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Preface

This volume was intended as a short summary of the essentials of Lagrangian
dynamics for undergraduate students of physics and engineering. A number of
topics have been included in order to make the presentation compact, succinct, as
well as comprehensive. The topics include:

(a) A Review of Classical Mechanics
(b) Holonomic and Non-holonomic Systems
(c) Virtual Work
(d) The Principle of D’Alembert for Dynamical Systems
(e) The Mathematics of Conservative Forces
(f) The Extended Hamilton’s Principle
(g) Lagrange’s Equations and Lagrangian Dynamics
(h) A Systematic Procedure for Generalized Forces
(i) Quasi-coordinates and Quasi-velocities
(j) Lagrangian Dynamics with Quasi-coordinates
(k) Lagrangian Dynamics with Quasi-coordinates-Prof. Ranjan Vepa’s Approach

An ample number of examples have been included which demonstrate the tech-
niques involved.
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Vector: coefficients of k.e. wrt generalized coordinates

∂T
∂q̇k

Coefficient of k.e. wrt q̇k

∂T
∂qk

Coefficient of k.e. wrt qk
{

∂T̄

∂Γ̇

}
Vector: coefficients of modified k.e. wrt generalized

velocities[
∂ϑ
∂qk

]
Matrix of partial derivatives of Θij , i, j,= 1, 2, . . . , n

wrt qk

wx,wy,wz Angular rates in body coordinates
v, vY i, vR Tricycle’s forward velocity, rear and front wheel

lateral velocities
Ṫa/b(t) Time derivative of a rotation matrix
ṪI/B(t) Body to inertial rotation matrix rate
Δθ,Δψ,Δφ Infinitesimal angles θ ψ, φ

Φ Vector with [φ, θ, ψ]T

Irotor Quad copter motor and rotor blade moment of inertia
CD Aerodynamic blade profile drag coefficient





Chapter 1
Introduction

Joseph Louis Lagrange was one of the greatest mathematicians of the eighteenth
and early nineteenth centuries and he has left a remarkable legacy in both the fields
of physics and mathematics. This volume begins by recounting the biographical
highlights of his life and his contributions.

In the present chapter one of the cornerstones of the book in the form of
the direction cosines and their relationship to the Euler angles is presented and
elaborated upon. The direction cosines play an important role in the approach by
Prof. Ranjan Vepa and are used extensively in Chap. 4.

1.1 Introductory Remarks

Joseph Louis Lagrange, originally Giuseppe Lodovico Lagrangia, was of
French and Italian descent and was born in Turin in 1736 (see Rouse Ball
[30,

for the analytical method. He thereupon applied himself to mathematics, and in
his 17th year he became professor of mathematics in the royal military academy
at Turin. Without assistance or guidance he entered upon a course of study which
in 2 years placed him on a level with the greatest of his contemporaries. With the
aid of his pupils he established a society which subsequently developed into the
Turin Academy. Most of his earlier papers appear in the first five volumes of its
transactions. At the age of 19 he communicated a general method of dealing with
“isoperimetrical problems,” known now as the calculus of variations to Euler. This
commanded Euler’s admiration, and the latter, for a time, courteously withheld
some researches of his own on this subject from publication, so that the youthful
Lagrange might complete his investigations and lay claim to being the first to posit
the calculus of variations. Lagrange did quite as much as Euler towards the creation

© Springer Nature Switzerland AG 2020
A. W. Pila, Introduction To Lagrangian Dynamics,
https://doi.org/10.1007/978-3-030-22378-6_1
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pp. 330–339]). Lagrange had originally intended to study law but while at
college in Turin, he came across a tract by Halley which roused his enthusiasm

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22378-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-22378-6_1


2 1 Introduction

of the calculus of variations. The subject, as developed by Euler lacked an analytic
foundation, and this Lagrange supplied. He separated the principles of this calculus
from geometric considerations by which his predecessor had derived them. Euler
had assumed as fixed, the limits of the integral, i.e. the extremities of the curve to
be determined, but Lagrange removed this restriction and allowed all co-ordinates
of the curve to vary at the same time. In 1766 Euler introduced the name “calculus
of variations,” and did much to improve this science along the lines marked out by
Lagrange.

In the year 1766, Euler left Berlin for St. Petersburg, and he pointed to Lagrange
as being the only man capable of filling his place. D’Alembert recommended him
at the same time. Frederick the Great thereupon sent a message to Turin, expressing
the wish of “the greatest king of Europe” to have “the greatest mathematician” at his
court. Lagrange went to Berlin, and remained there for 20 years. Frederick the Great
held him in high esteem, and frequently conversed with him on the advantages of
perfect regularity of life. This led Lagrange to cultivate regular habits. He worked
no longer each day than experience taught him he could, without breaking down.
His papers were carefully thought out before he began writing, and when he wrote
he did so without a single correction. During the 20 years in Berlin he crowded the
transactions of the Berlin Academy with memoirs, and also wrote the epoch-making
work called the Mécanique Analytique. The approach used by Lagrange will be the
subject matter of this volume and will be presented in the subsequent chapters.

Newton’s laws were formulated for a single particle and can be extended to
systems of particles and rigid bodies. The equations of motion are expressed in
terms of physical coordinates and forces, both quantities conveniently represented
by vectors. For this reason, Newtonian mechanics is often referred to as vectorial
mechanics. The main drawback of Newtonian mechanics is that it requires one free-
body diagram for each of the masses in the system, thus necessitating the inclusion
of reaction forces, the latter resulting from kinematical constraints ensuring that
the individual bodies act together as a system. These reaction and constraint
forces play the role of unknowns, which makes it necessary to work with a
surplus of equations of motion, one additional equation for every unknown force.
J.L. Lagrange reformulated Newton’s Laws in a way that eliminates the need to
calculate forces on isolated parts of a mechanical system. A different approach to
mechanics, referred to as analytical mechanics, or analytical dynamics, considers
the system as a whole, rather than the individual components separately, a process
that excludes the reaction and constraint forces automatically. This approach, due
to Lagrange, permits the formulation of problems of dynamics in terms of two
scalar functions, the kinetic energy and the potential energy, and an infinitesimal
expression, the virtual work performed by the non-conservative forces. Analytical
mechanics represents a broader and more abstract approach, as the equations of
motion are formulated in terms of generalized coordinates and generalized forces,
which are not necessarily physical coordinates and forces, although in certain cases
they can be chosen as such. Any convenient set of variables obeying the constraints
on a system can be used to describe the motion. In this manner, the mathematical
formulation is rendered independent of any special system of coordinates. There are
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only as many equations to solve as there are physically significant variables (see
Meirovitch [24, pp. 262–263]).

1.2 Direction Cosines and Euler Angles of Rotation

The relationship between direction cosines and Euler angles is presented as
background material to be used in the subsequent portions of this text. This chapter
has been adopted from Wells [51, pp. 139–141 and Appendix A, pp. 343–344]. The
direction cosines l, m, n of line Ob, relative to axes X, Y,Z are just l = x/r,m =
y/r, n = z/r , where x, y, z are the X, Y,Z coordinates of the tip of r , where
r = √

(x2 + y2 + z2) (see Fig. 1.1). It then follows that (x2 + y2 + z2)/r2 =
(x2 + y2 + z2)/(x2 + y2 + z2) = 1.

Assuming that coordinates X1, Y1, Z1 form an inertial coordinate frame, while
coordinates X, Y,Z are attached to a translating and rotating body, the angles
between the X coordinate and coordinates X1, Y1, Z1 are θ11, θ12, θ13, respectively.
Hence the direction cosines between coordinate X and coordinates X1, Y1, Z1 are
α11 = cos θ11, α12 = cos θ12, α13 = cos θ13, respectively (see Fig. 1.2). The same
relationships between the X coordinate and coordinates X1, Y1, Z1 exist as for line
Ob, that is:

α2
11 + α2

12 + α2
13 = 1 (1.1)

We can similarly show that the direction cosines between coordinate Y and
X1, Y1, Z1, that is α21, α22, α23 and between coordinate Z and X1, Y1, Z1, that is

Fig. 1.1 Definition of direction cosines l, m, n
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Fig. 1.2 Body translating and rotating, while X, Y,Z frame rotates about O relative to the body

Fig. 1.3 Sketch of body, fixed at O, but free to rotate in any manner about this point

α31, α32, α33, respectively, obey the same relationship as in Eq. 1.1 or:

α2
21 + α2

22 + α2
23 = 1; α2

31 + α2
32 + α2

33 = 1 (1.2)

Consider that the body in Fig. 1.3 is fixed at O, but is free to rotate in an arbitrary and
random fashion about this point. All quantities under consideration will be measured
relative to the fixed inertial axis system X, Y,Z. At a given instant of time, the
body is undergoing rotation about some line Oa with an angular velocity of ω. As
a consequence of this rotation, the mass particle m′ possesses a linear velocity v
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normal to the Oa − m′ plane, of magnitude v = ωh, where h is the normal distance
from m′ to the rotating Oa axis. The axis of rotation Oa has direction cosines with
respect to the fixed coordinate system X, Y,Z of l, m, n, respectively. Similarly,
the velocity vector v has direction cosines α1, α2, α3 with respect to the X, Y,Z

axes and its components along the X, Y,Z axes are, respectively, vx, vy , and vz.
From the discussion related to Fig. 1.1 above, it follows that: α1 = vx/v, α2 =
vy/v, α3 = vz/v. Similarly, ω is also composed of components along the X, Y,Z

axes, that is: ω = [ωx, ωy, ωz]. The direction cosines may then be shown to be:
l = ωx/ω,m = ωy/ω, n = ωz/ω. Recall that ω is directed along the line Oa.
Now the velocity of the mass particle m′ may be written in the form: v = ω × r ,
where r = xî + yĵ + zk̂ and ω = ωxî + ωyĵ + ωzk̂. Performing the above vector
multiplication results in:

vx = ωyz − ωzy; vy = ωzx − ωxz; vz = ωxy − ωyx (1.3)

However, α1 = vx/v = vx/ωh. This implies that:

α1 = ωyz − ωzy

ωh
= ωyz

ωh
− ωzy

ωh
= mz − ny

h
(1.4)

due to the fact that l = ωx/ω ,m = ωy/ω, and n = ωz/ω. Hence the direction
cosines α1, α2, and α3 may be written as:

α1 = vx/v = ωyz − ωzy

ωh
= ωyz

ωh
− ωzy

ωh
= mz − ny

h

α2 = vy/v = ωzx − ωxz

ωh
= ωzx

ωh
− ωxz

ωh
= nx − lz

h

α3 = vz/v = ωxy − ωyx

ωh
= ωxy

ωh
− ωyx

ωh
= ly − mx

h
(1.5)

The body in Fig. 1.2 is assumed to be rotating and translating with respect to the
inertial coordinate frame X1, Y1, Z1. The X, Y,Z coordinate system, with its origin
attached to the rigid body, at O, rotates in a random fashion relative to the body. The
X′, Y ′, Z′ axes whose origin is also located at O remain parallel to the inertial axes
X1, Y1, Z1. The coordinates of m′ with respect to the X, Y,Z and X′, Y ′, Z′ axes,
respectively, are: x, y, z and x′, y′, z′.

Letting ω represent the angular velocity of the body while u stands for the linear
velocity of m′, each measured relative to X′, Y ′, Z′, the components of the vectors
ω and u, along the X′, Y ′, Z′ axes are designated as ω′

x, ω
′
y, ω

′
z and u′

x, u
′
y, u

′
z,

respectively. Then akin to the fact established earlier that vx = ωyz − ωzy; vy =
ωzx−ωxz; vz = ωxy−ωyx, we have: u′

x = ω′
yz

′−ω′
zy

′; u′
y = ω′

zx
′−ω′

xz
′; u′

z =
ω′

xy
′ − ω′

yx
′. Allowing ux, uy, uz to be the components of u along the momentary

positions of the X, Y,Z axis frame, we can write:
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ux = u′
xα11 + u′

yα12 + u′
zα13

uy = u′
xα21 + u′

yα22 + u′
zα23

uz = u′
xα31 + u′

yα32 + u′
zα33 (1.6)

where α11, α12, α13 are the direction cosines of X relative to X′, Y ′, Z′,
α21, α22, α23 are the direction cosines of Y relative to X′, Y ′, Z′, and α31, α32, α33
are the direction cosines of Z relative to X′, Y ′, Z′. Equation 1.6 may be understood
by taking the partial derivative of ux with respect to u′

x , which results in: ∂ux

∂u′
x

= α11.

In other words, the cosine of the angle between ux and u′
x is the same as the cosine

of the angle between the X axis and the X′ axis. This statement also holds for the
cosine of the angle between the X and the Y ′ axes, etc. Another interpretation of the
above equation is that ux is the sum of the geometric projections onto the X axis of
the velocities u′

x, u
′
y and u′

z. A similar situation holds for uy and uz. Thus we have:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

uy = (ω′
yz

′ − ω′
zy

′)α21 + (ω′
zx

′ − ω′
xz

′)α22 + (ω′
xy

′ − ω′
yx

′)α23

uz = (ω′
yz

′ − ω′
zy

′)α31 + (ω′
zx

′ − ω′
xz

′)α32 + (ω′
xy

′ − ω′
yx

′)α33 (1.7)

The relationship between the X′ coordinate relative to X, Y,Z coordinates may
similarly be shown to be of the form: x′ = xα11 + yα21 + zα31 where α11, α21, α31
are the direction cosines of X′ relative to X, Y,Z. We may show that for all three
coordinates X′, Y ′, Z′ relative to the X, Y,Z coordinates, the relationship is the
following:

x′ = xα11 + yα21 + zα31

y′ = xα12 + yα22 + zα32

z′ = xα13 + yα23 + zα33 (1.8)

where α11, α21, α31 are the direction cosines of X′ relative to X, Y,Z, α12, α22, α32
are the direction cosines of Y ′ relative to X, Y,Z, and α13, α23, α33 are the direction
cosines of Z′ relative to X, Y,Z. Similarly, for angular rates ω′

x, ω
′
xω

′
x , we have:

ω′
x = ωxα11 + ωyα21 + ωzα31

ω′
y = ωxα12 + ωyα22 + ωzα32

ω′
z = ωxα13 + ωyα23 + ωzα33 (1.9)



1.2 Direction Cosines and Euler Angles of Rotation 7

Using the identities:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

uy = (ω′
yz

′ − ω′
zy

′)α21 + (ω′
zx

′ − ω′
xz

′)α22 + (ω′
xy

′ − ω′
yx

′)α23

uz = (ω′
yz

′ − ω′
zy

′)α31 + (ω′
zx

′ − ω′
xz

′)α32 + (ω′
xy

′ − ω′
yx

′)α33 (1.10)

and the values for x′, y′z′ and ω′
x, ω

′
y, ω

′
z in Eqs. 1.8 and 1.9, we have:

ux = (ω′
yz

′ − ω′
zy

′)α11 + (ω′
zx

′ − ω′
xz

′)α12 + (ω′
xy

′ − ω′
yx

′)α13

⇒ ux = (ω′
y[xα13 + yα23 + zα33] − ω′

z[xα12 + yα22 + zα32])α11

+ (ω′
z[xα11 + yα21 + zα31] − ω′

x[xα13 + yα23 + zα33])α12

+ (ω′
x[xα12 + yα22 + zα32] − ω′

y[xα11 + yα21 + zα31])α13

(1.11)

It turns out that the coefficient which multiplies x is zero, or ∂ux

∂x
= 0. This may be

seen from the following expression:

∂ux

∂x
= α13(α12[α11ωx + α21ωy + α31ωz] − α11[α12ωx + α22ωy + α32ωz])

− α12(α13[α11ωx + α21ωy + α31ωz] − α11[α13ωx + α23ωy + α33ωz])
+ α11(α13[α12ωx + α22ωy + α32ωz] − α12[α13ωx + α23ωy + α33ωz])

= (α13α12 − α12α13)[α11ωx + α21ωy + α31ωz]
+ (α11α13 − α13α11)[α12ωx + α22ωy + α32ωz]
+ (α11α12 − α12α11)[α13ωx + α23ωy + α33ωz] = 0

thus implying that ux is of the form:

ux = α11α23α32ωzy − α11α22α33ωzy + α12α21α33ωzy − α12α23α31ωzy

− α13α21α32ωzy + α13α22α31ωzy + α11α22α33ωyz − α11α23α32ωyz

− α12α21α33ωyz + α12α23α31ωyz + α13α21α32ωyz − α13α22α31ωyz

= (ωyz − ωzy)[α11α22α33 − α12α21α33]
+ (ωyz − ωzy)[α13α21α32 − α11α23α32]
+ (ωyz − ωzy)[α12α23α31 − α13α22α31]
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which may be simplified as follows:

ux = (ωyz − ωzy)

⎛

⎝(α11α22 − α12α21)︸ ︷︷ ︸
=α33

α33 + (α13α21 − α11α23)︸ ︷︷ ︸
=α32

α32

+ (α12α23 − α13α22)︸ ︷︷ ︸
=α31

α31)

⎞

⎠ =
(
α2

31 + α2
32 + α2

33

)

︸ ︷︷ ︸
=1

(ωyz − ωzy) (1.12)

since ux = ωyz − ωzy. Similarly uy and uz are:

uy = (ωzx − ωxz)

⎛

⎝(α12α31 − α11α32)︸ ︷︷ ︸
=α23

α23 + (α11α33 − α13α31)︸ ︷︷ ︸
=α22

α22

+ (α13α32 − α12α33)︸ ︷︷ ︸
=α21

α21)

⎞

⎠ =
(
α2

23 + α2
22 + α2

21

)

︸ ︷︷ ︸
=1

(ωzx − ωxz)

uz = (ωyx − ωxy)

⎛

⎝(α22α31 − α21α32)︸ ︷︷ ︸
=α13

α13 + (α21α33 − α23α31)︸ ︷︷ ︸
=α12

α12

+ (α23α32 − α33α22)︸ ︷︷ ︸
=α11

α11)

⎞

⎠ =
(
α2

13 + α2
12 + α2

11

)

︸ ︷︷ ︸
=1

(ωyz − ωzy)

The identities for α31, α32, and α33 appear in Wells’ book [51, pp. 343] and will be
developed in the sequel.

Let i1, i2, i3 be the orthogonal unit vectors along the X1, Y1, Z1 axes, respec-
tively, and e1, e2, e3 be the orthogonal unit vectors along the X, Y,Z axes. The
direction cosines between the i1 and e1, e2, and e3 unit vectors are accordingly:
α11, α21 and α31. The i1, i2, and i3 vectors may then be written in terms of the e1, e2,
and e3 vectors and the corresponding direction cosines between the two systems of
unit vectors as follows:

i1 = α11e1 + α21e2 + α31e3

i2 = α12e1 + α22e2 + α32e3

i3 = α13e1 + α23e2 + α33e3 (1.13)
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Similarly, the e1, e2, and e3 unit vectors may be expressed in terms of the i1, i2, i3
unit vectors and the corresponding direction cosines between the two systems of
unit orthogonal vectors as follows:

e1 = α11i1 + α12i2 + α13i3

e2 = α21i1 + α22i2 + α23i3

e3 = α31i1 + α32i2 + α33i3 (1.14)

Since the unit vectors are orthogonal we have: e1 · e2 = 0; e1 · e3 = 0; e2 · e3 =
0; e1 · e1 = 1; e2 · e2 = 1; e3 · e3 = 1. Similarly for the i1, i2, i3 orthogonal unit
vectors we have: i1 ·i2 = 0; i1 ·i3 = 0; i2 ·i3 = 0; i1 ·i1 = 1; i2 ·i2 = 1; i3 ·i3 = 1.
The dot products of the vectors i1 · i1, i2 · i2 and i3 · i3 will yield the following:

i1 · i1 = (α11e1 + α21e2 + α31e3) · (α11e1 + α21e2 + α31e3)

⇒ 1 = α2
11 + α2

21 + α2
31

i2 · i2 = (α12e1 + α22e2 + α32e3) · (α12e1 + α22e2 + α32e3)

⇒ 1 = α2
12 + α2

22 + α2
32

i3 · i3 = (α13e1 + α23e2 + α33e3) · (α13e1 + α23e2 + α33e3)

⇒ 1 = α2
13 + α2

23 + α2
33 (1.15)

Similarly the dot products of the vectors i1 · i2, i1 · i2 and i2 · i3 result in:

i1 · i2 = (α11e1 + α21e2 + α31e3) · (α12e1 + α22e2 + α32e3)

⇒ 0 = α11α12 + α21α22 + α31α31

i1 · i3 = (α11e1 + α21e2 + α31e3) · (α13e1 + α23e2 + α33e3)

⇒ 0 = α11α13 + α21α23 + α31α33

i2 · i3 = (α12e1 + α22e2 + α32e3) · (α13e1 + α23e2 + α33e3)

⇒ 0 = α12α13 + α22α23 + α32α33 (1.16)

The same procedure is employed on the e1, e2, and e3 vectors, that is:

e1 · e1 = (α11i1 + α12i2 + α13i3) · (α11i1 + α12i2 + α13i3)

⇒ 1 = α2
11 + α2

12 + α2
13

e2 · e2 = (α21i1 + α22i2 + α23i3) · (α21i1 + α22i2 + α23i3)

⇒ 1 = α2
21 + α2

22 + α2
23
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e3 · e3 = (α31i1 + α32i2 + α33i3) · (α31i1 + α32i2 + α33i3)

⇒ 1 = α2
31 + α2

32 + α2
33

e1 · e2 = (α11i1 + α12i2 + α13i3) · (α21i1 + α22i2 + α23i3)

⇒ 0 = α11α21 + α12α22 + α13α23

e1 · e3 = (α11i1 + α12i2 + α13i3) · (α31i1 + α32i2 + α33i3)

⇒ 0 = α11α31 + α12α32 + α13α33

e2 · e3 = (α21i1 + α22i2 + α23i3) · (α31i1 + α32i2 + α33i3)

⇒ 0 = α21α31 + α22α32 + α23α33 (1.17)

The following has been assumed:

(a) X1, Y1, Z1 is a fixed and stationary coordinate system.
(b) X, Y,Z is a body fixed coordinate system where the body rotates around some

fixed point O.
(c) The direction cosines between the X coordinate and coordinates X1, Y1, Z1 are

α11, α12, α13.
(d) Similarly, for the direction cosines between the Y coordinate and coordinates

X1, Y1, Z1, we have: α21, α22, α23, etc.

Hence, the transformation of a vector from the stationary X1, Y1, Z1 coordinate
system to the rotating X, Y,Z coordinate system can be written in matrix form as
follows:

⎡

⎣
xb

yb

zb

⎤

⎦ =
⎡

⎣
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤

⎦

⎡

⎣
xea

yea

zea

⎤

⎦ (1.18)

where the vector

⎡

⎣
xea

yea

zea

⎤

⎦ is in the X1, Y1, Z1 coordinate frame and the vector

⎡

⎣
xb

yb

zb

⎤

⎦ is in the X, Y,Z coordinate frame. The rotation of the vector X1, Y1, Z1

coordinates into the vector in X, Y,Z coordinates can be described by Euler angular
transformations in matrix form as follows:

⎡

⎢
⎣

xb

yb

zb

⎤

⎥
⎦ =

⎡

⎢
⎣

cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ

⎤

⎥
⎦

⎡

⎢
⎣

xea

yea

zea

⎤

⎥
⎦

(1.19)
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Equating the two transformations we note that:

α11 = cos θ cos ψ; α12 = cos θ sin ψ; α13 = − sin θ

α21 = sin φ sin θ cos ψ − cos φ sin ψ; α22 = sin φ sin θ sin ψ + cos φ cos ψ

α23 = sin φ cos θ; α31 = cos φ sin θ cos ψ + sin φ sin ψ

α32 = cos φ sin θ sin ψ − sin φ cos ψ; α33 = cos φ cos θ

(1.20)

Taking the product of α22 ∗ α33

α22 ∗ α33 = (sin φ sin θ sin ψ + cos φ cos ψ) ∗ (cos φ cos θ)

= cos φ cos θ sin φ sin θ sin ψ + cos θ cos2 φ cos ψ

(1.21)

Similarly the product of −α23 ∗ α32

−α23 ∗ α32 = −(sin φ cos θ) ∗ (cos φ sin θ sin ψ − sin φ cos ψ)

= −(cos φ cos θ sin φ sin θ sin ψ) + cos θ sin2 φ cos ψ

(1.22)

Calculating α22 ∗ α33 − α23 ∗ α32, we have:

α22 ∗ α33 − α23 ∗ α32 = (cos φ cos θ sin φ sin θ sin ψ)

− (cos φ cos θ sin φ sin θ sin ψ)

+ cos θ cos2 φ cos ψ + cos θ sin2 φ cos ψ

= cos θ cos ψ = α11 (1.23)

Similarly for α12, we have: α12 = α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ , which is
expanded in the following equation:

α23 ∗ α31 = (sin φ cos θ) ∗ (cos φ sin θ cos ψ + sin φ sin ψ)

= sin φ cos θ cos φ sin θ cos ψ + sin2 φ cos θ sin ψ

− α33 ∗ α21 = −(cos φ cos θ)(sin φ sin θ cos ψ − cos φ sin ψ)

= cos2 φ cos θ sin ψ − cos φ cos θ sin φ sin θ cos ψ

⇒ α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ

(1.24)
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And finally for α21 = α32 ∗ α13 − α12 ∗ α33, the result is:

α32 ∗ α13 = (sin φ cos ψ − cos φ sin θ sin ψ)(sin θ)

= sin θ sin φ cos ψ − sin2 θ cos φ sin ψ

− α12 ∗ α33 = −(cos θ sin ψ)(cos φ cos θ) = − cos2 θ sin ψ cos φ

⇒ α21 = sin θ sin φ cos ψ − sin2 θ cos φ sin ψ − cos2 θ sin ψ cos φ

= sin θ sin φ cos ψ − cos φ sin ψ

(1.25)

Following a similar procedure, all of the identities between the Euler angles and the
direction cosines are as follows:

1. α11 = α22 ∗ α33 − α23 ∗ α32 = cos θ cos ψ

2. α12 = α23 ∗ α31 − α33 ∗ α21 = cos θ sin ψ

3. α13 = α21 ∗ α32 − α31 ∗ α22 = − sin θ

4. α21 = α32 ∗ α13 − α12 ∗ α33 = sin φ sin θ cos ψ − cos φ sin ψ

5. α22 = α33 ∗ α11 − α13 ∗ α31 = sin φ sin θ sin ψ + cos φ cos ψ

6. α23 = α31 ∗ α12 − α11 ∗ α32 = sin φ cos θ

7. α31 = α12 ∗ α23 − α22 ∗ α13 = cos φ sin θ cos ψ + sin φ sin ψ

8. α32 = α13 ∗ α21 − α11 ∗ α23 = cos φ sin θ sin ψ − sin φ cos ψ

9. α33 = α11 ∗ α22 − α12 ∗ α21 = cos φ cos θ



Chapter 2
Lagrangian Dynamics: Preliminaries

The notions taken from classical mechanics, which are required for an under-
standing of Lagrangian Dynamics, are introduced in the present chapter. These
notions include linear and angular velocities, linear and angular momenta and their
derivatives with respect to time, as well as kinetic and potential energies and work.
The chapter includes many examples of a didactic nature. These topics have been
chosen to serve both as a review of classical mechanics, especially the concepts of
work and kinetic and potential energy, and to set the framework for the study of
Lagrangian Dynamics in Chap. 3.

2.1 Angular Velocity of a Body and Linear Velocity
of a Typical Particle Within That Body
(See Wells [51, pp. 140–142])

A body with axes centered at point O rotates with angular rate ω and translates with
velocity vo with respect to an inertial axis system X1, Y1, Z1 (see Fig. 2.1—note
that Figs. 1.2 and 2.1 are the same). An axis system X, Y,Z, attached to the body
at point O, rotates in an arbitrary fashion with respect to the body. At every instant,
the motion of the X, Y,Z coordinate frame is “frozen” with respect to the rotating
body. The velocity vo of the origin may be written in terms of the instantaneous
components of the X, Y,Z axes as: vo = [vox, voy, voz]T . Similarly the rotation
rate ω of the body in the instantaneous X, Y,Z components may be written as:
ω = [ωx, ωy, ωz]T . In the rotating X, Y,Z axis frame, the instantaneous location of
a point mass m′ is [x, y, z]T . The velocity of point mass m′ with respect to inertial
axes X1, Y1, Z1, but expressed in X, Y,Z coordinates, is therefore:

vx = vox + (ωyz − ωzy), vy = voy + (ωzx − ωxz), vz = voz + (ωxy − ωyx)

(2.1)
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Fig. 2.1 Body translating and rotating, while X, Y,Z frame rotates about O relative to the body

The full significance of Eq. 2.1 may be understood by considering the following
points (not necessarily in order of importance) together with a study of several
examples to follow.

1. The origin O is attached to any arbitrarily chosen point within the body, about
which the body and the X, Y,Z coordinate system rotate.

2. Equation 2.1 is valid even though the X, Y,Z frame (origin fixed at O) may
rotate relative to the body. It is also possible that this frame may be “body-fixed,”
that is, rigidly attached to the body. When this is not the case, the x, y, z vary,
while in the body-fixed case, they are constant. Normally, body-fixed axes are
utilized.

3. Components of vo, the inertial velocity of O, are expressed along instantaneous
directions of X, Y,Z, that is: vo = [vox, voy, voz]T (see Fig. 2.1 where vox is
illustrated).

4. Regardless of where O is located, vox, voy, voz is the same for all of the mass
particles which make up the rigid body. Hence vo expresses the linear velocity of
the object as a whole.

5. The total angular velocity of the body ω is always measured with respect to an
inertial frame, i.e., relative to a non-rotating axis frame such as X′, Y ′, Z′ in
Fig. 2.1.

6. ω is expressed in X, Y,Z components ωx, ωy, ωz, that is, along the instantaneous
directions of coordinates X, Y,Z.
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7. Regardless of where the origin O is located in the body, ω always has the same
magnitude and direction. Whatever the location of O, ω is directed along some
imaginary line passing through O. This implies that this vector can be relocated
to any other origin within the body without undergoing a change in magnitude or
direction.

8. Subject to forces acting on the body, ω and vo may change their magnitudes and
directions. Under these circumstances, their directions, relative to the body, are
not fixed.

9. Equation 2.1 is used to write a general expression for the kinetic energy of a rigid
body as shown in the sequel (see Eq. 2.15).

2.2 Angular Velocity of a Body and Linear Velocity
of a Typical Particle Within the Body: Examples

Example 1 [51, pp. 143–145]

The rigid body suspended within a supporting frame, in Fig. 2.2, rotates about a
vertical shaft A − O1 with angular velocity dψ/dt . The body can simultaneously
rotate with an angular velocity dφ/dt about a shaft, supported by bearings B1, B2,
which is offset from the vertical by a constant angle θ . In the top view of Fig. 2.2b,
ψ is read off relative to the inertial X1 axis. The angle φ between the horizontal line
a−b and the rotating axis X is measured in the planar section of the body normal to
line O −Z. The total angular velocity ω of the body is the vector sum of dφ/dt and
dψ/dt . The aim is to determine the components of ω and the linear velocity of an
arbitrary mass particle within the body at various locations of the rotating X, Y,Z

frame.

a. (a) body-fixed axes X, Y,Z as depicted in Fig. 2.2,
(b) origin O at the intersection of the vertical A − O1 line and the B1 − B2 axis
(c) φ̇ is a vector pointing in the Z axis direction
(d) ψ̇ is directed along the vertical line A − O or Z1 axis
(e) X, Y,Z components of ω: ωax, ωay, ωaz, are calculated from components of

ψ̇ and φ̇ along the X, Y,Z axes
This implies that

ωax = ψ̇ sin θ sin φ; ωay = ψ̇ sin θ cos φ; ωaz = φ̇ + ψ̇ cos θ (2.2)

ωax, ωay, ωaz are the angular velocities along “instantaneous” coordinates
X, Y,Z. With O located as in Fig. 2.2, vo, the velocity of point O with respect
to an inertial frame is zero, that is, vox = voy = voz = 0. Hence, the components



16 2 Lagrangian Dynamics: Preliminaries

Fig. 2.2 Illustration of the treatment of the angular velocity of a body and linear velocity of a
typical mass particle. (a) Side view. (b) Top view
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of the velocity of m′ relative to an inertial frame, expressed in terms of the
instantaneous directions of X, Y,Z (see expression 2.1) are:

vx = ωyz − ωzy = ψ̇z sin θ cos φ − (φ̇ + ψ̇ cos θ)y

vy = ωzx − ωxz = (φ̇ + ψ̇ cos θ)x − ψ̇z sin θ sin φ

vz = ωxy − ωyx = ψ̇y sin θ sin φ − ψ̇x sin θ cos φ

(2.3)

where x, y, z are the coordinates of m′ in the X, Y,Z axis system.
b. (a) The origin of the X, Y,Z coordinate frame is relocated to some arbitrary

position along the O − Z axis, point p1, where the distance from O to p1
is l.

(b) All axes remain parallel to their original positions and the total angular
velocity remains unchanged.

(c) Shifting of dψ/dt to a vertical line through p1 and taking components of
dψ/dt and dφ/dt result in the same expressions as in Eq. 2.2, since the
coordinate frame is parallel to its original position.

(d) However, vo = dψ/dt × l = dψ/dt l sin θ (l = distance O − p1) and it is
directed along O − b line in the planar section normal to line O − Z.

The components of the velocity of p1 (the new origin) with respect to an
inertial frame, and in terms of the instantaneous X, Y,Z axes are:

vox = ψ̇l sin θ cos φ; voy = −ψ̇l sin θ sin φ; voz = 0 (2.4)

Note that 2.4 results from 2.3 directly by letting z = l, x = y = 0. Therefore, the
components of the velocity of m′ relative to the inertial coordinate system and
expressed in the instantaneous coordinates X, Y,Z, with the origin at p1, are:

vx = ψ̇l sin θ cos φ + [ψ̇z sin θ cos φ − (φ̇ + ψ̇ cos θ)y]
vy = −ψ̇l sin θ sin φ + [(φ̇ + ψ̇ cos θ)x − ψ̇z sin θ sin φ]
vz = ψ̇y sin θ sin φ − ψ̇x sin θ cos φ

(2.5)

where x, y, z are measured along the instantaneous X, Y,Z coordinates. The
significance of vx, vy, vz is the following: a stationary observer located on the
base A measures the velocity v of mass particle m′ relative to inertial coordinates
X1, Y1, Z1. Then vx, vy, vz, as given by 2.5, are components of v expressed in
the body-fixed X, Y,Z axis system, at the instant that this axis system occupies
this particular position and the observer takes the measurement.

c. With the origin of the body-fixed X, Y,Z frame shifted to p2 (any arbitrary
point within the body) and with each axis parallel to its position in case a,
the vectors ψ̇ and φ̇ must be moved from the positions shown in Fig. 2.2 to
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parallel lines passing through p2. Hence it is obvious that ωcx, ωcy, ωcz, the
angular velocities with the origin at p2 are equal to ωax, ωay, ωaz, respectively,
the angular velocities as in case a. A helpful way of determining vox, voy, voz for
this situation is the following:

(a) let x2, y2, z2 be coordinates of p2 relative to X, Y,Z when the origin of the
X, Y,Z coordinate system is at O (as in case a).

(b) then, applying 2.3, vo is given by:

vox = ψ̇z2 sin θ cos φ − (φ̇ + ψ̇ cos θ)y2

voy = (φ̇ + ψ̇ cos θ)x2 − ψ̇z2 sin θ sin φ

voz = ψ̇y2 sin θ sin φ − ψ̇x2 sin θ cos φ

(2.6)

Hence vx, vy, vz, respectively, for case c are given by:

vx = ψ̇z2 sin θ cos φ − (φ̇ + ψ̇ cos θ)y2︸ ︷︷ ︸
vox

+[ψ̇z sin θ cos φ − (φ̇ + ψ̇ cos θ)y]

vy = (φ̇ + ψ̇ cos θ)x2 − ψ̇z2 sin θ sin φ
︸ ︷︷ ︸

voy

+[φ̇ + ψ̇ cos θ)x − ψ̇z sin θ sin φ]

vz = ψ̇y2 sin θ sin φ − ψ̇x2 sin θ cos φ
︸ ︷︷ ︸

voz

+[ψ̇y sin θ sin φ − ψ̇x sin θ cos φ]

(2.7)

where x, y, z in 2.7, the location of the mass particle m′, is measured relative
to the origin at p2, but expressed in X, Y,Z coordinates. The origin p2, with
coordinates x2, y2, z2, is also measured with respect to O and expressed in
X, Y,Z coordinates.

Example 2 [51, pp. 145–146]

The disk D, in Fig. 2.3, rotates freely about the shaft b − c with angular velocity
dφ/dt , where the angle φ is read off relative to the shaft b − c—see pointer p2.
Simultaneously, the shaft a − b rotates with angular velocity dψ/dt where ψ is the
angle between the fixed X1 −Z1 plane and the rotating plane which is normal to the
a−b shaft—see pointer p1. The complete angular velocity ω of D is the vector sum
of dφ/dt and dψ/dt . Relocating dψ/dt to O, the origin, and taking components
along the body-fixed X, Y,Z axes, it is apparent that, just as in the example on
page 15 (Eq. 2.2),

ωx = ψ̇ sin θ sin φ; ωy = ψ̇ sin θ cos φ; ωz = φ̇ + ψ̇ cos θ (2.8)
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Fig. 2.3 Another example of the treatment of the angular velocity of a body and linear velocity of
a typical mass particle

The components ω1x, ω1y, ω1z along the fixed X1, Y1, Z1 axes are:

ω1x = φ̇ sin θ cos ψ; ω1y = φ̇ sin θ sin ψ; ω1z = φ̇ cos θ + ψ̇ (2.9)

The magnitude of the two angular velocity vectors in Eqs. 2.8 and 2.9 are one and the
same. The magnitude of the total angular velocity of disk D is therefore given by:

ω =
√

ω2
x + ω2

y + ω2
z =

√
ω2

1x + ω2
1y + ω2

1z

=
√

φ̇2 sin2 θ cos2 ψ + φ̇2 sin2 θ sin2 ψ + φ̇2 cos2 θ + ψ̇2 + 2φ̇ψ̇ cos θ

=
√

φ̇2 sin2 θ + φ̇2 cos2 θ + ψ̇2 + 2φ̇ψ̇ cos θ =
√

φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

(2.10)

The direction of ω relative to the moving X, Y,Z axes is determined by the direction
cosines l, m, n which may be shown to be: l = ωx/ω m = ωy/ω n = ωz/ω,
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where ω =
√

ω2
x + ω2

y + ω2
z . Using the relations in Eqs. 2.8 and 2.10, the direction

cosines l, m, n become:

l = ωx

ω
= ψ̇ sin θ sin φ

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

m = ωy

ω
= ψ̇ sin θ cos φ

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

n = ωz

ω
= φ̇ + ψ̇ cos θ

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

(2.11)

Similarly, the direction cosines of ω with respect to the X1, Y1, Z1 coordinate frame
are obtained with the aid of Eqs. 2.9 and 2.10 as follows:

l1 = ω1x

ω
= φ̇ sin θ cos ψ

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

m1 = ω1y

ω
= φ̇ sin θ sin ψ

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

n1 = ω1z

ω
= φ̇ cos θ + ψ̇

√
φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

(2.12)

The linear velocity relative to the inertial frame, expressed in X, Y,Z components,
of a typical particle in D, is found exactly as in case b on page 17 and the procedure
will be illustrated below. The origin of the X, Y,Z axis system is at the center of disk
D which is rotating with angular velocity of ψ̇ sin θ (see Fig. 2.4). The velocities at
the origin O are obtained from Eq. 2.3 with x = 0, y = 0, z = s and are therefore:

vox = sψ̇ sin θ cos φ voy = −sψ̇ sin θ sin φ voz = 0 (2.13)

For a mass particle m′, located at x, y, z in the X, Y,Z coordinate system (on the
disk D), the velocities vx, vy, vz may be determined as in Eq. 2.1 as follows:

vx = vox + (ωyz − ωzy), vy = voy + (ωzx − ωxz), vz = voz + (ωxy − ωyx)

vox = sψ̇ sin θ cos φ voy = −sψ̇ sin θ sin φ voz = 0

ωx = ψ̇ sin θ sin φ, ωy = ψ̇ sin θ cos φ, ωz = φ̇ + ψ̇ cos θ

x = 0, y = 0, z = s ⇒
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Fig. 2.4 Definition of velocities vox, voy

vx = sψ̇ sin θ cos φ + zψ̇ sin θ cos φ − y(φ̇ + ψ̇ cos θ)

vy = −sψ̇ sin θ sin φ + x(φ̇ + ψ̇ cos θ) − zψ̇ sin θs ∈ φ

vz = yψ̇ sin θ sin φ − xψ̇ sin θ cos φ

(2.14)

2.3 Most General Form of Kinetic Energy

When interpreted as in Eq. 2.1 above (repeated here for convenience), the preceding
equations for vx, vy, vz express the velocity of any particle in a rigid body (see
Fig. 2.1), relative to inertial coordinates, but expressed in the components of the
rotating and translating coordinates X, Y,Z.

vx = vox + (ωyz − ωzy), vy = voy + (ωzx − ωxz), vz = voz + (ωxy − ωyx)

It thus turns out that a general expression for the kinetic energy T is obtained by
inserting these relations into T = 1/2

∑
m′(v2

x +v2
y +v2

z ), where m′ is an elemental
mass, , and the summation takes place over all of the elemental mass particles which
make up the rigid body.
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On collecting terms, we have:

T = 1

2
M (v2

ox + v2
oy + v2

oz)
︸ ︷︷ ︸

v2
o

+1

2
ω2

x

∑
m′(y2 + z2)

+ 1

2
ω2

y

∑
m′(x2 + z2)

+ 1

2
ω2

z

∑
m′(x2 + y2)

+ vox

(
ωy

∑
m′z − ωz

∑
m′y

)
+ voy

(
ωz

∑
m′x − ωx

∑
m′z

)

+ voz

(
ωx

∑
m′y − ωy

∑
m′x

)
− ωxωy

∑
m′xy − ωxωz

∑
m′xz

− ωyωz

∑
m′yz (2.15)

where M is the total mass of the body, m′ is an elemental mass particle and
the summations are carried out over all of the elemental masses. Replacing the
summations with integrals and the elemental mass m′ with an infinitesimal mass
dm, the kinetic energy T may be shown to be equivalent to:

T = 1

2
Mv2

o + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

+M
[
vox(ωyz − ωzy) + voy(ωzx − ωxz) + voz(ωxy − ωyx)

]

(2.16)

where x, y, z, the distance from the origin to the centers of gravity of the rigid
body are: x = ∫

xdm/M, y = ∫
ydm/M, z = ∫

zdm/M , the moments of inertia
Ix, Iy, Iz are, respectively: Ix = ∫

(y2 +z2)dm, Iy = ∫
(x2 +z2)dm, Iz = ∫

(x2 +
y2)dm and where the products of inertia Ixy, Ixz, Iyz are: Ixy = ∫

xydm, Ixz =∫
xzdm, Iyz = ∫

yzdm. It may be shown that:

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]
= ωT Iω

2.4 Summary: Important Points Regarding Kinetic Energy
(See Dare Wells [51, pp. 148–149])

a. It was previously noted that ω is the angular velocity of the body relative to
inertial coordinates and vo is the linear velocity of the origin O of the X, Y,Z

coordinate system with respect to an inertial coordinate system. The angular
velocity terms ωx, ωy, ωz, and the velocity components vox, voy, voz, of the
origin O are expressed along the instantaneous directions of X, Y,Z.
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b. The moment and product of inertia terms Ix, Ixy , etc., and the center of gravity
components x, y, z, must be calculated with respect to the instantaneous rotating
and translating X, Y,Z axes (see Fig. 2.1, page 14).

c. With the angular and linear velocity vectors ω, vo, respectively, and the moments
of inertia, resolved as stated above, the kinetic energy expression 2.16 is valid
for the X, Y,Z axis frame, whether it is body-fixed or performing any arbitrary
angular motion about O relative to the rigid body. This also includes the case
where X, Y,Z may be rigidly attached to the body or fixed in direction. The
underlying assumption is that in all cases, the origin O is attached to the body.

d. When the X, Y,Z frame rotates relative to the body, x, y, z in 2.16 vary as do
Ix, Ixy , etc., as well as x, y, z. These inertial variables vary with the motion.

e. The X, Y,Z frame may be body-fixed, which implies that the inertial terms
Ix, Ixy , etc., and x, y, z are constant. Hence body-fixed axes are desirable and
are almost always used. In any event, statements made under paragraph (a) must
be borne in mind.

f. Under certain conditions, for example, with O at the center of mass, Eq. 2.16 can
be significantly simplified. This condition implies that x = y = z = 0 and the
terms of T which include x, y, z become zero. The coordinate frame need not be
rigidly fastened to the body (except at O).

g. If any point in the body is fixed in relation to an inertial frame and O is located
at this point, vox = voy,= voz = 0 and all the terms with vox, voy, voz are zero.

h. If O is at the body’s center of mass and body-fixed X, Y,Z axes are defined to
be along the body’s principal axes of inertia, where Ixy = Ixz = Iyz = 0, then
the kinetic energy T becomes: T = 1

2Mv2
c.m. + 1

2 (Ixω
2
x + Iyω

2
y + Izω

2
z ) where

Ix, Iy , and Iz are constants.

2.5 Examples: Kinetic Energy and Equations of Motion

In the following group of examples body-fixed axes have been employed throughout.
This is in general the most convenient procedure.

Example 3 [51, p. 150]

Three examples of a physical pendulum, consisting of a thin plate of sheet metal
(lamina), pivoted at p and free to swing vertically through angle θ , are shown in
Fig. 2.5. Expressions for the kinetic energy T , with the origin at three different
points on the lamina, will be used to better understand Eq. 2.16.

1. Axes X, Y,Z are located as in Fig. 2.5a, with the origin at the pivot point p. The
Z axis is normal to the plane of the paper. From this setup, it is apparent that
ωx = ωy = 0, ωz = dθ/dt . Since the origin is stationary, vox = voy = voz = 0.
Hence Eq. 2.16 becomes: T = 1

2Izθ̇
2 as anticipated. Iz is taken around the Z axis

at the pivot point.
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Fig. 2.5 Physical pendulum consisting of a lamina pivoted at p with the origin of the X, Y

coordinates defined at three different locations

2. In Fig. 2.5b the origin is at the center of mass point, designated as c.m. Once
more, ωx = ωy = 0, ωz = θ̇ . Thus vox = lθ̇ , voy = voz = 0, x = y = z = 0.
The velocity vox is derived from the expression v = ω × R, where ω = dθ/dt

and R = l. Hence from Eq. 2.16, T = 1
2Ml2θ̇2 + 1

2Izθ̇
2. Iz is taken around the Z

axis at the c.m. point in this case. Notice that the term 1
2Ml2 has been added to

the moment of inertia Iz and this is just a restatement of the parallel axis theorem.
3. In Fig. 2.5c the axes are more generally oriented. As in the preceding two cases,

ωx = ωy = 0, ωz = θ̇ . However vox = rθ̇ cos α, voy = −rθ̇ sin α, voz = 0 and
x, y are the distances along the X and Y axes, respectively, from the new origin
O to the c.m. point. Thus, from Eq. 2.16, the kinetic energy T is:

T = 1

2
Mr2θ̇2 + 1

2
Izθ̇

2 − Mrθ̇2(x sin α + y cos α)

where Iz is now about the Z axis at the instant considered. Note that the Iz

appearing in situations 1, 2, and 3 are different in each case.

As an aside, the equations of motion for case (3), using the d’Alembert–Lagrange
formulation will now be calculated. A detailed derivation of the d’Alembert–
Lagrange equations will be carried out in the sequel. In each of the above cases
Fθ = −Mgl sin θ . The equation for potential energy is:

Fθ = −∂V

∂θ
= −Mgl sin θ ⇒ V =

∫

Mgl sin θdθ = −Mgl cos θ (2.17)

For case (3) The Lagrangian becomes:

L = T − V = 1

2
Mr2θ̇2 + 1

2
Izθ̇

2 − Mrθ̇2(x sin α + y cos α) + Mgl cos θ = 0

(2.18)
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Hence the equations of motion for case (3) are:

d

dt

(
∂L
∂θ̇

)

− ∂L
∂θ

= 0; −∂L
∂θ

= Mgl sin θ

∂L
∂θ̇

= Mr2θ̇ + Izθ̇ − 2Mrθ̇(x sin α + y cos α)

d

dt

(
∂L
∂θ̇

)

= Mr2θ̈ + Izθ̈ − 2Mrθ̈(x sin α + y cos α)

d

dt

(
∂L
∂θ̇

)

− ∂L
∂θ

= Mr2θ̈ + Izθ̈ − 2Mrθ̈(x sin α + y cos α) + Mgl sin θ = 0

⇒ θ̈
{
Mr2 + Iz − 2Mr(x sin α + y cos α)

}
= −Mgl sin θ

(2.19)

Example 4 [51, pp. 150–151]

The following example will illustrate the calculation of kinetic energy, as well as
the use of the d’Alembert–Lagrange formulation for the derivation of the equations
of motion.

The marble slab, of Fig. 2.6, is free to translate and rotate in the X1 − Y1 plane
under known, given forces F1, F2. The origin O is located at any arbitrary point
and axes X, Y,Z are attached to the lamina. The variables x, y, θ may be shown

Fig. 2.6 Lamina with two applied forces—Lagrange’s equations
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to be suitable independent generalized coordinates, thus resulting in a 3 degrees of
f reedom system. The angular velocities are: ωx = ωy = 0, ωz = θ̇ , while the linear
velocities of the origin are: vox = ẋ cos θ + ẏ sin θ, voy = ẏ cos θ − ẋ sin θ, voz = 0.
The velocities vox, voy are components of the velocity of O which are projected
onto the instantaneous positions of X and Y . Hence Eq. 2.16 results in:

T = 1

2
M(ẋ2 + ẏ2) + 1

2
Izθ̇

2 + Mθ̇[(ẏx − ẋy) cos θ − (ẋx + ẏy) sin θ)] (2.20)

The equations of motion corresponding to x, y, θ are easily calculated. For example,
the θ equation is derived as follows:

d

dt

(
∂T

∂θ̇

)

− ∂T

∂θ
= Fθ

∂T

∂θ̇
= Izθ̇ + M[(ẏx − ẋy) cos θ − (ẋx + ẏy) sin θ)]

−∂T

∂θ
= Mθ̇[(ẏx − ẋy) sin θ + (ẋx + ẏy) cos θ)]

⇒ d

dt

(
∂T

∂θ̇

)

= Izθ̈ + M[(ÿx − ẍy) cos θ − (ẍx + ÿy) sin θ)]

− M[θ̇ (ẏx − ẋy) sin θ + θ̇ (ẋx + ẏy) cos θ ]

⇒ d

dt

(
∂T

∂θ̇

)

− ∂T

∂θ
= Izθ̈ + M[(ÿx − ẍy) cos θ − (ẍx + ÿy) sin θ)]

− M[θ̇ (ẏx + ẋy) sin θ + θ̇ (ẋx + ẏy) cos θ ]
+ Mθ̇[(ẏx − ẋy) sin θ + (ẋx + ẏy) cos θ)]

= Izθ̈ + M[(ÿx − ẍy) cos θ − (ẍx + ÿy) sin θ)] = Fθ

(2.21)

The coordinates of the points of application of F1 and F2 on the lamina with respect
to the X, Y,Z coordinate system are x′

1, y
′
1 and x′

2, y
′
2, respectively. The generalized

force Fθ is actually a torque which may be written as:

Fθ = τθ = f1yx
′
1 − f1xy

′
1 + f2yx

′
2 − f2xy

′
2 (2.22)

where f1x, f1y are the X and Y components, respectively, of F1 and f2x, f2y are the
X and Y components, respectively, of F2. Accordingly, the generalized forces in the
X and Y directions are Fx = f1x + f2x, Fy = f1y + f2y .
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Example 5 [51, pp. 151–152]

The sheet metal lamina depicted in Fig. 2.7(1) is hung up by a string of constant
length r and is free to swing as a “double pendulum” in a vertical plane.

1. (a) The center of mass is offset from the origin by x, y with respect to the
X, Y,Z coordinate frame.

(b) With body-fixed axes X, Y,Z as shown in Fig. 2.7(1), φ and θ may be shown
to be a set of suitable generalized coordinates.

(c) As is apparent, the angular rates in the X, Y,Z coordinate system are: ωx =
ωy = 0

(d) ωz = φ̇, (ωz �= φ̇ + θ̇ ). Since φ is an independent generalized coordinate,
and φ̇ is measured relative to the vertical about the Z axis, then the angular
rate about the Z axis is simply ωz = φ̇. The angle φ is not measured relative
to the angle θ .

(e) The velocity at the origin O is: vo = rθ̇ . The components of vo along the X

and Y axes are vox and voy , respectively, and they are: vox = rθ̇ sin(φ − θ);
voy = rθ̇ cos(φ − θ).

Fig. 2.7 Double “pendulum”
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(f) The kinetic energy is calculated by means of Eq. 2.16, repeated below for
convenience:

T = 1

2
Mv2

o + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz

− 2ωyωzIyz

]

+ M
[
vox(ωyz − ωzy) + voy(ωzx − ωxz) + voz(ωxy − ωyx)

]

(2.23)

The kinetic energy then becomes:

T = 1

2
Mr2θ̇2 + 1

2
Izφ̇

2 + Mrφ̇θ̇ [x cos(φ − θ) − y sin(φ − θ)] (2.24)

Note that Iz, in this example, is calculated with respect to the origin O of the
X, Y,Z coordinate frame. Iz could also have been calculated with respect to
the center of mass of the lamina, and it would then not have been necessary to
include the x̄, ȳ terms in the resulting kinetic energy expression (see Nielsen
et al. [16, p. 4] and Example 8 on page 113).

(g) Expressions for Fθ and Fφ are obtained as follows (see Fig. 2.8):

V = −Mgh; h = r cos θ − y sin φ + x cos φ

⇒ V = −Mg(r cos θ − y sin φ + x cos φ)

Fθ = −∂V

∂θ
= −Mgr sin θ

Fφ = −∂V

∂φ
= −Mg(x sin φ + y cos φ)

(2.25)

2. Suppose that point O on the slab can slide along the smooth parabolic line y1 =
bx2

1 as shown in Fig. 2.7(2). Then, the velocities along the X and Y axes, vox and
voy , respectively, are (note that voz = 0):

v2
o = ẋ2

1 + ẏ2
1 ; vox = ẋ1 sin φ − ẏ1 cos φ

voy = ẏ1 sin φ + ẋ1 cos φ; voz = 0 (2.26)
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Fig. 2.8 Definition of potential V and generalized forces Fθ , Fφ

Since the velocity at point O is: v2
o = ẋ2

1 + ẏ2
1 , and the angular velocities are:

ωx = 0, ωy = 0, ωz = φ̇, Eq. 2.16, repeated below becomes:

T = 1

2
Mv2

o

+ 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

+ M
[
vox(ωyz − ωzy) + voy(ωzx − ωxz) + voz(ωxy − ωyx)

]

⇒ T = 1

2
M(ẋ2

1 + ẏ2
1) + 1

2
φ̇2Iz + Mφ̇

[
voyx − voxy

]

= 1

2
M(ẋ2

1 + ẏ2
1) + 1

2
φ̇2Iz

+ Mφ̇ [(ẏ1 sin φ + ẋ1 cos φ)x − (ẋ1 sin φ − ẏ1 cos φ)y] (2.27)

Example 6 [51, p. 152]

A slender rod whose linear mass distribution is ρ per unit length and whose total
length is L (see Fig. 2.9) rotates freely with an angle θ2 in the bearing at O about a
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Fig. 2.9 Rotating slender rod

horizontal axis. The bearing at O is attached to the horizontal arm A−B, which also
rotates with angular rate dθ1/dt about the Z1 axis, through an angle θ1. The kinetic
energy of the rod should be evaluated by integration and the results compared to the
following relation:

T = 1

2
Mv2

o + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

+ M
[
vox(ωyz − ωzy) + voy(ωzx − ωxz) + voz(ωxy − ωyx)

]

(2.28)

where x, y, z, the centers of gravity of the rigid body are: x = ∫
xdm/M, y =∫

ydm/M, z = ∫
zdm/M .

1. Within the context of this problem, the total mass of the slender rod is M =
∫ L

0 ρdl. Additionally, the moments of inertia of the slender rod about the
instantaneous Z and X axes, respectively, with the origin at O, are evaluated
to be: Iz = Ix = ∫ L

0 ρl2dl.

2. From the definition of y, we have: My = ∫ L

0 ydm = ∫ L

0 ρldl

3. The velocities in the X direction are: −Rθ̇1 and − θ̇1l sin θ2, and the velocity in
the Z direction is: lθ̇2. The inertial velocity of point O in X, Y,Z coordinates is:
vox = −Rθ̇1, voy = voz = 0.
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4. In addition Rθ̇2
1 sin θ2

∫ L

0 ρldl = Rθ̇2
1 sin θ2My. Furthermore, since the angular

velocity θ̇2 takes place around the X axis, the term 1
2 θ̇2

2

∫ L

0 ρl2dl becomes
1
2Ix θ̇

2
2 . Similarly the angular rotation around the Z axis is θ̇1 sin θ2 and hence

the term 1
2 θ̇2

1 sin2 θ2
∫ L

0 ρl2dl may be written as 1
2Izθ̇

2
1 sin2 θ2. And finally

1
2R2θ̇2

1

∫ L

0 ρdl = 1
2MR2θ̇2

1 .
5. The defining equation T = 1/2

∫
v2dm can therefore be written as:

T = 1

2

∫ L

0
[(R + l sin θ2)

2θ̇2
1 + l2θ̇2

2 ]ρdl

⇒ T = 1

2
R2θ̇2

1

∫ L

0
ρdl + 1

2
θ̇2

1 sin2 θ2

∫ L

0
ρl2dl

+ Rθ̇2
1 sin θ2

∫ L

0
ρldl + 1

2
θ̇2

2

∫ L

0
ρl2dl

⇒ T = 1

2
MR2θ̇2

1 + 1

2
Izθ̇

2
1 sin2 θ2 + MyRθ̇2

1 sin θ2 + 1

2
Ix θ̇

2
2

(2.29)

6. Using the formula in Eq. 2.28, where vox = −Rθ̇1; voy = 0; voz = 0;
vo = vox , ωx = −θ̇2; ωy = θ̇1 cos θ2; ωz = θ̇1 sin θ2, Ixy = Ixz = Iyz =
Iy = 0 and x = 0; y �= 0; z = 0, the equation becomes:

T = 1

2
Mv2

o + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

+ M
[
vox(ωyz − ωzy) + voy(ωzx − ωxz) + voz(ωxy − ωyx)

]

= 1

2
Mv2

o + 1

2

[
ω2

xIx + ω2
zIz

]
+ M

[
vox(ωyz − ωzy) + voz(ωxy − ωyx)

]

= 1

2
MR2θ̇2

1 + 1

2
[θ̇2

2 Ix + θ̇2
1 sin2 θ2Iz] + MRyθ̇2

1 sin θ2

(2.30)

2.6 Notation System Used in This Book

Lecture on Notation Systems: Video Times—00:00–06:01
Two notation systems were used in the 2-003SC course on Engineering Dynamics,
given at MIT (see Vandiver [48]), in order to specify position vectors, velocity
vectors, and vectors of any kind that might be associated with translating and
rotating reference frames (see Fig. 2.10).
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Fig. 2.10 Illustration of notation systems

Figure contains a rigid body, and a reference frame, the Axyz reference frame
with origin at A, which is attached to and moves with the rigid body. The whole
system is translating and rotating in an inertial frame O with coordinates X, Y,Z.
We need to be able to describe the position and the velocity of this rigid body,
and any point on this rigid body, say point B, which might actually be moving
with respect to the rigid body. The position vector from the origin O to the Axyz

reference frame in notation system I is designated as ORA. The O superscript that
precedes the R signifies that the vector is in the inertial coordinate system or is
measured with respect to the inertial coordinate system. Similarly point B is labeled
as ORB and signifies the vector from the origin of the inertial coordinate system to
the point B on the rigid body. The vector from point A on the rigid body to point B

is labeled as ARB and signifies the position of B with respect to point A on the rigid
body. This notation is the superscript version of the vector designation scheme.

Notation System II (which will be used henceforth) uses the subscript format,
where for instance, the position vector from the origin O to the Axyz reference
frame in System II would be: RA/O , which implies that “with respect to O,” is
just the “/O” symbol. Similarly, in this notation system, point B with respect to O

would be RB/O . Finally, the vector from point A to point B is RB/A. So the two
notation systems are exactly equivalent. When the context is clear, the subscript
format “with respect to O,” is just the “O” symbol, for example, the moment of
inertia with respect to O may be written as IO . This method is the preferred one and
will be used frequently, although not exclusively, throughout the text.

It would be desirable to be able to take the time derivative of the vector at point
B and use it to derive expressions for velocities in a rotating and translating frame.
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The position vector RB/O is simply a vector sum which may be written as: RB/O =
RA/O +RB/A. The time derivatives of RB/O in both notation systems are as follows:

vB/O = dRB/O

dt
= dRA/O

dt︸ ︷︷ ︸
vA/O

+ d

dt

(
RB/A

)
/O

= vA/O +
(

∂RB/A

∂t

)

/A

+ ω/O × RB/A

vB/O = dRB/O

dt
= dRA/O

dt︸ ︷︷ ︸
vA/O

+ d

dt

(
RB/A

)
O

= vA/O +
(

∂RB/A

∂t

)

A

+ ωO × RB/A

dORB

dt
=O vB =O vA +

Od

dt

(
ARB

)
=O vA +

A∂

∂t

(
ARB

)
+O ω ×A RB

(2.31)

where ω/O , ωO , and Oω all signify the rotation of the rigid body with respect to O.

The term
(

∂RB/A

∂t

)

/A
is used to determine if there are any changes in the vector

within the rotating Axyz frame. It is as though an observer was situated on the
rotating Axyz coordinate frame and was measuring any changes over time of the
RB/A vector. The difference between system I and system II notation lies in the fact
that the /O subscripts become superscripts. The term Oω ×A RB is the contribution
to the velocity, as seen in the inertial frame and caused by the rotation of the rigid
body.

2.7 Angular Momentum of a Mass Particle

Lecture 5: Video Times—35:35–55:03
The material in this section was adapted from the MIT Lecture Series on Dynamics
(see Vandiver 2.003SC Engineering Dynamics. - Video of Lecture 5: Angular
Momentum [45]).

Figure 2.11 depicts a particle with mass m within an inertial coordinate system
OXYZ. The particle is located at point B and has a total force acting upon it of
FB = ∑

fB . The vector from the origin O of the inertial coordinate system to
point B is rB/O . The particle is traveling with a velocity of vB at some instant of
time and therefore has a linear momentum with respect to the inertial coordinates of
PB/O = mvB/O .
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Fig. 2.11 Illustration of linear momentum PB/O

The definition of angular momentum for the particle is:

hB/O = rB/O × PB/O = rB/O × mvB/O (2.32)

Lowercase h is used for particles and uppercase H indicates a rigid body. The
derivative with respect to time of the angular momentum is the sum of the torques
applied to the particle, with respect to the coordinate system in which the angular
momentum is being calculated, that is:

dhB/O

dt
= ∑

τB/O , and the torque at B is with
respect to the origin O in the inertial frame OXYZ. In planar motion this equation
would be written as I θ̈ = ∑

τB/O . The angular momentum of the particle at B with
respect to any other arbitrary point, say, point A, is by definition:

rB/O = rA/O + rB/A; hB/O = rB/O × PB/O = rA/O × PB/O + rB/A × PB/O

= hA/O + hB/A

⇒ hB/A = rB/A × PB/O (2.33)

The momentum must always be computed with respect to the inertial frame. The
formula for the torque on the particle at B with respect to point A (which will be
proven in the sequel) is as follows:

τB/A = dhB/A

dt
+ vA/O × PB/O (2.34)
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Fig. 2.12 Two link robot

An interesting example would be a two link robot arm (see Fig. 2.12). The two links
can rotate. The origin is at O while the load is at point B and the motor is located
at point A. The motor rotates the link with the load and has to be able to supply the
right amount of torque in order to be able to move the load. The amount of torque
required is what needs to be calculated.

The sum of the external forces at B yields the time rate of change of the
momentum at B with respect to O, that is:

∑
fB = FB = dPB/O

dt
= m

dvB/O

dt
.

This is the momentum vector of our particle. The torque of B with regard to A is:

τB/A = rB/A × FB = rB/A × dPB/O

dt
(2.35)

where FB is the sum of all the forces acting on the particle at point B. A useful
vector identity is the following:

d

dt
(x × y) = x × dy

dt
+ dx

dt
× y ⇒ x × dy

dt
= d

dt
(x × y) − dx

dt
× y (2.36)

where both x and y are vectors. Applying this latter identity to rB/A × dPB/O

dt
by

letting rB/A = x; dPB/O

dt
= dy

dt
results in:

τB/A = rB/A × dPB/O

dt
= d

dt

(
rB/A × PB/O

)

︸ ︷︷ ︸
hB/A

−drB/A

dt
× PB/O (2.37)

However, rB/A = rB/O − rA/O and so the time derivative of rB/A becomes:

drB/A

dt
= drB/O

dt
− drA/O

dt
= vB/O − vA/O (2.38)
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Now
(
rB/A × PB/O

) = hB/A is the angular momentum of the particle at B with
respect to A, as previously defined, so that the expression for the torque τB/A can
be rewritten in the following way:

τB/A = dhB/A

dt
− (

vB/O − vA/O

) × PB/O (2.39)

Since PB/O = mvB/O , it turns out that:

(
vB/O − vA/O

) × PB/O = vB/O × mvB/O
︸ ︷︷ ︸

=0

−vA/O × mvB/O (2.40)

Hence the torque τB/A turns out to be:

τB/A = dhB/A

dt
+ vA/O × mvB/O = dhB/A

dt
+ vA/O × PB/O (2.41)

The term vA/O ×PB/O can sometimes be irksome and it would be of advantage not
to have to calculate it but revert to the usual formula which states that the torque
is the time rate of change (derivative) of the angular momentum, that is, τ = dh

dt
.

There are two obvious situations in which vA/O × PB/O = 0 and they are:

1. vA/O = 0 ⇒ τB/A = dhB/A

dt
. This is a significant result because the point A

can be arbitrarily located anywhere in the plane. As long as the point A isn’t in
motion (vA/O = 0), the torque may be calculated with respect to that arbitrary
stationary point (you can have a fixed set of axes at point A). This allows for
consideration of rotations around a fixed axis which is not necessarily located
at the center of mass. The same result as in Eq. 2.41, with vA/O = 0 holds for
rigid bodies. For example, it is possible for a rigid body to rotate at one end and
not necessarily around its center of mass. The formula applies as long as the
velocity of the axis about which it’s rotating, and about which the torque is being
computed, is not in motion (fixed and stationary).

2. If the velocity vector vA/O is parallel to the momentum vector PB/O , then vA/O×
PB/O = 0. If the point A is at the center of mass, then its momentum is defined
as PB/O = mvA/O ⇒ vA/O × PB/O = vA/O × mvA/O = 0, even for rigid
bodies. The point A is labeled as the point G (the center of mass).

3. This result is very useful in problems of dynamics. The formula for torque with
respect to the center of mass may be written as the time rate of change of h with
respect to G, that is: τ/G = dh/G

dt

Although the above center of mass proof is valid for particles, it can easily
be extended to rigid bodies by summing or integrating over all of the individual
particles in the rigid body.
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2.8 Rigid Body Angular Momentum

Lecture 5: Video Times—55:03–59:18
The material in this section was adapted from the MIT Lecture Series on Dynamics
(see Vandiver 2.003SC Engineering Dynamics. - Video of Lecture 5: Angular
Momentum [45]).

The torque for a rigid body with respect to a point A is:

τ/A = Ḣ/A + vA/O × PG/O (2.42)

Note that the point A can be in motion (even accelerating). The term vA/O × PG/O

can go to zero if vA/O = 0, i.e. the point A is stationary and rotation is taking
place around the fixed axis at A, or vA/O is parallel to PG/O—it’s always the case
that vA/O × PG/O = 0 when the point A is at the center of mass of the rigid
body. For these two cases, τ/A = Ḣ/A. The condition for fixed axis rotation around
an axis at point A is: vA/O = 0. When the problem calls for the calculation of a
torque required for a rotation around the center of mass, then the formula to use is:
τ/G = Ḣ/G, and for the torque of a body which is pinned and rotates about a fixed
axis at a point A, not situated at the center of mass, the formula that is required is:
τ/A = Ḣ/A.

Example 7: Carnival Ride Problem

Lecture 5: Video Times—59:18–1:17:05
The following example was taken from: Vandiver 2.003SC Engineering Dynamics.
- Video of Lecture 5: Angular Momentum[45].

The carnival ride is depicted schematically in Fig. 2.13. There is a fixed point
A and a fixed axis around which the arm rotates. The arm can also be extended or
retracted. The rider sits on the end of the extendable arm.

The path taken might be an inward spiral, similar to the act performed by a figure
skater, of decreasing the rotational moment of inertia by retracting both arms to the
sides while turning around in a circle. What forces would be felt by the rider on the
ride or what accelerations will the rider feel?

Given Conditions: θ̇ = constant , ṙ = constant The rider will feel a centripetal
and some Coriolis acceleration, because ṙ �= 0. Since the length of the arm, which
is rotating at constant speed, is changing, there will also be a change in linear
as well as angular momentum, because r × P is changing (as the length of the
arm extends or retracts). Any change in angular momentum requires a torque. The
formula developed prior to the example will aid in the calculation of the torques
needed and the forces on the rider as the length of the arm becomes longer or shorter.
The rider at B can be regarded as a ‘particle’. Then hB/O , the angular momentum
of the rider at B with respect to O, is going to be hB/O = rB/O × PB/O . Since this
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Fig. 2.13 Carnival ride problem

is a planar motion problem, confined to the X − Y plane, with rotation of the arm
θ̇ taking place around the Z axis, it is convenient to use polar coordinates, which
means that the angular momentum may be rewritten in the form of:

1. Angular Momentum:

hB/O = rB/O × PB/O = rêr × m
(
ṙ êr + rθ̇ êθ

)

︸ ︷︷ ︸
vB/O

= rêr × mrθ̇ êθ = r2mθ̇k̂

(2.43)
2. Torque:

τB/O = dhB/O

dt
= 2mrṙθ̇ k̂ + mr2θ̈ k̂ (2.44)

The term ṙ êr is the extension rate but there is also a component of velocity in the
êθ direction of rθ̇ êθ . In the equation for torque, the term vA/O × PB/O = 0, since
the point A is a fixed point around whose axis, the rotation takes place. In fact the
point A and the point O are the same points. The constant terms in the expression
for the torque are k̂, m, θ̇ and these terms need not be differentiated with respect to
time. Since it was assumed that θ̇ = constant , the torque then becomes:

τB/O = dhB/O

dt
= 2mrṙθ̇ k̂ (2.45)



2.9 Linear and Angular Momenta and Their Derivatives 39

The term 2mrṙθ̇ k̂ is the Coriolis acceleration and mr2θ̈ k̂ is referred to as the
“Eulerian” acceleration. It’s possible to write the torque as r × F , that is:

τB/O = rêr × (
2mṙθ̇ + rmθ̈

)

︸ ︷︷ ︸
“F ”

êθ (2.46)

The term rmθ̈ êθ is the force required if the arm (with the rider seated on the end) is
accelerating in the êθ direction. Assuming that θ̇ = constant , then the torque may
be written as:

τB/O = rêr × êθ

(
2mṙθ̇

)

︸ ︷︷ ︸
“F ”

= 2mrṙθ̇ k̂ = r × FCoriolis (2.47)

For this problem we are given the following data: m = 100 kg, r = 5 m, ṙ =
0.4 m/s, θ̇ = 3 rad/s. The rotation rate is slightly less than half a revolution per
second. Hence, the Coriolis force FCoriolis = (

2mṙθ̇
)

is 240 N. The torque τB/O =
2mrṙθ̇ = 240 × 5 = 1200 N-m. The acceleration aB/O is: aB/O = FCoriolis/m =
240
100 = 2.4 meters per second*second = 2.4/9.81 ≈ 0.25×g.

Assuming that the system is spinning but the arm is not moving in and out, that
is ṙ = 0, what force would you expect the rider to feel? The rider would feel a
centripetal acceleration in the direction of O (in the inwards direction). If the rider’s
seat could swing around so that the rider would be facing inwards, towards O, the
rider would feel that he is being pushed out of his seat. If his seat is facing outwards
(the usual situation), the rider would be pushed backwards into his seat. If the arm
is moving outwards at 0.4 m/s, there will be an additional 1/4×g’s of acceleration in
the êθ direction, i.e. in the direction of increasing θ , which is perpendicular to the
arm. The value of the centripetal acceleration would be: acentripetal = �2r = 32 ∗
5 = 45 = 4.5×g. The Coriolis would be insignificant compared to the centripetal
acceleration.

2.9 Linear and Angular Momenta and Their Derivatives

This section was adapted from the book on Dynamics by Beer et al. [4, pp. 721–
722]. The linear momentum vector L of a particle is defined to be:

L = mv (2.48)

where v is the particle’s velocity vector and m is its mass. Taking the time derivative
of L (assuming that the mass is constant) results in:

L̇ = mv̇ = ma (2.49)
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where a is the particle’s acceleration vector. However from Newton’s second law of
motion:

F = ma = m
dv

dt
= L̇ (2.50)

where F is the force applied to the particle. If more than one force is applied to the
particle simultaneously, then the forces must be summed as follows:

∑
F = ma = m

dv

dt
= L̇ (2.51)

The following assumptions have been made: A particle P of mass m is moving
with velocity v with respect to an inertial frame Oxyz, where O is the origin of
the inertial frame. The moment about O of the vector mv is termed the moment
of momentum or the angular momentum of the particle P about O, at the instant
under consideration and is designated by HO . From the definition of the moment of
a vector, and labeling by r , the position vector of P from the origin of the inertial
coordinates, HO is defined to be:

HO = r × mv (2.52)

The time derivative of HO is simply:

ḢO = ṙ × mv + r × mv̇ = v × mv︸ ︷︷ ︸
=0

+r × ma (2.53)

Vectors v and mv are collinear, hence the first term of ḢO is zero. Noticing that
r × ma = r × F represents the moment about O of the force F , the second term
is designated as MO . If more than one force acts simultaneously on the particle P ,
then we have:

r ×
∑

F =
∑

MO = ḢO (2.54)

2.10 Work and Calculation of Kinetic and Potential Energies

Work of a Weight W

The contents of this section have been taken from Beer et al. [4, pp. 756–763]
The work performed by the force F which results in a displacement vector dr is
defined as the quantity:

dU = F · dr (2.55)
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where both F ad dr are vector quantities. In Cartesian coordinates the above
equation may be written in the form:

dU = Fxdx + Fydy + Fzdz (2.56)

Work is a scalar quantity, meaning that it has a sign and a magnitude but no
direction.

• Work is positive if the angle between the force vector F and the displacement
vector dr is acute (less than 90◦)

• Work is negative if the angle between the force vector F and the displacement
vector dr is obtuse (between 90◦ and 270◦)

• Zero if the force vector and the displacement vector are perpendicular

The above implies that the total work over a finite path from point A1 to point A2 is:

U1→2 =
∫ A2

A1

(Fxdx + Fydy + Fzdz) (2.57)

If the y axis points upward, for a weight W we have: Fx = 0, Fz = 0, Fy = −W .
This implies that:

dU = −Wdy

U1→2 = −
∫ y2

y1

Wdy

or U1→2 = −W(y2 − y1) = −W�y (2.58)

where �y is the vertical shift as the particle moves from A1 to A2. The work of the
weight W equals the product of W and the vertical displacement of the center of
gravity of the body. From the foregoing, it is apparent that the work W is positive if
�y is negative, that is, when the body moves down.

Work of the Force Exerted by a Spring
Consider a body attached to a fixed point (such as a wall) by a spring. When the
spring is undeformed, the body is at A0. From experimental evidence we know that
the force F exerted by the spring on body is linearly proportional to the deflection
x of the spring from its un-stretched position A0, that is:

F = kx (2.59)

where k is the spring constant in units of Newtons per meter. Note that the direction
of the force exerted by the spring on the body is in the opposite direction to the
deflection of the spring. The work of the force F by the spring during a finite
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displacement of the body from A1(x = x1) to A2(x = x2) is determined to be:

dU = −Fdx = −kxdx; U1→2 = −
∫ x2

x1

kxdx = 1

2
kx2

1 − 1

2
kx2

2 (2.60)

Kinetic Energy of a Particle
Figure 2.14 illustrates the motion of a particle with mass m subject to a force F and
traveling along the curved path from point A1 to point A2 along a curved trajectory.
Writing Newton’s second law in terms of the tangential component of the force F ,
that is Ft , the result is:

Ft = mat = m
dv

dt
(2.61)

where v is the velocity tangential to the particle’s trajectory. The tangential velocity
may be written in the form:

v = ds

dt
(2.62)

where s is the distance the particle travels along the curved path. The acceleration
at may then be shown to be:

Ft = m
dv

dt
= m

dv

ds

ds

dt
= mv

dv

ds
(2.63)

Integrating Ft from A1 where s = s1 and v = v1 to A2 where s = s2 and v = v2:

∫ s2

s1

Ftds = m

∫ s2

s1

v
dv

ds
ds = m

∫ v2

v1

vdv = 1

2
mv2

2 − 1

2
mv2

1 (2.64)

Note that
∫ s2
s1

Ftds = U1→2, where U1→2 is the work done by the force on the

particle as it is displaced from A1 to A2. The entity 1
2mv2 is a scalar quantity and

Fig. 2.14 Motion of a
particle with mass m subject
to a force F and traveling
along the curved path from
point A1 to point A2
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it is defined to be the kinetic energy of the particle with the symbol T . This implies
that:

U1→2 = 1

2
mv2

2 − 1

2
mv2

1 = T2 − T1 (2.65)

The above equation expresses the fact that when a particle moves from A1 to A2
while subject to the action of a force F , the work performed by the force F equals
the change in kinetic energy of the particle and is known as the principle of work
and energy. Rearranging the terms in Eq. 2.65 of U1→2 = T2−T1, we have: U1→2+
T1 = T2. Hence, the kinetic energy of the particle at A2 can be calculated by the
addition to its kinetic energy at A1, the work performed on the particle by the force
F during its displacement from A1 to A2. In a comparable fashion to Newton’s
second law, from which it was derived, the principle of work and energy applies
only with respect to a Newtonian or inertial frame of reference. The points listed
below should be borne in mind concerning the kinetic energy of a particle:

• Both work and kinetic energy are scalar quantities.
• Their sum can be computed as an ordinary algebraic sum, the work U1→2 being

considered as positive or negative in accordance with the direction of F .
• When several forces act on the particle, the expression U1→2 represents the total

work of the forces acting on the particle.
• U1→2 is obtained by adding together the work of the various forces algebraically.

This is possible since the kinetic energy of a particle is a scalar quantity.
• The speed v used to determine the kinetic energy T should be measured with

respect to a Newtonian or inertial frame of reference. The kinetic energy is always
positive regardless of the direction of motion of the particle.

Conservation of Energy (Beer et al. [4, pp. 785–786])
We know from Eq. 3.33 that the work of a conservative force such as the weight of
a particle or the force exerted by a spring may be expressed in the form:

U1→2 = V1 − V2 (2.66)

Similarly the kinetic energy is:

U1→2 = 1

2
mv2

2 − 1

2
mv2

1 = T2 − T1 (2.67)

Equating the two forms of energy for a conservative force, we have:

U1→2(potential energy) = U1→2(kinetic energy)

or V1 − V2 = T2 − T1 ⇒ V1 + T1 = V2 + T2 (2.68)

The above equation (Eq. 2.68) states that when a particle moves under the action
of conservative forces, the sum of the kinetic and potential energies of the particle



44 2 Lagrangian Dynamics: Preliminaries

Fig. 2.15 Motion of a
pendulum bob

remains constant. The sum T +V is the total energy of the particle and is symbolized
by E. For example, the pendulum bob with weight W is released with zero velocity
at A1 and is allowed to swing vertically (see Fig. 2.15). The potential, kinetic, and
total energy at A1 with A2 as the reference datum is:

V1 = Wl; T1 = 0; T1 + V1 = Wl (2.69)

The kinetic energy at A1 where the velocity of the pendulum bob is zero is: T1 = 0.
Similarly at A2 the kinetic energy is 1

2 (W/g)v2
2. The speed of the pendulum at A2

is determined from the principle of work and energy as follows:

T1 = 0; V1 = Wl; T2 = 1

2

W

g
v2

2; V2 = 0

T1 + V1 = T2 + V2 ⇒ 0 + Wl = 1

2

W

g
v2

2 + 0

⇒ v2 = √
2gl (2.70)

Hence at A2, with speed of the bob equal to v2 = √
2gl, the kinetic energy is:

T2 = 1

2
mv2

2 = 1

2

W

g
2gl = Wl;V2 = 0

T2 + V2 = Wl (2.71)

The total mechanical energy E = T + V at A1 and at A2 remains the same. At A1
the energy is entirely potential energy while at A2 it is entirely kinetic energy.
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2.11 Systems of Particles

This section was derived from Beer et al. [4, pp. 856–862]. A system is composed
of n particles; each particle Pi has mass mi and acceleration ai with respect to
an inertial or Newtonian frame of reference. The force on particle Pi , brought to
bear by particle Pj , is labeled as fij and is termed an internal force. The sum of
all the internal forces exerted on Pi by all of the system’s particles is:

∑n
j=1 fij .

Note that fii has no meaning and is assumed to equal zero. The resultant of all the
external forces acting on Pi is labeled as Fi , and thus Newton’s second law may be
written as:

Fi +
n∑

j=1

fij = miai (2.72)

The position vector of particle Pi with respect to the origin O is of an inertial frame
is ri . Taking moments about O, we have:

ri × Fi +
n∑

j=1

(ri × fij ) = ri × mai (2.73)

Note that the force exerted on particle Pi by particle Pj , that is fij is equal in
magnitude but opposite in sign to the force exerted by particle Pj on particle Pi ,
that is fij = −fji . This is true because of Newton’s third law (for every action,
there is an equal and opposite reaction). In fact these two forces come in pairs and
have the same line of action but act in opposite directions thus canceling each other
out. The sum of the moments about O of forces fij and fji are:

ri × fij + rj × fji = ri × (fij + fji)
︸ ︷︷ ︸

=0

+ (rj − ri) × fji
︸ ︷︷ ︸

=0

= 0 (2.74)

Notice from Fig. 2.16 that the vectors rj − ri and fji are collinear and hence (rj −
ri) × fji = 0. Adding together all of the system’s internal forces and summing the
moments due to the internal forces about O, the result is:

n∑

i=1

n∑

j=1

fij = 0;
n∑

i=1

n∑

j=1

ri × fij = 0 (2.75)

In other words, the sum of all of the internal forces and the sum of the moments
about O due to the internal forces are all zero. Summing up all of the external
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Fig. 2.16 Internal forces cancel each other out

forces and the moments about O due to the external forces leads to:

n∑

i=1

Fi =
n∑

i=1

miai (2.76)

n∑

i=1

(ri × Fi) =
n∑

i=1

(ri × miai) (2.77)

The above equation states the fact that the system of the external forces Fi and
the system of effective forces miai have the same resultant and the same moment
resultant.

Linear and Angular Momentum of a System Composed of Particles
The linear momentum of the system is defined to be the sum of the linear momenta
of all the particles of the system, that is:

L =
n∑

i=1

mivi (2.78)

The angular momentum Ho about the origin O of the system of particles may be
defined as:

Ho =
n∑

i=1

(ri × mivi) (2.79)
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Differentiating both the linear and angular momenta of Eqs. 2.78 and 2.79, respec-
tively, with respect to time t results in:

L̇ =
n∑

i=1

miv̇i =
n∑

i=1

miai (2.80)

Ḣo =
n∑

i=1

(ṙi × mivi) +
n∑

i=1

(ri × miv̇i)

=
n∑

i=1

(vi × mivi)︸ ︷︷ ︸
=0

+
n∑

i=1

(ri × miv̇i)

⇒ Ḣo =
n∑

i=1

(ri × miv̇i) =
n∑

i=1

(ri × miai) (2.81)

The right-hand members of Eqs. 2.76 and 2.80 are the same. The same is true of
Eqs. 2.77 and 2.81 and so it must be true that:

n∑

i=1

Fi = L̇;
n∑

i=1

Moi = Ḣo (2.82)

These equations state the fact that the resultant of all of the external forces and the
moment of the resultant of all of the external forces about the fixed point O are
equal, respectively, to the time derivatives of the linear and angular momenta about
O of the system of particles.

Motion of the Center of Mass of a System of Particles
Denoting by r the position vector of the mass center G of the system of particles
with respect to the origin O of an inertial frame, the relation between the mass center
and the masses and locations of the particles may be written as:

mr =
n∑

i=1

miri; m =
n∑

i=1

mi (2.83)

Converting the position vectors r and ri , respectively, into rectangular components,
Eq. 2.83 becomes:

mx =
n∑

i=1

mixi; my =
n∑

i=1

miyi; mz =
n∑

i=1

mizi (2.84)
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Taking the time derivatives of both sides of Eq. 2.83:

mṙ =
n∑

i=1

miṙi ⇒ mv =
n∑

i=1

mivi (2.85)

where the velocity of the mass center G, with respect to the inertial coordinate frame
centered at O, is written as v. Recognizing that the right-hand side of Eq. 2.85 is the
same as the linear momentum L (Eq. 2.78), we therefore have:

L = mv (2.86)

If we differentiate both sides of the above equation with respect to t , we find that:

L̇ = mv̇ = ma (2.87)

where the acceleration of the mass center G with respect to the inertial coordinate
frame centered at O is denoted by a. Substituting for L̇ = ∑n

i=1 Fi from Eq. 2.82
into Eq. 2.87 results in:

n∑

i=1

Fi = ma (2.88)

Equation 2.88 is identical with the result which would be attained for a particle of
mass m, which equals the total mass of the particles of the system, acted upon by
the sum of all of the external forces. In other words, the center of mass G of an
aggregate system of particles translates as if the entire mass of the system and all
of the external forces acting upon the disparate particles were concentrated at that
point.

Angular Momentum of an Aggregate of Particles About Its Mass Center
There are applications where it is advantageous to consider the movement of the
particles of the system with respect to a centroidal (mass center) frame Gx′y′z′,
which translates with respect to the Newtonian frame Oxyz. It will be demonstrated
that

∑n
i=1 Moi = Ḣo still holds when the frame Oxyz is replaced by Gx′y′z′.

Denoting by r ′
i and v′

i , the position and velocity vector, respectively, of the point Pi

relative to the moving axes Gx′y′z′, the angular momentum H ′
G of the system of

particles about the mass center G is as follows:

H ′
G =

n∑

i=1

r ′
i × miv

′
i (2.89)
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Differentiating both sides of Eq. 2.89 with respect to t we get (see Eq. 2.81):

Ḣ ′
G =

n∑

i=1

r ′
i × mia

′
i (2.90)

where a′
i stands for the acceleration of Pi with respect to Gx′y′z′. The acceleration

of particle Pi with respect to the inertial coordinate frame is:

ai = a + a′
i ⇒ a′

i = ai − a (2.91)

where ai and a, respectively, symbolize the accelerations of particle Pi and the
center of mass G with respect to the inertial frame Oxyz. Inserting the expression
for a′

i above into Eq. 2.90 results in:

Ḣ ′
G =

n∑

i=1

(r ′
i × miai) −

(
n∑

i=1

mir
′
i

)

︸ ︷︷ ︸
=0

×a (2.92)

The term
∑n

i=1 mir
′
i = mr ′ = 0, since the position vector r ′ of G relative to the

frame Gx′y′z′ is zero. Equation 2.92 becomes:

Ḣ ′
G =

n∑

i=1

(r ′
i × miai) =

n∑

i=1

(r ′
i × Fi) (2.93)

The sum in Eq. 2.93 therefore reduces to the moment about G of the external forces
acting on the particles of the system which can be written as:

n∑

i=1

MGi
= Ḣ ′

G (2.94)

The above equation expresses the fact that the moment about the point G of all of
the external forces is equal to the time derivative of the angular momentum about
G of the aggregate system of particles. In Eq. 2.89 the angular momentum H ′

G was
defined as the sum of the moments about G of all of the particles miv

′
i in their

movements with respect to the centroidal frame of reference Gx′y′z′. Sometimes it
may be desirable to compute the sum HG of the moments about G of the particles
mivi with regard to the inertial frame of reference Oxyz, that is:

HG =
n∑

i=1

(r ′
i × mivi) (2.95)
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Since vi = v + v′
i , Eq. 2.95 becomes:

HG =
(

n∑

i=1

mir
′
i

)

× v +
n∑

i=1

mir
′
i × v′

i (2.96)

As observed earlier, the first term in Eq. 2.96 is equal to zero since
(∑n

i=1 mir
′
i

) =
mr ′ = 0. The location of r ′ is at the center of mass of the particles or at the
origin of the Gx′y′z′ coordinate frame. Hence, the angular momenta H ′

G and HG

are identical. This implies that their respective time derivatives are equal as well, or:

ḢG = Ḣ ′
G (2.97)

Summarizing, the angular momentum HG can be computed by forming the
moments about G of the particles in their motion with respect to either the
Newtonian frame Oxyz or the centroidal frame Gx′y′z′:

HG =
n∑

i=1

(r ′
i × mivi) =

n∑

i=1

(r ′
i × miv

′
i ) (2.98)

Kinetic Energy of an Aggregate (System) of Particles (Beer et al. [4, pp. 872–
873])
The kinetic energy T of a system made up of many individual particles is defined to
be the sum of the kinetic energies of the individual particles of the system and may
be written as:

T = 1

2

n∑

i=1

(miv
2
i ) (2.99)

It is often convenient, when computing the kinetic energy of a system comprised of
a large number of particles (as is the case for a rigid body) to consider the motion of
the mass center G of the system and the motion of the system relative to a moving
frame attached to G, separately. The velocity vi of particle Pi relative to the inertial
coordinate frame Oxyz may be expressed in the form of: vi = v + v′

i , where v is
the velocity of the mass center G relative to the inertial frame and v′

i is the velocity
of particle Pi relative to the frame Gx′y′z′. Since v2

i = vi · vi , the kinetic energy of
Eq. 2.99 becomes:

T = 1

2

n∑

i=1

(mivi · vi) = 1

2

n∑

i=1

mi(v + v′
i ) · (v + v′

i )

= v2

2

(
n∑

i=1

(mi)

)

+ v ·
n∑

i=1

miv
′
i + 1

2

n∑

i=1

miv
′2
i

(2.100)
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In the above equation (Eq. 2.100) the first sum represents the total mass m of the
system. The second sum is equal to mv′ = 0 since v′ represents the velocity of the
center of mass G relative to the centroidal frame Gx′y′z′ (which is clearly zero).
Hence Eq. 2.100 may be written as:

T = 1

2
mv2 + 1

2

n∑

i=1

miv
′2
i (2.101)

The above equation demonstrates that the kinetic energy T of a system of particles
can be obtained by adding the kinetic energy of the mass center G and the kinetic
energy of the system of particles as it moves relative to the frame Gx′y′z′.

2.12 Principle of Work and Energy for a Rigid Body

The concept of work and energy for a rigid body is based upon chapters 10 and 17
in the book by Beer et al. [4, pp. 560–562, 1082–1085].
Assume that the rigid body is composed of a very large number n of mass particles
each with weight �mi . The mathematical expression of the principle of work and
energy is: T1 + U1→2 = T2, where T1 and T2 are the initial and final values of the
kinetic energy of the particles forming the rigid body and U1→2 is the work of all
the forces acting on the assorted particles of the body. The total kinetic energy is
then:

T = 1

2

n∑

i=1

�miv
2
i (2.102)

The expression U1→2 symbolizes the work of all the forces, either internal or
external, acting on the complete set of particles which compose the rigid body.
However, the total work of the internal forces which hold together the disparate
particles of a rigid body is zero. Consider any two particles A and B of a rigid
body and the two equal and opposing forces F and −F which they bring to bear on
each other (see Fig. 2.17). In general, small shifts dr and dr ′ of the two particles are
different, however, the components of these displacements along the line connecting
the two particles, the line AB, must be equal, otherwise, the distance between the
particles would change and the body could not be considered to be rigid. Therefore,
the work done by the force F is equal in magnitude to the work of −F , and their
sum is zero. Hence it may be safely assumed that the total work of the internal forces
acting on the particles of a rigid body is zero, and the expression for the work U1→2,
in the equation of the principle of work and energy, T1 + U1→2 = T2 includes only
the work of the external forces acting on the body during the displacement under
consideration.
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Fig. 2.17 Small displacements dr and dr ′ of the two particles differ but the components of these
displacements along A − B are equal—no net internal forces

Work Performed by Forces Acting on a Rigid Body
Previously it was noted that the work of a force F during a shift of its point of
application from B1 to B2 is:

U1→2 =
∫ B2

B1

F · dr (2.103)

or

U1→2 =
∫ s2

s1

(|F | cos α)ds (2.104)

where |F | is the magnitude of the force, α is the angle between the direction of
motion of the rigid body and the direction of the applied force at the point of
application B, and s is the variable of integration which measures the distance
traveled by B along its path.

When calculating the work of the external forces acting on a rigid body, it is
advantageous to determine the work of a couple without considering the work of
each of the two forces forming the couple separately. The two forces F and −F

form a couple of moment M and act on the rigid body (see Fig. 2.18). Any small
movement of the rigid body which transports A and B into A′ and B ′′, respectively,
can be separated into two parts: in the first part, points A and B undergo matching
shifts dr1; in the second, A′ remains in place while B ′ moves into point B ′′ through
a distance of dr2 whose magnitude is: |dr2| = ds2 = rdθ r = |B ′ − A′|. During
the first phase of the motion of the rigid body, the work of F is commensurate in
magnitude and opposite in sign to the work of −F and their sum is therefore zero.
In the second phase, only force F performs useful work which is: dU = Fds2 =
Frdθ . Note that the product Fr is equal to the magnitude M , the moment of the
applied couple. Hence, the work of a moment M acting on a rigid body is simply:

dU = Mdθ (2.105)
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Fig. 2.18 Work done
by couple
M = dU = Fds2 = Frdθ

where dθ is the small angle through which the rigid body pivots (around point
A′). The work performed by the couple during a finite rotation of the rigid body
is calculated by integrating both sides of Eq. 2.105 from the initial value θ1 of the
angle θ to its final amount θ2. We write this expression as follows:

U1→2 =
∫ θ2

θ1

Mdθ (2.106)

If the moment M of the couple is constant, the above formula 2.106 becomes:

U1→2 = M(θ2 − θ1) (2.107)

There exist a number of forces which arise in problems of kinetics which do no
work. These include forces applied to fixed points where there is no subsequent
motion involved or which act in a direction orthogonal to the displacement of their
application point. Among the forces which do not perform any work, the following
have been included:

1. the reaction force at a frictionless pin when the body being supported rotates
about the pin

2. the reaction force of a frictionless surface when the body in contact moves along
the surface

3. the weight of a body when its center of gravity moves horizontally.
4. when a rigid body rolls without slipping on a fixed surface, the friction force F at

the point of contact C doesn’t perform any work since the velocity vC at the point
of contact C is zero. The work of the friction force F , during a small movement
of the rigid body is therefore: dU = FdsC = F(vCdt) = 0.

Kinetic Energy of a Rigid Body in Planar Motion
Assume that a rigid body of mass m is undergoing planar motion (see Fig. 2.19). If
the absolute velocity vi of each mass particle Pi of the body is written as the sum of
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Fig. 2.19 Rigid body in
plane motion—kinetic energy

the velocity v of the center of mass G and of the velocity v′
i of the particle relative to

a non-rotating frame Gx′y′ which is rigidly attached to G, then from Eq. 2.101, the
kinetic energy of the system of particles forming the rigid body may be written as:

T = 1

2
mv2 + 1

2

n∑

i=1

(�mi)v
′2
i (2.108)

where �mi is the mass of any particle of which the rigid body is made up of.
However, the magnitude v′

i equals the product r ′
iω, where r ′

i is the distance of Pi

from the axis of rotation (which passes through G and is perpendicular to the plane
of motion), and of the magnitude ω of the angular velocity of the body at the instant
under consideration. Substituting the expression v′

i = r ′
iω into Eq. 2.108 results in:

T = 1

2
mv2 + 1

2

(
n∑

i=1

r ′2
i �mi

)

ω2 (2.109)

Since the sum in Eq. 2.109 equals the moment of inertia I of the rigid body about
the axis of rotation (which passes through G and is perpendicular to the plane),
Eq. 2.109 becomes:

T = 1

2
mv2 + 1

2
Iω2 (2.110)

When a rigid body is in translation only, that is ω = 0, then the above expression is
reduced to 1

2mv2, while in the case of a rotation only about the body’s c.g., without
translation, that is when v = 0, Eq. 2.110 becomes: 1

2Iω2. In conclusion, it becomes
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apparent that the kinetic energy of a rigid body in planar motion can be divided into
two parts:

1. the kinetic energy 1
2mv2 associated with the linear translatory motion of the

center of mass point G of the body
2. the kinetic energy 1

2Iω2 which is due to the rotation of the body about G.

Kinetic Energy of a Rigid Body in Planar Motion: Non-centroidal Rotation
Equation 2.110 is valid for any type of planar motion. Hence it can be used to
calculate the kinetic energy of a rigid body which is rotating about a fixed axis
through O (see Fig. 2.20) with an angular velocity ω. The kinetic energy of the body
can be written in a more direct fashion by noting that the speed vi of the particle
Pi equals the product riω, where ri is the distance from the fixed axis to the point
Pi and ω is the magnitude of the instantaneous angular velocity of the rigid body.
Substituting this expression into Eq. 2.102 results in:

T = 1

2

n∑

i=1

(�mi)(riω)2 = 1

2

(
n∑

i=1

r2
i �mi

)

ω2 (2.111)

Since the terms within the brackets on the right-hand side of Eq. 2.111 is defined to
be the moment of inertia of the rigid body about the fixed axis through O, that is
IO = ∑n

i=1 r2
i �mi , then Eq. 2.111 becomes:

T = 1

2
IOω2 (2.112)

It should be noted that the above results are not limited to the motion of plane slabs
or to the motion of bodies which are symmetrical with respect to the reference plane,
but can be applied to the investigation of planar motion of any rigid body, regardless
of its shape.

Fig. 2.20 Rigid body in
plane motion—noncentroidal
rotation
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2.13 Angular Momentum of a Rigid Body in Three
Dimensions

We now turn to the dynamics of rigid bodies in three dimensions (see Beer et al.
[4, pp. 1147–1148]).

HG, the angular momentum of a body about its mass center G can be calculated
from the angular rate ω of the body when three-dimensional motion is considered.
The angular momentum of the body about G may be determined in accordance with
Eq. 2.98, as follows:

HG =
n∑

i=1

(r ′
i × �mivi) =

n∑

i=1

(r ′
i × �miv

′
i ) (2.113)

where r ′
i and v′

i denote the position and velocity vectors, respectively, of the particle
Pi , of mass �mi , relative to the body fixed non-rotating (“centroidal frame”) frame
Gxyz, whose origin is located at the body’s c.g. point (see Fig. 2.21). However,
v′
i = ω × r ′

i , where ω is the instantaneous angular velocity of the body. Substitution
of this latter result into Eq. 2.113 results in:

HG =
n∑

i=1

(r ′
i × �miv

′
i ) =

n∑

i=1

[r ′
i × (ω × r ′

i )�mi] (2.114)

Assuming that the angular velocity vector of the body at the instant considered, ω,
may be decomposed into three orthogonal components, ω = [ωx, ωy, ωz], which
are the terms along the x, y, and z coordinates, respectively, of the Gxyz coordinate
system and further assuming that the position vector r ′

i may be also accordingly
decomposed, that is r ′

i = [xi, yi, zi], we have:

Fig. 2.21 Rigid body angular
momentum in three
dimensions
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ω × r ′
i =

∣
∣
∣
∣
∣
∣

î ĵ k̂

ωx ωy ωz

xi yi zi

∣
∣
∣
∣
∣
∣
= î(ωyzi − yiωz) + ĵ (ωzxi − ziωx) + k̂(ωxyi − xiωy)

(2.115)

Proceeding to calculate the vector product r ′
i × (ω × r ′

i ), based upon the result of
ω × r ′

i from Eq. 2.115, we have

r ′
i × (ω × r ′

i ) =
∣
∣
∣
∣
∣
∣

î ĵ k̂

xi yi zi

(ωyzi − yiωz) (ωzxi − ziωx) (ωxyi − xiωy)

∣
∣
∣
∣
∣
∣

= î[yi(ωxyi − xiωy) − zi(ωzxi − ziωx)]
+ĵ [zi(ωyzi − yiωz) − xi(ωxyi − xiωy)]
+k̂[xi(ωzxi − ziωx) − yi(ωyzi − yiωz)]

= î[ωx(y
2
i + z2

i ) − ωyxiyi − ωzxizi]
+ĵ [ωy(x

2
i + z2

i ) − ωxxiyi − ωzyizi]
+k̂[ωz(x

2
i + y2

i ) − ωxxizi − ωyyizi] (2.116)

Adding �mi to Eq. 2.116 and summing, the result is:

HG = î

n∑

i=1

[ωx(y
2
i + z2

i ) − ωyxiyi − ωzxizi]�mi

+ ĵ

n∑

i=1

[ωy(x
2
i + z2

i ) − ωxxiyi − ωzyizi]�mi

+ k̂

n∑

i=1

[ωz(x
2
i + y2

i ) − ωxxizi − ωyyizi]�mi (2.117)
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Letting the masses �mi become infinitesimally small, replacing the summation sign
with integrals and letting the components of HG be HG = [Hx,Hy,Hz] leads to:

Hx = ωx

∫

(y2 + z2)dm − ωy

∫

xy dm − ωz

∫

zx dm

Hy = ωy

∫

(x2 + z2)dm − ωx

∫

yx dm − ωz

∫

yz dm

Hz = ωz

∫

(x2 + y2)dm − ωx

∫

zx dm − ωy

∫

yz dm

(2.118)

It should be noted that the integrals containing squared terms signify the “cen-
troidal” mass moments of inertia of the rigid body about the x, y, and z axes,
respectively, and the integrals containing products of the mutually orthogonal
coordinates represent the “centroidal” mass products of inertia of the rigid body.
Defining the entities within the integrals as follows, we have:

1. Ix = ∫
(y2 + z2)dm; Iy = ∫

(x2 + z2)dm; Iz = ∫
(x2 + y2)dm

2. Ixy = ∫
xy dm; Iyz = ∫

yz dm; Izx = ∫
zx dm

3. Ixy = Iyx; Izy = Iyz; Ixz = Izx

Rewriting Eq. 2.118 with the above definitions results in:

Hx = ωxIx − ωyIxy − ωzIxz

Hy = ωyIy − ωxIyx − ωzIyz

Hz = ωzIz − ωxIzx − ωyIzy

(2.119)

Equations 2.119 demonstrate that the operation which transforms the vector ω into
the vector HG consists of the array of moments and products of inertia. In matrix
form this relationship is as follows:

HG =
⎡

⎣
Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

⎤

⎦

⎡

⎣
ωx

ωy

ωz

⎤

⎦ (2.120)

It should be noted that, having obtained the linear momentum mv and the angular
momentum HG of a rigid body, the angular momentum about a point O, HO can be
easily determined by addition of HG, the angular momentum at G, with the angular
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Fig. 2.22 Rigid body angular momentum in three dimensions about a point O

momentum about O of vector mv (see Fig. 2.22 and Beer et al. [4, p. 1150]) as
follows:

HO = HG + r × mv (2.121)

where m is the mass of the body, r is the distance from point O to the center of
gravity of the body, and v is the linear velocity at the c.g. point of the body.

Kinetic Energy of a Rigid Body in Three Dimensions (Beer et al. [4, pp. 1152–
1153])
Examining a rigid body of mass m in three-dimensional motion, and recalling that
if the absolute velocity vi of each particle Pi of the rigid body is written as the sum
of the velocity v of the mass center G of the body and of the velocity v′

i of each
of the particles relative to a frame Gxyz attached to G and of fixed orientation (see
Fig. 2.23), the kinetic energy of the aggregate of the particles forming the rigid body
can be expressed as:

T = 1

2
mv2 + 1

2

n∑

i=1

(�mi)v
′2
i (2.122)

where the term on the right signifies the kinetic energy T ′ of the body relative to
the centroidal non-rotating frame Gxyz. Since v′

i = ω × r ′
i , T ′ of Eq. 2.122 may be

expressed in the following form:

T ′ = 1

2

n∑

i=1

(ω × r ′
i )

2�mi (2.123)
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Fig. 2.23 Kinetic energy of a
rigid body in three
dimensions

From Eq. 2.115 we have: ω×r ′
i = î(ωyzi−yiωz)+ĵ (ωzxi−ziωx)+k̂(ωxyi−xiωy),

and thus (ω × r ′
i ) · (ω × r ′

i ) becomes:

(ω × r ′
i ) · (ω × r ′

i ) = (ωyzi − yiωz)
2 + (ωzxi − ziωx)

2 + (ωxyi − xiωy)
2

= ω2
x(z

2
i + y2

i ) + ω2
y(x

2
i + z2

i ) + ω2
z (x

2
i + y2

i )

− 2ωxωyxiyi − 2ωxωzxizi − 2ωyωzziyi

(2.124)

The expression for T ′, Eq. 2.123 then becomes:

T ′ = 1

2

n∑

i=1

[
ω2

x(z
2
i + y2

i ) + ω2
y(x

2
i + z2

i ) + ω2
z (x

2
i + y2

i )

− 2ωxωyxiyi − 2ωxωzxizi − 2ωyωzziyi

]
�mi (2.125)

Letting the masses �mi become infinitesimally small and replacing the summation
sign with integrals results in:

T ′ = 1

2
ω2

x

∫

(z2 + y2)dm + 1

2
ω2

y

∫

(x2 + z2)dm + 1

2
ω2

z

∫

(x2 + y2)dm

−2ωxωy

1

2

∫

xydm − 2ωxωz

1

2

∫

xzdm − 2ωyωz

1

2

∫

zydm

(2.126)
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The expressions of Eq. 2.126 within the integral signs are the same as those of
Eq. 2.118 and so T ′ may be written in the form:

T ′ = 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

(2.127)

Substituting Eq. 2.127 into the expression for the kinetic energy of the body relative
to centroidal axes, Eq. 2.122, the result is:

T = 1

2
mv2 + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]

(2.128)

If the coordinate frame is chosen so that it coincides instantaneously with the
principal axes x′, y′, z′ of the body, that is the axis system wherein the products
of inertia Ixy, Ixz, Iyz are all identically zero, the relation obtained in Eq. 2.128
reduces to:

T = 1

2
mv2 + 1

2

[
ω2

x′Ix′ + ω2
y′Iy′ + ω2

z′Iz′
]

(2.129)



Chapter 3
Lagrangian Dynamics

In this chapter, the fundamental ideas which make up the main body of the
theory of classical Lagrangian dynamics are presented. These include among
others, the notion of generalized coordinates and degrees of freedom, generalized
forces, configuration and velocity constraints, Pfaffian forms, and the definitions
of holonomic and non-holonomic systems. The concept of virtual work for static
systems and the principle of d’Alembert are used for the formulation of the virtual
work principle for dynamical systems. These two aforementioned principles are
combined into the extended Hamilton’s principle which is the precursor to the
derivation of the d’Alembert–Lagrange equations of motion. Since conservative
forces play such a central role in classical mechanics, these types of forces are
investigated and the equivalence between the work performed by a conservative
force and the change in the potential energy due to the former is established. Finally,
the d’Alembert–Lagrange procedure for the derivation of equations of motion is
formulated with the aid of the extended Hamilton’s principle. One method by which
to deal with the problem of constraints within the framework of the d’Alembert–
Lagrange formalism in mechanics is by means of Lagrangian multipliers which
are covered in the present chapter. The generalized forces encountered in practice
are usually of the non-conservative type and a systematic procedure employing the
concept of virtual work and illustrated through examples is presented in order to
deal with these forces. The final section of this chapter deals with the notions of
Hamiltonians and the connection between the Lagrangian and the Hamiltonian via
the Legendre transformation.
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3.1 Definitions Required for the Study of Lagrangian
Dynamics

The following definitions, taken from the lectures by MIT Profs. J. Vandiver and
David Gossard (see 2.003SC Engineering Dynamics—An Introduction to Lagrange
Equations—Lecture Notes [49]), and additional material taken from Professor Haim
Baruh’s book [3, pp. 216–220, 223–224], shall be used henceforth:

Generalized Coordinates Consider an inertial coordinate system and let
ri (xi, yi, zi) represent the location of the ith particle within this coordinate frame.
The vector ri may be expressed in Cartesian coordinates i, j, k as:

ri = xi i + yij + zik i = 1, 2, . . . , N (3.1)

In many cases, it is more advantageous to use a different set of variables,
other than the physical coordinates to describe the motion of the system. A
set of variables q1, q2, . . . , qn, n = 3N , related to the physical coordinates
x1, y1, z1, . . . , xN , yN , zN may be defined as follows:

x1 = x1 (q1, q2, . . . , qn)

y1 = y1 (q1, q2, . . . , qn)

z1 = z1 (q1, q2, . . . , qn)

x2 = x2 (q1, q2, . . . , qn)

...

xN = xN (q1, q2, . . . , qn)

yN = yN (q1, q2, . . . , qn)

zN = zN (q1, q2, . . . , qn)

(3.2)

The generalized coordinates of a mechanical system are therefore the minimum
group of parameters which can completely and unambiguously define the configu-
ration of that system. They are called generalized because they are not restricted
to being Cartesian coordinates and are not even required to be measured from
an inertial reference frame. However, they are used to express the kinetic and
potential energies of the rigid bodies which make up the dynamical system. The
kinetic and potential energy must be computed with respect to an inertial reference
frame. Therefore the generalized coordinates must be able to express the velocity
and displacement of rigid bodies with respect to an inertial frame of reference.
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Fig. 3.1 A spherical
pendulum whose length L

may or may not vary

For example, the spherical pendulum in Fig. 3.1 can be located with Cartesian
coordinates x, y, z or by generalized coordinates q1, q2, q3, where q1 = L, q2 = θ,

q3 = φ. The two sets of coordinates are related by:

x = L cos θ sin φ = q1 cos(q2) sin(q3)

y = L sin θ sin φ = q1 sin(q2) sin(q3) (3.3)

z = −L cos φ = −q1 cos(q3)

If the length of the pendulum is constant, that is, q1 = L = constant , then only the
variables q2 = θ and q3 = φ are required. If we decide to use the coordinates x, y, z

to describe the motion, they must be related to the constraint equation, that is:

x2 + y2 + z2 = L2 = constant (3.4)

Constraint relations such as the latter indicate that the generalized coordinates
x, y, z are related to each other and hence it is possible to analyze the system
with fewer of them. We therefore need to distinguish between a set of generalized
coordinates where each coordinate is independent of all the others and a set where at
least one generalized coordinate is not independent, such as in the above example.
In general, for a system consisting of N particles with m constraints (m constraint
equations) acting on it, the system can be uniquely described by p independent
generalized coordinates qk, (k = 1, 2, . . . , p), where:

p = 3N − m = n − m; n = 3N (3.5)

in which p signifies the number of degrees of freedom of the system. The number
of degrees of freedom is independent of the coordinates used and is a characteristic
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Fig. 3.2 A particle moving
on a smooth surface

of the dynamical system. While there exists more than one way of selecting the
number and types of generalized coordinates, the number of degrees of freedom
p = n − m is invariant.

Equality Constraints In dynamical systems, constraints arise as a result of contact
between two or more bodies and their effects are to restrict the motion of the
bodies to which the constraints are applied. Each constraint has associated with it
a constraint equation and a constraint force, which may be regarded as a contact
or reaction force. The constraint equation is a description of the geometry or
kinematics of the contact. Note that equations of constraint may also be written
when the observer is situated within a moving reference frame and there are no
contacts. The relative motion equation between the observer and the system under
observation then becomes the constraint equation. Figure 3.2 depicts a particle P ,
constrained to move on a smooth surface whose shape function or configuration
constraint is:

f (x, y, z, t) = 0 (3.6)

The shape function f (x, y, z, t) = 0 is smooth and has both first and second
derivatives in all of its variables. For a system described in terms of n generalized
coordinates, the corresponding configuration constraint may be written in the form:

f (q1, q2, . . . , qn, t) = 0 (3.7)

and the time derivative of f (in terms of its generalized coordinates q1, q2, . . . , qn, t)
may be shown to be:

df

dt
= ∂f

∂q1
q̇1 + ∂f

∂q2
q̇2 + · · · + ∂f

∂qn

q̇n + ∂f

∂t
= 0 (3.8)
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The corresponding differential, which expresses the constraint relations in Pfaffian
form, may be written as:

df = ∂f

∂q1
dq1 + ∂f

∂q2
dq2 + · · · + ∂f

∂qn

dqn + ∂f

∂t
dt = 0

The time derivative (Eq. 3.8) of the constraint equation results in constraint
equations in velocity form (or velocity or motion constraints), which may be written
in terms of the n generalized coordinates as:

df

dt
= ∂f

∂q1
q̇1 + ∂f

∂q2
q̇2 + · · · + ∂f

∂qn

q̇n + ∂f

∂t
= 0 (3.9)

As becomes apparent, the general form of a velocity constraint in terms of the n

generalized coordinates becomes:

n∑

k=1

ajkq̇k + aj0 = 0 j = 1, 2, . . . , m (3.10)

where ajk and aj0 (j = 1, 2, . . . , m; k = 1, 2, . . . , n) are functions of the
generalized coordinates, for example, ajk = ajk(q1, q2, . . . , qn, t). Assuming that
f (q1, q2, . . . , qn, t) = 0 represents the ith constraint, it is possible to relate the
partial derivatives of f with respect to the generalized coordinates to the ajk terms
and aj0 as follows:

df

dt
= ∂f

∂q1
q̇1 + ∂f

∂q2
q̇2 + · · · + ∂f

∂qn

q̇n + ∂f

∂t
= 0

n∑

k=1

ajkq̇k + aj0 = 0 j = 1, 2, . . . , m

⇒ ai1 = ∂f

∂q1
, ai2 = ∂f

∂q2
, . . . , ain = ∂f

∂qn

, ai0 = ∂f

∂t
(3.11)

It should be noted that when constraints are imposed upon a set of independent
generalized coordinates, some of the generalized coordinates lose their indepen-
dence. A constraint that can be expressed as both a configuration constraint
f (q1, q2, . . . , qn) = 0 and a velocity constraint of the type

∑n
k=1 ajkq̇k + aj0 = 0

j = 1, 2, . . . , m is referred to as a holonomic constraint (see Prof. Marghitu [20,
pp. 211]). Constraints which do not possess this property are designated as non-
holonomic constraints. A holonomic constraint which doesn’t depend explicitly on
time, that is, f (q1, q2, . . . , qn) = 0, is called a scleronomic constraint, while a
holonomic constraint which is explicitly time dependent is known as a rheonomic
constraint. Since the majority of constraints encountered in engineering applications
are scleronomic, only these types of holonomic constraints will be considered.
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Holonomic Systems From the discussion above, it is to be noted that a constraint
that can be expressed as both a configuration and a velocity constraint is referred to
as a holonomic constraint. When there are no constraints which restrict the motion
of the system, it becomes apparent that a holonomic system is one in which the
number of independent generalized coordinates required to describe the motion of
the system equals the number of degrees of freedom, that is, p = n − m;m = 0.

Non-Holonomic Systems When the constraint is non-holonomic, there is no
integration factor which will allow the differential df to be integrated to become f .
Furthermore, the constraint force associated with a non-holonomic constraint cannot
be expressed as a force normal to a surface S, i.e., the non-holonomic constraint
doesn’t define a surface—it is a constraint on the generalized velocities.

Consider a system that originally has n degrees of freedom and is subjected to
m holonomic constraints. The constraints reduce the degrees of freedom from n to
n − m. The resulting system is unconstrained of order n − m.

By contrast, a non-holonomic constraint constrains only the generalized veloc-
ities without affecting the generalized coordinates. In such systems there are n

generalized coordinates and n − m independent generalized velocities.
Figure 3.3 depicts a typical non-holonomic system undergoing planar motion.

The configuration coordinates related to point A are XA, YA with respect to the
inertial coordinates X, Y and θ , the angle the body makes relative to the inertial X

axis. The non-holonomic constraint is associated with the translational velocity of
point A, vA, which, in vector form is:

vA = ẊAI + ẎAJ (3.12)

Fig. 3.3 Generic vehicle
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Since there is no sideways motion, the constraint may be described by:

vA · j = 0; j = cos θJ − sin θI ⇒ vA · j

= (ẊAI + ẎAJ ) · (cos θJ − sin θI)

= ẎA cos θ − ẊA sin θ = 0 ⇒ ẊA − ẎA

tan θ
= 0 (3.13)

The system is non-holonomic since the velocity constraint cannot be integrated to
yield a configuration constraint. The associated constraint force is essentially the
resistance of point A to any sideways motion or the resistance to any movement
perpendicular to the motion in the vA direction. A different category of constraints
restricts a particle or system to a domain bounded by a surface. Such a constraint
may be expressed as an inequality of the form: f (x, y, z, t) ≥ 0, for a bounding
surface in motion and is known as an inequality constraint. It is also non-holonomic
since it cannot be integrated.

Degrees of Freedom The number of degrees of freedom of a system is the
number of coordinates that can be independently varied in a small displacement.
Stated another way, the number of degrees of freedom is the same as the number
of independent directions in which a system can move from any given initial
configuration. Consider a system consisting of N rigid bodies in 2D space. Each
rigid body has three degrees of freedom: two translational and one rotational. The
N-body system has 3N degrees of freedom. Now let’s say that there are k kinematic
constraints. Then the system has d = 3N − k degrees of freedom. For example, a
single uniform stick confined to a vertical, x–y plane has three degrees of freedom,
x, y, and rotation, θ about the z axis. It has no additional constraints. If we connect
one end of the stick to a pivot, it now has two constraints, one in each of the x and y
directions. It is still free to rotate. Therefore d = 3 − 2 = 1 dof. The motion of the
pinned stick may be completely specified by one coordinate, the angle of rotation.

Completeness and Independence of Generalized Coordinates In choosing
which coordinates to use one must obey two requirements:

1. A set of generalized coordinates is complete, if it is capable of locating all parts
of the system at all times.

2. A set of generalized coordinates is independent if, when all but one of the
generalized coordinates are fixed, there remains a continuous range of values
for that one coordinate.

For example, specifying coordinates x1, y1 and x2, y2 in the double pendulum
system depicted in Fig. 3.4, we have four coordinates which fully describe the
locations of the masses of the system. However, the system has only two degrees
of freedom. It turns out that the specified coordinates are not independent, since
fixing x2, y2 and y1 will not allow us to obtain a continuous range of values for x1
(we assume that the strings are of fixed length). A better choice for the generalized
coordinates would be θ1 and θ2. These two coordinates are indeed independent.
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Fig. 3.4 Double pendulum
system

Fig. 3.5 Non-holonomic
system—# of degrees of
freedom ≤ # coord. needed to
fully determine position of
the ball

In summary, in order to find the equations of motion of a dynamical system using
Lagrange equations, one must first determine the number of degrees of freedom, “d,”
and then choose a set of “d” generalized coordinates, which make up a complete
and independent set. If the system is non-holonomic, and of the following type:∑n

e=1 ajeq̇e + ajtdt = 0; j = 1, 2, . . . , k, it is possible to solve a modified form
of Lagrange’s equations in order to obtain the system’s dynamics. This topic will
be dealt with in greater detail in Chap. 4. An example of a non-holonomic system
in which more coordinates are needed than the system’s degrees of freedom is
described by the following system (see Fig. 3.5).

The ball is allowed to roll about the x and y axes, but not spin around the z axis.
The ball without any constraints has six degrees of freedom. When it is constrained
to not have any translatory motion in the z direction, it then has five degrees of
freedom. Without being allowed to spin along the z axis it is therefore reduced to
four degrees of freedom. The ball cannot slip, i.e., it has no translatory motion in
the x − y plane and this reduces the number of degrees of freedom from four to
two. However, to fully describe the location of the ball and its orientation, four
coordinates are required, two translation coordinates in the x−y plane and two
angular coordinates θ around the y axis and φ around the x axis, respectively. Hence
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the number of degrees of freedom is smaller than the number of coordinates needed
to fully describe its position and the system is therefore non-holonomic (see Prof.
Vandiver, Lecture 15 [42]).

3.2 Summary: Holonomic and Non-holonomic Systems

Definitions

• Holonomic Constraints

1. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particle (and possibly the time) having the form:
f (r1, r2, . . . , t) = 0, then the constraints are said to be holonomic. Con-
straints which are not expressible in the form of the above equation are
non-holonomic (see Goldstein [28, pp. 12–16]).

2. A constraint that can be expressed as an equation in just the configuration
variables, and possibly time, but independent of the rate variables” (see Mason
[21, pp. 25–27]).

3. Since a holonomic constraint is one that can be expressed as a functional
relationship between the coordinates: f (q1, q2, . . .) = 0, using such a
constraint, by simple substitution, one of the coordinates may be eliminated.

• Non-Holonomic Constraints

1. If the conditions of constraint can be expressed as follows:
f (r1, r2, . . . , rn, ṙ1, ṙ2, . . . , ṙn, t) = 0, then the constraints are said to be

non-holonomic.
2. For a non-holonomic constraint, either rate variables or inequalities are

required (see Mason [21, pp. 25–27]).
3. A non-holonomic constraint is one that cannot be expressed in terms of

the position variables alone, but includes the time derivative of one or
more of those variables. These constraint equations cannot be integrated to
obtain relationships solely between the joint variables. The most common
example in robotic systems arises from the use of a wheel or roller that rolls
without slipping on another member (see Springer Handbook of Robotics
[33, pp. 25]).

4. In general, a non-holonomic constraint is a differential equality constraint
that cannot be integrated into a constraint that involves no derivatives. A
simple example is that of a car which cannot move sideways, thereby making
parallel parking more difficult (see Springer Handbook of Robotics [33,
pp. 148]).

5. Three variables are required to locate a car on the plane—two for its position
and one for its angle. However a car has only two degrees of freedom
at any instant, acceleration/deceleration and steering, yet it can reach any
configuration in the plane by judicious maneuvers.
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6. In the case of non-holonomic constraints it is not possible to give arbitrary
and independent variations to the generalized coordinates without violating
the constraint relations. In a non-holonomic system, the variations or
changes δq1, δq2, . . . , δqk are related and are not independent. This implies
that (for scleronomic non-holonomic constraints):

n∑

e=1

ajeδqe = 0; j = 1, 2, . . . , k; k < n

(3.14)

The number of degrees of freedom is denoted by n, while k expresses
the number of constraint relations. These equations are in differential form
and are not integrable (see Greenwood [14, pp. 36–37] and Greiner [15,
pp. 301–303]). Non-holonomic constraints cannot be written in closed
form (algebraic equation), but instead must be expressed in terms of the
differentials of the coordinates (and possibly time), that is:

n∑

e=1

ajedqe + ajtdt = 0; j = 1, 2, . . . , k

aje = ψ (q1, q2, . . . , qn, t) (3.15)

7. Constraints of this type are non-integrable and restrict the velocities of the
system, which implies that:

n∑

e=1

ajeq̇e + ajt = 0; j = 1, 2, . . . , k (3.16)

8. The following example was taken from Lecture 7 of the lecture series by
Prof. Deyst and How [9, pp. 15].

9. Example: Wheel rolling without slipping on a curved path (see Fig. 3.6).
Define φ as the angle between the tangent to the path and the X-axis at the
instant of interest.

10. The non-holonomic constraints of rolling without slipping are as follows:

ẋ = v cos φ = rθ̇ cos φ

ẏ = v sin φ = rθ̇ sin φ

dx − r cos φdθ = 0

dy − r sin φdθ = 0 (3.17)
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Fig. 3.6 Wheel rolling without slipping on a curved path—classic example of a non-holonomic
system

11. There are two differential equations of constraint, neither of which can be
integrated without solving the entire problem. Hence the constraints are non-
holonomic. The reason is that the change in θ can be related to the change
in x, y for a given φ, but the absolute value of θ depends on the path taken
to get to that point (which is the “solution”). In other words, the absolute
value of θ depends on the path taken to get to that point or the angle φ,
which constitutes the solution to the problem. The problem cannot be solved
without knowledge of the solution. Since the angle φ is known only after
solving the problem, the equations are not integrable. Hence, the problem is
non-holonomic.

12. Why study non-holonomic constraints?

(a) It is fundamental to all of robotics.
(b) The robot has only a few motors, say k, while the task has many degrees

of freedom (DoF), say n. How many independent motions can the robot
produce? At most k. How many degrees of freedom in the task does the
robot wish to control? Perhaps all n. The difference between the number
of DoFs and the number of motors implies a non-holonomic constraint
(see Mason Lecture 5 [22, pp. 8]).

(c) A holonomic constraint is a constraint on configuration: it says there
are places you cannot go. It implies a reduction in freedom of motion,
while a non-holonomic constraint is a constraint on velocity: there are
directions you cannot go in, but you can still get to wherever you desire
(see Mason Lecture 5 [22, pp. 25]).

13. Non-holonomic Constraints: Constraints that constrain the velocities of
particles but not their positions (see Meam [18, pp. 7]).

14. With non-holonomic systems, the generalized coordinates are not indepen-
dent of each other (see Fantoni and Lozano [10, pp. 17]).

15. A non-holonomic system is one in which there is a continuous closed circuit
of the governing parameters, by which the system may be transformed from
any given state to any other state. Because the final state of the system
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depends on the intermediate values of its trajectory through parameter space,
the system cannot be represented by a conservative potential function such
as, for example, the inverse square law of the gravitational force. This latter
is an example of a holonomic system: path integrals in the system depend
only upon the initial and final states of the system (positions in the potential),
completely independent of the trajectory of transition between those states.
The system is therefore said to be integrable, while the non-holonomic
system is said to be non-integrable (see Wikipedia [1]).

For systems with holonomic constraints, the dependent coordinates can be elimi-
nated by introducing generalized coordinates. If the constraints are non-holonomic,
this approach does not work. There is no general method for treating non-holonomic
problems. Only for those special non-holonomic constraints that can be given in
differential form can one eliminate the dependent equations by the method of
Lagrange multipliers or quasi-velocities. The approach taken closely mirrors that of
Meirovitch [23, pp. 157–164], Cameron and Book [8, pp 47–59], and Vepa[50] and
will be presented in the next chapter. There exists a more advanced approach to the
subject of non-holonomic systems, their characterization, identification, and control
based on the following topics found in differential geometry and related subject
matter such as Lie groups, Lie algebras, etc. A partial list includes the following
topics:

1. Manifolds, differentiable manifolds, manifolds and maps
2. Tangent vectors, spaces, vector fields
3. Fiber bundles
4. Differential k-forms
5. Exterior derivatives
6. Jacobi–Lie brackets, Lie groups
7. Vector fields and flows
8. Lie brackets and Frobenius’ theorem, the Lie algebra associated with a Lie

group, actions of Lie groups, Canonical coordinates on a Lie group
9. Tangent spaces and tangent maps

10. Cotangent spaces and cotangent maps
11. Differential forms
12. The exponential map
13. The geometry of the Euclidean group, metric properties of SE(3), volume forms

on SE(3)
14. Lie groups and robot kinematics

The interested reader is encouraged to pursue these topics in greater detail by
referring to the following works by Murray et al. (A Mathematical Introduction to
Robotic Manipulation [25]), Selig (Geometrical Methods in Robotics [32]), Bullo
and Lewis (Geometric Control of Mechanical Systems Modeling, Analysis, and
Design for Simple Mechanical Control Systems [7]), Bloch et al. (Nonholonomic
Mechanics and Control [5]), Soltakhanov et al. (Mechanics of Non-Holonomic
systems [35]), to name but a few.
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3.3 Virtual Work for Static Systems Only

The approach taken in the sequel is that outlined in the book by Meirovitch (see [24,
pp. 263–267]). Consider a system of N particles residing within a three-dimensional
enclosure and let the virtual displacements

δx1, δy1, δz1, δx2, δy2, δz2, . . . , δxN , δyN, δzN

be defined as infinitesimal changes in the Cartesian coordinates of x1, y1, z1, x2, y2,

z2, . . . , xN , yN , zN . Although the virtual displacements are arbitrary, they must
however comply with the system constraints. For example, if a particle is confined
to a surface, then the virtual displacement must be along that surface, since a real
particle can neither penetrate nor leave the surface. The virtual displacements are
small (imaginary) variations in the coordinates, achieved by envisaging that the
system’s position has been ever so slightly displaced. The underlying assumption
is that the virtual displacement process is instantaneous, and so δt = 0. Since the
virtual displacements are infinitesimal they obey the rules of differential calculus. A
key presupposition is that on every particle in the system there is a resultant force
Ri which is the sum of an externally applied force such as gravity, aerodynamic lift,
drag, etc. and a constraining force, such as a force which confines the motion of the
particle to the surface upon which it moves. Mathematically, we have:

Ri = Fi + fi , i = 1, 2, . . . , N

where Fi is an externally applied force and fi is a constraining force. When the
system is in equilibrium, each and every particle must be at rest, which implies that
the resultant force on each particle must be nullified, or Ri = Fi + fi = 0 , i =
1, 2, . . . , N . The virtual work on the ith particle is defined to be:

δWi = Ri · δri = 0 , i = 1, 2, . . . , N

since Ri = 0 , i = 1, 2, . . . , N . The above scalar products Ri · δri = 0 , i =
1, 2, . . . , N represent the virtual work carried out by the resultant force Ri due to
the virtual displacement vector δri of the ith particle. Summing up the virtual work
for all of the N particles, we have:

δW =
N∑

i=1

Ri · δri = 0

⇒ δW =
N∑

i=1

Fi · δri +
N∑

i=1

fi · δri = 0 (3.18)
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We limit ourselves to systems for which the constraint forces act in directions which
are perpendicular or normal (or conjugate) to the virtual motions, such as a particle
confined to a smooth surface. This implies that the virtual work due to constraint
forces are zero. Conversely, if a particle is confined to a jagged, uneven surface,
there is a tangential component of the constraint force due to friction, in addition to
the component in the normal direction, which results in positive virtual work due to
the tangential constraint force. Thus, we rule out any constraining forces, such as
friction, etc., which gives rise to a non-zero virtual work value. With the virtual work
due to forces of constraint nullified, the sum of the virtual work due to constraint
forces and external forces may be written as:

N∑

i=1

fi · δri = 0 ⇒ δW =
N∑

i=1

Fi · δri = 0 (3.19)

When the virtual displacements δri are all independent and comply with system
constraints, we can invoke the arbitrariness of the virtual displacements and
conclude that

δW =
N∑

i=1

Fi · δri = 0 (3.20)

which can be satisfied for all possible values of δri only if

Fi = 0, i = 1, 2, . . . , N

The preceding statement is known as the principle of virtual work. However,
when the coordinates ri(i = 1, 2, . . . , N) are related by constraint equations, i.e.,
they are not independent, it is more convenient to use “generalized coordinates”
q1, q2, . . . , qn, which may or may not be Cartesian coordinates. In vector form, we
have:

ri = ri(q1, q2, . . . , qn) , i = 1, 2, . . . , N (3.21)

The rules of differential calculus must now be invoked in order to obtain the virtual
displacements:

δri = ∂ri

∂q1
δq1+ ∂ri

∂q2
δq2+· · ·+ ∂ri

∂qn

δqn =
n∑

k=1

∂ri

∂qk

δqk , i = 1, 2, . . . , N (3.22)

where δq1, δq2, . . . , δqn are all independent virtual generalized displacements, as
opposed to δri(i = 1, 2, . . . , N) which are not independent. Replacing δri in
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Eq. (3.20), with the value determined in Eq. (3.22) and changing the order of the
summations, we have:

δW =
N∑

i=1

Fi · δri =
N∑

i=1

Fi ·
n∑

k=1

∂ri

∂qk

δqk =
n∑

k=1

(
N∑

i=1

Fi · ∂ri

∂qk

)

δqk

=
n∑

k=1

Qkδqk = 0 (3.23)

where

Qk =
N∑

i=1

Fi · ∂ri

∂qk

, k = 1, 2, . . . , n (3.24)

are designated as the generalized forces. Since all of the δqk are now independent
by definition and entirely arbitrary, it is possible to assign values to them according
to our whim. Letting δq1 = 1, δq2 = δq3 =, . . . ,= δqn = 0, it becomes apparent
that only Q1 = 0 can satisfy Eq. (3.23). Repeating the same procedure, but with
k = 2, 3, . . . , n, in sequence, we obtain the conditions for the static equilibrium of
the system of particles:

Qk = 0 , k = 1, 2, . . . , n

δq1 = δq2 = · · · = δqk−1 = δqk+1 = . . . , δqn = 0, δqk = 1 (3.25)

3.4 The Principle of d’Alembert for Dynamical Systems

This section was adapted from Meirovitch [23, pp. 65–66] and Meirovitch [24,
pp. 267–268].

Since the principle of virtual work was developed for the static equilibrium of
systems, it cannot be used directly to derive the equations of motion of systems
with dynamics. The principle of virtual work may however be extended to cover
dynamical systems by employing a quasi-equilibrium tool, known as d’Alembert’s
principle for dynamical systems. Returning to the definition of the resultant force
Ri = Fi + fi , i = 1, 2, . . . , N , assume that mi , a typical mass particle in a system
of particles (i = 1, 2, . . . , N ), is subjected to the applied force Fi and the constraint
force fi , while any internal forces are miniscule and may be neglected. Newton’s
second law for particle of mass mi then takes the form:

Fi + fi − mir̈i = 0 , i = 1, 2, . . . , N (3.26)
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where −mir̈i may be looked upon as an inertial force. Recall that an inertial
force resists a change in the velocity of an object and is equal to and in the
opposite direction of an applied force, as well as a resistive force. The inertial force
−mir̈i is the negative of the time derivative of the momentum vector pi = miṙi .
Equation (3.26) is the mathematical statement of d’Alembert’s principle. The beauty
of d’Alembert’s principle is that it allows for the treatment of problems of dynamics
in the same manner as static problems. Applying the principle of virtual work in
Eq. (3.20) to the mass particle mi and using d’Alembert’s principle, Eq. (3.26),
yields:

(Fi + fi − mir̈i) · δri = 0 , i = 1, 2, . . . , N (3.27)

Once again limiting the discussion to constraint forces fi with zero virtual work and
taking the sum over all of the mass particles leads to:

N∑

i=1

(Fi − mir̈i) · δri = 0 (3.28)

Equation (3.28) incorporates both the virtual work principle (of statics) and
d’Alembert’s principle for dynamical systems and is termed as the generalized
principle of d’Alembert or as the Lagrange version of d’Alembert’s principle. The
sum of the applied and the inertial force, that is, Fi −mir̈i , is sometimes designated
as the effective force acting on mass particle mi . The generalized principle of
d’Alembert may be stated as follows: The virtual work carried out by the effective
forces over infinitesimal virtual displacements, which are compatible with system
constraints, is zero.

If the position vectors ri(i = 1, 2, . . . , N) are all independent, d’Alembert’s
principle, Eq. (3.28), may be used to derive all of the equations of motion of the
system. Otherwise, coordinate transformations, from the dependent coordinates
ri(i = 1, 2, . . . , N) to the independent generalized coordinates qk(k = 1, 2, . . . , n),
must be carried out as indicated by the following equation:

ri = ri(q1, q2, . . . , qn) , i = 1, 2, . . . , N (3.29)

3.5 The Mathematics of Conservative Forces

This section is based upon Meirovitch [23, pp. 15–17], Ginsburg [13, pp. 213–214],
and Baruh [3, pp. 44].

A very important class of forces is the class of conservative forces for which the
work depends only on the initial position r1 and the final position r2 and not on the
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path taken from r1 to r2. Denoting two distinct paths from r1 to r2 by I and II ,
respectively, the non-dependence of the work on the specific path may be stated
mathematically as follows:

∫ r2

r1

F · dr

︸ ︷︷ ︸
PathI

=
∫ r2

r1

F · dr

︸ ︷︷ ︸
PathII

(3.30)

The above equation may also be rewritten in the form:

∫ r2

r1

F · dr

︸ ︷︷ ︸
PathI

−
∫ r2

r1

F · dr

︸ ︷︷ ︸
PathII

=
∫ r2

r1

F · dr

︸ ︷︷ ︸
PathI

+
∫ r1

r2

F · dr

︸ ︷︷ ︸
PathII

=
∮

F · dr = 0 (3.31)

in which
∮

denotes an integral over a closed path. In view of Eq. (3.31) it is possible
to state that the work performed by conservative forces over a closed path is zero.
In the sequel, conservative forces will be labeled with the subscript c and non-
conservative forces with the superscript NC in order to distinguish between them.

Consider a conservative force Fc and choose a path from r1 to r2 which
passes through the reference position rref . Define the potential energy as the work
performed by the conservative force in moving a particle from position r along the
path to the reference position rref , or

V (r) =
∫ rref

r

Fc · dr (3.32)

where V (r) is a scalar function depending on r alone, since rref is arbitrary. The
work performed by conservative forces in moving a particle from position r1 to
position r2 may be expressed in the form:

∫ r2

r1
Fc · dr =

∫ rref

r1
Fc · dr +

∫ r2

rref

Fc · dr =
∫ rref

r1
Fc · dr −

∫ rref

r2
Fc · dr

= V (r1) − V (r2) = −(V2 − V1)

(3.33)

where Vi = V (ri)(i = 1, 2). Equation (3.33) states that the work performed by
conservative forces in moving a particle from r1 to r2 is equal to the negative of the
change in potential energy from V1 to V2.

In general, forces can be divided into conservative and non-conservative classes
with the latter being denoted by a superscript of NC, that is, FNC . In accordance
with the above, work may be expressed as the sum of the work due to the
conservative and non-conservative forces, that is:
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∫ r2

r1
F · dr =

∫ r2

r1
Fc · dr +

∫ r2

r1
FNC · dr

= T2 − T1 = −(V2 − V1) +
∫ r2

r1
FNC · dr (3.34)

where Ti is the kinetic energy related to the coordinate of position ri(i = 1, 2).
When dW is a perfect differential, the integral of Eq. (3.33) may be written in
differential form as:

dW = F(r) · dr = −dV (r)

where the potential function V is a function of r only. In order for dW to be a perfect
differential, the force must depend only on the position vector, which implies that
the force must be conservative

3.6 The Extended Hamilton’s Principle

Beginning with the case where all of the position vectors ri(i = 1, 2, . . . , N) are
independent, the virtual work of all of the applied forces including conservative and
non-conservative forces may be written as:

N∑

i=1

Fi · δri = δW (3.35)

We now consider mir̈i which we would like to modify to a more suitable form:

d

dt
(mi ṙi · δri) = mir̈i · δri + miṙi · δṙi

= mir̈i · δri + δ

(
1

2
miṙi · ṙi

)

= mir̈i · δri + δTi

(3.36)

where δTi is the kinetic energy of particle mi . Note that the variation δ obeys the
rules of differential calculus and hence δ( 1

2miṙi · ṙi ) may be written in the form:

δ

(
1

2
miṙi · ṙi

)

= 1

2
miδṙi · ṙi + 1

2
miṙi · δṙi = miδṙi · ṙi (3.37)
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Rearranging d
dt

(mi ṙi · δri) = mir̈i · δri + δTi and integrating with respect to time
over the interval t1 ≤ t ≤ t2 leaves us with:

−
∫ t2

t1

mir̈i · δridt =
∫ t2

t1

δTidt −
∫ t2

t1

d

dt
(mi ṙi · δri)dt

=
∫ t2

t1

δTidt − miṙi · δri |t2t1
(3.38)

Since the virtual displacements are arbitrary, they may be chosen so as to satisfy
δri = 0 at t = t1 and t = t2. This being the case, Eq. (3.38) reduces to:

−
∫ t2

t1

mir̈i · δridt =
∫ t2

t1

δTidt; δri = 0, t = t1, t2; i = 1, 2, . . . , N (3.39)

Evaluating the sum taken over i and integrating with respect to t over the interval
t1 ≤ t ≤ t2, we have:

−
∫ t2

t1

N∑

i=1

mir̈i ·δridt =
∫ t2

t1

δT dt; δri = 0, i = 1, 2, . . . , N , t = t1, t2 (3.40)

where T is the total of the kinetic energies of all of the mass particles or the system’s
kinetic energy. Integrating Eq. (3.28) with respect to time over the interval t1 ≤ t ≤
t2 and using the results of Eqs. (3.35) and (3.40), the ensuing equation is:

∫ t2

t1

(
N∑

i=1

(Fi − mir̈i) · δri

)

dt =
∫ t2

t1

(δW + δT )dt = 0

δri = 0, i = 1, 2, . . . , N , t = t1, t2

(3.41)

Equation (3.41) represents the mathematical expression of the extended Hamilton’s
principle. The virtual work δW may be divided into two parts, the first due to
conservative forces and the second due to non-conservative forces. We then have:

δW = δWc + δW
NC

(3.42)

Recalling from Eq. (3.33) that δWc = −δV , Eq. (3.42) may be written as:

δW = δWc + δW
NC = −δV + δW

NC
(3.43)
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The extended Hamilton’s principle, as expressed in Eq. (3.41) becomes:

∫ t2

t1

(
δW

NC − δV + δT
)

dt = 0

δri = 0, i = 1, 2, . . . , N , t = t1, t2

(3.44)

We assumed that the position vectors ri were independent. If, however, this
is not the case, then the position vectors must be transformed to an independent
set of generalized coordinates. It is therefore expedient to use an independent set
of generalized coordinates qk(k = 1, 2, . . . , n) at the outset in order to calculate
potential and kinetic energies. The energies are the same in any coordinate system.
Recalling that δri = 0 (i = 1, 2, . . . , N) when the δri are independent, by analogy
δqk = 0 (k = 1, 2, . . . , n), and the extended Hamilton’s principle for generalized
coordinates may be rewritten in the form:

∫ t2

t1

⎛

⎝δW
NC −δV + δT︸ ︷︷ ︸

δL

⎞

⎠ dt = 0

δqk = 0, i = 1, 2, . . . , n , t = t1, t2

(3.45)

Letting L = T − V , and assuming that we have only conservative forces operating

on the system, that is, δW
NC = 0, Eq. (3.45) becomes:

∫ t2

t1

(δL)dt = δ

∫ t2

t1

Ldt = 0

δqk = 0, i = 1, 2, . . . , n , t = t1, t2

(3.46)

The expression L = T − V is known as the Lagrangian and Eq. (3.46) is referred
to as the extended Hamilton’s principle (see Meirovitch [23, pp. 68] and Baruh
[3, pp. 249–251]).

3.7 Lagrange’s Equations and Lagrangian Dynamics

The extended Hamilton’s principle is not the most effective method for the
derivation of equations of motion since it requires certain operations which must be
performed, such as integration by parts. The d’Alembert–Lagrange equations, which
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are derived from the extended Hamilton’s principle is a more expedient and efficient
method for obtaining equations of motion (see Baruh [3, pp. 253–254]). The
kinetic energy of a general dynamic system can be written in terms of generalized
coordinates (displacements) and their derivatives (generalized velocities) in the
following functional form:

T = T (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n) (3.47)

The variation in kinetic energy is simply stated as:

δT =
n∑

k=1

(
∂T

∂qk

δqk + ∂T

∂q̇k

δq̇k

)

(3.48)

Similarly, the potential energy V has the form:

V = V (q1, q2, . . . , qn) (3.49)

and the variation of V may be written as:

δV =
n∑

k=1

(
∂V

∂qk

δqk

)

(3.50)

In addition, the virtual work of the non-conservative forces, from Eq. (3.23) takes
on the form:

δW
NC =

n∑

k=1

Qkδqk (3.51)

where Qk (k = 1, 2, . . . , n) are the generalized non-conservative forces. Substitut-
ing the expressions for T (Eq. 3.49) and V (Eq. 3.50) into the extended Hamilton’s
principle (Eq. 3.45), we arrive at:

∫ t2

t1

(δW
NC− δV + δT )dt =

∫ t2

t1

n∑

k=1

[(
∂T

∂qk

− ∂V

∂qk

+ Qk

)

δqk + ∂T

∂δq̇k

δq̇k

]

dt = 0

δqk = 0, k = 1, 2, . . . , n , t = t1, t2

(3.52)
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We now integrate the following term by parts as follows:

∫ t2

t1

∂T

∂δq̇k

δq̇kdt =
∫ t2

t1

∂T

∂δq̇k︸ ︷︷ ︸
u

d

dt
δqk

︸ ︷︷ ︸
dv

dt

= ∂T

∂δq̇k︸ ︷︷ ︸
u

δqk︸︷︷︸
v

|t2t1 −
∫ t2

t1

d

dt

(
∂T

∂q̇k

)

︸ ︷︷ ︸
du

δqk︸︷︷︸
v

dt

= −
∫ t2

t1

d

dt

(
∂T

∂q̇k

)

δqkdt

δqk = 0, k = 1, 2, . . . , n , t = t1, t2

(3.53)

Notice that we utilized the conditions δqk = 0, t = t1, t = t2 in the integration
by parts procedure above. These latter conditions are due to the fact that the end
points must vanish by definition of the variation. Introducing this latter result into
Eq. (3.52), we then have:

∫ t2

t1

n∑

k=1

[
∂T

∂qk

− ∂V

∂qk

+ Qk − d

dt

(
∂T

∂q̇k

)]

δqkdt = 0

(3.54)

Since the virtual displacement values δqk (k = 1, 2, . . . , n) are arbitrary, we can
assign δq1 = 1 while setting all of the other virtual displacements δqk = 0 (k =
2, 3, . . . , n). Under these circumstances, Eq. (3.54) can be satisfied only if the
coefficient of δq1 is zero, that is:

∂T

∂q1
− ∂V

∂q1
+ Q1 − d

dt

(
∂T

∂q̇1

)

= 0 ⇒ d

dt

(
∂T

∂q̇1

)

− ∂T

∂q1
+ ∂V

∂q1
= Q1 (3.55)

The same procedure as above is carried out for all of the virtual displacements and
the resulting Lagrange equations are:

d

dt

(
∂T

∂q̇k

)

− ∂T

∂qk

+ ∂V

∂qk

= Qk; k = 1, 2, . . . , n (3.56)

Non-conservative forces which have hitherto not been dealt with explicitly are those
which are proportional to the velocity of a particle and which resist the motion, in
that, they act in the direction opposite to the particle’s velocity (see Meirovitch [23,
pp. 73 , 88–91]). Due to the fact that the system loses energy when such forces come
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into play, they are termed as dissipative forces, i.e., some of the system’s energy is
dissipated. Assume that the dissipative forces acting on particle i are written in
Cartesian coordinates and are of the form:

Fxi
= −cxi

ẋi;Fyi
= −cyi

ẏi;Fzi
= −czi

żi; i = 1, 2, . . . , N

Note that the parameters cxi
, cyi

, and czi
are functions which depend only on the

coordinates and not on the velocities. The virtual work may be shown to be:

N∑

i=1

Fi · δri =
N∑

i=1

(
Fxi

δxi + Fyi
δyi + Fzi

δzi

)

= −
N∑

i=1

(
cxi

ẋiδxi + cyi
ẏiδyi + czi

żiδzi

)

Using the fact that δri = δri(q1, q2, . . . , qn), and ∂ri/∂qk = ∂ṙi/∂q̇k , δri takes the
form:

δri =
n∑

k=1

∂ri

∂qk

δqk =
n∑

k=1

∂ṙi

∂q̇k

δqk

This implies that:

δxi =
n∑

k=1

∂ẋi

∂q̇k

; δyi =
n∑

k=1

∂ẏi

∂q̇k

; δzi =
n∑

k=1

∂żi

∂q̇k

Applying this latter result to the equation for virtual work results in the virtual work
becoming:

N∑

i=1

Fi · δri = −
N∑

i=1

(
cxi

ẋiδxi + cyi
ẏiδyi + czi

żiδzi

)

= −
n∑

k=1

[
N∑

i=1

cxi
ẋi

∂ẋi

∂q̇k

+ cyi
ẏi

∂ẏi

∂q̇k

+ czi
żi

∂żi

∂q̇k

]

δqk

= −
n∑

k=1

[
N∑

i=1

1

2

∂

∂q̇k

(cxi
ẋ2
i + cyi

ẏ2
i + czi

ż2
i )

]

δqk

= −
n∑

k=1

∂

∂q̇k

[
N∑

i=1

1

2
(cxi

ẋ2
i + cyi

ẏ2
i + czi

ż2
i )

]

δqk

= −
n∑

k=1

∂F

q̇k

δqk



86 3 Lagrangian Dynamics

where F = ∑N
i=1

1
2 (cxi

ẋ2
i + cyi

ẏ2
i + czi

ż2
i ) is termed a Rayleigh’s dissipation

function. Assuming that the only non-conservative forces are of the dissipative type,
the virtual work equation becomes:

δW
NC =

n∑

k=1

Qkδqk = −
n∑

k=1

∂F

∂q̇k

δqk ⇒ Qk = − ∂F

∂q̇k

, k = 1, 2, . . . , n

It then follows that Eq. (3.56) may be expressed as:

d

dt

(
∂T

∂q̇k

)

− ∂T

∂qk

+ ∂V

∂qk

− Qk = 0; k = 1, 2, . . . , n

⇒ d

dt

(
∂T

∂q̇k

)

− ∂T

∂qk

+ ∂V

∂qk

+ ∂F

∂q̇k

= 0; k = 1, 2, . . . , n

Examples

The following four examples have been taken from Widnall’s MIT OpenCourse-
Ware course (Widnall [53]) on Dynamics, Lecture L-20.

Example 1

Let’s consider a simple mass–spring one degree of freedom system (see Fig. 3.7)
with one generalized coordinate x1. It possesses kinetic energy of the form: T =
1
2mẋ2 and its potential energy is: V = 1

2kx2 (see Eq. 2.60). The Lagrangian is
L = T − V = 1

2mẋ2 − 1
2kx2. Application of Eq. (3.56) to the Lagrangian of

this simple system results in the familiar differential equation for the mass–spring
oscillator, which is: mẍ + kx = 0. It is obtained as follows:

Fig. 3.7 Mass–spring system
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d

dt

(
∂L
∂ẋ1

)

− ∂L
∂x1

= d

dt

(
∂T

∂ẋ1

)

− ∂T

∂x1
+ ∂V

∂x1
= Q1 = 0

x1 = x;Q1 = 0 ⇒ d

dt

(
∂T

∂ẋ

)

− ∂T

∂x
+ ∂V

∂x
= 0

∂T

∂ẋ
= mẋ; d

dt

(
∂T

∂ẋ

)

= mẍ; ∂T

∂x
= 0; ∂V

∂x
= kx

d

dt

(
∂T

∂ẋ

)

− ∂T

∂x
+ ∂V

∂x
= mẍ + kx = 0

(3.57)

Example 2: Two DOF Mass–Spring System

Figure 3.8 depicts a two degrees of freedom system with three springs, described
by two differential equations. The relevant equations can be obtained by direct
application of the d’Alembert–Lagrange equation. The expressions for the kinetic
and potential energies are, respectively:

T =
2∑

i=1

1

2
miẋ

2
i ;V = 1

2
k1x

2
1 + 1

2
k2(x2 − x1)

2 + 1

2
k3x

2
2

(3.58)

Utilizing the d’Alembert–Lagrange’s equation on L = T − V =, we have:

d

dt

(
∂L
∂ẋ1

)

− ∂L
∂x1

= 0; d

dt

(
∂L
∂ẋ2

)

− ∂L
∂x2

= 0

⇒ d

dt

(
∂L
∂ẋ1

)

= m1ẍ1; d

dt

(
∂L
∂ẋ2

)

= m2ẍ2

− ∂L
∂x1

= − ∂V

∂x1
= k1x1 + k2(x1 − x2);− ∂L

∂x2
= − ∂V

∂x2
= k2(x2 − x1) + k3x2

⇒ m1ẍ1 = k2(x2 − x1) − k1x1;m2ẍ2 = −k2(x2 − x1) − k3x2

(3.59)
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Fig. 3.8 Two degrees of freedom system composed of springs and masses

Example 3: Simple Pendulum

We begin by applying the d’Alembert–Lagrange’s equation in order to derive the
equations of motion of a simple pendulum. It is expedient to do so in polar
coordinates. This is a one degree of freedom system. However, it will prove
advantageous, when we shall be required to analyze the double pendulum, to begin
with a description of the position of the mass point m1(located at the bottom of the
pendulum) in Cartesian coordinates x1 and y1 and then write down the Lagrangian
in the polar angle θ1. Referring to sub-figure (a) of Fig. 3.9, we have:

x1 = h1 sin θ1; ẋ1 = h1 cos θ1θ̇1

y1 = −h1 cos θ1; ẏ1 = h1 sin θ1θ̇1 (3.60)

and so the kinetic energy is:

T = 1

2
m1(ẋ

2
1 + ẏ2

1) = 1

2
m1h

2
1(θ̇1)

2 (3.61)

The potential energy V is:

V = m1gy1 = −m1gh1 cos θ1 (3.62)

The Lagrangian L is:

L = T − V = 1

2
m1h

2
1(θ̇1)

2 + m1gh1 cos θ1 (3.63)

From the above equation it becomes apparent that the generalized variable q1 is:
q1 = θ1. The entity h1 is constant, and so the only variable quantity is θ1, and it
naturally becomes the only available generalized variable. Application of 3.56 with
q1 = θ1 yields the differential equation governing this single pendulum’s motion.
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Fig. 3.9 Single and double pendulums

d

dt

(
∂L
∂θ̇1

)

− ∂T

∂θ1
+ ∂V

∂θ1
= 0

∂L
∂θ̇1

= m1h
2
1(θ̇1); d

dt

(
∂L
∂θ̇1

)

= m1h
2
1θ̈1

∂V

∂θ1
− ∂T

∂θ1
= m1gh1 sin θ1 ⇒ m1h

2
1θ̈1 + m1gh1 sin θ1 = 0 (3.64)

Example 4: Double Pendulum

The double pendulum is depicted in sub-figure (b) of Fig. 3.9 and consists of two
point masses of mass m1 and m2, connected by massless strings of length h1
and h2, respectively (the c.g. points of both bodies are situated at the bottom of
each pendulum, respectively). The two pendulae are connected to their respective
pivot points, about which they swing. This system is endowed with two degrees of
freedom: θ1 and θ2. The first step in the application of the d’Alembert–Lagrange’s
equations is the determination of the expressions for the kinetic and the potential
energies, as the system rotates through the independent angles θ1and θ2. From
geometrical considerations, the Cartesian coordinates of the two masses are:
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x1 = h1 sin θ1; y1 = −h1 cos θ1

x2 = x1 + h2 sin θ2 = h1 sin θ1 + h2 sin θ2

y2 = y1 − h2 cos θ2 = −h1 cos θ1 − h2 cos θ2

(3.65)

Differentiating the coordinates in Eq. (3.65) with respect to time t , we have:

ẋ1 = h1 cos θ1θ̇1; ẏ1 = h1 sin θ1θ̇1

ẋ2 = h1 cos θ1θ̇1 + h2 cos θ2θ̇2

ẏ2 = h1 sin θ1θ̇1 + h2 sin θ2θ̇2

(3.66)

Squaring ẋ1 and ẏ1 and adding the terms together:

ẋ2
1 + ẏ1 = h2

1 cos2 θ1(θ̇1)
2 + h2

1 sin2 θ1(θ̇1)
2 = h2

1(θ̇1)
2 (3.67)

Similarly for ẋ2 and ẏ2

ẋ2
2 = (h1 cos θ1θ̇1 + h2 cos θ2θ̇2)

2

= h2
1 cos2 θ1(θ̇1)

2 + h2
2 cos2 θ2(θ̇2)

2 + 2h1h2 cos θ1 cos θ2θ̇1θ̇2

ẏ2
2 = (h1 sin θ1θ̇1 + h2 sin θ2θ̇2)

2

= h2
1 sin2 θ1(θ̇1)

2 + h2
2 sin2 θ2(θ̇2)

2 + 2h1h2 sin θ1 sin θ2θ̇1θ̇2

⇒ ẋ2
2 + ẏ2

2 = h2
1(θ̇1)

2 + h2
2(θ̇2)

2 + 2h1h2θ̇1θ̇2 cos(θ1 − θ2) (3.68)

The kinetic energy is:

T = 1

2
m1(ẋ

2
1 + ẏ2

1) + 1

2
m2(ẋ

2
2 + ẏ2

2)

= 1

2
m1h

2
1(θ̇1)

2 + 1

2
m2[h2

1(θ̇1)
2 + h2

2(θ̇2)
2 + 2h1h2θ̇1θ̇2 cos(θ1 − θ2)]

(3.69)

The system’s potential energy V is:

V = m1gy1 + m2gy2 = −m1gh1 cos θ1 − m2g(h1 cos θ1 + h2 cos θ2)

= −(m1 + m2)gh1 cos θ1 − m2gh2 cos θ2

(3.70)
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With the preceding information now at our disposal, the Lagrangian L = T − V

may be easily calculated and it turns out to be:

L = T − V =1

2
m1h

2
1(θ̇1)

2 + 1

2
m2[h2

1(θ̇1)
2 + h2

2(θ̇2)
2 + 2h1h2θ̇1θ̇2 cos(θ1 − θ2)]

+ (m1 + m2)gh1 cos θ1 + m2gh2 cos θ2

(3.71)

The terms required for the d’Alembert–Lagrange’s equation (Eq. 3.56) are therefore:

∂L
∂θ̇1

= m1h
2
1θ̇1 + m2h

2
1θ̇1 + m2h1h2θ̇2 cos(θ1 − θ2);

∂L
∂θ̇2

= m2h
2
2θ̇2 + m2h1h2θ̇1 cos(θ1 − θ2)

d

dt

(
∂L
∂θ̇1

)

= m1h
2
1θ̈1 + m2h

2
1θ̈1 + m2h1h2θ̈2 cos(θ1 − θ2)

+m2h1h2θ̇2
d

dt
[cos(θ1 − θ2)]

= m1h
2
1θ̈1 + m2h

2
1θ̈1 + m2h1h2θ̈2 cos(θ1 − θ2)

−m2h1h2θ̇2 sin(θ1 − θ2)(θ̇1 − θ̇2)

d

dt

(
∂L
∂θ̇2

)

= m2h2θ̈2 + m2h1h2θ̈1 cos(θ1 − θ2) − m2h1h2θ̇1 sin(θ1 − θ2)(θ̇1 − θ̇2)

∂L
∂θ1

= m2h1h2θ̇1θ̇2
∂ cos(θ1 − θ2)

∂θ1
− (m1 + m2)gh1 sin θ1

= −m2h1h2θ̇1θ̇2 sin(θ1 − θ2) − (m1 + m2)gh1 sin θ1

⇒ − ∂L
∂θ1

= m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + (m1 + m2)gh1 sin θ1

∂L
∂θ2

= m2h1h2θ̇1θ̇2
∂ cos(θ1 − θ2)

∂θ2
− m2gh2 sin θ2

= m2h1h2θ̇1θ̇2 sin(θ1 − θ2) − m2gh2 sin θ2

⇒ − ∂L
∂θ2

= −m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + m2gh2 sin θ2 (3.72)
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Applying Eq. (3.56) to L = T − V with q1 = θ1and q2 = θ2 and using the results
of Eq. (3.72) leads to the following set of differential equations:

d

dt

(
∂L
∂θ̇1

)

− ∂L
∂θ1

= 0

⇒ (m1 + m2)h
2
1θ̈1 + m2h1h2θ̈2 cos(θ1 − θ2) − m2h1h2θ̇2 sin(θ1 − θ2)(θ̇1 − θ̇2)

+ m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + (m1 + m2)gh1 sin θ1 = 0

⇒ (m1 + m2)h
2
1θ̈1 + m2h1h2θ̈2 cos(θ1 − θ2) + m2h1h2θ̇

2
2 sin(θ1 − θ2)

− m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + m2h1h2θ̇1θ̇2 sin(θ1 − θ2)

+ (m1 + m2)gh1 sin θ1 = 0

⇒ d

dt

(
∂L
∂θ̇1

)

− ∂L
∂θ1

= (m1 + m2)h
2
1θ̈1 + m2h1h2θ̈2 cos(θ1 − θ2)

+ m2h1h2θ̇
2
2 sin(θ1 − θ2) + (m1 + m2)gh1 sin θ1 = 0

d

dt

(
∂L
∂θ̇2

)

− ∂L
∂θ2

= 0

⇒ m2h2θ̈2 + m2h1h2θ̈1 cos(θ1 − θ2) − m2h1h2θ̇1 sin(θ1 − θ2)(θ̇1 − θ̇2)

− m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + m2gh2 sin θ2 = 0

⇒ m2h2θ̈2 + m2h1h2θ̈1 cos(θ1 − θ2) − m2h1h2θ̇
2
1 sin(θ1 − θ2)

+ m2h1h2θ̇1θ̇2 sin(θ1 − θ2)

− m2h1h2θ̇1θ̇2 sin(θ1 − θ2) + m2gh2 sin θ2 = 0

⇒ m2h2θ̈2 + m2h1h2θ̈1 cos(θ1 − θ2) − m2h1h2θ̇
2
1 sin(θ1 − θ2)

+ m2gh2 sin θ2 = 0

(3.73)

Example 5: Quad Copter (see Rodolfo et al. [29, pp. 23–34])

Introduction

A helicopter is an airborne system, such that, with the use of rapidly spinning
rotors, it is able to push a mass of air in a descending direction through its rotor
or rotors, which results in the creation of thrust to support the vehicle in mid-air.
The principle by which this is done is similar to the propeller on a conventional
aircraft, although the thrust in a conventional aircraft is in the horizontal plane,
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while that of the helicopter is directed vertically. Conventional helicopters have two
rotors, arranged to counter-rotate in the plane of the rotor disk, both of which provide
upward thrust. The counter-rotation is required in order to cancel out the reaction
torque exerted on the helicopter’s body from the rotor’s engines. An additional
conventional arrangement for countering engine torque on the body is to have a main
rotor directed vertically and a tail rotor which produces a lateral thrust, thus creating
a moment which counterbalances the torque on the body. The drawback of these two
“conventional” schemes is the very complicated mechanism required to synchronize
and redirect the rotor thrust to where it is desired. The system charged with the task
of synchronization and redirection of thrust is the swash plate. The swash plate
controls the angles of attack on the rotor blades and tries to periodically adjust them
such that they are at their maximum values when the rotor is moving against the
oncoming wind (retreating) in forward flight and at their minimum values when
the blade is advancing into the oncoming wind. The swash plate is composed of a
very elaborate, costly, intricate, and very robust set of linkages, servomechanisms,
dampers, and gears with a constant need for maintenance and repairs.

A quadrotor helicopter or quadcopter, in contrast, has four (or more) equally
spaced rotors, situated on the periphery of a square, rectangular, or circular body
and arranged in either an “x” or “+” configuration. Having four (or more) motors,
each of which is capable of an independent rotor rotational speed adjustment, allows
for the elimination of the swash plate. The disadvantage of this arrangement are the
resulting losses in energy incurred by speeding up or slowing down the rotors in
mid-flight, as compared to a conventional helicopter where a constant rotor speed is
maintained throughout all flight phases.

The quadrotor’s controls derive from the angular speeds of four electric motors
(see Fig. 3.10). Each motor generates a thrust and a torque, whose combination
results in the main thrust, the yaw torque, the pitch torque, and the roll torque which
in concert act on the quadrotor. In addition, the rotor blades on the quadrotor all
have a constant pitch angle and are not adjustable. The quadrotor motors turn in a
fixed direction and hence the forces produced by the rotors are all positive. However
motors m1 and m3 rotate in a clockwise direction (producing counter-clockwise
reaction torques), while motors m2 and m4 rotate in an anti-clockwise direction
(producing clockwise reaction torques).

While gyroscopic effects and aerodynamic torques tend to cancel each other out
in trimmed flight, because of the particular spatial arrangement of the motors, their
effects will be included as part of the non-conservative generalized forces (torques).
The main thrust u is the sum of individual thrusts (f1 +f2 +f3 +f4) of each motor.
The pitch torque is derived from the difference in thrusts f1 − f3, while the roll
torque depends upon the difference between forces f2 and f4, that is, f2 − f 4. The
yaw torque is the sum of the reaction torques of the motors, τm1 − τm2 + τm3 −
τm4 . The reaction torques τmi

, i = 1, 2, 3, 4 are due to shaft acceleration and blade
drag. The explanation contained in Gibiansky’s blog [12] is straightforward, very
comprehendible, and elegant in its simplicity. The torque which an electric motor
produces is directly proportional to the difference between the input current I , when
the motor is working under load conditions, and the no load current Io, that is,



94 3 Lagrangian Dynamics

Fig. 3.10 Schematic diagram of a quadcopter

τ = Kt(I − Io), where Kt is the current to torque scale factor. This implies that the
current I is: I = τ+Kt Io

Kt
. The voltage across the input terminals of the motor may be

expressed as: V = IRm +Kvω. Rm is the motor’s ohmic winding resistance and Kv

is its back-emf scale factor with units of volts per radians per second. The back-emf
is directly related to its rotational speed ω. The voltage due to the winding resistance
is negligible in comparison with the back-emf and hence may be neglected. We also
assume that the motor torque τ is much larger than KtIo, and so the power produced
by the electric motor is:

P = IV =
(

τ + KtIo

Kt

)

(IRm + Kvω) =
(

τ + KtIo

Kt

)[(
τ + KtIo

Kt

)

Rm + Kvω

]

≈
(

τ

Kt

)

(Kvω)

The power is used to generate the lift required to keep the vehicle in the air. By the
law of conservation of energy, the energy consumed by the motor, in a given period
of time, is equivalent to the force generated on the propeller times the distance that
the displaced air (air that the rotor has displaced) moves, that is, P · dt = F · dx ⇒
P = Fdx/dt = Fv. If the velocity of the displaced air in hover is vh and the force
equals the weight or thrust T of the vehicle, then P = T vh. From momentum theory
(see Seddon et al. [31, pp. 25]), the hover velocity and hence the power are given as:
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vh =
√

T

2ρA
;P = Kvτ

Kt

ω = KvKτ

Kt

T ω = T 3/2

√
2ρA

where A is the area of the rotor disk or the area swept out by the rotor, ρ is the
density of the air in which the vehicle is flying, and Kτ is the scale factor relating
thrust to torque. Note that torque is proportional to the thrust since, by definition,
τ = 
r × 
F , where 
r is the distance vector from the center of rotation to the point
of application of the force 
F . Furthermore, Kτ depends upon the rotor blade shape
and layout. It turns out that the thrust T may be written as:

T 3/2

√
2ρA

= KvKτ

Kt

T ω ⇒ T 1/2

√
2ρA

= KvKτ

Kt

ω

⇒ T 1/2 = KvKτ

Kt

ω
√

2ρA ⇒ T =
(

KvKτ

Kt

ω
√

2ρA

)2

= kω2

From basic fluid dynamics, the drag force equation describing the frictional force
which opposes motion in the direction of the velocity vector of the rotor is:

D = 1

2
ρCDAbv

2

where CD is the drag coefficient of the blade, Ab is the cross sectional area of the
rotor blade, and v = ω×R is the linear velocity of the blade at its tip (R is the radius
of the rotor blade). The torque due to the rotor blade’s profile drag is therefore:

τdragi
= D × R = 1

2
ρCDAbv

2R = 1

2
ρCDAb(ωR)2R = bω2 (3.74)

Since the motor’s torque is opposed by the torque due to aerodynamic drag, the
torque equation for each motor/rotor combination is:

Irotor ω̇ = τmi
− τdragi

i = 1, 2, 3, 4 (3.75)

where Irotor is the moment of inertia of the motor and rotor combination in the
direction perpendicular to its rotation (motor’s z axis), ω is the rotation rate of the
ith motor, and τmi

is the torque produced by the ith motor. For quasi-stationary
maneuvers, ω is constant, which implies that Irotor ω̇ = 0 and so the motor’s reaction
torque equals the drag induced torque or τmi

= τdragi
. In order to maneuver, the

quadrotor must adjust the speed of its motors as follows:

1. Forward pitch motion is obtained by increasing the speed of motor m3 while
reducing the speed of motor m1.

2. Similarly, roll motion is obtained by using motors m2 and m4.
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3. Yaw motion is obtained by increasing the torque τm1 and τm3 of motors m1 and
m3, respectively, while decreasing the torques τm2 and τm4 of motors m2 and m4,
respectively.

Torques

There are two distinct sources for torques which act on the quadcopter’s body (we
have neglected aerodynamic torques, except for the blade profile drag torques). The
first source is due to the torques exerted by the motors on the body or the motors’
reaction torques τmi

, which were shown to be related directly to the rotor blades’
profile drag and are proportional to each individual rotor’s rotation rate bω2. The
sum of all of the four motor reaction torques is the torque which will tend to turn the
vehicle about the body’s k̂ axis (see Fig. 3.10). Mathematically, this may be written
as:

∑4
i=1(−1)i+1τmi

= τyaw. The torque which gives rise to angular roll is directly
related to the imbalance between the forces f2 and f2, that is, (f2 − f4)l = τroll .
A similar force imbalance situation arises for the angular pitch; however, forces f2
and f3 are involved, leading to: (f2 −f4)l = τpitch. The second source of externally
applied torques is due to the “gyro effect” of each individual motor and rotor blade
combination (see Beer et al. [4, pp. 1185]). The rotating rotor may be looked upon
as a gyro, and when it is subject to an angular rotation perpendicular to its axis of
rotation or perpendicular to the angular momentum vector which defines its rotation,
a torque results which is perpendicular to both the angular momentum vector and
the applied angular rate. In mathematical terms, we have:

τgyro = � × H

Hk̂ =
4∑

i=1

Hik̂ =
4∑

i=1

Imi
ωi k̂;� =

⎡

⎣
pb

qb

rb

⎤

⎦

τgyroroll
= −qbĵ × Hk̂ = −qb

4∑

i=1

Imi
ωi î;

τgyropitch
= −pbî × Hk̂ = −pb

4∑

i=1

Imi
ωi ĵ

D’Alembert–Lagrangian Dynamics

Defining the generalized coordinates to be: q = (X, Y,Z,ψ, θ, φ), where R =
XÎ+Y Ĵ+ZK̂ is the position vector from the origin of the inertial coordinate system
to the center of mass of the quadrotor (in inertial coordinates) and η = (ψ, θ, φ)
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are the Euler angles around the yaw (around the Z(K̂)), pitch (around the Y (Ĵ )),
and roll (around the X(Î )) axes, respectively, which define the orientation of
the quadrotor with respect to the inertial coordinate system. The kinetic energy
has a translational component as well as a rotational part. The derivatives of the
Euler angles are: η̇ = (ψ̇, θ̇ , φ̇). The rotational kinetic energy is of the form:
Trotate = 1

2 η̇T If ull η̇. Since the angular rates have not been measured along the
quadrotor’s body axes, the full inertia tensor must be used in the computation of
rotational kinetic energy, and it is:

If ull =
⎡

⎣
Ix(t) −Ixy(t) −Ixz(t)

−Iyx(t) Iy(t) −Iyz(t)

−Izx(t) −Izy(t) Iz(t)

⎤

⎦ (3.76)

Because of the motion of the quadrotor, the parameters of the inertia tensor are
changing at every instant of time and it would be more advantageous to be able to
use the principal moments of inertia measured along the body fixed axes, which
remain invariant throughout the flight. In body fixed axes, the inertia tensor is
constant, diagonal, and doesn’t contain any off-diagonal terms. The resulting inertia
tensor is:

I =
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦ (3.77)

The angular rates in body axes are: � = (p, q, r), and the connection between the
derivatives of the Euler angles and the body axis angular rates is as follows:

� =
⎡

⎣
p

q

r

⎤

⎦=
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

ψ̇ cos θ cos φ − θ̇ sin φ

⎤

⎦=
⎡

⎣
− sin θ 0 1

cos θ sin φ cos φ 0
cos θ cos φ − sin φ 0

⎤

⎦

︸ ︷︷ ︸
Wη

⎡

⎣
ψ̇

θ̇

φ̇

⎤

⎦=Wηη̇

(3.78)

Rewriting the rotational kinetic energy in terms of the derivatives of the Euler angles
results in:

Trotate = 1

2
�T I� = 1

2
η̇T WT

η IWη
︸ ︷︷ ︸

J

η̇ = 1

2
η̇T J η̇ (3.79)

The matrix J = J(η) becomes the inertia matrix for the complete rotational kinetic
energy of the quadrotor system, expressed directly in terms of the generalized
coordinate vector η. The Lagrangian for the quadrotor may be written as follows:
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L = Ttranslate + Trotate − U

ξ̇ = ẊÎ + Ẏ Ĵ + ŻK̂; Ttranslate = 1

2
mquad ξ̇ T · ξ̇

Trotate = 1

2
η̇T J η̇;U = mquadgZ

⇒ L = 1

2
mquad ξ̇ T · ξ̇ + 1

2
η̇T J η̇ − mquadgZ

−∂L
∂Z

= mquadg (3.80)

where mquad is the total mass of the quadrotor system and U is the potential energy

of the system. The generalized forces are

[
Fξ

τ

]

, where Fξ = TE/BF̂ . The Euler

transformation from body to inertial coordinates TE/B is:

⎡

⎢
⎣

xea

yea

zea

⎤

⎥
⎦ =

⎡

⎢
⎣

cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎥
⎦

(3.81)

The generalized forces, Fξ = TE/BF̂ are the translational external forces applied
to the quadrotor due to main the thrust from the four propellers. The generalized
torques or moments, τ , represent the yaw, pitch, and roll moments, respectively,
and TE/B denotes the Euler rotation matrix, which transforms a vector in body
coordinates to a vector in the inertial coordinate frame. The forces in the body frame
F̂ are transformed into forces in the inertial frame Fξ . The overall thrust in the −zk̂

direction is u = ∑4
i=1 fi and the vector of forces in body axes is: F̂ =

⎡

⎣
0
0
u

⎤

⎦.

The force fi is the force produced by motor mi , as shown in Fig. 3.10. Commonly
the force produced by each motor is proportional to the square of its angular rate ωi

in the following manner: fi = kiω
2
i , where ki is a constant and ωi is the angular

speed of the ith motor. The faster the motor turns, the more thrust it generates. The
generalized torques may be written as:

τ =
⎡

⎣
τψ

τθ

τφ

⎤

⎦ =
⎡

⎣
τyaw

τpitch + τgyropitch

τroll + τgyroroll

⎤

⎦

=
⎡

⎣
τm1 − τm2 + τm3 − τm4

(f2 − f4)l

(f3 − f1)l

⎤

⎦ −
⎡

⎣
0

pbî × Hk̂

qbĵ × Hk̂

⎤

⎦
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⇒
⎡

⎣
τψ

τθ

τφ

⎤

⎦ =
⎡

⎣
τm1 − τm2 + τm3 − τm4

(f2 − f4)l

(f3 − f1)l

⎤

⎦ −
⎡

⎣
0

pb

∑4
i=1 Imi

ωi

qb

∑4
i=1 Imi

ωi

⎤

⎦ (3.82)

where l is the distance from the center of any motor to the center of gravity of the
system. Since the Lagrangian is free of cross terms in the kinetic energy equation
(Eq. 3.80) between ξ̇ and η̇, the d’Alembert–Lagrange equations can be separated
into the dynamics for the X, Y,Z generalized position coordinates and for the η =
(ψ, θ, φ) generalized Euler angle coordinates. The d’Alembert–Lagrange equations
for translation become:

Ltranslate = 1

2
mquad ξ̇T · ξ̇ − mquadgZ = 1

2
mquad

[
Ẋ2 + Ẏ 2 + Ż2

]
− mquadgZ

[
∂Ltranslate

∂ξ̇

]

=
⎡

⎣
∂ 1

2mquad

[
Ẋ2 + Ẏ 2 + Ż2

]

∂Ẋ
,
∂ 1

2mquad

[
Ẋ2 + Ẏ 2 + Ż2

]

∂Ẏ
,

∂ 1
2mquad

[
Ẋ2 + Ẏ 2 + Ż2

]

∂Ż

⎤

⎦

T

= mquad

[
Ẋ, Ẏ , Ż

]T = mquad ξ̇ ⇒ d(mquad ξ̇ )

dt
= mquad ξ̈

= mquad

[
Ẍ, Ÿ , Z̈

]T

∂Ltranslate

∂ξ
=

[
∂Ltranslate

∂X
,
∂Ltranslate

∂Y
,
∂Ltranslate

∂Z

]T

= [
0, 0, mquadg

]T d

dt

[
∂Ltranslate

∂ξ̇

]

− ∂Ltranslate

∂ξ
= Fξ

= mquad

[
Ẍ, Ÿ , Z̈

]T − [
0, 0, mquadg

]T = TE/B [0, 0, u]T
︸ ︷︷ ︸

Fξ

(3.83)

For the generalized angular coordinates, the d’Alembert–Lagrange’s equations
may be written as:

Lrotate = 1

2
η̇T J η̇;

[
∂Lrotate

∂η̇

]

= J η̇; d

dt

[
∂Lrotate

∂η̇

]

= J̇ η̇ + J η̈

d

dt

[
∂Lrotate

∂η̇

]

−
[
∂Lrotate

∂η

]

= J̇ η̇ + J η̈ − 1

2

∂(η̇T J η̇)

∂η
= τ

(3.84)
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With the following definition of the “Coriolis-centripetal” vector: V̂ (η, η̇) =
J̇ η̇ − 1

2
∂
(
η̇T J η̇

)

∂η
, the d’Alembert–Lagrange’s equations for the rotational dynamics

become:

J η̈ + J̇ η̇ − 1

2

∂
(
η̇T J η̇

)

∂η
= J η̈ + V̂ (η, η̇) = τ (3.85)

Factoring out the η̇ term, the “Coriolis-centripetal” V̂ (η, η̇) vector may be
expressed as:

V̂ (η, η̇) =
(

J̇ − 1

2

∂
(
η̇T J)

∂η

)

η̇ = C(η, η̇)η̇ (3.86)

The term

(
1
2

∂
(
η̇T J)

∂η

)

is evaluated as follows:

J (ψ, θ, φ) =
⎡

⎢
⎣

j11 j12 j13

j21 j22 j23

j31 j32 j33

⎤

⎥
⎦ ; η̇T =

[
ψ̇ θ̇ φ̇

]

η̇T J =
[
ψ̇j11 + θ̇ j21 + φ̇j31︸ ︷︷ ︸

P11

ψ̇j12 + θ̇ j22 + φ̇j32︸ ︷︷ ︸
P12

ψ̇j13 + θ̇ j23 + φ̇j33︸ ︷︷ ︸
P13

]

=
[
P11(ψ, θ, φ) P12(ψ, θ, φ) P13(ψ, θ, φ)

]

P11(ψ, θ, φ) = ∂P11

∂ψ
�ψ + ∂P11

∂θ
�θ + ∂P11

∂φ
�φ

P12(ψ, θ, φ) = ∂P12

∂ψ
�ψ + ∂P12

∂θ
�θ + ∂P12

∂φ
�φ

P13(ψ, θ, φ) = ∂P13

∂ψ
�ψ + ∂P13

∂θ
�θ + ∂P13

∂φ
�φ

⇒
⎛

⎝1

2

∂
(
η̇T J

)

∂η

⎞

⎠ = F (ψ, θ, φ) = 1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂P11
∂ψ

∂P11
∂θ

∂P11
∂φ

∂P12
∂ψ

∂P12
∂θ

∂P12
∂φ

∂P13
∂ψ

∂P13
∂θ

∂P13
∂φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ V̂ (η, η̇) =
⎛

⎝J̇ − 1

2

∂
(
η̇T J

)

∂η

⎞

⎠ η̇ = (J̇ − F )

︸ ︷︷ ︸
C(η,η̇)

η̇
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Summarizing the equations of motion, the result is:

mquad

⎡

⎣
Ẍ

Ÿ

Z̈

⎤

⎦ +
⎡

⎣
0
0

mquadg

⎤

⎦ = Fξ

J η̈ = τ − C(η, η̇)η̇ (3.87)

To simplify, define τ̃ as follows:

τ̃ =
⎡

⎣
τ̃ψ

τ̃θ

τ̃φ

⎤

⎦ = J−1 (τ − C(η, η̇)η̇) ⇒ η̈ = J−1 (τ − C(η, η̇)η̇) =
⎡

⎣
τ̃ψ

τ̃θ

τ̃φ

⎤

⎦

(3.88)
Finally, the outcome is:

mquad

⎡

⎢
⎣

Ẍ

Ÿ

Z̈

⎤

⎥
⎦ +

⎡

⎢
⎣

0

0

mquadg

⎤

⎥
⎦

=
⎡

⎢
⎣

cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎥
⎦

⎡

⎢
⎣

0

0

u

⎤

⎥
⎦

⇒ mquadẌ = u (cos φ sin θ cos ψ + sin φ sin ψ)

mquad Ÿ = u (cos φ sin θ sin ψ − sin φ cos ψ)

mquad Z̈ = u (cos φ cos θ) − mquadg

ψ̈ = τ̃ψ ; θ̈ = τ̃θ ; φ̈ = τ̃φ (3.89)

It is also possible to expand the terms τ̃ψ , τ̃θ , τ̃φ .

Numerator of τ̃ψ

2Ixτψ + 2Ixτφ sin θ + (2Iy − 2Ix)τψ cos2 φ

+ (2Iy − 2Ix)τφ cos2 φ sin θ + (IxIy − IxIz

2
)ψ̇ θ̇ sin 2θ

+ (IxIy + IxIz − I 2
x )φ̇θ̇ cos θ + (2Ix − 2Iy)τθ cos φ cos θ sin φ

+ (IxIy − I 2
x )θ̇2 cos φ sin φ sin θ + (I 2

x + I 2
y − 2IxIy)θ̇

2 cos3 φ sin φ sin θ

+ (I 2
x − I 2

y )φ̇ψ̇ cos φ cos2 θ sin φ

+ (IyIz − IxIz + I 2
x − I 2

y )φ̇θ̇ cos2 φ cos θ
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+ (2IxIy − I 2
x − I 2

y )ψ̇ θ̇ cos4 φ cos θ sin θ

+ (IxIz − IyIz + I 2
x − 2IxIy + I 2

y )ψ̇ θ̇ cos2 φ cos θ sin θ

Denominator of τ̃ψ

2IxIy cos2 θ

Numerator of τ̃θ

(Ix − Iy)τψ sin 2φ + 2Iyτθ cos θ + (I 2
y − IxIy)φ̇ψ̇ cos2 θ

+ (2Ix − 2Iy)τθ cos2 φ cos θ + (2IxIy − I 2
x − I 2

y )θ̇2 cos2 φ sin θ sin2 φ

+ (I 2
x − I 2

y )φ̇ψ̇ cos2 φ cos2 θ + (2Ix − 2Iy)τφ cos φ sin φ sin θ

− I 2
y ψ̇ θ̇ cos φ cos θ sin φ sin θ

+ (IxIz − IyIz + I 2
y − I 2

x )φ̇θ̇ cos φ cos θ sin φ

+ (I 2
x + I 2

y − 2IxIy)ψ̇ θ̇ cos3 φ cos θ sin φ sin θ

+ (IxIy − IxIz + IyIz)ψ̇ θ̇ cos φ cos θ sin φ sin θ

Denominator of τ̃θ

2IxIy cos θ

Numerator of τ̃φ

− 2IxIzτφ cos2 θ sin2 θ − 2IxIyτφ cos4 θ + IxI
2
z ψ̇ θ̇ cos3 θ sin2 θ

− 2IxIzτψ cos2 θ sin θ + (2IxIz − 2IyIz)τφ cos2 φ cos2 θ sin2 θ

+ I 2
x Izθ̇

2 cos φ cos2 θ sin2 θ sin φ + (I 2
x Iz − IxI

2
z )φ̇θ̇ cos3 θ sin θ

− 2IxIyIzψ̇ θ̇ cos3 θ + IxIyIzψ̇ θ̇ cos5 θ

+ (I 2
x Iz + I 2

y Iz)ψ̇ θ̇ cos4 φ cos3 θ sin2 θ

+ (IyI
2
z − I 2

y Iz − IxI
2
z − I 2

x Iz)ψ̇ θ̇ cos2 φ cos3 θ sin2 θ

+ (2IxIz − 2IyIz)τψ cos2 φ cos2 θ sin θ

− IxIyIzφ̇θ̇ cos3 θ sin θ

+ (2IyIz − 2IxIz)τθ cos φ cos3 θ sin φ sin θ

+ (2IxIyIz − I 2
x Iz − I 2

y Iz)θ̇
2 cos3 φ cos2 θ sin2 θ sin φ
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+ (IxI
2
z − I 2

x Iz − IyI
2
z + I 2

y Iz)φ̇θ̇ cos2 φ cos3 θ sin θ

+ 2IxIyIzψ̇ θ̇ cos2 φ sin2 φ cos3 θ sin2 θ

− IxIyIzθ̇
2 cos φ cos2 θ sin2 θ sin φ

+ (I 2
y Iz − I 2

x Iz)φ̇ψ̇ cos φ cos4 θ sin φ sin θ

Denominator of τ̃φ

−2IxIyIz(sin2 θ − 1)2

It soon becomes apparent that the terms τ̃ψ , τ̃θ , τ̃φ are best calculated numeri-
cally. In the example on page 239, the moment equations are left in the body axis
system and hence the torque equations are much simpler. If we assume that the
vehicle is hovering, that is, ψ = θ = φ = 0◦, the torques become:

τ̃ψ = 2τψ + Ixφ̇θ̇ − Iyφ̇θ̇ + Izφ̇θ̇

2Ix

τ̃θ = 2τθ + Ixφ̇ψ̇ − Iyφ̇ψ̇

2Iy

τ̃φ = 2τφ + Izψ̇ θ̇

2Iz

Further simplifications result when we use the fact that Ix = Iy (due to symmetry
of the î and ĵ coordinates), in addition to the assumption that the angular rates are
zero. We have for the torques:

τ̃ψ = τψ

Ix

; τ̃θ = τθ

Iy

; τ̃φ = τφ

Iz

3.8 Recap: Writing d’Alembert–Lagrangian Dynamics

Lecture 15—Video Times—1:24–11:08, 20:26–25:29

This section was adapted from the MIT Lecture Series on Dynamics as presented by
Prof. Vandiver (see Vandiver—2.003SC Engineering Dynamics. Video of Lecture
15: Introduction to Lagrange With Examples) [42]. The Lagrangian is: L = T −V ,
where T is the kinetic energy of the system and all of its component parts and V is
the potential energy of the system. In addition, qj are the j generalized coordinates
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and Qj are the j non-conservative generalized forces. The d’Alembert–Lagrangian
equation is:

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= Qj

⇒ d

dt

(
∂T

∂q̇j

)

︸ ︷︷ ︸
1

− ∂T

∂qj
︸︷︷︸

2

− d

dt

(
∂V

∂q̇j

)

︸ ︷︷ ︸
=0

+ ∂V

∂qj
︸︷︷︸

3

= Qj
︸︷︷︸

4

(3.90)

It should be noted that the potential energy is neither dependent on velocity nor

on time t for mechanical systems and hence d
dt

(
∂V
∂q̇j

)
= 0. When dealing with

electromagnetics, however, the term d
dt

(
∂V
∂q̇j

)
might not equal zero. As may be

observed, the left-hand side of the equations of motion contains terms with t and
velocity v or q̇j in them. The right-hand side has these generalized forces which are
the non-conservative forces in the system.

The procedure for obtaining the Lagrangian dynamics of a system is outlined as
follows:

Left-Hand Side

1. Determine the number of degrees of freedom available and decide upon your set
of generalized coordinates, the q ′

j s.
2. The generalized coordinates need not be Cartesian nor inertial nor orthogonal.

The set of selected generalized coordinates must however be independent and
complete, and the system (with the chosen generalized coordinates) must be
holonomic.

3. Verify for completeness, independence, and holonomicity (see page 69).
4. Calculate the kinetic energy T and the potential energy V for every rigid body in

the system.
5. Compute items 1, 2, and 3 in the d’Alembert–Lagrangian equation above for

each qj or degree of freedom. That is, for every generalized coordinate, items 1,
2, and 3 must be computed. The computation of the non-conservative generalized
force will be treated in the sequel. The components 1, 2, and 3 for each qj

constitute the left-hand side of the d’Alembert–Lagrangian equation. If there
are no external forces, non-conservative forces, and only conservative external
forces which act on the system, then items 1 plus 2 plus 3 equal 0. But if
there exist non-conservative forces which act upon the system, such as friction,
then the right-hand side of the d’Alembert–Lagrangian equation or Qj must be
accounted for.
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Right-Hand Side

1. For each qj , that is, for each generalized coordinate, the generalized non-
conservative force Qj that potentially accompanies the qj and acts upon the
system must be found.

2. Compute the virtual work δWNC for the non-conservative forces. The delta
δWNC

j is associated with the virtual displacement δqj .
For every generalized coordinate shift the system by a small amount δqj

while keeping all of the other coordinates qk, k = 1, . . . m, k �= j constant and
compute the amount of much virtual work performed by this virtual motion.
The virtual work δWj (the superscript NC is dropped for convenience) is:
δWj = Qjδqj . The entity being sought after is Qj and it’s going to be a function
of all those external non-conservative forces acting through a very small virtual
displacement, resulting in a very small amount of virtual work.

Example 6: Mass–Spring Dashpot (Damper) Single Degree
of Freedom System

Lecture 15—Video Times—25:40–37:40

This example is originally from the video of Vandiver’s Lecture 15 (see Vandiver—
2.003SC Engineering Dynamics. Video of Lecture 15: Introduction to Lagrange
With Examples) [42]. The mass–spring dashpot (damper) system has a single degree
of freedom x and hence only one coordinate is required to describe its motion. The
generalized coordinate x is Cartesian so qj = q1 = x. It is complete, independent,
and holonomic.

1. The kinetic energy T is: T = 1
2mẋ2.

2. The potential energy V is: V = 1
2mkx2 − mgx.

3. The non-conservative forces include the external excitation force and that due to
the dashpot and are:

∑
FNC

1 = (−bẋ + F(t)) î.

The force F(t) is an external excitation force and could be non-conservative since
it could do work on the system and dissipate energy. It’s neither a potential nor a
spring. It could be an external vibration. The conservative forces are kx and mg,
while the non-conservative forces are F(t) and bẋ. Carrying out the operations
required in the d’Alembert–Lagrange’s equation we have:

d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj

− d

dt

(
∂V

∂q̇j

)

+ ∂V

∂qj

= Qj

T = 1

2
mẋ2;V = 1

2
mkx2 − mgx; q1 = x
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d

dt

(
∂T

∂q̇j

)

= d

dt

(
∂T

∂ẋ

)

= 1

2
2m

dẋ

dt
= mẍ

− ∂T

∂qj

= −∂T

∂x
= 0

∂V

∂qj

= ∂V

∂x
= kx − mg

∑
FNC

1 · δx = (−bẋ + F(t)) î · δx î = −bẋδx + F(t)δx = Q1δx (3.91)

In summary, we have:

1. d
dt

(
∂T
∂q̇j

)
= d

dt

(
∂T
∂ẋ

) = 1
2 2mdẋ

dt
= mẍ

2. − ∂T
∂qj

= − ∂T
∂x

= 0 since T is a function of ẋ only

3. ∂V
∂qj

= ∂V
∂x

= kx − mg

4. mẍ + kx − mg = Q1
5.

(∑
Fi

) · dr = (F (t) − bẋ) î · dr , where Fi and dr are both vectors. dr is
the infinitesimal motion and it is actually the same as δx. The virtual motion
dr(δ1, δ2, δ3, . . . , δj ) is in general a function of the virtual displacements δ′

j s of
all of the degrees of freedom. In this case we only have one, but we could have
δ1, δ2, δ3, δ4, . . . , δj . Each component of the force in the direction of one of the
virtual movements does virtual work.

6. Q1δx = −bẋδx + F(t)δx = δWNC
x

Rearranging the above we arrive at the dynamical equation, which is (Fig. 3.11):

mẍ + kx − mg = −bẋ + F(t) (3.92)

Fig. 3.11 Mass–spring
dashpot (damper) single
degree of freedom system
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Example 7: Pendulum with a Mass and Spring

Lecture 15—Video Times—37:40–1:21:16

This example was presented in the video of Vandiver’s Lecture 15 (see Vandiver-
2.003SC Engineering Dynamics. Video of Lecture 15: Introduction to Lagrange
With Examples) [42]. The system consists of a steel rod with a metal sleeve through
which the rod passes, and which is attached to the rod by a spring. The metal sleeve
slides along the rod in both the up and down directions without friction. The rod,
sleeve, and spring are attached at point A to a hinge and the whole system can swing
back and forth as a pendulum. The system contains several sources of kinetic energy
and varied forms of potential energy. There is a force F cos ωt which is always
horizontal, located at the bottom of the metal sleeve, which pushes this system
back and forth. The problem is to derive the equations of motion of the system.
The motion is planar and there are two rigid bodies involved. Each rigid body has
six degrees of freedom, but because of planar motion, each body has a maximum
of three degrees of freedom. For planar motion, each rigid body can move in the
x and y directions and can rotate about the z axis, where they are not attached
together by the spring. The maximum number of degrees of freedom for the two
rigid bodies, each acting independently of the other is six. This problem has two
degrees of freedom, which are the angular displacement θ of the system from the
vertical and x1 the linear displacement of the sleeve’s center of mass along the rod
with respect to point A. The coordinate system X1 − Y1 rotates with the rod and
sleeve. The coordinates chosen are independent, since, freezing one of them, the
other can still traverse over the full range of values for that coordinate. They are
also complete since with the two coordinates, all parts of the system may be located
at all times. Furthermore, the generalized coordinates are also holonomic since the
number of independent generalized coordinates required to describe the motion of
the system equals the number of degrees of freedom. The physical parameters of the
system are as follows:

1. Mass of the rod: M1, moment of inertia in the z direction about the point A:
(Izz)A, length of the rod: L1 location of the center of mass of the rod: G1

2. Mass of the sleeve: M2, moment of inertia in the z direction about the sleeve’s
center of mass: (Izz)G, length of the sleeve: L2 location of the center of mass of
the sleeve: G2

In order to proceed, the potential and kinetic energies must be determined. In
the calculation of the potential energy, the appropriate reference points must be
determined and the un-stretched length of the spring accounted for. Let L0 be the
un-stretched length of the spring. The potential energy of the spring may be written

as: Vspring = 1
2k

(
x1 − L0 − L2

2

)2
(Fig. 3.12). There are two other sources for

potential energy due to gravity, the potential energies of the rod and the sleeve,
respectively. In order to calculate the potential energy of the rod, it is recommended
to use the equilibrium position of the rod (hanging vertically) as the reference
position. The un-stretched length of the spring has no bearing on the calculation
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Fig. 3.12 Pendulum with a moveable mass and spring

of the potential energy of the rod. The potential energy is the difference in the
heights between the rod in its reference position and the rod which has rotated by an
angle θ (see Fig. 3.13).

It should be noted that the change in potential energy from one position to
another is path independent (because gravity is a conservative force). In other
words, it isn’t necessary to carry out the calculation of − ∫

mg · dr . The only
thing that must be accounted for is �h, the change in height (or the change in
the vertical position) of the center of gravity of the object between its equilibrium
position and its perturbed or rotated position. The potential energy of the rod
is: Vrod = L1

2 M1g (1 − cos θ). Similarly, the potential energy of the sleeve is:

Vsleeve = M2g
(
L0 + L2

2 − x1 cos θ
)

. Note that the initial height was
(
L0 + L2

2

)

and the final vertical position was x1 cos θ . The important entity is the difference
between the initial and final heights and it is this difference which gives us the
potential energy. Adding together the potential energies of the spring, rod, and sleeve
results in the overall potential energy, which is (Fig. 3.14):

V = Vspring + Vrod + Vsleeve = 1

2
k

(

x1 − L0 − L2

2

)2

+ L1

2
M1g (1 − cos θ) + M2g

(

L0 + L2

2
− x1 cos θ

)

(3.93)
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Fig. 3.13 Pendulum with a moveable mass and spring—geometrical definitions I

Fig. 3.14 Pendulum with a moveable mass and spring-geometrical definitions II
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The kinetic energy T consists of the rotational kinetic energy of the rod,
rotational kinetic energy of the sleeve, and the translational kinetic energy of the
sleeve. The rotational kinetic energy of the rod is: Trot−rod = 1

2 (Izz)A θ̇2. Similarly
the rotational kinetic energy of the sleeve is: Trot−sleeve = 1

2 (Izz)G θ̇2. The moment
of inertia of the rod is calculated by the parallel axis theorem because it is pinned
at A. As for the sleeve, since it is in motion both rotationally and in translation, and
the center of mass of the sleeve is in motion (due to its translation), then it is more
convenient to use the sleeve’s moment of inertia about its center of mass. Because of
the sleeve’s translatory motion, this must also be accounted for in the kinetic energy
calculation of the sleeve. The translational kinetic energy of the sleeve is therefore:

Ttrans-sleeve = 1

2
M2 (VG)T0 · (VG)0 (3.94)

The velocity of the center of mass of the sleeve, in inertial coordinates, is: (VG)0.
Note that (VG)0 is a vector. The velocity (VG)0 with respect to coordinates X1 − Y1
is: (VG)0 = ẋ1 î + θ̇x1ĵ . This implies that (VG)T0 · (VG)0 = ẋ2

1 + θ̇2x2
1 . The total

kinetic energy of the sleeve is therefore:

Tsleeve = Trot-sleeve + Ttrans-sleeve = 1

2
(Izz)G θ̇2 + 1

2
M2

(
ẋ2

1 + θ̇2x2
1

)
(3.95)

Hence the total system kinetic energy is of the form:

T = Trod + Tsleeve = 1

2
(Izz)A θ̇2 + 1

2
(Izz)G θ̇2 + 1

2
M2

(
ẋ2

1 + θ̇2x2
1

)
(3.96)

Since we have two independent generalized coordinates x1 and θ , we are required
to apply the d’Alembert–Lagrange’s equation twice, once for each coordinate. For
the x1 generalized coordinate, the d’Alembert–Lagrange’s equation results in:

1. d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
= Qj

2. d
dt

(
∂T
∂ẋ1

)
= d

dt

(
2 1

2M2ẋ1

)
= M2ẍ1

3. − ∂T
∂x1

= − 1
2M22x1θ̇

2
1 = −M2x1θ̇

2
1 . This is the centripetal force acting on the

sleeve.
4. ∂V

∂qj
= ∂V

∂x1
= k

(
x1 − L0 − L2

2

)
− M2g cos θ

5. Summing the above three terms we have: M2ẍ1 −M2x1θ̇
2
1 +k

(
x1 − L0 − L2

2

)
−

M2g cos θ = Q1.

There should be a centripetal term in the −X1 direction since the system is
undergoing circular motion. In addition there is a coriolis force in the Y1 direction.
Note furthermore that the equations are scalar equations and not vector equations.
The only thing required to complete the Lagrangian formulation in the generalized
x1 coordinate direction is to find Q1. The virtual work in the x1 direction must
be determined. The virtual displacement δx1 is in the x1 direction. The virtual
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work is the product of the component in the x1 direction of the externally applied
force F0 cos ωt with the virtual displacement δx1. The virtual work δW1 may be
written as:

δW1 = F(t) · dr = [F0 cos ωt sin θ î + F0 cos ωt cos θ ĵ ] · δx1 î

= F0 cos ωt sin θδx1 = Q1δx1 ⇒ Q1 = F0 cos ωt sin θ (3.97)

The d’Alembert–Lagrangian dynamics in the x1 direction are therefore:

M2ẍ1 − M2x1θ̇
2
1 + k

(

x1 − L0 − L2

2

)

− M2g cos θ = F0 cos ωt sin θ (3.98)

where the linear acceleration term is ẍ1, the centripetal acceleration is −x1θ̇
2
1 ,

the spring force is k
(
x1 − L0 − L2

2

)
, and the gravitational acceleration along the

rod in the X1 direction is −M2g cos θ . Once completed, it always helps to check
the resulting equations for consistency, based upon classical Newtonian physics.
The linear centripetal and coriolis accelerations in classical Newtonian physics are,
respectively:

(r̈)Oxy = ẍ1acentripetal = � × (� × r) ; acoriolis = 2� × (ṙ)Oxy

r = x1 î; (ṙ)Oxy = ẋ1 î;� = θ̇ k̂

⇒ acentripetal = θ̇ k̂ ×
(
θ̇ k̂ × x1 î

)
= −(θ̇ )2x1 î

acoriolis = 2θ̇ k̂ × ẋ1 î = 2θ̇ ẋ1ĵ (3.99)

Questions to be Answered for Consistency Check of q1 = x1

• Does the equation contain a linear acceleration term along the X1 axis?
• Is there a centripetal acceleration term only in the x1 direction?
• Is there no coriolis acceleration term in the x1 direction?
• Is there a spring force?
• Is there a component of gravity in the direction of motion, up and down the rod?
• Do the sum of the above terms equal any externally applied forces in that

direction?

Another test for consistency is to make sure the system satisfies the laws of
statics. Assume that all of the time derivatives are zero. In addition, at static
equilibrium the system is completely vertical, and so θ = 0, which implies that
cos θ = 1, sin θ = 0. The dynamic equation along the X1 direction becomes:

k

(

x1 − L0 − L2

2

)

− M2g = 0 ⇒ k

(

x1 − L0 − L2

2

)

= M2g (3.100)
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This condition states that when static equilibrium is achieved, the spring stretches

by the amount
(
x1 − L0 − L2

2

)
in order to compensate for the gravitation force due

to the mass of the sleeve M2g.
As for the d’Alembert–Lagrange equations in the θ direction, we have:

1. T = Trod + Tsleeve = 1
2 (Izz)A θ̇2 + 1

2 (Izz)G θ̇2 + 1
2M2

(
ẋ2

1 + θ̇2x2
1

)

2. V = Vspring + Vrod + Vsleeve =
1
2k

(
x1 − L0 − L2

2

)2 + L1
2 M1g (1 − cos θ) + M2g

(
L0 + L2

2 − x1 cos θ
)

3. d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
= Qj

4. d
dt

(
∂T

∂θ̇

)
= d

dt

(
1
2 [Izz]A 2θ̇ + 1

2 [Izz]G 2θ̇ + 1
2M22θ̇x2

1

)

= d
dt

(
[Izz]A θ̇ + [Izz]G θ̇ + M2θ̇x2

1

)

= (
[Izz]A θ̈ + [Izz]G θ̈ + M2θ̈x2

1 + 2M2θ̇x1ẋ1
)

5. − ∂T
∂θ

= 0

6. ∂V
∂qj

= ∂V
∂θ

=
(

L1
2 M1g sin θ + M2gx1 sin θ

)

7. δW2 = Q2δθ = F · dr , dr =
(
x1 + L2

2

)
δθ ĵ , F (t) = F0 cos ωt sin θ î +

F0 cos ωt cos θ ĵ

⇒ Q2δθ = F · dr =
(
x1 + L2

2

)
F0 cos ωt cos θδθ

⇒ Q2 =
(
x1 + L2

2

)
F0 cos ωt cos θ

8. Summing the above three terms we have:
(
[Izz]A θ̈ + [Izz]G θ̈ + M2θ̈x2

1+
2M2θ̇x1ẋ1

) +
(

L1
2 M1g sin θ + M2gx1 sin θ

)
=

(
x1 + L2

2

)
F0 cos ωt cos θ

Remarks

• The dynamics of the second equation describe the swinging motion of the
pendulum, as well as the linear motion of the sleeve as it slides up and down
along the rod.

• The swinging motion is in the ĵ direction. Hence we will end up with an equation
in the ĵ direction.

• The angle θ speeds up or slows down along its trajectory. As the pendulum
reaches its highest angular value at the top of the swing, the angular velocity
θ̇ goes to zero, while at the bottom of the swing, when the pendulum is vertical,
the angular velocity is at a maximum.

• This implies that we expect to have terms in θ̈ (Eulerian terms).
• There is also a coriolis term of the form 2M2θ̇ ẋ1x1 in the ĵ direction or along the

Y1 axis. This is to be expected since the sleeve is sliding up and down along the
rod and has a non-zero velocity ẋ1, while the pendulum is swinging.

• Whenever a body moves radially while it is swinging in a circle, the result will
be a coriolis acceleration.

• This implies that the angular momentum of the body is changing and a force is
required to change the angular momentum.



3.8 Recap: Writing d’Alembert–Lagrangian Dynamics 113

• For the generalized force Q2, the virtual work is F ·dr . The work is force applied
over a distance.

• A virtual deflection in angle times the moment arm gives you a distance. The

small displacement dr is the linear trajectory traced out by
(
x1 + L2

2

)
δθ . The

distance x1 is from the pivot point of the pendulum to the center of gravity of
the sleeve and L2

2 is from the sleeve’s center of gravity to the end of the sleeve.
The sum of the two terms is the effective position or radius of the sleeve or the
moment arm with respect to the pivot point and its product with δθ , the virtual
angle, describes the distance the sleeve has traveled.

• The direction of the angular motion of the sleeve is along the Y1 axis or in the ĵ

direction.
• This equation is a torque equation.
• The term M2x

2
1 looks like the parallel axis theorem for the sleeve. Since we used

the (Izz)G which is the sleeve’s moment of inertia at its center of mass, then the
sum of (Izz)G + M2x

2
1 = (Izz)A is the sleeve’s moment of inertia around the

pivot point of the pendulum.

Questions to be Answered for Consistency Check of q2 = θ

• Does the equation contain angular acceleration terms?
• Is there a coriolis acceleration term?
• Are there torques due to the masses M1g,M2g, that is,

(
L1
2 M1g sin θ +

M2gx1 sin θ
)

?

• Do the sum of the above terms equal any externally applied moments?

Example 8: Cart and Pendulum, Lagrange Method

Recitation 8—Video Times—3:57–35:00

This example originates from Vandiver’s video of Recitation 8 (see Vandiver-
2.003SC Engineering Dynamics. Video of Recitation 8: Cart and Pendulum
Lagrange Method [46] and the Recitation 8 Notes [38]).

A cart and pendulum, shown below, consists of a cart of mass, m1, moving on a
horizontal surface, without friction, and acted upon by a spring with spring constant
k. From the cart, a pendulum consisting of a uniform rod of length, l, and mass, m2,
is suspended at and pivots about point A (see Fig. 3.15). There are no external forces
acting on the system.
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Fig. 3.15 Cart with spring and pendulum

Find the following using Lagrange’s method:

1. T , the system’s kinetic energy
2. V , the system’s potential energy
3. v2

G, the square of the magnitude of the pendulum’s center of gravity

The generalized coordinates are: q1 = x; q2 = θ . The linear velocity of the
pendulum’s center of mass, vG, is given by:

vG = ẋÎ + l

2
θ̇ ĵ =

(

ẋ + l

2
θ̇ cos θ

)

Î + l

2
θ̇ sin θĴ

⇒ vT
G · vG = v2

G =
(

ẋ2 + l2θ̇2

4
cos2 θ + lẋθ̇ cos θ

)

+ l2θ̇2

4
sin2 θ

=
(

ẋ2 + l2θ̇2

4
+ lẋθ̇ cos θ

)

(3.101)

The kinetic energy T is:

T = 1

2
m1ẋ

2 + 1

2
m2v

2
G + 1

2
IGθ̇2; v2

G =
(

ẋ2 + l2θ̇2

4
+ lẋθ̇ cos θ

)

⇒ T = 1

2
m1ẋ

2 + 1

2
m2

(

ẋ2 + l2θ̇2

4
+ lẋθ̇ cos θ

)

+ 1

2

(
m2l

2

12

)

︸ ︷︷ ︸
IG

θ̇2 (3.102)
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where IG = m2l
2

12 is the moment of inertia of the pendulum (slender rod) at its center
of mass G. Since the point at which the rod is pinned moves, i.e., the rod doesn’t
rotate about a fixed point, it is more convenient, when calculating the kinetic energy,
to separate the motion of the rod into a rotation and translation of its center of mass
(see Nielsen et al. [16, p. 4]). Consequently, the parallel axis theorem for the moment
of inertia of the rod cannot be used and the moment of inertia about the rod’s center
of mass must be utilized instead.

The total kinetic energy is made up of the sum of the kinetic energies of all of
the rigid bodies in the system. There are two rigid bodies, namely the cart and the
pendulum and so each one has its own kinetic energy. The velocity of the cart on
wheels is ẋ. The linear velocity of the pendulum is also ẋ at the point at which it is
pinned to the cart but it also has an angular velocity of 1

2 lθ̇ in the ĵ direction (vG =
θ̇ k̂ × l

2 î = 1
2 lθ̇ ĵ ). Summing the two velocities of the pendulum and transforming

the velocity in the ĵ direction to components in the Î and Ĵ directions gives us the
vG, that is, vG = (

ẋ + l
2 θ̇ cos θ

)
Î + l

2 θ̇ sin θĴ . This allows us to write the kinetic
energy as the sum of the kinetic energies of each individual rigid body (see equation
for T above—Eq. (3.102)). In general form, the kinetic energy may be written as:

T = 1

2
m1ẋ

2 + 1

2
m2vG · vG + 1

2
ωT IGω (3.103)

where ω = θ̇ k̂, IGω = Izzω = m2l
2

12 θ̇ k̂, and ωT IGω = m2l
2

12 θ̇2. The potential energy
V may be written as:

V = 1

2
kx2 + m2g

l

2
(1 − cos θ) (3.104)

The Lagrangian L = T − V is:

L = 1

2
m1ẋ

2 + 1

2
m2

(

ẋ2 + l2θ̇2

4
+ lẋθ̇ cos θ

)

+1

2

(
m2l

2

12

)

θ̇2 − 1

2
kx2 − m2g

l

2
(1 − cos θ) (3.105)

The d’Alembert–Lagrange’s equations for q1 = x are as follows:

1. d
dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Qj ;L = T − V ; d

dt

(
∂V
∂q̇j

)
= 0

2. d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+ ∂V

∂qj
= Qj ⇒ d

dt

(
∂T
∂ẋ

) − ∂T
∂x

+ ∂V
∂x

= Q1

3. d
dt

(
∂T
∂ẋ

) = d
dt

(
[m1 + m2] ẋ + 1

2m2lθ̇ cos θ
)

= [m1 + m2]ẍ + 1
2m2lθ̈ cos θ − 1

2m2lθ̇
2 sin θ

4. ∂T
∂x

= 0
5. ∂V

∂x
= kx

6. Summing: d
dt

(
∂T
∂ẋ

)− ∂T
∂x

+ ∂V
∂x

= [m1 +m2]ẍ + 1
2m2lθ̈ cos θ − 1

2m2lθ̇
2 sin θ +kx
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Note that − 1
2m2lθ̇

2 sin θ resembles a centripetal acceleration term. Since there are
no non-conservative forces, then Q1 = 0 and the dynamic equation for q1 = x is:

[m1 + m2]ẍ + 1

2
m2lθ̈ cos θ − 1

2
m2lθ̇

2 sin θ + kx = 0 (3.106)

The d’Alembert–Lagrange’s equations for q2 = θ are as follows:

1. d
dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Qj ;L = T − V ; d

dt

(
∂V
∂q̇j

)
= 0

2. d
dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Qj ⇒ d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= Q2

3. L = 1
2m1ẋ

2 + 1
2m2

(
ẋ2 + l2 θ̇2

4 + lẋθ̇ cos θ
)

+ 1
2

(
m2l

2

12

)
θ̇2 − 1

2kx2 −
m2g

l
2 (1 − cos θ)

4. d
dt

(
∂L
∂θ̇

)
= d

dt

(
1
2m2

[
l2θ̇
2 + lẋ cos θ

]
+ m2l

2

12 θ̇2
)

=
1
2m2

(
ẍl cos θ − ẋlθ̇ sin θ + l2

2 θ̈
)

+ m2l
2

12 θ̈

5. − ∂L
∂θ

= −
[
− 1

2m2
(
lẋθ̇ sin θ

) − m2gl
2 sin θ

]
=

[
1
2m2

(
lẋθ̇ sin θ

) + m2gl
2 sin θ

]

6. Summing: 1
2m2

(
ẍl cos θ − ẋlθ̇ sin θ + l2

2 θ̈
)

+ m2l
2

12 θ̈ +
[

1
2m2

(
lẋθ̇ sin θ

)+
m2gl

2 sin θ
]

= 1
2m2

(
ẍl cos θ + l2

2 θ̈
)

+ m2l
2

12 θ̈ + m2gl
2 sin θ = Q2 = 0

Adding a dashpot (or damper) and an external time-varying force F(t) will
introduce non-conservative forces into the system which must now be accounted
for as generalized forces Q1 and Q2, respectively (see Fig. 3.16). The virtual work
due to the non-conservative forces is:

δWNC =
2∑

j=1

Qjδqj = (F (t) − bẋ)
︸ ︷︷ ︸

Q1

δx + (0)
︸︷︷︸
Q2

δθ (3.107)

Note that the non-conservative force F(t) does not undergo any motion at its point
of application, when a virtual displacement of δθ is introduced. The same is true for
the non-conservative damper force −bẋ, hence Q2 = 0.

The two dynamic equations then become:

[m1 + m2]ẍ + 1

2
m2lθ̈ cos θ − 1

2
m2lθ̇

2 sin θ + kx + bẋ = F(t)

1

2
m2

(

ẍl cos θ + l2

2
θ̈

)

+ m2l
2

12
θ̈ + m2gl

2
sin θ = 0 (3.108)

Adding another horizontal force F2(t) at the bottom end of the pendulum will
result in (see Fig. 3.17) an additional force in the Î direction which is: F2(t)Î ·
δxÎ = F2(t)δx. This implies that Q1δx = (F (t) − bẋ + F2(t)) δx ⇒ Q1 =
F(t) − bẋ + F2(t). Freezing δx and allowing only δθ motion, some work will
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Fig. 3.16 Cart with spring, damper, and pendulum

Fig. 3.17 Cart with spring, damper, and pendulum-geometrical considerations
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be performed by F2(t). The variation δθ causes a motion of the slender rod
at distance lδθ in the ĵ direction. Projecting this distance onto the Î axis, the
distance becomes l cos θδθ Î . This implies that the work performed by F2(t) is:
δWθ = Q2δθ = F2(t)Î · l cos θδθ Î = F2(t)l cos θδθ . This further implies that
Q2 becomes: Q2 = F2(t)l cos θ . Note that the generalized force in the x direction
has the units of force and the generalized force in the θ direction has the units of
torque.

3.9 Lagrange Multipliers for Constrained Systems

The following section is based upon Chap. 2 in the book by L. Meirovitch
(L. Meirovitch—Methods of Analytical Dynamics [23, pp. 52–55]) and Chapters
9 and 10 in Fitzpatrick’s book [11, pp. 128, 147–148].

Assume without loss of generality that we have a system described by two
generalized variables q1and q2. The two generalized coordinates q1 and q2 are
not independent and the holonomic (time independent or scleronomous) constraint
connecting the two variables is of the form f (q1, q2) = 0. The Lagrangian L is
a function of both q1 and q2 and their derivatives with respect to time, that is:
L = L(q1, q2, q̇1, q̇2). From the extended Hamilton’s principle (Eq. 3.46), we have:

∫ t2

t1

(δL)dt = 0;L = T − V ; t = t1, t2

⇒
∫ t2

t1

(δL)dt =
∫ t2

t1

2∑

k=1

[
∂T

∂qk

− ∂V

∂qk

− d

dt

(
∂T

∂q̇k

)]

δqkdt = 0

⇒
∫ t2

t1

([
∂T

∂q1
− ∂V

∂q1
− d

dt

(
∂T

∂q̇1

)]

δq1

+
[

∂T

∂q2
− ∂V

∂q2
− d

dt

(
∂T

∂q̇2

)]

δq2

)

dt = 0

⇒
∫ t2

t1

([
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

δq1 +
[

∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

δq2

)

dt = 0; t = t1, t2

(3.109)

It was previously noted that the generalized coordinates q1 and q2 are not inde-
pendent and at a fixed instant of time the variation of the constraint equation
f (q1, q2) = 0 becomes:

δf = ∂f

∂q1
δq1 + ∂f

∂q2
δq2 = 0 ⇒ δq2 = δf − ∂f

∂q1
δq1

∂f
∂q2

f = 0 ⇒ δf = 0 ⇒ δq2 = − ∂f

∂q1

∂q2

∂f
δq1 (3.110)
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Eliminating δq2 from the d’Alembert–Lagrange equations results in:

∫ t2

t1

([
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

δq1 +
[

∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

δq2

)

dt = 0; t = t1, t2

=
∫ t2

t1

([
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

δq1 −
[

∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]
∂f

∂q1

∂q2

∂f
δq1

)

dt = 0;

t = t1, t2

=
∫ t2

t1

([
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]
∂q1

∂f
−
[

∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]
∂q2

∂f

)

δq1dt = 0;

t = t1, t2 (3.111)

The above equation must be satisfied for all possible perturbations of δq1, which

implies that the integrand must be identically zero. Letting
[

∂L
∂q1

− d
dt

(
∂L
∂q̇1

)]
∂q1
∂f

=
[

∂L
∂q2

− d
dt

(
∂L
∂q̇2

)]
∂q2
∂f

= λ(t) leads to the following result:

[
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

︸ ︷︷ ︸
A

∂q1

∂f
=

[
∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

︸ ︷︷ ︸
B

∂q2

∂f

⇒ A
∂q1

∂f
= B

∂q2

∂f
= λ(t)

⇒ A − λ(t)
∂f

∂q1
= 0;B − λ(t)

∂f

∂q2
= 0

⇒
[

∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

− λ(t)
∂f

∂q1
= 0

[
∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

− λ(t)
∂f

∂q2
= 0 (3.112)

The Lagrange multiplier, λ(t), may be chosen in such a way as to ensure that
both of Eq. (3.112) go to zero. Because the virtual work must remain zero, it
follows that the generalized force Qk must act in a direction which is conjugate to
the corresponding generalized coordinate. Assuming that the dynamical system in
question is conservative, then from Eqs. (3.22), (3.33), and (3.130), the generalized
work and the generalized forces may be written as:

δWc =
N∑

i=1

Fi · δri =
N∑

i=1

Fi ·
n∑

j=1

∂ri

∂qj

δqj =
n∑

j=1

(
N∑

i=1

Fi · ∂ri

∂qj

)

δqj =
n∑

j=1

Qjδqj
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⇒ Qj =
N∑

i=1

Fi · ∂ri

∂qj

j = 1, 2, . . . n

Fi = −∂V

∂ri
⇒ Qj = −

N∑

i=1

∂V

∂ri
· ∂ri

∂qj

= − ∂V

∂qj

j = 1, 2, . . . n (3.113)

where V is the system’s potential energy. By analogy, the generalized constraint
force (i.e., the generalized force responsible for maintaining the corresponding
constraint) takes the form: Q̂k = λ(t)

∂f
∂qk

. Extending the analysis to n generalized
coordinates which are subject to the holonomic constraint f (q1, q2, . . . , qn) = 0,
we find that:

[
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

− λ(t)
∂f

∂q1
= 0

[
∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

− λ(t)
∂f

∂q2
= 0

...
[

∂L
∂qn

− d

dt

(
∂L
∂q̇n

)]

− λ(t)
∂f

∂qn

= 0

(3.114)

The generalization to multiple (m) holonomic constraints of the form fj (q1, q2, . . . ,

qn); j = 1, 2, . . . , m is straightforward and may be written as:

[
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)]

−
m∑

j=1

λj (t)
∂fj

∂q1
= 0

[
∂L
∂q2

− d

dt

(
∂L
∂q̇2

)]

−
m∑

j=1

λj (t)
∂fj

∂q2
= 0

...

[
∂L
∂qn

− d

dt

(
∂L
∂q̇n

)]

−
m∑

j=1

λj (t)
∂fj

∂qn

= 0

(3.115)

The term ∂L
∂qk

− ∑m
j=1 λj (t)

∂fj

∂qk
may be viewed as the derivative with respect to the

generalized coordinate qk of an augmented potential function L − ∑m
j=1 λj (t)fj .

The idea is to render this augmented potential function stationary by requiring that
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all the terms of the form ∂L
∂qk

−∑m
j=1 λj (t)

∂fj

∂qk
; k = 0, 1, . . . , n are identically equal

to zero. When the generalized coordinates are not independent but are subject to m

non-holonomic constraints having the Pfaffian form:

n∑

k=1

ajkdqk + aj0dt = 0; j = 1, 2, . . . , m (3.116)

where the coefficients ajk, k = 1, 2, . . . , n are functions of the generalized
coordinates qi , the virtual displacements are:

n∑

k=1

ajkδqk = 0; j = 1, 2, . . . , m (3.117)

Multiplying the virtual displacements by λi, i = 1, 2, . . . , m and adding all of the
results to the d’Alembert–Lagrange equations, we obtain:

d

dt

(
∂L
∂q̇k

)

− ∂L
∂qk

=
m∑

l=1

λlalk + Qk k = 1, 2, . . . , n (3.118)

The terms
∑m

l=1 λlalk k = 1, 2, . . . , n may be regarded as equivalent forces, which
are in fact constraint forces, that is:

Q
′
k =

m∑

l=1

λlalk k = 1, 2, . . . , n (3.119)

There are n + m equations, n d’Alembert–Lagrange equations of the form:
d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= ∑m

l=1 λlalk + Qk k = 1, 2, . . . , n and m non-holonomic

constraint equations
∑n

k=1 ajkdqk + aj0dt = 0; j = 1, 2, . . . , m. Hence, there
are n generalized coordinates and m Lagrange multipliers which must be found. If
the constraints are holonomic, that is, fl(q1, q2, . . . , qn, t) = 0 l = 1, 2, . . . , m,
then alk = ∂fl/∂qk .

Example 9: Virtual Work (see Meirovitch [23, pp. 62–63])

The system in Fig. 3.18 is composed of a mass m connected to a weightless link
of length L and a spring with a spring coefficient k as shown. In the spring’s un-
stretched position, the link is in the horizontal position. The principle of virtual
work may be used to calculate the angle θ corresponding to the equilibrium position
of the system for the given configuration. The position of the ends of the link in the
equilibrium position is given by:

x = L(1 − cos θ); y = L sin θ (3.120)
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Fig. 3.18 System used to demonstrate the virtual work principle

where x is the amount by which the spring is stretched and y is the distance by
which the mass m is lowered below the horizontal. The virtual work is as follows:

δW = −kxδx + mgδy = 0; δx = L sin θδθ; δy = L cos θδθ (3.121)

Recall that the variation δ operates on functions in the same way as a derivative.
The virtual displacements in the x and y directions are δx = L sin θδθ and δy =
L cos θδθ , respectively. Substituting the above values for δx and δy and x = L(1 −
cos θ) into the equation for virtual work results in:

δW = −kL(1 − cos θ)L sin θδθ + mgL cos θδθ = 0 ⇒ (1 − cos θ) tan θ = mg

kL

(3.122)

The solution to the above transcendental equation results in the equilibrium value of
θ . It is also possible to solve this problem with Lagrange multipliers. The constraint
equations may be written as:

f1 = x − L(1 − cos θ) = 0; f2 = y − L sin θ = 0

⇒ δf1 = δx − L sin θδθ = 0; δf2 = δy − L cos θδθ = 0 (3.123)
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Multiplying δf1 by λ1 and δf2 by λ2, respectively, and adding the results to δW we
obtain:

δW = −kxδx+mgδy+λ1 (δx − L sin θδθ)+λ2 (δy − L cos θδθ) = 0 (3.124)

Replacing x in the above equation by x = L(1 − cos θ) and regrouping the terms in
the above equation as coefficients of the parameters δx, δy, δθ , we have:

[−kL(1 − cos θ) + λ1] δx+[mg + λ2] δy−[λ1L sin θ + λ2L cos θ ] δθ (3.125)

Equating the coefficients of δx, δy, and δθ , respectively, to zero in the above
results in:

[−kL(1 − cos θ) + λ1] = 0; [mg + λ2] = 0; [λ1L sin θ + λ2L cos θ ] = 0
(3.126)

The solutions for λ1, λ2, and θ then follow, and are:

λ1 = mg cot θ; λ2 = −mg; mg

kL
= (1 − cos θ) tan θ (3.127)

The Lagrange multiplier λ2 is simply the reaction force at point A to the mass m,
while λ1 is the horizontal reaction force at point B.

3.10 A Systematic Procedure for Generalized Forces

Recitation 9—Video Times—2:18–14:49, Lecture 16—Video
Times—28:16–56:16

The problem of generalized forces and the method by which they may be deduced
is presented below and relies in part on the videos and handout (Recitation 9
Notes: Generalized Forces with Double Pendulum Example) of Recitation 9 and
Lecture 16 by Prof. Vandiver et al. (Vandiver and Gossard—Video of Lecture 16:
Kinematic Approach to Finding Generalized Forces [43] and Vandiver et al. Video
of Recitation 9: Generalized Forces [47].)

Consider a three-dimensional rigid body with n generalized coordinates, qj , upon
which N non-conservative forces are brought to bear, and where the distance from
the origin O of an inertial coordinate system to the point of application of force Fi

on the body is ri . For the same position vector ri , the virtual displacement of the
point when generalized coordinates are varied is δri (see Fig. 3.19). δri is the total
virtual displacement at the point of application of force Fi and it is the sum of all of
the virtual displacements of the generalized coordinates, or:

δri = ∂ri

∂q1
δq1 + ∂ri

∂q2
δq2 + · · · + ∂ri

∂qn

δqn (3.128)
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Fig. 3.19 3D rigid body with n generalized coordinates acted upon by N non-conservative forces

The work done by a force is: dW = F · dr = |F ||dr| cos ν, where ν is the
angle between the force and the infinitesimal displacement dr . Note that only
the component of the force, which is projected in the direction of the motion, is
important. The virtual work done by all the non-conservative forces is therefore:

δWNC =
N∑

i=1

Fi · δri =
N∑

i=1

Fi ·
n∑

j=1

∂ri

∂qj

δqj =
n∑

j=1

(
N∑

i=1

Fi · ∂ri

∂qj

)

δqj =
n∑

j=1

Qjδqj

(3.129)

Hence the generalized forces Qj are given by:

Qj =
N∑

i=1

Fi · ∂ri

∂qj

j = 1, 2, . . . n (3.130)

If the rigid body executes only planar motion, then it has three degrees of freedom,
since it can move in the X direction, the Y direction and rotate with angle θ around
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its Z axis. The three generalized coordinates can be X, Y , and θ . Accompanying
these generalized coordinates are the virtual displacement δX, δY , and δθ and these
are used to calculate the virtual work of the rigid body. The generalized forces
QX,QY , and Qθ are the entities being sought after.

Example 10: Generalized Forces on a Double Pendulum

Recitation 9—Video Times—2:18–14:49

A double pendulum is shown in Fig. 3.20 with a force F acting at point P . The
generalized coordinates for this case are q1 = θ1 and q2 = θ2 (see Vandiver—
2.003SC Engineering Dynamics. Recitation 9 Notes: Generalized Forces with
Double Pendulum Example [39]). The location of the force with respect to the origin
O is described by the vector rp which can be written in terms of the Î and Ĵ unit
vectors as:

rP = (l1 sin θ1 + l2 sin θ2) Î + (−l1 cos θ1 − l2 cos θ2) Ĵ (3.131)

The partial derivatives of rP with respect to θ1 and θ2 are then:

Fig. 3.20 Generalized forces acting on a double pendulum
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∂rP

∂θ1
= l1 cos θ1Î + l1 sin θ1Ĵ ; ∂rP

∂θ2
= l2 cos θ2Î + l2 sin θ2Ĵ (3.132)

The applied force F may be decomposed along the two coordinates’ directions as:
F = FxÎ + FyĴ . From Eq. (3.130), the generalized forces Qθ1 ,Qθ2 become:

Qθ1 = F · ∂rP

∂θ1
=

(
FxÎ + FyĴ

)
·
(
l1 cos θ1Î + l1 sin θ1Ĵ

)

= Fxl1 cos θ1 + Fyl1 sin θ1

Qθ2 = F · ∂rP

∂θ2
=

(
FxÎ + FyĴ

)
·
(
l2 cos θ2Î + l2 sin θ2Ĵ

)

= Fxl2 cos θ2 − Fyl2 sin θ2 (3.133)

The virtual work done on the system by the generalized forces and small displace-
ments δθ1, δθ2 is therefore:

δWNC = Qθ1δθ1 + Qθ2δθ2 = (
Fxl1 cos θ1 + Fyl1 sin θ1

)
δθ1

+ (
Fxl2 cos θ2 + Fyl2 sin θ2

)
δθ2 (3.134)

The double pendulum has two natural frequencies and two mode shapes, which may
be obtained by writing out the d’Alembert–Lagrange equations.

Additional Remarks on Recitation 9 (See Vandiver-2.003SC
Engineering Dynamics. Video of Recitation 9: Generalized
Forces [47])

Recitation 9—Video Times—2:18–14:49

1. If a force is added at point B of the double pendulum, with components Bx and
By , then a vector rb from the origin to the point of application of the force B

would be: rb = l1 sin θ1Î − l1 cos θ1Ĵ ⇒ ∂rb
∂θ1

= l1 cos θ Î − l1 sin θ1Ĵ .

2. The generalized force would then be: QB =
(
BxÎ + ByĴ

)
· ∂rb

∂θ1
=

(
BxÎ + ByĴ

)
·
(
l1 cos θ Î − l1 sin θ1Ĵ

)
= Bxl1 cos θ1 − Byl1 sin θ1.

3. There are therefore two contributions to the total generalized force Qθ1 : Qθ1 =
∑2

i=1 Fi · ∂ri
∂qj

⇒ Qθ1 = F · ∂rp
∂θ1

+ B · ∂rb
∂θ1

.
4. The same procedure as for Qθ1 is used to calculate the generalized force Qθ2 .
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Example 11: Torques and Kinetic Energy on a Rotating
Cylinder and Disk

Recitation 9—Video Times—15:31–35:40

1. For the system in Fig. 3.21, assume that the coordinate system x(î), y(ĵ ), z(k̂)

at the instant considered is an inertial coordinate system (we freeze the motion
at the instant considered).

2. Since the body B (mass m2) is axially symmetric, at any instant of time, a set
of principal coordinates could be defined for the body B which are parallel to
the x(î), y(ĵ ), z(k̂) coordinates at the instant considered.

3. The total angular velocity of the body B is: ω = �k̂ − ω1ĵ .
4. The mass m2 has a linear component vB = �k̂ × lĵ = −�lî. This equation

describes the instantaneous linear motion of the center of mass of m2. The mass
m2 is also rotating with angular velocity ω = �k̂ − ω1ĵ and so the kinetic
energy T2 of mass m2 is calculated with the following formula (see Eq. 2.16):

T = 1

2
Mv2

B + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz− 2ωxωyIxy − 2ωxωzIxz− 2ωyωzIyz

]

+M
[
vBx(ωyz − ωzy) + vBy(ωzx − ωxz) + vBz(ωxy − ωyx)

]

(3.135)

Fig. 3.21 Another example for the calculation of torques and kinetic energy
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where x, y, z, the centers of gravity of the rigid body are: x = ∫
xdm/M, y =∫

ydm/M, z = ∫
zdm/M , the moments of inertia Ix, Iy, Iz are, respectively:

Ix = ∫
(y2 + z2)dm, Iy = ∫

(x2 + z2)dm, Iz = ∫
(x2 + y2)dm and

where the cross products of inertia Ixy, Ixz, Iyz are: Ixy = ∫
xydm, Ixz =∫

xzdm, Iyz = ∫
yzdm. It may be shown that:

[
ω2

xIx + ω2
yIy + ω2

zIz − 2ωxωyIxy − 2ωxωzIxz − 2ωyωzIyz

]
= ωT Iω

(3.136)

5. Since B is axially symmetric, the inertial cross products are zero. In addition,
the body B rotates around its center of mass and hence x = y = z = 0, and so
the general formula for kinetic energy becomes:

T2 = 1

2
m2v

2
B + 1

2

[
ω2

xIx + ω2
yIy + ω2

zIz

]
(3.137)

6. Additionally, since ω = �k̂ − ω1ĵ , this implies that ωx = 0, ωy = −ω1, ωz =
� and so the above formula becomes:

T2 = 1

2
m2v

2
B + 1

2

[
0 + ω2

1Iy + �2Iz

]
(3.138)

7. Finally vB · vB =
(
−�lî

)
·
(
−�lî

)
= �2l2 and so the kinetic energy T2

becomes:

T2 = 1

2
m2�

2l2 + 1

2

[
ω2

1Iy + �2Iz

]
(3.139)

8. The kinetic energy of the rod (m1) is: T1 = 1
2Io�

2 = 1
2

m1l
2

3 �2.
9. The total kinetic energy is:

T = T1 + T2 = 1

2

m1l
2

3
�2 + 1

2
m2�

2l2 + 1

2

[
ω2

1Iy + �2Iz

]
(3.140)

10. The moments of inertia of the body B (defined with respect to its center of
gravity) are:

HG =
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦

⎡

⎣
ωx

ωy

ωx

⎤

⎦ =
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦

⎡

⎣
0

−ω1ĵ

�k̂

⎤

⎦ =
⎡

⎣
0

−Iyω1ĵ

Iz�k̂

⎤

⎦

(3.141)
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11. The angular momentum at point O of mass m2 with velocity vB = −�lî is:

HO = HG + rG/O × PG/O

HO = HG + lĵ × m2vB = −Iyω1ĵ + Iz�k̂ +
(
l2m2�

)
k̂

=
(
Iz + l2m2

)
�k̂ − Iyω1ĵ (3.142)

Recall that ĵ × −î = k̂.
12. What are the torques required to make this system continue to rotate?
13. Torque is the derivative with respect to time of HO , that is:

∑
τext = dHO

dt
+ vA/O × PG/O; vA/O = vO = 0

dHO

dt
=

(
∂HO

∂t

)

rotatingf rame

+ ω × HO

⇒
∑

τext =
(

∂HO

∂t

)

rotatingf rame

+ vA/O
︸ ︷︷ ︸

=0

×PG/O + ω × HO

= ∂

∂t

[(
Iz + l2m2

)
�k̂ − Iyω1ĵ

]
+ ω × HO

= 0 +
(
�k̂ − ω1ĵ

)
×
[(

Iz + l2m2

)
�k̂ − Iyω1ĵ

]

= �k̂ ×
(
−Iyω1ĵ

)
+
(
−ω1ĵ

)
×
(
Iz + l2m2

)
�k̂

= �ω1

(
Iy − Iz − l2m2

)
î (3.143)

where
∑

τext is the sum of all externally applied torques. The term ω × HO

appears because of the change of direction of two of the unit vectors (both î and
ĵ are continuously changing direction). The î and ĵ unit vectors are changing

direction at the rate of �. The explicit time derivative term
(

∂HO

∂t

)

rotatingf rame

accounts for the remaining time-varying entities in the problem and it equals
zero—i.e., there are no time-varying entities except for the unit vectors (both î

and ĵ are continuously changing direction).
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Example 12: Spring and Mass on Inclined Face
of Moving Cart

Lecture 16—Video Times—9:30–20:45, 37:50–53:29

This problem was taken from: Vandiver 2.003SC Engineering Dynamics. Video of
Lecture 16: Kinematic Approach to Finding Generalized Forces [43] and 2.003SC
Engineering Dynamics. and Problem Set 6-Solutions [37].

The cart has mass mo and an inclined surface as shown in Fig. 3.22. A uniform
disk of mass m and radius R rolls without slipping on the inclined surface. The
disk is restrained by a spring with spring constant K1, attached at one end to the
cart. The other end of the spring attaches to an axle passing through the center of
the disk (center of mass of the disk). The cart is also attached to a stationary wall
by a spring with spring constant K2, and a dashpot with constant “b.” A horizontal
external force F1(t) is applied at the center of mass of the disk as shown.

Fig. 3.22 Spring and mass on inclined face of moving cart
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1. Kinetic Energy T and Potential Energy V :

(a) There are two generalized coordinates which completely describe the
motion of this system X(Î ) and x1(î).

(b) Assume that there are no external non-conservative forces being applied to
the system, that is, F1Î = 0 and bẊ = 0.

(c) Assume further that the static position of spring K1 exactly balances out
the gravitational force on the disk in the generalized x1(î) direction, that is:
K1x1static

= mg sin θ .
(d) The only remaining term in the potential energy in the x1(î) direction is due

to the stretching of the K1 spring beyond its equilibrium position, that is:
VK1 = 1

2K1x
2
1 .

(e) There is no gravitational potential due to the cart in the X(Î ) direction
since the cart doesn’t undergo any change in height along its trajectory
(its trajectory is horizontal only). The only potential energy in the X(Î )

direction is due to the spring K2 and it is: VK2 = 1
2K2X

2.
(f) Adding the two potential energy terms results in the total system potential

energy, which turns out to be: V = VK1 + VK2 = 1
2K1x

2
1 + 1

2K2X
2.

(g) This is a planar motion problem and the axis of rotation of the disk is
a principal axis, perpendicular to the plane of translational motion of the
system or in the zk̂ direction.

(h) The disk rotates with an angular velocity of ωz = θ̇ = − ẋ1
R

.
(i) The velocity of the center of mass of the disk, with respect to the origin O

of the inertial coordinate system, equals the velocity of the cart as a whole
with respect to O and the velocity of the center of mass of the disk with
respect to the cart.

(j) In mathematical terms, we have: (vG)O = (vC)O + (vG)C = ẊÎ + ẋ1 î,
where (vG)O is the velocity of the center of mass of the disk with respect to
O, (vC)O is the velocity of the cart wrt O, and (vG)C is the velocity of the
center of mass of the disk wrt the cart.

(k) The unit vector in the îth direction may be rewritten in the Î , Ĵ coordinate
system as: î = cos θ Î − sin θĴ .

(l) The (vG)C term then becomes: (vG)C = ẋ1

(
cos θ Î − sin θĴ

)
.

(m) The kinetic energy of the disk with respect to the origin O is therefore:
Tdisk = 1

2m(vG)O · (vG)O + 1
2Izω

2
z = 1

2m
(
Ẋ2 + 2Ẋẋ1 cos θ + ẋ2

1 cos2 θ+
ẋ2

1 sin2 θ
) + 1

2Izω
2
z = 1

2m
(
Ẋ2 + 2Ẋẋ1 cos θ + ẋ2

1

) + 1
2Izω

2
z .

(n) The kinetic energy of the cart, as it moves in the X(Î ) direction is: Tcart =
1
2moẊ

2.
(o) The total kinetic energy of the system is the sum of the kinetic energies of

the cart and the disk and it is equal to: T = Tcart + Tdisk = 1
2moẊ

2 +
1
2m

(
Ẋ2 + 2Ẋẋ1 cos θ + ẋ2

1

) + 1
2Izω

2
z .

(p) The distance traveled in the x1 î direction by the disk is: x1 = Rθ . This
implies that ẋ1 = Rθ̇ .
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(q) For the disk, its mass moment of inertia is: Iz = 1
2mR2. In addition,

ωz = θ̇ ⇒ ω2
z =, and so the total kinetic energy becomes: T = 1

2moẊ
2 +

1
2m

(
Ẋ2 + 2Ẋẋ1 cos θ + ẋ2

1

)+ 1
2

mR2θ̇2

2 = 1
2moẊ

2+ 1
2m

(
Ẋ2 + 2Ẋẋ1 cos θ+

ẋ2
1

) + 1
2

mẋ2
1

2 .

2. Equations of Motion Derived by Means of Lagrange’s Equation:

(a) The Lagrangian L = T −V is: L = 1
2moẊ

2+ 1
2m

(
Ẋ2 + 2Ẋẋ1 cos θ + ẋ2

1

)+
1
2

mẋ2
1

2 −
(

1
2K1x

2
1 + 1

2K2X
2
)

.

(b) Lagrange’s equation for the generalized variable X is: d
dt

( ∂L
∂Ẋ

) − ∂L
∂X

=
QX = 0.

(c) Lagrange’s equation for the generalized variable x1 is similarly: d
dt

( ∂L
∂ẋ1

) −
∂L
∂x1

= Qx1 = 0.
(d) Since there are no external non-conservative forces acting on the system, the

generalized forces QX and Qx1 are both equal to zero.
(e) ∂L

∂Ẋ
= (mo + m)Ẋ + mẋ1 cos θ

(f) d
dt

( ∂L
∂Ẋ

) = (mo + m)Ẍ + mẍ1 cos θ

(g) − ∂L
∂X

= K2X

(h) d
dt

( ∂L
∂Ẋ

) − ∂L
∂X

= (mo + m)Ẍ + mẍ1 cos θ + K2X = 0

(i) ∂L
∂ẋ1

= mẊ cos θ + mẋ1 + 1
2 + mẋ1

(j) d
dt

( ∂L
∂ẋ1

) = mẌ cos θ + 3
2mẍ1

(k) − ∂L
∂x1

= K1x1

(l) d
dt

( ∂L
∂ẋ1

) − ∂L
∂x1

= mẌ cos θ + 3
2mẍ1 + K1x1 = 0

Summarizing, the two equations of motion are:

(mo + m)Ẍ + mẍ1 cos θ + K2X = 0

mẌ cos θ + 3

2
mẍ1 + K1x1 = 0 (3.144)

3. Generalized Forces:
Assume now that there are two external non-conservative forces being applied

to the system, that is, F1Î and −bẊÎ (the force from the dashpot or damper).
This implies that QX �= 0 and Qx1 �= 0. The position vector from the origin O

of the inertial coordinate system to the point of application of the external non-
conservative force F1 is (r1)O . Since the total motion of this point (the point of
application of the external non-conservative force) is made up of the motion of
the main cart plus the motion of the disk relative to the main cart, the position
vector (r1)O may be written as: (r1)O = (rA)O + (r1)A, where (rA)O is the
position vector of point A with respect to the origin O and (r1)A is the point of
application of the external non-conservative force F1 with respect to the point
A on the cart. The vector from the origin to point A may be written in inertial
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coordinates as (rA)O = XÎ + Y Ĵ . The unit vector î may be expressed in terms
of unit vectors Î and Ĵ as follows: î = cos θ Î − sin θĴ . Hence, x1 î becomes:
x1(cos θ Î − sin θĴ ). The position vector (r1)O may therefore be written as:

(r1)O = XÎ + Y Ĵ︸ ︷︷ ︸
(rA)O

+ x1(cos θ Î − sin θĴ )
︸ ︷︷ ︸

(r1)A

(3.145)

Two forces in the XÎ direction contribute to the generalized force QX, where the
contribution of F1 to QX is (QX)F1 . The virtual work due to F1 is shown to be:

(Qx)F1δX = F1Î · ∂(r1)O

∂X
δXÎ (3.146)

However,

∂(r1)O

∂X
= Î ⇒ (QX)F1δX = F1Î · Î δX = F1δX (3.147)

The virtual work in the x1 direction due to F1 is: (Q1)x1δx1 and it turns out to be:

(Q1)x1δx1 = F1Î · ∂r1

∂x1
δx1 î (3.148)

As was demonstrated above r1 in terms of the inertial coordinates is: r1 =
x1(cos θ Î−sin θĴ ), and so the partial derivative of r1 with respect to x1 becomes:

r1 = x1(cos θ Î − sin θĴ ); ∂r1

∂x1
= (cos θ Î − sin θĴ ) (3.149)

Hence the virtual work in the x1 direction due to F1 is:

(Q1)x1δx1 = F1Î · (cos θ Î − sin θĴ )δx1 = F1 cos θδx1 ⇒ (Q1)x1 = F1 cos θ

(3.150)

Given that the wheels of the cart don’t slip, then the friction at the point of contact
with the wheels of the cart doesn’t do any work. In addition, a small virtual
deflection, δx1, doesn’t make the cart move so that there are no other forces
in the problem that move when the system undergoes a small movement in x1.
Hence, the total (Q1)x1 is: (Q1)x1 = F1 cos θ . We found, previously that QX, the
generalized force due to the motion of the cart (due to F1) was: (QX)F1 = F1.
The vector from the origin to the point of application of the force due to the
dashpot is (r2)O and the magnitude of the dashpot force is −bẊ. The position
vector (r2)O may be written in the form:

(r2)O = (X − a1)Î + (Y − a2)Ĵ (3.151)
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The virtual work due to the dashpot is:

(QX)bẊδX = (QX)F2δX = −bẊÎ · ∂(r2)O

∂X
δXÎ = −bẊÎ · δXÎ = −bẊδX

(3.152)

Hence the total QX is:

QX = (QX)F1 + (QX)F2 = F1 − bẊ (3.153)

So whenever a position vector ri to the point of application of an external non-
conservative force Fi can be specified, then it can be used in the following
formula:

Qjδqj =
N∑

i=1

Fi · ∂ri

∂qj

δqj j = 1, 2, . . . n (3.154)

The foregoing procedure should be performed for each force that is applied. It
involves taking the derivative with respect to the coordinate qj and multiplying it
by δqj , which is the virtual work done by each of these forces. All of the virtual
work terms for each of the applied non-conservative forces are added together to
get the total virtual work done due to a deflection at the particular generalized
coordinate, qj . For example, in the case of QX, there are two contributions
because two forces were exerted on the main cart, F1 and −bẊ. And so the
summation in this problem, when the generalized variable is X, is for the two
contributions, F1 and F2.

Remarks

• In this problem, the two generalized coordinates are X in the inertial system
which describes the motion of the cart, and x1 which describes the motion of the
disk relative to the cart and it enables the distance vector (r1)O to be written as
follows: (r1)O = XÎ + Y Ĵ + x1(cos θ Î − sin θĴ ).

• The term x1(cos θ Î − sin θĴ ) is only relative to the cart.
• The motion of the cart plus the motion of the point relative to the cart yields the

total motion. The generalized coordinates were chosen in order to allow for a
description of those two motions.

• Application of a force to the disk may cause the cart to move; however, it should
be remembered that the generalized forces are what is desired, i.e., the application
of a force to the disk which may cause the cart to move is not the problem to be
solved when looking for the generalized forces.

• In the search for the generalized forces, motion of only one generalized coor-
dinate at a time, with all other generalized coordinates “frozen,” should be
performed. For example, while the disk is allowed to undergo a small deviation
in its location, the main cart should not move.
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• The consequence of that motion must be determined. The motion of the disk does
a little virtual work because there’s a generalized force operating on it over an
infinitesimal distance. If the cart’s position is perturbed, and the disk’s position
remains unchanged, the whole cart including the disk moves. But the amount
that the disk moves is exactly equal to the amount that the cart moves because
the disk’s position with respect to the cart is frozen.

• The motion of the cart, with the disk frozen (i.e., the relative position between
the disk and the cart is frozen or fixed) allows for the calculation of QX.

• Even though the force F1 is applied to the disk, the disk moves when the cart
moves. But the cart doesn’t move when the relative position between the cart and
the disk changes. The disk is free to move when the position of the cart is frozen.

• Recalling the discussion about complete and independent coordinates, x1 is
independent of X.

• Freezing x1 and making a change in X implies that the cart as a whole moves.
However freezing X still allows x1 to move. These coordinates are therefore
independent.

Example 13: Two Carts Connected By a Spring
(Video of Lecture 16—Vandiver [43])

Lecture 16—Video Times—56:40–1:03:35

Question: Given two masses connected by a spring, if the first mass is “pulled,”
will the second mass be “pulled” along by the first mass? Will the two masses “pull
each other along”? Why will there not be the “pull-along” effect on the second mass
from the first mass? Two carts both on wheels, with a spring in between them, are
depicted in Fig. 3.23.

Fig. 3.23 Two carts connected by a spring
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This is a planar motion problem. Each of these bodies is capable of planar motion
in the x and y directions and each can have a rotation. Rotation and motion in the
y direction are not however allowed (the cart has two wheels and can only move in
the X direction) so that the number of degrees of freedom of the system is 3*2-c =
6-2-2 = 2 degrees of freedom. How many generalized coordinates are needed? The
generalized coordinate for the first mass will be x1 and for the second mass it will
be x2.

The kinetic and potential energies of the system are:

T = 1

2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 ;V = 1

2
k (x1 − (x2 − l0)))

2 (3.155)

where l0 is the un-stretched length of the spring. The virtual work due to x1 is
therefore:

Qx1δx1 = F1 · ∂r1

∂x1
δx1 = F1δx1 ⇒ Qx1 = F1; r1 = x1 (3.156)

where Qx1 is the generalized force due to F1 (it’s equal to F1) and it’s the
generalized force exerted on the mass m1 (on the first cart). The virtual work in
the x2 direction is:

Qx2δx2 = 0 (3.157)

There are no external non-conservative forces on the second cart, so that Qx2 = 0.
When computing the generalized forces, all of the movements except one are frozen
and the work done due to the unfrozen motion must be determined. In reality, a force
F1 on the system will result in this whole system moving to the right.

Applying a steady force F1 on cart 1, the whole system will move to the right-
hand side. But for the purpose of computing the generalized force on each mass, fix
the positions of the masses at some instant of time, and then for one coordinate at a
time, cause a little virtual deflection and determine how much work gets done.

Example 14: (Example 7—Continued)—Pendulum with a
Mass and Spring (see Vandiver et al. [42])

Lecture 15—Video Times—1:05:00–1:21:16

The system consists of a steel rod with a metal sleeve on the outside of the rod and
attached to the rod by a spring. The metal sleeve slides up and down along the rod.
The rod, sleeve, and spring are attached at point A to a hinge and the whole system
can swing back and forth as a pendulum. The system has multiple sources of kinetic
energy and multiple forms of potential energy. For purposes of the problem, there



3.10 A Systematic Procedure for Generalized Forces 137

is a horizontal force F cos ωt located at the metal sleeve which pushes this system
back and forth. The problem is to derive the equations of motion of the system.
The motion is planar and there are two rigid bodies involved. Each rigid body has
six degrees of freedom, but because of planar motion, each body has a maximum
of three degrees of freedom. For planar motion, each rigid body can move in the
x and y directions and can rotate about the z axis, where they are not attached
together by the spring. The maximum number of degrees of freedom for the two
rigid bodies, each acting independently of the other is six. This problem has two
degrees of freedom, which are the angular displacement θ of the system from the
vertical and x1 the linear displacement of the sleeve’s center of mass along the rod
with respect to point A. The coordinate system X1 − Y1 rotates with the rod and
sleeve. The coordinates chosen are independent, since, freezing one of them, the
other can still traverse over the full range of values for that coordinate. They are
also complete since with the two coordinates, all parts of the system may be located
at all times. Furthermore, the generalized coordinates are also holonomic since the
number of independent generalized coordinates required to describe the motion of
the system equals the number of degrees of freedom (Fig. 3.24).

Fig. 3.24 Pendulum with a mass and spring—continued
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The equations of motion of the system were:

M2ẍ1 − M2x1θ̇
2
1 + k

(

x1 − L0 − L2

2

)

− M2g cos θ = Qx1

(
[Izz]A θ̈ + [Izz]G θ̈ + M2θ̈x2

1 + 2M2θ̇x1ẋ1

)
+
(

L1

2
M1g sin θ + M2gx1 sin θ

)

=
(

x1 + L2

2

)

F0 cos ωt cos θ = Qθ (3.158)

where [Izz]A is the moment of inertia around the Z axis of the rod at point A and
[Izz]G is the moment of inertia of the sleeve at its center of mass. In addition, due to
the parallel axis theorem, the term M2x

2
1 is added to [Izz]G in order to compensate

for the fact that rotation is at the point A and not at the mass center of the sleeve.

The terms
(

L1
2 M1g sin θ + M2gx1 sin θ

)
are the moments due to gravity acting on

the rod and sleeve, respectively. The virtual work along x1 may be written as:

Qx1δx1 = F2Ĵ · ∂r2

∂x1
δx1 î; r2 î = r2 cos θ Î + r2 sin θĴ ; î = cos θ Î + sin θĴ

r2 = x1; ∂r2

∂x1
= 1 ⇒ Qx1δx1 = F2Ĵ · (cos θ Î + sin θĴ )δx1 = F2 sin θδx1

(3.159)

The virtual work in the θ direction may be written in a similar manner as follows:

F2Ĵ · ∂r2

∂θ
δθr2 î = r2 cos θ Î + r2 sin θĴ ; ∂r2

∂θ
= −r2 sin θ Î + r2 cos θĴ

⇒ F2Ĵ · ∂r2

∂θ
δθ = F2Ĵ ·

(
r2 cos θĴ − r2 sin θ Î

)
= F2r2 cos θ

(3.160)

At static equilibrium, all of the derivatives and second derivatives with respect to
time tend to zero and the angle θ = 0, and so the dynamic Eq. (3.158) becomes:

k

(

x1 − L0 − L2

2

)

= M2g

where
(
x1 − L0 − L2

2

)
is the amount by which the spring is stretched due to M2g.
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3.11 Practice Finding Equations of
Motion—D’Alembert–Lagrange

Lecture 17 [44]—Video Times—0:00–9:00

This material was adapted from Vandiver and Gossard-2.003SC Engineering
Dynamics. Video of Lecture 17 [44].

The relevant equations for the direct method of finding the equations of motion
for a rigid body are the following:

1. Newton’s 2nd law:
∑

Fext = dPG/O

dt
= maG/O .

2. Torque about an arbitrary point A: τA =
(

dHA

dt

)

O
+vA/O ×PG/O =

(
dHG

dt

)

O
+

rG/A × maG/O . If the point A is at the center of mass, i.e., at point G, then
simplifications can be made. If the point A is moving, then the term vA/O ×PG/O

must be included in the equation for torque. The new equation is:
(

dHG

dt

)

O
+

rG/A × maG/O .
3. Angular momentum about point A: HA = HG + rA/G × PG/O .

Problems in mechanics may be analyzed from either the direct (Newton Euler) or
the d’Alembert–Lagrangian points of view. Several problems will be treated by both
the direct and d’Alembert–Lagrangian methods. The question of which method to
choose and the ease of use of either method will be discussed.

Hockey Puck Problem

Lecture 17 [44]—Video Times—9:10–40:56
We have a mass (puck) sliding on a horizontal frictionless plane (ice) with a moment
of inertia about the Z axis of (IZ)G = Mκ2, where κ is the radius of gyration of the
puck and M is its mass (Fig. 3.25).

The puck has a cord wrapped around it and it is being pulled with a force of
F1. The puck’s radius is R. The puck can both slide on the ice and rotate around
its Zp axis. In order to write the equations of motion, the number of degrees of
freedom must be determined. Which method is the simplest, Lagrange or the direct
method? How many independent coordinates are required? Is this problem one of
planar motion? It is a planar motion problem with one rotational degree of freedom
(around the Z axis) and two translation degrees of freedom (in the X − Y plane).
With three degrees of freedom, three equations of motion are required. One way
of solving this problem is by the direct method with the torque equation around
the center of mass. Another way would be to use the Lagrange method. The direct
method will be used to solve this problem with the X, axis aligned with the force
F1, which implies that θ = 0◦. The three independent coordinates are X, Y, θ . There
are no external forces in the Y direction which implies that ÿ = 0. The only external
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Fig. 3.25 Puck sliding on a horizontal frictionless plane

force in X direction is F1 and it equals the mass times the acceleration, that is,
F1 = Ma. The force equations are:

∑
Fy = mÿ = 0 ⇒ ÿ = 0;

∑
Fx = F1Î = Mẍ (3.161)

Rotation of the inertial frame X, Y,Z to be aligned with F1 has eliminated the need
for breaking the force F1 into components F1 cos θ in the X direction and F1 sin θ

in the Y direction. It has also resulted in ÿ = 0. The third equation is the equation
for the torque and it is:

∑
τ/G = dH/G

dt
= d ((Iz)Gωz)

dt
= (Iz)Gω̇z = (Iz)Gθ̈ = F1RK̂ (3.162)

where −RĴ × F1Î = F1Rk̂ is the external applied torque.

Remark Although the equation
∑

Fy = mÿ = 0 seems trivial, it shouldn’t be
discarded. It is a valid unconstrained equation of motion with a degree of freedom
in that direction. It was achieved by a judicious alignment of the inertial axes and the
fact that θ was nullified as a result. Otherwise three non-zero accelerations would
have resulted.
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Attention will now be turned towards solving the problem by means of the
d’Alembert–Lagrangian equations. It is equally simple, except for the derivation
of the generalized forces. The kinetic energy T is:

T = 1

2
(IZ)G θ̇2

︸ ︷︷ ︸
rotational K.E.

+ 1

2
M

(
ẋ2 + ẏ2

)

︸ ︷︷ ︸
translational K.E

(3.163)

Since there are no springs and no differences in heights in the X, Y plane, the
potential energy is simply:

V = 0 (3.164)

d’Alembert–Lagrange’s equation is:

d

dt

∂T

∂q̇j

− ∂T

∂qj

+ ∂V

∂qj

= Qj (3.165)

Letting the generalized coordinates be: q1 = θ, q2 = x, q3 = y and carrying out
the operations indicated in the above equation (d’Alembert–Lagrange’s equation)
results in:

1. ∂T
∂q̇1

= ∂T

∂θ̇
= (IZ)G θ̇

2. d
dt

∂T
∂q̇1

= d
dt

(IZ)G θ̇ = (IZ)G θ̈

3. ∂T
∂q1

= ∂T
∂θ

= 0

4. ∂V
∂q1

= 0

5. d
dt

∂T

∂θ̇
− ∂T

∂θ
+ ∂V

∂θ
= Qθ ⇒ (IZ)G θ̈ = Qθ

6. ∂T
∂q̇2

= ∂T
∂ẋ

= Mẋ

7. d
dt

∂T
∂q̇2

= d
dt

∂T
∂ẋ

= Mẍ

8. ∂T
∂q2

= ∂T
∂x

= 0

9. ∂V
∂q1

= ∂V
∂q1

= 0

10. d
dt

∂T
∂ẋ

− ∂T
∂x

+ ∂V
∂x

= Qx ⇒ Mẍ = Qx

11. Mÿ = Qy

Now, what remains is to find the three generalized forces Qθ,Qx,Qy . Assuming
that our X axis is parallel to the force F1, and there is a virtual displacement δy,
there would not be any virtual work since δy is perpendicular to F1 and virtual work
δW = F1 · δy = 0. This implies that Qy = 0. The approach to solving for the
remaining two generalized forces will be to use the rigorous kinematic theory. The
steps are as follows:

1. Return to the situation where the force F1 and the inertial X(Î ) axis are not
aligned (see Fig. 3.26).

2. Draw a position vector from the origin O of the coordinate frame to the point
of application of the force, point D on Fig. 3.26—position vector rD/O .
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Fig. 3.26 Generalized forces for sliding puck problem—I

3. Draw position vectors rG/O from O to the center of mass G and rG/D from G

to D.
4. Using vector algebra, it can easily be shown that rD/O = rG/O + rD/G

(see Fig. 3.26).
5. rG/O = XÎ + Y Ĵ

6. Define a coordinate system x1(î1), y1(ĵ1) which rotates with the rigid body.
7. rD/G = −Rĵ1

8. rD/O = rG/O + rD/G = XÎ + Y Ĵ − Rĵ1

9. ĵ1 expressed in an inertial frame is: ĵ1 = − sin θ Î + cos θĴ .
10. Combining terms results in: rD/O = XÎ +Y Ĵ −Rĵ1 = XÎ +Y Ĵ +R sin θ Î −

R cos θĴ = (X + R sin θ) Î + (Y − R cos θ) Ĵ .
11. F1 in the inertial coordinate system becomes: F1 î1 = F1 cos θ Î + F1 sin θĴ .
12. The virtual work in the XÎ direction is:

Q2 · δr = Qxδx = F1 cos θ Î · ∂rD/O

∂x
δx

From item 8, the partial derivative with respect to X of rD/O is 1 and so

Q2 · δr = F1 cos θ Î · ∂rD/O

∂x
δx = F1 cos θδx ⇒ Qx = F1 cos θ
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13. The virtual work in the Y Ĵ direction is:

Q3 · δr = Qyδy = F1 sin θĴ · ∂rD/O

∂y
δy

Once again, from item 8, the partial derivative with respect to Y of rD/O is 1
and so:

Q3 · δr = F1 sin θĴ · ∂rD/O

∂y
δy = F1 sin θδy ⇒ Qy = F1 sin θ

14. The virtual work in the θ direction is:

Qθδθ = F1 · ∂rD/O

∂θ
δθ = F1

(
cos θ Î + sin θĴ

)
· ∂rD/O

∂θ
δθ

rD/O = (X + R sin θ) Î + (Y − R cos θ) Ĵ

∂rD/O

∂θ
= R cos θ Î + R sin θĴ

⇒ Qθδθ = F1

(
cos θ Î + sin θĴ

)
· R

(
cos θ Î + sin θĴ

)
δθ

= F1R
(

cos2 θ + sin2 θ
)

δθ = F1RδθQθ ⇒ Qθ = F1R

(3.166)

The torque Qθ is not dependent on the angle θ , which is logical. Had the axes been
oriented initially in such a way that the force F1 was aligned with the X(Î ) axis and
perpendicular to the Y (Ĵ ) axis, then the angle θ would have been zero. The sine
and cosine terms then do not appear in the equation for rD/O and it is impossible to

calculate the partial derivative
∂rD/O

∂θ
required in order to obtain the generalized force

Qθ . The conclusion is that in order to carry out this procedure, the configuration
and orientation of the system should be in its most general form. Once the above
procedure has been completed, the problem can be simplified by letting θ = 0. For
this problem the intuitive method would have yielded results much more quickly.
For the intuitive method we could do the following:

1. For the system with the axes X(Î ), Y (Ĵ ), Z(K̂), allow a small deflection δx,
then the virtual work would be Qxδx = F1 cos θδx, which would mean that the
generalized force Qx = F1 cos θ

2. Similarly for δy, the virtual work would be Qyδy = F1 sin θδy and so the
generalized force Qy would be Qy = F1 sin θ

3. For a small displacement δθ , the puck would move a distance Rδθ and so the
virtual work would be Qθδθ · F1 = Rδθ · F1 = RF1δθ , which implies that
Qθ = RF1. Note that the motion Rδθ is in the same direction as F1.
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3.12 A Note on Equivalent Forces and Torques

Lecture 12 [41]—Video Times—46:23–50:02, Lecture 17
[44]—Video Times—40:56–45:29

This material was adapted from Vandiver and Gossard-2.003SC Engineering
Dynamics. Video of Lecture 12 (see [41]) and the Video of Lecture 17 (see [44]).
A rigid body has a center of mass G and an applied force F (see Fig. 3.27). The
force has a line of action and the perpendicular to that line of action is of length
d from the force’s line of action to the center of mass. Since the line of action
of the force doesn’t pass through the center of mass, the force exerts a torque (or
moment) on the body of τ = r × F = Fd. Figure 3.27a and b depict two entirely
equivalent situations, in that the two upper forces in Fig. 3.27b cancel each other
leaving only the force F on the lower left. The force F on the lower left side of
Fig. 3.27b and the force F on the upper right-hand side of Fig. 3.27b form a couple
which is equivalent to the couple in Fig. 3.27a of τ = Fd, both in magnitude
and direction. This implies that the system in Fig. 3.27b is equivalent to Fig. 3.27c
which has a force F whose line of action passes through the center of mass G,
along with a torque (or moment) τ = Fd of magnitude and direction the same as
Fig. 3.27a. In the general case (Fig. 3.27d), where many forces are being applied to
the body, an equivalent system consists of a force FT otal whose line of action passes
through the center of mass, and a torque τT otal (see Fig. 3.27e). The force FT otal is:
FT otal = ∑N

i=1 Fi . Similarly the total torque is: τT otal = ∑N
i=1 ri/G × Fi .

Fig. 3.27 Geometry for equivalent forces and torques
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Hockey Puck Problem—Continued

Lecture 17 [44]—Video Times—45:29–49:56
Returning to the hockey puck problem, the force F1 is in the direction as shown
in Fig. 3.28a. Carrying out the same procedure as discussed above, the system is
entirely equivalent to Fig. 3.28c, with a net force F1 in the positive Îdirection acting
at the mass center and a torque of τ = RF1K̂ also acting at the center of the mass.

The generalized force Qx is obtained from the virtual work due to the motion
of a generalized coordinate. The virtual work in the X direction is (the kinematic
approach is used):

Qxδx = F1Î · ∂r1

∂x
δx; r1 = XÎ + Y Ĵ ; ∂r1

∂x
= Î

∂r1

∂y
= Ĵ

⇒ Qxδx = F1Î · Î δx

Qyδy = F1Î · Ĵ δy = 0 ⇒ Qx = F1;Qy = 0 (3.167)

As for Qθ , the total torque τT = RF1K̂ and the corresponding virtual work
becomes:

Qθδθ = (τT )G · δθ = RF1K̂ · K̂δθ ⇒ Qθ = RF1 (3.168)

Note that no derivatives were required in order to obtain the Qθ term. The lesson to
be learned is that if the problem is shifted to the center of mass of the rigid body,
the r and its derivatives become much easier to compute and the application of the
torque becomes very obvious.

Fig. 3.28 Generalized forces for hockey puck problem—II
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Example 15: Pendulum with a Plane of Symmetry
(Video of Lecture 17—Vandiver [44])

Lecture 17—Video Times—50:28–1:00:04

The following figure contains an odd shaped pendulum with one plane of symmetry.
The plane of symmetry is parallel to the plane of the paper or perpendicular to the
pin about which the body rotates. The axis of rotation at point A is perpendicular to
the plane of symmetry, while the center of mass is at G. Any rigid body with a plane
of symmetry can have an axis perpendicular to its plane of symmetry about which
it can rotate as a pendulum. The pendulum in planar motion has three degrees of
freedom (translatory motion in the plane and one angular motion degree of freedom)
and two constraints (no translatory motion because it is pinned at one point), which
leaves one degree of freedom. The axis about which the pendulum rotates is a
principal axis of the body with mass moment of inertia (Iz)A = (Iz)G + ML2

(from the parallel axis theorem—see Beer et al. [4, pp 514]). Applying the general
equation of the direct method (see page 139) about point A, the equation of
motion is:

τA = dHA

dt
= d[(Iz)Aθ̇K̂]

dt
= (Iz)Aθ̈K̂ =

∑
τext (3.169)

The free body diagram of this pendulum is depicted in Fig. 3.29. The reaction forces
at the pin at point A are Rx and Ry and Mg is the gravitational force. The torque
which results from Mg with respect to point A is R × F = L sin θ Î × Mg(−Ĵ ) =
−MgL sin θK̂ . The direction of the torque is negative and points into the plane of
the paper. The torque equation then becomes:

(Iz)Aθ̈K̂ =
∑

τext = −MgL sin θK̂ ⇒ (Iz)Aθ̈ + MgL sin θ = 0 (3.170)

The following equation is the generic undamped equation of motion for any single
degree of freedom pendulum made out of a rigid body, and rotating about an axis
that is a principal axis, no matter what the shape of the body. The equation is:

(Iz)Aθ̈ + MgL sin θ = 0 (3.171)

If it can be rotated about one of its principal axes and not through G, the center
of mass of the body, any single degree of freedom system will oscillate. If the
axis of rotation passes through G, the torque due to gravitational forces is zero
and no oscillation will take place. If there is a damping force, then it will appear
on the right-hand side of the above equation. If a given body has a single plane of
symmetry, then the above equation applies when the axis of rotation is perpendicular
to that plane of symmetry and the body in question becomes a pendulum. The
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Fig. 3.29 Pendulum with a plane of symmetry

moment of inertia of Iz with respect to A or (Iz)A can be easily obtained from
the parallel axis theorem if (Iz)G is given (Fig. 3.29).

Example 16: Atwood’s Machine (Video of Lecture
17—Vandiver [44]+ Video of Lecture 10—Vandiver [40])

Lecture 17—Video Times—1:01:00–1:05:00, Lecture 10—Video
Times—17:52–31:50

The Atwood’s machine is depicted in Fig. 3.30. There are three rigid bodies involved
in planar motion, which implies that there are potentially nine degrees of freedom.
However, due to constraints, the two masses can neither rotate nor move in the Î

direction; therefore, each mass has one degree of freedom. In addition the pulley
can only rotate, leaving it with only one degree of freedom. The rope connecting the
two masses doesn’t slip, which implies that Rθ = y, thus imposing an additional
constraint on the system. The masses are connected, so that when one moves
upwards by a distance of say y, the other mass moves down by the same amount. So,
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Fig. 3.30 Atwood’s machine

finally, we end up with a one degree of freedom system. Both masses are initially at
the same starting positions with respect to the Ĵ coordinate, when they are released.
If the pulley is not massless, then the moment of inertia of the pulley system is:
IA = m3κ

2, where m3 is the pulley’s mass and κ is its radius of gyration. From the
free body diagram of the whole system it is apparent that the reaction force N on
the pivot point at A doesn’t introduce any moments. The moments are created by
m1g and m2g and are: (m1gR − m2gR)K̂ . The tensions in the cord T are internal
to the system and are therefore not of concern. Another way of looking at it is to
note that the T which supports mass m1 creates an equal and opposite moment to
the T which supports mass m2, thus resulting in zero moments produced by T.
The angular momentum with respect to point A that is hA may be written as:

rm1/A × Pm1/O + rm2/A × Pm2/O = (m1 + m2) Rẏk̂

since rm1/A = rm2/A = R and Pm1/O = m1ẏk̂, Pm2/O = m2ẏk̂ . The time
derivative of hA turns out to be:

dhA

dt
= (m1 + m2) Rÿk̂

Note that lowercase h was used since the masses m1 and m2 are considered to be
mass particles. The sum of the torques with respect to point A is therefore:
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∑
τA = dhA

dt
+ vA/O
︸ ︷︷ ︸

=0

×PO

∑
τA = (m1gR − m2gR)K̂ = dhA

dt
= (m1 + m2) Rÿk̂

ÿ = m1 − m2

m1 + m2
g (3.172)

The term vA/O = 0 since the point A doesn’t move with respect to the point O. In
this problem, it was assumed that the pulley was massless. If that isn’t the case, then
a term would have to be added to hA and to the time derivative of hA to account
for the mass of the pulley such that: dhA

dt
= (m1 + m2) Rÿk̂ + IAθ̈ . It’s possible to

relate θ̈ to ÿ, since y = Rθ ⇒ ÿ = Rθ̈ .

Example 17: Falling Stick Problem (Lecture
10-2.003J/1.053J—Dynamics and Control I—Peacock [27])

A stick with uniformly distributed mass m and length L slides without (or with)
friction as it falls. For the moment, assume that there is a friction force F . Its center
of mass is located at G(xc, yc) as in Fig. 3.31. The position vector rc of the center
of mass is:

rc = xcÎ + ycĴ = xcÎ + L

2
sin θĴ (3.173)

The linear momentum PG is:

PG = mṙc = mẋcÎ + mL

2
θ̇ cos θĴ

The force equation which is the time derivative of the linear momentum is:

∑
Fext = dPG

dt
= mẍcÎ + mL

2

(
θ̈ cos θ − θ̇2 sin θ

)
Ĵ (3.174)

Assuming for the moment that there are no forces in the X(Î ) direction, then
mẍc = 0. In the Y (Ĵ ) direction, the sum of forces leads to: N − mg =
mL
2

(
θ̈ cos θ − θ̇2 sin θ

) ⇒ N = mg + mL
2

(
θ̈ cos θ − θ̇2 sin θ

)
. The moment

equation at the center of mass may be written as:

τext = dHG

dt
K̂ = d(Iz)Gθ̇

dt
K̂ = (Iz)Gθ̈K̂ = −N

L

2
cos θK̂ (3.175)
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Fig. 3.31 Falling stick problem

where (Iz)G is the moment of inertia of the stick in the K̂ direction (directed out of
the page) with respect to its center of mass. Combining the result previously derived
for N with the moment equation, we have:

(Iz)Gθ̈ = −
[

mg + mL

2

(
θ̈ cos θ − θ̇2 sin θ

)] L

2
cos θ

⇒
(

(Iz)G + mL2

4
cos2 θ

)

θ̈ − mL2

4
θ̇2 sin θ cos θ + mgL

2
cos θ = 0

(3.176)

If there is a friction force F , then the acceleration in the X(Î ) direction becomes
(Fig. 3.31):

mẍc = μN ⇒ ẍc = μ

m
N = μ

m

[

mg + mL

2

(
θ̈ cos θ − θ̇2 sin θ

)]

(3.177)
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3.13 Lagrangians, Hamiltonians, and the Legendre
Transformation

In classical mechanics, the Lagrangian is used to derive a system of n second-order
differential equations (for a system with n degrees of freedom), while the Hamilto-
nian formulation results in a system of 2n first-order differential equations called
Hamilton’s equations with some special properties. In particular, the derivatives
(states) in this system are uncoupled, and the differential equations can be derived
from a single (scalar) function called the Hamiltonian (see Van Brunt [36, pp. 159–
170]). Hence, from a computational point of view, the Hamiltonian formulation
is advantageous. Note that the n second-order differential equations which are the
outcome of the d’Alembert–Lagrange procedure may be converted into a system of
2n first-order differential equations by designating the generalized velocities q̇i = vi

as additional states. However the resulting set of first-order differential equations
may or may not have coupled states or may be non-symmetric with respect to
qi and vi . The Hamiltonian, on the other hand, uses generalized velocities qi and
generalized momenta pi defined as:

pi = ∂L
∂q̇i

, i = 1, 2, . . . , n (3.178)

The resulting 2n Hamiltonian equations of motion for qi and pi have an elegant
symmetric uncoupled form which are referred to as canonical equations. The
Hamiltonian, as will be shown in the sequel, may be obtained from a Legendre
transformation of the d’Alembert–Lagrangian equations. It should be noted that
both formalisms lead to equations of motion describing the same trajectory.

Legendre Transformations
Contact transformations play an important role in differential equations and geome-
try. A contact transformation depends on the derivatives of the dependent variables
and one of the simplest and most effective of the contact transformations is known
as the Legendre transformation. This transformation provides the link between the
d’Alembert–Lagrange and Hamilton’s equations. Let f (x) be a smooth convex
function such that f ′′(x) > 0 and let p be the derivative (or the slope) of y = f (x)

at x (with respect to the independent variable x), that is, p = f ′(x), where (·)′
denotes the derivative with respect to the independent variable. The derivative p is
a strictly monotonic function of x. This implies that there exists a single value of
the slope p for each given value of x and vice versa. The positive definiteness of
the second derivative of f , that is, f ′′(x) > 0, suggests that f (x) is strictly convex
in shape. Geometrically, under these conditions, any point on f (x) is determined
uniquely by the slope of its tangent line. Regarding x(p) to be a function of p, it is
possible to transform from the coordinates (x, f (x)) to (p,H(p)) by introduction
of the following function which is a simple example of a Legendre transformation:

H(p) = −y(x) + px (3.179)
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A notable feature of the above transformation is that it is an involution, i.e., the
transformation is its own inverse. To see this, note that

dH(p)

dp
= − d

dp
y(x) + dpx

dp
= −dy

dx

dx

dp
+ p

dx

dp
+ x

dp

dp

= (−y′(x) + p)
︸ ︷︷ ︸

=0

dx

dp
+ x = x

−H(p) + px = −(−y(x) + px) + px = y(x) (3.180)

Note that (−y′(x) + p) = 0 since y′(x) = p by definition. The above calculations
show that if we apply the transformation to the pair (p,H(p)) we are able to recover
(x, y(x)). Summarizing the above, we have:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p = df
dx

f (x) = −H(p) + px

� �

x = dH
dp

H(p) = −f (x) + px

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.181)

Consider the following function of n variables ui, i = 1, . . . , n (see Meirovitch
[23, pp. 91–97]), F = F(u1, u2, . . . , un) and define a new set of n variables vi, i =
1, . . . , n such that:

vi = ∂F

∂ui

, i = 1, 2, . . . , n (3.182)

In order to ensure the independence of the new set of variables vi , the determinant
of the Jacobian of the gradient of F must not equal zero or the Hessian matrix must
not be singular, that is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂v1
∂u1

∂v1
∂u2

· · · ∂v1
∂un

...
... · · · ...

∂vn

∂u1

∂vn

∂u2
· · · ∂vn

∂un

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2F
∂u1u1

∂2F
∂u1u2

· · · ∂2F
∂u1un

...
... · · · ...

∂2F
∂unu1

∂2F
∂unu2

· · · ∂2F
∂unun

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�= 0 (3.183)

This will allow us to solve for the u′
i s in terms of the v′

i s. A new function G =∑n
i=1 uivi − F , which is an n-dimensional Legendre transformation, is defined

and the variables ui are expressed in such a manner so that G may be written only
in terms of the v′

i s, that is, G = G(v1, v2, . . . , vn). Since the sets of variables ui

and vi are independent, they may each be assigned infinitesimal arbitrary variations
δvi, δui allowing the variation of G to become:
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Fig. 3.32 Strictly convex
function used in the
derivation of a simple
legendre transformation

δG =
n∑

i=1

(uiδvi + viδui) −
n∑

i=1

∂F

∂ui

δui

n∑

i=1

[

uiδvi +
(

vi − ∂F

∂ui

)

δui

]

(3.184)

Seeing that G = G(v1, v2, . . . , vn), it follows that:

δG =
n∑

i=1

∂G

∂vi

δvi (3.185)

Based on the fact that vi = ∂F
∂ui

(see Eq. 3.182), Eqs. (3.184) and (3.185) become
(Fig. 3.32):

δG =
n∑

i=1

[uiδvi] =
n∑

i=1

∂G

∂vi

δvi

⇒ ui = ∂G

∂vi

, i = 1, . . . , n (3.186)

Hamiltonian Function
Using the foregoing results, the Hamiltonian function is defined to be:

H =
n∑

i=1

∂L
∂q̇i

q̇i − L =
n∑

i=1

piq̇i − L (3.187)
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The Hamiltonian function may be written in vector shorthand as:

H(q1, q2, . . . , qn, p1, p2, . . . , pn, t) = H(q, p, t) (3.188)

where q, p are both vectors of length n and q is the vector of generalized coordi-
nates, while p is the vector of generalized momenta. Notice that the Hamiltonian
is a Legendre transformation of the Lagrangian. The variation of the Hamiltonian
function H , which appears in Eq. (3.187), may be written in the form:

δH =
n∑

i=1

(

q̇iδpi + piδq̇i − ∂L
∂qi

δqi − ∂L
∂q̇i

δq̇i

)

=
n∑

i=1

(

q̇iδpi − ∂L
∂qi

δqi

)

(3.189)

since pi = ∂L
∂q̇i

from Eq. (3.178). The variation of H is also calculated to be:

δH(q, p, t) =
n∑

i=1

(
∂H
∂qi

δqi + ∂H
∂pi

δpi

)

(3.190)

and thus we have from Eqs. (3.189) and (3.190) that:

q̇i = ∂H
∂pi

, − ∂L
∂qi

= ∂H
∂qi

, i = 1, 2, . . . , n (3.191)

Noticing that G = ∑n
i=1 uivi − F has the same form as the Hamiltonian function

H = ∑n
i=1 piq̇i − L, the terms in Eq. (3.191) are the result of the Legendre

transformation.
Assuming that we have a holonomic system, that is, the generalized coordinates

are independent of each other, and there are no generalized non-conservative
forces acting on our system (Qi = 0; i = 1, 2, . . . , n), the d’Alembert–Lagrange
equations are (see Eq. (3.56)):

d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

+ ∂V

∂qi

= 0; i = 1, 2, . . . , n

⇒ d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

= 0 (3.192)

From Eqs. (3.187), (3.191), and (3.192), the following relations result:

pi = ∂L
∂q̇i

; ṗi = d

dt

(
∂L
∂q̇i

)

; d

dt

(
∂L
∂q̇i

)

= ∂L
∂qi

= −∂H
∂qi
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⇒ ṗi = −∂H
∂qi

; q̇i = ∂H
∂pi

, i = 1, 2, . . . , n (3.193)

The 2n set of first-order differential equations (n for q̇i and n for ṗi) in Eq. (3.193)
are generally referred to as the Hamiltonian canonical equations. The derivative
with respect to time of the Hamiltonian H may be written as:

ṗi = −∂H
∂qi

; q̇i = ∂H
∂pi

, i = 1, 2, . . . , n

d

dt
{H(q1, q2, . . . , qn, p1, p2, . . . , pn, t)} =

n∑

i=1

(
∂H
∂qi

q̇i + ∂H
∂pi

ṗi

)

+ ∂H
∂t

=
n∑

i=1

(−ṗi q̇i + q̇i ṗi ) + ∂H
∂t

= ∂H
∂t

⇒ dH
dt

= ∂H
∂t

(3.194)

Equation (3.194) was obtained by substitution of the Hamiltonian canonical equa-
tions (see 3.193) into the time derivative of H . If the system’s constraints are
holonomic while the system itself is subjected to generalized non-conservative
forces, that is, forces which are not derivable from a potential function, then the Qi

terms which appear in 3.56 must be taken into account. Equation (3.56) is repeated
below for the reader’s convenience.

d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

+ ∂V

∂qi

= Qi; i = 1, 2, . . . , n

⇒ d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

= Qi; i = 1, 2, . . . , n (3.195)

Since the generalized momenta pi were defined to be (see Eq. 3.178): pi = ∂L
∂q̇i

,

i = 1, 2, . . . , n, then, based upon Eq. (3.195), the generalized momenta take the
following form:

ṗi = Qi + ∂L
∂qi

, i = 1, 2, . . . , n (3.196)

and the Hamiltonian canonical equations become:

q̇i = ∂H
∂pi

; ṗi = Qi − ∂H
∂qi

, i = 1, 2, . . . , n (3.197)
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In the event that m constraints are non-holonomic (the generalized coordinates are
not independent), that is (see Eq. 3.116):

n∑

i=1

aji q̇i + aj0 = 0; j = 1, 2, . . . , m

and the generalized forces are derivable from a potential function (conservative
forces), which means that Qi = 0 , i = 1, 2, . . . , n, then with the aid of Lagrange
multipliers (see Eq. 3.118), the d’Alembert–Lagrange equations become:

d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

=
m∑

l=1

λlali , i = 1, 2, . . . , n (3.198)

Once again the Hamiltonian canonical equations become:

ṗi = −∂H
∂qi

+
m∑

l=1

λlali; q̇i = ∂H
∂pi

, i = 1, 2, . . . , n (3.199)

Finally, for non-conservative forces which are derivable from Rayleigh’s dissipation
function F , the d’Alembert–Lagrange equations and the corresponding Hamiltonian
canonical equations are:

d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

+ ∂F

∂q̇i

= 0; i = 1, 2, . . . , n

⇒ ṗi = −∂H
∂qi

− ∂F

∂q̇i

; q̇i = ∂H
∂pi

, i = 1, 2, . . . , n (3.200)

Outline of the Procedure to Obtain the Hamiltonian (see Greiner [15, pp. 327–
331])

1. Form the Lagrangian L
2. Calculate the vector of generalized momenta (see Eq. 3.178) pi = ∂L

∂q̇i
, i =

1, 2, . . . , n

3. The Hamiltonian (Eq. 3.187) is written as:

H =
n∑

i=1

∂L(qi, q̇i , t)

∂q̇i

q̇i − L(qi, q̇i , t) =
n∑

i=1

piq̇i − L(qi, q̇i , t)

4. The total differential of the Lagrangian L(qi, q̇i , t) is:

dL =
n∑

i=1

∂L
∂qi

dqi +
n∑

i=1

∂L
∂q̇i

dq̇i + ∂L
∂t

(3.201)
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5. The d’Alembert–Lagrange equations for a system with conservative forces and
holonomic constraints are (see Eq. (3.192)):

d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

= 0 ⇒ ṗi = ∂L
∂qi

6. The total differential of H(p, q, t), utilizing the calculated total differential of L
in Eq. (3.201), is of the form:

dH(p, q, t) =
n∑

i=1

(pidq̇i + q̇idpi) −
n∑

i=1

∂L
∂qi

dqi −
n∑

i=1

∂L
∂q̇i

dq̇i − ∂L
∂t

dt

=
n∑

i=1

(pidq̇i + q̇idpi − ṗidqi − pidq̇i) − ∂L
∂t

dt

=
n∑

i=1

(q̇idpi − ṗidqi) − ∂L
∂t

dt (3.202)

7. The canonical Hamiltonian equations are easily derived from Eq. (3.202) as
follows:

q̇i = ∂H
∂pi

; ṗi = ∂L
∂qi

= −∂H
∂qi

; ∂H
∂t

= −∂L
∂t

Remarks

1. For a system consisting of N particles with holonomic, scleronomic con-
straints, subjected to conservative internal forces, the kinetic energy is: T =
1
2

∑N
i=1 mi ṙi · ṙi , i = 1, 2, . . . , N .

2. Since the constraints are time independent, there exist transformations between
the vector of Cartesian distances and the generalized coordinates, that is, rl =
rl (ql), l = 1, 2, . . . , n. It is therefore possible to recast ṙl in the following form:

ṙl =
n∑

l=1

∂rl

∂ql

q̇l (3.203)

3. Hence, the kinetic energy becomes:

T = 1

2

N∑

i=1

mi

⎛

⎝
n∑

j=1

∂ri

∂qj

q̇j

⎞

⎠ ·
(

n∑

k=1

∂ri

∂qk

q̇k

)

= 1

2

{

m1

[
∂r1

∂q1
q̇1 + ∂r1

∂q2
q̇1 + · · · + ∂r1

∂qn

q̇n

]
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[
∂r1

∂q1
q̇1 + ∂r1

∂q2
q̇1 + · · · + ∂r1

∂qn

q̇n

]}

+1

2

{

m2

[
∂r2

∂q1
q̇1 + ∂r2

∂q2
q̇2 + · · · + ∂r2

∂qn

q̇n

]

[
∂r2

∂q1
q̇1 + ∂r2

∂q2
q̇2 + · · · + ∂r2

∂qn

q̇n

]}

...

+1

2

{

mN

[
∂rN

∂q1
q̇1 + ∂rN

∂q2
q̇2 + · · · + ∂rN

∂qn

q̇n

]

[
∂rN

∂q1
q̇1 + ∂rN

∂q2
q̇2 + · · · + ∂rN

∂qn

q̇n

]}

= 1

2

n∑

j=1

n∑

k=1

m1

[
∂r1

∂qj

∂r1

∂qk

]

q̇j q̇k + 1

2

n∑

j=1

n∑

k=1

m2

[
∂r2

∂qj

∂r2

∂qk

]

q̇j q̇k

+ · · · + 1

2

n∑

j=1

n∑

k=1

mN

[
∂rN

∂qj

∂rN

∂qk

]

q̇j q̇k (3.204)

4. Designating αjk to be: αjk = ∑N
i=1 mi

[
∂ri

∂qj

∂ri

∂qk

]
in Eq. (3.204), we arrive at:

T = 1

2

n∑

j=1

n∑

k=1

αjkq̇j q̇k (3.205)

5. Since the kinetic energy term in Eq. (3.205) is a homogeneous function of order
two with respect to the generalized velocities q̇j , application of Euler’s theorem
for homogeneous functions (see below: A Short Note on Euler’s Theorem for
Homogeneous Functions) to the kinetic energy term T results in:

N∑

i=1

∂T

∂q̇i

· q̇i = 2T (3.206)

6. However, from the definition of the Hamiltonian for a holonomic, scleronomic
system with conservative forces and the definition of the Lagrangian (see
Eq. 3.187), we have:

H =
n∑

i=1

∂L
∂q̇i

q̇i−L =
n∑

i=1

∂T

∂q̇i

·q̇i−(T −V ) = 2T −T +V = T +V (3.207)
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For a holonomic, scleronomic system with conservative forces, the Hamil-
tonian turns out to be the total energy of the system. The implication of this
result is that the work required in order to find the Hamiltonian need not be
carried out by beginning with a determination of the Lagrangian.

A Short Note on Euler’s Theorem for Homogeneous Functions

Any function f (x) that possesses the characteristic mapping: x → λx; f (x) →
λf (x) is said to be homogeneous, with respect to x, to degree 1. By the same
token, if f (x) obeys the mapping: x → λx; f (x) → λkf (x), then f (x)

is homogeneous with respect to x to degree k. In general, a multivariable
function f (x1, x2, x3, . . . , xk) is said to be homogeneous to degree n in
variables (x1, x2, x3, . . . , xk) if for any value of λ, f (λx1, λx2, . . . , λxk) =
λnf (x1, x2, . . . , xk). It shall now be demonstrated that for a homogeneous function
to degree n,

k∑

i=1

xi

∂f (x1, x2, . . . , xk)

∂xi

= nf (x1, x2, . . . , xk)

Proof

f (λx1, λx2, . . . , λxk) = λnf (x1, x2, . . . , xk)

∂

∂λ

{
λnf (x1, x2, . . . , xk)

} = nλn−1f (x1, x2, . . . , xk)

∂

∂λ
{f (λx1, λx2, . . . , λxk)} =

∂ {f (λx1, λx2, . . . , λxk)}
∂λx1

∂λx1

∂λ
+ ∂ {f (λx1, λx2, . . . , λxk)}

∂λx2

∂λx2

∂λ
+ . . .

+ ∂ {f (λx1, λx2, . . . , λxk)}
∂λxk

∂λxk

∂λ

= ∂ {f (λx1, λx2, . . . , λxk)}
∂λx1

x1 + ∂ {f (λx1, λx2, . . . , λxk)}
∂λx2

x2 + · · ·

+ ∂ {f (λx1, λx2, . . . , λxk)}
∂λxk

xk = nλn−1f (x1, x2, . . . , xk)

λ = 1; ∂ {f (x1, x2, . . . , xk)}
∂x1

x1 + ∂ {f (x1, x2, . . . , xk)}
∂x2

x2 + . . .

+ ∂ {f (x1, x2, . . . , xk)}
∂xk

xk = nf (x1, x2, . . . , xk) (3.208)
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Example 18: Simple Pendulum (see Greiner [15, pp. 332–334])

The solution of the simple pendulum problem was obtained in Example 3 by means
of the d’Alembert–Lagrange formula (see Example 3.7 Eq. (3.64)) and the derived
dynamical equation was:

m1h
2
1θ̈1 + m1gh1 sin θ1 = 0 ⇒ θ̈1 + g

h1
sin θ1 = 0 (3.209)

The Lagrangian L was shown to be:

L = T − V = 1

2
m1h

2
1(θ̇1)

2 + m1gh1 cos θ1 (3.210)

From the Lagrangian, with generalized coordinate qi = θ1, the generalized
momentum is:

pθ1 = ∂L
∂θ̇1

= m1h
2
1θ̇1 ⇒ ṗθ1 = m1h

2
1θ̈1 (3.211)

The procedure for deriving the dynamics by means of the Hamiltonian is now
presented in outline form as follows:

1. The Hamiltonian H is:

H =
n∑

i=1

∂L
∂q̇i

q̇i − L = θ̇1
∂

∂θ̇1

{
1

2
m1h

2
1(θ̇1)

2 + m1gh1 cos θ1

}

−1

2
m1h

2
1(θ̇1)

2 − m1gh1 cos θ1

= m1h
2
1(θ̇1)

2 − 1

2
m1h

2
1(θ̇1)

2 − m1gh1 cos θ1 = 1

2
m1h

2
1(θ̇1)

2 − m1gh1 cos θ1

2. The canonical Hamiltonian equations were presented above in the form:

q̇i = ∂H
∂pi

; ṗi = ∂L
∂qi

= −∂H
∂qi

;pi = ∂L
∂q̇i

and so the canonical equations become:

q̇i = θ̇1; ṗi = ∂L
∂qi

= −∂H
∂qi

−∂H
∂θ1

= ∂

∂θ1

{

−1

2
m1h

2
1(θ̇1)

2 + m1gh1 cos θ1

}

= −m1gh1 sin θ1

⇒ m1h
2
1θ̈1 = −m1gh1 sin θ1 ⇒ m1h

2
1θ̈1 + m1gh1 sin θ1 = 0

which is identical to Eq. (3.209).
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Example 19: Central Motion (see Greiner [15, pp. 331–332])

Assume that a particle with mass m is subjected to the action of a single central
force. A central force is a force that points from the particle directly towards a
fixed point in space, the center of rotation, and whose magnitude only depends on
the distance of the object to the center, that is, V (r), where r is the distance of
the particle to the center or origin of the force. The particle is undergoing planar
motion while the force is radial and the motion can therefore be described by the
two polar coordinates r, φ (see the following figure). The solution procedure is the
following:

1. Calculate the Lagrangian L:

r = r cos φî + r sin φĵ

v = ṙ cos φî − rφ̇ sin φî + ṙ sin φĵ + rφ̇ cos φĵ

= î
(
ṙ cos φ − rφ̇ sin φ

) + ĵ
(
ṙ sin φ + rφ̇ cos φ

)

|v|2 = vT · v = ṙ2(cos2 φ + sin2 φ) − 2rṙφ̇ cos φ sin φ

+2rṙφ̇ cos φ sin φ + r2φ̇2 sin2 φ + r2φ̇2 cos2 φ

= ṙ2 + r2φ̇2

2. The Lagrangian is:

L = T − V (r) = 1

2
m|v|2 − V (r) = 1

2
m
(
ṙ2 + r2φ̇2

)
− V (r)

3. The two generalized momenta (corresponding to the two generalized velocities
ṙ , φ̇, respectively) are:

pr = ∂L
∂ṙ

= mṙ;pφ = ∂L
∂φ̇

= mr2φ̇

4. The Hamiltonian H becomes:

H =
2∑

i=1

∂L
∂q̇i

q̇i − L = ∂L
∂ṙ

ṙ + ∂L
∂φ̇

φ̇ − 1

2
m
(
ṙ2 + r2φ̇2

)
+ V (r)

= mṙ2 + mr2φ̇2 − 1

2
m
(
ṙ2 + r2φ̇2

)
+ V (r) = 1

2
m
(
ṙ2 + r2φ̇2

)
+ V (r)

= p2
r

2m
+ p2

φ

2mr2 + V (r)

5. The components ṙ , φ̇ are calculated from:

ṙ = ∂H
∂pr

= pr

m
; φ̇ = ∂H

∂pφ

= pφ

mr2
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6. In similar fashion, the components ṗr , ṗφ are calculated from:

ṗr = −∂H
∂r

= p2
φ

2mr3 − ∂V (r)

∂r
; ṗφ = −∂H

∂φ
= 0

The result above ( ∂H
∂φ

= 0) indicates that for motion subjected to a central
force, the angular momentum is preserved This statement may be understood
by transformation of the coordinates from Cartesian to polar and evaluating the
acceleration in the transformed coordinate frame as follows:

(a) The velocity in radial coordinates is: v = ṙ îr + rφ̇îφ
(b) The acceleration may be derived as follows:

dîr

dt
= φ̇îφ; dîφ

dt
= −φ̇îr

a = dv
dt

= r̈ îr + ṙ
dîr

dt
+ ṙ φ̇îφ + rφ̈îφ + rφ̇

dîφ

dt

= îr

(
r̈ − rφ̇2

)
+ îφ

(
rφ̈ + 2φ̇ṙ

)

(c) Since the problem involves a central force, there is no acceleration directed
along the îφ axis, only along the îr or the radial axis. This implies that

m
(
rφ̈ + 2ṙ φ̇

) = 0 ⇒ d

dt

(
r2φ̇

)
= r

(
rφ̈ + 2ṙ φ̇

) = 0

(d) Note that the term
(
mr2φ̇

)
is the angular momentum of the system and it

remains constant throughout the trajectory of the mass m.



Chapter 4
Quasi-Coordinates and Quasi-Velocities

Lagrangian dynamical systems with non-holonomic constraints is the main topic
of this chapter. This category of systems is first transformed into a “standard”
d’Alembert–Lagrangian form by means of a set of Lagrangian multipliers applied
to the constraints. The concepts of quasi-coordinates and quasi-velocities are
then introduced. While quasi-coordinates are not necessarily related to physical
generalized coordinates, quasi-velocities do have some physical significance. The
d’Alembert–Lagrange method for the derivation of dynamical equations is appro-
priately modified in order to incorporate the non-holonomic constraints, in the form
of relations on quasi-velocity constraints. Two examples which serve to illustrate
the procedure are provided, the second example being more significant as it is the
prototype of a wide variety of three-wheeled mobile robots. The main drawback
of the aforementioned procedure, as portrayed by the given examples, is the
effort involved in performing the required transformations and matrix operations.
A simpler and more straightforward approach involves the transformation of the
Lagrangian and its calculation in body-centered non-inertial coordinates, where the
non-holonomic constraints in the form of quasi-velocities are incorporated directly
into the modified d’Alembert–Lagrange equations. Two non-trivial examples which
use the transformed d’Alembert–Lagrange equations are calculated, the first involv-
ing the derivation of a six degree of freedom set of motion equations for a rigid
aircraft, while in the second, the equations of motion of a quadcopter vehicle are
obtained.
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4.1 Definitions and Recapitulation

The transformation from one coordinate frame to another, namely from inertial to
body axes (and vice versa) was presented and discussed in Chap. 1, Eq. 1.18 and is
repeated here for velocities as follows:

⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤

⎦

︸ ︷︷ ︸
TB/I

⎡

⎣
uI

vI

wI

⎤

⎦ ;
⎡

⎣
uI

vI

wI

⎤

⎦ =
⎡

⎣
α11 α21 α31

α12 α22 α33

α13 α23 α33

⎤

⎦

︸ ︷︷ ︸
TI/B

⎡

⎣
u

v

w

⎤

⎦ (4.1)

where uI , vI , and wI are the inertial velocities of a given body and u, v,w are the
body’s velocities in body-centered coordinates. The Euler transformation from body
to inertial components is simply the matrix transpose of the Euler matrix in Eq. 1.19
and turns out to be:

⎡

⎢
⎣

uI

vI

wI

⎤

⎥
⎦ =

⎡

⎢
⎣

cos ψ cos θ cos ψ sin φ sin θ − cos φ sin ψ sin φ sin ψ + cos φ cos ψ sin θ

cos θ sin ψ cos φ cos ψ + sin φ sin ψ sin θ cos φ sin ψ sin θ − cos ψ sin φ

− sin θ cos θ sin φ cos φ cos θ

⎤

⎥
⎦

⎡

⎢
⎣

u

v

w

⎤

⎥
⎦

⇒
⎡

⎢
⎣

uI

vI

wI

⎤

⎥
⎦ =

⎡

⎢
⎣

α11 α21 α31

α12 α22 α33

α13 α23 α33

⎤

⎥
⎦

︸ ︷︷ ︸
TI/B

⎡

⎢
⎣

u

v

w

⎤

⎥
⎦

⇒
⎡

⎢
⎣

u

v

w

⎤

⎥
⎦ =

⎡

⎢
⎣

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤

⎥
⎦

︸ ︷︷ ︸
TB/I

⎡

⎢
⎣

uI

vI

wI

⎤

⎥
⎦ (4.2)

It then follows that:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂u
∂uI

∂v
∂uI

∂w
∂uI

∂u
∂vI

∂v
∂vI

∂v
∂vI

∂u
∂wI

∂v
∂wI

∂w
∂wI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
α11 α21 α31

α12 α22 α33

α13 α23 α33

⎤

⎦ = TI/B (4.3)

The d’Alembert–Lagrange equation expresses in summary form the principle of
virtual work and may be written as:

n∑

e=1

[

Qe −
{

d

dt

(
∂T

∂q̇e

)

− ∂T

∂qe

}]

δqe = 0 (4.4)
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where T is the kinetic energy of a given system. The above equation is valid for both
holonomic and non-holonomic constraints. If the variations δqe were independent
of each other, the terms within the square brackets would be zero for each e and
hence the equation would revert to the standard equation for Lagrangian dynamics.
Since this is not the case for non-holonomic constraints, no simplification can occur
because some of the δqe terms are dependent on others.

In the above equation it was assumed that all forces which were derived from
a potential function were accounted for in the Lagrangian (kinetic energy terms)
and all nonpotential forces were designated as Qe. The generalized coordinates are
related by non-holonomic (and scleronomic or time independent) constraints of the
type:

n∑

e=1

aledqe = 0; l = 1, 2, . . . , m (4.5)

where ale (e = 0, 1, 2, . . . , n) are functions of the coordinates δqe. It then follows
from the above differential that the virtual displacements are not independent, but
related and of the form:

n∑

e=1

aleδqe = 0; l = 1, 2, . . . , m (4.6)

Multiplying each sum
∑n

e=1 aleδqe = 0; l = 1, 2, . . . , m by λl and summing
over e = 1, 2, . . . , n results in (see Sect. 3.9, pp. 118–121):

{λ1 (a11δq1 + a12δq2 + · · · + a1nδqn) + λ2 (a21δq1 + a22δq2 + · · · + a2nδqn)

+ · · · + λm (am1δq1 + am2δq2 + · · · + amnδqn)}δqe =
n∑

e=1

(
m∑

l=1

λlale

)

δqe

(4.7)

While the virtual displacements δe are still not independent, a judicious choice of the
multipliers λl; l = 1, 2, . . . , m will render the bracketed coefficients of δqe, e =
n − m + 1, . . . , n to be 0. The remaining δqe are independent so that they can be
chosen at will, and thus, the coefficients of δqe, e = 1, 2, . . . , n − m are zero.
Substituting the results of Eq. 4.7 into the d’Alembert–Lagrange equation 4.4, we
have:

n∑

e=1

[

Qe −
{

d

dt

(
∂T

∂q̇e

)

− ∂T

∂qe

−
(

m∑

l=1

λlale

)}]

δqe = 0

⇒
[

Q1 −
{

d

dt

(
∂T

∂q̇1

)

− ∂T

∂q1
−
(

m∑

l=1

λlal1

)}]

δq1
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+
[

Q2 −
{

d

dt

(
∂T

∂q̇2

)

− ∂T

∂q2
−
(

m∑

l=1

λ2al2

)}]

δq2

+ · · · +
[

Qn −
{

d

dt

(
∂T

∂q̇n

)

− ∂T

∂qn

−
(

m∑

l=1

λlaln

)}]

δqn = 0

(4.8)

Letting Q′
e = ∑m

l=1 λlale, e = 1, 2, . . . , n, the above set of d’Alembert–Lagrange
equations may be written as:

n∑

e=1

[

Qe −
{

d

dt

(
∂T

∂q̇e

)

− ∂T

∂qe

− Q′
e

}]

δqe = 0

⇒
[

Q1 −
{

d

dt

(
∂T

∂q̇1

)

− ∂T

∂q1
− Q′

1

}]

δq1

+
[

Q2 −
{

d

dt

(
∂T

∂q̇2

)

− ∂T

∂q2
− Q′

2

}]

δq2

+ . . .

[

Qn −
{

d

dt

(
∂T

∂q̇n

)

− ∂T

∂qn

− Q′
n

}]

δqn = 0 (4.9)

Setting the sum Qe+Q′
e = Qe, the collection of d’Alembert–Lagrange equations

becomes:

n∑

e=1

[

Qe −
{

d

dt

(
∂T

∂q̇e

)

− ∂T

∂qe

}]

δqe = 0

⇒
[

Q1 −
{

d

dt

(
∂T

∂q̇1

)

− ∂T

∂q1

}]

δq1 +
[

Q2 −
{

d

dt

(
∂T

∂q̇2

)

− ∂T

∂q2

}]

δq2

+ . . .

[

Qn −
{

d

dt

(
∂T

∂q̇n

)

− ∂T

∂qn

}]

δqn = 0 (4.10)

It then follows that:
[

d

dt

(
∂T

∂q̇1

)

− ∂T

∂q1
− Q1

]

δq1 = 0

[
d

dt

(
∂T

∂q̇2

)

− ∂T

∂q2
− Q2

]

δq2 = 0
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...

[
d

dt

(
∂T

∂q̇n

)

− ∂T

∂qn

− Qn

]

δqn = 0 (4.11)

The above set of d’Alembert–Lagrange equations may be represented in matrix form
as follows:

{δq}T
(

d

dt

{
∂T

∂q̇

}

−
{

∂T

∂q

}

− {Q}
)

= 0 (4.12)

where

{
∂T

∂q̇

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂T
∂q̇1

)

(
∂T
∂q̇2

)

...

(
∂T
∂q̇n

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;
{

∂T

∂q

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂q1

∂T
∂q2

...

∂T
∂qn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; {Q} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q1

Q2

...

Qn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and where furthermore:

{q} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1

q2

...

qn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; {q̇} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̇1

q̇2

...

q̇n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; {δq} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δq1

δq2

...

δqn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4.2 Quasi-Coordinates and Quasi-Velocities

The following two sections are based upon the paper by Cameron and Book [8].
By definition, the instantaneous position of a system may be unambiguously

described in terms of its generalized coordinates qj . We can accordingly describe
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the instantaneous velocity of a system in terms of its generalized velocities q̇j . How-
ever, it turns out that this characterization of velocity is not unique. Consider, for the
moment, angular motion. The three Euler angles ψ, θ, φ could be the designated
generalized coordinates and the angular velocity components [pb, qb, rb]T could
be used to describe the system’s angular velocity. However, with the exception of
planar motion, an angular velocity component is seldom the rate at which an Euler
angle varies. The relationship between the body’s angular rates [pb, qb, rb]T and
the Euler angular rates ψ̇, θ̇ , φ̇ is the following:

⎡

⎣
pb

qb

rb

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎦ (4.13)

Rate variables such as pb are called quasi-velocities and are denoted by γ̇j .
Accordingly the symbol γj is termed a quasi-coordinate. The prefix “quasi”
signifies that γj need not necessarily have any relation to a physical generalized
coordinate, whereas the γ̇j parameters will have some physical significance (see
Ginsburg [13, pp. 589]).

Quasi-velocities γ̇s s = 1, 2, . . . , N may be modeled as linear functions of the
time derivatives of the generalized coordinates and are of the form:

γ̇s =
N∑

j=1

�jsq̇j = �1s q̇1 + �2s q̇2 + · · · + �Nsq̇N s = 1, 2, . . . , N (4.14)

which implies that:

γ̇1 = �11q̇1 + �21q̇2 + �31q̇3 + · · · + �N1q̇N

γ̇2 = �12q̇1 + �22q̇2 + �32q̇3 + · · · + �N2q̇N

γ̇3 = �13q̇1 + �23q̇2 + �33q̇3 + · · · + �N3q̇N

...

γ̇N = �1N q̇1 + �2N q̇2 + �3N q̇3 + · · · + �NNq̇N (4.15)
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or in matrix form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̇1

γ̇2

γ̇3

...

γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �21 �31 · · · �N1

�12 �22 �32 · · · �N2

�13 �23 �33 · · · �N3

...
...

... · · · ...

�1N �2N �3N · · · �NN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

[ϑ]T

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̇1

q̇2

q̇3

...

q̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̇1

γ̇2

γ̇3

...

γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= {
�̇
}

(4.16)

where the coefficients �js are known functions of the generalized coordinates
qk, k = 1, 2, . . . , N . The above matrix equation may be rewritten in the following
abbreviated form:

{
�̇
} = [ϑ]T {q̇} (4.17)

Assuming that [ϑ] is invertible, that is,
[
ϑT

]−1 = [β], will allow for a solution to
be obtained for {q̇} by writing:

{q̇} = [β]
{
�̇
}

(4.18)

It may easily be shown that when [β] [ϑ]T = [I ], then [ϑ]T [β] = [I ] and
[β]T [ϑ] = [I ] as follows:

[β] [ϑ]T = [I ] ⇒ [β] [ϑ]T [β] = [β] ⇒ [ϑ]T [β] = [I ]

[ϑ]T [β] = [I ] ⇒
(

[ϑ]T [β]
)T = [β]T [ϑ] = [I ] (4.19)

The relationship between [β] and [ϑ], as noted in Eq. 4.19, will allow the kinetic
energy T to be expressed as a function of the generalized coordinates qk, k =
1, 2, . . . , N and the quasi-velocities γ̇s , s = 1, 2, . . . , N . The unmodified kinetic
energy is a function of the generalized coordinates and their time derivatives of the
form T = T (q; q̇) and it is transformed to T̄ (q; �̇), by replacing the generalized
velocity vector q̇ by the vector of quasi-velocities �̇, that is: T (q; q̇) → T̄ (q; �̇).
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The d’Alembert–Lagrange equations repeated below for convenience are:

{δq}T
(

d

dt

{
∂T

∂q̇

}

−
{

∂T

∂q

}

− {Q}
)

= 0

The component parts of the above equation include the following vector terms:

{∂T /∂q̇} and {∂T /∂q}

Recalling that T̄ was formed from T by replacing the generalized velocities q̇k in
T , with the quasi-velocities γ̇k , implies that T and T̄ are intimately related, that is,
T (q; q̇) → T̄ (q; �̇). Hence the derivative {∂T /∂q̇} for any index k may be written
as:

∂T

∂q̇k

=
N∑

i=1

∂T̄

∂γ̇i

∂γ̇i

∂q̇k

=
N∑

i=1

�ki

∂T̄

∂γ̇i

, k = 1, 2, . . . , N (4.20)

The foregoing is a valid operation since:

∂T

∂q̇k

= ∂T̄

∂γ̇1

∂γ̇1

∂q̇k

+ ∂T̄

∂γ̇2

∂γ̇2

∂q̇k

+ · · · + ∂T̄

∂γ̇N

∂γ̇N

∂q̇k

(4.21)

and

γ̇1 = �11q̇1 + �21q̇2 + · · · + �N1q̇N

γ̇2 = �12q̇1 + �22q̇2 + · · · + �N2q̇N

γ̇3 = �13q̇1 + �23q̇2 + · · · + �N3q̇N

...

γ̇N = �1N q̇1 + �2N q̇2 + · · · + �NNq̇N (4.22)
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It then follows that:

∂γ̇1

∂q̇k

= �k1,
∂γ̇2

∂q̇k

= �k2,
∂γ̇3

∂q̇k

= �k3, . . . ,
∂γ̇i

∂q̇k

= �ki, . . . ,
∂γ̇N

∂q̇k

= �kN

(4.23)

and hence
∂T
∂q̇k

= ∂T̄
∂γ̇1

∂γ̇1
∂q̇k

+ ∂T̄
∂γ̇2

∂γ̇2
∂q̇k

+ · · · + ∂T̄
∂γ̇N

∂γ̇N

∂q̇k
becomes:

∂T

∂q̇k

= ∂T̄

∂γ̇1
�k1 + ∂T̄

∂γ̇2
�k2 + · · · + ∂T̄

∂γ̇N

�kN =
N∑

i=1

∂T̄

∂γ̇i

�ki (4.24)

Writing the ∂T /∂q̇k, k = 1, 2, . . . , N terms as a column vector:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂q̇1

∂T
∂q̇2

∂T
∂q̇3

...

∂T
∂q̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
{

∂T

∂q̇

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑N
i=1 �1i

∂T̄
∂γ̇i

∑N
i=1 �2i

∂T̄
∂γ̇i

∑N
i=1 �3i

∂T̄
∂γ̇i

...

∑N
i=1 �Ni

∂T̄
∂γ̇i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11
∂T̄
∂γ̇1

+ �12
∂T̄
∂γ̇2

+ �13
∂T̄
∂γ̇3

+ · · · + �1N
∂T̄
∂γ̇N

�21
∂T̄
∂γ̇1

+ �22
∂T̄
∂γ̇2

+ �23
∂T̄
∂γ̇3

+ · · · + �2N
∂T̄
∂γ̇N

�31
∂T̄
∂γ̇1

+ �32
∂T̄
∂γ̇2

+ �33
∂T̄
∂γ̇3

+ · · · + �3N
∂T̄
∂γ̇N

...

�N1
∂T̄
∂γ̇1

+ �N2
∂T̄
∂γ̇2

+ �N3
∂T̄
∂γ̇3

+ · · · + �NN
∂T̄
∂γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 �13 · · · �1N

�21 �22 �23 · · · �2N

�31 �32 �33 · · · �3N

...
...

... · · · ...

�N1 �N2 �N3 · · · �NN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂γ̇1

∂T̄
∂γ̇2

∂T̄
∂γ̇3

...

∂T̄
∂γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [ϑ]

{
∂T̄

∂�̇

}

(4.25)

From Eq. 4.25, it becomes apparent that the time derivative of {∂T /∂q̇} may be
handily deduced to be:

d

dt

{
∂T

∂q̇

}

= d

dt

(

[ϑ]

{
∂T̄

∂�̇

})

= [
ϑ̇
]
{

∂T̄

∂�̇

}

+ [ϑ]
d

dt

{
∂T̄

∂�̇

}

(4.26)

As was noted previously, the coefficients �ij are known functions only of the
generalized coordinates qk; k = 1, 2, . . . , N , that is, �ij = �ij (q1, q2, . . . , qN),
and are not related to the generalized velocities q̇k; k = 1, 2, . . . , N . This implies
that the time derivative of any element of the matrix [ϑ], �̇ij becomes:

d�ij

dt
= ∂�ij

∂q1

dq1

dt
+ ∂�ij

∂q2

dq2

dt
+ ∂�ij

∂q3

dq3

dt
+ · · · + ∂�ij

∂qN

dqN

dt
=

N∑

k=1

∂�ij

∂qk

dqk

dt

(4.27)

Equation 4.27 may be written vectorially as:

d�ij

dt
= [

q̇1 q̇3 q̇3 · · · q̇N

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂�ij

∂q1

∂�ij

∂q2

∂�ij

∂q3

...

∂�ij

∂qN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= {q̇}T
{

∂�ij

∂q

}

= {
�̇
}T

[β]T
{

∂�ij

∂q

}

(4.28)
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where the result of Eq. 4.18, which stated that {q̇} = [β]
{
�̇
}
, was utilized in the

above expression. Note that the term d�ij /dt = {
�̇
}T

[β]T
{

∂�ij

∂q

}
is a scalar with

the indices ij .
Hence every element �̇ij of the matrix

[
ϑ̇
]

is of the form:

[
ϑ̇
] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{
�̇
}T

[β]T
{

∂�11
∂q

} {
�̇
}T

[β]T
{

∂�12
∂q

} {
�̇
}T

[β]T
{

∂�13
∂q

}
. . .

{
�̇
}T

[β]T
{

∂�1N

∂q

}

{
�̇
}T

[β]T
{

∂�21
∂q

} {
�̇
}T

[β]T
{

∂�22
∂q

} {
�̇
}T

[β]T
{

∂�23
∂q

}
. . .

{
�̇
}T

[β]T
{

∂�2N

∂q

}

{
�̇
}T

[β]T
{

∂�31
∂q

} {
�̇
}T

[β]T
{

∂�32
∂q

} {
�̇
}T

[β]T
{

∂�33
∂q

}
. . .

{
�̇
}T

[β]T
{

∂�3N

∂q

}

.

.

.
.
.
.

.

.

. · · ·
.
.
.

{
�̇
}T

[β]T
{

∂�N1
∂q

} {
�̇
}T

[β]T
{

∂�N2
∂q

} {
�̇
}T

[β]T
{

∂�N3
∂q

}
. . .

{
�̇
}T

[β]T
{

∂�NN

∂q

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.29)

Writing the above result in summary form,
[
ϑ̇
]

turns out to be:

[
ϑ̇
] =

⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦ (4.30)

Following a procedure similar to the one used to calculate {∂T /∂q̇}, the
derivative of T with respect to q for any index k turns out to be:

∂T

∂qk

= ∂T̄

∂qk

+ ∂T̄

∂γ̇1

∂γ̇1

∂qk

+ ∂T̄

∂γ̇2

∂γ̇2

∂qk

+ ∂T̄

∂γ̇3

∂γ̇3

∂qk

+ . . . + ∂T̄

∂γ̇N

∂γ̇N

∂qk

= ∂T̄

∂qk

+
N∑

i=1

∂T̄

∂γ̇i

∂γ̇i

∂qk

, k = 1, 2, . . . , N (4.31)

Note that T̄ is a function of both the generalized coordinates qk, k = 1, 2, . . . , N

and of the vector of quasi-velocities �̇, that is:

T̄ = T̄ (q, �̇) = T̄ (q1, q2, . . . , qN , γ̇1, γ̇2, . . . , γ̇N )

Additionally, the elements of [ϑ] are all functions of the generalized coordinates
q1, q2, . . . , qN , that is, any ij element of [ϑ] or �ij = �ij (q1, q2, . . . , qN), and so
this implies, from Eq. 4.22, that:
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γ̇i = �1i (q1, q2, q3, . . . , qN)q̇1 + �2i (q1, q2, q3, . . . , qN)q̇2

+�3i (q1, q2, q3, . . . , qN)q̇3

+ . . . + �Ni(q1, q2, q3, . . . , qN)q̇N (4.32)

The partial derivative of the quasi-velocity γ̇i with respect to the generalized
coordinate qk becomes:

∂γ̇i

∂qk

= ∂�1i

∂qk

q̇1 + ∂�2i

∂qk

q̇2 + ∂�3i

∂qk

q̇3 + · · · + ∂�Ni

∂qk

q̇N ; ∂γ̇i

∂qk

=
N∑

j=1

∂�ji

∂qk

q̇j

(4.33)

And so from Eq. 4.31, the expression ∂T /∂qk, k = 1, 2, . . . , N becomes:

∂T

∂qk

= ∂T̄

∂qk

+
N∑

i=1

∂T̄

∂γ̇i

∂γ̇i

∂qk

, k = 1, 2, . . . , N

= ∂T̄

∂qk

+
N∑

i=1

∂T̄

∂γ̇i

N∑

j=1

∂�ji

∂qk

q̇j , k = 1, 2, . . . , N (4.34)

Expanding the double sum in Eq. 4.34 results in:

N∑

i=1

∂T̄

∂γ̇i

N∑

j=1

∂�ji

∂qk
q̇j = ∂T̄

∂γ̇1

(
∂�11

∂qk
q̇1 + ∂�21

∂qk
q̇2 + ∂�31

∂qk
q̇3 + · · · + ∂�N1

∂qk
q̇N

)

+ ∂T̄

∂γ̇2

(
∂�12

∂qk
q̇1 + ∂�22

∂qk
q̇2 + ∂�32

∂qk
q̇3 + · · · + ∂�N2

∂qk
q̇N

)

+ ∂T̄

∂γ̇3

(
∂�13

∂qk
q̇1 + ∂�23

∂qk
q̇2 + ∂�33

∂qk
q̇3 + · · · + ∂�N3

∂qk
q̇N

)

...

+ ∂T̄

∂γ̇N

(
∂�1N

∂qk
q̇1 + ∂�2N

∂qk
q̇2 + ∂�3N

∂qk
q̇3 + · · · + ∂�NN

∂qk
q̇N

)

(4.35)
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Rewriting the preceding result in vector inner product form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂�11
∂qk

q̇1 + ∂�21
∂qk

q̇2 + ∂�31
∂qk

q̇3 + · · · + ∂�N1
∂qk

q̇N

)

(
∂�12
∂qk

q̇1 + ∂�22
∂qk

q̇2 + ∂�32
∂qk

q̇3 + · · · + ∂�N2
∂qk

q̇N

)

(
∂�13
∂qk

q̇1 + ∂�23
∂qk

q̇2 + ∂�33
∂qk

q̇3 + · · · + ∂�N3
∂qk

q̇N

)

...

(
∂�1N
∂qk

q̇1 + ∂�2N
∂qk

q̇2 + ∂�3N
∂qk

q̇3 + · · · + ∂�NN
∂qk

q̇N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂γ̇1

∂T̄
∂γ̇2

∂T̄
∂γ̇3

...

∂T̄
∂γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.36)

The leftmost vector in the preceding equation may also be rewritten as the inner
product of two vectors as follows:

(
∂�11

∂qk
q̇1 + ∂�21

∂qk
q̇2 + ∂�31

∂qk
q̇3 + · · · + ∂�N1

∂qk
q̇N

)

=
[

∂�11
∂qk

∂�21
∂qk

∂�31
∂qk

. . .
∂�N1
∂qk

]
·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̇1

q̇2

q̇3

...

q̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.37)

The same pattern repeats itself for the other rows, that is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂�11
∂qk

q̇1 + ∂�21
∂qk

q̇2 + ∂�31
∂qk

q̇3 + · · · + ∂�N1
∂qk

q̇N

)

(
∂�12
∂qk

q̇1 + ∂�22
∂qk

q̇2 + ∂�32
∂qk

q̇3 + · · · + ∂�N2
∂qk

q̇N

)

(
∂�13
∂qk

q̇1 + ∂�23
∂qk

q̇2 + ∂�33
∂qk

q̇3 + · · · + ∂�N3
∂qk

q̇N

)

...

(
∂�1N
∂qk

q̇1 + ∂�2N
∂qk

q̇2 + ∂�3N
∂qk

q̇3 + · · · + ∂�NN
∂qk

q̇N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂�11
∂qk

∂�21
∂qk

∂�31
∂qk

. . .
∂�N1
∂qk

∂�12
∂qk

∂�22
∂qk

∂�32
∂qk

. . .
∂�N2
∂qk

∂�13
∂qk

∂�23
∂qk

∂�33
∂qk

. . .
∂�N3
∂qk

...
...

... · · · ...

∂�1N
∂qk

∂�2N
∂qk

∂�3N
∂qk

. . .
∂�NN
∂qk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̇1

q̇2

q̇3

...

q̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.38)

Therefore the double sum of Eq. 4.34 may be written as a product of one row vector,
one matrix, and one column vector, that is:

N∑

i=1

∂T̄

∂γ̇i

N∑

j=1

∂�ji

∂qk

q̇j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
∂�11
∂qk

q̇1 + ∂�21
∂qk

q̇2 + ∂�31
∂qk

q̇3 + · · · + ∂�N1
∂qk

q̇N

)

(
∂�12
∂qk

q̇1 + ∂�22
∂qk

q̇2 + ∂�32
∂qk

q̇3 + · · · + ∂�N2
∂qk

q̇N

)

(
∂�13
∂qk

q̇1 + ∂�23
∂qk

q̇2 + ∂�33
∂qk

q̇3 + · · · + ∂�N3
∂qk

q̇N

)

.

.

.

(
∂�1N

∂qk
q̇1 + ∂�2N

∂qk
q̇2 + ∂�3N

∂qk
q̇3 + · · · + ∂�NN

∂qk
q̇N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂γ̇1

∂T̄
∂γ̇2

∂T̄
∂γ̇3

. . .

∂T̄
∂γ̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[

∂T̄
∂γ̇1

∂T̄
∂γ̇2

∂T̄
∂γ̇3

. . . ∂T̄
∂γ̇N

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂�11
∂qk

∂�21
∂qk

∂�31
∂qk

. . .
∂�N1
∂qk

∂�12
∂qk

∂�22
∂qk

∂�32
∂qk

. . .
∂�N2
∂qk

∂�13
∂qk

∂�23
∂qk

∂�33
∂qk

. . .
∂�N3
∂qk

.

.

.
.
.
.

.

.

. · · ·
.
.
.

∂�1N

∂qk

∂�2N

∂qk

∂�3N

∂qk
. . .

∂�NN

∂qk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̇1

q̇2

q̇3

.

.

.

q̇N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.39)
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Hence summarizing, the term ∂T /∂qk may be written succinctly as:

∂T

∂qk

= ∂T̄

∂qk

+
{

∂T̄

∂�̇

}T [
∂ϑ

∂qk

]T

{q̇} = ∂T̄

∂qk

+ {q̇}T
[

∂ϑ

∂qk

]{
∂T̄

∂�̇

}

(4.40)

where {q̇} is an N × 1 column vector,
[

∂ϑ
∂qk

]T

is an N × N matrix, and
{

∂T̄

∂�̇

}T

is a

1×N row vector. Once again, it should be noted that the product
{

∂T̄

∂�̇

}T [
∂ϑ
∂qk

]T {q̇}
or {q̇}T

[
∂ϑ
∂qk

] {
∂T̄

∂�̇

}
are scalars and so letting the index k vary over its range from

k = 1, 2, . . . , N , the column vector with entries ∂T /∂qk , k = 1, 2, . . . , N may be
formed as follows:

{
∂T

∂q

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂q1

∂T
∂q2

∂T
∂q3

.

.

.

∂T
∂qN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂q1

+ {q̇}T
[

∂ϑ
∂q1

] {
∂T̄

∂�̇

}

∂T̄
∂q2

+ {q̇}T
[

∂ϑ
∂q2

] {
∂T̄

∂�̇

}

∂T̄
∂q3

+ {q̇}T
[

∂ϑ
∂q3

] {
∂T̄

∂�̇

}

.

.

.

∂T̄
∂qN

+ {q̇}T
[

∂ϑ
∂qN

] {
∂T̄

∂�̇

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂q1

∂T̄
∂q2

∂T̄
∂q3

.

.

.

∂T̄
∂qN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{q̇}T
[

∂ϑ
∂q1

]

{q̇}T
[

∂ϑ
∂q2

]

{q̇}T
[

∂ϑ
∂q3

]

.

.

.

{q̇}T
[

∂ϑ
∂qN

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
[η]

{
∂T̄

∂�̇

}

(4.41)

4.3 Lagrangian Dynamics with Quasi-Coordinates

The principle of virtual work led to the d’Alembert–Lagrange equations in matrix
form. These equations were stated in Sect. 4.1, Eq. 4.12 and are repeated below for
convenience:

{δq}T
(

d

dt

{
∂T

∂q̇

}

−
{

∂T

∂q

}

− {Q}
)

= 0

The following terms in the d’Alembert–Lagrange equations were derived in
Sect. 4.2 (see Eq. 4.26):

d

dt

{
∂T

∂q̇

}

= d

dt

(

[ϑ]

{
∂T̄

∂�̇

})

= [
ϑ̇
]
{

∂T̄

∂�̇

}

+ [ϑ]
d

dt

{
∂T̄

∂�̇

}
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where, with the aid of Eq. 4.2,
[
ϑ̇
] {

∂T̄

∂�̇

}
can be shown to be:

[
ϑ̇
]
{

∂T̄

∂�̇

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{
�̇
}T

[β]T
{

∂�11
∂q

} {
�̇
}T

[β]T
{

∂�12
∂q

} {
�̇
}T

[β]T
{

∂�13
∂q

}
· · · {

�̇
}T

[β]T
{

∂�1N

∂q

}

{
�̇
}T

[β]T
{

∂�21
∂q

} {
�̇
}T

[β]T
{

∂�22
∂q

} {
�̇
}T

[β]T
{

∂�23
∂q

}
· · · {

�̇
}T

[β]T
{

∂�2N

∂q

}

{
�̇
}T

[β]T
{

∂�31
∂q

} {
�̇
}T

[β]T
{

∂�32
∂q

} {
�̇
}T

[β]T
{

∂�33
∂q

}
· · · {

�̇
}T

[β]T
{

∂�3N

∂q

}

.

.

.
.
.
.

.

.

. · · ·
.
.
.

{
�̇
}T

[β]T
{

∂�N1
∂q

} {
�̇
}T

[β]T
{

∂�N2
∂q

} {
�̇
}T

[β]T
{

∂�N3
∂q

}
· · · {�̇}T

[β]T
{

∂�NN

∂q

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T̄
∂γ̇1

∂T̄
∂γ̇2

∂T̄
∂γ̇3

.

.

.

∂T̄
∂γ̇N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦

{
∂T̄

∂�̇

}

(4.42)

Furthermore the term [ϑ] d
dt

{
∂T̄

∂�̇

}
was calculated to be:

[ϑ]
d

dt

{
∂T̄

∂�̇

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 �13 · · · �1N

�21 �22 �23 · · · �2N

�31 �32 �33 · · · �3N

...
...

... · · · ...

�N1 �N2 �N3 · · · �NN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d
dt

(
∂T̄
∂γ̇1

)

d
dt

(
∂T̄
∂γ̇2

)

d
dt

(
∂T̄
∂γ̇3

)

...

d
dt

(
∂T̄
∂γ̇N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.43)
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This implies that d
dt

{
∂T
∂q̇

}
= [

ϑ̇
] {

∂T

∂�̇

}
+ [ϑ] d

dt

{
∂T

∂�̇

}
, in shorthand form may be

written as:

d

dt

{
∂T

∂q̇

}

=
⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦

{
∂T̄

∂�̇

}

+ [ϑ]
d

dt

{
∂T̄

∂�̇

}

(4.44)

In addition, from Eq. 4.41,
{

∂T
∂q

}
was shown to be:

{
∂T

∂q

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂q1

∂T
∂q2

∂T
∂q3

...

∂T
∂qN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂q1

+ {q̇}T
[

∂ϑ
∂q1

] {
∂T̄

∂�̇

}

∂T̄
∂q2

+ {q̇}T
[

∂ϑ
∂q2

] {
∂T̄

∂�̇

}

∂T̄
∂q3

+ {q̇}T
[

∂ϑ
∂q3

] {
∂T̄

∂�̇

}

...

∂T̄
∂qN

+ {q̇}T
[

∂ϑ
∂qN

] {
∂T̄

∂�̇

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂q1

∂T̄
∂q2

∂T̄
∂q3

...

∂T̄
∂qN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{q̇}T
[

∂ϑ
∂q1

]

{q̇}T
[

∂ϑ
∂q2

]

{q̇}T
[

∂ϑ
∂q3

]

...

{q̇}T
[

∂ϑ
∂qN

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
η

{
∂T̄

∂�̇

}

⇒
{

∂T

∂q

}

=
{

∂T̄

∂q

}

+ [η]

{
∂T̄

∂�̇

}

(4.45)
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Hence, the d’Alembert–Lagrange equation
(

d
dt

{
∂T
∂q̇

}
−
{

∂T
∂q

}
− {Q}

)
= 0 may be

written down in the following shorthand form as:

(
d

dt

{
∂T

∂q̇

}

−
{

∂T

∂q

}

− {Q}
)

= [ϑ]
d

dt

{
∂T̄

∂�̇

}

+

[
ϑ̇
]

︷ ︸︸ ︷⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦

{
∂T̄

∂�̇

}

− [η]

{
∂T̄

∂�̇

}

−
{

∂T̄

∂q

}

− {Q} = 0 (4.46)

The following expressions are defined to be:

{N} = [β]T {Q} ; [�] =
⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦ − [η] (4.47)

Pre-multiplying the above d’Alembert–Lagrange equation (Eq. 4.46) by [β]T and
using the definitions of [�] and {N}, the result is:

[β]T

⎛

⎝[ϑ]
d

dt

{
∂T̄

∂�̇

}

+
⎡

⎣
{
�̇
}T

[β]T
{

∂�ij

∂q

}

i=1,2,...,N
j=1,2,...,N

⎤

⎦

{
∂T̄

∂�̇

}

− [η]

{
∂T̄

∂�̇

}

−
{

∂T̄

∂q

})

= [β]T {Q}

= [β]T [ϑ]
d

dt

{
∂T̄

∂�̇

}

+ [β]T [�]

{
∂T̄

∂�̇

}

− [β]T
{

∂T̄

∂q

}

= {N} (4.48)

Recall that [β]T [ϑ] = [I ], and so the d’Alembert–Lagrange equation for quasi-
coordinates may be written in the form:

d

dt

{
∂T̄

∂�̇

}

+ [β]T [�]

{
∂T̄

∂�̇

}

− [β]T
{

∂T̄

∂q

}

= {N} (4.49)
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Example 1 [8, pp. 16–17]

A simple example involves the angular motion of a rigid body constrained to rotate
about a point (see Meirovitch [23, pp. 159–160 ] or Cameron and Book [8, pp. 16–
17]). Note that there are no constraints whatsoever on the rotational motion. The
roll–pitch–yaw quasi-velocities wx,wy,wz were introduced in order to simplify
the equations and to illustrate the techniques involved in writing the d’Alembert–
Lagrange equations of motion for non-holonomic joints. These quasi-velocities are
non-holonomic in the sense that they are not the derivatives of any generalized
coordinates (generalized angular velocities or Euler angular rates). Letting the
body’s angular rates represent the quasi-velocities, that is, wx = γ̇1, wy = γ̇2, wz =
γ̇3, while the Euler angular rates are defined to be the generalized velocities, i.e.,
φ̇ = q̇1, θ̇ = q̇2, ψ̇ = q̇3, the relationship between the Euler angular rates and the
body’s angular rates is simply:

⎡

⎣
wx

wy

wz

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎦ =
⎡

⎣
1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos θ cos φ

⎤

⎦

︸ ︷︷ ︸

[ϑ]T

⎡

⎣
φ̇

θ̇

ψ̇

⎤

⎦

(4.50)

The kinetic energy T̄ is of the form:

T̄ = 1

2

[
wx wy wz

]
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦

⎡

⎣
wx

wy

wz

⎤

⎦ = 1

2

(
Ixw

2
x + Iyw

2
y + Izw

2
z

)
(4.51)

In outline form, the procedure for calculation of the d’Alembert–Lagrange equations
for this problem is:

1. Write: [ϑ],
[
ϑ̇
]
,
[

∂ϑ
∂φ

]
,
[

∂ϑ
∂θ

]
,
[

∂ϑ
∂ψ

]

[ϑ] =
⎡

⎣
1 0 0
0 cos φ − sin φ

− sin θ cos θ sin φ cos θ cos φ

⎤

⎦ (4.52)

[
ϑ̇
] =

⎡

⎣
0 0 0
0 −φ̇ sin φ −φ̇ cos φ

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎦

(4.53)
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[
∂ϑ

∂φ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 − sin φ − cos φ

0 cos φ cos θ − sin φ cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.54)

[
∂ϑ

∂θ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

− cos θ − sin φ sin θ − cos φ sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.55)

[
∂ϑ

∂ψ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.56)

2. Write: [β], [β]T

[β] =
(

[ϑ]T
)−1 =

⎡

⎣
1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ/ cos θ cos φ/ cos θ

⎤

⎦

⇒ [β]T =
⎡

⎣
1 0 0

sin φ tan θ cos φ sin φ/ cos θ

cos φ tan θ − sin φ cos φ/ cos θ

⎤

⎦ (4.57)

3. Write:
{
�̇
}

{
�̇
} =

⎡

⎣
wx

wy

wz

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎦ (4.58)

wz cos φ + wy sin φ

= cos φ sin φ + ψ̇ cos θ sin2 φ − θ̇ cos φ sin φ + ψ̇ cos θ cos2 φ

= ψ̇ cos θ (4.59)
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4. Write: [η]

[η] =
⎡

⎢
⎣

{
�̇
}T

[β]T [∂ϑ/∂φ]
{
�̇
}T

[β]T [∂ϑ/∂θ ]
{
�̇
}T

[β]T [∂ϑ/∂ψ]

⎤

⎥
⎦ (4.60)

5. Write:
{
�̇
}T

[β]T

{
�̇
}T

[β]T =
[
wx wy wz

]
⎡

⎢
⎣

1 0 0
sin φ tan θ cos φ sin φ/ cos θ

cos φ tan θ − sin φ cos φ/ cos θ

⎤

⎥
⎦

=
[
wx + wy sin φ tan θ + wz cos φ tan θ wy cos φ − wz sin φ wy

sin φ
cos θ

+ wz
cos φ
cos θ

]

=
[
φ̇ θ̇ ψ̇

]
(4.61)

6. Write:
{
�̇
}T

[β]T [∂ϑ/∂φ];
{
�̇
}T

[β]T [∂ϑ/∂θ ];
{
�̇
}T

[β]T [∂ϑ/∂ψ]; [η]

[
φ̇ θ̇ ψ̇

]
[
∂ϑ

∂φ

]

= [
0 −θ̇ sin φ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

]

= [
0 wz −wy

]
(4.62)

[
φ̇ θ̇ ψ̇

]
[
∂ϑ

∂θ

]

= [−ψ̇ cos θ −ψ̇ sin θ sin φ −ψ̇ cos φ sin θ
]

[
φ̇ θ̇ ψ̇

]
[

∂ϑ

∂ψ

]

= [
0 0 0

]
(4.63)

[η] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
φ̇ θ̇ ψ̇

] [
∂ϑ
∂φ

]

[
φ̇ θ̇ ψ̇

] [
∂ϑ
∂θ

]

[
φ̇ θ̇ ψ̇

] [
∂ϑ
∂θ

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −θ̇ sin θ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

−ψ̇ cos θ −ψ̇ sin θ sin φ −ψ̇ cos φ sin θ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 wz −wy

−ψ̇ cos θ −ψ̇ sin θ sin φ −ψ̇ cos φ sin θ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 wz −wy

−(wz cos φ + wy sin φ) −(wz cos φ + wy sin φ) tan θ sin φ −(wz cos φ + wy sin φ) tan θ cos φ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.64)

7. Write: [�] = [
ϑ̇
] − [η]

[�] = [
ϑ̇
] − [η]

=

⎡

⎢
⎢
⎣

0 0 0

0 −φ̇ sin φ −φ̇ cos φ

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 wz −wy

−ψ̇ cos θ −ψ̇ sin θ sin φ −ψ̇ cos θ sin φ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 −wz wy

ψ̇ cos θ ψ̇ sin θ sin φ − φ̇ sin φ ψ̇ cos θ sin φ − φ̇ cos φ

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 −wz wy

wz cos φ + wy sin φ ψ̇ sin θ sin φ − φ̇ sin φ ψ̇ cos θ sin φ − φ̇ cos φ

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −wz wy

(wz cos φ + wy sin φ)
−φ̇ sin φ

+ sin φ tan θ(wz cos φ + wy sin φ)

−φ̇ cos φ

+ cos φ tan θ(wz cos φ + wy sin φ)

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.65)
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8. Write: [β]T [�]

[β]T [�] =

⎡

⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ sin φ/ cos θ

cos φ tan θ − sin φ cos φ/ cos θ

⎤

⎥
⎥
⎥
⎦

∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −wz wy

(wz cos φ + wy sin φ)
−φ̇ sin φ

+ sin φ tan θ(wz cos φ + wy sin φ)

−φ̇ cos φ

+ cos φ tan θ(wz cos φ + wy sin φ)

−θ̇ cos θ −θ̇ sin θ sin φ + φ̇ cos φ cos θ −θ̇ sin θ cos φ − φ̇ sin φ cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −wz wy

cos φ(wz cos φ + wy sin φ)

−θ̇ sin φ

sin φ tan θ(−wz + wz cos2 φ)

+ sin φ tan θ(wy sin φ cos φ − θ̇ sin φ)

wy tan θ sin φ − φ̇

+wz cos3 φ tan θ

−θ̇ tan θ cos φ sin φ

+wy tan θ cos2 φ sin φ

− sin φ(wz cos φ + wy sin φ)

−θ̇ cos φ

φ̇ − 2wz cos φ tan θ

−wy sin φ tan θ + wz cos3 φ tan θ

−θ̇ cos φ sin φ tan θ

+wy cos2 φ sin φ tan θ

wy cos3 φ tan θ

−θ̇ cos2 φ tan θ

−wz cos2 φ sin φ tan θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.66)

9. The following assumptions are used to simplify [β]T [�]:

(a) φ, θ ≈ 0
(b) wx ≈ φ̇; wy ≈ θ̇; wz ≈ ψ̇

The simplified version of [β]T [�] is the following:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −wz wy

wz 0 −wx

−wy wx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.67)
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10. Using the preceding result (the simplification in item 9), the matrix product

[β]T [�]
{

∂T̄

∂�̇

}
may be written as:

[β]T [�]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂wx

∂T
∂wy

∂T
∂wz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −wz wy

wz 0 −wx

−wy wx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂wx

∂T
∂wy

∂T
∂wz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−wz
∂T
∂wy

+ wy
∂T
∂wz

wz
∂T
∂wx

− wx
∂T
∂wz

−wy
∂T
∂wx

+ wx
∂T
∂wy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.68)

11. The matrix product − [β]T
[

∂T
∂φ

∂T
∂θ

∂T
∂ψ

]T

may be shown to be:

−
⎡

⎣
1 0 0

sin φ tan θ cos φ sin φ/ cos θ

cos φ tan θ − sin φ cos φ/ cos θ

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂φ

∂T
∂θ

∂T
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− ∂T
∂φ

− sin φ tan θ ∂T
∂φ

− cos φ ∂T
∂θ

− sin φ/ cos θ ∂T
∂ψ

− cos φ tan θ ∂T
∂φ

+ sin φ ∂T
∂θ

− cos φ/ cos θ ∂T
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.69)

12. Hence, combining
[

d
dt

(
∂T
∂wx

)
d
dt

(
∂T
∂wy

)
d
dt

(
∂T
∂wz

)]T

with the results in

items 10 (Eqs. 4.68) and 11 (Eq. 4.69), respectively, we have the following set
of d’Alembert–Lagrange differential equations which describe the rotational
joint’s motion as follows:

d

dt

(
∂T

∂wx

)

− wz

∂T

∂wy

+ wy

∂T

∂wz

− ∂T

∂φ
= τ1

d

dt

(
∂T

∂wy

)

+ wz

∂T

∂wx

− wx

∂T

∂wz

− sin φ tan θ
∂T

∂φ
− cos φ

∂T

∂θ
− sin φ

cos θ

∂T

∂ψ
= τ2

d

dt

(
∂T

∂wz

)

− wy

∂T

∂wx

+ wx

∂T

∂wy

− cos φ tan θ
∂T

∂φ
+ sin φ

∂T

∂θ
− cos φ

cos θ

∂T

∂ψ
= τ3

(4.70)
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where τ1, τ2, and τ3 are the input torques in the body’s x, y, and z directions,
respectively, required to maintain the rotation of the joint.

Example 2 [8, pp. 14–15]

Consider the common tricycle which typifies a wide variety of three-wheeled mobile
robots (see Fig. 4.1). This vehicle is subject to two non-holonomic constraints. The
velocity of the front wheel is in the direction that it is pointing and this constitutes
the first of the two non-holonomic constraints, i.e., the front wheel doesn’t slide.
The second constraint is related to the rear wheels which also don’t slide from
side to side—there is no side slip of the rear wheels. The system has four degrees
of freedom, three of which describe the tricycle’s position: x, y, θ . The additional
degree of freedom is the steering angle φ. The four degrees of freedom are reduced
by the two non-holonomic constraints to two. The two independent degrees of
freedom are the velocity of the front wheel v and the front wheel’s turning rate φ̇.
The turning rate of the rear wheels θ̇ is dependent upon the forward velocity v and
the front wheel’s steering angle φ, that is, θ̇ = (v sin φ)/l. The upshot of the fact that
the system has only two degrees of freedom is that solely the d’Alembert–Lagrange
equations of motion with the derivatives dv/dt and d2φ/dt2 are of interest, i.e.,

Fig. 4.1 Tricycle geometry and notation



188 4 Quasi-Coordinates and Quasi-Velocities

factors in the d’Alembert–Lagrange equations with the term dθ/dt may be ignored.
The equations which describe the tricycle’s motion are the following:

ẋ = v cos φ cos θ

ẏ = v cos φ sin θ

θ̇ = v

l
sin φ (4.71)

The velocity v may be solved for as follows:

ẋ cos θ = v cos φ cos2 θ

ẏ sin θ = v cos φ sin2 θ

⇒ v = ẋ
cos θ

cos φ
+ ẏ

sin θ

cos φ
(4.72)

The two constraints are: front and rear wheels don’t slip which implies that
velocities in the Yi and R directions (perpendicular to v), respectively, are zero.
This may be written as (see Fig. 4.2):

vY i = ẏ cos θ − ẋ sin θ = 0; vR ≈ lθ̇ cos θ cos φ − ẋ sin φ = 0 (4.73)

Fig. 4.2 Geometry for velocities perpendicular to both front and rear wheels
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The equation relating the vector of quasi-velocities
{
�̇
}

to the vector of general-
ized velocities {q̇} is derived from the non-holonomic constraints vY i = 0, vR = 0
and the forward velocity of the front wheel v = ẋ(cos θ/ cos φ) + ẏ(sin θ/ cos φ),
and may be written as:

{
�̇
} =

⎡

⎢
⎢
⎣

v

vY i

vR

φ̇

⎤

⎥
⎥
⎦ ; {q̇} =

⎡

⎢
⎢
⎣

ẋ

ẏ

θ̇

φ̇

⎤

⎥
⎥
⎦

{
�̇
} =

⎡

⎢
⎢
⎣

v

vY i

vR

φ̇

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

cos θ
cos φ

sin θ
cos φ

0 0

− sin θ cos θ 0 0
− sin φ 0 l cos θ cos φ 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

[ϑ]T

⎡

⎢
⎢
⎣

ẋ

ẏ

θ̇

φ̇

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
{q̇}

(4.74)

The inverse relationship {q̇} = [β]
{
�̇
}

becomes:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ẏ

θ̇

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos φ cos θ − sin θ 0 0

cos φ sin θ cos θ 0 0

sin φ
l

− tan φ tan θ
l

1
l cos φ cos θ

0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
[β]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v

vY i

vR

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.75)

The Lagrangian L (assuming that there is no potential energy, only kinetic energy)
may be written as:

L = 1

2
m
(
v2 + v2

Y i + v2
R

)
+ 1

2
Iφφ̇2 + 1

2
Iθ θ̇

2 (4.76)

where m is the mass of the tricycle, Iφ is the moment of inertia of the front wheel
assembly at the joint connecting the front and rear wheels, relative to the steering
angle rate φ̇, and Iθ is the moment of inertia of the rear wheel assembly at the
joint connecting the front and rear wheels, relative to the tracking angle rate of the
rear wheels θ̇ . Although the Lagrangian L contains the θ̇ term, in the sequel, it
will be seen that ∂L/∂θ̇ doesn’t enter into any of the calculations. Recalling the
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discussion prior to the introduction of the example on pp. 181, the d’Alembert–
Lagrange equations for quasi-velocities are:

d

dt

{
∂L
∂�̇

}

+ [β]T [�]

{
∂L
∂�̇

}

− [β]T
{

∂L
∂q

}

= {N} (4.77)

where

[�] = [
ϑ̇
] − [η]

{
∂T̄

∂�̇

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂v

∂T̄
∂vY i

∂T̄
∂vR

∂T̄

∂φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;
{

∂T̄

∂q

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T̄
∂x

∂T̄
∂y

∂T̄
∂θ

∂T̄
∂φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.78)

Differentiation with respect to time of [ϑ] may be written as:

d

dt
[ϑ] = d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ
cos φ

− sin θ − sin φ 0

sin θ
cos φ

cos θ 0 0

0 0 l cos θ cos φ 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

0 0 − (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

)
0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.79)
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The matrix [η] is composed as follows:

[η] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{
�̇
}T

[β]T
[

∂ϑ
∂x

]

{
�̇
}T

[β]T
[

∂ϑ
∂y

]

{
�̇
}T

[β]T
[

∂ϑ
∂θ

]

{
�̇
}T

[β]T
[

∂ϑ
∂φ

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.80)

The term
{
�̇
}T

[β]T is of the form:

{
�̇
}T

[β]T = [
v vY i vR φ̇

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos φ cos θ cos φ sin θ
sin φ

l
0

− sin θ cos θ − tan φ tan θ
l

0

0 0 1
l cos φ cos θ

0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(v cos φ cos θ − vY i sin θ)

(v cos φ sin θ + vY i cos θ)

(
v sin θ

l
− vY i tan θ tan φ

l
+ vR

l cos θ cos φ

)

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(4.81)

The remaining elements which make up the matrix [η] are:

[
∂ϑ

∂x

]

=

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ;

[
∂ϑ

∂y

]

=

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (4.82)
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[
∂ϑ

∂θ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− sin θ
cos φ

− cos θ 0 0

cos θ
cos φ

− sin θ 0 0

0 0 −l cos φ sin θ 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.83)

[
∂ϑ

∂φ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ sin φ

cos2 φ
0 − cos φ 0

sin φ sin θ

cos2 φ
0 0 0

0 0 −l cos θ sin φ 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.84)

Carrying out the prescribed operations results in:

{
�̇
}T

[β]T
[
∂ϑ

∂x

]

= {
�̇
}T

[β]T

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ = [

0 0 0 0
]

(4.85)

{
�̇
}T

[β]T
[
∂ϑ

∂y

]

= {
�̇
}T

[β]T

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ = [

0 0 0 0
]

(4.86)

{
�̇
}T

[β]T
[
∂ϑ

∂θ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(v cos φ cos θ − vY i sin θ)

(v cos φ sin θ + vY i cos θ)

(
v sin θ

l
− vY i tan θ tan φ

l
+ vR

l cos θ cos φ

)

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− sin θ
cos φ

− cos θ 0 0

cos θ
cos φ

− sin θ 0 0

0 0 −l cos φ sin θ 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ(vY i cos θ+v cos φ sin θ)
cos φ

+ sin θ(vY i sin θ−v cos φ cos θ)
cos φ

cos θ (vY i sin θ − v cos φ cos θ) − sin θ (vY i cos θ + v cos φ sin θ)

−l cos φ sin θ
(

v sin φ
l

+ vR

l cos φ cos θ
− vY i sin φ sin θ

l cos φ cos θ

)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

=
[

vY i

cos φ
−v cos φ tan θ (vY i sin φ sin θ − vR) − v cos φ sin θ sin φ 0

]

(4.87)

{
�̇
}T

[β]T
[
∂ϑ

∂φ

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(v cos φ cos θ − vY i sin θ)

(v cos φ sin θ + vY i cos θ)

(
v sin θ

l
− vY i tan θ tan φ

l
+ vR

l cos θ cos φ

)

φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ sin φ

cos2 φ
0 − cos φ 0

sin φ sin θ

cos2 φ
0 0 0

0 0 −l cos θ sin φ 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin φ sin θ (vY i cos θ+v cos φ sin θ)

cos2 φ
− cos θ sin φ (vY i sin θ−v cos φ cos θ)

cos2 φ

0

cos φ (vY i sin θ − v cos φ cos θ) − l cos θ sin φ
(

v sin φ
l

+ vR

l cos φ cos θ
− vY i sin φ sin θ

l cos φ cos θ

)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

=
[
v tan φ 0 vY i

sin θ
cos φ

− vR tan φ − v cos θ 0
]

(4.88)
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Combining the above results, the matrix [η] becomes:

[η] =

⎡

⎢
⎢
⎢
⎢
⎣

{
�̇
}T

[β]T
[

∂ϑ
∂x

]

{
�̇
}T

[β]T
[

∂ϑ
∂y

]

{
�̇
}T

[β]T
[

∂ϑ
∂θ

]

{
�̇
}T

[β]T
[

∂ϑ
∂φ

]

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

vY i

cos φ
−v cos φ tan θ (vY i sin φ sin θ − vR) − v cos φ sin θ sin φ 0

v tan φ 0 vY i
sin θ
cos φ

− vR tan φ − v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.89)

The matrix [�] = [
ϑ̇
] − [η] may be written as:

[�] = [
ϑ̇
] − [η]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

0 0 − (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

)
0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

vY i

cos φ
−v cos φ tan θ (vY i sin φ sin θ − vR) − v cos φ sin θ sin φ 0

v sin φ
cos φ

0 vY i
sin θ
cos φ

− vR tan φ − v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

− vY i

cos φ
v cos φ

− tan θ (vY i sin φ sin θ − vR) + v cos φ sin θ sin φ

− (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

) 0

−v tan φ 0 −vY i
sin θ
cos φ

+ vR tan φ + v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.90)

Using the fact that vR = vY i = 0, the matrix [�] may be simplified to be:

[�] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

0 v cos φ
v cos φ sin θ sin φ

− (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

) 0

− v sin φ
cos φ

0 v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.91)

Because the only independent generalized coordinates are v and φ, the dynamic
equations of interest will be those related to v and φ. The coefficients of interest can
then be obtained by pre-multiplying the matrix [�], by the appropriate rows of the
[β]T matrix. Since our interest lies only in v and φ, the matrix [�] should be pre-
multiplied by the first and fourth rows of [β]T , respectively, to obtain the desired
coefficients. We assume the following:

1. cos φ sin φ ≈ 0
2. cos φ sin θ ≈ 0
3. vY i = 0, vR = 0
4. θ̇ may be ignored in the dynamic equations
5. The only dynamics of interest are related to v and φ

The product of
[
βT

]
1st row

∗ [�] becomes:

[
cos φ cos θ cos φ sin θ

sin φ
l

0
]
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∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

0 v cos φ
v cos φ sin θ sin φ

− (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

) 0

− v sin φ
cos φ

0 v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos φ cos θ
(

φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
+ cos φ sin θ

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)

−θ̇ cos φ cos2 θ − θ̇ cos φ sin2 θ + sin φ
l

v cos φ

−φ̇ cos2 φ cos θ + sin φ
l

[
v cos φ sin θ sin φ

− (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

)

]

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

=
[

φ̇ tan φ −θ̇ cos φ + v
l

sin φ cos φ
v cos φ sin2 φ sin θ

l
− φ̇ cos θ − θ̇ cos φ sin φ sin θ 0

]

≈ [
φ̇ tan φ 0 −φ̇ cos θ 0

]
(4.92)

Hence, the result of
[
βT

]
1st row

∗ [�]
{

∂L
∂�̇

}
becomes:

[
βT

]

1st row
∗ [�]

{
∂L
∂�̇

}

= [
φ̇ tan φ 0 −φ̇ cos θ 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂v

∂L
∂vY i

∂L
∂vR

∂L
∂φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φ̇ tan φ
∂L
∂v

− φ̇ cos θ
∂L
∂vR

(4.93)
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Note that all terms related to θ̇ are not taken into account, that is, θ̇ cos φ sin φ sin θ ≈
0, since the only independent quasi-velocity and generalized coordinates are
v and φ̇, respectively. Using exactly the same procedure as above, the term[
βT

]
4th row

∗ [�] may be shown to be:

[
0 0 0 1

]

∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φ̇ cos θ sin φ

cos2 φ
− θ̇ sin θ

cos φ

)
−θ̇ cos θ −φ̇ cos φ 0

(
φ̇ sin θ sin φ

cos2 φ
+ θ̇ cos θ

cos φ

)
−θ̇ sin θ 0 0

0 v cos φ
v cos φ sin θ sin φ

− (
lφ̇ cos θ sin φ + lθ̇ cos φ sin θ

) 0

− v sin φ
cos φ

0 v cos θ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [−v tan φ 0 v cos θ 0
]

(4.94)

Hence, the result of
[
βT

]
4th row

∗ [�]
{

∂L
∂�̇

}
becomes:

[
βT

]

4th row
∗ [�]

{
∂L
∂�̇

}

= [−v tan φ 0 v cos θ 0
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂v

∂L
∂vY i

∂L̄
∂vR

∂L
∂φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −v tan φ
∂L
∂v

+ v cos θ
∂L
∂vR

(4.95)

The additional terms in the d’Alembert–Lagrange equations

d

dt

{
∂L
∂�̇

}

+ [β]T [�]

{
∂L
∂�̇

}

− [β]T
{

∂L
∂q

}

= {N} (4.96)
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are: d
dt

{
∂L
∂�̇

}
and − [β]T

{
∂L
∂q

}
, respectively. For the − [β]T

{
∂L
∂q

}
terms, only the

first and fourth rows of [β]T are required and the results are:

−
[
βT

]

1st row

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂x

∂L
∂y

∂L
∂θ̇

∂L
∂φ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −
[

cos φ cos θ cos φ sin θ
sin φ

l
0
]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L̄
∂x

∂L
∂y

∂L
∂θ

∂L
∂φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= − cos φ cos θ
∂L
∂x

− cos φ sin θ
∂L̄

∂y
− sin φ

l

∂L
∂θ̇

−
[
βT

]

4th row

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂x

∂L
∂y

∂L
∂θ

∂L
∂φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= − [
0 0 0 1

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂x

∂L
∂y

∂L
∂θ

∂L
∂φ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −∂L
∂φ

(4.97)

Finally, the relevant terms of d
dt

{
∂L
∂�̇

}
, that is, the first and fourth terms of the vector

are:

d

dt

{
∂L
∂v

}

; d

dt

{
∂L
∂φ̇

}

Combining all of the foregoing results, the relevant d’Alembert–Lagrange equations
become:

d

dt

{
∂L̄

∂v

}

− cos φ cos θ
∂L̄

∂x
− cos φ sin θ

∂L̄

∂y
− sin φ

l

∂L̄

∂θ̇

+ φ̇ tan φ
∂L̄

∂v
− φ̇ cos θ

∂L̄

∂vR

= Fv

d

dt

{
∂L̄

∂φ̇

}

− ∂L̄

∂φ
− v tan φ

∂L̄

∂v
+ v cos θ

∂L̄

∂vR

= τ

(4.98)
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where Fv is the external generalized force applied to the tricycle and τ is the external
generalized torque.

4.4 Lagrangian Dynamics with Quasi-Coordinates: Prof.
Ranjan Vepa’s Approach

The following section is based on the approach by Prof. Ranjan Vepa (see Vepa [50,
pp. 69–72]).
For most systems where quasi-velocities are involved, the kinetic energy is a
function of both the generalized coordinates ψ, θ, φ and the quasi-velocities
[pb, qb, rb]T . Hence there are two approaches to writing the Lagrangian dynamics.
In the first approach, the quasi-velocities are written in terms of the generalized
velocities and generalized coordinates, that is:

⎡

⎣
pb

qb

rb

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎦ (4.99)

These terms are then substituted into the energy equations and subsequently the
system’s Lagrangian dynamics are derived. In the second approach, the mixed quasi-
velocities and generalized coordinates are retained but the Lagrangian dynamics
must be modified accordingly. The method to be developed in the sequel, in order
to obtain the Lagrangian dynamics for the mixed quasi-velocities and generalized
coordinates, was adapted from the work of Ranjan Vepa [50, pp. 69–72]. The time
derivative of a rotation matrix will be required in the sequel and so it is now
introduced.

Time Derivative of a Rotation Matrix (See Britting [6, pp. 16–17], and
Noureldin et al. [26, pp. 37–38, 43–45])
Consider a time varying matrix Ta/b(t) which represents the Euler transformation
between the coordinate frames Fa and Fb. That is, a vector in frame Fb is
transformed (rotated) to a vector in frame Fa by Ta/b(t). Frame Fb rotates with
angular velocity � relative to Fa , which we may regard as fixed. At time t , the Fa

and Fb frames are related through the Euler rotation matrix, Ta/b(t). During the next
instant of time, �t , frame Fb rotates to a new orientation such that the Euler rotation
matrix at t + �t is given by Ta/b(t + �t). By definition, the time rate of change of
Ṫa/b(t) is given by:

Ṫa/b(t) = lim
�t→0

�Ta/b(t)

�t
= lim

�t→0

Ta/b(t + �t) − Ta/b(t)

�t
(4.100)



200 4 Quasi-Coordinates and Quasi-Velocities

Take, for example, the rotation matrix from the body frame to the inertial axis
system, that is:

TI/B(t) =
⎡

⎢
⎣

cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎥
⎦

(4.101)

Allowing for very small angular rotations from time t to time t + �t , such that
φ′ = φ + �φ,ψ ′ = ψ + �ψ, θ ′ = θ + �θ , the rotation matrix TI/B(t + �t)

becomes:

TI/B(t + �t)

=
⎡

⎢
⎣

cos θ ′ cos ψ ′ sin φ′ sin θ ′ cos ψ ′ − cos φ′ sin ψ ′ cos φ′ sin θ ′ cos ψ ′ + sin φ′ sin ψ ′
cos θ ′ sin ψ ′ sin φ′ sin θ ′ sin ψ ′ + cos φ′ cos ψ ′ cos φ′ sin θ ′ sin ψ ′ − sin φ′ cos ψ ′

− sin θ ′ sin φ′ cos θ ′ cos φ′ cos θ ′

⎤

⎥
⎦

(4.102)

Furthermore assuming that the � angles are very small, so that �φ → 0,�ψ →
0,�θ → 0, and cos �φ = cos �θ = cos �ψ = 1, sin �φ = �φ, sin �ψ =
�ψ, sin �θ = �θ; �φ�ψ = �φ�θ = �ψ�θ ≈ 0, we have:

1. TI/B(t + �t)(1, 1) = cos ψ cos θ − �ψ cos θ sin ψ − �θ cos ψ sin θ

2. TI/B(t + �t)(1, 2) = cos ψ sin φ sin θ − cos φ sin ψ + �φ sin φ sin ψ −
�ψ cos φ cos ψ + �φ cos φ cos ψ sin θ + �θ cos ψ cos θ sin φ

−�ψ sin φ sin ψ sin θ

3. TI/B(t + �t)(1, 3) = sin φ sin ψ + cos φ cos ψ sin θ + �φ cos φ sin ψ +
�ψ cos ψ sin φ + �θ cos φ cos ψ cos θ − �φ cos ψ sin φ sin θ

−�ψ cos φ sin ψ sin θ

4. TI/B(t + �t)(2, 1) = cos θ sin ψ + �ψ cos ψ cos θ − �θ sin ψ sin θ

5. TI/B(t + �t)(2, 2) = cos φ cos ψ + sin φ sin ψ sin θ − �φ cos ψ sin φ −
�ψ cos φ sin ψ + �φ cos φ sin ψ sin θ + �ψ cos ψ sin φ sin θ

+�θ cos θ sin φ sin ψ

6. TI/B(t + �t)(2, 3) = cos φ sin ψ sin θ − cos ψ sin φ + �ψ sin φ sin ψ −
�φ cos φ cos ψ + �ψ cos φ cos ψ sin θ + �θ cos φ cos θ sin ψ

−�φ sin φ sin ψ sin θ

7. TI/B(t + �t)(3, 1) = − sin θ − �θ cos θ

8. TI/B(t + �t)(3, 2) = cos θ sin φ + �φ cos φ cos θ − �θ sin φ sin θ

9. TI/B(t + �t)(3, 3) = cos φ cos θ − �φ cos θ sin φ − �θ cos φ sin θ

Note that the bold items in the above list constitute the elements of the TI/B(t)

matrix. Hence subtracting the matrix TI/B(t) from TI/B(t + �t), dividing through-
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out by �t and letting lim�t→0, we are left with:

lim
�t→0

TI/B(t + �t) − TI/B(t)

�t
= lim

�t→0

�TI/B(t)

�t
= dTI/B(t)

dt

Postulating that TI/B(t + �t) = TI/B(t)[I + Y (t)] allows us to solve for TI/B(t +
�t) − TI/B(t) as follows:

TI/B(t + �t) = TI/B(t)[I + Y (t)] ⇒ Y (t) = T T
I/B(t)

(
TI/B(t + �t) − TI/B(t)

)

⇒ TI/B(t + �t) − TI/B(t) = TI/B(t)Y (t)

For example, assuming that Y (t) =
⎡

⎣
y11 y12 y13

y21 y22 y23

y31 y32 y33

⎤

⎦, then:

TI/B(t + �t)(1, 1) − TI/B(t)(1, 1) = −�ψ cos θ sin ψ − �θ cos ψ sin θ

= TI/B(t)(1, 1)y11 + TI/B(t)(1, 2)y21 + TI/B(t)(1, 3)y31

= y11 cos ψ cos θ + y21(cos ψ sin φ sin θ − cos φ sin ψ)

+y31(sin φ sin ψ + cos φ cos ψ sin θ)

= cos ψ sin θ [y21 sin φ + y31 cos φ]
︸ ︷︷ ︸

−�θ

+ cos θ sin ψ

[

y31
sin φ

cos θ
− y21

cos φ

cos θ

]

︸ ︷︷ ︸
−�ψ

+y11 cos ψ cos θ

⇒ y11 = 0; y21 sin φ + y31 cos φ = −�θ; y31 sin φ − y21 cos φ = −�ψ cos θ

The coefficients y21, y31 may be determined as follows:

y31 cos2 φ + y21 sin φ cos φ = −�θ cos φ

y31 sin2 φ − y21 cos φ sin φ = −�ψ cos θ sin φ

⇒ y31 = −�ψ cos θ sin φ − �θ cos φ

y21 sin φ + y31 cos φ = −�θ ⇒ y21 sin φ = −y31 cos φ − �θ

= −�θ + �θ cos2 φ + �ψ cos θ cos φ sin φ

⇒ y21 sin φ = �θ(cos2 θ − 1) + �ψ cos θ cos φ sin φ

⇒ y21 = −�θ sin φ + �ψ cos θ cos φ
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A similar procedure may be carried out for the evaluation of y12, y22, y32 and
y13, y23, y33, thus resulting in the Y (t) matrix, which is of the form:

Y (t) =
⎡

⎢
⎣

0 �θ sin φ − �ψ cos φ cos θ �θ cos φ + �ψ cos θ sin φ

�ψ cos φ cos θ − �θ sin φ 0 �ψ sin θ − �φ

−�θ cos φ − �ψ cos θ sin φ �φ − ψ̇ sin θ 0

⎤

⎥
⎦

(4.103)

Finally dividing TI/B(t + �t) − TI/B(t) throughout by �t and letting lim�t→0
results in:

lim
�t→0

TI/B(t + �t) − TI/B(t)

�t
= lim

�t→0

�TI/B(t)

�t
= dTI/B(t)

dt
= TI/B(t) lim

�t→0
Y (t)

= TI/B(t)

⎡

⎢
⎣

0 θ̇ sin φ − ψ̇ cos φ cos θ θ̇ cos φ + ψ̇ cos θ sin φ

ψ̇ cos φ cos θ − θ̇ sin φ 0 ψ̇ sin θ − φ̇

−θ̇ cos φ − ψ̇ cos θ sin φ φ̇ − ψ̇ sin θ 0

⎤

⎥
⎦

= TI/B(t)

⎡

⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎦ = TI/B(t)�̂T (4.104)

where ψ̇ = lim�t→0
�ψ
�t

; φ̇ = lim�t→0
�φ
�t

; θ̇ = lim�t→0
�θ
�t

.
The time derivative of TI/B(t) may be obtained as well from purely geometric

considerations. Since the rotation at time t +�t consists of the rotation up to time t ,
followed by the small rotation I +�θb from time t to time t +�t , the total rotation
from time t = 0 to time t+�t may be written as: TI/B(t+�t) = TI/B(t)(I +�θb).
As may be seen from Fig. 4.3, �θb is given by:

�θb =
⎡

⎣
0 −�θYaw �θP itch

�θYaw 0 −�θRoll

−�θPitch �θRoll 0

⎤

⎦ =
⎡

⎣
0 −�ψ �θ

�ψ 0 −�φ

−�θ �φ 0

⎤

⎦ (4.105)

Note that �θRoll,�θP itch,�θYaw are the small rotation angles through which
frame Fb has rotated during the time �t . Dividing �θb by �t and and letting
�t → 0 results in:
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Fig. 4.3 Time derivative of a rotation matrix—small angle rotations

Ṫa/b(t) = lim
�t→0

Ta/b(t)
�θb

�t
= Ta/b(t) lim

�t→0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −�θYaw

�t
�θP itch

�t

�θYaw

�t
0 −�θRoll

�t

−�θPitch

�t
�θRoll

�t
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Ta/b(t)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Ta/b(t)�̂
T = −Ta/b(t)�̂; �̂T = −�̂ (4.106)

where pb, qb, rb are the roll, pitch, and yaw angular velocities of frame Fb with

respect to frame Fa , that is, � =
⎡

⎣
pb

qb

rb

⎤

⎦. In the limit as �t → 0, �θb

�t
is the skew-

symmetric form of the vector angular velocity of the Fb frame relative to the Fa

frame during time �t . This skew-symmetric matrix is the matrix equivalent of a
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vector cross product between vector � and velocity vector V =
⎡

⎣
vx

vy

vz

⎤

⎦, that is,

lim�t→0
�θb

�t

⎡

⎣
vx

vy

vz

⎤

⎦ = −� ×
⎡

⎣
vx

vy

vz

⎤

⎦.

Summarizing then, the derivative with respect to time of the Euler rotation matrix
Ta/b is:

Ṫa/b = Ta/b�̂
T = −Ta/b�̂ (4.107)

Transformation for Translational Motion
In the sequel, whenever the intent is clear from the context of the discussion, the
symbols {·} and [·] shall be dropped.

The basic idea is to transform the Lagrangian L into L in such a way that the latter
contains the velocities in body-fixed axes u, v,w, translations xb, yb, zb, and body
angular rates pb, qb, rb. The Lagrangian L is a function of the inertial location and
velocities of the system under consideration (the generalized inertial coordinates
and generalized inertial velocities), that is, L = L (xI , yI , zI , uI , vI , wI ) =
L (

XI , ẊI

)
, while the modified Lagrangian contains the system’s location and

velocities in body axis coordinates. In other words, L = L (xb, yb, zb, u, v,w) =
L (

XB, ẊB

)
. The body-centered and inertial velocities and positions are intimately

related via Euler transformations TB/I and TI/B which transform from inertial to
body-centered coordinates and vice versa. Stated more precisely, the transformation

from body-centered velocities to velocities along inertial axes is:

⎡

⎣
uI

vI

wI

⎤

⎦ =

TI/B

⎡

⎣
u

v

w

⎤

⎦. The partial derivatives of L with respect to uI , vI , and wI , for example,

may be written in the following fashion:

∂L
∂uI

= ∂L
∂u

∂u

∂uI

+ ∂L
∂v

∂v

∂uI

+ ∂L
∂w

∂w

∂uI

∂L
∂vI

= ∂L
∂u

∂u

∂vI

+ ∂L
∂v

∂v

∂vI

+ ∂L
∂w

∂w

∂vI

∂L
∂vI

= ∂L
∂u

∂u

∂vI

+ ∂L
∂v

∂v

∂vI

+ ∂L
∂w

∂w

∂vI

(4.108)
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In matrix form, the partial derivative of L with respect to the velocity vector in
inertial coordinates VI may be written as:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uI

∂L
∂vI

∂L
∂wI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂u
∂uI

∂v
∂uI

∂w
∂uI

∂u
∂vI

∂v
∂vI

∂w
∂vI

∂u
∂wI

∂v
∂wI

∂w
∂wI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.109)

Lagrange’s equation in generalized inertial coordinates for the translational degrees
of freedom may be written in the form:

d

dt

(
∂L
∂ẊI

)

− ∂L
∂XI

= QI ; ẊI ≡ VI ⇒ d

dt

(
∂L
∂VI

)

− ∂L
∂XI

= QI (4.110)

In Sect. 4.1, the transformation between the velocity vector in body coordinates and
the corresponding velocity vector in inertial coordinates was shown to be:

TI/B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂u
∂uI

∂v
∂uI

∂w
∂uI

∂u
∂vI

∂v
∂vI

∂w
∂vI

∂u
∂wI

∂v
∂wI

∂w
∂wI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.111)

where TI/B is the direction cosine matrix (or Euler transformation matrix ) which
rotates the velocity vector in body coordinates, [u, v,w]T , into the velocity vector
in inertial coordinates [uI , vI , wI ]T . The foregoing relationship may be written

succinctly in the form: ∂L
∂VI

= TI/B

{
∂L
∂VB

}
, where VI =

⎡

⎣
uI

vI

wI

⎤

⎦ and VB =
⎡

⎣
u

v

w

⎤

⎦.

Similarly, for position the following relationship holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xI

∂L
∂yI

∂L
∂zI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂xb

∂xI

∂yb

∂xI

∂zb

∂xI

∂xb

∂yI

∂yb

∂yI

∂zb

∂yI

∂xb

∂zI

∂yb

∂zI

∂zb

∂zI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xb

∂L
∂yb

∂L
∂zb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.112)
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which may be written in compact form as: ∂L
∂XI

= TI/B
∂L

∂XB
. The preceding results

imply that:

∂L
∂VI

= TI/B

∂L
∂VB

⇒ TB/I

∂L
∂VI

= ∂L
∂VB

∂L
∂XI

= TI/B

∂L
∂XB

⇒ TB/I

∂L
∂XI

= ∂L
∂XB

(4.113)

where XI = [xI , yI , zI ]T is a position vector in inertial coordinates and XB =
[xb, yb, zb]T is the corresponding position vector in body (or rotating ) coordinates.
Similarly VI , VB are the velocity vectors in inertial and body coordinate frames,
respectively. The derivative with respect to time of an Euler rotation matrix TI/B

takes the following form:

dTI/B

dt
= TI/B(t)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

�̂T = ω×

= TI/B(t)�̂T = −TI/B(t)�̂; �̂T = −�̂

(4.114)

Hence the time derivative of TB/I
∂L
∂VI

may be written as:

d

dt

[

TB/I

∂L
∂VI

]

= ṪB/I

∂L
∂VI

+ TB/I

d

dt

∂L
∂VI

= d

dt

(
∂L
∂VB

)

(4.115)

The rotation matrix TI/B has the property that the product TI/BTB/I = I , that is, the
inverse of TI/B implies rotation in exactly the opposite direction and in the opposite
sequence. This implies that:

ṪB/I TI/B + TB/I ṪI/B = 0 ⇒ ṪB/I TI/B = −TB/I ṪI/B

⇒ ṪB/I = −TB/I ṪI/BTB/I = TB/I TI/B�̂TB/I = �̂TB/I (4.116)
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Using the fact that ṪB/I = �̂TB/I and substituting this result into the equation for

the time derivative of ∂L
∂VB

leads to:

d

dt

[
∂L
∂VB

]

= �̂TB/I

(
∂L
∂VI

)

+ TB/I

d

dt

(
∂L
∂VI

)

⇒ TB/I

d

dt

(
∂L
∂VI

)

= d

dt

[
∂L
∂VB

]

− �̂TB/I

(
∂L
∂VI

)

= d

dt

[
∂L
∂VB

]

− �̂TB/I TI/B

(
∂L
∂VB

)

⇒ TB/I

d

dt

(
∂L
∂VI

)

= d

dt

[
∂L
∂VB

]

− �̂

(
∂L
∂VB

)

(4.117)

Furthermore, we know that:

∂L
∂XI

= TI/B

∂L
∂XB

⇒ ∂L
∂XB

= TB/I

∂L
∂XI

⇒ − ∂L
∂XB

= −TB/I

∂L
∂XI

(4.118)

Combining the terms in TB/I

[
d
dt

(
∂L
∂ẊI

)
− ∂L

∂XI

]
− TB/IQI = 0 results in the

transformed translational Lagrangian dynamic equation which is:

TB/I

[
d

dt

(
∂L
∂ẊI

)

− ∂L
∂XI

− QI

]

= d

dt

(
∂L
∂VB

)

− �̂
∂L
∂VB

− ∂L
∂XB

− TB/I QI = 0

⇒ TB/I

[
d

dt

(
∂L
∂ẊI

)

− ∂L
∂XI

− TB/I QI

]

= d

dt

(
∂L
∂VB

)

+ �̂T ∂L
∂VB

− ∂L
∂XB

− TB/I QI
︸ ︷︷ ︸

FB

= 0

(4.119)

since �̂T = −�̂. In addition, ẊI ≡ VI . Note that in the development of the
transformation of the translational equations of motion, it was tacitly assumed that
the origin of the body-centered coordinate system is at the body’s center of mass.
The same assumption will be used in developing the rotational equations of motion
in the sequel.
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Example 3

The transformed equations for translational motion shall be applied to a body with
six degrees of freedom (where the potential energy due to gravity has not been taken
into account). The Lagrangian L for translational motion is:

L = 1

2
m(u2 + v2 + w2) (4.120)

where u, v, and w are the velocities of the body along the body-centered coordinate
axes, with the center of mass at the origin of this axis system. Carrying out the

operation indicated by d
dt

(
∂L
∂VB

)
+ �̂T ∂L

∂VB
− ∂L

∂XB
− TB/IQI = 0 results in:

m

⎡

⎣
u̇

v̇

ẇ

⎤

⎦ + m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
FBx

FBy

FBz

⎤

⎦

⇒ m(u̇ − rbv + qbw) = FBx

m(v̇ + rbu − pbw) = FBy

m(ẇ + pbv − qbu) = FBz (4.121)

Transformation for Rotational Motion
For the rotational dynamics case, we use the following definitions:

1. � � [φ, θ, ψ]T
2. �̇ � [φ̇, θ̇ , ψ̇]T
3. QB �

[
pb

(
�, �̇

)
, qb

(
�, �̇

)
, rb

(
�, �̇

)]T = ω

4. pb = pb

(
φ, θ, ψ, φ̇, θ̇ , ψ̇

) = pb

(
�, �̇

)

5. qb = qb

(
φ, θ, ψ, φ̇, θ̇ , ψ̇

) = qb

(
�, �̇

)

6. rb = rb
(
φ, θ, ψ, φ̇, θ̇ , ψ̇

) = rb
(
�, �̇

)

7. L = L (
φ, θ, ψ, φ̇, θ̇ , ψ̇

) = L (
�, �̇

)

8. L = L (
pb

(
φ, θ, ψ, φ̇, θ̇ , ψ̇

)
, qb

(
φ, θ, ψ, φ̇, θ̇ , ψ̇

)
, rb

(
φ, θ, ψ, φ̇, θ̇ , ψ̇

)) =
L (�,QB)

The relationship between the body’s angular rates and the Euler angular rates
may be written in the following manner:

pb = φ̇ − ψ̇ sin θ; qb = θ̇ cos φ + ψ̇ sin φ cos θ;
rb = −θ̇ sin φ + ψ̇ cos φ cos θ

φ̇ = pb + (qb sin φ + rb cos φ) tan θ; θ̇ = qb cos φ − rb sin φ;
ψ̇ = (qb sin φ + rb cos φ)

cos θ
(4.122)
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With the definitions of ω = QB � [pb, qb, rb]T and � � [φ, θ, ψ]T , the transpose
of the Jacobian matrix J , that is, J T = ∂QB/∂�, turns out to be:

∂QB

∂�
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂pb

∂φ
∂qb

∂φ
∂rb
∂φ

∂pb

∂θ
∂qb

∂θ
∂rb
∂θ

∂pb

∂ψ
∂qb

∂ψ
∂rb
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

[
pb qb rb

]

∂
∂θ

[
pb qb rb

]

∂
∂ψ

[
pb qb rb

]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
0 −θ̇ sin φ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

−ψ̇ cos θ −ψ̇ sin φ sin θ −ψ̇ cos φ sin θ

0 0 0

⎤

⎦ (4.123)

∂QB

∂�̇
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂pb

∂φ̇

∂qb

∂φ̇

∂rb
∂φ̇

∂pb

∂θ̇

∂qb

∂θ̇

∂rb
∂θ̇

∂pb

∂ψ̇

∂qb

∂ψ̇

∂rb
∂ψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
1 0 0
0 cos φ − sin φ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎦ = MT

(4.124)

The inverse matrix of M , i.e., L = M−1, is defined to be:

M =
⎡

⎣
1 0 − sin θ

0 cos φ sin φ cos θ

0 − sin φ cos φ cos θ

⎤

⎦ ; L = M−1 =
⎡

⎣
1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ
cos θ

cos φ
cos θ

⎤

⎦

(4.125)

Since the Lagrangian L and transformed Lagrangian L are related, the following
operation is justified:

∂L
∂φ̇

= ∂L
∂pb

∂pb

∂φ̇
+ ∂L

∂qb

∂qb

∂φ̇
+ ∂L

∂rb

∂rb

∂φ̇

∂L
∂θ̇

= ∂L
∂pb

∂pb

∂θ̇
+ ∂L

∂qb

∂qb

∂θ̇
+ ∂L

∂rb

∂rb

∂θ̇

∂L
∂ψ̇

= ∂L
∂pb

∂pb

∂ψ̇
+ ∂L

∂qb

∂qb

∂ψ̇
+ ∂L

∂rb

∂rb

∂ψ̇

(4.126)
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Writing the above in matrix form, the partial derivative of L with respect to the
Euler angular rates, �̇, may be written as:

∂L
∂�̇

= ∂QB

∂�̇

∂L
∂QB

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ̇

∂L
∂�̇

∂L
∂ψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂pb

∂φ̇

∂qb

∂φ̇

∂rb
∂φ̇

∂pb

∂θ̇

∂qb

∂θ̇

∂rb
∂θ̇

∂pb

∂ψ̇

∂qb

∂ψ̇

∂rb
∂ψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
∂QB

∂�̇

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
∂L

∂QB

= MT

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.127)

Symbolically, the partial derivative of the Lagrangian L with respect to the vector
of Euler angles � may be written in terms of the partial derivatives of the modified
Lagrangian L, with respect to � and the vector of body angular rates QB , that is:

∂L
∂�

= ∂L
∂�

+ ∂QB

∂�

∂L
∂QB

(4.128)

To recap, we shall use the following definitions in the sequel:

1. ∂L/∂QB �
[

∂L
∂pb

∂L
∂qb

∂L
∂rb

]T

2. ∂QB/∂� �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂pb

∂φ
∂qb

∂φ
∂rb
∂φ

∂pb

∂θ
∂qb

∂θ
∂rb
∂θ

∂pb

∂ψ
∂qb

∂ψ
∂rb
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

[
pb qb rb

]

∂
∂θ

[
pb qb rb

]

∂
∂ψ

[
pb qb rb

]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
0 −θ̇ sin φ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

−ψ̇ cos θ −ψ̇ sin φ sin θ −ψ̇ cos φ sin θ

0 0 0

⎤

⎦

3. ∂QB/∂�̇ �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂pb

∂φ̇

∂qb

∂φ̇

∂rb
∂φ̇

∂pb

∂θ̇

∂qb

∂θ̇

∂rb
∂θ̇

∂pb

∂ψ̇

∂qb

∂ψ̇

∂rb
∂ψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
1 0 0
0 cos φ − sin φ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎦ = MT

4. M =
⎡

⎣
1 0 − sin θ

0 cos φ sin φ cos θ

0 − sin φ cos φ cos θ

⎤

⎦ ; L = M−1 =
⎡

⎣
1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ
cos θ

cos φ
cos θ

⎤

⎦
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From the relationship between the body’s angular rates and the Euler angular rates
we can deduce the following:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 − sin θ

0 cos φ sin φ cos θ

0 − sin φ cos φ cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ̇

θ̇

ψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ QB = Md�/dt ⇒ d�/dt = LQB

(4.129)

The d’Alembert–Lagrange equation for the rotational modes is of the following
form:

K

[
d

dt

(
∂L
∂�̇

)

− ∂L
∂�

− Qτ

]

= 0 (4.130)

where K is a constant. The time derivative of ∂L/∂�̇ is calculated as follows (see
Eq. 4.127):

∂L
∂�̇

= MT ∂L
∂QB

⇒ d

dt

(
∂L
∂�̇

)

= ṀT ∂L
∂QB

+ MT d

dt

(
∂L

∂QB

)

⇒
(
MT

)−1 d

dt

(
∂L
∂�̇

)

=
(
MT

)−1
ṀT

(
∂L

∂QB

)

+ d

dt

(
∂L

∂QB

)

⇒ LT d

dt

(
∂L
∂�̇

)

= LT ṀT

(
∂L

∂QB

)

+ d

dt

(
∂L

∂QB

)

(4.131)

The term ∂L/∂� was shown to be:

∂L
∂�

= ∂L
∂�

+ ∂QB

∂�

∂L
∂QB

(4.132)

Therefore the d’Alembert–Lagrange equation for the rotational modes, that is,

K
[

d
dt

(
∂L
∂�̇

)
− ∂L

∂�
− Qτ

]
= 0, may be written as follows:

LT d

dt

(
∂L
∂�̇

)

= LT

[
∂L
∂�

+ Qτ

]

= LT

[
∂L
∂�

+ ∂QB

∂�

∂L
∂QB

+ Qτ

]

(4.133)
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Using this latter result, the transformed d’Alembert–Lagrange equation for the
rotational modes may be written as:

LT d

dt

(
∂L
∂�̇

)

= LT ṀT

(
∂L

∂QB

)

+ d

dt

(
∂L

∂QB

)

⇒ LT

[
∂L
∂�

+ ∂QB

∂�

∂L
∂QB

+ Qτ

]

= LT ṀT

(
∂L

∂QB

)

+ d

dt

(
∂L

∂QB

)

⇒ d

dt

(
∂L

∂QB

)

− LT ∂L
∂�

+ LT ṀT

(
∂L

∂QB

)

− LT ∂QB

∂�

∂L
∂QB

= LT Qτ

⇒ d

dt

(
∂L

∂QB

)

− LT ∂L
∂�

+ LT

(

ṀT − ∂QB

∂�

)(
∂L

∂QB

)

= LT Qτ

(4.134)

Previously the value of ∂QB/∂� was shown to be:

∂QB

∂�
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −θ̇ sin φ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

−ψ̇ cos θ −ψ̇ sin φ sin θ −ψ̇ cos φ sin θ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.135)

The calculated time derivative of MT is:

MT =
⎡

⎣
1 0 0
0 cos φ − sin φ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎦

⇒ ṀT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 −φ̇ sin φ −φ̇ cos φ

−θ̇ cos θ φ̇ cos φ cos θ − θ̇ sin φ sin θ −φ̇ sin φ cos θ − θ̇ cos φ sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.136)
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Hence using the relationship

⎡

⎣
pb

qb

rb

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎦, the expres-

sion
(
ṀT − ∂QB

∂�

)
turns out to be:

(

ṀT − ∂QB

∂�

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 −φ̇ sin φ −φ̇ cos φ

−θ̇ cos θ φ̇ cos φ cos θ − θ̇ sin φ sin θ −φ̇ sin φ cos θ − θ̇ cos φ sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −θ̇ sin φ + ψ̇ cos φ cos θ −θ̇ cos φ − ψ̇ sin φ cos θ

−ψ̇ cos θ −ψ̇ sin φ sin θ −ψ̇ cos φ sin θ

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 θ̇ sin φ − ψ̇ cos φ cos θ θ̇ cos φ + ψ̇ sin φ cos θ

ψ̇ cos θ ψ̇ sin φ sin θ − φ̇ sin φ ψ̇ cos φ sin θ − φ̇ cos φ

−θ̇ cos θ φ̇ cos φ cos θ − θ̇ sin φ sin θ −φ̇ sin φ cos θ − θ̇ cos φ sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb cos φ + qb sin φ −pb sin φ −pb cos φ

rb sin φ cos θ − qb cos φ cos θ pb cos φ cos θ + rb sin θ −pb sin φ cos θ − qb sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.137)
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The latter expression may be rewritten in the form of a matrix product:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb cos φ + qb sin φ −pb sin φ −pb cos φ

rb sin φ cos θ − qb cos φ cos θ pb cos φ cos θ + rb sin θ −pb sin φ cos θ − qb sin θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎢
⎣

1 0 0

0 cos φ − sin φ

− sin θ sin φ cos θ cos φ cos θ

⎤

⎥
⎦

︸ ︷︷ ︸

MT

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

�̂T

(4.138)

The d’Alembert–Lagrange equation using quasi-velocities for rotational motion
then becomes:

d

dt

(
∂L

∂QB

)

− LT ∂L
∂�

+ LT

(

ṀT − ∂QB

∂�

)(
∂L

∂QB

)

= LT Qτ

⇒ d

dt

(
∂L

∂QB

)

− LT ∂L
∂�

+ LT
(
MT �̂T

)
(

∂L
∂QB

)

= LT Qτ

⇒ d

dt

{
∂L

∂QB

}

− LT ∂L
∂�

+ �̂T

(
∂L

∂QB

)

= LT Qτ ; LT MT = I

�̂T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.139)
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Example 4: Equations of Rotational Motion

The transformed equations for rotational motion will be applied to a body with six
degrees of freedom. The Lagrangian L for rotational motion is:

L = 1

2
(Ixp

2
b + Iyq

2
b + Izr

2
b ) (4.140)

where Ix, Iy , and Iz are the bodies’ moments of inertia at the center of mass, pb, qb,
and rb are the rotational velocities of the body along the body-centered coordinate
axes, with the center of mass at the origin of this axis system. Carrying out the

operation indicated by d
dt

(
∂L

∂QB

)
− LT ∂L

∂�
+ �̂T

(
∂L

∂QB

)
= LT Qτ results in:

⎡

⎣
Ixṗb

Iy q̇b

Izṙb

⎤

⎦ +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
Ixpb

Iyqb

Izrb

⎤

⎦ =
⎡

⎣
τBx

τBy

τBz

⎤

⎦

⇒ Ixṗb + qbrb(Iz − Iy) = τBx

Iyṗb + pbrb(Ix − Iz) = τBy

Izṗb + pbqb(Iy − Ix) = τBz

(4.141)

4.5 Lagrangian Dynamics in Quasi-Coordinates—Vepa’s
Approach—Origin Not at Mass Center

The following section is based on the approach by Prof. Ranjan Vepa (see Vepa [50,
pp. 73–75]).
The velocity and position vectors at point P , and at the center of mass C are defined
as follows:

Vp =
⎡

⎣
u

v

w

⎤

⎦ ; Vc =
⎡

⎣
uc

vc

wc

⎤

⎦ ; Rp − Rc =
⎡

⎣
xp − xc

yp − yc

zp − zc

⎤

⎦ (4.142)

Vp is the velocity vector at point P , while Vc is the velocity vector at the center
of mass point C, respectively. Rp − Rc is the distance from the center of mass to
any point P . The velocity components with respect to the point P are related to the
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velocity of the center of mass and the coordinates of point P by the relation:

Vp = Vc + ω × (Rp − Rc)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uc

vc

wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xp − xc

yp − yc

zp − zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

uc + qb(zp − zc) − rb(yp − yc)

vc + rb(xp − xc) − pb(zp − zc)

wc + pb(yp − yc) − qb(xp − xc)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.143)

The results of the foregoing equation imply that:

∂u

∂uc

= 1; ∂v

∂vc

= 1; ∂w

∂wc

= 1

∂u

∂vc

= ∂u

∂wc

= 0

∂v

∂uc

= ∂v

∂wc

= 0 (4.144)

∂w

∂uc

= ∂w

∂vc

= 0

The velocity at the center of mass may also be related to the velocity of the rotating
and moving coordinates centered at O and the distance from the point O to the
center of mass at point C, as follows:

Vc = Vo + ω × Rc = Vo + V c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uc

vc

wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋc

ẏc

żc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xc

yc

zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uc

vc

wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋc + qbzc − rbyc

ẏc + rbxc − pbzc

żc + pbyc − qbxc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.145)

Given the Lagrangian L, expressed in terms of the body-centered velocity com-

ponents Vp = [
u v w

]T
, the partial derivatives of L with respect to u, v, and w,

taking into account the fact that u, v, and w are intimately related to uc, vc, and wc,
respectively, may be written in the following fashion:

∂L
∂u

= ∂L
∂uc

∂uc

∂u
+ ∂L

∂vc

∂vc

∂u
+ ∂L

∂wc

∂wc

∂u

∂L
∂v

= ∂L
∂uc

∂uc

∂v
+ ∂L

∂vc

∂vc

∂v
+ ∂L

∂wc

∂wc

∂v
(4.146)

∂L
∂w

= ∂L
∂uc

∂uc

∂w
+ ∂L

∂vc

∂vc

∂w
+ ∂L

∂wc

∂wc

∂w

While the vector Vp is written in body-centered coordinates, it should be remem-
bered that it is the velocity of point P with respect to the inertial coordinate frame
X, Y,Z. In matrix form, the partial derivative of L with respect to the velocity vector
Vp may be written as:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂uc

∂u
∂vc

∂u
∂wc

∂u

∂uc

∂v
∂vc

∂v
∂wc

∂v

∂uc

∂w
∂vc

∂w
∂wc

∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.147)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂uc

∂u
∂vc

∂u
∂wc

∂u

∂uc

∂v
∂vc

∂v
∂wc

∂v

∂uc

∂w
∂vc

∂w
∂wc

∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.148)

Similarly the Lagrangian L, in terms of the body-centered position components

Rp = [
xp yp zp

]T
, and the partial derivatives of L with respect to the coordinates
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of the center of mass, xc, yc, and zc, for example, may be written in the following
fashion:

∂L
∂xp

= ∂L
∂xc

∂xc

∂xp

+ ∂L
∂yc

∂yc

∂xp

+ ∂L
∂zc

∂zc

∂xp

∂L
∂yp

= ∂L
∂xc

∂xc

∂yp

+ ∂L
∂yc

∂yc

∂yp

+ ∂L
∂zc

∂zc

∂yp

(4.149)

∂L
∂zp

= ∂L
∂xc

∂xc

∂zp

+ ∂L
∂yc

∂yc

∂zp

+ ∂L
∂zc

∂zc

∂zp

The matrix of partial derivatives of L with respect to the position vector Rp is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xp

∂L
∂yp

∂L
∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂xc

∂xp

∂yc

∂xp

∂zc

∂xp

∂xc

∂yp

∂yc

∂yp

∂zc

∂yp

∂xc

∂zp

∂yc

∂zp

∂zc

∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xc

∂L
∂yc

∂L
∂zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.150)

Since Rp and Rc are related via a constant vector K , that is, Rp = K +Rc ⇒ xp =
xc + kx; yp = yc + ky; zp = zc + kz, and both are within the rotating coordinate
axis system, the partial derivatives between the components of Rp and Rc turn out
to be:

∂xc

∂xp

= 1; ∂yc

∂xp

= 0; ∂zc

∂xp

= 0

∂xc

∂yp

= 0; ∂yc

∂yp

= 1; ∂zc

∂yp

= 0 (4.151)

∂xc

∂zp

= 0; ∂yc

∂zp

= 0; ∂zc

∂zp

= 1

Rewriting Eq. 4.151 as a matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂xc

∂xp

∂yc

∂xp

∂zc

∂xp

∂xc

∂yp

∂yc

∂yp

∂zc

∂yp

∂xc

∂zp

∂yc

∂zp

∂zc

∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xp

∂L
∂yp

∂L
∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xc

∂L
∂yc

∂L
∂zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.152)



4.5 Lagrangian Dynamics in Quasi-Coordinates—Vepa’s Approach—Origin. . . 219

For the rotational modes, the partial derivative of the Lagrangian L with respect to

the component parts of the vector ω = [
pb qb rb

]T
may be written symbolically as

(Eq. 4.128 is similar in form):

{
∂L
∂ω

}

=
{

∂L
∂ω

}

+
[
∂Vc

∂ω

]{
∂L
∂Vc

}

(4.153)

where Vc = [
uc vc wc

]
. Rewriting using the foregoing definitions of the vectors ω

and Vc, the partial derivatives of the Lagrangian L with respect to the component
parts of the vector ω = [

pb qb rb
]

and with respect to L become:

∂L
∂pb

= ∂L
∂pb

+ ∂uc

∂pb

∂L
∂uc

+ ∂vc

∂pb

∂L
∂vc

+ ∂wc

∂pb

∂L
∂wc

∂L
∂qb

= ∂L
∂qb

+ ∂uc

∂qb

∂L
∂uc

+ ∂vc

∂qb

∂L
∂vc

+ ∂wc

∂qb

∂L
∂wc

(4.154)

∂L
∂rb

= ∂L
∂rb

+ ∂uc

∂rb

∂L
∂uc

+ ∂vc

∂rb

∂L
∂vc

+ ∂wc

∂rb

∂L
∂wc

As a matrix, this latter result is:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂uc

∂pb

∂vc

∂pb

∂wc

∂pb

∂uc

∂qb

∂vc

∂qb

∂wc

∂qb

∂uc

∂rb

∂vc

∂rb

∂wc

∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.155)

It was previously shown that the velocity at the center of mass with respect to an
inertial coordinate system is:

Vc = Vo + ω × Rc = Vo − Rc × ω (4.156)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uc

vc

wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋc + qbzc − rbyc

ẏc + rbxc − pbzc

żc + pbyc − qbxc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.157)
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Therefore the foregoing matrix of partial derivatives of the velocities of Vc with
respect to ω becomes:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂uc

∂pb

∂vc

∂pb

∂wc

∂pb

∂uc

∂qb

∂vc

∂qb

∂wc

∂qb

∂uc

∂rb

∂vc

∂rb

∂wc

∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

� Rc×

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ Rc ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒
{

∂L
∂ω

}

=
{

∂L
∂ω

}

+ Rc ×
{

∂L
∂Vc

}

(4.158)

Hence the time derivative of
{

∂L
∂ω

}
in rotating x, y, z coordinates becomes:

d

dt

{
∂L
∂ω

}

= d

dt

{
∂L
∂ω

}

+ d

dt

(

Rc ×
{

∂L
∂Vc

})

= d

dt

{
∂L
∂ω

}

+ dRc

dt
×

{
∂L
∂Vc

}

+ Rc × d

dt

{
∂L
∂Vc

}

⇒ d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.159)
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The vector product ω ×
{

∂L
∂ω

}
is (see Eqs. 4.153 and 4.158):

ω ×
{

∂L
∂ω

}

= ω ×
{

∂L
∂ω

}

+ ω ×
{

Rc ×
(

∂L
∂Vc

)}

(4.160)

Therefore the sum of d
dt

{
∂L
∂ω

}
+ω×

{
∂L
∂ω

}
, which is the time derivative of d

dt

{
∂L
∂ω

}

in the inertial X, Y,Z frame, becomes:

d

dt

{
∂L
∂ω

}

+ ω ×
{

∂L
∂ω

}

= d

dt

{
∂L
∂ω

}

+ d

dt

(

Rc ×
{

∂L
∂Vc

})

+ω ×
{

Rc ×
(

∂L
∂Vc

)}

+ ω ×
{

∂L
∂ω

}

(4.161)

The derivative of a vector Q in inertial coordinates is Q̇inertial = Q̇rotating +ω×Q,
and so:

{

Vc ×
{

∂L
∂Vc

}}

︸ ︷︷ ︸

Q̇inertial

= d

dt

{

Rc ×
{

∂L
∂Vc

}}

︸ ︷︷ ︸

Q̇rotating

+ω ×
{

Rc ×
{

∂L
∂Vc

}}

︸ ︷︷ ︸
ω × Q

(4.162)

Hence the time derivative of d
dt

{
∂L
∂ω

}
in inertial coordinates is:

d

dt

{
∂L
∂ω

}

+ ω ×
{

∂L
∂ω

}

= d

dt

{
∂L
∂ω

}

+ ω ×
{

∂L
∂ω

}

+
{

Vc ×
{

∂L
∂Vc

}}

= d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −wc vc

wc 0 −uc

−vc uc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.163)
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Transformation for Translational Motion
The transformed translational d’Alembert–Lagrange dynamic equations, when the
origin is at the center of mass, were previously shown to be (see Eq. 4.119):

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xp

∂L
∂yp

∂L
∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= FB (4.164)

We have shown above that:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xp

∂L
∂yp

∂L
∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xc

∂L
∂xc

∂L
∂xc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.165)

and thus when the center of mass and the origin of the rigid body do not coincide,
the transformed d’Alembert–Lagrange dynamic equations at the center of mass
become:

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xc

∂L
∂yc

∂L
∂zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= FB (4.166)
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Transformation for Rotational Motion
The transformed rotational d’Alembert–Lagrange dynamic equations, when the
origin is at the center of mass, were previously shown to be (see Eq. 4.139):

d

dt

{
∂L
∂ω

}

− LT

[
∂L
∂�

]

+ ω ×
{

∂L
∂ω

}

= LT Qτ

= d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 − pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.167)

Hence, we would expect that when the origin is not situated at the center of
mass, the transformed rotational d’Alembert–Lagrange dynamic equations will have
additional terms to account for the offset of the c.g. point from the origin. In fact the
equations are:

d

dt

(
∂L
∂ω

)

− LT ∂L
∂�

+ ω ×
(

∂L
∂ω

)

+
{

Vc ×
{

∂L
∂Vc

}}

= LT Qτ + Rc × FB

= d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −wc vc

wc 0 −uc

−vc uc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Fx

Fy

Fz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.168)

The term Rc × FB , where FB is the vector of forces acting on the body at the origin
of the body-centered coordinate system, is due to the moment induced by the force

vector FB and the distance to the c.g. point Rc. The term
{

∂L
∂Vc

}
was shown above

to be equal to:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

uc

vc

wc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Vc (4.169)

and this implies that:

Vc ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Vc × Vc = 0 (4.170)
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Hence the transformed rotational d’Alembert–Lagrange dynamic equations,
when the c.g. point is offset from the origin, are:

d

dt

(
∂L
∂ω

)

− LT ∂L
∂�

+ ω ×
(

∂L
∂ω

)

+

=0
︷ ︸︸ ︷{

Vc ×
{

∂L
∂Vc

}}

= LT Qτ + Rc × FB

= d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 − pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −wc vc

wc 0 −uc

−vc uc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx

Fy

Fz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.171)

Example 5: Rigid Aircraft Dynamics [50, pp. 75–79]

We have shown previously that the velocity of any point P , within a rigid body with
Cartesian coordinates Rp = [xp, yp, zp] and with respect to an inertial coordinate

frame, is: Vp = Vo + ω × Rp, where Vp = [
u v w

]T
, and Vo, the velocity at

the origin of the coordinate frame within the rigid body in inertial coordinates, is:

Vo = [
ẋc ẏc żc

]T
. The equations for u, v,w express the x, y, z components of the
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Fig. 4.4 Velocity of point P with respect to center of mass point C

inertial space velocity of point P in a rigid body (see Fig. 4.4). We can rewrite this
velocity equation in the following way:

Vo = Vp − ω × Rp = Vp + Rp × ω ⇒ Vo = Vp + Rp × ω (4.172)

or in matrix form:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋc

ẏc

żc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xp

yp

zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u + rbyp − qbzp

v + pbzp − rbxp

w + qbxp − pbyp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.173)

Hence a general expression for the kinetic energy T is obtained by inserting these

relations into T = 1/2
∫ b∫

v

∫
(ẋ2

c + ẏ2
c + ż2

c)dm, where the triple integral signifies
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integration over the complete volume of the rigid body. On collecting terms, we
have:

T = 1

2
m(u2 + v2 + w2) + p2

b

2

∫ b∫

v

∫

(y2
p + z2

p)dm + q2
b

2

∫ b∫

v

∫

(x2
p + z2

p)dm

+ r2
b

2

∫ b∫

v

∫

(x2
p + y2

p)dm − pbqb

∫ b∫

v

∫

xpypdm − pbrb

∫ b∫

v

∫

xpzpdm

− qbrb

∫ b∫

v

∫

ypzpdm − u

⎛

⎝
∫ b∫

v

∫

qbzpdm −
∫ b∫

v

∫

rbypdm

⎞

⎠

− v

⎛

⎝
∫ b∫

v

∫

rbxpdm −
∫ b∫

v

∫

pbzpdm

⎞

⎠

− w

⎛

⎝
∫ b∫

v

∫

pbypdm −
∫ b∫

v

∫

qbxpdm

⎞

⎠ (4.174)

Notice that by definition:
∫ b∫

v

∫
xpdm = mxc;

∫ b∫

v

∫
ypdm = myc;

∫ b∫

v

∫
zpdm = mzc. The kinetic energy T may be shown to be equivalent to:

T = 1

2
m(u2 + v2 + w2)

+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m [u(rbyc − qbzc) + v(pbzc − rbxc) + w(qbxc − pbyc)]

= 1

2
m
[
u v w

]
⎡

⎣
u

v

w

⎤

⎦

+1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+m
[
xc yc zc

]
⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦ (4.175)
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where m is the total mass of the body, and where xc, yc, zc, are the coordinates the
center of mass point C of the rigid body with respect to the origin O. The moments

of inertia Ix, Iy, Iz are, respectively: Ix = ∫ b∫

v

∫
(y2

p + z2
p)dm, Iy = ∫ b∫

v

∫
(x2

p +

z2
p)dm, Iz = ∫ b∫

v

∫
(x2

p + y2
p)dm and the cross products of inertia Ixy, Ixz, Iyz are:

Ixy = ∫ b∫

v

∫
xpypdm, Ixz = ∫ b∫

v

∫
xpzpdm, Iyz = ∫ b∫

v

∫
ypzpdm. It may be

shown that:
[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]
= ωT Iω

ω =
⎡

⎣
pb

qb

rb

⎤

⎦ ; I =
⎡

⎣
Ix −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz −Iz

⎤

⎦

The foregoing results will now be used to derive the equations of motion of
a rigid body aircraft. For use in the sequel, we recall the definitions of the Euler
transformation matrices TB/I and TI/B which transform from an inertial to a body
axis system and vice versa. The matrices are:

TB/I =
⎡

⎢
⎣

cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ

⎤

⎥
⎦

TI/B =
⎡

⎢
⎣

cos ψ cos θ cos ψ sin φ sin θ − cos φ sin ψ sin φ sin ψ + cos φ cos ψ sin θ

cos θ sin ψ cos φ cos ψ + sin φ sin ψ sin θ cos φ sin ψ sin θ − cos ψ sin φ

− sin θ cos θ sin φ cos φ cos θ

⎤

⎥
⎦

(4.176)

The translational equations were previously derived (see Eq. 4.166) and are of the
form:

d

dt

{
∂L
∂Vp

}

+ ω ×
{

∂L
∂Vp

}

−
{

∂L
∂Rp

}

= TB/IQI = FB

⇒ d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂u

∂L
∂v

∂L
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xp

∂L
∂yp

∂L
∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= FB (4.177)
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However the potential energy V is:

V = −mgZI = −mg
[

0 0 1
]
TI/B

⎡

⎣
xp

yp

zp

⎤

⎦

= −mg
[− sin θ cos θ sin φ cos φ cos θ

]
⎡

⎣
xp

yp

zp

⎤

⎦ (4.178)

Hence,

∂L
∂Rp

= − ∂V

∂Rp

= −
(

∂V

∂ZI

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ZI

∂xp

∂ZI

∂yp

∂ZI

∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= mg

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− sin θ

cos θ sin φ

cos φ cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; ∂ZI

∂Rp

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ZI

∂xp

∂ZI

∂yp

∂ZI

∂zp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.179)

From Eq. 4.175, the kinetic energy T was shown to be:

T = 1

2
m (u2 + v2 + w2)
︸ ︷︷ ︸

V 2
p

+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m [u(rbyc − qbzc) + v(pbzc − rbxc) + w(qbxc − pbyc)]

(4.180)

The partial derivatives of L with respect to the vector of linear velocities u, v,w are
deduced to be:

{
∂L
∂Vp

}

=
{

∂T

∂Vp

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂u

∂T
∂v

∂T
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u + (ycrb − zcqb)

v + (zcpb − xcrb)

w + (xcqb − ycpb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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= m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ycrb − zcqb

zcpb − xcrb

xcqb − ycpb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.181)

Calculating the time derivative of
{

∂T
∂Vp

}
, we have:

d

dt

{
∂T

∂Vp

}

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṗb

q̇b

ṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.182)

The term ω ×
{

∂T
∂Vp

}
is:

ω ×
{

∂T

∂Vp

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂T
∂u

∂T
∂v

∂T
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

zcqb − ycrb

xcrb − zcpb

ycpb − xcqb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.183)
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Combining the terms in Eqs. 4.182 and 4.183, the dynamic equations are:

d

dt

{
∂L
∂Vp

}

+ ω ×
{

∂L
∂Vp

}

−
{

∂L
∂Rp

}

= FB

⇒ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṗb

q̇b

ṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

zcqb − ycrb

xcrb − zcpb

ycpb − xcqb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− mg

⎡

⎣
− sin θ

cos θ sin φ

cos θ cos φ

⎤

⎦ = FB

(4.184)

The rotational d’Alembert–Lagrange equations, for the situation where the center
of mass and the origin of the body-fixed coordinate system do not coincide, were
previously shown to be:

d

dt

(
∂L
∂ω

)

− LT ∂L
∂�

+ ω ×
(

∂L
∂ω

)

+
{

Vc ×
{

∂L
∂Vc

}}

= LT Qτ + Rc × FB

⇒ d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 − pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −wc vc

wc 0 −uc

−vc uc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx

Fy

Fz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.185)

The kinetic energy T̄ may be shown to be:

T̄ = 1

2
m(u2 + v2 + w2)

+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m [u(rbyc − qbzc) + v(pbzc − rbxc) + w(qbxc − pbyc)]

= 1

2
m
[
u v w

]
⎡

⎣
u

v

w

⎤

⎦

+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m
[
xc yc zc

]
⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦ (4.186)

where m is the total mass of the body, and where xc, yc, zc, are the coordinates the
center of mass point C of the rigid body with respect to the body-fixed origin O.

The potential energy V is: V = −mg
[

0 0 1
]
TI/B

⎡

⎣
xp

yp

zp

⎤

⎦ = −mgzI , and so the

modified Lagrangian L = T̄ − V becomes:

L = 1

2
m(u2 + v2 + w2)

+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m [u(rbyc − qbzc) + v(pbzc − rbxc) + w(qbxc − pbyc)]

= 1

2
m
[
u v w

]
⎡

⎣
u

v

w

⎤

⎦
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+ 1

2

[
p2

bIx + q2
b Iy + r2

b Iz − 2pbqbIxy − 2pbrbIxz − 2qbrbIyz

]

+ m
[
xc yc zc

]
⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦

+ mg
[− sin θ cos θ sin φ cos θ cos φ

]
⎡

⎣
xp

yp

zp

⎤

⎦

︸ ︷︷ ︸
zI

(4.187)

The vector
{

∂L
∂ω

}
turns out to be:

∂L
∂pb

= Ixpb − Ixyqb − Ixzrb + m (vzc − wyc)

∂L
∂qb

= Iyqb − Ixypb − Iyzrb + m (wxc − uzc)

∂L
∂rb

= Izrb − Ixzpb − Iyzqb + m (uyc − vxc)

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.188)

Differentiating the above result with respect to time leads to:

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ṗb

q̇b

ṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.189)
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In order to calculate
[
LT

] {
∂L
∂�

}
, the following relationships are required:

[
0 0 1

]
TI/B = [− sin θ cos θ sin φ cos θ cos φ

]

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

∂
∂θ

∂
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
0 0 1

]
TI/B =

⎡

⎣
0 cos θ cos φ − cos θ sin φ

− cos θ − sin θ sin φ − sin θ cos φ

0 0 0

⎤

⎦

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

∂
∂θ

∂
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
0 0 1

]
TI/B

=
⎡

⎣
0 cos θ cos φ − cos θ sin φ

− cos θ cos φ 0 − sin θ

sin φ cos θ sin θ 0

⎤

⎦ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −kz ky

kz 0 −kx

−ky kx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.190)

where
[
kx ky kz

]T = [− sin θ cos θ sin φ cos θ cos φ
]T

.
However

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

∂
∂θ

∂
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
0 0 1

]
TI/B

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xp

yp

zp

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −kz ky

kz 0 −kx

−ky kx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xp

yp

zp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂φ

∂
∂θ

∂
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
0 0 1

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xI

yI

zI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂zI

∂φ

∂zI

∂θ

∂zI

∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.191)

Since

V = V (φ, θ) = −mgzI ⇒ ∂L
∂φ

= −∂V

∂φ
= mg

∂zI

∂φ

∂L
∂θ

= −∂V

∂θ
= mg

∂zI

∂θ
; ∂L

∂ψ
= 0

the term
[
LT

] {
∂L
∂�

}
, from Eq. 4.191, is therefore equivalent to:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= mg

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂zI

∂φ

∂zI

∂θ

∂zI

∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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= −mg

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −kz ky

kz 0 −kx

−ky kx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xp

yp

zp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.192)

Hence the rotational d’Alembert–Lagrange equations are:

d

dt

(
∂L
∂ω

)

− LT ∂L
∂�

+ ω ×
(

∂L
∂ω

)

+
{

Vc ×
{

∂L
∂Vc

}}

= LT Qτ + Rc × FB

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 − pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −wc vc

wc 0 −uc

−vc uc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂uc

∂L
∂vc

∂L
∂wc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zc yc

zc 0 −xc

−yc xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Fx

Fy

Fz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.193)
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However from Eq. 4.189, d
dt

{
∂L
∂ω

}
is:

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ṗb

q̇b

ṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.194)

Furthermore, from Eq. 4.188, ω ×
{

∂L
∂ω

}
turns out to be:

⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂pb

∂L
∂qb

∂L
∂rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎣
0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.195)

and − [
LT

] {
∂L
∂�

}
is:

mg

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −kz ky

kz 0 −kx

−ky kx 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xp

yp

zp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −mg

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −zp yp

zp 0 −xp

−yp xp 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

kx

ky

kz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.196)
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Combining all of the above results:

d

dt

(
∂L
∂ω

)

− LT ∂L
∂�

+ ω ×
(

∂L
∂ω

)

+
{

Vc ×
{

∂L
∂Vc

}}

= LT Qτ + Rc × FB

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṗb

q̇b

ṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡

⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+m

⎡

⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+mg

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −zp yp

zp 0 −xp

−yp xp 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kx

ky

kz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 zc −yc

−zc 0 xc

yc −xc 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx

Fy

Fz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.197)
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Example 6: Quadcopter Equations of Motion [17, pp. 1–18]

The quadrotor model has been presented previously as an example (see Chap. 3,
page 92). In the present approach, the modeling procedure will be based upon
the quasi-velocities instead of the generalized coordinates. It is assumed that the
center of gravity coincides with the origin of the body-fixed coordinate system . The
quasi-velocities are non-holonomic in the sense that they are not the derivatives
of any generalized coordinates (generalized Euler angles or position in inertial
coordinates). The solution procedure will be outlined in the sequel. The quasi-
velocities are defined to be:

1.
{
�̇1

}T = [
u v w

]T

2.
{
�̇2

}T = [
pb qb rb

]T

and are all nonlinear functions of the generalized coordinates q1 = [
X Y Z

]T
,

q2 = [
φ θ ψ

]T
, respectively, and their time derivatives, as listed below:

{
�̇1

} =
⎡

⎢
⎣

u

v

w

⎤

⎥
⎦ = TB/I

⎡

⎢
⎣

Ẋ

Ẏ

Ż

⎤

⎥
⎦

=
⎡

⎢
⎣

cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ

⎤

⎥
⎦

⎡

⎢
⎣

Ẋ

Ẏ

Ż

⎤

⎥
⎦

{
�̇2

} =
⎡

⎢
⎣

pb

qb

rb

⎤

⎥
⎦ =

⎡

⎢
⎣

φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ cos θ sin φ

−θ̇ sin φ + ψ̇ cos θ cos φ

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos θ cos φ

⎤

⎥
⎦

⎡

⎢
⎣

φ̇

θ̇

ψ̇

⎤

⎥
⎦

(4.198)

Once again, note that the quasi-velocities cannot be integrated to obtain the
generalized coordinates. The kinetic energy T̄ is of the form:

T̄ = 1

2

[
pb qb rb

]
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦

⎡

⎣
pb

qb

rb

⎤

⎦ + 1

2
m
[
u v w

]
⎡

⎣
u

v

w

⎤

⎦

= 1

2

(
Ixp

2
b + Iyq

2
b + Izr

2
b

)
+ m

2

(
u2 + v2 + w2

)
(4.199)
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The potential energy is: V = −mgZ, and so the Lagrangian L is:

L = T̄ − V = 1

2

(
Ixp

2
b + Iyq

2
b + Izr

2
b

)
+ m

2

(
u2 + v2 + w2

)
+ mgZ

Z = [− sin θ cos θ sin φ cos θ cos φ
]
⎡

⎣
xc

yc

zc

⎤

⎦ (4.200)

The d’Alembert–Lagrange equations, when the center of mass and the origin of the
body-centered coordinate system coincide, were shown to be of the form:

d

dt

(
∂L
∂VB

)

+ ω × ∂L
∂VB

− ∂L
∂XB

= TB/IQI
︸ ︷︷ ︸

FB

d

dt

{
∂L
∂ω

}

− LT

{
∂L
∂�

}

+ ω ×
{

∂L
∂ω

}

= LT Qτ

VB =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; XB =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xc

yc

zc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; Qτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Qτφ

Qτθ

Qτψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

φ

θ

ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pb

qb

rb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; LT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.201)

Hence, the force terms in the d’Alembert–Lagrange equations are as follows:

d

dt

(
∂L
∂VB

)

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u̇

v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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ω × ∂L
∂VB

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= m

⎡

⎢
⎢
⎢
⎢
⎢
⎣

wqb − vrb

urb − wpb

vpb − uqb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∂L
∂XB

= mg

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂xc

∂L
∂yc

∂L
∂zc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= mg

⎡

⎣
− sin θ

cos θ sin φ

cos θ cos φ

⎤

⎦ ; FB =
⎡

⎣
0
0

f1 + f2 + f3 + f4

⎤

⎦

(4.202)

Similarly the moment terms in the d’Alembert–Lagrange equations (see Eq. 4.202)
are:

d

dt

{
∂L
∂ω

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ixṗb

Iy q̇b

Izṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−LT

{
∂L
∂�

}

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.203)

The remaining terms are:

⎡

⎣
xx

yc

zz

⎤

⎦ =
⎡

⎣
x x − sin θ

x x sin φ cos θ

x x cos φ cos θ

⎤

⎦

⎡

⎣
0
0
Z

⎤

⎦

⇒ xc = −Z sin θ; yc = Z cos θ sin φ; zc = Z cos θ cos φ (4.204)
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where x signifies a don’t care condition, hence:

∂L
∂φ

= mg(yc cos θ cos φ − zc cos θ sin φ)

= mgZ(cos2 θ cos φ sin φ − cos2 θ cos φ sin φ) = 0

∂L
∂θ

= −mg(xc cos θ + zc cos φ sin θ + yc sin φ sin θ)

= −mgZ(− sin θ cos θ + cos2 φ sin θ cos θ + sin2 φ cos θ sin θ) = 0

∂L
∂ψ

= 0 ⇒ −LT

{
∂L
∂�

}

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂L
∂φ

∂L
∂θ

∂L
∂ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

sin φ tan θ cos φ
sin φ
cos θ

cos φ tan θ − sin φ
cos φ
cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.205)

and furthermore:

ω ×
{

∂L
∂ω

}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −rb qb

rb 0 −pb

−qb pb 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ixpb

Iyqb

Izrb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(Iz − Iy)qbrb

(Ix − Iz)pbrb

(Iy − Ix)pbqb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(Iz − Iy)qbrb

(Ix − Iz)pbrb

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Ix = Iy (4.206)
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Combining all of the above (Eqs. 4.203, 4.205, and 4.206), the moment equations
become:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ixṗb

Iy q̇b

Izṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(Iz − Iy)qbrb

(Ix − Iz)pbrb

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= LT Qτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

τφ

τθ

τψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.207)

Close examination of Fig. 3.10 reveals that the roll torque is a function of f2 − f4,
the pitch torque depends upon f1 − f3, and the yaw torque is the sum of all of the
individual torques produced by the individual motors, that is, τM1 −τM2 +τM3 −τM4 .
The motor torques τmi

, i = 1, 2, . . . , 4 are actually the reaction torques due to shaft
acceleration and aerodynamic drag of the body of the quadcopter, including the
rotor blades. The aerodynamic drag opposes the motor torque, thus resulting in the
following torque equation for each motor/rotor combination:

Irotor ω̇ = τmi
− τdragi

i = 1, 2, 3, 4 (4.208)

where Irotor is the moment of inertia of the motor and rotor combination in the
direction of the motor’s rotation (motor’s z axis), ω is the rotation rate of the ith

motor, and τmi
is the torque produced by the ith motor.

From basic fluid dynamics, the drag force equation, describing the frictional force
which opposes motion in the direction of the velocity vector of the rotor, is:

D = 1

2
ρCDAbv

2

where CD is the drag coefficient of the blade,Ab is the cross sectional area of the
rotor blade, and v = ω×R is the linear velocity of the blade at its tip (R is the radius
of the rotor blade). The torque caused by the rotor blade’s profile drag is therefore:

τdragi
= D × R = 1

2
ρCDAbv

2R = 1

2
ρCDAb(ωR)2R = bω2

For quasi-stationary maneuvers, ω is constant, which implies that Irotor ω̇ = 0 and
so the motor’s reaction torque equals the drag induced torque or τmi

= τdragi
. In

order to maneuver, the quadrotor must adjust the speed of its motors as follows:

1. Forward pitch motion is obtained by increasing the speed of motor m3 while
reducing the speed of motor m1.

2. Similarly, roll motion is obtained by using motors m2 and m4.
3. Yaw motion is obtained by increasing the torque τm1 and τm3 of motors m1 and

m3, respectively, while decreasing the torques τm2 and τm4 of motors m2 and m4,
respectively.
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For maneuvers where ω is constant, the aerodynamic drag moment equals the motor
torque, since:

Irot ω̇︸︷︷︸
= 0

= τMi
− τdrag ⇒ τMi

= τdrag (4.209)

In order to obtain forward pitch motion, motor m3 must rotate more quickly than
motor m1. For yawing motion, the torques of motors m1 and m3 are increased,
while the torques of motors m2 and m4 are decreased. Roll motion is achieved by
increasing the speed of motor m2 while decreasing the speed of motor m4 and vice
versa.

Torques
There are two distinct sources for torques which act on the quadcopter’s body (we
have neglected aerodynamic torques, except for the blade profile drag torques). The
first source is due to the torques exerted by the motors on the body, or the motors’
reaction torques τmi

, which were shown to be related directly to the profile drag of
the rotor blades and are proportional to each individual rotor’s rotation rate bω2. The
sum of all of the four motor reaction torques is the torque which will tend to turn the
vehicle about the body’s k̂ axis (see Fig. 3.10). Mathematically, this may be written
as:

∑4
i=1(−1)i+1τmi

= τyaw. The torque which gives rise to angular roll is directly
related to the imbalance between the forces f2 and f2, that is, (f2 − f4)l = τroll .
A similar force imbalance situation arises for the angular pitch; however, forces f1
and f3 are involved, leading to: (f1 −f3)l = τpitch. The second source of externally
applied torques is due to the “gyro effect” of each individual motor and rotor blade
combination (see Beer et al. [4, pp. 1185]). The rotating rotor may be looked upon as
a gyro, and when it is subject to an angular rotation rate perpendicular to its axis of
rotation or perpendicular to the angular momentum vector which defines its rotation,
a torque results which is perpendicular to both the angular momentum vector and
the applied angular rate. In mathematical terms, we have:

τgyro = � × H

Hk̂ =
4∑

i=1

Hik̂ =
4∑

i=1

Imi
ωi k̂; � =

⎡

⎣
p

q

r

⎤

⎦

τgyroroll
= −qĵ × Hk̂ = −q

4∑

i=1

Imi
ωi î;

τgyropitch
= −pî × Hk̂ = −p

4∑

i=1

Imi
ωi ĵ
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The generalized torques may be written as:

τ =
⎡

⎣
τψ

τθ

τφ

⎤

⎦ =
⎡

⎣
τyaw

τpitch + τgyropitch

τroll + τgyroroll

⎤

⎦

=
⎡

⎣
τm1 − τm2 + τm3 − τm4

(f2 − f4)l

(f3 − f1)l

⎤

⎦ −
⎡

⎣
0

pî × Hk̂

qĵ × Hk̂

⎤

⎦

⇒
⎡

⎣
τψ

τθ

τφ

⎤

⎦ =
⎡

⎣
τm1 − τm2 + τm3 − τm4

(f2 − f4)l

(f3 − f1)l

⎤

⎦ −
⎡

⎣
0

p
∑4

i=1 Imi
ωi

q
∑4

i=1 Imi
ωi

⎤

⎦ (4.210)

where l is the distance from the center of any motor to the center of gravity of the
system. The moment equations then become:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ixṗb

Iyq̇b

Izṙb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(Iz − Iy)qbrb

(Ix − Iz)pbrb

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= LT Qτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

τφ

τθ

τψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(f3 − f1)l − q
∑4

i=1 Imi
ωi

(f2 − f4)l − p
∑4

i=1 Imi
ωi

τm1 − τm2 + τm3 − τm4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.211)



Chapter 5
Conclusions

In this book an attempt was made to review the basics of Newtonian mechanics
(see Chap. 2), and introduce some of the key concepts involved in formulat-
ing Lagrangian dynamics such as virtual work, kinetic energy, the principle
of d’Alembert for dynamical systems, the mathematics of conservative forces,
generalized coordinates, generalized forces, constraints, both holonomic and non-
holonomic, the extended Hamilton’s principle, etc. (Chaps. 2 and 3). The treatment
of a particular class of non-holonomic constraints, where the quasi-velocities can be
modeled as linear functions of the time derivatives of the generalized coordinates, is
dealt with in Chap. 4 by methods introduced by Whittaker [52], Meirovitch [23],
and Cameron and Book [8]. While this approach is sound, it is also somewhat
cumbersome as was demonstrated in examples 1 and 2 of Sect. 4.3.The method
of Prof. Ranjan Vepa in Sects. 4.4 and 4.5 is more suited for deriving equations
of motion. His scheme is based upon transforming the Lagrangian, which is a
function of the generalized coordinates and generalized velocities, that is, L(q, q̇),
into the Lagrangian containing both the quasi-coordinates and quasi-velocities, that
is, L(�, �̇), where � is the vector of quasi-coordinates and �̇ is the vector of
quasi-velocities, respectively. The advantage of this approach is that the derivation
of the equations of motion turns out to be far less cumbersome. Throughout the
text, examples have been presented to illustrate the concepts involved. Although
the presentation is mathematically sound, the approach taken in this text was
intermediate and did not cover many important topics such as the calculus of
variations as exemplified by Cornelius Lanczos’ book “The Variational Principles of
Mechanics” [19].There is a more comprehensive and more mathematically oriented
(and perhaps more advanced) treatment of the subject of mechanics in the form
of Arnold’s book “Mathematical Methods of Classical Mechanics” [2], with topics
ranging from Lagrangian mechanics, variational calculus, Lagrangian mechanics on
manifolds, differential forms, Lie algebras of vector fields, and so on. As mentioned
in Sect. 3.2, a more exhaustive approach to the subject of non-holonomic systems,
their characterization, identification, and control based on the following topics found
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in differential geometry and related subject matter such as Lie groups, Lie algebras,
etc. would include the following topics among others:

• Manifolds, Differentiable manifolds, manifolds and maps
• Tangent vectors, spaces, vector fields
• Fiber bundles
• Differential k-forms
• Exterior derivatives
• Jacobi–Lie brackets, Lie groups
• Vector fields and flows
• Lie brackets and Frobenius’ theorem, the Lie algebra associated with a Lie group,

actions of Lie groups, Canonical coordinates on a Lie group
• Tangent spaces and tangent maps
• Cotangent spaces and cotangent maps
• Differential forms
• The exponential map
• The geometry of the Euclidean group, metric properties of SE(3), volume forms

on SE(3)
• Lie groups and robot kinematics

The interested reader is encouraged to pursue these topics in greater detail
by referring to the works by Murray et al. “A Mathematical Introduction to
Robotic Manipulation” [25], Bullo and Lewis “Geometric Control of Mechanical
Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems”
[7], Bloch et al. “Nonholonomic Mechanics and Control” [5], Soltakhanov et al.
“Mechanics of Non-Holonomic Systems—A New Class of Control Systems” [35],
to name but a few. The area of robotics has also borrowed heavily from these
advanced mathematical methods, for example, Siciliano et al. in the “Springer
Handbook of Robotics—2nd Ed.” [33] and Siciliano et al. in the text “Robotics—
Modelling, Planning and Control” [34], both discuss in detail the subject of
non-holonomic trajectory planning. In addition, the control of robotic systems is
replete with variational approaches in the form of optimal control theory, such as
appears, for instance, in the book by Bloch et al. “Nonholonomic Mechanics and
Control” [5] and the work of Soltakhanov et al. “Mechanics of Non-Holonomic
Systems—A New Class of Control Systems [35].”
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