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Abstract. This article presents a continuous model for hierarchical
networks based on a combination of mathematically derived models of
receptive fields and biologically inspired computations. Based on a func-
tional model of complex cells in terms of an oriented quasi quadrature
combination of first- and second-order directional Gaussian derivatives,
we couple such primitive computations in cascade over combinatorial
expansions over image orientations. Scale-space properties of the com-
putational primitives are analysed and it is shown that the resulting
representation allows for provable scale and rotation covariance. A pro-
totype application to texture analysis is developed and it is demon-
strated that a simplified mean-reduced representation of the resulting
QuasiQuadNet leads to promising experimental results on three texture
datasets.

1 Introduction

The recent progress with deep learning architectures has demonstrated that
hierarchical feature representations over multiple layers have higher potential
compared to approaches based on single layers of receptive fields. A limitation
of current deep nets, however, is that they are not truly scale covariant. A deep
network constructed by repeated application of compact 3 × 3 or 5 × 5 kernels,
such as AlexNet [1], VGG-Net [2] or ResNet [3], implies an implicit assumption
of a preferred size in the image domain as induced by the discretization in terms
of local 3×3 or 5×5 kernels of a fixed size. Thereby, due to the non-linearities in
the deep net, the output from the network may be qualitatively different depend-
ing on the specific size of the object in the image domain, as varying because of
e.g. different distances between the object and the observer. To handle this lack
of scale covariance, approaches have been developed such as spatial transformer
networks [4], using sets of subnetworks in a multi-scale fashion [5] or by combin-
ing deep nets with image pyramids [6]. Since the size normalization performed
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by a spatial transformer network is not guaranteed to be truly scale covariant,
and since traditional image pyramids imply a loss of image information that can
be interpreted as corresponding to undersampling, it is of interest to develop
continuous approaches for deep networks that guarantee true scale covariance or
better approximations thereof.

The subject of this article is to develop a continuous model for capturing
non-linear hierarchical relations between features over multiple scales in such a
way that the resulting feature representation is provably scale covariant. Build-
ing upon axiomatic modelling of visual receptive fields in terms of Gaussian
derivatives and affine extensions thereof, which can serve as idealized models of
simple cells in the primary visual cortex [7–9], we will propose a functional model
for complex cells in terms of an oriented quasi quadrature measure. Then, we
will combine such oriented quasi quadrature measures in cascade, building upon
the early idea of Fukushima [10] of using Hubel and Wiesel’s findings regarding
receptive fields in the primary visual cortex [11] to build a hierarchical neural
network from repeated application of models of simple and complex cells.

We will show how the scale-space properties of the quasi quadrature primi-
tive in this representation can be theoretically analyzed and how the resulting
hand-crafted network becomes provably scale and rotation covariant, in such a
way that the multi-scale and multi-orientation network commutes with scaling
transformations and rotations over the spatial image domain. Experimentally,
we will investigate a prototype application to texture classification based on a
substantially mean-reduced representation of the resulting QuasiQuadNet.

2 The Quasi Quadrature Measure over a 1-D Signal

Consider the scale-space representation L(x; s) of a 1-D signal f(x) defined
by convolution with Gaussian kernels g(x; s) = exp(−x2/2s)/

√
2πs and with

scale-normalized derivatives according to ∂ξn = ∂xn,γ−norm = snγ/2 ∂n
x [12].

Quasi Quadrature in 1-D. Motivated by the fact that the first-order derivatives
primarily respond to the locally odd component of the signal, whereas the second-
order derivatives primarily respond to the locally even component of a signal,
it is natural to aim at a differential feature detector that combines locally odd
and even components in a complementary manner. By specifically combining
the first- and second-order scale-normalized derivative responses in a Euclidean
way, we obtain a quasi quadrature measure of the form

Qx,normL =

√
sL2

x + C s2 L2
xx

sΓ
(1)

as a modification of the quasi quadrature measures previously proposed and
studied in [12,13], with the scale normalization parameters γ1 and γ2 of the first-
and second-order derivatives coupled according to γ1 = 1 − Γ and γ2 = 1 − Γ/2
to enable scale covariance by adding derivative expressions of different orders
only for the scale-invariant choice of γ = 1. This differential entity can be seen
as an approximation of the notion of a quadrature pair of an odd and even filter



330 T. Lindeberg

Fig. 1. 1-D Gaussian derivatives up to orders 0, 1 and 2 for s0 = 1 with the correspond-
ing 1-D quasi quadrature measures computed from them at scale s = 1 for C = 8/11.
(Horizontal axis: x ∈ [−5, 5].)

as more traditionally formulated based on a Hilbert transform, while confined
within the family of differential expressions based on Gaussian derivatives.

Figure 1 shows the result of computing this quasi quadrature measure for a
Gaussian peak as well as its first- and second-order derivatives. As can be seen,
the quasi quadrature measure is much less sensitive to the position of the peak
compared to e.g. the first- or second-order derivatives. Additionally, the quasi
quadrature measure also has some degree of spatial insensitivity for a first-order
derivative (a local edge model) and a second-order derivative.

Determination of C. To determine the weighting parameter C between local
second-order and first-order information, let us consider a Gaussian blob f(x) =
g(x; s0) with spatial extent given by s0 as input model signal. By using the
semi-group property of the Gaussian kernel g(·; s1)∗g(·; s2) = g(·; s1 +s2), the
quasi quadrature measure can be computed in closed form

Qx,normL =
s

1−Γ
2 e

− x2
2(s+s0)

√
x2(s + s0)2 + Cs (s + s0 − x2)2 + 2√

2π(s + s0)5/2
. (2)

By determining the weighting parameter C such that it minimizes the overall
ripple in the squared quasi quadrature measure for a Gaussian input

Ĉ = argminC≥0

∫ ∞

x=−∞

(
∂x(Q2

x,normL)
)2

dx, (3)

we obtain

Ĉ =
4(s + s0)

11s
, (4)
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which in the special case of choosing s = s0 corresponds to C = 8/11 ≈ 0.727.
This value is very close to the value C = 1/

√
2 ≈ 0.707 derived from an equal

contribution condition in [13, Eq. (27)] for the special case of choosing Γ = 0.

Scale Selection Properties. To analyze the scale selection properties of the quasi
quadrature measure, let us consider the result of using Gaussian derivatives of
orders 0, 1 and 2 as input signals, i.e., f(x) = gxn(x; s0) for n ∈ {0, 1, 2}.

For the zero-order Gaussian kernel, the scale-normalized quasi quadrature
measure at the origin is given by

Qx,normL|x=0,n=0 =
√

Cs1−Γ/2

2π(s + s0)2
. (5)

For the first-order Gaussian derivative kernel, the scale-normalized quasi quadra-
ture measure at the origin is

Qx,normL|x=0,n=1 =
s
1/2
0 s(1−Γ )/2

2π(s + s0)2
, (6)

whereas for the second-order Gaussian derivative kernel, the scale-normalized
quasi quadrature measure at the origin is

Qx,normL|x=0,n=2 =
3
√

Cs0s
1−Γ/2

2π(s + s0)3
. (7)

By differentiating these expressions with respect to scale, we find that for a
zero-order Gaussian kernel the maximum response over scale is assumed at

ŝ|n=0 =
s0 (2 − Γ )

2 + Γ
, (8)

whereas for first- and second-order derivatives, respectively, the maximum
response over scale is assumed at

ŝ|n=1 =
s0 (1 − Γ )

3 + Γ
, ŝ|n=2 =

s0 (2 − Γ )
4 + Γ

. (9)

In the special case of choosing Γ = 0, these scale estimates correspond to

ŝ|n=0 = s0, ŝ|n=1 =
s0
3

, ŝ|n=2 =
s0
2

. (10a-c)

Thus, for a Gaussian input signal, the selected scale level will for the most scale-
invariant choice of using Γ = 0 reflect the spatial extent ŝ = s0 of the blob,
whereas if we would like the scale estimate to reflect the scale parameter of first-
and second-order derivatives, we would have to choose Γ = −1. An alternative
motivation for using finer scale levels for the Gaussian derivative kernels is to
regard the positive and negative lobes of the Gaussian derivative kernels as
substructures of a more complex signal, which would then warrant the use of
finer scale levels to reflect the substructures of the signal ((10b) and (10c)).
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3 Oriented Quasi Quadrature Modelling of Complex
Cells

In this section, we will consider an extension of the 1-D quasi quadrature measure
(1) into an oriented quasi quadrature measure of the form

Qϕ,normL =

√
λϕ L2

ϕ + C λ2
ϕ L2

ϕϕ

sΓ
, (11)

where Lϕ and Lϕϕ denote directional derivatives of an affine Gaussian scale-
space representation [14, ch. 15] of the form Lϕ = cos ϕLx1 + sin ϕLx2 and
Lϕϕ = cos2 ϕLx1x1 + 2 cos ϕ sinϕLx1x2 + sin2 ϕLx2x2 , and with λϕ denoting
the variance of the affine Gaussian kernel (with x = (x1, x2)T )

g(x; s,Σ) =
1

2πs
√

det Σ
e−xT Σ−1x/2s (12)

in direction ϕ, preferably with the orientation ϕ aligned with the direction α of
either of the eigenvectors of the composed spatial covariance matrix sΣ, with

Σ =
1

max(λ1, λ2)

(
λ1 cos2 α + λ2 sin2 α (λ1 − λ2) cos α sinα
(λ1 − λ2) cos α sin α λ1 sin2 α + λ2 cos2 α

)
(13)

normalized such that the main eigenvalue is equal to one.

∂ϕg(x, y; Σ)

Fig. 2. Example of a colour-opponent receptive field profile for a double-opponent
simple cell in the primary visual cortex (V1) as measured by Johnson et al. [15]
(Fig. 1(a–b) Copyright Society for Neuroscience with permission): (left) Responses to
L-cones corresponding to long wavelength red cones, with positive weights represented
by red and negative weights by blue. (middle) Responses to M-cones corresponding to
medium wavelength green cones, with positive weights represented by red and nega-
tive weights by blue. (right) Idealized model of the receptive field from a first-order
directional derivative of an affine Gaussian kernel ∂ϕg(x, y; Σ) according to (14) for
σ1 =

√
λ1 = 0.6, σ2 =

√
λ2 = 0.2 in units of degrees of visual angle, α = 157◦ and with

positive weights for the red-green colour-opponent channel U = R − G with positive
values represented by red and negative values by green. (Color figure online)
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Affine Gaussian derivative model for linear receptive fields. According to the
normative theory for visual receptive fields in Lindeberg [8,9], directional deriva-
tives of affine Gaussian kernels constitute a canonical model for visual receptive
fields over a 2-D spatial domain. Specifically, it was proposed that simple cells
in the primary visual cortex (V1) can be modelled by directional derivatives of
affine Gaussian kernels, termed affine Gaussian derivatives, of the form

Tϕm(x1, x2; s,Σ) = ∂m
ϕ (g(x1, x2; s,Σ)) . (14)

Figure 2 shows an example of the spatial dependency of a colour-opponent simple
cell that can be well modelled by a first-order affine Gaussian derivative over an
R-G colour-opponent channel over image intensities. Corresponding modelling
results for non-chromatic receptive fields can be found in [8,9].

Fig. 3. Significant eigenvectors of a complex cell in the cat primary visual cortex,
as determined by Touryan et al. [16] (Fig. 5(b) Copyright Elsevier with permission)
from the response properties of the cell to a set of natural image stimuli, using a spike-
triggered covariance method (STC) that computes the eigenvalues and the eigenvectors
of a second-order Wiener kernel using three different parameter settings (cutoff frequen-
cies) in the system identification method (from left to right). Qualitatively, these kernel
shapes agree well with the shapes of first- and second-order affine Gaussian derivatives.

Affine Quasi Quadrature Modelling of Complex Cells. Figure 3 shows functional
properties of a complex cell as determined from its response properties to nat-
ural images, using a spike-triggered covariance method (STC), which com-
putes the eigenvalues and the eigenvectors of a second-order Wiener kernel
(Touryan et al. [16]). As can be seen from this figure, the shapes of the eigenvec-
tors determined from the non-linear Wiener kernel model of the complex cell do
qualitatively agree very well with the shapes of corresponding affine Gaussian
derivative kernels of orders 1 and 2. Motivated by this property and theoretical
and experimental motivations for modelling receptive field profiles of simple cells
by affine Gaussian derivatives, we propose to model complex cells by a possi-
bly post-smoothed (spatially pooled) oriented quasi quadrature measure of the
form (11)

(Qϕ,normL)(·; sloc, sint, Σϕ) =
√

g(·; sint, Σϕ) ∗ (Q2
ϕ,normL)(·; sloc, Σϕ) (15)
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where sloc Σϕ represents an affine covariance matrix in direction ϕ for computing
directional derivatives and sint Σϕ represents an affine covariance matrix in the
same direction for integrating pointwise affine quasi quadrature measures over a
region in image space.

The pointwise affine quasi quadrature measure (Qϕ,normL)(·; sloc, Σϕ) can
be seen as a Gaussian derivative based analogue of the energy model for complex
cells as proposed by Adelson and Bergen [17] and Heeger [18]. It is closely related
to a proposal by Koenderink and van Doorn [19] of summing up the squares of
first- and second-order derivative responses and nicely compatible with results
by De Valois et al. [20], who showed that first- and second-order receptive fields
typically occur in pairs that can be modelled as approximate Hilbert pairs.

The addition of a complementary post-smoothing stage as determined by
the affine Gaussian weighting function g(·; sint, Σϕ) is closely related to recent
results by Westö and May [21], who have shown that complex cells are better
modelled as a combination of two spatial integration steps.

By choosing these spatial smoothing and weighting functions as affine Gaus-
sian kernels, we ensure an affine covariant model of the complex cells, to enable
the computation of affine invariants at higher levels in the visual hierarchy.

The use of multiple affine receptive fields over different shapes of the affine
covariance matrices Σϕ,loc and Σϕ,int can be motivated by results by Goris et al.
[22], who show that there is a large variability in the orientation selectivity of sim-
ple and complex cells. With respect to this model, this means that we can think of
affine covariance matrices of different eccentricity as being present from isotropic
to highly eccentric. By considering the full family of positive definite affine covari-
ance matrices, we obtain a fully affine covariant image representation able to han-
dle local linearizations of the perspective mapping for all possible views of any
smooth local surface patch.

4 Hierarchies of Oriented Quasi Quadrature Measures

Let us in this first study disregard the variability due to different shapes of the
affine receptive fields for different eccentricities and assume that Σ = I. This
restriction enables covariance to scaling transformations and rotations, whereas
a full treatment of affine quasi quadrature measures over all positive definite
covariance matrices would have the potential to enable full affine covariance.

An approach that we shall pursue is to build feature hierarchies by coupling
oriented quasi quadrature measures (11) or (15) in cascade

F1(x, ϕ1) = (Qϕ1,norm L)(x) (16)
Fk(x, ϕ1, ..., ϕk−1, ϕk) = (Qϕk,norm Fk−1)(x, ϕ1, ..., ϕk−1), (17)

where we have suppressed the notation for the scale levels assumed to be dis-
tributed such that the scale parameter at level k is sk = s0 r2(k−1) for some
r > 1, e.g., r = 2. Assuming that the initial scale-space representation L is com-
puted at scale s0, such a network can in turn be initiated for different values of
s0, also distributed according to a geometric distribution.
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This construction builds upon an early proposal by Fukushima [10] of build-
ing a hierarchical neural network from repeated application of models of simple
and complex cells [11], which has later been explored in a hand-crafted network
based on Gabor functions by Serre et al. [23] and in the scattering convolution
networks by Bruno and Mallat [24]. This idea is also consistent with a proposal
by Yamins and DiCarlo [25] of using repeated application of a single hierarchi-
cal convolution layer for explaining the computations in the mammalian cortex.
With this construction, we obtain a way to define continuous networks that
express a corresponding hierarchical architecture based on Gaussian derivative
based models of simple and complex cells within the scale-space framework.

Each new layer in this model implies an expansion of combinations of angles
over the different layers in the hierarchy. For example, if we in a discrete imple-
mentation discretize the angles ϕ ∈ [0, π[ into M discrete spatial orientations,
we will then obtain Mk different features at level k in the hierarchy. To keep the
complexity down at higher levels, we will for k ≥ K in a corresponding way as
done by Hadji and Wildes [26] introduce a pooling stage over orientations

(PkFk)(x, ϕ1, ..., ϕK−1) =
∑
ϕk

Fk(x, ϕ1, ..., ϕK−1, ϕk), (18)

and instead define the next successive layer as

Fk(x, ϕ1, ..., ϕk−2, ϕK−1, ϕk) = (Qϕk,norm Pk−1Fk−1)(x, ϕ1, ..., ϕK−1) (19)

to limit the number of features at any level to maximally MK−1. The proposed
hierarchical feature representation is termed QuasiQuadNet.

Scale Covariance. A theoretically attractive property of this family of net-
works is that the networks are provably scale covariant. Given two images f
and f ′ that are related by a uniform scaling transformation f(x) = f ′(Sx)
for some S > 0, their corresponding scale-space representations L and L′

will be equal L′(x′; s′) = L(x; s) and so will the scale-normalized deriva-
tives s′n/2 L′

x′
i
n(x′; s′) = sn/2 Lxn

i
(x; s) based on γ = 1 if the spatial posi-

tions are related according to x′ = Sx and the scale levels according to
s′ = S2s [12, Eqns. (16) and (20)]. This implies that if the initial scale lev-
els s0 and s′

0 underlying the construction in (16) and (17) are related according
to s′

0 = S2s0, then the first layers of the feature hierarchy will be related accord-
ing to F ′

1(x
′, ϕ1) = S−Γ F1(x, ϕ1) [13, Eqns. (55) and (63)]. Higher layers in the

feature hierarchy are in turn related according to

F ′
k(x′, ϕ1, ..., ϕk−1, ϕk) = S−kΓ Fk(x, ϕ1, ..., ϕk−1, ϕk) (20)

and are specifically equal if Γ = 0. This means that it will be possible to perfectly
match such hierarchical representations under uniform scaling transformations.

Rotation Covariance. Under a rotation of image space by an angle α, f ′(x′) =
f(x) for x′ = Rαx, the corresponding feature hierarchies are in turn equal if the
orientation angles are related according to ϕ′

i = ϕi + α (i = 1..k)

F ′
k(x′, ϕ′

1, ..., ϕ
′
k−1, ϕ

′
k) = Fk(x, ϕ1, ..., ϕk−1, ϕk). (21)
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5 Application to Texture Analysis

In the following, we will use a substantially reduced version of the proposed quasi
quadrature network for building an application to texture analysis.

If we make the assumption that a spatial texture should obey certain station-
arity properties over image space, we may regard it as reasonable to construct
texture descriptors by accumulating statistics of feature responses over the image
domain, in terms of e.g mean values or histograms. Inspired by the way the SURF
descriptor [27] accumulates mean values and mean absolute values of derivative
responses and the way Bruno and Mallat [24] and Hadji and Wildes [26] compute
mean values of their hierarchical feature representations, we will initially explore
reducing the QuasiQuadNet to just the mean values over the image domain of
the following 5 features

{∂ϕFk, |∂ϕFk|, ∂ϕϕFk, |∂ϕϕFk|,QϕFk}. (22)

These types of features are computed for all layers in the feature hierarchy
(with F0 = L), which leads to a 4000-D descriptor based on M = 8 uniformly
distributed orientations in [0, π[, 4 layers in the hierarchy delimited in complexity
by directional pooling for K = 3 with 4 initial scale levels σ0 =

√
s0 ∈ {1, 2, 4, 8}.

Table 1. Performance results of the mean-reduced QuasiQuadNet in comparison with
a selection of among the better methods in the extensive performance evaluation by
Liu et al. [34] (our results in slanted font).

KTH-TIPS2b CUReT UMD

FV-VGGVD [28] (SVM) 88.2 99.0 99.9

FV-VGGM [28] (SVM) 79.9 98.7 99.9

MRELBP [29] (SVM) 77.9 99.0 99.4

FV-AlexNet [28] (SVM) 77.9 98.4 99.7

mean-reduced QuasiQuadNet LUV (SVM) 78.3 98.6

mean-reduced QuasiQuadNet grey (SVM) 75.3 98.3 97.1

ScatNet [24] (PCA) 68.9 99.7 98.4

MRELBP [29] 69.0 97.1 98.7

BRINT [30] 66.7 97.0 97.4

MDLBP [31] 66.5 96.9 97.3

mean-reduced QuasiQuadNet LUV (NNC) 72.1 94.9

mean-reduced QuasiQuadNet grey (NNC) 70.2 93.0 93.3

LBP [32] 62.7 97.0 96.2

ScatNet [24] (NNC) 63.7 95.5 93.4

PCANet [33] (NNC) 59.4 92.0 90.5

RandNet [33] (NNC) 56.9 90.9 90.9
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The second column in Table 1 shows the result of applying this approach to
the KTH-TIPS2b dataset [35] for texture classification, consisting of 11 classes
(“aluminum foil”, “cork”, “wool”, “lettuce leaf”, “corduroy”, “linen”, “cotton”,
“brown bread”, “white bread”, “wood” and “cracker”) with 4 physical samples
from each class and photos of each sample taken from 9 distances leading to 9
relative scales labelled “2”, . . . , “10” over a factor of 4 in scaling transformations
and additionally 12 different pose and illumination conditions for each scale,
leading to a total number of 11×4×9×12 = 4752 images. The regular benchmark
setup implies that the images from 3 samples in each class are used for training
and the remaining sample in each class is used for testing over 4 permutations.
Since several of the samples from the same class are quite different from each
other in appearance, this implies a non-trivial benchmark which has not yet been
saturated.

When using nearest-neighbour classification on the mean-reduced grey-level
descriptor, we get 70.2% accuracy, and 72.1% accuracy when computing corre-
sponding features from the LUV channels of a colour-opponent representation.
When using SVM classification, the accuracy becomes 75.3% and 78.3%, respec-
tively. Comparing with the results of an extensive set of other methods in Liu
et al. [34], out of which a selection of the better results are listed in Table 1,
the results of the mean-reduced QuasiQuadNet are better than classical texture
classification methods such as locally binary patterns (LBP) [32], binary rota-
tion invariant noise tolerant texture descriptors [30] and multi-dimensional local
binary patterns (MDLBP) [31] and also better than other handcrafted networks,
such as ScatNet [24], PCANet [33] and RandNet [33]. The performance of the
mean-reduced QuasiQuadNet descriptor does, however, not reach the perfor-
mance of applying SVM classification to Fischer vectors of the filter output in
learned convolutional networks (FV-VGGVD, FV-VGGM [28]).

By instead performing the training on every second scale in the dataset (scales
2, 4, 6, 8, 10) and the testing on the other scales (3, 5, 7, 9), such that the
benchmark does not primarily test the generalization properties between the
different very few samples in each class, the classification performance is 98.8%
for the grey-level descriptor and 99.6% for the LUV descriptor.

The third and fourth columns in Table 1 show corresponding results of texture
classification on the CUReT [36] and UMD [37] texture datasets, with random
equally sized partitionings of the images into training and testing data. Also for
these datasets, the performance of the mean-reduced descriptor is reasonable
compared to other methods.

6 Summary and Discussion

We have presented a theory for defining hand-crafted hierarchical networks by
applying quasi quadrature responses of first- and second-order directional Gaus-
sian derivatives in cascade. The purpose behind this study has been to investigate
if we could start building a bridge between the well-founded theory of scale-space
representation and the recent empirical developments in deep learning, while at
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the same time being inspired by biological vision. The present work is intended as
an initial work in this direction, where we propose the family of quasi quadrature
networks as a new baseline for hand-crafted networks with associated provable
covariance properties under scaling and rotation transformations.

By early experiments with a substantially mean-reduced representation of the
resulting QuasiQuadNet, we have demonstrated that it is possible to get quite
promising performance on texture classification, and comparable or better than
other hand-crafted networks, although not reaching the performance of learned
CNNs. By inspection of the full non-reduced feature maps, which could not be
shown here because of the space limitations, we have also observed that some
representations in higher layers may respond to irregularities in regular textures
(defect detection) or corners or end-stoppings in regular scenes.

Concerning extensions of the approach, we propose to: (i) complement the
computation of quasi quadrature responses by divisive normalization [38] to
enforce a competition between multiple feature responses, (ii) explore the spatial
relationships in the full feature maps that are suppressed in the mean-reduced
representation and (iii) incorporate learning mechanisms.
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