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Abstract. ASSL (Autonomic System Specification Language) is a framework
dedicated to the development of self-managing systems whereby developers are
helped with problem formation, system design, system analysis and evaluation,
and system implementation. The bottom line is a special multi-tier approach to
specification exposing a rich set of constructs allowing a system to be modeled
by emphasizing different key aspects, but centering the model around special
self-management policies. This article presents in detail the aforementioned
mechanism together with the underlying semantics. As a case study, we also
present ASSL specifications of self-managing behavior of prospective autono-
mous NASA space exploration missions.
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1 Introduction

Complexity is widely recognized as one of the biggest challenges information tech-
nology faces today. To respond to this threat, many initiatives, such as Autonomic
Computing (AC) [1-3], have been started to deal with complexity in contemporary
computerized systems. AC is a rapidly growing field that promises a new approach to
developing large-scale complex systems capable of self-management. The phrase
“autonomic computing” came into the popular consciousness at the AGENDA 2001
conference where Paul Horn from IBM presented the new computing paradigm by
likening computer systems to the human Autonomic Nervous System [1]. The idea
behind this is that software systems must manage themselves, as the human body does,
or they risk being crushed under their own complexity. Many major software vendors,
such as IBM, HP, Sun, and Microsoft have started research programs to create self-
managing computer systems. However, their main research efforts are mainly to make
individual components of particular systems more self-managing rather than providing
a complete solution to the problem of autonomic system development. As a result, ten
years later after the AC initial announcement, there is still much to be done in making
the transition to “autonomic culture” [4] and we still need programming techniques and
technologies that emphasize the AC paradigm and provide us with programming
concepts for implementing autonomic systems.
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This article presents the formalism of the Autonomic System Specification Lan-
guage (ASSL) [5, 6], a dedicated to AC formal tool that emerges as a formal approach
to developing autonomic systems. Providing both a formal notation and tools that
support modeling and specification, validation and code generation of autonomic
systems, ASSL has been successfully used in a variety of projects targeting functional
prototypes of autonomous NASA space exploration missions [7, 8], autonomic pattern-
recognition systems [9], home-automation sensor networks [10], etc. Note that a good
understanding of the ASSL formalism and mastering the same were of major impor-
tance for the success of these endeavors. This paper gives an overview of the ASSL
operational semantics and through formal semantics definitions it presents the opera-
tional behavior of some of the ASSL specifications for space exploration missions
[7, 8]. This approach helps ASSL developers conceive an explicit understanding of the
ASSL formalism.

The rest of this article is organized as follows. In Sect. 2, we discuss different
formalisms for autonomic systems. Section 3 describes the ASSL specification model.
Section 4 presents the ASSL operational semantics, which is used in Sect. 5 to
enlighten ASSL specifications of NASA space exploration missions. Section 5 also
presents some test results and Sect. 6 gives a brief overview of the ASSL’s formal
verification mechanisms. Finally, Sect. 7 concludes the article with summary remarks.

2 Formalism for Autonomic Systems

Conceptually, any formalism aims to assist the development of computer systems by
providing formal notations that can be used to specify desirable system concepts (e.g.
functionality). Usually, formal notations help developers precisely describe with the
logical underpinning of mathematics features of the system under consideration at a
higher level of abstraction than the one provided by implementation. However, a
requirement is that developers should be able to move in a logical way from a formal
specification of a system to implementation.

2.1 Formal Approaches to AC

Autonomic systems are special computer systems that emphasize self-management
through context awareness and self-awareness [1-4]. Therefore, an AC formalism
should not only provide a means of description of system behavior but also should
tackle the vital for autonomic systems self-management and awareness issues. More-
over, an AC formalism should provide a well-defined semantics that makes the AC
specifications a base from which developers may design, implement, and verify
autonomic systems.

Formalisms dedicated to AC have been targeted by a variety of industrial and
university projects. IBM Research developed a framework called Policy Management
for Autonomic Computing (PMAC) [14, 15]. The PMAC formalism emphasizes the
specification of self-management policies encompassing the scope under which those
policies are applicable. A PMAC policy specification includes: (1) conditions to which
a policy is in conformance (or not); (2) a set of resulting actions; (3) goals; and
(4) decisions that need to be taken.
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The so-called Specification and Description Language (SDL) is an object-oriented,
formal language defined by the International Telecommunications Union — Telecom-
munications Standardization Sector (ITU-T) [16]. SDL is dedicated to real-time sys-
tems, distributed systems, and generic event-driven systems. The basic theoretical
model of an SDL system consists of a set of extended finite state machines, running in
parallel and communicating via discrete signals, thus making SDL suitable for the
specification of self-management behavior.

Cheng et al. talk in [17] about a specification language for self-adaptation based on
the ontology from system administration tasks and built over the underlying formalism
of utility theory [18]. In this formalism, special self-adaptation actions are described as
architectural operators, which are provided by the architectural style of the target
system. A script of actions corresponds to a sequence of architectural operators. This
sequence forms the so-called adaptation tactic defined in three parts: (1) the conditions
of applicability; (2) a sequence of actions; and (3) a set of intended effects after
execution. The definition of a tactic is similar to the “design by contract” interface
definition [19].

Another formalism for Autonomic Systems (Ass) is provided by the chemical
programming approach (represented by the Gamma Formalism [20]) which uses the
chemical reaction metaphor to express the coordination of computations. The Gama
Formalism describes computation in terms of chemical reactions (described as rules) in
solutions (described as multisets of elements). When applied to AS specifications, the
Gama Formalism captures the intuition of a collection of cooperative components that
evolve freely according to some predefined constraints (rules). System self-
management arises as a result of interactions between components, in the same way
as “intelligence” emerges from cooperation in colonies of biological agents.

In [21], Andrei and Kirchner present a biologically inspired formalism for AC
called Higher-Order Graph Calculus (HOGC). This approach extends the Gama For-
malism with high-level features by considering a graph structure for the molecules and
permitting control on computations to combine rule applications. HOGC borrows
various concepts from graph theory, in particular from graph transformations [22], and
use representations for graphs that have been already intensively formalized.

2.2 The ASSL Formalism

ASSL is a declarative specification language for autonomic systems with well-defined
semantics. It implements modern programming language concepts and constructs like
inheritance, modularity, type system, and high abstract expressiveness. Being a formal
language designed explicitly for specifying autonomic systems (ASs) ASSL copes well
with many of the AS aspects [1-4]. Moreover, specifications written in ASSL present a
view of the system under consideration, where specification and design are intertwined.
Conceptually, ASSL is defined through formalization tiers (see Sect. 3). Over these
tiers, ASSL provides a multi-tier specification model that is designed to be scalable and
exposes a judicious selection and configuration of infrastructure elements and mech-
anisms needed by an AS. In order to determine the level of ASSL formalism, we
investigated in the vast field of formal specification languages. Srivas and Miller in [11]
refer to constructive versus descriptive style of specification (also known as
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model-oriented versus property-oriented). The constructive or model-oriented style is
typically associated with the use of definitions, whereas the descriptive or property-
oriented style is generally associated with the use of axioms [12]. ASSL benefits from
both styles, by using a property-oriented axiomatization as a top-level specification
style and introducing a suitable number of specification layers with increasingly
detailed model-oriented descriptions. As a formal language, ASSL defines a neutral,
implementation-independent representation for ASs. Similar to many formal notations,
ASSL enriches the underlying logic with modern programming concepts and constructs
thereby increasing the expressiveness of the formal language while retaining the precise
semantics of the underlying logic. For example, the ASSL formalism for self-
management policies (see Sect. 3) is based on event calculus [13], whose formalism is
enriched to fit in the ASSL mechanism for specifying self-management policies [5, 6].

To the best of our knowledge, the ASSL formalism is currently the only complete
solution to the problem of AS specification. Although other solutions do exist, they
emphasize individual AC aspects (e.g. self-management policies), which is far from
what ASSL is proposing with its reach multi-tier specification model. Moreover, the
ASSL framework together with the powerful formalism provides mature tools that
allow ASSL specifications to be edited and formally validated. Finally, an operational
Java application may be generated from any valid ASSL specification.

3 ASSL Specification Model

The ASSL formal notation is based on a specification model exposed over hierarchi-
cally organized formalization tiers [5, 6]. This specification model provides both
infrastructure elements and mechanisms needed by an AS. ASSL defines ASs with
special self-managing policies, interaction protocols (IPs), and autonomic elements
(AEs), where the ASSL tiers and their sub-tiers describe different aspects of the AS
under consideration.

Table 1 presents the ASSL specification model. As shown, it decomposes an AS in
two directions - (1) into levels of functional abstraction; and (2) into functionally
related sub-tiers. The first decomposition presents the system from three different
perspectives (three major tiers) [5, 6]:

(1) a general and global AS perspective, where we define the general system rules
(providing AC behavior), architecture, and global actions, events, and metrics
applied in these rules;

(2) an interaction protocol perspective, where we define the means of communication
between AEs within an AS;

(3) a unit-level perspective, where we define interacting sets of individual computing
elements (AEs) with their own AC behavior rules, actions, events, metrics, etc.

The second decomposition presents the major tiers AS, ASIP, and AE as composed
of functionally related sub-tiers, where new AS properties emerge at each sub-tier. This
allows for different approaches to AS specification. For example, we may start with a
global perspective of the system by specifying the AS service-level objectives and self-
management policies and by digging down to find the needed metrics at the very detail
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Table 1. ASSL multi-tier specification model

AS Self-management Policies
AS Architecture

AS Actions

AS Events

AS Metrics

AE Service-level Objectives

AE Self-management Policies
AE Friends

AEIP

AE Recovery Protocols
AE Behavior Models
AE Outcomes

AE Actions

AE Events

AE Metrics

level of AE sub-tiers. Alternatively, we may start working at the detail level of AE sub-
tiers and build our AS bottom-up. Finally, we can work on both abstract and detail level
sides by constantly synchronizing their specification.

3.1 ASSL Tiers

The AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics (see Table 1).
The AS SLOs are a high-level form of behavioral specification that help developers
establish system objectives such as performance. The self-management policies could
be any of (but not restricted to) the four so-called self-CHOP policies defined by the
AC IBM blueprint [2]: self-configuring, self-healing, self-optimizing, and self-
protecting. These policies are driven by events and trigger the execution of actions
driving an AS in critical situations. The metrics constitute a set of parameters and
observables controllable by an AS. At the ASIP Tier, the ASSL framework helps
developers specify an AS-level interaction protocol as a public communication inter-
face, expressed with special communication channels, communication functions, and
communication messages. At the AE Tier, the ASSL formal model exposes specifi-
cation constructs for the specification of the system’s AEs. Note that AEs are con-
sidered to be analogous to software agents able to manage their own behavior and their
relationships with other AEs.
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Note that ASSL targets only the AC features of a system and helps developers
clearly distinguish the AC features from the system-service features. This is possible,
because with ASSL we model and generate special AC wrappers in the form of ASs
that embed the components of non-AC systems [5, 6]. The latter are considered as
managed elements controlled by the AS in question. Conceptually, a managed element
can be any software or hardware system (or sub-system) providing services. Managed
elements are specified per AE (see Table 1) where the emphasis is on the interface
needed to control a managed element. It is important also to mention that the ASSL
tiers and sub-tiers are intended to specify different aspects of an AS, but it is not
necessary to employ all of them in order to model such a system. For a simple AS we
need to specify (1) the AEs providing self-managing behavior intended to control the
managed elements associated with an AE; and (2) the communication interface. Here,
self-management policies must be specified to provide such self-managing behavior at
the level of AS (the AS Tier) and at the level of AE (AE Tier). The following sub-
sections briefly present some of the ASSL sub-tiers.

Self-management Policies. The self-management behavior of an ASSL-developed AS
is specified with the self-management policies. These policies are specified with special
ASSL constructs termed fluents and mappings [5, 6]. A fluent is a state where an AS
enters with fluent-activating events and exits with fluent-terminating events. A mapping
connects fluents with particular actions to be undertaken. Usually, an ASSL specifi-
cation is built around self-management policies, thus making such a specification
AC-driven. Self-management policies are driven by events and actions determined
deterministically. The following ASSL code presents a sample specification of a self-
healing policy.
ASSELF_MANAGEMENT {
SELF_HEALING {
FLUENT inLosingSpacecraft {

INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {
CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }
}

}
} /I ASSELF_MANAGEMENT

ASSL Events. ASSL aims at event-driven autonomic behavior. Hence, to specify self-
management policies, we need to specify appropriate events (see Sect. 3.1). Here, we
rely on the reach set of event types exposed by ASSL [5, 6]. To specify ASSL events,
one may use logical expressions over SLOs, or may relate events with metrics (see the
ASSL code below), other events, actions, time, and messages. Moreover, ASSL allows
for the specification of special conditions that must be stated before an event is
prompted.
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EVENT newAsteroidDetected {
ACTIVATION {
CHANGED { AS.METRICS.numberOfAsteroids }
}

}

ASSL Metrics. For an AS, one of the most important success factors is the ability to
sense the environment and react to sensed events. Together with the rich set of events,
ASSL imposes metrics as a means of determining dynamic information about external
and internal points of interest. Although four different types of metric are allowed
[5, 6], the most important are the so-called resource metrics because those are intended
to measure special managed element quantities. The following ASSL code demon-
strates the ASSL specification of a resource metric (noObstacle) related to a managed
element (OBSTACLE_SENSOR).

METRIC noObstacle {
METRIC_TYPE { RESOURCE }
METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.OBSTACLE_SENSOR.isClean }
THRESHOLD_CLASS { Boolean [ true]}

Managed Elements. An AE typically controls managed elements. In an ASSL-
developed AS, a managed element is specified with a set of special interface functions
intended to provide control functionality over that managed element. Note that ASSL
can specify and generate interfaces controlling a managed element (generated as a
stub), but not the real implementation of these interfaces. This is just fine for proto-
typing, however when deploying an AS prototype the generated interfaces must be
manually programmed to deal with the controlled system (or sub-system).

MANAGED_ELEMENT meReceptor {
INTERFACE_FUNCTION reset {}
INTERFACE_FUNCTION getRadiationLevel {
PARAMETERS { DECIMAL xCoord; DECIMAL yCoord; DECIMAL zCoord }
RETURNS { DECIMAL }
TRIGGERS { AS.EVENTS.newRadiationLevel }
ONERR_TRIGGERS { AS.EVENTS.cannotGetRadiationLevel }

Interaction Protocols. ASSL interaction protocols provide a means of communica-
tion interface expressed with messages that can be exchanged among AEs, commu-
nication channels and communication functions. Thus, by specifying an ASSL
interaction protocol we develop an embedded messaging system needed to connect the
AEs of an AS. In a basic communication process ongoing in such a system, an AE
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relies on a communication function to receive a message over an incoming commu-
nication channel, changes its internal state and sends some new messages over an
outgoing channel [5, 6].

ASIP {
MESSAGES { MESSAGE msgHello { SENDER { AES.ae2 } RECEIVER { AES.ae1}}}
CHANNELS {

CHANNEL chnllO { ACCETS { ANY } ACCESS { SEQUENTIAL } DIRECTION { INOUT }}
}
FUNCTIONS {
FUNCTION sendHello {
PARAMETERS { BOOLEAN hasSpeed; BOOLEAN hasDirection }
DOES { MESSAGES.msgHello >> CHANNELS.chnllO }

4 ASSL Notation and Semantics

ASSL is a declarative specification language for ASs with well-defined semantics [5,
6]. The language provides a powerful formal notation that enriches the underlying logic
with modern programming language concepts and constructs such as inheritance,
modularity, type system, and abstract expressiveness. As a formal language, ASSL
defines a neutral (i.e., implementation-independent) representation for ASs described
as a set of interacting AEs. The following is a generic meta-grammar in Extended
Backus-Naur Form (BNF) [23] presenting the syntax rules for specifying ASSL tiers.
Note that this meta-grammar is an abstraction of the ASSL grammar, which cannot be
presented here due to the complex structure of the ASSL specification model (see
Sect. 3), where each tier has its own syntax and semantic rules. The interested reader is
advised to refer to [5] for the complete ASSL grammar expressed in BNF and for the
semantics of the language.

GroupTier > FINAL? ASSLGroupTierld { Tier+ }

Tier > FINAL? ASSLTierld TierName? { Data* TierClause+ }
TierClause > FINAL? ASSLClauseld ClauseName? { Data* }
Data > TypeDecl* | VarDecl* | ClictnDecl* | Statement*
TypeDecl > CustTypeldentifier

VarDecl > Type Varldentifier

CllcntDecl >  Type CustClictnldentifier

Type > CustType | PredefType

Statement >  Assign-Stmnt | Loop | If-Then-Else | Clictn-Stmnt
Loop > Foreach-Stmnt | DoWhile-Stmnt | WhileDo-Stmnt

As shown in the grammar above, an ASSL tier is syntactically specified with an
ASSL tier identifier, an optional name and a content block bordered by curly braces.
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Moreover, we distinguish two syntactical types of tier: single tiers (Tier) and group
tiers (GroupTier), where the latter comprise a set of single tiers. Each single tier has an
optional name (TierName) and comprises a set of special tier clauses (TierClause) and
optional data (Data). The latter is a set of data declarations and statements. Data
declarations could be: (1) type declarations; (2) variable declarations; and (3) collec-
tion declarations. Statements could be: (1) loop statements; (2) assignment statements;
(3) if-then-else statements; and (4) collection statements. Statements can comprise
Boolean and numeric expressions. In addition, although not shown in the grammar
above, note that identifiers participating in ASSL expressions are either simple, con-
sisting of a single identifier, or qualified, consisting of a sequence of identifiers sep-

[73E2]

arated by “.” tokens.

4.1 ASSL Operational Semantics

The formal evaluation of the operational behavior of ASSL specification models is a
stepwise evaluation of the specified ASSL tiers, where the latter are evaluated as state
transition models in which operations cause a current state to evolve to a new state [5].
Thus, if we use the convention for semantic function in which ¢ states for a current
state and ¢’ states for a new state then the state evolution caused by an operation Op is
denoted as:

Op(x1,%2,000%) 1
O—>0

where the operation Op(xy,xz,...,%,) is an abstraction of a transition operation per-
formed by the framework which potentially takes n arguments. All the arguments are
evaluated to their expression value first, and then the operation is performed. Here, Op
is a transition operation of type O"" (see the set definition below).

0" { DegradSLO, NormSLO, Fluentln, FluentOut,
ActionMap, Action, Function, MsgRcvd, MsgSent, Event,
EventOver, Metric, ChangeStruct, CreateAE, ExtClass,
RcvryProtocol, BhvrModel, MngRsrcFunction, Outcome}

In addition, the operational semantics of the ASSL tiers introduces the notion of tier
environment p presenting the host tier of the sub-tiers or clauses under evaluation.
Thus, we write pt, to mean that p is evaluated in context ¢ and p,e — € to mean
that, in a given tier environment p (host tier for the expression e¢) one step of the
evaluation of expression e in the context ¢ results in the expression ¢’. Here, the context
o is defined by the tier content, i.e., sub-tiers, tier clauses, etc. Note that the ASSL tiers
may participate in expressions where they are presented by their TierName. For
example, AS/AE SLO, AS/AE policies, fluents, AS/AE events, and AS/AE metrics can
participate in Boolean expressions, where they are evaluated as true or false in the
context of their host tier based on their performance.

The following subsections present two algorithms implemented by the ASSL
framework for operational evaluation of ASSL actions and self-management policies.
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4.2 Operational Evaluation of ASSL Actions

From operational semantics perspective, the AS/AE Action tier is the most important
and the most complex ASSL tier. The following is a partial EBNF grammar presenting
syntactically that tier.

Action-Decl > ACTION IMPL? Action-Name { Action-Decl-Seqnce }
Action-Decl-Seqnce - Params-Decl? Returns-Decl? Guards-Decl? Ensures-Decl?
Var-Decl-Seqnce? Does-Decl OnErr-Does-Decl? Trigs-Decl? OnErr-Trigs-
Decl?

ASSL actions comprise the tier clauses: PARAMETERS {...}), RETURNS {...},
GUARDS {...}), ENSURES {...}, DOES {...}, ONERR_DOES {...}, TRIGGERS {...},
and ONERR_TRIGGERS {...}. Note that only the DOES {...} clause is mandatory. The
operational evaluation of an ASSL action follows the following algorithm:

I. Map the arguments, if any, from the action call to the parameters (PARA-
METERS {...} clause).

II. Process the action guards, if any (GUARDS {...} clause):

e If the guards are held then perform the action.
e Otherwise, deny the action.

[I. Evaluate the variable declarations, if any.
IV. Process the DOES {...} clause:

e If a return statement is hit, then stop the action and return a result.
e FElse, process all the statements until the end of the DOES {...} clause.

V. If the DOES {...} clause is evaluated correctly, then evaluate the ENSURES {...}
clause (in respect to the TRIGGERS { ...} clause):

e If the ENSURES {...} clause is held then trigger notification events via the
TRIGGERS {...} clause and exit the action normally.

o Else, process the ONERR_DOES {...} clause and trigger error events via the
ONERR_TRIGGERS {...} clause.

VI. If an error occurs while evaluating the action clauses, then stop the evaluation
process and:

e Process the ONERR_DOES {...}] clause (similar to the evaluation of the
DOES {...} clause), if any.
e Trigger error events via the ONERR_TRIGGERS { ...} clause, if any.

4.3 Operational Evaluation of ASSL Policies

ASSL specifies policies with fluents and mappings (see Sect. 3.1). Whereas the former
are considered as specific policy conditions, the latter map these conditions to appro-
priate actions. A partial presentation of the fluent grammar is the following:
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Fluent-Decl > FLUENT Fluent-Name { Fluent-Inner-Decl }
Fluent-Name -> Bool-Identifier

Fluent-Inner-Decl - Initiates-Sqnce Terminates-Sqnce
Fluent-Inner-Decl > Initiates-Sqnce

Initiates-Sqnce > INITIATED_BY { Event-Names }
Terminates-Sqnce > TERMINATED_BY { Event-Names }

Map-Decl > MAPPING { Mapping-Inner-Decl }
Mapping-Inner-Decl - Condition-Sqnce Action-Sqnce
Condition-Sqnce - CONDITIONS { Fluent-Names }

Action-Sqnce > DO_ACTIONS { Action-Calls ; Action-Calls-Forall }

An ASSL policy is evaluated based on its fluents. The operational evaluation of a
fluent follows the following algorithm:

If an event has occurred in the system then:

1. Process the INITIATED_BY {...} clause to check if that event can initiate the
policy fluent f and if so, initiate that fluent:

e If the policy fluent f has been initiated then process only the policy MAPPING
{....} clauses comprising the fluent f in their CONDITIONS {....} clause.

e Evaluate the CONDITIONS {....} clause and if the stated conditions are held
then evaluate the DO_ACTIONS {....} clause to perform the actions listed
there.

II. Process the TERMINATED_BY { ...} clause to check if that event can terminate the
previously-initiated policy fluent f and if so, terminate it.

The semantic rules 1 through to 2 present the operational semantics that cope with
the algorithm stated above. In these rules, each premise is a system transition operation

(see Sect. 4.1) such as Event(ev), Fluentln(f,ev), FluentOut(f,ev), and
ActionMap(f, a).

Event(ev)
) g 7 FeninGen €V € {evi,...,ev,}
fto INITIATED _BY {evy, ..., ev,} ———— 0"
FluentIn(f ,ev) i Event(ev)
) g 7 ¢ 7 ev € {evy,...,ev,}

TuentOut (f ,ev
FFo TERMINATED _BY {ev,, .. ., ev, } 0V o

FluentIn(f ev)
O—— 0

A3)

ActionMap(f ,a) f € {f17 o aﬁ1}
map - CONDITIONS{f,, . . ..f,} —— 0 g

ActionMap(f.a)
@ 4 J €A’
Vae{ay,....a, y®Action(a) a

map =g DO_ACTIONS{G], .. .,an}_—.__> "
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Here, A’ is the finite set of actions in the context ¢. The first premise in rule 2
evaluates whether the fluent f is initiated, i.e., only initiated fluents can be terminated.

5 Case Study - ASSL Specifications for NASA ANTS

5.1 Nasa Ants

The Autonomous Nano-Technology Swarm (ANTS) concept sub-mission PAM
(Prospecting Asteroids Mission) is a novel approach to asteroid belt resource explo-
ration that provides for extremely high autonomy, minimal communication require-
ments with Earth, and a set of very small explorers with a few consumables [24]. These
explorers forming the swarm are pico-class, low-power, and low-weight spacecraft, yet
capable of operating as fully autonomous and adaptable units. The units in a swarm are
able to interact with each other, thus helping them to self-organize based on the
emergent behavior of the simple interactions. Figure 1 depicts the ANTS concept
mission. A transport spacecraft launched from Earth to carries a laboratory that
assembles tiny spacecraft. Once it reaches a point in space, termed L1 (the Earth-Moon
Lagrangian point), where gravitational forces on small bodies are balanced, the
transport releases the assembled swarm, which will head for the asteroid belt. Each
spacecraft is equipped with a solar sail for power; thus it relies primarily on power from
the sun, using only tiny thrusters to navigate independently. Moreover, each spacecraft
also has onboard computation, artificial intelligence, and heuristics systems for control
at the individual and team levels.
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Fig. 1. ANTS mission concept [24]
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As Fig. 1 shows, there are three classes of spacecraft—rulers, messengers and
workers. Sub-swarms are formed to explore particular asteroids in an ant colony
analogy. Hence, ANTS exhibits self-organization since there is no external force
directing its behavior and no single spacecraft unit has a global view of the intended
macroscopic behavior. The internal organization of a swarm depends on the global task
to be performed and on the current environmental conditions. In general, a swarm
consists of several sub-swarms, which are temporal groups organized to perform a
particular task. Each swarm group has a group leader (ruler), one or more messengers,
and a number of workers carrying a specialized instrument. The messengers are needed
to connect the team members when they cannot connect directly, due to a long distance
or a barrier.

5.2 Specifying ANTS with ASSL

In our endeavor to specify ANTS with ASSL, we emphasized modeling ANTS self-
management policies such as self-configuring [8], self-healing [25], self-scheduling
[26] and emergent self-adapting [27]. In addition, we proposed a specification model
for the ANTS safety requirements [8]. To specify the ANTS safety requirements, we
used the AS/AE SLO tier specification structures, and to specify the self-management
policies we used ASSL tiers and clauses as following:

e self-management policy tiers to specify the self-management policies under con-
sideration through a finite set of fluents and mappings.

e actions—a finite set of actions that can be undertaken by ANTS in response to
certain conditions, and according to the self-management policies.

e cvents—a set of events that initiate fluents and are prompted by the actions
according to the policies.

e metrics—a set of metrics needed by the events and actions.

The following subsections present some ASSL specification models together with a
formal presentation of their operational behavior. Note that the specifications presented
here are partial, because we omitted some of the aspects that were specified due to
space limitations. The operational behavior of the presented specifications is presented
in a Structural Operational Semantics style [28]. Thus, we define semantics definitions
formed by inference rules. An inference rule is presented as a set of premises deducting
a conclusion, possibly under control of some condition.

5.3 Self-configuring

Figure 2 presents a partial specification of the self-configuring behavior in ANTS when
a new asteroid has been detected [8]. This policy specifies the “on the fly” team
configuration of ANTS spacecraft, to explore asteroids. The key features of the pro-
posed model are:

e a numberOfAsteroids metric that counts the number of detected asteroids;
e an inANTSReconfigurationForNewAsteroid fluent that takes place when the swarm
detects a new asteroid;
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a reconfigureANTS action that performs the ANTS reconfiguration;
a newAsteroidDetected event that initiates the fluent above and is prompted by the
numberOfAsteroids metric when the latter changes its value.

AS ANTS {
ASSELF_MANAGEMENT {
SELF_CONFIGURING {
FLUENT inANTSReconfigurationForNewAsteroid {
INITIATED_BY { EVENTS.newAsteroidDetected }
TERMINATED_BY {EVENTS.reconfigurationForNewAsteroidDone }
}
MAPPING { // force ANTS reconfiguration
CONDITIONS { inANTSReconfigurationForNewAsteroid }
DO_ACTIONS { ACTIONS.reconfigureANTS }

}
} /I ASSELF_MANAGEMENT
ACTIONS {

ACTION IMPL r igurationForNewAsteroid { TRIGGERS { EVENTS.reconfigurationForNewAsteroidDone }
ACTION reconfigureANTS {
GUARDS { ASSELF_MANAGEMENT.SELF_CONFIGURING.inANTSReconfigurationForNewAsteroid }
ENSURES { EVENTS.reconfigurationForNewAsteroidDone }
DOES { call IMPL ACTIONS.reconfigurationForNewAsteroid }
ONERR_TRIGGERS { EVENTS.reconfigurationForNewAsteroidDenied }
}
} I/ ACTIONS
EVENTS {
EVENT newAsteroidDetected { ACTIVATION { CHANGED { AS.METRICS.numberOfAsteroids } } }
EVENT reconfigurationForNewAsteroidDone { }
EVENT reconfigurationForNewAsteroidDenied { }
}
METRICS {
METRIC numberOfAsteroids {
METRIC_TYPE { RESOURCE }
DESCRIPTION { "the number of detected asteroids during the ANTS lifecycle" }
THRESHOLD_CLASS { DECIMAL [0 ~) } //open range: from 0 to ....

}
}/I AS ANTS

Fig. 2. ASSL specification: self-configuring
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Operational Behavior. We consider two main states in this specification model—
ANTS “in” and ANTS “not in” the inANTSReconfigurationForNewAsteroid fluent; i.e.
ANTS performing self-configuring and ANTS not performing self-configuring. While
operating, ANTS workers can discover a new asteroid. This increases the number of
detected asteroids; i.e. the metric numberOfAsteroids changes its value, this causing the
framework to perform the Merric(numberOfAsteroids ) transition operation. The latter
consecutively prompts the newAsteroidDetected event, which is attached to that metric
(the event is prompted when the metric has changed its value). Rule 5 presents the
operational evaluation of the newAsteroidDetected event:

Merric(numberOfAsteroids) ,
(ANTS) (ANTS)

Event(newAsteroidDetected ) )
evtk; CHANGED {numberOfAsteroids} o

(&)

where ev is the tier environment exposed by that event and the transition operation
Event(newAsteroidDetected) denotes that the event has been prompted. Subsequently,
that transition operation initiates the inANTSReconfigurationForNewAsteroid fluent.
Inference rules 6 through 9 enforce a definite strategy for evaluating that fluent’s
clauses in their host tier context ¢ and in the context 7 of the SELF_CONFIGURING
policy. These semantic rules follow the algorithm presented in Sect. 4.3. Thus,

men(newAsteroidDetected) ,
©6) ANTS)——— — — ” (ANTS)
. e (rnewAsteroidDetected)
FFon INITIATED_BY{newAstermdDete ted}— — o
Evenr(reconfigurationForNew AsteroidDone) i
(7) ANTS ANTS nt, inANTSReconfigurationForNewAsteroid — true
Fluentour(f reconfigurationForNewAsteroidDone)
fter TERMINATED _BY {reconfigurationForNew AsteroidDone } %4
Fluentin(f new AsteroidDetected)
(8) ftor INITIATED_BY {newAsteroidDetected } o,
ActionMap (f reconfigure ANTS))
map o', 7’ CONDITIONS{inANTSReconfigurationForNew Asteroid } a", "
ActionMap(f reconfigure ANTS))
(9) map t » CONDITIONS{inANTSReconfigurationForNew Asteroid } ' "

) Action(reconfigure ANTS))

map =g DO_ACTIONS{reconfigureANTS } ————————— ¢"", 7"
where f is the tier environment exposed by the inANTSReconfigura-
tionForNewAsteroid fluent and map is the tier environment exposed by the MAPPING
{...} clause (see Fig. 2). Here, FluentIn(f,newAsteroidDetected ) is a transition
operation denoting that the SELF_CONFIGURING policy has entered that fluent
(initiated by the newAsteroidDetected event) and FluentOut(f , reconfigurationForNew
AsteroidDone) is a transition operation denoting that the SELF_CONFIGURING
policy has exited the same fluent (terminated by the reconfigurationForNew
AsteroidDone event) (see rules 6 and 7). In addition, ActionMap(f, reconfigure ANTS)
is a transition operation denoting that the SELF_CONFIGURING policy has mapped
the reconfigureANTS action to that fluent.

Rules 10 through 17 present the operational evaluation of the reconfigureANTS
action, thus following the algorithm presented in Sect. 4.2. This evaluation is triggered
by the Action(reconfigureANTS) transition operation, which is performed by the
framework when the inANTSReconfigurationForNewAsteroid fluent is mapped to the
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reconfigureANTS action (see Rule 9). This causes the state transition

Action(reconfigure ANTS) ,
(ANTS) (ANTS)'. Thus, in the given reconfigureANTS action

tier environment a defined in the tier context ¢ we evaluate the operational action
clauses.

Action(reconfigure ANTS)
(10) ANTS — ANTS' at, newAsteroidDetected — true

at, GUARDS {newAsteroidDetected } — perform(reconfigure ANTS)

Action(reconfigure ANTS) ,
(11) (ANTS) (ANTS) at-, newAsteroidDetected — false

ats GUARDS {newAsteroidDetected } — —perform (reconfigureANTS)
Action(reconfigure ANTS)

(12) (ANTS)—————————— (ANTS)’
Action(ReconfigurationForNew Asteroid)
at, DOES{CALL IMPL ReconfigurationForNew Asteroid } a
Action(reconfigure ANTS) ,
( 1 3) (ANTS) ——————————(ANTS)
~action(ReconfigurationForNew Asteroid)
at, DOES{CALLIMPLReconfigurationForNewAsteroid } o'lerr]

Action(reconfigureANTS)

(ANTS)—"2 (ANTS)

X X Action(ReconfigurationForNewAsteroid)
(14)  ab, DOES{CALL IMPL ReconfigurationForNewAsteroid} a

Event(reconfigurationForNewAsteroidDone)
"
a

at, TRIGGERS {reconfigurationForNewAsteroidDone }

Action(teconfigure ANTS) ,
(15) (ANTS) ANTS) al-, reconfigurationForNewAsteroidDone — true

at, ENSURES{reconfigurationForNewAsteroidDone} — o

Action(reconfigure ANTS))

Err* =10

(ANTS) aF-, reconfigurationForNewAsteroidDone — false
at, ENSURES{reconfigurationForNewAsteroidDone} — o’[err]

Action(reconfigure ANTS)
ANTS ANTS

(17) aF,ONERR_TRIGGERS {reconfigurationForNewAsteroidDenied }

Event(reconfigurationForNew AsteroidDenied) , Erre #0
g

(16) )

Err*=10

/

where a is the tier environment exposed by the reconfigureANTS action and Err® is the
finite set of errors produced by that action in a single performance of the
Action(reconfigureANTS) transition operation. In addition, in rules 10 through 17 we
use transition operations Action(...) and Event(...) to denote state transitions that
occur during the evaluation of the action tier clauses. Moreover, we use the abstract
function perform(a) (see rules 10 and 11) to denote continuation of the reconfig-
ureANTS action.

5.4 Self-healing

Figure 3 presents a partial specification of the self-healing policy for ANTS. In our
approach, we assume that each worker sends, on a regular basis, heartbeat messages to
the ruler [25]. The latter uses these messages to determine when a worker is not able to
continue its operation, due to a crash or malfunction in its communication device or
instrument. The specification snippet shows only fluents and mappings forming the
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AE ANT_Worker {
AESELF_MANAGEMENT {
SELF_HEALING {
FLUENT inCollision {
INITIATED_BY { EVENTS.collisionHappen } TERMINATED_BY { EVENTS.instrumentChecked }}
FLUENT inIlnstrumentBroken {
INITIATED_BY { EVENTS.instrumentBroken } TERMINATED_BY { EVENTS.isMsginstrumentBrokenSent
b}
FLUENT inHeartbeatNotification {
INITIATED_BY { EVENTS.timeToSendHeartbeatMsg } TERMINATED_BY { EVENTS.isMsgHeartbeatSent
i
MAPPING { // if collision then check if the instrument is still operational
CONDITIONS { inCollision } DO_ACTIONS { ACTIONS.checkANTInstrument }}
MAPPING { // if the instrument is broken then notify the group leader
CONDITIONS { inInstrumentBroken } DO_ACTIONS { ACTIONS.notifyForBrokenInstrument } }
MAPPING {// time to send a heartbeat message has come
CONDITIONS { inHeartbeatNotification } DO_ACTIONS { ACTIONS.notifyForHeartbeat }}

ACTIONS {
ACTION IMPL checkInstrument { RETURNS { BOOLEAN } TRIGGERS { EVENTS.instrumentChecked } }
ACTION checkANTInstrument {
GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inCollision }
ENSURES { EVENTS.instrumentChecked }
VARS { BOOLEAN canOperate }
DOES { canOperate = CALL ACTIONS.checkinstrument }
TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }
ONERR_TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }

EVENTS {
EVENT collisionHappen {
GUARDS { not METRICS.distanceToNearestObject }
ACTIVATION { CHANGED { METRICS.distanceToNearestObject} } }
EVENT timeToSendHeartbeatMsg { ACTIVATION { PERIOD { 1 min} } }

METRICS {
METRIC distanceToNearestObject {
METRIC_TYPE { RESOURCE }

METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.worker.getDistanceToNearestObject }
THRESHOLD_CLASS { DECIMAL [0.001~) } }

¥/ METRICS
} /I ANT_Worker

Fig. 3. ASSL specification: self-healing
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specification for the self-healing policy for an ANTS Worker. Here, the key features
are:

e an inCollision fluent that takes place when the worker crashes into an asteroid or
into another spacecraft, but it is still able to perform self-checking operations;

e an inlnstrumentBroken fluent that takes place when the self-checking operation
reports that the instrument is not operational anymore;

e an inHeartbeatNotification fluent that is initiated on a regular basis by a timed event
to send the heartbeat message to the ruler;

e a checkANTInstrument action that performs operational checking on the carried
instrument.

e adistanceToNearestObject metric that measures the distance to the nearest object in
space (not presented here).

e a collisionHappened event prompted by the distanceToNearestObject metric when
the latter changes its value and the same does not satisfy the metric’s threshold
class.

Operational Behavior

A self-management policy is evaluated as “held” if the policy is not in either one of its
specified fluents, and as “not held” if there is at least one initiated fluent for that policy
(the policy is currently in that fluent) [5, 6]. The SELF_HEALING policy (see Fig. 3)
has three fluents: inCollision, inlnstrumentBroken, and inHeartbeatNotification, i.e.,
the policy is evaluated as held when the policy is at least in one of these three fluents.
Inference rules 18 through 48 enforce a definite strategy for evaluating the SELF_-
HEALING policy. The policy clauses (fluents and mappings) are evaluated in the
context © of the SELF_HEALING policy, and the actions, events, and metrics are
evaluated in the context of the ANT_Worker autonomic element (see Fig. 3). Inference
rule 18 presents the operational evaluation of the timeToSendHeartbeatMsg timed
event initiating the inHeartbeatNotification fluent (see rules 22 through 25). Thus,

(18 ) a b= systemclock () —1,cr,

men(timeToSendHeartbeatMsg)
evly ACTIV _TIME {1, } p

where ev is the tier environment exposed by the timed event, systemclock() is an
abstract function returning the current time in the context a, #,., is the time at which the
timed event is specified to occur.

Inference rules 19 through 21 present the operational evaluation of the colli-
sionHappened event, which initiates the inCollision fluent (see rules 26-30). Thus,

Merric(distanceToNearestObject) , ) )
(19) (AE) AE) ev -, distanceToNearestObject — true
evl, GUARDS{distanceToNearestObject} — prompt(collisionHappened)

merric(distance ToNearestObject) ,
(20) (AE) (AE) evt, distanceToNearestObject — false

evt, GUARDS{distanceToNearestObject} — —prompt(collisionHappened)
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/

weric(distanceToNearestObject)
1) (AE) (AE)
. ) men(collisionHappened)
evi-, CHANGED{ distanceToNearestObject} a

where ev is the tier environment exposed by the collisionHappen event. In rules 19 and
20 we use the transition operation Metric(distanceToNearestobject) to denote a state
transition that occurs when the distanceToNearestObject metric changes its value, thus
possibly prompting the collisionHappened event. Note that by operational semantic
definition, an ASSL metric is evaluated as Boolean and is “true” only if the value it
holds falls in the range determined by the metric’s threshold class [5, 6] (see
THRESHOLD_CLASS in Fig. 3). Here, rules 19 and 20 evaluate the GUARDS {...}
clause, which verifies whether that metric is still valid after changing its value.

Inference rules 22 through 25 present the operational evaluation of the inHeart-
beatNotification fluent together with the MAPPING {...} clause mapping that fluent to
the notifyForHeartbeat action. Thus,

(22)
weu(timeToSendHeartbeatMsg)
(AE) (AE)
i muenin(rtimeToSendHeartbeatMsg )
S+« INITIATED _BY{timeToSendHeartbeatMsg } o,
mer(msgHeartbeatSent) . o
23) (AE) AE)'n+, inHeartbeatNotification —rue

muenou (s msgHeartbeatSent)
f+o,n TERMINA TEDVBY{ msgHeartbeatS ent} o

24)

. ruenin(r timeToSendHeartbeatMsg)
[+ INITIATED_BY{timeToSendHeartbeatMsg} o

. R aciontap (rNOtifyForHeartbeat)
mapt, » CONDITIONS{ inHeartbeatNotification } o

(25)

) o aciontap (s NOtIfy ForHeartbeat)
mapt-, » CONDITIONs{inHeartbeatNotification } o' "

. acion(notifyForHeartbeat)
map 1 » DO_AcTIONS{notifyForHeartbeat } o "

where f is the tier environment exposed by the inHeartbeatNotification fluent, 7 is the
tier environment (and context) exposed by the SELF_HEALING policy, and map is
the tier environment exposed by the MAPPING {...} clause (see Fig. 3).

Inference rules 26 through 30 present the operational evaluation of the inCollision
fluent.

Event(collisionHappened) )

6 (AE) (AE)
Fluentin(f collisionHappened)
fFer INITIATED_BY{collisionHappened } a,n

27

Event(instrumentChecked) ,
(AE) (AE) nFsinCollision — true

FluentOu(f instrumentChecked)
fFox TERMINATED_BY {instrumentChecked } 4
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(28)
Event(cannotCheckInstrument) ,
(AE) (AE)' m . inCollision — true
FluentOur(f cannotCheckInstrument)
fFox TERMINATED _BY {cannotCheckInstrument } a,n
Fluentn(f collisionHappened)
fFox INITIATED_BY{collisionHappened} o,
(29) :
) . AcionMap(f,check ANTInstrument)
map ty » CONDITIONS{inCollision } o, "
ActionMap (f check ANTInstrument)
(30) map ty » CONDITIONS {inCollision } '’
Action(check ANTInstrument)
map -y DO_ACTIONS{check ANTInstrument } a" "

Inference rules 31 through 34 present the operational evaluation of the inlnstru-
mentBroken fluent (f is the tier environment exposed by that fluent).

Evenr(instrumentBroken)

(AE) (AE)'
@3 -
) Fluentin(f instrumentBroken)
fFer INITIATED _BY {instrumentBroken } a,m
Event(msglInstrumentBrokenSent) ,
(32) ( (AE)" ml, inlnstrumentBroken — true
Ftuem()ur(f,msgInstrumentBrokenSent)
fFor TERMINATED_BY {msglnstrumentBrokenSent} — o,
Fluentln (f.instrumentBroken)
33) fter INITIATED _BY {instrumentBroken } —d,
ActionMap(f,notifyForBrokenInstrument)
map by »CONDITIONS{inInstrumentBroken } o, "
(34)
ActionMap (f notifyForBrokenInstrument)
map t o » CONDITIONS {inInstrumentBroken } o’
Action(notifyForBrokenInstrument)
map g1 » DO_ACTIONS{notifyForBrokenInstrument} o, "

Note that the inlnstrumentBroken fluent is initiated by the instrumentBroken event
(see Rule 31), which is triggered by the checkANTInstrument action (see Rule 40).

Inference rules 35 through 44 present the stepwise operational evaluation of the
clauses of the checkANTInstrument action. Thus,

Action(check ANTInstrument) ,
(35) (AE) (AE) at, collisionHappend — frue
at, GUARDS{collisionHappend} — perform(check ANTInstrument)
Action(Check ANTInstrument) ,
(36) (AE) (AE) at-, collisionHappend — false

ats GUARDS{collisionHappend} — perform(check ANTInstrument)

(37
Action(check ANTInstrument) ,
(AE) (AE)
Action(checkInstrument
ats DOES{canOperate = CALLCheckInstrument} ( )—> o’
Action(check ANTInstrument) ,
(38) (AE) AE)

—~Action(checkInstrument)
abs DOES{canOperate = CALL CheckInstrument} o'[err]
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Action(checkInstrument
(39) (AE) Action(check ANTInstrument) AE),G t-o DOES {canOperate = CALL CheckInstrument} ol )

£vent (instrumentChecked)

at ENSURES{instrumentChecked }

en(instrumentChecked
(40) scin(checkANTInStrument)  at-, TRIGGERS {instrumentChecked) MM e true
(AE) (AEy—2Ce o

Event(instrumentBroken)
at, TRIGGERS{IF be THEN instrumentBroken END}——— ¢/

cion(check ANTInstrument)

(aE)" ™ (aEy

Event(instrumentChecked)
(41) 4o TRIGGERS({instrumentChecked} o"akor be — false

ato TRIGGERS{IFbeTHENinstrumentBroken END} — o
Action(Check ANTInstrument) ,
42) (AE) (AE)'at instrumentChecked — true
ats ENSURES {instrumentChecked} — o
Action(check ANTInstrument) ,
43) (AE) (AE) a ks instrumentChecked — false
ats ENSURES{instrumentChecked} — o'[err]

( >Am‘mz(checkANTInstrument) " >/

AE E

44 Errt

(44) Event(cannotCheckInstrument) rt #0
ats ONERR _TRIGGERS{cannotCheckInstrument} o’

where a is the tier environment exposed by the checkANTInstrument action and be
states for a Boolean expression (evaluated in a single step). In addition, Err® and
perform(a) have the same meaning as in Sect. 5.3.1, but are addressed to the
checkANTInstrument action.

Inference rules 45 through 46 and rules 47 through 48 present the operational
evaluation of notifyForHeartbeat and checkANTInstrument actions respectively. Note,
that 1) the ASSL specification of these actions is not presented in Fig. 3 due to space
limitations; 2) we present only the evaluation of their DOES {...} and TRIGGERS {...}
clauses.

Action(notifyForHeartbeat) ,

AE (AE
Function(sendHeartbeat) )
at, DOES{CALLsendHeartbeat} o
Action(notifyForHeartbeat) ’
Function (sendHeartbeat) (AE) (AE)
(46) atoDOES{CALLsendHeartbeat} ol
Event(msgHeartbeatSent)
ato TRIGGERS {msgHeartbeatSent } c”
(47)
Action(notifyForBrokenInstrument) ,
(AE) (AE)
Function(sendInstrumentBroken)
ats DOES{CALLsendInstrumentBroken } ol
(48)
<AE>ALAH(nuu[)'F«xr)}jkcnlnx\mmcnl! <AE>,

Function(sendInstrumentBroken)
ats DOES{CALLsendInstrumentBroken } o’

Evenr(msgInstrumentBrokenSent)
at, TRIGGERS{msgInstrumentBrokenSent } —a”
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Testing the Self-healing Behavior
In this example, we experimented with the Java generated code for the ASSL self-
healing specification for ANTS [25]. Note that by default, any Java application gen-
erated with the framework generates run-time log records that show important state-
transition operations ongoing in the system at runtime. Thus, we can easily trace the
behavior of the generated system by following the log records generated by the same.
In this test, we generated the Java application for the ASSL self-healing specification
model for ANTS, compiled the same with Java 1.6.0, and ran the compiled code. The
application ran smoothly with no errors.

First, it started all system threads as it is shown in the following log records. Note
that starting all system threads first is a standard running procedure for all Java
application skeletons generated with the ASSL framework.

Log Records “Starting System Threads”

sikkninamanmmkrrmie [N[T ALL TIERS **++*skiessssssnss

srrsssssanareees START AS THREADS *ssssssssasssssttr

1) METRIC 'generatedbyassl.as.aes.ant_ruler.metrics. DISTANCETONEARESTOBJECT": started

2) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTLOST": started

3) EVENT 'generatedbyassl.as.aes.ant_ruler.events. MSGINSTRUMENTBROKENRECEIVED': started

4) EVENT 'generatedbyassl.as.aes.ant_ruler.events. SPACECRAFTCHECKED': started

5) EVENT 'generatedbyassl.as.aes.ant_ruler.events. TIMETORECEIVEHEARTBEATMSG': started

6) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': started

7) EVENT 'generatedbyassl.as.aes.ant_ruler.events. MSGHEARTBEATRECEIVED": started

8) EVENT 'generatedbyassl.as.aes.ant_ruler.events. RECONFIGURATIONDONE': started

9) EVENT 'generatedbyassl.as.aes.ant_ruler.events. RECONFIGURATIONFAILED": started

)  EVENT 'generatedbyassl.as.aes.ant_ruler.events. COLLISIONHAPPEN': started

11)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION": started
)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCOLLISION': started

13)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INTEAMRECONFIGURATION': started
14)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT": started
15)  POLICY 'generatedbyassl.as.aes.ant_ruler.aeself_management.SELF_HEALING'": started

16)  AE 'generatedbyassl.as.aes.ANT_RULER": started

17)  METRIC 'generatedbyassl.as.aes.ant_worker.metrics. DISTANCETONEARESTOBJECT": started

18)  EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT": started

19)  EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTCHECKED": started

20) EVENT ‘'generatedbyassl.as.aes.ant_worker.events.ISMSGINSTRUMENTBROKENSENT": started

21)  EVENT ‘generatedbyassl.as.aes.ant_worker.events. COLLISIONHAPPEN': started

22) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTBROKEN': started

)  EVENT 'generatedbyassl.as.aes.ant_worker.events. TIMETOSENDHEARTBEATMSG': started

) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': started

25) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.ININSTRUMENTBROKEN'": started
)  FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INCOLLISION': started

27) POLICY 'generatedbyassl.as.aes.ant_worker.aeself_management.SELF_HEALING'": started

28)  AE 'generatedbyassl.as.aes. ANT_WORKER'": started

29) EVENT ‘generatedbyassl.as.ants.events. SPACECRAFTLOST": started

30) EVENT 'generatedbyassl.as.ants.events. EARTHNOTIFIED": started

31) FLUENT 'generatedbyassl.as.ants.asself_management.self_healing.INLOSINGSPACECRAFT": started
32) POLICY 'generatedbyassl.as.ants.asself_management.SELF_HEALING" started

33) AS 'generatedbyassl.as.ANTS'": started

wikkkkkxsrrrriink AQ STARTED SUCCESSFULLY *sssssssxsrrss

Here, records 1 through to 16 show the ANT_RULER autonomic element startup,
records 17 through to 28 show the ANT_WORKER autonomic element startup, and
records 29 through to 33 show the last startup steps of the ANTS autonomic system.
After starting up all the threads, the system ran in idle mode for 60 s, when the timed
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event timeToSendHeartbeatMsg occurred. This event is specified in the ANT_Worker
to run on a regular time basis every 60 s (see below). The occurrence of this event
activated the self-healing mechanism as shown in the following log records.

Log Records “Self-healing Behavior”

wnnsrsrrrmrrriint AQ STARTED SUCCESSFULLY *esssssssnrmnnr

34) EVENT 'generatedbyassl.as.aes.ant_worker.events. TIMETOSENDHEARTBEATMSG': has occurred

35) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
36) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT": has been performed

37) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT": has occurred

38) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

39) EVENT 'generatedbyassl.as.aes.ant_ruler.events. TIMETORECEIVEHEARTBEATMSG": has occurred

40) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION'": has been initiated
41)  ACTION 'generatedbyassl.as.aes.ant_ruler.actions. CONFIRMHEARTBEAT": has been performed

42)  EVENT 'generatedbyassl.as.aes.ant_ruler.events. MSGHEARTBEATRECEIVED": has occurred

43)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

44)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT": has been initiated
45)  ACTION 'generatedbyassl.as.aes.ant_ruler.actions. CHECKWORKERINSTRSTATUS": has been performed

46) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': has occurred

47)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT": has been terminated

48) EVENT 'generatedbyassl.as.aes.ant_worker.events. TIMETOSENDHEARTBEATMSG": has occurred

49) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION'": has been initiated
50) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT': has been performed

51) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT'": has occurred

52) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

53) EVENT 'generatedbyassl.as.aes.ant_ruler.events. TIMETORECEIVEHEARTBEATMSG': has occurred

54)  FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
55)  EVENT 'generatedbyassl.as.aes.ant_worker.events. TIMETOSENDHEARTBEATMSG": has occurred

56) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION": has been initiated
57) ACTION 'generatedbyassl.as.aes.ant_ruler.actions. CONFIRMHEARTBEAT": has been performed

58) ACTION 'generatedbyassl.as.aes.ant_worker.actions. NOTIFYFORHEARTBEAT'": has been performed

59) EVENT 'generatedbyassl.as.aes.ant_ruler.events. MSGHEARTBEATRECEIVED': has occurred

60) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

61) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT": has been initiated

62) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT": has occurred
63) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION": has been terminated

64) ACTION 'generatedbyassl.as.aes.ant_ruler.actions. CHECKWORKERINSTRSTATUS'": has been performed
65) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': has occurred
66) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT": has been terminated

As we see from the log records, the self-healing behavior correctly followed the
specification model. Records 34 through to 38 show the initiation and termination of
the INHEARTBEATNOTIFICATION fluent. This resulted in the execution of the
NOTIFYFORHEARTBEAT action (see record 36) that sends a heartbeat message to
ANT_Ruler' (see record 37). Records 39 through to 43 show how this message is
handled by the ANT_Ruler. Records 44 through to 47 show how the INCHECK-
INGWORKERINSTRUMENT fluent is handled by the system. This fluent is initiated
by the MSGHEARTBEATRECEIVED event. Next the CHECKWORKERINSTR-
STATUS action is performed (see record 45), which resulted into the

! The ASSL specification of ANT_Ruler is not presented here. The interested reader is advised to refer
to [25].
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INSTRUMENTOK event (see record 46). The latter terminated the INCHECK-
INGWORKERINSTRUMENT fluent (see record 47). Records 48 through to 66 show
that the system continued repeating the steps shown in records 34 though to 47. This is
because the policy-triggering events are periodic timed events and the system did not
encounter any problems while performing the executed actions, which could possibly
branch the program execution.

This experiment demonstrated that the generated code had correctly followed the
specified self-healing policy by reacting to the occurring self-healing events and, thus,
providing appropriate self-healing behavior.

6 Formal Verification with ASSL

Due to the synthesis approach of automatic code generation, ASSL guarantees con-
sistency between a specification and the corresponding implementation. Moreover, the
framework provides mechanisms for formal verification of the ASSL specifications.

6.1 Consistency Checking

The ASSL Consistency Checker (see Fig. 3) is a framework mechanism for verifying
ASSL specifications by performing exhaustive traversing. In general, the Consistency
Checker performs two kinds of consistency-checking operations: (1) light - checks for
type consistency, ambiguous definitions, etc.; and (2) heavy - checks whether the
specification model conforms to special correctness properties. The ASSL correctness
properties are special ASSL semantic definitions [5, 6] defining tier-specific rules that
make it possible to reason about the properties of the specifications created with ASSL.
They are expressed in First-Order Linear Temporal Logic (FOLTL)? [29], which allows
for formalization of rules related to system evolution over time. An example of a
semantic rule defined for the AS/AE Self-management Policies Tier (see Table 1) is
related to policy initiation [5, 6]:

“Every policy is triggered by a finite non-empty set of fluents, and performs actions associated
with these fluents”.

Vrnelle (F£EDNAZ (D) = (Vf € F e Ja € A o (trigger(f, n) = perform(a))))

where:

e I is the universe of self-management policies in the AS;
e F is a finite set of fluents specified by the policy =;
e A is a finite set of actions mapped to the fluents specified by the policy 7.

2 In general, FOLTL can be seen as a quantified version of linear temporal logic. FOLTL is obtained
by taking propositional linear temporal logic and adding a first order language to it.
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/ ASSL Correctness
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Checking
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Fig. 4. Consistency checking with ASSL

It is important to mention that the consistency checking mechanism generates
consistency errors and warnings (see Fig. 4). Warnings are specific situations, where
the specification does not contradict the correctness properties, but rather introduces
uncertainty as to how the code generator will handle it.

Model Checking

ASSL Build ASG Evaluate ASG
Specification
No Counterexample
ASSL Atomic / Large
Propositions Yes Model No Yes
ASSL Correctness Generating
Properties in TL ‘ Reduce ASG Check ASG

/

Fig. 5. Model checking with ASSL

6.2 Model Checking

Although the ASSL Consistency Checker tool takes care of syntax and consistency
errors, it still cannot handle logical errors and thus, cannot assert safety (e.g., freedom
from deadlock) or liveness properties. Therefore, to ensure the correctness of the ASSL
specifications, and that of the generated ASs, at the time of writing, there was ongoing
research on model checking with ASSL:

e The main trend influencing this research is on a model-checking mechanism that
takes an ASSL specification as input and produces as output a finite state-transition
system (called ASSL State Graph (ASG) or state machine) such that a specific
correctness property in question is satisfied if and only if the original ASSL
specification satisfies that property [30].

e Another research direction is towards mapping ASSL specifications to special
service logic graphs, which support the so-called reverse model checking [31].
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Figure 5 depicts the first approach to model checking in ASSL. As shown, the
Model Checker tool builds the ASG for the AS in question by using its ASSL spec-
ification to derive the system states and associates with each derived state special
atomic propositions (defined in FOLTL) true in that state [30].

The notion of state in ASSL is related to tiers. The ASSL Operational Semantics
(see Sect. 4) considers a state-transition model where tier instances can be in different
tier states. Formally, an ASG is presented as a tuple (S; Op; R; So; AP; L) [30] where:
S is the set of all possible ASSL tier states; Op is the set of special ASSL state-
transition operations (see Sect. 4.1); RCS x Op X S are the possible transitions; SyCS
is a set of initial tier states; AP is a set of atomic propositions; L : S — 2AP s a labeling
function relating a set L(s) € 2AF of atomic propositions to any state s, i.e., a set of
atomic propositions that hold in that state. The ASSL model-checking mechanism uses
correctness properties (see Sect. 6.1) to check if these are held over the system’s ASG
by matching for each state the correctness properties with the atomic propositions AP.
This helps the ASSL framework trace the execution state paths in ASG and produce
counterexamples of such paths that lead to violation of the correctness properties.
Moreover, the so-called state explosion problem [29] is considered when the size of the
ASG must be reduced in order to perform efficient model checking [30].

7 Summary

This article has presented the formalism of ASSL (Autonomic System Specification
Language) in terms of notation and operational semantics. ASSL is a domain-specific
formal approach providing both formalism and tool support that help developers
implement autonomic systems. It has been successfully used to develop prototype
models for a variety of systems incorporating AC features and proven to be a valuable
approach to problem formation, modeling, verification and implementation of auto-
nomic systems. With ASSL, the formal specifications are automatically verified for
consistency flaws and the provided synthesis approach of automatic code generation,
guarantees consistency between a specification and the corresponding implementation.
Moreover, to enhance the software verification capabilities of the framework, a model
checking mechanism is under development.

ASSL implies a complex multi-tier hierarchy of specification constructs catego-
rized as ASSL tiers, sub-tiers and clauses. Both structural and functional relationships
form the semantic relations between the ASSL specification constructs. Whereas the
ASSL multi-tier specification model imposes the structural relationships between tiers,
sub-tiers and clauses, the ASSL operational semantics forms the functional relation-
ships of the same. Conceptually, the ASSL operational semantics is driven by special
state-transition operations and tier states. The operational evaluation of ASSL speci-
fications is a stepwise evaluation of the specified ASSL tiers, sub-tiers and clauses,
which are evaluated as state transition models where state-transition operations cause a
current state to evolve to a new one.

Specifying with ASSL requires a good understanding of the ASSL formalism. This
article tackles this problem by introducing the ASSL formalism from both structural
and operational perspectives. In addition, to demonstrate the theoretical concepts and



294 E. Vassev and M. Hinchey

flavor of the ASSL formalism, case study examples have presented ASSL specifica-
tions and their operational evaluation.

In conclusion, it should be noted that ASSL provides the IT community with an
extremely needed and powerful framework for development of autonomic systems.
Overall, ASSL is sufficiently generic and adaptable to accommodate most of the AC
development aspects.
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