23, etc.

Hence, the transformation of a vector from the stationary X1, Y1, Z1 coordinate
system to the rotating X, Y,Z coordinate system can be written in matrix form as
follows:

⎡

⎣
xb

yb

zb

⎤

⎦ =
⎡

⎣
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤

⎦

⎡

⎣
xea

yea

zea

⎤

⎦ (1.18)

where the vector

⎡

⎣
xea

yea

zea

⎤

⎦ is in the X1, Y1, Z1 coordinate frame and the vector

⎡

⎣
xb

yb

zb

⎤

⎦ is in the X, Y,Z coordinate frame. The rotation of the vector X1, Y1, Z1

coordinates into the vector in X, Y,Z coordinates can be described by Euler angular
transformations in matrix form as follows:

⎡

⎢
⎣

xb

yb

zb

⎤

⎥
⎦ =

⎡

⎢
⎣

cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ

⎤

⎥
⎦

⎡

⎢
⎣

xea

yea

zea

⎤

⎥
⎦

(1.19)
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Equating the two transformations we note that:

α11 = cos θ cos ψ; α12 = cos θ sin ψ; α13 = − sin θ

α21 = sin φ sin θ cos ψ − cos φ sin ψ; α22 = sin φ sin θ sin ψ + cos φ cos ψ

α23 = sin φ cos θ; α31 = cos φ sin θ cos ψ + sin φ sin ψ

α32 = cos φ sin θ sin ψ − sin φ cos ψ; α33 = cos φ cos θ

(1.20)

Taking the product of α22 ∗ α33

α22 ∗ α33 = (sin φ sin θ sin ψ + cos φ cos ψ) ∗ (cos φ cos θ)

= cos φ cos θ sin φ sin θ sin ψ + cos θ cos2 φ cos ψ

(1.21)

Similarly the product of −α23 ∗ α32

−α23 ∗ α32 = −(sin φ cos θ) ∗ (cos φ sin θ sin ψ − sin φ cos ψ)

= −(cos φ cos θ sin φ sin θ sin ψ) + cos θ sin2 φ cos ψ

(1.22)

Calculating α22 ∗ α33 − α23 ∗ α32, we have:

α22 ∗ α33 − α23 ∗ α32 = (cos φ cos θ sin φ sin θ sin ψ)

− (cos φ cos θ sin φ sin θ sin ψ)

+ cos θ cos2 φ cos ψ + cos θ sin2 φ cos ψ

= cos θ cos ψ = α11 (1.23)

Similarly for α12, we have: α12 = α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ , which is
expanded in the following equation:

α23 ∗ α31 = (sin φ cos θ) ∗ (cos φ sin θ cos ψ + sin φ sin ψ)

= sin φ cos θ cos φ sin θ cos ψ + sin2 φ cos θ sin ψ

− α33 ∗ α21 = −(cos φ cos θ)(sin φ sin θ cos ψ − cos φ sin ψ)

= cos2 φ cos θ sin ψ − cos φ cos θ sin φ sin θ cos ψ

⇒ α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ

(1.24)
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And finally for α21 = α32 ∗ α13 − α12 ∗ α33, the result is:

α32 ∗ α13 = (sin φ cos ψ − cos φ sin θ sin ψ)(sin θ)

= sin θ sin φ cos ψ − sin2 θ cos φ sin ψ

− α12 ∗ α33 = −(cos θ sin ψ)(cos φ cos θ) = − cos2 θ sin ψ cos φ

⇒ α21 = sin θ sin φ cos ψ − sin2 θ cos φ sin ψ − cos2 θ sin ψ cos φ

= sin θ sin φ cos ψ − cos φ sin ψ

(1.25)

Following a similar procedure, all of the identities between the Euler angles and the
direction cosines are as follows:

1. α11 = α22 ∗ α33 − α23 ∗ α32 = cos θ cos ψ

2. α12 = α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ

3. α13 = α21 ∗ α32 − α31 ∗ α22 = − sin θ

4. α21 = α32 ∗ α13 − α12 ∗ α33 = sin φ sin θ cos ψ − cos φ sin ψ

5. α22 = α33 ∗ α11 − α13 ∗ α31 = sin φ sin θ sin ψ + cos φ cos ψ

6. α23 = α31 ∗ α12 − α11 ∗ α32 = sin φ cos θ

7. α31 = α12 ∗ α23 − α22 ∗ α13 = cos φ sin θ cos ψ + sin φ sin ψ

8. α32 = α13 ∗ α21 − α11 ∗ α23 = cos φ sin θ sin ψ − sin φ cos ψ

9. α33 = α11 ∗ α22 − α12 ∗ α21 = cos φ cos θ
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