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Abstract. An algorithm for parallel solution of the dynamic problems of the
elasticity theory for axisymmetric objects as a three-dimensional problem of the
elasticity theory has been proposed. The semidiscrete approximations reduce the
problem to the solution of the Cauchy problem for a system of linear differential
equations of the second order. The elements of the matrix are determined with
the help of the semi-analytical finite element method (FEM) using the Fourier
series analytical expansion by trigonometric functions of the angle coordinate
and numerical expansion of isoparametric approximations on serendipity
quadrilaterals in the meridional section. The Cauchy problem is solved by
decomposing the solution into eigenfunctions, which we find using the subspace
iterations method. The method has been parallelized with domain decomposition
and message passing interface (MPI), and the parallelized method has been
scaled to over 20 processors with high parallel performance. The numerical
examples have demonstrated the performance of the proposed algorithm. The
numerical results indicate that the method is very accurate and its paralleliza-
tions are efficient for both types of problems.

Keywords: Axisymmetric anisotropic objects � Dynamic elasticity � Finite
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1 Introduction

A detailed study on the dynamic behavior of various elements of engineering structures
is widely possible using modern numerical methods. It has been used in areas such as
geological surveys, sound reduction, crack detection or even in earthquake propagation
studies. Although 3D finite elements are universal and can be used to solve dynamic
problems for structures of various complex geometry, they need huge computing
capacity. The aim of this paper is to design an algorithm by combining several well-
established mathematical methods with some new approaches for the efficient solution
of dynamic problems for axisymmetric structures in a way involving less computa-
tional cost. Different structures of cylindrical shape elements are very often used as
parts of important engineering constructions. For this reason, dynamic behavior of such
structures has been extensively investigated in recent years. FEM in the form of the
semidiscrete Galerkin method is so far the currently dominating one for dynamic
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analysis of such objects. The use of the eigenfunction expansion method for time
integration together with semi-analytical FEM has become a good basis for the algo-
rithms of parallelization [1].

2 Literature Review

Currently, there is renewed interest in this area due to advances in the development of
ultrasonic and microsonic based devices for trapping of biological cells and micro
particles [2]. Two types of dynamic problems are usually considered: dynamic response
of a structure sustaining arbitrary loading [3, 4] and free vibration [5, 6]. As noted in [7],
despite the significant growth in the breadth of its applicability, two areas have received
relatively less attention in p/hp-FEM for solid mechanics: dynamic problems and par-
allelism [8]. A Chebyshev-Ritz numerical procedure based on the 3D elasticity theory is
employed in [5] to extract the full vibration spectrum of natural frequencies along with
selected 3D deformed mode shapes. To study a number of problems of harmonic and
impulse oscillations, an approach of fundamental solutions for layers was developed on
the basis of which amplitude characteristics, as well as stress diagrams for layers with
one or two cavities of different types, were obtained [9]. Paper [3] presents an explicit
smoothed finite element method (SFEM) for elastic dynamic problems. The central
difference method for time integration is used in presented formulations. A spectral
method for elastic wave calculations which is based on a Chebychev expansion in the
vertical direction is presented in [4]. The results indicate that the method presents an
improvement over the ordinary Fourier method in handling the free surface boundary
condition. An algorithm that is able to solve dynamic contact problems with complex
local geometries was proposed in [10]. The authors combined domain decomposition
with mortar coupling, contact modeling via semismooth Newton methods and energy-
consistent time integration. Numerical examples confirm the optimality of the approach
and its stabilization effect applied to dynamic contact problems.

3 Research Methodology

3.1 Governing Equations

Let us consider the deformation of a three-dimensional object that occupies the axi-
symmetric domain of an anisotropic, linearly elastic material. The domain is referred to
a right-hand system of orthogonal, cylindrical coordinates r, h and z which represent
the radial, angular and axial coordinates, respectively.

The dynamic problem of elasticity is investigated in a 3D statement. The inde-
pendent displacement components that describe the motion of the body can be
written as

ur � urðr; h; z; tÞ; uh � uhðr; h; z; tÞ; uz � uzðr; h; z; tÞ; u � ður; uh; uzÞT ; ð1Þ
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The equations of motion corresponding to the displacement field (1) can be
expressed as [6]:
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Here q is the density of the material. We also assume that the relations for strain
components and constitutive relations are given in matrix form as
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respectively. The constitutive relations (4) contain nine independent elastic constants
and involve the most widely used kinds of anisotropic media: transversely isotropic and
orthotropic.

There are external loads applied to the surface of the object

X3
i;j

rijnj ¼ fi; i; j ¼ r; h; z; on CN : ð5Þ

here CN is the part of the surface of the cylinder, nr; nh; nz are the components of the
outward unit normal vector to this surface in radial, angular and axial directions
respectively, and fiði ¼ r; h; zÞ—are prescribed loads. Moreover, we also have the
kinematic boundary conditions

u ¼ g; on CD; C � @X ¼ CN [CD; CN \CD ¼ £; ð6Þ
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where g ¼ gr; gh; gzð ÞT is the given vector of displacements and initial conditions:

ujt¼0 ¼ 0;
@ u
@t

jt¼0 ¼ 0; x 2 X: ð7Þ

e � err; ezz; ehh; erz;erh; eh z
� �T

—is the vector of the deformations component in (3), and

r � rrr; rzz; rhh; rrz;rrh; rh z
� �T

—is the vector of the stresses component in (4).

3.2 Weak Formulation

Let us introduce the space of kinematically admissible vectors of displacement, which
is analogous to [6]

The weak variational form of the initial-boundary problem (2), (5)–(7) is formu-
lated as:

Find u 2 H such that

m u00ðtÞ; vð Þþ a uðtÞ; vð Þ ¼ lðtÞ; vh i; 8v 2 V ; 8t 2 ð0; T �;
uð0Þ ¼ 0; u0ð0Þ ¼ 0:

ð8Þ

where bilinear forms:
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and linear functional
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l; vh i ¼
Z
CN

nrvr þ fzvz þ fhvhð ÞdC:

Since axisymmetric objects are considered, we will present the components of the
vectors of the surface load in the form of an infinite Fourier series for an angular
coordinate

fr ¼
X1
i¼0

pðiÞr /iðhÞ; fz ¼
X1
i¼0

pðiÞz /iðhÞ; fh ¼
X1
i¼0

pðiÞh ~/iðhÞ: ð9Þ

Then the solution of the problem (8) will be found in the form
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where the following notation is introduced

/iðhÞ ¼ 1; cos h; sin h; cos 2h; sin 2h; . . .; cos nh; sin nh; . . .f g;
~/iðhÞ ¼ 1; sin h; cos h; sin 2h; cos 2h; . . .; sin nh; cos nh; . . .f g

– complete orthogonal systems of trigonometric functions on the interval 0; 2p½ �.
Partial sum

un ¼
Xn
i¼0

uðiÞðr; z; tÞUiðhÞ ð11Þ

is named as the approximation of the weak solution of the problem (8).
Let us select in the subspace of the approximations Vh a basis of piecewise con-

tinuous test functions constructed on a regular partition of serendipity quadrilaterals:

Vh ¼ span N1;N2;N3; . . .;NLf g:

Then Galerkin’s semidiscretization uðiÞh tð Þ 2 Vh of the weak solution (11) is pre-
sented in the form

uðiÞh r; z; tð Þ ¼
XL
k¼1

uðiÞkh tð ÞNk r; zð Þ ð12Þ
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with unknown coefficients uðiÞkh tð Þ; which are functions of time. We find these coeffi-
cients for one harmonic from the Cauchy problem for a system of ordinary differential
equations, which can be presented in matrix notation as

MðiÞ �UðiÞ
tð ÞþKðiÞUðiÞ tð Þ ¼ RðiÞ tð Þ; UðiÞ 0ð Þ ¼ 0; _U

ðiÞ
0ð Þ ¼ 0: ð13Þ

The matrices of mass M ðiÞ and stiffness K ðiÞ have the structure
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and vector of load R ðiÞ tð Þ
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Here the elements CðiÞ
l ; l ¼ 1; . . .; 6; are the integrals of trigonometric functions.

3.3 Finding a Non-stationary Solution

The solution of problem (13) can be obtained using standard procedures for the
solution of the Cauchy problem for ordinary second-order differential equations with
constant coefficients. In direct integration, the solution of the system (13) is obtained by
a numerical stepwise procedure. The number of operations in this case is directly
proportional to the number of steps per time. For integration in time we use the method
of expansion according to eigenfunctions.
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The nodal values UðiÞ tð Þ of displacement were written as

UðiÞ tð Þ ¼ WiXi tð Þ; ð14Þ

where Xi tð Þ—an unknown vector whose components are generalized displacements,
and Wi—the matrix whose columns are eigenvectors obtained as solutions of a gen-
eralized algebraic eigenproblem

KðiÞw ¼ x2MðiÞw; ð15Þ

Let us consider that in the time coordinate the solution of variational Eq. (8), can be
presented as

u ¼ U expðixtÞ: ð16Þ

If we denote u ¼ ur; uh; uzð ÞT , the amplitude of displacements u ¼ U, then we
obtain the variational equation for lðtÞ � 0

a u; vð Þ � x2m u; vð Þ ¼ 0; 8v 2 V :

Here the bilinear forms have the form aðu; vÞ; mðu; vÞ as above.
Let us formulate the following variational problem [6]:
Find a pair u;xð Þ 2 V � R that

a u; vð Þ ¼ x2m u; vð Þ; 8v 2 V : ð17Þ

Problem (17) is a variational problem of finding eigenvalues m ¼ ffiffiffiffiffiffiffiffiffiffiffi
x=2p

p
and their

corresponding eigenfunctions. Applying the same approximation as for problem (8),
the solution of (17) is reduced to the solution of (15).

Substituting (14) into equations and initial conditions (13) and multiplying to the
left at WT

i , we obtain a system of equilibrium equations for generalized displacements:

�XiðtÞþX2
i XiðtÞ ¼ WT

i R
ðiÞðtÞ; ð18Þ

with initial conditions Xið0Þ ¼ 0; _Xið0Þ ¼ 0:
The system (18) splits into ~k separate equations

€x ji ðsÞþ x j
i
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x ji ðsÞ ¼ ðw j

i ÞTRðiÞðsÞ; j ¼ 1; . . .; ~k: ð19Þ

The solution of each Eq. (19) is represented in the form of the Duhamel integral:

x ji ðtÞ ¼
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ðw j
i ÞTRðiÞðnÞ sinx j

i ðt � nÞdnþ a j
i sinx
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i t: ð20Þ
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To obtain a complete system response, it is necessary to find a solution of all ~k
Eq. (19). We find the displacements of node points for i—harmonic as a superposition
of the reactions of the system in all its eigenvectors.

UðiÞðtÞ ¼
X~k
k¼1

Wk
i x

k
i ðtÞ:

Finally, the solution is obtained as a linear superposition according to (11) for each
Fourier component present in the load.

4 Results

The approbation of the proposed approach with the parallelization was carried out on
the cluster of Ivan Franko National University of Lviv, which consists of 14 computing
nodes and a server under the Scientific Linux 6.2 (core 3.6.6) operating system. All
computing nodes for sharing data between parallel processes are united by 1Gbit/s
Ethernet. The problem of determining the dynamic reaction of a hollow cylinder, with
internal radii R1 ¼ 0:8 m and external radii R2 ¼ 1:2 m and height L ¼ 10 m, with a
rigidly pinched lower end was solved. On the outside of the cylinder a non-
axisymmetric, non-stationary, normal load is given

~Wðh; tÞ ¼ WðtÞ cos h; �p=2� h� p=2
0; hj j[ p=2

�
; WðtÞ ¼ 1; for 0� t\1:

Since the applied load is symmetric with respect to the cross section h ¼ 0, then
only the coefficients with cosines are not nonzero in the expansion in a series of
trigonometric functions. They are given by formulas

a0 ¼ 1=p; a1 ¼ 0:5; an ¼ � 2ð�1Þn=2
pðn2 � 1Þ ; n ¼ 2; 4; 6; . . .

The physical characteristics of the cylinder were chosen as follows: the density
q ¼ 2:7� 103 kg/m3, Poisson’s coefficient m ¼ 0:17 and Young’s modulus
E ¼ 0:146� 1011 N/m2.

The first step for the solution of the dynamic elasticity problem is to find eigen-
values and eigenvectors of free oscillations of the object. Table 1 shows the values of
the first five cyclic frequencies of free cylinder oscillations for the first five harmonics,
including the zero harmonic. Here i—the column corresponds to i—the harmonic, and j
—the row is j—free frequency. It is seen in Table 1 that the smallest free frequency of
a cylinder corresponds to the first harmonic. This fact demonstrates that in the study of
the dynamic characteristics of cylindrical objects, it is not enough to take into account
only symmetric frequencies and their corresponding forms of free vibration.
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There are graphs of the component of the displacement vector by the angular
coordinate at the time (t = 0.17 s) on Fig. 1, that corresponds to the largest value of the
amplitude of the oscillations. The graphs are marked with: solid line—displacement ur,
dashed line—displacement uz and dotted-dotted—displacement uh. In the section h ¼ 0
the components ur; uz of displacement, and in the section h ¼ p=2 the displacement uh
take the maximum value.

Figure 2 presents graphs of stress changes rhh; rrh; rzz by angular coordinates at the
moments of time when the stresses exceed the maximum of the amplitude. The solid,
dashed and dotted-dashed lines represent the stresses rhh; rrh; rzz, respectively.

5 Conclusion

The numerical investigation of dynamic problems for anisotropic axisymmetric objects
within the framework of 3D linear elasticity theory has been developed. Two kinds of
dynamic problems have been considered: dynamic response of a structure under an
arbitrary load and free vibrations. Semidiscrete FEM with trigonometric series for an
angular coordinate is used. The possibility of obtaining asymmetric oscillation fre-
quencies in this scheme is very important. The results of numerical solutions of

Table 1. The five cyclic frequencies of free oscillations of the cylinder.

Frequencies Harmonics
0 1 2 3 4

1 38.004 8.864 109.552 490.019 950.804
2 58.204 43.235 115.618 494.395 954.259
3 114.012 96.902 131.759 503.157 960.841
4 190.022 152.402 160.195 516.582 970.737
5 266.043 206.454 198.751 534.887 983.972

Fig. 1. The values of displacements ur; uz; uh by angular coordinates h (rad).
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engineering problems confirm the effectiveness of the proposed approach. The algo-
rithm of parallel implementation provided the opportunity to significantly reduce the
time of obtaining the solution.
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