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Abstract. Image registration, especially the quantification of image
similarity, is an important task in image processing. Various approaches
for the comparison of two images are discussed in the literature. How-
ever, although most of these approaches perform very well in a two image
scenario, an extension to a multiple images scenario deserves attention.
In this article, we discuss and compare registration methods for multi-
ple images. Our key assumption is, that information about the singular
values of a feature matrix of images can be used for alignment. We intro-
duce, discuss and relate three recent approaches from the literature: the
Schatten q-norm based SqN distance measure, a rank based approach,
and a feature volume based approach. We also present results for typical
applications such as dynamic image sequences or stacks of histological
sections. Our results indicate that the SqN approach is in fact a suitable
distance measure for image registration. Moreover, our examples also
indicate that the results obtained by SqN are superior to those obtained
by its competitors.

Keywords: Groupwise registration · Dynamic imaging ·
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1 Introduction

Typical applications in medical imaging are to analyze spatio-temporal vari-
ations of bio-medical images. A prerequisite for such analysis is that images
are aligned and in many cases joint registration of multiple images is required.
Examples are, e.g., analysis of images from different time points and/or different
complimentary modalities, atlas registration, longitudinal normalization, motion
correction or image reconstruction [1,4,7,8,12,13,18,19,21].

A number of registration models are already available to register a pair of
two images [15,20,22], but their simple extension to register a group of images
might suffer from various problems. Generally, these pair-wise methods assume
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one of the images as a reference image, and therefore registrations are implicitly
biased towards the reference image. Moreover, the selection of a reference image
from the given image sequence is not always a very straight forward process.
Most importantly, these registration models are primarily influenced by features
shared by the image pair and less affected by the features other images have
in the image sequence. Therefore, this approach does not account the global
information available in the image sequence. It has also been shown that these
methods have slow convergence rate compared to the groupwise methods [2,3].

To avoid the selection of a reference image and the related bias, Joshi et al. [13]
proposed the registration of each image from the image sequence with respect to
the group mean of the registered image sequence. This approach does not need
to define the reference image explicitly, moreover accounts the global information
through the group mean. This approach inherits the assumption that every image
in the image sequence is almost similar to the group mean.

Recently, Guyader [8] and Brehmer [2,3] proposed groupwise registration
methods for a sequence of images. The underlying assumption is that images are
linearly dependent if they are aligned. The linear dependency idea completely
circumvents the need of defining a group mean image. Both of these methods
construct an image matrix where each column is corresponding to an image from
the sequence. Brehmer [2,3] estimates transformation fields by minimizing the
rank of the matrix and implicitly forcing columns of the matrix to become linear
dependent to each other. Guyader [8] utilizes the multivariate version of mutual
information, called total correlation, to define a groupwise registration model.

The paper is structured as follows: In Sect. 2, we discuss mathematical for-
mulations of SVD based image registration approaches. More precise, we discuss
a general framework for groupwise registration models based on correlation max-
imization. In Sect. 3 we briefly discuss the used numerical setting. After that, in
Sect. 4, we demonstrate the performance of some of the proposed methods on
two datasets and compare them with other state-of-the-art methods.

2 Registration Approaches for Multiple Images

In this section, we describe our Schatten q-norm based distance measure SqN for
multiple images. We start by briefly outlining a standard variational registration
framework for two images [15]. We then present a straightforward extension for
multiple images and discuss the drawbacks of the naive approach drawbacks.
The main drawbacks are its sequential and thus ordering dependent assessment
of the image frames and the weak coupling of image information over the frames.

We then present the setting of the SqN distance measure. The main idea is
to make use of the singular values of an image feature array. Finally, we relate
the Schatten q-norm based distance measure to work of Friedman et al. [6] and
Guyader et al. [8].
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2.1 Variational Registration Approach for Two Images

We start the discussion with a standard approach to image registration; see
e.g. [15] for details. To simplify discussion, an image T is assumed to be a real
valued intensity function T : Rd → R with compact support in a domain Ω ⊂ R

d.
Given two images T0, T1, the goal of image registration is to find a transformation
y : Rd → R

d such that ideally T1 ◦y ≈ T0, where T ◦y(x) := T (y(x)). To achieve
this goal, we choose a variational framework where a joined functional

J two(y; T0, T1) := D(T0, T1 ◦ y) + S(y), (1)

is to be minimized over an admissible set of transformations. Various choices for
distance measures D and regularizers S are discussed in the literature; see e.g.
[15] and references therein. A thorough discussion is beyond the scope of this
paper. Here, we only briefly recall the L2-norm (sum of squared distances, SSD),
the normalized gradient field (NGF) [10], and the elastic potential [5]:

DSSD(T0, T1 ◦ y) := 1
2‖T1 ◦ y − T0‖2L2(Ω), (2)

DNGF(T0, T1 ◦ y) := 1
2

∫
Ω

[
1 −

〈
∇T1◦y

‖∇T1◦y‖η
, ∇T0

‖∇T0‖η

〉2 ]
dx (3)

Selas(y) := 1
2‖μ tr(E2) + λ tr(E)2‖2L2(Ω) (4)

with ‖a‖η :=
√

〈a, a〉 + η, η > 0 and strain E := ∇y + ∇y� − I where I is the
identity matrix.

Derivations of image intensities are also commonly used to quantify image
similarity. For a unified conceptual framework, we introduce a feature map F
that maps an image to a Hilbert space of features. Any metrics μ on the feature
space can then be used for registration: D(T0, T1) := μ(F (T0), F (T1)). Examples
of such feature maps are e.g. intensity normalization F IN(T ) = T /‖T ‖L2 or the
normalized gradient field, FNGF(T ) = ∇T /‖∇T ‖η, to name a few. Note that
the NGF distance measure is based on ∇T (x)/‖∇T (x)‖η whereas the feature
map is based on ∇T (x)/‖∇T ‖L2 .

2.2 Sequential Registration Approach for Multiple Images

Our goal is to extend the standard registration to sequences of images T =
(T1, . . . , TK). Note that the images might be given as a time series such as our
DCE-MRI example, a structured process such as the HISTO application, or even
an unstructured ensemble of images such as an atlas generation.

The first approach is to simply apply the above framework sequentially. With
transformations Y = (y1, . . . , yK) the corresponding energy to be minimized with
respect to Y reads

J seq(Y ;T ) :=
K∑

k=2

{D(Tk−1 ◦ yk−1, Tk ◦ yk) + S(yk)} . (5)
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Note that typically, one of the deformations is fixed, e.g., y1(x) := x for well-
posedness. However, as the problem is usually too big to be solved straightfor-
wardly, a non-linear Gauss-Seidel type iteration is usually applied. Here, one
assumes that Y is a good starting guess and sequentially improves component
by component for � = 1, . . . , K by determining optimizers

z∗ ∈ arg min
z

J seq(y1, . . . , y�−1, z, y�+1, . . . , yK ;T ), (6)

setting y� := z∗ and iterates until convergence. This process is generally rather
expensive and therefore slow. A problem is that the coupling of the different
components of Y is weak. An update of y� has impact only every K-th step in
the procedure. Therefore, potentially a high number of iterations is required.

2.3 Global Registration Approach for Multiple Images

Here, we propose a registration approach that provides a full coupling of all
image frames. Our objective is to find a minimizer Y of the energy Jglo,

Jglo(Y ;T ) := Dglo(T ◦ Y ) + Sglo(Y ), (7)

where we use the suggestive abbreviation T ◦Y := (T0 ◦ y0, . . . , TK ◦ yK) and for
sake of simplicity let be Sglo(Y ) :=

∑K
k=1 S(yk) with S any of the regularizers dis-

cussed in Sect. 2.1. Clearly, one could debate for a more general or even stronger
regularization of Y . However, this is not in the scope of the paper and we leave
the discussion for future work. The essential contribution is thus the global dis-
tance measure that is based on the feature array F (T ) := [F (T1), , . . . , F (TK)]
which comprises the features of the image sequence and its symmetric, positive
semi-definite correlation matrix C = 〈F, F 〉 ∈ R

K×K where Cij assembles the
correlations of F (Ti) and F (Tj). Note that we assumed F maps into a Hilbert
space such that the correlation is well defined according to the corresponding
inner product. Our key assumption is that the rank of the feature array is min-
imal if the image frames are aligned. Note that we actually aim to exclude the
trivial situation rankF = 0 as this implies that all features are zero. We also
note that the assumption may not hold for multi-modal images, if the feature
map does not compensate intensity variations. Therefore, a plain image intensity
based feature map may not be successful. If we expect that intensity changes will
occur at similar positions in space, e.g., the NGF feature map is a valid choice.

2.4 Schatten q-norm Based Image Similarity Measure DS,q

The above considerations suggest to choose rank F as a distance measure. In [2,3],
Brehmer et al. proposed to reformulate the rank minimization problem in terms of
a relaxation of the rank function based on a so-called Schatten q-norm. Roughly
speaking, the Schatten q-norm of an operator is the q-norm of the vector of its sin-
gular values. Thus

DS,q(T ) := ‖F (T )‖S,q :=
( K∑

k=1

σk(F (T ))q
)1/q

(8)
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where σk, k = 1, . . . , K, denote the non-zero singular values of F (T ). Before we
discuss numerical details, we relate this measure to other rank based similarity
measures for image stacks. Particularly we address volume minimization of the
feature parallelotope and correlation maximization of normalized features.

2.5 Volume Minimization of the Feature Parallelotope

The above approach can be linked to work of Guyader et al. [8]. To this end,
we consider the minimization of the volume of the parallelotope spanned by
the columns of F (T ). Equivalently, we can consider the determinant of C or,
exploring the monotonicity of the logarithm, set

D(T ) := log(det(C(T ))) = log(
∏K

k=1 σ2
k(F (T ))) = 2

∑K
k=1 log(σk(F (T ))). (9)

This expression is related to the volume of a normalized covariance matrix which
is the total correlation in [8] and used as a similarity measure for group-wise
registration.

However, a volume based approach has a severe drawback; see also the dis-
cussion in [11]. To illustrate this, we consider two feature vectors f1 �= 0 and f2
with angle α. Hence, volume(f1, f2) = ‖f1‖‖f2‖ sin α. This value is minimal if
the vectors are linearly dependent. Unfortunately, this also happens if f2 = 0. In
a registration context, this implies that a translation of one of the images, say,
about the diameter of Ω yields a global optimizer. In [11] it is therefore suggested
to replace the minimization of volume by a maximization of correlation | cos α|.
This value is maximal iff and only iff f2 = ±f1 and is in fact minimal if f2 = 0.
This subtle difference is very important in a registration context.

2.6 Correlation Maximization of Normalized Features

In this section we focus on correlation maximization and do not discuss the
corresponding minimization formulation. We also assume that feature vectors
are normalized, i.e. ‖F (Tk)‖ = 1. For the correlation matrix C(T ) ∈ R

K,K holds

Ckk = 1, Cjk = 〈F (Tj), F (Tk)〉 = cos γjk, (10)

where γjk denotes the angle between the j-th and k-th feature. In the two image
setting it is therefore natural to maximize |C1,2| if we account both, for pos-
itive and negative correlation. This is the underlying idea of normalized cross
correlation. Note that the NGF approach is still different as the correlation is
computed point wise and finally averaged.

For the multiple image setting, the best scenario is C ∈ {±1}K,K . If only
non-negative correlation is considered, the ideal case is C(T ) = 1 · 1�. On the
opposite, the worst case scenario for registration is that C(T ) = I meaning
all features are fully uncorrelated. Therefore, a suitable distance measure is to
maximize the difference

D(T ) := ‖C(T ) − I‖M , (11)

where ‖ · ‖M denotes a suitable matrix norm.
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2.7 Correlation Maximization and Schatten q-norms

Specifically, choosing ‖ · ‖M = ‖ · ‖S,q a Schatten q-norm in (11) we obtain

D(T ) = ‖C(T ) − I‖S,q =
(∑K

k=1(σ
2
k(F (T )) − 1)q

)1/q

. (12)

We investigate the special cases q = 2 and q = ∞. Note that

‖A‖S,∞ = σmax(A), the largest singular value of A, and

‖A‖2S,2 =
∑

k

σ2
k = trace(A�A) =

∑

j,k

|aj,k|2 = ‖A‖2Fro.

Thus, choosing the Schatten ∞-norm yields maximizing σ2
max(F (T )) − 1. This

is equivalent to maximizing the largest singular value of F (T ), see also [6]:

arg max ‖C(T ) − I‖S,∞ = arg max σmax(F (T )).

For the Schatten 2-norm we have D(T ) = ‖C(T ) − I‖2S,2 =
∑

i	=j |Cij |2 which
shows that the distance is quadratic mean of the correlation among the image
features. Furthermore, a direct computation shows

D(T ) = ‖C(T ) − I‖2S,2 = ‖F‖4S,4 − K.

Here, we exploit the special structure of correlation matrix C, i.e., trace(C) = K.
To this end, we define the two SqN distance measures for NGF features as

follows:

SqN4(T ) := K − ‖FNGF(T )‖4S,4 (13)

SqN∞(T ) := −σmax(FNGF(T )) (14)

3 Numerical Methods

For the optimization of the functional J seq (cf. (5)) we use the discretize-then-
optimize framework introduced in [9]. The basic concept is to use a sequence of
discretized finite dimensional optimization problems. A smooth approximation
of the problem is represented with few degrees of freedom. It is expected that the
optimization is fast as the problem is low dimensional and smooth. Its numerical
solution is prolongated and then serves as a starting guess for the finer resolved
problem. It is expected that a numerical solution can be computed fast, as the
starting point is expected to be close to the solution. The process is generally
terminated when reaching the resolution of the given data. Note that the images
are only smoothed in the spatial domain.

To solve the discrete problem on a fixed resolution we use a quasi-Newton
type approach. More precisely, we use L-BFGS with the Hessian of the regularizer
as an initial approximation of the metric and a Wolfe linesearch; see, e.g. [16]
for optimization and [15] for details.
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For the optimization of JSqN,

JSqN(Y ;T ) := SqN(T ◦ Y ) + Sglo(Y ), (15)

we use similar concepts as above for the regularization term.
For the SqN distance, we remark that the distance is a rather simple algebraic

expression of the singular values of the feature matrix. The challenging part is
thus the derivative of the singular values. Here, we follow [17]. A singular value
decomposition of the feature matrix F ∈ R

n×K is denoted by F = UΣV �,
where the matrices U = (ui,k) ∈ R

n,n and V = (vj,k) ∈ R
K,K are orthogonal

and Σ ∈ R
n,K is a non-negative diagonal matrix with the singular values σk(F )

as diagonal entries. From [17] we have the surprisingly simple relation ∂σk(F )
∂Fi,j

=
ui,kvj,k that is used in our implementation.

4 Results

We now present results for the registration of histological serial sectioning of a
marmoset monkey brain as well as for DCE-MRI sequences of a human kidney.
For the given datasets, we will compare the registration results of SqN4, SqN∞ in
comparison to a total correlation based approach like in [8] and sequential NGF.
We start with registrations of a serial sectioning of a marmoset monkey brain;
data courtesy of Harald Möller, Max Planck Institute for Human Cognitive and
Brain Sciences, Leipzig, Germany [14]. The dataset consists of every 4th slice
of the original serial sectioning of the brain, in total 69 slices of sizes from
2252 × 3957 pixels up to 7655 × 9965 pixels. For proof of concept we reduced
the number of pixels per slice to reduce computation time to a reasonable level.
The objective of the registration of histological slices is to align them in order
to reconstruct the 3D volume of the tissue.

Slice 5 Slice 30 Slice 46

Fig. 1. Three representative axial slices of a marmoset monkey brain dataset; data
courtesy of Harald Möller [14]

Figure 1 shows three representative axial slices of the data set. The main
difficulties of registering this particular dataset are the different sizes of the slices
on the one hand and the translation of whole parts of the imagestack within the
domain on the other hand. Furthermore we didn’t use a pre-segmentation of
the dataset to show robustness of the registration approaches against artifacts
in the background region. The background region of the slices contains several
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markings of the examiners like white rectangles as well as dust and dirt from
the object slide captured during the high resolution scanning process; see Fig. 1.

Figure 2 shows two sagittal slices (top and bottom row) through the image
stack from the reduced, unregistered monkey brain dataset besides the registra-
tion results to illustrate the alignment of the slices. As expected the results of
SqN4 are quite similar to the results of SqN∞. The computation for the group-
wise approaches using SqN as well as the total correlation approach from [8]
took about 45 to 50 min for a resolution of 128 × 158 pixels for each of the
69 slices. Compared to this, the sequential NGF approach with just one sweep
needed about 2.2 times the computation time (ca. 110 min). However, from visual
comparison it is obvious that many more sweeps are needed to achieve results
comparable to those of the groupwise approaches; see Fig. 2. Everything was
implemented in Python using Numpy and Scipy for optimization.

Moreover, we used a random permutation of the stack of histological serial
sections to demonstrate invariance to the order of images of the singular value
based groupwise registration approaches. We randomly permuted the order of
images, registered the stack in random order using SqN4 and reordered it after-
wards; see Fig. 3, center column. As expected, the results are the same as for
registration using SqN4 without random permutation; cf. Figs. 2 and 3 for com-
parison.

Unregistered SqN4 SqN∞
Total

Correlation NGF

P
os

it
io
n

53
P
os

it
io
n

82

Fig. 2. Registration results for 3D reconstruction of the monkey brain datasets. For illus-
tration, we show only 2D slices that are sagittal cuts at two positions, i.e., 53 and 82.

Next we present registration results for a DCE-MRI sequence of a human
kidney; data courtesy of Jarle Rørvik, Haukeland University Hospital Bergen,
Norway. Here, 3D images are taken at 45 time points. For ease of presentation
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and to have a reasonable level of computation time we show results for a 2D slice
over time. More precisely, we use 178-by-95 coronal slices of a 178-by-95-by-30-
by-45 volume for z-slice 18; see Fig. 4 for representative slices. All time points are
used for registration. The objective here is to register the slices while maintaining
the dynamics. Figure 5 illustrates the stack of slices for the different registration
approaches using a sagittal cut through the stack, analog to the results for the
histological serial sections shown in Fig. 2. The illustrated results were achieved
using three different levels of spatial resolution up to half the original resolution
in about 8 min per groupwise approach. The result of the sequential approach
was achieved in about twice the time using just one sweep. For the alignment
using the approach from [8], we couldn’t find a parameter setting to achieve
results comparable to the SqN-approaches.

5 Discussion and Conclusions

The registration of multiple images is an important task in image processing.
Conventional approaches often use an extension of a pairwise approach for two
images. In this paper, we demonstrate that this approach may come with numer-
ous disadvantages and may be time consuming. We also describe and analyze
a recently proposed alternative. The Schatten q-norm based SqN [2,3] distance
measure is a reference for our investigations on different singular value based
measures such as the maximization of correlation between different images as
well as minimization of spanned volumes. For this purpose we have introduced
a general formulation using feature maps that map images into Hilbert spaces.

Original Permuted SqN4

P
os

it
io
n

53
P
os

it
io
n

82

Fig. 3. Registration results after random permutation of the axial slices. As expected,
the results are the same as for the non-permuted image stack; also see Fig. 2 for com-
parison.
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Time point 5 Time point 11 Time point 21

Fig. 4. Three representative 2D coronal slices of the 4D DCE-MRI dataset of a human
kidney; data courtesy of Jarle Rørvik, Haukeland University Hospital, Bergen, Norway.
The slices are shown at three different time points. The dataset is a 178-by-95-by-30-
by-45 volume, the shown slices are 178-by-95.

Unregistered SqN4 SqN∞
Total

Correlation NGF

P
os

it
io
n

29
P
os

it
io
n

40

Fig. 5. Illustrated are sagittal cuts through the stack of 2D slices from a 4D DCE-
MRI dataset of a human kidney at positions 29 and 40. The first column shows the
unregistered stack. Right next to this the results of the different registration approaches
are illustrated.

This opens a door for even further investigation on image registration meth-
ods for multiple images. With our numerical results we demonstrate that SqN
based motion compensation is applicable in dynamic imaging as well as for the
alignment of histological serial sections. Moreover, the results clearly show that
SqN performs at least as good as standard approaches from the literature. In
our experiments both the alignment and the computation time of the groupwise
approaches were closer to a desirable solution than the sequential approach using
pairwise NGF.
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Furthermore, we outlined that a singular value based approach exploits
the global information of a dataset, which cannot be achieved by using two-
neighbourhoods in registration. In some specific applications, such as dynamic
imaging or reconstruction of histological volumes from serial sections, this can
avoid unwanted effects like the so-called banana-effect. Future work will address
the optimal choice of the parameter q and investigations of different variants of
feature maps. Finally, different regularization strategies will be investigated.
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Ministry of Education and Research of Germany in the framework of MED4D (project
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