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Abstract. In this paper we present a balanced phase field model that
eliminates the often undesired curvature-dependent shrinking of the zero
level set, while maintaining the smooth interface necessary to calculate
fundamental quantities such as the normal vector or the curvature of the
represented contour. The proposed model extends the Ginzburg-Landau
phase field energy with a higher order smoothness term. The relative
weights are determined with the analysis of the level set motion in a
curvilinear system adapted to the zero level set. The proposed level set
framework exhibits strong shape maintaining capability without signifi-
cant interference with the active (e.g. a segmentation) model.

1 Introduction

Active contours have become one of the most widely-used techniques for image
segmentation [1]. Early parametric contours used a Lagrangian description of
the discretized boundary to solve the Euler-Lagrange equation derived from an
appropriate energy functional. Their most important difficulties are the need for
periodic redistribution of the points and efficiently tracking topology changes.

The first problem was solved, and the second partially addressed, with the
advent of geometric active contours [2,3]. These used an implicit representation
of the contour as the zero level set of an appropriately constructed function,
subsequently discretized on a fixed grid (Eulerian description). The level set
method based on the Hamilton-Jacobi formulation was introduced in [4].

The level set function is usually initialized to signed distance function. During
the contour evolution however, the distance property (required for the stability
and accuracy) is not retained without specific handling. This is a major draw-
back. Different solutions were proposed to cope with this problem. The two main
approaches are (a) reinitialization and (b) extension of the PDE associated with
the original problem with a term that penalizes the deviations from the distance
function. Beyond the theoretical incoherence with the Hamilton-Jacobi formula-
tion [5], rebuilding the signed distance function in the whole domain is slow. The
partial remedy for this problem can be the narrow band technique [6] for the
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price of higher complexity. The extension of the original PDE with a distance
regularization term [7] may add instability (see [8]) and increase complexity [9].
More importantly, these approaches may move the zero level set away from the
expected stopping location. We propose a solution to overcome this problem.

The Ginzburg-Landau phase field model was used in image segmentation
in [10] as an alternative to the Hamilton-Jacobi formulation. It possesses inter-
esting advantages as greater topological freedom, the possibility of a ‘neutral’
initialization. Here we stress another aspect: phase field models automatically
form narrow band, a useful property that can only be achieved using additive
regularization [9] in the case of Hamilton-Jacobi formulation. Moreover, unlike
the reaction-diffusion model [8,11], it exhibits fast shape recovery due to the
double well potential term incorporated in its functional. On the other hand,
the Ginzburg-Landau phase field energy is proportional to the length of the con-
tour that causes curvature dependent shrinking of the level sets. In some cases
they are rather destructive and the Euler’s elastica is used instead (e.g. [12]).

The calculation of the fundamental quantities requires a smooth transition
across a certain neighbourhood of the zero level set. On the other hand, any
method dedicated to this transitional shape maintaining should have the least
possible interference with the segmentation PDE. Specifically, any curvature
dependent behaviour should be an intentionally designed part of the segmenta-
tion model itself. The Ginzburg-Landau phase field obviously violates this ‘least
possible interference’ requirement. In this paper we propose a balanced phase
field model that eliminates the curvature driven shrinking, while maintains the
smooth transition around the zero level set.

2 The Phase Field Model

2.1 Minimizing the Contour Energy Using Phase Field

In the level set framework, the representation of contours is given by a level set
function of two variables φ (x, y). The quantities of the segmentation problem
are extracted from this function, such as the unit normal vector n = ∇φ

|∇φ| or the

curvature κ = −∇ ·
(

∇φ
|∇φ|

)
where ∇ is the gradient operator and “·” stands for

the scalar (dot) product, i.e. ∇ · v is the divergence of the vector field v. The
level set function is usually maintained on a uniform grid and its derivatives
are approximated by finite differences. Such calculation requires the level set
function to be approx. Linear around a small neighborhood of the zero level.

For its simplicity and the fast transition-developing property we chose the
phase field model [10]. The Ginzburg-Landau functional is defined as

∫∫

Ω

Do

2
|∇φ|2 + λo

(
φ4

4
− φ2

2

)
dA, dA = dxdy (1)

Do and λo are weights. Its solution is the scalar field φ with ±1 stable values
representing the local minimal energies of the field and - due to the first term - a
localized transition between these values that naturally represents narrow band.
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Albeit the energy (1) could be incorporated into any segmentation functional,
this would extremely complicate the analysis of such a complex system. There
is though another way using the phase field equation: that is using it in “shape
maintaining” role, solving its associated Euler-Lagrange equation independently
of and before the segmentation. In either case we wish the phase field equation
ideally to maintain the shape of φ without moving its level sets. This idea is
similar to the regularization of the level set by reinitialization or the diffusion
phase of the reaction-diffusion model.

First, we assess the results of the Ginzburg-Landau phase field analysis using
linear ansatz (see [10]). One can show that the width of the transition is

wo∗ =
√

15Do

λo
, (2)

and the energy of the transitional band is approximately proportional to the
perimeter of the innermost (zero) level set. These approximations are valid wher-
ever wo∗ |κ| � 1. The associated Euler-Lagrange equation is

− Do�φ + λo

(
φ3 − φ

)
= 0 . (3)

3 Higher Order Smoothness Terms for Phase Field Model

In this section we examine a phase field φ (x, y) with Laplacian smoothness
(�φ)2- as a potential candidate for our purpose. Note that the origin of the
energy can be chosen freely. If the phase field satisfies the condition of constancy
almost everywhere except the regions of transitions, the origin is expediently cho-
sen to be the energy level of φ = ±1. In this case, the whole energy is equivalent
to the energy of the transitions and can be written as

∫∫

Ω

D

2
(�φ)2 + λ

(
φ4

4
− φ2

2
+

1
4

)
dxdy . (4)

The Euler-Lagrange equation associated with this functional is

D��φ + λ
(
φ3 − φ

)
= 0 . (5)

To estimate the energy (4) we use curvilinear coordinates.

3.1 Approximate System Energy

In the vicinity of the curve r (s) (s is the arc length parameter), the plane can
be parameterized as R (s, p) = r (s) + pn (s), where n (s) is the unit normal
vector of the curve at s and p is the coordinate in the normal direction. The
metric tensor components are the scalar (dot) products of the covariant basis
vectors Rs = ∂R

∂s , Rp = ∂R
∂p and takes the form [gik] = diag

[
(1 − pκ)2 , 1

]
,

where κ = κ (s) is the curvature of the curve r at s given by the Frenet-Serret



422 J. Molnar et al.

formula ns = −κe (e is the unit tangent vector). The invariant infinitesimal
area is dA =

√
gdsdt where g = det [gik]. Using these, the Laplacian �φ in the

curved system
(
u1, u2

)
= (s, p) is given by the Laplace-Beltrami operator �φ =

1√
g

∂
√

ggik ∂φ

∂uk

∂ui = 1
1−pκ

[
∂(1−pκ)−1 ∂φ

∂s

∂s +
∂(1−pκ) ∂φ

∂p

∂p

]
(in the general expression the

components of the inverse metric
[
gik

]
= [gik]−1 and the Einstein summation

convention are used). It can be rearranged as

�φ =
1

(1 − pκ)2
∂2φ

∂s2
+

p

(1 − pκ)3
dκ

ds

∂φ

∂s
+

∂2φ

∂p2
− κ

1 − pκ

∂φ

∂p
. (6)

Now we choose r (s) to be the zero level set and use the following simplifications:

1. the constant level sets are equidistant to r (s) i.e. φ = const → ∂nφ
∂sk∂pn−k = 0,

k ∈ [1, n] along the parameter lines p = const
2. the transition is confined to a stripe

(−w
2 , w

2

)
along the zero level set contour

3. the osculating circle is significantly bigger than the stripe width: 1 − pκ ≈ 1

then energy (4) expressed in the (s, p) system becomes

∮ ∫ w
2

− w
2

D

2
(φ′′ − κφ′)2 + λ

(
φ4

4
− φ2

2
+

1
4

)
dpds (7)

φ (s, p) = φ (p) and κ = κ (s) is the curvature measured on the zero level set and
prime notation is used for the derivatives wrt p.

3.2 Cubic Ansatz

In the presence of the second derivative φ′′ in (7), the linear ansatz is not appli-
cable. The next simplest choice is a cubic ansatz with boundary conditions
φ

(−w
2

)
= −1, φ

(
w
2

)
= 1 and φ′ (−w

2

)
= φ′ (w

2

)
= 0 . The function satisfy-

ing these conditions is

φ (p) = − 4
w3

p3 +
3
w

p . (8)

Its derivatives are:

φ′ = − 12
w3

p2 +
3
w

, φ′′ = − 24
w3

p, φ′′′ = − 24
w3

. (9)

The square of the approximate Laplacian, obtained from (6) is (φ′′ − κφ′)2 =[− 24
w3 p − κ

(− 12
w3 p2 + 3

w

)]2. The inner integral in (7) is symmetrical, therefore
the terms having odd powers of p do not contribute to the energy. Integrating this
smoothness term results 24D

w

(
1

w2 + κ2

10

)
. Now it can be seen that the appearance

of the curvature in the energy violates the assumptions 1 and 2 given in Sect. 3.1.
The contribution of the second term κ2

10 = 1
10r2

O
� 1

w2 is however, very modest
thus omitted in the subsequent calculations. Similarly, the inner integral of the
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phase field double well potential term λ
(

φ4

4 − φ2

2 + 1
4

)
is approximately 0.1λw,

hence the approximate energy of (7) is L
(

24D
w3 + λw

10

)
(L is the contour length).

Deriving it wrt w, the optimal width of the transitional region is

w∗ = 4

√
720D

λ
. (10)

3.3 The Motion of the Level Sets

The Euler-Lagrange equation (5) can be expressed in the curvilinear system
aligned with the zero level set applying the Laplace-Beltrami operator once again
to the Eq. (6) (and multiplying the result by

√
g = 1 − pκ). The Euler-Lagrange

terms having the derivatives of φ by the contour parameter s can be omitted in
the result. This approximate equation is

D
(−Aφ′ − 2κφ′′′ − κ2φ′′ + φ′′′′) + λ

(
φ3 − φ

)
= 0

A = 3p

(
dκ

ds

)2

+
d2κ

ds2
+ κ3 . (11)

The shape of the numerical solution for (11) is close to the cubic ansatz (see
Fig. 2). Due to the assumed symmetry of the zero level set, its motion is governed
by −D

(
d2κ
ds2 + κ3

)
φ′ − 2Dκφ′′′ = 0 or using the cubic ansatz at p = 0 and (10):

48D

w3∗
κ −

(
d2κ

ds2
+ κ3

)
3D

w∗
= 0 . (12)

Equation (12) describes either a static state wherever the curvature is identi-
cally zero or shrinking proportional to the curvature where the radius rO of the
osculating circle is significantly bigger than the thickness of the transition and
this width varies slowly (Fig. 1).

Fig. 1. Alteration of the phase field function in normal direction (thin blue line). Left
column: small curvature, the cubic ansatz (thick violet line) is valid. Right column:
high curvature, cubic approximation is invalid. (Color figure online)

For contours with constant curvature a static solution would be at radius
48κ
w3∗

= 3κ3

w∗
→ r = w∗

4 , however this is not the case. Around this curvature value
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neither the assumption 1−pκ ≈ 1 nor the cubic ansatz approximation are valid.
Under these circumstances the phase field function can no longer be modeled
with cubic ansatz (see Fig. 2 right column). The theoretical minimum value while
the phase field is shape-retaining is w∗

2 .
Therefore, we conclude that energy ( 4) does not fulfill our expectation stated

in the beginning of this section because it still has a curvature dependent term.

3.4 Motion of the Level Sets of the Original Model

Assuming again that the conditions that led to the simplified energy expression
(7) are valid, the Euler-Lagrange equation of the Ginzburg-Landau phase field
(3) reduced to the normal direction using the Laplacian (6) at 1 − pκ ≈ 1 and
∂nφ
∂sn = 0 is: −Do (φ′′ − κφ′) + λo

(
φ3 − φ

)
= 0. From this expression, the motion

of the zero level set is governed by

Doκφ′ = 0, (13)

that is a pure curvature-driven motion.

4 Phase Field Model for Reinitialization Purpose

The motion of the zero level set is basically curvature driven both for the
Ginzburg-Landau (13) and the higher order smoothness (12) models. This effect
can be eliminated by the appropriate combination of the smoothness terms (∇φ)2

and (�φ)2. First we calculate the optimal width for the functional
∫∫

Ω

D

2
|�φ|2 − Do

2
|∇φ|2 + λ

(
φ4

4
− φ2

2
+

1
4

)
dA . (14)

The approximate energy - using simplifications 1.-3. introduced in Sect. 3.1 - is

L

∫ w
2

− w
2

D

2
(φ′′ + κφ′)2 − Do

2
(φ′)2 + λ

(
φ4

4
− φ2

2
+

1
4

)
dp, (15)

where the length of the contour is L =
∮

ds is independent of w. Substituting
the cubic ansatz (8), the integral (15) (divided by L) becomes

24D

(
1

w3
+

κ2

10w

)
− 12Do

5w
+

λw

10
. (16)

The term dependent on the square of the curvature is again negligible, hence
omitted. From expression (16), the optimal width is given by derivation wrt w

λw4 − 24Dow
2 − 720D = 0 (17)

that can be solved for the optimal width w∗. The solution is

w∗ =

√
12
λ

(
−Do +

√
D2

o + 5Dλ
)

. (18)
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Now we use the approximate Euler-Lagrange equation associated with (15)

D
(−Aφ′ − 2κφ′′′ − κ2φ′′ + φ′′′′) + Do (φ′′ − κφ′) + λ

(
φ3 − φ

)
= 0 (19)

to derive condition for the curvature-independent solution (here A is defined in
(11)). From (19) the curvature-dependent term is eliminated with the condition:
−Doφ

′ − 2Dφ′′′ .= 0. Substituting the cubic ansatz (8) (at p = 0) we get:

−Do
3
w

+ D
48
w3

= 0 → D =
w2

16Do
. (20)

The width (17) and the curvature (20) constraints determine the weights
for the solution with curvature driven shrinking effect removed. There are other
terms, e.g. terms included in factor A, but the influence of those is much weaker.
In fact the impact of the term D

(
d2κ
ds2 + κ3

)
is similar to that of the solu-

tion of the Euler’s elastica
∮

D
2 κ2ds with associated Euler-Lagrange equation:

D
(

d2κ
ds2 + 1

2κ3
)

= 0. The numerical tests confirm that the phase field used in
this manner - satisfying Eqs. (17), (20) - essentially fulfills the “transitional shape
maintenance” role while standing still.

4.1 Determining Weights

Given two constraints (17), (20) for the energy (14), one of the weights can
be chosen freely (say Do = 1). The calculation of the remaining weights are
as follows. First determine the width: depending on the highest order of the
derivatives n (occurring either in the segmentation model or the phase field
itself), we need at least n + 1 grid points around the zero level set using finite
central difference schemes. This suggests about twice as big (as a cautious choice)
thickness of the phase field transition to remain within the range where it is
approximately linear, i.e. w � 2 (n + 1) is recommended. Second, solving (17)
and (20), the weights the functions of the width parameter w such as:

Do = 1, D =
w2

16
, λ =

21
w2

. (21)

The Euler-Lagrange equation associated with the proposed energy (14), using
the calculated weights (21) dependent on the width parameter w is therefore

w2

16
��φ + �φ +

21
w2

(
φ3 − φ

)
= 0 . (22)

In (22) the Laplace operator can be expressed wrt the standard basis as
�Φ = ∂2Φ

∂x2 + ∂2Φ
∂y2 , Φ ∈ {φ,�φ} and discretized on a uniform grid using finite

differences. Its gradient descent was used in the tests. The method can be effi-
ciently implemented as a 5 × 5 linear filter plus a point-wise cubic term acting
on the uniform grid used to discretize the level set function. The approximation
rmin ≈ X (n + 1) (where X is the grid size that can be smaller or greater than
a pixel) also determines the size of the segmentable smallest image-feature.
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5 Experimental Evaluation

In this section, we show that our balanced phase field model (a) maintains a
smooth transition of the level set in a narrow band during the evolution, while
(b) it has minimal side effect on the contour at the same time. This section is
organized as follows: first, we compare the Ginzburg-Landau phase field model
to the proposed one to show that the latter has much better contour preserving
performance. Next, we compare the proposed model, the reaction diffusion model
[8] and a reinitialization method [6] on synthetic and real data.

5.1 Stability Tests: Comparing to the Ginzburg-Landau Model

The test environment is prepared to guarantee the synchronous snapshot pro-
duction for the illustrations: the simulation space is splitted in the middle such
that the phase field evolutions are governed by the proposed energy (14) on one
side and the Ginzburg-Landau energy (1) on the other.

For the first test, the pure phase field equations were used. Figure 2 left
shows the initial contour preserving capability of the balanced phase field model
compared with the Ginzburg-Landau model on the right side.

Fig. 2. Alteration after the same iteration numbers of the phase fields when w = 10,
left: the balanced phase field - interfaces are barely moved; right: the Ginzburg-Landau
phase field: interfaces are displaced significantly. Weights are set according to (21) and
(2) for the balanced model and the Ginzburg-Landau model respectively.

The proposed phase field model was also applied to real data segmentation,
using a selective segmentation model [12]. The energy to be minimized is: E =

αS + βP + γD + δE , where P = 1
2

[∮
dA − q

(∮
ds

)2
]2

is the “plasma shape”
prior (q is the shape parameter, the ratio of the enclosed area and the square of
the perimeter), the data term of the original model was replaced by the simplest
anisotropic edge energy D =

∮ ∇I · nds (see [13]); the E is the Euler elastica,
while α, β, γ, δ are weights. This segmentation model was chosen, because of
its sensitivity to any size decreasing effect due to the term S = 1

3

(∮
dA − A0

)3

which is used at its inflection point at the preferred size A0. The initial contours
were produced by simple thresholding. Segmentation steps and the sequence of
the phase field sectional values along a horizontal line are shown in Fig. 3.

For the test X = 1 pixel grid size and w = 10 width values were used; the
maximum speed of the evolution by the segmentation model was set such that
its maximal value could not exceed the grid size. Preceding the segmentation
step, the gradient descent equation of (22) is iterated and the phase field is
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Fig. 3. Left: Evolution of the selective segmentation example (grid size: 1 pixel, w =
10). Segmentation result: First column: the balanced; Second column: the Ginzburg-
Landau phase fields. Right: Details of evolution along the blue horizontal line using
reinitializing iterations 2, 5, 15 for shape maintenance. First column: the balanced
phase field; Second column: Ginzburg-Landau phase field. (Color figure online)

updated in a reinitialization loop to recover a reasonably smooth interface. Then
the segmentation gradient descent moves the contour towards the solution (but
deteriorates its shape).

The transitional-shape recovery and the segmentation results using the bal-
anced and the Ginzburg-Landau models, depending on the number of the phase
field iterations in the reinitialization step (denoted by n) are assessed here: At
n = 2 neither the balanced nor the Ginzburg-Landau models can be considered
stable, at n = 5 both models provide stable transition, however the Ginzburg-
Landau model develops extremely steep slopes, while at n = 15, both models
exhibit high degree of stability as well as widths close to the designed/predicted
ones. Regardless the number of the phase field iterations used, the selective
segmentation [12] combined with the Ginzburg-Landau model ends up in the
collapse of the contour, whilst its combination with the balanced phase field
model provides the expected solution.

5.2 Comparing to the Reaction-Diffusion Model

The reaction diffusion model (RD) [8] is also proposed to diminish the inter-
ference with the segmentation (active) model. The shape maintenance of the
level set function is achieved by adding a diffusion term εΔφ to the gradient
descent of the active model, therefore φt = εΔφ + 1

εF |∇φ|, where ε is a small

Fig. 4. First two columns: initial level sets; second: level set during evolution (inter-
section at x = 50); third: final level sets, fourth: final contours. In each group - top:
DI, RM, bottom: RD, BPF.
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constant and F represents the gradient descent equation of the active model. We
first show that both the RD and the proposed balanced phase field model fulfill
the shape maintenance role. Next, we show that RD moves the interface more
significantly compared to the proposed model. In case of RD, this shrinking side-
effect eventually leads to the disappearing of some objects. For the quantitative
results, we borrowed a Jaccard-distance based metric similar to the one used in
the 2018 Data Science Bowl (DSB2018) competition [14]. The only modification
is that we used the threshold levels t = 0.1 to t = 0.95 with steps 0.5 (inclusive).

Fig. 5. Left: sample synthetic masks encoding initial contours; right: level set evolu-
tions on a sample image from the left side with RM/RD/BPF from top to bottom,
respectively.

Shape Maintenance Tests: We compared three different models to ours.
We tested the reaction diffusion method (RD), the balanced phase field model
(BPF), a reinitialization method (RM) [6] using the reinitialization equation:
φt + S(φ0)(|∇φ| − 1) = 0, where S(φ) = φ√

φ2+(|∇φ|Δx)2
, (the same method

as the one used in the RD paper and referred to as re-initialization. (For the
implementation, see the online supplementary material of that paper), and lastly,
no shape maintenance) (DI - direct implementation). The first test inherits from
Fig. 5 of the RD paper [8], Δt1,Δt2 (used for the numerical solution of the RD
equation, see the RD paper for details) are 0.1. For the RM, Δx and Δy is 1 and
α = 0.5, while w = 8 in the BPF model. The force term in the gradient descent
of the active contour model is simply 1, grid dimensions: 100 × 100, number of
iterations: 200. The results are shown in Fig. 4.

Synthetic Tests: The models are compared to each other by performing a
level set evolution using 11 synthetic initial contours (subset of these masks are
shown in Fig. 5) using 0 as a force term in the active model. In this setting, we
would assume that the initial contours are not moving. A sample evolution is
visualized in Fig. 5 using the RM, RD and the BPF methods. The same test
performed with all of the synthetic initial contours. The quantitative results
using the modified DSB2018 metric presented in Fig. 6 left. The ground truth is
the initial contour and the accuracy is measured during the evolution on every
image. Simple statistics summarizes the results in Table 1 left.
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Table 1. Segmentation accuracy of the synthetic and the real tests. Peak: the best
scores reached during the evolution. RD can not keep the accuracy of the active model
in long term, it has massive side-effects while the BPF behaves similarly to the reini-
tialization method.

Synthetic Real

RM RD BPF RM RD BPF

Result mean 0.943 0.339 0.882 0.365 0.093 0.343

Peak mean 0.948 0.983 0.975 0.608 0.802 0.794

Fig. 6. Left: quantitative results for the synthetic test. From top to bottom: RM,
RD, BPF. Columns: first: accuracy on each image during the evolution, second: peak
(maximum acc. on an image, blue) and the final acc. for the images. Right: results on
patches extracted from the DSB2018 training set, GAC model (ν = 0.5). From top to
bottom: RM, RD, BPF. (Color figure online)

Real Tests: We also compared the methods to each other using the geodesic
active contour model (GAC) [15] on 51 real images containing nuclei extracted
from the DSB2018 training set with random sampling. In the GAC model, the
force term in the gradient descent equation is: ∇ ·

(
g(I) ∇φ

|∇φ|
)

+ νg(I), where

g(I) = 1
1+(∇G(15,1.5)∗I)2 is the edge indicator function (the same as the one used

in the RD paper for the tests). The quantitative results with this model are
presented in Fig. 6 right. The parameters are unchanged. A sample test image
used for this test is shown in Fig. 7. Simple statistics presented in Table 1 right.
The parameters left unchanged since the last test, except the Δt2 that is 0.001
in this case. In conclusion, the BPF outperformed RD both for the synthetic
and real tests and produced results that are comparable to the RM method.
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(a) The most accurate contours
achievable with each of the methods.

(b) The contours after 40k iterations
with different reinitialization methods.

Fig. 7. Active contour evolutions with different reinitialization methods on a patch
from the DSB2018 dataset: red: BPF, green: RD, blue: RM. Even if the active model
is able to achieve good accuracy (Fig. 7a) the contour vanishes by the time if we use
the RD method (serious side effect on the active model). The proposed model has
contour preserving ability comparable to the reference method (marginal side effect on
the active model) (Fig. 7b). (Color figure online)

6 Discussion

In this paper we proposed and analyzed a balanced phase field model as an alter-
native to the Ginzburg-Landau level set framework. The proposed model exhibits
very fast shape recovery (essentially) without moving the level sets i.e. its inter-
ference with the “active” (e.g. segmentation) PDE is negligible. This important
property makes this level set formulation suitable for accurate segmentation.
Similar balancing could be used for any model that includes Laplacian smooth-
ness term in their gradient descent equation such as the reaction-diffusion model.
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