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Abstract. During the software crisis of the 1960s, Dijkstra’s famous
thesis “goto considered harmful” paved the way for structured program-
ming. In this paper that is a modified version of the short communication
[10], we suggest that many current difficulties of parallel programming
based on message passing are caused by poorly structured communica-
tion, which is a consequence of using low-level send-receive primitives.
We argue that, like goto in sequential programs, send-receive should be
avoided as far as possible and replaced by collective operations in the
setting of message passing. We dispute some widely held opinions about
the apparent superiority of low-level, pairwise primitives over collective
operations, and we present substantial theoretical and empirical evidence
to the contrary in the context of MPI (Message Passing Interface).

We also briefly mention our recent results obtained in the broader
context of programming for modern many-core parallel systems.
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1 Introduction

The development of software for modern parallel and distributed systems is still
a challenging and difficult task. One of the obvious reasons for this unsatisfactory
situation is that today’s programmers rely mostly on the programming culture
of the 1980s and ’90s, the Message Passing Interface (MPI) [15] still being the
programming tool of choice for demanding applications.

The main advantage of MPI is that in the 1980s it integrated and standard-
ized parallel constructs that were proven in practice. This put an end to the
unacceptable previous situation when every hardware vendor provided its own
set of communication primitives, and those primitives sometimes differed even
between different brands of the same machine.

In order to enable high performance, MPI’s communication management
based on low-level primitives send and receive results in a complicated pro-
gramming process. Several attempts were made to overcome this (e.g. HPF
and OpenMP). However, despite reported success stories, these approaches have
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never achieved the popularity of MPI, mostly because they make the perfor-
mance of parallel programs less understandable and difficult to predict.

A similar “software crisis” occurred in the sequential setting in the 1960s.
The breakthrough was made by Dijkstra in his famous letter “goto considered
harmful” [5], in which the finger of blame was pointed at the goto statement. By
that time, [3] had formally demonstrated that programs could be written without
any goto statements, in terms of only three control structures – sequence, selec-
tion and repetition. The notion of so-called structured programming [4] became
almost synonymous with “goto elimination”.

GOTO
considered harmful

Sequential
Programming

Structured
Programming

Parallel
Programming

Structured

Programming
Parallel

considered harmful
Send-Recv

?

Fig. 1. As goto in the sequential case, send-receive complicates parallel programming.

Bernhard Steffen et al. [21] demonstrated that structured, rigorous program-
ming greatly improves the formal analyses of important properties of paral-
lel programs. In order to benefit from the experience in structured program-
ming, we should answer the question: Which concept/construct plays a similar
harmful role to that of goto in the parallel setting? As shown in Fig. 1 and
demonstrated from Sect. 2 onwards, we suggest send-receive statements to be
“considered harmful” and avoided as far as possible in parallel MPI programs.

The thrust of this paper is:
Parallel programming based on message passing can be improved by expressing
communication in a structured manner, without using send-receive statements.

We demonstrate the advantages of collective operations over send-receive
in five areas: simplicity, expressiveness, programmability, performance and pre-
dictability. This paper is a slightly modified version of [10]. The structured app-
roach has been recently extended in different areas of parallel programming.
In particular, novel parallel architectures like multi-core CPUs and many-core
GPUs (Graphics Processing Units) require structured parallel programming at
the node level, as an alternative to the low-level CUDA and OpenCL approaches,
while message passing considered in this paper remains relevant for parallelizing
across nodes. For our recent results, we refer the reader to the survey on algo-
rithmic skeletons [11], the SkelCL library [26], skeleton-based transformations
[16], and the LIFT approach [17].
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2 The Challenge of Simplicity

Myth: Send-receive primitives are a simple way of specifying communication in
parallel programs.

To reason effectively about a parallel program comprising hundreds or thou-
sands of processes, one needs a suitable abstraction level. Programmers usually
think in terms of how data has to be distributed to allow local computation:
there is a stage (phase) of computation followed by a stage of communication,
these stages being either synchronized, as in the BSP model [28], or not. Collec-
tives neatly describe data redistributions between two stages, while individual
sends and receives do not match this natural view, which leads to the following
problems:

– There is no simple set of coordinates that describe the progress of a parallel
program with individual communication. Such programs are therefore hard
to understand and debug.

– If MPI is our language of choice, then we have not just one send-receive,
but rather eight different kinds of send and two different kinds of receive.
Thus, the programmer has to choose among 16 combinations of send-receive,
some of them with very different semantics (blocking/non-blocking, syn-
chronous/asynchronous, buffered/non-buffered, etc). Of course, this makes
message-passing programming very flexible, but even less comprehensible!

– The last but not least problem is the size of programs. For example, a program
for data broadcasting using MPI Bcast may have only three instead of its
send-receive equivalent’s 31 lines of code [9,23].

Reality: The apparent simplicity of send-receive turns out to be the cause of
large program size and complicated communication structure, which make both
the design and debugging of parallel programs difficult.

3 The Challenge of Programmability

Myth: The design of parallel programs is so complicated that it will probably
always remain an ad hoc activity rather than a systematic process.

The structure of programs with collective operations (a.k.a. collectives) as
a sequence of stages facilitates high-level program transformations. A possible
kind of transformation fuses two consecutive collective operations into one.

This is illustrated in Fig. 2 for a program with p processes, where each process
either follows its own control flow, depicted by a down-arrow, or participates in a
collective operation, depicted by a shaded area. Fusing two collective operations
into one may imply a considerable saving in execution time; more on that in
Sect. 6.

A particular fusion rule (1) states that, if operators op1 and op2 are asso-
ciative and op1 distributes over op2, then the following transformation of a
composition of scan and reduction is applicable.
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Fig. 2. The idea of fusing collective operations by a transformation like (1).

Here, function Make_pair duplicates its arguments, thus creating a pair, and
Take_first yields the first component of a pair. Both functions are executed
without interprocessor communication. The binary operator f(op1,op2) on the
right-hand side works on pairs of values and is built using the operators from
the left-hand side of the transformation. The precise definition of f, as well as
other similar transformations, can be found in [8].

[
MPI Scan (op1);
MPI Reduce (op2);

=⇒
⎡
⎣Make pair;
MPI Reduce (f(op1,op2));
if my pid==ROOT then Take first;

(1)
Rule (1) and other rules from [8] have the advantage that they are (a) proved

formally as theorems, (b) parameterized by the occurring operators, e.g. op1 and
op2, and therefore customizable for a particular application, (c) valid for all pos-
sible implementations of collective operations, and (d) applicable independently
of the parallel target architecture, and (e) suitable for automation.

Besides fusion rules, there are also transformations that decompose one
collective operation into a sequence of smaller operations. Composition and
decomposition rules can sometimes be applied in sequence, thus leading to more
complex transformations, for example:

[
MPI_Scan(op1);
MPI_Allreduce(op2);

=⇒

⎡
⎢⎢⎣
Make_pair;
MPI_Reduce-scatter(f(op1,op2));
Take_first;
MPI_Allgather;

Profound results have been achieved with formalisms for the verification of
concurrent and message-passing programs (see [25] for a very good overview of
the state of the art). With collective operations, we take a different approach:
we design message-passing programs in a stepwise manner (see [8]) by applying
semantically sound transformations like (1). In Sect. 6, we show that such design
process can be geared to predicting and improving performance.

Reality: Collective operations facilitate high-level program transformations that
can be applied in a systematic program-design process.
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4 The Challenge of Expressiveness

Myth: Collective operations are too inflexible and, therefore, unable to express
many important applications.

To refute this quite widely held opinion, we present in Table 1 several impor-
tant applications, which according to the recent literature were implemented
using collective operations only, without notable performance loss compared with
their counterparts using send-receive.

Table 1. Applications expressed using collective operations only

Application Communication/Computation Pattern

Polynomial Multiplication Bcast (group); Map; Reduce; Shift

Polynomial Evaluation Bcast; Scan; Map; Reduce

Fast Fourier Transform Iter ( Map; All-to-all (group))

Molecular Simulation Iter (Scatter; Reduce; Gather)

N-Body Simulation Iter ( All-to-all; Map)

Matrix Multiplication (SUMMA) Scatter; Iter (Scatter; Bcast; Map); Gather

Matrix Multiplication (3D) Allgather (group); Map; All-to-all; Map

Here, Map stands for local computations performed in the processes without
communication; Shift is a cyclic, unidirectional exchange between all processes;
Iter denotes repetitive action; (group) means that the collective operation is
applied not to all processes of the program, but rather to an identified subset of
processes (in MPI, it can be specified by a communicator).

Additional confirmation of the expressive power of collective operations is
provided by the PLAPACK package for linear algebra [7], which has been imple-
mented entirely without individual communication primitives.

Moreover, in one of the best textbooks on parallel algorithms [22], the whole
methodology centres on implementing and then composing collective operations.

In paper [6], we proved the Turing universality of a programming language
based on just two recursive collective patterns – anamorphisms and catamor-
phisms. This fact can be viewed as a counterpart to the “structured program
theorem” by Böhm and Jacopini [3] for parallel programming.

Reality: A broad class of communication patterns found in important parallel
applications is covered by collective operations.

5 The Challenge of Performance

Myth: Programs using send-receive are, naturally, faster than their counterparts
using collective operations.

The usual performance argument in favour of individual communication is
that collective operations are themselves implemented in terms of individual
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send-receive and thus cannot be more efficient than the latter. However, there
are two important aspects here that are often overlooked:

1. The implementations of collective operations are written by the implementers,
who are much more familiar with the parallel machine and its network than
an application programmer can be. Recent algorithms for collective commu-
nication [24] take into account specific characteristics of the interprocessor
network, which can then be considered during the compilation phase of the
communication library. The MagPIe library is geared to wide-area networks
of clusters [20]. In [27], the tuning for a given system is achieved by conducting
a series of experiments on the system. When using send-receive, the commu-
nication structure would probably have to be re-implemented for every new
kind of network.

2. Very often, collective operations are implemented not via send-receive, but
rather directly in the hardware, which is simply impossible at the user level.
This allows all machine resources to be fully exploited and sometimes leads
to rather unexpected results: e.g. a simple bidirectional exchange of data
between two processors using send-receive on a Cray T3E takes twice as long
as a version with two broadcasts [1]. The explanation for this phenomenon
is that the broadcast is implemented directly on top of the shared-memory
support of the Cray T3E.

Below, we dispute some other commonly held opinions about the performance
superiority of send-receive, basing our arguments on empirical evidence from
recent publications.

– It is not true that non-blocking versions of send-receive, MPI Isend and
MPI Irecv, are invariably fast owing to the overlap of communication with
computation. As demonstrated by [1], these primitives often lead to slower
execution than the blocking version because of the extra synchronization.

– It is not true that the flexibility of send-receive allows faster algorithms than
the collective paradigm. Research has shown that many designs using send-
receive eventually lead to the same high-level algorithms as obtained by the
“batch” approach [14]. In fact, batch versions often run faster [18].

– It is not true that the routing of individual messages over a network offers fun-
damental performance gains as compared with the routing for collective oper-
ations. As shown formally in [28], the performance gap in this case becomes,
with large probability, arbitrarily small for large problem sizes.

Reality: There is strong evidence that send-receive does not offer fundamental
performance advantages over collective operations. The latter offer machine-
tuned, efficient implementations without changing the applications themselves.

6 The Challenge of Predictability

Myth: Reliable performance data for parallel programs can only be obtained a
posteriori, i.e. by actually running the program on a particular machine config-
uration.
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Performance predictability is, indeed, often even more difficult to achieve
than absolute performance itself. Using collective operations, not only can we
design programs by means of the transformations presented in Sect. 3; we can
also estimate the impact of every single transformation on the program’s per-
formance. Table 2 contains a list of transformations from [12], together with the
conditions under which these transformations improve performance.

Table 2. Impact of transformations on performance

Composition rule Improvement if

Scan 1; Reduce 2 → Reduce always

Scan; Reduce → Reduce ts > m

Scan 1; Scan 2 → Scan ts > 2m

Scan; Scan → Scan ts > m(tw + 4)

Bcast; Scan → Comcast always

Bcast; Scan 1; Scan 2 → Comcast ts > m/2

Bcast; Scan; Scan → Comcast ts > m( 1
2
tw + 4)

Bcast; Reduce → Local always

Bcast; Scan 1; Reduce 2 → Local always

Bcast; Scan; Reduce → Local tw + 1
m

· ts ≥ 1
3

In the above table, a binomial-tree implementation of collective operations is
presumed, our cost model having the following parameters: start-up/latency ts,
transfer time tw and block size m, with the time of one computation operation
assumed as the unit. These parameters are used in the conditions listed in the
right column of the table. The estimates were validated in experiments on a Cray
T3E and a Parsytec GCel 64 (see [8] for details).

Since the performance impact of a particular transformation depends on the
parameters of both the application and the machine, there are alternatives to
choose from in a particular design. Usually, the design process can be captured
as a tree, one example of which is given in Fig. 3.

The best design decision is obtained by checking the design conditions, which
depend either on the problem properties, e.g. the distributivity of operators, or
on the characteristics of the target machine (number of processors, latency and
bandwidth, etc.). For example, if the distributivity condition holds, it takes us
from the root into the left subtree in Fig. 3. If the block size in an application
is small, Condition 1 (defined in [8]) yields “no”, and we thus end up with the
second (from left to right) design alternative, where op3= f(op1,op2) according
to rule (1). Note that the conditions in the tree of alternatives may change for
a different implementation of the collective operations involved.

Arguably, send-receive allows a more accurate performance model than col-
lective operations do. Examples of well-suited models for finding efficient imple-
mentations are LogP and LogGP [19]. However, these models are overly detailed
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op1  distributes over  op2

MPI_Allreduce (op2);
MPI_Scan (op1);

Make_pair;

Take_first;
MPI_Allreduce (op3);

yesnoyes no

noyes

MPI_Reduce_scatter (op3);
Make_pair;

Take_first;
MPI_Allgather;

MPI_Allreduce(op2);

MPI_Scan(op1);

Condition 2Condition 1

MPI_Scan(op1);
MPI_Reduce_scatter (op2);
MPI_Allgather;

Fig. 3. The tree of design alternatives with decisions made in the nodes.

and difficult for an application programmer to use, as demonstrated by a com-
parison with batch-oriented models [2,13].

Reality: Collective operations contribute to the challenging goal of predicting pro-
gram characteristics during the design process, i.e. without actually running the
program on a machine. The use of send-receive obviously makes the program’s
performance much less predictable. Furthermore, the predictablity of collective
operations greatly simplifies the modelling task at the application level, as com-
pared with models like LogP.

7 Conclusion

This short communication proposes – perhaps somewhat polemically – viewing
the send-receive primitives as harmful and, consequently, trying to avoid them
in parallel programming.

We demonstrate the advantages of collective operations over send-receive in
five major areas, which we call challenges: simplicity, expressiveness, programma-
bility, performance and predictability. Based on recent publications in the field
and our own research, we present hard evidence that many widely held opinions
about send-receive vs. collective operations are mere myths.

Despite the success of structured programming, goto has not gone away alto-
gether, but has either been hidden at lower levels of system software or packaged
into safe language constructs. Similarly, there are parallel applications where
non-determinism and low-level communication are useful, e.g. a taskqueue-based
search. This motivates the development of “collective design patterns” or skele-
tons which should provide more complex combinations of both control and com-
munication than the currently available collective operations of MPI.

We conclude by paraphrasing Dijkstra’s famous letter [5], which originally
inspired our work. Applied to message passing, it might read as follows:

The various kinds and modes of send-receive used in the MPI standard,
buffered, synchronous, ready, (non-)blocking, etc., are just too primitive;
they are too much an invitation to make a mess of one’s parallel program.
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It is our strong belief that higher-level patterns, in particular collective oper-
ations, have good potential for overcoming this problem and enabling the design
of well-structured, efficient parallel programs based on message passing.
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