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Abstract. We propose a functional lifting-based convex relaxation of
variational problems with Laplacian-based second-order regularization.
The approach rests on ideas from the calibration method as well as from
sublabel-accurate continuous multilabeling approaches, and makes these
approaches amenable for variational problems with vectorial data and
higher-order regularization, as is common in image processing applica-
tions. We motivate the approach in the function space setting and prove
that, in the special case of absolute Laplacian regularization, it encom-
passes the discretization-first sublabel-accurate continuous multilabel-
ing approach as a special case. We present a mathematical connection
between the lifted and original functional and discuss possible interpre-
tations of minimizers in the lifted function space. Finally, we exemplarily
apply the proposed approach to 2D image registration problems.
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1 Introduction

Let Ω ⊂ R
d and Γ ⊂ R

s both be bounded sets. In the following, we consider the
variational problem of minimizing the functional

F (u) =
∫

Ω

f(x, u(x),Δu(x))dx, (1)

that acts on vector-valued functions u ∈ C2(Ω;Γ ). Convexity of the integrand
f : Ω×Γ×R

s → R is only assumed in the last entry, so that u �→ F (u) is generally
non-convex. The Laplacian Δu is understood component-wise and reduces to u′′

if the domain Ω is one-dimensional.
Variational problems of this form occur in a wide variety of image processing

tasks, including image reconstruction, restoration, and interpolation. Commonly,
the integrand is split into data term and regularizer:

f(x, z, p) = ρ(x, z) + η(p). (2)
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As an example, in image registration (sometimes referred to as large-displace-
ment optical flow), the data term ρ(x, z) = d(R(x), T (x+ z)) encodes the point-
wise distance of a reference image R : Rd → R

k to a deformed template image
T : Rd → R

k according to a given distance measure d(·, ·), such as the squared
Euclidean distance d(a, b) = 1

2‖a−b‖22. While often a suitable convex regularizer
η can be found, the highly non-convex nature of ρ renders the search for global
minimizers of (1) a difficult problem.

Instead of directly minimizing F using gradient descent or other local solvers,
we will aim to replace it by a convex functional F that acts on a higher-
dimensional (lifted) function space. If the lifting is chosen in such a way that
we can construct global minimizers of F from global minimizers of F , we can
find a global solution of the original problem by applying convex solvers to F .
While we cannot claim this property for our choice of lifting, we believe that the
mathematical motivation and some of the experimental results show that this
approach can be a good basis for future work on global solutions of variational
models with higher-order regularization.

Calibrations in Variational Calculus. The lifted functional F proposed in
this work is motivated by previous lifting approaches for first-order variational
problems of the form

min
u

F (u) =
∫

Ω

f(x, u(x),∇u(x))dx, (3)

where F acts on functions u : Ω → Γ with Ω ⊂ R
d and scalar range Γ ⊂ R.

The calibration method as introduced in [1] gives a globally sufficient optimal-
ity condition for functionals of the form (3) with Γ = R. Importantly, f(x, z, p)
is not required to be convex in (x, z), but only in p. The method states that u
minimizes F if there exists a divergence-free vector field φ : Ω × R → R

d+1 (a
calibration) in a certain admissible set X of vector fields on Ω × R (see below
for details), such that

F (u) =
∫

Ω×R

φ · D1u, (4)

where 1u is the characteristic function of the subgraph of u in Ω×R, 1u(x, z) = 1
if u(x) > z and 0 otherwise, and D1u is its distributional derivative. The duality
between subgraphs and certain vector fields is also the subject of the broader
theory of Cartesian currents [8].

A convex relaxation of the original minimization problem then can be for-
mulated in a higher-dimensional space by considering the functional [5,19]

F(v) := sup
φ∈X

∫
Ω×R

φ · Dv, (5)

acting on functions v from the convex set

C = {v : Ω × R → [0, 1] : lim
z→−∞ v(x, z) = 1, lim

z→∞ v(x, z) = 0}. (6)
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In both formulations, the set of admissible test functions is

X = {φ : Ω × R → R
d+1 : φt(x, z) ≥ f∗(x, z, φx(x, z)) (7)

for every (x, z) ∈ Ω × R}, (8)

where f∗(x, z, p) := supq〈p, q〉 − f(x, z, q) is the convex conjugate of f with
respect to the last variable. In fact, the equality

F (u) = F(1u) (9)

has been argued to hold for u ∈ W 1,1(Ω) under suitable assumptions on f [19]. A
rigorous proof of the case of u ∈ BV (Ω) and f(x, z, p) = f(z, p) (f independent
of x), but not necessarily continuous in z, can be found in the recent work [2].

In [17], it is discussed how the choice of discretization influences the results
of numerical implementations of this approach. More precisely, motivated by the
work [18] from continuous multilabeling techniques, the choice of piecewise linear
finite elements on Γ was shown to exhibit so-called sublabel-accuracy, which is
known to significantly reduce memory requirements.

Vectorial Data. The application of the calibration method to vectorial data
Γ ⊂ R

s, s > 1, is not straightforward, as the concept of subgraphs, which is
central to the idea, does not translate easily to higher-dimensional range. While
the original sufficient minimization criterion has been successfully translated
[16], functional lifting approaches have not been based on this generalization so
far. In [20], this approach is considered to be intractable in terms of memory
and computational performance.

There are functional lifting approaches for vectorial data with first-order
regularization that consider the subgraphs of the components of u [9,21]. It is
not clear how to generalize this approach to nonlinear data Γ ⊂ M, such as a
manifold M, where other functional lifting approaches exist at least for the case
of total variation regularization [14].

An approach along the lines of [18] for vectorial data with total variation
regularization was proposed in [12]. Even though [17] demonstrated how [18]
can be interpreted as a discretized version of the calibration-based lifting, the
equivalent approach [12] for vectorial data lacks a fully-continuous formulation
as well as a generalization to arbitrary integrands that would demonstrate the
exact connection to the calibration method.

Higher-Order Regularization. Another limitation of the calibration method
is its limitation to first-order derivatives of u, which leaves out higher-order
regularizers such as the Laplacian-based curvature regularizer in image regis-
tration [7]. Recently, a functional lifting approach has been successfully applied
to second-order regularized image registration problems [15], but the approach
was limited to a single regularizer, namely the integral over the 1-norm of the
Laplacian (absolute Laplacian regularization).

Projection of Lifted Solutions. In the scalar-valued case with first-order reg-
ularization, the calibration-based lifting is known to generate minimizers that
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can be projected to minimizers of the original problem by thresholding [19, Theo-
rem 3.1]. This method is also used for vectorial data with component-wise lifting
as in [21]. In the continuous multi-labeling approaches [12,14,18], simple averag-
ing is demonstrated to produce useful results even though no theoretical proof is
given addressing the accuracy in general. In convex LP relaxation methods, pro-
jection (or rounding) strategies with provable optimality bounds exist [11] and
can be extended to the continuous setting [13]. We demonstrate that rounding
is non-trivial in our case, but will leave a thorough investigation to future work.

Contribution. In Sect. 2, we propose a calibration method-like functional lift-
ing approach in the fully-continuous vector-valued setting for functionals that
depend in a convex way on Δu. We show that the lifted functional satisfies
F(δu) ≤ F (u), where δu is the lifted version of a function u and discuss the
question of whether the inequality is actually an equality. For the case of abso-
lute Laplacian regularization, we show that our model is a generalization of [15].
In Sect. 2.3, we clarify how convex saddle-point solvers can be applied to our
discretized model. Section 3 is concerned with experimental results. We discuss
the problem of projection and demonstrate that the model can be applied to
image registration problems.

2 A Calibration Method with Vectorial Second-Order
Terms

2.1 Continuous Formulation

We propose the following lifted substitute for F :

F(u) := sup
(p,q)∈X

∫
Ω

∫
Γ

(Δxp(x, z) + q(x, z)) dux(z)dx, (10)

acting on functions u : Ω → P(Γ ) with values in the space P(Γ ) of Borel prob-
ability measures on Γ . This means that, for each x ∈ Ω and any measurable
set U ⊂ Γ , the expression ux(U) ∈ R can be interpreted as the “confidence”
of an assumed underlying function on Ω to take a value inside of U at point x.
A function u : Ω → Γ can be lifted to a function u : Ω → P(Γ ) by defining
ux := δu(x), the Dirac mass at u(x) ∈ Γ , for each x ∈ Ω.

We propose the following set of test functions in the definition of F :

X = {(p, q) : p ∈ C2
c (Ω × Γ ), q ∈ L1(Ω × Γ ), (11)

z �→ p(x, z) concave (12)
and q(x, z) + f∗(x, z,∇zp(x, z)) ≤ 0 (13)
for every (x, z) ∈ Ω × Γ}, (14)

where f∗(x, z, q) := supp∈Rs〈q, p〉 − f(x, z, p) is the convex conjugate of f with
respect to the last argument.
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A thorough analysis of F requires a careful choice of function spaces in the
definition of X as well as a precise definition of the properties of the integrand f
and the admissible functions u : Ω → P(Γ ), which we leave to future work. Here,
we present a proof that the lifted functional F bounds the original functional F
from below.

Proposition 1. Let f : Ω × Γ × R
s → R be measurable in the first two, and

convex in the third entry, and let u ∈ C2(Ω;Γ ) be given. Then, for u : Ω → P(Γ )
defined by ux := δu(x), it holds that

F (u) ≥ F(u). (15)

Proof. Let p, q be any pair of functions satisfying the properties from the defi-
nition of X. By the chain rule, we compute

Δxp(x, u(x)) = Δ [p(x, u(x))] −
d∑

i=1

〈∂iu(x),D2
zp(x, u(x))∂iu(x)〉 (16)

− 2〈∇x∇zp(x, u(x)),∇u(x)〉 − 〈∇zp(x, u(x)),Δu(x)〉.
Furthermore, the divergence theorem ensures

−
∫

Ω

〈∇x∇zp(x, u(x)),∇u(x)〉dx =
∫

Ω

〈∇zp(x, u(x)),Δu(x)〉dx (17)

+
∫

Ω

d∑
i=1

〈∂iu(x),D2
zp(x, u(x))∂iu(x)〉dx,

as well as
∫

Ω
Δ [p(x, u(x))] dx = 0 by the compact support of p. As p ∈ C2

c (Ω ×
Γ ), concavity of z �→ p(x, z) implies a negative semi-definite Hessian D2

zp(x, z),
so that, together with (16)–(17),

∫
Ω

Δxp(x, u(x)) dx ≤
∫

Ω

〈∇zp(x, u(x)),Δu(x)〉 dx. (18)

We conclude

F(u) =
∫

Ω

∫
Γ

(Δxp(x, z) + q(x, z)) dux(z)dx (19)

=
∫

Ω

Δxp(x, u(x)) + q(x, u(x)) dx (20)

(13)

≤
∫

Ω

Δxp(x, u(x)) − f∗(x, u(x),∇zp(x, u(x))) dx (21)

(18)

≤
∫

Ω

〈∇zp(x, u(x)),Δu(x)〉 − f∗(x, u(x),∇zp(x, u(x))) dx (22)

≤
∫

Ω

f(x, u(x),Δu(x)) dx, (23)

where we used the definition of f∗ in the last inequality. �
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By a standard result from convex analysis, 〈p, g〉 − f∗(x, z, g) = f(x, z, p)
whenever g ∈ ∂pf(x, z, p), the subdifferential of f with respect to p. Hence, for
equality to hold in (15), we would need to find a function p ∈ C2

c (Ω × Γ ) with

∇zp(x, u(x)) ∈ ∂pf(x, u(x),Δu(x)) (24)

and associated q(x, z) := −f∗(x, z,Δu(x)), such that (p, q) ∈ X or (p, q) can be
approximated by functions from X.

Separate Data Term and Regularizer. If the integrand can be decomposed
into f(x, z, p) = ρ(x, z) + η(p) as in (2), with η ∈ C1(Rs) and u sufficiently
smooth, the optimal pair (p, q) in the sense of (24) can be explicitly given as

p(x, z) := 〈z,∇η(Δu(x))〉, (25)
q(x, z) := ρ(x, z) − η∗(∇η(Δu(x))). (26)

A rigorous argument that such p, q exist for any given u could be made by approx-
imating them by compactly supported functions from the admissible set X using
suitable cut-off functions on Ω × Γ .

2.2 Connection to the Discretization-First Approach [15]

In [15], data term ρ and regularizer η are lifted independently from each other
for the case η = ‖ · ‖1. Following the continuous multilabeling approaches in
[6,12,18], the setting is fully discretized in Ω × Γ in a first step. Then the
lifted data term and regularizer are defined to be the convex hull of a constraint
function, which enforces the lifted terms to agree on the Dirac measures δu with
the original functional applied to the corresponding function u. The data term is
taken from [12], while the main contribution concerns the regularizer that now
depends on the Laplacian of u.

In this section, we show that our fully-continuous lifting is a generalization
of the result from [15] after discretization.

Discretization. In order to formulate the discretization-first lifting approach
given in [15], we have to clarify the used discretization.

For the image domain Ω ⊂ R
d, discretized using points X1, . . . , XN ∈ Ω on

a rectangular grid, we employ a finite-differences scheme: We assume that, on
each grid point Xi0 , the discrete Laplacian of u ∈ R

N,s, ui ≈ u(Xi) ∈ R
s, is

defined using the values of u on m + 1 grid points Xi0 , . . . , Xim such that

(Δu)i0 =
∑m

l=1(u
il − ui0) ∈ R

s. (27)

For example, in the case d = 2, the popular five-point stencil means m = 4 and
the Xil are the neighboring points of Xi0 in the rectangular grid. More precisely,

∑4
l=1(u

il − ui0) = [ui1 − 2ui0 + ui2 ] + [ui3 − 2ui0 + ui4 ]. (28)
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The range Γ ⊂ R
s is triangulated into simplices Δ1, . . . ,ΔM with altogether L

vertices (or labels) Z1, . . . , ZL ∈ Γ . We write T := (Z1| . . . |ZL)T ∈ R
L,s, and

define the sparse indexing matrices P j ∈ R
s+1,L in such a way that the rows of

Tj := P jT ∈ R
s+1,s are the labels that make up Δj .

There exist piecewise linear finite elements Φk : Γ → R, k = 1, . . . , L satis-
fying Φk(tl) = 1 if k = l, and Φk(tl) = 0 otherwise. In particular, the Φk form
a partition of unity for Γ , i.e.,

∑
k Φk(z) = 1 for any z ∈ Γ . For a function

p : Γ → R in the function space spanned by the Φk, with a slight abuse of nota-
tion, we write p = (p1, . . . , pL), where pk = p(Zk) so that p(z) =

∑
k pkΦk(z).

Functional Lifting of the Discretized Absolute Laplacian. Along the
lines of classical continuous multilabeling approaches, the absolute Laplacian
regularizer is lifted to become the convex hull of the constraint function φ :
R

L → R ∪ {+∞},

φ(p) :=

{
μ

∥∥∑m
l=1(Tjlα

l − Tj0α
0)

∥∥ , if p = μ
∑m

l=1(P
jlαl − P jlα0),

+∞, otherwise,
(29)

where μ ≥ 0, αl ∈ ΔU
s+1 (for ΔU

s+1 the unit simplex) and 1 ≤ jl ≤ M for
each l = 0, . . . , m. The parameter μ ≥ 0 is enforcing positive homogeneity of φ
which makes sure that the convex conjugate φ∗ of φ is given by the characteristic
function δK of a set K ⊂ R

L. Namely,

K =
⋂

1≤jl≤M{f ∈ R
L :

∑m
l=1(f(tl) − f(t0)) ≤ ∥∥∑m

l=1(t
l − t0)

∥∥ , (30)

for any αl ∈ ΔU
s+1, l = 0, 1, . . . , m}, (31)

where tl := Tjlα
l and f(tl) is the evaluation of the piecewise linear function f

defined by the coefficients (f1, . . . , fL) (cf. above). The formulation of K comes
with infinitely many constraints so far.

We now show two propositions which give a meaning to this set of constraints
for arbitrary dimensions s of the labeling space and an arbitrary choice of norm
in the definition of η = ‖ · ‖. They extend the component-wise (anisotropic)
absolute Laplacian result in [15] to the vector-valued case.

Proposition 2. The set K can be written as

K =
{
f ∈ R

L : f : Γ → R is concave and 1-Lipschitz continuous
}

.

Proof. If the piecewise linear function induced by f ∈ R
L is concave and 1-

Lipschitz continuous, then

1
m

m∑
l=1

(f(tl) − f(t0)) =

(
1
m

m∑
l=1

f(tl)

)
− f(t0) ≤ f

(
1
m

m∑
l=1

tl

)
− f(t0) (32)

≤
∥∥∥∥∥
(

1
m

m∑
l=1

tl

)
− t0

∥∥∥∥∥ =
1
m

∥∥∥∥∥
m∑

l=1

(tl − t0)

∥∥∥∥∥ . (33)
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Hence, f ∈ K. On the other hand, if f ∈ K, then we recover Lipschitz continuity
by choosing tl = t1, for any l in (30). For concavity, we first prove mid-point
concavity. That is, for any t1, t2 ∈ Γ , we have

f(t1)+f(t2)
2 ≤ f

(
t1+t2

2

)
(34)

or, equivalently, [f(t1) − f(t0)] + [f(t2) − f(t0)] ≤ 0, where t0 = 1
2 (t1 + t2). This

follows from (30) by choosing t0 = 1
2 (t1 + t2) and tl = t0 for l > 2. With this

choice, the right-hand side of the inequality in (30) vanishes and the left-hand
side reduces to the desired statement. Now, f is continuous by definition and,
for these functions, mid-point concavity is equivalent to concavity. �

The following theorem is an extension of [15, Theorem 1] to the vector-valued
case and is crucial for numerical performance, as it shows that the constraints
in Proposition 2 can be reduced to a finite number:

Proposition 3. The set K can be expressed using not more than |E| (nonlin-
ear) constraints, where E is the set of faces (or edges in the 2D-case) in the
triangulation.

Proof. Usually, Lipschitz continuity of a piecewise linear function requires one
constraint on each of the simplices in the triangulation, and thus as many con-
straints as there are gradients. However, together with concavity, it suffices to
enforce a gradient constraint on each of the boundary simplices, of which there
are fewer than the number of outer faces in the triangulation. This can be seen
by considering the one-dimensional case where Lipschitz constraints on the two
outermost pieces of a concave function enforce Lipschitz continuity on the whole
domain. Concavity of a function f : Γ → R expressed in the basis (Φk) is equiva-
lent to its gradient being monotonously decreasing across the common boundary
between any neighboring simplices. Together, we need one gradient constraint
for each inner, and at most one for each outer face in the triangulation. �

2.3 Numerical Aspects

For the numerical experiments, we restrict to the special case of integrands
f(x, z, p) = ρ(x, z) + η(p) as motivated in Sect. 2.1.

Discretization. We base our discretization on the setting in Sect. 2.2. For a
function p : Γ → R in the function space spanned by the Φk, we note that

p(z) =
∑L

k=1 pkΦk(z) = 〈Ajz − bj , P jp〉 whenever z ∈ Δj , (35)

where Aj and bj are such that α = Ajz − bj ∈ ΔU
s+1 contains the barycentric

coordinates of z with respect to Δj . More precisely, for T̄ j := (P jT | − e)−1 ∈
R

s+1,s+1 with e = (1, . . . , 1) ∈ R
s+1, we set

Aj := T̄ j(1:s,:) ∈ R
s,s+1, bj := T̄ j(s+1,:) ∈ R

s+1. (36)
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The functions u : Ω → P(Γ ) are discretized as uik :=
∫

Γ
Φk(z)duXi(z), hence

u ∈ R
N,L. Furthermore, whenever ux = δu(x), the discretization ui contains

the barycentric coordinates of u(Xi) relative to Δj . In the context of first-order
models, this property is described as sublabel-accuracy in [12,17].

Dual Admissibility Constraints. The admissible set X of dual variables is
realized by discretizing the conditions (12) and (13).

Concavity (12) of a function p : Γ → R expressed in the basis (Φk) is equiva-
lent to its gradient being monotonously decreasing across the common boundary
between any neighboring simplices. This amounts to

〈gj2 − gj1 , nj1,j2〉 ≤ 0, (37)

where gj1 , gj2 are the (piecewise constant) gradients ∇p(z) on two neighboring
simplices Δj1 ,Δj2 , and nj1,j2 ∈ R

s is the normal of their common boundary
pointing from Δj1 to Δj2 .

The inequality (13) is discretized using (35) similar to the one-dimensional
setting presented in [17]. We denote the dependence of p and q on Xi ∈ Ω by a
superscript i as in qi and pi. Then, for any j = 1, . . . ,M , we require

sup
z∈Δj

〈Ajz − bj , P jqi〉 − ρ(Xi, z) + η∗(gij) ≤ 0 (38)

which, for ρj := ρ + δΔj
, can be formulated equivalently as

ρ∗
j (X

i, (Aj)T P jqi) + η∗(gij) ≤ 〈bj , P jq〉. (39)

The fully discretized problem can be expressed in convex-concave saddle
point form to which we apply the primal-dual hybrid gradient (PDHG) algorithm
[4] with adaptive step sizes from [10]. The epigraph projections for ρ∗

j and η are
implemented along the lines of [18,19].

3 Numerical Results

We implemented the proposed model in Python 3 with NumPy and PyCUDA.
The examples were computed on an Intel Core i7 4.00 GHz with 16 GB of memory
and an NVIDIA GeForce GTX 1080 Ti with 12 GB of dedicated video memory.
The iteration was stopped when the Euclidean norms of the primal and dual
residuals [10] fell below 10−6 · √n where n is the respective number of variables.

Image Registration. We show that the proposed model can be applied to
two-dimensional image registration problems (Figs. 1 and 2). We used the sum
of squared distances (SSD) data term ρ(x, z) := 1

2‖R(x)−T (x+z)‖22 and squared
Laplacian (curvature) regularization η(p) := 1

2‖ · ‖2. The image values T (x + z)
were calculated using bilinear interpolation with Neumann boundary conditions.
After minimizing the lifted functional, we projected the solution by taking aver-
ages over Γ in each image pixel.
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Fig. 1. Application of the proposed higher-order lifting to image registration with
SSD data term and squared Laplacian regularization. The method accurately finds
a deformation (bottom row, middle and right) that maps the template image (top
row, second from left) to the reference image (top row, left), as also visible from the
difference image (top row, right). The result (top row, second from right) is almost
pixel-accurate, although the range Γ of possible deformation vectors at each point is
discretized using only 25 points (second row, left).

Fig. 2. DCE-MRI data of a human kidney; data courtesy of Jarle Rørvik, Haukeland
University Hospital Bergen, Norway; taken from [3]. The deformation (from the left:
third and fourth picture) mapping the template (second) to the reference (first) image,
computed using our proposed model, is able to significantly reduce the misfit in the left
half while fixing the spinal cord at the right edge as can be observed in the difference
images from before (fifth) and after (last) registration.

In the first experiment (Fig. 1), the reference image R was synthesized by
numerically rotating the template T by 40◦. The grid plot of the computed
deformation as well as the deformed template are visually very close to the rigid
ground-truth deformation (a rotation by 40◦). Note that the method obtains
almost pixel-accurate results although the range Γ of the deformation is dis-
cretized on a disk around the origin, triangulated using only 25 vertices, which
is far less than the image resolution.
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Fig. 3. Minimizers of the lifted functional for the non-convex data term ρ(x, z) =
(|x| − |z|)2 (left). With classical first-order total variation-regularized lifting (middle),
the result is a composition of two solutions, which can be easily discriminated using
thresholding. For the new second-order squared-Laplacian regularized lifting (right),
this simple approach fails to separate the two possible (straight line) solutions.

The second experiment (Fig. 2) consists of two coronal slices from a DCE-
MRI dataset of a human kidney (data courtesy of Jarle Rørvik, Haukeland Uni-
versity Hospital Bergen, Norway; taken from [3]). The deformation computed
using our proposed model is able to significantly reduce the misfit in liver and
kidney in the left half while accurately fixing the spinal cord at the right edge.

Projecting the Lifted Solution. In the scalar-valued case with first-order
regularization, the minimizers of the calibration-based lifting can be projected
to minimizers of the original problem [19, Theorem 3.1]. In our notation, the
thresholding technique used there corresponds to mapping u to

u(x) := inf{t : ux((−∞, t] ∩ Γ ) > s}, (40)

which is (provably) a global minimizer of the original problem for any s ∈ [0, 1).
To investigate whether a similar property can hold in our higher-order case,

we applied our model with Laplacian regularization η(p) = 1
2‖p‖2 as well as the

calibration method approach with total variation regularization to the data term
ρ(x, z) = (|x| − |z|)2 with one-dimensional domain Ω = [−1, 1] and scalar data
Γ = [−1, 1] using 20 regularly-spaced discretization points (Fig. 3).

The result from the first-order approach is easily interpretable as a composi-
tion of two solutions to the original problem, each of which can be obtained by
thresholding (40). In contrast, thresholding applied to the result from the second-
order approach yields the two hat functions v1(x) = |x| and v2(x) = −|x|, neither
of which minimizes the original functional. Instead, the solution turns out to be
of the form u = 1

2δu1 + 1
2δu2 , where u1 and u2 are in fact global minimizers of

the original problem: namely, the straight lines u1(x) = x and u2(x) = −x.

4 Conclusion

In this work we presented a novel fully-continuous functional lifting approach
for non-convex variational problems that involve Laplacian second-order terms
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and vectorial data, with the aim to ultimately provide sufficient optimality con-
ditions and find global solutions despite the non-convexity. First experiments
indicate that the method can produce subpixel-accurate solutions for the non-
convex image registration problem. We argued that more involved projection
strategies than in the classical calibration approach will be needed for obtain-
ing a good (approximate) solution of the original problem from a solution of the
lifted problem. Another interesting direction for future work is the generalization
to functionals that involve arbitrary second- or higher-order terms.
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