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Abstract. Lossy image compression methods based on partial differen-
tial equations have received much attention in recent years. They may
yield high quality results but rely on the computationally expensive task
of finding optimal data.

For the possible extension to video compression, the data selection
is a crucial issue. In this context one could either analyse the video
sequence as a whole or perform a frame-by-frame optimisation strategy.
Both approaches are prohibitive in terms of memory and run time.

In this work we propose to restrict the expensive computation of opti-
mal data to a single frame and to approximate the optimal reconstruction
data for the remaining frames by prolongating it by means of an optic
flow field. We achieve a notable decrease in the computational complex-
ity. As a proof-of-concept, we evaluate the proposed approach for mul-
tiple sequences with different characteristics. We show that the method
preserves a reasonable quality in the reconstruction, and is very robust
against errors in the flow field.

Keywords: Partial differential equations · Inpainting ·
Laplace interpolation · Optic flow · Video reconstruction

1 Introduction

Transform-based image and video compression algorithms are still the preferred
choice in many applications [29]. However, there has been a surge in research on
alternative approaches in recent years [2,12,17,27]. Especially partial differential
equation (PDE)-based methods have proven to be a viable alternative in the
context of image compression. To be on a competitive level with state-of-the-art
codecs, these methods require sophisticated data optimisation schemes and fast
numerical algorithms. The most important task is the choice of a small subset
of pixels, often called mask, from which the original image can be accurately
reconstructed by solving a PDE.

Especially this data selection problem has proven to be delicate. See [7,9,
13,14,34] for some strategies considered in the past. Most approaches are either
very fast but yield suboptimal results or they are relatively slow and return
very appropriate data. A thorough optimisation of a whole image sequence is
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therefore computationally rather demanding and most approaches have resorted
to a frame-by-frame consideration. Yet, even such a frame-wise tuning can be
expensive, especially for longer videos.

In this work we discuss a simple and fast approach to skip the costly data
selection in a certain number of frames. Instead we perform a significantly
cheaper data transport along the temporal axis of the sequence. In order to
evaluate this idea, we focus on the interplay between reconstruction quality and
the accuracy of the transporting vector field. The actual data compression will
be the subject of future research.

To give some more details of our approach, we consider an image sequence
and compute a highly optimised pixel mask used for a PDE-based reconstruction
within the first, single frame. Next, we seek the displacement field between the
individual subsequent frames by means of a simple optic flow method. We shift
the carefully selected pixels from the first frame according to this flow field and
the shifted data is then used for the reconstruction process, in this case PDE-
based inpainting. The effects of erroneous or suboptimal shifts of mask pixels on
the resulting video reconstruction quality can then be evaluated.

The framework for video compression recently presented in [2] has some tech-
nical similarities to our approach. The conceptual difference is that in their work
a reconstructed image is shifted via optic flow fields from the first to following
frames. In contrast, we use optic flow fields only for the propagation of mask
pixel and deal with an inpainting problem in each frame.

Our paper will be structured as follows. We will briefly describe the consid-
ered models and methods. Next we describe how they are concatenated in our
strategy. Finally, all components are carefully evaluated, where we focus here
on quality in terms of reconstruction error. Let us note again that we will not
consider the impact on the file compression efficiency, as a detailed analysis of
the complete, resulting data compression pipeline would be beyond the scope of
this work.

2 Discussion of Considered Models and Methods

The recovery of images, as in a video sequence, by means of interpolation is
commonly called inpainting. Since the main issue in our approach is concerned
with the selection of data for a corresponding PDE-based inpainting task, it will
be useful to elaborate on the problem in some detail. After discussing possible
extensions from image to video inpainting, we consider optical flow.

2.1 Image Inpainting with PDEs

The inpainting problem goes back to the works of Masnou and Morel as well as
Bertalmo and colleagues [4,23], although similar problems have been considered
in other fields already before. There exist many inpainting techniques, often
based on interpolation algorithms, but PDE-based approaches are among the
most successful ones, see e.g. [15,16]. For the latter, strategies based on the
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Laplacian are often advocated [6,21,26,28]. Mathematically, the simplest model
is given by the elliptic mixed boundary value problem

− Δu = 0 in Ω \ ΩK , u = f in ∂ΩK , ∂nu = 0 in ∂Ω \ ∂ΩK , (1)

Here, f represents known image data in a region ΩK ⊂ Ω (resp. on the boundary
∂ΩK) of the whole image domain Ω. Further, ∂nu denotes the derivative in outer
normal direction. In an image compression context the image f is known on its
whole domain Ω and one would like to identify the smallest set ΩK that yields
a good reconstruction when solving (1).

While solving (1) numerically is a rather straightforward task, finding an
optimal subset ΩK is much more challenging. Mainberger et al. [22] consider
a combinatorial strategy while Belhachmi and colleagues [3] approach the topic
from the analytic side. Recently [18], the “hard” boundary conditions in (1) have
been replaced by softer weighting schemes. If we denote the weighting function
by c : Ω → R, then (1) becomes:{

c (x) (u (x) − f (x)) + (1 − c (x)) (−Δ)u (x) = 0, in Ω,

∂nu(x) = 0, in ∂Ω \ ∂ΩK .
(2)

In the case where c is the indicator function of ΩK , (2) coincides with the PDE
in (1). Whenever c(x) = 1, we require u(x) − f(x) = 0 and c(x) = 0 implies
−Δu(x) = 0.

Optimising a weighting function c which maps to R is notably simpler than
solving a combinatorial optimisation problem when the mask c maps to {0, 1}.
As the optimal set ΩK is given by the support of the function c the benefit of
the formulation (2) is that one may adopt ideas from sparse signal processing to
find such a good mask. To this end, Hoeltgen et al. [18] following optimal control
formulation:

arg min
u,c

{∫
Ω

1
2

(u (x) − f (x))2 + λ|c (x)| +
ε

2
c (x)2 dx

}
,{

c (x) (u (x) − f (x)) + (1 − c (x)) (−Δ)u (x) = 0, in Ω,

∂nu(x) = 0, in ∂Ω \ ∂ΩK .

(3)

Equation (3) can be solved by an iterative linearisation of the PDE in terms
of (u, c), followed by a primal-dual optimisation strategy such as [10] for the
occurring convex problem with linear constraints. As reported in [18], a few
hundred linearisations need to be performed to obtain a good solution. This also
implies that an equal amount of convex optimisation problems need to be solved.
Even if highly efficient solvers are used for the latter convex optimisation, the
run time will still be considerable. An alternative approach for solving (3) was
also presented in [24].

Besides optimising ΩK (resp. c), it is also possible to optimise the Dirichlet
boundary data in such a way that the global error is minimal. If M(c) denotes
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the linear solution operator with mask c that yields the solution of (2), then we
can write this tonal optimisation as

arg min
g

{‖M(c)g − f‖22} . (4)

This idea has originally been presented in [22]. In [19] it is shown that there
exists a dependence between non-binary optimal c (i.e. mapping to R instead
of {0, 1}) and optimal tonal values g. Efficient algorithms for solving (4) can
be found in [19,22]. These algorithms are faster than solving (3), yet their run
times still range from a few seconds to a minute.

2.2 Extension from Images to Videos

The mentioned strategies have so far been applied to grey-value or colour images
almost exclusively. Yet extensions to video sequences would be rather straight-
forward. The simplest strategy would be to consider a frame-by-frame strategy.
In (3) one could also extend the Laplacian into the temporal direction to com-
pute an optimal mask in space-time. This would reduce the temporal redundancy
(assuming that the content of subsequent frames does not change much) in the
mask c compared to a frame-wise approach. Unfortunately, the latter strategy
is prohibitively expensive. A one second long video sequence in 4K resolution
(3860 × 2160 pixels) with a framerate of 60 Hz would require analysing approxi-
mately 500 million pixels. A frame-by-frame optimisation would be more mem-
ory efficient, since the whole sequence does not need to be loaded at once, but
it would still require solving 60 expensive optimisation problems.

There exists an alternative approach which is commonly used in modern
video compression codecs such as MPEG, see [30] for a general overview on
the concepts and ideas. Instead of computing mask points for each frame, we
compute a displacement field and shift mask points from one frame to the next.

2.3 Optical Flow

For the sake of simplicity we opt for the method of Horn and Schunck [20]. Given
an image sequence f(x, y, t), where x and y are the spatial dimensions and t the
temporal dimension, this method computes a displacement field (u(x, y), v(x, y))
that maps the frame at time t onto the frame at time t + 1 by minimising the
energy functional∫

Ω

(fxu + fyv + ft)
2 + α(|∇u|2 + |∇v|2) dxdy (5)

where fx, fy, and ft denote the partial derivatives of f with respect to x, y, and t
and where Ω ⊂ R

2 denotes the image domain. The model of Horn and Schunck
is very popular and highly efficient numerical schemes exist that are capable
of solving (5) in real-time (30 frames per second), see [8]. Obviously, replacing
already a single computation of c with the computation of a displacement field
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(u, v) will save a significant amount of time. If the movements in the image
sequence are small and smooth enough, it is very likely, that several masks c can
be replaced by a flow field, thus saving even more run time.

3 Combining Optimal Masks with Flow Data

Given an image sequence f , we compute a sparse inpainting mask for the first
frame with the method from [18]. According to the results in [19], we threshold
the mask c and set all non-zero values to 1. Next, we compute the displacement
field between all subsequent frames in the sequence by solving (5) for each pair of
consecutive frames. The obtained flow fields (u, v) are rounded point-wise to their
nearest integers to assert that they point exactly onto a grid point. Then, the
mask points from the first frame are simply moved according to the displacement
field. If the displacement points outside of the image or if it points onto a position
where a mask point is already located, then we drop the current mask point. Since
we are considering sparse sets of mask points, the probability of these events is
rather low such that hardly any data gets lost over the course of action. Once
the mask has been set for each frame, we perform a tonal optimisation of the
data as discussed in [19]. The reconstruction can then simply be done by solving
(2) for each frame. The complete procedure is also detailed in Algorithm 1.

Algorithm 1. Data Selection in Image Sequence
Data: Image sequence f
Result: Optimised data for the reconstruction

1 Optimise mask c for first frame of the sequence f by solving (3)
2 Binarise c by setting all non-zero entries to 1

3 Find optical flow between all frames of the sequence by minimising (5)
4 Round flow field entries to nearest integer
5 Transport c according to the flow field

6 Perform tonal optimisation by solving (4) on the mask locations in each frame

Instead of rounding the flow field vectors, one could also follow the idea to
perform a forward warping [25] and spread a single mask point on all neighbour-
ing mask points. With this strategy, flow fields that point to the same location
would simply add up the mask values. Even though this appears as a mathemat-
ically clean approach, our experiments showed that the smearing of the mask
values caused strong blurring effects in the reconstructions and lead to overall
worse results.

The data that needs to be stored for the reconstruction consists of the mask
point positions in the first frame, the flow fields that move the mask points along
the image sequence (resp. the mask positions in the subsequent frames), and the
corresponding tonal optimised pixel values. We emphasise that it is not necessary
to store the whole displacement field but only at the locations of a mask point
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in each frame. Thus, the memory requirements for the storage remain the same
as when optimising the mask in each frame. Yet, we are considerably faster. We
also remark that the considered strategy is rather generic. One may exchange
the mask selection algorithm and the optic flow computation with any other
method that yields similar data.

4 Experimental Evaluation

To evaluate the proposed approach, we give further details on our experimen-
tal setup, including a rough comparison of runtimes for the different stages of
Algorithm 1.

We discuss the influence of the quality of the flow fields at hand of an example.
By comparing our approach to compression with fixed mask points, we derive
some clues for typical use case scenarios. Then we proceed by evaluating the
proposed method for a number of image sequences.

4.1 Methods Considered

As already mentioned, we compute the inpainting masks with the algorithm
from [18] and use the LSQR-based algorithm from [19] for tonal optimisation. In
terms of quality these methods are among the best performing ones for Laplace
reconstruction. However, alternative solvers such as presented in [11,22] may be
used as well.

For a reasonable comparison of simple optical flow methods we have resorted
to the builtin Matlab implementation of the Horn and Schunck method [32] and
a more sophisticated implementation available from [31]. The latter implemen-
tation additionally includes a coarse-to-fine warping strategy. Evaluations on
the Yosemite sequence have shown that the latter is usually twice as accurate
(see Fig. 1) as the builtin Matlab function, but it also exhibits slightly larger
run times. However, the computation of an accurate displacement field is still
significantly faster than a thorough optimisation of the mask point locations.

All methods have been implemented in Matlab. On a desktop computer with
an Intel Xeon E5 CPU with 6 cores clocked at 1.60 GHz and 16 GB of memory
the average run time of the Matlab optic flow implementation (10000 iterations
at most) on the 512×512×10 “Toy Vehicle” sequence from [1] was 41 s for each
flow field between two frames. The implementation from [31] (8 coarse-to-fine
levels with 10 warping steps at most) took 50 s. The tonal optimisation (360
iterations at most) took on average 32 s per frame. The optimal control based
mask optimisation (1500 linearisation and 3000 primal dual iterations at most)
required on average 6–30 s per linearisation and usually all 1500 linearisations are
carried out. A complete optimisation takes therefore about 8 hours per frame.
The large variations in the run times of the single linearisations stem from the
fact that the sparser the mask becomes the more ill-posed the optimisation
problem becomes and the more iterations are needed to achieve the desired
accuracy. All in all, the mask optimisation is at least 600 times slower than the
optic flow computation or the tonal optimisation.
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4.2 Evaluation

We evaluate the proposed Algorithm 1 on several image sequences. First we
consider the Yosemite sequence with clouds, available from [5]. Since the ground
truth of the displacement field is completely known we can also analyse the
impact of the quality of the flow on the reconstruction. Further, we evaluate the
image sequences from the USC-SIPI Image Database [1]. The database contains
four sequences of different length with varying image characteristics. For the
latter sequences, no ground truth displacement field is known. As a such we
can only report the reconstruction error in terms of squared error (MSE) and
structural similarity index (SSIM) [33].

4.3 Influence of the Optical Flow

In Table 1 we present the evaluation of our approach on the Yosemite sequence
for different choices of parameters of the mask optimisation algorithm and the
corresponding reconstruction. In all these experiments we set μ to 1.25 (see [18]
for a definition of this parameter) and ε to 10−9 in the mask optimisation algo-
rithm. The regularisation weight in (5) was always optimised by means of a line
search strategy.
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Fig. 1. Angular errors (in degree) and endpoint errors (in pixel width) in the optic
flow field of the Yosemite sequence in-between frame i and i + 1 for the considered
methods. The solid line corresponds to the implementation [32] and the dashed line
to the implementation [31]. The regularisation weight was optimised for each pair of
frames to minimise the angular error. The method from [31] is roughly twice as accurate
as [32] but exhibits slightly higher run times.

The first column of the table lists the parameter λ which is responsible for the
mask density and the second column contains the corresponding mask density
in the first frame. The last five columns list the average reconstruction error
over all 15 frames when (i) using an optimised mask obtained from the optimal
control framework explained in [18] in all the frames, (ii) the optimised mask
from the first frame shifted in accordance with the ground truth displacement
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field, (iii) the mask from the first frame shifted in accordance with the computed
displacement fields for both considered implementations of the Horn and Schunck
model, (iv) the mask from the first frame used for all subsequent frames (i.e.
using a zero flow field), and (v) the mask from the first frame shifted by a random
flow field within the same numerical range between each pair of frames as the
ground truth.

All reconstructions in the upper half of the table have been done according
to Algorithm 1. The lower half exhibits the same experiment but without the
tonal optimisation in step 6 of Algorithm 1. Instead the original image data at
the mask locations were used.

As expected, a higher mask density yields a smaller error in the reconstruc-
tion in all cases. Interestingly, we observe that computed flow fields are accurate
enough to outperform in many cases the ground truth flow (rounded to the near-
est grid point). The solution of the Horn and Schunck model in (5) involves the
Laplacian and is a smooth flow field. We conjecture that, compared to the ground
truth flow, this solution is more compatible with our choice for the inpainting
procedure, which is also based on the Laplacian. The investigation of this possible
synergy will require a more dedicated analysis in the future. When considering
the plots in Fig. 2, one sees that there is a clear benefit to using computed flow
fields in the first 7 or 8 frames of the sequence, when comparing to a flow field
that is zero everywhere. Afterwards the iterative shifting of the masks has accu-
mulated too many errors to outperform a zero flow. This suggests that the usage

Table 1. Evaluation of the Yosemite sequence. The density specifies the percentage
of non-zero mask pixels in the first frame. The errors in the Horn & Schunck column
correspond (in order) to the implementation from [31], and the builtin Matlab func-
tion [32]. The second-to-last column sets the flow field in every pixel to 0. The last
column shows the error when using a random flow field in the same numerical range as
the ground truth. The bottom part of the table represents the same experiments but
without tonal optimisation in the reconstruction. The results show that on average,
zero flow is almost as good as the methods where a computed flow field is used. These
methods outperform zero flow especially in the first frames, cf. Fig. 2.

λ Density Average MSE with tonal optimisation

Optimal c Exact shift Horn & Schunck Zero Random

0.0030 15.75% 25.60 130.15 124.25/129.83 131.41 237.16

0.0063 9.26% 51.79 178.71 173.86/179.27 184.94 284.48

0.0125 5.51% 88.74 227.84 221.38/228.52 239.24 334.29

0.0250 3.11% 139.50 284.16 277.16/285.57 299.28 394.80

0.0030 15.75% 37.09 227.76 206.29/212.99 218.74 364.37

0.0063 9.26% 80.63 318.07 300.53/301.65 312.18 442.92

0.0125 5.51% 147.42 404.44 384.12/382.45 397.32 533.59

0.0250 3.11% 255.06 517.06 496.97/491.22 508.25 629.78
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of a flow field is mostly beneficial for a short time prediction of the mask. Let us
also note that the impact of the quality of the computed optical flow is visible
over a shorter period within the first 5 frames.

Table 1 also shows that tonal optimisation has the expected beneficial influ-
ence. The tonal optimisation causes a global decrease in the error by as much as
a factor 2, however it cannot compensate errors in the flow field.

Table 2. Evaluations of the MSE and SSIM on Image Sequences from the USC-SIPI
Image Database [1]. An optimal mask is computed on the first frame and shifted
according to the computed optic flow. The error for the “Toy Vehicle” sequence is not
monotonically increasing due to strong occlusions in certain frames.

Sequence Density MSE

First Last Min. Max Mean

Yosemite 5.50% 88.38 307.85 88.38 307.85 225.52

15.75% 25.33 187.10 25.33 187.10 129.83

Walter 5.18% 7.33 50.70 7.33 50.70 30.74

27.06% 1.88 16.63 1.88 16.63 9.04

Toy Vehicle 3.00% 4.11 23.54 4.11 40.42 28.63

20.00% 1.25 9.49 1.25 20.94 12.74

Plant (close) 3.23% 111.9 545.9 111.9 610.4 432.8

5.36% 73.74 488.55 73.74 541.28 373.48

19.05% 18.50 302.89 18.50 328.65 220.82

Plant (far) 3.65% 137.9 391.8 137.9 392.5 337.5

6.64% 87.32 328.96 87.32 342.34 285.37

23.18% 19.70 217.91 19.70 222.47 171.51

Sequence Density SSIM

First Last Min. Max Mean

Yosemite 5.50% 0.8196 0.5804 0.5804 0.8196 0.6509

15.75% 0.9372 0.7721 0.7221 0.9372 0.7840

Walter 5.18% 0.9577 0.8867 0.8867 0.9577 0.9134

27.06% 0.9810 0.9522 0.9522 0.9810 0.9640

Toy Vehicle 3.00% 0.9692 0.9343 0.9267 0.9692 0.9426

20.00% 0.9856 0.9679 0.9584 0.9856 0.9695

Plant (close) 3.23% 0.7177 0.4250 0.4143 0.7177 0.4850

5.36% 0.7843 0.4682 0.4599 0.7843 0.5370

19.05% 0.9230 0.6356 0.6300 0.9230 0.7033

Plant (far) 3.65% 0.6739 0.4069 0.4069 0.6739 0.4533

6.64% 0.7667 0.4672 0.4672 0.7667 0.5184

23.18% 0.9300 0.6410 0.6410 0.9300 0.7033
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4.4 Evaluation of the Reconstruction Error

Overall, the error evolution, as observed in the Yosemite sequence, is rather
steady and predictable, even though such a behaviour can only be expected in
well behaved sequences. The “Toy Vehicle” sequence from [1] exhibits strong
occlusions and non-monotonic behaviour of the error, see Table 2. Nevertheless,
the behaviour of the error evolution could be used to automatically detect frames
after which a full mask optimisation becomes again necessary.

0 2 4 6 8 10 12 14 16

100

200

300

400

500

Frame

M
ea
n
Sq

ua
re
d
E
rr
or

Ground Truth
[31]
[32]

Random Flow
Zero Flow

Optimal masks

Fig. 2. Reconstruction error for the Yosemite sequence in each frame using a mask
with density 5.5% shifted by different flow fields. The average angular error over all
frames of the method from [31] is 8.59 and 5.27 if measured at mask points only. For
the method from [32], the corresponding errors are 19.72 and 15.74. The error in the
reconstruction is hardly influenced by the quality of the optic flow. The dashed line
indicates the error in the reconstruction from an optimal mask.

Figure 3 presents an optimal mask for the last frame of the Yosemite sequence
as well as the shifted mask. The corresponding reconstructions are also depicted.
Fine details are lost with the reconstruction from the shifted mask. However, the
overall structure of the scene remains preserved. We remark that the bright spots
are due to our choice of the inpainting operator, see also [14].

Finally, Tab. 2 contains further evaluations of the MSE as well as the SSIM for
the image sequences from [1]. Both measures show a similar behaviour. Denser
masks have higher a SSIM (resp. lower MSE), and the SSIM decreases (resp.
MSE increases) with the number of considered frames. The error evolution is
usually monotone. However, if occlusions occur, then important mask pixels may
be badly positioned or even completely absent. In that case notable fluctuations
in the error will occur. This is especially visible in the “Toy Vehicle” sequence
where the maximal error is not the error in the last frame.
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(a) Optimal mask (b) Details (c) Reconstruction

(d) Shifted mask (e) Details (f) Reconstruction

Fig. 3. (a) and (d): Inpainting masks (5.5% density) with (b) and (e): magnified details
and (c) and (f): corresponding reconstructions for frame 15 of the Yosemite sequence.
Black pixels indicate mask pixels, grey regions are to be inpainted. Top: optimal mask,
Bottom: shifted mask.

5 Summary and Conclusion

Our work shows that it is possible to replace the expensive frame-wise computa-
tion of optimal inpainting data with the simple computation of a displacement
field. Since run times to compute the latter are almost negligible when compared
to the former, we gain a significant increase in performance. Our experiments
demonstrate that simple and fast optic flow methods are sufficient for the task
at hand, yet one may spend higher attention to movement of object boundaries.

In addition, the loss in accuracy along the temporal axis can easily be pre-
dicted. We may decide automatically when it becomes necessary to recompute
an optimal mask while traversing the individual frames. We conjecture that the
presented insights are certainly helpful in the future development of PDE-based
video compression techniques.
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