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Abstract. Early work on automated formal verification produced pio-
neering model-checking algorithms, in which system computations were
modelled either as sequences of distinguished states in which the system
evolves or as sequences of events or actions occurring during the sys-
tem’s state transitions. In both cases, automata-like structures generally
known as transition systems were exploited to capture all possible com-
putations, but still either state-based or event-based. Many years later,
both views were combined in descriptions of computations as the evolu-
tion between distinguished states by means of transitions characterised
by the occurrence of events, and verification tools were adapted to this
more general setting. Meanwhile, the most important drive in improving
verification tools concerned the complexity of models, which was attacked
by algorithms capable of minimising the information needed for deciding
the verification questions. One of the outcomes of this quest was local,
on-the-fly model checking. Both of these lines of research, pioneered by
Bernhard Steffen, are discussed in this paper in a general retrospective on
state-based and event-based models of transition systems and temporal
logics, followed by an overview of how this is exploited in the KandISTI
model-checking environment.

1 Introduction

The development of expressive models of transitions systems that are capable
of efficiently supporting formal verification by means of model-checking algo-
rithms has been one of the concerns of Bernhard Steffen’s career in research.
The traditional model for the interpretation of modal and state-based logics, i.e.
a Kripke structure [1], in which states are labelled by atomic propositions, was
adopted by the early model-checking algorithms for CTL and LTL (cf. [2] and
the references therein). On the other hand, Labelled Transition Systems (LTS),
in which transitions instead are labelled with events, emerged as the most appro-
priate semantic model for process algebrae and process calculi [3,4]. In search
for more expressivity and flexibility, the work by Bernhard Steffen and others
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has addressed models in which both states and transitions are labelled, such
as Doubly-Labelled Transition Systems [5], Kripke Transition Systems [6], and
Labelled Kripke Structures [7].

It is well known that model checking is affected by the state-space explosion
problem, for which realistic system models may require an exponential number
of states (which may not fit the available computer memory). Or, as Cleaveland
puts it in [8], “Consequently, while the best traditional model-checking algo-
rithms [9–12] are linear in the number of states of a system, their applicability
is severely restricted by the prohibitive number of states systems can have.”
Bernhard Steffen has made seminal contributions to the efficiency of model-
checking algorithms [10,13]. To mitigate the state-space explosion problem, local,
on-the-fly model-checking algorithms [14–16] can be of help. While these have
the same worst-case complexity, they generally perform better in the many cases
in which only a subset of the system states, generated ‘on demand’, needs to
be analysed to determine whether a system model satisfies a formula. Local
model checking moreover may provide results for infinite state spaces. Bernhard
Steffen has made several important contributions also to this development (cf.,
e.g., [17,18]). In this paper, we list some models and logics that combine state
and transition labelling and show how the KandISTI model-checking environ-
ment [19] and its rich logic, presented in this paper, exploit these features and
thus relate to the aforementioned contributions of Bernhard Steffen.

KandISTI1 is a family of model checkers developed at ISTI–CNR for over
two decades now, which includes UMC [20], CMC [21], VMC [22], and FMC [23].
Each tool allows the efficient verification, by means of explicit-state on-the-fly
model checking, of functional properties expressed in a state-based and event-
based branching-time temporal logic, which builds upon the family of logics
based on ACTL [24–26], i.e. action-based versions of CTL [9,27]. The KandISTI
model checkers allow on-the-fly model checking with a complexity that is linear
with respect to the size of the model and the size of the formula2.

This paper is organised as follows. Sections 2 and 3 introduce transition sys-
tem models and temporal logics, respectively, that explicitly combine state-based
and event-based information. Section 4 discusses how KandISTI exploits states
and events in a rich modelling and verification environment based on a com-
prehensive temporal logic, and highlights some of its more interesting features.
Section 5 concludes the paper.

2 Modelling Structures for Reasoning on both
State-Based and Event-Based Properties

In the literature, one can find several variants of graph structures that have
information associated with both their nodes and their edges, used as models
for state/event-based logical specifications.

1 Available online at http://fmt.isti.cnr.it/kandisti.
2 When ignoring the fixed point operators and the parametric aspects of the logic.

http://fmt.isti.cnr.it/kandisti


112 M. H. ter Beek et al.

One of the first structures that comes to mind is the one adopted for the
propositional μ-calculus [28]. These models are constituted by a set of states, a
set of propositional constants and a set of program constants. From a semantic
point of view, the interpretation of a propositional constant is a set of states.
Therefore each (control) state might have several state labels. The interpretation
of a program constant, instead, is a transition relation (i.e. edges associated with
exactly one label).

In the Doubly-Labelled Transition Systems (L2TS) introduced by De Nicola
and Vaandrager [5], the same concept was reshaped by explicitly assigning to
each state a set of atomic propositions, and by describing the (now unique)
transition relation as a set of triples of the form 〈source state, observable or
silent event, target state〉. No constraints are explicitly imposed on the finiteness
or absence of internal structure of atomic propositions and events.

Lawford, Ostroff and Wonham [29] introduced so-called State-Event Labeled
Transition Systems (SELTS), which are equivalent to the underlying model of
the state/event systems of Graf and Loiseaux [30], in which a model is described
by a countable set of states, a finite set of binary relations on the states, an
initial state, and a mapping from the states to sets of atomic predicates (i.e.
edges are still associated with precisely one label).

In 1999, together with Müller–Olm and Schmidt, Bernhard Steffen coined the
term Kripke Transition System (KTS) [6]. In a KTS, states are labelled with
sets of atomic propositions and transitions are labelled with sets of events. No
constraint is imposed on the absence of internal structure of the labels, nor on
the totality of the transition relation, and the presence of an explicit initial state
is allowed (i.e. rooted structures). The authors point out that edge labellings
can be encoded by node labellings and vice versa, such that theoretical analyses
typically study one form of labelling. Nevertheless, we very much agree with
their motivation for introducing KTS: “For modeling purposes, however, it is
often natural to have both kinds of labeling available.”

In 2004, Chaki et al. introduced Labelled Kripke Structures (LKS) [7], which
are characterised by a finite set of states, an initial subset of states, a finite
set of atomic state propositions, a finite set of events and a binary transition
relation among states. The transition relation is no longer required to be total.
A state-labelling function associates each state with a set of state propositions,
and a transition-labelling function associates each pair of 〈source, target〉 states
with a set of events (i.e. we cannot have two transitions between the same two
states with different labellings).

In 2006, Pecheur and Raimondi use Mixed Transition Systems [31], not to be
confused with Larsen’s Modal Transition Systems [32–34], to denote a generali-
sation of both state-based models (Kripke structures) and action-based models
(LTS) into a common super-structure very similar to L2TS, which is charac-
terised by a set of states (a subset of which can be qualified as initial states),
a transition relation defined as a set of triples of the form 〈source state, event,
target state〉 and two interpretation functions that associate each state and event
with a set of propositional atoms over states and events, respectively.
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3 Temporal Logics for Reasoning on both State-Based
and Event-Based Properties

As already apparent form the previous section, state- and event-based models
have been proposed often together with specific temporal logics having those
models as interpretation structures.

We already mentioned the propositional μ-calculus [28], which is an extension
of modal logic with propositions and fixed point operators [35]. Atomic propo-
sitions can be satisfied by single states. Modal operators are indexed by events
that label the transitions. Fixed point operators are then introduced to extend
the meaning of logic formulae over full, possibly infinite, computations.

Next to the Boolean constants false and true, the μ-calculus contains atomic
propositions, logical connectives and the diamond and box operators 〈 〉 and [ ]
of modal logic. The least and greatest fixed point operators μ and ν provide
recursion used for ‘finite’ and ‘infinite’ looping, respectively.

Kindler and Vesper [36] introduced the Event-and-State-based Temporal Logic
(ESTL) to reason over events and states of Petri nets, which are a typical exam-
ple of a formal model for reasoning over states (places) and events (transitions).
ESTL is a linear-time logic based on four basic temporal operators, namely
eventually and once (eventually in the past), working on state properties, and
sometime and sometime in the past , working on transition properties. From these
operators, four dual operators called always, so far, every-time and every-time
in the past can be derived. We refer to [36] for their precise meaning.

Also the logic interpreted over the LKS introduced in [7], called SE-LTL, is a
linear-time logic. This logic is based on the X (next), G (always), F (eventually)
and U (until) linear-time operators, which can be applied both to state and to
transition properties.

The Mixed Transition Systems introduced in [31] serve as interpretation
model for the Action-Restricted CTL (ARCTL) logic, which extends CTL but
is less expressive than ACTL from [24]. In fact, ARCTL is instead a branching-
time logic over mixed state/event models introduced as a generalisation of CTL.
ARCTL has the same temporal operators as CTL, except that they can be
restricted to paths whose actions satisfy a given action formula.

Among the various state- and event-based logics proposed in the litera-
ture, UCTL [20] was designed to include both the branching-time action-based
logic ACTL [24,25] and the branching-time state-based logic CTL [27,37], with
the aim to reason over UML state diagram specifications and L2TS. The logic
UCTL is adequate with respect to strong bisimulation equivalence on L2TS [38].
Adequacy [39], as also investigated by Bernhard Steffen in [40], means that
two L2TS A1 and A2 are strongly bisimilar if and only if F1 = F2, where
Fi = {ψ ∈ UCTL | Ai |= ψ } for i = 1, 2. In other words, adequacy implies
that if there is a formula that is not satisfied by one of the L2TS but satisfied by
the other L2TS, then the two L2TS are not bisimilar, and—on the other hand—if
two L2TS are not bisimilar, then there must exist a distinguishing formula.
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The UCTL logic initially was supported by the UMC v3.33 model checker,
which later evolved into the KandISTI family of model checkers, as explained in
the next section.

4 Exploiting States and Events in KandISTI

In this section, we first introduce the KandISTI tool and we show how it exploits
states and events in a rich modelling and verification environment, based on a
comprehensive temporal logic interpreted over L2TS, after which we discuss some
of its more interesting features in more detail.

4.1 KandISTI

For over more than two decades, we are developing the KandISTI family of model
checkers, each one based on a different specification language, but all sharing a
common temporal logic and verification engine. The main objective of KandISTI
is to provide formal support in the design phase of a software system, especially
in its early stages, i.e. when a design is still likely to be incomplete and contain
mistakes. The main features of KandISTI focus on the possibility to (i) explore
the evolution of a system and generate a summary of its behaviour; (ii) investi-
gate abstract system properties using a temporal logic supported by an on-the-fly
model checker; and (iii) obtain a clear explanation of the model-checking results,
in terms of possible evolutions of the specific specification model.

While the specification models supported by KandISTI are rather different,
ranging from UML statecharts to various process algebrae, its verification engine
is unique and based on a common temporal logic which encompasses the spe-
cific logics initially associated to the specific tools: ACTL for FMC, UCTL for
UMC, SocL for CMC and v-ACTL for VMC. This is feasible by separating
state-space generation (which depends on the underlying specification model)
from L2TS analysis, and by the introduction of an explicit abstraction mecha-
nism that allows to specify the details of the model that should be observable as
labels on the states and transitions of the L2TS. Another essential characteris-
tic of KandISTI is the on-the-fly structure of the model-checking algorithm: the
L2TS corresponding to the specification model is generated on demand, following
the incremental needs of the verification engine. Given a state of an L2TS, the
validity of a logic formula on that state is evaluated by analysing the transitions
allowed in that state, and by analysing the validity of the necessary sub-formulae
possibly in some of the necessary next reachable states, and all this recursively.

Hence, each tool consists of two separate, interacting components: a tool-
specific L2TS generator engine and a common logical verification engine. The
L2TS generator engine is again structured in two components: a ground evo-
lutions generator, strictly based on the operational semantics of the specifica-
tion language, and an abstraction mechanism which allows to associate abstract
observable events to system evolutions and abstract atomic propositions to the
system states. The overall structure of KandISTI is depicted in Fig. 1.
3 Still available online at http://fmt.isti.cnr.it/umc/legacy/V3.3.

http://fmt.isti.cnr.it/umc/legacy/V3.3
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Fig. 1. The architecture of the KandISTI framework (from [41])

All KandISTI model checkers offer a downloadable command-line version of
the tool as well as an online GUI through http://fmt.isti.cnr.it/kandisti. Detailed
descriptions of the model-checking algorithms and architecture underlying Kan-
dISTI are beyond the scope of this paper, but they can be found in [20,21,41–43].

4.2 Modelling with KandISTI

The structure of the models underlying the KandISTI framework (still called
L2TS) is very similar to the KTS of Bernhard Steffen and colleagues and to the
L2TS of De Nicola and Vaandrager, in the sense that both states and transitions
can be labelled with finite sets of predicates or events, and a unique initial state
is explicitly required. None of the domains of states, predicates and events is
required to be finite, and a matching function is required to evaluate whether
an event expression or state predicate is satisfied by the set of labels associated
to the states or transitions.

Very few model-checking tools provide support for sets of structured labels
associated with the edges of a model’s evolution graphs. KandISTI, for what we
know, is the only publicly available framework that supports this. The tool of the
KandISTI framework that better allows to exploit the doubly-labelling feature
is UMC. In UMC, a model describes the possible evolutions of a set of UML-like
state machines. The state labels of the abstract model contain the relevant state
information that we want to observe (typically the values of a subset of the local
variables of the state machines), while the transition labels contain the relevant
information that we want to observe concerning the occurrence of events during
system evolution.

The KandISTI framework allows an abstract view (in terms of an L2TS) to
be associated with the basic operational model of the specification language.
So-called “abstraction rules” need to be defined by the user to associate a set of
abstract observable (composite) state and event predicates with relevant states

http://fmt.isti.cnr.it/kandisti
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and transitions, hiding in the abstract view all other details. This abstract view of
the system model is the one used during verification, while all the internal details
of the traversed states and transitions remain available during the exploration of
the model or the analysis of a counterexample. Figure 2 shows an example of an
L2TS associated with an UML model once the desired abstractions have been
applied.

Fig. 2. From UMC model + abstractions to L2TS

4.3 Verification with KandISTI

Figure 3 provides the syntax of the logic supported by the KandISTI framework.
It encompasses the various logics of the individual model-checking tools, ranging
from UCTL (cf. Sect. 3) to the most recent addition, v-ACTL, for the analysis
of so-called Modal Transition Systems with variability constraints (MTSυ) [43].
The logic of KandISTI includes the following rich set of features:

– Parametric state predicates (represented by the state labels of the L2TS), e.g.
pred1 (arg1 , arg2 ), pred2 , and pred3 (∗, arg3 ), where ∗ means ‘don’t care’.

– Parametric event formulae (represented by Boolean expressions over the
transition labels (events) of the L2TS), e.g. (act1 (arg1 , arg2 ) ∨ act2 ) and
¬ act3 (arg3 , ∗, ∗).

– Classical diamond and box modalities from Hennessy–Milner logic [44], e.g.
[act1 ] ( pred1 → 〈act2 〉 true ).

– Classical high-level CTL operators (e.g. next, always, eventually, globally,
until, and weak until) in their state-based, action-based as well as mixed
modality flavours, e.g. EX pred1 , A [pred1 (arg1 ) U pred2 ], AGEF pred1 ,
and E [pred1 (arg1 ) W pred2 ].

– High-level ACTL-like operators (i.e. action-based variants of above CTL oper-
ators), e.g. EXact1 true, A [pred1 (arg1 ) act1Uact2 pred2 ], AGEFact1 pred1 ,
and E [ pred1 (arg1 ) act1W pred2 ].
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Fig. 3. Full syntax of the KandISTI logic. Actually, the logic of the KandISTI frame-
work supports also (not optimised) versions of the least and greatest fixed-point opera-
tors μ and ν from the μ-calculus (cf. Sect. 3), to be written as min and max, respectively.

– Parametric formulae expressing data correlations among actions and subfor-
mulae, e.g. [act1 ($1, $2)] AFact2(%1,%2) true and EF$1 EF%1 true.

– Deontic variants of some of the above operators (which allow to reason on
classical Modal Transition Systems (MTS) [32,34,43], whose transitions are
partitioned into mandatory and optional transitions), e.g. 〈act1 〉� true and
EF�

act1 pred1 .
– Special-purpose predefined state predicates, e.g. PRINT (msg , arg1 , arg2 )

(prints the current state and the message msg each time it is evaluated),
DEPTH LT n (returns TRUE if when evaluated the current evaluation depth
is less than n), and FINAL (shorthand for a final state).
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The latter category of special-purpose predefined state predicates allows a
better control and understanding of the ongoing evaluation process. Indeed,
model checking is a technique that can be used for a variety of goals. On one
side we have pure validation of a system design which is supposed to be correct
with a high probability, as a final result of a development phase. In this case, the
design of the verification tools is often focussed on techniques that contrast the
state-space explosion problems (e.g. minimising memory requirements), often at
the expense of a clear, easily understandable explanation when the validation
fails.

On the opposite side we have the goal of an easy but exhaustive analy-
sis/debugging of an initial (likely wrong) design. In this case, the focus of the
tool can be more oriented to the collection and preservation of all the diagnostic
information that might be useful to explain a negative result, even at the cost
of an increased or less efficient usage of the resources.

Our KandISTI framework falls in this second class of verification environ-
ments. During the (on-the-fly) evaluation process all the local information of
the generated states and transitions is preserved, to be eventually used when an
explanation of the evaluation result is requested. The exploitation of this app-
roach is made possible by the lazy, left-to-right evaluation approach for Boolean
operators, and the top-down evaluation process with respect to the formula struc-
ture.

In the KandISTI framework, the logical verification engine shared by all the
tools observes the underlying model as an abstract L2TS. This L2TS is inde-
pendent from the operational semantics of the particular specification language
adopted by the various tools, thanks to the intermediate set of abstraction rules
associated to the specification itself. We do not provide the full semantics in this
paper, but instead refer to its exhaustive (incremental) treatment in [20,21,43].

We note that not all KandISTI model checkers are able to fully exploit all
features of the logic. For instance, VMC and FMC specifications do not sup-
port state labelling (and therefore neither state predicates), whereas variability-
related aspects (e.g. the deontic ‘boxed’ operators) are fully supported only by
VMC specifications (but partially supported by FMC and UMC specifications).

The actual usage of the logic in the KandISTI framework exploits a machine-
friendly, ASCII-only, syntax. In particular, the silent event τ must be written
as tau; the propositional connectives ¬, ∧, ∨, and → must be written as not
(or ∼), and (or & or &&), or (or | or ||), and implies; the relational operators
≤, �=, and ≥ must be written as <=, != (or \=), and >=, respectively (and =
may also be written as ==); the ‘boxed’ variants 〈χ〉�, [χ]�, X�, F�, and G�

of the modal and temporal operators 〈χ〉, [χ], X, F , and G, respectively, must
be written by appending # to the operators (e.g. <># and F#); finally, the event-
based variants of the temporal operators U , W , X, F , and G must be written
by (prefixing and) suffixing the operators with the event formulae between curly
brackets (e.g. {e1} U {e2} and X {e}).

In the following sections, we focus in detail on two particular features that
have allowed KandISTI to cope with specialised formal verification tasks.
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4.4 Variable Binding

In certain cases, it is useful to express the fact that an event expression that
appears in a formula can make use of variable names (e.g. $var), which can either
be free variables or variables bound to a value by a previous binding operator
in the same formula. This data extraction feature from transition labels can be
found also in other μ-calculus-based languages, like for example MCL [45].

The contexts in which a variable name is allowed to appear are only the next
operator X, the diamond and box operators 〈 〉 and [ ], the eventually operator
F , and on the right side of the (weak) until operators W and U . Moreover, in
these contexts, the event expression can only have the form of a basic event
predicate, or a conjunction of basic event predicates, and the variable name can
only appear in the place of the event name or the place of an event argument.
Here are some examples of legal occurrences of variable names:

[ $event ] . . . , 〈aa($1, $2)〉 . . . , E[ . . . U$event($var ,123) . . . ],
EFevent($var)∧¬event(11) . . . , AF$var . . .

When such an event expression is evaluated with respect to a set of transition
labels, if the expression matches the labels, then a set of variable bindings occurs,
and the obtained bound values can be referred inside the subsequent part of the
formula by using the %var notation. Let us consider the L2TS shown in Fig. 4a.

With the following formula we can express the property that along any path,
any event may occur at most once (the formula is true in the L2TS of Fig. 4a).

AG [$event ] ¬EF%event

The next formula, instead, states that whenever an event of the form cc(arg1 ,
arg2 ) occurs, its arguments differ (the formula is true in the L2TS of Fig. 4a).

AG [cc($1, $2)] (%1 �= %2)

The following formula states the existence of a path in which an aa event with
one argument is always eventually followed by a cc event with two arguments,
where the second argument of cc is equal to the first argument of aa (again, the
formula is true in the L2TS of Fig. 4a).

EFaa($1) AFcc(∗,%1)

Finally, below formula, instead, expresses that for all the transitions that contain
the event aa with an argument that is different from the value 3 lead to a state
from which it is possible to perform a cc event with two arguments, of which the
first one is equal to the argument of aa and the second one is greater than the
first one (also this formula is true in the L2TS of Fig. 4a).

[aa($1) ∧ ¬aa(3)] 〈cc(%1, $2)〉 (%1 < %2)

Note that this formula might have been encoded in an equivalent way as follows.

[aa($1)] ( (%1 �= 3) → 〈cc(%1, $2)〉 (%1 < %2) )
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Fig. 4. Sample L2TS and MTS

Note that the presence of the bound value notation %var introduces also the
possibility of a new class of basic state predicates that have the form of a simple
relation, where a bound value is compared with another bound value or literal.

4.5 MTS Model Checking

The VMC, UMC, and FMC tools of the KandISTI framework exploit another
interesting use of the composite labelling of a model’s transitions. In this case,
the model is defined by a sequential algebraic process, and the first parameter
of the events, if corresponding to the “may” literal, indicates the optionality of
the corresponding evolution. This allows a direct encoding of an aforementioned
MTS as an L2TS, using the additional “may” label to denote the deonticity of the
evolution. When displayed to the user (cf. Fig. 5), the corresponding graphical
view of the L2TS simply removes the optional “may” labels and shows this
information via a dashed representation of the transition edge.

One of the purposes of MTS is to describe families of implementations, where
edges may be associated with an ‘optional’ flavour that explicitly pinpoints the
variability allowed among the possible implementation variants. In Fig. 4b, we
show an example of an MTS and its L2TS encoding, which will be used to show
the way in which our KandISTI logical engine allows to reason on this kind of
systems. Figure 6 depicts the four implementation variants that constitute the
family represented by the MTS of Fig. 4b.

Now suppose we try to evaluate the formula EXbb true on the MTS/L2TS
of Fig. 4b. The formula will appear to be satisfied by the MTS because actually
there is an initial transition that satisfies the event expression bb. However, it
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Fig. 5. From VMC model to L2TS (MTS)

Fig. 6. All four implementation variants of the MTS of Fig. 4b

is also clear that it is not true that this formula holds for all the MTS variants.
This means that a TRUE result returned by the EXact operator on an MTS,
might in general not be preserved by all the implementation variants of the MTS.
Note, instead, that a negation of a next operator that returns a FALSE result is
indeed preserved by all the allowed variants (i.e. EXcc true is does not hold on
the MTS and neither on all its implementation variants). If we want to verify
the existence of a next transition in all the variants, by checking a formula on
the MTS, e.g. the existence of an initial aa transition, then we should verify the
following formula.

EXaa∧¬may true

The KandISTI logic allows to simplify the writing of formulae like the above
(making use of implicit . . .∧¬may event expressions) by offering ‘boxed’ versions
of most temporal operators. The above formula can hence be written as follows.
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EX�
aa true

The temporal operators for which such ‘boxed’ versions are supported in Kan-
dISTI are 〈χ〉�, [χ]�, EX�, EX�

χ , EF�, EF�
χ , AF�, and AF�

χ (cf. Fig. 3).
When a formula is satisfied by the MTS and its structure guarantees that the

TRUE result is preserved by the MTS variants, then the model checker VMC
notifies this fact to the user. For example, if we evaluate (on the MTS of Fig. 4b)
the formula AG EF�

cc true, the result will be as shown in Fig. 7.

Fig. 7. Successful evaluation of AG EF �
cc true

The following are some exemplary formulae that are satisfied by the MTS of
Fig. 4b and preserved by all variants depicted in Fig. 6:

EX�
aa true an initial mandatory aa transition exists

AG EF�
cc true from any state there is a mandatory path to cc

[bb] 〈cc〉� true an initial bb transition, if present, is followed by cc transition

¬〈cc〉 true no initial cc transition exists

AG 〈true〉�true in any state, at least one mandatory transition is possible

The general rule, proved in [43], is that a TRUE result of any of the operators

〈χ〉�, [χ], EX�, EX�
χ , EF�, EF�

χ , AF�, AF�
χ , AG

is preserved by all the variants when appearing in a context without negations
(or under an even number of negations), whereas a FALSE result of the operators

〈χ〉, [χ]�, EX, EXχ, EF, EFχ, AF, AFχ

is preserved by all the variants when appearing in a context under an odd number
of negations.

If we observe closely the MTS of Fig. 4b, we immediately see that it satisfies
a particular property, namely that all its nodes are the source of at least one
mandatory (i.e. not labelled with may) transition. A node that satisfies this
property or which is final (i.e. without outgoing edges) is called live and an
MTS is called live if all its nodes are. Under these circumstances, we have the
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additional property that also AF and AFχ formulae, if TRUE , preserve their
validity in all the implementation variants [43].

For example, we can verify that the MTS of Fig. 4b (and therefore all its
variants depicted in Fig. 6) satisfies the property that any path from any state
(in any variant) will eventually and necessarily reach a cc event. The property
can be expressed by the following formula.

AG AFcc true

One of the tools of the KandISTI framework, namely the variability model
checker VMC [22,46], is explicitly tailored for the verification of behavioural
models of so-called (software) product families in the form of MTS with vari-
ability constraints (MTSυ) [43]. One of the particular features supported by
VMC is the possibility to express variability constraints that allow to fine-tune
the set of valid implementation variants, and in particular allow to extend further
the notion of live nodes.

Let us consider the MTSυ shown in Fig. 8. The constraint aa ALT bb allows
to specify that we consider as valid variants (products) of the MTSυ only those
variants that either have the aa event or the bb event, but not both of them,
nor none of them (i.e. equivalent to a logical xor). Therefore there exist precisely
two valid implementations, for both of which the formula AFcc true holds. This
property can be checked directly on the MTSυ, because the specified variability
constraint has the effect of transforming the C1 node into a live node.

The second constraint aa OR bb, instead, allows to specify that we consider
as valid variants (products) of the MTSυ only those variants that have either the
aa event or the bb event, and possibly both of them, but not none of them (i.e.
equivalent to a logical or). In this case, we end up with three valid LTS variants,

Fig. 8. Sample MTSυ with different variability constraints
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and the formula AFcc true continues to hold. Also in this case the effect of the
variability constraint is to change the status of the node C1 into a live node,
thus allowing the verification of the above formula directly on the MTSυ with
the guarantee the TRUE result is preserved by all the valid variants.

5 Conclusion

The KandISTI family of model checkers fully exploits the expressive power of
the underlying L2TS models. The framework plays the role of an experimental
workbench, targeted mainly at teaching and research activity, without having in
mind verification efficiency as its major aim.

The capability to navigate the state space both at the concrete and at
an abstract level, together with useful debugging-oriented tools allow easy but
exhaustive analysis/debugging of an initial (likely wrong) system design: in such
cases, the focus of the tool is oriented to the collection and preservation of all
the information that might be useful to explain a negative result, even at the
cost of an increased or less efficient usage of the resources. Indeed, during the
(on-the-fly) evaluation process all the local information of the generated states
and transitions is preserved, to be possibly used once an explanation of the
evaluation result is requested. Moreover, a small set of basic state predicates is
defined, which allows to better control and understand the ongoing evaluation.
The exploitation of this approach is made possible by the lazy, left-to-right eval-
uation approach for Boolean operators and the top-down (with respect to the
formula structure and initial root state) evaluation process.

The characteristics of the KandISTI framework outlined in this paper have
favoured its use in numerous exploratory studies, such as those in [47,48] (intel-
ligent domotic environments), [49–51] (deadlock avoidance in train schedul-
ing), [52] (distributed railway interlocking concept) and [53] (web-based commu-
nication interworking). The versatility of its underlying L2TS models moreover
allowed to map rich logics developed in the context of trust and reputation sys-
tems, like the so-called trust temporal logic originally defined over trust LTS, onto
UCTL [54,55]. Finally, KandISTI is much appreciated as an effective teaching
tool by students at the University of Florence.
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