
Tiziana Margaria
Susanne Graf
Kim G. Larsen (Eds.)

Models, Mindsets, Meta
The What, the How, and the Why Not?

Fe
st

sc
hr

ift
LN

CS
 1

12
00

Essays Dedicated to Bernhard Steffen
on the Occasion of His 60th Birthday

 123

Lecture Notes in Computer Science 11200

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tiziana Margaria • Susanne Graf •

Kim G. Larsen (Eds.)

Models, Mindsets, Meta

The What, the How, and the Why Not?

Essays Dedicated to Bernhard Steffen
on the Occasion of His 60th Birthday

123

Editors
Tiziana Margaria
Lero–The Irish Software Research Center
University of Limerick
Limerick, Ireland

Susanne Graf
Verimag Laboratory
Grenoble, France

Kim G. Larsen
Aalborg University
Aalborg, Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22347-2 ISBN 978-3-030-22348-9 (eBook)
https://doi.org/10.1007/978-3-030-22348-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: By Tiziana Margaria-Steffen and Barbara Steffen

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22348-9

Young Bernhard and the Sea – Denmark, 1990 (Private photograph; used with permission)

Foreword

This Festschrift is dedicated to Bernhard Steffen on the occasion of his 60th birthday.
The title, Models, Mindsets, Meta: The What, the How, and the Why Not?, reflects
some of the guiding principles of Bernhard’s functioning (in both his professional and
his personal life): Once you choose to do something, question everything and gener-
alize, especially when you need to specialize. In that case, generalize the meta-level.
His contagious research enthusiasm, witnessed and enjoyed by his many scientific
collaborators, is consistently driven by these principles. His scientific credentials are
impressive, he initiated a number of novel research directions as well as solving a
variety of technically challenging problems and transforming them into software
solutions. In addition, Bernhard created “from scratch” an impressive research group at
TU Dortmund.

The variety of his contributions is impressive. Always a neat theoretical framework,
always made with some application in mind, and most of the time implemented in
some software tool that turns out to be useful in practice. Often “in advance of his
time”: Dataflow analysis as model-checking as a proper semantic framework for pro-
gram analysis and a starting point for software model-checking, he established a
well-founded framework of service-oriented computing and verification before the term
existed, model-based program generation as principle, and model extraction for legacy
systems via automata learning: if you do not have a specification, then learn it.

Owing to the wide variety of topics in the contributions, reflecting Bernhard’s
versatile interests, the best way to organize the volume was along Bernhard’s journey,
by the locations where he met his colleagues, most of whom double as friends. As is
seen on the cover image, Bernhard’s journey is a may/must KTS, starting in Kiel but
open ended. The may part comprises the various diversions to Uppsala, Cantoira, and
ISoLA as a META-topos for symposia style inserts (in a sabbatical, on holiday, or at
the ninth ISoLA) that combine research components with community and quality of
life. The introductory paper by the editors, the 23 refereed full papers, and the two
personal contributions showcase the wide recognition of his passion for science and his
success in striving for excellence.

November 2018 Tiziana Margaria
Susanne Graf

Kim G. Larsen

Personal Statement

To my dear friend and colleague Bernhard Steffen on the occasion of his 60th birthday!
One of the first emails I received from Bernhard, dated November 29, 1989, started

as follows:
Congratulations!! Our paper was rejected! However, it was not rejected because it

is bad, no because it is too theoretical. So, I submitted it just to LICS (slightly
improved). If it gets accepted there, then I will be able to get over the rejection.

I hope Bernhard does not mind me sharing this with you, but it is really funny and
perfectly illustrates his wry sense of humor and his ability to find humor even in the
not-so-happy moments. And the good news is that our LICS submission did get
accepted and so began our journey into the world of reactive, generative, and stratified
models of probabilistic processes. It has been a great ride and I am very proud and
happy to call Bernhard my dear friend and collaborator.

Cheers to you Bernhard on this very happy occasion. You are a remarkable person
and scientist and I am so happy to have this opportunity to acknowledge you for all you
have done.

Yours,
Scott Smolka

A Tribute to Bernhard Steffen

David Schmidt

Computer Science Department, Kansas State University,
Manhattan, KS, USA

das@ksu.edu

It is a pleasure and an honor to congratulate Bernhard Steffen on the occasion of his
60th birthday. Bernhard’s contributions are significant and span multiple fields. I have
most appreciated Bernhard’s support and friendship over the 30 years that I have
known him.

I first met Bernhard in the late 1980s, when I was visiting Edinburgh University.
Bernhard had come to Edinburgh from Kiel, where he had just completed his PhD.
I remember Bernhard’s enthusiasm, his impressive command of facts and results, and
most importantly, his strong interest in contributing to the research being undertaken at
that time in Edinburgh’s Lab for Foundations of Computer Science (LFCS). In retro-
spect, it seems somewhat inevitable that Bernhard would fall in with Rance Cleveland
and Joachim Parrow and help develop the Edinburgh Concurrency Workbench.

At that time, what struck me most strongly about my one-day meeting with Bernhard
was his search to connect what he already knew well (data-flow analysis) with what the
others in LCFS knew well (concurrency theory). It seemed as if Bernhard was on a
“search” towards an “enlightenment” that only he could sense: there was a connection
between his work and the work of the others, and time would make this clear.

The results of Bernhard’s “search” were revealed to me in a surprising way some
years later, in 1995: I had sabbatical leave from my position at Kansas State University
and I spent one term at Carnegie Mellon University. By chance, Ed Clarke was offering
a graduate seminar on model checking. Knowing little about the subject, I followed
Ed’s lectures. I was impressed by the use of fixed-point semantics and fixed-point
calculation algorithms for both defining and checking properties of state-transition
systems. The methodology looked familiar, almost uncomfortably familiar, but I
couldn’t quite explain why I had that feeling.

I wanted to learn more: I spent much of my time that term in the CMU Computer
Science library, reading everything I could find on model checking. It was there that I
encountered Bernhard’s 1993 Science of Computer Programming article, Generating
Data Flow Analysis Algorithms from Modal Specifications. That paper held the
explanation for which I was searching—all the connections that I had sensed between
model checking and data-flow analysis were there in that article, neatly expressed in the
box-diamond notation of branching-time temporal logic augmented with reverse
modalities. At that instant, I recalled the discussion I had with Bernhard that one day in
Edinburgh—there was indeed an “enlightenment” that Bernhard had sensed and had
achieved.

The next step for me was to apply this enlightenment to the area in which I worked.
Using abstract-interpretation-based domain theory, I conceived models of behavior
trees whose properties could be expressed in box-diamond notation. Using Bernhard’s
explanation of data-flow-analysis-as-model-checking, I was able to generate abstract
interpretations mechanically from the box-diamond formulas I had written. It was also
easy to see how the notations could define the classic, equationally-stated forms of
data-flow analysis. Here was truly a unified theory of property specification and
implementation.

Bernhard’s work changed the direction of my research and led to many years of
results. I was honored when Bernhard contacted me in 1997 with a critique of my
attempts to apply his insights. In a subsequent meeting in Italy in 1998, Bernhard
suggested that we work together to develop further lines of research that followed from
his work.

The collaboration between Bernhard and me lasted well over a decade, and it
expanded to include Bernhard’s research group in Dortmund and the
programming-languages research group in Kansas. The collaboration went well beyond
authorship of jointly developed papers: it became a long-term exchange and devel-
opment of research directions, perspectives, and goals. The collaboration meant that I
made many visits to Dortmund and stayed at Bernhard’s and Tiziana Margaria’s home.
I enjoyed coffee from Bernhard’s impressive espresso machine, I took long walks with
Tiziana and Bernhard in the forest next to their home, and I watched their children,
Barbara and Bruno, grow to adulthood.

My technical expertise expanded greatly from interactions with Tiziana, Markus
Müller-Olm, Jens Knoop, and Oliver Rüthing, and the other members of the Dortmund
research group. And members of the Kansas group, notably, John Hatcliff and Matt
Dwyer, also became part of the research “family,” a family that functions to the present
day in the International Journal on Software Tools for Technology Transfer and the
ISoLA conference series.

Bernhard has always impressed me with his enthusiasm for work, his unending
desire to transfer his results into the technology mainstream, and especially by his
sureness of vision. Throughout his career, Bernhard has always followed a path of
certainty towards an “enlightenment” of how software specification, analysis, and
implementation should be undertaken. It is this sureness of vision that motivates and
justifies the tributes that Bernhard now receives on the occasion of his 60th birthday.

Bernhard, congratulations, and may your vision of computer science continue to
lead us for years to come!

xii D. Schmidt

Contents

Introduction

Models, Mindsets, Meta: The What, the How, and the Why Not? 3
Tiziana Margaria, Susanne Graf, and Kim G. Larsen

Kiel 1983–1987

Applying Decision Graphs in the Context of Automated Driving 17
Hardi Hungar

Edinburgh 1987–1989

Analyzing Spreadsheets for Parallel Execution via Model Checking 27
Thomas Bøgholm, Kim G. Larsen, Marco Muñiz, Bent Thomsen,
and Lone Leth Thomsen

System Analysis and Robustness. 36
Eugenio Moggi, Amin Farjudian, and Walid Taha

Logic Meets Algebra: Compositional Timing Analysis for Synchronous
Reactive Multithreading . 45

Michael Mendler, Joaquín Aguado, Bruno Bodin, Partha Roop,
and Reinhard von Hanxleden

Intersection Types in Java: Back to the Future . 68
Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri

Aarhus 1989–1990

Multi-valued Logic for Static Analysis and Model Checking 89
Flemming Nielson, Hanne Riis Nielson, and Fuyuan Zhang

States and Events in KandISTI: A Retrospective . 110
Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti

Making Sense of Complex Applications: Constructive Design,
Features, and Questions . 129

Tiziana Margaria

Aachen 1990–1993

Interface Automata for Shared Memory . 151
Johannes Gareis, Gerald Lüttgen, Ayleen Schinko, and Walter Vogler

Passau 1993–1997

Boolean Algebras by Length Recognizability . 169
Didier Caucal and Chloé Rispal

Reflections on Bernhard Steffen’s Physics of Software Tools 186
Hubert Garavel and Radu Mateescu

Toward Structured Parallel Programming: Send-Receive
Considered Harmful . 208

Sergei Gorlatch

Refining the Safety–Liveness Classification of Temporal Properties
According to Monitorability . 218

Doron Peled and Klaus Havelund

Future Security: Processes or Properties?—Research Directions
in Cybersecurity . 235

Ulrike Lechner

Dortmund 1997 – Today

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems. . . . 249
Yuning He, Dimitra Giannakopoulou, and Johann Schumann

The ASSL Approach to Formal Specification of Self-managing Systems 268
Emil Vassev and Mike Hinchey

The Merits of Compositional Abstraction: A Case Study
in Propositional Logic . 297

Michael Huth

JConstraints: A Library for Working with Logic Expressions in Java. 310
Falk Howar, Fadi Jabbour, and Malte Mues

On the Expressiveness of Joining and Splitting . 326
Thomas Given-Wilson and Axel Legay

Fast Verified BCD Subtyping . 356
Jan Bessai, Jakob Rehof, and Boris Düdder

Composition: A Fresh Look at an Old Topic . 372
Wolfgang Reisig

xiv Contents

Benchmarks for Automata Learning and Conformance Testing 390
Daniel Neider, Rick Smetsers, Frits Vaandrager, and Harco Kuppens

Synchronous or Alternating? LTL Black-Box Checking of Mealy
Machines by Combining the LearnLib and LTSmin. 417

Jaco van de Pol and Jeroen Meijer

Author Index . 431

Contents xv

Introduction

Models, Mindsets, Meta: The What,
the How, and the Why Not?

Tiziana Margaria1(B), Susanne Graf2, and Kim G. Larsen3

1 Chair of Software Systems, University of Limerick and Lero,
Confirm and HRI, Limerick, Ireland

tiziana.margaria@ul.ie
2 Verimag, Grenoble, France

Susanne.Graf@imag.fr
3 Department of Computer Science, Aalborg University, Aalborg, Denmark

kgl@cs.aau.dk

1 The Passion

Bernhard Steffen’s first major recognition concerned the collaboration on the
Concurrency Workbench, but his theoretical and practical work spans the devel-
opment and implementation of novel, specific algorithms, the establishment of
cross-community relationships with the effect to obtain simpler, yet more pow-
erful solutions, as well as the initiation of new lines of research.

Our personal relation with Bernhard is intertwined with the development
of CAV. At CAV 1989 in Grenoble, Susanne Graf was heavily involved in the
organization of the event. She started the discussions that would lay the basis
for their joint Compositional Minimization of Finite State Systems presented by
Bernhard at CAV’90. At CAV’90 in Rutgers, at DIMACS, Bernhard met Tiziana,
who was presenting a paper on automated test pattern generation for sequential
circuits using Ed Clarke’s original EMC model checker. And Bernhard, Susanne
and Tiziana plus Rance Cleaveland and Ed Brinksma were together at CAV’91 in
Aalborg organized by Kim Larsen. CAV’91 turned out to be quite consequential,
not only for Bernhard’s private life, but also as a prequel to what would become
in 1995 the first TACAS: organized in Passau by Bernhard and Tiziana, the
first proceedings appeared as LNCS N.1019, co-edited by Ed Brinksma, Rance
Cleaveland, Kim Guldstrand Larsen, Tiziana Margaria, and Bernhard Steffen.

Models were Bernhard’s first passion, along with building tools for working
with models. The Concurrency Workbench (CWB) [9–11], one of the first tools
for the process algebra and model checking-based analysis of concurrent systems,
initiated a still living trend of tool development which witnesses the step from
so called weak formal methods, which remain at the side of specification an
manual (interactive) proof to strong formal methods that aim at fully automatic
tool support. Bernhard’s innate tool-related thinking led him to a number of
conceptual breakthroughs like the first linear algorithm for CTL (a subclass of
the alternation-free mu-calculus) [27], the logical characterization of behavioural

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 3–13, 2019.
https://doi.org/10.1007/978-3-030-22348-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_1

4 T. Margaria et al.

relations as the basis for establishing semantic relations [12,48], and the first
model checkers for infinite state systems [3–7]. These developments were the basis
for the Fixpoint Analysis Machine [47] which exploited the Dataflow Analysis
and Model Checking paradigm to derive a homogeneous analysis framework
capturing even procedural programs.

Bernhard’s Dataflow Analysis and Model Checking paradigm (DFAMC)
[44–46] can be regarded as the starting point of modern software model check-
ing. DFA-MC based on the abstract view from the model checking world, where
algorithmic problems are formulated as collections of logic properties. With this
new mindset, it was possible to derive very powerful program analyses [18–22] as
layered fact-finding quests, and they became for the first time elegantly and effi-
ciently solvable with just one algorithm: CTL model checking. In particular the
lazy code motion algorithm had a strong practical impact: it is implemented in
almost every of today’s compilers, and as a recognition of this success it received
the 2002 PLDI Test of Time Award which is given ten years after publication
to the PLDI papers with the highest long term impact.

Both the CWB and the DFAMC developments initiated lines of research
which are still alive. In addition, the work on Reactive, Generative, and Strati-
fied Models of Probabilistic Processes with Rob van Glabbeek, Scott Smolka and
Chris Tofts [13] set the scene for modelling probabilistic processes and laid the
groundwork for a huge bulk of research on quantitative methods. With Hardi
Hungar, Harald Raffelt and Oliver Niese [14,17], Bernhard paved the way to
bringing the originally very theoretical work of active automata learning into
real practice. Practical analyses on telecommunication systems showed the strong
impact of this technique on testing: the classical model-based testing approaches
are in a sense converted into test-based modelling approaches [14,42]. As an addi-
tional benefit, this approach overcame a prohibitive hurdle to model-based test-
ing: the need of a priori availability of a model. Bernhard’s work continued with
the development of a corresponding learning framework, the LearnLib [41–43],
the extension of the methods to data-sensitive models [15], and to an algorithm
that optimally refines the abstraction level of a learning scenario to become
deterministic, a requirement for efficient learning [16].

On the software engineering side, he co-established a well-founded framework
for service-oriented computing (years before this term was coined) [39,40,51,52].
Underlying this framework is a development philosophy which can be regarded
as a well-founded way of extreme programming [28,37,38], now called eXtreme
Model Driven Development. XMDD in particular aims at the easy integration of
external/remote functionality [32,33,53], with the additional benefit of a formal
setting that supports analysis, reasoning and synthesis.

2 The Impact

The impact of Bernhard’s research career has been multidimensional.
Concerning the development of frameworks and tools, the Concurrency

Workbench, the Infinite state and Pushdown model checkers, the ABC/jABC

Models, Mindsets, Meta: The What, the How, and the Why Not? 5

saga with the many generations and variants, ETI/jETI and the LearnLib have
so far had the most success. More recently, the move towards meta-level DSLs
and the generation of entire IDEs for graph based modelling languages has led to
the development of the Cinco Meta-IDE and to the easier generation of special-
ized editors for domain specific modelling languages as so-called Cinco-products.

Concerning education, in the over 25 years as a professor in Aachen, Pas-
sau and Dortmund Bernhard has taught in many forms and under many titles
the concepts and rigour of Formal Methods in System Design. Most recent
achievements are his series of books for undegraduates “Grundlagen der Höheren
Informatik” [55] with Oliver Rüthing and Malte Isberner, and “Mathemati-
cal Foundations of Advanced Informatics” [54] with Michael Huth and Oliver
Rüthing. These books are intended to set the mathematical scene for a for-
mal methods-based approach to comprehension, reasoning, and design. The over
51.000 chapter downloads for the German book witness the dissemination success
of this textbook.

Concerning industrial applications, many projects with leading IT com-
panies like Siemens Nixdorf in telecommunications, Bertelsmann and the Euro-
pean Patent Office, ThyssenKrupp and IKEA in Supply Chain Management, a
learning-based testing environment for T-Systems, order management for BASF-
IT, the online conference system OCS and its product line for the Springer Ver-
lag are only a few representatives for the direct impact not mediated by public
funding.

Concerning the promotion of tools as first class citizens in the software
engineering for system correctness, Bernhard’s impact has been vast and steady.
The impact on the culture of tool comparison and challenge started in 1997
with ETI, the Electronic Tool Integration platform born with STTT [53]. The
inaugural issue of STTT featured the introduction of UPPAAL in ETI by Kim
G. Larsen, Paul Pettersson and Wang Yi [26]. UPPAAL had been presented
originally in TACAS’96 [1]. ETI was a clear precursor of today’s service-based
composition environments. Its HLL (High Level Language) was an own ser-
vice and workflow composition language (in today’s terminology, a coordination-
oriented DSL) with rich tool descriptions ranging over taxonomies as lightweight
ontologies. ETI’s tool integration platform was later instantiated for a number
of application domains: FMICS-jETI [23,30,34] for verification tools stemming
from the FMICS Working Group of ERCIM, BiojETI [24,25,29] for bioinformat-
ics tools, and Plan-jETI [31] for the automatic synthesis of workflows through
various external and own planning tools and techniques. The ETI initiative was
followed by many more: the RERS Challenge on Rigorous Examination of Reac-
tive Systems is associated with ISoLA and other events since 2010, the Software
Verification Competition (SV-COMP) takes place in association with TACAS
since 2012, and also the Toolimpics starting in the 2019 edition of ETAPS. Not
only do these initiatives promote the importance of tools as a means to foster the
understanding and wider adoption of new algorithms and techniques, they also
address how to make tool evaluation and comparison more systematic, objective
and fair. Related to this comparison is also the attention to creating, maintaining
and evolving adequate benchmarks and benchmark sets [49].

6 T. Margaria et al.

Concerning the scientific community, his contributions to establishing
and maturing the culture of tools and the dignity of tool building and tool
evaluation as fields of research and investigation have spanned over 25 years of
success. Bernhard started TACAS, the Int. Conference on Tools and Algorithms
for the Construction and Analysis of Systems, with Ed Brinksma, Kim Larsen
and Rance Cleaveland. The first TACAS took place in 1995 in Passau [2] and the
conference quickly became the largest, highest rated and most impactful of the
ETAPS Joint Conferences. STTT, the International Journal on Software Tools
for Technology Transfer started in 1997 with Rance Cleaveland and Tiziana Mar-
garia [8] and more recently managed with John Hatcliff and Tiziana Margaria
is meanwhile the venue where to publish tool-related papers and case studies.
STTT has a high impact factor and since 2006 it publishes 6 issues per year.
As editor of Springer’s LNCS series, Bernhard has contributed for over a decade
to select thousands of monographs and conference proceedings, supporting the
wide dissemination of high quality research and indirecting impacting the career
of thousands of young and established researchers.

3 The Vision

Bernhard’s vision, developed in large part jointly with Tiziana Margaria and
shared - with different accents - by Susanne Graf, Kim Larsen and many other
contributors to this book, has always been that of injecting formal methods
into system and software development environments. Starting with the position
statement in 1997 for the 50 years of ACM [50] and with the IN-METAFrame
Environment [51], this approach of lightweight formal methods has been consis-
tently seen as a pathway towards the improvement of system design and software
quality by aiding both the skilled developers who may or may not master the
art and discipline of programming, and the skilled “subject matter experts” who
mostly know their application domain to a great depth but cannot program nor
are they versed in formal languages or methods. As we wrote in [35], “more than
90% of the software development costs arise worldwide for a rather primitive
software development level, during routine application programming or software
update, where there are no technological or design challenges. There, the major
problem faced is software quantity rather than achievement of very high quality,
and automation should be largely possible. AMDD is intended to address (a sig-
nificant part of) this 90% ‘niche’”. AMDD is now XMDD, and it targets the 95%
‘niche’ of application developers who are key stakeholders in application and sys-
tem design. That vision was already embodied in the ideal software development
lifecycle depicted in Fig. 1.

Bernhard and his group, as well as many friends and family, worked consis-
tently over his entire career to deliver this vision. The vision pre-dates

– the idea of agility through fast turn-around times in prototype-driven design,
– the idea of service-oriented architectures due to the reusable building blocks

that are software (or system) black boxes and run “somewhere”, that led to

Models, Mindsets, Meta: The What, the How, and the Why Not? 7

Fig. 1. Application development process in METAFrame (from [51])

the development of the Service Centered Continuous Engineering approach
to evolution-friendly system design,

– the manageability of complex artefacts through the use of abstraction and
perspective (or mindset)-oriented views, that anticipate aspect-oriented pro-
gramming

– the lifting of application design and execution from the coding level to an
intuitive modelling level, in a move from the How to the What as advocated
in [36]. This approach allows a much earlier validation and verification of the
logic of applications and systems, enables model driven design of tests, and
it makes change management and maintenance at the model level faster and
much less costly,

– the use of constraints to guide and check the correctness of the development.
This centrality of constraints and logics puts declarative knowledge (formu-
lated as collection of properties) at the centre of the quality assurance and,
by means of LTL synthesis, also at the centre of automatic synthesis of pro-
cesses and workflows that are correct by construction. The use of constraints
adds another level of from the How to the What above the use of models. It
also allows in many cases to answer Why not? questions constructively. This
helps understanding and debugging for example by providing counterexam-
ples to model checking properties, which is an indirect approach to test case
generation, as well as a source of knowledge (an oracle) for the automata
learning approaches. The LTL based constructive approach to workflow syn-
thesis yields a variety of solutions, delivering a set of correct by construction
implementations,

– the use of domain specific languages that are both graphical and operational
transforms the art of application development to a craft manageable also by

8 T. Margaria et al.

domain experts that are not programmers, and ideally into an easily learnable
and intuitive technology for the masses,

– the model extraction by active automata learning that led to the development
of the LearnLib, awarded in 2015 with the CAV artifact award. This tech-
nique allows to lift black box legacy systems to the model driven development
paradigm,

– the self-application of these techniques to the construction and extension of
the development environment itself, with the Genesis family of compilers, the
plugin generation environment, the synthesis of test cases for the MaTRICS,
and many other contributions to the creation of a completely model driven
tool-suite

– and more recently his embrace of meta-modelling as a means to generate
entire product lines of custom and profile specific editors for graph-based
modelling languages, that led to the Cinco environment, a generator-driven
development environment for domain-specific graphical modeling tools.

If we consider that Bernhard was never a software engineer nor part of the well
established software engineering community, this is a remarkable list of funda-
mental insights. It is even more remarkable that with his group he systematically
turned these insights into an impressive collection of coherent achievements that
span from fundamental theory to tools construction and to the field practice in
industrial and research projects.

4 The Contributions in this Volume

The invited contributions in this volume span the over 30 years of Bernhard Stef-
fen’s active research career. Some of the contributing scientists returned specif-
ically for this volume to the topics that were hot at the time of their initial
collaboration, while others chose to discuss topics closer to their current interest
and activity. We chose therefore not to organize the contributions thematically,
but along the main stations of Bernhard’s personal activity, each with its specific
cultural imprint and relevance to Bernhard’s own evolution and maturity.

Kiel 1983-87 with a contribution by

– Hardi Hungar on Applying Decision Graphs in the Context of Automated
Driving

Edinburgh 1987-89, with contributions by

– Kim Larsen, Bent Thomsen, Lone Leth Thomsen et al. on Analyzing spread-
sheets for parallel execution via model checking

– Eugenio Moggi et al. on System Analysis and Robustness
– Michael Mendler et al. on Logic Meets Algebra: Compositional Timing Anal-

ysis for Synchronous Reactive Multithreading
– Mariangiola Dezani Ciancaglini et al. on Intersection Types in Java: back to

the future
– and a personal statement by Scott Smolka

Models, Mindsets, Meta: The What, the How, and the Why Not? 9

Aarhus 1989-90, with contributions by

– Flemming and Hanne Nielson et al. on Multi-Valued Logic for Static Analysis
and Model Checking

– Stefania Gnesi, Alessandro Fantechi, Maurice ter Beek et al. on States and
Events in KandISTI: A Retrospective

– Tiziana Margaria on Making Sense of Complex Applications: Constructive
Design, Features, and Questions

Aachen 1990-93, with a contribution by

– Gerald Lüttgen et al. on Interface Automata for Shared Memory

Passau 1993-97 with contributions by

– Didier Caucal et al. on Boolean algebras by length recognizability
– Hubert Garavel and Radu Mateescu with Reflections on Bernhard Steffen’s

Physics of Software Tools
– Sergei Gorlatch on Toward Structured Parallel Programming: Send-Receive

Considered Harmful
– Klaus Havelund et al. on Refining the Safety/Lliveness Classification of Tem-

poral Properties According to Monitorability
– Ulrike Lechner on Future Security: Processes or Properties? Research Direc-

tions in Cybersecurity

Dortmund 1997 - today with contributions by

– Dimitra Giannakopoulou and Corina Pasareanu et al. on Statistical Prediction
of Failures in Aircraft Collision Avoidance Systems

– Mike Hinchey et al. on The ASSL Approach to Formal Specification of Self-
Managing Systems

– Michael Huth on The Merits of Compositional Abstraction: A Case Study in
Propositional Logic

– Falk Howar et al. on JConstraints: A Library for Working with Logic Expres-
sions in Java

– Axel Legay et al. On the Expressiveness of Joining and Splitting
– Jakob Rehof et al. on Fast Verified BCD Subtyping
– Wolfgang Reisig on Composition: A Fresh look at an Old Topic
– Frits Vaandrager et al. on Benchmarks for Automata Learning and Confor-

mance Testing
– Jaco van de Pol et al. on Synchronous or Alternating? LTL Blackbox Checking

of Mealy Machines by Combining the LearnLib and LTSmin
– and a tribute to Bernhard Steffen by Dave Schmidt.

This volume, the talks and the entire B-Day at ISoLA 2018 are a tribute to
the first 30 years of Bernhard’s passion, impact and vision for many facets of com-
puter science in general and for formal methods in particular. Impact and vision
include the many roles that formal methods-supported software development
should play in education, in industry and in society. With Bernhard’s curiosity
and energy as unrelentless drivers, we look forward with great expectations to
the next generation of his ideas and initiatives in the years to come.

10 T. Margaria et al.

References

1. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal in 1995.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 431–434.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 66

2. Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.):
TACAS 1995. LNCS, vol. 1019. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60630-0

3. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp.
545–623. Elsevier Science, Amsterdam (2001). http://www.sciencedirect.com/
science/article/pii/B9780444828309500278

4. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084787

5. Burkart, O., Steffen, B.: Pushdown processes: parallel composition and model
checking. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp.
98–113. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 9

6. Burkart, O., Steffen, B.: Composition, decomposition and model checking of
pushdown processes. Nordic J. Comput. 2(2), 89–125 (1995). http://dl.acm.org/
citation.cfm?id=642068.642070

7. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, pp. 419–429. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63165-8 198

8. Cleaveland, R., Margaria, T., Steffen, B.: Editorial. STTT 1(1–2), 1–5 (1997).
https://doi.org/10.1007/s100090050001

9. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: Proceedings of the 9th International Symposium on Protocol
Specification, Testing and Verification, Enschede, The Netherlands, 6–9 June 1989,
pp. 287–302. North-Holland (1989)

10. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench. In: Sifakis, J.
(ed.) CAV 1989. LNCS, vol. 407, pp. 24–37. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52148-8 3

11. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993). http://doi.acm.org/10.1145/151646.151648

12. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 127–138.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7 129

13. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, generative,
and stratified models of probabilistic processes. In: Proceedings of the Fifth Annual
Symposium on Logic in Computer Science (LICS 1990), pp. 130–141. LICS, IEEE
Computer Society (1990)

14. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45923-5 6

https://doi.org/10.1007/3-540-61042-1_66
https://doi.org/10.1007/3-540-60630-0
https://doi.org/10.1007/3-540-60630-0
http://www.sciencedirect.com/science/article/pii/B9780444828309500278
http://www.sciencedirect.com/science/article/pii/B9780444828309500278
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/978-3-540-48654-1_9
http://dl.acm.org/citation.cfm?id=642068.642070
http://dl.acm.org/citation.cfm?id=642068.642070
https://doi.org/10.1007/3-540-63165-8_198
https://doi.org/10.1007/3-540-63165-8_198
https://doi.org/10.1007/s100090050001
https://doi.org/10.1007/3-540-52148-8_3
https://doi.org/10.1007/3-540-52148-8_3
http://doi.acm.org/10.1145/151646.151648
https://doi.org/10.1007/3-540-54233-7_129
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/3-540-45923-5_6

Models, Mindsets, Meta: The What, the How, and the Why Not? 11

15. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

16. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4 19

17. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

18. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: Proceedings of the ACM
SIGPLAN 1992 Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 224–234. ACM (1992)

19. Knoop, J., Rüthing, O., Steffen, B.: Lazy strength reduction. J. Program. Lang.
1, 71–91 (1993)

20. Knoop, J., Rüthing, O., Steffen, B.: Optimal code motion: theory and practice.
ACM Trans. Program. Lang. Syst. 16(4), 1117–1155 (1994)

21. Knoop, J., Rüthing, O., Steffen, B.: Partial dead code elimination. In: Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation (PLDI), pp. 147–158. ACM (1994)

22. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM Trans. Program. Lang. Syst. (TOPLAS)
18(3), 268–299 (1996). http://doi.acm.org/10.1145/229542.229545

23. Kubczak, C., Margaria, T., Nagel, R., Steffen, B.: Plug and play with FMICS-jETI:
beyond scripting and coding. ERCIM News 73, 41–42 (2008)

24. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinform. 10(Suppl 10), S8 (2009)

25. Lamprecht, A.L., Margaria, T., Steffen, B.: From bio-jETI process models to native
code. In: 14th IEEE International Conference on Engineering of Complex Com-
puter Systems, ICECCS 2009, Potsdam, Germany, 2–4 June 2009, pp. 95–101.
IEEE Computer Society, June 2009. http://www2.computer.org/portal/web/csdl/
doi/10.1109/ICECCS.2009.50

26. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

27. Larsen, K.G., Skou, A. (eds.): CAV 1991. LNCS, vol. 575. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55179-4

28. Margaria, T., Steffen, B.: Service engineering: linking business and IT. Computer
39(10), 45–55 (2006). http://portal.acm.org/citation.cfm?id=1175939

29. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design, and
provisioning platform for orchestrated bioinformatics processes. BMC Bioinform.
9(Suppl 4), S12 (2008)

30. Margaria, T., Kubczak, C., Steffen, B., Naujokat, S.: The FMICS-jETI platform:
status and perspectives. In: Proceedings of the 2nd International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2006), pp. 414–418. IEEE Computer Society Press, Paphos, 11 2006

31. Margaria, T., Meyer, D., Kubczak, C., Isberner, M., Steffen, B.: Synthesizing
semantic web service compositions with jMosel and golog. In: Bernstein, A., et al.
(eds.) ISWC 2009. LNCS, vol. 5823, pp. 392–407. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04930-9 25

https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-540-45069-6_31
http://doi.acm.org/10.1145/229542.229545
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICECCS.2009.50
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICECCS.2009.50
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/3-540-55179-4
http://portal.acm.org/citation.cfm?id=1175939
https://doi.org/10.1007/978-3-642-04930-9_25

12 T. Margaria et al.

32. Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–562.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 38

33. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of verifi-
cation tools in JETI. In: Proceedings of 12th IEEE International Conference on the
Engineering of Computer-Based Systems, pp. 431–436. IEEE Computer Society,
Los Alamitos (2005)

34. Margaria, T., Raffelt, H., Steffen, B., Leucker, M.: The LearnLib in FMICS-jETI.
In: ICECCS 2007 Proceedings of the 12th IEEE International Conference on Engi-
neering Complex Computer Systems, pp. 340–352. IEEE Computer Society, Wash-
ington, DC (2007)

35. Margaria, T., Steffen, B.: Aggressive model-driven development: synthesizing sys-
tems from models viewed as constraints. In: MBEES, pp. 51–62 (2005)

36. Margaria, T., Steffen, B.: From the how to the what. In: Meyer, B., Woodcock, J.
(eds.) VSTTE 2005. LNCS, vol. 4171, pp. 448–459. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69149-5 48

37. Margaria, T., Steffen, B.: Agile IT: thinking in user-centric models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88479-8 35

38. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing-
approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

39. Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2297-5 10

40. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141 34

41. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

42. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. (STTT) 11(4), 307–324 (2009)

43. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. (STTT) 11(5),
393–407 (2009)

44. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract
interpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–
380. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 22.
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=760066

45. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer,
A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54415-1 54. http://www.springerlink.com/
content/y5p607674g6q1482/

46. Steffen, B.: Generating data flow analysis algorithms from modal specifications. In:
Selected Papers of the Conference on Theoretical Aspects of Computer Software,
pp. 115–139. Elsevier Science Publishers B. V., Sendai (1993). http://portal.acm.
org/citation.cfm?id=172313

47. Steffen, B., Claßen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 72–87.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 6

https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-540-69149-5_48
https://doi.org/10.1007/978-3-540-88479-8_35
https://doi.org/10.1007/978-1-4471-2297-5_10
https://doi.org/10.1007/11596141_34
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/3-540-49727-7_22
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=760066
https://doi.org/10.1007/3-540-54415-1_54
http://www.springerlink.com/content/y5p607674g6q1482/
http://www.springerlink.com/content/y5p607674g6q1482/
http://portal.acm.org/citation.cfm?id=172313
http://portal.acm.org/citation.cfm?id=172313
https://doi.org/10.1007/3-540-60218-6_6

Models, Mindsets, Meta: The What, the How, and the Why Not? 13

48. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence.
Inf. Comput. 110(1), 149–163 (1994)

49. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven
benchmark generation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013.
LNCS, vol. 7976, pp. 341–357. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39176-7 21

50. Steffen, B., Margaria, T.: Tools get formal methods into practice. ACM Comput.
Surv. 28(4es), 126 (1996). http://doi.acm.org/10.1145/242224.242385

51. Steffen, B., Margaria, T.: METAFrame in practice: design of intelligent network
services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol.
1710, pp. 390–415. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48092-7 17

52. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Ann.
Rev. Commun. ACM 51, 847–856 (1997)

53. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1–2), 9–30
(1997)

54. Steffen, B., Rüthing, O., Huth, M.: Mathematical Foundations of Advanced
Informatics, Volume: 1 Inductive Approaches. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-68397-3

55. Steffen, B., Rüthing, O., Isberner, M.: Grundlagen der höheren Informatik - Induk-
tives Vorgehen. Springer Vieweg (2014)

https://doi.org/10.1007/978-3-642-39176-7_21
https://doi.org/10.1007/978-3-642-39176-7_21
http://doi.acm.org/10.1145/242224.242385
https://doi.org/10.1007/3-540-48092-7_17
https://doi.org/10.1007/3-540-48092-7_17
https://doi.org/10.1007/978-3-319-68397-3

Kiel 1983–1987

Applying Decision Graphs in the Context
of Automated Driving

Hardi Hungar(&)

German Aerospace Center (DLR), Institute of Transportation Systems,
38108 Brunswick, Germany
hardi.hungar@dlr.de

Abstract. Techniques to enable automated driving currently receive a lot of
attention in computer science research. Car automation requires realizing several
cognitive functions by computers. One important functionality is environment
perception. This consists of several sub-tasks which are complex and thus
computation intensive when implemented. We propose the use of decision
graphs to speed up the execution of a consistency check. This check is applied to
the output of a of neural net which classifies regions in an environment image.
The check consists in evaluating a set of probabilistic rules. The paper describes
how the miAamics approach of pre-computing results of rule evaluations with
decision graphs may be profitably used in this application.

Keywords: Decision graphs � Probabilistic knowledge base �
Markov logic network � Environment perception � Automated driving

1 Introduction

Environment perception is a key functionality of assisted and automated driving.
Interpreting an environment image consists in detecting and classifying objects in the
image. The following describes an advanced approach to image interpretation com-
bining neural networks and probabilistic logical reasoning from [1].

A camera image is segmented into regions. These regions shall correspond to the
different objects visible in the image, like traffic participants, road elements, road
furniture, and scenery. A neural network performs the segmentation and labels the
regions with the kind of object depicted there. This identification process is not perfect.
Therefore, the result is subjected to a plausibility check. For that, rules are formulated
which express knowledge supporting the classification (or hint against it). These rules
use the spatial relations between object classes in a street scene. The following two
formulas are examples of such rules.

Road xð Þ ^ Sky yð Þ ^ Below x; yð Þ ! Consistent xð Þ ð1Þ

Car xð Þ ^ Road yð Þ ^ Inside x; yð Þ ! Consistent xð Þ ^ Consistent yð Þ ð2Þ

The formulas are intended to capture rules of thumb. The antecedent of (1) will
very often, but not always, be true for a correct classification. Also, (2) captures an

© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 17–23, 2019.
https://doi.org/10.1007/978-3-030-22348-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_2

indication for a correct assignment. But very often, the road region will not surround
the car. So this rule applies less often. And sometimes, a car image will be inside a
building image. And if the building is wrongly classified as a road, the rule will
erroneously apply.

Vague knowledge like that is difficult to formulate in pure predicate logic. Instead,
a probabilistic extension of predicate logic is used. To denote the degree of certainty
with which a formula holds, a numeric weight is attached to each formula. The higher
the weight, the higher the probability that the formula is true for instantiations of the
variables with regions in an image. Thus, a rule consists of a formula and a numeric
weight.

Such a set of rules is called a probabilistic knowledge base (PKB). Its semantics is
given by a Markov Logic Network. [2]. This semantics gives a probabilistic measure
with which a particular setting is a model of the PKB. In our case, the measure gives a
consistency estimate, i.e., a figure how much the classification can be trusted. And we
will see that the computation of this measure might profit from decision graphs to
represent partial evaluations, enabling a (hopefully) real-time consistency check.

2 A Probabilistic Consistency Measure for Object
Classifications

2.1 Markov Logic Networks

In the following definition, groundings of predicates and formulas are used. Given a set
of constants C, the groundings of an n-ary predicate P form the set

groundc Pð Þ ¼ fPðc1; . . .; cnÞjc1; . . .; cn 2 Cg:

And the set of groundings of a quantifier-free formula F with variables {x1,…, xn}
are the ground formulas

groundc Fð Þ ¼ fF½x1; . . .; xn=c1; . . .; cn�jc1; . . .; cn 2 Cg:

We assume for simplicity that the formulas in the PKB are quantifier-free. This is
true for the rules in our application.

Definition. A Markov Logic Network (MLN) L is a set of pairs {(F1,w1)…, (Ff,wf)}
with first-order formulas Fi and real numbers wi.

Given a set of constants C = {c1,…, cs}, L defines a Markov network ML,C by

(A) The nodes of ML,C are all elements of the sets groundc(P) for the predicates P
appearing in L. These nodes are binary variables which can take values in {0,1}.

(B) There is an edge between two nodes if the grounded predicates appear in one of
the groundings of a formula of L.

(C) ML,C has a binary feature for each grounding of each formula Fi of L. A binary
feature is a function from the states of the associated node set to {0,1}. Here, it
gives the truth value (0 for false, 1 for true) of the formula, depending on the
values of the associated nodes.

18 H. Hungar

An MLN can be seen as a template for Markov networks. These are undirected
graphs, with additional labelings. This graph is a step in assigning a semantics to the
MLN for a particular set of constants, given a truth assignment to the nodes of the
network, i.e., given an interpretation of the predicates appearing in L for all constants.

Definition. If L is an MLN and C is a set of constants, an interpretation I is a function
assigning 0 or 1 (for false and true, resp.) to each node in ML,C.

Given I, the binary features provide the truth values of the ground instances of the
formulas Fi under the assignment I. I.e., for each F2groundc(Fi) with atomic sub-
formulas P1,…, Pn, there is a binary feature B s.t. I(F) = B(I(P1),…, I(Pn)). In this way,
the Markov networks ML,C introduced above capture the standard semantics of the
first-order formulas in the PKB. The probability aspect is introduced by the following
definition.

Definition. Let ML,C be a Markov network with interpretation I. Then

P Ið Þ ¼ 1=Zð Þ exp
Xf

i¼1
wi niðIÞ

� �
ð3Þ

where
ni(I) is the number true binary features of Fi, and

Z ¼ P
I exp

Pf
i¼1 wi niðIÞ

� �� �
, the sum over all interpretations

Thus, each interpretation gets assigned the sum of all weights of all true formula
instantiations. This value is turned into a probability by norming it, so that the set of
interpretations of atomic predicates over the constant set C forms a discrete probability
space. The more formulas (with high weights) are true in an interpretation, the more
likely the interpretation is a “true” model of the knowledge base. Though, usually, no
interpretation gets a probability of one. The intuition is that no formula needs to be true
in a particular domain. But the domain is more likely a model of the knowledge base, if
the formulas with positive weights are “mostly” true.

These are (slightly rephrased) the definitions from [2]. They are technically com-
plex, introducing a very explicit semantical domain. Indeed, for our purpose, they
could be simplified. The graphical structure of ML,C (namely, clause (B)) is not really
relevant, here. It is used in some algorithms working on Markov networks, e.g.,
probabilistic reasoning. None of these algorithms is used in this paper, though they play
a role in the overall classification procedure. We could work on the formulas and
groundings and ignore the graphical semantics definition.

2.2 Defining Consistency via Probabilistic Knowledge Bases

In our application to image interpretation, the unary predicates appearing in a rule set L
are the possible classifications of the objects in the image, plus the “Consistent”
predicate. The binary predicates are the spatial relationships. The constants are region
identifiers.

The rules generally have the form of (1) and (2): The antecedent is some propo-
sition about classifications of regions and their spatial relationship. The consequent is a
consistency assertion. Weights may be positive and negative. A positive weight means

Applying Decision Graphs in the Context of Automated Driving 19

that the antecedent is an indication that the classification is right. A negative weight
hints to the opposite.

The consistency check could be formulated as a probabilistic inference problem
(for which several algorithms on Markov networks are around). Namely, what is the
probability of consistency, given the regions, their spatial relationships, and their
classifications as computed by the neural network.

Or, employing the specific form of the rules, just the evidence from the antecedents
is computed: Each true antecedent adds to the probability of the consistency expressed
in the consequent of the respective rule, for a positive weight. And it discounts from the
probability, for a negative weight. This boils down to mainly compute the ni(I) for the
antecedents and multiply it by the respective weight wi, cf. Eq. (3). From that, by a few
additions (number of relevant rules), a consistency figure for a single classification can
be computed. Or, by adding all figures, one gets the overall consistency assessment
expressed by the PKB.

We will follow the second approach, computing the ni(I) for the antecedents, in our
solution to the plausibility check. The complexity of the task comes from the fact that it
is not easy to compute the number of true instantiations of a formula. We will show
how decision diagrams can be used to gain online efficiency by offline pre-
computation.

3 Decision Diagrams for Fast Evaluation

The following definitions are based on [3].

3.1 Algebraic Decision Diagrams

Definition. An Algebraic Decision Diagram (ADD) is a septuple
D = (N, T, r, succ0, succ1, X, V, var, val),
where

N is a finite set of nodes
r2N is the root
T is a set of terminal nodes (leaves)
succ0 and succ1 are functions from N to N [T
X is a set of variables
V is a set of numeric values (e.g., R)
var and val are labeling functions, var: N ! X, val: T ! V

such that N [T are the nodes of a graph with edges succ0 and succ1, the graph is
acyclic, and its root is r.

An ADD is thus a rooted, acyclic graph with uniform degree 2, where each inner
node is labeled by a variable, and each leaf carries a value.

20 H. Hungar

Definition. An ADD D defines a function from valuations I:X ! {0,1} to V as
follows.

D(I)(t) = val(t) for t2T
D(I)(n) = if I(var(n)) = 1 then D(I)(succ1(n)) else D(I)(succ0(n)) for n2N
D(I) = D(I)(r)
D(I) is well-defined because of the finiteness and acyclicity of D.

Intuitively, given a valuation of the variables of D, one follows the path from the
root, choosing the successor which is indicated by the valuation of the variable at each
node on the path. The label of the leaf at the end of the path gives the function value.
Thus, given a particular valuation of the variables, the function value is easy to
compute.

Definition. An ADD is

• reduced, if all nodes define different functions, i.e., for all n 6¼ m 2 N [T, there is
some I s.t. D(I)(n) 6¼ D(I)(m)

• ordered, if there is a linear order < on the variable set X, s.t. for all nodes n, m with
m = succ0(n) or m = succ1(n), var(n) < var(m)

RO-ADD denotes the set of reduced, ordered ADDs.
Remark. For each ADD D and each order < on its set of variables X, there is an

RO-ADD D’ with order < which defines the same function as D. The RO-ADD D’ is
unique up to isomorphism. I.e., an RO-ADD (given <) is a canonical form for a given
function.

By eliminating semantically redundant nodes (and redirecting dangling successor
pointers), an ADD can be reduced. This is obviously beneficial, as the reduced ADD
will have a smaller size. Variable orders are a different matter. They are useful because
they greatly simplify the construction of ADDs.

3.2 Applying ADDs

ADDs can efficiently store and retrieve numeric evaluations of weighted sets of logical
rules. This is the central idea underlying the patented miAamics machinery [4, 5]. This
machinery was developed by Steffen, Margaria, and the author of this paper nearly two
decades ago. This machinery can likely be employed in the computation procedure of
the consistency check. Somewhat similar to miAamics, we use RO-ADDs to represent
rule evaluations. Here, the RO-ADDs give the number of true groundings of
antecedents.

Let {P1,…, Pp} be the atomic predicates in the PKB. And let C be constants naming
the regions in an image. Only the maximal number of regions is relevant, not the name
of the constant denoting a particular region. Let {A1,…, Af} be the set of antecedents of
rules, and let Pi � Aj denote that Pi occurs in Aj. Then the set of variables of the
RO-ADDs is the union over all groundc(Pi), and an RO-ADD for Aj will depend on the
variables in groundc(Pi) for Pi � Aj.

Applying Decision Graphs in the Context of Automated Driving 21

If Di is an RO-ADD s.t. Di(I) = ni(I) for all I, it is easy to compute ni(I), see above.
Such an RO-ADD can be constructed by standard operations on RO-ADDs.
The CUDD package, available at https://github.com/sysulic/cudd, offers all necessary
functions.

There is, however, a catch. A common obstacle to such usages of decision diagrams
is the fact that the size of the graph may explode. In the worst case, an ADD over m
variables equals a full binary tree with m + 1 levels (i.e., 2 m-1 nodes and 2 m leaves).
And k regions will lead to 2*k + k2 variables for the antecedent of (1), which gives an
example of a typical, small formula. Though the worst case will not occur for such
antecedents, it is not clear that the RO-ADD sizes will be manageable for a reasonable
number of regions.

Since we did not perform any experiments with ADD construction for the con-
sistency rules, no definitive answer can currently be given. If a direct encoding in RO-
ADDs does not work for all antecedents, there are several ways to cope with that. One
is to split the RO-ADD for an antecedent A by replacing A by the following collection
of formulas.

x ¼ c1 ^ A½x=c1�
. . .
x ¼ ck ^ A½x=ck�

The set of true groundings of A is the disjoint union of the true groundings of the
formulas above. By eliminating one of the variables of a spatial relation predicate in
this way, the number of variables on which the corresponding RO-ADD depends is
greatly reduced. E.g., there are 440 variables potentially relevant for the antecedent of
Formula (1), if there are 20 regions. After splitting the formula as indicated above, there
are at most 60 relevant variables for each of the resulting formulas. And splitting can
have a large effect on the total space requirements for the RO-ADDs as the combination
of two RO-ADDs is often much larger than the sum of their sizes. This way, a complex
combinatorial explosion in the pre-computation might be avoided, by committing to a
small number of extra additions in the online evaluation.

4 Conclusion

We have presented an approach of using ADDs in the realm of image interpretation.
The procedure of segmentation, classification and consistency check is the main topic
of the dissertation (in preparation, see also [6]) of Fouopi, a colleague of the author at
the DLR. The potential application of the miAamics machinery occurred to the author
at a presentation of the consistency check, where its computational complexity was
mentioned. The author would like to express his sincere thanks to his colleague for
discussing the approach described in this paper.

It should not be difficult to test that approach in practice. Though this has not been
done yet, the flexibility of the machinery is likely to enable some profitable usage of it.
In any case, the potential benefits should be motivation enough to do this in the near
future.

22 H. Hungar

https://github.com/sysulic/cudd

References

1. Pekezou Fouopi, P., Srinivas, G., Knake-Langhorst, S., Köster, F., Niemeijer, J.: Holistische
Szenenmodellierung und -Interpretation basierend auf subsymbolischen, symbolischen und
probabilistischen Methoden. VDI-Fachkonferenz Umfelderfassung im Fahrzeug (2018)

2. Richardson, M., Domingo, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136
(2006)

3. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. Formal Methods Syst.
Des. 10, 171–206 (1997)

4. Kubczak, C., Margaria, T., Steffen, B., Winkler, C., Hungar, H.: An approach to discovery
with miAamics and jABC. Semant. Web Serv. Challenge 8, 217–234 (2009)

5. Hungar, H., Steffen, B., Margaria-Steffen, T.: Methods for generating selection structures, for
making selections according to selection structures and for creating selection descriptions.
Patent No 9141708 USA, 22 September 2015

6. Lapoehn, S., Pekezou Fouopi, P., Löper, C., Knake-Langhorst, S., Hesse, T.: Semantische
Netze als Wissensbasis automatisierter Fahrzeuge. VDI/VW-Gemeinschaftstagung: Fahras-
sistenzsysteme und automatisiertes Fahren (2016)

Applying Decision Graphs in the Context of Automated Driving 23

Edinburgh 1987–1989

Analyzing Spreadsheets for Parallel
Execution via Model Checking

Thomas Bøgholm, Kim G. Larsen, Marco Muñiz, Bent Thomsen(B),
and Lone Leth Thomsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
bt@cs.aau.dk

Abstract. In this paper we briefly report on work in the Popular
Parallel Programming (P3) project where we follow in the footsteps of
Bernhard Steffen using the idea of program analysis via model checking
and abstract interpretation. The programs we analyze are spreadsheet
programs, which for long have been identified as an ideal programming
model for parallel execution. We translate spreadsheet programs into
Timed Automata Models, which may be analyzed by the Uppaal model
checker and its derivatives, with the purpose of finding schedules for
parallel execution. In this paper we mainly focus on the techniques and
scalability issues of various variants of Uppaal, but also report briefly
on the performance results achieved through the parallelization.

1 Introduction

Mani Chandy noted as early as in 1985 in his keynote at the fourth annual
ACM symposium on Principles of distributed computing (PODC 1985) entitled
Concurrent programming for the masses that a programming model based on
spreadsheets would reach a much wider audience and should be much easier to
parallelize than the traditional programming model(s) [7]. However, in the three
decades that have passed since this keynote only sporadic efforts have been made
in this area [2,4,11,21].

To realize the idea of parallel programming via spreadsheets, it is necessary
to adapt and further develop program analysis techniques to the spreadsheet
programming model to identify the parts of a program that can be executed in
parallel and subsequently find schedules for their execution.

The idea of program analysis via model checking was pioneered by Bernhard
Steffen and presented in his 1991 paper entitled Data Flow Analysis As Model
Checking [20] and further elaborated with David Schmidt in the paper entitled
Program Analysis as Model Checking of Abstract Interpretations [18].

The Popular Parallel Programming (P3) project1 set out to follow in the
footsteps of Bernhard Steffen by using the idea of program analysis via model

1 https://www.itu.dk/∼sestoft/p3/.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 27–35, 2019.
https://doi.org/10.1007/978-3-030-22348-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_3&domain=pdf
https://www.itu.dk/~sestoft/p3/
https://doi.org/10.1007/978-3-030-22348-9_3

28 T. Bøgholm et al.

Fig. 1. Example spreadsheet

checking and abstract interpretation to investigate various approaches to paral-
lelizing the execution of spreadsheet programs based on the open source spread-
sheets Corecalc and Funcalc2 implemented in C# and thoroughly described in
[19]. The P3 project views spreadsheets as a dataflow language with the pur-
pose of improving compilation of dataflow languages to shared-memory multicore
machines, partly by drawing on recent advances in static execution time esti-
mates based on abstract interpretation [6] and scheduling techniques based on
timed automata [1,3,5,10,12,16].

2 Spreadsheets and Dataflow

To see how spreadsheets can be viewed as dataflow programs we first look at
an example. Figure 1 shows a small spreadsheet with 8 active cells, A2, A3, A4,
B1, B5, C2, C3 and C4. Only the formulae are shown, whereas in a normal
spreadsheet application the results of the computations would be shown.

B1 is a data cell, where the remaining cells are formulae directly or indirectly
depending on B1. In a small spreadsheet like this, it is easy to see that the
calculation of the value of the formula in cell B4 depends on the value of the
formulae in cell A4 and C4. The formula in cell C4 depends on cell C3, which
in turn depends on cell C2, depending on cell B1. Similarly cell A4 depends on
cell B1 and A3, which depends on A2, which depends on B1. This dependency
relationship is depicted by the orange arrows in Fig. 1. Thus to calculate the
results presented in Fig. 1 a dataflow in the reverse order of the dependency
relationship is needed, i.e. data from cell B1 flows into the formulae in cell A2
and C2. A2 flows into A3. C2 flows into C3 and A4. C3 flows into C4 and finally
A4 and C4 flow into B5.

Based on the dependency relationship one can construct a schedule for exe-
cuting the formulae in parallel on a dual-core machine such that the needed
dataflow between cells is upheld. One schedule could be on CPU 1 calculate cell
B1. Then in parallel calculate cell A2 on CPU1 and cell C2 on CPU2. Then in
2 http://www.itu.dk/people/sestoft/funcalc/.

http://www.itu.dk/people/sestoft/funcalc/

Analyzing Spreadsheets for Parallel Execution via Model Checking 29

Fig. 2. Example spreadsheet with TA for cell C3

parallel A3 on CPU 1 and B3 on CPU 2, followed by cell A4 on CPU 1 and B4
on CPU2 in parallel. Finally cell B5 can be computed on CPU 1. This schedule
would require 5 time units, assuming that the calculation of each cell takes 1
unit. A sequential calculation would require 8 time units.

The example in Fig. 1 is small enough that the dependency relationship and
dataflow can be inspected or even constructed manually. However, the relation-
ship quickly becomes difficult to keep track of manually.

3 Generating Timed Automata Models
from Spreadsheets

In this section we show various translations from spreadsheet into Timed
Automata (TA) which in turn may be analyzed with various variants of the
Uppaal model checker. Timed Automata and extensions such as Priced Timed
Automata, together with model checkers, especially the Uppaal model checker,
have for more than a decade been used to solve scheduling problems by a refor-
mulation as reachability problems [1,3,5,10,12,16].

We regard each cell as a task which is translated into a separate process in
Uppaal. Similarly, we generate a process for each computation unit, i.e. CPU,
and the scheduling algorithm. These processes are then composed in parallel
into a single model. Processes synchronize using channels, and have access to a
number of functions, which allows for expressing more complex functionality in
a small C-like language.

Figure 2 shows an example spreadsheet with a Uppaal TA task model for cell
C3. The general idea is to translate each cell in a spreadsheet into such models
which are then combined into one TA with dependencies between tasks. The task
model consists of three locations: Waiting, Executing, Finished, which represent
the three states of a task. These three states are linked through two edges: The
first edge, from Waiting to Executing contains a guard, synchronization, and an
update.

30 T. Bøgholm et al.

The guard enabled(id) is a call to the function enabled(job t id), this
must evaluate to true for enabling the transition to the Executing state. This edge
is synchronizing on channel exec[id]?, a receiving synchronization indicated by
?. The id of the process is used as index into the channel array exec[job t].
Last, the update executing[id]=true atomically updates the executing flag for
the current task, indicating that it is currently executing. The second edge from
the Executing state to the Finished state is enabled when the channel exec[id]
is signaled. Taking this transition sets the done flag for this process and unsets
the running flag.

Fig. 3. CPU template

Figure 3 shows the model of a CPU which consists of two locations, Idle
and Executing, representing the two states of a CPU in our model. CPU is a
template parameterized with id of type cid t, an integer subtype which ranges
from zero to the number of CPUs. Additionally, the CPU template has two
locally defined state variables: clock c, a clock variable for recording execution
time spent in location Executing, and job t selectedtask, representing the
task this CPU is currently executing. In the Executing location, the invariant
c<=cost[selectedtask] limits the time spent in this location to the execution
cost of the selected task.

In Uppaal the system declarations for the resulting model then consist of:
1 Sheet1_A2 = Task (1) ;
2 Sheet1_A3 = Task (2) ;
3 Sheet1_A4 = Task (3) ;
4 Sheet1_B1 = Task (4) ;
5 Sheet1_B5 = Task (5) ;
6 Sheet1_C2 = Task (6) ;
7 Sheet1_C3 = Task (7) ;
8 Sheet1_C4 = Task (8) ;
9 Cpus (const cid_t c) = CPU (c) ;

10
11 system Cpus , Sheet1_A2 , Sheet1_A3 , Sheet1_A4 , Sheet1_B1 , Sheet1_B5

, Sheet1_C2 , Sheet1_C3 , Sheet1_C4 ;

Analyzing Spreadsheets for Parallel Execution via Model Checking 31

Line 9 creates process instances of the CPU template for each value in cid t,
named Cpus. Lines 1–8 create instances for each task, with a name representing
the cell in the spreadsheet. Each instance is created separately in order to give
identifiable names for each task in the resulting trace. The fastest trace will be
the optimal schedule. Here fast refers to lowest global clock value, not the length
of the trace, the latter being shortest trace in Uppaal. The number of clocks
in this model is the number of CPUs plus one, for recording the global clock.
Unfortunately this approach does not scale beyond toy-like spreadsheets like the
one depicted in Fig. 2. This is not surprising as e.g. [13] reports on various task
graph scheduling examples with up to 16 tasks. Larger examples quickly run
into the state-space explosion problem.

However, often we do not need the optimal schedule, but a good enough
schedule is sufficient. Such schedules may be explored by Uppaal-stratego [8]
which can be used to model 11/2-player games where the opponent is stochas-
tic. Given a game Uppaal-stratego can synthesize near-optimal strategies
for complex systems. It has successfully been used for controlling floor heating
systems [14] and controlling traffic lights [9].

In a nutshell Uppaal-stratego synthesizes near-optimal strategies by: star-
ing with a uniform distribution over the controllable choices, generating runs,
evaluating how good are these runs, refining the distribution on the controllable
choices via learning algorithms, and iterating.

Fig. 4. Stratego model. (Left environment indicating if there are pending jobs Right).
CPU-model where controllable choices are among available jobs.

Figure 4 illustrates the Uppaal-stratego model for 1-CPU. It is a game
between the scheduler and the environment which includes the jobs to execute.
The solid arrows are the scheduler choices whereas the dashed arrows correspond
to the environment choices. Note that the solid arrow has a select statement
jobID:job t which is equivalent to the enumeration of all tasks with one solid
arrow for each task. The intuition from the model is as follows. First at location
idle a delay is chosen from the exponential distribution with rate EXP RATE, if
there are no jobs left location done is reached, otherwise if a CPU and a job are

32 T. Bøgholm et al.

available a job has to be taken. A job is taken by executing one of the solid arrows
induced by jobID:job t leading to location busy, the CPU stays at this location
for the duration of the job. When the job duration has elapsed the environment
sets the status of the job to 0 indicating that the job is done, and returns to the
initial location. Table 1 shows the results of using Uppaal-stratego from Fig. 4
in different spreadsheets. In the generated models, all cell computing costs are
random values using same initial seed. These costs will in future implementations
be replaced by cost inferred based on abstract interpretations of the execution
time for cell formula [6].

Table 1. Results for Uppaal-stratego

Model CPUsCost GreedyTime sec Speedup %

Supportgraph 31 cells 119 dependencies 2 7.047 6.959 42 -1.20

4 4.884 4.981 45 1.95

8 4.611 4.611 62 0.00

16 4.611 4.611 59 0.00

Example 115 cells, 65 dependencies 2 24.890 25.411 1.627 2.05

4 12.581 13.375 1.373 5.94

8 6.484 6.993 2.202 7.28

16 3.450 4.035 199 14.50

Formulacopies 73 cells, 255 dependencies 2 16.051 16.087 253 0,09

4 8.522 8.181 10 -4,17

8 4.650 4.307 216 -7,96

16 3.900 3.982 683 2,06

4 The Dependency Scheduler

The dependency scheduler is a generic task scheduler for the .Net platform, orig-
inally developed by Møller as part of his MSc [17]. The dependency scheduler
takes as input a set of tasks and a description of their dependencies. The sched-
uler will then execute these task in such a way that if a task depends on other
tasks, it will only execute when these tasks have completed, e.g. if we have three
tasks A, B and C, where task A and task B do not have any dependencies and
task C is dependent on task B, then the scheduler will execute task A and task
B concurrently, and when task B finishes, task C will start. The dependency
relationship is described via a dependency graph which may come from a task
dependency analysis produced by (various versions of) Uppaal.

The dependency scheduler uses the thread pool from Microsoft .NET library,
which is used to keep track of the threads, managed by .NET. All threads are
created from system start up, so no additional time has to be spend on creating
new threads during execution.

Analyzing Spreadsheets for Parallel Execution via Model Checking 33

The dependency scheduler will first start all tasks without dependencies.
Tasks will signal when they finish and as soon as tasks dependent on finished
tasks are ready for execution, they will be released. Thus a kind of wave of tasks
goes through the set of tasks until all tasks have been executed. For spreadsheets,
this wave will follow the dataflow based on the schedule of tasks calculated by
Uppaal.

The dependency scheduler has now been fully integrated into the Funcalc
platform and can take as input cell formulae wrapped as .Net tasks together
with a schedule produced by Uppaal. For efficiency reasons null and constant
data cells will not be included in the dependency scheduler.

We have carried out a small performance study based on two spreadsheets,
the Building Design benchmark and the Ground Water daily benchmark, from
the LibreOffice Benchmarks [15] developed in connection with a study of paral-
lelisation of the LibreOffice spreadsheet on AMD GPUs [4]. These spreadsheets
have about one million data cells and about 50.000 formula cells. However, they
differ slightly in the complexity of the formulae and the dependencies between
cells.

Fig. 5. Benchmarks – building design

Figure 5 shows the average execution time of ten runs of the Building Design
benchmark using the original sequential version of Funcalc, the version of Fun-
calc with the dependency scheduler and an execution with the LibreOffice
GPU accelerated version. Lower is better. As can be seen LibreOffice is the
fastest executing at 84.86 ms, then Parallel Spreadsheet with 2668.8 ms and then
Singlethread with 13463.4 ms. So we obtain approximately a five-fold speedup on
a 6 core machine. The benchmark was executed on an I7-5930k 6 core machine
with a 3.5 GHz clock and 32 GB DDR4 RAM; the program was executed in
32bit mode limiting memory usage.

Figure 6 shows the average execution time of ten runs of the Ground Water
daily benchmark. Again Lower is better. On this benchmark the Parallel Spread-
sheet is the fastest at 7142.7 ms, then LibreOffice with 15959.97 ms, then

34 T. Bøgholm et al.

Fig. 6. Benchmark – ground water daily

Singlethread with 38327.9 ms. In this benchmark we see at 5.3 time speedup
over the sequential version.

5 Conclusions

The Popular Parallel Programming (P3) project has been inspired by Bernhard
Steffen to use the idea of program analysis via model checking and abstract inter-
pretation. We translated spreadsheet programs into Timed Automata Models,
which were analyzed by the Uppaal model checker and its derivatives, with the
purpose of finding schedules for parallel execution. Execution time for each for-
mula in the spreadsheet is estimated using abstract interpretation. We mainly
focused on the techniques and scalability issues of various variants of Uppaal,
but also reported briefly on the performance results achieved through the par-
allelization analysis. On some benchmarks the parallel version of Corecalc and
Funcalc gain over a five-fold speed up on a six core machine.

References

1. Abdeddäım, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed
automata. In: Proceedings International Parallel and Distributed Processing Sym-
posium, 2003, p. 8. IEEE (2003)

2. Abramson, D., Roe, P., Kotler, L., Mather, D.: Activesheets: super-computing
with spreadsheets. In: 2001 High Performance Computing Symposium (HPC 2001),
Advanced Simulation Technologies Conference, pp. 22–26. Citeseer (2001)

3. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45351-2 8

4. AMD: Collaboration and open source at amd: Libreoffice (2015). https://developer.
amd.com/collaboration-and-open-source-at-amd-libreoffice/

https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1007/3-540-45351-2_8
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/

Analyzing Spreadsheets for Parallel Execution via Model Checking 35

5. Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-
2 15

6. Bock, A., Bøgholm, T., Sestoft, P., Thomsen, B., Thomsen, L.L.: Concrete
and Abstract Cost Semantics for Spreadsheets. Technical Report, TR-2018-
203, IT University, Denmark. https://pure.itu.dk/portal/files/84061527/ITU TR
2018 203.pdf

7. Chandy, M.: Concurrent programming for the masses (invited address). In: Pro-
ceedings of the Fourth Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 1–12. PODC 1985, ACM, New York, NY, USA (1985). https://doi.org/
10.1145/323596.323597

8. David, A., Jensen, PGjøl, Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

9. Eriksen, A.B., et al.: Uppaal stratego for intelligent traffic lights. In: Proceedings
of the 12th ITS European Congress, Strasbourg, France, 19–22. June 2017 (2017)

10. Fehnker, A.: Scheduling a steel plant with timed automata. In: rtcsa, p. 280. IEEE
(1999)

11. Hirsch, A.: Compiling and optimizing spreadsheets for FPGA and multicore exe-
cution. Ph.D. thesis, Massachusetts Institute of Technology (2007)

12. Hune, T., Larsen, K.G., Pettersson, P.: Guided synthesis of control programs using
uppaal. Nord. J. Comput. 8(1), 43–64 (2001)

13. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: A data structure for verifica-
tion of closed timed automata. arXiv preprint arXiv:1211.6195 (2012)

14. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and
compositional learning of controllers with application to floor heating. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 14

15. LibreOffice: Libreoffice benchmarks (2011). https://gerrit.libreoffice.org/gitweb?
p=benchmark.git;a=tree

16. Maler, O.: Timed automata as an underlying model for planning and scheduling.
In: Proceedings of the 2002 International Conference on Planning for Temporal
Domains, pp. 67–70. AAAI Press (2002)

17. Møller, N.K.: Pre-analyses dependency scheduling with multiple threads (2016)
18. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract inter-

pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 22

19. Sestoft, P.: Spreadsheet Implementation Technology: Basics and Extensions. The
MIT Press, Cambridge (2014)

20. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1 54

21. Wack, A.P.: Partitioning dependency graphs for concurrent execution: a parallel
spreadsheet on a realistically modeled message passing environment (1996)

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://pure.itu.dk/portal/files/84061527/ITU_TR_2018_203.pdf
https://pure.itu.dk/portal/files/84061527/ITU_TR_2018_203.pdf
https://doi.org/10.1145/323596.323597
https://doi.org/10.1145/323596.323597
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
http://arxiv.org/abs/1211.6195
https://doi.org/10.1007/978-3-662-49674-9_14
https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree
https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree
https://doi.org/10.1007/3-540-49727-7_22
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54

System Analysis and Robustness

Eugenio Moggi1(B), Amin Farjudian2, and Walid Taha3

1 DIBRIS, Genova Univ., Genova, Italy
moggi@unige.it

2 Univ. of Nottingham Ningbo China, Ningbo, China
amin.farjudian@nottingham.edu.cn
3 Halmstad Univ., Halmstad, Sweden

walid.taha@hh.se

Abstract. Software is increasingly embedded in a variety of physical
contexts. This imposes new requirements on tools that support the design
and analysis of systems. For instance, modeling embedded and cyber-
physical systems needs to blend discrete mathematics, which is suitable
for modeling digital components, with continuous mathematics, used for
modeling physical components. This blending of continuous and discrete
creates challenges that are absent when the discrete or the continuous
setting are considered in isolation. We consider robustness, that is, the
ability of an analysis of a model to cope with small amounts of impreci-
sion in the model. Formally, we identify analyses with monotonic maps
between complete lattices (a mathematical framework used for abstract
interpretation and static analysis) and define robustness for monotonic
maps between complete lattices of closed subsets of a metric space.

Keywords: Analyses · Robustness · Domain theory

1 Introduction

The following considerations are taken from the paper “Continuous modeling
of real-time and hybrid systems: from concepts to tools” [12] by Steffen et al.,
which was published in a special section on timed and hybrid systems. They
provide the context and motivations for the issues addressed in this short paper.

1. Having served as a successful paradigm in physics and engineering for more
than 300 years, starting with the discovery of the differential calculus by Leib-
niz and Newton at the end of the seventeenth century, the continuous inter-
pretation of time was overwhelmed by the digital revolution.

2. The key point of formal description techniques is their mathematical exact-
ness: it is unambiguous how the specified system is going to behave. Exact-
ness should, however, not be confused with precision: “the system
must respond within at least 1 and up to 20 s” is exact, although one might
argue that it is not precise. Exact specification makes the amount of
imprecision explicit.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 36–44, 2019.
https://doi.org/10.1007/978-3-030-22348-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_4

System Analysis and Robustness 37

3. Typically the behavior of the controlled system is given a priori, while the
controlling system still needs to be designed in a way guaranteeing a correct
overall behavior. . . . , for most embedded systems the open system approach
is insufficient as the correctness of the controlling system depends on
properties of the environment. Capturing these situations requires
modeling the environment as well.

Imprecision. In a discrete setting one can achieve absolute precision1, in a con-
tinuous setting there are two pervasive and unavoidable sources of imprecision:

1. imprecision in measurements, namely predictions based on a mathematical
model and observations on a real system can be compared only up to the
precision of instruments used for measurements on the real system, and

2. imprecision in representing continuous quantities in computer-assisted tools
for modeling and analyzing hybrid/continuous systems.

Thus, a real number x:R in mathematics, becomes x±ε in physics, with ε > 0
measurement error, in theory of computation becomes an interval [x, x] with x
and x belonging to a subset of R with exact finite representations (e.g., floating-
point or rational numbers) [14]2. However, any x:R can be approximated by
proper rational intervals [x, x] with arbitrarily small imprecision, i.e., for any
δ > 0 there are rational numbers x and x such that x < x < x and 0 < x−x < δ.

Approximability extends to continuous maps on R. First, a continuous map
f on R has a Scott continuous natural extension f(I) �= {f(x)|x: I} on the cpo
IR of intervals ordered by reverse inclusion. Scott continuity implies that the
imprecision of f(I) goes to 0 when the imprecision of I goes to 0. Second, f
can be replaced by a Scott continuous F mapping proper rational intervals to
proper rational intervals such that F ([x]) = [f(x)] = f([x]), thus f(I) ⊆ F (I).
When f is not continuous, one must give up something. Namely, one can find a
monotonic F on IR such that:

1. ∀x:R.F ([x]) = [f(x)], but F fails to be Scott continuous, or
2. F is Scott continuous, ∀I: IR.f(I) ⊆ F (I), but ∀x:R.F ([x]) = [f(x)] fails.

In both cases the property “F (I) converges to f(x) when I converges to x” fails.

Robustness. In [13], we introduced robustness, a property of monotonic maps
between complete lattices of (closed) subsets in metric spaces. Intuitively, robust-
ness requires that small changes to the input I of a map F cause small changes
to its output, where the definition of small relies on the metrics. Often, analyses
can be identified with monotonic maps between complete lattices. For instance,
reachability analysis can be cast as a monotonic map F on the complete lattice
P(S) of subsets of the state space S, that takes a set I of initial states and outputs
the set R(I) of states reachable from I, thus I ⊆ R(I) = R2(I).

1 This does not exclude the possibility of using imprecise (aka loose) specifications.
2 Representing a real with a float, as done in traditional numerical methods, means

that the imprecision in computations is either ignored or is tracked manually.

38 E. Moggi et al.

If S is a metric space, then one has the mathematical framework to measure
imprecision. The picture below shows the initial state s of three systems (red,
green and blue) consisting of a ball that can move (in a one-dimensional space)
under the effect of gravity. We assume that initially the speed is 0, thus from s
only s is reachable, i.e., Rr({s}) = Rg({s}) = Rb({s}) = {s}, but:

– the red ball (top) is unstable, i.e., a small change s′ to s means
that Rr({s′}) includes some states far from s;

– the green ball (middle) is stable, i.e., a small change s′ to s
implies that all states in Rg({s′}) are close to s;

– the blue ball (bottom) is stable, if a small change s′ affects
only the position (while the speed remains 0); it is unstable,
if the speed can change (and there is no friction).

These claims on s can be recast as follows: Rg is robust at {s}, Rr is not.

Background. We assume familiarity with metric/topological spaces, the notions
of open/closed/compact subset of a space [4,10], and make limited use of Cate-
gory Theory [2,3] and Domain Theory [8]. We may write x:X for x ∈ X.

– Every metric space is a topological space whose open subsets are given by
unions of open balls B(x, δ) �= {y|d(x, y) < δ}.

– O(S) is the set of open subsets of a metric/topological space S, C(S) is the
set of closed subsets, and P(S) is the set of all subsets.

– P(S) is the complete lattice of all subsets of S ordered by reverse inclusion,
which is the natural information order on over-approximations (thus, sups
are given by intersections and infs by unions). Similarly, C(S) is the complete
lattice of closed subsets of S ordered by reverse inclusion (sups are given by
intersections, but only finite infs are given by unions).

Contributions. The contributions of this short paper are:

1. A definition of imprecision in the context of metric spaces (Sect. 2), related to
the noise model in [7] and δ-safety in [11]. The main point is that imprecision
makes a subset S of a metric space S indistinguishable from its closure S.

2. A notion of robustness [13] (Sect. 3) for monotonic maps A:C(S1) → C(S2),
the restriction to closed subsets is due to indistinguishability of S and S.

3. Results about existence of best robust approximations [13] (Sect. 4).

2 Imprecision in Metric Spaces

Definition 1. Given a metric space S, with distance function d, we define:

1. B(S, δ) �= {y|∃x:S.d(x, y) < δ}, where S:P(S) and δ > 0. Intuitively, B(S, δ)
is the set of points in S with imprecision < δ. B(S, δ) is open, because it is the
union of open balls B(s, δ) with s:S, moreover B(B(S, δ), δ′) ⊆ B(S, δ + δ′).

2. S:C(S) is the closure of S:P(S), i.e., the smallest C:C(S) such that S ⊆ C.
For S:P(S) and δ > 0 the following holds: S ⊆ S ⊆ B(S, δ) = B(S, δ). Thus,
in the presence of imprecision, S and S are indistinguishable.

System Analysis and Robustness 39

3. Sδ
�= B(S, δ) is the δ-fattening of S:P(S). Intuitively, Sδ is the set of points

in S with imprecision ≤ δ. In fact, B(S, δ) ⊆ Sδ ⊆ B(S, δ′) when 0 < δ < δ′.
For S:P(S) the following holds: S =

⋂
δ>0 B(S, δ) =

⋂
δ>0 Sδ. Thus, the

closure S is the set of points that are in S with arbitrarily small imprecision.

We consider some examples of metric spaces motivated by applications.

Example 1 (Discrete). A set S can be viewed as a discrete metric space, i.e.,
d(s, s′) = 1 when s �= s′. Any subset S of S is closed and open. Thus, C(S) = P(S),
and Sδ = S for δ ≤ 1. More generally, if ∀s, s′:S.s �= s′ =⇒ δ ≤ d(s, s′), then
∀S:P(S).Sδ = S, i.e., an imprecision ≤ δ amounts to absolute precision.

Example 2 (Euclidean). Euclidean spaces R
n (and Banach spaces) are used for

modeling continuous and hybrid systems [9]. For C:C(Rn), δ-fattening has a
simpler alternative definition, namely Cδ = {y|∃x:C.d(x, y) ≤ δ}.

Example 3 (Products, sub-spaces, sums). The product S0 × S1 of two metric
spaces is the product of the underlying sets with metric d(x, y) �= max

i:2
di(xi, yi).

A subset S′ of S inherits the metric, thus can be considered a metric space S
′.

If S′ is also closed, then C(S′) ⊆ C(S) and the δ-fattening of S:P(S′) is Sδ ∩ S′.
The sum

∐
i:I Si of an I-indexed family of metric spaces is {(i, x)|i: I ∧x:Si}

with metric d((i, x), (j, y)) �= if i = j then di(x, y) else 1. The following hold:
P(

∐
i:I Si) ∼= ∏

i:I P(Si), i.e., a subset in the sum is a sum
∐

i:I Si of subsets.
Similarly, C(

∐
i:I Si) ∼= ∏

i:I C(Si). Moreover, (
∐

i:I Si)δ =
∐

i:I(Si)δ for δ ≤ 1.

Remark 1. Usually the state space of a hybrid automaton [1] is a (finite) sum of
closed sub-spaces of Euclidean spaces. A hybrid system on a Euclidean space S

is a pair H = (F,G) of relations on S. Equivalently, H is a subset F + G of the
metric space S

2 +S
2. Therefore, closure and δ-fattening are applicable to hybrid

systems on S as well as to subsets of S.

3 Analyses and Robustness

We identify analyses with arrows A:Po(X,Y) in the category Po of complete
lattices and monotonic maps between them. The partial order ≤ allows to define
over-approximations and compare them. We consider ≤ as an information order,
thus: x0 ≤ x means that x0 is an over-approximation of x, x1 ≤ x0 means that
x1 is a bigger over-approximation than x0 (hence, less informative).

The complete lattice ⊥ < � of truth values, usually denoted Σ, is isomorphic
to P(1) with 1 being the singleton set {fail}, namely � (true) corresponds to ∅
(cannot fail), while ⊥ (false) corresponds to {fail} (may fail). Safety analyses are
arrows A:Po(X,Σ), and over-approximations may give false negatives.

Example 4. Safety analysis for transition systems on S corresponds to the arrow
Sf :Po(P(S2)×P(S)×P(S),Σ) such that Sf (R, I,B) = � �⇐⇒ R∗(I) and B are
disjoint, i.e., the set R∗(I) of states reachable from the set I of initial states by
(finitely many) R-transitions is disjoint from the set B of bad states.

40 E. Moggi et al.

Complete lattices do not have the structure to quantify imprecision. Thus, we
restrict to complete lattices of the form C(S), with S a metric space, and use
δ-fattening (Sect. 2) to bound imprecision. Namely, given an over-approximation
C ′ of C:C(S), i.e., C ⊆ C ′ (or equivalently C ′ ≤ C), we say that the imprecision
of C ′ in over-approximating C is ≤ δ

�⇐⇒ C ⊆ C ′ ⊆ Cδ.
For a metric space S, there is an adjunction in Po (Galois connec-

tion) between P(S) and C(S). In particular, every S:P(S) has a best over-
approximation S:C(S). In other words, C(S) is an abstract interpretation of
P(S) [5].

Definition 2 (Robustness [13]). Given A:Po(C(S1),C(S2)) with S1 and S2

metric spaces, we say that:

– A is robust at C
�⇐⇒ ∀ε > 0.∃δ > 0.A(Cδ) ⊆ A(C)ε.

– A is robust
�⇐⇒ A is robust at every C.

Robustness is a trivial property of analyses in a discrete setting (Ex 1).

Proposition 1. If S1 is discrete, then every A:Po(C(S1),C(S2)) is robust.

Most analyses are not cast in the right form to ask whether they are robust, but
usually one can show that they have the right form up to isomorphisms in Po.

Example 5. We consider analyses for (topological) transition systems [6].

1. Reachability RfR:Po(P(S),P(S)) for a transition system R on S is not a map
on closed subsets, but can be replaced by the arrow C �→ RfR(C) on C(S).
This is the canonical way to turn arrows on P(S) into arrows on C(S), but it
may fail to be idempotent. A better choice is the best idempotent arrow on
C(S) over-approximating RfR, denoted RsR and called safe reachability in
[13], i.e., RsR(C) �= the smallest C ′:C(S) such that C ⊆ C ′ and R(C ′) ⊆ C ′.

2. Reachability Rf :Po(P(S2)×P(S),P(S)) for transition systems on S. First, we
replace P(S2)×P(S) with the isomorphic P(S2+S) (see Example 3). Second, we
proceed as done for RfR. In particular, we can replace Rf with safe reachability
Rs:Po(C(S2) × C(S),C(S)) for closed transition systems on S.

3. Safety Sf :Po(P(S2)×P(S)×P(S),Σ) is definable in terms of reachability Rf ,
namely Sf (R, I,B) �⇐⇒ Rf (R, I)#B, where # is the disjointness predicate.
Any replacement for Rf induces a corresponding notion of safety, e.g., safe
safety Ss:Po(C(S2) × C(S) × C(S),Σ) is Ss(R, I,B) �⇐⇒ Rs(R, I)#B.

Remark 2. An analysis A:Po(C(S1),C(S2)) is often robust at some C:C(S1),
but it is rarely robust at every C. For instance, let RC be the diagonal relation
on C:C(R), which is a closed transition system on R, then

– RsRC
is robust, since RsRC

(I) = I for every I:C(R);
– Rs is robust at (RN, I) for every I:C(R), but
– Rs is not robust at (RR, I) when ∅ ⊂ I ⊂ R, because Rs((RR)δ, I) = R.

System Analysis and Robustness 41

Time automata are a special case of hybrid automata (e.g., see [12]), and
the latter are subsumed by hybrid systems [9]. Timed transition systems are
an abstraction for all these systems. In particular, there is an abstraction map
α:Po(P(S2 + S

2),P(T× S
2)) from hybrid systems on (the Euclidean space) S to

timed transition systems on (the topological space) S, where T is the continuous
time line, i.e., the space of non negative reals [0,+∞).

Example 6. Reachability is not appropriate when time matters. For a timed
transition system R on S, a better analysis is evolution EfR:Po(P(S),P(T×S)),
which gives the time at which a state is reached, namely EfR(I) �= the smallest
E:P(T × S) such that {0} × I ⊆ E and {(t + d, s′)|(t, s):E ∧ (d, s, s′):R} ⊆ E.
By analogy with reachability, one can define Ef :Po(P(T× S

2) × P(S),P(T× S))
and safe variants Es:Po(C(T×S

2)×C(S),C(T×S)), and cast them in the form
required by robustness. Safe evolution can be extended to include asymptotically
reachable states Es:Po(C(T × S

2) × C(S),C(T × S)), where T is [0,+∞].

4 Best Robust Approximations

Intuitively, when an analysis A:Po(C(S1),C(S2)) is robust at C, A(C) is useful
also in the presence of small amounts of imprecision. This is obvious for analyses
A:Po(C(S1),Σ), where robustness at C means A(Cδ) = A(C) when δ is small.

Definition 3. Given A:Po(C(S1),C(S2)), we say that:

– A′:Po(C(S1),C(S2)) is a robust approximation of A
�⇐⇒

A′ is robust and ∀C.A′(C) ≤ A(C).
– A�:Po(C(S1),C(S2)) is a best robust approximation of A

�⇐⇒
A� is a robust approximation of A such that A′(C) ≤ A�(C) for every robust
approximation A′ of A and C.

Every arrow has a worst robust approximation, namely the map C �→ ⊥, where ⊥
is the least element in C(S2). There are A:Po(C([0, 1]),C(R)) that do not have a
best robust approximation (see [13, Ex 4.6]). When S1 and S2 are discrete metric
spaces, every A:Po(C(S1),C(S2)) is robust, thus A� = A. We give conditions on
metric spaces implying existence of best robust approximations. The first result
applies to safety analyses and is related to the notion of robustness in [7, Def 2].

Theorem 1. If S2 is a finite metric space, then A:Po(C(S1),C(S2)) has a best
robust approximation A� given by A�(C) =

⋂
{A(Cδ)|δ > 0}.

Proof. C(S2) = P(S2) ∼= Σn is a finite complete lattice, when S2 is a finite (and
necessarily discrete) metric space with n points. Therefore, A′:Po(C(S1),C(S2))
robust at C means that there exists δ > 0 such that A′(C) = A′(Cδ).

Since {A(Cδ)|δ > 0} is a chain in a finite lattice, there exists δ > 0 such that
A(Cδ′) = A(Cδ) when δ′ < δ. Let δ(C) be the biggest element in (0,+∞] such

42 E. Moggi et al.

that A(Cδ′) = A(Cδ) when δ′ < δ < δ(C). Define A�(C) �= A(Cδ) for δ < δ(C),
then A� is monotonic, since A�(C) = A(Cδ) ≤ A(C ′

δ) ≤ A�(C ′) when C ≤ C ′

and δ < δ(C), and A� is a robust approximation of A, since

– A�(C) = A(Cδ) ≤ A(C) when δ < δ(C), and
– A�(C) = A(Cδ) = A�(Cδ′)[= A(Cδ′)] when δ′ < δ < δ(C).

Finally, A� is the best robust approximation of A, because A′(C) = A′(Cδ) ≤
A(Cδ) = A�(C) when A′ is a robust approximation of A and δ is small. ��

Table 1. Safe and robust over-approximations of the set of reachable states.

H S0 s Sf Ss Sr SR

HE [0, 1] 0 [0] Sf S0 S0

0 < s ≤ 1 [s,1] Sf Sf Sf

hsD [0, 1] 0 S0 S0 S0 S0

0 < s ≤ 1 (0,s] S0 S0 S0

HT {(x, y)|0 ≤ x ≤ y ≤ 1} (0,1) S∗(0) Sf Sf Sf b=0

(0,1) S∗(b) Sf � S(0) Ss Ss 0 < b < 1

(0,1) S(1) Sf Sf S0 b=1

For HE and HD we take H0 = (F0, G0) with F0 = [0, 1]×[−1, 1] and G0 = [0, 1]2.
For HT = (F,G) we take H0 = (F ,G0) with G0 = {(y, y)|y: [0, 1]} ×
{(0, y)|y: [0, 1]}, and we use the notation S(b) �= [0, b] × [b] and S∗(b) �= ∪nS(bn)
for subsets of S0.
The differences in the approximations of the reachable states are highlighted in
bold.

Theorem 2. If S1 and S2 are compact metric spaces, then A:Po(C(S1),C(S2))
has a best robust approximation A� given by A�(C) =

⋂
{A(Cδ)|δ > 0}.

Proof. We refer to [13] for details of the proof. The key points are:

– if S is a compact metric space, then C(S) is a continuous lattice;
– if S1 and S2 are compact metric spaces, then a map A′:Po(C(S1),C(S2)) is

robust exactly when it is Scott continuous. ��

5 Examples

We conclude by comparing different reachability analyses for three deterministic
hybrid systems H [9]:

HE a quantity x grows according to ODE ẋ = x when 0 ≤ x < 1, and stays
constant when it reaches the threshold 1, i.e., ẋ = 0 when x = 1.

System Analysis and Robustness 43

HD a quantity x decreases according to ODE ẋ = −x when 0 < x ≤ 1, and it is
instantaneously reset to 1 when it is 0, i.e., x+ = 1 when x = 0.

HT a timer x grows while the timeout y stays constant, i.e., ẋ = 1&ẏ = 0 when
0 ≤ x < y ≤ 1, when x reaches y it is reset and the timeout updated, i.e.,
x+ = 0&y+ = by when 0 < x = y ≤ 1 (with b constant in the interval [0, 1]),
moreover x+ = 0&y+ = 1 when 0 = x = y ≤ 1, i.e., y is reset to 1.

Table 1 gives for each H above (and initial state s) the following sets:

– Sf
�= RfH(s) set of states reachable (from s) in finitely many transitions, Sf

is always a subset of the set S of the states reachable in finite time;
– Ss

�= RsH(s) superset of S computed by safe reachability;
– Sr

�= Rs�H(s) superset of Ss robust w.r.t. over-approximations of s;
– SR

�= Rs�(H, s) superset of Ss robust w.r.t. over-approximations of H & s.

Note that Sr depends on a compact subset S0 (over-approximating s and the
support of H), and SR depends also on a compact hybrid system H0 (with
support S0 and over-approximating H). In particular, H0 constrains the over-
approximations of H. The inclusions [s ∈]Sf [⊆ S] ⊆ Ss ⊆ Sr ⊆ SR[⊆ S0] hold
always. We explain why some of these inclusions are strict.

– H = HE & s = 0: Sf = S = Ss ⊂ Sr, because any small positive change to s
causes the quantity to grow and eventually reach the threshold.

– H = HD & s > 0: Sf = S ⊂ Ss, because safe reachability includes 0, which is
reachable only asymptotically (not in finite time), and any state in RfH(0).

– H = HT & s = (0, 1) & 0 < b < 1: Sf ⊂ S = Ss, because the system has a
Zeno behaviour, namely the state x = y = 0 is reachable from x = y = 1 in
time b/(1− b), but it requires infinitely many updates to the timeout y. Thus
Sf computes an under-approximation of what is reachable in finite time.

– H = HT & s = (0, 1) & b = 1: Sf = S = Sr ⊂ SR, because the imprecision
in Hδ means that y can be updated with any value y+ in [max(0, y − δ), y]
when 0 < x = y ≤ 1. Therefore, x = y = 0 is reachable in O(δ−1) transitions.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

2. Asperti, A., Longo, G.: Categories, Types and Scructures: An Introduction to Cat-
egory Theory for the Working Computer Scientist. MIT Press, Cambridge (1991)

3. Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)
4. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York

(1990)
5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4),

511–547 (1992)
6. Cuijpers, P.J.L., Reniers, M.A.: Topological (bi-) simulation. Electron. Notes

Theor. Comput. Sci. 100, 49–64 (2004)

44 E. Moggi et al.

7. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of
states. In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp.
126–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0 10

8. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott,
D.S.: Encycloedia of mathematics and its applications. Continuous Lattices and
Domains, vol. 93. Cambridge University Press, Cambridge (2003)

9. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control
Syst. 29(2), 28–93 (2009)

10. Kelley, J.L.: General Topology. Springer, Berlin (1975)
11. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid

systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

12. Larsen, K.G., Steffen, B., Weise, C.: Continuous modeling of real-time and hybrid
systems: from concepts to tools. Int. J. Softw. Tools Technol. Transfer 1(1–2),
64–85 (1997)

13. Moggi, E., Farjudian, A., Duracz, A., Taha, W.: Safe & robust reachability analysis
of hybrid systems. Theor. Comput. Sci. 747C, 75–99 (2018). https://doi.org/10.
1016/j.tcs.2018.06.020

14. Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)

https://doi.org/10.1007/3-540-48168-0_10
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1016/j.tcs.2018.06.020
https://doi.org/10.1016/j.tcs.2018.06.020

Logic Meets Algebra: Compositional
Timing Analysis for Synchronous

Reactive Multithreading

Michael Mendler1(B), Joaqúın Aguado1, Bruno Bodin2, Partha Roop3,
and Reinhard von Hanxleden4

1 Faculty of Information Systems and Applied Computer Sciences,
Bamberg University, Bamberg, Germany

{michael.mendler,joaquin.aguado}@uni-bamberg.de
2 Department of Computer Science, Edinburgh University, Edinburg, UK

bbodin@inf.ed.ac.uk
3 Department of Electrical and Computer Engineering, Auckland University,

Auckland, New Zealand
p.roop@auckland.ac.nz

4 Department of Computer Science, Christian-Albrechts-Universität zu Kiel,
Kiel, Germany

rvh@informatik.uni-kiel.de

Abstract. The intuitionistic theory of the real interval [0, 1], known
as Skolem-Gödel-Dummet logic (SGD), generates a well-known Heyt-
ing algebra intermediate between intuitionistic and classical logic. Orig-
inally of purely mathematical interest, it has recently received attention
in Computer Science, notably for its potential applications in concur-
rency theory. In this paper we show how the logical operators of SGD
over the discrete frame Z∞, extended by the additive group structure
(Z, 0,+), provides an expressive and yet surprisingly economic calcu-
lus to specify the quantitative stabilisation behaviour of synchronous
programs. This is both a new application of SGD and a new way of
looking at the semantics of synchronous programming languages. We
provide the first purely algebraic semantics of timed synchronous reac-
tions which adapts Berry’s semantics for Esterel to work on general con-
current/sequential control-flow graphs. We illustrate the power of the
algebra for the modular analysis of worst-case reaction time (WCRT)
characteristics for time-predictable reactive processors with hardware-
supported multi-threading.

1 Introduction

Synchronous control-flow programming (SCP) extends standard imperative pro-
gramming by deterministic concurrency. This is achieved by forcing threads to
execute under the control of a logical clock in lock-step synchronisation, thereby
generating a sequence of global macro steps, also called logical instants or clock

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 45–67, 2019.
https://doi.org/10.1007/978-3-030-22348-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_5

46 M. Mendler et al.

ticks. During each tick, threads use signals to communicate with each other. In
contrast to shared variables, signals are accessed using a synchronisation proto-
col which makes all writes to a signal happen before any read and the value read
to be a value uniquely combined from the values written. Programs that cannot
be scheduled in this way, tick by tick, are detected at compile-time and rejected
as non-constructive. Synchronous programs can be compiled into sequential C
code, hardware circuits for parallel execution or multi-threaded assembly code.

The physical time spent by the running threads to compute the tick reaction
is functionally immaterial, because of the clock synchronisation. The functional
semantics of SCP is fully captured by the synchronous composition of Mealy
machines. The physical timing of a module can be ignored until it is compiled
and mapped to an execution architecture. Then it becomes crucial, however,
since the worst-case reaction time (WCRT) determines the correct physical syn-
chronisation of the compiled modules and the environment. This WCRT value
gives the maximal frequency of the clock and the minimal length of a reaction
cycle. Assuming an implementation on clocked instruction set processors, the
purpose of the WCRT analysis is to determine, at compile time, the maximal
number of instruction cycles in any tick.

This paper extends previous work by the authors [1,21–23,28] on the WCRT
analysis of imperative multi-threaded SCP code running on Precision-timed
(PRET) architectures. It discusses the Skolem-Gödel-Dummett intuitionistic
logic SGD[X] of formal power series for the cycle-accurate modelling of sequen-
tial and concurrent program behaviour. Formal power series arise from adjoining
an abstract variable X to build polynomials. This is the first time that SGD[X] is
presented as a component model, exploring its applications for modular analysis
and timing abstractions to trade efficiency and precision. The power of SGD[X]
is shown using the Esterel program in Fig. 1 as case study.

We believe the algebraic approach for WCRT analysis of SCP can be an
elegant and powerful alternative to other more combinatorial techniques, such
as those based on graph traversal [4,22], state exploration [17,30], implicit path
enumeration with integer linear programming (ILP) solving and iterative nar-
rowing [15,16,24,29] or timed automata [27]. The advantage of SGD[X] algebra
over combinatorial definitions of WCRT is that it combines timing and func-
tional specifications in a simple equational calculus. It permits us to study the
timed behaviour of SCP employing standard mathematical tools familiar from
linear and non-linear system theory. The logical interpretation of SGD[X] sup-
ports modular reasoning and timing abstractions at a fine-grained level. Existing
WCRT algorithms may be studied as decision procedures for specialised frag-
ments of SGD[X] algebra.

This paper ties up previous work of the authors spread over different publi-
cations which have not all used the same mathematical setting. By presenting a
single case study, covering all aspects studied separately before, this paper lays
out clearly the theoretical background of our approach in a new and uniform
way. Regarding the practical usefulness of the approach we refer to our other
publications, as cited herein. The relationship with the authors’ previous work
is discussed both as we go along and in Sect. 6.

WCRT Analysis for Synchronous Multithreading 47

1 [% thread G
2 present I then
3 emit R
4 end present;
5 present I else
6 emit S;
7 emit T
8 end present;
9 emit U;

10 ||
11 % thread H
12 weak abort
13 loop
14 pause;
15 emit R
16 end loop
17 when immediate I;
18 present E then
19 halt
20 end present;
21 emit S;
22 nothing;
23]

(a) Module M

↑E
S
T
U

R
I
S
R
↑

↑
S
T
U

E
I
R

I I
E

(b) Execution Trace

(c) CKAG

L01: T0: PAR 1,G0,1
L02: PAR 1,H0,2
L03: PARE A1

L04: G0: PRESENT I,G1
L05: EMIT R
L06: G1: PRESENT I,G3
L07: GOTO G2
L08: G3: EMIT S
L09: EMIT T
L10: G2: EMIT U

L11: H0: WABORT I,H1
L12: H3: PAUSE
L13: EMIT R
L14: GOTO H3
L15: H1: PRESENT E,H2
L16: HALT
L17: H2: EMIT S
L18: NOTHING

L19: A1: JOIN
L20:

(d) KEP assembler

Tick 1:
L01,L02,L03,
L11,L12,
L04,L06,L08,L09,L10,

L19
Tick 2:
L12,L13,L14,L12

Tick 3:
L12,L13,L14,L12,
L15,L17,L18,L19

(e) KEP sample trace

Fig. 1. A simple Esterel module M with its corresponding control-flow graph and the
resulting KEP Assembler (example from [13]).

2 Esterel-Style Multi-threading and WCRT Analysis

A representative example of a high-level SCP language is Esterel [3]. Esterel
signals are either present or absent during one tick. Signals are set to present
by the emit statement and signal state is tested with the present test statement.
They are reset to absent at the start of each tick. Esterel statements can be
either combined in sequence (;) or in parallel (‖). The loop statement restarts
its body when it terminates. All Esterel statements complete within a single
tick, called (instantaneous) termination, except for the pause statement, which
pauses for one tick, and derived statements like halt (= loop pause end), which
pauses forever. Esterel supports multiple forms of preemption, e. g., via the abort
statement, which simply terminates its body when some trigger signal is present.
Abortion can be either weak or strong. Weak abortion permits the execution of
its body in the tick the trigger signal becomes active, strong abortion does not.
Both kinds of abortions can be either immediate or delayed. The immediate

48 M. Mendler et al.

version already senses for the trigger signal in the tick its body is entered, while
the delayed version ignores the trigger signal during the first tick in which the
abort body is entered.

Consider the Esterel fragment in Fig. 1a, which consists of two threads. The
first thread G emits signals R, S, T depending on some input signal I. In any case,
it emits signal U and terminates instantaneously. The thread H continuously
emits signal R, until signal I occurs. Thereafter, it either halts, when E is present,
or emits S and terminates otherwise. The time line seen in Fig. 1b illustrates a
sequence of ticks in which the Esterel program module M in Fig. 1a is activated
twice by its execution context, first in tick 1 and then again in tick 4. Below
the horizontal line we list the input stimulus at each tick and above the line the
reaction output. The arrows indicate when the module is activated (below the
time line) and terminated (above the line).

PRET processing architectures have been proposed as a new class of general
purpose processors for real-time, embedded applications [7,8,19,26]. PRETs are
designed not only to make worst-case execution times predictable, but also to
simplify the derivation of this worst case through careful architectural choices.
There have also been a number of reactive processor designs dedicated to SCP
with instruction set architectures that can express concurrency and preemption
and preserve functional determinism [12]. Here we use the Kiel Esterel Processor
(KEP) [18], which allows a direct mapping from the control-oriented language
Esterel.

The KEP assembly code for our example module M is seen in Fig. 1d. KEP
handles abortion by watchers, which are executed in parallel with their body and
simply set the program-counter when the trigger signal becomes present. Syn-
chronous parallelism is executed by multi-threading. The KEP manages multiple
threads, each with their own program counter and a priority. In each instruction
cycle, the processor determines the active instruction from the thread with the
highest priority and executes it. New child threads are initialised by the PAR
instruction. The PARE instruction ends the initialisation of parallel threads and
sets the program counter of the current thread to the corresponding JOIN. By
changing the priorities of the threads, using PRIO instructions, arbitrary inter-
leavings can be specified; the compiler has to ensure that the priorities respect
all signal dependencies, i. e., all possible emits of a signal are performed before
any testing of the signal. For all parallel threads one join instruction is executed,
which checks whether all threads have terminated in the current tick. If this is
the case, the whole parallel terminates and the join passes the control to the next
instruction. Otherwise the join blocks. On KEP, most instructions, like emit or
entering an abort block, are executed in exactly one instruction cycle (ic). The
pause instruction is executed both in the tick it is entered, and in the tick it is
resumed, to check for weak and strong abortions, respectively. Note that the halt
instruction is executed in one ic. Priority changing instructions may be treated
like the padding statement nothing, which has no effect other than adding a time
delay.

WCRT Analysis for Synchronous Multithreading 49

The KEP assembler’s control flow is represented in the concurrent KEP
assembler graph (CKAG) depicted in Fig. 1c. The CKAG is an intermediate
representation compiled from the Esterel source Fig. 1a which, due to the nature
of the KEP architecture, retains much of the original Esterel program structure.
It is important to observe that the CKAG and the KEP assembler have a very
close and timing-predictable relationship. Hence, the timing of the KEP can be
back-annotated in the CKAG by associating WCRT weights to nodes and edges.
We distinguish two kinds of edges, instantaneous and non-instantaneous. Instan-
taneous edges can be taken immediately when the source node is entered, they
reflect control flow starting from instantaneous statements or weak abortions of
pre-empted statements. Non-instantaneous edges can only be taken in an instant
where the control started in its source node, like control flow from PAUSE state-
ments or strong abortions. The CKAG can be derived from the Esterel program
by structural translation. For a given CKAG, the generation of KEP assembler
(see Fig. 1c) is straightforward [4]. Most nodes are translated into one instruction,
only fork nodes are expanded to multiple instructions to initialise the threads.
In our example, the fork v0 is transformed into three instructions (L01–L03).

3 Max-Plus Algebra and Skolem-Gödel-Dummet Logic

A standard setting for timing analysis is the discrete max-plus structure over
integers (Z∞,⊕,�,0,1) where Z∞ =df Z ∪ {−∞,+∞} and ⊕ is the maximum
and � stands for addition. Both binary operators are commutative, associative
with the neutral elements 0 =df −∞ and 1 =df 0, respectively, i.e., x ⊕ 0 = x
and x � 1 = x. The constant 0 is absorbing for �, i.e., x � 0 = 0 � x = 0.
In particular, −∞ � +∞ = −∞. Addition � distributes over ⊕, i.e., x � (y ⊕
z) = x + max(y, z) = max(x + y, x + z) = (x � y) ⊕ (xodotz). This induces on
Z∞ a (commutative, idempotent) semi-ring structure. Multiplicative expressions
x � y are often written x y and � is assumed to bind more strongly than ⊕.
Extending Z to Z∞ weakens the ring structure, because the limit values +∞
and −∞ cannot be subtracted. E.g., there is no x such that x � +∞ = 0.
There is, however, a weak form of negation, the adjugate x∗ = −x which is an
involution (x∗)∗ = x and antitonic, i.e., x ≤ y iff x∗ ≥ y∗. The adjugate satisfies
x � x∗ ∈ {0,1} and x � x∗ = 1 iff x is finite, i.e., x ∈ Z. The set Z∞ is not
only an adjugated semi-ring but also a lattice with the natural ordering ≤. Meet
and join are x ∧ y = min(x, y) and x ∨ y = max(x, y), respectively. In fact, with
its two limits −∞ and +∞ the order structure (Z∞,≤,−∞,+∞) is a complete
lattice. The operators ⊕, � are monotonic and upper continuous. Note that �
is upper continuous, x � ∨

i yi =
∨

i(x � yi), but not lower continuous. Indeed,
+∞ � ∧

i∈Z
−i = +∞ � −∞ = −∞ �= +∞ =

∧
i∈Z

+∞ =
∧

i∈Z
(+∞ � −i).

Max-plus algebra is well-known and widely exploited for discrete event system
analysis (see, e.g., [2,10]). What we are going to exploit here, however, is that Z∞
also supports logical reasoning, built around the meet (min) operation and the
top element of the lattice (Z∞,≤). The logical view is natural for our application
where the values in Z∞ represent activation conditions for control flow points, or

50 M. Mendler et al.

measure the presence or absence of a signal during a tick. Logical truth,
 = +∞
indicates a signal being statically present without giving a definite bound. All
other stabilisation values d ∈ Z codify timed presence which are forms of truth
stronger than
. On these multi-valued forms of truth (aka “presence”) the meet
∧ acts like logical conjunction while the join ∨ is logical disjunction. The bottom
element ⊥ = −∞ corresponding to falsity indicates that a signal is absent.

The behaviour of ⊥ and
, as the truth values for static signals follows the
classical Boolean truth tables with respect to ∧ and ∨. However, like � has no
inverse for the limit elements +∞ and −∞, there is no classical complemen-
tation for the finite truth values, i.e., those different from +∞ and −∞. For
SCP, however, negation is important to model data-dependent branching, prior-
ities and preemption. As it happens, there is a natural pseudo-complement, or
implication ⊃, turning the lattice Z∞ into an intuitionistic logic, or which is the
same, a Heyting algebra [5]. The implication ⊃ is the residual with respect to
conjunction ∧, i.e, x ⊃ y is the largest element z such that x ∧ z ≤ y. It can be
directly computed as follows: x ⊃ y = y if y < x and x ⊃ y = +∞ if x ≤ y.
Implication internalises the ordering relation in the sense that x ⊃ y =
 iff
x ≤ y. Taking x ≡ y as an abbreviation of (x ⊃ y)∧ (y ⊃ x), then two values are
logically equivalent x ≡ y =
 iff they are identical x = y. Implication generates
a pseudo-complement as ¬x =df x ⊃ ⊥ with the property that ¬x =
 if x = ⊥
and ¬x = ⊥ if x > −∞. There is also a residual operation � of � so that
z � x ≤ y iff z ≤ y � x. This is a weak form of subtraction so that y � x = y − x
if both y and x are finite, y � x = +∞ if y = +∞ or x = −∞ and y � x = −∞
if −∞ = y < x or y < x = +∞. One shows that for all x with x � x∗ = 1 we
have y � x = y � x∗.

The logic (Z∞,
,⊥,∧,∨,⊃) is isomorphic to the Skolem-Gödel-Dummet
logic [6] of the interval [0, 1] ⊂ R, which is decidable and completely axiomatised
by the laws of intuitionistic logic plus the linearity axiom (x ⊃ y)∨ (y ⊃ x). This
logic, which we name1 SGD, has played an important role in the study of logics
intermediate between intuitionistic and classical logic. It has recently received
attention for its applications in Computer Science, notably as a semantics of
fuzzy logic [11], dialogue games [9] and concurrent λ-calculus [14].

For our application of SGD, both its semi-ring (Z∞,⊕,�,0,1) and intu-
itionistic truth algebra (Z∞,⊥,
,∧,∨,⊃) structure are equally important. The
former to calculate WCRT timing and the latter to express signals and reaction
behaviour. To state that a signal a is present with a worst-case delay of 5 ic we
can write the equation a ⊕ 5 = 5 or the formula a ⊃ 5. That c becomes active
within 5 ticks of both signals a and b being present is stated by the formula
c ⊃ (5 � (a ∨ b)). Every SGD expression is at the same time the computation of
a WCRT and a logical activation condition.

1 Dummett (1959) calls it LC, yet Skolem (1931) and Gödel (1932) studied LC earlier.

WCRT Analysis for Synchronous Multithreading 51

4 Max-plus Formal Power Series

To capture the behaviour of a program along sequences of macro ticks, we extend
the adjuagated semi-ring Z∞ to formal power series. A (max-plus) formal power
series, fps, is an ω-sequence

A =
⊕

i≥0

aiX
i = a0 ⊕ a1 X ⊕ a2 X2 ⊕ a3 X3 · · · (1)

with ai ∈ Z∞ and where exponentiation is repeated multiplication, i.e., X0 = 1
and Xk+1 = X Xk = X � Xk. An fps stores an infinite sequence of numbers
a0, a1, a2, a3, . . . as the scalar coefficients of the base polynomials Xi. An fps A
may model the time cost ai for a thread A to complete each tick i, to reach a
given state A or to activate a given signal A. If ai = 0 = −∞ this means that
thread A is not executed during the tick i, or that a state A is not reachable.
This contrasts with ai = 1 = 0 which means A is executed during tick i with
zero cost, or that the state A is active at the beginning of the tick. If ai > 0
then thread A is executed taking at most ai time to finish tick i, or state A is
reached within ai-time during the selected tick. We evaluate A with X = 1 for
the worst-case time cost A[1] = max {ai | i ≥ 0} across all ticks.

Let Z∞[X] denote the set of fps over Z∞. For a comprehensive discussion of
formal power series in max-plus algebra the reader is referred to [2]. Constants
d ∈ Z∞ are naturally viewed as scalar fps d = d ⊕ 0X ⊕ 0X2 ⊕ · · · . If we want
d to be repeated indefinitely, we write an underscore d = d ⊕ dX ⊕ dX2 · · · .
For finite state systems the fps are ultimately periodic. For compactness of
notation we write, e.g., A = ⊥:2:1:4 for the ultimately periodic sequence sat-
isfying A = 2X ⊕ 1X2 ⊕ X3B and B = 4 ⊕ XB. The semi-ring and logi-
cal operations � ∈ {⊕,�,∨,∧,⊃,�} are lifted to Z∞[X] in a tick-wise man-
ner, A � B =

⊕
i≥0(ai � bi)Xi and negation is ¬A =

⊕
i≥0 ¬aiX

i. For mul-
tiplication � there are two ways to lift. First, the tick-wise lifting A ⊗ B =⊕

i≥0(ai � bi)Xi models multi-threaded parallel composition. It executes A and
B synchronously, adding the tick costs to account for the interleaving of instruc-
tions. The other “lifting” is convolution A � B =

⊕
i≥0

⊕
i=i1+i2

(ai1 � bi2)X
i

modelling a form of sequential composition. A special case is scalar multiplication
d � A =

⊕
i≥0(d � ai)Xi = d ⊗ A. The structure (Z∞[X],0,1,⊕,�,⊗,�) forms

a semi-ring for both “multiplications” � and ⊗ and (Z∞[X],⊥,
,∧,∨,⊃,¬) is
a tick-wise Skolem-Gödel-Dummett logic. To stress the logical interpretation we
will denote both as SGD[X] in the sequel.

5 Equational Specification of Synchronous Control-Flow

We now go on to illustrate the application of SGD[X] to specify the sequential
control flow of our running example in Fig. 1a. We first focus on the thread H
consisting of the fragment of nodes v8–v15, seen in Fig. 2. All edges are instan-
taneous except the edge L13 out of v9, see below.

52 M. Mendler et al.

+ −

H1

v10 emit R

L13

L18

L16

I

v9 pause

v12 present E

v13 halt v11 goto

v8 wabort I

H3L12

H2 L14

H0

L19

v15 nothing

v14 emit S

(a) KEP Assembler Control Flow Graph (CKAG)

1 Esterel Program H:
2 weak abort
3 loop
4 pause;
5 emit R
6 end loop
7 when immediate I;
8 present E then
9 halt

10 end present;
11 emit S;
12 nothing;

(b) Esterel

KEP FRAGMENT H
L11: H0: WABORT I,H1
L12: H3: PAUSE
L13: EMIT R
L14: GOTO H3
L15: H1: PRESENT E,H2
L16: HALT
L17: H2: EMIT S
L18: NOTHING

(c) KEP assembler

Fig. 2. The synchronous thread H.

Let us assume that each of the basic instructions take 1 instruction cycle
(ic) regardless of how they are entered or exited. This is a simplification of the
situation in the KEP processor where the delays may be different. We also gen-
erally assume, for convenience, that the code has been checked for causality and
that the control flow respects the signal dependencies. This means for the timing
of signal communication that input signals may be treated as static booleans,
satisfying the axiom ¬¬a = a, or equivalently a ∨ ¬a =
, for a ∈ {E, I}.

We calculate the time delay to reach a given node A from H0 for each tick.
More specifically, let V the set of control primitive variables and A ∈ V. We
identify A with the fps specifying the instants in which the control flow reaches
the control point A. The timing value A[i] at tick i then is the maximal waiting
time to reach A in tick i. If A[i] = ⊥ = −∞ then A cannot be reached in this
tick. If we are not interested in the time when A is activated but only whether
it is reached, then we use the double negation ¬¬A. This abstracts from the
absolute costs and reduces A to a purely boolean clock. Sometimes it is useful to
abstract not to a boolean but an arithmetic clock that is 1 when A is present and
⊥ when it is absent. This collapse is done by the operation tick(A) = 1 ∧ ¬¬A.

From Fig. 2 we see that edge L12 is reached instantaneously in each tick in
which control reaches the start edge H0, and this is the only way in which L12
can be activated. This can be expressed by the equation

L12 = 1 � H0 = 1 ⊗ H0. (2)

WCRT Analysis for Synchronous Multithreading 53

In each tick, the activation time of L12 is 1 instruction cycle (ic) larger than that
of the upstream edge H0. The conditional branching through node v12 depends
on the status of (static) signal E. In forward direction, the node v12 is:

H2 = (1 � H1) ∧ ¬E L16 = (1 � H1) ∧ E (3)

The left equivalence states that H2 is active in a tick at some ic t iff E is absent
and H1 was active 1 ic earlier. Analogously, L16 is active iff H1 was active one
ic before and E is present. Algebraically, the equalities can be used to compute
H2 and L16 from H1 and E.

Next, consider the pause node v9. It can be entered by two controls, the line
number L12 and the program label H3 and left via two exits, a non-instantaneous
edge L13 and an instantaneous exit H1 (weak abortion). When a thread enters
v9 then either it terminates the current tick inside the node if I is absent or
leaves through the weak abort H1 if I is present, thereby continuing the current
tick, instantaneously. A thread entering v9 never exits through L13 in the same
tick. On the other hand, if a thread is started (resumed) from inside the pause
node v9 then control can only exit through L13. Algebraically, we specify the
pause node as follows:

H1 = (1 � (L12 ⊕ H3)) ∧ I (4)
L13 = 1 � X � tick(¬I ∧ ¬¬(L12 ⊕ H3)) (5)

Equation (4) captures that if a set of schedules activates H1 then signal I must
be present and one of L12 or H3 must have been activated 1 ic earlier. Since
we are interested in the worst-case we take the maximum. Equation (5) deals
with the non-instantaneous exit L13 from the pause. The control flow must first
pause inside node v9. This happens in each tick in which one of L12 or H3 is
reached and I is absent. These instants are specified with boolean coefficients
by the sub-expression C = ¬I ∧ ¬¬(L12 ⊕ H3). The operator tick translates
these pausing instances into the neutral element for sequential composition �.
Specifically, tick(C) = 1 ∧ ¬¬C forces a coefficient C =
 = +∞ describing
presence to become tick(C) = 0. On the other hand, C = ⊥ = −∞ for absence
remains unchanged, tick(C) = ⊥. Finally, the delay 1 � X shifts the whole time
sequence by one instant and adds a unit delay. This unit delay is the cost of
exiting the pause node at the start of the next tick.

The second node with memory behaviour in thread H of Fig. 2 is the halt
node v13. Once control flow reaches v13 it pauses there forever. Using the auxil-
iary controls in(v13) and out(v13) for pausing inside v13 and resuming from it,
respectively, we get

in(v13) = 1 � (L16 ⊕ out(v13)) out(v13) = 1 � X � tick(in(v13)). (6)

The left equation specifies the external entry L16 and the fact that exiting the
pause immediately re-enters, with 1 ic delay. The right equation states that if

54 M. Mendler et al.

the pause is entered it is left in the next tick. Finally, here is the remaining part
of H’s sequential control flow:

L14 = 1 � L13 H3 = 1 � L14 (7)
L16 = 1 � (H1 ∧ E) L18 = 1 � H2 L19 = 1 � L18. (8)

Well, not quite, we are missing the output signals emitted into the environment.
Output responses are generated by thread H in nodes v10 and v14 as implications

R ⊃ 1 � L13 S ⊃ 1 � H2 (9)

assuming a unit delay between activating the emission statement and the appear-
ance of the signal. The implications express only upper bounds R ≤ L13+1 and
S ≤ H2 + 1 on the emission of signals R and E. This permits other threads
concurrent to H also to emit them, possibly at an earlier time.

The Eqs. (2)–(8) form a recursive equation system with independent vari-
ables H0, I and E. The recursive dependency of variables L13, L14 and H3 on
themselves is guarded by the X operator. Hence, for each fixed choice of the inde-
pendents H0, I and E, all the dependents L12–L19 and H1–H3 can be solved
uniquely. Let us go though the motions to see how this works. To power up the
system as in example trace Fig. 1b we activate the start control H0 in the first
and again in the fourth tick, with initial delay of 3 to account for the upstreaming
fork, H0 = 3:⊥:⊥:3:⊥. Signal I is absent initially and then present every second
instant, and E is present every fourth tick, I = ⊥:⊥:(
⊕I) and E =
:⊥:⊥:⊥:E.
Note that ¬I =
:
:(⊥:
 ∧ ¬I) =
:
:⊥:
:(⊥:
 ∧ ¬I). First, it follows
L12 = 1�H0 = 4:⊥:⊥:4:⊥. From (7) we get H3 = 1�L14 = 1�1�L13 = 2�L13
and so Eq. (5) becomes

L13 = f(L13) = 1 � X � tick (¬I ∧ ¬¬(4:⊥:⊥:4:⊥ ⊕ (2 � L13))). (10)

This is solvable by least fixed point iteration starting with L130 = ⊥ for which
we get L131 = f(L130) = ⊥:1:⊥:⊥:1:⊥. The second iteration through (10)
yields L132 = f(L131) = ⊥:1:1:⊥:1:⊥ which is already the fixed point, L13 =
L132 = f(L132). The solution L13 = ⊥:1:1:⊥:1:⊥ corresponds to the trace in
Fig. 1b with the WCRT value guaranteeing L13 is always reached 1 ic after the
beginning of the tick. The closed solution for L13 generates a closed solution
for L14 and H3 by simple substitution, viz. L14 = 1 � L13 = ⊥:2:2:⊥:2:⊥
and H3 = 1 � L14 = ⊥:3:3:⊥:3:⊥. Similarly, we obtain H1 from (4), H1 =
1 � (I ∧ (L12 ⊕ H3)) = ⊥:⊥:4:⊥:4:⊥. Indeed H1 is activated exactly in ticks 2
and 4 with a delay of 4. Since E is absent in tick 2 but present in tick 4, control
moves to H2 the first time and to L16 the second time: The equations give
H2 = 1 � (H1 ∧ ¬E) = 1 � (⊥:⊥:4:⊥:4:⊥ ∧ ⊥:
:
:
:¬E) = ⊥:⊥:5:⊥. Finally,
for L16 we have L16 = 1 � (H1 ∧ E) = ⊥:⊥:⊥:⊥:5:⊥.

To sum up, Eqs. (2)–(8) describe the cycle-accurate semantics of thread H
in Fig. 2. It is timing and causality sensitive and fully parametric in environment
signals. Note that the algebraic specification method outlined in this section is
completely uniform and generalises to arbitrary CKAG concurrent control-flow
graphs.

WCRT Analysis for Synchronous Multithreading 55

5.1 WCRT Component Model

out(σj)

in(σj)

b
d

c

a

T

ξk

ζi

Fig. 3. The four types of thread
paths: through path (a), sink path
(b), source path (c), internal path
(d) (taken from [22]).

The specification technique described above is
fully expressive for Esterel-style synchronous
control flow. It is compositional at the level
of the primitive controls of the flat control
flow graph. It is not modular, however, as
it does not permit structural abstraction. An
axiomatic specification language that permits
behavioural abstraction for timed synchronous
components, called (first-order, elementary)
WCRT-interfaces has been proposed in [22]. It
is based on realisability semantics for construc-
tive logic and was formalised in [21]. These
interfaces capture the purely combinational
behaviour CKAGs, i.e., single ticks. They do
not describe the sequential dependencies across sequences of ticks. By translat-
ing the model of [21,22] into SGD[X] algebra we now extend WCRT interfaces
for a full semantics of synchronous components.

The key for modularity is to move from primitive control variables V to a
description based on (synchronous) reactive blocks. Figure 3 depicts a program
fragment T abstracted into a reactive block with entry and exit controls. The
paths inside T seen in Fig. 3 illustrate the four ways in which a reactive block
may participate in the execution of a logical tick: Threads may (a) arrive at some
entry control ζi, pass straight through the block and leave at some exit control
ξk; (b) enter through ζi but pause inside in some state control in(σj), waiting
there for the next tick; (c) start the tick inside the block from a state out(σj)
and eventually (instantaneously) leave through some exit control ξk, or (d) start
and pause inside the block, not leaving it during the current tick. These paths
are called through paths (a), sink paths (b), source paths (c) and internal paths
(d), respectively.

Each block T is described by a multi-dimensional WCRT system function in
SGD[X] viewing it as a Mealy automaton over control variables. Let us suppose
for the moment, that the block T has only one entry ζ, one exit ξ and one
state control σ. The system function for such a block is given as a forward
transformation matrix T which connects the logical interface controls in the
{⊕,⊗}-fragment of SGD[X]:

(
ξ

in(σ)

)

= T ⊗
(

ζ
out(σ)

)

=
(

T.thr T.src
T.snk T.int

)

⊗
(

ζ
out(σ)

)

(11)

All entries of the matrix are logical time series describing the tick-wise WCRT
behaviour on the four types of control paths: T.thr for the through path, T.snk
for the sink paths, T.src for the source paths and T.int for the internal paths.
Blocks T with more than one entry, exit or state controls have a system matrix

56 M. Mendler et al.

T with more columns and rows, accordingly. Unfolding the matrix multiplica-
tion (11) we get the SGD[X] equations

ξ = (T.thr ⊗ ζ) ⊕ (T.src ⊗ out(σ)) (12)
in(σ) = (T.snk ⊗ ζ) ⊕ (T.int ⊗ out(σ)) (13)

The Eq. (12) determines the timing at exit ξ as the tick-wise worst-case ⊕ of two
contributions, those activations arriving from entry ζ increased by the weight
of the through path T.thr and those arriving from a state control out(σ) inside
T increased by the weight of the source path T.src. The increase is achieved by
⊗ in SGD[X] which is the tick-wise addition � in SGD. In an analogous way,
Eq. (13) captures the activities arriving at the state control in(σ) which may
also come from entry ξ or a state out(σ). It is useful to split (11) column-wise

(
ξ in(σ)

)ᵀ = (
(
T.thr T.snk

)ᵀ ⊗ ζ) ⊕ (
(
T.src T.int

)ᵀ ⊗ out(σ)). (14)

thereby obtaining what are called the surface and depth behaviours T.srf =(
T.thr T.snk

)ᵀ and T.dpt =
(
T.src T.int

)ᵀ, which can be manipulated sepa-
rately.

The Eq. (11) expresses the purely combinational behaviour of T . The passage
from one tick to the next arises by coupling out(T) and in(T) through the register
equation

out(T) = 1 � X � tick(in(T)). (15)

Note the generality of the pseudo-linear system model (11). All matrix entries
T.thr , T.src, T.snk , T.int and the input and output variables ζ, out(σ), ξ and
in(σ) may be arbitrary SGD[X] expressions involving arithmetical and logical
operators. For instance, the main thread T of Fig. 1c has state control such as
¬L11 ∧ in(v9), capturing ticks in which child H is pausing in node v9 while
child G has already terminated in a previous tick, whence L11 has value ⊥, and
a fortiori, all other nodes v in G satisfy ¬v, too. In this way, the Eq. (11) can
specify both the temporal and the logical behaviour of block T . This will become
clear in the next section.

5.2 Module Abstraction

Pseudo-linear specifications like (11) generalise to composite blocks what the
Eqs. (2)–(8) do for primitive controls. The vector formulation can be applied as
a component model at various levels of abstraction.

For instance, take the pause node v9 in Fig. 2 as a primitive block with the
“forward” Eqs. (4) and (5). It has entry controls L12, H3 and exit controls H1
and L13. The auxiliary controls in(v9) and out(v9) express conditions for pausing
inside the node and for exiting it, respectively. As shown below, Eqs. (4)–(5)
induce the surface and depth behaviours v9 =

(
v9.srf v9.dpt

)
with

(
H1 L13 in(v9)

)ᵀ = (v9.srf ⊗ (
L12 H3

)ᵀ) ⊕ (v9.dpt ⊗ out(v9)) (16)

WCRT Analysis for Synchronous Multithreading 57

v9.srf =

⎛

⎝
1 ∧ I 1 ∧ I

⊥ ⊥
¬I ¬I

⎞

⎠ v9.dpt =

⎛

⎝
⊥
1
⊥

⎞

⎠ . (17)

Notice how the entries combine timing with logical conditions. In particular,
the constant ⊥ indicates where control flows are absent. If we unfold the matrix
multiplications in (16) together with (17) we get the following explicit equations:

H1 = ((1 ∧ I) ⊗ L12) ⊕ ((1 ∧ I) ⊗ H3) ⊕ ⊥ out(v9) (18)

L13 = ⊥L12 ⊕ ⊥H3 ⊕ 1 out(v9) (19)

in(v9) = (¬I ⊗ L12) ⊕ (¬I ⊗ H3) ⊕ ⊥ out(v9). (20)

slightly simplified using the law d ⊗ x = d x. The first Eq. (18) can be seen as
logically equivalent to (4) considering a number of laws, such as ⊥ � x = ⊥,
x ⊕ ⊥ = x, (d ⊗ x) ∧ I = (d ∧ I) ⊗ x for static signal I, and that both � and
∧ distribute over ⊕. Also one shows that (19) and (20) in combination with the
register equation out(v9) = 1 � X � tick(in(v9)) is the same as (5).

At a higher level of the component hierarchy we can consider thread H in
Fig. 2 as a composite block. Its behaviour is given by the global 3 × 3 matrix

⎛

⎝
L19

in(v9)
in(v13)

⎞

⎠ =

⎛

⎝
5 ∧ I ∧ ¬E 7 ∧ I ∧ ¬E ⊥

2 ∧ ¬I 4 ∧ ¬I ⊥
4 ∧ I ∧ E 6 ∧ I ∧ E 1

⎞

⎠⊗
⎛

⎝
H0

out(v9)
out(v13)

⎞

⎠ (21)

which is the exact behavioural description of H equivalent to the Eqs. (2)–(8),
solely in terms of the external controls and the internal states v9 and v13.

From here we may reduce the complexity and precision in various way. For
instance, we may abstract from the state information, working with a single state
control in(H) = in(v9)⊕ in(v13) and out(H) = out(v9)⊕ out(v13). This collapse
is a “base transformation” achieved by pre- and post-multiplication of H with
suitable matrices. Specifically, the expansions

(
L19

in(H)

)

=
(

0 ⊥ ⊥
⊥ 0 0

)

⊗
⎛

⎝
L19

in(v9)
in(v13)

⎞

⎠

⎛

⎝
H0

out(v9)
out(v13)

⎞

⎠ ≤
⎛

⎝
0 ⊥
⊥ 0
⊥ 0

⎞

⎠ ⊗
(

H0
out(H)

)

permit us to approximate (21) via a 2 × 2 matrix H1

(
L19 in(H)

)ᵀ ≤ H1 ⊗ (
H0 out(H)

)ᵀ (22)

H1 =
(

5 ∧ I ∧ ¬E 7 ∧ I ∧ ¬E
(2 ∧ ¬I) ⊕ (4 ∧ I ∧ E) (4 ∧ ¬I) ⊕ (6 ∧ I ∧ E)

)

(23)

Let us suppose we know that input signals E and I are always opposite values.
The associated invariant I = ¬E and ¬I = E implies x∧I∧¬E = x∧¬E as well
as x⊕ (y ∧ I ∧E) = x⊕⊥ = x. In a next step we may decide to give up tracking

58 M. Mendler et al.

L5

G2

L7

L6

v1 present I

v2 emit R

v3 present I

v4 goto

v7 emit U

L11

G0

G1

G1

G3

L10

(a) Path Decomposition

v1 present I

v2 emit R

G0

L6 G1

v3 present I

v4 goto

v5 emit S

v6 emit T

G3G2

N1

N2

N3

L11

v7 emit U

(b) Net Decomposition

v5 emit S

v6 emit T

N3’

v1 present I

v2 emit R

N1’

v3 present I

v4 goto

N2’

L6 ⊕ G1

G2 ⊕ G3

G0

L11

v7 emit U

(c) Bundle Decomposition

Fig. 4. Different structural decompositions of thread G

signal E, abstracting from its value with the over-approximations x ∧ ¬E ≤ x
and x ∧ E ≤ x. This yields a sequence of approximated behaviours

H ≤ H1 = H2 =df

(
5 ∧ ¬E 7 ∧ ¬E
2 ∧ E 4 ∧ E

)

≤
(

5 7
2 4

)

=df H3. (24)

There are further combinatorial optimisations possible that can be justified alge-
braically in SGD[X]. For instance, the WCRT algorithm [4] reduces the dimen-
sions of the surface and depth behaviours each by one. This exploits the fact
that every schedule reaching in(H) is pausing inside H and thus cannot be
extended to a longer instantaneous path of H. In other words, all paths that
have length at least 1 � in(H) must be going through L19. Logically, this is
the axiom L19 ⊕ d in(H) = L19 for all d ≥ 1. Under this assumption, the two
systems

(
L19

in(H)

)

=
(

5 7
2 4

)

⊗
(

H0
out(H)

)

L19 = (5 7) ⊗
(

H0
out(H)

)

are equivalent. This reduces the WCRT specification further from H3 to H4 =(
5 7

)
without loss of precision. The algorithm [4] exploits this interface optimi-

sation aggressively, at all levels. This renders the analysis of parallel composition
particularly efficient, as we shall see in Sect. 5.3.

WCRT Analysis for Synchronous Multithreading 59

(
L5
G1

)

=
(

1 ∧ I
1 ∧ ¬I

)

⊗ G0

L11 = 1 1
) ⊗

(
G2
L10

)

(
L7
G3

)

=
(

1 ∧ I 1 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)

⊗
(

L6
G1

)

G2 = 1 ⊗ L7
L6 = 1 ⊗ L5
L9 = 1 ⊗ G3
L10 = 1 ⊗ L9

Fig. 5. Basic blocks v1–v7 of thread G.

In more recent work a differ-
ent abstraction via so-called tick cost
automata (TCA) has been proposed [28].
It abstracts from signal dependen-
cies like [4], but preserves the depen-
dency on state controls. Also, it is
assumed that there are no through
paths Tthr = ⊥ (Moore automaton)
and the unique entry control ζ is
connected to a single state s0 with
zero cost. These restrictions are with-
out loss of generality as they can be
achieved by judicious block decompo-
sition. We can understand TCA in
terms of SGD[X] using abbreviations
in(s) = (in(s0) in(s1) · · · in(sn−1)ᵀ

and out(s) = (out(s0) out(s1) · · · out(sn−1))ᵀ for the state controls vec-
tors. The general system equations then are ξ = Texit ⊗ out(s), and in(s) =
Ttick ⊗ out(s) together with the entry in(s0) = ζ and the register equation
out(s) = X tick(in(s)). These system equations in which Texit and Ttick consist
of scalars Z∞ are solved by numeric fixed point iteration. The work [28] imple-
ments these operations using max-plus algebra and explicit normal form TCAs
representing the ultimately periodic system solutions.

5.3 Module Composition

SGD[X] permits compositional specifications at different abstraction levels using
(max-plus) pseudo-linear transformations. This is the key for dynamic program-
ming techniques and suggests the composition of blocks by matrix multiplication.
Depending on how we apply the algebra we can implement different strategies for
practical WCRT analysis. We illustrate this for our example program in Fig. 1c.
The starting point is the block description of thread G seen in Fig. 5.

Path Decomposition. The naive strategy would be to enumerate all paths
from G0 to L11, sum up the delays on each path and then take the maximum.
Each of these paths defines a sub-graph of G with specific side-inputs and side-
outputs. For instance, path p1 as indicated in Fig. 4a has the side-outputs G1,
G3 and side-inputs G1, L10. Its SGD[X] reaction function

(
G1 G3 L11

)ᵀ =
D1 ⊗ (

G0 L10 G1
)ᵀ has the system matrix in Fig. 6.

60 M. Mendler et al.

D1 =
1 ∧ ¬I ⊥ ⊥

3 ∧ I ∧ ¬I ⊥ 1 ∧ ¬I
5 ∧ I 1 3 ∧ I

Fig. 6. System matrix for path p1.

The entries measure if and how p1 con-
nects the respective controls. For instance, the
entry 3 ∧ I ∧ ¬I is the delay between input
G0 and output G3. This segment (see Fig. 4a)
has delay 3 but is only sensitisable if signal I
is simultaneously present and absent. This is
impossible since 3 ∧ I ∧ ¬I = ⊥. The entries
⊥ in D1 capture that there is no causal con-
trol flow from the corresponding input to the corresponding output line. D1 can
be obtained by successively multiplying (in fps max-plus algebra) the timing
matrices of the individual nodes traversed by p1.

If we are not interested in all combinations of side-inputs and side-outputs
we can reduce the matrix D1. The side-inputs G1 and L10 are eliminated
by selecting only the first column of D1, i.e., D′

1 = D1 ⊗ (
0 ⊥ ⊥)T , so that

(
G1 G3 L11

)T = D′
1 ⊗ G0. Getting rid of the side-outputs G1 and G3 is not so

simple. We cannot simply drop the rows and write L11 = (5 ∧ I) ⊗ G0. This
would be unsound since not every execution of path p1 exiting from L11 must
necessarily originate in G0 and imply that I is present. What is correct, is to
say that L11 is equivalent to (5 ∧ I) ⊗ G0 if neither side-output G1 or G3 ever
becomes active is the set of control flows determining the WCRT. Formally, this
is (¬G1 ∧ ¬G3) ⊃ (L11 = (5 ∧ I) ⊗ G0). Calculating all other paths through G
in a similar fashion finally obtains:

p1 : (¬G1 ∧ ¬G3) ⊃ (L11 = D′′
1 ⊗ G0) D′′

1 = (5 ∧ I) (25)

p2 : (¬L5 ∧ ¬G3) ⊃ (L11 = D′′
2 ⊗ G0) D′′

2 = (4 ∧ I ∧ ¬I) (26)

p3 : (¬G1 ∧ ¬L7) ⊃ (L11 = D′′
3 ⊗ G0) D′′

3 = (6 ∧ I ∧ ¬I) (27)

p4 : (¬L5 ∧ ¬L7) ⊃ (L11 = D′′
4 ⊗ G0) D′′

4 = (5 ∧ ¬I). (28)

The path schedules (25)–(28) can now be woven together in SGD[X] algebra to
obtain the final result L11 = D ⊗ G0 where D = D′′

1 ⊕ D′′
2 ⊕ D′′

3 ⊕ D′′
4 = 5. For

this we exploit, among other laws, that I ∧ ¬I = ⊥, I ⊕ ¬I =
 as well as that
xi ⊃ (L11 = yi) implies ⊕ixi ⊃ (L11 = ⊕yi), and the equation

(¬G1 ∧ ¬G3) ⊕ (¬L5 ∧ ¬G3) ⊕ (¬G1 ∧ ¬L7) ⊕ (¬L5 ∧ ¬L7) ≡
.

The latter is a consequence of the fact that G is single-threaded: Each activation
must make a split decision for either exit L5 or G1 at node v1 and for either L7
or G3 at node v3.

Weaving Nets. WCRT analysis by path enumeration, though sound, is of
worst-case exponential complexity. A more efficient way of going about is to
exploit dynamic programming. In the following we illustrate this process in
SGD[X] algebra using the net decomposition of G seen in Fig. 4b. The strat-
egy is to propagate WCRT information forward through G, composing sub-nets
N1, N2, N3 rather than paths.

WCRT Analysis for Synchronous Multithreading 61

We obtain the system matrix of N1 first by combining the matrices of v1 and
v2 from Fig. 5. To compose them we first lift v2 as an equation in L5 and G1 to
get L6 = 1L5 ⊕ ⊥G1 =

(
1 ⊥) ⊗ (

L5 G1
)ᵀ. Since G1 =

(⊥ 0
) ⊗ (

L5 G1
)ᵀ we

can compose with equation v1:
(

L6
G1

)

=
(

1 ⊥
⊥ 0

)

⊗
(

L5
G1

)

=
(

1 ⊥
⊥ 0

)

⊗
(

1 ∧ I
1 ∧ ¬I

)

G0 =
(

2 ∧ I
1 ∧ ¬I

)

G0. (29)

In a similar fashion one obtains the specifications of sub-blocks N2 and N3:
(

G2
G3

)

=
(

2 ∧ I 2 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)

⊗
(

L6
G1

)

L11 =
(
1 3

) ⊗
(

G2
G3

)

. (30)

If we compose the three sub-nets N1, N2, N3 in sequence, our schedule of G all
the way from entry point G0 to exit L11 is complete:

L11 =
(
1 3

) ⊗
(

2 ∧ I 2 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)

⊗
(

2 ∧ I
1 ∧ ¬I

)

G0 = 5 G0. (31)

This is indeed the weight of the longest path p3 through G.

Bundling Abstractions. There are of course other ways of arriving at the
WCRT, corresponding to different network decompositions of G. It is also pos-
sible to condense the timing information by bundling the inputs and outputs
of N1, N2, N3 before they are composed. For instance, one might decide to
compress the system equation for N1 into a single entry-exit delay N1′ specified
as L6 ⊕ G1 = d G0 which gives the maximal delay d for an execution entering
through G0 to come out at L6 or G1, without distinguishing between paths
exiting on L6 and those exiting on G1. This is applied also to N2 and N3 as
indicated in Fig. 4c.

Algebraically, this compression is justified for N1 by pre-composing with(
0 0

)
which yields L6⊕G1 =

(
0 0

)⊗(
L6 G1

)ᵀ =
(
0 0

)⊗(
2 ∧ I 1 ∧ ¬I

)ᵀ ⊗G0 =
(2 ∧ I ⊕ 1 ∧ ¬I) ⊗ G0. For N2 and N3 we also need compression on the input
side. For N2 this is possible without losing precision and for N3 we need the
approximation

(
G2 G3

)ᵀ ≤ (
0 0

)ᵀ ⊗(G2⊕G3). We get approximations N2′ and
N3′ from (29) and (30):

G2 ⊕ G3 =
(
0 0

) ⊗
(

2 ∧ I 2 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)

⊗
(

L6
G1

)

= (2 ∧ I ⊕ 1 ∧ ¬I)(L6 ⊕ G1)

L11 =
(
1 3

) ⊗
(

G2
G3

)

≤ (
1 3

) ⊗
(

0
0

)

(G2 ⊕ G3) = 3 (G2 ⊕ G3).

Composing N1′, N2′, N3′ is more efficient than composing N1, N2, N3 since
it involves only scalars rather than matrices.

Parallel Composition and WCRT Analysis. The main thread T in Fig. 1c
is the parallel composition of threads G and H, synchronised by the fork and join

62 M. Mendler et al.

nodes v0 and v16, respectively. Even without reducing threads G and H to their
externally observable system functions (21) and (31) we can compose them in
parallel. All we need are equations for the fork and join nodes. The fork node v0

activates both G0 and H0, when it is reached, taking 3 ics (2 PAR and 1 PARE,
see Fig. 1d):

(
G0 H0

)ᵀ =
(
3 3

)ᵀ ⊗ T0. (32)

The join node v16 becomes active as soon as one of G or H reaches its termination
control. The join finishes its activity in the tick when both have arrived. It then
passes control and reactivates the parent at L20. At each input L11, L19 the
join behaves like a synchroniser with latching behaviour. We define the operator
sync(C,R), which waits for C to become active at which point it inherits the
cost of C. From the next tick onwards it takes a constant cost2, say 2 ics, until
it is reset by R. This leads to the recursive definitions

sync(C,R) = ¬XR ∧ (C ⊕ X(2 ∧ ¬¬sync(C,R))) (33)
L20 = sync(L11, L20) ⊗ sync(L19, L20) (34)

where L20 adds up the delays from both threads by ⊗ in line with the multi-
threading model of execution.

The equations (32)–(34) for fork and join are a surprisingly simple and com-
positional way of specifying timed concurrent structures. To illustrate let us
revisit our sample simulation from Sect. 5 (see also Fig. 1b). The threads G and
H arrive at their termination points with L11 = 6:⊥:⊥:6:⊥ and L19 = ⊥:⊥:7:⊥,
respectively. Thread G terminates in tick 1 and 4 while H finishes only in tick
3. The cost arising from synchronising G is sync(L11, L19) = 6:2:⊥:6:2 which is
6 at G’s first termination time, then 2 while waiting for H, again 6 at the next
re-entry in tick 4, when G terminates a second time. But since then H never
terminates, the join stays active, generating cost 2 in each subsequent tick. On
the other side we have sync(L19, L11) = ⊥:⊥:7:⊥, which is the completion time
for H. There are no extra cost as H does not need to wait for G. The output of
the join has cost L20 = ⊥:⊥:9:⊥ which at termination in tick 3 combines the 7
ic cost from H plus 2 ic overhead for the join.

We are now nearly complete with our story. The equations tells us for each
stimulation environment and control v ∈ V if and when v is reachable in any tick.
The equations can be used for formal analysis, compiler verification, program
transformations, timing-accurate simulation or even directly for implementation.

Here we are interested in obtaining the total WCRT of a program. When
concurrency is present, the WCRT of a thread t is not the WCRT of any single
control, but the WCRT of a set of controls. It is the worst case cost, over all ticks,
of any set of controls that are potentially concurrent in t. A set of controls C ⊆ V

is concurrent, written conc(C), if all its elements belong to different child threads.
For instance, {L11, L14} is concurrent but {L6, L11} is not. Concurrent controls
2 In the KEP processor the join is executed at each tick until both threads have

terminated, during which time it invokes some constant overhead cost.

WCRT Analysis for Synchronous Multithreading 63

execute in independent KEP hardware threads which are interleaved, whence
their costs are added. In the search for such C we may restrict to the completion
controls cmpl(t) of a thread t. These are the controls in which t may terminate
or pause. For instance, cmpl(G) = {L11} and cmpl(H) = {in(v9), in(v13), L19}.
For parent threads these must be included, i.e., we have cmpl(T) = cmpl(G) ∪
cmpl(H)∪{L20}. The control L20 describes the situations in which T terminates.
The controls in cmpl(G) are concurrent to those in cmpl(H) and vice versa. None
of them is concurrent with L20 which happens in their parent.

The worst case reaction time wcrt(t) of a synchronous program t the maximal
sum of WCRT of any set of concurrent completion controls in any tick,

wcrt(t) = max {(
⊗

v∈C

v)[1] | C ⊆ cmpl(t), conc(C)}, (35)

where (
⊗

v∈C
v)[1] = max {⊗

v∈C
v(i) | i ≥ 0} = max {∑

v∈C
v(i) | i ≥ 0}.

Explicit solutions of (35) are non-trivial as it maximises over an infinite number
of ticks i and choices of sets C whose number may grow exponentially with the
number of threads. We do not know of any algorithm to solve (35) in its general
form, yet solutions exist for special cases.

For normal clock-guarded synchronous programs the fps v are rational and
thus can be represented as finite input-output tick cost automata, called IO-
BTCA [23]. A given sum

⊗
v∈C

v of controls can then be obtained by synchronous
composition of automata. This is a well-understood construction, though it
requires symbolic reasoning on boolean signals and is subject to the state-space
explosion problem. The period (number of states) in the fps v1 ⊗ v2 may be the
product of the periods of v1 and v2. The automata-theoretic approach has been
explored in [25] for timed concurrent control flow graphs TCCFGs (similar to
CKAGs) using UPPAAL, but it does not scale well.

The situation is simpler for autonomous systems without input signals, which
reduce to ultimately periodic sequences over Z∞. Any IO-BTCAs can be over-
approximated to an autonomous system, called tick cost automaton TCA, by
eliminating signal dependencies, as discussed in Sect. 5.2, replacing each refer-
ence to a signal S or its negation ¬S by
. Such approximations are sound
but ignore inter-thread communication. The advantage is that the autonomous
case of (35) can be translated into an (0/1) ILP. This implicit path enumeration
(IPE) technique for WCRT analysis yields much better results [29] compared to
the automata-theoretic approach.

The IPE approach has been considered the most efficient technique for
autonomous approximations until recently, when explicit algebraic solutions
for (35) have been attempted. In [23] it is observed that for the natural class of
so-called patient TCA the computation of the normal form for each v is polyno-
mial. This reduces the problem of computing the tick-wise additions

⊗
v∈C

v for
ultimately periodic sequences v to the tick alignment problem studied in [20,23]
which can be solved using graph-theoretic algorithms. This has led to signifi-
cant speed-up in the original ILP implementation of [29]. Still, even under signal
abstraction, the theoretical complexity of computing the periodic normal form

64 M. Mendler et al.

of a control v ∈ cmpl(T) and solving the tick alignment problem remain open
problems. Rather interestingly, recent experiments implementing the explicit
fixed point construction mentioned in Sect. 5.2 indicate that for autonomous
systems both problems may be polynomial in practice [28], despite the theoret-
ical exponential blow-up.

The fastest polynomial algorithm to date for solving (35), unsurprisingly,
is also the most over-approximating one. The dynamic programming approach
of [4] not only abstracts from signals but also from state dependencies, as
explained in Sect. 5.2. It bundles all state controls σi of a given program block
t into a single pair out(t) = ⊕iout(σi), in(t) = ⊕iin(σi). The system equation
of t then becomes

(
ξ in(t)

)ᵀ = Dt ⊗ (
ζ out(t)

)ᵀ where Dt is a matrix of scalar
constants. With the register equation out(t) = X � tick(in(t)) for the feedback,
the closed solution is attainable in a single fixed point iteration, in O(1) time.
Moreover, the fps for each control v is of the form d0:d1 a delay for the initial
tick and all subsequent ones being identical. Hence the calculation of

⊗
v∈C

v is
done in O(1) time, too. Moreover, the fact that each control has only two entries
v = v(0):v(1) helps greatly in the maximisation over all C: For each given i
the tick-wise maximum wcrti(t) = max {⊗

v∈C
v(i) | C ⊆ cmpl(t), conc(C)}

can be obtained bottom-up by induction over the thread hierarchy. The rea-
son is that in the maximum wcrti(t) =

⊗
v∈Cmax

v(i) the constituent controls
C

′ = Cmax ∩ cmpl(t′) for each child t′ of t are not only concurrent conc(C′), but
necessarily constitute the tick-specific maximum wcrti(t′) =

⊗
v∈C′ v(i) for the

child, too.

6 Related Work and Conclusions

A rudimentary version of the WCRT interface model has been proposed origi-
nally in [22]. That work focused on the algorithmic aspects of the modular timing
analysis of synchronous programs. It was implemented in the backend of a com-
piler for Esterel, analysing reactive assembly code running on the Kiel Esterel
Processor (KEP). A rigorous mathematical definition of the behavioural seman-
tics of the interface models was presented in [21]. The axiomatic approach of [21]
highlighted the essentially logical nature of the WCRT interfaces. It was shown
how the logical interface language can specify, and relate with each other, stan-
dard analysis problems such as shortest path, task scheduling or max-flow prob-
lems. However, the logical theory developed by [22] and [21] was still restricted to
the modelling of the purely combinational behaviour of a synchronous module,
i.e., its reactive behaviour during a single tick. This yields the worst-case timing
over all states rather than just the reachable ones. In general, this is an over-
approximation of the exact WCRT. The tick dependency of WCRT behaviour,
also called tick alignment, was subsequently studied in [23]. It was observed
that the combinational timing of single ticks can be modelled in max-min-plus
algebra, which is the intuitionistic algebra of SGD. This makes it possible to
express the timing behaviour of a synchronous module over arbitrary sequences
of clock ticks as formal power series. The composition of synchronous systems

WCRT Analysis for Synchronous Multithreading 65

arises from the lifting of SGD algebra to formal power series. The paper [23]
investigates the tick alignment of timing in its pure form, i.e, without signal
communication between concurrent synchronous threads. This induces a form of
data abstraction which reduces the WCRT analysis to the maximum weighted
clique problem on tick alignment graphs. It is shown in [23] how this reduction
permits a considerable speed-up of an existing ILP algorithm that was proposed
earlier. By exploiting the logical expressiveness of SGD algebra, formal power
series can handle not only tick-dependent timing but also signal communication.
This is applied in [1,28] to obtain the full behavioural semantics of timed and
concurrent synchronous control flow graphs in a structural fashion.

In this paper we revisit this earlier work on WCRT interface algebra and in
doing so combine, for the first time, the algebraic semantics of [1,23,28] with the
logical setting of [21,22]. This is the first timing-enriched and causality-sensitive
semantics of SCP which is modular and covers full tick behaviour. The SGD[X]
equations constitute a cycle-accurate model and can be used for program analysis
and verification. This can also be used to compile Esterel via CKAG control-
flow graphs directly into data flow format. In future work it will be interesting to
explore the possibility of generating hardware circuits and compare with existing
hardware compilation chains for Esterel. On the theoretical side we plan to
study algebraic axiomatisation for SGD[X] and its expressiveness, specifically
its relationship with ILP.

Dedication

The first author is indebted to Bernhard Steffen for his long continued guidance
and encouragement both as a friend and mentor. My first training in academic
writing was as a co-author of an article with Bernhard in 1989, when we were
both in the LFCS at Edinburgh University. Some years later, I spent a most
enjoyable time as a member of the inspiring research environment which Bern-
hard had created at Passau University. Bernhard’s support was not only instru-
mental for my successful habilitation at Passau. He also ensured, at the right
moment, that I would feel pressured to find a secure permanent research job,
rather than clinging to yet another limited term position. Talking research, is
was him who suggested me to look to synchronous programming as an applica-
tion for my work on concurrency theory and constructive logic. In this way, the
work reported here originally started with a far-sighted vision of Bernhard’s.

Acknowledgements. This work was supported by the German Research Council
DFG under grant ME-1427/6-2 (PRETSY2).

References

1. Aguado, J., Mendler, M., Wang, J.J., Bodin, B., Roop, P.: Compositional timing-
aware semantics for synchronous programming. In: Forum on Specification &
Design Languages (FDL 2017), pp. 1–8. IEEE, Verona, September 2017

2. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronisation and
Linearity. Wiley, New York (1992)

66 M. Mendler et al.

3. Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and
its mathematical semantics. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.)
CONCURRENCY 1984. LNCS, vol. 197, pp. 389–448. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15670-4 19

4. Boldt, M., Traulsen, C., von Hanxleden, R.: Compilation and worst-case reaction
time analysis for multithreaded Esterel processing. EURASIP J. Embed. Syst.
2008(1), 4 (2008)

5. van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. III, chap. 4, pp. 225–339. Reidel, Dordrecht (1986)

6. Dummett, M.: A propositional calculus with a denumerable matrix. J. Symb. Log.
24, 97–106 (1959)

7. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In:
DAC 2007, San Diego, USA, June 2007

8. Edwards, S.A., Kim, S., Lee, E.A., Liu, I., Patel, H.D., Schoeberl, M.: A disruptive
computer design idea: architectures with repeatable timing. In: Proceedings of
IEEE International Conference on Computer Design (ICCD 2009). IEEE, October
2009

9. Fermüller, C.G.: Parallel dialogue games and hypersequents for intermediate logics.
In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796,
pp. 48–64. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45206-
5 7

10. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow
networks. In: CODES+ISSS 2010. ACM, Scottsdale, October 2010

11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
12. von Hanxleden, R., Li, X., Roop, P., Salcic, Z., Yoong, L.H.: Reactive processing

for reactive systems. ERCIM News 66, 28–29 (2006)
13. von Hanxleden, R., Mendler, M., Traulsen, C.: WCRT algebra and scheduling

interfaces for Esterel-style synchronous multi-threading. Technical report 0807,
Christian-Albrechts-Univ. Kiel, Department of Computer Science, June 2008.
http://rtsys.informatik.uni-kiel.de/∼biblio/downloads/papers/report-0807.pdf

14. Hirai, Y.: A lambda calculus for Gödel–Dummett logic capturing waitfreedom. In:
Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 151–165.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29822-6 14

15. Ju, L., Huynh, B.K., Chakraborty, S., Roychoudhury, A.: Context-sensitive timing
analysis of Esterel programs. In: Proceedings of 46th Annual Design Automation
Conference (DAC 2009), pp. 870–873. ACM, New York (2009)

16. Ju, L., Huynh, B.K., Roychoudhury, A., Chakraborty, S.: Performance debugging
of Esterel specifications. Real-Time Syst. 48(5), 570–600 (2012)

17. Kuo, M., Sinha, R., Roop, P.S.: Efficient WCRT analysis of synchronous programs
using reachability. In: Proceedings of 48th Design Automation Conference (DAC
2011), pp. 480–485 (2011)

18. Li, X., von Hanxleden, R.: Multi-threaded reactive programming–the Kiel Esterel
Processor. IEEE Trans. Comput. 61(3), 337–349 (2012)

19. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.: Predictable
programming on a precision timed architecture. In: Proceedings of the Conference
on Compilers, Architectures, and Synthesis of Embedded Systems (CASES 2008),
Atlanta USA, October 2008, pp. 137–146 (2008)

20. Mendler, M., Bodin, B., Roop, P., Wang, J.J.: WCRT for synchronous programs:
studying the tick alignment problem. Technical report 95, University of Bamberg,
Faculty for Information Systems and Applied Computer Sciences, August 2014

https://doi.org/10.1007/3-540-15670-4_19
https://doi.org/10.1007/978-3-540-45206-5_7
https://doi.org/10.1007/978-3-540-45206-5_7
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-0807.pdf
https://doi.org/10.1007/978-3-642-29822-6_14

WCRT Analysis for Synchronous Multithreading 67

21. Mendler, M.: An algebra of synchronous scheduling interfaces. In: Legay, A., Cail-
laud, B. (eds.) Proceedings Foundations for Interface Technologies (FIT 2010),
EPTCS, Paris, France, vol. 46, pp. 28–48 (2010)

22. Mendler, M., von Hanxleden, R., Traulsen, C.: WCRT algebra and interfaces for
Esterel-Style synchronous processing. In: Proceedings of Design, Automation and
Test in Europe Conference (DATE 2009), Nice, France, April 2009

23. Mendler, M., Roop, P.S., Bodin, B.: A novel WCET semantics of synchronous
programs. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp.
195–210. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 12

24. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F., Asavoae, M.: Tim-
ing analysis enhancement for synchronous programs. Real-Time Syst. 51, 192–220
(2015)

25. Roop, P.S., Andalam, S., von Hanxleden, R., Yuan, S., Traulsen, C.: Tight WCRT
analysis of synchronous C programs. In: Proceedings of Compilers, Architecture,
and Synthesis for Embedded Systems (CASES 2009), pp. 205–214 (2009)

26. Schoeberl, M.: Time-predictable computer architecture. EURASIP J. Embed. Syst.
2009, 2:1–2:17 (2009)

27. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the develop-
ment of real-time systems. Comput. Sci. Rev. 9, 1–26 (2013)

28. Wang, J., Mendler, M., Roop, P., Bodin, B.: Timing analysis of synchronous pro-
grams using WCRT algebra: scalability through abstraction. ACM TECS 16(5s),
177:1–177:19 (2017)

29. Wang, J.J., Roop, P.S., Andalam, S.: ILPc: a novel approach for scalable timing
analysis of synchronous programs. In: CASES 2013, Montreal, Canada, September–
October 2013, pp. 20:1–20:10 (2013)

30. Yip, E., Roop, P.S., Biglari-Abhari, M., Girault, A.: Programming and timing anal-
ysis of parallel programs on multicores. In: Proceedings on Application of Concur-
rency to System Design (ACSD 2013), pp. 160–169. IEEE (2013)

https://doi.org/10.1007/978-3-319-44878-7_12

Intersection Types in Java:
Back to the Future

Mariangiola Dezani-Ciancaglini1, Paola Giannini2(B), and Betti Venneri3

1 Dipartimento di Informatica, Università di Torino, Turin, Italy
dezani@di.unito.it

2 Dipartimento di Scienze e Innovazione Tecnologica,
Università del Piemonte Orientale, Alessandria, Italy

paola.giannini@uniupo.it
3 Dipartimento di Statistica, Informatica, Applicazioni,

Università di Firenze, Florence, Italy
venneri@unifi.it

Abstract. In this paper we figure out the future of intersection types in
Java developments, based both on the primary meaning of the intersec-
tion type constructor and on the present approach in Java. In our vision,
the current use of intersection types will be extended in two directions.
Firstly, intersections will be allowed to appear as types of fields, types of
formal parameters and return values of methods, therefore they will be
significantly used as target types for λ-expressions anywhere. Secondly,
the notion of functional interface will be extended to any intersection of
interfaces, including also several abstract methods with different signa-
tures. Thus a single target type will be able to express multiple, possibly
unrelated, properties of one λ-expression.

We formalise our proposal through a minimal Java core extended with
these novel features and we prove the type safety property.

1 Introduction

Intersection types have been invented originally for the λ-calculus to increase
the set of terms having meaning types [3]. The power of this type system lies
on the fact that the set of untyped λ-terms having types is exactly the set of
normalising terms, that is terminating programs. This prevents the adoption of
this full system in programming languages, but the intuition behind intersection
types can be particularly inspiring for language designers looking for mechanisms
to improve flexibility of typechecking.

Mariangiola Dezani-Ciancaglini—Partially supported by EU H2020-644235 Rephrase
project, EU H2020-644298 HyVar project, IC1402 ARVI and Ateneo/CSP project
RunVar.
Paola Giannini—This original research has the financial support of the Università del
Piemonte Orientale.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 68–86, 2019.
https://doi.org/10.1007/978-3-030-22348-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_6

Intersection Types in Java: Back to the Future 69

The development of the successive versions of Java shows a careful and even
more significant entry of intersection types in the shape of intersection (denoted
by &) of nominal types. In particular, we remark that the version Java 5 intro-
duced generic types and intersection types later appeared as bounds of generic
type variables. It is worth noting that already in the last century Büchi and
Weck [2] had proposed to extend Java 1 by allowing intersection types (called
there compound types) as parameter types and return types of methods, by
showing interesting examples of their use for structuring and reusing code. Java
still does not allow these uses of intersections, that are confined to be target
types of type-casts. However, one could assume that the proposal of [2] is now
realised, in some fashion, in Java with generic types, given that a generic type
variable, bounded by an intersection type, can appear as parameter type as well
as return type of a method. Unfortunately, the above argument does not fit the
case of λ-expressions, which are the key novelty of Java 8, since a generic type
variable cannot be instantiated by the type of a λ-expression. Java λ-expressions
are poly expressions in the sense they can have various types according to context
requirements. Each context prescribes the target type for the λ-expression used in
that context, and Java does not compile when this target type is unspecified. The
target type can be either a functional interface (i.e., an interface with a single
abstract method) or an intersection of interfaces that induces a functional inter-
face. Notably, the λ-expression must match the signature of the unique abstract
method of its functional interface. When we cast a λ-expression to an intersection
type, this intersection becomes its target type, and so the λ-expression exploits
its poly expression nature, having all the types of the intersection. So, in addition
to implementing the abstract method, it also acquires all the behaviours that are
represented by the default methods defined in the various interfaces forming the
intersection. However, when the λ-expression is passed as argument to a method
or returned by a method, then its target type cannot be an intersection type.
Our proposal wants to free intersection types of all those bindings and restric-
tions, so that they can appear as types of fields, types of formal parameters and
value results of methods, thus playing the role of target types for λ-expressions
anywhere these expressions can be used.

The second limitation of Java we want to overcome relates to the definition
of functional interface, which must contain one and only one abstract method.
In Java a λ-expression is able to match multiple headers of abstract methods,
with different signatures, but its target type in each context expresses just one
of such signatures. This can be frustrating for Java programmers in many situ-
ations, where they are compelled to use several copies of the same λ-expression,
each one matching a single signature. Completely different, the main idea behind
intersection type theory is that an intersection type expresses multiple, possibly
unrelated, properties of one term in a single type. The prototypical example is
represented by the term λx.x x, denoting the auto-application function, which
can be assigned, for instance, the type (α&(α → β)) → β, where α, β are arbi-
trary types and the arrow denotes the function type constructor. The intersection
type α&(α → β) says that the parameter must behave both as function and as
argument of itself. We can retrieve this powerful feature from intersection type

70 M. Dezani-Ciancaglini et al.

theory to Java, by allowing any intersection of interfaces to be a functional inter-
face having multiple abstract methods. For example, let us consider the method

C auto (Arg&Fun x){return x.mFun(x).mArg(new C());}

where C is any class (without fields for simplicity), Arg and Fun are two Java
interfaces with the abstract methods C mArg (C y) and Arg mFun (Arg z), respec-
tively. Although the method is greedy with requirements about its argument,
many λ-expressions are ready to match the target type Arg&Fun, first of all the
simple identity x->x.

In conclusion, this paper wants to flash forwards to a future development of
Java, in which the use of intersection types is extended in the two directions
discussed above, in order to study its formal properties. To this end, we for-
malise the calculus FJP&λ (Featherweight Java with Polymorphic Intersection
types and λ-expressions), based on the core language FJ&λ [1], that models the
treatment of λ-expressions and intersection types in Java 8. As main result, we
prove that FJP&λ preserves type-safety.

2 Syntax

In defining the syntax of FJP&λ we follow the notational convention of [1],
recalled here for self-containment. We use A,B,C,D to denote classes, I, J to
denote interfaces, T,U to denote nominal pre-types, i.e., either classes or inter-
faces; f, g to denote field names; m to denote method names; t to denote terms;
x, y to denote variables, including the special variable this; τ, σ to denote pre-
types as defined below. We use

−→
I as a shorthand for the (comma separated) list

I1, . . . , In and M as a shorthand for the sequence M1 . . .Mn and similarly for the
other names. Sometimes order in lists and sequences is unimportant. In rules,
we write both N as a declaration and

−→
N for some name N: the meaning is that a

sequence is declared and the list is obtained from the sequence adding commas.
The notation τ f; abbreviates τ1f1; . . . τnfn; and −→τ −→

f abbreviates
τ1f1, . . . , τnfn (likewise −→τ −→x) and this.f = f; abbreviates this.f1 = f1; . . . this.fn = fn;.
Lists and sequences of interfaces, fields, parameters and methods are assumed

Fig. 1. Declarations

Intersection Types in Java: Back to the Future 71

Fig. 2. Functions A-mh, D-mh and mh

to contain no duplicate names. The keyword super, used only in constructor’s
body, refers to the superclass constructor. Figure 1 gives declarations: CD ranges
over class declarations; ID ranges over interface declarations; K ranges over
constructor declarations; H ranges over method header (or abstract method)
declarations; M ranges over method (or concrete method) declarations.

A main novelty of FJP&λ with respect to Java is that the types of fields,
parameters and return terms are intersections instead of nominal types. The
syntax of FJP&λ is obtained from the syntax of FJ&λ with default methods of
[1] by replacing everywhere nominal pre-types by arbitrary pre-types. As usual
a class declaration specifies the name of the class, its superclass and the imple-
mented interfaces. A class has fields f, a single constructor K and methods M.
The instance variables f are added to the ones of its superclasses and should have
names disjoint from these. An interface declaration lists the extended interfaces,
the method headers, and the default methods (omitting the keyword default).
The arguments of the constructors correspond to the immutable values of the
class fields. The inherited fields are initialised by the call to super, while the new
fields are initialised by assignments. Headers relate method names with result
and parameter pre-types. Methods are headers with bodies, i.e., return expres-
sions. We omit implements and extends when the lists of interfaces are empty.

72 M. Dezani-Ciancaglini et al.

Object is a special class without fields and methods, does not require a
declaration and it is the top of the class hierarchy.

A class table CT is a mapping from nominal types to their declarations. A
program is a pair (CT , t). In the following we assume a fixed class table.

Pre-types (ranged over by τ, σ) are either nominal types or intersections of:
– interfaces or
– a class (in leftmost position) and any number of interfaces.
Using ι to denote either an interface or an intersection of interfaces we define:

τ :: = C | ι | C&ι where ι :: = I | ι&I

The notation C[&ι] means either the class C or the pre-type C&ι.
Types are pre-types whose method declarations are consistent. To define

consistency we use the partial functions A-mh, D-mh and mh that map pre-types
to lists of method headers, considered as sets, see Fig. 2. As in [1], A-mh and
D-mh collect abstract and default methods in interfaces, whereas the function mh
collects all method headers of interfaces and classes. We use ε for the empty list.
With

⊎
we denote the set-theoretic union of lists of method headers, that is

defined only if the same method name does not occur with different pre-types.
For example C mArg(C x)

⊎
Arg mFun(Arg x) is defined, while

C mArg(C x)
⊎

Arg mArg(Arg x)

is not defined.
As we can see from the penultimate line of Fig. 2, function mh is defined for a

list of interfaces only if the same method name is not declared both as abstract
and default method, see page 292 of [6].

Definition 1 (Types). A pre-type τ is a type if mh(τ) is defined.

For example, if we consider
interface Arg {C mArg(C x);} and interface Fun {Arg mFun(Arg x);}

then Arg&Fun is a type; whereas if we define
interface ArgD {D mArg(D x);}

where the class D differs from the class C, then the pre-type Arg&ArgD is not a
type, since mh(Arg)

⊎
mh(ArgD) is not defined.

Notice that the present definition of type coincides with that in [1], and
therefore all types here are Java types.

In the following we will always restrict T,U, τ, σ, ι to range over types. The
typing rules for classes and interfaces (see Fig. 11) assure that all nominal pre-
types in a well-formed class table are types.

Terms are defined in Fig. 3. Terms are a subset of Java terms, with the
addition that λ-expressions may or may not be decorated by intersections of
interfaces. The intersection of interfaces decorating a λ-expression represents
its target type. Values, ranged over by v, u, are either proper values or pure λ-
expressions. Proper values, ranged over by w, are either objects or decorated
λ-expressions. Pure λ-expressions are written by the user, whereas decorated
λ-expressions are generated by reduction. A parameter p of a λ-expression can

Intersection Types in Java: Back to the Future 73

Fig. 3. Terms

Fig. 4. Subtyping

be either untyped or typed, but typing rules forbid to mix untyped and typed
parameters in the same λ-expression. A difference with [1] is the freedom of
decorating λ-expression with interfaces and intersections of interfaces without
requiring exactly one abstract method as in Java (see [6], page 321).

We use tλ to range over pure λ-expressions.
The subtype relation <: is the reflexive and transitive closure of the relation

induced by the rules of Fig. 4. It takes into account both the hierarchy between
nominal types induced by the class table and the set theoretic properties of
intersection. Rule [<: &R] formalises the statement in the last two lines of page
677 in [6].

Our definition of intersection types is consistent with the requirements of the
Java Language Specification [6] (pages 70–71). In particular, on one side from
Definition 1, τ is a type if “mh(τ) defined”, and therefore we can define a nominal
class that is a subtype of τ . On the other, the existence of a nominal class which
is a subtype of τ assures mh(τ) defined since rule [C OK] in Fig. 11 requires mh(C)
defined and mh(τ) ⊆ mh(C), see the proof of Lemma 1(2).

Notice that ι <: Object&ι <: ι for all ι, but these types cannot be considered
equivalent, since ι can be the target type of a λ-expression whereas Object&ι
cannot.

74 M. Dezani-Ciancaglini et al.

3 Operational Semantics

For the evaluation and typing rules we need the auxiliary definitions of Figs. 5
and 6. The fields of a class C, dubbed fields(C), are specified by a list of pairs
associating names and types of the fields that are defined in C or in one of its
superclasses. To give the signature of methods, i.e. the parameters and result
types, we specify method name and type. Moreover, it is useful to distinguish
between abstract and default method in interfaces. Therefore, we have three
lookup functions: A-mtype(m; τ), D-mtype(m; τ) and mtype(m; τ). Their defini-
tion uses the functions given in Fig. 2.

Fig. 5. Lookup fields and method types

The body of a method m for a type τ is specified by mbody(m; τ) of Figure 6.
If τ is a class C, we first look for a definition of m in C, then in its superclass,
and, if not found, we look for a default method with name m in the interfaces−→
I implemented by C. The fact that the function D-mh(τ) of Fig. 2 (used by
D-mtype(m;

−→
I) of Fig. 5) is defined ensures that, if there is more than one defi-

nition of m, then there is a most specific one which is the one returned. This is
enforced by the rules for mbody(m;

−→
I) and mbody(m; I1& . . . &In).

In typing the source code, Java uses for λ-expressions the types prescribed by
the contexts enclosing them. These types are called target types. This means that
λ-expressions are poly expressions, i.e. they can have different types in different
contexts, see page 93 of [6]. More precisely:

(1) the target type of a λ-expression that occurs as a actual parameter of a
constructor call is the type of the field in the class declaration;

(2) the target type of a λ-expression that occurs as a actual parameter of a
method call is the type of the parameter in the method declaration;

(3) the target type of a λ-expression that occurs as a return term of a method
is the result type in the method declaration;

(4) the target type of a λ-expression that occurs as the body of another λ-
expression is the result type of the target type of the external λ-expression;

(5) the target type of a λ-expression that occurs as argument of a cast is the
cast type.

Intersection Types in Java: Back to the Future 75

Fig. 6. Method body lookup

According to [6] (page 602): “It is a compile-time error if a lambda expression
occurs in a program in someplace other than an assignment context, an invo-
cation context (like (1), (2), (3) and (4) above), or a casting context (like (5)
above).”

FJP&λ extends Java allowing any intersection of interfaces as target type,
while Java requires exactly one abstract method.

Following [1] the reduction rules assure that the pure λ-expressions are dec-
orated by their target types in the evaluated terms. The mapping (t)?τ defined
as follows:

(t)?τ =

{
(t)τ if t is a pure λ-expression,

t otherwise

decorates with τ pure λ-expressions, whereas leaves all the other terms
unchanged. This mapping is used in propagating the type expected for
λ-expressions in constructor and method calls and in casts. The typing rules
assure that if t is a pure λ-expression, then τ is an interface or an intersection

76 M. Dezani-Ciancaglini et al.

of interfaces, i.e. reducing well-typed terms we only get decorated terms of the
shape (tλ)ι.

As usual [x �→ t] denotes the substitution of x by t and it generalises to an
arbitrary number of variables/terms as expected.

The notation −→x �→ (−→v)?
−→τ is short for x1 �→ (v1)?τ1 , . . . , xn �→ (vn)?τn .

Fig. 7. Computational rules

The reduction rules are given in Figs. 7 and 8. The rules for method calls
decorate actual parameters and bodies that are λ-expressions with the expected
types. This is also the case for the rule of field access and the rule for cast of
λ-expressions. It is easy to verify that all pure λ-expressions being actual param-
eters or resulting terms in the l.h.s. are decorated by their target types in the
r.h.s. We only comment the rules regarding method calls when the receivers are
λ-expressions, since the others are obvious. A decorated λ-expression implements
all the abstract methods declared in the interfaces of its target type, so in rules
[E-InvkλU-A] and [E-InvkλT-A] the call of one of such methods reduces to the
body of the λ-expression in which the formal parameters are substituted by the
actual ones. In case the method called is one of the default methods with body t,
the λ-expression acts as the object on which the method is called. Then the call
reduces to t in which the (decorated) λ-expression replaces this and the actual
parameters replace the formal ones. In this way we follow Java 8 specification [6]
(page 480), but for the decoration of the λ-expression.

The reduction rules in Fig. 8 specify the (standard) execution strategy.
For example, assuming that the method auto of the Introduction is defined

in class AutoApp we get

Intersection Types in Java: Back to the Future 77

Fig. 8. Congruence rules

where in duplicating the parameter of auto we used two renamings of the identity
(x->x)Arg&Fun and (y->y)Arg&Fun to clarify that they have different roles.

4 Typing Rules

FJP&λ generalises FJ&λ allowing to use intersections everywhere and avoiding
the restriction that target types must have a single abstract method. We start
discussing the rules for terms shown in Fig. 9. The typing judgment is Γ � t : τ ,
where an environment Γ is a finite mapping from variables to types.

Field access is well typed, rule [T-FIELD], if the type is an intersection with
at least one class (our interfaces cannot have fields) and the class contains the
required field. In rules [T-INVK] and [T-NEW] the actual parameters are typed
with the type judgement �∗ which behaves differently depending on the fact that
the term is a pure λ-expression or any other term. The judgment �∗ is defined
as follows

Γ � t : σ σ <: τ

Γ �∗ t : τ

Γ � (tλ)ι : ι

Γ �∗ tλ : ι
and taking advantage of the notation ()?, can be synthesised by:

Γ � (t)?τ : σ σ <: τ
[� �∗]

Γ �∗ t : τ
As usual Γ �∗ −→

t : −→τ is short for Γ �∗ t1 : τ1, . . . , Γ �∗ tn : τn.
According to the judgment �∗, actual parameters that are not pure λ-

expressions can have any type which is a subtype of the type of the matching
parameter, whereas pure λ-expression can only have the type required by the
context, which is the type of the matching parameter. The premise of the rule
�∗ for pure λ-expressions requires that we derive for λ-expressions decorated

78 M. Dezani-Ciancaglini et al.

with their target type exactly their target type. The rules for typing decorated
λ-expressions are [T-λU], if the parameters are untyped, and [T-λT], if they
are typed. Note that, in the type system � there is no typing rule for pure λ-
expressions, since we expect each λ-expression to be decorated with its target
type. Rule [T-λU] requires that the body of the λ-expression be well typed for
all the headers of the abstract methods declared in the interfaces occurring in
its target type. The body of the λ-expression is typed by means of �∗ to use the
correct typing judgement for pure λ-expressions and other terms. In addition
to the requirements of [T-λU], when the types of the parameters are specified,
rule [T-λT] prescribes that they coincide with the types of the parameters of all
the abstract methods declared in the interfaces occurring in the target type of
the λ-expression. We observe that rules [T-λU] and [T-λT] can give type to any
λ-expression when A-mh(ι) is the empty list. This is consistent with our formal
setting, where we use any λ-expression just for calling default methods in the
absence of abstract methods.

Fig. 9. Syntax directed typing rules

Fig. 10. Cast typing rules

Intersection Types in Java: Back to the Future 79

The rules for type casts in Fig. 10 are as in [1]. We use τ ′ ∼ σ′ as short for
τ ′ <: σ′ and σ′ <: τ ′. The condition τ �<: σ forbids to apply rule [T-UDCAST]
when rule [T-UCAST] can be used instead.

A type derivation for the term reduced at the end of Sect. 3 is:

� new AutoApp() : AutoApp mtype(AutoApp; auto) = Arg&Fun → C Δ

� new AutoApp().auto(x->x) : C

where Δ is the derivation:
A-mh(Arg&Fun)={C mArg(C x), Arg mFun(Arg x)} y:C � y : C y:Arg � y : Arg

� (y->y)Arg&Fun : Arg&Fun

�∗ (y->y) : Arg&Fun

Finally, we define the rules for checking that method, class and interface
declarations are well formed. Note the use of the judgement �∗ for typing the
bodies of the methods. For methods the key difference with respect to the corre-
sponding rule of FJ&λ is the presence of intersection types in place of nominal
types.

Fig. 11. Method, class and interface declaration typing rules

To sum up, the program (CT , t) is well typed if the class table CT is well
formed and for some τ we have that � t : τ , using the declarations and the
subtyping of CT .

5 Subject Reduction and Progress

The subject reduction proof of FJP&λ extends that of FJ&λ taking into account
the replacement of nominal types by intersection types and the generalisation of
target types.

As usual our type system enjoys weakening, i.e., Γ � t : τ implies
Γ, x : σ � t : τ and Γ �∗ t : τ implies Γ, x : σ �∗ t : τ .

80 M. Dezani-Ciancaglini et al.

Lemma 1. (1) If C[&ι] <: D[&ι′], then fields(D) ⊆ fields(C).
(2) If mtype(m; τ) = −→ρ → ρ, then mtype(m;σ) = −→ρ → ρ for all σ <: τ .

Proof. (1) Assume that ι and ι′ are present and D is not Object, the proof in
the other cases is simpler. From C&ι <: D&ι′ and rule [<: &R] of Fig. 4 we
get C&ι <: D. Therefore, since ι <: D cannot hold, from rule [<: &L] of Fig. 4
we have that C <: D.

(2) By induction on the derivation of σ <: τ it is easy to prove mh(τ) ⊆ mh(σ).

Lemma 2 (Substitution).

(1) If Γ, x : σ �∗ t : τ and Γ �∗ v : σ, then Γ �∗ [x �→ (v)?σ]t : τ .
(2) If Γ, x : σ � t : τ and Γ �∗ v : σ, then Γ � [x �→ (v)?σ]t : ρ for some ρ <: τ .

Proof. (1) and (2) are proved by simultaneous induction on type derivations.
(1). If Γ, x : σ �∗ t : τ , then the last rule applied is [� �∗]. We consider first

the case of t being a pure λ-expression, and then t being any of the other terms.
Case t = −→y → t′. The premise of rule [� �∗] must be Γ, x : σ � (−→y → t′)τ : τ . By
part (2) of the induction hypothesis we have that Γ � ([x �→ (v)?σ](−→y → t′))τ : ρ
for some ρ <: τ . Since the last rule applied in the derivation is [T-λU], we get
ρ = τ . Using rule [� �∗] we conclude Γ �∗ [x �→ (v)?σ](−→y → t′) : τ . The proof
for the case t = −→τ −→y → t′ is similar.
Case t not a pure λ-expression. The premise of rule [� �∗] is Γ, x : σ � t : ρ
for some ρ <: τ . By part (2) of the induction hypothesis Γ � [x �→ (v)?σ]t : ρ′

for some ρ′ <: ρ. The transitivity of <: gives ρ′ <: τ . Applying rule [� �∗] we
conclude Γ �∗ [x �→ (v)?σ]t : τ .

(2). By cases on the last rule used in the derivation of Γ, x : σ � t : τ .
Case [T-VAR]. Γ, x : σ � x : τ implies σ = τ . The judgment Γ �∗ v : τ must
be obtained by applying rule [� �∗] with premise Γ � (v)?τ : ρ for some ρ <: τ ,
as required.
Case [T-FIELD]. In this case t = t′.f and

Γ, x : σ � t′ : C&ι τ f ∈ fields(C)

Γ, x : σ � t′.f : τ

(the case in which &ι is missing is easier). The induction hypothesis implies
Γ � [x �→ (v)?σ]t′ : ρ for some ρ <: C&ι. The subtyping rules of Fig. 4 give
ρ = D[&ι′] for some D and ι′. By Lemma 1(1) we have that fields(C) ⊆
fields(D) and then τ f ∈ fields(D). Therefore applying rule [T-FIELD] we
conclude Γ � [x �→ (v)?σ]t′.f : τ .
Case [T-INVK]. In this case t = t′.m(−→t) and

Γ, x : σ � t′ : ρ mtype(m; ρ) = −→τ → τ Γ, x : σ �∗ −→
t : −→τ

Γ, x : σ � t′.m(−→t) : τ

From Γ, x : σ �∗ −→
t : −→τ we get Γ �∗ [x �→ (v)?σ]−→t : −→τ by part (1) of the

induction hypothesis. By induction hypothesis on Γ, x : σ � t′ : ρ we have that
Γ � [x �→ (v)?σ]t′ : ρ′ for some ρ′ <: ρ. Lemma 1(2) gives mtype(m; ρ′) = −→τ → τ .
Applying rule [T-INVK] we conclude Γ � [x �→ (v)?σ](t′.m(−→t)) : τ .

Intersection Types in Java: Back to the Future 81

Case [T-NEW]. By part (1) of the induction hypothesis on the judgments for
the parameters.
Case [T-λU]. In this case t = (−→y → t′)τ and

ρ (−→m−→ρ)x ∈ A-mh(τ) implies Γ, x : σ,−→y : −→ρ �∗ t′ : ρ

Γ, x : σ � (−→y → t′)τ : τ
By part (1) of the induction hypothesis we have that ρ (−→m−→ρ)x ∈ A-mh(τ) implies
Γ,−→y : −→ρ �∗ [x �→ (v)?σ]t′ : ρ. Applying rule [T-λU] we conclude

Γ � ([x �→ (v)?σ](−→y → t′))τ : τ

Case [T-λT]. In this case t = (−→τ −→y → t′)τ and

Γ, x : σ � (−→y → t′)τ : τ ρm(−→ρ −→x) ∈ A-mh(ι) implies −→ρ = −→τ
Γ, x : σ � (−→τ −→y → t′)τ : τ

By induction hypothesis we have that Γ � ([x �→ (v)?σ](−→y → t′))τ : τ . Applying
rule [T-λT] we conclude Γ � ([x �→ (v)?σ](−→τ −→y → t′))τ : τ .

Lemma 3. If mtype(m; τ) = −→σ → σ and mbody(m; τ) = (−→x , t), then
−→x : −→σ , this : T �∗ t : σ for some T such that τ <: T.

Proof. Let τ = C&ι, the other cases being simpler. By definition of mbody
method m must be declared in:

– class C or
– some interface in ι or
– some class or interface from which either C or an interface in ι inherits.

In all cases rule [M OK in C] or [M OK in I] of Fig. 11 gives the desired typing
judgement.

Lemma 4. If Γ �∗ t : τ , then Γ � (t)?τ : σ for some σ <: τ .

Proof. The judgment Γ �∗ t : τ must be obtained by applying rule [� �∗] with
premise Γ � (t)?τ : σ for some σ <: τ , as required.

Theorem 1 (Subject Reduction). If Γ � t : τ without using rule
[T-UDCAST] and t −→ t′, then Γ � t′ : σ for some σ <: τ .

Proof. By induction on a derivation of t −→ t′, with a case analysis on the final
rule. We only consider interesting cases.

Case
τ fj ∈ fields(C)

[E-ProjNew]
newC(−→v).fj −→ (vj)?τ

The l.h.s. is typed as follows:

fields(C) = −→τ −→
f Γ �∗ −→v : −→τ

Γ � newC(−→v) : C τ fj ∈ fields(C)

Γ � newC(−→v).fj : τ

From Lemma 4 and Γ �∗ −→v : −→τ we derive that

Γ � (vj)?τ : σ for some σ <: τ.

82 M. Dezani-Ciancaglini et al.

Case
mbody(m;C) = (−→x , t′′) mtype(m;C) = −→τ → τ

[E-InvkNew]
newC(−→v).m(−→u) −→ [−→x �→ (−→u)?

−→τ , this �→ newC(−→v)](t′′)?τ

The l.h.s. is typed as follows:

Γ � newC(−→v) : C mtype(m;C) = −→τ → τ Γ �∗ −→u : −→τ
Γ � newC(−→v).m(−→u) : τ

By Lemma 3 mbody(m;C) = (−→x , t′′) implies −→x : −→τ , this : T �∗ t′′ : τ with
C <: T for some T. Let Γ ′ = −→x : −→τ , this : T. By Lemma 4 Γ ′ � (t′′)?τ : ρ for
some ρ <: τ and by weakening Γ, Γ ′ � (t′′)?τ : ρ. From Γ � newC(−→v) : C and
C <: T we get Γ �∗ newC(−→v) : T. From Γ �∗ −→u : −→τ and Γ �∗ newC(−→v) : T
and Γ, Γ ′ � (t′′)?τ : ρ and Lemma 2(2) we get

Γ � [−→x �→ (−→u)?
−→τ , this �→ newC(−→v)](t′′)?τ : σ for some σ <: ρ.

Finally by transitivity of <: we have σ <: τ .

Case
A-mtype(m; ι) = −→τ → τ

[E-InvkλU-A]
(−→y → t′′)ι.m(−→v) −→ [−→y �→ (−→v)?

−→τ](t′′)?τ

The l.h.s. is typed as follows:

πn(−→π −→x) ∈ A-mh(ι) implies Γ, −→y : −→π �∗ t′′ : π

Γ � (−→y → t′′)ι : ι mtype(m; ι) = −→τ → τ Γ �∗ −→v : −→τ
Γ � (−→y → t′′)ι.m(−→v) : τ

The premise of rule [E-InvkλU-A] implies Γ,−→y : −→τ �∗ t′′ : τ . By Lemma 4
Γ,−→y : −→τ � (t′′)?τ : ρ for some ρ <: τ . By Lemma 2(2) we derive

Γ � [−→y �→ (−→v)?
−→τ](t′′)?τ : σ for some σ <: ρ

Finally by transitivity of <: we have σ <: τ .

Case
mbody(m; ι) = (−→x , t′′) D-mtype(m; ι) = −→τ → τ

[E-Invkλ-D]
(tλ)ι.m(−→v) −→ [−→x �→ (−→v)?

−→τ , this �→ (tλ)ι](t′′)?τ

The l.h.s. is typed as follows:

Γ � (tλ)ι : ι mtype(m; ι) = −→τ → τ Γ �∗ −→v : −→τ
Γ � (tλ)ι.m(−→v) : τ

By Lemma 3 mbody(m; ι) = (−→x , t′′) implies −→x : −→τ , this : T �∗ t′′ : τ with ι <: T
for some T. Let Γ ′ = −→x : −→τ , this : T. By Lemma 4 Γ ′ � (t′′)?τ : ρ for some
ρ <: τ and by weakening Γ, Γ ′ �∗ (t′′)?τ : ρ. From Γ � (tλ)ι : ι and ι <: T by
rule [� �∗] we derive Γ �∗ (tλ)ι : T. Therefore, by Lemma 2(2) we derive

Γ � [−→x �→ (−→v)?
−→τ , this �→ (tλ)ι](t′′)?τ : σ where σ <: ρ

The transitivity of <: implies σ <: τ .

Intersection Types in Java: Back to the Future 83

Case
t −→ t′

[E-Invk-Arg]
w.m(−→v , t,

−→
t) −→ w.m(−→v , t′,−→t)

The l.h.s. is typed as follows:

Γ � w : ρ mtype(m; ρ) = −→τ → τ Γ �∗ −→v : −→τv Γ �∗ t : σ Γ �∗ −→
t : −→τt

Γ � w.m(−→v , t,
−→
t) : τ

where −→τ = −→τv , σ,−→τt . By Lemma 4 Γ �∗ t : σ implies Γ � (t)?σ : σ′ for some
σ′ <: σ. Since t −→ t′ implies that t cannot be a λ-expression we get (t)?σ = t.
By induction hypothesis Γ � t′ : ρ′ for some ρ′ <: σ′. Being ρ′ <: σ applying
rule [� �∗] we derive Γ �∗ t′ : σ. Therefore using the typing rule [T-INVK] we
conclude

Γ � w.m(−→v , t, −→t) : τ

Rule [T-UDCAST] breaks subject reduction already for FJ, as shown in
[8] (Sect. 19.4). Following [8] we can recover subject reduction by erasing the
condition “either C <: D or D <: C” in rule [T-UDCAST]. In this way the rule
becomes:

Γ � t : τ τ �<: σ
[T-STUPIDCAST]

Γ � (σ) t : σ

The closed terms that are typed without using rule [T-UDCAST] enjoy the
standard progress property. This can be easily proven by just looking at the
shapes of well-typed irreducible terms.

Theorem 2 (Progress). If �∗ t : τ without using rule [T-UDCAST] and t
cannot reduce, then t is a proper value.

Using rule [T-UDCAST] we can type casts of proper values which cannot
be reduced, for example, (C) (new Object()) with C different from Object. An
example involving a λ-expression is (C) (ε → new Object())I, where I is the
interface with the only signature Objectm(). This term can be obtained by
reducing (C) (I) (ε → new Object()).

To characterise the stuck terms, i.e., the irreducible terms which can be
obtained by reducing typed terms and are not values, we resort to the notion of
evaluation context, as done in [8] (Theorem 19.5.4). Evaluation contexts E are
defined as expected:

E :: = [] | E .f | E .m(−→t) | w.m(−→v , E ,
−→
t) | newC(−→v , E ,

−→
t) | (τ)E

Stuck terms are evaluation contexts with holes filled by casts of typed proper
values which cannot reduce, i.e., terms of the shapes (τ) newC(−→v) with C �<: τ
and (τ) (tλ)ι with ι �<: τ . Notice that (A[&ι]) newC(−→v) cannot be typed when
A,C are unrelated classes. Instead rule [T-UDCAST] allows us to type all terms
of the shape (τ) (tλ)ι, when (tλ)ι has a type.

84 M. Dezani-Ciancaglini et al.

6 Type Inference

Our type system naturally uses the technique of bidirectional checking [4,9]. In
fact the judgments � operate in synthesis mode, propagating typing upward from
subexpressions, while the judgments �∗ operate in checking mode, propagating
typing downward from enclosing expressions.

We assume a given class table to compute the lookup functions and the
subtype relation. The partial function tInf(Γ ; t) gives (if any) the type τ such
that Γ � t : τ . It is defined by mutual recursion with the predicate tCk(Γ ; t; τ)
which is true if Γ �∗ t : τ . So, according to rule [� �∗]:

tCk(Γ ; t; τ) if tInf(Γ ; (t)?τ) = σ and σ <: τ

This asserts that, if we can infer the type of an expression, then we can check
that it has this type, and, in case it is not a λ-expression, also all its supertypes.
We write tCk(Γ ;−→t ;−→τ) as short for tCk(Γ ; t1; τ1), . . . , tCk(Γ ; tn; τn). Figure 12
gives tInf. The definition is an algorithmic reading of the rules of Figs. 9 and 10.
The definition of tInf uses the predicate tCk (on subexpressions) to check the
types of actual parameters, type casts, and bodies of decorated λ-expressions
against the types expected from the contexts. As we can see, tInf is undefined
for pure λ-expressions.

Fig. 12. Type inference function

Fig. 13. Well-formedness function

Intersection Types in Java: Back to the Future 85

Building on Fig. 11, Fig. 13 defines a predicate OK which tests well-
formedness of class tables, i.e. of classes, interfaces and methods.

We use the following abbreviations: def. for defined, impl. for implies,
OK(

−→
M,T) for OK(M1,T), . . . ,OK(Mn,T), and OK(

−→
M) for OK(M1), . . . ,OK(Mn).

7 Conclusion and Related Works

The core language presented here is essentially based on FJ&λ [1], which in turn
extends [7]. Our objective was to investigate how to extend the present use of
intersection types in Java through a formal account. As a main result, we proved
that the cross fertilisation between intersection types and λ-expressions can be
further enhanced, getting a more interesting usability of Java λ-expressions while
preserving the language type safety. Notably, nominal intersection types are used
everywhere, and the functional interface of a λ-expression can provide more than
one abstract method (hence, an intersection type for the function). In this way,
a λ-expression can be used with different types in different contexts, similarly
to what happens in a functional language.

We refer to [1] for a wide survey of the works that are related to this topic,
concerning both intersection type theory and the modelling of object-oriented
features by intersection types. We refer to Oracle documentation [6] for Java
with λ-expressions and intersections.

This paper concentrates mostly on the formal foundation of our proposal.
Concerning feasibility of its implementation, in ongoing work we are devising a
translation from our calculus into FJ&λ which exactly models the present Java
approach. Moreover, we want to investigate how programming methodologies can
benefit from these novel features, that seem to be very promising for avoiding
the application of design patterns [5] and getting a reduced amount of code.

Acknowledgements. We would like to thank the anonymous referees for their helpful
comments.

References

1. Bettini, L., Bono, V., Dezani-Ciancaglini, M., Giannini, P., Venneri, B.: Java &
lambda: a featherweight story. Logical Meth. Comput. Sci. 14(3) (2018)

2. Büchi, M., Weck, W.: Compound types for Java. In: Freeman-Benson, B.N.,
Chambers, C. (eds.) OOPSLA, pp. 362–373. ACM (1998)

3. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Math. Logic Q. 27(2–6), 45–58 (1981)

4. Davies, R., Pfenning, F.: Intersection types and computational effects. In: Odersky,
M., Wadler, P. (eds.) ICFP, pp. 198–208. ACM (2000)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading (1995)

6. Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Language Spec-
ification, Java SE 8 Edition. Oracle (2015)

86 M. Dezani-Ciancaglini et al.

7. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

8. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
9. Pierce, B.C., Turner, D.N.: Local type inference. ACM Trans. Program. Lang. Syst.

22(1), 1–44 (2000)

Aarhus 1989–1990

Multi-valued Logic for Static Analysis
and Model Checking

Flemming Nielson1(B), Hanne Riis Nielson1, and Fuyuan Zhang2

1 Department of Mathematics and Computer Science,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

{fnie,hrni}@dtu.dk
2 Division of Physics and Applied Physics,

School of Physical and Mathematical Sciences, Nanyang Technological University,
21 Nanyang Link, Singapore 637371, Singapore

fuyuanzhang@163.com

Abstract. We extend Alternation-Free Least Fixed Point Logic to
be based on Belnap logic, while maintaining the close correspondence
between static analysis and model checking pioneered by Bernhard
Steffen, and opening up for handling access control policies central to
the construction of secure IT systems.

1 Introduction

Static Analysis. A variety of techniques are used to ensure properties of programs
before they are being deployed for execution. The area of static analysis covers
techniques like the use of type and effect systems, data flow analysis, constraint
based analysis, and abstract interpretation. Much of the early work of Bernhard
Steffen was in the area of data flow analysis for ‘optimizing’ the implementation
of programming languages [15,32–34].

Traditionally data flow analyses are presented in equational form and are
classified with respect to two criteria. One is whether they present a forward
flow of information (in the direction of normal execution) or a backward flow of
information (in the opposite direction of normal execution). The other is how
to combine data flow information when paths merge, whether to take a union
(or least upper bound) or an intersection (or greatest lower bound). The latter
criterion tends to also determine whether one desires least or greatest solutions
to the dataflow equations.

Static Analysis as Model Checking. The more complex static analyses involve
several sets of data flow equations that need to interact and a key consideration
is how best to do so. Bernhard Steffen was the first to realise that some of the
program logics were useful for expressing this interaction and subsequently that
many static analysis problems could be recast as model checking [29,31]. At the
conceptual level this opened up for an understanding of the interplay between

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 89–109, 2019.
https://doi.org/10.1007/978-3-030-22348-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_7

90 F. Nielson et al.

static analysis and model checking and how developments in one area could
facilitate advances in the other.

At the practical level the areas continued to develop largely independently,
however, and to some extent this was due to the different focus of the two areas.
Static analyses generally aims for approximative answers (due to undecidability
of the precise answers when dealing with infinite state systems) that can be
obtained in polynomial time with respect to the size of the programs; model
checking generally aims for precise answers (on finite state systems) that seem
to require exponential time with respect to the size of programs. Combinations
of static analysis and model checking were considered in [8].

Model Checking as Static Analysis. The interplay between static analysis and
model checking is more intimate than the work of Bernhard Steffen would sug-
gest. It is not only possible to reduce many static analysis problems to model
checking [29,31] but it is in fact also possible to reduce some model checking
problems to static analysis [19,35]. This insight builds on the use of a general-
isation of Datalog, called Alternation-Free Least Fixed Point Logic, originally
employed for the development of static analysis for process calculi [22,23,25].

Beyond Two-Valued Logic. The approximative nature of static analysis means
that if a static analysis provides a boolean answer then at most one of the answers
can be precise; usually static analyses are formulated so that a negative answer
can be trusted whereas a positive answer can be the result of overapproximation.
In contrast, the nature of model checking is such that both the negative and
positive answers can be precise (but the models need to be sufficiently simple).
This suggests that two-valued logics are not the best way to describe the results of
static analyses, and some work on heap analyses have already been using Kleene’s
three-valued logic to get the precision required [28]. Also in model checking there
has been interest in studying modal transition systems [17] and corresponding
three-valued versions of computation tree logic [2,3,10]. Finally, when studying
security properties of programs it is clear that the proper modelling of access
control decisions require considerably more than two logical values [4,5,13,27]:
as is evident from the ‘eXtensible Access Control Markup Language’ (XACML)
composite policies not only may grant or deny access but can also be inapplicable
and even contradictory.

This motivates the development of the present paper, of presenting a logical
approach to static analysis that builds on multi-valued logics, and of showing its
ability to deal with model checking of modal transition systems.

2 Multi-valued Logic

There are a multitude of multi-valued logics and our treatment cannot be com-
prehensive. One that arises naturally also from the considerations of static anal-
ysis, is the four-valued Belnap logic, and one that has been used for pointer
analysis is Kleene’s three-valued logic.

Multi-valued Logic for Static Analysis and Model Checking 91

Belnap Logic as a Bilattice. Belnap logic [1,9] generalises the two standard
logical values t and f to also include two non-standard logical values: ⊥ that
denotes unknown, and � that denotes conflict. It is standard to write Four =
{⊥, t, f,�}.

Fig. 1. The knowledge order (Four, �) and the logical order (Four, ⇒).

Belnap logic is equipped with a partial order � called the knowledge order
(or information order) and depicted in the left part of Fig. 1. The partial order
illustrates the point that � presents conflicting information in that both t and f
seem possible, whereas ⊥ presents the absence of any information. The partial
order (Four,�) is in fact a complete lattice with binary greatest lower bound
denoted ⊗ and binary least upper bound denoted ⊕. Clearly the operators ⊗
and ⊕ are commutative, associative, idempotent and monotonic with respect to
the knowledge order.

In the context of static analysis this partial order naturally arises when con-
sidering booleans. The set of booleans is Two = {t, f} and for static analysis it
would be natural to use an analysis domain (P(Two),⊆) that is the powerset
of Two ordered under subset inclusion. It is immediate that the partial order is
isomorphic to the partial order (Four,�) introduced above.

Belnap logic is also equipped with a partial order ⇒ called the logical order
(or truth order) and depicted in the right part of Fig. 1. The partial order illus-
trates how Four contains the traditional logical values ordered under classical
implication. The partial order (Four,⇒) is also a complete lattice with binary
greatest lower bound denoted ∧ and binary least upper bound denoted ∨. Clearly
the operators ∧ and ∨ are commutative, associative, idempotent and monotonic
with respect to the logical order.

We can extend negation ¬ from Two to Four by setting ¬(⊥) = ⊥, ¬(t) = f,
¬(f) = t, and ¬(�) = �. Similarly we can define conflation ∼ by setting ∼(⊥) =
�, ∼(t) = t, ∼(f) = f, and ∼(�) = ⊥.

Belnap Logic is Interlaced. For the purposes of static analysis it is essential that
the transfer functions (i.e. the analysis version of the semantic functions) are
monotonic because we usually rely on Tarski’s fixed point theorems for ensuring
that a static analysis has a best (usually least) solution. These considerations
usually only consider the knowledge order but here we shall extend the consid-
erations to also consider the logical order. The following facts show that Belnap
logic nicely intertwines the monotonicity considerations of the two partial orders.

92 F. Nielson et al.

Fact 1. The operators ⊗, ∧, ⊕, ∨ are monotonic with respect to the knowledge
order (�) as well as the logical order (⇒).

Fact 2. Negation (¬) is monotonic with respect to the knowledge order (�) but
anti-monotonic with respect to the logical order (⇒). Conflation (∼) is mono-
tonic with respect to the logical order (⇒) but anti-monotonic with respect to the
knowledge order (�).

Belnap Logic is Distributive. It is useful to explore the algebraic laws enjoyed
by the Belnap operators as this allows rephrasing the transfer functions of static
analysis.

Fact 3. All the distributive laws

(f1 op1 f2) op2 f3 = (f1 op2 f3) op1 (f1 op2 f3)

hold for all choices of f1, f2, f3 ∈ Four and for all choices of op1, op2 ∈
{⊗,∧,⊕,∨}.
Fact 4. We have the following version of De Morgan’s laws:

¬(f1 ∨ f2) = (¬f1) ∧ (¬f2) ¬(f1 ∧ f2) = (¬f1) ∨ (¬f2)
¬(f1 ⊕ f2) = (¬f1) ⊕ (¬f2) ¬(f1 ⊗ f2) = (¬f1) ⊗ (¬f2)

∼(f1 ∨ f2) = (∼f1) ∨ (∼f2) ∼(f1 ∧ f2) = (∼f1) ∧ (∼f2)
∼(f1 ⊕ f2) = (∼f1) ⊗ (∼f2) ∼(f1 ⊗ f2) = (∼f1) ⊕ (∼f2)

Kleene’s Three-Valued Logic. Kleene’s three-valued logic has already been used
extensively for static analysis of heap structures [28]. It is often presented as
Three = {0, 1

2 , 1} and is partially ordered by the usual ‘less than or equal to’ on
the numbers. The number 0 corresponds to falsity, the number 1 to truth, and
the number 1

2 to an undecided truth value. It is clear that Kleene’s three-valued
logic can be seen as a fragment of (Four,⇒) by mapping 0 to f, 1 to t, and 1

2
to either ⊥ or �. In this case ⇒ generalises ordinary implication to Kleene’s
three-valued logic.

Taking the knowledge order into account the traditional approach [9] (also
taken in [35, Chapter 4]) is to map 1

2 to ⊥ indicating that the undecided truth
value arises due to lack of information. But a number of papers on static analysis
(e.g. [28] and including our own [18,21]) instead map 1

2 to � as this better
indicates that the truth value arises due to conflicting information. In this paper
we shall be using the notation from Four so as to avoid any confusion as to which
embedding is intended.

3 Alternation-Free Least Fixed Point Logic

We shall introduce a version of Alternation-Free Least Fixed Point Logic (ALFP)
[22,23,25] based on Belnap logic in a simplified form that makes the semantic
treatment more succinct.

Multi-valued Logic for Static Analysis and Model Checking 93

In the following let U be a non-empty and finite universe of values with u as
a typical element, let C ⊆ U be a finite and non-empty set of constants with c
as a typical element, let V be a finite and non-empty set of variables with x as a
typical element, let R be a finite and non-empty set of relation symbols with R
as a typical element, let v be a typical element of C ∪ V, and let f be a typical
element of Four. We shall write v is a shorthand for a non-empty list v1, · · · , vn.

The syntax of ALFP based on Belnap logic is based on clauses cl and pre-
conditions pre defined by the following grammar:

cl :: = true | cl ∧ cl | ∀x : cl | pre � R(v) | pre ⇒ R(v)
pre :: = f | R(v) | ¬R(v) | ∼R(v) | pre op pre | OPx. pre
op :: = ∨ | ∧ | ⊕ | ⊗
OP :: = ∃ | ∀ | ⊕ | ⊗

At the clause level we have some standard constructions from two-valued pred-
icate logic and we have two base clauses: pre � R(v) and pre ⇒ R(v). The
intention is that pre will evaluate to an element of Four as will R(v) and we then
check the appropriate order between them.

At the precondition level we have constants in Four and we have three base
queries: R(v), ¬R(v), and∼R(v). (The limited placement of negation and con-
flation is no restriction thanks to Fact 4.) Preconditions can be combined using
the operators ∨, ∧, ⊕, and ⊗ that denote the binary lattice operations asso-
ciated with Four. The binary lattice operations extend to general least upper
bound and greatest lower bound operations; we prefer to write them in logi-
cal form as a form of quantifiers denoted ∃, ∀,

⊕
, and

⊗
. The semantics will

make it clear that when U = {u1, · · · , uN} then OPx.R(x) will be equivalent to
R(u1)op · · · opR(uN) for corresponding choices of OP and op.

Stratified ALFP. So far the syntax is too liberal and allows writing clauses like
¬R(c1) ⇒ R(c2) that would seem to have no least solution (when c1 �= c2). We
therefore introduce a notion of stratification ensuring that relations cannot be
defined non-monotonically on themselves.

Stratification is based on a mapping ·� : R → N0 that gives a non-negative
rank to each relation and we shall assume that relations of rank 0 are predefined
(and hence cannot be defined in clauses) and write R0 = {R ∈ R | R� = 0}. Since
we are based on Belnap logic we shall also need a mapping ·� : N1 → {K, L} that
associates each positive rank with an order that is either the knowledge order
or the logical order.

Definition 1. A clause cl is closed when it contains no free variables from V.
A clause cl is stratified when it satisfies the following two conditions:

– In each subclause pre � R(v) occurring in cl we have R� > 0 and R�� = K
as well as for each base query R′(v′) occurring in pre we have R′� ≤ R�, for
each base query ¬R′(v′) occurring in pre we have R′� ≤ R�, and for each base
query ∼R′(v′) occurring in pre we have R′� < R�.

94 F. Nielson et al.

– In each subclause pre ⇒ R(v) occurring in cl we have R� > 0 and R�� = L
as well as for each base query R′(v′) occurring in pre we have R′� ≤ R�, for
each base query ¬R′(v′) occurring in pre we have R′� < R�, and for each base
query ∼R′(v′) occurring in pre we have R′� ≤ R�.

This means that ¬R′(c1) ⇒ R(c2) and ∼R′(c1) � R(c2) are stratified only
if the rank of R′ is strictly smaller than that of R, and hence that neither
¬R(c1) ⇒ R(c2) nor ∼R(c1) � R(c2) can be stratified.

When we define the semantics below it will become clear that Facts 1 and
2 then ensure that the definition of a relation only depends monotonically on
itself as will be exploited in the proof of Theorem 1.

Semantics. An interpretation of a relation R will be a mapping from tuples
of elements of the universe into Four. We shall dispense with the bookkeeping
needed to keep track of the intended arity of each relation R (and we did not do
so above) but we cannot merely let R be a mapping in U∗ → Four from the set of
all tuples of elements of the universe into Four because U∗ is infinite even when
U is finite. Hence we shall assume that there is a maximal arity a of relations (as
can be read off from the clause considered) and let R be a mapping U≤a → Four
where U≤a denotes the set of tuples of length between 1 and a.

The semantics of ALFP amounts to defining when an interpretation

ρ ∈ Int = (R → U≤a → Four)

of relations and a partial interpretation

σ : V ↪→ U
of variables satisfy a given clause cl, written

(ρ, σ) |= cl

and producing an ordinary truth value in Two, and this requires defining the
semantics of a precondition pre, written

[[pre]](ρ, σ)

and producing a value in Four.
We shall extend σ : V ↪→ U to a mapping σ : (V ∪ C)≤a ↪→ U≤a by setting

σ(c) = c and σ(v1, · · · , vn) = (σ(v1), · · · , σ(vn)). The definitions are then rather
straightforward and given in Fig. 2. It is immediate that (ρ, []) |= cl is a well-
defined boolean value (in Two) whenever the clause cl is closed and stratified.

Lexicographic Order. It is useful to be able to relate interpretations of relations
by means of a lexicographic order. In order to cut down on the length of the
definitions we shall write �K for � and �L for ⇒ and extend the orderings on
Four to U≤a → Four in the standard way, i.e. R1 �o R2 iff ∀u ∈ U≤a : R1(u) �o

R2(u).

Multi-valued Logic for Static Analysis and Model Checking 95

Fig. 2. The Belnap semantics of ALFP: [[pre]](ρ, σ) is an element in Four, and (ρ, σ) |= cl
is an element in Two.

Definition 2. The lexicographic order ρ1 � ρ2 is defined by:

ρ1 � ρ2 iff ρ1 = ρ2 ∨ ρ1 � ρ2

ρ1 � ρ2 iff ∃k > 0 :

⎧
⎨

⎩

∃R ∈ R : R� = k ∧ ρ1(R) �= ρ2(R)∧
∀R ∈ R :

{
R� < k ⇒ ρ1(R) = ρ2(R)∧
R� = k ⇒ ρ1(R) �k�

ρ2(R)

For an interpretation ρ : R → U≤a → Four write ρ|0 : R0 → U≤a → Four
for the interpretation defined by ρ|0(R) = ρ(R) whenever R� = 0. Next write
Int[�] = {ρ ∈ Int | ∀R ∈ R0 : ρ(R) = �(R)} whenever � : R0 → U≤a → Four.

Lemma 1. The lexicographic order � is a partial order. Furthermore, for each
choice of � : R0 → U≤a → Four, the set Int[�] is a complete lattice.

Proof. To show that � is a partial order we first note that � is reflexive. For
anti-symmetry suppose by way of contradiction that ρ1 �= ρ2, that ρ1 � ρ2

(which gives a number k1 > 0) and ρ2 � ρ1 (which gives a number k2 > 0);
since U≤a → Four is a complete lattice (under either one of � and ⇒) this gives
a contradiction both when k1 = k2 and when k1 �= k2. For transitivity suppose
that ρ1, ρ2, ρ3 are distinct (as otherwise the result will be trivial) and ρ1 � ρ2

(which gives a number k1 > 0) and ρ2 � ρ3 (which gives a number k2 > 0);
choosing k to be the smaller of k1 and k2 establishes the result.

To see that Int[�] is a complete lattice it suffices to consider an arbitrary
subset M0 and construct its greatest lower bound. Define ρ0 such that ρ0(R) =
�(R) when R� = 0 and arbitrary otherwise. We proceed inductively by defining
ρi+1 to give the proper interpretation to relations of rank at most i + 1 using
that ρi does so for relations of rank strictly less than i + 1. Given Mi and ρi

define the set of interpretations Mi+1 ⊆ Mi relevant for the extension of ρi to
ρi+1 by

Mi+1 = {ρ ∈ Mi | ∀R ∈ R : R� ≤ i ⇒ ρ(R) = ρi(R)}

96 F. Nielson et al.

and next define ρi+1 as an extension of ρi on relations of rank i + 1 (making
an arbitrary definition for relations of higher rank just to ensure that we have a
total function) by

ρi+1(R) =

⎧
⎪⎪⎨

⎪⎪⎩

ρi(R) if R� ≤ i
�(i+1)�

ρ∈Mi+1
ρ(R) if R� = i + 1

⊥R��

if R� > i + 1

where
�L

ρ∈Mi+1
is

∧
ρ∈Mi+1

,
�K

ρ∈Mi+1
is

⊗
ρ∈Mi+1

, ⊥L is λv.f, and ⊥K is λv.⊥.
Note that for relations of rank i + 1 the appropriate order (L or K) is given by

o = (i + 1)� and
�(i+1)�

ρ∈Mi+1
ρ(R) =

�o
Mi+1 gives the proper interpretation of R

by taking the appropriate greatest lower bound (
∧

or
⊗

) of Mi+1.
Since R is finite there will be a maximal rank k and ρk is the desired greatest

lower bound of M0.

Algebraic Laws. In the AFLP approach to static analysis the transfer functions
are encoded as preconditions and it is useful to have algebraic laws that allow
rearranging these. We are free to use the algebraic laws from Facts 3 and 4 as
they preserve stratification and closedness as well as the semantics of precondi-
tions and clauses. At the clause level we can use the usual logical properties of
conjunction and quantification, e.g. that conjunction is associative and commu-
tative.

Additionally we can combine distinct clauses into one. The two clauses

(pre1 ⇒ R(v)) ∧ · · · ∧ (pren ⇒ R(v))

(pre1 ∨ · · · ∨ pren) ⇒ R(v)

are equivalent as are the two clauses

(pre1 � R(v)) ∧ · · · ∧ (pren � R(v))

(pre1 ⊕ · · · ⊕ pren) � R(v)

Moore Families. Recall that a Moore family is a subset of a complete lattice that
is closed under greatest lower bounds (and hence is non-empty). In the abstract
interpretation approach to static analysis [6,7,20] the establishment of a Moore
family result shows that there is a least solution to the static analysis problem,
in our case

�{ρ ∈ Int[�] | (ρ, []) |= cl}, for the analysis problem that cl expresses.

Theorem 1. For each choice of an interpretation � : R0 → U≤a → Four and a
closed and stratified clause cl, the set {ρ ∈ Int[�] | (ρ, []) |= cl} is a Moore family.

Proof. Using the algebraic laws we can rewrite cl into the equivalent formula
true∧cl1 ∧· · ·∧clk such that cli defines only relations of rank i. Let ρ0, · · · , ρk be
the construction of the greatest lower bound ρk of M0 = {ρ ∈ Int[�] | (ρ, []) |= cl}
as in the proof of Lemma 1. We shall prove by induction on i that (ρi, []) |=
true ∧ cl1 ∧ · · · ∧ cli and the base case i = 0 is immediate.

Multi-valued Logic for Static Analysis and Model Checking 97

For the inductive case write Inti+1 for the set of interpretations of relations
of rank i + 1, and write ρi[ρ] for the interpretation that uses ρ on relations
of rank i + 1 and uses ρi otherwise. It follows from the induction hypothesis
that (ρi[ρ], []) |= true ∧ cl1 ∧ · · · ∧ cli for all ρ and in particular (ρi+1, []) |=
true ∧ cl1 ∧ · · · ∧ cli. We can define a function Fi+1 : Inti+1 → Inti+1 such that
(ρi[ρ], []) |= cli+1 is equivalent to Fi+1(ρ) �(i+1)�

ρ which we shall abbreviate
to Fi+1(ρ) � ρ. By Facts 1 and 2 and Definition 1 this is a monotonic function.
Then {ρ ∈ Inti+1 | Fi+1(ρ) � ρ} is a Moore family, as Fi+1(

�
M) � Fi+1(ρ) � ρ

for each ρ ∈ M and hence Fi+1(
�

M) � �
M . It follows that (ρi+1, []) |=

true ∧ cl1 ∧ · · · ∧ cli ∧ cli+1.

4 Model Checking as Static Analysis

Modal Transition Systems. There are many three-valued formulations of tran-
sition systems in the literature. Examples include Partial Kripke structures [3],
Modal transition systems (MTSs [16,17]), and Kripke modal transition systems
(Kripke MTSs) [11,14,30]. It has been shown in [12] that these approaches are
equally expressive and we shall follow the approach of [30] in this section.

Definition 3 (Kripke Modal Transition Systems). A Kripke Modal Tran-
sition System (Kripke MTS) over a finite atomic propositions set P is a tuple
M = (S, S0,

must−→ ,
may−→, L), where S is a nonempty finite set of states, S0 ⊆ S

is a set of initial states,
may−→⊆ S × S and must−→⊆ S × S are transition relations

such that both
may−→ and must−→ are total and must−→⊆may−→, and L : S × P → {t,�, f}

is an interpretation that associates a truth value in {t,�, f} with each atomic
proposition in P for each state in S.

Transitions in must−→ (resp.
may−→) are must transitions (resp. may transitions), and

we write s
must−→ s′ (resp. s

may−→ s′) to denote (s, s′) ∈must−→ (resp. (s, s′) ∈may−→).
State s′ is a must (resp. may) successor of s if s

must−→ s′ (resp. s
may−→ s′). Totality

means that all states always have at least one successor.
A must (resp. may) path from state s is an infinite sequence of states π =

s0, s1..., where s = s0 and we have si
must−→ si+1 (resp. si

may−→ si+1) for each
consecutive pair of states si, si+1 in π. We use Π(s)must (resp. Π(s)may) to
represent the set of must (resp. may) paths from state s. For an infinite path
π = s0, s1..., we use π[k] for 0 ≤ k to denote the (k + 1)th state sk of π.

Three-Valued Computation Tree Logic (CTL). Reasoning about properties of
Kripke MTSs entails the use of a three-valued logical formalism, where we can
characterize uncertainties of system behaviors using the truth value �, denoting
that it is unknown whether the formula holds or not. We consider a fragment of
the game-based three-valued CTL studied in [30] (that used ⊥ instead of � but
this does not relate well to the meaning of the knowledge order of Belnap logic.).

98 F. Nielson et al.

This amounts to defining CTL state formulas φ based on a set of propositions
P, with p as a typical element, as follows:

φ:: = true | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Eψ | Aψ

where ψ are CTL path formulas. CTL path formulas are defined as follows, where
φ are CTL state formulas:

ψ:: = Xφ | φ1Uφ2 | Fφ | Gφ

We give the semantics of three-valued CTL with respect to Kripke MTSs in
Fig. 3. The semantics is obtained from [30], and we derived the case for the F
operator by using that Fφ is a shorthand for trueUφ, and the case for the G
operator by using that Gφ is a shorthand for (¬true)Vφ.

Least Fixed Point CTL. We show in Appendix B that the following fragment
suffices to define the full CTL:

φ:: = true | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | EXφ | AXφ | E[φ1Uφ2] | AFφ

Results like these are standard in traditional two-valued model checking where
it is more common to use Existential Normal Form with EGφ instead of the
dual AFφ, but to better relate to the ALFP development below we chose an
operator for which the least fixed point is desired.

In preparation for the encoding in ALFP we establish two facts on unfolding
that are standard in the two-valued setting but also hold in our setting. We say
that two CTL formulae are equivalent, written φ1 ≡ φ2, whenever [(M, s) |=
φ1] = [(M, s) |= φ2] for all M and s.

Fact 5. The equivalence E[φ1Uφ2] ≡ φ2 ∨ (φ1 ∧ EXE[φ1Uφ2]) holds in three-
valued CTL.

Fact 6. The equivalence AFφ ≡ φ ∨ AXAFφ holds in three-valued CTL.

Three-Valued CTL Encoded in Multi-Valued ALFP. We now show that the
semantics of least fixed point CTL can be encoded in ALFP.

To encode a Kripke MTS (S, S0,
must−→ ,

may−→, L) into three-valued ALFP, we
take the universe U to be S and define corresponding relations in � as follows:

– for each atomic proposition p over P, we define a relation Pp such that
�(Pp)(s) = L(s, p),

– we define a transition relation T such that �(T)(s, s′) = t if (s, s′) ∈must−→ ,
�(T)(s, s′) = � if (s, s′) ∈may−→ but (s, s′) �∈must−→ , and �(T)(s, s′) = f otherwise.

Our approach follows the syntax-directed approach of flow logic tradition [24,26].
For each CTL formula φ, we define a corresponding relation Rφ, and we define
a judgement of the form R � φ that is intended to ensure that [(M, s) |= φ′] =

Multi-valued Logic for Static Analysis and Model Checking 99

Fig. 3. Three-valued semantics for CTL.

ρ(Rφ′)(s) holds in the least model for all subformulas φ′ of φ. (Here R denotes
a family of relations that includes Rφ′ whenever φ′ is a subformula of φ.) The
ALFP clauses defining the judgement R � φ in Fig. 4 impose the constraints
needed to ensure that the least solution (in the manner of Theorem1) to the
constraint system provides the correct value of Rφ′ for all subformulas φ′ of φ.
If a subformula φ′ occurs in several places in φ we will be generating the same
constraints several times but this does not affect the set of solutions.

Equivalence. It is immediate that Fig. 4 defines a closed formula R � φ of ALFP
whenever φ is a formula of CTL. To obtain stratification, we let R0 = {T}∪{Pp |
p ∈ P}, and we define R�

φ′ such that R�
φ′ < R�

φ′′ whenever φ′ is a subformula of
φ′′, and finally we take the order to be always L.

100 F. Nielson et al.

Fig. 4. Least fixed point CTL encoded in multi-valued ALFP.

We then have the following theorem (motivated by [35, Chapter 4]) saying
that the best analysis result of our flow logic approach to the analysis of Kripke
MTSs coincides with the solutions for the model checking problem for three-
valued CTL with respect to Kripke MTSs.

Theorem 2. The interpretation ρ given by ∀s ∈ S : ρ(Rφ)(s) = [(M, s) |= φ] is
obtained by defining ρ =

�{ρ′ ∈ Int[�] | (ρ′, []) |= (R � φ)}.
Proof. For the relation Rtrue corresponding to the CTL formula true, ρ(Rtrue)
should map each state s to t and this is guaranteed by the ALFP clause ∀s :
t ⇒ Rtrue(s).

For the atomic proposition p we make use of the predefined relation Pp and
impose the constraint ∀s : Pp(s) ⇒ Rp(s) such that in the least solution ρ(Rp)
maps a state s to the same truth value as �(Pp) does.

The clauses for boolean operators ∨,∧ and ¬ follow the same pattern so we
just explain one of them, namely disjunction φ1∨φ2. The judgements R � φ1 and
R � φ2 ensure that for the relations Rφ′ corresponding to subformulas φ′ of φ1 or
φ2, ρ(Rφ′) map states to truth values correctly. The clause ∀s : Rφ1(s)∨Rφ2(s) ⇒
Rφ1∨φ2(s) requires that Rφ1∨φ2(s) is mapped to t if Rφ1(s) or Rφ2(s) is mapped
to t, and allows that Rφ1∨φ2(s) is mapped to f if both Rφ1(s) and Rφ2(s) are
mapped to f, and otherwise allows Rφ1∨φ2(s) to be mapped to �.

In the case of EXφ, the first conjunct ensures that for the relations Rφ′

corresponding to subformulas of φ, ρ(Rφ′) maps states to truth values correctly.
The second conjunct requires that if there is a must transition from s to s′,
i.e. �(T)(s, s′) equals t, and Rφ(s′) is mapped to t, then REXφ(s) is mapped
to t. Conversely, if REXφ(s) is forced to be mapped to t there must be a must
transition from s to some s′ where Rφ(s′) is mapped to t. Also, if for all may

Multi-valued Logic for Static Analysis and Model Checking 101

transitions from s to s′, i.e. �(T)(s, s′) equals either t or �, Rφ(s′) is mapped to
f, then REXφ(s) is allowed to be mapped to f. Conversely, if REXφ(s) is allowed
to be mapped to f then all may transitions from s to s′ must have that Rφ(s′)
is mapped f. This ensures that the least solution to the clauses generated treats
the EX operator in accordance with Fig. 3.

In the case of AXφ, the first conjunct plays the same role as in the case
of EXφ. The second conjunct requires that if for all may transitions from s to
s′, i.e. �(T)(s, s′) equals either t or �, Rφ(s′) is mapped to t, then RAXφ(s) is
mapped to t. Conversely, if RAXφ(s) is forced to be mapped to t then for each
may transition from s to some s′ it must be the case that Rφ(s′) is mapped to
t. Also, if there is a must transition from s to s′, i.e. �(T)(s, s′) equals t, and
Rφ(s′) is mapped to f, then RAXφ(s) is allowed to be mapped to f. Conversely,
if RAXφ(s) is allowed to be mapped to f there must be a must transition from s
to some s′ such that Rφ(s′) is mapped to f. This ensures that the least solution
to the clauses generated treats the AX operator in accordance with Fig. 3.

In the case of E[φ1Uφ2], the judgements R � φ1 and R � φ2 play the same
role as in the case of φ1 ∨ φ2. Using the algebraic laws of Sect. 3 the remaining
two conjuncts can be reformulated as the equivalent

∀s :
(
Rφ2(s) ∨ [∃s′ : T (s, s′) ∧ Rφ1(s) ∧ RE[φ1Uφ2](s

′)]
) ⇒ RE[φ1Uφ2](s)

and for the least solution we then have that

∀s : [[Rφ2(s) ∨ [∃s′ : T (s, s′) ∧ Rφ1(s) ∧ RE[φ1Uφ2](s
′)]]] = [[RE[φ1Uφ2](s)]]

which is in agreement with Fact 5, where also the least solution is intended.
In the case of AFφ, the first conjunct plays the same role as in the case of

EXφ. Using the algebraic laws of Sect. 3 the remaining two conjuncts can be
reformulated as the equivalent

∀s : (Rφ(s) ∨ [∀s′ : ¬T (s, s′) ∨ RAFφ(s′)]) ⇒ RAFφ(s)

and for the least solution we then have

∀s : [[Rφ(s) ∨ [∀s′ : ¬T (s, s′) ∨ RAFφ(s′)]]] = [[RAFφ(s)]]

which is in agreement with Fact 6, where also the least solution is intended.

5 Access Control

Access control is a security mechanism that intends to ensure the confidentiality
and integrity of data by placing restrictions on whom can read and modify data.
It is usually implemented by a reference monitor that inspects each request for
reading or modifying data and determines whether or not to grant the operation
based on the access control policy in place. Access control policies can be quite
complex and to control the complexity it is usually necessary to construct them
in a compositional manner.

102 F. Nielson et al.

Access control decisions are basically two-valued: either the request is granted
or it is denied. However, a two-valued logic is insufficient for a compositional
approach as policies may be inapplicable or even provide conflicting advice.
Researchers have therefore proposed the use of compositional policy languages
based on Belnap logic [4,5,13] and this is the approach we shall be taking in
the present section. Realistic access control languages like XACML 3.0 actually
require going beyond having four truth values [27].

Policies and Their Semantics. In this paper we are inspired by the development
of [13] and we shall define a policy language that embeds the Belnap operators
introduced in Sect. 2; it is given by the following syntax

pol :: = f | bpol | ¬pol | ∼pol | pol ∧ pol | pol ∨ pol | pol ⊗ pol | pol ⊕ pol

where f ∈ Four and bpol is the basic policies.
The basic policies will be matched against the actions of the system of interest

and we shall pay special interest to the actions requesting access to data and
leave the remaining ones unspecified:

act:: = read(s, o, t) | write(s, o, t) | · · ·
Here read(s, o, t) is an action where the subject s requests read access to an
object of type t owned by o, and write(s, o, t) is an action where the subject s
requests write access to an object of type t owned by o.

The semantics of the basic policies is given by a function [[bpol]] that given
an action will evaluate to a value in Four with the idea being that t means that
the action is allowed, f that it is denied, ⊥ that the policy does not apply, and �
that we have conflicting information. Examples of such basic policies and their
semantics is given in Fig. 5 and will be explained in more detail shortly. This
function is then lifted to general policies in a straightforward manner by taking:

[[f]](act) = f
[[op pol]](act) = op([[pol]](act)) for op ∈ {¬,∼}

[[pol1 op pol2]](act) = [[pol1]](act) op [[pol2]](act) for op ∈ {∧,∨,⊗,⊕}
When specifying policies it is often useful to be able to specify that one policy
takes priority over another, written pol1 > pol2, and meaning that the intended
policy is pol2 whenever pol1 is not applicable and otherwise it is pol1. The priority
operator on Four is traditionally [13] defined as:

(f1 > f2) =
{

f2 if f1 = ⊥
f1 if f1 �= ⊥

However, it turns out to be a derived operator in our setting:

Fact 7. All multi-argument functions over Four are derived operators; in par-
ticular, (f1 > f2) = f1 ⊕ (f2 ⊗ ∼(f1 ⊕ (¬f1))).

Multi-valued Logic for Static Analysis and Model Checking 103

Fig. 5. Basic policies and their semantics.

Example Scenario. Let us consider a hospital scenario where three boolean data
bases D, N and P indicate whether or not principals are doctors, nurses or
patients, respectively. An access control matrix AC governs the access to the
patient records and following [13] we shall assume that it contains three types
of information: medical records (mr), care plans (cp) and patient surveys (ps).
Given a subject s, an object o and a type t we write AC(s, o, t, r) ∈ Two for
whether or not read access is permitted, and AC(s, o, t,w) for whether or not
write access is permitted.

Figure 5 gives a number of examples of basic policies. The first two are exam-
ples of general policies saying that anyone should be able to read and write their
own data. Here we use EQ for an equality predicate. As an example the policy
READown only applies to a read action and it will check whether the subject
equals the object; if the action is not a read action the policy simply evaluates
to ⊥ as it is not applicable.

In the hospital context the access control matrix will allow doctors and nurses
to read the different kinds of patient records; this is expressed by the basic
policies READdoc and READns specified in Fig. 5. The boolean data bases D, N
and P are used to check the relevant roles of the subjects and objects and only
in that case the access control matrix AC is consulted to check the rights. Using
the priority operator we can express the combined policy

READown > (READdoc ⊕ READns)

104 F. Nielson et al.

that ensures that the patient has the right to read his own data but at the same
time the doctors and nurses have access to the patient records.

In the scenario of [13] only doctors may write medical records whereas nurses
only are allowed to write care plans; this is expressed by the basic policies
WRITEdoc and WRITEns of Fig. 5. The main difference from before is that extra
checks are inserted on the type of information being accessed. In analogy with
above we can form the policy:

WRITEown > (WRITEdoc ⊕ WRITEns)

However, this is too permissive as it will permit the patient to write his own med-
ical records and care plans. To prevent this we make use of the policy WRITEpat

that only applies if the patient attempts to write anything but a patient survey
in his/her patient records and it will prevent that from happening. The overall
policy can then be formulated as

WRITEpat > (WRITEown > (WRITEdoc ⊕ WRITEns))

Thus if the patient attempts to write, say a medical record, then WRITEpat

evaluates to f and the access will be denied. On the other hand if he/she attempts
to write a patient survey then WRITEpat does not apply and the general policy
WRITEown will grant the access.

Our requirement to the overall policy HOSPITAL for the hospital therefore
is that it incorporates all of the above ingredients. To this end define

HOSPITAL =
(READown > (READdoc ⊕ READns)) ⊕
(WRITEpat > (WRITEown > (WRITEdoc ⊕ WRITEns)))

To connect this to our development of Alternation-Free Least Fixed Point Logic
we proceed as follows.

The reference monitor will grant or deny access based on a basic policy
RefMon. Given an action act this gives us a value [[RefMon]](act) ∈ Four but
access control decisions will either grant the access or deny it and hence we need
to map values in Four to values in Two. There are several approaches for this
and we shall take what is known as the liberal approach: access is denied if some
evidence suggests so and otherwise it is granted. This amounts to defining

deny(f) = f � f
grant(f) = f � t

Thus the decision made by the reference monitor is grant([[RefMon]](act)) ∈ Two.
To express that the decisions of the reference monitor should be faithful to

the intended policy we may write

∀act : [[HOSPITAL]](act) � [[RefMon]](act)

and this produces a closed clause of ALFP when ‘partially evaluating’ the def-
initions of the basic policies. It is a stratified clause when we take the order to
be always K and let AC and EQ have rank 0 and RefMon have rank 1.

Multi-valued Logic for Static Analysis and Model Checking 105

6 Conclusion

We believe that the use of logical formalisms for static analysis provides a stable
framework for allowing complex analyses to interact. Our previous work on Flow
Logic (including [24,26]) have shown how a logical approach can provides a
general framework for developing static analyses for a variety of programming
languages and process calculi. The development of the Succinct Solver [23] for
clauses in two-valued Alternation-Free Least Fixed Point Logic proved to be a
sound and powerful implementation strategy for many of these analyses.

In this paper we have shown how to extend Alternation-Free Least Fixed
Point Logic to be based on Belnap logic, while maintaining the close corre-
spondence between static analysis and model checking pioneered by Bernhard
Steffen, and opening up for handling security policies central to the construction
of secure IT systems.

We leave the generalisations and extensions to future papers but conclude by
briefly sketching some of them. In fact we can freely choose complete lattices and
transfer functions for each stratum, ensuring that we change statum whenever we
use non-monotonic functions, and imposing suitable well-formedness conditions
using a simple type system.

While we did not establish an algorithm for computing the solution guaran-
teed by Theorem 1, it is possible to adapt the development of the Succinct Solver
to obtain an implementation taking time that is only exponential in the nesting
depth of quantifiers and the maximal arities of relations but otherwise essentially
linear in the size of clauses and the universe. Alternatively, using ideas in [35,
Chapter 4] clauses using Belnap logic can be translated to only linearly larger
clauses using classical logic and then the Succinct Solver can be applied directly.

A Proofs of Key Facts

Proof of Fact 1. There is an easy graphical proof of the interesting cases. First
observe that the Hasse diagram for ⇒ in Fig. 1 is obtained from the Hasse
diagram for � by rotating it 90◦ clockwise. Next observe that in the Hasse
diagram for ⇒ the operator ⊗ ‘moves to the left’ whereas the operator ⊕ ‘moves
to the right’. Similarly observe that the Hasse diagram for � in Fig. 1 is obtained
from the Hasse diagram for ⇒ by rotating it 90◦ anti-clockwise. Next observe
that in the Hasse diagram for � the operator ∧ ‘moves to the right’ whereas
the operator ∨ ‘moves to the left’.

Proof of Fact 3. The interesting cases are when opi ∈ {⊗,⊕} and op3−i ∈
{∧,∨} (for i ∈ {1, 2}) as the other cases follow since (Four,�) and (Four,⇒)
are distributive lattices. It is straightforward to validate the remaining eight
interesting cases.

Proof of Fact 4. There is an easy graphical proof of these laws. For the first two
we observe that negation (¬) is also the dualisation operator on (Four,⇒) where
∧ is greatest lower bound and ∨ is least upper bound. For the next two observe

106 F. Nielson et al.

that negation (¬) works ‘sideways’ on (Four,�). The remaining four laws are
analogous.

Proof of Fact 7. We first show the equation (f1 > f2) = f1 ⊕(f2 ⊗∼(f1 ⊕(¬f1)))
by considering two cases for the value of f1. If f1 = ⊥ we note that (f1⊕(¬f1)) =
⊥ and hence that f1 ⊕ (f2 ⊗ ∼(f1 ⊕ (¬f1))) = ⊥ ⊕ (f2 ⊗ �) = f2 as desired. If
f1 �= ⊥ we note that (f1 ⊕(¬f1)) = � and hence that f1 ⊕(f2 ⊗∼(f1 ⊕(¬f1))) =
f1 ⊕ (f2 ⊗ ⊥) = f1 as desired.

For the general result, it follows from [1, Proposition 17] that all multi-
argument functions over Four are expressible in terms of ¬, ⊕, ⊥ and ⊃ defined
by

(f1 ⊃ f2) =
{

f2 if t � f1

t otherwise

Define S[f] = (f ∧ �) ⊗ (¬(f ∧ �)) and note that

S[f] =
{� if t � f

⊥ otherwise =
{� if f ∈ {t,�}

⊥ if f ∈ {f,⊥}

so that is suffices to verify that (f1 ⊃ f2) = (f2 ⊗ (S[f1])) ⊕ (t ⊗ (∼S[f1])).

B Least Fixed Point CTL Suffices for CTL

We need to show that the following CTL operators can be defined using the
least fixed point fragment of CTL: A[φ1Uφ2], EFφ, AGφ and EGφ. This is
standard in the two-valued setting but also holds in our setting as expressed by
the following facts (where we dispense with the proofs). We begin with two facts
on path formulas.

Fact 8. For any M and π, [(M,π) |= Fφ] = [(M,π) |= trueUφ].

Fact 9. For any M and π, [(M,π) |= Gφ] = ¬[(M,π) |= F¬φ].

We continue with four facts on state formulas. (One may check that we have
the equivalence AXφ ≡ ¬EX¬φ but the explicit presence of AX in least fixed
point CTL is helpful for our development.)

Fact 10. The equivalence EFφ ≡ E[trueUφ] holds in three-valued CTL.

Fact 11. The equivalence EGφ ≡ ¬AF¬φ holds in three-valued CTL.

Fact 12. The equivalence AGφ ≡ ¬EF¬φ holds in three-valued CTL.

Fact 13. The equivalence A[φ1Uφ2] ≡ ¬E[¬φ2U(¬φ1 ∧ ¬φ2)] ∧AFφ2 holds in
three-valued CTL.

Multi-valued Logic for Static Analysis and Model Checking 107

References

1. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97–141
(1998)

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

3. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state
spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 14

4. Bruns, G., Huth, M.: Access-control policies via Belnap logic: effective and efficient
composition and analysis. In: Proceedings of the 21st IEEE Computer Security
Foundations Symposium, pp. 163–176. IEEE Computer Society (2008)

5. Bruns, G., Huth, M.: Access control via Belnap logic: intuitive, expressive, and
analyzable policy composition. ACM Trans. Inf. Syst. Secur. 14(1):9:1–9:27 (2011)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1977), pp. 238–252. ACM (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 1979), pp. 269–282. ACM (1979)

8. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Autom.
Softw. Eng. 6(1), 69–95 (1999)

9. Fitting, M.: Kleene’s three valued logics and their children. Fundam. Inform.
20(1/2/3), 113–131 (1994)

10. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44685-0 29

11. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
137–151. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 11

12. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol.
2575, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36384-X 18

13. Hankin, C., Nielson, F., Nielson, H.R.: Advice from Belnap policies. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, pp. 234–
247. IEEE Computer Society (2009)

14. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foundation for
three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45309-
1 11

15. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: Proceedings of the ACM
SIGPLAN’92 Conference on Programming Language Design and Implementation
(PLDI), pp. 224–234. ACM (1992)

16. Larsen, K.G.: Modal specifications. In: Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, Grenoble, France,
pp. 232–246 (1989)

https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/3-540-45309-1_11
https://doi.org/10.1007/3-540-45309-1_11

108 F. Nielson et al.

17. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS 1988), pp. 203–210. IEEE
Computer Society (1988)

18. Nielson, F., Nanz, S., Nielson, H.R.: Modal abstractions of concurrent behavior.
ACM Trans. Comput. Log. 12(3), 18:1–18:40 (2011)

19. Nielson, F., Nielson, H.R.: Model checking Is static analysis of modal logic. In:
Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 191–205. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12032-9 14

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-662-03811-6

21. Nielson, F., Nielson, H.R., Sagiv, S.: Kleene’s logic with equality. Inf. Process. Lett.
80(3), 131–137 (2001)

22. Nielson, F., Nielson, H.R., Seidl, H.: Cryptographic analysis in cubic time. Electr.
Notes Theor. Comput. Sci. 62, 7–23 (2001)

23. Nielson, F., Seidl, H., Nielson, H.R.: A succinct solver for ALFP. Nord. J. Comput.
9(4), 335–372 (2002)

24. Nielson, H.R., Nielson, F.: Flow logic: a multi-paradigmatic approach to static anal-
ysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of
Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36377-7 11

25. Nielson, H.R., Nielson, F., Buchholtz, M.: Security for mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, pp. 207–265. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24631-2 6

26. Nielson, H.R., Nielson, F., Pilegaard, H.: Flow logic for process calculi. ACM Com-
put. Surv. 44(1), 3:1–3:39 (2012)

27. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML. Sci. Comput.
Program. 83, 80–105 (2014)

28. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1999, pp. 105–118. ACM (1999)

29. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 22

30. Shoham, S., Grumberg, O.: A game-based framework for CTL counter examples
and 3-valued abstraction-refinement. ACM Trans. Comput. Log. 9(1), 1 (2007)

31. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1 54

32. Steffen, B., Knoop, J.: Finite constants: characterizations of a new decidable set of
constants. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp.
481–491. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51486-4 94

33. Steffen, B., Knoop, J., Rüthing, O.: The value flow graph: a program representa-
tion for optimal program transformations. In: Jones, N. (ed.) ESOP 1990. LNCS,
vol. 432, pp. 389–405. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
52592-0 76

https://doi.org/10.1007/978-3-642-12032-9_14
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-36377-7_11
https://doi.org/10.1007/3-540-36377-7_11
https://doi.org/10.1007/978-3-540-24631-2_6
https://doi.org/10.1007/3-540-49727-7_22
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-51486-4_94
https://doi.org/10.1007/3-540-52592-0_76
https://doi.org/10.1007/3-540-52592-0_76

Multi-valued Logic for Static Analysis and Model Checking 109

34. Steffen, B., Knoop, J., Rüthing, O.: Efficient code motion and an adaption to
strength reduction. In: Proceedings of the International Joint Conference on The-
ory and Practice of Software Development, Volume 2, TAPSOFT 1991. LNCS, vol.
494, pp. 394–415. Springer (1991)

35. Zhang, F.: Model checking as static analysis. Ph.D. thesis, The Technical Univer-
sity of Denmark (DTU) (2012). Supervised by Flemming Nielson and Hanne Riis
Nielson

States and Events in KandISTI
A Retrospective

Maurice H. ter Beek1 , Alessandro Fantechi1,2 , Stefania Gnesi1(B) ,
and Franco Mazzanti1

1 ISTI–CNR, Pisa, Italy
{terbeek,gnesi,mazzanti}@isti.cnr.it
2 University of Florence, Florence, Italy

alessandro.fantechi@unifi.it

Abstract. Early work on automated formal verification produced pio-
neering model-checking algorithms, in which system computations were
modelled either as sequences of distinguished states in which the system
evolves or as sequences of events or actions occurring during the sys-
tem’s state transitions. In both cases, automata-like structures generally
known as transition systems were exploited to capture all possible com-
putations, but still either state-based or event-based. Many years later,
both views were combined in descriptions of computations as the evolu-
tion between distinguished states by means of transitions characterised
by the occurrence of events, and verification tools were adapted to this
more general setting. Meanwhile, the most important drive in improving
verification tools concerned the complexity of models, which was attacked
by algorithms capable of minimising the information needed for deciding
the verification questions. One of the outcomes of this quest was local,
on-the-fly model checking. Both of these lines of research, pioneered by
Bernhard Steffen, are discussed in this paper in a general retrospective on
state-based and event-based models of transition systems and temporal
logics, followed by an overview of how this is exploited in the KandISTI
model-checking environment.

1 Introduction

The development of expressive models of transitions systems that are capable
of efficiently supporting formal verification by means of model-checking algo-
rithms has been one of the concerns of Bernhard Steffen’s career in research.
The traditional model for the interpretation of modal and state-based logics, i.e.
a Kripke structure [1], in which states are labelled by atomic propositions, was
adopted by the early model-checking algorithms for CTL and LTL (cf. [2] and
the references therein). On the other hand, Labelled Transition Systems (LTS),
in which transitions instead are labelled with events, emerged as the most appro-
priate semantic model for process algebrae and process calculi [3,4]. In search
for more expressivity and flexibility, the work by Bernhard Steffen and others

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 110–128, 2019.
https://doi.org/10.1007/978-3-030-22348-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_8&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0003-4562-8777
https://doi.org/10.1007/978-3-030-22348-9_8

States and Events in KandISTI 111

has addressed models in which both states and transitions are labelled, such
as Doubly-Labelled Transition Systems [5], Kripke Transition Systems [6], and
Labelled Kripke Structures [7].

It is well known that model checking is affected by the state-space explosion
problem, for which realistic system models may require an exponential number
of states (which may not fit the available computer memory). Or, as Cleaveland
puts it in [8], “Consequently, while the best traditional model-checking algo-
rithms [9–12] are linear in the number of states of a system, their applicability
is severely restricted by the prohibitive number of states systems can have.”
Bernhard Steffen has made seminal contributions to the efficiency of model-
checking algorithms [10,13]. To mitigate the state-space explosion problem, local,
on-the-fly model-checking algorithms [14–16] can be of help. While these have
the same worst-case complexity, they generally perform better in the many cases
in which only a subset of the system states, generated ‘on demand’, needs to
be analysed to determine whether a system model satisfies a formula. Local
model checking moreover may provide results for infinite state spaces. Bernhard
Steffen has made several important contributions also to this development (cf.,
e.g., [17,18]). In this paper, we list some models and logics that combine state
and transition labelling and show how the KandISTI model-checking environ-
ment [19] and its rich logic, presented in this paper, exploit these features and
thus relate to the aforementioned contributions of Bernhard Steffen.

KandISTI1 is a family of model checkers developed at ISTI–CNR for over
two decades now, which includes UMC [20], CMC [21], VMC [22], and FMC [23].
Each tool allows the efficient verification, by means of explicit-state on-the-fly
model checking, of functional properties expressed in a state-based and event-
based branching-time temporal logic, which builds upon the family of logics
based on ACTL [24–26], i.e. action-based versions of CTL [9,27]. The KandISTI
model checkers allow on-the-fly model checking with a complexity that is linear
with respect to the size of the model and the size of the formula2.

This paper is organised as follows. Sections 2 and 3 introduce transition sys-
tem models and temporal logics, respectively, that explicitly combine state-based
and event-based information. Section 4 discusses how KandISTI exploits states
and events in a rich modelling and verification environment based on a com-
prehensive temporal logic, and highlights some of its more interesting features.
Section 5 concludes the paper.

2 Modelling Structures for Reasoning on both
State-Based and Event-Based Properties

In the literature, one can find several variants of graph structures that have
information associated with both their nodes and their edges, used as models
for state/event-based logical specifications.

1 Available online at http://fmt.isti.cnr.it/kandisti.
2 When ignoring the fixed point operators and the parametric aspects of the logic.

http://fmt.isti.cnr.it/kandisti

112 M. H. ter Beek et al.

One of the first structures that comes to mind is the one adopted for the
propositional μ-calculus [28]. These models are constituted by a set of states, a
set of propositional constants and a set of program constants. From a semantic
point of view, the interpretation of a propositional constant is a set of states.
Therefore each (control) state might have several state labels. The interpretation
of a program constant, instead, is a transition relation (i.e. edges associated with
exactly one label).

In the Doubly-Labelled Transition Systems (L2TS) introduced by De Nicola
and Vaandrager [5], the same concept was reshaped by explicitly assigning to
each state a set of atomic propositions, and by describing the (now unique)
transition relation as a set of triples of the form 〈source state, observable or
silent event, target state〉. No constraints are explicitly imposed on the finiteness
or absence of internal structure of atomic propositions and events.

Lawford, Ostroff and Wonham [29] introduced so-called State-Event Labeled
Transition Systems (SELTS), which are equivalent to the underlying model of
the state/event systems of Graf and Loiseaux [30], in which a model is described
by a countable set of states, a finite set of binary relations on the states, an
initial state, and a mapping from the states to sets of atomic predicates (i.e.
edges are still associated with precisely one label).

In 1999, together with Müller–Olm and Schmidt, Bernhard Steffen coined the
term Kripke Transition System (KTS) [6]. In a KTS, states are labelled with
sets of atomic propositions and transitions are labelled with sets of events. No
constraint is imposed on the absence of internal structure of the labels, nor on
the totality of the transition relation, and the presence of an explicit initial state
is allowed (i.e. rooted structures). The authors point out that edge labellings
can be encoded by node labellings and vice versa, such that theoretical analyses
typically study one form of labelling. Nevertheless, we very much agree with
their motivation for introducing KTS: “For modeling purposes, however, it is
often natural to have both kinds of labeling available.”

In 2004, Chaki et al. introduced Labelled Kripke Structures (LKS) [7], which
are characterised by a finite set of states, an initial subset of states, a finite
set of atomic state propositions, a finite set of events and a binary transition
relation among states. The transition relation is no longer required to be total.
A state-labelling function associates each state with a set of state propositions,
and a transition-labelling function associates each pair of 〈source, target〉 states
with a set of events (i.e. we cannot have two transitions between the same two
states with different labellings).

In 2006, Pecheur and Raimondi use Mixed Transition Systems [31], not to be
confused with Larsen’s Modal Transition Systems [32–34], to denote a generali-
sation of both state-based models (Kripke structures) and action-based models
(LTS) into a common super-structure very similar to L2TS, which is charac-
terised by a set of states (a subset of which can be qualified as initial states),
a transition relation defined as a set of triples of the form 〈source state, event,
target state〉 and two interpretation functions that associate each state and event
with a set of propositional atoms over states and events, respectively.

States and Events in KandISTI 113

3 Temporal Logics for Reasoning on both State-Based
and Event-Based Properties

As already apparent form the previous section, state- and event-based models
have been proposed often together with specific temporal logics having those
models as interpretation structures.

We already mentioned the propositional μ-calculus [28], which is an extension
of modal logic with propositions and fixed point operators [35]. Atomic propo-
sitions can be satisfied by single states. Modal operators are indexed by events
that label the transitions. Fixed point operators are then introduced to extend
the meaning of logic formulae over full, possibly infinite, computations.

Next to the Boolean constants false and true, the μ-calculus contains atomic
propositions, logical connectives and the diamond and box operators 〈 〉 and []
of modal logic. The least and greatest fixed point operators μ and ν provide
recursion used for ‘finite’ and ‘infinite’ looping, respectively.

Kindler and Vesper [36] introduced the Event-and-State-based Temporal Logic
(ESTL) to reason over events and states of Petri nets, which are a typical exam-
ple of a formal model for reasoning over states (places) and events (transitions).
ESTL is a linear-time logic based on four basic temporal operators, namely
eventually and once (eventually in the past), working on state properties, and
sometime and sometime in the past , working on transition properties. From these
operators, four dual operators called always, so far, every-time and every-time
in the past can be derived. We refer to [36] for their precise meaning.

Also the logic interpreted over the LKS introduced in [7], called SE-LTL, is a
linear-time logic. This logic is based on the X (next), G (always), F (eventually)
and U (until) linear-time operators, which can be applied both to state and to
transition properties.

The Mixed Transition Systems introduced in [31] serve as interpretation
model for the Action-Restricted CTL (ARCTL) logic, which extends CTL but
is less expressive than ACTL from [24]. In fact, ARCTL is instead a branching-
time logic over mixed state/event models introduced as a generalisation of CTL.
ARCTL has the same temporal operators as CTL, except that they can be
restricted to paths whose actions satisfy a given action formula.

Among the various state- and event-based logics proposed in the litera-
ture, UCTL [20] was designed to include both the branching-time action-based
logic ACTL [24,25] and the branching-time state-based logic CTL [27,37], with
the aim to reason over UML state diagram specifications and L2TS. The logic
UCTL is adequate with respect to strong bisimulation equivalence on L2TS [38].
Adequacy [39], as also investigated by Bernhard Steffen in [40], means that
two L2TS A1 and A2 are strongly bisimilar if and only if F1 = F2, where
Fi = {ψ ∈ UCTL | Ai |= ψ } for i = 1, 2. In other words, adequacy implies
that if there is a formula that is not satisfied by one of the L2TS but satisfied by
the other L2TS, then the two L2TS are not bisimilar, and—on the other hand—if
two L2TS are not bisimilar, then there must exist a distinguishing formula.

114 M. H. ter Beek et al.

The UCTL logic initially was supported by the UMC v3.33 model checker,
which later evolved into the KandISTI family of model checkers, as explained in
the next section.

4 Exploiting States and Events in KandISTI

In this section, we first introduce the KandISTI tool and we show how it exploits
states and events in a rich modelling and verification environment, based on a
comprehensive temporal logic interpreted over L2TS, after which we discuss some
of its more interesting features in more detail.

4.1 KandISTI

For over more than two decades, we are developing the KandISTI family of model
checkers, each one based on a different specification language, but all sharing a
common temporal logic and verification engine. The main objective of KandISTI
is to provide formal support in the design phase of a software system, especially
in its early stages, i.e. when a design is still likely to be incomplete and contain
mistakes. The main features of KandISTI focus on the possibility to (i) explore
the evolution of a system and generate a summary of its behaviour; (ii) investi-
gate abstract system properties using a temporal logic supported by an on-the-fly
model checker; and (iii) obtain a clear explanation of the model-checking results,
in terms of possible evolutions of the specific specification model.

While the specification models supported by KandISTI are rather different,
ranging from UML statecharts to various process algebrae, its verification engine
is unique and based on a common temporal logic which encompasses the spe-
cific logics initially associated to the specific tools: ACTL for FMC, UCTL for
UMC, SocL for CMC and v-ACTL for VMC. This is feasible by separating
state-space generation (which depends on the underlying specification model)
from L2TS analysis, and by the introduction of an explicit abstraction mecha-
nism that allows to specify the details of the model that should be observable as
labels on the states and transitions of the L2TS. Another essential characteris-
tic of KandISTI is the on-the-fly structure of the model-checking algorithm: the
L2TS corresponding to the specification model is generated on demand, following
the incremental needs of the verification engine. Given a state of an L2TS, the
validity of a logic formula on that state is evaluated by analysing the transitions
allowed in that state, and by analysing the validity of the necessary sub-formulae
possibly in some of the necessary next reachable states, and all this recursively.

Hence, each tool consists of two separate, interacting components: a tool-
specific L2TS generator engine and a common logical verification engine. The
L2TS generator engine is again structured in two components: a ground evo-
lutions generator, strictly based on the operational semantics of the specifica-
tion language, and an abstraction mechanism which allows to associate abstract
observable events to system evolutions and abstract atomic propositions to the
system states. The overall structure of KandISTI is depicted in Fig. 1.
3 Still available online at http://fmt.isti.cnr.it/umc/legacy/V3.3.

http://fmt.isti.cnr.it/umc/legacy/V3.3

States and Events in KandISTI 115

Fig. 1. The architecture of the KandISTI framework (from [41])

All KandISTI model checkers offer a downloadable command-line version of
the tool as well as an online GUI through http://fmt.isti.cnr.it/kandisti. Detailed
descriptions of the model-checking algorithms and architecture underlying Kan-
dISTI are beyond the scope of this paper, but they can be found in [20,21,41–43].

4.2 Modelling with KandISTI

The structure of the models underlying the KandISTI framework (still called
L2TS) is very similar to the KTS of Bernhard Steffen and colleagues and to the
L2TS of De Nicola and Vaandrager, in the sense that both states and transitions
can be labelled with finite sets of predicates or events, and a unique initial state
is explicitly required. None of the domains of states, predicates and events is
required to be finite, and a matching function is required to evaluate whether
an event expression or state predicate is satisfied by the set of labels associated
to the states or transitions.

Very few model-checking tools provide support for sets of structured labels
associated with the edges of a model’s evolution graphs. KandISTI, for what we
know, is the only publicly available framework that supports this. The tool of the
KandISTI framework that better allows to exploit the doubly-labelling feature
is UMC. In UMC, a model describes the possible evolutions of a set of UML-like
state machines. The state labels of the abstract model contain the relevant state
information that we want to observe (typically the values of a subset of the local
variables of the state machines), while the transition labels contain the relevant
information that we want to observe concerning the occurrence of events during
system evolution.

The KandISTI framework allows an abstract view (in terms of an L2TS) to
be associated with the basic operational model of the specification language.
So-called “abstraction rules” need to be defined by the user to associate a set of
abstract observable (composite) state and event predicates with relevant states

http://fmt.isti.cnr.it/kandisti

116 M. H. ter Beek et al.

and transitions, hiding in the abstract view all other details. This abstract view of
the system model is the one used during verification, while all the internal details
of the traversed states and transitions remain available during the exploration of
the model or the analysis of a counterexample. Figure 2 shows an example of an
L2TS associated with an UML model once the desired abstractions have been
applied.

Fig. 2. From UMC model + abstractions to L2TS

4.3 Verification with KandISTI

Figure 3 provides the syntax of the logic supported by the KandISTI framework.
It encompasses the various logics of the individual model-checking tools, ranging
from UCTL (cf. Sect. 3) to the most recent addition, v-ACTL, for the analysis
of so-called Modal Transition Systems with variability constraints (MTSυ) [43].
The logic of KandISTI includes the following rich set of features:

– Parametric state predicates (represented by the state labels of the L2TS), e.g.
pred1 (arg1 , arg2), pred2 , and pred3 (∗, arg3), where ∗ means ‘don’t care’.

– Parametric event formulae (represented by Boolean expressions over the
transition labels (events) of the L2TS), e.g. (act1 (arg1 , arg2) ∨ act2) and
¬ act3 (arg3 , ∗, ∗).

– Classical diamond and box modalities from Hennessy–Milner logic [44], e.g.
[act1] (pred1 → 〈act2 〉 true).

– Classical high-level CTL operators (e.g. next, always, eventually, globally,
until, and weak until) in their state-based, action-based as well as mixed
modality flavours, e.g. EX pred1 , A [pred1 (arg1) U pred2], AGEF pred1 ,
and E [pred1 (arg1) W pred2].

– High-level ACTL-like operators (i.e. action-based variants of above CTL oper-
ators), e.g. EXact1 true, A [pred1 (arg1) act1Uact2 pred2], AGEFact1 pred1 ,
and E [pred1 (arg1) act1W pred2].

States and Events in KandISTI 117

Fig. 3. Full syntax of the KandISTI logic. Actually, the logic of the KandISTI frame-
work supports also (not optimised) versions of the least and greatest fixed-point opera-
tors μ and ν from the μ-calculus (cf. Sect. 3), to be written as min and max, respectively.

– Parametric formulae expressing data correlations among actions and subfor-
mulae, e.g. [act1 ($1, $2)] AFact2(%1,%2) true and EF$1 EF%1 true.

– Deontic variants of some of the above operators (which allow to reason on
classical Modal Transition Systems (MTS) [32,34,43], whose transitions are
partitioned into mandatory and optional transitions), e.g. 〈act1 〉� true and
EF�

act1 pred1 .
– Special-purpose predefined state predicates, e.g. PRINT (msg , arg1 , arg2)

(prints the current state and the message msg each time it is evaluated),
DEPTH LT n (returns TRUE if when evaluated the current evaluation depth
is less than n), and FINAL (shorthand for a final state).

118 M. H. ter Beek et al.

The latter category of special-purpose predefined state predicates allows a
better control and understanding of the ongoing evaluation process. Indeed,
model checking is a technique that can be used for a variety of goals. On one
side we have pure validation of a system design which is supposed to be correct
with a high probability, as a final result of a development phase. In this case, the
design of the verification tools is often focussed on techniques that contrast the
state-space explosion problems (e.g. minimising memory requirements), often at
the expense of a clear, easily understandable explanation when the validation
fails.

On the opposite side we have the goal of an easy but exhaustive analy-
sis/debugging of an initial (likely wrong) design. In this case, the focus of the
tool can be more oriented to the collection and preservation of all the diagnostic
information that might be useful to explain a negative result, even at the cost
of an increased or less efficient usage of the resources.

Our KandISTI framework falls in this second class of verification environ-
ments. During the (on-the-fly) evaluation process all the local information of
the generated states and transitions is preserved, to be eventually used when an
explanation of the evaluation result is requested. The exploitation of this app-
roach is made possible by the lazy, left-to-right evaluation approach for Boolean
operators, and the top-down evaluation process with respect to the formula struc-
ture.

In the KandISTI framework, the logical verification engine shared by all the
tools observes the underlying model as an abstract L2TS. This L2TS is inde-
pendent from the operational semantics of the particular specification language
adopted by the various tools, thanks to the intermediate set of abstraction rules
associated to the specification itself. We do not provide the full semantics in this
paper, but instead refer to its exhaustive (incremental) treatment in [20,21,43].

We note that not all KandISTI model checkers are able to fully exploit all
features of the logic. For instance, VMC and FMC specifications do not sup-
port state labelling (and therefore neither state predicates), whereas variability-
related aspects (e.g. the deontic ‘boxed’ operators) are fully supported only by
VMC specifications (but partially supported by FMC and UMC specifications).

The actual usage of the logic in the KandISTI framework exploits a machine-
friendly, ASCII-only, syntax. In particular, the silent event τ must be written
as tau; the propositional connectives ¬, ∧, ∨, and → must be written as not
(or ∼), and (or & or &&), or (or | or ||), and implies; the relational operators
≤, �=, and ≥ must be written as <=, != (or \=), and >=, respectively (and =
may also be written as ==); the ‘boxed’ variants 〈χ〉�, [χ]�, X�, F�, and G�

of the modal and temporal operators 〈χ〉, [χ], X, F , and G, respectively, must
be written by appending # to the operators (e.g. <># and F#); finally, the event-
based variants of the temporal operators U , W , X, F , and G must be written
by (prefixing and) suffixing the operators with the event formulae between curly
brackets (e.g. {e1} U {e2} and X {e}).

In the following sections, we focus in detail on two particular features that
have allowed KandISTI to cope with specialised formal verification tasks.

States and Events in KandISTI 119

4.4 Variable Binding

In certain cases, it is useful to express the fact that an event expression that
appears in a formula can make use of variable names (e.g. $var), which can either
be free variables or variables bound to a value by a previous binding operator
in the same formula. This data extraction feature from transition labels can be
found also in other μ-calculus-based languages, like for example MCL [45].

The contexts in which a variable name is allowed to appear are only the next
operator X, the diamond and box operators 〈 〉 and [], the eventually operator
F , and on the right side of the (weak) until operators W and U . Moreover, in
these contexts, the event expression can only have the form of a basic event
predicate, or a conjunction of basic event predicates, and the variable name can
only appear in the place of the event name or the place of an event argument.
Here are some examples of legal occurrences of variable names:

[$event] . . . , 〈aa($1, $2)〉 . . . , E[. . . U$event($var ,123) . . .],
EFevent($var)∧¬event(11) . . . , AF$var . . .

When such an event expression is evaluated with respect to a set of transition
labels, if the expression matches the labels, then a set of variable bindings occurs,
and the obtained bound values can be referred inside the subsequent part of the
formula by using the %var notation. Let us consider the L2TS shown in Fig. 4a.

With the following formula we can express the property that along any path,
any event may occur at most once (the formula is true in the L2TS of Fig. 4a).

AG [$event] ¬EF%event

The next formula, instead, states that whenever an event of the form cc(arg1 ,
arg2) occurs, its arguments differ (the formula is true in the L2TS of Fig. 4a).

AG [cc($1, $2)] (%1 �= %2)

The following formula states the existence of a path in which an aa event with
one argument is always eventually followed by a cc event with two arguments,
where the second argument of cc is equal to the first argument of aa (again, the
formula is true in the L2TS of Fig. 4a).

EFaa($1) AFcc(∗,%1)

Finally, below formula, instead, expresses that for all the transitions that contain
the event aa with an argument that is different from the value 3 lead to a state
from which it is possible to perform a cc event with two arguments, of which the
first one is equal to the argument of aa and the second one is greater than the
first one (also this formula is true in the L2TS of Fig. 4a).

[aa($1) ∧ ¬aa(3)] 〈cc(%1, $2)〉 (%1 < %2)

Note that this formula might have been encoded in an equivalent way as follows.

[aa($1)] ((%1 �= 3) → 〈cc(%1, $2)〉 (%1 < %2))

120 M. H. ter Beek et al.

Fig. 4. Sample L2TS and MTS

Note that the presence of the bound value notation %var introduces also the
possibility of a new class of basic state predicates that have the form of a simple
relation, where a bound value is compared with another bound value or literal.

4.5 MTS Model Checking

The VMC, UMC, and FMC tools of the KandISTI framework exploit another
interesting use of the composite labelling of a model’s transitions. In this case,
the model is defined by a sequential algebraic process, and the first parameter
of the events, if corresponding to the “may” literal, indicates the optionality of
the corresponding evolution. This allows a direct encoding of an aforementioned
MTS as an L2TS, using the additional “may” label to denote the deonticity of the
evolution. When displayed to the user (cf. Fig. 5), the corresponding graphical
view of the L2TS simply removes the optional “may” labels and shows this
information via a dashed representation of the transition edge.

One of the purposes of MTS is to describe families of implementations, where
edges may be associated with an ‘optional’ flavour that explicitly pinpoints the
variability allowed among the possible implementation variants. In Fig. 4b, we
show an example of an MTS and its L2TS encoding, which will be used to show
the way in which our KandISTI logical engine allows to reason on this kind of
systems. Figure 6 depicts the four implementation variants that constitute the
family represented by the MTS of Fig. 4b.

Now suppose we try to evaluate the formula EXbb true on the MTS/L2TS
of Fig. 4b. The formula will appear to be satisfied by the MTS because actually
there is an initial transition that satisfies the event expression bb. However, it

States and Events in KandISTI 121

Fig. 5. From VMC model to L2TS (MTS)

Fig. 6. All four implementation variants of the MTS of Fig. 4b

is also clear that it is not true that this formula holds for all the MTS variants.
This means that a TRUE result returned by the EXact operator on an MTS,
might in general not be preserved by all the implementation variants of the MTS.
Note, instead, that a negation of a next operator that returns a FALSE result is
indeed preserved by all the allowed variants (i.e. EXcc true is does not hold on
the MTS and neither on all its implementation variants). If we want to verify
the existence of a next transition in all the variants, by checking a formula on
the MTS, e.g. the existence of an initial aa transition, then we should verify the
following formula.

EXaa∧¬may true

The KandISTI logic allows to simplify the writing of formulae like the above
(making use of implicit . . .∧¬may event expressions) by offering ‘boxed’ versions
of most temporal operators. The above formula can hence be written as follows.

122 M. H. ter Beek et al.

EX�
aa true

The temporal operators for which such ‘boxed’ versions are supported in Kan-
dISTI are 〈χ〉�, [χ]�, EX�, EX�

χ , EF�, EF�
χ , AF�, and AF�

χ (cf. Fig. 3).
When a formula is satisfied by the MTS and its structure guarantees that the

TRUE result is preserved by the MTS variants, then the model checker VMC
notifies this fact to the user. For example, if we evaluate (on the MTS of Fig. 4b)
the formula AG EF�

cc true, the result will be as shown in Fig. 7.

Fig. 7. Successful evaluation of AG EF �
cc true

The following are some exemplary formulae that are satisfied by the MTS of
Fig. 4b and preserved by all variants depicted in Fig. 6:

EX�
aa true an initial mandatory aa transition exists

AG EF�
cc true from any state there is a mandatory path to cc

[bb] 〈cc〉� true an initial bb transition, if present, is followed by cc transition

¬〈cc〉 true no initial cc transition exists

AG 〈true〉�true in any state, at least one mandatory transition is possible

The general rule, proved in [43], is that a TRUE result of any of the operators

〈χ〉�, [χ], EX�, EX�
χ , EF�, EF�

χ , AF�, AF�
χ , AG

is preserved by all the variants when appearing in a context without negations
(or under an even number of negations), whereas a FALSE result of the operators

〈χ〉, [χ]�, EX, EXχ, EF, EFχ, AF, AFχ

is preserved by all the variants when appearing in a context under an odd number
of negations.

If we observe closely the MTS of Fig. 4b, we immediately see that it satisfies
a particular property, namely that all its nodes are the source of at least one
mandatory (i.e. not labelled with may) transition. A node that satisfies this
property or which is final (i.e. without outgoing edges) is called live and an
MTS is called live if all its nodes are. Under these circumstances, we have the

States and Events in KandISTI 123

additional property that also AF and AFχ formulae, if TRUE , preserve their
validity in all the implementation variants [43].

For example, we can verify that the MTS of Fig. 4b (and therefore all its
variants depicted in Fig. 6) satisfies the property that any path from any state
(in any variant) will eventually and necessarily reach a cc event. The property
can be expressed by the following formula.

AG AFcc true

One of the tools of the KandISTI framework, namely the variability model
checker VMC [22,46], is explicitly tailored for the verification of behavioural
models of so-called (software) product families in the form of MTS with vari-
ability constraints (MTSυ) [43]. One of the particular features supported by
VMC is the possibility to express variability constraints that allow to fine-tune
the set of valid implementation variants, and in particular allow to extend further
the notion of live nodes.

Let us consider the MTSυ shown in Fig. 8. The constraint aa ALT bb allows
to specify that we consider as valid variants (products) of the MTSυ only those
variants that either have the aa event or the bb event, but not both of them,
nor none of them (i.e. equivalent to a logical xor). Therefore there exist precisely
two valid implementations, for both of which the formula AFcc true holds. This
property can be checked directly on the MTSυ, because the specified variability
constraint has the effect of transforming the C1 node into a live node.

The second constraint aa OR bb, instead, allows to specify that we consider
as valid variants (products) of the MTSυ only those variants that have either the
aa event or the bb event, and possibly both of them, but not none of them (i.e.
equivalent to a logical or). In this case, we end up with three valid LTS variants,

Fig. 8. Sample MTSυ with different variability constraints

124 M. H. ter Beek et al.

and the formula AFcc true continues to hold. Also in this case the effect of the
variability constraint is to change the status of the node C1 into a live node,
thus allowing the verification of the above formula directly on the MTSυ with
the guarantee the TRUE result is preserved by all the valid variants.

5 Conclusion

The KandISTI family of model checkers fully exploits the expressive power of
the underlying L2TS models. The framework plays the role of an experimental
workbench, targeted mainly at teaching and research activity, without having in
mind verification efficiency as its major aim.

The capability to navigate the state space both at the concrete and at
an abstract level, together with useful debugging-oriented tools allow easy but
exhaustive analysis/debugging of an initial (likely wrong) system design: in such
cases, the focus of the tool is oriented to the collection and preservation of all
the information that might be useful to explain a negative result, even at the
cost of an increased or less efficient usage of the resources. Indeed, during the
(on-the-fly) evaluation process all the local information of the generated states
and transitions is preserved, to be possibly used once an explanation of the
evaluation result is requested. Moreover, a small set of basic state predicates is
defined, which allows to better control and understand the ongoing evaluation.
The exploitation of this approach is made possible by the lazy, left-to-right eval-
uation approach for Boolean operators and the top-down (with respect to the
formula structure and initial root state) evaluation process.

The characteristics of the KandISTI framework outlined in this paper have
favoured its use in numerous exploratory studies, such as those in [47,48] (intel-
ligent domotic environments), [49–51] (deadlock avoidance in train schedul-
ing), [52] (distributed railway interlocking concept) and [53] (web-based commu-
nication interworking). The versatility of its underlying L2TS models moreover
allowed to map rich logics developed in the context of trust and reputation sys-
tems, like the so-called trust temporal logic originally defined over trust LTS, onto
UCTL [54,55]. Finally, KandISTI is much appreciated as an effective teaching
tool by students at the University of Florence.

References

1. Kripke, S.A.: Semantical considerations on modal logic. Acta Phil. Fennica 16(5–
6), 83–94 (1963)

2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

3. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

4. Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

5. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995)

https://doi.org/10.1007/978-3-319-10575-8

States and Events in KandISTI 125

6. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-checking: a tutorial introduction.
In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 22

7. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-based
software model checking. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24756-2 8

8. Cleaveland, R.: Pragmatics of model checking: an STTT special section. Int.
J. Softw. Tools Technol. Transf. 2(3), 208–218 (1999). https://doi.org/10.1007/
s100090050030

9. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

10. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal Mu-Calculus. Form. Method. Sys. Design 2(2), 121–147
(1993). https://doi.org/10.1007/BF01383878

11. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, Mariangiola, Montanari, Ugo (eds.) Programming
1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/
10.1007/3-540-11494-7 22

12. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings Symposium on Logic in Computer Science (LICS
1986), pp. 332–344. IEEE (1986)

13. Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal Mu-
Calculus. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663,
pp. 410–422. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-
9 32

14. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL∗. In: Proceedings 10th Symposium on Logic in Computer Science (LICS
1995), pp. 388–397. IEEE (1995). https://doi.org/10.1109/LICS.1995.523273

15. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46(3), 255–281 (2003).
https://doi.org/10.1016/S0167-6423(02)00094-1

16. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

17. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084787

18. Hungar, H., Steffen, B.: Local model checking for context-free processes. In: Lingas,
A., Karlsson, R., Carlsson, S. (eds.) ICALP 1993. LNCS, vol. 700, pp. 593–605.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56939-1 105

19. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

20. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

https://doi.org/10.1007/3-540-48294-6_22
https://doi.org/10.1007/978-3-540-24756-2_8
https://doi.org/10.1007/978-3-540-24756-2_8
https://doi.org/10.1007/s100090050030
https://doi.org/10.1007/s100090050030
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/BF01383878
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-56496-9_32
https://doi.org/10.1007/3-540-56496-9_32
https://doi.org/10.1109/LICS.1995.523273
https://doi.org/10.1016/S0167-6423(02)00094-1
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/3-540-56939-1_105
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1016/j.scico.2010.07.002

126 M. H. ter Beek et al.

21. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.:
A logical verification methodology for service-oriented computing. ACM Trans.
Softw. Eng. Methodol. 21(3), 16:1–16:46 (2012). https://doi.org/10.1145/2211616.
2211619

22. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-
9 36

23. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based
analysis of software product lines. In: Proceedings 19th International Software
Product Line Conference (SPLC 2015), pp. 432–439. ACM (2015). https://doi.
org/10.1145/2791060.2791118

24. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

25. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 37–47. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55179-4 5

26. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A symbolic model
checker for ACTL. In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.)
FM-Trends 1998. LNCS, vol. 1641, pp. 228–242. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48257-1 14

27. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

28. Kozen, D.: Results on the propositional mu-Calculus. Theoret. Comput. Sci. 27,
333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

29. Lawford, M., Ostroff, J.S., Wonham, W.M.: Model reduction of modules for state-
event temporal logics. In: Proceedings IFIP TC6 WG6.1 International Conference
on Formal Description Techniques IX/Protocol Specification, Testing and Verifica-
tion XVI (FORTE/PSTV’96). IFIP Conference Proceedings, vol. 69, pp. 263–278.
Chapman & Hall, Ltd. (1996)

30. Graf, S., Loiseaux, C.: Property preserving abstractions under parallel composition.
In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 644–
657. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56610-4 95

31. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt 2006. LNCS (LNAI), vol. 4428, pp.
113–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74128-
2 8

32. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings 3rd Symposium
on Logic in Computer Science (LICS 1988), pp. 203–210. IEEE (1988). https://
doi.org/10.1109/LICS.1988.5119

33. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., W ↪asowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94–129 (2008)

34. Křet́ınský, J.: 30 years of modal transition systems: survey of extensions and anal-
ysis. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 36–74.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 3

https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1145/2791060.2791118
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/3-540-55179-4_5
https://doi.org/10.1007/3-540-48257-1_14
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/3-540-56610-4_95
https://doi.org/10.1007/978-3-540-74128-2_8
https://doi.org/10.1007/978-3-540-74128-2_8
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/978-3-319-63121-9_3

States and Events in KandISTI 127

35. Bradfield, J.C., Stirling, C.: Modal logics and μ-Calculi: an introduction. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp.
293–330. Elsevier (2001). https://doi.org/10.1016/B978-044482830-9/50022-9

36. Kindler, E., Vesper, T.: ESTL: a temporal logic for events and states. In: Desel, J.,
Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69108-1 20

37. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

38. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-
4 11

39. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer,
Heidelberg (1985). https://doi.org/10.1007/BFb0015727

40. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence.
Inf. Comput. 110(1), 149–163 (1994). https://doi.org/10.1006/inco.1994.1028

41. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification
of service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) Rigorous Software
Engineering for Service-Oriented Systems. LNCS, vol. 6582, pp. 390–407. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20401-2 18

42. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: a framework for the verifi-
cation of abstract service-oriented properties. In: Proceedings 24th Symposium on
Applied Computing (SAC 2009), pp. 2111–2117. ACM (2009). https://doi.org/10.
1145/1529282.1529751

43. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016).
https://doi.org/10.1016/j.jlamp.2015.11.006

44. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

45. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

46. ter Beek, M.H., Mazzanti, F.: VMC: recent advances and challenges ahead. In:
Proceedings 18th International Software Product Line Conference (SPLC 2014),
vol. 2, pp. 70–77. ACM (2014). https://doi.org/10.1145/2647908.2655969

47. Corno, F., Sanaullah, M.: Design time methodology for the formal verification of
intelligent domotic environments. ISAmI 2011. AINSC, vol. 92, pp. 9–16. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19937-0 2

48. Corno, F., Sanaullah, M.: Formal verification of device state chart models. In:
Proceedings 7th International Conference on Intelligent Environments (IE 2011),
pp. 66–73. IEEE (2011). https://doi.org/10.1109/IE.2011.36

49. Mazzanti, F., Spagnolo, G.O., Della Longa, S., Ferrari, A.: Deadlock avoidance
in train scheduling: a model checking approach. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10702-8 8

https://doi.org/10.1016/B978-044482830-9/50022-9
https://doi.org/10.1007/3-540-69108-1_20
https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1007/BFb0015727
https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.1007/978-3-642-20401-2_18
https://doi.org/10.1145/1529282.1529751
https://doi.org/10.1145/1529282.1529751
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1145/2647908.2655969
https://doi.org/10.1007/978-3-642-19937-0_2
https://doi.org/10.1109/IE.2011.36
https://doi.org/10.1007/978-3-319-10702-8_8
https://doi.org/10.1007/978-3-319-10702-8_8

128 M. H. ter Beek et al.

50. Mazzanti, F., Spagnolo, G.O., Ferrari, A.: Designing a deadlock-free train sched-
uler: a model checking approach. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014.
LNCS, vol. 8430, pp. 264–269. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06200-6 22

51. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transf. 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

52. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: Proceedings 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing (PDP
2017), pp. 278–286. IEEE (2017). https://doi.org/10.1109/PDP.2017.66

53. Paganelli, F., Ambra, T., Fantechi, A., Giuli, D.: Formalizing REST APIs for
web-based communication and SIP interworking. Telecommun. Syst. 66(1), 75–93
(2017). https://doi.org/10.1007/s11235-016-0271-2

54. Aldini, A.: Modeling and verification of trust and reputation systems. Secur.
Comm. Netw. 8(16), 2933–2946 (2015). https://doi.org/10.1002/sec.1220

55. Aldini, A.: Design and verification of trusted collective adaptive systems. ACM
Trans. Model. Comput. Simul. 28(2), 9:1–9:27 (2018). https://doi.org/10.1145/
3155337

https://doi.org/10.1007/978-3-319-06200-6_22
https://doi.org/10.1007/978-3-319-06200-6_22
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1109/PDP.2017.66
https://doi.org/10.1007/s11235-016-0271-2
https://doi.org/10.1002/sec.1220
https://doi.org/10.1145/3155337
https://doi.org/10.1145/3155337

Making Sense of Complex Applications:
Constructive Design, Features,

and Questions

Tiziana Margaria(B)

Chair of Software Systems, University of Limerick, and Lero, Limerick, Ireland
tiziana.margaria@ul.ie

Abstract. We highlight how concepts of constructive design help in
the comprehension of complex systems, using the history and evolution
of the Online Conference Service (OCS) and its product line, including
the Online Journal Service for journal management, as examples for the
needs and solutions of how to master design of systems with complex
behaviour. They nicely summarize over 20 years of evolution of one of the
most exciting and long lived joint research streams with Bernhard Steffen
and our research group. The constructive design concepts we found most
useful include the use of features to make large and complex systems more
manageable, properties to formulate behavioural requirements on the
models’ functionality as well as policies and access rights, and the role of
questions as model checking problems as well as test-driven exploration.

1 The Online Conference Service (OCS) over the Years

The Online Conference Service (OCS) was first designed in 1998-99 [14,17,20],
in a collaboration with Springer Verlag that continues until this day, and in a
time where we had successfully embraced the service oriented culture prevalent
in Intelligent Network (IN) Services in those years. Following the collaboration
with Siemens in their INXpress product in 1994-96 [41], we had successfully
transported the same culture of service orientation into the METAFrame devel-
opment framework described in [40]. We transported it from the telecommuni-
cation into the internet domain, with initial collaborations with Bertelsmann’s
Telemedia for the METACatalogue online shop [36]. At about the same time, we
used the same service-oriented and model driven technology to integrate printed
and online information in a pioneering multiplatform mashup that included the
very first QR codes, based on IDOCs, the NeoMedia Technologies’ Intelligent
Document Solutions. This Online Integrated Print Service (IPS) was presented
in cooperation with Springer Verlag at the CeBIT 1998 [5].

The OCS (see [17,19]) proactively helped authors, Program Committee
chairs, Program Committee members, and reviewers to cooperate efficiently dur-
ing their collaborative handling of the composition of a conference program. Its
strength in terms of adaptation to the needs of each conference and community

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 129–148, 2019.
https://doi.org/10.1007/978-3-030-22348-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_9

130 T. Margaria

was its customization ability: it was in fact flexibly reconfigurable online at any
time for each role, for each conference, and for each user [15].

The original OCS was extremely successful: it formed a Software Product
Line with the Online Journal Service (OJS), the Management Overview System
(MOS), and the LNCS Proposal Service for the LNCS Editors (this last ser-
vice hosted by Springer Verlag in Heidelberg). This initial OCS implementation
served hundreds of conferences, mostly in non-CS domains, and today this OJS
is still in use for STTT, Springer’s International Journal on Software Tools for
Technology Transfer. An example of OCS’s continued use was presented in [20],
where we analyzed its use and discussed its effectiveness in the ETAPS joint
federated conferences, that widely adopted it in the early 2000s.

Together, these online decision systems formed a family of services sharing
the same concept of role-based management of user rights. These services have
been successfully used over the last 8 years for a number of collaborative edi-
torial processes revolving around the management of scientific publications for
conferences and journals. With increasingly complex access management tasks
within the family of services, we needed to accommodate both flexible roles and
flexible exception handling which led us gradually towards a web-based, model
driven Role Management Service. Such reconfigurability at runtime in this type
of system was innovative when it was created 10 years earlier.

The next generation of the OCS [32] has been built in jABC4 [33] and in
a model-driven and service-oriented online fashion that led to an agile, phase-
oriented and role-driven organization of the software. This organisation lent itself
to a large variety of analyses by means of formal methods model checking of
the emerging global behavior that resulted as emergent property from the col-
laboration (and coordination) of the basic features. We reconstructed the global
behavior models via active automata learning, with successive validation of these
global models for global properties.

This generation of OCS services has supported hundreds of conferences for
the Springer Verlag, and it is available as well for FoMaC, the LNCS Transactions
on Foundations for Managing Change [1,37].

The current generation of OCS, called Equinocs, is being completely
redesigned in a DSL-meta-modelling supported fashion. The meta-model based
design approach covered initially the data models and persistency management
in DyWA [31]. In Equinocs it covers now the complete web application design
thanks to DIME [3], the DyWA Integrated Modelling Environment, the most
advanced and comprehensive CINCO-product [30].

In this paper, we summarize the service and feature-based design of the OCS
software product line (SPL) in Sect. 2, highlighting in particular how thinking
in terms of units of functionality naturally led to the adoption of a feature based
development. The adoption of a feature-oriented service description that goes
beyond the traditional concept stemming from the Intelligent Network systems
is further detailed in Sect. 3. The user-centric model based on intents adopted
in the New OCSl is described in Sect. 4, as well as the use of automata learn-
ing technologies to reconstruct the emerging global behaviour and to make it

Making Sense of Complex Applications 131

Fig. 1. Client/Server architecture of the OCS

amenable to model checking. The new meta-modelling approaches that underlie
the design of the third and current generation of the OCS and similar applica-
tions, DyWA and DIME, are sketched in Sect. 5. Finally, Sect. 6 concludes the
paper and identifies a new challenge related to behavioural synthesis.

2 Service and Feature-Based Design of the OCS Software
Product Line

The OCS, like the OJS, exhibited a typical Client-Server Architecture (see Fig. 1)
with a distributed backend. It ran on an application server that executed the
whole workflow of the application. The back-end services comprised Database,
News, CVS, and Mail services, and they were running on separate servers acces-
sible by the OCS. The database was used to store the article’s meta data and
service specific data, e.g. user profiles, roles, and reports, whereas the article files
and sources were handled by the CVS version control system. All the services
and their functionalities were accessible to the users via the common internet
browsers without the need to install any software on the client side.

The OCS was designed as a process controlled system whose business logic
was consistently designed in an eXtreme Model Driven paradigm [26] according
to the Lightweight Process Coordination approach [25]. A central advantage of
this model driven development style is the agility at the business process mod-
elling level: decoupling the design of the logic from the implementation level we
achieved a high degree of reuse of features inside the services. This organisation
in features was a central asset when transitioning to a family of services.

132 T. Margaria

Concretely, we used the jABC [44] development environment1 along the whole
lifecycle of the services. The models in jABC/ABC are at the same time abstract,
coarse grained formal models of the business logic [17], represented as graphs.
This way, designers enjoy a visual, concise representation of the models, which is
particularly appealing or the collaborative requirement elicitation and reviewing
with non-IT experts [7]. At the same time, these (finite state) models are directly
analyzable with formal methods, e.g. via model checking, so that the compliance
to descriptive policies, regulations, and constraints can be proven, and easily
checked once the business logic evolves.

2.1 Thinking in Units of Functionality

The most common perspectives taken on “units” are the user-centered view
and the platform-centered view. These two perspectives are usually mutually
exclusive and not easy to reconcile.

A user-centered view is popular in the telecommunications domain: it is
embodied by the “idea” of a SIB, a Service Independent Building Block that
is defined by the use one can make (which meaningful service does it offer to
me?) and not by its implementation. The library of SIBs for Intelligent Network
services was itself standardized [10], leading to a well-defined set of capabili-
ties that defined the DSL available to a library user (here an IN application
designer). This standardization “from the outside” ensured the interoperation
between functionalities offered by the different vendors, independently of the
technology, platform, operating system, programming language chosen by any
particular member of this complex ecosystem.

A platform-centered model is native to the Service Component Architec-
ture (SCA) [13] idea of a service, and provides a completely different take on
the concept of service: it is the inside-out perspective from the point of view of
a provider. It is the same perspective that underlies other architectural perspec-
tives popular in software engineering: the “unit” is a static building block that
offers its many and articulated capabilities to an environment that must know
how to use it. The concept of “use” is here the static composability with other
components, not what functionality it provides to the users.

We follow the principle that form follows function: first we determine a use,
and then we see how best to cater to that use. So architecture, granularity, inter-
faces and implementations must follow the use, and not the other way around.
In view of continuous evolution of software systems, change management process
is ubiquitous. Change comes in terms of maintenance and upgrade, for example
with extension of the SIB palettes, in new implementations of the same SIBs,
and in the evolution of the classification of the SIB palettes along a domain
specific organization in taxonomies [23].

Already back then we were thinking semantically. Simple but powerful seman-
tic descriptions in terms of atomic propositions ranging over taxonomies were

1 The releases prior to 2005 were realized in the ABC [38], the C++ predecessor of
the jABC.

Making Sense of Complex Applications 133

Fig. 2. Role-based management in the OCS: the user’s view

attached to the SIBs and used to express properties. Our CTL model checker
and the LTL synthesis algorithm were able to use these properties to check the
SLG models or to build property-compliant workflows.

2.2 Feature Model in the OCS

The service’s capabilities are grouped in features, which are assigned to specific
roles, described in more details in [17]. Figure 2 shows the feature structure for
the management of the List of Articles from the service user’s point of view. In
the OCS, a single user may be assigned many roles: e.g., a PC Chair could be
also a PC Member, thus do reviews, or a PC Member may be allowed to submit
papers and thus be simultaneously Author. Users can switch between their roles
at any time during a working session. In the snapshot of Fig. 2 the user has
selected the PC Chair role This is the main role of the service providing the full
access on the necessary service components for managing the conference. A fine
granular roles and rights management system takes care of the adequate admin-
istration of the context, role and user-specific permissions and restrictions. We
distinguish between Main Features in the navigation bar and their Subfeatures
placed in the content page. The navigation bar provides a set of first level features
according to the active role of the user. Users in different roles cooperate during
the lifetime of a PC’s operations and make use of the OCS capabilities which
are provisioned at the feature level. It is through the cooperation of its features
that the OCS provides timely, transparent, and secure handling of the papers
and the related submission, review, report and decision management tasks.

From the point of view of the user and role management, features are seen
as a collection of functionalities of the service which can be switched on and off

134 T. Margaria

Fig. 3. The user-role-rights relations

for single roles and for single users. Figure 3 shows a schematic example of the
relations between the users, roles, and rights.

3 Feature-Oriented Service Description: Beyond IN

The definition of feature depends heavily on their use as well as on the con-
text. We learned to know and use features in the context of Intelligent Net-
works [9,39,43]. In IN services, the base system was large: a switch that offered
POTS (plain old telephone service) functionality. The features were compar-
atively small extensions of that behaviour, as implemented in our environ-
ment for the creation of Intelligent Network Services [41] and in the original
METAFrame’95 environment [40].

Our own notion of OCS features has been more general and more similar to
a DSL in order to capture services that tend to have a lean basis service that

Making Sense of Complex Applications 135

deals with session, user, and role-rights management, and a collection of very rich
features. This different balance and organisation brings a different perspective
on the role and purpose of features.

Definition 1 (Feature). (see [28])

1. A feature is a piece of (optional) functionality built on top of a base system.
2. It is monotonic, in the sense that each feature extends the base system by an

increment of functionality.
3. The description of each feature may consider or require other features, addi-

tionally to the base system.
4. It is defined from an external point of view, i.e., by the viewpoint of users

and/or providers of services.
5. Its granularity is determined by marketing or provisioning purposes.

To support the complex evolution of services, we adopted a multilevel organi-
zation of features whereby more specialistic features build upon the availability
of other, more basic, functionalities. In order to keep this structure manageable
and the behaviours easily understandable, we restrict our focus to monotonic
features which are guaranteed to add behaviour. Restricting behaviour, which is
also done via features in other contexts (e.g. [6]), is done in an orthogonal way
in our setting, via constraints at the requirements level.

The definition of the feature-based architecture of our systems was already
back then based on

– DSLs where the SIBs are the domain specific primitives, and features as SLGs,
available both as descriptions (services) and implementations, and

– knowledge about the properties of SIB and feature behaviours expressed as
constraints.

Definition 2 (Feature-oriented Description). (see [28])

1. A feature-oriented service description of a complex service specifies the
behaviours of a base system and a set of optional features.

2. The behaviour of each feature and of the basic system are given by means of
Service Logic Graphs (SLGs) [43].

3. The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

4. The feature-oriented service description includes also a set of abstract require-
ments that ensure that the intended purposes are met.

5. Interactions between features are regulated explicitly and are usually expressed
via constraints.

6. Any feature composition is allowed that does not violate any constraint.

We distinguish the description of the feature’s behaviour from that of the
legal use of a feature. Restrictions on behaviours are expressed at a different
level, i.e. at the requirements level. They are part of an aspect-oriented descrip-
tion of properties that we want to be able to check automatically, using formal
verification methods.

136 T. Margaria

Thinking in features was essential to mastering the complexity of the OCS
and its transformation into a Product Line: although we never published the
feature models of these systems, they share not only portions of code (as common
in code-based reuse) but entire SLG palettes and SLGs themselves. In fact, the
article, delegation, and report management are similar to those of the OCS
and can be reused without problems. What changes in this approach is the
decision structure: a journal has an asynchronous, noncompetitive evaluation
of single papers, rather than the synchronous, competitive evaluation of a set
of submissions for a conference. Features like the discussion forums for single
papers are seldom used. Instead there is a more sophisticated status and progress
management, the management of several cycles of revision for a submission, and
a number of management roles that cover different aspects (Editor, Editor in
Chief, Guest Editor, Editorial Office for the manuscript management, ...). Due
to the longer life of the OJS instances, the personal situation of single users
is usually subject to changes and compartmentation, requiring a finer grained
management of the roles and rights. This fine grained management could be
done via exception handling within an OCS-style role management, though this
solution does not scale elegantly.

We chose instead to introduce an additional personalisation layer to the role
management concept to handle the individual differences from the norm [15].
Personalization is added to the OJS dynamically via an additional user permis-
sion concept that is implemented by a user-role-rights modifier to the OCS-style
role management. We extended the user/role management and made it possible
to assign rights to single users. Such properties were model checkable as shown
in [15] and amounted to a dynamic extension of a RBAC model as shown in [16].
Having well exceeded the approximately 2500 nodes and 3500 edges of the orig-
inal OCS, this organization form was not able to master the model complexity
and the related system complexity. A new User-centric mindset provided the
solution.

4 The User-Centric Model in the New OCS

Changing the perspective from a system construction mindset to a user-centric
mindset that expresses the point of view and the experience of any user, with one
or more roles, brought us to approach the design of the new the OCS as the design
of a reactive system with a graphical user interface that is provided as a web
application. Users decide autonomously when they execute their tasks, which
typically consist of small workflows. In case of multiple tasks, they also choose
the order in which they want to process or perhaps reject a task. The potential
interactions offered by the OCS application strongly depend on the specific phase
(submission, reviewing, discussion, ...) of the evaluation process, which has a
control-oriented character. Considering the high degree of freedom in choosing
individual tasks and the large number of involved actors, we moved away from
modeling this coordination directly, in terms of control-oriented graph structures.
This decision was made due to the complexity of a prescriptive logic for such

Making Sense of Complex Applications 137

Fig. 4. ECA rule for the declarative aspects of the new OCS (from [32])

coordination mechanisms. As seen with the previous design, direct coordination
indirectly reintroduced at the SLG and feature level a coordination-style state
explosion problem [4]. We decided instead to adopt a hybrid modeling approach
comprised of

– a collection of individual models for each business entity (like conference,
paper, ...) organized and synchronized by means of events and resource shar-
ing,

– individual models in terms of control-flow graph-like structures, expressing
the stepwise evolution of the individual processes for each of the involved
business objects within the overall evaluation process, which consist of

– states embedding Event-Condition-Action-rules. As shown in Fig. 4,
ECA-rules model the potential of user interactions as a set of rules which
can be accessed concurrently, and which are selected according to a current
event and an associated condition. They declaratively express the alternative
behaviors that the system offers in each state.

In practice, we did not have anymore a predefined SLG structure, but rather
a collection of individual models for the various business entities that could be
verified by means of techniques like model checking [32]. At this time we had also
built the LearnLib [29,35] that had become an efficient and scalable automata
learning platform. We dealt with the overall correctness of the evaluation pro-
cesses along an alternative approach: we used automata learning to build via
guided experimentation the overall behavioral model from the real implementa-
tion, and then model checked that inferred automaton w.r.t the desired proper-
ties. The charm of this approach is that it suppresses all the internal details of the
complex design models as well as the difficulty of dealing with the complex com-
munication and synchronization methods in modern enterprise architectures,
and clearly focussed on the primary issue: the user level correctness. Figure 5
sketches how we proceeded. We started with some local models describing for
example the overall evaluation pattern for conference proceedings and the life-
cycle of papers from the user’s perspective. These models can then be model
checked for essential properties, comprising security aspects, progress proper-
ties, or simply the intended causality. Subsequently, these ‘local’ models were
semi-automatically combined and transformed to run on an enterprise platform
using complex communication and synchronization primitives, like event han-
dling, process creation, etc. In particular, this means that we did not construct
a global model of the OCS. We gave instead full freedom for the above-mentioned
transformation, which we then complemented by automata learning techniques

138 T. Margaria

Fig. 5. Procedure model for the model-driven development approach for the new OCS
(from [32])

to retrospectively infer a global model. Key to the global validation of the cor-
responding emergent behavior is the experimental exploration of and behavioral
model construction for the system via automata learning.

4.1 Intent-Oriented Decomposition: Declarative Meets Prescriptive

Figure 6 depicts the user model of a conference paper’s behavior as a hybrid
graph. Syntactically, the first state is the ‘Start’ node and the control flows
along the edges. Edge labels represent events (either system events or user inter-
actions) that trigger the transition to a successor state. For example, system
events occur when a deadline expires and cause the system to transition to a
different phase (state) with a different behavior. The available actions in a given
state are recognizably modeled as ECA rules. It is not uniquely determined what
of the rich control structure is best captured as control structure and what as
ECA rule: this is clearly a matter of design. In fact, if one wishes less states and
more compact graphs it is possible to introduce more preconditions than just
those defined by the state and the role.

4.2 Learning and Validating Emerging Global Behaviour

Automata learning [8,34] has the potential to infer or extrapolate approxima-
tions and views of a user process via systematic experimentation with the appli-
cation running on an enterprise platform. The arising models can then be used

Making Sense of Complex Applications 139

Fig. 6. The hybrid user model of a paper’s behavior in the new OCS (from [32])

140 T. Margaria

for test generation and in particular for regression testing, for verification via
model checking (see Fig. 5), and for manual inspection. Through automata learn-
ing we learned several abstract views of the global user behaviour at different
levels of aggregation of the user actions.

Fig. 7. Input sequences as an enhancement to the alphabet (from [32])

The LearnLib offers a collection of different approximations for the equiva-
lence oracle. A very simple extension to the ‘one look-ahead’ version is to enhance
the input alphabet with sequences of elementary input symbols, like the ones
shown in Fig. 7 for the OCS. This alphabet enhancement directly leads to the
refined 5-state model displayed in Fig. 8. The slight look-ahead extension caused
by the three combined alphabet symbols is sufficient for our simple approxi-
mation of the equivalence query to detect that the path in the hypothesis that
allows to submit a paper after a logout is not valid in the OCS. By choosing what
user actions to consider and the granularity of the interaction, it is possible to
control both the performance of the learning step and the specific perspective we
wish to have. This way we can successively explore parts of the global behaviour
through the learned models. We can be sure that they correspond to the exact
behaviour provided by the OCS at runtime while still managing the model size
and thus the ease of comprehension also for users less familiar with the system’s
design.

5 The New Meta-Modelling Approach

Equinocs, our current system, is used to manage the contributions to this
Festschrift as well as the ISoLA 2018 conference. It represents a further gen-
erational change of mindset and an evolution towards a more comprehensive
adoption of domain specific models and metamodelling. In Equinocs, the inte-
gration of aspects in the code includes data models and persistency management
via DyWA [31] and also the GUI for user interaction through a web application
via DIME [3].

5.1 Evolvable Data Schema in DyWA

The case study used to introduce DyWA in [31] was OCS-Lite. It showcased
a new form of support for the design of business activities required to intro-
duce, control, and manage new business objects and resources. We contrasted

Making Sense of Complex Applications 141

Fig. 8. Learned Mealy automaton with symbol sequences (Fig. 7) (from [32])

the standard BPM approaches, focused on the business logic only, with DyWA’s
ease of definition and management for the data and objects that occur in the
applications. We demonstrated its efficient and robust support for evolution
and change. The name DyWA stands for Dynamic Web Application, where the
“dynamics” concern the ease of evolution and change of the data architecture
and data schema, a holy grail in traditional software maintenance. We intro-
duced the Online Conference Service (OCS)-lite as a small case study, modelled
its types in DyWA, created the necessary processes in jABC, and exported them
back into DyWA in order to offer to the end users a running web application
obtained entirely without manual coding. We then changed the requirements,
impacting both the data types and the business logic of the application, and
showed how the application was evolved by users accordingly without writ-
ing new code. The power of DyWA is connected with behavioral model-driven
design as auspicated in [21] and [22]: the original DyWA was for the user a web-
based definition facility for the type schema of any application domain of choice.

142 T. Margaria

Fig. 9. Schematic layout of the OCS-lite business objects. Objects (green) reference
their specific types and fields (blue), and hold references to other objects. (From [31])
(Color figure online)

Coupled with the defined types is the automatic generation of corresponding Cre-
ate, Read, Update, Delete (CRUD) operations, so that application experts are
able to model domain specific business processes which are directly executable
in our modelling environment. Upon change, the prototype can be augmented
or modified stepwise by acting on one or more types in the type schema, the cor-
responding data-objects, and the executable process models, while maintaining
executability at all times. As every step is automated via a corresponding code
generator, no manual coding is required.

As shown in Fig. 9, the web application runs on a meta schema that describes
data in terms of MS-types and MS-objects, both stored in the meta schema
database. A MS-type is used to model the concrete types and associations of
an application domain, whereas MS-objects hold the actual data of the appli-
cation and thus constitute instantiations of the respective MS-Types. Objects
are linked to a type, yielding a concept of typed domain specific data. This
organization allows to save domain unspecific, arbitrary data as long as they
can be described with the type schema. The concrete basic types are the Java
types. This design decision greatly simplifies the ORM aspects because referen-

Making Sense of Complex Applications 143

Fig. 10. The DIME concept: full generation of web applications from abstract model
specifications (From [3])

tial integrity is guaranteed by design, independently from the names of types
and fields. As a consequence, the further goal of independence from the kind of
database is easily achievable. Indeed, the DyWA design is mappable to a large
variety of persistence paradigms, e.g., to a NoSQL, relational, or any other class
of database.

5.2 Evolvable Web Applications in DIME

Equinocs is implemented in DIME, the DyWA Integrated Modeling Environ-
ment [3] that allows the integrated modelling of all the aspects needed for the
design of a complete web application in terms of Graphical Domain-Specific
Languages (GDSLs). Figure 11 shows that models capture the control flow as so
far happened in the Service Logic Graphs, but we have additionally also data
models and UI models in the same IDE. All these models are interdependently
connected, shaping the ‘one thing’ in a manner which is formal, yet easy to
understand and to use. The continuous and model driven deployment cycle is
simplified to the extent that its code can be one-click-generated and deployed as
a complete and ready to run web application. This happens along the process
sketched in Fig. 10.

We did not yet report on Equinocs, but we have used the same DIME tech-
nology to design a smaller service for the matchmaking of students with Final
Year Project topics proposed by supervisors in the Computer Science and Infor-
mation Systems Department in Limerick, called the CSIS FYP service. This
service is used as a common case study for applied XMDD in the 5 modules
taught to 3rd semester Computer Science bachelor students. The students learn
the various kinds of models supported by DIME, compare them with the UML
standard, E-R diagrams, and other state-of-the-art techniques for modelling and
OOP design/development. They apply requirement engineering methods to the
description of the system “as-is” and identify ways to extend or improve it along
the wishes of various stakeholders they interview. The generative approach in
DIME is compared with the manual modelling + coding approach taught in

144 T. Margaria

Fig. 11. Model component views in DIME: (a) Data (b) Control (c) UI (From [3])

Object Oriented Development. The DyWA is compared to the standard rela-
tional database design and use. As a different approach to Software Quality,
they also apply model checking to the models, building upon the knowledge of
CTL gained in the first semester and using the GEAR model checker they used
on the first semester projects [2]. Finally, we use the active automata learning
approach based on LearnLib [24] and specifically the ALEX front-end [27] in
order to extract a complete and checkable model from the running system, com-
pare it to the design models, and generate both model driven and model based
test suites in the Software Testing module.

6 Conclusions and Perspectives

Constructive design, tied to executable systems and “living” models, proved
to significantly support the comprehension of complex systems. For example,
during this semester we have used all these papers and material to teach the
new module Software Requirements and Modelling at the University of Limer-
ick. The concepts of traditional model driven design vs. XMDD, the use and role
of properties for constraint-guarded vs. constraint-based design [12], the essence
of features as a means to organise and reuse, and the feature interaction prob-
lem [11]. Properties were used to formulate verifiable behavioural requirements
on the models’ functionality as well as policies and access rights, and we explored
the role of “questions” both as model checking problems as well as for test-driven
exploration of the final system.

Although working in practice with the modern CSIS FYP service, a web
application designed in DIME and thus from the point of view of the OCS evo-
lution, at the leading edge of our current technology, the research papers about
the older versions of the OCS served excellently as a scaffolding support. The
students were able to compare the much smaller FYP service with the “logic”
of the concrete design and the design principles of the previous generations,

Making Sense of Complex Applications 145

retracing the evolution and development of the concepts, the IDEs, and the cor-
responding capabilities. They could better appreciate the interplay between all
these capabilities. Making sense of a complex system is greatly aided by the
organisation along intents in a user-centred way.

Considering the 20 years of our technology journey embodied by the various
stages of the OCS, we see that we did not yet include the synthesis of new
behaviours by using model construction [42], e.g. using PROPHETS [18], which
would constitute the ultimate level of automation: constructing new portions of
the system directly from questions, at the borderline between declarative and
prescriptive. We look forward to tackling this further challenge with Bernhard
Steffen.

Acknowledgements. Thanks for years of excellent collaboration along the OCS
adventure are due to Martin Karusseit, Johannes Neubauer, Stefan Naujokat and Steve
Boßelmann: it has been an exciting journey!

This work was supported, in part, by Science Foundation Ireland grants
13/RC/2094 and 16/RC/3918 and co-funded under the European Regional Develop-
ment Fund through the Southern & Eastern Regional Operational Programme to Lero
- the Irish Software Research Centre (www.lero.ie) and Confirm, the Centre for Smart
Manufacturing (www.confirm.ie)

References

1. Steffen, B. (ed.): Transactions on Foundations of Mastering Change. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-319-46508-1

2. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Tool-supported enhancement of
diagnosis in model-driven verification. Innov. Syst. Softw. Eng. 5, 211–228 (2009).
https://doi.org/10.1007/s11334-009-0091-6

3. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part II. LNCS, vol.
9953, pp. 809–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3 60

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

5. Friese, T., Margaria, T., Hofmann, A.: Integrating printed and online information.
STTT 2(2), 202 (1998). https://doi.org/10.1007/s100090050028

6. Harris, H., Ryan, M.: Theoretical foundations of updating systems. In: Interna-
tional Conference on Automated Software Engineering, p. 291 (2003)

7. Hörmann, M., Margaria, T., Mender, T., Nagel, R., Steffen, B., Trinh, H.: The
jABC approach to rigorous collaborative development of SCM applications. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 724–737. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8 52

8. Hungar, H., Steffen, B.: Behavior-based model construction. STTT Int. J. Softw.
Tools Technol. Transf. 6(1), 4–14 (2004)

9. ITU: general recommendations on telephone switching and signaling intelligent
network: introduction to intelligent network capability set 1. In: Recommendation
Q.1211, Telecommunication Standardization Sector of ITU, Geneva, March 1993

www.lero.ie
www.confirm.ie
https://doi.org/10.1007/978-3-319-46508-1
https://doi.org/10.1007/s11334-009-0091-6
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1007/s100090050028
https://doi.org/10.1007/978-3-540-88479-8_52

146 T. Margaria

10. ITU-T: recommendation q.1204. In: Distributed Functional Plane for Intelligent
Network Capability Set 2: Parts 1–4, September 1997

11. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen, B.: Incremental require-
ment specification for evolving systems. Nordic J. Comput. 8, 65–87 (2001).
http://dl.acm.org/citation.cfm?id=774194.774199

12. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. Int. J. Softw. Tools Technol. Transf. (STTT)
14(5), 511–530 (2012)

13. Jung, G., Margaria, T., Nagel, R., Schubert, W., Steffen, B., Voigt, H.: SCA and
jABC: bringing a service-oriented paradigm to web-service construction. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 139–154. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8 11

14. Karusseit, M., Margaria, T.: Feature-based modelling of a complex, online-
reconfigurable decision support service. In: 1st International Workshop Automated
Specification and Verification of Web Sites, WWV 2005, eNTCS 1132, March 2005

15. Karusseit, M., Margaria, T.: A web-based runtime-reconfigurable role management
service. In: 2nd International Workshop on Automated Specification and Verifica-
tion of Web Systems, WWV 2006, pp. 53–60. IEEE (2007)

16. Karusseit, M., Margaria, T., Willebrandt, H.: Policy expression and checking in
XACML, WS-policies, and the jABC. In: Proceedings of Workshop on Testing,
Analysis, and Verification of Web Services and Applications, held in conjunction
with the ISSTA 2008, TAV-WEB 2008, Seattle, Washington, USA, pp. 20–26. ACM
(2008)

17. Karusseit, M., Margaria, T.: Feature-based modelling of a complex, online-
reconfigurable decision support service. Electr. Notes Theor. Comput. Sci. 157(2),
101–118 (2006)

18. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-based loose
programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology (QUATIC 2010), Porto, Portugal,
pp. 262–267. IEEE, September 2010

19. Lindner, B., Margaria, T., Steffen, B.: Ein personalisierter internetdienst für wis-
senschaftliche begutachtungsprozesse. In: Proceedings of GI-VOI-BITKOM-OCG-
TeleTrusT Konferenz on Elektronische Geschäftsprozesse (eBusiness Processes),
Universität Klagenfurt (2001)

20. Margaria, T., Karusseit, M.: Community usage of the online conference service:
an experience report from three CS conferences. In: 2nd IFIP Conference on E-
Commerce, E-Business, E-Government (I3E 2002), Towards The Knowledge Soci-
ety: eCommerce, eBusiness, and eGovernment, Lisbon, Portugal. IFIP Conference
Proceedings, I3E 2002, vol. 233, pp. 497–511. Kluwer (2002)

21. Margaria, T.: Knowledge management for inclusive system evolution. In: Steffen,
B. (ed.) Transactions on Foundations for Mastering Change I. LNCS, vol. 9960,
pp. 7–21. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1 2

22. Margaria, T.: Generative model driven design for agile system design and evolution:
a tale of two worlds. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119,
pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 1

23. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic gen-
eration of the SWS-challenge mediator with jABC/ABC. In: Petrie, C., Margaria,
T., Zaremba, M., Lausen, H. (eds.) Semantic Web Services Challenge. Results from
the First Year, vol. 8, pp. 119–138. Springer, Boston (2008). https://doi.org/10.
1007/978-0-387-72496-6 7

http://dl.acm.org/citation.cfm?id=774194.774199
https://doi.org/10.1007/978-3-540-88479-8_11
https://doi.org/10.1007/978-3-319-46508-1_2
https://doi.org/10.1007/978-3-030-00244-2_1
https://doi.org/10.1007/978-0-387-72496-6_7
https://doi.org/10.1007/978-0-387-72496-6_7

Making Sense of Complex Applications 147

24. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innov. Syst. Softw. Eng. 1(2), 147–
156 (2005)

25. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable
system-level approach. Softw. Tools Technol. Transf. 5(2–3), 107–123 (2004)

26. Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2297-5 10

27. Margaria, T., Steffen, B. (eds.): ISoLA 2016, Part II. LNCS, vol. 9953. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3

28. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141 34

29. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

30. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. 20, 327–354 (2017)

31. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development
of web applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45234-9 5

32. Neubauer, J., Margaria, T., Steffen, B.: Design for verifiability: the OCS case study.
In: Formal Methods for Industrial Critical Systems: A Survey of Applications, chap.
8, pp. 153–178. Wiley-IEEE Computer Society Press, March 2013

33. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. Electron. Proc. Theor. Comput. Sci. 129,
259–283 (2013)

34. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. STTT 11(5), 393–407 (2009)

35. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. (STTT) 11(5),
393–407 (2009)

36. Steffen, B., Margaria, T., Braun, V.: Coarse-granular model checking in
practice. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 304–
311. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45139-0 20.
http://dl.acm.org/citation.cfm?id=380921.380949

37. Steffen, B. (ed.): Transactions on Foundations for Mastering Change I. LNCS, vol.
9960. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1

38. Steffen, B., Margaria, T.: METAFrame in practice: design of intelligent network
services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol.
1710, pp. 390–415. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48092-7 17

39. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Ann.
Rev. Commun. ACM 51, 847–856 (1997)

40. Steffen, B., Margaria, T., Claßen, A., Braun, V.: The METAFrame’95 environment.
In: CAV, pp. 450–453 (1996)

https://doi.org/10.1007/978-1-4471-2297-5_10
https://doi.org/10.1007/978-3-319-47169-3
https://doi.org/10.1007/11596141_34
https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/3-540-45139-0_20
http://dl.acm.org/citation.cfm?id=380921.380949
https://doi.org/10.1007/978-3-319-46508-1
https://doi.org/10.1007/3-540-48092-7_17
https://doi.org/10.1007/3-540-48092-7_17

148 T. Margaria

41. Steffen, B., Margaria, T., Claßen, A., Braun, V., Reitenspieß, M.: an environment
for the creation of intelligent network services. In: Intelligent Networks: IN/AIN
Technologies, Operations, Services and Applications - A Comprehensive Report,
pp. 287–300. IEC: International Engineering Consortium (1996)

42. Steffen, B., Margaria, T., Freitag, B.: Module configuration by minimal model con-
struction. Technical report, Fakultät für Mathematik und Informatik, Universität
Passau (1993)

43. International Telecommunication Union: Intelligent network - global functional
plane architecture. In: Recommendation Q.1203 (1992)

44. Universität Dortmund: jABC Website. http://www.jabc.de

http://www.jabc.de

Aachen 1990–1993

Interface Automata for Shared Memory

Johannes Gareis1, Gerald Lüttgen1(B), Ayleen Schinko2, and Walter Vogler2

1 Software Technologies Research Group, University of Bamberg, Bamberg, Germany
{johannes.gareis,gerald.luettgen}@swt-bamberg.de

2 Institut für Informatik, University of Augsburg, Augsburg, Germany
{ayleen.schinko,walter.vogler}@informatik.uni-augsburg.de

Abstract. Interface theories based on Interface Automata (IA) arefor-
malisms for the component-based specification of concurrent systems.
Extensions of their basic synchronization mechanism permit the mod-
elling of data, but are studied in more complex and expressive settings
involving modal transition systems, imply severe restrictions such as
determinacy, or do not abstract from internal computation.

In this paper, we show how de Alfaro and Henzinger’s original IA the-
ory can be conservatively extended by shared memory data, without sac-
rificing simplicity or imposing restrictions. Our extension IA for shared
Memory (IAM) decorates transitions with pre- and post-conditions over
arithmetic expressions on shared variables, which are taken into account
by IA’s notion of component compatibility. Simplicity is preserved as
IAM can be embedded into IA and, thus, accurately lifts IA’s compati-
bility concept to shared memory. We also provide a ground semantics for
IAM that demonstrates that our abstract handling of data within IA’s
open systems view is faithful to the standard treatment of data in closed
systems.

1 Introduction

Behavioural types [8,16] play an increasingly important role when developing
and verifying software systems. For object-oriented software, behavioural types
are specified as contracts [22], annotating methods and classes with pre- and
post-conditions and invariants, resp. For distributed software, session types are
employed [12,18] to describe communication interactions and their progression.

More general interface theories for concurrent systems are frequently founded
on de Alfaro and Henzinger’s Interface Automata (IA) [2,3], which model sys-
tem components as labelled transition systems that distinguish a component’s
input and output actions. Parallel component composition assumes that a com-
ponent may wait on inputs but never on outputs, implying that a component’s
output must be consumed immediately, or a communication error occurs. In
case no system environment may restrict the system components’ behaviour

Research support provided by the DFG (German Research Foundation) under grant
nos. LU 1748/3-2 and VO 615/12-2.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 151–166, 2019.
https://doi.org/10.1007/978-3-030-22348-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_10

152 J. Gareis et al.

so that all errors are avoided, the components are deemed to be incompatible.
To support refinement during software development, IA is equipped with an
alternating simulation preorder so that one may substitute an abstract compo-
nent by a concrete one, provided the concrete component offers no fewer inputs
and no more outputs than the abstract component. Because this implies that
outputs cannot be enforced, researchers have based IA-inspired interface theo-
ries on the more expressive Modal Transition Systems (MTS) and modal refine-
ment [7,9,14,19,25].

To enable the modelling of richer classes of concurrent systems and software,
IA has been extended in various ways to capture data in addition to control [1,4–
6,11,13,17,24]. Except for [17], most of these works focus on the shared memory
paradigm, which gets much attention with today’s shift towards multi-core com-
puting. Doyen et al. [13] study a basic interface theory with shared memory con-
currency, but their parallel composition permits only limited communication.
This is in contrast to de Alfaro et al.’s Sociable Interfaces [1], where scoping
and non-interference conditions ensure that interfaces can participate in sophis-
ticated n-to-n communication schemes on global variables. However, this leads
to a rather difficult to grasp setting with an arguably complex game semantics.
Bauer et al. [4–6] introduce data by employing pre-and post-conditions in a con-
tract style, but within the more expressive MTS setting. They also restrict them-
selves to a pessimistic view on component compatibility, where components are
already deemed to be incompatible if there exists a system environment that trig-
gers a communication error, counter to the optimistic view adopted by IA. The
authors of [11,24] stick to the simpler IA setting, but introduce technical mis-
takes, inaccuracies and unnecessary limitations in their work. In addition, most
approaches above do not abstract from internal computation [1,4–6,11,13,24],
and some impose stronger restrictions on determinacy than the input determi-
nacy of IA, at least for some of their results [6,13].

This paper shows that IA nevertheless permits a simple and faithful exten-
sion to shared memory data, which does neither increase expressiveness nor
introduce unnecessary complexities. To do so, we develop Interface Automata for
Shared Memory (IAM) which, as in [4–6,11,24], abstractly specify data manipu-
lations via pre- and post-conditions attached to transitions (Sect. 2). In contrast
to [11,24], pre-conditions act as transition guards, whereby the post-conditions
of an output-transition and a matching input-transition describe an assumption
and guarantee, resp., on the data state obtained after the synchronization. Sim-
ilar to [1], an output transition may be understood as invoking an operation
associated with the transition’s action, whereas the matching input transition
describes how this operation manipulates the system’s data state. Hence, one
may think of the input transition to actually perform the operation. We adopt
the point-to-point, handshake communication model of IA that is inspired by
the process algebra CCS [23]. A communication error occurs if either, as in IA,
an output is not expected in the current system state, or if the new data state
after synchronization does not obey the output transition’s assumption.

Interface Automata for Shared Memory 153

We conservatively extend the concepts of parallel composition and alternat-
ing refinement to IAM, while preserving compositionality, abstracting from inter-
nal computation and refraining from stricter determinacy requirements (Sect. 3).
Then, we formally prove that IAM can be embedded into IA, which implies that
one can reason finitely about component compatibility in IA even when infinite
data domains are involved (Sect. 4); this is an important aspect not considered in
related work. We also demonstrate that our abstract treatment of data via pre-
and post-conditions, where data states are implicit, is faithful to the concrete
treatment known from closed systems. To do so, we give closed IAM interfaces
a ground semantics, in which data states are explicit and which is bisimilar to
our IAM semantics (Sect. 5). Hence, IA does indeed offer a natural encoding of
shared memory data, without requiring a more complex setting.

Interfaces were also studied by Bernhard Steffen to whom this Festschrift is
dedicated. Steffen applied reactive interfaces for the compositional minimization
of finite state systems [15], using a reduction technique not unlike the pruning
employed when composing IA interfaces in parallel. He also investigated the
frequent problems that off-the-shelf components do not come with descriptions of
their interface behaviour, showing that these can be extracted from components
via active automata learning [27], and that provided interface descriptions are
under-specified and must be strengthened to be useful in practice [21].

2 The IAM Setting

This and the following section present our extension of IA for shared memory.

IA in a Nutshell. An IA interface P specifies a system component as a transition
system over some input and output alphabets I and O, resp., where a transition
is labelled either with an input action a?, an output action a! or the internal
action τ . Two interfaces P and Q may be composed in parallel, whereby P and Q
synchronize on actions a that are in the input alphabet of one automaton and in
the output alphabet of the other, resulting in an internal τ -transition, and they
interleave on all other actions. However, if one interface, say P , outputs an action
at a state p, which Q cannot receive in its current state q but on which it must
synchronize (due to the action being in Q’s input alphabet), a communication
error occurs. The parallel composition prunes all such error states 〈p, q〉 as well
as those states from which an error state can be reached autonomously via
output and internal transitions, i.e., from which the environment of P ‖ Q can
no longer prevent the system from entering an error state. This consideration
of errors makes the IA interface theory suitable for reasoning about component
compatibility.

IA also supports the compositional refinement of systems via a notion of
alternating simulation: P refines Q if the input transitions of Q can be simulated
by P and, vice versa, the output transitions of P can be simulated by Q. For a
component R, the parallel composition of P with R has no more communication
errors than that of Q with R. Indeed, for the input-deterministic IA interfaces,
alternating simulation is a pre-congruence for parallel composition.

154 J. Gareis et al.

The Extension IAM of IA. To capture shared memory in IA, our extension IAM
additionally labels transitions of an interface by pre- and post-conditions, similar
to [1,5,6]. These allow us to abstractly specify and reason about manipulations
of global variables, without explicitly modelling data states. Formally, pre- and
post-conditions are predicates over a set V of variables that represent the shared
memory, ranged over by x, y, . . ., i.e., propositional formulas over arithmetic
expressions over V that employ the usual propositional operators ¬,∨,∧,⇒ and
arithmetic operators such as <, = and ≥. The universe of such predicates is
denoted by Pred(V), with representatives ϕ,ϕ′, . . . used for pre-conditions and
ψ,ψ′, . . . for post-conditions. A data state σ is a valuation σ : V → D over a
domain D of values. The set of all data states over V is denoted by �V �, and we
define �ϕ� =df {σ ∈ �V � |σ |= ϕ}.

Intuitively, a pre-condition acts as a guard for a transition. An output tran-
sition labelled (ϕ, a!, ψ) specifies that it is only executable when the system’s
implicit data state satisfies pre-condition ϕ and expects that the system envi-
ronment, upon synchronizing on a, leaves the system in a data state respecting
post-condition ψ. Similarly, an input transition labelled (ϕ, a?, ψ) is executable
in data states satisfying ϕ and guarantees that it implicitly manipulates vari-
ables only in ways such that the resulting data state satisfies post-condition ψ.
In other words, post-conditions are employed in output transitions to express
assumptions and in input transitions to give guarantees on data states resulting
from a synchronization. Similar to communication mismatches, an assumption
of an output transition that is not met by a synchronizing input transition also
gives rise to an error in the parallel composition (see Sect. 3).

Definition 1 (Interface Automata for Shared Memory). An Interface
Automaton for Shared Memory (IAM) is a tuple (P, I,O,→), where

– P is the state set;
– A =df I ∪ O is the alphabet consisting of disjoint sets I and O of input and

output actions, resp., not containing the distinguished internal action τ ;
– → ⊆ P × Pred(V) × (A ∪ {τ}) × Pred(V) × P is the transition relation.

For a transition (p, ϕ, α, ψ, p′) ∈→, written p−(ϕ,α, ψ)→ p′ for simplicity,
its pre-condition ϕ and its post-condition ψ must be satisfiable, denoted by
ϕ sat and ψ sat, resp. Moreover, → is required to be data deterministic for
input actions, i.e., for all p ∈ P and different transitions p−(ϕ, a?, ψ)→ p′

and p−(ϕ′, a?, ψ′)→ p′′ with a? ∈ I, the conjunction ϕ ∧ ϕ′ is unsatisfiable.

Note that this definition coincides with the one of IA [2] in case only the
tautology true, written tt, is allowed as pre- and post-condition. In particular,
the normally finer notion of data determinism is then the same as input deter-
minism, which is needed for achieving compositionality for parallel composition
(see Theorem 6 below). In the sequel, we simply write P for an IAM (P, I,O,→),
and use a, a?, a!, α, α? and α! as representatives of the sets A, I, O, A ∪ {τ},
I ∪ {τ} and O ∪ {τ}, resp. In figures, pre- and post-conditions are set in square
brackets.

Interface Automata for Shared Memory 155

We now adapt the notion of (weak) alternating simulation from IA to IAM.
First observe that a single IAM transition may represent many transitions when
explicitly considering the underlying data state. This implies that the behaviour
of a transition in one IAM might need to be matched by multiple transitions
in another IAM, i.e., by a family (a countable set) of transitions. For example,
the behaviour of a transition labelled with pre-condition x ≥ 0 may only be
covered by two transitions with pre-conditions x = 0 and x > 0, resp., where the
former transition matches the behaviour for data states in which x has value 0
and the latter in which x has a strictly positive value. In the following, families
of transitions are indexed over some countable index set with representative i,
and a weak transition ε=⇒ stands for a finite and possibly empty sequence of
τ -transitions labelled with arbitrary but satisfiable pre- and post-conditions.
Moreover, the symbol ⇒ is also used for logical implication on predicates, where
ψi ⇒ ψ means that ψi implies ψ is valid.

Definition 2 (Alternating Simulation). For IAMs P , Q, relation R ⊆ P×Q
is an alternating simulation if the following holds for all pRq and ϕ, a, ψ:

(i) q −(ϕ, a?, ψ)→Q q′ implies that there exists a family p−(ϕi, a?, ψi)→P p′
i with

ϕ ⇒ ∨

i

ϕi and, for all i, ψi ⇒ ψ and p′
iRq′.

(ii) p−(ϕ, a!, ψ)→P p′ implies that there exists a family qi −(ϕi, a!, ψi)→Q q′
i with

ϕ ⇒ ∨

i

ϕi and, for all i, q
ε=⇒Q qi, ψi ⇒ ψ and p′Rq′

i.

(iii) p−(ϕ, τ, ψ)→P p′ implies that there exists a q′ with q
ε=⇒Q q′ and p′Rq′.

We write p
IAM q and say that p IAM-refines q, if there exists an alternating
simulation R such that pRq.

Here and in the following, whenever we refer to properties on states such as
p
IAM q, we consider these properties in their ‘global’ context of the IAMs P
and Q with p ∈ P and q ∈ Q.

It can be shown that
IAM is reflexive and transitive, and thus a preorder.
As in alternating simulation
IA for IA [2], inputs must be matched imme-
diately in
IAM, i.e., leading or trailing τs are not allowed. Cond. (i) shows
that, additionally in IAM, pre-conditions are weakened while post-conditions
are strengthened. The weakening of a pre-condition keeps in line with IA in
that refinement may introduce additional inputs. The strengthening in the post-
conditions ensures that refinement does not loosen guarantees, i.e., strengthening
prevents the refined system from reaching more data states than specified. Note
that, as Cond. (i) covers input actions, the pre-conditions ϕi are pairwise dis-
joint due to data determinism. Outputs are matched the other way around as
specified in Cond. (ii) which is analogous to Cond. (i) except that, as in
IA,
leading τs are permitted when matching output transitions. Cond. (iii) reflects
that τ -transitions are treated similarly to output transitions, but pre- and post-
conditions do not matter for τ -transitions (see Sect. 5). Despite the fact that
IA

does not consider families when matching transitions, our alternating simula-
tion
IAM for IAM coincides with
IA when considering only IAMs, where all

156 J. Gareis et al.

pre- and post-conditions are tt. For such IAMs, it does not matter with which
family member a transition is matched, any one family member would do.

Fig. 1. Refinement P �IAM Q �IAM R.

An example illustrating alternating refinement is depicted in Fig. 1, where
IAMs P , Q, R are defined over shared variable set V = {x} with domain R,
such that P
IAM Q
IAM R. The input transition r0 −(x > 0, a?, tt)→ r1 of the
most abstract interface R is matched by transition q0 −(x �= 0, a?, x �= 0)→ q1

of Q, where the pre-condition is weakened and the post-condition strengthened.
This transition is in turn matched by the family p0 −(x > 0, a?, x < 0)→ p1 and
p0 −(x < 0, a?, x > 0)→ p3 of P . The reasoning for the output transitions is sim-
ilar, observing that transition q1 −(x ≥ −1, b!, x ≥ −3)→ q3 of Q must also be
matched by a family of transitions in R, namely r1 −(x ≤ 0, b!,−2 ≤ x ≤ 2)→ r2

and r1 −(x ≥ 0, b!, x = 1)→ r3. Note that R has overlapping pre-conditions in r1;
unlike for inputs, data determinism is not required for outputs in IAM.

3 Parallel Composition

This section extends the parallel operator of IA [2], as outlined in the introduc-
tion to the previous section, to IAM. Two IAMs P , Q can be composed, if the
actions that are in the alphabets of both, are an output action in one IAM and
an input action in the other. When the overall system is in data state σ and P is
in (control) state p with p−(ϕ, a!, ψ)→P p′ such that σ |= ϕ, then P can perform
action a!. If Q has action a? and is in (control) state q with q −(ϕ′, a?, ψ′)→Q q′

such that σ |= ϕ′, it provides a new data state σ′ with σ′ |= ψ′. If σ′ meets
the expectation of P , i.e., σ′ |= ψ, the data state changes from σ to σ′ and
the components jointly move from state 〈p, q〉 to 〈p′, q′〉. Otherwise, we have a
communication mismatch, and 〈p, q〉 is an error state. This also holds if there
is no transition q −(ϕ′, a?, ψ′)→Q q′ with σ |= ϕ′. In the parallel composition P
and Q, all error states as well as those states are pruned, from which reaching
an error cannot be prevented by any system environment.

Interface Automata for Shared Memory 157

This intuition is formalized by the following definitions. First, we define the
parallel product P ⊗ Q that synchronizes and interleaves the transitions of two
composable IAMs P , Q. Then, error states are formally introduced, so that the
parallel composition P ‖ Q may be obtained from P ⊗ Q via pruning.

Definition 3 (Parallel Product). IAMs (P, IP , OP ,→P), (Q, IQ, OQ,→Q)
are composable if OP ∩ OQ = ∅ = IP ∩ IQ. The product P ⊗ Q is defined as
(P ×Q, I,O,→), where I =df (IP ∪IQ)\(AP ∩AQ), O =df (OP ∪OQ)\(AP ∩AQ),
and the transition relation → is the least relation satisfying the following rules:

(P1-) 〈p, q〉−(ϕP , α, ψP)→ 〈p′, q〉 if p−(ϕP , α, ψP)→ p′ and α /∈ AQ;
(P?!) 〈p, q〉−(ϕP ∧ ϕQ, τ, ψP)→ 〈p′, q′〉 if ϕP ∧ ϕQ sat, p−(ϕP , a?, ψP)→ p′,

q −(ϕQ, a!, ψQ)→ q′ and ψP ⇒ ψQ.

There are also Rules (P-2) and (P!?) symmetric to (P1-) and resp. (P?!), i.e.,
with the roles of P and Q being exchanged.

Rules (P1-) and (P-2) model the asynchronous interleaving of autonomous tran-
sitions of P and Q. Rules (P?!) and (P!?) govern the synchronizations between P
and Q, where the resulting synchronized transition is an internal τ -transition. Its
pre-condition is the conjunction of the pre-conditions of the two involved transi-
tions, as both must be fulfilled in the system’s current data state for P and Q to
engage in their transitions. As part of the synchronization, the input transition
may alter the data state but, in doing so, must respect the post-condition of the
output transition. This explains the implication ψP ⇒ ψQ between the post-
conditions of the involved transitions in Rule (P?!), whereby the synchronized
transition is labelled with the stronger post-condition ψP .

Additional constraints on pre-/post-conditions for consecutive transitions are
not needed for the open systems studied here. This is because a system’s environ-
ment may arbitrarily interfere with data states and, thus, make a pre-condition
of a transition true even if it contradicts the post-condition of the preceding
transition. The situation changes, however, when considering closed systems as
we do in Sect. 5.

Definition 4 (Parallel Composition). Given a parallel product P ⊗ Q of
IAMs P , Q, a state 〈p, q〉 is an error state if at least one of the following holds:

(E!?ϕ) p−(ϕP , a!, ψP)→ p′ with a? ∈ IQ, and there exists σ such that σ |= ϕP

but σ �|= ϕQ for all transitions q −(ϕQ, a?, ψQ)→ q′;
(E!?ψ) p−(ϕP , a!, ψP)→ p′ and there exists a transition q −(ϕQ, a?, ψQ)→ q′ such

that ϕP ∧ ϕQ sat and ψQ �⇒ ψP , i.e., �ψQ� �⊆ �ψP �.

Rules (E?!ϕ) and (E?!ψ), not shown above, are symmetric to (E!?ϕ)
and (E!?ψ), resp. The set E ⊆ P × Q of illegal states is the least set con-
taining all error states and those states 〈p, q〉 for which there exists a transition
〈p, q〉−(ϕ,α!, ψ)→ 〈p′, q′〉 with 〈p′, q′〉 ∈ E. The parallel composition P ‖ Q can
then be computed by pruning the illegal states, i.e., by removing all states in E
and their incoming and outgoing transitions. If 〈p, q〉 ∈ P ‖Q, then states p and q
are compatible, written p ‖ q; one also says that p ‖ q is defined.

158 J. Gareis et al.

Fig. 2. Parallel composition of IAMs P , Q, where IP ={b}, OP =IQ={a} and OQ=∅.

Observe that this definition coincides with the corresponding one for IA, if we
consider IAMs where only tt occurs as pre- and post-condition. Figure 2 shows an
example for computing the parallel product of two IAMs P , Q and applying prun-
ing so as to obtain P ‖Q. Synchronisation takes place on action a, which is shared
among the components, while action b of P is interleaved. Observe that P ’s out-
put transition p0 −(x = 2, a!, x �= 2)→ p1 may synchronize with the upper transi-
tion q0 −(x > 0, a?, x < 0)→ q1 of Q, because the data state where x has value 2
fulfills both pre-conditions x = 2 and x > 0 and, regarding the post-conditions,
x < 0 implies x �= 2. This results in transition 〈p0, q0〉−(x = 2, τ, x < 0)→ 〈p1, q1〉
being part of P ⊗ Q. A synchronization of P ’s same transition with Q’s lower
transition is impossible, because the pre-conditions x = 2 and x < 0 contradict
each other, and the necessary implication on the post-conditions would also not
hold. Similar considerations can be made for the other two potential synchro-
nizations between P in state p0 and Q in state q0 on action a. Thus, 〈p0, q0〉 is
not an error state: each output transition in p0 can properly synchronize with at
least one input transition in q0. The b?-transition of P in p0 is asynchronously
interleaved, because Q is not aware of this action. Afterwards, p3 tries to synchro-
nize again with Q on action a, but p3 −(x = 0, a!, x = 0)→ p4 cannot be matched
with any input transition of q0 due to their unfitting pre- and post-conditions.
Hence, 〈p3, q0〉 is an error state by either Rule (E!?ϕ) or (E!?ψ), implying that
transition 〈p0, q0〉−(tt, b?, tt)→ 〈p3, q0〉 in P ⊗ Q is pruned and not part of P ‖ Q.

Proposition 5 (Associativity & Commutativity). Let P , Q, R be IAMs
with AP ∩ AQ ∩ AR = ∅, p ∈ P , q ∈ Q and r ∈ R. Parallel composition is
associative in the sense that, if (p ‖ q) ‖ r is defined, then p ‖ (q ‖ r) is defined
and both are isomorphic. It is commutative in the analogous sense.

Interface Automata for Shared Memory 159

Fig. 3. IAMs P , Q and their parallel composition P ‖ Q.

Preorder
IAM is compositional wrt. parallel composition, which follows
directly from the properties of our embedding of IAM to IA in the next section:

Theorem 6 (Compositionality). Let P , Q, R be IAMs and p
IAM q, for
some p ∈ P , q ∈ Q. Further assume that Q and R are composable. Then, (i) P
and R are composable; (ii) p ‖ r
IAM q ‖ r, and p ‖ r is defined if q ‖ r is.

4 Embedding IAM into IA

This section shows that, while IAM adds shared memory data to the IA interface
theory, it does not alter IA’s concept of component compatibility and refinement.
IAM is rather an intuitive (finite) abstraction for reasoning about (infinite) data,
which maintains IA’s simplicity that has made IA popular. Because we need to
compare IAM and IA interfaces and IA considers initial states [2], we fix an initial
state for every IAM P . Let p0 and q0 be the initial states of IAMs P and Q, resp.
Then, 〈p0, q0〉 is the initial state of the parallel product P ⊗Q (cf. Definition 3).
If this initial state is illegal according to Definition 4, i.e., 〈p0, q0〉 ∈ E, then P
and Q are called incompatible and the parallel composition P ‖Q is undefined. We
write P
IAM Q if p0Rq0 for some alternating simulation R (cf. Definition 2).

In the following, we develop a translation from IAM to IA such that behaviour
is preserved and our parallel composition and refinement match exactly those
of IA. Intuitively, the behaviour of an IAM P with initial state p0 consists of
runs of the form (σ0, p0)

α0−→ (σ′
0, p1)(σ1, p1)

α1−→ (σ′
1, p2) · · · (σn−1, pn−1)

αn−1−−−→
(σ′

n−1, pn), for transitions pi −(ϕi, αi, ψi)→ pi+1 with σi |= ϕi and σ′
i |= ψi, for

all 0 ≤ i < n. Note that σ′
i and σi+1 might well be different, because interface

theories consider open systems and P ’s environment can always interleave and
arbitrarily modify the data state; we consider this further in Sect. 5.

For our translation, one might consider to integrate data states into actions,
so that the above run gives rise to α0(σ0, σ

′
0) · · · αn−1(σn−1′σ′

n−1), now as a
sequence of actions, i.e., each αi(σi, σ

′
i) is taken to be an (atomic) action. How-

ever, this translation does not work in general. Consider IAMs P , Q of Fig. 3,
where V = {x} and D = {1, 2}. By the above idea, P would have transition

p0
a(x=1,x=2)!−−−−−−−−→ p1 in the resp. IA, as shown in Fig. 4. The only possible match

in the IA for Q would be q0
a(x=1,x=1)?−−−−−−−−→ q1; thus, 〈p0, q0〉 ∈ E, i.e., P and Q

are incompatible. But there is no communication mismatch in the operational
reality, because Q decides about the new data state when answering the request

of P . In other words, P would take the transition p0
a(x=1,x=1)!−−−−−−−−→ p1.

160 J. Gareis et al.

Fig. 4. Intuitive, direct but wrong translation of P and Q into IA.

Fig. 5. Correct translation of P and Q into IA.

To resolve this problem, we translate output transition p−(ϕ, a!, ψ)→ p′ of

IAM P to multiple IA transitions {p
a(σ,M)!−−−−−→ p′ | σ |= ϕ, M ⊇ �ψ�}, and

analogously for input transitions. The final IA translation of the above example
can be found in Fig. 5, where now σ1 and σ2 denote the data states that assign
value 1 and 2 to x, resp. The previous conflict is prevented, resulting in a well-
formed IA P ‖ Q that matches our translation. The crucial action for detecting
errors is a(σ, �ψ�), reflecting what P knows when choosing the above transition
in (control) state p and data state σ. Even this is not truthful wrt. the data
states reached in a parallel composition: these are determined by the resp. input
transition and often form a proper subset of �ψ�. This is not a problem as
we ignore the target data states anyway; however, it explains why the a(σ,M)-
transitions with larger set M ⊇ �ψ� do not disturb as is evidenced by Theorem 8.

Definition 7 (Embedding of IAM in IA). An IAM P with initial state p0

is translated to the IA IA(P) =df (P, I ′, O′,→IA(P)) with initial state p0, where
I ′ =df {a(σ,M) | a ∈ I, σ ∈ �V �, M ⊆ �V �}, O′ =df {a(σ,M) | a ∈ O, σ ∈ �V �,
M ⊆ �V �}, and →IA(P) is obtained from →P according to the following rules:

– p−(ϕ, a, ψ)→ p′ implies p
a(σ,M)−−−−→IA(P) p′, whenever σ |= ϕ and M ⊇ �ψ�;

– p−(ϕ, τ, ψ)→ p′ implies p
τ−→IA(P) p′.

This embedding satisfies two important properties: it is a homomorphism for
parallel composition and monotonic wrt. alternating simulation.

Theorem 8 (Homomorphism & Monotonicity). For all IAMs P , Q, the
IA interface IA(P ‖ Q) is isomorphic to IA(P)‖ IA(Q), due to the identity map-
pings on state pairs and actions. Moreover, P
IAM Q iff IA(P)
IA IA(Q).

Interface Automata for Shared Memory 161

Theorem 6, i.e., the compositionality of parallel composition for IAM, now
follows directly from the corresponding property for IA [2] and the above theo-
rems.

5 Ground Semantics

Communication via shared memory works efficiently only for a limited number
of processes that are locally close to each other. In practical applications, one has
a cluster of processes that communicate among each other via shared memory,
and with the environment, e.g., via message passing [17]. To sketch the use of
our framework for designing shared memory systems, we assume that the latter
communication is by synchronizing on common actions, i.e., the environment
sees the cluster as an IA, and the cluster is originally specified by an IA. The
final cluster P is then a closed system in the sense that the shared memory is
inaccessible from the outside. So far, we have assumed that a state p of P can be
entered while being in some data state σ′ and then left because of a data state σ
different from σ′. In a closed system, there is no environment that can change σ′

to σ in-between. Hence, our ground semantics requires that p can only be left
via a transition whose pre-condition is satisfied not only by σ but also by σ′.

States of the ground semantics are again pairs 〈p, σ〉, where p is a (control)
state and σ a data state. A transition of p vanishes if σ does not satisfy the
pre-condition. In an open IAM, pre- and post-conditions are irrelevant for τ -
transitions, as the environment can change the data states arbitrarily before and
after engaging in the internal transition. Once we close the system, however, all
pre- and post-conditions become relevant and must be taken into account.

The ground semantics of a closed IAM P , denoted by c(P), describes the
behaviour of P as seen from the environment, given some initial data state σ0.
The c(P) is essentially an IA without pre- and post-conditions, but it might
violate input determinism when several data states satisfy a pre-condition. In
this section, we call such IA-like systems quasi-IAs. Similarly, a system that is
an IAM except for data determinism is a quasi-IAM.

Definition 9 (Ground Semantics). A closed IAM P is a tuple (P, I,O,→P ,
p0, σ0), where (P, I,O,→P , p0) is an IAM with initial state p0 and σ0 is the
initial data state. The ground semantics of P is the quasi-IA c(P) =df (P ×
�V �, I, O,→c(P), 〈p0, σ0〉) such that 〈p, σ〉 α−→c(P) 〈p′, σ′〉 if there is a transition
p−(ϕ,α, ψ)→P p′ with σ |= ϕ and σ′ |= ψ.

Usually, we are only interested in the reachable part of c(P). This may be
infinite even for finite P , because the domain D is infinite in most cases.

For describing how the development of a closed shared memory cluster fits the
IA approach, we first consider the final IAM P , which usually is a composition
of IAMs. We define a quasi-IA that properly reflects the behaviour of P wrt. the
ground semantics, but is finite whenever P is. This quasi-IA is based on an IAM
to which we refer as the reduction of P ; it has the same ground semantics as P .

162 J. Gareis et al.

Definition 10 (Reduction). Given a closed IAM (P, I,O,→P , p0, σ0), assume
that every p ∈ P has countably many outgoing transitions, indexed over J , with
pre-conditions ϕj. For each J ′ ⊆ J , let ϕJ ′ be

∧
j∈J ′ ϕj ∧ ∧

j /∈J ′ ¬ϕj. Set J ′ is
called p-index set if ϕJ ′ is satisfiable. The reduction of P is the closed quasi-IAM
(red(P), I, O,→red(P), 〈p0, ϕ0〉, σ0) with the following properties:

– State set red(P) ⊆ P×Pred(V) consists of states 〈p, ϕJ 〉, for a p-index set J .
– If p−(ϕj , α, ψ)→P p′ and there are p- and p′-index sets J and J ′, resp., with

j∈J and ψ ∧ ϕJ ′ sat, then 〈p, ϕJ 〉−(ϕJ , α, ψ ∧ ϕJ ′)→red(P) 〈p′, ϕJ ′〉.
– Predicate ϕ0 in the initial state 〈p0, ϕ0〉 is ϕJ0 , where J0 is the p0-index set

{j | σ0 |= ϕj}.

All states 〈p, ϕ∅〉 can be identified with a new state dead, because they have no
outgoing transitions. Observe that, for each (control) state p and data state σ,
there is a unique p-index set J with σ |= ϕJ ; for this J , data state σ satisfies ϕi

above if and only if i ∈ J . Furthermore, if two transitions numbered i and j
concern the same input a?, pre-conditions ϕi and ϕj contradict each other due
to data determinism. Thus, a p-index-set J can contain at most one index of
an a?-transition for a fixed a?, i.e., there is at most one p−(ϕ, a?, ψ)→P p′ that
gives rise to a?-transitions from 〈p, ϕJ 〉. Observe that the formulas ϕJ are finite
for finite P .

Now, we show that c(red(P)) is essentially identical to c(P); note again that
the former’s advantage over the latter is that c(red(P)) is finite whenever P is,
even though c(P) may be infinite. We call a state 〈〈p, ϕJ 〉, σ〉 of c(red(P)) data
consistent if σ |= ϕJ . In other words, ϕJ is an invariant for data consistent states
〈〈p, ϕJ 〉, σ〉. All reachable states in c(red(P)) are data consistent: the initial state
is data consistent, because ϕ0 is defined such that σ0 |= ϕ0. Furthermore, if σ
satisfies the post-condition of a transition leading to 〈p′, ϕJ ′〉 in red(P), then
σ |= ϕJ ′ , i.e., the resp. state 〈〈p′, ϕJ ′〉, σ〉 of c(red(P)) is data consistent.

Theorem 11 (Data Consistency). Let P be a closed IAM. Each reachable
state of c(red(P)) is data consistent. The quasi-IA induced by data consistent
states is isomorphic to c(P) due to the isomorphism ι : 〈〈p, ϕJ 〉, σ〉 �→ 〈p, σ〉
where σ |= ϕJ . The reachable parts of c(red(P)) and c(P) are isomorphic due to
the resp. restriction of ι.

This theorem shows that red(P) and P have the same behaviour as seen from the
environment. We now define a simple translation of IAM P to a quasi-IA ia(P).
It turns out that ia(red(P)) has essentially the same behaviour as c(P).

Definition 12 (Quasi-IA). Quasi-IA ia(P) is obtained from IAM P by delet-
ing all pre- and post-conditions.

The quasi-IA ia(P) is only IA-like, because we do not necessarily get an input
deterministic system. Input determinism is implied by data determinism in com-
bination with P being unambiguous, i.e., for an IAM P , the post-conditions ψ
of input transitions of red(P) leading to some 〈p′, 〉 do not satisfy ψ ∧ ϕJ ′ for
more than one p′-index-set J ′. The notion of similar behaviour as used here is
(strong) bisimilarity, which is clearly much stronger than mutual IA refinement.

Interface Automata for Shared Memory 163

Fig. 6. Example illustrating IAM’s application context.

Theorem 13 (Correctness). ia(red(P)) and c(P) are bisimilar for all closed
IAMs P . They are equivalent wrt.
IA if they are IAs.

We now work out the scenario described at the beginning of this section,
where one wants to extend a given IA specification Spec by shared memory. This
can be done by decorating each transition with tt as pre- and post-condition,
except for the post-conditions of output transitions. As first design choices, we
select an initial data state σ0 and, for each output transition, a single expected σ.
A possible resulting IAM Spec′ is given in Fig. 6; the essential point is that
ia(Spec′) is indeed Spec. To get a working implementation, one typically refines
specification Spec′ by a parallel composition that is implemented component-
wise; Fig. 6 shows a realisation P of Spec′, i.e., P is the parallel composition of the
final cluster. One can show that, if P , as in Fig. 6, is input-deterministic and each
postcondition of an input transition is satisfied by only one data state, ia(P) is an
IA, and by P
IAM Spec′, one can conclude ia(P)
IA ia(Spec′) = Spec. These
conditions also guarantee that ia(red(P))
IA ia(P). So, the design process ends
with a closed composition P of IAMs; the outside behaviour of P is exactly
described by ia(red(P)), which IA-refines Spec.

Figure 6 also shows red(P). State p2 in P has transitions with overlapping
pre-conditions. This leads to three satisfiable conditions ϕJ , which are equivalent
to x < 0, x > 0 and x = 0. As x < 0 is always invalid after the τ -transition
in P , state p2 results in two reachable states in red(P); the post-conditions of
the two τ -transitions are suitably adapted. The left-hand state inherits the two
c-transitions where x > 0 is allowed, the right-hand state only the c-transition
where x = 0 is allowed; the pre-conditions are adapted.

Finally, observe that also ia(P)
IA Spec, but ia(P) might have outputs that
cannot ever occur, i.e., outputs for which the environment does not have to care.
However, when taking just an IA-refinement of ia(P), some other outputs could

164 J. Gareis et al.

be dropped that do actually occur; this would be dangerously wrong. Further-
more, new inputs might be added wherever P does not offer these capabilities; to
rely on them would be equally dangerous. Hence, it is essential to take ia(red(P))
for describing the external behaviour of P .

6 Conclusions

Interface Automata (IA) [2,3] have laid the foundation for reasoning about the
compatibility of concurrent system components and been extended in various
ways by shared variables for modelling data manipulating operations [1,4–7,11,
24]. However, these works either consider a more expressive and complex setting
than IA [4–7], do not relate their proposed semantics to an intuitive ground
semantics [1,4,6,7,11,24], or have technical shortcomings [11,24]. Thus, it has
remained an open question whether IA permits a simple and faithful extension
to shared memory that does not increase expressiveness.

This paper answered this question positively. Our interface theory IAM is a
conservative extension of IA by shared memory. Similar to [4,5,11,24], we deco-
rated action-labelled transitions with pre- and post-conditions constraining data
states. A pre-condition acts as the transition’s guard, and a post-condition of
an output (input) transition specifies an assumption (guarantee) on the data
state reached when executing the transition. We extended IA’s concepts of com-
patibility, refinement and parallel composition to this setting, and provided a
translation from IAM to IA. The latter shows that IAM accurately lifts IA’s
concepts to shared memory, while attaining finiteness when reasoning about
potentially infinite data domains. In this sense, IAM does not increase expres-
siveness, and keeps the simplicity that has made IA increasingly popular in the
formal methods community. To prove that IAM treats shared variables faith-
fully, we provided a ground semantics for closed IAMs; this makes the data
states, which are implicit in an IAM, explicit within a closed IA, and is not
unlike the implementation semantics of [5].

Future Work. We propose to extend IAM with features enhancing its practi-
cality. Firstly, we wish to add scoping for actions and data. Action scoping can
be realised by pruning inputs and hiding outputs [10]. Data scoping requires
us to introduce an access control to IAM’s global variables [1,4–6]. Secondly,
IAM currently cannot capture operations such as integer increment, for which
a ‘prime’ variant of each variable would be needed to relate values before and
after an operation. This needs further investigation as it impacts our embedding
and ground semantics. Thirdly, a conjunction operator should be added to IAM.
This is not as easy as for IA [20], where two interfaces always have a common
refinement so that contradictions cannot occur. In IAM, contradictions may arise
due to transitions with conflicting post-conditions. Finally, we want to attach
data invariants to IAM states. The idea is that, while a component is in a state,
a compatible environment can only alter data in ways respecting the invariant.
This restricts the environments with which a component can be composed, thus
making shared variables more meaningful wrt. an open systems view.

Interface Automata for Shared Memory 165

Acknowledgements and Dedication. We thank the anonymous reviewers for their
thorough comments that have helped us to improve the paper’s presentation.

The second author wishes to dedicate this paper to Bernhard Steffen, on the occa-
sion of his 60th birthday. I first met Bernhard when he was a young professor at
RWTH Aachen University and I was his student. At a time when I feared that soft-
ware development is primarily based on experience, he showed me the mathematical
beauty of computer programs and the possibilities this offers for advancing software
engineering. He was a refreshing lecturer and introduced his students to the latest
advances in concurrency theory, program analysis and automated verification. As my
PhD advisor, I got to admire Bernhard’s outstanding intuition that often led him to
gain deep insights between fields, as is evidenced, e.g., in his works on data-flow anal-
ysis as model checking [26]. He taught me the foundations of process algebras and
compositional semantics, which fired my scientific curiosity and led to my dissertation
and ultimately to this Festschrift contribution. Bernhard, I thank you for your support,
your patience and your trust, and wish you many more fruitful years full of scientific
curiosity and achievement.—Gerald

References

1. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 5

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109–120.
ACM (2001)

3. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NSS, vol. 195, pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/1-
4020-3532-2 3

4. Bauer, S.S., Hennicker, R., Bidoit, M.: A modal interface theory with data con-
straints. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS, vol. 6527,
pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19829-
8 6

5. Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and
data. Theoret. Comput. Sci. 412(28), 3101–3121 (2011)

6. Bauer, S.S., Guldstrand Larsen, K., Legay, A., Nyman, U., W ↪asowski, A.: A modal
specification theory for components with data. In: Arbab, F., Ölveczky, P.C. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 61–78. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35743-5 5

7. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 15

8. Benveniste, A., et al.: Contracts for system design. Found. Trends EDA 12(2–3),
124–400 (2018)

9. Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal inter-
faces. Theoret. Comput. Sci. 642(C), 24–53 (2016)

10. Chilton, C., Jonsson, B., Kwiatkowska, M.: An algebraic theory of interface
automata. Theoret. Comput. Sci. 549, 146–174 (2014)

https://doi.org/10.1007/11559306_5
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/978-3-642-19829-8_6
https://doi.org/10.1007/978-3-642-19829-8_6
https://doi.org/10.1007/978-3-642-35743-5_5
https://doi.org/10.1007/978-3-642-35743-5_5
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15

166 J. Gareis et al.

11. Chouali, S., Mountassir, H., Mouelhi, S.: An I/O automata-based approach to
verify component compatibility: application to the CyCab car. ENTCS 238(6),
3–13 (2010)

12. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256,
253–286 (2017)

13. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88. ACM (2008)

14. Fendrich, S., Lüttgen, G.: A generalised theory of interface automata, compo-
nent compatibility and error. Acta Inf. (2018). https://doi.org/10.1007/s00236-
018-0319-8

15. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Formal Asp. Comput. 8(5), 607–616 (1996)

16. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

17. Hoĺık, L., Isberner, M., Jonsson, B.: Mediator synthesis in a component algebra
with data. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 238–259. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6 16

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIG-
PLAN Not. 43(1), 273–284 (2008)

19. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 6

20. Lüttgen, G., Vogler, W.: Modal interface automata. LMCS 9(3:4) (2013)
21. Margaria, T., Sistla, A.P., Steffen, B., Zuck, L.D.: Taming interface specifications.

In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 548–561.
Springer, Heidelberg (2005). https://doi.org/10.1007/11539452 41

22. Meyer, B.: Applying design by contract. IEEE Comput. 25(10), 40–51 (1992)
23. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River

(1989)
24. Mouelhi, S., Chouali, S., Mountassir, H.: Refinement of interface automata

strengthened by action semantics. ENTCS 253(1), 111–126 (2009)
25. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:

A modal interface theory for component-based design. Fundam. Inform. 108(1–2),
119–149 (2011)

26. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1 54

27. Steffen, B., Howar, F., Isberner, M.: Active automata learning: from DFAs to
interface programs and beyond. In: ICGI. JMLR, vol. 21, pp. 195–209 (2012).
JMLR.org

https://doi.org/10.1007/s00236-018-0319-8
https://doi.org/10.1007/s00236-018-0319-8
https://doi.org/10.1007/978-3-319-23506-6_16
https://doi.org/10.1007/978-3-319-23506-6_16
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/11539452_41
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54

Passau 1993–1997

Boolean Algebras by Length
Recognizability

Didier Caucal(B) and Chloé Rispal

CNRS, LIGM, University Paris-Est, Paris, France
{caucal,rispal}@u-pem.fr

Abstract. We present a simple approach to define Boolean algebras on
languages. We proceed by inverse deterministic and length-preserving
morphisms on automata whose vertices are words. We give applications
for context-free languages and context-sensitive languages.

1 Introduction

The family of regular languages is closed under many operations. Those closure
properties give an easy way to work with this family and specially the closure
under Boolean operations. Some of these Boolean closure properties are not sat-
isfied at the next level of the Chomsky hierarchy: the family of context-free lan-
guages is not closed under complementation and intersection, and the subfamily
of deterministic context-free languages is not closed under union and intersec-
tion. A standard way to get Boolean algebras is by recognizability by inverse
morphism. This notion has been extended to many finite structures (see [10]
among others) and also to infinite automata [5].

An automaton is a set of labeled edges with some initial and final vertices.
A morphism f from an automaton G into an automaton H is a mapping from
the vertices of G to the vertices of H such that for any edge s

a−→ t of G,
f(s) a−→ f(t) is an edge of H and for s initial/final in G, f(s) is initial/final in
H. The recognizability by an automaton H according to an automata family F
is defined as the set of languages accepted by the automata of F that can be
mapped by morphism into H.

A good way to obtain Boolean algebras of context-free languages is by struc-
tural recognizability [5]. Considering a family of automata such that each labeled
transition a−→ is a binary relation on a set R, the morphism has to be a rela-
tion of R. This structural notion, together with a natural notion of determinism
on morphisms defines Boolean subalgebras of many language families. Neverthe-
less, those Boolean algebras can be too restrictive. For instance, the set of visibly
pushdown languages [1] can not be obtained by structural recognizability.

In this paper, we consider the length recognizability for automata whose ver-
tices are words: the morphisms are still deterministic but we replace the struc-
tural condition by the length-preserving property. We define natural conditions

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 169–185, 2019.
https://doi.org/10.1007/978-3-030-22348-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_11

170 D. Caucal and C. Rispal

on automata families such that this length recognizability defines Boolean sub-
algebras. The closure under intersection is given by the length synchronization,
a natural and usual parallelization operation on word automata. To get the clo-
sure under difference, we introduce a new operation: the length superposition.
When an automata family is closed under these two operations and under simple
conditions, we get a Boolean algebra of languages accepted by automata which
are deterministically length recognized by an unambiguous automaton (see The-
orems 1 and 2). We give applications for sub-families of context-free languages
and of context-sensitive languages. In particular, the family of visibly pushdown
languages can be defined by length recognizability.

2 Word Automata

We consider finite and infinite automata having words as vertices. In this section,
we give basic notations and definitions, and recall the notions of determinism
and unambiguity.

Let N,T be countable sets of symbols called respectively non-terminals and
terminals. We take a set C = {ι, o} of two colors.

A word automaton G is a subset of N∗×T×N∗ ∪ C×N∗ of vertex set

VG = { u | ∃ a, v (u, a, v) ∈ G ∨ (v, a, u) ∈ G } ∪ { u | ∃ c ∈ C (c, u) ∈ G }

such that the following sets are finite:

NG = { x ∈ N | ∃ u, v ∈ N∗ uxv ∈ VG } the set of non-terminals of G,
TG = { a ∈ T | ∃ u, v (u, a, v) ∈ G } the set of terminals or labels of G.

We denote by IG = { s | (ι, s) ∈ G } the set of initial vertices and by
FG = { s | (o, s) ∈ G } the set of final vertices of G. Any triple (s, a, t) ∈ G is
an edge labeled by a from source s to goal t ; it is also denoted by s

a−→G t i.e.
a−→G = { (s, t) | s

a−→G t } is the a-transition of G. Any couple (c, s) ∈ G is a
vertex s colored by c ∈ C ; it is denoted by c s ∈ G and c−→G = { (s, s) | c s ∈ G }
is the c-transition of G. Taking symbols |, κ, and a triple (T−1, T0, T1) of disjoint
finite subsets of T , we define the input-driven automaton:

Inp(T−1, T0, T1) = { |nκ
a−→ |n+iκ | i ∈ {−1, 0, 1} ∧ a ∈ Ti ∧ n, n + i ≥ 0 }

∪ { ι κ } ∪ { o |nκ | n ≥ 0 }.

The automaton Inp({b}, {c}, {a}) is represented below.

||κ |||κ|κκ

c c cc

aaa

bb b

o ooo
ι

Let −→G be the unlabeled edge relation i.e. s −→G t if s
a−→G t for some

a ∈ T . The accessibility relation−→∗
G is the reflexive and transitive closure under

composition of −→G . A graph G is accessible (resp. co-accessible) from P ⊆
VG if for any s ∈ VG, there is r ∈ P such that r −→∗

G s (resp. s −→∗
G r).

Boolean Algebras by Length Recognizability 171

An automaton G is trimmed if it is accessible from IG and co-accessible from
FG. The previous automaton is trimmed. The restriction G|P of an automaton
G to a vertex subset P is the automaton induced by P :

G|P = { (u, a, v) ∈ G | u, v ∈ P } ∪ { (c, u) ∈ G | u ∈ P }.

The trimmed automaton of G is Gι,o = G|{ s | ∃ i ∈ IG ∃ f ∈ FG (i −→∗
G s −→∗

G f) }
the restriction of G to the vertices accessible from IG and co-accessible from FG .
Thus Gι,o is trimmed and L(Gι,o) = L(G). Similarly, the accessible automa-
ton of G is Gι = G|{ s | ∃ i ∈ IG (i −→∗

G s) } . Recall that a path is a sequence

s0
a1−→ s1 . . . sn−1

an−→ sn of consecutive transitions; this path leads from the
source s0 to the goal sn and is labeled by u = a1. . .an ∈ T ∗ and we write
s0

u−→G sn . We also write ι
u−→G s, s

v−→G o , ι
u−→G o if there exists i ∈ IG and

f ∈ FG such that we have respectively i
u−→G s , s

v−→G f , i
u−→G f . A path

is accepting if its source is initial and its goal is final. The language accepted
by an automaton G is the set L(G) = { u ∈ T ∗ | ι

u−→G o } of labels of its
accepting paths. For instance, the previous automaton Inp({b}, {c}, {a}) accepts
the language

L(Inp({b}, {c}, {a})) = { u ∈ {a, b, c}∗ | ∀ v ≤ u, |v|a ≥ |v|b }
of prefixes of well-parenthesed words (a the open parenthesis and b the close
one). An automaton G is deterministic if it has at most one initial vertex:
ι s , ι t ∈ G =⇒ s = t, and if for any vertex r and any label a ∈ T , there exists at
most one transition starting from r and labeled by a: (r a−→G s ∧ r

a−→G t) =⇒
s = t. More generally, an automaton G is unambiguous, if any two accepting
paths have distinct labels. The previous automaton Inp(T−1, T0, T1) is deter-
ministic. Any deterministic automaton is unambiguous. Here is an unambiguous
automaton Un which is not deterministic.

|p ||p |||pp

q |q ||q |||q

a a

b b b

a

b b b b

o
a a a

ι

3 Recognizability

In order to get Boolean subalgebras of many language families, the recognizabil-
ity by inverse morphism [6] has been extended to infinite automata [5]. We recall
this notion as well as the definition of a deterministic morphism.

A morphism f from an automaton G into an automaton H is a mapping
f : VG −→ VH such that for any s, t ∈ VG , a ∈ TG and c ∈ C,

s
a−→G t =⇒ f(s) a−→H f(t) and c s ∈ G =⇒ c f(s) ∈ H

we write G
f−→ H or G −→ H and we say that G is reducible into H. Any word

accepted by an automaton is by morphism accepted by the image automaton.

172 D. Caucal and C. Rispal

Lemma 1. Let G −→ H. We have

L(G) ⊆ L(H) and G′ −→ H ′ for any G′ ⊆ G and H ⊆ H ′.

Let us give uniqueness conditions of a morphism between automata.

Lemma 2. There is at most one morphism from a trimmed automaton into an
unambiguous automaton.

Proof. Let G
g−→ H and G

h−→ H with G trimmed and H unambiguous.
Let s be any vertex of G. As G is trimmed, there exists u, v ∈ T ∗ such that

ι
u−→G s

v−→G o. As g and h are morphisms, we have

ι
u−→H g(s) v−→H o and ι

u−→H h(s) v−→H o .

As H is unambiguous, g(s) = h(s). �

For families F of automata, we want to get Boolean subalgebras of

L(F) = { L(G) | G ∈ F }.
Recall that a language family L is a Boolean algebra relative to a language L ∈ L
if for any P,Q ∈ L, P ⊆ L and L − P, P ∩ Q ∈ L.

A first approach is to take an automata family F and a recognizer H ∈ F
to define the set of languages accepted by all possible automata of F which are
reducible to H:

RecF (H) = { L(G) | G ∈ F ∧ G −→ H }.

For any finite subset A ⊂ T , we define the trimmed and deterministic automaton
LoopA with a unique vertex κ and the loops labeled by each letter of A:

LoopA = { κ
a−→ κ | a ∈ A } ∪ {ι κ , o κ}.

For any family F of automata labeled in A, each automaton is reducible to
LoopA hence RecF (LoopA) = L(F). Thus for the family Fin of finite automata,
RecFin(LoopA) is the set Reg(A∗) of regular languages over A which is a Boolean
algebra. This can be extended replacing LoopA by any finite automaton.

Proposition 1. For any finite automaton H, RecFin(H) = {L ⊆ L(H) |
L regular} is a Boolean algebra relative to L(H).

However L(F) is not in general a Boolean algebra. To get Boolean algebras by
recognizability, we introduce simple conditions on the morphisms.

In order to preserve by inverse the determinism, we say that a morphism
G

f−→ H is a deterministic morphism and we write G
f−→d H if

ι s , ι t ∈ G ∧ f(s) = f(t) =⇒ s = t

r
a−→G s ∧ r

a−→G t ∧ f(s) = f(t) =⇒ s = t.

Any morphism from a deterministic automaton is a deterministic morphism:

G
f−→ H ∧ G deterministic =⇒ G

f−→d H. (1)

Any deterministic morphism preserves by inverse determinism and unambi-
guity.

Boolean Algebras by Length Recognizability 173

Lemma 3. Let G
f−→d H with H unambiguous (resp. deterministic).

Then G is unambiguous (resp. deterministic) and

(ι u−→G s ∧ u ∈ L(G) ∧ o f(s) ∈ H) =⇒ o s ∈ G.

Proof. Let G
f−→d H with H unambiguous.

(i) Let us check that G is unambiguous. Let

s0
a1−→G s1 . . . sn−1

an−→G sn and t0
a1−→G t1 . . . tn−1

an−→G tn

with ι s0 , ι t0 , o sn , o tn ∈ G. As f is a morphism,

f(s0)
a1−→H f(s1) . . . f(sn−1)

an−→H f(sn) with ι f(s0) o f(sn) ∈ H

f(t0)
a1−→H f(t1) . . . f(tn−1)

an−→H f(tn) with ι f(t0) , o f(tn) ∈ H.

As H is unambiguous, we have f(s0) = f(t0), . . . , f(sn) = f(tn).
As f is a deterministic morphism, we get si = ti by induction on 0 ≤ i ≤ n.
(ii) Assume that H is deterministic. Let us check that G is deterministic.
Case 1: let ι s , ι t ∈ G.

As f is a morphism, ι f(s) , ι f(t) ∈ H. As H is deterministic, f(s) = f(t).
As f is a deterministic morphism, s = t.

Case 2: let r
a−→G s and r

a−→G t.
As f is a morphism, f(r) a−→G f(s) and f(r) a−→G f(t).
As H is deterministic, f(s) = f(t). As f is a deterministic morphism, s = t.

(iii) Let s0
a1−→G s1. . .

an−→G sn with ι s0 ∈ G, o f(sn) ∈ H and a1. . .an ∈ L(G).
Let us check that o sn ∈ G.
As a1. . .an ∈ L(G), there exists t0

a1−→G t1 . . .
an−→G tn with ι t0 , o tn ∈ G.

Thus f(s0)
a1−→H f(s1) . . .

an−→H f(sn) and f(t0)
a1−→H f(t1) . . .

an−→H f(tn)
with ι f(s0), ι f(t0), o f(sn), o f(tn) ∈ H.
As H is unambiguous, we have f(si) = f(ti) for every 0 ≤ i ≤ n.
As f is deterministic, we get si = ti for every 0 ≤ i ≤ n.
Thus o sn = o tn ∈ G. �

When restricting to deterministic morphisms in RecF (H), we define

dRecF (H) = { L(G) | G ∈ F ∧ G −→d H }.

Let Fdet = {G ∈ F | G deterministic }. By (1) and Lemma 3, we have

dRecF (H) = RecFdet(H) for any H ∈ Fdet .

Thus dRecF (LoopA) = L(Fdet) is not in general a Boolean algebra. We now
specialize the previous notions by vertex length restriction.

174 D. Caucal and C. Rispal

4 Recognizability by Length

To get Boolean algebras, the recognizability for infinite automata has been
used with a structural condition [5]. In the following, we replace it by a
length-preserving condition. When the morphisms are deterministic and under
simple conditions on the automata family, this gives less restrictive Boolean
subalgebras.

A word automaton G is length-deterministic if it satisfies the conditions:

(ι s , ι t ∈ G ∧ |s| = |t|) =⇒ s = t

(r a−→G s ∧ r
a−→G t ∧ |s| = |t|) =⇒ s = t.

Thus the structure (N, 0, <) is described by the length-deterministic
automaton:

| || |||ε

aaa

a
a

ι

More generally any automaton without two vertices of the same length is
length-deterministic. We also say that a morphism G

f−→ H is length-preserving
if |f(u)| = |u| for any u ∈ VG ; we write G

f−→� H and we say that G is length-
reducible to H. Note that

(G −→�d H and H length-deterministic) =⇒ G length-deterministic.

Let us particularize the subfamilies RecF (H) and dRecF (H) by restriction to
length-preserving morphisms: for any automata family F and any H ∈ F , let

�RecF (H) = { L(G) | G ∈ F ∧ G −→� H }
�dRecF (H) = { L(G) | G ∈ F ∧ G −→�d H }.

We have the following inclusions:
dRecF (H)⊇ ⊇

�dRecF (H) RecF (H)
⊇ ⊇

�RecF (H)
As ∅ −→�d H and H −→�d H, we have ∅,L(H) ∈ �dRecF (H). We prove

that �dRecF (H) is a Boolean algebra relative to L(H) for H unambiguous and
F closed under two simple operations that we introduce now, namely the syn-
chronization by length for the closure under intersection and the superposition
by length for the closure under difference.

5 Synchronization by Length

We define a binary parallelization operation ‖ on word automata according to
the vertex length. We show that �RecF (H) is closed under intersection when H
is unambiguous and F is closed under ‖ (cf. Proposition 2). To get the closure

Boolean Algebras by Length Recognizability 175

of �dRecF (H) under intersection, F has to be closed under restriction by acces-
sibility from the initial vertices and co-accessibility from the final vertices (cf.
Proposition 3).

Let ΔN = { (u, v) ∈ N∗×N∗ | |u| = |v| } be the set of couples of
words over N of same length. The length synchronization is the bijection
‖ : ΔN −→ (N×N)∗ defined by

a1. . .an ‖ b1. . .bn = (a1, b1). . .(an, bn) for any n ≥ 0, a1, b1, . . . , an, bn ∈ N.

We also consider the first projection π1 and the second projection π2 as the
surjective mappings (N×N)∗ −→ N∗ defined by π1(u, v) = u and π2(u, v) = v.

Given word automata G and G′ with an injective alphabetic morphism φ
from NG×NG′ into N , we define their length synchronization G ‖φ G′ as the
following word automaton:

G ‖φ G′ = { φ(u ‖ u′) a−→ φ(v ‖ v′) | u
a−→G v ∧ u′ a−→G′ v′ }

∪ { c φ(u ‖ u′) | c u ∈ G ∧ c u′ ∈ G′ }.

Since the coding φ is not essential, it will usually be omitted. Note that

G,G′ deterministic =⇒ G ‖ G′ deterministic
VG, VG′ regular =⇒ VG ‖ VG′ regular.

As an example, consider the following respective two graphs G and G′:

||p|pp q |q ||q
ι ooo aa

b, c b, c b, c

ι ooo b b

a, c a, c a, c

Their length synchronization G ‖ G′ is the following graph:

(p, q) (|, |)2(p, q)(|, |)(p, q)

ι ooo
c c c

The length synchronization gives the closure under intersection.

Lemma 4. For any automata G,G′,H, we have the following properties:

(a) G ‖ G′ π1−→� G and G ‖ G′ π2−→� G′,
(b) L(G ‖ G′) ⊆ L(G) ∩ L(G′),
(c) (G −→� H,G′ −→� H,H unambiguous) =⇒ L(G ‖ G′) = L(G) ∩ L(G′).

Let us give basic properties on the vertices of length synchronized automata.

Lemma 5. Let G
f−→� H and G′ f ′

−→� H. We have

(a) (u ‖ u′ ∈ V(G‖G′)ι
and H length-deterministic) =⇒ f(u) = f ′(u′)

(b) (u ‖ u′ ∈ V(G‖G′)ι,o
and H unambiguous) =⇒ f(u) = f ′(u′).

Let us apply Lemma 4 (c) to the intersection closure by length recognizability.

176 D. Caucal and C. Rispal

Proposition 2. The language family �RecF (H) is closed under intersection
when H is unambiguous and F is closed under ‖.
This proposition is not suitable for the family �dRecF (H) because Lemma 4 (a)
cannot be extended to deterministic reductions: for instance,

G = {ε
a−→ 0 , ε

a−→ 1 , 1 a−→ 10 , ι ε , o 0 , o 10}

is a trimmed and unambiguous automaton but G ‖ G /−→d G since

G ‖ G = { ε
a−→ (0, 0) , ε

a−→ (0, 1) , ε
a−→ (1, 0) , ε

a−→ (1, 1) ,

(1, 1) a−→ (1, 1)(0, 0) , ι ε , o (0, 0) , o (1, 1)(0, 0) }.

Nevertheless (G ‖ G)ι,o −→�d G. This property can be generalized.

Lemma 6. We have (G −→� H ∨ G′ −→� H) =⇒ G ‖ G′ −→� H
(G −→�d H,G′ −→�d H,H unambiguous) =⇒ (G ‖ G′)ι,o −→�d H.

We say that an automata family F is closed under ιo -restriction if Gι,o ∈ F for
any G ∈ F . Let us apply Lemmas 4 and 6.

Proposition 3. The language family �dRecF (H) is closed under intersection
when H is unambiguous and F is closed under ‖ and ιo -restriction.

Now we study the closure of �dRecF (H) under the difference operation.

6 Superposition by Length

We define a binary superposition operation // on word automata according to
vertex lengths. When F is an automata family closed under //, we obtain simple
conditions for �dRecF (H) to be closed under difference (cf. Proposition 5). Then
we obtain two general ways to get �dRecF (H) as a Boolean algebra relative to
L(H) (Theorems 1 and 2).

We say that a word automaton G is ε-free if ε is not a vertex of G: ε �∈ VG.
For L ⊆ N∗, we write u ≤ L if u is prefix of a word of L: ∃ v (uv ∈ L).

Given ε-free automata G and H with an injection φ : NG×NH −→ N and a
non-terminal # ∈ N − NG, we define the length superposition G/φ,# H of G on
H as the following word automaton:

G /φ,# H

= { φ(u‖x)
a−→ φ(v‖y) | u

a−→G v ∧ x
a−→H y }

∪ { ι φ(u‖x) | ι u ∈ G ∧ ι x ∈ H }
∪ { o φ(u‖x) | u ∈ VG ∧ o u �∈ G ∧ o x ∈ H }
∪ { φ(u‖x)

a−→ φ(v#‖y) | x
a−→H y ∧ u ∈ VG ∧

¬ ∃ w (u
a−→G w ∧ |w| = |y|) ∧ v ≤ u #∗ }

∪ { φ(u#|x|−|u|‖x)
a−→ φ(v#‖y) | x

a−→H y ∧ u ≤ VG ∧ |x| > |u| ∧ v ≤ u #∗ }
∪ { o φ(u#|x|−|u|‖x) | o x ∈ H ∧ u ≤ VG ∧ |x| > |u| }
∪ { ι φ(#|x| ‖ x) | ι x ∈ H ∧ ∀ ι u ∈ G, |u| �= |x| }.

Boolean Algebras by Length Recognizability 177

Since the coding φ is not essential, it will usually be omitted. Moreover, we
will assume that # is always a new non-terminal. The definition of G/H is done
in order to follow in parallel and by length the paths of G and H. When a
transition of H can not be length synchronized by G, a transition of G/H leads
to a copy of H by marking the vertices by #. Note that

G,H deterministic =⇒ G/H deterministic.

As an example, we have G
f−→�d H for the following ε-free deterministic

automaton G:

κ
aκ bκ

aaκ baκ

abκ bbκ

oι
caca

b d b d

a b

c d

for the morphism f(uκ) = ||u|κ for any u ∈ {a, b}∗ and for the following automa-
ton H:

|κ ||κ |||κκ

a, b

c, d

a, b

c, d

a, b

c, d
ι

o

We represent below (G/H)ι,o where any vertex u stands for the word
u ‖ ||u|−1κ.

baκ

bκ

κ

aκ

a2κ a# b#

#

#2abκ b2κ

a#2a2# abaκ ab# #3ab2κ ba# b#2babκ b2aκ b2#a3κ b3κa2bκ ba2κ

c

cd

d

a

c d d c d c

cd c

a d b

d

c, d

a, b a, b

c, d

c, d

d da b b

a d b a d b a d b a c d ba, b

a, b

c, d

c, d

c, d c, d

c, d c, d

cc

c c c

c

c, d

ι

o

In order to avoid crossing edges, one can also represent this automaton by
the following ‘Happy Birthday’ picture:

178 D. Caucal and C. Rispal

c, da, b

a

a
b

b

cd a
b

d
c

c d
c

c

c

d d

d

ι

o

c, d

c, dc, d

c, d

c, dc, d

c, da, b

The length superposition gives the closure under difference.

Lemma 7. For any ε-free automata G,H, we have

(a) (G/H) π2−→� H and L(H) − L(G) ⊆ L(G/H).
(b) (G −→� H, (G/H) π2−→d H, H unambiguous)
=⇒ L(G/H) ⊆ L(H) − L(G).

Proof. (i) Let us check that (G/H) π2−→ H. Let s
a−→G/H t.

So s = u ‖ x and t = v ‖ y with x
a−→H y. Thus π2(s) = x

a−→H y = π2(t).
Let c s ∈ G/H. So s = u ‖ x with c x ∈ H. Thus c π2(s) = c x ∈ H.
(ii) Let a1. . .an ∈ L(H) − L(G) for some n ≥ 0 and a1, . . . , an ∈ T .
Let us show that a1. . .an ∈ L(G/H).
There exists x0

a1−→H x1 . . .
an−→H xn with ι x0 , o xn ∈ H.

Let zi = (#|xi|, xi) for any 0 ≤ i ≤ n.
By definition of G/H, z0

a1−→G/H z1 . . .
an−→G/H zn with o zn ∈ G/H.

We distinguish the two complementary cases below.
Case 1: ¬ ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|).
So ι z0 ∈ G/H hence a1. . .an ∈ L(G/H).
Case 2: ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). Let 0 ≤ m ≤ n maximal such that

u0
a1−→G u1 . . .

am−→G um with |u1| = |x1|, . . . , |um| = |xm|.

Thus u0 ‖ x0
a1−→G/H u1 ‖ x1 . . .

am−→G/H um ‖ xm and ι (u0 ‖ x0) ∈ G/H.
Case 2.1: m = n. As a1. . .an �∈ L(G), o un �∈ G.
Thus o(un ‖ xn) ∈ G/H hence a1. . .an ∈ L(G/H).

Boolean Algebras by Length Recognizability 179

Case 2.2: m < n. There exists u′
m+1, . . . , u

′
n such that

um ‖ xm
am+1−→ G/H u′

m+1# ‖ xm+1 . . .
am−→G/H u′

n# ‖ xn .

As o xn ∈ H, we have o (u′
n# ‖ xn) ∈ G/H hence a1. . .an ∈ L(G/H).

(iii) Assume that G
f−→� H and (G/H) π2−→d H with H unambiguous.

Let w ∈ L(G/H). Let us check that w ∈ L(H) − L(G).
By Lemma 1, w ∈ L(H). Assume that w ∈ L(G).
There exists a path u

w−→G v with ι u, o v ∈ G.
Thus f(u) w−→H f(v) with ι f(u) , o f(v) ∈ H. As f is length-preserving,

u ‖ f(u) w−→G ‖ H v ‖ f(v) with ι (u ‖ f(u)) , o (v ‖ f(v)) ∈ G ‖ H.

Thus u ‖ f(u) w−→G/H v ‖ f(v) with ι (u ‖ f(u)) ∈ G/H.
Furthermore o π2(v ‖ f(v)) = o f(v) ∈ H.
By Lemma 3, o (v ‖ f(v)) ∈ G/H. Thus o v �∈ G which is a contradiction.

�

Let us apply Lemma 7 restricted to deterministic automata with Proposition 2.

Proposition 4. The family �dRecF (H) = �RecFdet(H) is closed under differ-
ence when H is deterministic and ε-free, and F is closed under ‖ and /.

In general, the condition (G/H) π2−→d H is necessary in Lemma 7. For instance,
let us consider the following ε-free unambigous automaton H:

⊥ ⊥1 ⊥10⊥0

o oι a aa

Here is (H/H)ι where any vertex u, v represents ⊥u ‖ ⊥v.

1, 1

0, 1 0#, 10

10, 10

ε, ε

0, 0

1, 0

ι

oa

ao

a

a

a

a

Thus H/H is not deterministically reducible into H and L(H/H) = L(H) =
{a, aa}. In order to accept L(H)−L(G) by length superposition when G −→�d H,
we have to restrict to vertices of the trimmed automaton G ‖ H and to vertices
of the copies of H. We define the restricted length superposition G//H by

G//H = (G/H)|P for P = V(G ‖ H)ι,o
∪ {u#n ‖ x | n > 0 ∧ u ≤ VG ∧ x ∈ VH }.

For the previous automaton H, the automaton (H//H)ι is the following:

1, 1 10, 10ε, ε0, 0

ιa a a

We get that L(H//H) = ∅ = L(H) − L(H). Such an example can be gener-
alized.

180 D. Caucal and C. Rispal

Lemma 8. For any ε-free automata G,H such that G −→�d H, we have

(a) H unambiguous =⇒ (G//H) −→�d H
(b) H unambiguous =⇒ L(G//H) ⊆ L(H) − L(G)
(c) G trimmed and H length-deterministic =⇒ L(H)−L(G) ⊆ L(G//H).

Proof. Let us prove implications (b) and (c).

(i) Suppose H is unambiguous. Let us prove that L(G//H) ⊆ L(H) − L(G).
Let w ∈ L(G//H). By Lemma 7 (a) and 1, w ∈ L(H).
Assume that w ∈ L(G). There exists u

w−→G v with ι u , o v ∈ G.
So u ‖ f(u) w−→G//H v ‖ f(v) with ι (u ‖ f(u)) ∈ G//H.
Furthermore o π2(v ‖ f(v)) = o f(v) ∈ H.
By (a) and Lemma 3, o (v ‖ f(v)) ∈ G//H which is a contradiction.
(ii) Suppose that G is trimmed and H is length-deterministic.
Let us prove that L(H) − L(G) ⊆ L(G//H).
Let a1. . .an ∈ L(H) − L(G) for some n ≥ 0 and a1, . . . , an ∈ T .
Let us show that a1. . .an ∈ L(G//H).
There exists x0

a1−→H x1 . . .
an−→H xn with ι x0 , o xn ∈ H.

Let zi = (#|xi|, xi) for any 0 ≤ i ≤ n.
By definition of G//H, z0

a1−→G // H z1 . . .
an−→G // H zn with o zn ∈ G//H.

We distinguish the two complementary cases below.
Case 1: ¬ ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|).

So ι z0 ∈ G//H hence a1. . .an ∈ L(G//H).
Case 2: ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). Let 0 ≤ m ≤ n maximal such that

u0
a1−→G u1 . . .

am−→G um with |u1| = |x1|, . . . , |um| = |xm|.

Thus u0 ‖ x0
a1−→G ‖ H u1 ‖ x1 . . .

am−→G ‖ H um ‖ xm and ι (u0 ‖ x0) ∈ G ‖ H.
As H is length-deterministic and by Lemma 5 (a), f(ui) = id(xi) = xi for any
0 ≤ i ≤ m. As G is trimmed, there exists um −→∗

G u′ with o u′ ∈ G.
Thus (um ‖ xm) = (um ‖ f(um)) −→∗

G ‖ H (u′ ‖ f(u′)) with o (u′ ‖ f(u′)) ∈ G ‖ H.
It follows that um ‖ xm is a vertex of (G ‖ H)ι,o hence a vertex of G//H.
Case 2.1: m = n. As a1. . .an �∈ L(G), o un �∈ G.

Thus o(un ‖ xn) ∈ G//H hence a1. . .an ∈ L(G//H).
Case 2.2: m < n. There exists u′

m+1, . . . , u
′
n such that

um ‖xm
am+1−→ G // H u′

m+1# ‖ xm+1 . . .
am−→G // H u′

n# ‖ xn .

As o xn ∈ H, we have o (u′
n# ‖ xn) ∈ G//H hence a1. . .an ∈ L(G//H). �

Let us apply Lemma 8 with Proposition 3.

Proposition 5. The language family �dRecF (H) is closed under difference
when H is unambiguous, ε-free and length-deterministic, and F is closed under
ιo-restriction, ‖ and //.

Boolean Algebras by Length Recognizability 181

Propositions 3 and 5 give Boolean algebras by length-preserving deterministic
recognizability.

Theorem 1. The language family �dRecF (H) is a Boolean algebra relative to
L(H) for any automata family F closed under the operations ‖ and // and ιo-
restriction, and for any automaton H in F which is unambiguous, ε-free and
length-deterministic.

The closure under ιo-restriction is not satisfied for general automata families
since the closure under accessibility and co-accessibility is required. This can be
avoided by restricting to deterministic automata through Propositions 2 and 4.

Theorem 2. The language family �dRecF (H) = �RecFdet(H) is a Boolean
algebra relative to L(H) for any automata family F closed under the operations
‖ and /, and for any automaton H in F which is deterministic and ε-free.

We apply these two theorems for general automata families.

7 Boolean Algebras of Context-Free Languages

A general way of accepting context-free languages is through suffix automata.
We prove that this automaton family is closed under previous operations to get
Boolean algebras of context-free languages by Theorem 1.
An elementary suffix automaton is of the form: for a ∈ T ∪ {ι, o},
W (u a−→ v) = { wu

a−→ wv | w ∈ W } where W ∈ Reg(N∗) and u, v ∈ N∗.
A suffix automaton is a finite union of elementary suffix automata. The family
Stack of suffix automata defines the family L(Stack) of context-free languages.

For instance, the previous ‘Happy Birthday’ automaton HB is in Stack. In
fact by denoting (κ, κ) by κ, (#, κ) by #κ, and (x, |) by x for any x ∈ {a, b, #},
HB is the union of the following elementary suffix automata:

{a, b}∗(κ a−→ aκ) {a, b}∗(κ b−→ bκ) {ε}(κ ι−→ κ)
{a, b}∗(aκ

c−→ κ) {a, b}∗(bκ d−→ κ) {ε}(# o−→ #)

{a, b}∗(bκ c−→ #κ) {a, b}∗(aκ
d−→ #κ) {a, b}∗#∗(#κ

a,b−→ ##κ)

{a, b}∗(a#κ
c,d−→ #κ) {a, b}∗(b#κ

c,d−→ #κ) {a, b}∗#∗(##κ
c,d−→ #κ)

This automata family is closed under the previous operations.

Lemma 9. The family Stack is closed under ιo-restriction, ‖ , / and //.

Proof. (i) Stack is closed under regular restriction which is distributive over
union and

W (u a−→ v)|P = (W ∩ Pu−1 ∩ Pv−1)(u a−→ v)

where Pu−1 = { v | vu ∈ P } is the right residual of P ⊆ N∗ by u ∈ N∗.
Given G in Stack and a letter 	 in T , the graph { u

�−→ v | u −→∗
G v } is in

Stack (Proposition 3.18 in [3]). So −→∗
G is a rational relation: it is recognized by

a finite transducer. Thus, the set of vertices deriving from or to a regular vertex

182 D. Caucal and C. Rispal

subset remains regular. Hence Stack is closed under ιo-restriction.
(ii) Stack is closed under ‖ since this operation is distributive over union and

W (u a−→ v) ‖ Z(x a−→ y)
= { (wu ‖ zx) a−→ (wv ‖ zy) | w ∈ W ∧ z ∈ Z ∧ (|wu| = |zx| ∧ |wv| = |zy|) }
= { (wu ‖ zx) a−→ (wv ‖ zy) | w ∈ W ∧ z ∈ Z ∧

(|u| − |x| = |z| − |w| = |v| − |y|) }.

So W (u a−→ v) ‖ Z(x b−→ y) = ∅ if a �= b or |u|− |v| �= |x|− |y|, otherwise is
⋃

s∈N |x|−|u|(Ws−1 ‖ Z).
(
(su ‖ x) a−→ (sv ‖ y)

)
for |u| ≤ |x|

⋃
s∈N |u|−|x|(W ‖ Zs−1).

(
(u ‖ sx) a−→ (v ‖ sy)

)
for |u| > |x|.

Furthermore for G,G′ ∈ Stack, IG‖G′ = IG ‖ IG′ remains regular and is
described by the rule (IG ‖ IG′).(ε ι−→ ε). It is the same for OG‖G′ = OG ‖ OG′ .
(iii) Let us show that Stack is closed under /. As G/(H ∪H ′) = G/H ∪ G/H ′,
it remains to consider G/Z(x a−→ y) for G =

⋃n
i=1 Wi(ui

ai−→ vi).
Let us define the language

L =
⋃

{ Wi.ui | 1 ≤ i ≤ n ∧ ai = a ∧ |ui| − |vi| = |x| − |y| }.

Let us check that (VG − L) ‖ Zx is equal to

{ s ‖ zx | s ∈ VG ∧ z ∈ Z ∧ |s| = |zx| ∧ ¬ ∃ t (s a−→G t ∧ |t| = |zy|) }.

Let s ∈ VG and z ∈ Z such that |s| = |zx|. We have to show that

s ∈ L ⇐⇒ ∃ t (s a−→G t ∧ |t| = |zy|).
=⇒: Assume that s ∈ L. There exists 1 ≤ i ≤ n and w ∈ Wi such that

s = wui and ai = a and |ui| − |vi| = |x| − |y|.
Hence s

a−→ wvi with |wvi| = |w| + |ui| + |y| − |x| = |s| + |y| − |x| = |zy|.
⇐=: Suppose there exists t such that s

a−→G t and |t| = |zy|.
So there exists 1 ≤ i ≤ n and w ∈ Wi such that ai = a, s = wui , t = wvi .
As |zx| = |s| and |zy| = |wvi|, we get |wvi| − |y| = |z| = |s| − |x|.
Thus |wvix| = |sy| = |wuiy| i.e. |uiy| = |vix|. So s = wui ∈ L.
Thus the following subgraph of G/H: the set of u‖x

a−→ v#‖y such that

x
a−→H y ∧ u ∈ VG ∧ ¬ ∃w (u a−→G w ∧ |w| = |y|) ∧ v ≤ u #∗

is equal to the following suffix automaton:

(VG − L).(ε a−→ #|y|−|x|) ‖ Z.(x a−→ y) for |x| < |y|
otherwise |x| ≥ |y| and by union on 1 ≤ i ≤ n with W = Wi and u ∈ {ui, vi},
if |u| > |x| − |y| we take the suffix automaton:

(W − Lu−1).(u a−→ v#) ‖ Z.(x a−→ y) for v < u and |u| − |v#| = |x| − |y|

Boolean Algebras by Length Recognizability 183

and if |u| ≤ |x| − |y|, having |u| = |x| we get y = ε and we take the suffix
automaton:

(W − Lu−1)s−1.(su a−→ #) ‖ Z.(x a−→ ε) for any suffix letter s of W.

Similarly denoting by PG the set of prefixes of VG, the subgraph of G/H :

{ u#n‖x
a−→ v#‖y | x

a−→H y ∧ n > 0 ∧ u ≤ VG ∧ v ≤ u #∗ }
is equal to the following suffix automaton:

PG #+.(ε a−→ #|y|−|x|) ‖ Z.(x a−→ y) for |x| ≤ |y|
otherwise |x| > |y| and the automaton is the unions of the following automata:
(
PG #+

)
u−1.(u a−→ #) ‖ Z.(x a−→ y) for u ∈ N∗

G#+ and |u| = |x| − |y| + 1.

Finally, the other subgraphs of G/H are described as before.
With (i), it follows that Stack is also closed under //. �

Let us apply Theorem 1 with Lemma 9.

Proposition 6. The family �dRecStack(H) is a Boolean algebra relative to L(H)
for any unambiguous, ε-free and length-deterministic automaton H.

In particular, we obtain again that �dRecStackdet(H) for H deterministic, is a
relative Boolean algebra [8]. A well-known relative Boolean algebra is the family
�dRecStack(Inp(T−1, T0, T1)) of input-driven languages according to the triple
(T−1, T0, T1) of finite disjoint subsets of T [7].
Adding the loops labeled in T−1 on the initial vertex κ of Inp(T−1, T0, T1), we
get the visibly automaton

Vis(T−1, T0, T1) = Inp(T−1, T0, T1) ∪ { κ
a−→ κ | a ∈ T−1 }

accepting L(Vis(T−1, T0, T1)) = (T−1 ∪ T0 ∪ T1)∗, and the Boolean algebra
�dRecStack(Vis(T−1, T0, T1)) is the family of visibly pushdown languages accord-
ing to (T−1, T0, T1) [1]. Note that we can enhance the visibility of pushdown
automata by taking a mapping ‖ ‖ from a finite subset T‖ ‖ ⊂ T to Z, by taking
|, κ ∈ N , and by defining the following automaton:

Vis‖ ‖ = { |nκ
a−→ |max(0,n+‖a‖) | n ≥ 0 ∧ a ∈ T‖ ‖ } ∪ { ι κ } ∪ { o |nκ | n ≥ 0 }

In particular Vis(T−1, T0, T1) = Vis‖ ‖ for T‖ ‖ = T−1 ∪ T0 ∪ T1 with
‖ a ‖ = i for any a ∈ Ti and i ∈ {−1, 0, 1}. For any ‖ ‖, L(Vis‖ ‖) = T ∗

‖ ‖ and
�dRecStack(Vis‖ ‖) = �RecStackdet(Vis‖ ‖) is a Boolean algebra.
We further increase the pushdown visibility by taking |, †, κ ∈ N and the
recognizer

2Vis‖ ‖ = { |nκ
a−→ |n+‖a‖ | n ∈ Z ∧ a ∈ T‖ ‖ } ∪ { ι κ } ∪ { o |nκ | n ∈ Z }

where |−n = †n for any n > 0. Thus �dRecStack(Vis‖ ‖) is still a Boolean algebra.
Note that Proposition 6 also applies to non-deterministic recognizers like the
unambiguous automaton Un (defined at the end of Sect. 2) which is also ε-free
and length-deterministic.
Proposition 6 may also be restricted to the family of counter automata.

184 D. Caucal and C. Rispal

8 Boolean Algebras of Context-Sensitive Languages

A simple way to define context-sensitive languages is through the synchronized
relations of bounded length difference.

An elementary bounded synchronized automaton is an automaton of the form:

R(u a−→ v) = { xu
a−→ yv | (x, y) ∈ R } for R ∈ Reg((N×N)∗) and u, v ∈ N∗

where a ∈ T ∪ {ι, o}. A bounded synchronized automaton is a finite union of ele-
mentary bounded synchonized automata. The family Sync of bounded synchro-
nized automata accepts the family L(Sync) of context-sensitive languages [9].

Similarly to the proof of Lemma 9, we get that Sync is closed under ‖ and /.
However, Sync is not closed under ιo-restriction, nor closed under // because
the set of vertices accessible from a given vertex for a bounded synchronized
automaton is not necessarily regular (also not effective). Nevertheless and by
restricting to deterministic recognizers, we can apply Theorem 2.

Proposition 7. The family �dRecSync(H) = �RecSyncdet(H) is a Boolean alge-
bra relative to L(H) for any deterministic and ε-free automaton H.

Thus �dRecSync(Inp(T−1, T0, T1)) defines the relative Boolean algebra of bounded
synchronized input-driven languages w.r.t. to (T−1, T0, T1). Likewise we have
the Boolean algebra �dRecSync(Vis‖ ‖) of bounded synchronized visibly languages
w.r.t. ‖ ‖. Theorem 2 can be applied to many other automata families, such as
the family of vector addition systems (or Petri nets) with regular contexts.

Deterministic length recognizability allows to obtain Boolean algebras using
automata families and recognizers. We have applied it to suffix automata and
bounded synchronized automata but one can use it on any automata family
closed under length synchronization, length superposition and trimmed restric-
tion. For instance, it is suitable for families of automata defined by sequen-
tiality and parallelism operations such as the families studied among others by
Bernhard Steffen [2].

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) 36th
STOC ACM Proceedings, pp. 202–211 (2004)

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra, pp. 545–623 (2001)

3. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0 128

4. Caucal, D.: Boolean algebras of unambiguous context-free languages. In: Hariha-
ran, R., Mukund, M., Vinay, V. (eds.) 28th FSTTCS, Dagstuhl Research Server
(2008)

5. Caucal, D., Rispal, C.: Recognizability for automata. In: Hoshi, M., Seki, S. (eds.)
DLT 2018. LNCS, vol. 11088, pp. 206–218. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98654-8 17

https://doi.org/10.1007/3-540-61440-0_128
https://doi.org/10.1007/978-3-319-98654-8_17
https://doi.org/10.1007/978-3-319-98654-8_17

Boolean Algebras by Length Recognizability 185

6. Eilenberg, S.: Algèbre catégorique et théorie des automates, Institut H. Poincaré
(1967). and Automata, languages and machines, Vol. A, Academic Press (1974)

7. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

8. Nowotka, D., Srba, J.: Height-Deterministic Pushdown Automata. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74456-6 13

9. Rispal, C.: The synchronized graphs trace the context-sensitive languages. Electr.
Notes Theor. Comput. Sci. 68(6), 55–70 (2002)

10. Thomas, W.: Uniform and nonuniform recognizability. Theoretical Computer Sci-
ence 292, 299–316 (2003)

https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/978-3-540-74456-6_13

Reflections on Bernhard Steffen’s Physics
of Software Tools

Hubert Garavel(B) and Radu Mateescu

Univ. Grenoble Alpes, Inria, Cnrs, Lig, 38000 Grenoble, France
{hubert.garavel,radu.mateescu}@inria.fr

Abstract. Many software tools have been developed to implement the
concepts of formal methods, sometimes with great success, but also with
an impressive tool mortality and an apparent dispersion of efforts. There
has been little analysis so far of such tool development as a whole, in order
to make it more coherent, efficient, and useful to the society. Recently,
however, Bernhard Steffen published a paper entitled “The Physics of
Software Tools: SWOT Analysis and Vision” that precisely proposes such
a global vision. We highlight the key ideas of this paper and review them
in light of our own experience in designing and implementing the CADP
toolbox for the specification and analysis of concurrent systems.

1 Introduction

The present article was written in honour of Bernhard Steffen and included in
a collective Festschrift book offered to him at the occasion of his 60th birthday,
in addition to another Festschrift article [18], jointly dedicated to Susanne Graf
and Bernhard Steffen.

In a recent position statement entitled The Physics of Software Tools: SWOT
Analysis and Vision [49], Bernhard Steffen analyzes the current situation of soft-
ware tools implementing the concepts of formal methods and suggests directions
for organizing the development of these tools in a more coherent and efficient
way. This analysis is rooted in Bernhard Steffen’s double experience in developing
software tools (including ETI [7,50], jETI [35], LearnLib [24,42,44] and CINCO
[43]) and managing the research community in formal methods (notably with the
launch of the TACAS conference1, of the STTT journal2, and the RERS chal-
lenge3). The position statement [49] is written in a lively style, enriched with
insightful anecdotes. Despite its seemingly simple form, it puts forward many
diverse ideas that freely spring from all parts of the text.

We believe that global debates on the present and future of formal methods
are essential, and Bernhard Steffen’s position statement is a most welcome con-
tribution in this respect. The present article exposes the key ideas of this position
1 http://tacas.info.
2 http://sttt.cs.uni-dortmund.de.
3 http://rers-challenge.org.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 186–207, 2019.
https://doi.org/10.1007/978-3-030-22348-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_12&domain=pdf
http://tacas.info
http://sttt.cs.uni-dortmund.de
http://rers-challenge.org
https://doi.org/10.1007/978-3-030-22348-9_12

Reflections on Bernhard Steffen’s Physics of Software Tools 187

statement in an orderly way, each idea being first illustrated with citations from
[49] (written in italics), then commented and discussed by us, with examples
borrowed from process calculi and model checking, based on our own experience
in designing and implementing the CADP toolbox [17] for the specification and
analysis of concurrent systems.

The present article is organized as follows. Section 2 gives an overview of the
current status of software tools that implement the concepts of formal methods
and summarizes the main difficulties often faced by the users of these tools.
Section 3 analyzes some human factors that can be seen as subjective causes of
these difficulties. Section 4 proposes remedies and action points that could be
taken, both at the individual level of each tool developer and at the collective
level of the research community as a whole, to improve the situation. Finally,
Sect. 5 makes concluding remarks.

2 Current status and difficulties

In [49], the current landscape of software tools is characterized by eight ideas.

Definition of formal tools.

“We focus our attention here on formal methods-based software tools like
as they are addressed by STTT. — the software tools that are meant to help
controlling the way software is developed — a means for supporting the design,
construction, and analysis of (large-scale) systems”

The analysis of Bernhard Steffen does not consider all kinds of software on
Earth but, more concretely, the particular class of software tools intended to
assist the design of software and software-intensive systems. As examples of such
tools, he cites static analyzers, model checkers, theorem provers, SAT and SMT
solvers, automata learning tools, model-based test generation tools, etc. Such
tools are also referred to as “formal-methods based tools”, but specific terminol-
ogy (e.g., “software development tools”, “meta software tools”, or “higher-order
software”) would be possible. In the remainder of this article, we will call “formal
tools” those software tools addressed by Bernhard Steffen, even if some of them
implement learning techniques, which are not fully predictable from a formal
point of view.

Formal tools are successful.

“Formal methods-based tools had a lot of success stories in recent years. —
The success of these tools is due to many factors, whereby Moore’s law can
be regarded as a general enabler. — Many solutions are impressive for very
particular cases, and we have seen many publications about such success stories.”

As examples of formal methods for which successful tools have been devel-
oped, Bernhard Steffen mentions: static analysis, symbolic execution, model
checking, statistical model checking, SAT and SMT solvers, systems synthesis,
automata learning, and model-based testing. A complementary list can be found
in [14, Sect. 1.3.4], which provides a list of 30 success stories in formal methods,

188 H. Garavel and R. Mateescu

one per year between 1982 and 2011. Certain formal tools are indeed successful,
considering, e.g., the list of 190+ case studies tackled using the CADP toolbox4.

However, the global picture is more contrasted, as the success of formal meth-
ods in some application domains does not mean a uniform acceptance of these
methods in all branches of computer science and software design activities. One
starts seeing mathematical theories that are formally checked using proof assis-
tants, but, on the other hand, most of the distributed algorithms published so far
are neither formally specified nor verified beyond simple testing. A few compa-
nies use formal methods when it is required by safety regulations (e.g., avionics,
railways, etc.) or when design errors not caught by conventional validation are
too expensive to patch after release (e.g., hardware design), but most companies
do not use formal methods, certifying the design process rather than the final
product and relying instead on agile methodologies and testing techniques that
give little assurance as the complexity of software increases.

As a consequence, one faces a massive problem with software quality,
resulting in abnormally high numbers of failures and security breaches. Although
end-users might develop tolerance for quality degradation, the ever-growing
dependency of modern societies on improper software is worrying. It is fair to
admit that, so far, formal methods did not handle this issue satisfactorily.

Formal tools are complex.

“The complexity of software systems, even though man made, often crosses
the border of what can be fully controlled and reasoned about via mathematical
reasoning. — These tools have become so complex and so special that they are
no longer just a means for supporting the development of reliable systems, but
an object of study in their own right. — Software tools [...] become so complex
that each of them turns into a reality of their own, with its own ‘physics’, that
needs to be studied in its own right. — The complexity of the individual tools has
grown so enormously that tool developers risk to devote their entire intuition to
their specific ‘tool world’.”

Software projects are among the most involved creations of human mind.
This is especially true of formal tools, which, even though they do not have a
huge volume of code5, contain highly complex algorithms that have been difficult
to design and are still difficult to understand and make evolve. Such difficulty
often arises from the fact that these tools try to provide partial solutions to
generally undecidable problems, or implement computationally-expensive algo-
rithms as efficiently as possible to make them affordable in practice. Recently,
a new dimension of complexity has appeared with the introduction of learn-
ing techniques, the correctness of which is validated empirically but difficult to
demonstrate formally (see, e.g., [45]).

The traditional concerns about the so-called “software crisis” are still there,
and even more relevant for formal tools. The development of usable tools
required the efforts of many high-profile scientists, continuously working for

4 http://cadp.inria.fr/case-studies.
5 We believe that most formal tools are less than one million lines of code.

http://cadp.inria.fr/case-studies

Reflections on Bernhard Steffen’s Physics of Software Tools 189

several decades. For instance, the early steps of theorem proving can be traced
back to the 1960s (see, e.g., [32]), and the first verification tools based on state-
space exploration for concurrent systems appeared in the 1970s [52] [46]. As
time passed, the amount of knowledge accumulated in mainstream formal tools
has grown so largely that it would be difficult, today, to design a new theo-
rem prover or model checker from scratch. We thus agree with Bernhard Steffen
that such tools are worth being studied in their own right: they are a valuable
technical heritage that should be preserved and studied (as carefully as, e.g.,
operating systems and network protocols) in order to remain available for the
next generations.

Formal tools are fragmented.

“The landscape of software tools considered here is extremely heterogeneous
and fragmented. — More and more impressive individual tool landscapes have
evolved, exploiting parallelization, sometimes even the structure of GPUs, while
also comprising numerous dedicated heuristics either directly implemented in
their special individual algorithms or imported through powerful SAT and SMT
solvers, and more recently the integration of machine-learning technology. Thus
the situation became even more diverse.”

Heterogeneity and fragmentation are indeed present and have multiple
causes. At the top level is the existence of three main approaches to verifica-
tion: static analysis, theorem proving, and model checking, which rely upon very
different principles, although they may overlap in concrete applications. Then,
each of these main approaches is itself fragmented into many, often incompat-
ible variants. Considering only, as an example, the landscape of model check-
ers for concurrent systems, heterogeneity comes from the modelling formalisms
(e.g., message-passing vs shared-memory models, automata vs Petri nets vs pro-
cess calculi, timed vs untimed, etc.), from the logical property formalisms (e.g.,
state-based vs action-based models, linear-time vs branching-time properties,
temporal logics vs µ-calculus, etc.), from the verification algorithms used (e.g.,
explicit-state vs symbolic model checking), and from the implementation tech-
niques used (e.g., C/C++ vs Java vs OCaml, Unix vs Windows, mono-core vs
multi-cores vs clusters vs GPUs, etc.). An individual tool developer or even
a large research team cannot feasibly explore all these aspects simultaneously:
choices must be made that select certain aspects and restrict others, leading
to “specialized” formal tools that may indeed not interoperate well with other
tools designed to address similar or related problems. Another impressive exam-
ple of fragmentation is the large collection of tools dealing with quantitative
verification of automata-based models: for this setting, known as the “quantita-
tive automata zoo” [23], not less than 74 formal tools have been developed in
academia6.

Formal tools are difficult to learn.

“The adoption of tools is very cumbersome. Thus users, having become
acquainted with one tool, are typically reluctant to change, [...] a phenomenon
6 http://cadp.inria.fr/resources/zoo.

http://cadp.inria.fr/resources/zoo

190 H. Garavel and R. Mateescu

hindering innovation. — Many formal methods tools are very hard to use and
therefore scare users away, and only very few users master more than one of the
more complex tools.”

There are several reasons hindering the adoption of formal tools. Perhaps, the
main reason is that these tools rely upon complex mathematical theories that, in
many cases, must be assimilated by users to fully exploit the tool capabilities [11].
A second reason is that, in the fragmented landscape of formal tools, there is
almost no standard language for describing models and properties: each tool
has its own input languages, different from those of other tools providing similar
functionality. A third reason is that, more often than not, these languages closely
reflect the particular algorithms implemented in the tool, the limitations of these
algorithms, and the personal preferences of tool developers; for many users, these
languages are felt as intricate notations, too far from the classical background of
computer programmers and system designers. Finally, one should also mention
tools implementing a wealth of algorithms on equal footing, forcing users to learn
and try dozens of options to determine which ones are useful for solving a given
problem.

The applicability of formal tools is hard to estimate.

“It is often difficult to judge whether a certain tool would fit a given purpose,
even if it is specifically designed for the intended programming language. Judging
how easy it would be to adapt a certain tool to some purpose is typically even
much more difficult due to feature interaction effects: How does a certain new
kind of analysis interfere with the current analyses, optimizations, representa-
tions, approximations, and transformations? This question is so difficult that
often even the core developers of a tool are unable to answer it or even radically
fail in assessing their tool’s profile. — Prospective users therefore have a hard
time to orient themselves in the current tool landscape, and even experts typically
only have very partial knowledge.”

The aforementioned fragmentation, which makes the tool landscape vast and
densely populated, is the first reason for the situation accurately described by
Bernhard Steffen. Another cause is the lack of standardized criteria for charac-
terizing the functionality and scope of formal tools. In the 80s and early 90s,
there was a naive expectation that formal methods would spread everywhere
and solve most issues of software development; practitioners then discovered
that the applicability of formal methods was much more limited than stated by
their proponents, and this disillusion blocked for years the dissemination of for-
mal methods in many industries. Today, many formal tools come with a catalog
of demo examples; however, such catalogs are often limited to a handful of rel-
atively small examples that have been successfully tackled. To better determine
the applicability of formal tools, one would need larger collections of industrial-
size models in open source, together with usage metadata, such as the time and
cost spent in these models; one would also need reports about problems and
failures using particular tools. Because such information is scarcely available,
the prevailing way to know about the applicability of a formal tool is to acquire

Reflections on Bernhard Steffen’s Physics of Software Tools 191

self-experience with this tool, which is long, expensive, and not necessarily com-
patible with most industrial agendas.

The performance of formal tools is hard to predict.

“The true effects of combining methodologies as diverse as classical static
analysis, model checking, SAT and SMT solving, and dynamic methods like sim-
ulation, runtime verification, testing, and learning, with their dedicated means of
optimizations in terms of, e.g., BDD coding, parallelization, and various forms
of abstraction and reduction, are very dependent on the particular tools and typ-
ically hardly predictable. — The BDD encoding of Boolean functions [...] showed
impressive practical results, but may also perform extremely poorly, and we are
still far from understanding when it performs well. Imagine in comparison how
difficult it must be to predict the performance of today’s software tools.”

The performance of formal tools is also crucial for their applicability, as a
formal tool that is theoretically sound and suitable for certain problems may be
useless if it delivers poor performance in practice. The difficulty to predict the
performance of formal tools arises, on the one hand, from the lack of predictabil-
ity of the basic engines (Bernhard Steffen mentions BDDs, but the same holds
for SAT, SMT, BES7, or PBES8 solvers), and, on the other hand, from the lack
of compositionality (there are few theoretical results enabling one to infer the
performance of a composed system from that of its components). Also, the qual-
ity of tool implementation should also be taken into account, as programming
skills sometimes make a significant difference.

Formal tools are hard to analyze objectively.

“Peculiarities of tools may have a major impact on the evaluation process,
and [...] tool-based observations may well be dominated by special implementation
effects. — It is sometimes hard to distinguish which of the presented results about
the applied technology can be generalized, and which are merely a view through
the glasses of a particular implementation. — Experimental investigations [...]
provide interesting indications about the applied technology, but typically fail to
provide sufficient evidence to transfer results to other settings and tools. More-
over, implementation-specific details often dominate the observed effects which
thereby become invalid for drawing conceptual conclusions. — Working with a
particular such analysis tool forces one to live in its dedicated artificial world
with its own ‘physics’. The tools’ ecosystems may impose quite a strong bias
when trying to observe the power of analysis technologies via case studies, even
to the point that the observed effects are dominated by tool-imposed implementa-
tion details. Do [the observations] reflect the object of study, or are they imposed
by the particularities of the used tool? Like in the case of physics, this may
make the difference between a cause to rethink the entire conceptual frame-
work (i.e., change the established laws), or just a hint towards a side-effect of a

7 Boolean equation systems [33].
8 Parameterized Boolean equation systems [22,38].

192 H. Garavel and R. Mateescu

particular implementation detail of (or even an error in) the tool (i.e., a flaw in
the experimental setup).”.

The concern that experimental observations may be biased by tool-specific
aspects is a driving idea expressed many times in Bernhard Steffen’s paper. Three
potential risks are pointed out: over-interpretation of the obtained results, cor-
ruption of scientific knowledge (“biases [...] may enter corresponding publications
without being noticed”), and misleading impact on scientists (“[it] may end up
steering research agendas in wrong directions”).

Although such dangers exist, we believe that they should not be exaggerated,
as the well-established scientific approach provides effective countermeasures. It
is indeed true that a poor programmer may disqualify a valuable algorithm for
some time, but if the algorithm sounds interesting, other scientists will try to
implement it and come up with different experimental results. Also, publications
containing invalid observations or conclusions have always been part of science,
but sooner or later, if the topic is still of interest, they are detected and corrected
(see, e.g., [21] vs [51] on the comparative assessment of term rewrite engines).

Finally, we observe that individual and collective research agendas are not
exclusively based on experimental results published in scientific literature; many
other factors play a role: public funding policies, marketing plans from pri-
vate companies, research agendas of other research institutions and countries,
etc. There is also an intellectual inertia factor: conformance with mainstream
approaches (usually, those with the largest number of publications) and adher-
ence to influential scientists (skillfully mixing objective facts and subjective
preferences) often play a greater role than the cold examination of experimen-
tal results. We give here three examples, all taken from the model-checking
world: (i) state-based approaches are still predominating, although action-based
approaches have better theoretical properties (abstraction, composition, etc.)
and are easier to store and exchange as computer files; (ii) linear-time temporal
logics, despite the exponential complexity of their algorithms, are often preferred
to branching-time temporal logics, whose algorithms have linear complexity;
(iii) symbolic model checking was claimed to definitely outperform explicit-state
model checking, but recent experiments [29, Sect. 4.3] show that it is not the
case.

3 Analysis of human factors

Having discussed the objective causes for the complexity and fragmentation of
formal tools, Bernhard Steffen also considers subjective causes related to human
behaviour, especially two of them, which we now review in the present section.

Academia seeks for novelty rather than consolidation.

“People prefer to strive for something new and, in contrast to, e.g., physics,
there is no established culture of control and consolidation.”

This statement can be understood in two ways. Bernhard Steffen issued it to
suggest that, in the formal tool community, scientists do not spend enough effort

Reflections on Bernhard Steffen’s Physics of Software Tools 193

to refute misconceptions resulting from a wrong interpretation of observations.
This would require independent scientists to redo published experiments, care-
fully analyzing all assumptions and experimental conditions to make sure that
the stated conclusions are valid. It is true that, usually, experimental results con-
cerning formal tools are heavily scrutinized before publication, and very lightly
after. The main reason why computer science differs from physics in this respect
is that formal tools are living artifacts: by the time one wants to redo the exper-
iments, the tools may have been abandoned9, replaced with newer versions, or
turned into commercial products.

But the above statement about novelty vs consolidation can also be given,
we believe, a more general meaning. In the formal tool community, the stan-
dard practice is, given a new idea, to develop a tool prototype, to experiment
it on a few well-chosen case studies, publish the results, and move on to the
next challenging idea. Quite often, many concrete problems are left unsolved in
this approach, and the tool prototypes quickly developed for proof-of-concept
experiments are never maintained any further. As Bernhard Steffen points out,
the need for consolidated tools that could be reused by others does not outweigh
the fascination for novel ideas, driven by the industrial challenges of the digital
revolution, whose ultimate goal appears to be the design, for each human activ-
ity, of a computer system capable of performing this activity autonomously. One
thus observes a growing gap between, on the one hand, increasingly complex
theories and formalisms combining paradigms such as concurrency, mobility,
cyberphysics, uncertainty, autonomy, learning, etc. and, on the other hand, a
fragmented landscape of formal tools that only address one or a few of these
paradigms, only in a partial manner and with major scalability issues. Conse-
quently, a second gap is expanding between, on the one hand, the increasing
ambition and complexity of industrial systems and, on the other hand, the capa-
bilities of formal tools to analyze such systems. A pessimistic account of this
discrepancy can be found in [48], with the worrying prospect that autonomous
systems require enginers to throw away all established guidelines for produc-
ing safe and secure computing systems, announcing an era where potentially
dangerous machines will be out of control. The role of ethics is often to curb
opportunities made possible by science; in this case, ethics will face opportuni-
ties that science, at present, cannot master.

Tool developers focus too much on their own tools.

“The main threat to establishing a global tool experimentation and exchange
platform is individualism. Individual developers or small teams currently working
on tools typically integrate whatever functionality they consider interesting into
their own dedicated tool landscape rather than investing into a global infrastruc-
ture aiming at making these functionalities available to everybody. This seems
easier, and it currently also generates higher rewards. Experimental results con-
cerning a certain setting or tool are welcome in many conferences, and optimizing

9 See, e.g., http://cadp.inria.fr/resources/zoo or http://rewriting.loria.fr/systems.
html to observe the impressive mortality of formal tools.

http://cadp.inria.fr/resources/zoo
http://rewriting.loria.fr/systems.html
http://rewriting.loria.fr/systems.html

194 H. Garavel and R. Mateescu

one’s own tool for a certain benchmark is a completely different matter than sys-
tematically establishing conceptually new approaches with a stable and predictive
performance profile.”

To a large extent, these observations are correct. As mentioned already, the
landscape of formal tools is fragmented. If we omit small prototypes with no
follow-through, the remaining larger, mature tools tend to organize themselves
as complete software stacks or platforms, with the goal of providing all the
functionalities that end users can expect. This often leads to the well-known
“silo effect” of software engineering, making it difficult to combine and compare
the functionalities of separate tools.

Apart from the technical reasons for fragmentation exposed in Sect. 2, Bern-
hard Steffen points out the role of human factors: individualism, academic evalu-
ation criteria, and also the “not-developed-here syndrome” [49, Sect. 5]. It seems
indeed that certain decisions with no objective justification can only be explained
by such subjective factors. For instance, in the early 90s, the concurrency theory
community certainly missed an historical opportunity by not widely adopting
the international standard LOTOS [25], continuing instead to spend resources
on older languages (e.g., CCS and CSP) or even the definition of new ones (e.g.,
PSF and µCRL), and undertaking the development of separate model checkers
for all these languages10; such dispersion of efforts on several languages that
were similar to, but incompatible with LOTOS prevented this community from
reaching the critical mass required for a large industrial acceptance.

There are cases, however, where a duplication of efforts is not a waste of
resources, in particular when several tools, developed independently and offering
comparable functionalities, share the same input language. Examples are BDD
packages, SAT solvers, model checkers for Petri nets, etc. In such cases, the
competition between different tool developers leads to faster progress, and the
redundancy provided by independent implementations can be useful for high-
assurance certification purposes.

4 Actions and remedies

Having described the current situation of formal tools and its causes, Bernhard
Steffen suggests directions for improvement. These can be divided into individual
actions, which should locally guide the development of each formal tool, and
collective actions, which should be globally undertaken by the community of
formal tool developers and users.

10 Scientific literature sometimes reflects, many years later, such rivalries from the past:
for instance, the Handbook of Process Algebra [3] cites LOTOS only two times in
1356 pages, and, in the Handbook of Model Checking, the 47-page chapter on process
algebra [9] does not mention LOTOS nor the CADP tools, although these are the
historically first and most widely used model checkers for process algebra.

Reflections on Bernhard Steffen’s Physics of Software Tools 195

4.1 Individual actions

Tool developers are the main stakeholders who can improve the current situation.
To this aim, Bernhard Steffen lists three expectations that developers should
fulfill.

Formal tools should be modular.

“Even better would be the possibility to access implemented tool functionality
more selectively — bundling (tool) functionality so that it can easily be used by
others — [and] openly exchanged, thus tearing down the boundaries between the
individual tools — [allowing] cross-tool combinations of individual tool function-
alities. — The need for a more systematic approach to establish the profiles of
tools and methods is obvious. — Even the core developers of a tool [...] radically
fail in assessing their tool’s profile.”

In order to avoid the aforementioned “silo effect”, one should indeed pro-
mote the design of modular tools, divided into software components that can be
reused separately. These components should have clean interfaces and their func-
tionalities should be properly documented. Bernhard Steffen does not mention
the need for common formats or converters between formats, but this is implic-
itly required for information exchange and tool interoperability. Notice also that
open source and modular design are two orthogonal aspects, the former never
being a substitute for the latter.

We all the more agree with Bernhard Steffen that, since its origins, our
CADP model checking toolbox has been carefully architected around generic
software components providing distinct, well-defined functionalities with docu-
mented interfaces for external use. Such building blocks have proven successful
for the rapid construction of new tools: at present, not less than 94 formal tools11

have been developed by reusing the software components of CADP. For exam-
ple, the most recent of these tools is TESTOR [37], which generates conformance
tests on the fly and is almost entirely built using three generic technologies of
CADP: the BCG environment for on-disk storage of labelled transition systems,
the OPEN/CÆSAR environment for on-the-fly exploration of labelled transition
systems, and the CÆSAR SOLVE library for solving Boolean equation systems.

Formal tools should be correct.

“Software tool providers are responsible to establish technology that is trusted.
— Due to the very high complexity of today’s tools, [errors] are deemed to be
quite frequent. In fact, it is still quite rare that validation tools are themselves
developed with the technology they are intended to provide.”

It is a fact that formal tools may contain errors. In the case of the CADP
toolbox, we fix defects in almost every monthly release. Many errors are minor,
but some can be severe and corrupt the verification results12. To avoid such
11 http://cadp.inria.fr/software.
12 See, e.g., the TLA+ model checker bug found in 2018, which could prevent reach-

able state spaces from being entirely explored (http://lamport.azurewebsites.net/
tla/toolbox-1-5-5.html).

http://cadp.inria.fr/software
http://lamport.azurewebsites.net/tla/toolbox-1-5-5.html
http://lamport.azurewebsites.net/tla/toolbox-1-5-5.html

196 H. Garavel and R. Mateescu

issues, formal tools should be properly designed according to software engineer-
ing principles, extensively validated, and regularly maintained.

The traditional validation approach consists in thorough testing. This app-
roach, which is used for the CADP toolbox, requires one to build large collections
of test cases, a problem that will be further addressed in Sect. 4.2. Such collec-
tions can be used for non-regression testing, for cross-checking different tools,
and for perfoming sanity checks (e.g., checking that any labelled transition sys-
tem is bisimilar to itself, etc.). Software competitions (see Sect. 4.2 below) are
also effective in detecting bugs in formal tools. In any case, the potential pres-
ence of errors should not be an excuse to avoid formal tools, because the more
they are used, the more errors are detected and fixed.

There exist more ambitious approaches, in which formal tools (e.g., a static
analyzer [27] or a Lustre compiler [5]) are themselves formally verified. On the
long run, this will certainly become the standard approach; in the meantime,
such approaches, because they demand time and effort, can only be applied to
formal tools that are already mature and stable.

Bernhard Steffen goes one step further by suggesting that formal tools could
be “themselves developed with the technology they are intended to provide”.
Maybe this is going too far: there is no reason, for instance, why a BDD package
should be verified using itself, whereas proof techniques for pointer manipulation
algorithms are clearly more appropriate. However, we can mention, in the case
of CADP, three examples that sustain Bernhard Steffen’s intuition about “cir-
cular use” of formal tools: (i) The CÆSAR.ADT compiler [12], which translates
LOTOS abstract data types to C, is used to bootstrap itself and to build the
XTL model checker [39], both tools being mostly written using LOTOS abstract
data types; (ii) Similarly, the LNT language [19], as implemented by the TRA-
IAN compiler, serves as a basis for implementing the LNT2LOTOS translator
for LNT, as well as a dozen of compilers/translators for other languages [16];
(iii) The DLC compiler [10], which translates LNT concurrent descriptions with
multiway rendezvous [20] into distributed POSIX processes communicating using
TCP sockets, enables formal validation, as its inputs and outputs, both expressed
in LNT, can be compared against each other modulo safety equivalence.

Formal tools should be user-friendly.

“Software tool providers are responsible to establish technology that is trusted
and accepted, and eventually widely used. This does not only comprise correct-
ness but also usability of the tools, a feature often underestimated and therefore
a weakness of many tools. — Many tools offer so many options that users have
a hard time dealing with the standard features. — The ultimate success of these
technologies is when they turn into commodity and are used without the users
actually being aware of them. — Many techniques are embedded into develop-
ment environments (IDEs), typically in such a way that users do not really
recognize them — [and get] fast feedback that can be understood without knowing
the underlying technology.”

Reflections on Bernhard Steffen’s Physics of Software Tools 197

We already echoed Bernhard Steffen’s concern that formal tools are hard
to learn (see Sect. 2 above). This problem can be addressed in, at least, three
complementary ways.

A first way, mentioned by Bernhard Steffen, consists in making the use of
formal techniques transparent, by hiding their complexity from the end users.
This is the old concept of “lightweight” [26], “invisible” or “disappearing” [47]
formal methods. Static analysis, for instance, is a particularly successful tech-
nique in this respect. Unfortunately, such simplified approaches cannot cover all
user needs.

A second way, also evoked by Bernhard Steffen, consists in reducing the
excessive number of options offered by some tools. A wealth of options can be
useful to expert users for finely tuning the performance of formal analyses, by
exploiting the particularities of the problem under investigation. The aforemen-
tioned recommendation of making formal tools modular also contributes to the
growth in the number of components, and of options for these components. For
most users, however, the existence of many options is a problem in itself, possi-
bly leading to a combinatorial explosion in the number of option combinations.
To enhance the user-friendliness of formal tools, it is thus important to reduce
the set of options by systematically applying Occam’s razor principle13, and to
properly identify the default options, which should be the most effective ones
on the largest number of problems. The quest for simplicity must also concern
graphical user interfaces and high-level scripting languages (such as the SVL
language [15] of CADP), which abstract away many low-level details from the
users.

A third way consists in curbing the complexity of the languages used by
formal tools, e.g., the languages used to describe the system under study, to
express the properties to be verified, to specify strategies and tactics for achiev-
ing formal proofs, etc. Most of these languages have a steep learning curve and
tricky semantic details that require time to be fully understood. We observe two
long-term trends to address this problem: (i) There are attempts to get rid of such
“abstract” languages, by replacing them with the more “concrete” languages
actually used by implementers; this is the case, for instance, of static analysis and
software model checking, which bypass high-level formal specification languages
to directly operate on lower-level, possibly ambiguous, programming languages;
(ii) Alternative approaches, still keeping formal specification languages, strive
to make them as user-friendly as possible, especially by replacing mathemati-
cal formalism with simpler notations more acceptable by industry engineers; for
instance, in the realm of model checking, “pattern libraries”14 provide catalogs
of usual properties, thus alleviating the use of full-fledge temporal logic formu-
las; similarly, the LNT language [19], which supersedes old-fashioned process
calculi such as ACP, CCS, and CSP [9], has an intuitive syntax inspired from
functional- and imperative-programming languages that makes this language

13 This makes it also easier to check the correctness of formal tools.
14 See, e.g., http://patterns.projects.cs.ksu.edu, http://cadp.inria.fr/resources/

evaluator/actl.html, and http://cadp.inria.fr/resources/evaluator/rafmc.html.

http://patterns.projects.cs.ksu.edu
http://cadp.inria.fr/resources/evaluator/actl.html
http://cadp.inria.fr/resources/evaluator/actl.html
http://cadp.inria.fr/resources/evaluator/rafmc.html

198 H. Garavel and R. Mateescu

significantly easier [40] and accessible to engineers without formal methods
background [6].

4.2 Collective actions

Individual actions, although desirable, cannot be sufficient, and Bernhard Steffen
also considers collective actions to be undertaken, at a larger level, by the sci-
entific community interested in formal tools, encompassing both tool developers
and tool users. We hereafter review these collective actions, whose main goal is to
fight the fragmentation issue, which Bernhard Steffen calls “tool individualism”.

Tool and benchmark repositories.

“What is required for a true success is to establish a corresponding open source
community which contributes to the tool and benchmark repositories — making
existing tools and benchmarks adequately available to the public — establishing
a truly global and open repository.”

These are three distinct ideas that need to be considered separately. We ana-
lyze each of them in turn, taking into account the lessons to be learnt from
(at least) four initiatives targeting these stated goals, namely: the original ETI
(Electronic Tool Integration) [7,50] launched in the 90s by Bernhard Steffen
and colleagues, the jETI [35] followup project15 launched in the mid-2000s, the
VSR (Verified Software Repository) [1,4] project, well-specified but not fully
implemented16, and the CPS-VO (Cyber-Physical Systems Virtual Organiza-
tion) project17 launched in the early 2010s, the only one running and available
today.

First, the wish for a global repository containing all formal tools raises
cost/benefit and feasibility questions. Today, there is no major problem in down-
loading a formal tool from the Web site of its developers and installing this tool
on one’s local machine; thus, the added value of such a repository could be:
(i) to provide an exhaustive catalog of formal tools and (ii) to deliver SaaS
(Software as a Service) by enabling the remote execution of formal tools not
installed on one’s local machine. Point (i) takes significant time, as we learnt it
ourselves when building a catalog of formal tools for quantitative verification18;
moreover, catalogs need to be updated regularly, as new tools appear and old
tools disappear. Point (ii) takes time and money, since providing such a ser-
vice to everyone has a cost, not only in acquisition of hardware servers or cloud
computing resources, but also in daily maintenance, to keep track of the lat-
est versions of each tool, to ensure interoperability between ever-changing tools,
and to carefully address security issues. This is confirmed by Bernhard Steffen:
“The ETI initiative failed, for two main reasons: the manual integration effort
at the ETI site in Dortmund exceeded our expectations, [and] tool providers were

15 http://eti.cs.uni-dortmund.de.
16 http://vsr.sourceforge.net.
17 http://cps-vo.org.
18 http://cadp.inria.fr/resources/zoo.

http://eti.cs.uni-dortmund.de
http://vsr.sourceforge.net
http://cps-vo.org
http://cadp.inria.fr/resources/zoo

Reflections on Bernhard Steffen’s Physics of Software Tools 199

(correctly) worried that ETI would not be able to keep up with upgrades and new
versions”; therefore, the revised jETI platform adopted an alternative approach,
by remotely coordinating formal tools hosted and maintained at their developers’
sites.

Second, the requirement for open source seems to contradict the wish for a
truly global repository, since prominent commercial tools used in industry to
design real systems (e.g., development tools for synchronous languages, static
analyzers, hardware verification tools, etc.) are not open source and would be
thus excluded from the repository. Moreover, the open source requirement (even
combined with free software) does not solve the fragmentation issue: GitHub,
for instance, hosts many dead formal tool prototypes, all in open source with
free licenses. Finally, this requirement would make it harder to find a proper
business model for running the repository: users might accept being charged a
fee for remotely executing commercial tools, but may be reluctant to pay for
merely using free software. It is worth noticing that the CPS-VO repository has
a more flexible policy19 allowing various degrees of tool integration.

Third, having a global benchmark repository would be certainly helpful to
the research community, since it would provide a central point where all (or
most) formal models designed in the world could be obtained. Such benchmarks
are useful to ensure that experiments can be reproduced, to test formal tools
and evaluate their performance, and, for high-level models readable by humans,
to teach users how formal tools should be employed. At present, many collec-
tions of such benchmarks are available, from multiple sources: (i) Almost every
major formal tool comes with a library of demo examples20, usually encoded in
the particular input format(s) required by this tool; (ii) Software competitions
tend to accumulate, year after year, many models for benchmarking purpose21;
(iii) There also exist independent collections of benchmarks, such as the VLTS
(Very Large Transition Systems)22 collection developed by CWI and INRIA;
(iv) Many articles in scientific conferences and journals report about industrial
case studies tackled using formal tools, but it is very rare to find the complete
models mentioned in these publications, excepted in dedicated venues, such as
the MARS (Modelling and Analysis of Real Systems) workshops that manages
a public repository of formal models23 in parallel to its workshop proceedings.
Because these collections of benchmarks are heterogeneous and distributed at
many places, it would be indeed desirable to access them from a central point;
this would also provide an incentive for exchanging all the benchmarks that, at
the moment, are not shared, such as the test cases written for a specific tool and
the test cases captured by formal tools running as Web applications.

19 http://cps-vo.org/group/tools.
20 See for instance http://cadp.inria.fr/demos in the case of the CADP toolbox.
21 See http://mcc.lip6.fr/models.php in the case of the Model Checking Contest.
22 http://cadp.inria.fr/resources/vlts.
23 http://www.mars-workshop.org/repository.html.

http://cps-vo.org/group/tools
http://cadp.inria.fr/demos
http://mcc.lip6.fr/models.php
http://cadp.inria.fr/resources/vlts
http://www.mars-workshop.org/repository.html

200 H. Garavel and R. Mateescu

Let us finally suggest that a global benchmark repository could also record,
whenever possible, economical information (such as time spent, cost, manpower,
return on investment, etc.) about case studies done using formal tools.

Artifact evaluations.

“Recent requirements to make tools available (open source) and the newly
established trend to establish artifact evaluations [...] are welcome measures to
address th[e tool individualism] threat. They naturally impose a certain level of
usability and maturity, as reviewers (and other users) start to repeat the experi-
ments and to play with variations of the considered scenarios. In the longer term
this should lead to a maturity level.”

An increasing number of software conferences have indeed set up artifact
evaluation committees to evaluate software tools and deliver verified artifact cer-
tificates [30]. Such initiatives increase the reproducibility of experimental results.
However, we disagree with Bernhard Steffen on two points: (i) Artifact evalu-
ations do not fight tool individualism, they fight improper claims about the
capabilities of software tools, i.e., cheating and overselling; (ii) Open source and
artifact evaluations are two different notions; open source is not always required
for artifact evaluations24.

Tool competitions.

“Experimental investigations, today [are] often supported by diverse and fre-
quent tool challenges. — Even tool competitions and challenges, certainly events
intended to support knowledge exchange and establishing global tool knowledge,
nevertheless reinforce [tool individualism]. Of course, the more direct compari-
son of different tools that they impose supports tool development as a whole, but
winners are typically associated with individual tools, most frequently operated
by their developers.”

Software competitions, together with studies that systematically evaluate
various formal tools on the same set of problems (e.g., [40,41] for a comparison
of model checkers or [21] for a performance assessment of term rewrite engines)
primarily aim at benchmarking the capability and performance of formal tools.
Software competitions and such comparative studies also have three additional
merits: (i) They increase tool interoperability, either with the design of common
formats or interfaces that each tool has to support, or with the development of
translators between the various input languages accepted by the tools; (ii) They
are nowadays the main setting in which large collections of diverse, complex
benchmarks are being produced; (iii) They reveal bugs in formal tools and impose
the correction of these bugs25. We therefore believe that the credits given to
competition winners and the potential reinforcement of tool individualism are a
low price to pay for the high benefits of software competitions.

24 http://www.artifact-eval.org/guidelines.html.
25 For instance, the average confidence rate of all tools participating in the Model

Checking Contest increases every year: 89.65% in 2015, 94.20% in 2016, and 97.34%
in 2017 [29, Sect. 4.2].

http://www.artifact-eval.org/guidelines.html

Reflections on Bernhard Steffen’s Physics of Software Tools 201

Collaborative projects.

“The situation became even more diverse, despite all the efforts aiming at
exchange like various tool competitions and overarching projects.”

Collaborative projects, such as those supervised by national or European
research funding agencies, allocate resources to scientists and encourage their co-
operation with industry. So far, collaborative projects failed to prevent the frag-
mentation issue for formal tools, even though, from time to time, some projects
enabled the development of interconnections between different tools.

Most collaborative projects have two characteristics: they fund short-term
activities (usually, 3–5 years) and they ask for groundbreaking research results.
This does not fit well with the situation of formal tools, which require longer-
term efforts for significant progress. Indeed, the mainstream formal tools avail-
able today have taken decades to produce, and their efficiency does not only lie
in major scientific breakthroughs, but also in hundreds or thousands of minor
enhancements, the accumulation of which really makes a difference. Also, global
repositories, such as the aforementioned ETI/jETI and CPS-VO, are long-term
platforms that are out of scope for most project calls.

All in one, the outcome of collaborative projects is often limited. In general,
these projects help to undertake the development of new formal tools but fail to
consolidate them on the long run, unless perhaps for those tools whose technical
leaders show outstanding communication skills.

Relaunching the ETI/jETI exchange platform.

“This is an ideal situation to re-launch the ETI initiative. — With today’s
Internet infrastructure and technology, which fosters truly service-oriented
approaches, [ETI’s] ambitions are now more than realistic, yet still require a
concerted community effort to align and integrate the employed technologies as
well as their means of communication and exchange in order to leverage the indi-
vidual strengths. The ETI initiative could be an exciting corresponding challenge
and opportunity for the tool community to support synergies, help to pinpoint
tool/technology profiles, and ease the exchange of knowledge and benchmarks in
a tangible way. — In a first step, the new ETI could be built just by making
existing tools and benchmarks adequately available to the public and exploiting
the ETI’s mediator technology to support cross tool combination. In a further
step, ETI itself could turn into a domain-specific open source IDE for tool devel-
opment which directly supports the development of tool functionalities in a fash-
ion suitable to be openly exchanged, thus tearing down the boundaries between
the individual tools and establishing a truly global and open repository.”

When ETI was launched in 1997, it was a novel, exciting concept and CADP,
thanks to its modular architecture and well-defined interfaces, was one of the
very first tools to be integrated in ETI [8,34,36,50].

Today, the situation is different. There have been already two attempts at
implementing the ETI idea; yet, as Bernhard Steffen points out: “the ETI idea
has still not turned into reality”. Could a third attempt succeed better than the
two former ones? We have no definite answer, but we can mention several risk
factors to be considered.

202 H. Garavel and R. Mateescu

Twenty years after its inception, a new ETI would now face fierce competitors
for most of its features, e.g., CPS-VO, which is a close approximation of what
a reloaded ETI could be, GitHub, which offers a worldwide repository of open
source software, Figshare26, which hosts benchmarks and research outputs of
many academic institutions, Eclipse27, which is the reference platform for open
source IDEs, etc. We already evoked the difficulties to get funding for academic
collaborative platforms running over a long period of time, and the eventuality
that such funding might be even harder to obtain in a strict open-source context.

The relevance of Web technologies for interconnecting formal tools can also
be questioned. From our experience in model checking, we know how much per-
formance matters when dealing with huge state spaces and repeating basic oper-
ations over billions of states and transitions. To this aim, we designed specific
cross-tool technologies, such as the BCG file format, in which every bit is opti-
mized, and the OPEN/CÆSAR framework [13], in which all memory allocations
are carefully controlled. In comparison, for the same tasks, Web protocols and
services, although they support secure communications between remote machines
owned by different users, would be considerably slower and resource-consuming.

Division of labour.

“We envision tool developers that, rather than spending significant time to
integrate their ideas into their own complex tool infrastructure, concentrate on
their specific expertise and directly contribute to the repository for open exchange
and experimentation. This would allow a clear division of labour, where the
developers of tool functionality profit from the providers of benchmarks and the
maintainers of the ETI infrastructure for open exchange, and vice versa.”

From an economical perspective, the division of work proposed by Bernhard
Steffen sounds rational, as it suggests that each actor will focus on the reduced
number of tasks for which he is the most competent and productive.

Yet, a relaunched ETI would require tool developers to abandon some of the
technologies they designed and/or are familiar with (e.g., user interfaces, file
formats, etc.), and to adapt their formal tools, so as to use instead other tech-
nologies selected and prescribed by the maintainers of the ETI infrastructure.
This is a difficult point, as history shows that generic cross-tool technologies
(such as CASE tools, software buses, coordination languages, etc.) are not easily
accepted by tool developers unless they see tangible benefits in doing so.

First, this raises the question of what would be the concrete incentives for
developers to forget about tool individualism and to adhere to the discipline of
the new ETI platform. The traditional incentive, i.e., financial rewards for pro-
ducing quality software components (e.g., software-as-a-service in cloud comput-
ing or application stores for smartphones) is ruled out by the stated open-source
policy. An alternative incentive relies in the scientists’ sense of collective pur-
pose, but it is unsure whether calls to rationality and goodwill are enough to
convince the best developers to renounce their design freedom. Another incentive

26 http://figshare.com.
27 http://www.eclipse.org.

http://figshare.com
http://www.eclipse.org

Reflections on Bernhard Steffen’s Physics of Software Tools 203

mentioned by Bernhard Steffen is that developers would get access to numer-
ous benchmarks through ETI, but this would only work if benchmark providers
make the effort of depositing their data in ETI, and would work better if such
benchmarks are exclusively available via ETI.

Second, because the new ETI intends to become a truly global, centralized
platform and substitute itself to existing parts (e.g., user interfaces) of many
formal tools, one cannot exclude the eventuality of ETI becoming a single point
of failure. In order to integrate very diverse formal tools, the architects of the
new ETI should either design common formats and interfaces, or make open calls
for such technologies and select the best candidates; these are difficult decisions,
with a strong impact on the complexity and performance of the entire platform
and its attractiveness for tool developers. Moreover, such decisions are likely
to trigger lengthy discussions, or even conflicts, about technical choices; this
can only be solved by adopting proper rules and arbitration procedures, at the
risk of turning the project into a bureaucratic entity generating frustration and
disinterest for some tool developers. Thus, the success of the ETI platform will
also crucially depend on the skills of its administrators.

Finally, we would like to advocate for tool individualism, which is sharply,
perhaps excessively, criticized by Bernhard Steffen. Quite often, tool individual-
ism leads to a dispersion of efforts, but it can also have a positive role: some major
tool sets (e.g., CADP, LTSmin [28], PRISM [31], UPPAAL [2], etc.) make real
efforts to combine multiple scientific advances into a coherent framework. Even
if these tool sets do not fully implement the ETI concept of central repository,
they are nevertheless partial, yet valuable integration and exchange platforms.

5 Conclusion

The needs for safe and secure computer systems are still far from being satis-
fied, and made even more elusive by the recent trends towards intelligent and
autonomous systems. Formal methods can address parts of the problem, but the
current situation of software tools implementing formal methods is all but opti-
mal, with a fragmented landscape that prevents one from inferring fundamental
knowledge from experimental results.

While many scientists focus their research on particular technical problems,
Bernhard Steffen is one of the rare voices calling for a global awareness. In a
recent, dense paper [49], he accurately analyzes the status of formal tools and
proposes remedy actions. Because we believe that his vision deserves considera-
tion, the present article highlighted the key ideas of [49] and discussed them in
detail, based on our experience in formal verification and model checking. The
topic is far from being exhausted, and we expect that other developers of for-
mal tools will participate in the debate, bringing complementary opinions and
expertise.

So far, research in formal methods has produced a wealth of approaches,
methodologies, and algorithms. It might be that most low-hanging fruits have
been picked, and that the scientific agenda for the next decades could be different,

204 H. Garavel and R. Mateescu

with the emphasis not so much on further discovering new results than revisiting
the foundations to blend all existing results into coherent theories and tools.

Acknowledgements. We are grateful to Lian Apostol and Wendelin Serwe, who
proofread this manuscript, and to the anonymous reviewers for their helpful comments
and suggestions.

References

1. Arenas, A.E., Bicarregui, J., Margaria, T.: The FMICS view on the verified soft-
ware repository. J. Integr. Des. Process Sci. (IDPT) 10(4), 47–54 (2006)

2. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 Years. Softw. Pract. Experience 41(2), 133–142 (2011)

3. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Else-
vier, Amsterdam (2001)

4. Bicarregui, J., Hoare, C.A.R., Woodcock, J.C.P.: The verified software repository:
a step towards the verifying compiler. Formal Aspects Comput. 18(2), 143–151
(2006)

5. Bourke, T., Brun, L., Dagand, P.E., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for Lustre. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2017), Barcelona, Spain. pp. 586–601. ACM, June 2017

6. Bouzafour, A., Renaudin, M., Garavel, H., Mateescu, R., Serwe, W.: Model-
checking synthesizable system verilog descriptions of asynchronous circuits. In:
Krstic, M., Jones, I.W. (eds.) Proceedings of the 24th IEEE International Sym-
posium on Asynchronous Circuits and Systems (ASYNC 2018), Vienna, Austria.
IEEE, May 2018

7. Braun, V., Kreileder, J., Margaria, T., Steffen, B.: The ETI online service in action.
In: Cleaveland, R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 439–443. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 31

8. Braun, V., Margaria, T., Weise, C.: Integrating tools in the ETI platform. Int. J.
Softw. Tools Technol. Transf. (STTT) 1–2(1), 31–48 (1997)

9. Cleaveland, R., Roscoe, A.W., Smolka, S.A.: Process algebra and model checking.
Handbook of Model Checking, pp. 1149–1195. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-10575-8 32

10. Evrard, H., Lang, F.: Automatic distributed code generation from formal models
of asynchronous processes interacting by multiway rendezvous. J. Log. Algebraic
Meth. Program. 88, 121–153 (2017)

11. Finney, K.: Mathematical notation in formal specification: too difficult for the
masses? IEEE Trans. Softw. Eng. 22(2), 158–159 (1996)

12. Garavel, H.: Compilation of LOTOS abstract data types. In: Vuong, S.T. (ed.)
Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE 1989, Vancouver B.C., Canada, pp. 147–162. North-Holland, December
1989

13. Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054165

14. Garavel, H., Graf, S.: Formal methods for safe and secure computers systems. BSI
Study 875, Bundesamt für Sicherheit in der Informationstechnik, Bonn, Germany,
December 2013

https://doi.org/10.1007/3-540-49059-0_31
https://doi.org/10.1007/978-3-319-10575-8_32
https://doi.org/10.1007/978-3-319-10575-8_32
https://doi.org/10.1007/BFb0054165

Reflections on Bernhard Steffen’s Physics of Software Tools 205

15. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2001), Cheju Island, Korea. pp. 377–392. Kluwer Academic Pub-
lishers, August 2001. full version available as INRIA Research Report RR-4223

16. Garavel, H., Lang, F., Mateescu, R.: Compiler construction using LOTOS NT. In:
Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45937-5 3

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. (STTT) 15(2), 89–107 (2013)

18. Garavel, H., Lang, F., Mounier, L.: Compositional verification in action. In: Howar,
F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 189–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00244-2 13

19. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

20. Garavel, H., Serwe, W.: The unheralded value of the multiway rendezvous: illus-
tration with the production cell benchmark. In: Hermanns, H., Höfner, P. (eds.)
Proceedings of the 2nd Workshop on Models for Formal Analysis of Real Systems
(MARS 2017), Uppsala, Sweden. Electronic Proceedings in Theoretical Computer
Science, vol. 244, pp. 230–270, April 2017

21. Garavel, H., Tabikh, M.-A., Arrada, I.-S.: Benchmarking implementations of term
rewriting and pattern matching in algebraic, functional, and object-oriented lan-
guages – The 4th rewrite engines competition. In: Rusu, V. (ed.) WRLA 2018.
LNCS, vol. 11152, pp. 1–25. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99840-4 1

22. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor.
Comput. Sci. 343, 332–369 (2005)

23. Hartmanns, A., Hermanns, H.: In the quantitative automata zoo. Sci. Comput.
Program. 112, 3–23 (2015)

24. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib – A framework
for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

25. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

26. Jackson, D., Wing, J.: Lightweight formal methods. IEEE Comput. 29, 21–22
(1996)

27. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2015), Mumbai, India, pp. 247–259. ACM, January 2015

28. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

https://doi.org/10.1007/3-540-45937-5_3
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-662-46681-0_61

206 H. Garavel and R. Mateescu

29. Kordon, F., et al.: MCC’2017 – the seventh model checking contest. In: Koutny,
M., Kristensen, L.M., Penczek, W. (eds.) Transactions on Petri Nets and Other
Models of Concurrency XIII. LNCS, vol. 11090, pp. 181–209. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-58381-4 9

30. Krishnamurthi, S.: Artifact evaluation for software conferences. SIGPLAN Not.
48(4S), 17–21 (2013)

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

32. Loveland, D.W.: Automated theorem proving: a quarter century review. In: Bled-
soe, W.W., Loveland, D.W. (eds.) Automated Theorem Proving - After 25 Years,
Contemporary Mathematics, vol. 29, pp. 1–45. American Mathematical Society
(1984)

33. Mader, A.: Verification of modal properties using boolean equation systems. In:
VERSAL 8, Bertz Verlag, Berlin (1997)

34. Margaria, T., Braun, V., Kreileder, J.: Interacting with ETI: a user session. Int. J.
Softw. Tools for Technol. Transf. (STTT) 1–2(1), 49–63 (1997)

35. Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–562.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 38

36. Margaria, T., Steffen, B.: LTL guided planning: revisiting automatic tool com-
position in ETI. In: Proceedings of the 31st IEEE/NASA Software Engineering
Workshop (SEW 2007), Columbia, USA, pp. 214–226. IEEE Computer Society
Press, March 2007

37. Marsso, L., Mateescu, R., Serwe, W.: TESTOR: a modular tool for on-the-fly
conformance test case generation. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10806, pp. 211–228. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89963-3 13

38. Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-
calculus. In: Bossi, A., Cortesi, A., Levi, F. (eds.) Proceedings of the 2nd Inter-
national Workshop on Verification, Model Checking and Abstract Interpretation
(VMCAI 1998), Pisa, Italy. University Ca’ Foscari of Venice, September 1998

39. Mateescu, R., Garavel, H.: XTL: a meta-language and tool for temporal logic
model-checking. In: Margaria, T. (ed.) Proceedings of the International Workshop
on Software Tools for Technology Transfer (STTT 1998), Aalborg, Denmark, pp.
33–42. BRICS, July 1998

40. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train
supervision system. In: Gallagher, J.P., van Glabbeek, R., Serwe, W. (eds.) Pro-
ceedings of the 3rd Workshop on Models for Formal Analysis of Real Systems
and the 6th International Workshop on Verification and Program Transformation
(MARS/VPT 2018), Thessaloniki, Greece. Electronic Proceedings in Theoretical
Computer Science, vol. 268, pp. 104–149, April 2018

41. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transf. (STTT) 20(3), 263–288 (2018)

42. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-642-19835-9_18

Reflections on Bernhard Steffen’s Physics of Software Tools 207

43. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Int. J.
Softw. Tools Technol. Transf. (STTT) 20(3), 327–354 (2018)

44. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. (STTT) 11(5),
393–407 (2009)

45. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, pp. 2651–
2659, July 2018

46. Rudin, H., West, C.H., Zafiropulo, P.: Automated protocol validation: one chain
of development. Comput. Netw. 2, 373–380 (1978)

47. Rushby, J.: Disappearing formal methods. In: Proceedings of the 5th IEEE Inter-
national Symposium on High-Assurance Systems Engineering (HASE 2000), Albu-
querque, NM, USA, pp. 95–96. IEEE Computer Society, November 2000

48. Sifakis, J.: System design in the era of IoT - meeting the autonomy challenge.
In: Bliudze, S., Bensalem, S. (eds.) Proceedings of the 1st International Workshop
on Methods and Tools for Rigorous System Design (MeTRiD 2018), Thessaloniki,
Greece. Electronic Proceedings in Theoretical Computer Science, vol. 272, pp. 1–
22, April 2018

49. Steffen, B.: The physics of software tools: SWOT analysis and vision. Int. J. Softw.
Tools Technol. Transf. (STTT) 19(1), 1–7 (2017)

50. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1–2(1), 9–30
(1997)

51. van Weerdenburg, M.: An account of implementing applicative term rewriting.
Electron. Not. Theor. Comput. Sci. 174(10), 139–155 (2007)

52. West, C.H.: General technique for communications protocol validation. IBM J.
Res. Dev. 22(4), 393–404 (1978)

Toward Structured Parallel Programming:
Send-Receive Considered Harmful

Sergei Gorlatch(B)

University of Muenster, Münster, Germany
gorlatch@uni-muenster.de

Abstract. During the software crisis of the 1960s, Dijkstra’s famous
thesis “goto considered harmful” paved the way for structured program-
ming. In this paper that is a modified version of the short communication
[10], we suggest that many current difficulties of parallel programming
based on message passing are caused by poorly structured communica-
tion, which is a consequence of using low-level send-receive primitives.
We argue that, like goto in sequential programs, send-receive should be
avoided as far as possible and replaced by collective operations in the
setting of message passing. We dispute some widely held opinions about
the apparent superiority of low-level, pairwise primitives over collective
operations, and we present substantial theoretical and empirical evidence
to the contrary in the context of MPI (Message Passing Interface).

We also briefly mention our recent results obtained in the broader
context of programming for modern many-core parallel systems.

Keywords: Programming methodology · Parallel systems ·
Structured programming · Message Passing Interface (MPI)

1 Introduction

The development of software for modern parallel and distributed systems is still
a challenging and difficult task. One of the obvious reasons for this unsatisfactory
situation is that today’s programmers rely mostly on the programming culture
of the 1980s and ’90s, the Message Passing Interface (MPI) [15] still being the
programming tool of choice for demanding applications.

The main advantage of MPI is that in the 1980s it integrated and standard-
ized parallel constructs that were proven in practice. This put an end to the
unacceptable previous situation when every hardware vendor provided its own
set of communication primitives, and those primitives sometimes differed even
between different brands of the same machine.

In order to enable high performance, MPI’s communication management
based on low-level primitives send and receive results in a complicated pro-
gramming process. Several attempts were made to overcome this (e.g. HPF
and OpenMP). However, despite reported success stories, these approaches have

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 208–217, 2019.
https://doi.org/10.1007/978-3-030-22348-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_13

Toward Structured Parallel Programming: Send-Receive Considered Harmful 209

never achieved the popularity of MPI, mostly because they make the perfor-
mance of parallel programs less understandable and difficult to predict.

A similar “software crisis” occurred in the sequential setting in the 1960s.
The breakthrough was made by Dijkstra in his famous letter “goto considered
harmful” [5], in which the finger of blame was pointed at the goto statement. By
that time, [3] had formally demonstrated that programs could be written without
any goto statements, in terms of only three control structures – sequence, selec-
tion and repetition. The notion of so-called structured programming [4] became
almost synonymous with “goto elimination”.

GOTO
considered harmful

Sequential
Programming

Structured
Programming

Parallel
Programming

Structured

Programming
Parallel

considered harmful
Send-Recv

?

Fig. 1. As goto in the sequential case, send-receive complicates parallel programming.

Bernhard Steffen et al. [21] demonstrated that structured, rigorous program-
ming greatly improves the formal analyses of important properties of paral-
lel programs. In order to benefit from the experience in structured program-
ming, we should answer the question: Which concept/construct plays a similar
harmful role to that of goto in the parallel setting? As shown in Fig. 1 and
demonstrated from Sect. 2 onwards, we suggest send-receive statements to be
“considered harmful” and avoided as far as possible in parallel MPI programs.

The thrust of this paper is:
Parallel programming based on message passing can be improved by expressing
communication in a structured manner, without using send-receive statements.

We demonstrate the advantages of collective operations over send-receive
in five areas: simplicity, expressiveness, programmability, performance and pre-
dictability. This paper is a slightly modified version of [10]. The structured app-
roach has been recently extended in different areas of parallel programming.
In particular, novel parallel architectures like multi-core CPUs and many-core
GPUs (Graphics Processing Units) require structured parallel programming at
the node level, as an alternative to the low-level CUDA and OpenCL approaches,
while message passing considered in this paper remains relevant for parallelizing
across nodes. For our recent results, we refer the reader to the survey on algo-
rithmic skeletons [11], the SkelCL library [26], skeleton-based transformations
[16], and the LIFT approach [17].

210 S. Gorlatch

2 The Challenge of Simplicity

Myth: Send-receive primitives are a simple way of specifying communication in
parallel programs.

To reason effectively about a parallel program comprising hundreds or thou-
sands of processes, one needs a suitable abstraction level. Programmers usually
think in terms of how data has to be distributed to allow local computation:
there is a stage (phase) of computation followed by a stage of communication,
these stages being either synchronized, as in the BSP model [28], or not. Collec-
tives neatly describe data redistributions between two stages, while individual
sends and receives do not match this natural view, which leads to the following
problems:

– There is no simple set of coordinates that describe the progress of a parallel
program with individual communication. Such programs are therefore hard
to understand and debug.

– If MPI is our language of choice, then we have not just one send-receive,
but rather eight different kinds of send and two different kinds of receive.
Thus, the programmer has to choose among 16 combinations of send-receive,
some of them with very different semantics (blocking/non-blocking, syn-
chronous/asynchronous, buffered/non-buffered, etc). Of course, this makes
message-passing programming very flexible, but even less comprehensible!

– The last but not least problem is the size of programs. For example, a program
for data broadcasting using MPI Bcast may have only three instead of its
send-receive equivalent’s 31 lines of code [9,23].

Reality: The apparent simplicity of send-receive turns out to be the cause of
large program size and complicated communication structure, which make both
the design and debugging of parallel programs difficult.

3 The Challenge of Programmability

Myth: The design of parallel programs is so complicated that it will probably
always remain an ad hoc activity rather than a systematic process.

The structure of programs with collective operations (a.k.a. collectives) as
a sequence of stages facilitates high-level program transformations. A possible
kind of transformation fuses two consecutive collective operations into one.

This is illustrated in Fig. 2 for a program with p processes, where each process
either follows its own control flow, depicted by a down-arrow, or participates in a
collective operation, depicted by a shaded area. Fusing two collective operations
into one may imply a considerable saving in execution time; more on that in
Sect. 6.

A particular fusion rule (1) states that, if operators op1 and op2 are asso-
ciative and op1 distributes over op2, then the following transformation of a
composition of scan and reduction is applicable.

Toward Structured Parallel Programming: Send-Receive Considered Harmful 211

.
1 p2 1 p2

Composition
Collective Operation 1

Collective Operation 2

Collective Operation 3

Time saved

Fig. 2. The idea of fusing collective operations by a transformation like (1).

Here, function Make_pair duplicates its arguments, thus creating a pair, and
Take_first yields the first component of a pair. Both functions are executed
without interprocessor communication. The binary operator f(op1,op2) on the
right-hand side works on pairs of values and is built using the operators from
the left-hand side of the transformation. The precise definition of f, as well as
other similar transformations, can be found in [8].

[
MPI Scan (op1);
MPI Reduce (op2);

=⇒
⎡
⎣Make pair;
MPI Reduce (f(op1,op2));
if my pid==ROOT then Take first;

(1)
Rule (1) and other rules from [8] have the advantage that they are (a) proved

formally as theorems, (b) parameterized by the occurring operators, e.g. op1 and
op2, and therefore customizable for a particular application, (c) valid for all pos-
sible implementations of collective operations, and (d) applicable independently
of the parallel target architecture, and (e) suitable for automation.

Besides fusion rules, there are also transformations that decompose one
collective operation into a sequence of smaller operations. Composition and
decomposition rules can sometimes be applied in sequence, thus leading to more
complex transformations, for example:

[
MPI_Scan(op1);
MPI_Allreduce(op2);

=⇒

⎡
⎢⎢⎣
Make_pair;
MPI_Reduce-scatter(f(op1,op2));
Take_first;
MPI_Allgather;

Profound results have been achieved with formalisms for the verification of
concurrent and message-passing programs (see [25] for a very good overview of
the state of the art). With collective operations, we take a different approach:
we design message-passing programs in a stepwise manner (see [8]) by applying
semantically sound transformations like (1). In Sect. 6, we show that such design
process can be geared to predicting and improving performance.

Reality: Collective operations facilitate high-level program transformations that
can be applied in a systematic program-design process.

212 S. Gorlatch

4 The Challenge of Expressiveness

Myth: Collective operations are too inflexible and, therefore, unable to express
many important applications.

To refute this quite widely held opinion, we present in Table 1 several impor-
tant applications, which according to the recent literature were implemented
using collective operations only, without notable performance loss compared with
their counterparts using send-receive.

Table 1. Applications expressed using collective operations only

Application Communication/Computation Pattern

Polynomial Multiplication Bcast (group); Map; Reduce; Shift

Polynomial Evaluation Bcast; Scan; Map; Reduce

Fast Fourier Transform Iter (Map; All-to-all (group))

Molecular Simulation Iter (Scatter; Reduce; Gather)

N-Body Simulation Iter (All-to-all; Map)

Matrix Multiplication (SUMMA) Scatter; Iter (Scatter; Bcast; Map); Gather

Matrix Multiplication (3D) Allgather (group); Map; All-to-all; Map

Here, Map stands for local computations performed in the processes without
communication; Shift is a cyclic, unidirectional exchange between all processes;
Iter denotes repetitive action; (group) means that the collective operation is
applied not to all processes of the program, but rather to an identified subset of
processes (in MPI, it can be specified by a communicator).

Additional confirmation of the expressive power of collective operations is
provided by the PLAPACK package for linear algebra [7], which has been imple-
mented entirely without individual communication primitives.

Moreover, in one of the best textbooks on parallel algorithms [22], the whole
methodology centres on implementing and then composing collective operations.

In paper [6], we proved the Turing universality of a programming language
based on just two recursive collective patterns – anamorphisms and catamor-
phisms. This fact can be viewed as a counterpart to the “structured program
theorem” by Böhm and Jacopini [3] for parallel programming.

Reality: A broad class of communication patterns found in important parallel
applications is covered by collective operations.

5 The Challenge of Performance

Myth: Programs using send-receive are, naturally, faster than their counterparts
using collective operations.

The usual performance argument in favour of individual communication is
that collective operations are themselves implemented in terms of individual

Toward Structured Parallel Programming: Send-Receive Considered Harmful 213

send-receive and thus cannot be more efficient than the latter. However, there
are two important aspects here that are often overlooked:

1. The implementations of collective operations are written by the implementers,
who are much more familiar with the parallel machine and its network than
an application programmer can be. Recent algorithms for collective commu-
nication [24] take into account specific characteristics of the interprocessor
network, which can then be considered during the compilation phase of the
communication library. The MagPIe library is geared to wide-area networks
of clusters [20]. In [27], the tuning for a given system is achieved by conducting
a series of experiments on the system. When using send-receive, the commu-
nication structure would probably have to be re-implemented for every new
kind of network.

2. Very often, collective operations are implemented not via send-receive, but
rather directly in the hardware, which is simply impossible at the user level.
This allows all machine resources to be fully exploited and sometimes leads
to rather unexpected results: e.g. a simple bidirectional exchange of data
between two processors using send-receive on a Cray T3E takes twice as long
as a version with two broadcasts [1]. The explanation for this phenomenon
is that the broadcast is implemented directly on top of the shared-memory
support of the Cray T3E.

Below, we dispute some other commonly held opinions about the performance
superiority of send-receive, basing our arguments on empirical evidence from
recent publications.

– It is not true that non-blocking versions of send-receive, MPI Isend and
MPI Irecv, are invariably fast owing to the overlap of communication with
computation. As demonstrated by [1], these primitives often lead to slower
execution than the blocking version because of the extra synchronization.

– It is not true that the flexibility of send-receive allows faster algorithms than
the collective paradigm. Research has shown that many designs using send-
receive eventually lead to the same high-level algorithms as obtained by the
“batch” approach [14]. In fact, batch versions often run faster [18].

– It is not true that the routing of individual messages over a network offers fun-
damental performance gains as compared with the routing for collective oper-
ations. As shown formally in [28], the performance gap in this case becomes,
with large probability, arbitrarily small for large problem sizes.

Reality: There is strong evidence that send-receive does not offer fundamental
performance advantages over collective operations. The latter offer machine-
tuned, efficient implementations without changing the applications themselves.

6 The Challenge of Predictability

Myth: Reliable performance data for parallel programs can only be obtained a
posteriori, i.e. by actually running the program on a particular machine config-
uration.

214 S. Gorlatch

Performance predictability is, indeed, often even more difficult to achieve
than absolute performance itself. Using collective operations, not only can we
design programs by means of the transformations presented in Sect. 3; we can
also estimate the impact of every single transformation on the program’s per-
formance. Table 2 contains a list of transformations from [12], together with the
conditions under which these transformations improve performance.

Table 2. Impact of transformations on performance

Composition rule Improvement if

Scan 1; Reduce 2 → Reduce always

Scan; Reduce → Reduce ts > m

Scan 1; Scan 2 → Scan ts > 2m

Scan; Scan → Scan ts > m(tw + 4)

Bcast; Scan → Comcast always

Bcast; Scan 1; Scan 2 → Comcast ts > m/2

Bcast; Scan; Scan → Comcast ts > m(1
2
tw + 4)

Bcast; Reduce → Local always

Bcast; Scan 1; Reduce 2 → Local always

Bcast; Scan; Reduce → Local tw + 1
m

· ts ≥ 1
3

In the above table, a binomial-tree implementation of collective operations is
presumed, our cost model having the following parameters: start-up/latency ts,
transfer time tw and block size m, with the time of one computation operation
assumed as the unit. These parameters are used in the conditions listed in the
right column of the table. The estimates were validated in experiments on a Cray
T3E and a Parsytec GCel 64 (see [8] for details).

Since the performance impact of a particular transformation depends on the
parameters of both the application and the machine, there are alternatives to
choose from in a particular design. Usually, the design process can be captured
as a tree, one example of which is given in Fig. 3.

The best design decision is obtained by checking the design conditions, which
depend either on the problem properties, e.g. the distributivity of operators, or
on the characteristics of the target machine (number of processors, latency and
bandwidth, etc.). For example, if the distributivity condition holds, it takes us
from the root into the left subtree in Fig. 3. If the block size in an application
is small, Condition 1 (defined in [8]) yields “no”, and we thus end up with the
second (from left to right) design alternative, where op3= f(op1,op2) according
to rule (1). Note that the conditions in the tree of alternatives may change for
a different implementation of the collective operations involved.

Arguably, send-receive allows a more accurate performance model than col-
lective operations do. Examples of well-suited models for finding efficient imple-
mentations are LogP and LogGP [19]. However, these models are overly detailed

Toward Structured Parallel Programming: Send-Receive Considered Harmful 215

op1 distributes over op2

MPI_Allreduce (op2);
MPI_Scan (op1);

Make_pair;

Take_first;
MPI_Allreduce (op3);

yesnoyes no

noyes

MPI_Reduce_scatter (op3);
Make_pair;

Take_first;
MPI_Allgather;

MPI_Allreduce(op2);

MPI_Scan(op1);

Condition 2Condition 1

MPI_Scan(op1);
MPI_Reduce_scatter (op2);
MPI_Allgather;

Fig. 3. The tree of design alternatives with decisions made in the nodes.

and difficult for an application programmer to use, as demonstrated by a com-
parison with batch-oriented models [2,13].

Reality: Collective operations contribute to the challenging goal of predicting pro-
gram characteristics during the design process, i.e. without actually running the
program on a machine. The use of send-receive obviously makes the program’s
performance much less predictable. Furthermore, the predictablity of collective
operations greatly simplifies the modelling task at the application level, as com-
pared with models like LogP.

7 Conclusion

This short communication proposes – perhaps somewhat polemically – viewing
the send-receive primitives as harmful and, consequently, trying to avoid them
in parallel programming.

We demonstrate the advantages of collective operations over send-receive in
five major areas, which we call challenges: simplicity, expressiveness, programma-
bility, performance and predictability. Based on recent publications in the field
and our own research, we present hard evidence that many widely held opinions
about send-receive vs. collective operations are mere myths.

Despite the success of structured programming, goto has not gone away alto-
gether, but has either been hidden at lower levels of system software or packaged
into safe language constructs. Similarly, there are parallel applications where
non-determinism and low-level communication are useful, e.g. a taskqueue-based
search. This motivates the development of “collective design patterns” or skele-
tons which should provide more complex combinations of both control and com-
munication than the currently available collective operations of MPI.

We conclude by paraphrasing Dijkstra’s famous letter [5], which originally
inspired our work. Applied to message passing, it might read as follows:

The various kinds and modes of send-receive used in the MPI standard,
buffered, synchronous, ready, (non-)blocking, etc., are just too primitive;
they are too much an invitation to make a mess of one’s parallel program.

216 S. Gorlatch

It is our strong belief that higher-level patterns, in particular collective oper-
ations, have good potential for overcoming this problem and enabling the design
of well-structured, efficient parallel programs based on message passing.

Acknowledgements. I am grateful to many colleagues in the field of parallel com-
puting, whose research provided necessary theoretical and experimental evidence to
support the ideas presented here. It is my pleasure to acknowledge the very helpful
comments of Chris Lengauer, Robert van de Geijn, Murray Cole, Jan Prins, Thilo Kiel-
mann, Holger Bischof, and Phil Bacon on the preliminary version of the manuscript.
The anonymous referees of [10] did a great job in improving the presentation.

References

1. Bernaschi, M., Iannello, G., Lauria, M.: Experimental results about MPI collective
communication operations. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger,
B. (eds.) HPCN-Europe 1999. LNCS, vol. 1593, pp. 774–783. Springer, Heidelberg
(1999). https://doi.org/10.1007/BFb0100638

2. Bilardi, G., Herley, K., Pietracaprina, A., Pucci, G., Spirakis, P.: BSP vs. LogP.
In: Eighth ACM Symposium on Parallel Algorithms and Architectures, pp. 25–32
(1996)

3. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only
two formation rules. Commun. ACM 9, 366–371 (1966)

4. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.: Structured Programming. Academic
Press, London (1975)

5. Dijkstra, E.W.: Go To statement considered harmful. Commun. ACM 11(3), 147–
148 (1968)

6. Fischer, J., Gorlatch, S.: Turing universality of morphisms for parallel program-
ming. In: Gorlatch, S., Lengauer, C. (eds.) Third Int. Workshop on Constructive
Methods for Parallel Programming (CMPP 2002). Forschungsberichte der Fakultät
IV - Elektrotechnik und Informatik, vol. 2002/07, pp. 81–98. Technische Univer-
sität Berlin, June 2002

7. van de Geijn, R.: Using PLAPACK: Parallel Linear Algebra Package. Scientific
and Engineering Computation Series. MIT Press, Cambridge (1997)

8. Gorlatch, S.: Towards formally-based design of message passing programs. IEEE
Trans. Softw. Eng. 26(3), 276–288 (2000). http://wwwmath.uni-muenster.de/pvs/
publikationen/papers/GorTSE.ps.gz

9. Gorlatch, S.: Send-recv considered harmful? myths and truths about parallel pro-
gramming. In: Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 243–257.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44743-1 24

10. Gorlatch, S.: Send-receive considered harmful: myths and realities of message pass-
ing. ACM TOPLAS 26(1), 47–56 (2004)

11. Gorlatch, S.: Parallel skeletons. In: Padua, D. (ed.) Encyclopedia of Parallel Com-
puting, pp. 1417–1422. Springer, Boston, MA (2011). https://doi.org/10.1007/978-
0-387-09766-4 24

12. Gorlatch, S., Wedler, C., Lengauer, C.: Optimization rules for programming with
collective operations. In: Atallah, M. (ed.) Proceeding of the IPPS/SPDP 1999,
pp. 492–499. IEEE Computer Society Press (1999)

13. Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas, T.: Towards efficiency
and portablility. Programming with the BSP model. In: Eighth ACM Symposium
on Parallel Algorithms and Architectures, pp. 1–12 (1996)

https://doi.org/10.1007/BFb0100638
http://wwwmath.uni-muenster.de/pvs/publikationen/papers/GorTSE.ps.gz
http://wwwmath.uni-muenster.de/pvs/publikationen/papers/GorTSE.ps.gz
https://doi.org/10.1007/3-540-44743-1_24
https://doi.org/10.1007/978-0-387-09766-4_24
https://doi.org/10.1007/978-0-387-09766-4_24

Toward Structured Parallel Programming: Send-Receive Considered Harmful 217

14. Goudreau, M., Rao, S.: Single-message vs. batch communication. In: Heath, M.,
Ranade, A., Schreiber, R. (eds.) Algorithms for Parallel Processing, pp. 61–74.
Springer, New York (1999)

15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programmingwith
the Message Passing. MIT Press, Cambridge (1994)

16. Hagedorn, B., Steuwer, M., Gorlatch, S.: A transformation-based approach to
developing high-performance GPU programs. In: Petrenko, A.K., Voronkov, A.
(eds.) PSI 2017. LNCS, vol. 10742, pp. 179–195. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 14

17. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High perfor-
mance stencil code generation with Lift. In: Proceedings ACM CGO 2018, pp.
100–112 (2018). Best paper award

18. Hwang, K., Xu, Z.: Scalable Parallel Computing. McGraw Hill, New York (1998)
19. Kielmann, T., Bal, H.E., Gorlatch, S.: Bandwidth-efficient collective communi-

cation for clustered wide area systems. In: Parallel and Distributed Processing
Symposium (IPDPS 2000), pp. 492–499 (2000)

20. Kielmann, T., Hofman, R.F., Bal, H.E., Plaat, A., Bhoedjang., R.A.: MagPIe:
MPI’s collective communication operations for clustered wide area systems. In:
Proceedings of the ACM PPoPP, pp. 131–140 (1999)

21. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM TOPLAS 18(3), 268–299 (1996)

22. Kumar, V., et al.: Introduction to Parallel Computing. Benjamin/Cummings Publ,
Redwood City (1994)

23. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publ, San Fran-
cisco (1997)

24. Park, J.Y.L., Choi, H.A., Nupairoj, N., Ni, L.M.: Construction of optimal multicast
trees based on the parameterized communication model. In: Proceedings of the
International Conference on Parallel Processing (ICPP), vol. I, pp. 180–187 (1996)

25. Schneider, F.B.: On Concurrent Programming. Springer-Verlag, New York (1997).
https://doi.org/10.1007/978-1-4612-1830-2

26. Steuwer, M., Gorlatch, S.: Skelcl: A high-level extension of OpenCL formulti-GPU
systems. J. Supercomput. 69(1), 25–33 (2014). https://doi.org/10.1007/s11227-
014-1213-y

27. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective communi-
cations. In: Proceedings of the Supercomputing 2000. Dallas, TX, November 2000

28. Valiant, L.G.: General purpose parallel architectures. In: Handbook of Theoretical
Computer Science, vol. A, Chap. 18, pp. 943–971. MIT Press (1990)

https://doi.org/10.1007/978-3-319-74313-4_14
https://doi.org/10.1007/978-3-319-74313-4_14
https://doi.org/10.1007/978-1-4612-1830-2
https://doi.org/10.1007/s11227-014-1213-y
https://doi.org/10.1007/s11227-014-1213-y

Refining the Safety–Liveness
Classification of Temporal Properties

According to Monitorability

Doron Peled1(B) and Klaus Havelund2(B)

1 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

Abstract. Runtime verification is the topic of analyzing execution
traces using formal techniques. It includes monitoring the execution of a
system against temporal properties, commonly to detect violations. Not
every temporal property is fully monitorable however: in some cases, the
correctness of the execution does not depend on any finite prefix. We
study the connection between monitorability and Lamport’s classifica-
tion of properties to safety and liveness and their dual classes. We refine
the definition of monitorability and provide algorithms to check which
verdicts can be expected, a priori and during runtime verification.

1 Introduction

Runtime verification facilitates the direct monitoring of the execution of a sys-
tem, checking it against a formal specification. This can be useful for many
applications, including testing a system before it is deployed, as well as monitor-
ing the system after deployment. This approach can be applied to improve the
reliability of safety critical and mission critical systems, including safety as well
as security aspects, and can more generally be applied for processing streaming
information. Often, the stream of information is not a priori limited to a specific
length, and the monitored property is supposed to follow the execution for as
long as it is running.

Monitoring properties are often given in linear temporal logic (LTL) [22].
These properties are traditionally interpreted over infinite execution sequences
(the monitored system keeps emitting events). But for runtime verification to

D. Peled—The research performed by this author was partially funded by Israeli Sci-
ence Foundation grant 2239/15: “Runtime Measuring and Checking of Cyber Physical
Systems”.
K. Havelund—The research performed by this author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 218–234, 2019.
https://doi.org/10.1007/978-3-030-22348-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_14

Refining the Safety–Liveness Classification of Temporal Properties 219

be useful, it is necessary to be able to provide information after observing only
finite execution sequences, also referred to as prefixes. For example, the prop-
erty �p (for some atomic proposition p), which asserts that p always happens,
can be refuted by a runtime monitor if p does not hold in some observed event.
At this point, no matter which way the execution is extended, the property will
not hold, resulting in a negative verdict. However, no finite prefix of an exe-
cution can establish that �p holds. In a similar way, the property ♦p cannot
be refuted, since p may appear at any time in the future; but once p happens,
we know that the property is satisfied, independent on any continuation, and
we can issue a positive verdict. For the property (�p ∨ ♦q) we may not have a
verdict at any finite time, in the case where all the observed events satisfy both
p and ¬q. On the other hand, we may never “lose hope” to have such a verdict,
as a later state satisfying q will result in a positive verdict; at this point we can
abandon the monitoring, since the property cannot be further violated. On the
other hand, for the property �♦p we can never provide a verdict in finite time:
for whatever happens, p can still appear an infinite number of times, and we
cannot guarantee or refute that this property holds when observing any finite
prefix of an execution. The problem of monitorability of a temporal property
was studied in [5,10,25], basically requiring that at any point of monitoring we
still have a possibility to obtain a finite positive or negative verdict.

We refine here the study of LTL monitorability, distinguishing cases where
some verdicts are always possible during runtime, no verdicts are expected, or
some verdicts are possible a priori, but may not be available later, depending on
the monitored prefix. We extend Lamport’s safety and liveness classification of
temporal properties with guarantee, which is the dual of safety, and morbidity,
which we define as the dual of liveness. To complete this classification to cover
all possible temporal specifications, we add another class, which we term quaes-
tio. We study the relationship between this classification and monitorability. In
particular, the safety class includes the properties whose failure can be detected
after a finite prefix, and the liveness properties are those where one can never
conclude a failure after a finite prefix.

We suggest some variants for runtime verification algorithms that take the
refined notions of monitorability into account before and during runtime veri-
fication. Equipped with these algorithms, we can check what kind of verdicts
one can expect a priori from monitoring an execution against a given temporal
specification, and can also update this expectation during runtime when some
verdicts are not possible anymore. In addition, these algorithms can be used to
decide whether a given specification is a safety, guarantee, liveness, or morbidity
property.

Related Work. Alpern and Schneider [1] formalized Lamport’s definition of
safety and liveness, Sistla [27] showed a PSPACE algorithm for checking safety,
and an EXPSPACE algorithm for checking liveness. Checking liveness was shown
to be in EXPSPACE-complete in [18]. Drissi-Kaitouni and Jard [8], as well as
Kupferman and Vardi [19] studied the problem of monitoring LTL properties for

220 D. Peled and K. Havelund

an execution sequence. Pnueli and Zaks [25] proposed constructing compositional
testers for runtime verification. They also considered the issue of monitorabil-
ity of a property, requiring that any finite prefix can be extended in a finite
manner such that a positive or negative verdict can be reported in finite time.
Finally, they provided a tester based algorithm for checking whether an observed
finite prefix can be extended in a finite way to obtain a positive or a negative
verdict. Fernandez, Jard, Jéron and Viho supported checking for availability of
future verdicts for a given test objective in the TGV test case generator [11].
Bauer, Leucker and Schallhart defined prefixes that cannot be finitely extended
to obtain a verdict for a temporal specification as ugly prefixes; then they defined
a property to be monitorable if it has no ugly prefixes. They showed that safety
and guarantee properties are monitorable, but there are some other monitorable
properties that are not in these classes. Diekert and Leucker [7] studied mon-
itorability and its connection to safety and liveness using topological charac-
terizations. Falcone, Fernandez and Mounier [9] considered the Manna-Pnueli
hierarchy of properties and showed that some of the classes of this hierarchy
have both monitorable and non-monitorable properties.

Contribution. We revisit the classification of properties according to safety,
guarantee and liveness after completing it to cover all the temporal properties.
We add new classes of properties. The first one we call morbidity; it is the dual
class to liveness, i.e., a negation of a liveness property is a morbidity property
and vice versa. To complete the space of temporal properties, we add another
class called quaestio.

We provide an alternative definition for these classes that is based on the pos-
sible results one can obtain during runtime monitoring; this depends on whether
one can always/sometimes/never obtain a positive or a negative verdict based
on a finite trace. Then we study a refinement of runtime monitorability with
respect to these classes and their intersections.

We propose an assortment of algorithms for runtime verification, which
extend the classical LTL runtime verification algorithm. These variants allow
us to decide a priori what kind of verdicts are expected from a property, and
update the possibilities as the monitored execution unfolds. Because of the close
connection between the discussed classification and notions of monitorability,
they can also be used to identify the class of a given LTL specification.

Overview of Paper. The paper is organized as follows. Section 2 provides
some preliminary introductions to selected concepts, including runtime verifica-
tion and linear temporal logic. Section 3 presents our refinement of Lamport’s
classification of temporal properties. Section 4 introduces algorithms for deter-
mining monitorability and classification of temporal properties. Finally, Sect. 5
concludes the paper.

Refining the Safety–Liveness Classification of Temporal Properties 221

2 Preliminaries

2.1 Runtime Verification

Runtime verification (RV) [2,13] very generally refers to the use of rigorous
(formal) techniques for processing execution traces emitted by a system being
observed. The purpose is, again generally viewed, to evaluate the state of the
observed system. Since only single executions (or collections thereof) are ana-
lyzed, RV scales well compared to more comprehensive formal methods, but of
course at the cost of coverage. Nonetheless, RV can be useful due to the rigorous
methods involved. Note that in runtime verification one is not concerned with
how to obtain various executions, as in e.g. test case generation. This reflects
a focus of attention (research) rather than a judgment of utility – test case
generation is of course of critical importance.

An execution trace is generated by the observed executing system, typically
by instrumenting the system to generate events when important transitions take
place. Instrumentation can be manual by inserting logging statements in the
code, or it can be automated using instrumentation software, such as e.g. aspect-
oriented programming frameworks. In the extreme case, an event can represent
a complete view of the internal state of the system. Processing can take place
on-line, as the system executes, or off-line, by processing log files produced by
the system. In the case of on-line processing, observations can be used to control
the monitored system.

Processing can take numerous forms. We focus here on specification-based
runtime verification, where an execution trace is checked against a property
expressed in a formal (usually temporal) logic. More formally, assume an
observed system S, and assume further that a finite execution of S up to a
certain point is captured as an execution trace ξ = e1.e2.en, which is a
sequence of observed events. Each event ei captures a snapshot of S’s execution
state. Assume the type E of events; then the RV problem can be formulated as
constructing a program M : E∗ → D, which when applied to the trace ξ, as in
M(ξ), returns some data value d ∈ D in a domain D of interest. In specification-
based RV, typically M is generated from a formal specification, given e.g. as a
temporal logic formula, a state machine, or a regular expression, and d is a ver-
dict in the Boolean domain (d ∈ B), or some extension of the Boolean domain
as discussed in [4], indicating whether the execution trace conforms with the
specification.

However, the field should be perceived broadly, e.g. d can be a visualization
of the execution trace, a learned specification (specification mining), statistical
information about the trace, an action to perform on the running system S,
etc. The problem can be even further generalized to computing a result from
multiple traces, as e.g. done in specification learning [15–17,24] and statistical
model checking [21], giving M the type M : 2E

∗ → D.
That execution trace is often unbounded in length, representing the fact that

the observed system “keeps running”, without a known termination point. Hence
it is important that the monitoring program is capable of producing verdicts

222 D. Peled and K. Havelund

based on finite prefixes of the execution trace observed so far. The remainder of
the paper discusses what kind of verdicts can be produced from finite prefixes
given a specific property.

2.2 Linear Temporal Logic

The classical definition of linear temporal logic is based on future operators [22]:

ϕ ::= true | p | (ϕ ∧ ϕ) | ¬ϕ | (ϕ U ϕ) | © ϕ

where p is a proposition from a finite set of propositions P , with U standing
for until, and © standing for next-time. One can also write (ϕ ∨ ψ) instead of
¬(¬ϕ∧¬ψ), (ϕ → ψ) instead of (¬ϕ∨ψ), ♦ϕ (eventually ϕ) instead of (trueUϕ)
and �ϕ (always ϕ) instead of ¬♦¬ϕ.

LTL formulas are interpreted over an infinite sequence of events1 ξ =
e0.e1.e2 . . ., where ei ⊆ P for each i ≥ 0. These are the propositions that hold
in that event. We denote by ξi the suffix ei.ei+1.ei+2 . . . of ξ. LTL semantics is
defined as follows:

– ξi |= true.
– ξi |= p iff p ∈ ei.
– ξi |= ¬ϕ iff not ξi |= ϕ.
– ξi |= (ϕ ∧ ψ) iff ξi |= ϕ and ξi |= ψ.
– ξi |= ©ϕ iff ξi+1 |= ϕ.
– ξi |= (ϕ U ψ) iff for some j ≥ i, ξj |= ψ, and for all i ≤ k < j, ξk |= ϕ.

Then ξ |= ϕ when ξ0 |= ϕ.
An LTL property can be translated into a nondeterministic Büchi automa-

ton [12,30]. The translation can incur an exponential blowup. This nondeter-
ministic automaton can be used directly for model checking, but requires deter-
minization [26], e.g., for the purpose of synthesizing a reactive system from
the temporal property. Unfortunately, determinization results here in additional
exponential explosion. This sums up to a double exponential blowup of the
translation from the LTL property to the deterministic (Rabin, Street) automa-
ton that accepts the same language. It turns out that we also need (a different
kind of) determinization for runtime verification [19].

Past time LTL (PLTL) is interpreted over finite sequences, looking backwards
from the current event. PLTL has the back mirror operators of LTL’s modal
operators.

Bauer, Leucker and Schallhart [5] define three categories of prefixes of exe-
cution sequences over 2P for a temporal property ϕ.

– A good prefix is one where all its extensions (infinite sequences of elements
from 2P) satisfy ϕ.

– A bad prefix is one where none of its infinite extensions satisfies ϕ.
– An ugly prefix cannot be extended into a good or a bad prefix.
1 The classical interpretation of LTL is over states [22], but in the context of RV, we

monitor a sequence of events that are reported by the instrumentation.

Refining the Safety–Liveness Classification of Temporal Properties 223

3 Characterizing Temporal Properties

Safety and liveness temporal properties were defined informally on infinite exe-
cution sequences by Lamport [20] as something bad cannot happen and something
good will happen. These informal definitions were later formalized by Alpern and
Schneider [1]. Guarantee properties where used in an orthogonal characterization
by Manna and Pnueli [22]. Guarantee properties are the dual of safety proper-
ties, that is, the negation of a safety property is a guarantee property and vice
versa. We add to this picture morbidity properties, which is the dual class of
liveness properties.

safety A property ϕ is a safety property, if for every execution that does not
satisfy it, there is a finite prefix such that completing it in any possible way
into an infinite sequence would not satisfy ϕ.

guarantee (co-safety) A property ϕ is a guarantee property, if for every execu-
tion satisfying it, there is a finite prefix such that completing it in any possible
way into an infinite sequence satisfies ϕ.

liveness A property ϕ is a liveness property if every finite prefix can be extended
to satisfy ϕ.

morbidity (co-liveness) A property ϕ is a morbidity property if every finite
prefix can be extended to violate ϕ.

Online runtime verification of LTL properties inspects finite prefixes of the
execution. Hence, it may sometimes provide only a partial verdict on the satis-
faction and violation of the inspected property [4,23]. This motivates providing
three kinds of verdicts:

failed when the current prefix cannot be extended in any way into an execution
that satisfies the specification,

satisfied when any possible extension of the current prefix satisfies the specifica-
tion, and

undecided when the current prefix can be extended to satisfy the specification
but also extended to satisfy its negation.

Tracing a safety property, we can provide an indication as soon as it fails.
Correspondingly, we can report on the satisfaction of a guarantee property as
soon as a finite prefix satisfies it. The only property that is both a safety and a
liveness (and a guarantee) property is true.

Each temporal property is a conjunction of a liveness and a safety prop-
erty [1]. Due to the connection between safety and guarantee and between live-
ness and morbidity, we immediately obtain that every temporal property is a
disjunction of a guarantee and a morbidity property. Manna and Pnueli char-
acterized syntactically the temporal safety properties as �ϕ, and the guarantee
properties as ♦ϕ, where ϕ is a PLTL property.

Safety, guarantee, liveness and morbidity can be seen as characterizing finite
monitorability of temporal properties: if a safety property is violated, there
will be a finite prefix witnessing it; on the other hand, for a liveness property,

224 D. Peled and K. Havelund

one can never provide such a finite negative evidence. We suggest the following
alternative definitions of classes of temporal properties.

AFR (safety) Always Finitely Refutable: when the property does not hold on
an infinite execution, refutation can be identified after a finite (bad) prefix.

AFS (guarantee) Always Finitely Satisfiable: when the property is satisfied on
an infinite execution, satisfaction can be identified after a finite (good) prefix.

NFR (liveness) Never Finitely Refutable: Refutation (i.e., a bad prefix) can
never be identified after a finite prefix.

NFS (morbidity) Never Finitely Satisfiable: Satisfaction (i.e., a good prefix) can
never be identified after a finite prefix.

It is easy to see that the definitions of the classes AFR and safety are the
same and so are those for AFS and guarantee. We will show the correspondence
between NFR and liveness. A liveness property ϕ is defined to satisfy that any
finite prefix can be extended to an execution that satisfies ϕ. The definition of
the class NFR only mentions prefixes of executions that do not satisfy ϕ; but
for prefixes of executions that satisfy ϕ this trivially holds. The correspondence
between NFS and morbidity is shown in a symmetric way.

The above four classes of properties, however, do not cover the entire set of
possible temporal properties, independent of the actual formalism that is used
to express them. The following two classes complete the classification.

SFR Sometimes Finitely Refutable: for some infinite executions that violate the
property, refutation can be identified after a finite prefix; for other infinite
executions violating the property, this is not the case.

SFS Sometimes Finitely Satisfiable: for some infinite executions that satisfy
the property, satisfaction can be identified after a finite prefix; for other
infinite executions satisfying the property, this is not the case.

Let Prop be the set of all properties expressible in some temporal formalism,
e.g., LTL or Büchi automata. Then it is clear that Prop = AFR ∪ SFR ∪
NFR. The only property that is mutual to two of these classes is true, which
holds both for AFR and for NFR. It also holds that Prop = AFS ∪ SFS ∪
NFS. The only temporal property that is mutual to two of these classes (AFS
and NFS) is false. Every temporal property must belong then to a class XFR,
where X stands for A, S or N, and also to a class XFS, again with X is A, S
or N. We call it the FR/FS classification. The FR/FS classification refines the
classification of properties as safety, guarantee, liveness and morbidity, in the
sense of further dividing these into sub-classes as shown in Fig. 1. Specifically,
it identifies the intersections between these classes. Below we give examples for
the nine combinations of XFR and XFS, appearing in clockwise order in Fig. 1.

– SFR ∩ NFS: (♦p ∧ �q)
– AFR ∩ NFS: �p
– AFR ∩ SFS: (p ∨ �q)
– AFR ∩ AFS: ©p

Refining the Safety–Liveness Classification of Temporal Properties 225

– SFR ∩ AFS: (p ∧ ♦q)
– NFR ∩ AFS: ♦p
– NFR ∩ SFS: (�p ∨ ♦q)
– NFR ∩ NFS: �♦p
– SFR ∩ SFS: ((p ∨ �♦p) ∧ ©q)

Fig. 1. Classification of properties: safety, guarantee, liveness, morbidity and quaestio.

The set of all properties Prop is not covered by safety, guarantee, liveness
and morbidity. The missing properties are in SFR ∩ SFS. We call the class of
such properties Quaestio (Latin for question).

Observe that for AFR ∩ AFS we gave an example of a property with only
the nexttime operator ©. We show that for LTL, any property ϕ in AFR ∩ AFS
can be written with only the nexttime and the Boolean operators. To see this,
consider a tree whose edges are labeled with elements from 2P ; every finite path
from the root down is labeled with a prefix of a minimal good prefix2 for ϕ. That
is, if a prefix is good then the path terminates in a leaf node. This is a finitely
branching tree, since the number of successors of each node are at most 2|P |.
Assume that this tree has an infinite path. This path must satisfy ϕ, as, being a
safety property, if this path does not satisfy ϕ, it has a bad prefix, which cannot
be extended to satisfy ϕ. So assume that this path satisfies ϕ. But ϕ is also a
guarantee property, hence it must have a finite good prefix. But according to the
construction, a good prefix leads to a leaf node and is not extended in the tree,
2 A finite extension of a good (bad or ugly) prefix remains good (bad or ugly, respec-

tively).

226 D. Peled and K. Havelund

contradicting the assumption that the tree has an infinite path. Since the tree is
finite, it is easy to see that one can express ϕ in LTL based on the finitely many
good paths in the tree using © and the Boolean operators3. The converse also
holds: any property that is expressible in this way corresponds to such a finite
tree, and thus is in the intersection of a safety and liveness.

4 Monitorability

4.1 Defining Monitorability

The good, bad and ugly prefixes, defined in [5] and presented at the end of
Sect. 2.2, are related to the ability to provide a verdict about a temporal property
when monitoring an execution trace. When identifying a good or a bad finite
prefix, we are done tracing the execution and can announce that the monitored
property is satisfied or failed, respectively. After an ugly prefix, satisfaction or
refutation of ϕ depends on the entire infinite execution, and cannot be deter-
mined in finite time.

Monitorability of a property ϕ is defined in [5] as the lack of ugly prefixes for
the property ϕ. This definition is consistent with [25].

Ugly prefixes cannot occur in an execution satisfying a safety property [5].
Suppose by contradiction that there is an ugly prefix σ for a safety property
ϕ. Note that if a prefix is ugly, it cannot have a good or a bad prefix. Now
extending an ugly prefix σ in any way into an execution that does not satisfy a
safety property ϕ entails that there must be a bad (finite) prefix extending σ,
a contradiction to σ being ugly. So, any infinite extension of σ must satisfy ϕ.
But then σ itself must be a good prefix, a contradiction again to σ being ugly.
Thus, every safety property is monitorable. Because guarantee properties are
the negations of safety properties, one obtains using a symmetric argument that
every guarantee property is also monitorable.

4.2 Runtime Verification Algorithms for Monitorability

We present four algorithms. The first one is a classical algorithm for runtime
verification of LTL (or Büchi automata) properties. The second algorithm can
be used to check during run time what kind of verdicts can still be produced given
the current prefix. The third algorithm can be used to check whether the property
is monitorable, and also be used under the refinement of monitorability that we
present in the next section. The fourth algorithm can be used to check the class
of a given temporal property under the extension of Lamport’s safety/liveness
characterization given in this paper.

3 One can also use other operators to express the same property, e.g., by adding a
trivial disjunct, as in (ϕ ∨ (�p ∧ ♦¬p)).

Refining the Safety–Liveness Classification of Temporal Properties 227

Algorithm 1. Monitoring Sequences Using Automata

Kupferman and Vardi [19] provide an algorithm for detecting good and bad
prefixes. For good prefixes, start by constructing a Büchi automaton A¬ϕ for
¬ϕ, e.g., using the translation in [12]. Note that this automaton is not necessar-
ily deterministic [29]. States of A¬ϕ, from which one cannot reach a cycle that
contains an accepting state, are deleted. Checking for a positive verdict for ϕ,
one keeps for each monitored prefix the set of states that A¬ϕ would be after
observing that input. One starts with the set of initial states of the automaton
A¬ϕ. Given the current set of successors S and an event e ∈ 2P , the next set of
successors S′ is set to the successors of the states in S according to the transition
relation Δ of A¬ϕ. That is, S′ = {s′|s ∈ S ∧ (s, e, s′) ∈ Δ}. Reaching the empty
set of states, the monitored sequence is good, and the property must hold since
the current prefix cannot be completed into an infinite execution satisfying ¬ϕ.

This is basically a subset construction for a deterministic automaton Bϕ,
whose initial state is the set of initial states of A¬ϕ, accepting state is the empty
set, and transition relation as described above. The size of this automaton is
O(22|P |

), resulting in double exponential explosion from the size of the checked
LTL property. But in fact, we do not need to construct the entire automaton Bϕ

in advance, and can avoid the double exponential explosion by calculating its
current state on-the-fly, while performing runtime verification. Thus, the incre-
mental processing per each event is exponential in the size of the checked LTL
property. Unfortunately, a single exponential explosion is unavoidable [19].

Checking for a failed verdict for ϕ is done with a symmetric construction,
translating ϕ into a Büchi automaton Aϕ and then the deterministic automaton
B¬ϕ (or calculating its states on-the-fly) using a subset construction as above.
Note that A¬ϕ is used to construct Bϕ and Aϕ is used to construct B¬ϕ. Runtime
verification of ϕ uses both automata for the monitored input, reporting a failed
verdict if B¬ϕ reaches an accepting state, a satisfied verdict if Bϕ reaches an
accepting state, and an undecided verdict otherwise. The algorithm guarantees
to report a positive or negative verdict on the minimal good or bad prefix that
is observed.

Algorithm 2. Checking Availability of Future Verdicts

We alter the above runtime verification algorithm to check whether positive
or negative verdicts can still be obtained after the current monitored prefix at
runtime. Applying DFS on Bϕ, we search for states from which one cannot reach
the accepting state. Then we replace these states with a single state ⊥ with a self
loop, obtaining the automaton Cϕ. Reaching ⊥, after monitoring a finite prefix
σ with Cϕ happens exactly when we will not have a good prefix anymore. This
means that after σ, a satisfied verdict cannot be issued anymore for ϕ.

Similarly, we perform BFS on B¬ϕ to find all the states in which the accepting
state is not reachable, then replace them by a single state
 with a self loop,
obtaining C¬ϕ. Reaching
 after monitoring a prefix means that we will not be

228 D. Peled and K. Havelund

able again to have a bad prefix, hence a failed verdict cannot be issued anymore
for ϕ.

We can perform runtime verification while updating the state of both
automata, Cϕ and C¬ϕ on-the-fly, upon each input event. However, we need to
be able to predict if, from the current state, an accepting state is not reachable.
While this can be done in space exponential in ϕ, it makes an incremental cal-
culation whose time complexity is doubly exponential in the size of ϕ, as is the
algorithm for that by Pnueli and Zaks [25]. This is hardly a reasonable com-
plexity for the incremental calculation performed between successive monitored
events for an on-line algorithm. Hence, a pre-calculation of these two automata
before the monitoring starts is preferable, leaving the incremental time complex-
ity exponential in ϕ, as in Algorithm 1.

Algorithm 3. Checking Monitorability

A small variant on the construction of Cϕ and C¬ϕ allows checking if a property is
monitorable. The algorithm is simple: construct the product Cϕ × C¬ϕ and check
whether the state (⊥,
) is reachable. If so, the property is non-monitorable,
since there is a prefix that will transfer the product automaton to this state and
thus it is ugly. It is not sufficient to check separately that Cϕ can reach
 and that
C¬ϕ can reach ⊥. In the property (¬(p ∧ r) ∧ ((¬pU(r ∧ ♦q)) ∨ (¬rU(p ∧ �q)))):
both ⊥ and
 can be reached, separately, depending on which of the predicates
r or p happens first. But in either case, there is still a possibility for a good or
a bad extension, hence it is a monitorable property.

If the automaton Cϕ × C¬ϕ consists of only a single state (⊥,
), then there
is no information whatsoever that we can obtain from monitoring the property.

The above algorithm is simple enough to construct, however its complexity
is doubly exponential in the size of the given LTL property. This may not be a
problem, as the algorithm is performed off-line and the LTL specifications are
often quite short.

We show that checking monitorability is in EXPSPACE-complete. The upper
bound is achieved by a binary search version of this algorithm4. For the lower
bound we show a reduction from checking if a property is (not) a liveness prop-
erty, a problem known to be in EXPSPACE-complete [18,27].

– We first neutralize bad prefixes. Now, when ψ is satisfiable, then ♦ψ is moni-
torable (specifically, any prefix can be completed into a good prefix) iff ψ has
a good prefix.

– Checking satisfiability of a property ψ is in PSPACE-complete [28]5.
– ψ has a good prefix iff ψ is not a morbidity property, i.e., if ϕ = ¬ψ is not a

liveness property.
– Now, ϕ is not a liveness property iff either ϕ is unsatisfiable or ♦¬ϕ is moni-

torable.
4 To show that a property is not monitorable, one needs to guess a state of Bϕ×B¬ϕ and

check that (1) it is reachable, and (2) one cannot reach from it an empty component,
both for Bϕ and for B¬ϕ. (There is no need to construct Cϕ or C¬ϕ.).

5 Proving that liveness was PSPACE-hard was shown in [3].

Refining the Safety–Liveness Classification of Temporal Properties 229

Algorithm 4. Identifying the Class of a Property

We can identify the classes of properties AFS (guarantee), SFS, NFS (morbidity),
AFR (safety), SFR and NFR (liveness) for any given temporal property. Thus,
we can also identify if a property is in an intersection of two of these classes.

For the classes AFS, SFS and NFS, we reverse acceptance in Cϕ, i.e., all states
are accepting except for the empty state, obtaining ̂Cϕ. We take now the product
̂Cϕ ×Aϕ and check its emptiness. We can apply a procedure that performs model
checking with the property ϕ and the state space of ̂Cϕ, see [6]. The language
(accepted sequences) of ̂Cϕ × Aϕ consists exactly of the executions that satisfy
the property ϕ and do not have a good prefix. For such executions it is never
sufficient to observe a finite prefix in order to decide that the property is satisfied.
We apply a similar construction for AFR, SFR, NFR, removing the accepting
state from C¬ϕ to obtain D¬ϕ, and taking the product ̂C¬ϕ × A¬ϕ.

We then have the following conditions for identifying the different classes:

AFR (safety) ̂C¬ϕ × A¬ϕ = ∅.

Because in this case, executions satisfying ¬ϕ, i.e., not satisfying ϕ, cannot
avoid having a bad state.

NFR (liveness) The automaton C¬ϕ consists of a single state
.

Because the automaton C¬ϕ consists of a single state
 exactly when we will
never observe a bad prefix.

SFR ̂C¬ϕ × A¬ϕ �= ∅ and C¬ϕ does not consist of a single state
.

Because in this case, there is an execution that avoids having any bad state,
but there are still prefixes that are bad.

AFS (guarantee) ̂Cϕ × Aϕ = ∅.

Because in this case, executions satisfying ϕ cannot avoid having a good state.
NFS (morbidity) The automaton Cϕ consists of a single state ⊥.

Because the automaton Cϕ consists of a single state ⊥ exactly when we can
never observe a good prefix.

SFS: ̂Cϕ × Aϕ �= ∅ and Cϕ does not consist of a single state ⊥.

Because in this case, there is an execution that avoids having any good state,
but there are still prefixes that are good.

For a more efficient algorithm for checking if an LTL formula is a safety (AFR)
see [27]. There, an algorithm, based on a binary search on the construction of
Aϕ and A¬ϕ is presented. That algorithm is polynomial space in the size of the
property ϕ. Hence the problem of checking safety is in PSPACE. A lower bound,
showing that the problem is in PSPACE-complete is also given in [27]: one can
check whether ϕ is valid (a problem known to be in PSPACE-complete) exactly

230 D. Peled and K. Havelund

when ϕ ∨ ♦p is a safety property, where p is a proposition that does not appear
in ϕ. Thus, the same result applies to checking if an LTL formula is a guarantee
property.

Checking liveness (NFR) was shown to be in EXPSPACE-complete in [18].
Thus, checking that a property is in SFR is also in EXPSPACE-complete, since
SFR complements AFR ∪ NFR, hence is equivalent to checking that the property
is neither safety, nor liveness. For the same reasons, these complexity results also
apply to the dual classes: by checking the negation of the given property, we have
that guarantee (AFS) is in PSPACE-complete, and that morbidity (NFS) and
SFS are in EXPSPACE-complete. This agrees with the complexity of the binary
search based algorithms given above.

4.3 Refining Monitorability

We first look at the relationship between the above classification of properties
and monitorability. Any property that is in AFR (safety) or in AFS (guarantee)
is monitorable as identified in [5,10]. A property that is NFR ∩ NFS is non-
monitorable. In fact no verdict is ever expected on any sequence that is monitored
against such a property. This leaves the three classes SFR ∩ SFS, SFR ∩ NFS
and NFR ∩ SFS, for which some properties are monitorable and others are not.
This is demonstrated in the following table.

Class Monitorable example Non-monitorable example

SFR ∩ SFS ((♦r ∨ �♦p) ∧ ©q) ((p ∨ �♦p) ∧ ©q)

SFR ∩ NFS (♦p ∧ �q) (�♦p ∧ ©q)

NFR ∩ SFS (�p ∨ ♦q) (�♦p ∨ ©q)

We propose that RV can still be applied for non-monitorable properties if
initially some verdicts can be made. We refine the definition of monitorability
into the following categories:

– A property is monitorable if it cannot have an ugly prefix. This corresponds to
the definition of monitorability in [5,25]. Safety and guarantee properties are
universally monitorable. But as demonstrated above, some of the properties
in SFR ∩ SFS, SFR ∩ NFS and NFR ∩ SFS are also monitorable.

Checking monitorability can be done using Algorithm 3. In Fig. 2, the light
gray areas correspond to properties that are monitorable.

– A property has zero monitoring information if there is no information that
can be obtained by monitoring it any finite amount of time. The properties
in the intersection of liveness and morbidity are those that have zero mon-
itoring information. The black area in Fig. 2 correspond to properties with
zero monitoring information. Checking that a property has zero monitoring
information can be done by applying algorithm 3 (or Algorithm 4 for checking
that the property is both in NFR and in NFS).

Refining the Safety–Liveness Classification of Temporal Properties 231

– A property is weakly monitorable if there exist ugly prefixes, but not all the
finite prefixes are ugly. In this case, there is still information that we can
obtain by monitoring it, but at times, we may observe an ugly prefix, from
which no interesting information can be concluded in finite amount of time.
Algorithm 3 can be used to check that a property is non-monitorable, yet also
not in zero monitoring information. In this case, instead of using Algorithm 1
for performing the runtime verification, one can use Algorithm 2 to also check
whether some verdict is still possible for the current prefix, abandoning the
runtime verification when this is not the case. The dark gray areas in Fig. 2
represent the weakly monitorable properties.

Consider the property (p ∨ (¬q U (p ∧ �♦r))). This property is in quaestio.
It is non-monitorable, as demonstrated by the ugly prefix {}.{p} (i.e., all the
propositions are false in the first event, and only p is true in the second event),
after which no verdict can be given. We consider it to be weakly monitorable.
A priori, we can expect both a positive or a negative verdict: if p holds in the
first event, then a positive verdict is given; if q holds before p, then a negative
verdict is given. Algorithm 3 can identify the fact that this property is both
non-monitorable but is not a zero monitoring information property.

This calls for using Algorithm 2 rather than Algorithm 1 to perform the
runtime verification. Suppose now that the first event is {q}. Since p does not
hold in the first event, we still have to satisfy the right disjunct (¬qU (p∧�♦r)).
Algorithm 2 can inform that from now on, one can expect only a negative verdict.
If the next event is {}, Algorithm 2 will inform that no further verdict can be
given, hence monitoring can be aborted.

5 Conclusion

Temporal specification is often focused on infinite execution sequences. This
abstracts the idea that the correctness requirements for a system should not
depend on its bounded execution. Although model checking is capable of check-
ing such properties for finite state systems, one can never exhaustively test an
infinite execution. Runtime verification offers an alternative approach to model
checking. It can be applied directly to the system itself, and it can help with
testing the system when its state space is prohibitively high. On the other hand,
runtime verification is limited to observing at any point only a finite portion of
the execution.

The notion of monitorability identifies the kinds of verdicts that one can
obtain from observing finite prefixes of an execution. Monitorability deals with
the ability to obtain a verdict, positive or negative, given a finite prefix of an exe-
cution. In particular, non-monitorability characterizes situations where it may
not be worthy anymore to wait for a verdict. However, we argued that the defini-
tion of monitorability needs to be refined, allowing to monitor properties where a
priori there are some useful verdicts that may be observed, even if after observing
some prefix of the execution these verdicts are not available anymore.

232 D. Peled and K. Havelund

Fig. 2. Classification of properties according to monitorability.

We studied here the connection between monitorability and Lamport’s clas-
sification of properties as safety and liveness. To do that we needed to extend
this classification using the dual classes, guarantee and morbidity, and complete
the picture with another property that we termed quaestio.

We also provided algorithms for checking whether a property is monitorable
or not, whether it belongs to a certain monitorability class, and what kind of
verdict (positive or negative) we can expect after monitoring a certain prefix
against a given property. This is useful to decide whether one should apply run-
time verification for a given temporal property given expected verdicts, and what
kind of verdicts one can still obtain after a given monitored prefix. It also allows
to recognize when, during runtime verification, there is no further interesting
information that we can expect, consequently abandoning the monitoring.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

3. Basin, D.A., Jiménez, C.C., Klaedtke, F., Zalinescu, E.: Deciding safety and live-
ness in TPTL. Inf. Process. Lett. 114(12), 680–688 (2014)

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1

Refining the Safety–Liveness Classification of Temporal Properties 233

4. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Method. 20(4), 14:1–14:64 (2011)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

7. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verifica-
tion. Theor. Comput. Sci. 537, 29–41 (2014)

8. Drissi-Kaitouni, O., Jard, C.: Compiling temporal logic specifications into
observers, INRIA Research Report RR-0881 (1988)

9. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

10. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? STTT 14(3), 349–382 (2012)

11. Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: An experiment in automatic genera-
tion of test suites for protocols with verification technology. Sci. Comput. Program.
29(1–2), 123–146 (1997)

12. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) PSTV
1995. IFIPAICT, pp. 3–18. Springer, Boston (1996). https://doi.org/10.1007/978-
0-387-34892-6 1

13. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

14. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

16. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

17. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

18. Kupferman, O., Vardi, G.: On relative and probabilistic finite counterability. For-
mal Meth. Syst. Des. 52(2), 117–146 (2018)

19. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth.
Syst. Des. 19(3), 291–314 (2001)

20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977)

21. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 1

22. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer, New York (1992)

https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-47166-2_1

234 D. Peled and K. Havelund

23. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14, 249–289
(2011)

24. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). https://doi.
org/10.1007/978-0-387-35578-8 13

25. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

26. Baier, C., Bertrand, N., Größer, M.: The effect of tossing coins in omega-automata.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 15–29.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 2

27. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–512 (1994)

28. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
In: STOC 1982, pp. 159-168 (1982)

29. Thomas, W.: Automata on infinite objects, handbook of theoretical computer sci-
ence. In: Formal Models and Semantics, vol. B, pp. 133–192 (1990)

30. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci. 32(2), 183–221 (1986)

https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-642-04081-8_2

Future Security: Processes
or Properties?—Research Directions

in Cybersecurity

Ulrike Lechner(&)

Fakultät für Informatik, Universität der Bundeswehr München,
Neubiberg, Germany

Ulrike.Lechner@unibw.de

Abstract. Security in critical infrastructures is a highly relevant topic and as the
level of security of critical infrastructures needs to be increased the need for
adequate methods and tools is apparent. “Processes and their properties” is the
analysis perspective through which we revisit empirical data from our research
on critical infrastructures to identify future research directions in security.

Keywords: Critical infrastructures � IT security � Case studies � Processes

1 Introduction and Motivation

Public perception of Cybersecurity is being associated with trendy hackers penetrating
IT systems and cool guys who detect and analyze malware on the fly. “I can do more
damage on my laptop sitting in my pajamas before my first cup of Earl Grey than you
can do in a year in the field” – this is how the new, young, cool Q describes his Cyber
skills to the more traditional 007 in the scene in which the new quartermaster Q and
James Bond meet for the first time in Skyfall. The atmosphere in this first meeting is
mellow as Q and Bond discuss that youth is no guarantee for innovation and age no
guarantee for efficiency and Q hands over a -traditional- tool for the upcoming mission
that includes a solid amount of Cyber. This meeting kicks off the joint endeavor to
protect the critical infrastructure of the modern society.

In fact, safety of critical infrastructures, and in particular IT security in critical
infrastructures is one of today´s major challenges. “Critical infrastructures (CI, KRI-
TIS) are organizational and physical structures and facilities of such vital importance to
a nation’s society and economy that their failure or degradation would result in sus-
tained supply shortages, significant disruption of public safety and security, or other
dramatic consequences.” [1] The increasing use of information and communication
technology creates new areas of vulnerability and dependencies [1] and current
geopolitical developments heighten the levels of risk.

Critical infrastructure providers need to increase the level of security and they also
need to meet – in our case – requirements from German and European legislation as,
e.g., the German IT Security Act [2]. According to the German IT Security Act (IT
Sicherheitsgesetz, Gesetz zur Erhöhung der Sicherheit informationstechnischer Sys-
teme) Critical infrastructures need to adhere to the state of the art in IT security and

© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 235–246, 2019.
https://doi.org/10.1007/978-3-030-22348-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_15

have an information security management system including risk management. Every
two years, CIs need to validate their security standards. Increasing the level of security
and validating and certifying security measures is an enormous effort – given the
complexity of the technical infrastructures of CIs. Think e.g. of energy plants, trans-
portation infrastructure or hospitals with countless components. Note that the situation
is similar in other countries as, e.g. the NIS directive requires the EU member states to
have minimum capabilities and standards in IT security. Also, nations as US, Russia or
China issued regulations to increase the security levels of their CIs (for a comparison of
national cybersecurity regulations see, e.g. [3]).

Given the effort that information security management takes, it is apparent that both
innovation, effectiveness and efficiency are needed. This is the start point of the
endeavor to revisit established methods for processes and properties to increase security
of critical infrastructures. A lot of research is done in, e.g., technologies to monitor
networks, to identify threats or in endpoint security while all the processes pose a huge
potential for method and tool support as well as for innovation. This “world of pro-
cesses” is our particular focus. We argue that the domain of cybersecurity is a universe
of processes. There are

• business processes and workflows in production and service provisioning, facili-
tated by information systems and networked ICT infrastructures,

• attack chains, i.e. processes with various process steps and complex structures that
can adapt themselves to components and architectures of the targeted systems,

• processes and workflows of IT service and IT security management in production
and service provisioning.

Moreover, these three kinds of processes interact with implications for vulnera-
bilities and security levels (cf. e.g. [4]). Formal and semi-formal methods have been
employed to increase dependability of cyber-physical systems or of workflows and
processes. It seems however, that little of this knowledge, methods and tools is utilized
in the process and workflow systems in information security management systems of
critical infrastructures. Critical infrastructures with their industrial control systems can
be seen as reactive systems according to [5]. We are particularly interested in formal
methods as, e.g. [6–9] on the analysis of processes and the design of workflows that
guarantee properties as e.g. security and safety properties. This is where we start with
our endeavor to explore research directions and first step in this journey is about the
human factor.

2 Risk Perception and Reaction - the Human Factor

Humans are considered to be a weak spot in security and safety and one of the
weaknesses is risk perception and risk response: We asked IT security experts in the
two studies Monitor and Monitor 2.0 [10] of IT security in critical infrastructures for an
assessment of the threat level of their own organization, of their industrial sector and
for economic region Germany (Fig. 1) and distinguish all participants, KRITIS, i.e. the
participants that are German critical infrastructure according to the German IT Security
Act and small and medium sized enterprises (SMEs). The Monitor 2.0 study had 69

236 U. Lechner

study participants and Monitor 1.0 had 79 participants. Participants were invited to the
study via email, via multiplicators and by individual telephone acquisition. More
information about method and demographics is available at monitor.itskritis.de.

There is a distinctive pattern in the answers to these questions. On average, study
participants rate the threat level to their own organization lower than the risk to their
sector and this threat level again lower than threat level for Germany (Fig. 1). For the
ability to defend against cyberattacks the converse applies [11]: the capabilities of their
own organization are rated higher than the capabilities of the sector and these capa-
bilities are again higher than the capabilities of the economic region Germany.

This pattern in risk perception is known in literature: people in general estimate
their own risk rather optimistic – a phenomenon known as optimism bias [12]. That
such perception of individual risks is a deeply rooted human trait illustrates the Nobel
Memorial Prize in Economic Sciences 2017 that was awarded to Richard Thaler for his
work in behavioral economics [12].

Fig. 1. Threat level perception [10]

Fig. 2. Impact factors on IT security in an organization [10]

Future Security: Processes or Properties? — Research Directions in Cybersecurity 237

We asked for the influences on security in an organization. We find (cf. Fig. 2) that
attacks against the organization and regulations have the strongest impact on IT
security measures in an organization while the impact of risk analysis on IT security in
an organization seems to be weaker.

We argue, that not only individual risk perception but also the systematic risk
management in organizations seems not to be the driving factor in increasing the level
of security. Critical infrastructure providers rely on IT security information from out-
side: they source information from public administration, from their sector, from
personal contacts as well as from news portals and security service providers [13].
Processes of scouting IT security information, e.g., on novel malware or threats against
the own organization are not well defined, not automated and not systematic. In a study
on Cybersecurity processes, we find that for many organizations it seems rather unclear
on whether IT security related information to the outside contributes to the security
within an organization and what the processes eventually look like [11] (Fig. 3).

A Litmus test for the level of perceived risk are the activities, when there is news
about a novel cyberthreat. We asked for the reactions to news about four specific
instances of malware: WannaCry, Mirai, Industroyer and (Not)Petya. All four instances
of malware had been extensively covered in the media, by professional security service
providers and by public administration. Figure 4 summarizes the results. For a sig-
nificant percentage of organizations, the threat – in all four cases – was known in
advance and measures were already taken in advance, most organizations however
reviewed their existing measures, while only a minority took either no action or
implemented new IT security measures. One of the IT experts in critical infrastructures

Fig. 3. Reactions of an organization to specific threats [10].

238 U. Lechner

commented on that figure that – “yes, for every new malware we look what that means
for our processes”.

This illustrates on the one hand that critical infrastructure providers take their
responsibility seriously and scrutinize their IT security measures and their processes
whenever novel malware appears on stage. Note that critical infrastructure providers,
i.e. that are categorized as Kritis according to the German IT Security Act are in general
more active – they review processes more often and they take more often new measures
than providers of (non-critical) infrastructures [10]. This reaction to novel threats can
be seen as an indicator it seems that more support in “high level understanding of the
process landscape” could be beneficial for security.

To sum up this brief impression on the human factor in IT security: It is a deeply
human trait to be optimistic, to underestimate risks and threats in particular to oneself
of one´s organization, to respond not rationally to abstract risks in the future. There are
indicators that the institutionalized systematic risk management as part of the infor-
mation security management in organizations is not the main driving factor and that
better understanding of the process landscape could contribute to make IT security less
tedious. The Nobel laureate Richard Thaler suggests that it takes smart decision
architectures and a nudge strategy to ensure that humans make the right, the safe and
future oriented decisions [12]. Nudge is a concept in behavioral science, political
theory and economics which proposes positive reinforcement and indirect suggestions
as ways to influence the behavior and decision making of groups or individuals.
Nudging contrasts with other ways to achieve compliance, such as education, legis-
lation or enforcement [12]. This means, we need to understand the conflicts in decision
making about security and safety to look for smart decision architectures and for
rigorous methods in the analysis of processes and the level of security. A study of real
world cases provides insights in the challenges.

3 Security and Processes – the Case Study Series Case Kritis
Revisited

IT security in critical infrastructures requires a balance for human, organizational and
technical security measures and has to do with conflicting goals of different stake-
holders. This part in our considerations on processes and properties, revisits the Case
Kritis case study series [14, 15].

Case studies are considered to be a method to study complex, real world phe-
nomena [16] and therefore a suitable method to study IT security measures in critical
infrastructures. Our approach is inspired by the eXperience method for case studies
[17] with its holistic approach to business strategy, processes and implementation and
the inductive development of theory from case studies [18]. The case studies were
conducted from 2015 to 2017 and the cross case study was done in 2017 and 2018.

Particular to this case study series is the focus on processes, more precisely on
business processes together with other models of deployment views and network
structure together with risk and cost considerations. The notation for modeling pro-
cesses is the Event Driven Process Chain.

Future Security: Processes or Properties? — Research Directions in Cybersecurity 239

The nine cases with organization, title, case study authors and the case type
(successful project, technology or organizational culture) together with a cross case
analysis are summarized in Table 1. Note that one case study (Dairy) is anonymized
due to the sensitivity of the topic for the organization. The cases are presented briefly
below.

Fig. 4. Examples for process models in the case studies [14, 15]

Table 1. The case studies

Key Title (Original Title) Authors

Bundeswehr Working Group IT-SecAsBw – How a working ground fosters
IT Security Awareness inland and abroad
(AG IT-SecAwBw – Wie eine Arbeitsgruppe IT-Security
Awareness im In- und Ausland fördert)

A. Rieb,
G. Opper

genua gmbh Remote Maintenance in Critical Infrastructures
(Fernwartung Kritischer Infrastrukturen)

A. Rieb

itWatch
GmbH

A Secure Standard Process for Digital Crime Scene Photography
with DeviceWatch (Ein sicherer Standardprozess für die
Digitale Tatortfotografie mit DeviceWatch)

S. Lücking,
S. Dännart

kbo Balanced Risk Management for Sustainable Security
(Ausgewogenes Risikomanagement für nachhaltige Sicherheit)

T. Kehr,
S. Dännart

Dairy IT Security in a Dairy: Family Tradition and High Availability
(IT-Sicherheit in der Molkerei: Familientradition und
Hochverfügbarkeit)

S. Dännart

PREVENT IT Security for Business Processes in the Financial Sector: The
Management Solution PREVENT (IT-Sicherheit für
Geschäftsprozesse im Finanzsektor: die Managementlösung
PREVENT)

S. Rudel,
T. Bollen

(continued)

240 U. Lechner

The case “Working Group IT-SecAsBw – How a working ground fosters IT
Security Awareness inland and abroad” is about an IT security awareness campaign:
Key visual of the campaign is a power plug with the symbol of a face – a symbol that
IT security is both about technology measures and the human factor alike. The PIA
campaign exemplifies a collaborative, longitudinal IT security activity with a tradition
to engage IT security staff and with a minimum of dedicated resources.

Case “Remote Maintenance in Critical Infrastructures” tackles with remote
access for maintenance one of the 10 most relevant IT security topics in Critical
Infrastructures according to BSI [19]. The remote, secure login for maintenance pur-
poses is the core process considered in the case study. Remote access via a single
interface, the functionality to control and monitor “sessions” for remote maintenance
increases the security level of critical infrastructures. The single interface for all
maintenance service providers and all service operation decreases complexity in
securing remote access while the solution is easy to integrate in existing IT landscape in
a critical infrastructure.

The case “A Secure Standard Process for Digital Crime Scene Photography”
presents an innovative secure-by-design solution for crime scene photography and the
handling of digital crime scene photos in police work. Police officers may use any
digital camera, the photos are watermarked with a signature when transferred in the
police information system such that authenticity of pictures is maintained throughout
police work. Amortization took only three years and the new process is considered to
be modern as well as user friendly as it saves time and resources.

Case “Balanced Risk Management for Sustainable IT Security” analyses the
reaction to ransomware threats against hospitals. While the first reaction to an imminent
ransomware was a complete separation of the hospital from the Internet, the hospital
established to a more refined strategy later with a considerable speed up of IT security
processes and an increased priority for IT security investments. The novel process of
security incident response includes all stakeholders in the hospital as well as external
service providers. Joint responsibility for IT security measures as well as a proved and

Table 1. (continued)

Key Title (Original Title) Authors

SAP SE Information Security at SAP SE: The Longest Human Firewall
in the World
(Informationssicherheit bei SAP SE: Die längste Human Firewall
der Welt)

U. Lechner,
T. Gurschler,
A. Rieb

Stadt Gera Coordination Center East Thuringia: IT-Security in a
Coordination Center
(Zentrale Leitstelle Ostthüringen: IT-Sicherheit in einer
Leitstelle)

T. Gurschler,
A. Rieb,
M. Hofmeier

ugarbe
software

Information Security with ClassifyIt: Information Security
through Digital Classification of Documents and Emails
(Informationssicherheit durch ClassifyIt: Informationssich.
durch gestützte Klassifizierung von Dokumenten und E-Mails)

A. Rieb

Future Security: Processes or Properties? — Research Directions in Cybersecurity 241

tested communication policy rounds up the process. A few months after the process
was first implemented in the reaction to the ransomware threat: the hospital group was
successful in the defense against a considerable threat.

Case “IT Security in the Food Industry: Tradition and High Availability”
reports on a safety and security culture of a family owned dairy in a rural area. The
processing of sensitive primary products as raw milk requires high availability of
production lines. The case is about the strategy of the CIO – he integrates traditional
organizational and modern IT security measures in a successful digitalization strategy.
Cornerstone of his strategy are close relations to IT staff, the integration of IT staff and
technicians into one team with uniform IT processes, training of staff and the loyalty of
staff over generations to the company as the main employer in town. Employees
practice essential IT security routines as e.g., restoring data from backups in their daily
work, new IT technology is only implemented when staff feels confident to handle
disruptions and IT staff is encouraged to identify and experiment with potentially useful
IT innovations. The case explores also IT security measures to ensure high availability
as real time backups of the core SAP system or VLan encapsulation of production lines.

The case “IT Security for Business Processes in the Financial Sector – The
Management Solution PREVENT” demonstrates real-life complexity of a compre-
hensive enterprise level risk management. In this case study, the business process is the
unit of analysis in risk management. The underlying business case is a (fictitious)
computing center of a bank that provides business processes as a service to several
(fictitious) client banks. The risk management approach comprises a unified way to
source all risk relevant data and a collection of tools (simulations, analytic methods) for
risk analysis. The case exemplifies the novel risk management approach which an
analysis of interdependencies between infrastructure, information system and business
process level. The case argues about the advantages such a comprehensive risk man-
agement and the business models for which such a comprehensive risk management is
a prerequisite.

“Information Security at SAP SE: The Longest Human Firewall in the World”
is a case study on the information security campaign at SAP SE. Key visual of the
campaign is a chain of SAP employees with a group handshake with crossed arms – a
symbol for the joint effort to protect the company. Employees take part in an individual
(mandatory) information security training and can then become part of the human
firewall with a picture and an individual statement on information security. The case
study highlights the pivotal role of employees in information security and that infor-
mation security eventually benefits from “fun” but also from perseverance.

Case study “Coordination Center East Thuringia: IT-Security in a Coordi-
nation Center” discusses availability of emergency services: The alarm process from
an emergency call to alerting the emergency services need to be available despite
outage of IT components. The case study presents fallbacks and redundancies as well
as IT security concepts to ensure highest availability of the emergency number 112
with emergency services. It addresses questions in the further development of infor-
mation and communication technologies in a coordination center of emergency ser-
vices. Success factors are the volition of staff not only to use but to understand the
infrastructure with its technologies and to get to the bottom of any problem to solve it.

242 U. Lechner

Case “Information Security by Digital Classification of Documents and E-
Mails” is about a tool to ensure confidentiality of information. ClassifyIt is a PlugIn for
Microsoft Office that support users in the classification of documents and emails.
Together with a firewall it ensures that only documents and emails with adequate
classification can leave the organization and that encryption that is adequate for the
document is used for sending it via email. The software is distributed via standard
software distribution tools, and it can be customized individually, interfaces for users
and administrators are perceived to be user friendly and it needs no Internet connection.

The cases illustrate that IT security in critical infrastructures illustrate the relevance
of processes for the implementation of IT security in critical infrastructure. More
security adds new process steps and new processes or innovates existing processes. In
our motivating example, Q suggests a traditional tool to master the cyber-challenge.
The next section reviews formal methods to contribute to the new field of
cybersecurity.

4 Towards Future Research Directions

This analysis revisits the cases and goes beyond the formal cross case-analysis as
presented in [14]. Our observations on processes and IT security management are:

• Processes play a pivotal role in implementation of security.
• Management of complexity is important: The case “PREVENT” exemplifies the

complexity of a comprehensive risk assessment and that IT security management
needs a dedicated approach to data collection and analysis with adequate tool
support. The SAP case illustrates that measurements of the level of IT security can
be relatively simple (SAP uses only a couple of questions) – what matters is
perseverance over several years to see how the level of security changes over time.
All measures are bundled in one Web-portal and interference with other parts of the
processes is limited.

• Several cases illustrate strategies in the decisions and tradeoffs to be made in IT
security for successful solutions. In the cases of on “Balanced Risk Management”
illustrates that more security requires more complex processes in IT administration
with additional steps and with more stakeholders. The case on the Coordination
Center East Thuringia exemplifies how availability and IT security need to be
balanced: the coordination center needs to maintain availability and short response
times. IT security measures are challenged whether they eventually decrease
availability by, e.g. reducing redundancy and introducing new, single point of
failures.

• The cases on IT security products (Remote Maintenance, ClassifyIt) argue that
integration in the existing IT landscape of these technologies takes little effort – the
security technologies are seamless to integrate and require limited investments in
trainings. They integrate in existing processes and standardize processes.

• The case on the novel process of crime scene photography illustrates the advantages
of an innovative, secure-by-design solution - the new process is more modern, more
efficient than the old, analogous way of handling photographs.

Future Security: Processes or Properties? — Research Directions in Cybersecurity 243

The cases illustrate strategies in practice and the implications of increasing the level
of security in critical infrastructures – security tends to add complexity. IT Security in
Critical Infrastructure is about processes – the “process and properties” perspective
guides our analysis with the aim to take advantage of methods and tools for the new
field of IT security of critical infrastructures. We identify four themes:

Our first point is about agility. IT security is reactive – every novel threat requires
to review the processes (cf. Sect. 2) and the systematic risk management within an
organization seems not to be the main driver for developments. Agility is one of the
core themes in digitalization as products and services need to be adapted to strategic
changes in business models and in services [20]. So, it needs to be “easy” to transform
business processes and IT security likewise according to both strategic and security
needs. We argue that knowing the process landscape, understanding its key properties
is prerequisite in business transformation in case of elevated levels of security. Model
checking processes as in e.g. [7, 21] would help to identify and validate key properties
to facilitate more agility.

Retrofitting existing infrastructures is – in practice – a challenge and necessity,
black box methods as described in [22] an instrument to add security by not interfering
with the core properties of a system and the interfaces of existing infrastructure. Given
that many of such infrastructures use protocols from the pre-IP-era and the interfaces
may not tolerate novel IT security measures as penetration testing and could be
damaged by malware then such methods could contribute to security.

Scalability is the second concern that needs to be addressed in the field of IT-
security for critical infrastructures. Standard processes with variations are important to
maintain complexity when adding new (security systems). From our joint research with
critical infrastructure providers in ITS|KRITIS we understand that architectures and
various applications, as, e.g., identity and access management solutions are designed
with security requirements and reduce complexity by using standard processes. We
also understand that a plethora of novel security applications needed to be integrated in
critical infrastructures. Each application should come with a plug-and-play interface to
be easily integrated, e.g., in a workbench. From a security management and point of
view, every application should come also with a plug-and-play process model to be
able to validate the properties of the process landscape – yet for different kind of
processes than that what is being studied in [6, 23]. Also, each application needs to
come with a plug-and-play risk model such that the risk model of the enterprise, e.g. in
form of stochastic processes can be updated as easy as the IT infrastructure.

Also, critical for security is the scheduling of processes – the security of process
landscape with operational processes, security process and maintenance processes
crucially depends on the schedule of maintenance and security processes. Also, the
predictability of schedule could be an issue in case of advanced persistent threats.
Canzani et al. demonstrate on basis of system dynamics and game theory that the
dynamics of attacker-defender games and the interdependencies of critical infrastruc-
ture require rigorous methods [4]. Here, more research would contribute to security and
also to a more efficient use of resources and more efficient responses in security. The
work of B. Steffen exemplifies the feasibility of advanced, mathematical methods in
scheduling [24].

244 U. Lechner

5 A Discussion on Future Security

IT security in critical infrastructures needs a next generation approach – we argue that
the methods of scheduling, formal methods or checking properties will advance the
field of IT security in critical infrastructures as they facilitate better designs of the
processes in IT security and in critical infrastructures. We also argue, that IT security is
in the domain of Critical Infrastructure is both about novel security technology and
about processes and smart decision architectures. We identify agility, retrofitting,
scalability and scheduling as future research topics.

Security is a question of both innovation and security – similar to the discussion
between Bond and Q – traditional tools many help to master the cyber-challenges in
novel future security approaches. We hope that the journey does not stop here and that
we initiate a discussion for new research directions.

Acknowledgements. This research is funded by the German Federal Ministry of Education and
Research under grant number FKZ: 16KIS0213K. I would also like to thank all authors and
coauthors and co-editors of the case study series, all case study partners and interviewees for the
insights as well as our project partners from VeSiKi and our fellow projects from ITS|KRITIS for
the support of the case study series. We also thank the anonymous reviewers for their valuable
comments.

References

1. Federal Office for Information Security: Recommendation for critical information infras-
tructure protection. Website about the protection of critical infrastructure maintained in
cooperation by the BBK and the BSI. www.bsi.bund.de/EN/Topics/Criticalinfrastructures/
criticalinfrastructures_node.html

2. Bundesgesetzblatt: Gesetz zur Erhöhung der Sicherheit informationstechnischer Systeme
(IT-Sicherheitsgesetz, Bundesgesetzblatt Jahrgang 2015 Teil I Nr. 31) (2015)

3. Kipker, D.-K., Müller, S.: Internationale Cybersecurity-Regulierung (2018)
4. Canzani, E., Kaufmann, H., Lechner, U.: An operator-driven approach for modeling

interdependencies in critical infrastructures based on critical services and sectors. In:
Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol.
10242, pp. 308–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_27

5. Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems track
introduction. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 535–
538. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_37

6. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.: Rigorous
examination of reactive systems. Int. J. Softw. Tools Technol. Transf. 16, 457–464 (2014)

7. Boelmann, S., Neubauer, J., Naujokat, S., Steffen, B.: Model driven design of secure high
assurance systems: an introduction to the open platform from the user perspective. In:
Proceedings of the International Conference on Security and Management, p. 145 (2016)

8. Kunnappilly, A., Legay, A., Margaria, T., Seceleanu, C., Steffen, B., Traonouez, L.-M.:
Analyzing ambient assisted living solutions: a research perspective. In: 12th International
Conference on Design Technology of Integrated Systems in Nanoscale Era. S., pp. 1–7
(2017)

Future Security: Processes or Properties? — Research Directions in Cybersecurity 245

http://www.bsi.bund.de/EN/Topics/Criticalinfrastructures/criticalinfrastructures_node.html
http://www.bsi.bund.de/EN/Topics/Criticalinfrastructures/criticalinfrastructures_node.html
http://dx.doi.org/10.1007/978-3-319-71368-7_27
http://dx.doi.org/10.1007/978-3-319-47166-2_37

9. Varriale, A., Di Natale, G., Prinetto, P., Steffen, B., Margaria, T.: SEcubeTM: an open
security platform - general approach and strategies. In: International Conference on Security
and Management (SAM 16). S. pp. 131–137 (2016)

10. Lechner, U.: Monitor 2.0 IT-Sicherheit Kritischer Infrastrukturen (2018)
11. Bhanu, Y., et al.: A cyberthreat search process and service. In: ICISSP 2016 - Proceedings of

the 2nd International Conference on Information Systems Security and Privacy (2016)
12. Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions About Health, Wealth, and

Happiness. Yale Univ Pr (2008)
13. Sorbi, M.J., Mak, S.B., Houtveen, J.H., Kleiboer, A.M., van Doornen, L.J.P., Sorbil, M.J.:

Mobile Web-based monitoring and coaching: feasibility in chronic migraine. J. Med. Internet
Res. 9, 14–23 (2007)

14. Lechner, U., Dännart, S., Rieb, A., Rudel, S.: IT-Sicherheit in Kritischen Infrastrukturen:
Fallstudien zur IT-Sicherheit in Kritischen Infrastrukturen. Logos Verlag, Berlin (2018)

15. Dännart, S., Diefenbach, T., Hofmeier, M., Rieb, A., Lechner, U.: IT-Sicherheit in
Kritischen Infrastrukturen – eine Fallstudien-basierte Analyse von Praxisbeispielen. In:
Drews, P., Burkhardt, F., Niemeyer, P., und Xie, L. (Hrsg.) Konferenzband Multikonferenz
Wirtschaftsinformatik 2018: Data driven X - Turning Data into Value. Leuphana Universität
Lüneburg, Lüneburg (2018)

16. Yin, R.K.: The case study crisis: some answers. Adm. Sci. Q. 26, 58–65 (1981)
17. Schubert, P., Wölfle, R.: The experience methodology for writing IS case studies. In:

Americas Conference on Information Systems, pp. 19–30 (2006)
18. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4),

532–550 (1989)
19. BSI: Industrial Control System Security: Top 10 Bedrohungen und Gegenmaßnahmen 2016

(2016)
20. Margaria, T., Steffen, B.: Service engineering: linking business and IT. Computer 39, 45–55

(2006)
21. Hähnle, R., Steffen, B.: Constraint-based behavioral consistency of evolving software

systems. BT - Machine Learning for Dynamic Software Analysis: Potentials and Limits -
International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, 24–27 April 2016 (2016).
Revised Papers, https://doi.org/10.1007/978-3-319-96562-8_8

22. Nissen, V., Stelzer, D., Straßburger, S., Hrsg, D.F.: Volker Nissen, Dirk Stelzer, Steffen
Straßburger und Daniel Fischer (Hrsg.) Multikonferenz Wirtschaftsinformatik (MKWI) 2016
Band II. (2016)

23. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In: BT -
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, Santa Barbara, CA, USA, July 10–14, 2017, (2017). http://doi.acm.
org/10.1145/3092282.3098206

24. Chadli, M., et al.: High-level frameworks for the specification and verification of scheduling
problems. Int. J. Softw. Tools Technol. Transf. 20, 397–422 (2018)

246 U. Lechner

http://dx.doi.org/10.1007/978-3-319-96562-8_8
http://doi.acm.org/10.1145/3092282.3098206
http://doi.acm.org/10.1145/3092282.3098206

Dortmund 1997 – Today

Statistical Prediction of Failures
in Aircraft Collision Avoidance Systems

Yuning He1(B), Dimitra Giannakopoulou1, and Johann Schumann2

1 NASA Ames, Moffett Field, CA 94035, USA
{yuning.he,dimitra.giannakopoulou}@nasa.gov

2 SGT, NASA ARC, Moffett Field, CA 94035, USA
johann.m.schumann@nasa.gov

Abstract. ACAS X is the next generation onboard collision avoidance
system aimed at replacing the current standard TCAS for commercial
aircraft. On-board collision avoidance systems are designed to help avoid
dangerous Near Mid-Air Collision (NMAC) scenarios. Despite the fact
that such systems can be very efficient in doing so, NMACs may still
occur under rare circumstances. In this paper, we study the high dimen-
sional time-series state space for encounters of aircraft equipped with
ACAS X. We describe statistical modeling and learning techniques for
predicting whether and when NMAC situations may occur. An itera-
tive variable selection algorithm identifies the most influential variables
for NMAC attribution. We also present a methodology for finding safety-
boundaries, characterized as geometrical objects, that separate safe oper-
ational regions from dangerous ones where NMACs can occur. Even
though our approach is presented in the context of ACAS X, it can be eas-
ily extended to numerous other domains including robotics, autonomous
spacecraft, or self-driving cars.

1 Introduction

Maintaining safe separation among aircraft in the air space is extremely impor-
tant. Despite careful planning of the flight paths and supervision by air-traffic
control, situations can arise where aircraft come dangerously close to each other
(termed Near Mid-Air Collisions, or NMACs). A high density of aircraft and the
increased use of Unmanned Aerial Vehicles (UAVs) exacerbate the problem.

Onboard collision avoidance systems predict whether an NMAC might occur
in less than one minute and produce “advisories”, i.e., recommended maneuvers
for the pilot to avoid the situation. The current collision avoidance standard,
TCAS [1], is required on all large passenger and cargo aircraft worldwide, and
has been successful in preventing mid-air collisions. To increase robustness and
safety, the Federal Aviation Administration (FAA) has been developing a new
system, ACAS X, which uses probabilistic models to represent uncertainty. Even
though this novel approach leads to a significant improvement in safety and
operational performance, it is not able to completely eliminate NMACs under

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 249–267, 2019.
https://doi.org/10.1007/978-3-030-22348-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_16

250 Y. He et al.

all possible circumstances. More generally, algorithms designed to operate in
highly autonomous environments (e.g., UAVs or swarms of UAVs), may, under
rare conditions, fail to produce the desired outcome.

The aim of this work is to predict if/when autonomous algorithms fail, as
well as to characterize their unsafe regions (often called “coffin corners” [2] in
aircraft dynamics); once the system is in such a region, it will inevitably cause the
algorithm to eventually produce an undesirable outcome. Even though our work
is applicable to a variety of algorithms, we focus our study on ACAS X, both
because of its relevance, but also because we have worked with it in the past. In
ACAS X, the description of the movements of the two aircraft, pilot reaction,
and advisories issued produce high-dimensional time series. In principle, the
prediction of NMACs can be done through forward simulation of the system,
but its high dimensionality causes severe scalability issues.

We have developed a framework based on statistical techniques for prediction
of specific events and characterization of safety boundaries for high dimensional
time series data. We use a novel iterative algorithm for the reduction of the
number of variables, which makes the prediction algorithm much more efficient.
Our algorithm for the detection and characterization of time-variant boundaries
uses Bayesian techniques and advanced active learning for high efficiency and
quality. We have applied this framework to ACAS X to specifically answer the
following questions: (a) given a current state of both aircraft, can we predict if
an NMAC will occur within the next 50 s and if so, how far in the future will
the NMAC occur; and (b) what are the boundaries between safe behavior versus
unsafe behavior in the aircraft state space?

Our framework has several applications in practice. For algorithm design and
improvement, variable reduction provides a detailed and statistically founded
understanding of which variables to focus on. For test-case generation, our sta-
tistical prediction models and safety boundaries can guide stress testing tools
towards “rewarding” regions of the state space. For example, Adastress [3]
uses reinforcement learning to generate high probability NMAC scenarios for
ACAS X. Our models could be used to guide Adastress in a more targeted fash-
ion. Safety regions can lead to a substantial reduction of generated test cases,
as it might be sufficient to test for only one scenario in a specific region.

Finally, during runtime, statistical models can monitor a system and warn
about unexpected undesirable situations. In scenarios where missions of different
value are flown, such models could additionally assist with determining corrective
actions. For example, in the case of air taxi versus packet delivery by a UAS, the
packet delivery could be aborted to avoid loss of human life. Similarly, dynamic
monitoring against safety boundaries provides an efficient means of steering the
system away from dangerous coffin corners.

The remainder of the paper is structured as follows: Sect. 2 discusses related
work, and Sect. 3 briefly describes the ACAS X system and our data sets.
Sections 4 and 5 present our approach for NMAC prediction, and safety boundary
learning, respectively, together with associated experiments. Section 6 summa-
rizes the paper and discusses future work.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 251

2 Related Work

Our work on prediction of NMACs in ACAS X uses and customizes existing
techniques developed for time-series data; an overview is provided in [4].

Modeling safety boundaries in a high-dimensional space requires effective
sampling techniques. Our work builds on approaches based upon active learning,
e.g., Active Learning MacKay (ALM, [5]) and Active Learning Cohn (ALC, [6]).
Such sampling techniques compare favorably to more traditional Markov-Chain
Monte-Carlo (MCMC) based alternatives. We also incorporate a heuristic for
the selection of candidate sampling points based on expected improvement (EI)
statistics. The general approach, first presented in [7], cannot be directly used for
boundary computation. Our work defines an EI function that effectively explores
the sampling space to discover boundaries.

Our work contributes to several efforts for the verification and validation
of the safety-critical ACAS X system. Essen and Giannakopoulou [8,9] devel-
oped the Verica tool and applied probabilistic verification and synthesis to an
early version of ACAS X. Their aim was to study the impact of design issues
such as model discretization and the selection of costs for the dynamic program-
ming. Jeannin et al. [10] analyzed ACAS X using hybrid approaches. They per-
formed analysis on hybrid models of the system. They then used the KeYmaera
tool to compute safe regions for restricted types of encounters and for a single
advisory. Safe regions characterize the types of advisories that are safe for the
corresponding encounter. ACAS X advisories for specific encounters can then be
compared against their corresponding safe regions. The advantage of taking a
hybrid approach is that it does not require discretization. However, the entire
hybrid model for ACAS X is prohibitively large, which forced the authors to
work with a restricted number of scenarios.

In [11], the authors define conformance relations to explore the relationship
of abstract models that are used the in the design of ACAS X and the real world.
Lee et al. [3] have developed Adastress, a tool that uses reinforcement learning
to generate high probability NMAC aircraft encounters. In addition, Adastress
uses grammar-based techniques to explain characteristics of generated NMAC
encounters at a higher level. Finally, [12] uses the Reluplex method for the formal
analysis of a trained neural network that implements an ACAS X variant for
unmanned aircraft.

Note that NMAC events only occur very infrequently in practice. To be able
to build better predictive models, we used Adastress to create a dataset that
includes a high enough percentage of NMAC scenarios. Alternatively, one could
use rare event modeling techniques such as [13].

3 The ACAS X System

This section provides background information on the ACAS X system, and the
relevant data that we used in our study.

The on-board collision avoidance system ACAS X [14] aims at preventing
catastrophic midair collisions between commercial transport aircraft by alerting

252 Y. He et al.

the pilots and suggesting evasive maneuvers. It models aircraft encounters with
a Markov Decision Process (MDP) and uses dynamic programming to obtain
optimal decision tables for on-board processing. ACAS X models uncertainties
in pilot behavior as well as environmental influences as statistical noise. We use
the term loss of horizontal separation (LHS) to describe the situation where two
aircraft are within 500 ft from each other ignoring their altitude difference. A
Near Mid-Air Collision (NMAC) occurs when the altitude difference between
the two aircraft is less than 100 ft when the LHS occurs.

This work targets actual and simulated flight data, as opposed to data
obtained from the MDP that ACAS X is based on. ACAS X monitors the entire
airspace in the vicinity of an aircraft and resolves conflicts by iteratively ana-
lyzing pairs of aircraft, within a time horizon of 50 s. We therefore consider
encounters of length 50 s, between two aircraft equipped with ACAS X. Note
that an NMAC may or may not occur during this time frame. In fact, NMAC
scenarios are rare in actual flight and simulation tests.

... 30 40 50
scenario time[s]

0

20

40

60

80

100

120

140

N
um

be
r

of
 N

M
A

C

Fig. 1. Histogram of NMAC times in the
data set. All NMACs occur between t = 38 s
and 45 s.

We used the Adastress tool [3] to
generate a synthetic data set with
a high percentage of NMAC sce-
narios (around 8%), which allowed
us to better develop our prediction
and safety boundary models. The
data set consists of a total of 28,738
scenarios, where two aircraft, each
equipped with ACAS X, are converg-
ing. Of these scenarios, 2, 410 scenar-
ios lead to an NMAC situation. In
these cases, the NMAC occurred at

around 40 s into the scenario as shown in Fig. 1.
Each scenario is a 77 dimensional time series representing the state of the

two aircraft, pilots, and the two ACAS X systems. Details about these state
variables can be found in [14]. A visualization of selected variables of such a high-
dimensional data stream is shown in Fig. 2. The figure depicts the trajectories
of two aircraft in a horizontal and vertical projection. The aircraft start flying
toward each other with a decreasing horizontal and vertical distance. At some
point, ACAS X detects the dangerous situation and issues an advisory to one
aircraft (marked in yellow). The advisory to climb is executed by the pilot.
However, this evasive maneuver is not sufficient to avoid an NMAC, which occurs
at t = 35 s (vertical line in Panel B).

4 Prediction of NMAC Events

In this paper, we address the prediction of potentially dangerous NMAC events.
Generally speaking, given the past trajectories of both aircraft, issued advisories,
and pilot reaction, we want to learn models that predict, whether an NMAC
event will occur in the future and when it will occur.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 253

A

−3 −2 −1 0 1

·104

0

1

2

3
·104

1

1

2

2

x (ft)

y
(f
t)

XY-Position B

Fig. 2. Example Encounter (see [11]) between two aircraft shown horizontally (A) and
in terms of difference in altitude h (B). Despite evasive actions (yellow and red), an
NMAC occurs at t = 35 s. (Color figure online)

Our approach to model-learning is based on Support Vector Machines and
develops novel methods for model selection and dimension reduction, which will
be described in the rest of this section.

4.1 The Learning Model

Support vector machines (SVMs) [15] are supervised learning models for data
classification. To make classification easier, SVMs typically use transformations
to map data points to another space, as illustrated in Fig. 3. The picture is
in 2D for simplicity to allow easy visual intuition, but the data may be high
dimensional, as is the case for our problem. In this paper, scenarios are classified
as ‘NMAC’, or ‘no NMAC’.

Fig. 3. SVM for separation of data

The SVM objective function uses a generalized dot product named kernel
K(x, y) = 〈Φ(x), Φ(y)〉 to measure the similarity between data points x and y
at high dimensional spaces. In this paper, we explore two standard choices of
kernels K: (i) linear SVM (lSVM) with K(x, y) = 〈x, y〉, and (ii) radial SVM
(rSVM) with K(x, y) = exp(−a||x − y||2).

254 Y. He et al.

lSVM uses a hyper-plane separation in the original state space. lSVMs
attempt to find a “best possible” separating hyper-plane that is as far away
from all the data in the two classes as possible, with minimal classification error.
rSVM generates non-linear decision boundaries, which are able to separate non-
linear data using a radial kernel support vector classifier.

4.2 Model Selection and Dimension Reduction

For a time series with many variables (in our case 77 variables), the question nat-
urally arises as to which variables are most important for predicting an NMAC
event, and whether we can reduce the number of variables used in our NMAC
prediction model without losing too much accuracy.

We have developed an iterative algorithm that allows us to obtain a subset of
variables that are most influential for the prediction. To evaluate our algorithm,
we use typical metrics of the quality of prediction models, based the following
numbers: TP/FP (true/false positives) describe the number of times our model
correctly/incorrectly predicts an NMAC, respectively. Similarly, TN/FN (true/-
false negatives) describe the number of times the model correctly/incorrectly
predicts the absence of an NMAC, respectively. Recall R = TP/(TP + FN)
denotes the ratio of the correctly predicted NMAC observations to all NMAC
observations in the data set. Precision P = TP/(TP + FP) is the ratio of
correctly predicted positive NMAC observations to the total predicted positive
observations. Finally, the F1 metric provides a value balancing the capabilities
of the model with respect to recall and precision [16].

V1, . . . , VN

Variable Selection

F1

F1 max?

Calculate

Data
Training

V
=
V
\{
v
}

Construction
Model

Reduced Variable
Model

Fig. 4. Iterative variable selection
and model generation

We use a fixed data set for our experi-
ments, split into two separate sets for train-
ing and testing. Our greedy selection algo-
rithm, illustrated in Fig. 4, starts by training
a model based on the full set of time series
variables V = {V1, V2, . . . , VN} and comput-
ing the F1 metric of this model. It then eval-
uates, for each variable v ∈ V , the effect of
removing it from V . It does that by training
and evaluating a new model based on V \{v}.
It then selects as less influential, the variable
v that results in the highest F1 score; when
removing this variable, our overall prediction
accuracy remains as high as possible. When a
variable is removed, the algorithm constructs
a new SVM model and calculates its F1 score.
This is repeated until the prediction accuracy
of the new model is not acceptable in the con-
text of a particular application. Note that for
ACAS X, removal of variables resulted in an
increase in F1 score.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 255

Our algorithm is not guaranteed to produce an optimal solution, but it pro-
vides system designers with valuable help in reducing the dimensionality of a
problem in a systematic way. It operates in the original as opposed to a pro-
jected space, to make its results more understandable to system designers.

4.3 Experiments and Results

Our work builds NMAC prediction models to classify scenarios as involving an
NMAC or not. For NMAC classified scenarios, we build time-of-NMAC (TNMAC)
prediction models to predict when NMACs occur.

To build NMAC prediction models, we split the data set of 28,738 scenarios
obtained from Adastress into 80%/20% chunks as training and test data, respec-
tively. To build TNMAC prediction models, we use the subset of 2,410 NMAC
scenarios, similarly split into 80%/20% chunks.

We consider two cases based on the information that is used to make the
prediction: (1) intervals: given information from the start of the scenario to some
time t, predict whether and when an NMAC occurs in the interval [t + 1, 50];
(2) sliding-window: given information within a window [t0, t1] of length Δt time
steps (i.e., t1 − t0 = Δt), predict whether and when an NMAC occurs in the
interval [t1 + 1, 50]. Our analysis considers fixed-length sliding windows where
1 ≤ t0 ≤ 50 − Δt.

Learning the Model on Intervals. Given data from a time interval [1, t],
where t = 1, . . . , 37 s, we set up models to predict if there is an NMAC later in
the scenario. In order to also analyze the effect of the length of the history, we
compared the results to only using data from the last 10 s, i.e., from the interval
[t − 9 s, t].

We report on the application of radial SVM on all 77 variables, because it
performed better than linear SVM. The performance metrics (Recall, Precision,
and F1) for all t = 1, . . . , 37 s are shown in Fig. 5A. Solid lines correspond to
experiments using [t − 9 s, t], dashed lines to experiments using [1, t] as inputs.
The Error Rate comparison is shown in Fig. 5B.

The trends of using longer history are qualitatively similar to the results
obtained for prediction using only the last 10 time steps [t − 9 s, t], with Recall
and F1 increasing and the Error Rate decreasing with increasing t. It is obviously
easier to accurately predict an NMAC as the time t gets closer to the actual
NMAC time, and the predictive power is poor when the current time t is far
away from the occurrence of NMAC.

The Precision results are noisier with a spike from t = 8 s to t = 10 s. That
far away from any NMAC event (NMACs start to occur at t = 38 s and later),
the Radial SVM method is usually hesitant to predict any NMACs. At times
t = 8 s, 9 s, and 10 s, our method predicted 1, 1, and 2 NMACs, respectively
and these happened to be correct. So the precision is 1 for these three times.
For all other times in the range of [1 s, 19 s], the Radial SVM method predicted
0 NMACs, resulting in an undefined Precision (plotted as 0 in the figures), so

256 Y. He et al.

A
0 10 20 30

t[s]

0

0.2

0.4

0.6

0.8

1

B
0 10 20 30

t[s]

0

0.02

0.04

0.06

0.08

E
rr

or
-r

at
e

Fig. 5. A: Comparing the F1 (blue), Recall (green), and Precision (red) for predicting
NMAC using 10 history steps [t − 9 s, t] (solid) and using all history [1, t] (dashed).
B: Comparing the Error Rate for predicting NMAC using 10 history steps [t − 9 s, t]
(solid) and using all history [1, t] (dashed). The models were constructed using Radial
SVM on all 77 variables. (Color figure online)

there appears to be a spike from t = 8 s to t = 10 s. Starting from time t = 20 s,
the Precision remains roughly constant (especially for times t = 25 s onward).
This is also qualitatively similar to the 10-step history Precision results. Note
that the 10-step history model does not provide any data for t < 10 s since there
are not enough history steps for such early times.

One might guess that the [t − 9 s, t] predictions should always be worse than
the [1, t] predictions, because the former is using less data than the latter. But
that was not the case in our experimental results. The 10-step history predictions
were in fact always better than the full history predictions for the Recall, F1,
and Error Rate measures. This could be because the older data (older than 10
time step in this case) are not helpful in the prediction and the SVM fitting
has a hard time learning to ignore those older data and focusing on the small
amount of data near the current time t that is relevant for predicting future
NMAC events.

Prediction Using a Sliding Window. For this experiment, we used both
linear and radial SVM. As a sanity check, we compared them to a trivial baseline
model (BL) that predicts NMAC if and only if that NMAC occurs within the
scope [t0, t1] of the sliding window.

Table 1(left) shows the results for [t0, t1] = [31 s, 40 s]. As most of the NMACs
occur after t1 = 40 s, the detection baseline model BL has quite limited recall of
NMAC events. The Linear SVM model was able to predict some NMACs outside
of [t0, t1] = [31 s, 40 s], but performed by far not as well as the Radial SVM. The
Radial SVM model had excellent results with 83% recall and 80% precision and
thus significantly outperformed Linear SVM, which in turn outperformed BL.

All NMACs in our test set occur at t = 38 s or later. We therefore also
carried out a pure prediction experiment with [t0, t1] = [26 s, 35 s], illustrated

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 257

Table 1. Comparison of performance for different algorithms to predict NMAC in the
interval [31 s, 40 s] (left) and in the interval [26 s, 35 s] (right). Numbers obtained by
running a test set of 5748 scenarios (=20% of all scenarios).

Interval [31 s, 40 s] [26 s, 35 s]

Metric Baseline lSVM rSVM Baseline lSVM rSVM

true positives TP 167 322 379 0 0 277

false negatives FN 287 132 75 454 454 177

false positives FP 0 135 92 0 0 61

true negatives TN 5294 5159 5202 5294 5294 5233

Precision P 1.0 0.7 0.80 – – 0.82

Recall R 0.37 0.71 0.83 0 0 0.61

F1 0.54 0.71 0.82 – – 0.70

Error rate e 0.050 0.046 0.029 0.079 0.079 0.041

in Table 1(right). For this experiment, neither BL (Column 1) nor linear SVM
(Column 2) were able to predict any NMACs (Column 1 and Column 2). On the
other hand, radial SVM was able to predict 61.0% of the NMACs, the earliest
of which were 3 time steps later than t1 = 35 s. Finally, Table 2 shows results for
Radial SVM for different intervals between the two cases discussed above.

Table 2. Comparison of performance for three different prediction intervals using
Radial SVM

[t0, t1] = [26 s, 35 s] [27 s, 36 s] [28 s, 37 s]

true positives TP 277 282 312

false negatives FN 177 172 142

false positives FP 61 61 77

true negatives TN 5233 5233 5217

Precision P 0.82 0.82 0.80

Recall R 0.61 0.62 0.69

F1 0.70 0.71 0.74

Error rate e 0.041 0.041 0.038

Predicting TNMAC . In our initial experiment, we trained models to predict the
time TNMAC at which the first NMAC after the start of a scenario will occur.
This experiment only uses data in the interval [t0, t1] = [28 s, 37 s]. As evident
from Fig. 1 this defines an interval, which is located before any NMACs have
actually occurred in the training or test data but that is still relatively close in
time to actual NMAC occurrences.

258 Y. He et al.

For this experiment, we used only important variables, namely the slant
range s, which is the line-of-sight distance between the two aircraft, and Δz,
the absolute vertical distance between the two aircraft. We selected these two
variables based on our understanding and previous experience with ACAS X.
The importance of these variables was also confirmed by the variable selection
algorithm described in Sect. 4.2.

We built a radial SVM-based learning model for classification and performed
regression to give us a continuous valued TNMAC prediction. This model was
trained on our data set of 1956 scenarios. When tested with the 454 runs from
the test set, the absolute prediction error was only 0.27 s. To make an integer
time step prediction for when an NMAC occurs, we rounded the predictions of
our model to the nearest integer and checked the prediction performance. The
average absolute prediction error using rounded predictions is defined as

E = |round(T̂NMAC) − TNMAC|

where T̂NMAC is the predicted and TNMAC the actual (integral) time when the
NMAC occurs. Over our 454 test runs, the absolute error E is less than 0.10 s.
After rounding the real-valued predictions obtained directly from our model, 410
of the 454 test predictions (90.3%) were exactly the correct NMAC time step.

Iterative Variable Selection. For this experiment, we started with the rSVM
model to predict NMACs in the time interval [28 s, 37 s] (see Table 2) and used the
variable elimination algorithm described in Sect. 4.2. We might expect that the
model accuracy should decrease as fewer variables are used since less information
is provided to help discriminate between scenarios with an NMAC and non-
NMAC scenarios.

During the first iteration of the algorithm, variable v66 with the name tds2 is
removed, but the F1 score of the radial SVM model using all 77 variables except
variable number 66 is larger than the radial SVM model using all 77 variables
(0.771 versus 0.740). Table 3 shows the details. Variables with superscript 1 are
values observed by aircraft 1, those with superscript 2 are observed by aircraft 2.
Usually these variables are correlated, but there can be differences due to noise
and data errors.

In fact, this trend continues through Step 11 where each time we remove
another variable, the F1 score of the radial SVM model increases. The radial
SVM model fitting procedure does not seem to be able to ignore the “extra”
variables and instead the additional information causes some confusion in the
model.

Subsequently, 60 variables are removed (Steps 11 through 70), whose absence
does not change the F1 score (or Precision or Recall) of the model, which remains
constant at 0.913. There appears to be a lot of highly correlated variables in
the dataset. Figure 6 shows how the F1 metric develops during the run of the
algorithm.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 259

Table 3. Individual steps of the iterative variable selection, showing how Precision,
Recall, and F1 develop after iteratively removing variables vi.

Step Precision Recall F1 vi removed Variable name

0 0.802 0.687 0.740 – –

1 0.821 0.727 0.771 66 tds2

2 0.812 0.905 0.856 29 tds1

. . .

68 0.866 0.965 0.913 68 R2
stay

69 0.866 0.965 0.913 69 R2
follow

70 0.866 0.965 0.913 70 R2
timer

71 0.864 0.965 0.912 5 s1

72 0.855 0.963 0.906 22 r1target

73 0.848 0.945 0.894 2 v1
vert

74 0.859 0.949 0.902 39 v2
vert

75 0.855 0.949 0.900 59 r2target

76 0.833 0.936 0.882 42 s2

Δz

20 40 60
iteration

0.7

0.75

0.8

0.85

0.9

0.95

1

F1
Recall
Precision

Fig. 6. Development of F1,
Recall, and Precision during
the iterative variable selection
algorithm

The optimal set of variables is selected, when
after an initial rise of F1 during the algorithm,
F1 starts dropping again (dashed line in Fig. 6).
In our case, only seven variables, numbered 5,
22, 2, 39, 59, 42, and 76, remain. These are
the slant range s1, s2 (as observed by each air-
craft) between the two aircraft, their difference
in altitude Δ1

alt, their relative vertical speed (as
observed by each aircraft) v1

vert, v2
vert, the target

range r2
target, and the absolute value of the alti-

tude difference between both aircraft, Δz. With
this small subset of variables we achieve a radial
SVM model with Precision, Recall, and F1 per-
formance of 86.6% Precision, 96.5% Recall, and

F1= 0.913. This is a significant improvement over our previous best model that
used all 77 variables with 80.2% Precision and 68.7% Recall. Table 4 summarizes
the results.

5 Timeseries Safety Boundary Learning
and Characterization

Given the safety-critical nature of ACAS X, a question that arises naturally is
how “far” an aircraft is from a “safe” region, where no NMAC can happen.

260 Y. He et al.

Table 4. Model performance with iterative dimension reduction

Model Precision Recall F1

77 variables 0.802 0.687 0.740

7 variables 0.866 0.965 0.913

1 variable Δz 0.833 0.936 0.882

In general, a safe region is an area in a potentially high-dimensional state space,
where the probability P of an adverse event happening is very low (typically
around 10−9 in the aerospace domain). Designers and pilots are interested to
remain in such safe regions. Boundaries to unsafe regions, where a dangerous
event is likely to happen, are of particular interest.

In the context of ACAS X, aircraft can climb, descend, or fly level based
upon pilot actions and advisories issued by ACAS X. Safety boundaries are
therefore not fixed within a high-dimensional state space of position, speeds,
and headings, amongst others. Rather, they change over time as the scenario
develops. Detection and characterization of such time-series safety boundaries is
quite challenging.

In general, as a null hypothesis, one can define a safety boundary as the set of
points x in the state space such that P (x = safe) = 0.5. Such a safety boundary
can, for example, be visualized as an elevation line on a map, separating safe
areas from lower-lying areas, which are prone to flooding. For domain experts,
however, a representation of a boundary as a time-varying cloud of data points
is not helpful. A characterization of safety-boundaries as parameterized simple
geometrical objects (e.g., plane, sphere, cone) is more intuitive, and can lead to
better analysis and understanding of the system behavior.

In the remainder of this section, we present our approach for learning and
characterizing time-series safety boundaries for high dimensional state spaces.
We then present results from the application of these approaches to ACAS X.

5.1 Learning

Learning of a safety-boundary in a high-dimensional state space requires a huge
number of data points, which increases exponentially with the number of dimen-
sions. In the context of ACAS X, each data point corresponds to one simulation
run. Even with the simulation running faster than real time, a systematic explo-
ration of scenarios would require too much time.

We therefore use an active learning algorithm for learning and characteriza-
tion of the safety boundaries. This algorithm starts with a small set of labeled
data points D = {〈Xi, yi〉} for 1 ≤ i ≤ M (here, M = 50). The iterative algo-
rithm uses the information gathered so far to find a new candidate point Xc

that is close to the suspected boundary, because we are most interested in this
area. Then, the ACAS X simulator is executed on Xc and returns yc indicat-
ing whether there has been an NMAC or not. This data point is then added
D = D ∪ {Xc} and a new iteration occurs.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 261

Fig. 7. Algorithm for safety boundary active learning and shape characterization

The flow-chart of the detailed algorithm is shown in Fig. 7. It combines three
different ingredients, which will be described in detail below: DynaTrees [17] are
used for storage and iterative updates of the data D as well as for the efficient
estimation of the boundary surface in high dimensions, a boundary-aware metric
to find candidate points Xc that are close to the suspected safety boundary, and
a Bayesian technique to estimate the most likely parameters Θ for the geometric
shape Mi of the boundary.

DynaTrees. Dynamic regression trees (DynaTrees) [17] are regression and clas-
sification learning models with complicated response surfaces in on-line applica-
tion settings. DynaTrees create a sequential tree model whose state changes over
time with the accumulation of new data, and provide particle learning algorithms
that allow for the efficient on-line posterior filtering of tree-states.

A major advantage of DynaTrees is that they allow for the use of very sim-
ple models within each partition. The models also facilitate a natural division
in sequential particle-based inference: tree dynamics are defined through a few
potential changes that are local to each newly arrived observation, while global
uncertainty is captured by the ensemble of particles.

DynaTree uses both constant and linear mean functions at the tree leaves,
along with multinomial leaves for classification problems, and allows for predic-
tion to be integrated over all model parameters conditional on a given tree.

262 Y. He et al.

Boundary-Aware Metric. Finding a boundary between two classes can be
considered as finding a contour with a = 0.5 in the response surface of the
system response. In our case, a response of y = 1 corresponds to NMAC;
y = 0 means there is no NMAC in the given point X. Inspired by [7] and work
on contour finding algorithms, we loosely follow [18], and define our heuristics
by using an improvement function. In order to use the available resources as effi-
ciently as possible for our contour/boundary finding task, one would ideally select
candidate points which lie directly on the boundary, but that is unknown. There-
fore, new trial points x are selected, which belong to an ε-environment around
the current estimated boundary. This means that 0.5 − ε ≤ ŷ(x) ≤ 0.5 + ε for
ε > 0. ŷ(x) is the learned estimate of the response function at x. New data points
should maximize the information in the vicinity of the boundary. Following [7]
and [18], we define an improvement function for x as

I(X) = ε2(x) − min{(y(x) − 0.5)2, ε2(x)} (1)

here, y(x) ∼ N(ŷ(x), σ2(x)), and ε(x) = α σ(x) for a constant α ≥ 0. This
term defines an ε-neighborhood around the boundary as a function of σ(x).
This formulation makes it possible to have a zero-width neighborhood around
existing data points. For boundary sample points, I(X) will be large when the
predicted σ(x) is largest. The expected improvement E[I(x)] can be calculated
easily following [18] as

E[I(x)] = −
0.5+ασ(x)∫

0.5−ασ(x)

(y − ŷ(x))2φ
(

y−ŷ(x)
σ(x)

)
dy

+ 2(ŷ(x) − 0.5)σ2(x) [φ(z+(x)) − φ(z−(x))]
+ (α2σ2(x) − (ŷ(x) − 0.5)2) [Φ(z+(x)) − Φ(z−(x))] ,

(2)

where z±(x) = 0.5−ŷ(x)
σ(x) ± α, and φ and Φ are the standard normal density and

cumulative distribution, respectively. Each of these three terms are instrumen-
tal in different areas of the space. The first term summarizes information from
regions of high variability within the ε-band. The integration is performed over
the ε-band as ε(x) = α σ(x). The second term is concerned with areas of high
variance farther away from the estimated boundary. Finally, the third term is
active close to the estimated boundary. After the expected improvement has
been calculated, the candidate point is selected as the point, which maximizes
the expected improvement.

Boundary Shape Characterization. The overall problem can be formulated
as: given a classifier Pn based on a data set Dn consisting of n data points.
We want to fit simple, parameterized shapes (from a dictionary provided by
experts) to areas of high entropy that approximate the boundaries between the
two classes. We also will select new data points that support the fitting process.

Suppose there are m shape classes M1, . . . ,Mm with m ≥ 1 which are param-
eterized by Θ1, . . . , Θm. The task is to fit l shapes S1, . . . , Sl, l ≥ 1, where

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 263

S1 = (i1, Θ1), . . . , Sl = (il, Θl) and ij denotes the shape class for the jth shape
with ij ∈ {M1, . . . ,Mm}. Several of the ij can be the same to accommodate
more than one shape belonging to the same class. The Θi should be different
since we do not want to represent the same boundary shape twice.

For example, we may consider the m = 2 shape classes M1 = hyperplane
and M2 = sphere in Rd. Hyper-planes are represented as a1x1 + · · · + adxd +
ad+1 = 0 with parameter vector Θ1 = (a1, . . . , ad, ad+1) ∈ Rd+1. In the same
d-dimensional space, a sphere of radius r with center c = (c1, . . . , cd) is described
by (x1 − c1)2 + · · · + (xd − cd)2 = r2 with parameter vector Θ2 = (c, r) ∈ Rd+1.
Now suppose we are in the plane (d = 2) and that the true class boundaries
are described by the line 5x + y − 0.1 = 0 (a hyper-plane in R2), the circle
(x−0.3)2+(y−0.4)2 = 0.22 (a sphere in R2), and the vertical line x+0y−0.7 = 0.
This is represented in our model as l = 3 with the specific shapes S1 = (i1 =
hyperplane,Θ1 = (5, 1,−0.1)), S2 = (i2 = sphere,Θ2 = (0.3, 0.4, 0.2)), and
S3 = (i3 = hyperplane,Θ3 = (1, 0,−0.7)).

Given n data points Dn, we want to find the l shapes S1, . . . , Sl that approx-
imate the boundaries between classes in the classifier Cn fit to Dn. That is
we are interested in shape sets S = (S1, . . . , Sl) that give large posterior
probabilities P (S1, . . . , Sl|Dn). We will sample from the posterior shape set
arg maxS P (S|Dn) as the number of data points increases.

5.2 Experiments and Results

To evaluate our safety-boundary approach on ACAS X, we focus only on the 7
variables in our data set that were identified as most influential by our Iterative
Variable Selection procedure (see Table 3). Because high-dimensional time-series
boundaries are difficult to visualize, we first look at the temporal development of
the relevant variables during the last 10 s before an NMAC, [TNMAC−9, TNMAC].
Figure 8 shows the variables as measured by aircraft 2: v2

vert, s
2, r2

target,Δz. Red
dots belong to scenarios leading to an NMAC, green dots to scenarios without
an NMAC.

Fig. 8. Temporal development for variables v2
vert, s

2, r2target, Δz for NMAC (red) and
non-NMAC (green) scenarios. (Color figure online)

264 Y. He et al.

These plots correspond to an individual projection of the high dimensional
space onto one selected variable over time. The behavior of the variables v2

vert

and s2 for the NMAC and non-NMAC cases are very similar, shown as a very
high overlap of red and green dots in the top two panels of Fig. 8. This indicates
that there does not exist a significant boundary.

In contrast, for the target rate r2
target, regions can be identified that only

contain red or only green dots, which indicates that a safety boundary can be
associated with this variable. If the absolute value of the target rate is large
enough, i.e., r2

target > 50 over the last 5 s, then the scenario will lead to NMAC.
This boundary has a high correlation with the safety boundary that our algo-
rithm found, as shown in Fig. 10 on the next page.

Fig. 9. Boundaries for pairs of variables (NMAC (red) and non-NMAC (green) scenar-
ios). (Color figure online)

Similarly, a safety boundary can be associated with the vertical distance Δz

over time: if the two aircraft are vertically too far apart, then there cannot be an
NMAC, since the vertical speed of each aircraft is limited. This safety-boundary
changes over time—the potentially unsafe region becomes smaller the closer we
get to tNMAC, and, not surprisingly, the boundary at tNMAC is exactly 100 ft,
which is the definition of an NMAC.

We now consider the projection onto two variables. Figure 9 shows the visu-
alization of the data in different combinations of pairs of variables. The dark-red
“cones” shroud the data points of NMAC scenarios; their surfaces correspond to
projections of boundaries.

While there is no visible separation in the projection with respect to s2 and
vvert (A), the projection over Δz (B) indicates a safe region with higher vertical
distance near the time when the two aircraft are closest together. Panels E and
F show similar boundaries as in the panels above.

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 265

Fig. 10. Projection of temporal state
space onto two variables with characterized
boundary.

In Panel C, a safe region (shrouded
in dark green) is surrounded by NMAC
situations, in particular in conjunction
with a high target rate r2

target and low
vertical speed, and we can see a clear
separation.

Running our active learning algo-
rithm, we obtained a safety bound-
ary characterized as a plane defined by
the equation: 37.68(t− tNMAC)−Δz +
0.0024s2 + 128.7 = 0. Figure 10 shows
its projection onto s2 and Δz over time
as a colored surface. Red dots corre-
spond to NMAC scenarios, green dots
correspond to safe scenarios, where no
NMAC occurs.

6 Conclusions

We have presented statistical modeling and learning techniques for predict-
ing whether and when a dangerous situation may occur. We also developed
a methodology for modeling safety-boundaries, characterized as geometrical
objects, that separate safe operational regions from dangerous ones. Our app-
roach was demonstrated on the ACAS X system, but can be extended to numer-
ous other domains including robotics, autonomous spacecraft, or self-driving
cars.

We specifically studied the high-dimensional time-series state space for
encounters of aircraft equipped with the airborne collision avoidance system
ACAS X where, under rare circumstances dangerous NMACs can occur. We
demonstrated that our methods can reliably predict if and when an NMAC
will occur in the imminent future, based upon a small temporal interval of the
high-dimensional time-series data.

Our iterative variable selection algorithm revealed that most of the 77 vari-
ables in the data set carry information that is unimportant for the prediction
task. The algorithm selected seven variables, which resulted in a prediction model
with a substantially higher performance than using all 77. Using our active-
learning approach, we modeled a safety boundary among the relevant variables
and characterized it.

Acknowledgements. We thank Ritchie Lee for providing the dataset for our exper-
iments. The work presented has been performed under NASA’s System-Wide Safety
Project.

266 Y. He et al.

Nomenclature

AC Aicraft
ACAS-X AC Collision Avoidance System
ALC Active Learning Cohn
ALM Active Learning MacKay
Δi

alt difference in altitude i = 1, 2
Δz absolute vertical distance between AC
DynaTree Dynamic Regression Tree
E [. . .] Expectation
F1 weighted average of P and R
FAA Federal Aviation Authority
FN False Negative
FP False Positive
I(X) Improvement
LHS Least Horizontal Separation
NMAC Near Mid-Air Collision
P Precision
R Recall
ri
target target range ACi, i = 1, 2

s slant range
SVM Support Vector Machine
TNMAC Time to NMAC event
TCAS Traffic Collision Avoidance System
TN True Negative
TP True Positive
UAV Unmanned Aerial Vehicle
vi

vert vertical speed for ACi, i = 1, 2

References

1. Kuchar, J., Drumm, A.C.: The traffic alert and collision avoidance system. Linc.
Lab. J. 16(2), 277 (2007)

2. Hynes, C., Hardy, G., Sherry, L.: Synthesis from design requirements of a hybrid
system for transport aircraft longitudinal control. Technical report NASA/TP-
2007-213475, NASA (2007)

3. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), pp. 6C2–1. IEEE (2015)

4. Rao, T.S. (ed.): Time Series Analysis: Methods and Applications. Elsevier, Ams-
terdam (2012)

5. MacKay, D.J.C.: Information-based objective functions for active data selection.
Neural Comput. 4(4), 589–603 (1992)

6. Cohn, D.A.: Neural network exploration using optimal experimental design. Adv.
Neural Inf. Process. Syst. 6(9), 679–686 (1996)

7. Jones, D., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black box functions. J. Glob. Optim. 13, 455–492 (1998)

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems 267

8. von Essen, C., Giannakopoulou, D.: Probabilistic verification and synthesis of the
next generation airborne collision avoidance system. STTT 18(2), 227–243 (2016)

9. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne colli-
sion avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 620–635. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 54

10. Jeannin, J.-B., et al.: A formally verified hybrid system for the next-generation
airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46681-0 2

11. Giannakopoulou, D., Guck, D., Schumann, J.: Exploring model quality for
ACAS X. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM
2016. LNCS, vol. 9995, pp. 274–290. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48989-6 17

12. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. ArXiv e-prints, February 2017

13. Madigan, S.E.D.: A flexible bayesian generalized linear model for dichotomous
response data with an application to text categorization. Inst. Math. Stat. 91(54),
76 (2007)

14. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne collision avoid-
ance through dynamic programming. Project Report ATC-371, Massachusetts
Institute of Technology, Lincoln Laboratory (2011)

15. Chen, Y., Councill, I.G.: An introduction to support vector machines: a review. AI
Mag. 24, 105–107 (2003)

16. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63
(2011)

17. Taddy, M.A., Gramacy, R.B., Polson, N.G.: Dynamic trees for learning and design.
J. Am. Stat. Assoc. 106(493), 109–123 (2011)

18. Ranjan, P., Bingham, D., Michailidis, G.: Sequential experiment design for contour
estimation from complex computer codes. Technometrics 50(4), 527–541 (2008)

https://doi.org/10.1007/978-3-642-54862-8_54
https://doi.org/10.1007/978-3-642-54862-8_54
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-319-48989-6_17
https://doi.org/10.1007/978-3-319-48989-6_17

The ASSL Approach to Formal Specification
of Self-managing Systems

Emil Vassev1 and Mike Hinchey2(&)

1 Concordia University, Montreal, Canada
emil@vassev.com

2 Lero-The Irish Software Research Centre, University of Limerick,
Limerick, Ireland

mike.hinchey@lero.ie

Abstract. ASSL (Autonomic System Specification Language) is a framework
dedicated to the development of self-managing systems whereby developers are
helped with problem formation, system design, system analysis and evaluation,
and system implementation. The bottom line is a special multi-tier approach to
specification exposing a rich set of constructs allowing a system to be modeled
by emphasizing different key aspects, but centering the model around special
self-management policies. This article presents in detail the aforementioned
mechanism together with the underlying semantics. As a case study, we also
present ASSL specifications of self-managing behavior of prospective autono-
mous NASA space exploration missions.

Keywords: Autonomic computing � Formal specification

1 Introduction

Complexity is widely recognized as one of the biggest challenges information tech-
nology faces today. To respond to this threat, many initiatives, such as Autonomic
Computing (AC) [1–3], have been started to deal with complexity in contemporary
computerized systems. AC is a rapidly growing field that promises a new approach to
developing large-scale complex systems capable of self-management. The phrase
“autonomic computing” came into the popular consciousness at the AGENDA 2001
conference where Paul Horn from IBM presented the new computing paradigm by
likening computer systems to the human Autonomic Nervous System [1]. The idea
behind this is that software systems must manage themselves, as the human body does,
or they risk being crushed under their own complexity. Many major software vendors,
such as IBM, HP, Sun, and Microsoft have started research programs to create self-
managing computer systems. However, their main research efforts are mainly to make
individual components of particular systems more self-managing rather than providing
a complete solution to the problem of autonomic system development. As a result, ten
years later after the AC initial announcement, there is still much to be done in making
the transition to “autonomic culture” [4] and we still need programming techniques and
technologies that emphasize the AC paradigm and provide us with programming
concepts for implementing autonomic systems.

© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 268–296, 2019.
https://doi.org/10.1007/978-3-030-22348-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_17

This article presents the formalism of the Autonomic System Specification Lan-
guage (ASSL) [5, 6], a dedicated to AC formal tool that emerges as a formal approach
to developing autonomic systems. Providing both a formal notation and tools that
support modeling and specification, validation and code generation of autonomic
systems, ASSL has been successfully used in a variety of projects targeting functional
prototypes of autonomous NASA space exploration missions [7, 8], autonomic pattern-
recognition systems [9], home-automation sensor networks [10], etc. Note that a good
understanding of the ASSL formalism and mastering the same were of major impor-
tance for the success of these endeavors. This paper gives an overview of the ASSL
operational semantics and through formal semantics definitions it presents the opera-
tional behavior of some of the ASSL specifications for space exploration missions
[7, 8]. This approach helps ASSL developers conceive an explicit understanding of the
ASSL formalism.

The rest of this article is organized as follows. In Sect. 2, we discuss different
formalisms for autonomic systems. Section 3 describes the ASSL specification model.
Section 4 presents the ASSL operational semantics, which is used in Sect. 5 to
enlighten ASSL specifications of NASA space exploration missions. Section 5 also
presents some test results and Sect. 6 gives a brief overview of the ASSL’s formal
verification mechanisms. Finally, Sect. 7 concludes the article with summary remarks.

2 Formalism for Autonomic Systems

Conceptually, any formalism aims to assist the development of computer systems by
providing formal notations that can be used to specify desirable system concepts (e.g.
functionality). Usually, formal notations help developers precisely describe with the
logical underpinning of mathematics features of the system under consideration at a
higher level of abstraction than the one provided by implementation. However, a
requirement is that developers should be able to move in a logical way from a formal
specification of a system to implementation.

2.1 Formal Approaches to AC

Autonomic systems are special computer systems that emphasize self-management
through context awareness and self-awareness [1–4]. Therefore, an AC formalism
should not only provide a means of description of system behavior but also should
tackle the vital for autonomic systems self-management and awareness issues. More-
over, an AC formalism should provide a well-defined semantics that makes the AC
specifications a base from which developers may design, implement, and verify
autonomic systems.

Formalisms dedicated to AC have been targeted by a variety of industrial and
university projects. IBM Research developed a framework called Policy Management
for Autonomic Computing (PMAC) [14, 15]. The PMAC formalism emphasizes the
specification of self-management policies encompassing the scope under which those
policies are applicable. A PMAC policy specification includes: (1) conditions to which
a policy is in conformance (or not); (2) a set of resulting actions; (3) goals; and
(4) decisions that need to be taken.

The ASSL Approach to Formal Specification of Self-managing Systems 269

The so-called Specification and Description Language (SDL) is an object-oriented,
formal language defined by the International Telecommunications Union – Telecom-
munications Standardization Sector (ITU-T) [16]. SDL is dedicated to real-time sys-
tems, distributed systems, and generic event-driven systems. The basic theoretical
model of an SDL system consists of a set of extended finite state machines, running in
parallel and communicating via discrete signals, thus making SDL suitable for the
specification of self-management behavior.

Cheng et al. talk in [17] about a specification language for self-adaptation based on
the ontology from system administration tasks and built over the underlying formalism
of utility theory [18]. In this formalism, special self-adaptation actions are described as
architectural operators, which are provided by the architectural style of the target
system. A script of actions corresponds to a sequence of architectural operators. This
sequence forms the so-called adaptation tactic defined in three parts: (1) the conditions
of applicability; (2) a sequence of actions; and (3) a set of intended effects after
execution. The definition of a tactic is similar to the “design by contract” interface
definition [19].

Another formalism for Autonomic Systems (Ass) is provided by the chemical
programming approach (represented by the Gamma Formalism [20]) which uses the
chemical reaction metaphor to express the coordination of computations. The Gama
Formalism describes computation in terms of chemical reactions (described as rules) in
solutions (described as multisets of elements). When applied to AS specifications, the
Gama Formalism captures the intuition of a collection of cooperative components that
evolve freely according to some predefined constraints (rules). System self-
management arises as a result of interactions between components, in the same way
as “intelligence” emerges from cooperation in colonies of biological agents.

In [21], Andrei and Kirchner present a biologically inspired formalism for AC
called Higher-Order Graph Calculus (HOGC). This approach extends the Gama For-
malism with high-level features by considering a graph structure for the molecules and
permitting control on computations to combine rule applications. HOGC borrows
various concepts from graph theory, in particular from graph transformations [22], and
use representations for graphs that have been already intensively formalized.

2.2 The ASSL Formalism

ASSL is a declarative specification language for autonomic systems with well-defined
semantics. It implements modern programming language concepts and constructs like
inheritance, modularity, type system, and high abstract expressiveness. Being a formal
language designed explicitly for specifying autonomic systems (ASs) ASSL copes well
with many of the AS aspects [1–4]. Moreover, specifications written in ASSL present a
view of the system under consideration, where specification and design are intertwined.
Conceptually, ASSL is defined through formalization tiers (see Sect. 3). Over these
tiers, ASSL provides a multi-tier specification model that is designed to be scalable and
exposes a judicious selection and configuration of infrastructure elements and mech-
anisms needed by an AS. In order to determine the level of ASSL formalism, we
investigated in the vast field of formal specification languages. Srivas and Miller in [11]
refer to constructive versus descriptive style of specification (also known as

270 E. Vassev and M. Hinchey

model-oriented versus property-oriented). The constructive or model-oriented style is
typically associated with the use of definitions, whereas the descriptive or property-
oriented style is generally associated with the use of axioms [12]. ASSL benefits from
both styles, by using a property-oriented axiomatization as a top-level specification
style and introducing a suitable number of specification layers with increasingly
detailed model-oriented descriptions. As a formal language, ASSL defines a neutral,
implementation-independent representation for ASs. Similar to many formal notations,
ASSL enriches the underlying logic with modern programming concepts and constructs
thereby increasing the expressiveness of the formal language while retaining the precise
semantics of the underlying logic. For example, the ASSL formalism for self-
management policies (see Sect. 3) is based on event calculus [13], whose formalism is
enriched to fit in the ASSL mechanism for specifying self-management policies [5, 6].

To the best of our knowledge, the ASSL formalism is currently the only complete
solution to the problem of AS specification. Although other solutions do exist, they
emphasize individual AC aspects (e.g. self-management policies), which is far from
what ASSL is proposing with its reach multi-tier specification model. Moreover, the
ASSL framework together with the powerful formalism provides mature tools that
allow ASSL specifications to be edited and formally validated. Finally, an operational
Java application may be generated from any valid ASSL specification.

3 ASSL Specification Model

The ASSL formal notation is based on a specification model exposed over hierarchi-
cally organized formalization tiers [5, 6]. This specification model provides both
infrastructure elements and mechanisms needed by an AS. ASSL defines ASs with
special self-managing policies, interaction protocols (IPs), and autonomic elements
(AEs), where the ASSL tiers and their sub-tiers describe different aspects of the AS
under consideration.

Table 1 presents the ASSL specification model. As shown, it decomposes an AS in
two directions - (1) into levels of functional abstraction; and (2) into functionally
related sub-tiers. The first decomposition presents the system from three different
perspectives (three major tiers) [5, 6]:

(1) a general and global AS perspective, where we define the general system rules
(providing AC behavior), architecture, and global actions, events, and metrics
applied in these rules;

(2) an interaction protocol perspective, where we define the means of communication
between AEs within an AS;

(3) a unit-level perspective, where we define interacting sets of individual computing
elements (AEs) with their own AC behavior rules, actions, events, metrics, etc.

The second decomposition presents the major tiers AS, ASIP, and AE as composed
of functionally related sub-tiers, where new AS properties emerge at each sub-tier. This
allows for different approaches to AS specification. For example, we may start with a
global perspective of the system by specifying the AS service-level objectives and self-
management policies and by digging down to find the needed metrics at the very detail

The ASSL Approach to Formal Specification of Self-managing Systems 271

level of AE sub-tiers. Alternatively, we may start working at the detail level of AE sub-
tiers and build our AS bottom-up. Finally, we can work on both abstract and detail level
sides by constantly synchronizing their specification.

3.1 ASSL Tiers

The AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics (see Table 1).
The AS SLOs are a high-level form of behavioral specification that help developers
establish system objectives such as performance. The self-management policies could
be any of (but not restricted to) the four so-called self-CHOP policies defined by the
AC IBM blueprint [2]: self-configuring, self-healing, self-optimizing, and self-
protecting. These policies are driven by events and trigger the execution of actions
driving an AS in critical situations. The metrics constitute a set of parameters and
observables controllable by an AS. At the ASIP Tier, the ASSL framework helps
developers specify an AS-level interaction protocol as a public communication inter-
face, expressed with special communication channels, communication functions, and
communication messages. At the AE Tier, the ASSL formal model exposes specifi-
cation constructs for the specification of the system’s AEs. Note that AEs are con-
sidered to be analogous to software agents able to manage their own behavior and their
relationships with other AEs.

Table 1. ASSL multi-tier specification model

AS

AS Service-level Objectives
AS Self-management Policies
AS Architecture
AS Actions
AS Events
AS Metrics

 AS Messages

AS Channels
AS Functions

AE

AE Service-level Objectives

AE Self-management Policies
AE Friends

AEIP

AE Messages
AE Channels
AE Functions
AE Managed Elements

AE Recovery Protocols
AE Behavior Models
AE Outcomes
AE Actions
AE Events
AE Metrics

ASIP

272 E. Vassev and M. Hinchey

Note that ASSL targets only the AC features of a system and helps developers
clearly distinguish the AC features from the system-service features. This is possible,
because with ASSL we model and generate special AC wrappers in the form of ASs
that embed the components of non-AC systems [5, 6]. The latter are considered as
managed elements controlled by the AS in question. Conceptually, a managed element
can be any software or hardware system (or sub-system) providing services. Managed
elements are specified per AE (see Table 1) where the emphasis is on the interface
needed to control a managed element. It is important also to mention that the ASSL
tiers and sub-tiers are intended to specify different aspects of an AS, but it is not
necessary to employ all of them in order to model such a system. For a simple AS we
need to specify (1) the AEs providing self-managing behavior intended to control the
managed elements associated with an AE; and (2) the communication interface. Here,
self-management policies must be specified to provide such self-managing behavior at
the level of AS (the AS Tier) and at the level of AE (AE Tier). The following sub-
sections briefly present some of the ASSL sub-tiers.

Self-management Policies. The self-management behavior of an ASSL-developed AS
is specified with the self-management policies. These policies are specified with special
ASSL constructs termed fluents and mappings [5, 6]. A fluent is a state where an AS
enters with fluent-activating events and exits with fluent-terminating events. A mapping
connects fluents with particular actions to be undertaken. Usually, an ASSL specifi-
cation is built around self-management policies, thus making such a specification
AC-driven. Self-management policies are driven by events and actions determined
deterministically. The following ASSL code presents a sample specification of a self-
healing policy.

ASSELF_MANAGEMENT {
SELF_HEALING {

FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

}
MAPPING {

CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }

 }
 }
} // ASSELF_MANAGEMENT

ASSL Events. ASSL aims at event-driven autonomic behavior. Hence, to specify self-
management policies, we need to specify appropriate events (see Sect. 3.1). Here, we
rely on the reach set of event types exposed by ASSL [5, 6]. To specify ASSL events,
one may use logical expressions over SLOs, or may relate events with metrics (see the
ASSL code below), other events, actions, time, and messages. Moreover, ASSL allows
for the specification of special conditions that must be stated before an event is
prompted.

The ASSL Approach to Formal Specification of Self-managing Systems 273

EVENT newAsteroidDetected {
ACTIVATION {

CHANGED { AS.METRICS.numberOfAsteroids }
}

}

ASSL Metrics. For an AS, one of the most important success factors is the ability to
sense the environment and react to sensed events. Together with the rich set of events,
ASSL imposes metrics as a means of determining dynamic information about external
and internal points of interest. Although four different types of metric are allowed
[5, 6], the most important are the so-called resource metrics because those are intended
to measure special managed element quantities. The following ASSL code demon-
strates the ASSL specification of a resource metric (noObstacle) related to a managed
element (OBSTACLE_SENSOR).

METRIC noObstacle {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.OBSTACLE_SENSOR.isClean }

THRESHOLD_CLASS { Boolean [true] }

}

Managed Elements. An AE typically controls managed elements. In an ASSL-
developed AS, a managed element is specified with a set of special interface functions
intended to provide control functionality over that managed element. Note that ASSL
can specify and generate interfaces controlling a managed element (generated as a
stub), but not the real implementation of these interfaces. This is just fine for proto-
typing, however when deploying an AS prototype the generated interfaces must be
manually programmed to deal with the controlled system (or sub-system).

MANAGED_ELEMENT meReceptor {

INTERFACE_FUNCTION reset {}

INTERFACE_FUNCTION getRadiationLevel {

PARAMETERS { DECIMAL xCoord; DECIMAL yCoord; DECIMAL zCoord }

RETURNS { DECIMAL }

TRIGGERS { AS.EVENTS.newRadiationLevel }

ONERR_TRIGGERS { AS.EVENTS.cannotGetRadiationLevel }

}

}

Interaction Protocols. ASSL interaction protocols provide a means of communica-
tion interface expressed with messages that can be exchanged among AEs, commu-
nication channels and communication functions. Thus, by specifying an ASSL
interaction protocol we develop an embedded messaging system needed to connect the
AEs of an AS. In a basic communication process ongoing in such a system, an AE

274 E. Vassev and M. Hinchey

relies on a communication function to receive a message over an incoming commu-
nication channel, changes its internal state and sends some new messages over an
outgoing channel [5, 6].

ASIP {

MESSAGES { MESSAGE msgHello { SENDER { AES.ae2 } RECEIVER { AES.ae1 } } }

CHANNELS {

CHANNEL chnlIO { ACCETS { ANY } ACCESS { SEQUENTIAL } DIRECTION { INOUT } }

}

FUNCTIONS {

FUNCTION sendHello {

PARAMETERS { BOOLEAN hasSpeed; BOOLEAN hasDirection }

DOES { MESSAGES.msgHello >> CHANNELS.chnlIO }

}

}

}

4 ASSL Notation and Semantics

ASSL is a declarative specification language for ASs with well-defined semantics [5,
6]. The language provides a powerful formal notation that enriches the underlying logic
with modern programming language concepts and constructs such as inheritance,
modularity, type system, and abstract expressiveness. As a formal language, ASSL
defines a neutral (i.e., implementation-independent) representation for ASs described
as a set of interacting AEs. The following is a generic meta-grammar in Extended
Backus-Naur Form (BNF) [23] presenting the syntax rules for specifying ASSL tiers.
Note that this meta-grammar is an abstraction of the ASSL grammar, which cannot be
presented here due to the complex structure of the ASSL specification model (see
Sect. 3), where each tier has its own syntax and semantic rules. The interested reader is
advised to refer to [5] for the complete ASSL grammar expressed in BNF and for the
semantics of the language.

GroupTier FINAL? ASSLGroupTierId { Tier+ }
Tier FINAL? ASSLTierId TierName? { Data* TierClause+ }
TierClause FINAL? ASSLClauseId ClauseName? { Data* }
Data TypeDecl* | VarDecl* | CllctnDecl* | Statement*
TypeDecl CustTypeIdentifier
VarDecl Type VarIdentifier
CllcntDecl Type CustCllctnIdentifier
Type CustType | PredefType
Statement Assign-Stmnt | Loop | If-Then-Else | Cllctn-Stmnt
Loop Foreach-Stmnt | DoWhile-Stmnt | WhileDo-Stmnt

As shown in the grammar above, an ASSL tier is syntactically specified with an
ASSL tier identifier, an optional name and a content block bordered by curly braces.

The ASSL Approach to Formal Specification of Self-managing Systems 275

Moreover, we distinguish two syntactical types of tier: single tiers (Tier) and group
tiers (GroupTier), where the latter comprise a set of single tiers. Each single tier has an
optional name (TierName) and comprises a set of special tier clauses (TierClause) and
optional data (Data). The latter is a set of data declarations and statements. Data
declarations could be: (1) type declarations; (2) variable declarations; and (3) collec-
tion declarations. Statements could be: (1) loop statements; (2) assignment statements;
(3) if-then-else statements; and (4) collection statements. Statements can comprise
Boolean and numeric expressions. In addition, although not shown in the grammar
above, note that identifiers participating in ASSL expressions are either simple, con-
sisting of a single identifier, or qualified, consisting of a sequence of identifiers sep-
arated by “.” tokens.

4.1 ASSL Operational Semantics

The formal evaluation of the operational behavior of ASSL specification models is a
stepwise evaluation of the specified ASSL tiers, where the latter are evaluated as state
transition models in which operations cause a current state to evolve to a new state [5].
Thus, if we use the convention for semantic function in which r states for a current
state and r0 states for a new state then the state evolution caused by an operation Op is
denoted as:

r����������!Op x1;x2;...;xnð Þ
r

0

where the operation Op x1; x2; . . .; xnð Þ is an abstraction of a transition operation per-
formed by the framework which potentially takes n arguments. All the arguments are
evaluated to their expression value first, and then the operation is performed. Here, Op
is a transition operation of type Otrans (see the set definition below).

OtransfDegradSLO;NormSLO;FluentIn;FluentOut;
ActionMap;Action;Function;MsgRcvd;MsgSent;Event;
EventOver;Metric;ChangeStruct;CreateAE;ExtClass;
RcvryProtocol;BhvrModel;MngRsrcFunction;Outcomeg

In addition, the operational semantics of the ASSL tiers introduces the notion of tier
environment q presenting the host tier of the sub-tiers or clauses under evaluation.
Thus, we write q‘r to mean that q is evaluated in context r and q‘re ! e0 to mean
that, in a given tier environment q (host tier for the expression e) one step of the
evaluation of expression e in the context r results in the expression e0. Here, the context
r is defined by the tier content, i.e., sub-tiers, tier clauses, etc. Note that the ASSL tiers
may participate in expressions where they are presented by their TierName. For
example, AS/AE SLO, AS/AE policies, fluents, AS/AE events, and AS/AE metrics can
participate in Boolean expressions, where they are evaluated as true or false in the
context of their host tier based on their performance.

The following subsections present two algorithms implemented by the ASSL
framework for operational evaluation of ASSL actions and self-management policies.

276 E. Vassev and M. Hinchey

4.2 Operational Evaluation of ASSL Actions

From operational semantics perspective, the AS/AE Action tier is the most important
and the most complex ASSL tier. The following is a partial EBNF grammar presenting
syntactically that tier.

Action-Decl ACTION IMPL? Action-Name { Action-Decl-Seqnce }
Action-Decl-Seqnce Params-Decl? Returns-Decl? Guards-Decl? Ensures-Decl?

Var-Decl-Seqnce? Does-Decl OnErr-Does-Decl? Trigs-Decl? OnErr-Trigs-
Decl?

ASSL actions comprise the tier clauses: PARAMETERS {…}, RETURNS {…},
GUARDS {…}, ENSURES {…}, DOES {…}, ONERR_DOES {…}, TRIGGERS {…},
and ONERR_TRIGGERS {…}. Note that only the DOES {…} clause is mandatory. The
operational evaluation of an ASSL action follows the following algorithm:

I. Map the arguments, if any, from the action call to the parameters (PARA-
METERS {…} clause).

II. Process the action guards, if any (GUARDS {…} clause):

• If the guards are held then perform the action.
• Otherwise, deny the action.

III. Evaluate the variable declarations, if any.
IV. Process the DOES {…} clause:

• If a return statement is hit, then stop the action and return a result.
• Else, process all the statements until the end of the DOES {…} clause.

V. If the DOES {…} clause is evaluated correctly, then evaluate the ENSURES {…}
clause (in respect to the TRIGGERS {…} clause):

• If the ENSURES {…} clause is held then trigger notification events via the
TRIGGERS {…} clause and exit the action normally.

• Else, process the ONERR_DOES {…} clause and trigger error events via the
ONERR_TRIGGERS {…} clause.

VI. If an error occurs while evaluating the action clauses, then stop the evaluation
process and:

• Process the ONERR_DOES {…} clause (similar to the evaluation of the
DOES {…} clause), if any.

• Trigger error events via the ONERR_TRIGGERS {…} clause, if any.

4.3 Operational Evaluation of ASSL Policies

ASSL specifies policies with fluents and mappings (see Sect. 3.1). Whereas the former
are considered as specific policy conditions, the latter map these conditions to appro-
priate actions. A partial presentation of the fluent grammar is the following:

The ASSL Approach to Formal Specification of Self-managing Systems 277

Fluent-Decl FLUENT Fluent-Name { Fluent-Inner-Decl }
Fluent-Name Bool-Identifier
Fluent-Inner-Decl Initiates-Sqnce Terminates-Sqnce
Fluent-Inner-Decl Initiates-Sqnce
Initiates-Sqnce INITIATED_BY { Event-Names }
Terminates-Sqnce TERMINATED_BY { Event-Names }

Map-Decl MAPPING { Mapping-Inner-Decl }
Mapping-Inner-Decl Condition-Sqnce Action-Sqnce
Condition-Sqnce CONDITIONS { Fluent-Names }
Action-Sqnce DO_ACTIONS { Action-Calls ; Action-Calls-Forall }

An ASSL policy is evaluated based on its fluents. The operational evaluation of a
fluent follows the following algorithm:

If an event has occurred in the system then:

I. Process the INITIATED_BY {…} clause to check if that event can initiate the
policy fluent f and if so, initiate that fluent:

• If the policy fluent f has been initiated then process only the policy MAPPING
{….} clauses comprising the fluent f in their CONDITIONS {….} clause.

• Evaluate the CONDITIONS {….} clause and if the stated conditions are held
then evaluate the DO_ACTIONS {….} clause to perform the actions listed
there.

II. Process the TERMINATED_BY {…} clause to check if that event can terminate the
previously-initiated policy fluent f and if so, terminate it.

The semantic rules 1 through to 2 present the operational semantics that cope with
the algorithm stated above. In these rules, each premise is a system transition operation
(see Sect. 4.1) such as Event evð Þ, FluentIn f ; evð Þ, FluentOut f ; evð Þ, and
ActionMap f ; að Þ.

(1)
r��������!Event evð Þ

r0

f ‘r0 INITIATED BY ev1; . . .; evnf g���������!FluentIn f ;evð Þ
r00

ev 2 fev1; . . .; evng

(2)
r��������!FluentIn f ;evð Þ

r
0

r
0�������!Event evð Þ

r00

f ‘r00 TERMINATED BY ev1; . . .; evnf g����������!FluentOut f ;evð Þ
r000

ev 2 fev1; . . .; evng

(3)
r��������!FluentIn f ;evð Þ

r
0

map‘r0 CONDITIONS f1; . . .; fnf g����������!ActionMap f ;að Þ
r00

f 2 ff1; . . .; fng

(4)
r����������!ActionMap f ;að Þ

r
0

map‘r0 DO ACTIONS a1; . . .; anf g����������������!8a2 a1;...;anf g�Action að Þ
r00

a 2 Ar

278 E. Vassev and M. Hinchey

Here, Ar is the finite set of actions in the context r. The first premise in rule 2
evaluates whether the fluent f is initiated, i.e., only initiated fluents can be terminated.

5 Case Study - ASSL Specifications for NASA ANTS

5.1 Nasa Ants

The Autonomous Nano-Technology Swarm (ANTS) concept sub-mission PAM
(Prospecting Asteroids Mission) is a novel approach to asteroid belt resource explo-
ration that provides for extremely high autonomy, minimal communication require-
ments with Earth, and a set of very small explorers with a few consumables [24]. These
explorers forming the swarm are pico-class, low-power, and low-weight spacecraft, yet
capable of operating as fully autonomous and adaptable units. The units in a swarm are
able to interact with each other, thus helping them to self-organize based on the
emergent behavior of the simple interactions. Figure 1 depicts the ANTS concept
mission. A transport spacecraft launched from Earth to carries a laboratory that
assembles tiny spacecraft. Once it reaches a point in space, termed L1 (the Earth-Moon
Lagrangian point), where gravitational forces on small bodies are balanced, the
transport releases the assembled swarm, which will head for the asteroid belt. Each
spacecraft is equipped with a solar sail for power; thus it relies primarily on power from
the sun, using only tiny thrusters to navigate independently. Moreover, each spacecraft
also has onboard computation, artificial intelligence, and heuristics systems for control
at the individual and team levels.

Fig. 1. ANTS mission concept [24]

The ASSL Approach to Formal Specification of Self-managing Systems 279

As Fig. 1 shows, there are three classes of spacecraft—rulers, messengers and
workers. Sub-swarms are formed to explore particular asteroids in an ant colony
analogy. Hence, ANTS exhibits self-organization since there is no external force
directing its behavior and no single spacecraft unit has a global view of the intended
macroscopic behavior. The internal organization of a swarm depends on the global task
to be performed and on the current environmental conditions. In general, a swarm
consists of several sub-swarms, which are temporal groups organized to perform a
particular task. Each swarm group has a group leader (ruler), one or more messengers,
and a number of workers carrying a specialized instrument. The messengers are needed
to connect the team members when they cannot connect directly, due to a long distance
or a barrier.

5.2 Specifying ANTS with ASSL

In our endeavor to specify ANTS with ASSL, we emphasized modeling ANTS self-
management policies such as self-configuring [8], self-healing [25], self-scheduling
[26] and emergent self-adapting [27]. In addition, we proposed a specification model
for the ANTS safety requirements [8]. To specify the ANTS safety requirements, we
used the AS/AE SLO tier specification structures, and to specify the self-management
policies we used ASSL tiers and clauses as following:

• self-management policy tiers to specify the self-management policies under con-
sideration through a finite set of fluents and mappings.

• actions—a finite set of actions that can be undertaken by ANTS in response to
certain conditions, and according to the self-management policies.

• events—a set of events that initiate fluents and are prompted by the actions
according to the policies.

• metrics—a set of metrics needed by the events and actions.

The following subsections present some ASSL specification models together with a
formal presentation of their operational behavior. Note that the specifications presented
here are partial, because we omitted some of the aspects that were specified due to
space limitations. The operational behavior of the presented specifications is presented
in a Structural Operational Semantics style [28]. Thus, we define semantics definitions
formed by inference rules. An inference rule is presented as a set of premises deducting
a conclusion, possibly under control of some condition.

5.3 Self-configuring

Figure 2 presents a partial specification of the self-configuring behavior in ANTS when
a new asteroid has been detected [8]. This policy specifies the “on the fly” team
configuration of ANTS spacecraft, to explore asteroids. The key features of the pro-
posed model are:

• a numberOfAsteroids metric that counts the number of detected asteroids;
• an inANTSReconfigurationForNewAsteroid fluent that takes place when the swarm

detects a new asteroid;

280 E. Vassev and M. Hinchey

• a reconfigureANTS action that performs the ANTS reconfiguration;
• a newAsteroidDetected event that initiates the fluent above and is prompted by the

numberOfAsteroids metric when the latter changes its value.

AS ANTS {

ASSELF_MANAGEMENT {

SELF_CONFIGURING {

FLUENT inANTSReconfigurationForNewAsteroid {

INITIATED_BY { EVENTS.newAsteroidDetected }

TERMINATED_BY { EVENTS.reconfigurationForNewAsteroidDone }

 }

MAPPING { // force ANTS reconfiguration

CONDITIONS { inANTSReconfigurationForNewAsteroid }

DO_ACTIONS { ACTIONS.reconfigureANTS }

 }

}

} // ASSELF_MANAGEMENT

ACTIONS {

ACTION IMPL reconfigurationForNewAsteroid { TRIGGERS { EVENTS.reconfigurationForNewAsteroidDone }

}

ACTION reconfigureANTS {

GUARDS { ASSELF_MANAGEMENT.SELF_CONFIGURING.inANTSReconfigurationForNewAsteroid }

ENSURES { EVENTS.reconfigurationForNewAsteroidDone }

DOES { call IMPL ACTIONS.reconfigurationForNewAsteroid }

ONERR_TRIGGERS { EVENTS.reconfigurationForNewAsteroidDenied }

 }

} // ACTIONS

EVENTS {

EVENT newAsteroidDetected { ACTIVATION { CHANGED { AS.METRICS.numberOfAsteroids } } }

EVENT reconfigurationForNewAsteroidDone { }

EVENT reconfigurationForNewAsteroidDenied { }

 }

METRICS {

METRIC numberOfAsteroids {

METRIC_TYPE { RESOURCE }

DESCRIPTION { "the number of detected asteroids during the ANTS lifecycle" }

THRESHOLD_CLASS { DECIMAL [0 ~) } //open range: from 0 to

}

 }

} // AS ANTS

Fig. 2. ASSL specification: self-configuring

The ASSL Approach to Formal Specification of Self-managing Systems 281

Operational Behavior. We consider two main states in this specification model—
ANTS “in” and ANTS “not in” the inANTSReconfigurationForNewAsteroid fluent; i.e.
ANTS performing self-configuring and ANTS not performing self-configuring. While
operating, ANTS workers can discover a new asteroid. This increases the number of
detected asteroids; i.e. the metric numberOfAsteroids changes its value, this causing the
framework to perform the Metric numberOfAsteroidsð Þ transition operation. The latter
consecutively prompts the newAsteroidDetected event, which is attached to that metric
(the event is prompted when the metric has changed its value). Rule 5 presents the
operational evaluation of the newAsteroidDetected event:

(5)
ANTSh i����������������������������!

Metric numberOfAsteroidsð Þ
ANTSh i0

ev‘r CHANGED numberOfAsteroidsf g�������������������������!
Event newAsteroidDetectedð Þ

r0

where ev is the tier environment exposed by that event and the transition operation
EventðnewAsteroidDetected) denotes that the event has been prompted. Subsequently,
that transition operation initiates the inANTSReconfigurationForNewAsteroid fluent.
Inference rules 6 through 9 enforce a definite strategy for evaluating that fluent’s
clauses in their host tier context r and in the context p of the SELF_CONFIGURING
policy. These semantic rules follow the algorithm presented in Sect. 4.3. Thus,

(6) ANTSh i���������������������� ��� �!
Event newAsteroidDetectedð Þ

ANTSh i
0

f ‘r;p INITIATED BY newAsteroidDetectedf g��������������������������� �!
FluentIn f ;newAsteroidDetectedð Þ

r0;p0

(7) ANTS��!
Event reconfigurationForNewAsteroidDoneð Þ

ANTS
0
p‘r inANTSReconfigurationForNewAsteroid ! true

f ‘r;p TERMINATED BY reconfigurationForNewAsteroidDonef g��!
FluentOut f ;reconfigurationForNewAsteroidDoneð Þ

r0 ; p0

(8) f ‘r;p INITIATED BY newAsteroidDetectedf g��!
FluentIn f ;newAsteroidDetectedð Þ

r0; p0

map‘r0; p0 CONDITIONS inANTSReconfigurationForNewAsteroidf g������������������������������!
ActionMap f ;reconfigureANTSð Þ

r00; p00

(9) map‘r0;p0 CONDITIONS inANTSReconfigurationForNewAsteroidf g����������������������������!
ActionMap f ;reconfigureANTSð Þ

r00; p00

map‘r00;p00 DO ACTIONS reconfigureANTSf g������������������������!
Action reconfigureANTSð Þ

r000; p000

where f is the tier environment exposed by the inANTSReconfigura-
tionForNewAsteroid fluent and map is the tier environment exposed by the MAPPING
{…} clause (see Fig. 2). Here, FluentIn f ; newAsteroidDetectedð Þ is a transition
operation denoting that the SELF_CONFIGURING policy has entered that fluent
(initiated by the newAsteroidDetected event) and FluentOut f ; reconfigurationForNewð
AsteroidDoneÞ is a transition operation denoting that the SELF_CONFIGURING
policy has exited the same fluent (terminated by the reconfigurationForNew
AsteroidDone event) (see rules 6 and 7). In addition, ActionMap f ; reconfigureANTSð Þ
is a transition operation denoting that the SELF_CONFIGURING policy has mapped
the reconfigureANTS action to that fluent.

Rules 10 through 17 present the operational evaluation of the reconfigureANTS
action, thus following the algorithm presented in Sect. 4.2. This evaluation is triggered
by the Action reconfigureANTSð Þ transition operation, which is performed by the
framework when the inANTSReconfigurationForNewAsteroid fluent is mapped to the

282 E. Vassev and M. Hinchey

reconfigureANTS action (see Rule 9). This causes the state transition

ANTSh i������������������������!
Action reconfigureANTSð Þ

ANTSh i0. Thus, in the given reconfigureANTS action
tier environment a defined in the tier context r we evaluate the operational action
clauses.

(10) ANTS ��� �!
Action reconfigureANTSð Þ

ANTS0 a‘r newAsteroidDetected ! true
a‘r GUARDS newAsteroidDetectedf g ! perform reconfigureANTSð Þ

(11) ANTSh i������������������������!
Action reconfigureANTSð Þ

ANTSh i0a‘r newAsteroidDetected ! false
a‘r GUARDS newAsteroidDetectedf g ! :perform reconfigureANTSð Þ

(12) ANTSh i������������������������!
Action reconfigureANTSð Þ

ANTSh i0

a‘r DOES CALL IMPLReconfigurationForNewAsteroidf g��!
Action ReconfigurationForNewAsteroidð Þ

r0

(13) ANTSh i����������������������������!
Action reconfigureANTSð Þ

ANTSh i0

a‘r DOES CALLIMPLReconfigurationForNewAsteroidf g��!
:Action ReconfigurationForNewAsteroidð Þ

r0 err½ �

(14) a‘r DOES CALL IMPLReconfigurationForNewAsteroidf g��!
Action ReconfigurationForNewAsteroidð Þ

r0
ANTSh i���!Action reconfigureANTSð Þ

ANTSh i0

a‘r0 TRIGGERS reconfigurationForNewAsteroidDonef g��!
Event reconfigurationForNewAsteroidDoneð Þ

r00

(15) ANTSh i����������������������������!
Action reconfigureANTSð Þ

ANTSh i0 a‘r reconfigurationForNewAsteroidDone ! true
a‘r ENSURES reconfigurationForNewAsteroidDonef g ! r

Erra ¼ ;

(16) ANTSh i����������������������������!
Action reconfigureANTSð Þ

ANTSh i0a‘r reconfigurationForNewAsteroidDone ! false
a‘r ENSURES reconfigurationForNewAsteroidDonef g ! r0 err½ � Erra ¼ ;

(17)
ANTS����������������������������!

Action reconfigureANTSð Þ
ANTS

0

a‘rONERR TRIGGERS reconfigurationForNewAsteroidDeniedf g

��!
Event reconfigurationForNewAsteroidDeniedð Þ

r0
Erra 6¼ ;

where a is the tier environment exposed by the reconfigureANTS action and Erra is the
finite set of errors produced by that action in a single performance of the
Action reconfigureANTSð Þ transition operation. In addition, in rules 10 through 17 we
use transition operations Action . . .ð Þ and Event . . .ð Þ to denote state transitions that
occur during the evaluation of the action tier clauses. Moreover, we use the abstract
function perform að Þ (see rules 10 and 11) to denote continuation of the reconfig-
ureANTS action.

5.4 Self-healing

Figure 3 presents a partial specification of the self-healing policy for ANTS. In our
approach, we assume that each worker sends, on a regular basis, heartbeat messages to
the ruler [25]. The latter uses these messages to determine when a worker is not able to
continue its operation, due to a crash or malfunction in its communication device or
instrument. The specification snippet shows only fluents and mappings forming the

The ASSL Approach to Formal Specification of Self-managing Systems 283

AE ANT_Worker {

 AESELF_MANAGEMENT {

SELF_HEALING {

FLUENT inCollision {

INITIATED_BY { EVENTS.collisionHappen } TERMINATED_BY { EVENTS.instrumentChecked } }

FLUENT inInstrumentBroken {

INITIATED_BY { EVENTS.instrumentBroken } TERMINATED_BY { EVENTS.isMsgInstrumentBrokenSent

} }

FLUENT inHeartbeatNotification {

INITIATED_BY { EVENTS.timeToSendHeartbeatMsg } TERMINATED_BY { EVENTS.isMsgHeartbeatSent

} }

MAPPING { // if collision then check if the instrument is still operational

CONDITIONS { inCollision } DO_ACTIONS { ACTIONS.checkANTInstrument } }

MAPPING { // if the instrument is broken then notify the group leader

CONDITIONS { inInstrumentBroken } DO_ACTIONS { ACTIONS.notifyForBrokenInstrument } }

 MAPPING { // time to send a heartbeat message has come

CONDITIONS { inHeartbeatNotification } DO_ACTIONS { ACTIONS.notifyForHeartbeat } }

 }

 }

 ….

 ACTIONS {

ACTION IMPL checkInstrument { RETURNS { BOOLEAN } TRIGGERS { EVENTS.instrumentChecked } }

ACTION checkANTInstrument {

GUARDS { AESELF_MANAGEMENT.SELF_HEALING.inCollision }

 ENSURES { EVENTS.instrumentChecked }

 VARS { BOOLEAN canOperate }

DOES { canOperate = CALL ACTIONS.checkInstrument }

TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }

ONERR_TRIGGERS { IF (not canOperate) THEN EVENTS.instrumentBroken END }

}

 ….

 }

 ….

 EVENTS {

 EVENT collisionHappen {

 GUARDS { not METRICS.distanceToNearestObject }

ACTIVATION { CHANGED { METRICS.distanceToNearestObject } } }

 EVENT timeToSendHeartbeatMsg { ACTIVATION { PERIOD { 1 min } } }

 }

 ….

METRICS {

METRIC distanceToNearestObject {

 METRIC_TYPE { RESOURCE }

METRIC_SOURCE { AEIP.MANAGED_ELEMENTS.worker.getDistanceToNearestObject }
THRESHOLD_CLASS { DECIMAL [0.001 ~) } }

}// METRICS

} // ANT_Worker

Fig. 3. ASSL specification: self-healing

284 E. Vassev and M. Hinchey

specification for the self-healing policy for an ANTS Worker. Here, the key features
are:

• an inCollision fluent that takes place when the worker crashes into an asteroid or
into another spacecraft, but it is still able to perform self-checking operations;

• an inInstrumentBroken fluent that takes place when the self-checking operation
reports that the instrument is not operational anymore;

• an inHeartbeatNotification fluent that is initiated on a regular basis by a timed event
to send the heartbeat message to the ruler;

• a checkANTInstrument action that performs operational checking on the carried
instrument.

• a distanceToNearestObject metric that measures the distance to the nearest object in
space (not presented here).

• a collisionHappened event prompted by the distanceToNearestObject metric when
the latter changes its value and the same does not satisfy the metric’s threshold
class.

Operational Behavior
A self-management policy is evaluated as “held” if the policy is not in either one of its
specified fluents, and as “not held” if there is at least one initiated fluent for that policy
(the policy is currently in that fluent) [5, 6]. The SELF_HEALING policy (see Fig. 3)
has three fluents: inCollision, inInstrumentBroken, and inHeartbeatNotification, i.e.,
the policy is evaluated as held when the policy is at least in one of these three fluents.
Inference rules 18 through 48 enforce a definite strategy for evaluating the SELF_-
HEALING policy. The policy clauses (fluents and mappings) are evaluated in the
context p of the SELF_HEALING policy, and the actions, events, and metrics are
evaluated in the context of the ANT_Worker autonomic element (see Fig. 3). Inference
rule 18 presents the operational evaluation of the timeToSendHeartbeatMsg timed
event initiating the inHeartbeatNotification fluent (see rules 22 through 25). Thus,

(18) r‘ systemclockðÞ!tactv

ev‘r ACTIV TIME tactvf g��!
Event timeToSendHeartbeatMsgð Þ

r0

where ev is the tier environment exposed by the timed event, systemclockðÞ is an
abstract function returning the current time in the context r, tactv is the time at which the
timed event is specified to occur.

Inference rules 19 through 21 present the operational evaluation of the colli-
sionHappened event, which initiates the inCollision fluent (see rules 26–30). Thus,

(19) AEh i������������������������������������!
Metric distanceToNearestObjectð Þ

AEh i0ev‘r distanceToNearestObject ! true
ev‘r GUARDS distanceToNearestObjectf g ! prompt collisionHappenedð Þ

(20) AEh i��������������������������������!
Metric distanceToNearestObjectð Þ

AEh i0ev‘r distanceToNearestObject ! false
ev‘r GUARDS distanceToNearestObjectf g ! :prompt collisionHappenedð Þ

The ASSL Approach to Formal Specification of Self-managing Systems 285

(21) AEh i��!
Metric distanceToNearestObjectð Þ

AEh i0

ev‘r CHANGED distanceToNearestObjectf g���!Event collisionHappenedð Þ
r0

where ev is the tier environment exposed by the collisionHappen event. In rules 19 and
20 we use the transition operation MetricðdistanceToNearestobject) to denote a state
transition that occurs when the distanceToNearestObject metric changes its value, thus
possibly prompting the collisionHappened event. Note that by operational semantic
definition, an ASSL metric is evaluated as Boolean and is “true” only if the value it
holds falls in the range determined by the metric’s threshold class [5, 6] (see
THRESHOLD_CLASS in Fig. 3). Here, rules 19 and 20 evaluate the GUARDS {…}
clause, which verifies whether that metric is still valid after changing its value.

Inference rules 22 through 25 present the operational evaluation of the inHeart-
beatNotification fluent together with the MAPPING {…} clause mapping that fluent to
the notifyForHeartbeat action. Thus,

(22)

AEh i��!
Event timeToSendHeartbeatMsgð Þ

AEh i0

f ‘r0 ;p0 INITIATED BY timeToSendHeartbeatMsgf g��!FluentIn f ;timeToSendHeartbeatMsgð Þ
r0;p0

(23) AEh i��!
Event msgHeartbeatSentð Þ

AEh i0p‘r inHeartbeatNotification !true

f ‘ r;pTERMINATED BY msgHeartbeatSentf g��!
FluentOut f ;msgHeartbeatSentð Þ

r0;p0

(24)

f ‘r;p INITIATED BY timeToSendHeartbeatMsgf g��!FluentIn f ;timeToSendHeartbeatMsgð Þ
r0;p0

map‘r0 ;p0 CONDITIONS inHeartbeatNotificationf g��!
ActionMap f ;notifyForHeartbeatð Þ

r00;p00

(25)

map‘r0 ;p0 CONDITIONS inHeartbeatNotificationf g��!
ActionMap f ;notifyForHeartbeatð Þ

r00;p00

map‘r00 ;p00 DO ACTIONS notifyForHeartbeatf g��!
Action notifyForHeartbeatð Þ

r000;p000

where f is the tier environment exposed by the inHeartbeatNotification fluent, p is the
tier environment (and context) exposed by the SELF_HEALING policy, and map is
the tier environment exposed by the MAPPING {…} clause (see Fig. 3).

Inference rules 26 through 30 present the operational evaluation of the inCollision
fluent.

(26)
AEh i��������������������������!

Event collisionHappenedð Þ
AEh i0

f ‘r;p INITIATED BY collisionHappenedf g���������������������������!
FluentIn f ;collisionHappenedð Þ

r0; p0

(27)

AEh i����������������������������!
Event instrumentCheckedð Þ

AEh i0p‘rinCollision ! true

f ‘r;p TERMINATED BY instrumentCheckedf g����������������������������!
FluentOut f ;instrumentCheckedð Þ

r0; p0

286 E. Vassev and M. Hinchey

(28)

AEh i����������������������������!
Event cannotCheckInstrumentð Þ

AEh i0p‘r inCollision ! true

f ‘r;p TERMINATED BY cannotCheckInstrumentf g����������������������������!
FluentOut f ;cannotCheckInstrumentð Þ

r0; p0

(29)
f ‘r;p INITIATED BY collisionHappenedf g����������������������������!

FluentIn f ;collisionHappenedð Þ
r0; p0

map‘r0;p0 CONDITIONS inCollisionf g����������������������������!
ActionMap f ;checkANTInstrumentð Þ

r00; p00

(30)
map‘r0;p0 CONDITIONS inCollisionf g����������������������������!

ActionMap f ;checkANTInstrumentð Þ
r00; p00

map‘r00;p00 DO ACTIONS checkANTInstrumentf g����������������������������!
Action checkANTInstrumentð Þ

r000; p000

Inference rules 31 through 34 present the operational evaluation of the inInstru-
mentBroken fluent (f is the tier environment exposed by that fluent).

(31)
AEh i����������������������������!

Event instrumentBrokenð Þ
AEh i0

f ‘r;p INITIATED BY instrumentBrokenf g����������������������������!
FluentIn f ;instrumentBrokenð Þ

r0; p0

(32) AEh i�������������������������������!
Event msgInstrumentBrokenSentð Þ

AEh i0 p‘r inInstrumentBroken ! true

f ‘r;p TERMINATED BY msgInstrumentBrokenSentf g������������������������������ ����!
FluentOut f ;msgInstrumentBrokenSentð Þ

r0;p0

(33) f ‘r;p INITIATED BY instrumentBrokenf g�������������������������������!
FluentIn f ;instrumentBrokenð Þ

r0; p0

map‘r0;p0CONDITIONS inInstrumentBrokenf g�������������������������������!
ActionMap f ;notifyForBrokenInstrumentð Þ

r00;p00

(34)

map‘r0;p0 CONDITIONS inInstrumentBrokenf g��!
ActionMap f ;notifyForBrokenInstrumentð Þ

r00; p00

map‘r00;p00 DO ACTIONS notifyForBrokenInstrumentf g��!
Action notifyForBrokenInstrumentð Þ

r000;p000

Note that the inInstrumentBroken fluent is initiated by the instrumentBroken event
(see Rule 31), which is triggered by the checkANTInstrument action (see Rule 40).

Inference rules 35 through 44 present the stepwise operational evaluation of the
clauses of the checkANTInstrument action. Thus,

(35) AEh i��������������������������������!
Action checkANTInstrumentð Þ

AEh i0a‘r collisionHappend ! true
a‘r GUARDS collisionHappendf g ! perform checkANTInstrumentð Þ

(36) AEh i��������������������������������!
Action checkANTInstrumentð Þ

AEh i0a‘r collisionHappend ! false
a‘r GUARDS collisionHappendf g ! perform checkANTInstrumentð Þ

(37)

AEh i��������������������������������!
Action checkANTInstrumentð Þ

AEh i0

a‘r DOES canOperate ¼ CALLCheckInstrumentf g�����������������������������!
Action checkInstrumentð Þ

r0

(38)
AEh i��������������������������������!

Action checkANTInstrumentð Þ
AEh i0

a‘r DOES canOperate ¼ CALLCheckInstrumentf g����������������������������!
:Action checkInstrumentð Þ

r0 err½ �

The ASSL Approach to Formal Specification of Self-managing Systems 287

(39) AEh i��������������������������������!
Action checkANTInstrumentð Þ

AEh i0a‘r0 DOES canOperate ¼ CALL CheckInstrumentf g��������������������������������!
Action checkInstrumentð Þ

r0

a‘r0 ENSURES instrumentCheckedf g��������������������������������!
Event instrumentCheckedð Þ

r00

(40) AEh i������������������������������!
Action checkANTInstrumentð Þ

AEh i0 a‘r0 TRIGGERS instrumentCheckedf g������������������������������!
Event instrumentCheckedð Þ

r00 a‘r00be ! true

a‘r00 TRIGGERS IF be THEN instrumentBroken ENDf g������������������������������!
Event instrumentBrokenð Þ

r000

(41) a‘r0 TRIGGERS instrumentCheckedf g������������������������������!
Event instrumentCheckedð Þ

r00a‘r00 be ! false
AEh i ��� �!Action checkANTInstrumentð Þ

AEh i0

a‘r00 TRIGGERS IFbeTHENinstrumentBrokenENDf g ! r00

(42) AEh i������������������������������!
Action checkANTInstrumentð Þ

AEh i0a‘r instrumentChecked ! true
a‘r ENSURES instrumentCheckedf g ! r

(43) AEh i������������������������������!
Action checkANTInstrumentð Þ

AEh i0a‘r instrumentChecked ! false
a‘r ENSURES instrumentCheckedf g ! r0 err½ �

(44) AEh i������������������������������!
Action checkANTInstrumentð Þ

AEh i0

a‘r ONERR TRIGGERS cannotCheckInstrumentf g�������������������������������!
Event cannotCheckInstrumentð Þ

r0
Erra 6¼ ;

where a is the tier environment exposed by the checkANTInstrument action and be
states for a Boolean expression (evaluated in a single step). In addition, Erra and
perform að Þ have the same meaning as in Sect. 5.3.1, but are addressed to the
checkANTInstrument action.

Inference rules 45 through 46 and rules 47 through 48 present the operational
evaluation of notifyForHeartbeat and checkANTInstrument actions respectively. Note,
that 1) the ASSL specification of these actions is not presented in Fig. 3 due to space
limitations; 2) we present only the evaluation of their DOES {…} and TRIGGERS {…}
clauses.

(45)
AEh i�������������������������������!

Action notifyForHeartbeatð Þ
AEh i0

a‘r DOES CALLsendHeartbeatf g�������������������������������!
Function sendHeartbeatð Þ

r0

(46) a‘r DOES CALLsendHeartbeatf g���������������������������!
Function sendHeartbeatð Þ

r0
AEh i���!Action notifyForHeartbeatð Þ

AEh i0

a‘r0 TRIGGERS msgHeartbeatSentf g����������������������������!
Event msgHeartbeatSentð Þ

r00

(47)

AEh i��!
Action notifyForBrokenInstrumentð Þ

AEh i0

a‘r DOES CALLsendInstrumentBrokenf g��!
Function sendInstrumentBrokenð Þ

r0
(48)

a‘r DOES CALLsendInstrumentBrokenf g��!
Function sendInstrumentBrokenð Þ

r0
AEh i ��� �!Action notifyForBrokenInstrumentð Þ

AEh i0

a‘r0 TRIGGERS msgInstrumentBrokenSentf g��!
Event msgInstrumentBrokenSentð Þ

r00

288 E. Vassev and M. Hinchey

Testing the Self-healing Behavior
In this example, we experimented with the Java generated code for the ASSL self-
healing specification for ANTS [25]. Note that by default, any Java application gen-
erated with the framework generates run-time log records that show important state-
transition operations ongoing in the system at runtime. Thus, we can easily trace the
behavior of the generated system by following the log records generated by the same.
In this test, we generated the Java application for the ASSL self-healing specification
model for ANTS, compiled the same with Java 1.6.0, and ran the compiled code. The
application ran smoothly with no errors.

First, it started all system threads as it is shown in the following log records. Note
that starting all system threads first is a standard running procedure for all Java
application skeletons generated with the ASSL framework.

Log Records “Starting System Threads”

**

********************* INIT ALL TIERS *********************

**

******************** START AS THREADS ********************

**
1) METRIC 'generatedbyassl.as.aes.ant_ruler.metrics.DISTANCETONEARESTOBJECT': started
2) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTLOST': started
3) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGINSTRUMENTBROKENRECEIVED': started
4) EVENT 'generatedbyassl.as.aes.ant_ruler.events.SPACECRAFTCHECKED': started
5) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG': started
6) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': started
7) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED': started
8) EVENT 'generatedbyassl.as.aes.ant_ruler.events.RECONFIGURATIONDONE': started
9) EVENT 'generatedbyassl.as.aes.ant_ruler.events.RECONFIGURATIONFAILED': started
10) EVENT 'generatedbyassl.as.aes.ant_ruler.events.COLLISIONHAPPEN': started
11) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': started
12) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCOLLISION': started
13) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INTEAMRECONFIGURATION': started
14) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT': started
15) POLICY 'generatedbyassl.as.aes.ant_ruler.aeself_management.SELF_HEALING': started
16) AE 'generatedbyassl.as.aes.ANT_RULER': started

**
17) METRIC 'generatedbyassl.as.aes.ant_worker.metrics.DISTANCETONEARESTOBJECT': started
18) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': started
19) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTCHECKED': started
20) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGINSTRUMENTBROKENSENT': started
21) EVENT 'generatedbyassl.as.aes.ant_worker.events.COLLISIONHAPPEN': started
22) EVENT 'generatedbyassl.as.aes.ant_worker.events.INSTRUMENTBROKEN': started
23) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': started
24) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': started
25) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.ININSTRUMENTBROKEN': started
26) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INCOLLISION': started
27) POLICY 'generatedbyassl.as.aes.ant_worker.aeself_management.SELF_HEALING': started
28) AE 'generatedbyassl.as.aes.ANT_WORKER': started

**
29) EVENT 'generatedbyassl.as.ants.events.SPACECRAFTLOST': started
30) EVENT 'generatedbyassl.as.ants.events.EARTHNOTIFIED': started
31) FLUENT 'generatedbyassl.as.ants.asself_management.self_healing.INLOSINGSPACECRAFT': started
32) POLICY 'generatedbyassl.as.ants.asself_management.SELF_HEALING': started
33) AS 'generatedbyassl.as.ANTS': started

**

***************** AS STARTED SUCCESSFULLY ****************

**

Here, records 1 through to 16 show the ANT_RULER autonomic element startup,
records 17 through to 28 show the ANT_WORKER autonomic element startup, and
records 29 through to 33 show the last startup steps of the ANTS autonomic system.
After starting up all the threads, the system ran in idle mode for 60 s, when the timed

The ASSL Approach to Formal Specification of Self-managing Systems 289

event timeToSendHeartbeatMsg occurred. This event is specified in the ANT_Worker
to run on a regular time basis every 60 s (see below). The occurrence of this event
activated the self-healing mechanism as shown in the following log records.

***************** AS STARTED SUCCESSFULLY ****************

**
34) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': has occurred
35) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
36) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT': has been performed
37) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': has occurred
38) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

39) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG': has occurred
40) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
41) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT': has been performed
42) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED': has occurred
43) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

44) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT': has been initiated
45) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CHECKWORKERINSTRSTATUS': has been performed
46) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': has occurred
47) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT': has been terminated

48) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': has occurred
49) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
50) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT': has been performed
51) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': has occurred
52) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

53) EVENT 'generatedbyassl.as.aes.ant_ruler.events.TIMETORECEIVEHEARTBEATMSG': has occurred
54) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
55) EVENT 'generatedbyassl.as.aes.ant_worker.events.TIMETOSENDHEARTBEATMSG': has occurred

56) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been initiated
57) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CONFIRMHEARTBEAT': has been performed
58) ACTION 'generatedbyassl.as.aes.ant_worker.actions.NOTIFYFORHEARTBEAT': has been performed
59) EVENT 'generatedbyassl.as.aes.ant_ruler.events.MSGHEARTBEATRECEIVED': has occurred
60) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

61) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT': has been initiated

62) EVENT 'generatedbyassl.as.aes.ant_worker.events.ISMSGHEARTBEATSENT': has occurred
63) FLUENT 'generatedbyassl.as.aes.ant_worker.aeself_management.self_healing.INHEARTBEATNOTIFICATION': has been terminated

64) ACTION 'generatedbyassl.as.aes.ant_ruler.actions.CHECKWORKERINSTRSTATUS': has been performed
65) EVENT 'generatedbyassl.as.aes.ant_ruler.events.INSTRUMENTOK': has occurred
66) FLUENT 'generatedbyassl.as.aes.ant_ruler.aeself_management.self_healing.INCHECKINGWORKERINSTRUMENT': has been terminated

Log Records “Self-healing Behavior”

**

As we see from the log records, the self-healing behavior correctly followed the
specification model. Records 34 through to 38 show the initiation and termination of
the INHEARTBEATNOTIFICATION fluent. This resulted in the execution of the
NOTIFYFORHEARTBEAT action (see record 36) that sends a heartbeat message to
ANT_Ruler1 (see record 37). Records 39 through to 43 show how this message is
handled by the ANT_Ruler. Records 44 through to 47 show how the INCHECK-
INGWORKERINSTRUMENT fluent is handled by the system. This fluent is initiated
by the MSGHEARTBEATRECEIVED event. Next the CHECKWORKERINSTR-
STATUS action is performed (see record 45), which resulted into the

1 The ASSL specification of ANT_Ruler is not presented here. The interested reader is advised to refer
to [25].

290 E. Vassev and M. Hinchey

INSTRUMENTOK event (see record 46). The latter terminated the INCHECK-
INGWORKERINSTRUMENT fluent (see record 47). Records 48 through to 66 show
that the system continued repeating the steps shown in records 34 though to 47. This is
because the policy-triggering events are periodic timed events and the system did not
encounter any problems while performing the executed actions, which could possibly
branch the program execution.

This experiment demonstrated that the generated code had correctly followed the
specified self-healing policy by reacting to the occurring self-healing events and, thus,
providing appropriate self-healing behavior.

6 Formal Verification with ASSL

Due to the synthesis approach of automatic code generation, ASSL guarantees con-
sistency between a specification and the corresponding implementation. Moreover, the
framework provides mechanisms for formal verification of the ASSL specifications.

6.1 Consistency Checking

The ASSL Consistency Checker (see Fig. 3) is a framework mechanism for verifying
ASSL specifications by performing exhaustive traversing. In general, the Consistency
Checker performs two kinds of consistency-checking operations: (1) light - checks for
type consistency, ambiguous definitions, etc.; and (2) heavy - checks whether the
specification model conforms to special correctness properties. The ASSL correctness
properties are special ASSL semantic definitions [5, 6] defining tier-specific rules that
make it possible to reason about the properties of the specifications created with ASSL.
They are expressed in First-Order Linear Temporal Logic (FOLTL)2 [29], which allows
for formalization of rules related to system evolution over time. An example of a
semantic rule defined for the AS/AE Self-management Policies Tier (see Table 1) is
related to policy initiation [5, 6]:

“Every policy is triggered by a finite non-empty set of fluents, and performs actions associated
with these fluents”.

8p 2 P � F 6�; ^ A6� ;ð Þ) 8f 2 F � 9a 2 A � trigger f ; pð Þ) perform að Þð Þð Þð Þ

where:

• P is the universe of self-management policies in the AS;
• F is a finite set of fluents specified by the policy p;
• A is a finite set of actions mapped to the fluents specified by the policy p.

2 In general, FOLTL can be seen as a quantified version of linear temporal logic. FOLTL is obtained
by taking propositional linear temporal logic and adding a first order language to it.

The ASSL Approach to Formal Specification of Self-managing Systems 291

It is important to mention that the consistency checking mechanism generates
consistency errors and warnings (see Fig. 4). Warnings are specific situations, where
the specification does not contradict the correctness properties, but rather introduces
uncertainty as to how the code generator will handle it.

6.2 Model Checking

Although the ASSL Consistency Checker tool takes care of syntax and consistency
errors, it still cannot handle logical errors and thus, cannot assert safety (e.g., freedom
from deadlock) or liveness properties. Therefore, to ensure the correctness of the ASSL
specifications, and that of the generated ASs, at the time of writing, there was ongoing
research on model checking with ASSL:

• The main trend influencing this research is on a model-checking mechanism that
takes an ASSL specification as input and produces as output a finite state-transition
system (called ASSL State Graph (ASG) or state machine) such that a specific
correctness property in question is satisfied if and only if the original ASSL
specification satisfies that property [30].

• Another research direction is towards mapping ASSL specifications to special
service logic graphs, which support the so-called reverse model checking [31].

Fig. 4. Consistency checking with ASSL

Fig. 5. Model checking with ASSL

292 E. Vassev and M. Hinchey

Figure 5 depicts the first approach to model checking in ASSL. As shown, the
Model Checker tool builds the ASG for the AS in question by using its ASSL spec-
ification to derive the system states and associates with each derived state special
atomic propositions (defined in FOLTL) true in that state [30].

The notion of state in ASSL is related to tiers. The ASSL Operational Semantics
(see Sect. 4) considers a state-transition model where tier instances can be in different
tier states. Formally, an ASG is presented as a tuple (S; Op; R; S0; AP; L) [30] where:
S is the set of all possible ASSL tier states; Op is the set of special ASSL state-
transition operations (see Sect. 4.1); R�S�Op� S are the possible transitions; S0�S
is a set of initial tier states; AP is a set of atomic propositions; L : S ! 2AP is a labeling
function relating a set L sð Þ 2 2AP of atomic propositions to any state s, i.e., a set of
atomic propositions that hold in that state. The ASSL model-checking mechanism uses
correctness properties (see Sect. 6.1) to check if these are held over the system’s ASG
by matching for each state the correctness properties with the atomic propositions AP.
This helps the ASSL framework trace the execution state paths in ASG and produce
counterexamples of such paths that lead to violation of the correctness properties.
Moreover, the so-called state explosion problem [29] is considered when the size of the
ASG must be reduced in order to perform efficient model checking [30].

7 Summary

This article has presented the formalism of ASSL (Autonomic System Specification
Language) in terms of notation and operational semantics. ASSL is a domain-specific
formal approach providing both formalism and tool support that help developers
implement autonomic systems. It has been successfully used to develop prototype
models for a variety of systems incorporating AC features and proven to be a valuable
approach to problem formation, modeling, verification and implementation of auto-
nomic systems. With ASSL, the formal specifications are automatically verified for
consistency flaws and the provided synthesis approach of automatic code generation,
guarantees consistency between a specification and the corresponding implementation.
Moreover, to enhance the software verification capabilities of the framework, a model
checking mechanism is under development.

ASSL implies a complex multi-tier hierarchy of specification constructs catego-
rized as ASSL tiers, sub-tiers and clauses. Both structural and functional relationships
form the semantic relations between the ASSL specification constructs. Whereas the
ASSL multi-tier specification model imposes the structural relationships between tiers,
sub-tiers and clauses, the ASSL operational semantics forms the functional relation-
ships of the same. Conceptually, the ASSL operational semantics is driven by special
state-transition operations and tier states. The operational evaluation of ASSL speci-
fications is a stepwise evaluation of the specified ASSL tiers, sub-tiers and clauses,
which are evaluated as state transition models where state-transition operations cause a
current state to evolve to a new one.

Specifying with ASSL requires a good understanding of the ASSL formalism. This
article tackles this problem by introducing the ASSL formalism from both structural
and operational perspectives. In addition, to demonstrate the theoretical concepts and

The ASSL Approach to Formal Specification of Self-managing Systems 293

flavor of the ASSL formalism, case study examples have presented ASSL specifica-
tions and their operational evaluation.

In conclusion, it should be noted that ASSL provides the IT community with an
extremely needed and powerful framework for development of autonomic systems.
Overall, ASSL is sufficiently generic and adaptable to accommodate most of the AC
development aspects.

Acknowledgement. This work was supported, in part, by Science Foundation Ireland grant
13/RC/2094 and co-funded under the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero - the Irish Software Research
Centre (www.lero.ie).

References

1. Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology,
Technical report, IBM T. J. Watson Laboratory, 15 October 2001

2. IBM Corporation: An architectural blueprint for autonomic computing, white paper, Fourth
edition, IBM Corporation (2006)

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–
50 (2003)

4. Murch, R.: Autonomic Computing: On Demand Series. IBM Press, Prentice Hall (2004)
5. Vassev, E.: Towards a framework for specification and code generation of autonomic

systems, Ph.D. thesis, Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, November 2008

6. Vassev, E.: ASSL: autonomic system specification language - a framework for specification
and code generation of autonomic systems, LAP Lambert Academic Publishing, Germany,
November 2009

7. Vassev, E., Hinchey, M.: Modeling the image-processing behavior of the NASA Voyager
mission with ASSL. In: Proceedings of the 3rd IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT 2009), pp. 246–253 IEEE
Computer Society (2009)

8. Vassev, E., Hinchey, M., Paquet, J.: Towards an ASSL specification model for NASA
swarm-based exploration missions. In: Proceedings of the 23rd Annual ACM Symposium on
Applied Computing (SAC 2008) - AC Track, pp. 1652–1657. ACM (2008)

9. Vassev, E., Mokhov, S.A.: Towards autonomic specification of distributed MARF with
ASSL: self-healing. In: Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds.)
Software Engineering Research, Management and Applications 2010. Studies in Compu-
tational Intelligence, vol. 296, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13273-5_1

10. Vassev, E., Hinchey, M., Nixon, P.: Prototyping home automation wireless sensor networks
with ASSL. In: Proceedings of the 7th IEEE International Conference on Autonomic
Computing and Communications (ICAC2010). IEEE Computer Society (2010 to appear)

11. Srivas, M., Miller, S.: Formal verification of the AAMP5 microprocessor: a case study in the
industrial use of formal methods. In: Proceedings of the Workshop on Industrial-Strength
Formal Specification Techniques (WIFT 1995), pp. 2–6. IEEE Computer Society (1995)

12. National Aeronautics and Space Administration: Formal Methods Specification and Analysis
Guidebook for the Verification of Software and Computer Systems, I: Planning and
Technology Insertion. NASA, Washington, DC (1998)

294 E. Vassev and M. Hinchey

http://www.lero.ie
http://dx.doi.org/10.1007/978-3-642-13273-5_1
http://dx.doi.org/10.1007/978-3-642-13273-5_1

13. Kowalsky, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1),
67–95 (1986)

14. IBM Corporation. Defining service-level objectives, Tivoli Software. IBM Tivoli. http://
publib.boulder.ibm.com/tividd/td/TDS390/SH19-6818-08/en_US/HTML/DRLM9mst27.
htm. Accessed 19 Aug 2009

15. IBM Corporation: Policy Management for Autonomic Computing - Version 1.2, Tutorial.
IBM Tivoli (2005)

16. The International Engineering Consortium, Specification and Description Language (SDL),
Web ProForum Tutorials. http://www.iec.org. Accessed 2 Feb 2009

17. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence of
multiple objectives. In: Proceedings of ICSE 2006 Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2006), China (2006)

18. Read, D.: Utility theory from Jeremy Bentham to Daniel Kahneman, Working Paper No:
LSEOR 04-64, Department of Operational Research, London School of Economics, London
(2004)

19. Leavens, G.T., Cheon, Y.: Design by contract with JML, Technical report, Formal Systems
Laboratory (FSL) at UIUC (2006)

20. Banatre, J.P., Fradet, P., Radenac, Y.: Programming self-organizing systems with the higher-
order chemical language. Int. J. Unconv. Comput. 3(3), 161–177 (2007)

21. Andrei, O., Kirchner, H.: A higher-order graph calculus for autonomic computing. In:
Lipshteyn, M., Levit, Vadim E., McConnell, Ross M. (eds.) Graph Theory, Computational
Intelligence and Thought. LNCS, vol. 5420, pp. 15–26. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02029-2_2

22. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Lowe, M.: Algebraic
approaches to graph transformation - Part I: basic concepts and double pushout approach. In:
Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transfor-
mations. Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997)

23. Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12), 735–773
(1964)

24. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: NASA’s swarm missions: the challenge
of building autonomous software. IT Prof. 6(5), 47–52 (2004)

25. Vassev, E., Hinchey, M.: ASSL specification and code generation of self-healing behavior
for NASA swarm-based systems. In: Proceedings of the 6th IEEE International Workshop
on Engineering of Autonomic and Autonomous Systems (EASe 2009), pp. 77–86. IEEE
Computer Society (2009)

26. Vassev, E., Hinchey, M., Paquet, J.: A self-scheduling model for NASA swarm-based
exploration missions using ASSL. In: Proceedings of the 5th IEEE International Workshop
on Engineering of Autonomic and Autonomous Systems (EASe 2008), pp. 54–64. IEEE
Computer Society (2008)

27. Vassev, E., Hinchey, M.: ASSL specification of emergent self-adapting for NASA swarm-
based exploration missions. In: Proceedings of the 2nd IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops (SASOW 2008), pp. 13–18. IEEE
Computer Society (2008)

28. Plotkin, G.D.: A structural approach to operational semantics, Report DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhus, Denmark (1981)

29. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

The ASSL Approach to Formal Specification of Self-managing Systems 295

http://publib.boulder.ibm.com/tividd/td/TDS390/SH19-6818-08/en_US/HTML/DRLM9mst27.htm
http://publib.boulder.ibm.com/tividd/td/TDS390/SH19-6818-08/en_US/HTML/DRLM9mst27.htm
http://publib.boulder.ibm.com/tividd/td/TDS390/SH19-6818-08/en_US/HTML/DRLM9mst27.htm
http://www.iec.org
http://dx.doi.org/10.1007/978-3-642-02029-2_2
http://dx.doi.org/10.1007/978-3-642-02029-2_2

30. Vassev, E, Hinchey, M., Quigley, A: Model checking for autonomic systems specified with
ASSL. In: Proceedings of the First NASA Formal Methods Symposium (NFM 2009),
pp. 16–25. NASA (2009)

31. Bakera, M., Wagner, C., Margaria, T., Vassev, E., Hinchey, M., Steffen, B.: Component-
oriented behavior extraction for autonomic system design. In: Proceedings of the
First NASA Formal Methods Symposium (NFM 2009), pp. 66–75. NASA (2009)

296 E. Vassev and M. Hinchey

The Merits of Compositional Abstraction:
A Case Study in Propositional Logic

Michael Huth(B)

Department of Computing, Imperial College London, London SW7 2AZ, UK
m.huth@imperial.ac.uk

Abstract. We revisit a well-established and old topic in computational
logic: algorithms – such as the one by Quine-McCluskey – that convert a
formula of propositional logic into a semantically equivalent disjunctive
normal form whose clauses are all prime implicants of that formula. This
exercise in education is meant to honor Bernhard Steffen, who made
important contributions in formal verification and its use of compo-
sitional abstraction, and who is a role model in transferring research
insights into teaching addressed at students with varying skill levels.
The algorithm we propose here is indeed compositional and can teach
students about the value of compositional abstractions – making use of
simple lattice-theoretic and semantic concepts.

Keywords: Propositional logic · Prime implicant · Compositionality

1 Introduction

Abstraction is a central principle in science and engineering alike. Computer Sci-
ence and Computer Engineering, as relatively young disciplines, have progressed
rapidly and made huge impact in no small part due to the use of abstractions and
abstraction layers – e.g. in technology stacks, the development of programming
languages and their compilers or the abstraction of signals into binary values.

Abstractions are especially powerful when they may be composed. For exam-
ple, we would expect that two programs have the same behavior not just in
terms of their own code but also when placed into other program contexts.
Algebraically, concepts such as congruences and morphisms may be used to
great advantage to capture such compositional aspects – drawing from tools of
universal algebra, category theory and so forth.

This power of compositional abstraction often comes with a price: the compo-
sition of two abstractions of two respective systems may not be as “precise” as a
sole and direct abstraction of the composition of those two systems. But in many
settings the curse of dimensionality applies, meaning that the computation of
abstractions directly from the composed systems does not scale in the number of
systems. In fact, we may not even be able to build (faithful representations of)

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 297–309, 2019.
https://doi.org/10.1007/978-3-030-22348-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_18&domain=pdf
http://orcid.org/0000-0001-9229-3055
https://doi.org/10.1007/978-3-030-22348-9_18

298 M. Huth

such large compositions of systems, prior to their abstraction. Thus, it is worth
paying the price of less precision that results from resorting to compositional
abstractions.

Mathematical Optimization, Formal Verification, and other research areas
have made contributions in that regard, by developing such approaches and by
also offering an understanding of how much precision may be lost by them. Bern-
hard Steffen and his collaborators have made important contributions in that
area. For example, in [1] a method is developed that allows for the compositional
computation of minimal state-transition systems that capture the semantics of
a distributed system. The semantics is an abstraction: it is based on bisimu-
lations but also on interface specifications that express global communication
constraints. The correctness of this compositional abstraction is not affected by
the choice of such interface specifications whereas its precision very well is.

Looking forward, we may need to draw from all of these research areas –
including Mathematical Optimization and Formal Verification – in the develop-
ment and verification of cyber-physical systems and systems of systems. This
seems to be the case given that these types of systems combine physical (con-
tinuous mathematics) and logical (discrete mathematics) function. Achieving
compositional and abstract reasoning for cyber–physical systems is particularly
challenging: in these systems, physical state can influence logical state (as in con-
ventional computers in which signals determine Boolean values), but also logical
state can influence physical state – with potential feedback loops between phys-
ical and logical actions that may be hard to analyze, abstract or reason about
compositionally. This seems to be a challenge for a broader community to tackle.

In this article, however, we will study a much simpler setting of compositional
abstraction, a familiar problem in propositional logic: how to convert a formula
into a disjunction of clauses that are all prime implicants of that formula. There
are known heuristics and precise algorithms for computing such normal forms,
for example the precise Quine-McCluskey algorithm [2,3] that solves a set-cover
problem at its core.

We chose this particular setting since

– it seems well suited as an accessible educational piece that can teach students
the value and potential limitation of compositional abstractions,

– the appreciation of its problem requires minimal background of students,
– it touches on two topics that are dear to Bernhard Steffen’s heart in teaching

and research: compositional abstraction and mathematical induction, and
– this case study will be integrated in a second volume of a trilogy Foundations

of Advanced Mathematics (with first volume already published in [4]) – a
project led by Bernhard Steffen and joined by the author of this paper.

This paper is meant to be an homage to Bernhard Steffen, whose passion of
bringing research problems and solution methods into the undergraduate cur-
riculum we admire.

Outline of Article: In Sect. 2, we present a lattice that forms the value space over
which our algorithm for computing prime implicants will compute. Disjunctive
normal forms, implicants, and prime implicants are reviewed in Sect. 3. In Sect. 4,

The Merits of Compositional Abstraction 299

we feature our algorithm, its description, and correctness proof. A discussion of
how this algorithm could be used in teaching is given in Sect. 5 and the article
concludes in Sect. 6.

2 A Lattice for Cartesian Abstraction

Let us define a familiar, finite lattice over which we will compute compositional
abstractions that convert formulas into a normal form of prime implicants. We
set

3 = {?, t, f} 3n
� =

(n∏

i=1

3
) ∪ {�} (1)

The intuition is that we have formulas that contain up to n atomic Boolean
propositions x1, . . . , xn that have truth values either t or f. The value ? denotes
for xi that we do not know (or do not care, depending on the use case) what the
truth value of xi is. For n = 4, for example, the element (?, t, ?, f) denotes that
x2 is true, x4 is false, and we don’t know or don’t care about the truth value of
x1 and x3. The special element � is there for computational reasons: we may
want to merge the information that is represented in two such vectors, but these
vectors may be inconsistent and then � denotes such inconsistency.

We define an order � on 3n
�: for all x and y in 3n

�, we have x � y iff we have

(y = �) ∨ (x = y = �) ∨ (({x, y} ∩ {�} = ∅) ∧ (∀1 ≤ i ≤ n : xi �= ? ⇒ xi = yi))

Let us unpack this definition. It says that we have x � y whenever y equals
�, and that � ≤ y implies that y equals �. In the remaining case, we have
vectors x and y over 3n and all coordinates of x that have a truth value t or f
force y to have that same truth value in that coordinate. For example, we have
(?, t, ?, f) � (f, t, ?, f) but (?, t, ?, f) � (?, t, ?, t) does not hold. Figure 1 shows the
Hasse diagram of 32

�.
We need to show that (3n

�,�) is a lattice, for which we use a binary relation
over 3n

� \{�} that expresses whether two vectors are consistent with each other.
For x and y in 3n

� \ {�}, we define that x and y are consistent with each other,
denoted by x ↑ y, as follows:

x ↑ y iff ¬∃i : (1 ≤ i ≤ n) ∧ ({xi, yi} = {t, f}) (2)

In plain English, two vectors x and y are consistent if there is no coordinate
at which they have a conflicting truth value, e.g. as in x2 = t and y2 = f. We
may generalize this to non-empty subsets X of 3n

� \{�} by saying that singleton
subsets X are consistent and subsets with more than 1 element are consistent
iff all pairs from that set are consistent.

We recall the notion of a complete sup-lattice (L,≤), where ≤ is a partial
order such that all subsets X ⊆ L have a supremum s in (L,≤), i.e. where

– x ≤ s for all x in X, and
– s ≤ u for all u that satisfy x ≤ u for all x in X.

300 M. Huth

Fig. 1. Hasse diagram of the non-distributive lattice (32
�, �)

In other words, s is an upper bound of X in (L,≤) and is also the least upper
bound. We recall that such a complete sup-lattice is also a lattice: for all x and
y in L

– their supremum is written x� y as a binary operation, and
– there exists an element x� y, the meet of x and y, such that x� y is the

supremum of all lower bounds of {x, y} in (L,≤).

Please recall that a lower bound of a set X is an element l with l ≤ x for all
x in X.

We claim that (3n
�,�) is a complete sup-semilattice. Let X be a subset of

3n
�:

– If X equals ∅, then (?, . . . , ?) is the least element in (3n
�,�) which therefore

is the supremum of ∅.
– If � is in X, then the supremum of X in (3n

�,�) is clearly �.
– If � is not in the non-empty X, we have two cases:

• If X is a singleton, then clearly its supremum is its sole element.
• If X contains at least two elements, we distinguish two cases:

∗ If there are x and x′ in X such that x ↑ x′ does not hold, then the
supremum of X is �.
∗ Otherwise, the supremum of X is the vector (s1, s2, . . . , sn) where
each si is defined as

si =

⎧
⎪⎨

⎪⎩

? if xi = ? for all x in X

t if xi = t for some x in X

f if xi = f for some x in X

(3)

The Merits of Compositional Abstraction 301

It is an instructive exercise to show that the definitions in the case when X
has at least two elements do really render a desired supremum. In particular,
this needs to reason that whenever xi is t for some x in X that there cannot be
some x′ in X with x′

i = f.

3 Disjunctive Normal Forms of Implicants

We now demonstrate how the lattice (3n
�,�) can be used to compute a Dis-

junctive Normal Form (DNF) of a formula of propositional logic such that this
computation is compositional in the structure of the formula and returns a DNF
whose clauses are all minimal in a certain sense formalized below.

Here, we consider formulas φ of propositional logic, generated by finitely
many atomic propositions p1, p2, . . . , pn. The BNF grammar for such formulas
is:

φ ::= p1 | p2 | · · · | pn | ¬φ | φ ∧ φ | φ ∨ φ (4)

Although this grammar allows us to generate infinitely many formulas, they are
all semantically equivalent to finitely many formulas since the grammar has only
n atomic propositions. The BNF grammar for the corresponding DNFs is

L ::= p1 | p2 | · · · | pn | ¬p1 | ¬p2 | · · · | ¬pn (5)
C ::= L | L ∧ C

D ::= C | C ∨ D

Formulas generated by C are clauses. A DNF D is thus a disjunction of one or
more clauses. Clause C is an implicant of a formula φ if the truth of C implies
the truth of φ. We define implicants and their minimal versions formally. Recall
that a formula is valid if it is true under all truth assignments.

Definition 1. Let φ be a formula of propositional logic and C a clause. Then:

1. C is an implicant of φ iff C → φ is valid
2. C is a prime implicant iff C is an implicant of φ and no clause C ′ obtained

from C by removing one or more literals is an implicant of φ.

It is useful to determine prime implicants of a formula φ such that the dis-
junction of these prime implicants is semantically equivalent to φ. For example,
such a representation of φ may have an efficient implementation in hardware.
For each formula φ, we therefore want to compute a DNF PI(φ) such that

– PI(φ) is semantically equivalent to φ, denoted by PI(φ) ≡ φ, and
– all clauses in PI(φ) are prime implicants of φ.

We also mean to compute such a representation compositionally in the struc-
ture of formula φ, since this will simplify algorithmic design and increase effi-
ciency. But one obstacle we have is that we don’t really know how to efficiently
compute a DNF for ¬φ from a DNF for φ. We address this by computing,

302 M. Huth

for each φ, two DNFs: one of prime implicants of φ that is semantically equivalent
to φ, and another one of prime implicants of ¬φ that is semantically equivalent
to ¬φ.

We assume that the atomic propositions p1, p2, . . . , pn are linearly ordered
in this manner, as this allows us to represent the meaning of formulas in the
lattice defined above. For an element x in 3n

� \ {�}, the coordinate xi therefore
represents

– that pi is true if xi = 1
– that pi is false if xi = 0
– that the truth value of pi is not known or not important if xi = ?.

The idea for computing the DNF of prime implicants PI(φ) is that it returns
a pair of DNFs which we can be represented as a pair (X,Y) where X and Y
are finite subsets of 3n

� \ {�}. We formalize this next:

Definition 2. Let us write P for the set of all finite subsets of 3n
� \

{�, (?, . . . , ?)}. We then interpret each such element as a DNF in the above
grammar as follows:

DNF(∅) = p1 ∧ ¬p1 (6)

DNF(X) =
∨

x∈X

Clause(x) (X �= ∅) (7)

Clause(x) =
(∧

i|xi=1

pi

) ∧ (∧

i|xi=0

¬pi

)
(8)

In particular, the empty set is represented by an unsatisfiable DNF and ele-
ments x determine their corresponding monomials Clause(x). Let us next intro-
duce a unary operation on 3n

� \ {�}:

Definition 3. For all x in 3n
� \ {�, (?, . . . , ?)} and i with 1 ≤ i ≤ n and xi �= ?,

let x@i be the unique element z in 3n
� \{�} with zi = ? and zj = xj for all j �= i.

This unary operation will be used on our algorithm to iteratively shrink
implicants till they become prime implicants. We can now present the algorithm
PI(φ), depicted in Fig. 2, where � and � denote the respective lattice operations
in (3n

�,�).

4 Compositional Computation of Prime Implicants

The algorithm proceeds by mathematical induction over the structure of the
input formula, and it is therefore compositional in that sense. For φ a positive
literal, the result is immediate and returned: the first coordinate contains only
a representation of pi whereas the second one only represents ¬pi.

For negation, we can simple call the algorithm on the unnegated input and
then swap the resulting element of P × P.

The Merits of Compositional Abstraction 303

Fig. 2. Algorithm PI(φ) that returns a pair (X, Y) such that DNF(X) is semantically
equivalent to φ and contains only prime implicants of φ; and DNF(Y) is semantically
equivalent to ¬φ and contains only prime implicants of ¬φ

For φ being a disjunction, we first transform that input into its De Morgan
dual and call the algorithm on that transformed input.

In the remaining case, φ is a conjunction φ1 ∧ φ2. This is the case in which
the algorithm does its “heavy lifting”, within function Conj((X,Y), (U, V)). In
that function, the meaning of the conjunction is first captured by the pair (P,N)
where P consists of all consistent suprema from elements in X and U , respec-
tively; and N is simply the union of Y and V . Then, a fixed-point iteration
commences in which it is tested whether it is possible to change some element
x in P to some x@i without changing the meaning of P . Similarly, it is testing
whether there is such an element in N that can be changed without changing

304 M. Huth

the meaning of N . When this is neither possible for P nor for N , the pair (P,N)
is returned.

We stress that the representation (X,Y) of a pair of formulas (φ,¬φ) allows
for a test, very efficient in the size of X and Y , of whether a clause Clause(x) is
a prime implicant of φ: this is the case iff x is inconsistent with all elements of
Y . We leave the proof of this fact as an easy exercise.

We now show the following claim by well-founded induction on φ:

“(PI) The call PI(φ) returns a pair (X,Y) of finite sets of 3n
� \ {�} such

that DNF(X) ≡ φ and all clauses in DNF(X) are prime implicants of φ;
and DNF(Y) ≡ ¬φ and all clauses in DNF(Y) are prime implicants of ¬φ.”

First, we need to identify the well-founded order: we write dφ, cφ, and nφ

for the number of disjunction symbols, conjunction symbols, and negation sym-
bols in formula φ. The well-founded order is then the lexicographical one of
triples (dφ, cφ, nφ) over (N,≤). We write (dψ, cψ, nψ) ≺ (dφ, cφ, nφ) to denote
that (dψ, cψ, nψ) is below (dφ, cφ, nφ) in that well-founded order.

In proving (PI) for φ, we may therefore assume that (PI) holds for all ψ with
(dψ, cψ, nψ) ≺ (dφ, cφ, nφ). We follow the case analysis of the code for PI(φ).

1. Let φ be pi. Then PI(φ) returns (X,Y) such that DNF(X) equals pi by con-
struction. Clearly, pi ≡ pi, and pi is a prime implicant of pi since we cannot
remove pi from the clause (it would no longer be a clause). Also, DNF(Y)
equals ¬pi by definition of Clause(·). Now, ¬pi ≡ ¬pi and ¬pi is a prime
implicant of ¬pi as we cannot move any literal from that clause.

2. Let φ be ¬ψ. Then PI(φ) returns (Y,X) where (X,Y) is the result computed
by PI(ψ). Since ψ has as many disjunction symbols as φ, as many conjunction
symbols as φ, but one less negation symbol than φ we have that (dψ, cψ, nψ) ≺
(dφ, cφ, nφ). By well founded induction, we know that (PI) holds for ψ. But
then DNF(X) ≡ ψ and all clauses in DNF(X) are prime implicants of ψ.
Now, ψ ≡ ¬¬ψ, which is ¬φ. Therefore, DNF(X) ≡ ¬φ and all clauses of
DNF(X) are prime implicants of ¬φ. By well founded induction, we also
know that DNF(Y) ≡ ¬ψ, which equals φ, and all clauses of DNF(Y) are
prime implicants of ¬ψ, i.e. of φ.

3. Let φ be φ1 ∨ φ2. Then PI(φ) returns (X,Y), the result of PI(¬(¬φ1 ∧ ¬φ2)).
Let us write ψ for ¬(¬φ1∧¬φ2). Then (dψ, cψ, nψ) ≺ (dφ, cφ, nφ) follows since
ψ has one less disjunction symbol than φ. By well-founded induction, we get
that DNF(X) ≡ ψ ≡ φ, and all clauses of DNF(X) are prime implicants of ψ,
i.e. of φ as well. Similarly, we get that DNF(Y) ≡ ¬ψ ≡ ¬φ, and all clauses
of DNF(Y) are prime implicants of ¬ψ, i.e. of ¬φ as well.

4. Let φ be φ1 ∧ φ2. It turns out that this is the most complex case, as it also
involves reasoning in the lattice (3n

�,�). Note that we have (dφi
, cφi

, nφi
) ≺

(dφ, cφ, nφ) for i = 1, 2 since φi removes from φ at least one conjunction
symbol, and possibly disjunction symbols and negation symbols. Let (X,Y)
be the result of PI(φ1) and (U, V) the result of PI(φ2). Then (PI) holds for
φ1 with X and Y , and for φ2 for U and V respectively.

The Merits of Compositional Abstraction 305

Let us first assume that the call Conj((X,Y), (U, V)) terminates (we prove
this below). We claim that the body of this function satisfies the following invari-
ant:

“(CONJ) We have DNF(P) ≡ DNF(X) ∧ DNF(U) and DNF(N) ≡
DNF(U) ∨ DNF(V).”

Next, we prove the above claim. Each assignment α : {p1, . . . , pn} → {t, f}
corresponds to a lattice element lat(α) where lat(α)i equals 0 if α(pi) = f, and
lat(α)i equals 1 otherwise. Note that lat(α) is a maximal element in the induced
partial order (3n

� \ {�},�). We can now define the lattice elements that make a
formula true as

Lat(φ) = {lat(α) | α |= φ} (9)

It easily follows that this representation is faithful in that any two formulas
ψ and ν of propositional logic with atomic propositions from {p1, . . . , pn} are
semantically equivalent iff Lat(ψ) equals Lat(ν).

To show that DNF(P) ≡ φ1 ∧ φ2, it therefore suffices to show that
Lat(DNF(P)) equals Lat(DNF(X) ∧ DNF(U)):

– Let lat(α) be in Lat(DNF(P)). There is some x in X and u in U such that
α |= Clause(x� u). From this, we infer α |= Clause(x) and α |= Clause(u),
which imply α |= φ1 ∧ φ2, and so lat(α) is in Lat(φ1 ∧ φ2).

– Let lat(β) be in Lat(φ1 ∧ φ2). Then β |= φ1 ∧ φ2, and so β |= φi for i = 1, 2.
But then lat(β) is in Lat(DNF(X)) since DNF(X) ≡ φ1. This means there
is some x in X with x � lat(β). In a similar manner, we reason that there
is some u in U with u � lat(β) since DNF(U) ≡ φ2. But then lat(β) is an
upper bound of x and u and so x� u exists and is in P . Thus, lat(β) is in
Lat(DNF(P)).

Now consider ¬(φ1 ∧ φ2). We need to show that DNF(Y ∪ V) ≡ ¬(φ1 ∧ φ2).
It suffices to show Lat(DNF(Y ∪ V)) = Lat(¬(φ1 ∧ φ2)):

– Let lat(α) be in Lat(¬(φ1 ∧ φ2)). Then α |= ¬(φ1 ∧ φ2). Thus, there is an i in
{1, 2} such that α |= ¬φi. Without loss of generality, let i be 2. So lat(α) is in
Lat(¬φ2), which equals Lat(DNF(V)) since DNF(V) ≡ ¬φ2 by well-founded
induction. But Lat(DNF(V)) is a subset of Lat(DNF(Y ∪ V)).

– Let lat(β) be in Lat(DNF(Y ∪ V)). Then β |= DNF(Y ∪ V). Thus, there is
some z in Y ∪ V such that β |= Clause(z). Without loss of generality, z is
in Y . Then β |= ¬φ1 since DNF(Y) ≡ ¬φ1 by well-founded induction. This
implies β |= ¬(φ1 ∧ φ2), form which we get lat(β) ∈ Lat(¬(φ1 ∧ φ2)).

Finally, let us consider the repeat-statement and its assignments to P and
N and prove that these assignments preserve the claim. It suffices to show that

“Lat(DNF(P)) = Lat(DNF(P ′)) and Lat(DNF(N)) = Lat(DNF(N ′))”

is an invariant, i.e. that the meanings of DNF(P) and DNF(N) won’t change
in these iterations. But this is pretty clear. For example, in the assignment to

306 M. Huth

P the only change is that some x in P is replaced with some x@i where x@i is
inconsistent with all elements in N ′. This means that Clause(x@i) is an implicant
of P , and so the meaning of DNF(P) won’t change if we remove any occurrence of
pi or ¬pi from Clause(x) in DNF(P). Note that we may also remove any elements
from P if they are above x@i in the lattice ordering: this has no effect on the
meaning of DNF(P) as Clause(x@i) will be a clause of that DNF. The reasoning
for the assignments to N are dual and omitted.

From the above claim and well-founded induction, we have that

DNF(P) ≡ DNF(X) ∧ DNF(U) ≡ φ1 ∧ φ2 = φ

DNF(N) ≡ DNF(U) ∨ DNF(V) ≡ ¬φ1 ∨ ¬φ2 = ¬(φ1 ∧ φ2) = ¬φ

Since the final values of pair (P,N) are returned in this call, this proves that
case provided we can show that all Clause(x) with x in P are prime implicants of
φ, and all Clause(y) with y in N are prime implicants of ¬φ. But this follows since
the repeat-statement has terminated: for example, suppose that some Clause(x)
with x in the final set P were not a prime implicant of φ. Then there would
be some i such that Clause(x@i) is also an implicant of φ. But then x@i would
be inconsistent with all y in N , and this would trigger another iteration of the
repeat-statement, a contradiction.

Termination: Let φ be any formula. Then the call PI(φ) terminates if all its calls
Conj((X,U), (U, V)) terminate. As variant for the repeat-statement in the body
of Conj((X,U), (U, V)), we use

v(P,N) =
∑

x∈P∪N

| {i | xi �= ?} | (10)

It is clear that this is a non-negative natural number, and that each iteration
of the repeat-statement decreases this variant by 1. This shows termination.

5 Exploring This Algorithm with Students

The algorithm that rendered this compositional abstraction has several variants
that can be used to deepen the understanding of lattice theory, algorithmic
concepts, and semantic issues. For the latter, e.g., students can learn about
the Egli-Milner order. Then they can investigate and confirm that the method
Reduce(X,Y) monotonically decreases the set X or Y with respect to that order,
where the underlying partial order is that of the lattice 3n

�. Additional examples
of such further understanding are given in Sect.A, as suggested exercises.

Of course, one should also discuss with students that there are formulas
for which any semantically equivalent DNF yields an exponential blowup in
formulas size. This can then also be compared with standard algorithms for
converting a formula into DNF. Furthermore, it will be instructive for students
to investigate and confirm that the above algorithm (or any of its variants) does
not always compute a DNF in which the number of literals or the number of

The Merits of Compositional Abstraction 307

prime implicants for φ is the minimal possible one. There are known hardness
results for such optimal computations, which could also be put into perspective
here. For example, the decision problems for both minimal term size (number of
clauses) and minimal literal size of a formula are both NP-complete in the size
of the truth table of that formula [5]. Moreover, deciding whether the literal size
of a formula is less than or equal to some k is ΣP

2 -complete.
Another aspect worth exploring is that the compositionality of this algo-

rithms allows for incremental computations. For example, suppose that PI(φ)
has already been computed as (X,Y) and formula φ gets refined into ψ = φ ∧ C
for some clause C. Then we only need to compute PI(C) as (U, V) and make one
call Conj((X,Y), (U, V)) to compute the output of PI(ψ).

It would also be of interest to let students experiment with different heuristics
may implement our algorithm differently, e.g. by exploiting opportunities for
parallelization presented in the choice of the element from Z.

Finally, it may be worth while to discuss the Tseitin encoding and to com-
pare and contrast this with the approach we have presented here. The Tseitin
encoding converts a formula φ into a conjunctive normal form ψ such that ψ
and φ are equisatisfiable (φ is satisfiable iff ψ is satisfiable) but where ψ may
contain additional propositional variables. This is a really important encoding
for SAT solvers and formal methods that rely on them and, unfortunately, it
is not broadly covered in undergraduate teachings of logic in computer science.
Students may, e.g., explore how this encoding may be used to compute a DNF
that is “equi-valid”.

6 Conclusions

It is always worth while to investigate how complex research topics and methods
can be presented in accessible and intuitive form to students. Doing this is hard
work that requires passion, tenacity, and a feeling for the essence of research
problems and solutions in order to be able to distill and render them in a form
that a wider student body can appreciate. Bernhard Steffen seems blessed with
possessing these qualities, and we hope that he will continue to exercise these
skills by doing excellent research and by transferring these research outcomes
into teaching in this manner. We send hereby our best wishes to him on the
occasion of his sixtieth birthday.

A Exercises

1. Let (X,Y) be such that DNF(X) ≡ φ and DNF(Y) ≡ ¬φ. Show for all z in
3n

� \ {�} that
(a) Clause(z) is an implicant of φ iff z is inconsistent with all y in Y
(b) Clause(z) is an implicant of ¬φ iff z is inconsistent with all x in X

2. Reconsider the algorithm PI(φ) and the definition of Reduce(X,Y). The latter
chose one element of a non-empty set Z to make a reduction. Discuss whether
the algorithm PI(φ) can be amended to make reductions for more than one
or even all elements of set Z, concurrently or sequentially.

308 M. Huth

Fig. 3. Another implementation of function Reduce(X, Y) where � is the infimum
operation in the lattice

3. Consider a different implementation of Reduce(X,Y) shown in Fig. 3 and
let PI′(φ) be the implementation of PI(φ) that uses this new version
Reduce′(X,Y) of Reduce(X,Y) instead.
(a) Prove that PI′(φ) terminates for all formulas φ that are legitimate input

to PI(φ).
(b) Prove that PI′(φ) satisfies the following:

“(PI’) The call PI(φ) returns a pair (X,Y) of finite setsets of
3n

� \ {�} such that DNF(X) ≡ φ and DNF(Y) ≡ ¬φ.”

(c) Show that (PI’) cannot be strengthened to the statement (PI) on page 8,
i.e. the DNFs may not only contain prime implicants.

(d) Consider a variant of PI(φ) that uses both Reduce(X,Y) and
Reduce′(X,Y) so that (PI) on page 8 will be satisfied of this variant.
Discuss in which order these two types of reduction may have to be per-
formed to guarantee (PI).

(e) Let (X,Y) be the output of PI(φ) for some formula φ. Show that the call
to Reduce′(X,Y) will compute an empty set Z.

4. Consider another implementation of function Conj((X,Y), (U, V)), in which
P and N are still computed as in that function but where there is no repeat
statement for function Reduce(X,Y). Instead, function Reduce(X,Y) calls
another function makePrime(∅,X, Y) with header makePrime(A,X, Y).
The idea is that makePrime(A,X, Y) is a tail-recursive function that itera-
tively goes through each element of X, converts it into a prime implicant
of DNF(X) that is below that x, adds that prime implicant to set A, and
removes any elements from X that are above that new prime implicant. The
desired output of Reduce(X,Y) is then the final value of set A.
(a) Propose such an amended implementation of Conj(X,Y) and the methods

it calls.
(b) Prove that this still realizes an implementation that satisfies requirement

(PI) on page 8.

The Merits of Compositional Abstraction 309

References

1. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finitestate systems
using interface specifications. Form. Asp. Comput. 8(5), 607–616 (1996). https://
doi.org/10.1007/BF01211911

2. McCluskey, E.J.: Minimization of boolean functions. Bell Labs Tech. J. 35, 1417–
1444 (1956)

3. Quine, W.: The problem of simplifying truth functions. Am. Math. Mon. 59, 521–
531 (1952)

4. Steffen, B., Rüthing, O., Huth, M.: Mathematical Foundations of Advanced Infor-
matics, Volume 1: Inductive Approaches. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-68397-3

5. Umans, C.: The minimum equivalent DNF problem and shortest implicants. In:
39th Annual Symposium on Foundations of Computer Science, FOCS 1998, Palo
Alto, California, USA, November 8–11, 1998, pp. 556–563 (1998). https://doi.org/
10.1109/SFCS.1998.743506

https://doi.org/10.1007/BF01211911
https://doi.org/10.1007/BF01211911
https://doi.org/10.1007/978-3-319-68397-3
https://doi.org/10.1007/978-3-319-68397-3
https://doi.org/10.1109/SFCS.1998.743506
https://doi.org/10.1109/SFCS.1998.743506

JConstraints: A Library for Working
with Logic Expressions in Java

Falk Howar1, Fadi Jabbour2, and Malte Mues2(B)

1 Dortmund University of Technology and Fraunhofer ISST, Dortmund, Germany
falk.howar@tu-dortmund.de

2 Dortmund University of Technology, Dortmund, Germany
malte.mues@tu-dortmund.de

Abstract. In this paper we present JConstraints, a constraint solver
abstraction layer for Java. JConstraints provides an object represen-
tation for logic expressions, unified access to different SMT and interpo-
lation solvers, and useful tools and algorithms for working with logic for-
mulas. The object representation enables implementation of algorithms
on constraints by users. For deciding satisfiability of formulas, JCon-
straints translates from its internal object representation to the format
expected by constraint solvers or a format suitable for different analysis
goals. We demonstrate the capabilities of JConstraints by implement-
ing a custom meta decision procedure for floating-point arithmetic that
combines an approximating analysis over the reals with a proper floating-
point analysis. The performance of the combined analysis is encouraging
on a set of benchmarks: overall, a total reduction of time spent for con-
straint solving by 56% is achieved.

1 Introduction

Many problems in the analysis and formal verification of software can quite
naturally be encoded as checking the satisfiability of a formula in some logic.
Impressive advances in the past decades on the Boolean satisfiability problem
and on satisfiability modulo theories (SMT) have made such encodings a viable
approach in many cases. Today, there exists a plethora of tools and libraries that
implement decision procedures with different profiles for a multitude of logics or
fragments of logics [4].

For users of these decision procedures it is not easy to decide which implemen-
tation is particularly well-suited for a concrete analysis goal or problem instance.
Moreover, most libraries have idiosyncratic native interfaces, making it hard to
exchange one solver by another. The SMT-LIB Standard [3] mitigates this prob-
lem by defining a syntax for logic formulas that is supported by many solvers.
A textual representation of formulas has some disadvantages, though: Encoded
constraints are often specific to a domain: this can include structure of formulas,
data types, and logic fragments. It is often beneficial to analyze, pre-process,

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 310–325, 2019.
https://doi.org/10.1007/978-3-030-22348-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_19

JConstraints: A Library for Working with Logic Expressions in Java 311

and simplify constraints before submitting them to a constraint solver—as is,
e.g., done by the Green tool, that implements canonization and caching on top
of constraint solvers [34].

This paper, dedicated to Bernhard Steffen on the occasion of his 60th birth-
day, presents JConstraints, a Java library for working with logic constraints.
JConstraints provides an object representation for logic expressions, native
access to different SAT-, SMT- and interpolation-solvers, as well as useful tools
and algorithms for working with logic constraints. The design philosophy behind
JConstraints is heavily influenced by works of Bernhard Steffen:

– Object representation and programming interface borrow many concepts from
the design of domain-specific languages [32]. Logic expressions can be repre-
sented at a level that is semantically close to the application domain, allowing,
e.g., logic and arithmetic expressions with Java language types.

– Analysis of expressions with off-the-shelf constraint solvers is achieved by
translating constraints to a representation suitable for analysis by a concrete
constraint solver, following the design principle of the electronic tool integra-
tion (ETI) platform [24,33].

This enables JConstraints to maintain a representation and optimizations
of constraints specific to the application domain (e.g., execution paths of Java
programs) while utilizing the impressive performance and scalability of modern
SMT solvers. It also allows the combination of different logic encodings and deci-
sion procedures. We demonstrate this feature by implementing a meta decision
procedure, dubbed Feal, for floating-point arithmetic that combines decision
procedures for floating-point arithmetic and reals as back-ends. The performance
of the combined analysis is encouraging on a set of benchmarks: overall, a total
reduction of time spent for constraint solving by 56% is achieved.

Outline. We provide an overview of JConstraints along with some examples
of how the library can be used in Sect. 2. Section 3 details the meta decision pro-
cedure for floating-point arithmetic. Results from an evaluation on benchmarks
from the literature are presented in Sect. 4. We discuss related work in Sect. 5
before concluding in Sect. 6.

2 The JConstraints Library

In this section, we first describe the architecture of JConstraints and then
give a brief overview of the transformation of expressions into the input lan-
guage of concrete constraint solvers. We also provide some code examples that
illustrate the use of JConstraints. The code of JConstraints is published
under the Apache License (Version 2.0) and is hosted on GitHub.1 The library
was first publicly released in 2015 and is used by a number of projects. We pro-
vide a short description of projects that depend on JConstraints for constraint
representation and solver abstraction at the end of this section.
1 https://github.com/psycopaths/jconstraints.

https://github.com/psycopaths/jconstraints

312 F. Howar et al.

Client Application

JConstraints Client API

Type
System

Expression
Utilities

Contraint
Visitor

JConstraints Solver API

Solver
Factory Solver

Z3
SMT-
Interpol CORAL dREAL

Concolic
Walk

Feal ...

C
on

st
ra
in
t

M
an

ag
em

en
t

So
lv
er

C
on

ne
ct
io
n

Fig. 1. The JConstraints architecture.

Architecture. Figure 1 sketches the architecture of JConstraints in detail:
The upper part of the figure shows the client-side API, consisting of the basic
library that provides an object representation for logic and arithmetic expres-
sions and some basic utilities for working with expression objects (e.g., basic
simplification, term replacement, and term evaluation). The object representa-
tion can be extended by custom types, and domain-specific algorithms on con-
straints that can be implemented using the visitor pattern. Utilities for building
and reorganizing expressions are provided.

The lower part of the figure shows the solver-side API, consisting of solver
factories for different solvers and a unified interface for interacting with differ-
ent solvers. Plugins encapsulate the actual conversion from the general object
representation into a solver input language and the necessary communication
with the solver. Each of these plugins implements a solver factory and the uni-
fied solver interface for a specific constraint solver. Currently, JConstraints
provides plugins for Z3 [12], SMTInterpol [8], CORAL [31], dReal [14] and the
Concolic Walk algorithm [13]. The work described in Sect. 3 adds Feal, a meta-
solver for floating-point problems.

Extending JConstraints by a new solver is very easy: It is sufficient to
implement a factory that instantiates a solver (satisfying the unified solver inter-
face). The solver object has to take care of translating to and from the new solver.
Changing or selecting solver back-ends in client applications can be done through
a configuration value either programmatically or in a configuration file. Due to
the separation into constraint representation layer and solver translation, bench-
marking decision procedures of different solvers becomes exceptionally easy.

Type System and Evaluation JConstraints manages variables as tuples
of names and types. Out of the box, all Java types are supported. It is pos-
sible to define application-specific types. The example in line 1 of Listing 1.1

JConstraints: A Library for Working with Logic Expressions in Java 313

Listing 1.1. Example of JConstraints usage.

1 Var iab le x = c r ea t e (Bui l t inTypes . SINT32 , ”x”) ;
2 Constant c5 = crea t e (Bui l t inTypes . SINT32 , 5) ;
3
4 Express ion<Integer> xplus5 = plus (x , c5) ;
5
6 Express ion<Boolean> t e s t = eq (xplus5 , c5) ;
7
8 Valuation va l = new Valuation () ;
9 va l . setValue (x , 0) ;

10
11 In t eg e r i = xplus5 . eva luate (va l) ;
12 Boolean b = t e s t . eva luate (va l) ;
13
14 Prope r t i e s conf = new Prope r t i e s () ;
15 conf . s e tProperty (” symbol ic . dp” , ” z3”) ;
16 Const ra intSo lverFactory f a c t o ry =
17 new Const ra intSo lverFactory (conf) ;
18 Cons t ra in tSo lve r s o l v e r = fa c t o ry . c r e a t eSo l v e r () ;
19
20 Valuation model = new Valuation () ;
21 Result r = s o l v e r . s o l v e (t e s t , model) ;
22 a s s e r t r == Result .SAT;

demonstrates the declaration of a variable of signed integer type with 32 bit
width. Similar to the type system of Java, the addition of two integers creates
a new integer (see line 4 of the same listing). Boolean operations are modeled in
an analogous fashion (line 6). Given a value assignment for all variables in an
expression (valuation), the evaluation of the expression using Java semantics is
possible (line 11). Finally, a constraint solver can be instantiated and called for
deciding satisfiability of the expression.

Inside the call to the solve() method, types of variables are translated into
some native type provided by some logic in constraint solver. Similar to the
object-relational impedance mismatch (e.g. [20,28]) where semantic differences
between Java’s object types and SQL’s relational type system occur, the con-
version from Java types to the corresponding logic type system is not always
straightforward. Different plugins may provide different mappings. In general, a
mapping from Java types to SMT-LIB [3] theories and types is the first step.
The result sometimes needs some tailoring for the specific solver. JConstraints
aims at bridging this gap during SMT solver integration, so that a comparable
development experience with using ORM system for database access is estab-
lished. In case a solver supports the generation of models, the resulting valuation
will be extracted for satisfiable expressions and transformed back to Java types
(line 18 and line 21) of Listing 1.1. This model might be used to verify the solvers
verdict using the evaluation functionality discussed above.

Instead of using JConstraints, the problem from Listing 1.1 might have
been expressed in the SMT-LIB constraint language, which is the standardized
description language for SMT problems supported by many SMT-solvers. List-
ing 1.3 demonstrates how the constraints from Listing 1.1 might be described
in the SMT-LIB language. When integrating SMT-LIB into Java, the same

314 F. Howar et al.

=

+

x : sint32 5 : sint32

5 : sint32

Fig. 2. Object representation of the expression from Listing 1.1.

difficulties arise that have been described in the past for the integration of
SQL [28]: The resulting Java code consists of String concatenation instead
of describing the real problem, which is now in the String content. Moreover,
SMT-LIB uses prefix notation, while Java and most of handwritten problems
are expressed in infix notation. As a consequence, transforming a problem into
SMT-LIB format requires a mental shift during programming, mixing these two
notation formats. JConstraints supports parsing constraints from strings in
infix notation avoiding this problem. The constraint from Fig. 2 could be parsed
by JConstraints from the string ((′x′ : sint32 + 5) == 5).

Constraint Representation. Constraints are represented as trees of objects
in JConstraints. Figure 2 sketches the tree created for the expression from
Listing 1.1: The expression test from line 6 decomposes into an addition on the
left side of the expression and a single constant on the right side.

The constraint manipulation API of JConstraints provides a set of default
constraint visitors for traversing the tree representation. There is, e.g., a dupli-
cating visitor, that duplicates a complete expression while traversing the tree.
A visitor for renaming variables can easily be implemented by extending the
behavior of the duplicating visitor to rename variables before cloning. Listing 1.2
demonstrates the code required. The method definition in line 5 overwrites the
behavior of the duplicating visitor for nodes in the tree that represent variables.

Listing 1.2. Renaming Visitor.

1 class RenameVarVisitor extends
2 Dup l i ca t ingV i s i t o r<Map<Str ing , Str ing>> {
3
4 @Override
5 public <E> Express ion<?> v i s i t (Variable<E> v ,
6 Map<Str ing , Str ing> data) {
7 St r ing newName = data . get (v . getName ()) ;
8 return Var iab le . c r e a t e (v . getType () , newName) ;
9 }

10
11 public <T> Express ion<T> rename (Express ion<T> expr ,
12 Map<Str ing , Str ing> renaming) {
13 return v i s i t (expr , renaming) . requ i reAs (expr . getType ()) ;
14 }
15 }

JConstraints: A Library for Working with Logic Expressions in Java 315

Listing 1.3. Example of SMT-LIB usage.

1 . . .
2 St r ing smtProblem = ” (dec la re −fun x () Int)\n” ;
3 smtProblem += ” (dec la re −fun tmp1 () Int)\n” ;
4 smtProblem += ” (a s s e r t (= tmp1 (+ x 5)))\ n” ;
5 smtProblem += ” (a s s e r t (= tmp1 5))\n” ;
6 smtProblem += ” (a s s e r t (= x 0))\n” ;
7 smtProblem += ” (check−sa t)\n” ;
8 . . .

Listing 1.4. Translation to Z3.

1 @Override
2 public Expr v i s i t (PropositionalCompound n , Void data) {
3 BoolExpr l e f t = null , r i g h t = null ;
4 try {
5 l e f t = (BoolExpr) v i s i t (n . g e tLe f t () , null) ;
6 r i gh t = (BoolExpr) v i s i t (n . getRight () , null) ;
7
8 switch (n . getOperator ()) {
9 case AND:

10 return ctx .mkAnd(l e f t , r i g h t) ;
11 case OR:
12 return ctx .mkOr(l e f t , r i g h t) ;
13 . . .
14 }
15 catch (Z3Exception ex) { . . . }
16 }

On the basis of these easily extensible visitors many analyses and transfor-
mation tasks can be broken down into local operations on tree nodes.

Constraint Solving. As discussed above, different constraint solvers can be
used in JConstraints as plugins. Translation from JConstraints’s object
representation to solver-specific representations of constraints is based on the
visitor pattern, too. Listing 1.4 shows an excerpt of the visitor that translates
to Z3. The method in the listing handles object of type PropositionalCompund
which is JConstraints’s expression sub-type for logical compounds (e.g., con-
junctions). In this case, when encountering a conjunction in JConstraints, a
corresponding conjunction is created using Z3’s native interface in line 10 of List-
ing 1.4. The two conjuncts left and right have already corresponding native
Z3 representations (data type BoolExpr) in line 5 and line 6.

For most of the supported solvers JConstraints currently relies on provided
JNI interfaces. The dReal solver is an exception: it is connected using a visitor
that translates to a subset of the SMT-LIB language.

Applications. JConstraints is used in different applications. Historically, it
has been developed along with JDart [23].

JDart. JDart is a concolic execution engine for Java based on JPF that can be
used for generating test cases as well as the symbolic summaries for methods.

316 F. Howar et al.

The tool executes Java programs with concrete and symbolic values at the
same time and records symbolic constraints describing all the decisions along
a particular path of the execution. These path constraints are then used to
find new paths in the program. Concrete data values for exercising these paths
are generated using a constraint solver. JConstraints has been the central
constraint management library and solver connector in this project.

RaLib. RaLib [7], an extension of LearnLib [21] for learning register
automata [19], uses JConstraints for representing transition guards of
extended finite state machines and for finding concrete data values for exe-
cuting sequences of guarded transitions.

Psyco. The Psyco tool [16] generates and verifies symbolic behavioral interfaces
for software components using a combination of multiple dynamic and static
analysis techniques: active automata learning, concolic execution, static code
analysis, symbolic search, predicate abstraction, and model-based testing.
Especially the concolic execution, symbolic search and predicate abstraction
modules depend on JConstraints for representing constraints.

3 Feal: Multi-theory Solving for Floats

In this section we describe how JConstraints can be used for defining meta-
constraint solvers by integrating multiple decision procedures as back-ends. We
demonstrate this capability by presenting a meta-analysis for floating-point
expressions for which we combine an encoding and analysis over reals with one
based on floating-point numbers. As we will show in the next section, the result-
ing meta-analysis improves the efficiency of dynamic symbolic execution over
floating-point computations on a set of standard benchmarks.

Our meta-analysis is based on the observation that solving floating-point con-
straints after approximating them over reals is often more efficient than solving
them over floating-point arithmetic. Such an analysis will find models in many
cases. In some cases the models can be spurious (i.e., not be models when trans-
lated to floating point representation). Moreover, unsatisfiability verdicts may
be spurious, too: e.g., due to rounding behavior the expression a+ b = a∧ a �= 0
is satisfiable over floating point variables but trivially unsatisfiable over reals.
Using an encoding over reals can serve as a fast generator for candidate models
and verdicts, which then have to be validated using evaluation or analysis in
floating point semantics.

The correctness of candidate models can be checked on the JConstraints
representation by evaluating obtained models on constraints using the actual
Java floating-point implementation. In case a solution is correct (i.e., a model in
floating-point semantics), we can save a call to a usually much more expensive
floating-point decision procedure. This in turn reduces the total solving time
and improves the run time of applications. In case a solution does not satisfy
the constraints in floating-point arithmetic, we can still resort to a floating-point
decision procedure.

On the other hand, if the decision procedure over reals concludes that a
set of constraints is not satisfiable, this verdict has to be substantiated by a

JConstraints: A Library for Working with Logic Expressions in Java 317

Float as Real

Unsat Core as Float Float

unsat

sat

sat (spurious),
d/k

sat (no model),
d/k

unsat

sat (model)

unsat

sat

sat (spurious),
d/k

Fig. 3. Control-flow in the meta-analysis that combines solving over reals and solving
in floating-point arithmetic.

floating-point decision procedure (cf. above example). We can, however, lever-
age the unsafisfiable core, i.e., a smallest unsatisfiable subset of the analyzed
constraints, as a heuristic for optimizing the floating-point analysis: if this core
proves unsatisfiable in floating-point arithmetic, we can circumvent analyzing the
(possibly much larger) complete set of constraints in floating-point arithmetic.

The complete control-flow of the combined decision procedure is shown in
Fig. 3. It can be divided into three stages:

Real: Floating-point constraints are approximated as constraints over ratio-
nal numbers. A constraint solver that supports the real arithmetic theory is
then used to check whether the resulting constraints are satisfiable. If this is
the case, the solver will generate a model that satisfies the constraints over
the reals. If the model can be validated over floating-point arithmetic (as
described above), the decision procedure terminates with this model (sat).
In case the model cannot be validated (spurious sat), or if the real analysis
terminates inconclusively (don‘t know) we resort to a floating-point analysis
in stage Float. If the constraints are found to be unsatisfiable by the real
solver, we proceed to analyze the unsatisfiable core in stage UnsatCore.

UnsatCore: If the constraints are found to be unsatisfiable by the real anal-
ysis, an unsatisfiable core is obtained from the constraint solver. This core
contains a subset of the original constraints, such that the conjunction of the
constraints in this subset is still unsatisfiable. Satisfiability of this core is then
checked using a floating-point decision procedure. If the core is unsatisfiable
in floating-point arithmetic, the result of the first stage is substantiated and
the analysis concludes (unsat). In case the core is satisfiable in floating-point
arithmetic, a model can be obtained from the constraint solver. If this model
of the core can be extended to a model that satisfies the complete set of
constraints, this model is returned (sat model) and the analysis terminates.

318 F. Howar et al.

If analysis on the core terminates inconclusively (don‘t know) or the obtained
model does not satisfy the complete set of constraints (sat no model), we
resort to a floating-point analysis in stage Float.

Float: In the final stage, the complete set of constraints is analyzed without
any approximation by a solver that supports floating-point arithmetic. The
analysis may find a model (sat), determine unsatisfiability (unsat), or termi-
nate inconclusively (don‘t know). In case of different floating-point semantics
in the constraint solver and the target language (Java), the analysis may
conclude that a model is spurious (sat spurious).

In the sketched analysis, inconclusive termination of constraint solvers may arise
due to timeouts, insufficient solver capabilities, or constraints that are compu-
tationally intractable.

It is easy to see that some of the paths shown in the control-flow diagram in
Fig. 3 are more expensive than using a floating-point decision procedure directly.
Hence, instead of using the floating-point analysis only as a last resort, we sim-
ply run the multi-step analysis sketched above in parallel with a floating-point
analysis in our implementation. Whichever analysis terminates first determines
result and analysis time of the meta-analysis.

The domain-specific type system of JConstraints and the compilation-
based approach to integrating constraint solvers in JConstraints makes it
easy to implement the necessary sequence of analysis steps and transformations
as well as validation of obtained models in Java.

4 Experimental Evaluation

In this section we report the results of an experimental evaluation of the approach
discussed in the previous section. We aim at evaluating the effectiveness and
efficiency of the presented analysis.

Experimental Setup. We base our evaluation on the analysis of path con-
straints in the dynamic symbolic analysis framework JDart [23]. We compare
the time spent on constraint solving when using our meta-analysis to the time
spent when using a floating-point decision procedure. JDart is a suitable driver
for our experiments as it uses JConstraints internally and allows us to replace
only the constraint solver while using identical setups otherwise. For every sym-
bolic path in the analyzed program, we record the time spent for constraint
solving and compare the two evaluated approaches. All experiments were per-
formed on a laptop with Intel Core i5 2.3 GHz processor and 8 GB of RAM
running macOS 10.13.2. For constrains solving Microsoft Z3 [12] version 4.6.0
was used with a timeout of 10 s per solver invocation.

JConstraints: A Library for Working with Logic Expressions in Java 319

Table 1. Performance improvement of Feal over floating-point by constraint solver
verdict.

Verdict Instances Feal/ FP WCT FP WCT Feal Optimized
[#] per Path [%] [sec] [sec] Paths [%]

unsat 358.00 (6.71) 72.22 (38.21) 3,843.65 (5,378.10) 1,202.81 (783.17) 55.49 (1.14)
sat 176.60 (4.16) 15.87 (8.82) 549.34 (515.09) 52.17 (17.54) 80.30 (5.85)
d/k 41.00 (1.73) 100.00 (0.00) 766.24 (1,294.46) 766.24 (1,294.46) 0.00 (0.00)
sat(sp.) 15.00 (2.24) 100.00 (0.00) 428.15 (928.08) 428.15 (928.08) 0.00 (0.00)

Selection of Benchmarks. A sample of benchmark functions was selected
from multiple sources including open source projects on GitHub and other
publications that focus on analysis of floating-point computations in pro-
grams [2,26,30]. In order to include some safety-critical methods in our anal-
ysis, we rewrote some C++ embedded software functions in Java (e.g., from
TCAS [23]). Since JDart analyses methods for symbolic method parameters, we
use only Java methods as benchmarks that contain floating-point computations
depending on method parameters. We use a total of 15 benchmark methods.

Since symbolic execution engines for java programs are usually incapable of
analyzing native implementation of mathematical functions (e.g., sqrt, sin, etc.),
we replaced all calls to elementary mathematical functions in the benchmarks
with calls to simpler versions written in Java that can be completely analyzed.

Experimental Results. Since the approach from Sect. 3 is designed to perform
better or (in the worst case) only as good as a floating-point analysis, we report
improvement (in runtime) over this baseline. We report averages and standard
deviations from five runs for each benchmark.

On average, the cumulated wall clock time for all benchmarks was reduced
by 56% from 5, 587 s (std. dev. 7, 428) to 2, 449 s (std. dev. 2, 076). For individual
paths in programs (i.e., calls to the constraint solver) solving time was reduced
by 28% on average (std. dev. 28%) and 57, 65% of paths (with a very low stan-
dard deviation of 1, 53%) were solved faster by Feal than by the floating-point
decision procedure.

Table 1 reports number of instances, average improvement over the baseline
for individual paths, wall clock times for floating-point analysis and Feal, as
well as the average percentage of paths on which solving could be optimized
for different possible verdicts of the decision procedure. Standard deviations
are reported in parentheses. As the data shows, we observe improvements for
constraint sets that are found satisfiable (84.13% reduction of runtime on aver-
age per path and 90.50% reduction of wall clock time) or unsatisfiable (27.78%
reduction of runtime on average per path and 68.71% reduction of wall clock
time). Together these cases account for 90.51% of analyzed path constraints and
78.62% of required runtime.

320 F. Howar et al.

Table 2. Performance improvement of Feal over floating-point by benchmark.

Benchmark Paths WCT FP WCT Feal Amenable
[#] [sec] [sec] Paths [%]

generate star 52.00 (0.00) 2,593.12 (5,648.60) 37.52 (1.67) 88,46 (0,00)
rgb to hsl 70.00 (0.00) 934.99 (1,292.98) 840.83 (1,291.55) 44,86 (2,17)
sv newton 2.00 (0.00) 909.21 (769.34) 896.39 (782.15) 20,00 (44,72)
hsl to rgb 127.00 (0.00) 458.29 (929.61) 438.38 (928.48) 67,72 (0,79)
sm sin 28.00 (2.24) 261.25 (536.32) 17.24 (0.92) 36,78 (5,87)
sv arctan Pade true 12.00 (0.00) 203.79 (168.61) 93.67 (16.48) 56,67 (6,97)
getClosestPointOnSeg 19.00 (0.00) 104.96 (1.96) 25.57 (3.23) 62,11 (2,35)
interpolate color 4.00 (0.00) 51.42 (1.76) 46.23 (1.52) 25,00 (0,00)
get x y 5.00 (0.00) 33.12 (3.35) 26.69 (15.24) 36,00 (35,78)
sv exp loop true 200.20 (2.68) 17.53 (1.17) 11.52 (0.48) 53,51 (3,17)
e adventure 6.00 (0.00) 11.56 (0.30) 10.01 (0.25) 33,33 (0,00)
sm exp 38.40 (5.37) 5.13 (0.65) 3.87 (0.49) 32,50 (1,86)
sv squer 2 var 3.00 (0.00) 2.24 (0.13) 1.34 (0.39) 40,00 (14,91)
sm rint 10.00 (0.00) 0.59 (0.04) 0.07 (0.03) 98,00 (4,47)
sm atan 14.00 (0.00) 0.19 (0.01) 0.04 (0.02) 88,57 (9,58)

Table 2 shows a more detailed analysis for individual benchmarks. It can be
observed that Feal is effective for every analyzed method. Performance gains
range from 1.41% (for sv newton) to 98.55% (for generate star) reduction in
wall clock time. All methods have a significant number of paths on which Feal
outperforms the floating-point analysis. As the reported standard deviations
indicate, some paths are not consistently solved more efficiently by Feal.

Table 3 shows performance improvements on different paths of the control-
flow diagram shown in Fig. 3. Unsurprisingly, performance improvements can
be observed in cases that only use stages Real and UnsatCore (79.31% of tree
traversals). As the data shows, all control-flow paths are exercised by the bench-
marks.

Threats to Validity. Generalizability of the observed performance improve-
ments may be limited by two aspects of our experimental setup. First, our anal-
ysis can only show that there exists a potential for improvement for the sampled
methods. We cannot estimate how representative our findings are for the set
of all methods that contain floating-point computations. A second threat to
the validity of the reported findings arises from the fact we replaced all calls
to elementary mathematical functions with calls to versions written in Java.
As a consequence, our analysis does not allow us to draw consequences about
analyzing Java programs with floating-point computations in general.

JConstraints: A Library for Working with Logic Expressions in Java 321

5 Related Work

Constraint Libraries. There are several libraries for representing logic con-
straints and for providing a unified interface to constraint solvers. For Java,
JavaSMT2 provides constraint representation and unified access to multiple
SMT solvers. The type system of JavaSMT mirrors types of the logics sup-
ported by solvers. JConstraints, in contrast provides a flexible type system
that allows to model types of target domains. For Python, PySMT [15] provides
constraint representation and constraint solver abstraction. PySMT provides so-
called portfolio solving (running multiple constraint solvers in parallel) but not
the combination of solvers in more complex patterns.

Table 3. Performance improvement of Feal over floating-point for stages and verdicts.

Stages Verdict Instances [#] Feal/ FP
WCT [%]

)07.0(33.1)22.41(06.241taslaeR

Real, UnsatCore unsat 325.80 (7.98) 56.66 (33.69)
Real, UnsatCore sat 1.00 (0.00) 100.00 (0.00)

Real, Float unsat 22.00 (4.47) 100.00 (0.00)
Real, Float sat 32.00 (10.07) 100.00 (0.00)
Real, Float d/k 38.20 (4.60) 100.00 (0.00)
Real, Float sat (spurious) 8.00 (2.24) 100.00 (0.00)

Real, UnsatCore, Float unsat 10.20 (3.35) 100.00 (0.00)
Real, UnsatCore, Float sat 1.00 (0.00) 100.00 (0.00)
Real, UnsatCore, Float d/k 2.80 (6.26) 100.00 (0.00)
Real, UnsatCore, Float sat (spurious) 7.00 (0.00) 100.00 (0.00)

Analysis of Floating-Point Computations. The verification of floating point
operations has a long history. First approaches, such as the one described by Aha-
roni et al. [1] used a combination of floating point constraints solving engines
to solve data constraints on operands of individual instructions to generate test
suites. Those suites aimed at the corner cases of floating-point operations for
bug discovery. More recent test generators use symbolic execution to cover all
possible execution branches and their intervals and use the symbolic execution
output as input for the test case generation of the numeric floating point func-
tions. Schumann et al. [29] build such a tool based on the Klee tool [6] and
generated test cases for an open source autopilot3. Liew et al. [22] extended
Klee towards a complete symbolic execution engine for floating-point programs
based on constraint solving. This was achieved via using an of the shelf SMT
solver that supports floating-point reasoning. Another symbolic execution engine
2 https://github.com/sosy-lab/java-smt.
3 https://github.com/ArduPilot/ardupilot.

https://github.com/sosy-lab/java-smt
https://github.com/ArduPilot/ardupilot

322 F. Howar et al.

for floating point C-programs that bundles various contribution in this area is
FPSE first introduced by Botella et al. [5]. Their symbolic execution engine
used a solver based on floating point interval propagation that is dedicated for
floating point number.

Various abstract interpretation based methods have been proposed for veri-
fying floating-point properties. Many of them focus the precision of the floating-
point computations rather than potential run-time errors. Martel [25] intro-
duced a concrete semantic for the propagation of round-off errors throughout
the floating-point computations expressed in first order terms. Solving the com-
bination of first order terms allows checking of eventual introduction of round-off
errors. Gouboult and Putot implemented the tool FLUCTUAT [17,18,27] which
uses abstract semantics and abstract domain for the static analysis of floating-
point computations. Their approach is based on domains for bounding the ranges
of the floating-point variables. These domains allow to analyze potential round-
off errors during the floating-point computations.

Integrated Formal Analysis Methods. Though not directly related to the
work we present here at a technical level there is a number of works that propose
integration of multiple formal methods with different profiles with the purpose
of optimizing effectiveness and efficiency: In context of analyzing software prod-
uct lines, Damiani et al. present a meta decision procedure that decomposes the
analyzed problem and computes results for sub-problems using multiple anal-
ysis methods with different profiles [10]. Cousot et. al. [9] combine different
abstract domains during abstract interpretation and the work of Darulova and
Kuncak [11] combines an exact SMT solver with affine and interval arithmetics.

6 Conclusion

In this paper, dedicated to Bernhard Steffen on the occasion of his 60th birthday,
we have presented JConstraints, a constraint solver abstraction layer for Java.
JConstraints provides an object representation for logic expressions, unified
access to different SMT and interpolation solvers, and useful tools and algorithms
for working with logic formulas. The design philosophy behind JConstraints
is heavily influenced by works of Bernhard Steffen: Object representation and
programming interface borrow many concepts from the design of domain-specific
languages [32]. Logic expressions can be represented at a level that is semantically
close to the application domain, abstracting from the encoding constraint solvers
support. Analysis of expressions with off-the-shelf constraint solvers is achieved
by translating constraints to a representation suitable for analysis by a concrete
constraint solver, following the design principle of the electronic tool integration
(ETI) platform [24,33], allowing to generate and analyze views on a problem by
translating to different back-ends.

We have demonstrated the capabilities of JConstraints by implementing
a custom meta decision procedure for floating-point arithmetic that combines
an approximating analysis over the reals with a proper floating-point analysis.
In a small evaluation in the context of symbolic execution, the meta decision

JConstraints: A Library for Working with Logic Expressions in Java 323

procedure reduces time spent for constraint solving by 56%. As a next step, we
plan to implement and evaluate several other meta decision procedures combin-
ing solvers with different profiles, e.g., one that does not provide models with
one that does searches for models but cannot decide unsatisfiability.

Acknowledgments. JConstraints has been developed as part of JDart and several
people who worked on JDart have contributed ideas and code to JConstraints.
Notable contributions to JConstraints have been made by Marko Dimjašević, Malte
Isberner, and Kasper Luckow.

References

1. Aharoni, M., Asaf, S., Fournier, L., Koifman, A., Nagel, R.: FPgen-a test generation
framework for datapath floating-point verification. In: Eighth IEEE International
High-Level Design Validation and Test Workshop, 2003, pp. 17–22. IEEE (2003)

2. Bagnara, R., Carlier, M., Gori, R., Gotlieb, A.: Symbolic path-oriented test data
generation for floating-point programs. In: 2013 IEEE Sixth International Con-
ference on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE
(2013)

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885 (2009)

5. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point compu-
tations. Softw. Test. Verif. Reliab. 16(2), 97–121 (2006)

6. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: OSDI, vol. 8,
pp. 209–224 (2008)

7. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state
machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-
7 18

8. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0 19

9. Cousot, P., et al.: Combination of abstractions in the ASTRÉE static analyzer. In:
Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77505-8 23

10. Damiani, F., Hähnle, R., Lienhardt, M.: Abstraction refinement for the analysis of
software product lines. In: Gabmeyer, S., Johnsen, E.B. (eds.) TAP 2017. LNCS,
vol. 10375, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61467-0 1

11. Darulova, E., Kuncak, V.: Sound compilation of reals. In: ACM SIGPLAN Notices,
vol. 49, pp. 235–248. ACM (2014)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-319-61467-0_1
https://doi.org/10.1007/978-3-319-61467-0_1
https://doi.org/10.1007/978-3-540-78800-3_24

324 F. Howar et al.

13. Dinges, P., Agha, G.: Solving complex path conditions through heuristic search on
induced polytopes. In: Proceedings of the 22nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, Hong Kong, 16–21 November 2014. ACM
(2014)

14. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

15. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

16. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–
264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 18

17. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

18. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 17

19. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

20. Ireland, C., Bowers, D., Newton, M., Waugh, K.: A classification of object-
relational impedance mismatch. In: First International Conference on Advances
in Databases, Knowledge, and Data Applications, DBKDA 2009, pp. 36–43. IEEE
(2009)

21. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

22. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zahl, R., Wehrle, K.:
Floating-point symbolic execution: a case study in N-version programming. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 601–612. IEEE (2017)

23. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 26

24. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of veri-
fication tools in JETI. In: 12th IEEE International Conference on the Engineering
of Computer-Based Systems (ECBS 2005), Greenbelt, MD, USA, 4–7 April 2005,
pp. 431–436 (2005)

25. Martel, M.: Propagation of roundoff errors in finite precision computations: a
semantics approach. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
194–208. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45927-8 14

26. Pasareanu, C., d’Amorim, M., Borges, M., Souza, M.: Coral: solving complex con-
straints for symbolic pathfinder (2010)

27. Putot, S., Goubault, E., Martel, M.: Static analysis-based validation of floating-
point computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.)
Numerical Software with Result Verification. LNCS, vol. 2991, pp. 306–313.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24738-8 18

https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-33125-1_18
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/3-540-45927-8_14
https://doi.org/10.1007/978-3-540-24738-8_18

JConstraints: A Library for Working with Logic Expressions in Java 325

28. Richly, K., Lorenz, M., Oergel, S.: S4J - integrating SQL into Java at compiler-
level. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp.
300–315. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46254-7 24

29. Schumann, J., Schneider, S.-A.: Automated testcase generation for numerical sup-
port functions in embedded systems. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2014. LNCS, vol. 8430, pp. 252–257. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06200-6 20

30. Sherman, E., Dwyer, M.B.: Exploiting domain and program structure to synthesize
efficient and precise data flow analyses (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 608–618. IEEE (2015)

31. Souza, M., Borges, M., d’Amorim, M., Păsăreanu, C.S.: CORAL: solving complex
constraints for symbolic pathfinder. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 359–374. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 26

32. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science. LNCS, vol. 10000, pp. 311–344 (2019)

33. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. STTT 1(1–2), 9–30 (1997)

34. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: 20th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE-20), SIGSOFT/FSE 2012, Cary, NC, USA,
11–16 November 2012, p. 58 (2012)

https://doi.org/10.1007/978-3-319-46254-7_24
https://doi.org/10.1007/978-3-319-06200-6_20
https://doi.org/10.1007/978-3-319-06200-6_20
https://doi.org/10.1007/978-3-642-20398-5_26

On the Expressiveness of Joining
and Splitting

Thomas Given-Wilson(B) and Axel Legay

Inria, Rennes, France
t.givenwilson@gmail.com

Abstract. An ongoing theme of the work of Bernhard Steffen has been
the bringing together of different components in a coordinated manner
and with a unified language. This paper explores this approach applied
to process calculi that account for coordination of different kinds of work-
flows. Coordination here extends binary interaction to also account for
joining of multiple outputs into a single input, and splitting from a sin-
gle output to multiple inputs. The results here formalise which process
calculi can and cannot be encoded into one another, and thus which lan-
guage has the required expressiveness for given workflow properties. The
combination of with other features of interaction allows for the represen-
tation of many systems and workflows in an appropriate calculus.

1 Introduction

An ongoing theme of the work of Bernhard Steffen has been the bringing together
of different components in a functional and coordinated manner [12,14,42,55].
This ranges from early work on unifying models [8,55] to bringing together
many components [37], to programming environments that combine components
and workflows [14,42]. This theme has as its core finding common languages
to express desirable behaviours, and approaches to unify these behaviours and
workflows in a single language [8,12,14,37,42,44,55].

This paper explores languages based on process calculi in the style of
π-calculus that focus on coordinating workflows and higher-order process mod-
elling [44,45]. The expressiveness of process calculi based upon their choice of
communication primitives has been explored before [9,16,21,23,28,49,58]. In
[28] and [23] this is detailed by examining combinations of four features: syn-
chronism, arity, communication medium, and pattern-matching, and formalising
their relations via valid encodings [30]. These four features allow the representa-
tion of many languages and many kinds of constraints and typing on interaction
[21,22]. However, recent work [27] has extended binary interaction to joining as
a form of coordination that allows a single process to receive input from many
workflow producers in a single interaction. This work generalises to also account
for splitting where a single process may produce outputs for many workflows in
a single interaction (the dual of joining).

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 326–355, 2019.
https://doi.org/10.1007/978-3-030-22348-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_20

On the Expressiveness of Joining and Splitting 327

Along with the theme or Bernhard Steffen’s works, this paper explores the
common expressiveness of these languages, and shows which forms of interaction
and workflow management can be represented in a single common process calcu-
lus. Similarly, the inability to express certain features of interaction is formalised,
demonstrating which languages are required for which kinds of interaction and
workflow behaviour.

The structure of the paper is as follows. Section 2 introduces the calculi con-
sidered here. Section 3 reviews the criteria used for comparing calculi. Section 4
considers encoding synchronism with coordination. Section 5 explores encoding
arity via coordination. Section 6 presents results for encoding communication
medium into coordination. Section 7 formalises that coordination cannot encode
pattern-matching. Section 8 presents that coordination cannot be encoded by
other features (i.e. synchronism, channel-names, pattern-matching). Section 9
considers relations between different forms of coordination. Section 10 concludes
and discusses future work.

2 Calculi

This section defines the syntax, operational, and behavioural semantics of the
calculi considered here. This relies heavily on the well-known notions developed
for the π-calculus and adapts them when necessary to cope with different fea-
tures. With the exception of the splitting this repeats many prior definitions
from [27], although there are minor syntactic changes for clarity in this work.

Assume a countable set of names N ranged over by a, b, c, Name-match
patterns (denoted m,n), input patterns (denoted p, q), and terms (denoted s, t)
are defined according to the following grammar:

m,n ::= x binding name
| �a� name-match

p, q ::= m name-match pattern
| p • q (input pattern)compound

s, t ::= a name
| s • t (term)compound .

The name-match patterns are used for input, with binding names doing binding,
and name-matches testing equality. The input patterns generalise the name-
match patterns to also include compounds that support structure. The terms are
used for output, with names being the base and compounds adding structure.
The free names and binding names for input patterns and terms are as expected,
taking the union of sub-patterns for compounds. Note that an input pattern is
linear if and only if all binding names within the pattern are pairwise distinct.
The rest of this paper will only consider linear input patterns.

This paper considers the possible combinations of five features for communi-
cation in a language denoted Lα,β,γ,δ,ε where:

α = A for asynchronous communication (output only prefoxes the empty pro-
cess), and S for synchronous communication (output may prefix any process).

328 T. Given-Wilson and A. Legay

β = M for monadic data (input or output only a single term), and P for polyadic
data (input or output unbounded sequences of terms).

γ = D for dataspace-based (interaction without named channels), and C for
channel-based communications (interaction uses channel-names).

δ = NO for no-matching (inputs can only bind), NM for name-matching (inputs
can test equality of names), and I for intensionality (inputs can test name
equality and also term structure).

ε = B for binary (one input and one output interact), J for joining (one input
may interact with many outputs), and L for splitting communication (one
output may interact with many inputs).

For simplicity a dash − will be used when the instantiation of a feature is
unimportant. The (parametric) syntax for the languages is:

P,Q,R ::= 0 | (νa)P | P |Q | ∗ P | if s = t then P else Q

| √ | OutProc | InProc.

Most of the process forms as as usual: 0 denotes the null process; restriction
(νa)P restricts the visibility of a to P ; parallel composition P |Q allows indepen-
dent evolution of P and Q; and ∗P represents replication of the process P . The
if s = t then P else Q represents conditional equivalence with if s = t then P
used when Q is 0 (like the name match of π-calculus, if s = t then P else Q
blocks either P when s �= t or Q when s = t). The

√
is used to represent a success

process or state, in other works a specific barb or name has been used, however
here by isolating

√
as a specific process it is easier to reason about encodings

(as also in) [21,30]. Finally, different languages are obtained by replacing the
output OutProc and input InProc with the various definitions in Fig. 1. The
denotation ·̃ represents a sequence of the form ·1, ·2, . . . , ·n and can be used for
names, terms, input patterns, etc. (also denote with | · | the size of a set, multiset,
or sequence).

Fig. 1. Syntax of Languages.

As usual (νx)P and [a(. . . , x, . . .)]�P and [(x•. . .)]�P and [. . . | a(x) | . . .]�
P bind x in P . Observe that in [a(. . . , �b�, . . .)]�P and [(. . .•�b�)]�P neither a nor

On the Expressiveness of Joining and Splitting 329

b bind in P , both are free. The corresponding notions of free and bound names of
a process, denoted fn(P) and bn(P), are as usual. Also note that α-equivalence,
denoted =α is assumed in the usual manner. Further, an input is linear if all
binding names in that input occur exactly once (note that this is already assumed
within an input pattern, here this is generalised to whole inputs). This paper
shall only consider linear inputs. Finally, the structural congruence relation ≡ is
the smallest congruence such that the following hold:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
P ≡ P ′ if P =α P ′ ∗ P ≡ P | ∗ P (νa)0 ≡ 0

(νa)(νb)P ≡ (νb)(νa)P P | (νa)Q ≡ (νa)(P | Q) if a /∈ fn(P).

Observe that LA,M,C,NO,B , LA,P,C,NO,B , LS,M,C,NO,B , and LS,P,C,NO,B

use the communication paradigm of the asynchronous/synchronous monadic/
polyadic π-calculus [38,40,41]. The language LA,P,D,NM ,B uses the communica-
tion paradigm of Linda[20]; the languages LA,M,D,NO,B and LA,P,D,NO,B the
communication paradigm of the monadic/polyadic Mobile Ambients [11]; and
LA,P,C,NM ,B that of μKlaim [15] or semantic-π [13].

Due to the large number of intensional languages of the form Lα,β,γ,I,ε defined
here, many do not match the communication paradigm of well-known calculi.
However, the language LS,M,D,I,B is the asymmetric concurrent pattern calculus
of [22] and calculi with other communication paradigms that match some of those
here have been mentioned in [21], as variations of Concurrent Pattern Calculus
[21,25] (with their behavioural theory as a specialisation of [24]). Similarly, the
language LS,M,C,I,B uses the communication paradigm of Spi calculus [1,31]
and Psi calculi (albeit with channel equivalence represented by equality and
without the possibility of repeated binding names in patterns) [2]. There are
also similarities between the communication paradigm of LS,M,C,I,B and the
polyadic synchronization π-calculus [10], although the intensionality in polyadic
synchronization π-calculus is limited to the channel, i.e. inputs and outputs of
the form s(x).P and s〈a〉.P , respectively.

The joining languages have several similarities to existing calculi. The lan-
guage LA,P,C,NO,J uses a communication paradigm very close to an asynchronous
π-calculus with joint input [43]. LS,P,C,NO,J uses the communication paradigm
of the general rendezvous calculus [4], and m-calculus [54], although the latter
has higher order constructs and other aspects that are not captured within the
features here. The language LS,M,C,NO,J has a similar communication paradigm
to the Quality Calculus [47,48], however the Quality Calculus has further condi-
tions upon the inputs that cannot be represented by LS,M,C,NO,J . Despite these
similarities to many languages related to Join Calculus, the Join Calculus itself
is difficult to capture in the π-calculus based framework here. This is due to
Join Calculus combining restriction, replication, and input into a single primi-
tive [19]. There are no exact connections for the splitting languages. Although
one might consider some similarity with broadcast calculus [53] and bπ-calculus
[18] that both allow a single output to communicate with multiple inputs, even
the closest splitting language LS,M,C,NO,L has a fundamentally different commu-
nication paradigm. The difference is that in the broadcast calculi the number of

330 T. Given-Wilson and A. Legay

inputs required to interact with a broadcast is not fixed, while for LS,M,C,NO,L

the number of inputs is fixed.

Remark 1. The languages Λs,a,m,p can be easily partially ordered; in particular
Lα1,β1,γ1,δ1,ε1 is a lesser language than Lα2,β2,γ2,δ2,ε2 if it holds that α1 ≤ α2 and
β1 ≤ β2 and γ1 ≤ γ2 and δ1 ≤ δ2 and ε1 ≤ ε2, where ≤ is the least reflexive
relation satisfying the following axioms:

A ≤ S M ≤ P D ≤ C NO ≤ NM ≤ I B ≤ J B ≤ L.

This can be understood as the lesser language variation being a special case of
the more general language. Asynchronous communication is synchronous com-
munication with all output followed by 0. Monadic communication is polyadic
communication with all tuples of arity one. Dataspace-based communication is
channel-based communication with all k-ary tuples communicating with channel
name k. All name-matching communication is intensional communication with-
out any compounds, and no-matching capability communication is both without
any compounds and with only binding names in patterns. Lastly, binary commu-
nication is: joining communication with all joining inputs having only a single
input pattern, and splitting communication with all splitting outputs having
only a single output term.

The operational semantics of the languages is given here via reductions as in
[23,33,38]. An alternative style is via a labelled transition system (LTS) such as
[28]. Here the reduction based style is to simplify having to define here the (poten-
tially complex) labels that occur when both intensionality, and joining/splitting
is in play. The LTS style can be used for intensional languages [2,21,24]. Also,
for the non-binary languages the techniques used in [5] can be used directly for
the no-matching joining languages, and with the techniques of [5,24] to extend
intensionality and other coordination forms.

Substitutions (denoted σ, ρ, . . .) in non-pattern-matching and name-matching
languages are mappings from names to names. For intensional languages substi-
tutions are mappings from names to terms. Note that substitutions are assumed
to have finite domain. The application of a substitution σ to a pattern p is
defined as follows:

σx = σ(x) x ∈ domain(σ) σx = x x �∈ domain(σ)
σ�x� = �(σx)� σ(p • q) = (σp) • (σq).

Where substitution is as usual on names, and on the understanding that
�(s • t)� def= �s� • �t�.

Given a substitution σ and a process P , denote with σP the (capture-
avoiding) application of σ to P that behaves in the usual manner. Note that
capture can always be avoided by exploiting α-equivalence, which can in turn
be assumed [3,56].

On the Expressiveness of Joining and Splitting 331

The matching of terms ˜t with patterns p̃ is handled in two parts. First, the
match rule {t//p} of a term t with a pattern p to create a substitution σ:

{t//x} def= {t/x}
{a//�a�} def= {}

{s • t//p • q} def= {s//p} ∪ {t//q}
{t//p} undefined otherwise.

Any term t can be matched with a binding name x to generate a substitution
from the binding name to the term {t/x}. A single name a can be matched with a
name-match for that name �a� to yield the empty substitution. A compound term
s•t can be matched by a compound pattern p•q when the components match to
yield substitutions {s//p} = σ1 and {t//q} = σ2, the resulting substitution is the
union of σ1 and σ2. (Observe that, since patterns are linear, the substitutions of
components will always have disjoint domain). Otherwise the match is undefined.

The second part is then the poly-match rule Match(˜t; p̃) that determines
matching of a sequence of terms ˜t with a sequence of patterns p̃, defined below.

Match(;) = {} {s//p} = σ1 Match(˜t; q̃) = σ2

Match(s,˜t; p, q̃) = σ1 ∪ σ2

.

The empty sequence matches with the empty sequence to produce the empty
substitution. Otherwise, when there is a sequence of terms s,˜t and a sequence
of patterns p, q̃, the first elements are matched by {s//p} and the remaining
sequences use the poly-match rule. If both are defined and yield substitutions,
then the union of substitutions is the result. (Like the match rule, the union is
ensured to happen between substitutions with disjoint domain by linearity of
inputs). Otherwise the poly-match rule is undefined, for example when a single
match fails, or the sequences are of different arity.

There are now three base reduction rules, one for each of binary, joining, and
splitting languages. The binary reduction rule is:

[s〈˜t〉] � P | [s(p̃)] � Q �−→ P | σQ Match(˜t; p̃) = σ

that states that the split [s〈˜t〉] � P interacts with the join [s(p̃)] � Q to yield
P | σQ when the channel name s is the same and the match Match(˜t; p̃) is
defined and yields σ. Note that P is omitted in the asynchronous languages and
the channel names s are omitted in the dataspace-based languages.

The joining reduction rule is:

[s1〈˜t1〉] � P1 | . . . | [si〈˜ti〉] � Pi | [s1(p̃1) | . . . | si(p̃i)] � Q

�−→ P1 | . . . | Pi | σQ Match(˜t1, . . . , ˜ti; p̃1, . . . , p̃i) = σ

that states that i splits [si〈˜ti〉] � Pi can interact with a single join when all of
the outputs of the splits si〈˜ti〉 can be matched against the inputs of the join
Match(˜t1, . . . , ˜ti; p̃1, . . . , p̃i) to yield a substitution σ, and then reduce to the
continuations of the splits P1 | . . . | Pi in parallel with σQ.

The splitting reduction rule is the mirror of the joining rule:

[s1〈˜t1〉 | . . . | si〈˜ti〉] � P | [s1(p̃1)] � Q1 | . . . | [si(p̃i)] � Qi

�−→ P | σ1Q1 | . . . | σiQi Match(˜tj ; p̃j) = σj j ∈ {1, . . . , i}

332 T. Given-Wilson and A. Legay

where all the outputs of a single split [s1〈˜t1〉 | . . . | si〈˜ti〉] � P match
Match(˜tj ; p̃j) with separate joins [sj(p̃j)] � Qi to yield σj and reduce to
P | σ1Q1 | . . . | σiQi for all j ∈ {1, . . . , i}.

The general reduction relation �−→ for all languages also includes:

P �−→ P ′

P | Q �−→ P ′ | Q

P �−→ P ′

(νa)P �−→ (νa)P ′
P ≡ Q Q �−→ Q′ Q′ ≡ P ′

P �−→ P ′

s = t P | Q �−→ S

P | if s = t then Q else R �−→ S

s �= t P | R �−→ S

P | if s = t then Q else R �−→ S
.

The reflexive transitive closure of �−→ is denoted by �=⇒.
Lastly, for each language let � denote a reduction-sensitive behavioural

equivalence for that language. A reduction-sensitive behavioural equivalence �
is one where it holds that P � P ′ and P ′ �−→ imply P �−→ as in Definition 5.3 of
[30] (observe that this rules out weak bisimulations for example). For the non-
intensional languages these are mostly already known, either by their equivalent
language in the literature, such as asynchronous/synchronous monadic/polyadic
π-calculus or Join Calculus, or from [28]. For the intensional languages the results
in [24] can be used. For the joining languages that reflect those of the literature
the techniques used in [5] apply. For other combinations of joining, and splitting,
as well as the addition of intensionality to non-binary languages, adaptations of
[5,24] should prove adequate.

3 Encodings

This section recalls the definition of valid encodings as well as some useful results
(details in [30]) for formally relating process calculi.

The choice of valid encodings here is to align with prior works [23,28,30]
and where possible reuse prior results. These valid encodings are those used,
sometimes with mild adaptations, in [21,25,26,29,30,46] and have also inspired
similar works [34,35,57]. However, there are alternative approaches to encoding
criteria or comparing expressive power [6,10,17,50,57]. Further arguments in
favour of, or against, the valid encodings here can be found in [26,29,30,51,57].

An encoding of a language L1 into another language L2 is a pair (� · �, ϕ� �)
where � · � translates every L1-process into an L2-process and ϕ� � maps every
name (of the source language) into a tuple of k names (of the target language),
for k > 0. In doing this, the translation may fix some names to play a precise
rôle or may translate a single name into a tuple of names, this can be obtained
by exploiting ϕ� �.

To aid in the following definition and the results later in the paper, a pro-
cess P is defined to be at top-level when P may be under any combination of
restrictions, conditionals, or replications, but that none of these can prevent
reduction or interaction by P . For example, P is top-level in (νn)P and ∗P
and if s = s then P else Q and if s = t then Q else P where s �= t and
(νn)if s = s then ∗ (P | Q) else R.

On the Expressiveness of Joining and Splitting 333

Now consider only encodings that satisfy the following properties. Let a
k-ary context C(·1; . . . ; ·k) be a process with k holes. Denote with �−→ω an infinite
sequence of reductions. Let P ⇓ mean there exists P ′ such that P �=⇒ P ′ and P ′

has an instance of
√

at top-level, that is the process P eventually exhibits the
success process

√
. Moreover, let � denote the reference behavioural equivalence.

Finally, to simplify reading, let S range over processes of the source language
(viz., L1) and T range over processes of the target language (viz., L2) and let
the notation of a language Li be subscripted by i, e.g. �i, �−→i, etc.

Definition 1 (Valid Encoding). An encoding (� · �, ϕ� �) of L1 into L2 is valid
if it satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every subset of
names N , there exists a k-ary context CN

op(·1; . . . ; ·k) of L2 such that, for
all S1, . . . , Sk with fn(S1, . . . , Sk) = N , it holds that � op(S1, . . . , Sk) � =
CN
op(�S1 �; . . . ; �Sk �).

2. Name invariance: for every S and substitution σ, it holds that �σS � = σ′
�S �

if σ is injective and �σS � �2 σ′
�S � otherwise where σ′ is such that

ϕ� �(σ(a)) = σ′(ϕ� �(a)) for every name a ∈ N .
3. Operational correspondence: for all S �=⇒1 S′, it holds that �S � �=⇒2�2

�S′
�; and for all �S � �=⇒2 T , there exists S′ such that S �=⇒1 S′ and

T �=⇒2�2�S′
�.

4. Divergence reflection: for every S such that �S � �−→ω
2 , it holds that S �−→ω

1 .
5. Success sensitiveness: for every S, it holds that S ⇓1 if and only if �S � ⇓2.

The existence of encodings � · �1 from L1 into L2 and � · �2 from L2 into L3

does not ensure that � � · �1 �2 is a valid encoding from L1 into L3 [29]. How-
ever, compositionality can be ensured by respecting the below definition of com-
positional valid encodings. All encodings considered in this paper satisfy this
restriction, and therefore are compositional and may be used as such in later
proofs.

Definition 2 (Compositional Valid Encodings). An encoding (� · �, ϕ� �)
of L1 into L2 is compositional if it satisfies the properties 1,2,4 and 5 from
Definition 1 and the following properties:

– Operational Correspondence revisited: for all S �=⇒1 S′, it holds that
�S � �=⇒2 �S′

� | T , for some T �2 0; and for all �S � �=⇒2 T , there exists S′

such that S �=⇒1S
′ and T �=⇒2 �S′

� | T ′, for some T ′ �2 0.
– preserves the equivalence class of 0: for every S �1 0, �S � �2 0.
– is homomorphic w.r.t. |: for every S1, S2, �S1 | S2 � = �S1 � | �S2 �.

The following three results are here recalled from prior works as they are
useful for later proofs.

Proposition 1 (Proposition 5.5 from [30]). Let � · � be a valid encoding;
then, S �−→/ implies that �S � �−→/ .

334 T. Given-Wilson and A. Legay

Proof. By contradiction, assume that �S � �−→ T , for some S �−→/ . By oper-
ational correspondence, there exists an S′ such that S �=⇒ S′ and T �=⇒
T ′ � �S′

�; but the only such S′ is S itself. Since � is reduction-sensitive and
since �S′

� = �S � �−→, then T ′ �−→ T ′′. Again by operational correspondence
T ′′

�=⇒ T ′′′ � �S �, and so on; thus, �S � �−→ T �=⇒ T ′
�=⇒ T ′′

�=⇒ T ′′′ �−→ . . .,
in contradiction with divergence reflection (since S �−→/ implies S �−→/ ω).

The following two results (and a few later in the paper) exploit the notation
block(S) that denotes the process (νn)(νm)if n = m then S where n,m �∈ fn(S).

Proposition 2 (Proposition 5.6 from [30]). Let � · � be a valid encoding; then
for every set of names N , it holds that CN

| (·1, ·2) has both its holes at top-level.

Proof. Fix a set of names N and a process S with fn(S) = N . Now consider
S′ =

√ | block(S). By Proposition 1 it must be that �S′
� �−→/ , since S′ �−→/ .

By compositionality we must have �S′
� = CN

| (�
√

�, � block(S) �). By success
sensitiveness it must be that �S′

� ⇓ since S′ ⇓. All these facts entail that the top-
level occurrence of

√
in �S′

� is exhibited: either by the translating context and
so CN

| (·, ·) ⇓; or by �
√

�, but this implies that CN
| (·, ·) has the first hole · at top-

level. Indeed, it is not possible that
√

is exhibited by � block(S) � since block(S) �⇓.
However, the first case is not possible otherwise � block(S) | block(S) � ⇓, whereas
block(S) | block(S) �⇓. To show that the second hole in CN

| (·, ·) is at top-level it
suffices to reason in the very same way using S′ = block(S) | √

.

Proposition 3 (Adapted from Proposition 5.7 from [30]). Let � · � be a
valid encoding; if there exist two processes S1 and S2 such that S1 | S2 ⇓, with
Si �⇓ and Si �−→/ for i = 1, 2, then �S1 | S2 � �−→.

Proof. By success sensitiveness �S1 | S2 � ⇓ and by Proposition 2
CN

| (�S1 �, �S2 �) has both �S1 � and �S2 � at top-level. However, since none
of �S1 �, �S2 �, and � block(S1) | block(S2) � can report success, it must be
the case that �S1 | S2 � �−→. This can only happen by interaction between
�S1 � and �S2 �. If this was not the case, we would have �S1 | block(S2) � �−→
or � block(S1) | S2 � �−→ or � block(S1) | block(S2) � �−→, in violation of
Proposition 1: indeed S1 | block(S2) �−→/ because S1 �−→/ , block(S2) �−→/ and
block(S2) cannot interact with S1. Similar reasoning holds for block(S1) | S2 and
block(S1) | block(S2).

The general way to prove the lack of a valid encoding is as follows. By con-
tradiction assuming there is a valid encoding � · �. Find a pair of processes P
and Q that satisfy Proposition 3 such that P | Q �−→ and �P | Q � �−→. From Q
obtain some Q′ such that P | Q′ �−→/ and �P | Q′

� �−→. Conclude by showing
this in contradiction with some properties of the encoding or Proposition 1.

The following result is a consequence of the choices of languages and encoding
criteria, which corresponds to formalising Remark 1.

Theorem 1. If a language L1 is a lesser language than L2 (by the ≤ relation
of Remark 1) then there exists a (compositional) valid encoding � · � from L1

into L2.

On the Expressiveness of Joining and Splitting 335

Proof. The encoding � · � is as described in Remark 1. The proof is then straight-
forward and ensured by definition of the rule for the base reduction. For a detailed
example of the proof technique see Theorem 2.

4 Coordination and Synchronism

This section considers the relation between coordination and synchronism. It
turns out that coordination is unable to encode synchronism unless it could
otherwise be encoded by other features.

In general synchronous communication can be encoded into asynchronous
communication when the target language includes: channel names; name-
matching and polyadicity; or intensionality. Thus it is sufficient to consider the
languages LA,M,D,NO,− and LA,P,D,NO,− and LA,M,D,NM ,− since the other asyn-
chronous languages can encode their synchronous joining counterparts in the
usual manner [7,32]. This can be adapted in the obvious manner for LS,M,C,NO,J

into LA,M,C,NO,J as follows

� [n〈a〉] � P �
def= (νz)([n〈z〉] � | [z(x)] � ([x〈a〉] � | �P �))

� [n1(a1) | . . . | ni(ai)] � Q �
def= (νx1, . . . , xi)[n1(z1) | . . . | ni(zi)] �

([z1〈x1〉] � | . . . | [zi〈xi〉] �
| [x1(a1) | . . . | xi(ai)] � �Q �).

The idea for binary languages is that the encoded output creates a fresh name
z and sends it to the encoded input. The encoded input creates a fresh name x
and sends it to the encoded output along channel name z. The encoded output
now knows it has communicated and evolves to �P � in parallel with the original
a sent to the encoded input along channel name x. When the encoded input
receives this it can evolve to �Q �. The joining version is similar except the join
synchronises with all the encoded outputs at once, sends the fresh names xj in
parallel, and then synchronises on all the aj in the last step.

The encoding above is shown for LS,M,C,NO,J into LA,M,C,NO,J and is the
identity on all other process forms. This can be proven to be a valid encoding.

Lemma 1. If P ≡ Q then [[P]] ≡ [[Q]]. Conversely, if [[P]] ≡ Q then Q ≡ [[P ′]]
for some P ′ ≡ P .

Proof. The only non-trivial cases are the join and split as the others are trans-
lated homomorphically. The join and split are also straightforward as the only
non-trivial parts are the possible renaming of new restricted names introduced
in the translation.

Lemma 2. Given a LS,M,C,NO,J join P and split Q then [[P]] | [[Q]] �−→ if and
only if P | Q �−→.

336 T. Given-Wilson and A. Legay

Proof. Both parts can be proved by induction on the height of the proof tree
for the judgements �P | Q � �−→ and P | Q �−→. The base case is ensured by k
applications of the poly-match rule when P is of the form [n1(x1) | . . . | nk(xk)]�
P ′. Note that Lemma 1 is used for structural congruence.

Lemma 3. The translation [[·]] from LS,M,C,NO,J into LA,M,C,NO,J preserves
and reflects reductions. That is: if P �−→ P ′ then there exists Q such that
�P � �−→k Q and Q = �P ′

�; and if �P � �−→ Q then there exists Q′ such that
Q �−→k−1 Q′ and Q′ = �P ′

� for some P ′ such that P �−→ P ′.

Proof. Both parts can be proved by straightforward induction on the judgements
P �−→ P ′ and [[P]] �−→ Q, respectively. In both cases, the base step is the most
interesting and follows from Lemma 2, for the second case the step Q �−→ Q′ is
ensured by the definition of the translation and match rule. The size of k (the
number of target steps required to simulate one source step) in both cases is 2+i
where i is the number of inputs of the join involved in P �−→ P ′. The inductive
cases where the last rule used is a structural one rely on Lemma 1.

Theorem 2. There is a valid encoding from LS,M,C,NO,J into LA,M,C,NO,J .

Proof. Compositionality and name invariance hold by construction. Operational
correspondence (with structural equivalence in the place of �) and divergence
reflection follow from Lemma 3. Success sensitiveness can be proved as follows:
P ⇓ means that there exists P ′ and k ≥ 0 such that P �−→k P ′ and P ′ has

√
at

top-level; by exploiting Lemma 3 k times and Lemma 1 obtain that [[P]] �−→j [[P ′]]
and P ′ has

√
at top-level and where j can be determined from the instantiations

of Lemma 3, i.e. that [[P]] ⇓. The converse implication can be proved similarly.

Splitting can be adapted in a similar manner, e.g. consider the encoding from
LS,M,C,NO,L into LA,M,C,NO,L

� [n1〈a1〉 | . . . | ni〈ai〉] � P �
def= (νz1, . . . , zi)([n1〈z1〉 | . . . | ni〈zi〉] � |

[z1(x1)] � . . . � [zi(xi)] �
([x1〈a1〉 | . . . | xi〈ai〉] � | �P �))

� [a(b)] � Q �
def= (νx)[a(z)] � ([z〈x〉] � | [x(b)] � �Q �)

The use of fresh names z and x is as before. The splitting version is similar
except the split synchronises with all the encoded inputs at once, sending fresh
names zj in parallel, then collects all the responses with fresh names xj , and
then splits sending all the original names ai at once in the last step.

The encoding above for LS,M,C,NO,L into LA,M,C,NO,L is the identity on all
other process forms. This can similarly be proven to be a valid encoding.

Theorem 3. There is a valid encoding from LS,M,C,NO,L into LA,M,C,NO,L.

Proof. The same proof technique as Theorem 2 applies here.

On the Expressiveness of Joining and Splitting 337

Corollary 1. If there exists a valid encoding from LS,β,γ,δ,B into LA,β,γ,δ,B then
there exists a valid encoding from LS,β,γ,δ,ε into LA,β,γ,δ,ε.

Proof. Theorems 2 and 3 provide the foundation for all the channel-based results.
For the other encodings where channels are not available in the target language,
the target language can already encode channel-based communication and so the
above results can still be used. For the polyadic and name-matching languages
this holds by Proposition 4.1 of [28], otherwise for the intensional languages this
holds by Theorem 6.4 of [23].

These results confirm that the ability to encode synchronous communication
into asynchronous communication is not impacted by changes to coordination.
Any encoding that holds from a binary synchronous language into a binary
asynchronous language also holds when both languages are instead joining, or
splitting. Thus no expressiveness is lost by changing from binary languages to
other coordination forms, and existing results can easily be transferred.

The following results formalise that there exist no new encodings from a syn-
chronous languages into an asynchronous languages as a result of shifting from
both languages being binary, to both languages being joining or splitting. That
is, if there exists no valid encoding from LS,β1,γ1,δ1,B into LA,β2,γ2,δ2,B , then
there exists no valid encoding from LS,β1,γ1,δ1,ε into LA,β2,γ2,δ2,ε. The impossi-
bility of encoding LS,M,D,NM ,J into LA,M,D,NM ,J is detailed as it illustrates the
key proof technique. The other results are either simpler variations (i.e. without
name-matching) or straightforward adaptations to consider splitting.

Theorem 4. There exists no valid encoding from LS,M,D,NM ,J into
LA,M,D,NM ,J .

Proof. The proof is by contradiction. Consider two processes P = [(x)] � if x =
b then

√
and Q = [〈a〉] � Q′ where a �= b and Q′ �⇓. Because P | Q �−→ by

validity of the encoding and Proposition 3 it follows that �P | Q � �−→ and
this must be between some R1 = [〈m〉]� (for some m) and R2. (This can be
obtained by induction over the derivation tree for �P | Q � �−→ R). Observe that
R1 | R2 cannot be a parallel component of either �P � or �Q � because then by
Proposition 1 either P or Q would reduce and this is not the case.

If R1 is a top-level component of �P � then �P � must also include a join
because otherwise there would be no join in �P � that can bind some name(s) to
ϕ� �x = x̃ and name invariance or success sensitiveness would be shown to fail
(i.e. P | Q �−→ if a = b then

√ | Q′ and {b/a}if a = b then
√ | Q′ ⇓ while

CN
| (�P �, �Q �) �=⇒ does no inputs on any part of �P � and so must always or

never succeed regardless of interaction with �Q �). Because the target language
is asynchronous, no output can block any join and so �P � must contain an
unblocked join that must include an input pattern (�n�) for some n �= m. Oth-
erwise if the join was only [(x1) | . . . | (xi)] � R′ for some R′ then �P | . . . | P �

for i instances of P would reduce while P | . . . | P does not, contradicting
Proposition 1. It follows that �Q � must include both some 〈n〉 as part of some
split, and some (�m�) where m �= n (this can be name-matches for any number

338 T. Given-Wilson and A. Legay

of names �= n, but assume one for simplicity) as part of some join. Otherwise the
join must be of the form [(z1) | . . . | (zj) | (�n�) | . . . | (�n�)] � S for k instances
of (�n�) and it follows that j + k instances of Q1 in parallel would reduce when
encoded �Q1 | . . . | Q1 � �−→ while j + k instances of Q1 in parallel do not
reduce unencoded Q1 | . . . | Q1 �−→/ violating Proposition 1. Thus, observe that
�Q � must be able to send at least one name to �P � via an output 〈d〉 for some
d (this could be any number of names sent via different outputs, but assume 1
here for simplicity). Now consider the name d.

1. If d �= m and d �= n then consider �P | Q | P �. After at least the reduction
R1 | R2 �−→ then 〈d〉 must be available from the reduct R of �P | Q �. Now
consider CN

| (�P | Q �, �P �) after the reduction �P | Q � �−→ R and the two
top-level outputs: 〈d〉 available from R, and 〈m〉 from �P �. Clearly the join
that would bind d to some name in x̃ (to be tested in the conditional if x = b)
cannot ensure binding to d and could instead bind to m. Conclude because
d �= m and without the name d being communicated to �P � the conditional
if x = b can be made to be false when it should be true via substitutions such
as {a/b} and this contradicts either name invariance or success sensitiveness.

2. If d = n then this fails name invariance or success sensitiveness (by P | Q �−→
if a = b then

√ | Q′ and {b/a}if a = b then
√ | Q′ ⇓); or d must be bound

to some name in x̃ as in the previous case.
3. If d = m then consider where 〈d〉 appears in �Q �.

– If 〈d〉 is top-level in �Q � then there exist some k such that k instances
of Q1 in parallel would reduce if encoded �Q1 | . . . | Q1 � �−→ while k
instances of Q1 in parallel unencoded do not reduce Q1 | . . . | Q1 �−→/
and this violates Proposition 1.

– If 〈d〉 is not top-level in �Q �, instead 〈d〉 is top-level in some S where
�P | Q � �=⇒ S. Conclude in the same manner as in the first case.

If R1 is a top-level component of �Q � then �Q � must also include a top-
level join because otherwise if Q′ = Ω (where Ω is a divergent process) then
�Q � would always diverge or never diverge regardless of interaction with �P �

and this contradicts divergence reflection or operational correspondence. Thus
�Q � must include a top-level join and further it must include an input pattern
(�n�) for some n �= m (reasoning as above for R1 in �P �). Otherwise if the
join was only [(z1) | . . . | (zi)] � R′ for some z̃ and R′ then �Q | . . . | Q �

for i instances of Q would reduce while Q | . . . | Q does not contradicting
Proposition 1. Consider when Q′ = if a = b then Ω and the substitution
σ = {b/a}. Clearly P | σQ | Q �−→ S where either: S �−→ω and S ⇓; or S �−→/ ω

and S �⇓. Now consider the reduction �P | σQ | Q � �−→ R′ that must be between
some component of �P � and either a component of �σQ � or �Q � (because if �P �

was not involved then CN
| (CN

| (� (νn)[(�n�)]�[〈b〉]�0 �, �σQ �), �Q �) would reduce
which contradicts Proposition 1). If this reduction is the initial one between �P �

and �σQ � then the output 〈n〉 must now be available in R′ because otherwise
the reduct of �σQ � would be unable to reduce further and this would contradict
operational correspondence (because P | σQ �−→ω while R′ �−→/ ω). However, this

On the Expressiveness of Joining and Splitting 339

〈n〉 can now reduce with �Q � instead of �σQ �, which leads to R′ ⇓ and R′ �−→/ ω

which contradicts operational correspondence via lack of divergence of R′.

Theorem 5. There exists no valid encoding from LS,M,D,NM ,L into
LA,M,D,NM ,L.

Proof. This is proved in a very similar manner to Theorem 4.

Corollary 2. If there exists no valid encoding from LS,β1,γ1,δ1,B into
LA,β2,γ2,δ2,B, then there exists no valid encoding from LS,β1,γ1,δ1,ε into
LA,β2,γ2,δ2,ε.

Proof. The techniques in Theorems 4 and 5 apply to all monadic joining and
splitting languages, respectively. Monadic no-matching languages are simpler
variants of the same proof technique, while polyadic no-matching (because
polyadic name-matching can encode synchronous communication into asyn-
chronous) is a simple generalisation of the above proofs.

That joining or splitting do not allow for an encoding of synchronous commu-
nication alone is not surprising, because there is no control in the input of which
outputs are interacting with (without some other control such as channel names
or pattern-matching). Thus, being able to consume more outputs or inputs in a
single interaction does not capture synchronous behaviours.

This formalizes that there is no change to results within languages grouped
by their coordination form. Separation results between coordination forms, and
that synchronism and coordination are orthogonal are concluded in Sect. 8.

5 Coordination and Arity

This section considers the relation between non-binary coordination and arity.
Although there appears to be some similarities in that both have a base case
(monadic or binary), and unbounded cases (polyadic or joining/splitting, respec-
tively), these cannot be used to encode arity into coordination unless they could
be encoded otherwise.

The interesting results here are the separation results that ensure no new
encodings or expressiveness. The proof technique is clearly illustrated by the
following result for the joining setting.

Theorem 6. There exists no valid encoding from LA,P,D,NO,B into
LA,M,D,NO,J .

Proof. The proof is by contradiction, assume there exists a valid encoding � · �.
Consider the LA,P,D,NO,B processes P = [〈a, b〉]� and Q = [(x, y)] � √

. Clearly
it holds that P | Q �−→ √

and so �P | Q � ⇓ and �P | Q � �−→ by validity of the
encoding and Proposition 3. Now consider the reduction �P | Q � �−→.

The reduction must be of some top-level component of �P � and �Q � (because
of Proposition 2) of the form [〈a1〉] � | . . . | [〈ai〉] � | [(x1) | . . . | (xi)] � R′ for

340 T. Given-Wilson and A. Legay

some ã and x̃ and i and R′. Now consider the process whose encoding produces
[(x1) | . . . | (xi)] � R′ at top-level, assume Q although the results do not rely
on this assumption. Observe that no [〈aj〉]� are also from the encoding of Q
because it follows that the encoding of i instances of Q in parallel will reduce,
i.e. �Q | . . . | Q � �−→, while Q | . . . | Q �−→/ and this yields contradiction.
Now consider two fresh processes S = [〈c1, . . . , ck〉]� and T = [(z1, . . . , zk)] �
0 where k �= 2. By validity of the encoding, since S | T �−→ 0 and S �−→/
and T �−→/ , it follows that �S | T � �−→ (by Proposition 3) and �S � �−→/ and
�T � �−→/ . As above, the reduction �S | T � �−→ must be of the form [〈d1〉] �
| . . . | [〈dk〉] � | [(z1) | . . . | (zk)] � T ′ for some ˜d and z̃ and k and T ′. Again,
assume that �T � has [(z1) | . . . | (zk)] � T ′ at top-level (although the result
does not rely on this assumption). Now �S � must contain at least one [〈dj〉]�
(since otherwise �T � �−→ in violation of Proposition 1), and this must be at top-
level by Proposition 2. Conclude by showing that �S | . . . | S | Q � �−→ while
S | . . . | S | Q �−→/ for i instances of S in contradiction with Proposition 1.

The splitting result is very similar with only minor adaptations to the proof.

Theorem 7. There exists no valid encoding from LA,P,D,NO,B into
LA,M,D,NO,L.

Proof. A straightforward adaptation of Theorem 6.

Corollary 3. If there exists no valid encoding from Lα1,P,γ1,δ1,B into
Lα2,M,γ2,δ2,B, then there exists no valid encoding from Lα1,P,γ1,δ1,ε into
Lα2,M,γ2,δ2,ε.

Proof. The techniques in Theorems 6 and 7 apply to all joining and splitting
languages, respectively. Name-matching requires only a small change of Q =
[(x, y)] � if a = x then

√
to then ensure binding occurs and not only name-

matching; this is then proved via contradiction of name invariance and success
sensitiveness like in Theorem 5. The techniques in Theorem 11 more elegantly
show that channel-based communication is insufficient, so they are omitted here.

Thus any form of non-binary coordination does not allow for encoding a
polyadic language into a monadic language unless it could already be encoded
by some other means.

The other main results are to show that existing encodings between binary
languages can be reproduced in other forms of coordination. This turns out to
be a straightforward adaptation of the usual techniques.

Consider the usual encoding of LS,P,D,NO,B into LS,M,C,NO,B [39]:

� [〈ã〉] � P �
def= (νc)[n〈c〉] � [c〈a1〉] � . . . � [c〈an〉] � �P �

� [(x̃)] � Q �
def= [n(z)] � [z(x1)] � . . . � [z(xn)] � �Q �

On the Expressiveness of Joining and Splitting 341

where c is not in the free names of [〈ã〉] � P , and z is not in the free names of
[(x̃)] � Q or x̃. Also n is derived from ã since ã = a1, . . . , an (and similarly for
x̃). Thus when an output and input agree upon their arity n then they interact
with the output sending a fresh name c used for sending the n names ã.

This can be adapted in the obvious manner, shown below for the encoding
of LS,P,D,NO,J into LS,M,C,NO,J .

� [〈ã〉] � P �
def
= (νc)[n〈c〉] � [c〈a1〉] � . . . � [c〈an〉] � � P �

� [(˜x1) | . . . | (˜xk)] � Q �
def
= [n1(z1) | . . . | nk(zk)] � [z1(x11)] � . . . � [z1(x1n1)]�

. . . � [zk(xk1)] � . . . � [zk(xknk)] � � Q �

where the restrictions on z are here extended to distinct z1, . . . , zk for each input.

Theorem 8. There is a valid encoding from LS,P,D,NO,J into LS,M,C,NO,J .

Proof. The proof technique is identical to Theorem 2.

This illustrates the key ideas for the following general result, that requires
only straightforward adaptations of the proofs in the obvious manner. It is worth
noting that all such results rely on the use of a channel-name, or an equivalent
pattern match of some form to detect compatible arity and then ensure the
right processes communicate. This is clearly available when adding channel-
based communication, or when exploiting intensionality.

Theorem 9. If there exists a valid encoding from Lα1,P,γ1,δ1,B into
Lα2,M,γ2,δ2,B then there exists a valid encoding from Lα1,P,γ1,δ1,ε into
Lα2,M,γ2,δ2,ε.

This confirms that encodings in the binary setting still exist in different
coordination settings. Thus no expressiveness differences between languages are
lost by changing coordination form, and existing results can be transferred.

6 Coordination and Communication Medium

This section considers the relation between coordination and communication
medium. In general coordination is unable to encode communication medium
unless it could otherwise be encoded by other features. This is proved by two
main results: that if there is no valid encoding from a channel-based binary
language to a dataspace-based binary language then there is no encoding when
replacing binary with joining or splitting; and that if there exists a valid encoding
from a channel-based binary language into a dataspace-based binary language
then there exists an encoding with binary replaced by joining or splitting.

The base result for joining is illustrated in the following theorem, generalised
in the corollary that follows.

Theorem 10. There exists no valid encoding from LA,M,C,NO,B into
LA,M,D,NO,J .

342 T. Given-Wilson and A. Legay

Proof. The proof is by contradiction and uses a very similar to that of Theorem 6.
The differences are to use the LA,M,C,NO,B processes P = [a〈b〉]� and Q =
[a(x)] � √

initially, and then S = [c〈b〉]� and T = [c(z)] � 0 where c �= a.

Theorem 11. There exists no valid encoding from LA,M,C,NO,B into
LA,M,D,NO,L.

Proof. The proof is by contradiction and very similar to that of Theorem 7, the
main differences are to consider the LA,M,C,NO,B processes P = [a〈b〉]� and
Q = [a(x)] � √

, and then S = [c〈d〉]� and T = [c(z)] � 0.

Corollary 4. If there exists no valid encoding from Lα1,β1,C,δ1,B into
Lα2,β2,D,δ2,B, then there exists no valid encoding from Lα1,β1,C,δ1,ε into
Lα2,β2,D,δ2,ε.

Proof. The technique in Theorems 10 and 11 apply to all monadic languages
(the addition of name-matching can be proved using the techniques as in Theo-
rem 4). For the polyadic no-matching setting the results above holds by observ-
ing that the arity must remain fixed for an encoding, i.e. � [a〈b1, . . . , bi〉]� �

is encoded to inputs/outputs all of some arity j. If the arity is not uniform
then the encoding fails either Proposition 1 (by showing that the reduction
� [a(x)] � 0 | [a〈b1, b2〉]� � �−→ must occur) or divergence reflection (by show-
ing that � [a(x)] � 0 | [a〈b1, b2〉]� � �−→�=⇒ � [a(x)] � 0 | [a〈b1, b2〉]� � and so
� [a(x)] � 0 | [a〈b1, b2〉]� � �−→ω).

Thus any form of non-binary coordination does not allow for encoding chan-
nels in a dataspace-based language unless it could already be encoded.

The positive encoding results are the typical adaptations of the positive
encoding results in the binary setting. The adaptation of the usual encoding
for LS,P,C,NM ,J into LS,P,D,NM ,J is the obvious one as below.

� [a〈c̃〉] � P �
def= [〈a, c̃〉] � �P �

� [a1(˜x1) | . . . | ak(˜xk)] � Q �
def= [(�a1�, ˜x1) | . . . | (�ak�, ˜xk)] � �Q �

For the each channel-based output a〈c̃〉 the channel name a is moved to the first
position of the dataspace-based output 〈a, c̃〉 in the encoding. The same is done
for each channel-based input a(x̃) becoming a dataspace-based input (a, x̃).

Theorem 12. There is a valid encoding from LS,P,C,NM ,J into LS,P,D,NM ,J .

Proof. The proof technique is identical to Theorem 2 (albeit simpler since each
reduction in the source language corresponds to exactly one reduction in the
target language and vice versa).

This illustrates the key ideas for the following general result, that requires
only straightforward adaptations of the proofs in the obvious manner. Again all
such results rely upon the use of pattern-matching, either via name-matching or
intensionality, to represent the channel.

On the Expressiveness of Joining and Splitting 343

Theorem 13. If there exists a valid encoding from Lα1,β1,C,δ1,B into
Lα2,β2,D,δ2,B then there exists a valid encoding from Lα1,β1,C,δ1,ε into
Lα2,β2,D,δ2,ε.

This confirms that encodings of channel-based communication into
dataspace-based communication in the binary setting still exist in different coor-
dination settings. Thus no expressiveness differences between languages are lost
by changing coordination form, and existing results can be transferred.

7 Coordination and Pattern-Matching

This section considers the relations between coordination and pattern-matching.
Intensionality cannot be encoded into a name-matching (or no-matching) lan-
guage by exploiting joining or splitting. Similarly name-matching cannot be
encoded into a no-matching language by exploiting joining or splitting.

To assist with the below theorem, define the maximal interaction patterns
mip(P) of a process P as follows:

mip(0) = 0 mip((νa)P) = mip(P) mip(∗P) = mip(P) mip(
√

) = 0
mip(P | Q)

mip(if s = t then P else Q)

}

=
{

mip(P) if mip(P) > mip(Q)
mip(Q) otherwise

mip([〈˜t1〉 | . . . | 〈˜ti〉] � P) =
∑

j=0,...,i |˜tj |
mip([s1〈˜t1〉 | . . . | si〈˜ti〉] � P) = i +

∑

j=0,...,i |˜tj |
mip([(p̃1) | . . . | (p̃i)] � P) =

∑

j=0,...,i |p̃j |
mip([a1(p̃1) | . . . | ai(p̃i)] � P) = i +

∑

j=0,...,i |p̃j |.

The intuition is that mip(P) indicates the maximum number of patterns
that can be matched by any single split or join of P (i.e. any single OutProc
or InProc). For the null process, restriction, parallel composition, replication,
conditional, and success process this is straightforward, the only non-trivial case
is the conditional if s = t then P else Q where both P and Q can be considered
(this is to allow flexibility when substitutions may allow either P or Q to be
possible). For the splits (resp. joins), when the language is dataspace-based then
this is the sum of the arities of all outputs in the split (resp. inputs in the join),
and when the language is channel-based the maximum interaction patterns also
counts the channel terms (i+ above).

Lemma 4. Given a process P (for any language), for all substitutions σ it holds
that mip(P) = mip(σ(P)).

Proof. The proof is straightforward by induction on the structure of P .

Observe that in name-matching languages, for any process P then mip(P) is
the upper bound on the number of names that can be matched in any split or
join of P . For no-matching languages the upper bound is at most mip(P)

2 (when
the maximum arity of any output in a split or input in a join is 1), although

344 T. Given-Wilson and A. Legay

this is less significant to the result below. (For intensional languages there is no
upper bound, related to mip(P) or otherwise, however since the goal is to use
mip(P) to reason about non-intensional languages, this is not relevant).

The first result is to prove that intensionality cannot be encoded by coordi-
nation. Recall that since intensionality alone can encode all other features aside
from coordination, it is sufficient to consider LA,M,D,I,B .

Theorem 14. There exists no valid encoding from LA,M,D,I,B into L−,−,−,δ,J

where δ �= I.

Proof. The proof is by contradiction. Assume there exists a valid encoding [[·]]
from LA,M,D,I,B into Lα,β,γ,δ,J for some α and β and γ and δ where δ �= I.
Consider the encoding of the processes P = [(�a�)]�P ′ and Q = [〈a〉]�. Because
P | Q �−→ then by Proposition 3 [[P | Q]] �−→. Now define k = mip([[P | Q]]) and
define σ = {b1 • . . . • bk+1/a}. Observe that σ(P | Q) �−→ and so [[σ(P | Q)]] �−→
by Proposition 3, and that the reduction [[σ(P | Q)]] �−→ can match at most k
names because k ≥ the maximum possible patterns of any join in [[σ(P | Q)]]
by Lemma 4 and δ �= I. Therefore, there must exist at least one name bj (but
assume only bj for simplicity here) that is not being tested for equality either
by a name match or channel name in the reduction [[σ(P | Q)]] �−→. Define
P ′ = [〈m〉]� and ρ = {m/bj , bj/m}. Now since bj is not tested for equality in the
reduction [[σP | σQ]] �−→ it follows that [[ρσP | σQ]] �−→. Conclude by showing
that ∗(ρσP | σQ) does not reduce (or diverge) while because [[ρσP | σQ]] �−→ it
follows that [[∗(ρσP | σQ)]] �−→ω in violation of divergence reflection.

Theorem 15. There exists no valid encoding from LA,M,D,I,B into L−,−,−,δ,L

where δ �= I.

Proof. The same technique as in Theorem 14 can be applied for splitting.

Corollary 5. If there exists no valid encoding from Lα1,β1,γ1,I,B into
Lα2,β2,γ2,δ,B, then there exists no valid encoding from Lα1,β1,γ1,I,ε into
Lα2,β2,γ2,δ,ε.

Proof. The joining case is by Theorem 14 and the splitting by Theorem 15.

It follows that any form of coordination cannot represent intensionality in a
language that does not have intensionality already (including name-matching or
no-matching languages).

The next results show that coordination is insufficient to encode name match-
ing. Unlike Theorem 14, these need to be separated into two results due to the
encoding from LA,M,D,NM ,B into LA,M,C,NO,B [28].

Theorem 16. There exists no valid encoding from LA,M,D,NM ,B into
Lα,β,D,NO,J .

Proof. The proof is by contradiction, assume there exists a valid encoding � · �.
Consider the LA,M,D,NM ,B processes P = [〈a〉]� and Q = [(�a�)] � ([〈b〉] � | √

).

On the Expressiveness of Joining and Splitting 345

Observe that P | Q �−→ and P | Q ⇓ and so �P | Q � �−→ and �P | Q � ⇓
by Proposition 3 and validity of the encoding. Now consider the substitution
σ = {c/a}, it follows that P | σQ �−→/ and so �P | σQ � �−→/ by Proposition 1.
Now if there is no blocking via an if a1 = a2 then S1 else S2 then this yields
a contradiction in the usual manner (see Theorem 4) via either: �P | σQ � ⇓
while P | σQ �⇓, or �σ(P | Q) � �⇓ while σ(P | Q) ⇓. Therefore there must
be a conditional if a1 = a2 then S1 else S2 that prevents reduction (there
may be many, but assume one for simplicity). Further, this must be in �Q �

because otherwise this would violate compositionality and success sensitiveness
with CN

| (�P �, ·) replacing · with �Q � or �σQ �. It must be that a1 �= a2 in
�Q � because otherwise if a1 = a2 then no substitution σ′ (defined by name
invariance σ′

� · � = �σ(·) �) could make σ′a1 �= σ′a2 when a1 = a2. Therefore, it
must be that σ′a1 = σ′a2, however by considering the substitution ρ = {a/c}
(and associated ρ′ from name invariance) it must be that ρ′σ′

�Q � � �Q �, yet
ρ′ cannot induce inequality in σ′a1 = σ′a2 and because no other mechanism can
prevent interaction then because �P | ρσQ � �−→ (by Proposition 3) it follows
that �P | σQ � �−→ in violation of Proposition 1.

Theorem 17. There exists no valid encoding from LA,P,D,NM ,B into
Lα,β,γ,NO,J .

Proof. The proof is by contradiction, assume there exists a valid encoding � · �.
If γ = D then the proof of Theorem 16 applies, so the rest of this proof shall
assume γ = C. Consider the LA,P,D,NM ,B processes P = [〈a, b〉]� and Q =
[(�a�, �b�)] � Q′. Observe that P | Q �−→ and so �P | Q � �−→ by Proposition 3
and validity of the encoding. The reduction �P | Q � �−→ must be of the form
[c1〈m̃1〉] � | . . . | [ci〈m̃i〉] � | [c1(z̃1) | . . . | ci(z̃i)] � R′ for some c̃ and m̃
and z̃ and i and R′. Now consider the substitutions σ = {c/a} and ρ = {d/b}
(and their associated substitutions on encoded processes σ′ and ρ′ determined by
name invariance and validity of the encoding). Observe that because σP | Q �−→/
it follows that CN

| (σ′
�P �, �Q �) �−→/ by Proposition 1. The reduction can only

be prevented by either a conditional or the changing of a channel name via
the substitution σ′. (Observe that conditionals may introduce or remove splits
and joins accounting for missing components or changes in arity, and so the only
other possibility for preventing reduction is by changing the channel name). If the
reduction is prevented due to a conditional then contradiction can be achieved as
in Theorem 16, so it must be that σ′(cj) �= cj for some j ∈ {1, . . . , i}. The same
can be shown for ρP | Q and some ck such that ρ′(ck) �= ck. Further, by exploiting
the inverse substitutions denoted inv(σ) for the inversve of σ (defined in the
obvious manner) it must be that j �= k, because otherwise inv(σ′)ρ′(cj) = cj and
contradiction could be shown because inv(σ)ρP | Q �−→/ . Finally, because the join
and all the splits involved in the reductions �P | Q � �−→ must be at top-level by
Proposition 2, conclude by observing that �σP | ρP | Q | ρσQ � �−→ because all
the components required for interaction are at top-level and because �Q | ρσQ �

provides all the outputs (or inputs) required for the inputs (or outputs) of σP
and ρP . However, because σP | ρP | Q | ρσQ �−→/ this contradicts Proposition 1.

346 T. Given-Wilson and A. Legay

The next two results are the splitting version of the two theorems above.

Theorem 18. There exists no valid encoding from LA,M,D,NM ,B into
Lα,β,D,NO,L.

Proof. The same technique as in Theorem 16 can be applied here.

Theorem 19. There exists no valid encoding from LA,P,D,NM ,B into
Lα,β,γ,NO,L.

Proof. The same technique as in Theorem 17 can be applied here.

Corollary 6. If there exists no valid encoding from Lα1,β1,γ1,NM ,B into
Lα2,β2,γ2,δ,B, then there exists no valid encoding from Lα1,β1,γ1,NM ,ε into
Lα2,β2,γ2,δ,ε.

Proof. The joining cases are covered by Theorems 16 and 17 and the splitting
by Theorems 18 and 19.

Thus coordination does not allow for encoding name-matching into a no-
matching language unless it could already be encoded by some other means.

For the positive results that remain it is straightforward to adapt the existing
encodings in the same manner as for Corollary 1, and Theorems 9 and 13.

Theorem 20. If there exists a valid encoding from Lα,β,γ,δ1,B into Lα,β,γ,δ2,B

where δ1 ≤ δ2 then there exists a valid encoding from Lα,β,γ,δ1,ε into Lα,β,γ,δ2,ε.

Proof. The same techniques as Corollary 1, and Theorems 9 and 13 can be
applied.

Finally, the positive results that preserve encodings when changing the coor-
dination feature can be combined into a single general result.

Corollary 7. If there exists a valid encoding from Lα1,β1,γ1,δ1,B into
Lα2,β2,γ2,δ2,B then there exists a valid encoding from Lα1,β1,γ1,δ1,ε into
Lα2,β2,γ2,δ2,ε.

Proof. By combining Corollary 1, and Theorems 9, 13, and 20.

8 Coordination and Other Features

This section considers the expressive power gained by coordination. It turns out
that coordination adds expressive power that cannot be represented by binary
languages regardless of other features.

The expressive power gained by joining or splitting can be captured by the
concept of the coordination degree of a language L, denoted Cd(L), as the least
upper bound on the number of processes that must coordinate to yield a par-
ticular reduction in L. For example, all the binary languages L−,−,−,−,B have
coordination degree 2 since their reduction axiom is only defined for two pro-
cesses. By contrast, the coordination degree of the non-binary languages is ∞
since there is no bound on the number of inputs that can be part of a join, or
outputs that can be part of a split.

On the Expressiveness of Joining and Splitting 347

Theorem 21. If Cd(L1) > Cd(L2) then there exists no valid encoding � · �
from L1 into L2.

Proof. By contradiction, assume there is a valid encoding � · �. Fix N and pick
i processes S1 to Si where i = Cd(L2) + 1 and N =

⋃

fn(Sj) for j ∈ {1, . . . , i}
such that all these processes must coordinate to yield a reduction and yield
success. That is: S1 | . . . | Si �−→ √

but not if any Sj (for 1 ≤ j ≤ i) is replaced
by block(Sj). By validity of the encoding and Proposition 3 it must be that
�S1 | . . . | Si � ⇓ and �S1 | . . . | Si � �−→.

By compositionality of the encoding �S1 | . . . | Si � = CS = CN
| (�S1 �,

CN
| (. . . , CN

| (�Si−1 �, �Si �))). Now consider the reduction �S1 | . . . | Si � �−→
that can be at most between i − 1 processes by the coordination degree of
L2. If the reduction does not involve some process �Sj � then it follows that
�S1 | . . . | Sj−1 | block(Sj) � | Sj+1 | . . . | Si �−→ (by replacing the �Sj � in the
context CS with � block(Sj) �). By construction of S1 | . . . | Si and Cd(L2) < i
there must exist some such Sj . However, this contradicts the validity of the
encoding since S1 | . . . | Sj−1 | block(Sj) | Sj+1 | . . . | Si �−→/ . The only other
possibility to prevent reduction of �S1 | . . . | Sj−1 | block(Sj) | Sj+1 | . . . | Si �

is if � block(Sj) � blocks the reduction by blocking some �Sk �. This can only occur
when �Sk � is either underneath an interaction primitive (e.g. [s〈˜t〉] � �Sk �) or
inside a conditional (e.g. if s = t then �Sk � where s �= t). Both require that
�Sk � not be top-level in CS , which can be proven contradictory by Proposition 2.

The above may not appear intuitive when some implementations of n-ary
coordination are achieved by 2-ary coordination. However, the result shows that
such implementations must have conditions under which they begin coordina-
tion when the coordination cannot be completed and so either: become stuck
waiting for further coordination; or must roll-back to a prior state. The first
case would here invalidate the encoding by blocking an alternative valid coordi-
nation, while the second case would here indicate an infinite reduction sequence
again invalidating the encoding.

Corollary 8. There exists no valid encoding from L−,−,−,−,ε into L−,−,−,−,B

where ε �= B.

In the other direction the result is ensured by Remark 1. Thus for any lan-
guages Lα,β,γ,δ,ε1 and Lα,β,γ,δ,ε2 where ε1 < ε2 then it holds that Lα,β,γ,δ,ε2 is
strictly more expressive than Lα,β,γ,δ,ε1 . That is, joining or splitting languages
are strictly more expressive than binary languages.

Thus coordination turns out to be orthogonal to all other features, since from
the prior sections coordination cannot encode any other feature, and here it is
proven that other features cannot encode coordination.

9 Within Coordination

This section considers relations between different forms of coordination. It turns
out that there are some encodings from joining languages into splitting languages
and vice versa, however most joining and splitting languages are unrelated.

348 T. Given-Wilson and A. Legay

A joining (resp. splitting) language without matching capabilities can be
encoded into a splitting (resp. joining) language. For example, consider the
encoding from LS,M,C,NO,J to LS,M,C,NO,L that is the identity on all forms
except the output and join as follows:

� [a〈b〉] � P �
def= [a(c)] � [c〈b〉] � �P �

� [a1(x1) | . . . | ai(xi)] � Q �
def= (νc̃)([a1〈c1〉 | . . . | ai〈ci〉] �

[c1(x1)] � . . . � [ci(xi)] � �Q �)

where c is not b or in the free names of P ; and c̃ does not intersect with ã or x̃
or the free names of Q. The key idea is that the direction of communication is
reversed; splits become joins (with outputs becoming inputs), and joins become
splits (with inputs becoming outputs), a fresh name c is transmitted to be used
for then sending the original name b from the output to the encoded join. Thus
the requirement that all inputs of a join interact at once is maintained by all
the outputs of the split. Observe that this is similar in concept to the encoding
of synchrony into asynchrony by Honda and Tokoro [32].

Theorem 22. The encoding from LS,M,C,NO,J into LS,M,C,NO,L is valid.

Proof. The proof technique is identical to Theorem 2.

The same approach can be used to encode LS,M,C,NO,L into LS,M,C,NO,J

with adjustments to the split and join as follows:

� [a1〈b1〉 | . . . | ai〈bi〉] � P �
def= [a1(c1) | . . . | ai(ci)] �

[c1〈b1〉] � . . . � [ci〈bi〉] � �P �

� [a(x)] � Q �
def= (νc)[a〈c〉] � [c(x)] � �Q �

c̃ does not intersect ˜b or free names of P ; and c is not a or in free names of Q.

Theorem 23. The encoding from LS,M,C,NO,L into LS,M,C,NO,J is valid.

Proof. The proof technique is identical to Theorem 2.

Interestingly there are encodings that do not require channel names for
the language that are dataspace-based and no-matching. Consider the follow-
ing encoding from LS,M,D,NO,J to LS,M,D,NO,L that is the identity of all forms
except the split and join as follows:

� [〈a〉] � P �
def= [(x)] � [〈a〉] � �P �

� [(x1) | . . . | (xi)] � Q �
def= (νc̃)([〈c1〉 | . . . | 〈ci〉] �

[(x1)] � . . . � [(xi)] � �Q �)

where x is not a or in the free names of �P �; and c̃ does not intersect the free
names of �Q �. Again the key idea is to reverse the direction of communication,

On the Expressiveness of Joining and Splitting 349

only now no attempt is made to maintain the relation of which encoded process
initiated communication with which. This turns out not to be a concern since
the split that represents the encoded join ensures sufficient encoded outputs are
available before reduction, although the actual binding of names may not match
that initial reduction. For example, � [〈a〉] � | [〈b〉]� � may begin a reduction
with � [(x) | (y)] � P �, i.e. � [〈a〉] � | [〈b〉] � | [(x) | (y)] � P � �−→ S and
similarly, � [〈c〉]� � and � [(z)] � Q � may begin with a reduction � [〈c〉] � [(z)] �
Q � �−→ T . Despite these initial reductions, it is still possible for S | T �=⇒
{b/x, c/y}P | {a/z}Q. This may seem unusual, but despite this lack of control
over where the actual names are communicated after the initial reductions of an
encoded join, this still meets the criteria for a valid encoding.

Theorem 24. The encoding from LS,M,D,NO,J into LS,M,D,NO,L is valid.

Proof. The proof technique is identical to Theorem 2.

Theorem 25. There exists a valid encoding from LS,M,D,NO,L into
LS,M,D,NO,J .

Proof. The same approach is used as in Theorem 23.

The same techniques can be applied to the asynchronous and polyadic vari-
ations of the above languages.

Theorem 26. The languages L−,β,γ,NO,J and L−,β,γ,NO,L can validly encode
each other.

Proof. The proof technique is identical to Theorem 2.

However there are usually not encodings between joining and splitting lan-
guages. This can be illustrated by considering attempts to encode any sort of
name-matching from either joining or splitting into the other.

Theorem 27. There exists no valid encoding from LA,M,D,NM ,J into
L−,−,−,−,L.

Proof. The proof is by contradiction. (Note that the proof assumes channels
in the target language as this is more general, they are simply omitted for the
data-space based languages). Consider the processes P = [(�a�) | (�b�)] � P ′ and
Q1 = [〈a〉]� and Q2 = [〈b〉]�. Because P | Q1 | Q2 �−→ √

by instantiating
P ′ =

√
, then by validity of the encoding and Proposition 3 �P | Q1 | Q2 � �−→,

now consider this reduction. It must be between R1 = [s1〈˜t1〉 | . . . | si〈˜ti〉] � R′
1

and R2 for some s̃ and ˜t and R′
1 and R2 such that R1 | R2 �−→. Observe that

R1 | R2 cannot be a parallel component of �P | Q1 | 0 � or �P | 0 | Q2 � or
�0 | Q1 | Q2 � because this would contradict Proposition 1.

If R1 is a top level component of �Q1 � or �Q2 � then �P � must exhibit some
join [s(p̃)]�R′

2 that interacts with R1 because otherwise �0 | Q1 | Q2 � �−→ which
contradicts Proposition 1. Now by Proposition 3 and considering the substitution
σ = {c/a, c/b} it must be that [s(p̃)] � R′

2 tests equality of some translated

350 T. Given-Wilson and A. Legay

names of both ϕ� �(a) and ϕ� �(b) because otherwise one of �P | σQ1 | Q2 �

or �P | Q1 | σQ2 � or �P | σQ1 | σQ2 � would reduce in contradiction with
Proposition 1. Further, because [s(p̃)]�R′

2 must test names from both �Q1 � and
�Q2 � then R1 must come from only the encoding �Q1 | Q2 � and not from either
of �Q1 � and �Q2 � alone. However, by considering S = [(x)]�S1 | [(y)]�S2 and
the fact that S | Q1 | Q2 �−→ and S | Q1 | 0 �−→ and S | 0 | Q2 �−→ it follows that
either: both �Q1 � and �Q2 � must exhibit a top-level split, or �Q1 | Q2 � must
exhibit more than one top-level split. In both cases this yields a contradiction
via �S | P | Q1 | Q2 � with S1 =

√
and P ′ = Ω by violating either success

sensitiveness or operational correspondence (as in concluding Theorem 4).
Therefore, it must be that R1 is a top-level component of �P �, so con-

sider the process S = [(z)] � S′ such that Q1 | S �−→ and �Q1 | S � �−→ (by
instantiating S′ =

√
and Proposition 3). Observe that �Q1 � interacts with �P �

via some [sj(p̃)] � Q′
1 (there may be many such, but assume one for simplicity

because the following can be proved for all of them). Now consider the reduction
�Q1 | S � �−→:

– If it is via the same [sj(p̃)] � Q′
1 that interacts with �P � then there must

be some [. . . | sj〈˜t〉 | . . .] � T ′ in �S � such that Match(˜t, p̃) is defined.
Observe that this must not rely on equality/matching of any names that
depend upon a because otherwise the substitution σ = {c/a} would prevent
the reduction of �Q1 | σS � yet Q1 | σS �−→ and so this yields contradiction
via Proposition 3. However, because no name in [sj(p̃)] � Q′

1 depends upon a
it follows that �P | σQ1 | Q2 � �−→ which contradicts Proposition 1.

– Otherwise it must be that the reduction is via some different input or output
in �Q1 �. However, then contradiction can be achieved via success sensitive-
ness or divergence reflection in a similar manner to the conclusion of Theo-
rem 4 by instantiating P ′ =

√
and S′ = if z = a then Ω and considering

�P | Q1 | Q2 | S | σQ1 �.

Theorem 28. There exists no valid encoding from LA,M,D,NM ,L into
L−,−,−,−,J .

Proof. The proof is by contradiction in a similar manner to Theorem 27 by
starting with the processes P = [〈a〉 | 〈b〉]� and Q1 = [(�a�)] � Q′

1 and Q2 =
[(�b�)] � Q′

2.

These results show that once name-matching (or intensionality) is in play it
is no longer possible for splitting or joining languages to encode one another.

Corollary 9. There exists no valid encoding from LA,M,D,I,J into L−,−,−,−,L.

Corollary 10. There exists no valid encoding from LA,M,D,I,L into L−,−,−,−,J .

Thus although there are some languages where a difference only of joining
or splitting prove equally expressive, in general different forms of coordination
usually indicate differences in expressive power.

On the Expressiveness of Joining and Splitting 351

10 Conclusions

In the theme of Barnhard Steffen’s work this paper demonstrates expressiveness
of different approaches to workflow coordination and their relation to other lan-
guage features. This paper formalises that increases in coordination always cor-
respond to increases in expressive power: both joining and splitting languages are
strictly more expressive than binary languages. However, this expressive power
does not allow coordination to encode other aspects of communication; increas-
ing coordination does not allow encoding of other features unless they could
already be encoded.

This formalizes that languages using Join Calculus style joins such as general
rendezvous calculus, and m-calculus cannot be validly encoded into binary lan-
guages, regardless of other features. Although there exist approaches to encoding
from these kinds of languages into π-calculus, these often do not meet the criteria
for a valid encoding used here. A common approach [19] used in such encodings
is to encode joins by � [m(x) | n(y)] � P � = m(x).n(y).�P �, however this can
easily fail operational correspondence, or success sensitivity. For example con-
sider P1 = [c1(w) | c2(x)]�√

and P2 = [c2(y) | c1(z)]�Ω and Q = c1〈a〉 | c2〈b〉.
Together P1 | P2 | Q can either report success or diverge, but their encoding
�P1 | P2 | Q � can deadlock. Even ordering the channel names to prevent this
can be shown to fail under substitutions. However, there are different forms
of encodings between such calculi and π-calculi that do not meet the criteria
used here [19,51]. The interesting cases are where joining calculi are encoded
into π-calculi. Those in [19] still suffer the problem above for the criteria used
here although they are not an issue for the full abstraction result obtained. In
[51] the author asserts the existence of an encoding from Join Calculus into a
π-calculus with the same communication paradigm as LA,M,C,N ,B here. How-
ever, they choose a different instantiation of Gorla’s encoding criteria to here,
opting for a non-reduction-sensitive equivalence relation. These different choices
in the formal relations mean the results do not quite conflict with those here,
instead illustrating the impact of different encoding criteria. This aligns with
other results [52] where it is shown that the communication primitives of joins
cannot be encoded into the communication primitives of π-calculi under different
definitions of encoding.

That a language with coordination degree n cannot be encoded into a lan-
guage with coordination degree less than n aligns with some recent results. Lan-
eve and Vitale considered “synchronization” from a perspective that appears
similar but is in fact rather different [36]. They consider languages to have
n-join forms where n is the number of inputs a process can have. Thus,
[a1(x1) | . . . | ai(xi)] � P has an i-join. They then show that an n-join lan-
guage cannot be encoded into an (n − 1)-join language, this agrees with the
results here. (Indeed, the results here generalise this by considering both joining
and splitting). They further show that if mixed “joins” are allowed that can
contain both inputs and outputs (e.g. [a(x) | b〈c〉]�P) then any n-join language
can be encoded into a 3-join language. However, in doing this the number of
processes that must coordinate to perform the encoded reduction increases,

352 T. Given-Wilson and A. Legay

i.e. the coordination degree must increase. This further reinforces the results
here.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
In: Proceedings of the 4th ACM Conference on Computer and Communications
Security, CCS 1997, pp. 36–47. ACM, New York (1997)

2. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Log. Methods Comput. Sci. 7(1)
(2011)

3. Bengtson, J., Parrow, J.: Formalising the pi-calculus using nominal logic. Log.
Methods Comput. Sci. 5(2), 63–77 (2009)

4. Bocchi, L., Wischik, L.: A process calculus of atomic commit. Electron. Notes
Theor. Comput. Sci. 105, 119–132 (2004). Proceedings of the First International
Workshop on Web Services and Formal Methods (WSFM 2004)

5. Boreale, M., Fournet, C., Laneve, C.: Bisimulations in the Join-Calculus. In: Gries,
D., de Roever, W.-P. (eds.) Programming Concepts and Methods PROCOMET
’98. ITIFIP, pp. 68–86. Springer, Boston, MA (1998). https://doi.org/10.1007/
978-0-387-35358-6 9

6. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (ed.) Logics
and Models of Concurrent Systems. NATO ASI Series (Series F: Computer and
Systems Sciences), vol. 13, pp. 261–303. Springer, Heidelberg (1985). https://doi.
org/10.1007/978-3-642-82453-1 9

7. Boudol, G.: Asynchrony and the pi-calculus. Rapport de Recherche 1702 (1992)
8. Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxon-

omy. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
247–262. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7 59

9. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of linda coordination
primitives. Inf. Comput. 156(1–2), 90–121 (2000)

10. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
π-calculus. Nord. J. Comput. 10(2), 70–98 (2003)

11. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FoSSaCS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0053547

12. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)

13. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the pi-calculus.
Theor. Comput. Sci. 398(1–3), 217–242 (2008)

14. de Lara, J., Zisman, A. (eds.): FASE 2012. LNCS, vol. 7212. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28872-2

15. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

16. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of Klaim-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

17. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput.
Sci. 37, 245–267 (1985)

18. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
International Parallel and Distributed Processing Symposium, vol. 3, p. 30149b.
IEEE Computer Society (2001)

https://doi.org/10.1007/978-0-387-35358-6_9
https://doi.org/10.1007/978-0-387-35358-6_9
https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.1007/3-540-61604-7_59
https://doi.org/10.1007/BFb0053547
https://doi.org/10.1007/BFb0053547
https://doi.org/10.1007/978-3-642-28872-2

On the Expressiveness of Joining and Splitting 353

19. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceed-
ings of the 23rd ACM Symposium on Principles of Programming Languages, pp.
372–385. ACM Press (1996)

20. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

21. Given-Wilson, T.: Concurrent Pattern Unification. Ph.D. thesis, University of
Technology, Sydney, Australia (2012)

22. Given-Wilson, T.: An intensional concurrent faithful encoding of turing machines.
In: Lanese, I., Lluch-Lafuente, A., Sokolova, A., Vieira, H.T. (eds.) Proceedings
7th Interaction and Concurrency Experience, ICE 2014, Berlin, Germany, 6th June
2014. EPTCS, vol. 166, pp. 21–37 (2014)

23. Given-Wilson, T.: On the expressiveness of intensional communication. In: Com-
bined 21th International Workshop on Expressiveness in Concurrency and 11th
Workshop on Structural Operational Semantics, Rome, Italie, September 2014

24. Given-Wilson, T., Gorla, D.: Pattern matching and bisimulation. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 60–74. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38493-6 5

25. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude, C.S.,
Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 244–258. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15240-5 18

26. Given-Wilson, T., Gorla, D., Jay, B.: A concurrent pattern calculus. Log. Methods
Comput. Sci. 10(3) (2014)

27. Given-Wilson, T., Legay, A.: On the expressiveness of joining. In: 8th Interaction
and Concurrency Experience (ICE 2015), Grenoble, France, June 2015

28. Gorla, D.: Comparing communication primitives via their relative expressive power.
Inf. Comput. 206(8), 931–952 (2008)

29. Gorla, D.: A taxonomy of process calculi for distribution and mobility. Distrib.
Comput. 23(4), 273–299 (2010)

30. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208(9), 1031–1053 (2010)

31. Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Inf. Comput. 204(8), 1195–
1263 (2006)

32. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0057019

33. Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput.
Sci. 152, 437–486 (1995)

34. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness of polyadic
and synchronous communication in higher-order process calculi. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 442–453. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14162-1 37

35. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-
sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 20

36. Laneve, C., Vitale, A.: The expressive power of synchronizations. In: 2010 25th
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 382–391.
IEEE (2010)

https://doi.org/10.1007/978-3-642-38493-6_5
https://doi.org/10.1007/978-3-642-15240-5_18
https://doi.org/10.1007/BFb0057019
https://doi.org/10.1007/978-3-642-14162-1_37
https://doi.org/10.1007/978-3-642-14162-1_37
https://doi.org/10.1007/978-3-642-11957-6_20

354 T. Given-Wilson and A. Legay

37. Margaria, T., Steffen, B.: Middleware: just another level for orchestration. In: Pro-
ceedings of the Workshop on Middleware for Next-Generation Converged Networks
and Applications, MNCNA 2007, Newport Beach, California, USA, 26 November
2007, p. 4. ACM (2007)

38. Milner, R.: The polyadic π-calculus: a tutorial. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (eds.) Logic and Algebra of Specification. NATO ASI Series
(Series F: Computer & Systems Sciences), vol. 94, pp. 203–246. Springer, Heidel-
berg (1993). https://doi.org/10.1007/978-3-642-58041-3 6

39. Milner, R.: Communicating and Mobile Systems - the Pi-Calculus. Cambridge
University Press, Cambridge (1999)

40. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

41. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992)

42. Naujokat, S., Lamprecht, A., Steffen, B.: Tailoring process synthesis to domain
characteristics. In: Perseil, I., Breitman, K.K., Sterritt, R. (eds.) 16th IEEE Inter-
national Conference on Engineering of Complex Computer Systems, ICECCS 2011,
Las Vegas, Nevada, USA, 27–29 April 2011, pp. 167–175. IEEE Computer Society
(2011)

43. Nestmann, U.: On the expressive power of joint input. Electron. Notes Theor.
Comput. Sci. 16(2), 145–152 (1998)

44. Neubauer, J., Steffen, B.: Plug-and-play higher-order process integration. IEEE
Comput. 46(11), 56–62 (2013)

45. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. In: Banerjee, A., Danvy, O., Doh, K.,
Hatcliff, J. (eds.) Semantics, Abstract Interpretation, and Reasoning about Pro-
grams: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday, Manhattan, Kansas, USA, 19–20th September 2013. EPTCS, vol. 129,
pp. 259–283 (2013)

46. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: Pro-
ceedings of the 17th International Workshop on Expressiveness in Concurrency
(EXPRESS 2010), pp. 121–135 (2010)

47. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35861-6 12

48. Nielson, H.R., Nielson, F., Vigo, R.: A calculus of quality for robustness against
unreliable communication. J. Log. Algebr. Methods Program. 84(5), 611–639
(2015)

49. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003)

50. Parrow, J.: Expressiveness of process algebras. Electron. Notes Theor. Comput.
Sci. 209, 173–186 (2008)

51. Peters, K.: Translational expressiveness: comparing process calculi using encod-
ings. Ph.D. thesis, Technische Universität Berlin, Fakultät IV - Elektrotechnik
und Informatik, Germany (2012)

52. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 18

53. Prasad, K.V.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2),
285–327 (1995)

https://doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/10.1007/978-3-642-35861-6_12
https://doi.org/10.1007/978-3-642-37036-6_18

On the Expressiveness of Joining and Splitting 355

54. Schmitt, A., Stefani, J.: The M-calculus: a higher-order distributed process cal-
culus. In: Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, New Orleans, Louisisana, USA,
15–17 January 2003, pp. 50–61 (2003)

55. Steffen, B.: Unifying models. In: Reischuk, R., Morvan, M. (eds.) STACS 1997.
LNCS, vol. 1200, pp. 1–20. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0023444

56. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule
inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–
50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3 4

57. van Glabbeek, R.J.: Musings on encodings and expressiveness. In: Proceedings of
EXPRESS/SOS. EPTCS, vol. 89, pp. 81–98 (2012)

58. van Glabbeek, R.J.: On the validity of encodings of the synchronous in the asyn-
chronous π-calculus. Inf. Process. Lett. 137, 17–25 (2018)

https://doi.org/10.1007/BFb0023444
https://doi.org/10.1007/BFb0023444
https://doi.org/10.1007/978-3-540-73595-3_4

Fast Verified BCD Subtyping

Jan Bessai1(B), Jakob Rehof1, and Boris Düdder2

1 Technische Universität Dortmund,
Otto-Hahn-Straße 12, 44227 Dortmund, Germany

{jan.bessai,jakob.rehof}@tu-dortmund.de
2 University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

boris.d@di.ku.dk

Abstract. A decision procedure for the Barendregt-Coppo-Dezani sub-
type relation on intersection types (“BCD subtyping”) is presented and
formally verified in Coq. Types are extended with unary, covariant, dis-
tributing, preordered type constructors and binary products. A quadratic
upper bound on the algorithm runtime is established. The formalization
can be compiled to executable OCaml or Haskell code using the extrac-
tion mechanism of Coq.

Keywords: Intersection types · Subtyping · Coq · BCD

1 Introduction

The subtyping relation of Barendregt, Coppo, and Dezani [4] is a natural, seman-
tically motivated notion of subtyping on intersection types. The relation, often
referred to as BCD subtyping for short, is important within the theory of inter-
section types, and many variants of the intersection type system are associated
with theories of subtyping which are contained in the theory of BCD subtyping
(see [3] for an overview). The present paper concerns the formal verification, by
means of theorem proving, of an efficient (quadratic time) decision procedure
for the BCD subtyping relation: Given two intersection types A and B, does
A ≤ B hold (where ≤ denotes the BCD subtyping relation)? Decidability of
the subtyping relation is probably most easily established by first performing a
pre-processing step called normalization following Hindley [14]. However, since
this step may cause exponential blow-up in type size, it only gives rise to a com-
putationally suboptimal algorithm. In fact, a quadratic time algorithm time is
known for deciding BCD subtyping [10], and quadratic time is in all likelihood
asymptotically optimal for the problem. But efficient algorithms for the prob-
lem tend to get complicated, in part due to the necessity of organizing rather
intricate case analyses under recursive descent over type expressions. When the
relation is further extended with type constants for applications, correctness of
efficient implementations becomes even more of an issue of interest (see Sect. 2
for further discussion). From the perspective of formal verification it is a topic of

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 356–371, 2019.
https://doi.org/10.1007/978-3-030-22348-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_21

Fast Verified BCD Subtyping 357

more general interest to see how far we can get towards verification of correctness
of algorithms under given complexity bounds.

In this paper a decision procedure for the BCD subtype relation on intersec-
tion types is presented and formally verified in Coq. Types are extended with
unary, covariant, distributing, preordered type constructors and binary prod-
ucts. A quadratic upper bound on the algorithm runtime is established. The
formalization can be compiled to executable OCaml or Haskell code using the
extraction mechanism of Coq. The accompanying Coq proofs for this paper are
available online1.

This paper is organized as follows: Related work on decision procedures for
the BCD subtype rules is discussed in Sect. 2. This discussion is also used to pin-
point novel contributions made here. Section 3 contains the definition of intersec-
tion types and the subtype relation on them. The decision procedure is presented
and proven correct in Sect. 4. An upper bound on its runtime is proven in Sect. 5.
Finally, Sect. 6 provides some concluding remarks and ideas for future work.

2 Related Work and Contribution

Pierce [22] provides an algorithm for deciding the BCD subtype relation under
a set of additional constraints on type variables. No asymptotic runtime bound
is established. Damm [8,9] reduces the problem of deciding subtyping for inter-
section types extended with recursive types and a union operator to regular tree
expressions, resulting in a non-deterministic exponential time algorithm. Kurata
and Takahashi [18] provide an algorithm for intersection types without addi-
tional extensions. It needs a pre-computation step to normalize (see [14]) types,
which requires exponential runtime. Rehof and Urzyczyn [23] first established an
algorithm with an O(n4) upper bound on its runtime. Their memoization-based
formalization is manual. Practical experience from the (CL)S-Framework [5] has
shown that implementing the required memoization techniques is possible but
error prone. Also within the context of (CL)S, the algorithm implementation was
experimentally extended with distributing covariant n-ary type-constructors.
Subsequently, Statman [24] presented a rewriting-based O(n5) algorithm for
which no implementation or computer supported verification exists yet. His pre-
sentation includes some insights about factorizations of intersection types, which
were then picked up in [10], where a simpler O(n2) algorithm is sketched. This
algorithm uses a preprocessing step, which can in contrast to [18] be performed
in linear time. Additionally, the insights of [24] led to the development of the first
theorem prover verified algorithm by Bessai et al. [6]. The algorithm is based
on purely mathematical principles (ideals and filters) and can be extracted to
OCaml and Haskell. Throughout the formalization, high-level mathematical con-
cepts are accessed via the Coq tactics language, which hides algorithmic aspects
and makes reasoning about runtime (except for guaranteed termination) diffi-
cult. Hence, while practical experiments hint at an O(n4) upper bound, this result
has never been formally established. The development in [6] sparked at least two
1 https://github.com/JanBessai/SubtypeMachine.

https://github.com/JanBessai/SubtypeMachine

358 J. Bessai et al.

more formalization efforts. Honsell et al. [16] extend the type system with union
types, basing their work on a fork of the original formalization. Laurent [20]
extends intersection types with n-ary co- and contra-variant constructors and
translates the subtype rules into a syntax-driven sequent-calculus. The transla-
tion is proven correct in Coq, but its algorithmic aspects remain unstudied. Sim-
ilarly, Dunfield [11] earlier proposed an extension with union types presentable
in sequent-calculus form. Bi et al. [7] go back to the algorithm presented in [22]
and propose an extension with records and coercions. They do not study run-
time complexity. A theorem proven Coq formalization and a manual translation
of their syntax directed rules into a Haskell implementation are provided. The
formalization effort led to the discovery of a mistake in the original manual proof
in [22].

The contribution of this paper is to describe a Coq-formalized subtype deci-
sion procedure for intersection types extended with unary, co-variant, distribut-
ing, preordered type constructors and binary products. An O(n2) upper bound
on the runtime is formally established. The decision procedure does not require
any preprocessing steps on the input types, no translation into another calcu-
lus, and no imperative programming language features such as memoization.
Extraction of the Coq formalization into Haskell and OCaml is possible. Besides
the improvements over prior attempts, the formalization can serve as an exam-
ple application for a technique recently presented by Larchey-Wendling and
Monin [19]. The goal of this technique is to decompose termination proofs from
fixpoint definitions and thereby make reasoning more compositional. The quest
for compositional proof methods is an old topic, which can also be found in ear-
lier work by Steffen and Cleaveland [25] in the context of model-checking. This
contribution can be seen as a very detailed study of an improved algorithm for
a particular problem, as well as a larger example scenario of applying a proof
compositionality technique in a theorem prover.

3 Types and Subtyping

Intersection types A,B are formed over the following syntax:

T � A,B ::= ω | c(A) | (A × B) | (A → B) | (A ∩ B)

where c ∈ C is a type constructor drawn from a countable set C. Intuitively, ω
is a universal type and supertype of every other type. Constants are encoded by
type constructors and may appear nested inside type expressions. This allows
for types such as List(A), List(List(A)). Instead of assigning an arity to each
constructor, all constructors take exactly one argument. This restriction avoids
lots of index sets, adds uniformity to proofs and does not affect the runtime
complexity of subtyping. Atomic types, often modeled by constructors without
arguments, can still be represented using ω as argument: types such as bool
or int are formally written as int(ω) and bool(ω). Multiple arguments can be
passed to a type constructor by wrapping them into the product type (A × B),
e.g. Graph(N × E) for a graph with nodes of type N and edges of type E.

Fast Verified BCD Subtyping 359

Function types are written as (A → B) and the presence of products allows to
choose between curried (A → (B → C)) and un-curried ((A × B) → C) repre-
sentations. Finally, the intersection type operator (A ∩ B) encodes the greatest
lower bound of two types. In contrast to the pair (A×B), which is used to assign
two types to two components, the intersection (A∩B) is used to assign two types
to a single component. In the rest of this paper, superfluous parentheses in types
are omitted by following the convention that arrows and intersections associate
to the right, products associate to the left, and intersections bind stronger than
products, which bind stronger than arrows.

The subtype relation A ≤ B is the least relation closed under the rules:

c ≤C d A ≤ B
(CAx)

c(A) ≤ d(B)
(CDist)

c(A) ∩ c(B) ≤ c(A ∩ B)

(ω)
A ≤ ω

(→ ω)
ω ≤ ω → ω

B1 ≤ A1 A2 ≤ B2 (Sub)
A1 → A2 ≤ B1 → B2

(Dist)
(A → B1) ∩ (A → B2) ≤ A → B1 ∩ B2

A1 ≤ B1 A2 ≤ B2 (ProdSub)
A1 × A2 ≤ B1 × B2

(ProdDist)
(A1 × A2) ∩ (B1 × B2) ≤ A1 ∩ B1 × A2 ∩ B2

A ≤ B1 A ≤ B2 (GLB)
A ≤ B1 ∩ B2

(LUB1)
B1 ∩ B2 ≤ B1

(LUB2)
B1 ∩ B2 ≤ B2

A ≤ B B ≤ C
(Trans)

A ≤ C
(Refl)

A ≤ A

Rules (CAx), (CDist), (ProdSub) and (ProdDist) are extensions, while
the other rules are standard [10,24] and equivalent [2] to the rules originally
presented by Barendregt, Coppo and Dezani [4]. In rule (CAx) constructors are
compared using an externally defined relation c ≤C d, which can be instantiated
according to application specific use-cases and has to be transitive and reflex-
ive. A potential application are nominal comparisons between type-constructors
according to a class-table: to model a Java-like type-system ArrayList ≤C List
can be added, which would allow using instances of ArrayList whenever List
is required. Rule (CDist) allows to distribute intersections over constructors. If
something is simultaneously a list of A and a list of B, it is a list of things which
are simultaneously A and B: List(A) ∩ List(B) ≤ List(A ∩ B). Note, that
the converse direction is derivable from (CAx) and (GLB). Rules (ProdSub)
and (ProdDist) are analogous to the constructor rules, allowing to compare
products and again to distribute intersections. The chosen extensions are con-
servative over the original BCD-system, which only supports atoms: choosing

360 J. Bessai et al.

c ≤C d iff c = d and encoding atom a as a(ω) collapses rule (CDist) into an
instance of (LUB1), and (CAx) into (Refl).

There are several functions on types which are useful throughout the entire
formalization. The arity of a type is the arity of its outermost operation or
constructor:

arity(A) =

⎧
⎪⎨

⎪⎩

1 if A = ω

T if A = c(A′)
T × T otherwise

where 1 is the (meta-logical) unit set {∅}, and T×T is the Cartesian product of
the set of types with itself (not to be confused with the product type operator).
For (A,B) ∈ T× T, the first and second projections are defined as (A,B).1 = A
and (A,B).2 = B. The size, depth, length and breadth of a type are useful
measures for runtime-complexity and termination of algorithms:

size(A) =

⎧
⎪⎨

⎪⎩

1 if A = ω

1 + size(B) if A = c(B)
1 + size(B) + size(C) if A = B → C,A = B × C, or A = B ∩ C

depth(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if A = ω

1 + depth(B) if A = c(B)
1 + max{depth(B),depth(C)} if A = B → C, or A = B × C

max{depth(B),depth(C)} if A = B ∩ C

length(A) =

⎧
⎪⎨

⎪⎩

1 + length(A2) if A = A1 → A2

length(A1) + length(A2) if A = A1 ∩ A2

1 otherwise

breadth(A) =

{
breadth(A1) + breadth(A2) if A = A1 ∩ A2

1 otherwise

From now on size(A) will be abbreviated as ‖A‖. Following the definition of Ω
in [4], a type can be identified as subtype-equal to ω (A ≤ ω and ω ≤ A) in
O(length(A)) by:

isOmega(A) =

⎧
⎪⎨

⎪⎩

true if A = ω

isOmega(B) if A = A′ → B

false otherwise

The intersection of a list of n types is computed in n steps by

intersect(Δ) =

⎧
⎪⎨

⎪⎩

ω if Δ = [::]
A if Δ = [::A]
A ∩ intersect(Δ′) if Δ = [::A & Δ′]

Fast Verified BCD Subtyping 361

where [::] is the empty list, [::A] is a list with one element A and [::A & Δ′]
is the list constructed by inserting A before list Δ′. In the following,

⋂
Ai∈Δ M

will serve as a shorthand notation for intersect(map(λAi.M,Δ)), where map
is defined as usual by map(λAi.M, [::]) = [::] and map(λAi.M, [::A & Δ]) =
[::M [Ai := A] & map(λAi.M,Δ)].

4 Decision Procedure

While elegant and concise, the axiomatic relational presentation of ≤ is inher-
ently non-algorithmic and therefore ill-suited for the construction of executable
decision programs. This becomes obvious, considering the cut-type B in the
transitivity rule (Trans) and cycles which can arise, e.g. by instantiating A to
ω in rule (ω) and proceeding with rule (→ ω). This motivates the rest of the
paper. Following the approach in [19], the decision procedure is designed in three
phases. First, the algorithm is defined by means of its relational semantics. Then,
the semantical relation is shown to be functional. Finally, a termination certifi-
cate is designed to turn the relational semantics into an executable denotational
equivalent. Soundess of the functional interpretation with respect to the rela-
tional description is enforced by its type. Correctness of the algorithm is proven
by showing that the relation is equivalent to the subtype relation. This way,
the termination proof is effectively separated from the correctness proof. Also,
bounds on the runtime are established by bounding the number of transitive
steps in the semantical relation. An additional benefit is to establish a mental
model of a subtype machine executing instructions in a step-wise fashion. Each
of these steps can be understood and reasoned about independently, while the
usual presentation of abstract pseudo code does not allow this kind of mental
specification debugging. The instruction set I of the subtype machine contains
two instructions: [subty A of B] and [tgt for srcs gte A in Δ] for types
A,B, and a list Δ which contains pairs (An, Bn) ∈ T × T. The first instruction
advises the machine to check if A is a subtype of B, while the second instruction
collects all types Bn in Δ, for which A is a subtype of the corresponding An.
Outputs O are [Return b] and [check tgt Δ] for a boolean value b and a list
of collected types Δ. The functions defined in the last section are taken as meta-
operations usable during the machine specification. All of these functions could
have been specified together with the relational machine semantics, but since
none of them have interesting termination or runtime behavior, this would have
been unnecessarily complicated. Another meta-function, cast, is needed before
defining the semantical relation:

castB(A) =

⎧
⎪⎨

⎪⎩

[::ω] if B = ω

[::(ω, ω)] if B = B1 → B2 and isOmega(B2)
cast′

B(A, [::]) otherwise

362 J. Bessai et al.

cast′
B(A,Δ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[::A′ & Δ] if A = c(A′), B = d(B′) and c ≤C d

[::(A1, A2) & Δ] if A = A1 → A2 and B = B1 → B2

[::(A1, A2) & Δ] if A = A1 × A2 and B = B1 × B2

cast′
B(A1, cast′

B(A2,Δ)) if A = A1 ∩ A2

Δ otherwise

The range of function castB is arity(B) and collects all relevant components of
A for recursive comparison with B. If B is subtype equal to ω, comparison can
proceed with ω components, otherwise cast′ loops over all parts of A, filtering
those which are irrelevant. Note that cast′ collects components in an accumulator
argument Δ rather than using list concatenation. This way the runtime of cast′

is linear in breadth(A) (all cases except for intersection are in O(1) and the
intersection is in O(breadth(A))). List concatenation in the intersection case
would have caused quadratic runtime if cast′ were to be implemented using
functional programming and immutable lists with concatenation in O(n). Overall
the runtime of cast is in O(breadth(A) + length(B)) and the output of cast will
be a list of size less or equal to breadth(A). Now the subtype machine execution
semantics � is defined to be the least relation closed under the following rules,
where annotations in boxes indicate runtime bounds and can be ignored until
Sect. 5:

(stepω)
[subty A of ω] � [Return true] O(1)

[subty
⋂

Ai∈castc(B)(A) Ai of B] � [Return b] n
(stepCtor)

[subty A of c(B)] � [Return castc(B)(A) �= [::] ∧ b]

(O(breadth(A) + length(c(B))) + O(breadth(A)) + O(1)) + n

[tgt for srcs gte B1 in castB1→B2 (A)] � [check tgt Δ] m

[subty
⋂

Ai∈Δ

Ai of B2] � [Return b] n

(step→)
[subty A of B1 → B2] � [Return isOmega(B2) ∨ b]

(O(breadth(A) + length(B1 → B2)) + O(breadth(A)) + O(length(B2))+

O(1)) + m + n

[subty B of A.1] � [Return b] m

[tgt for srcs gte B in Δ] � [check tgt Δ′] n
(stepChooseTgt)

[tgt for srcs gte B in [::A & Δ]] �

[check tgt if b then [::A.2 & Δ′] else Δ′] O(1) + m + n

(stepDoneTgt)
[tgt for srcs gte B in [::]] � [check tgt [::]] O(1)

Fast Verified BCD Subtyping 363

[subty
⋂

Ai∈castB1×B2 (A)
Ai.1 of B1] � [Return b1] m

[subty
⋂

Ai∈castB1×B2 (A)
Ai.2 of B2] � [Return b2] n

(step×)
[subty A of B1 × B2] � [Return castB1×B2 (A) �= [::] ∧ b1 ∧ b2]

(O(breadth(A) + length(B1 × B2)) + 2 · O(breadth(A)) + O(1)) + m + n

[subty A of B1] � [Return b1] m

[subty A of B2] � [Return b2] n
(step∩)

[subty A of B1 ∩ B2] � [Return b1 ∧ b2] O(1) + m + n

Rules (stepω) and (step∩) are immediate implementations of the (GLB)
and (ω) subtype rules. Similarly, (stepCtor) and (step×) can be thought of as
implementations combinations of (CAx) with (CDist), and (ProdSub) with
(ProdDist). In both cases cast projects A to relevant components, which are
intersected (distribution axioms) and recursively compared. If no relevant com-
ponents are present, A cannot be a subtype. This is in contrast to the rule for
arrows (step→), which allows B2 to be ω in which case no restrictions have to
be imposed on A because of the subtype rule (→ ω). The contra-variant nature
of arrow sources requires (step→) to additionally filter relevant components
using (stepChooseTgt) and (stepDoneTgt). This can be illustrated by showing
(A1 → B1) ∩ (A2 → B2) ≤ (A1 ∩ A2) → (B1 ∩ B2)) � A1 → B1 ∩ B2 for
A1 � A2.

The next part of the formalization, Lemma1, is to prove that � is functional.

Lemma 1 (Functionality). For all instructions i ∈ I and outputs o1, o2 ∈ O,
if i � o1 and i � o2 then o1 = o2.

Proof. Induction on the proof of i � o1 followed by case analysis on i � o2. 	

The final step in obtaining an algorithm is to design a termination certificate

for each instruction. The certificate Dom is inductively defined by the rules:

[subty A of ω] ∈ Dom
1 [subty

⋂
Ai∈castc(B)(A) Ai of B] ∈ Dom

[subty A of c(B)] ∈ Dom

1 [tgt for srcs gte B1 in castB1→B2A] ∈ Dom

2 for all Δ, if [tgt for srcs gte B1 in castB1→B2A] � [check tgt Δ]

then [subty
⋂

Ai∈Δ

Ai of B2] ∈ Dom

[subty A of B1 → B2] ∈ Dom

1 [subty B of A.1] ∈ Dom

2 [tgt for srcs gte B in Δ] ∈ Dom

[tgt for srcs gte B in [::A & Δ]] ∈ Dom

364 J. Bessai et al.

[tgt for srcs gte B in [::]] ∈ Dom

1 [subty
⋂

Ai∈castB1×B2 (A)
Ai.1 of B1] ∈ Dom

2 [subty
⋂

Ai∈castB1×B2 (A)
Ai.2 of B2] ∈ Dom

[subty A of B1 × B2] ∈ Dom

1 [subty A of B1] ∈ Dom

2 [subty A of B2] ∈ Dom

[subty A of B1 ∩ B2] ∈ Dom

Analyzing Dom yields a new termination certificate for each recursive call needed
by the subtype machine. In Coq, Dom is defined as an inductive datatype, which
ensures that termination certificates for recursive calls are structurally smaller
in each step. In the following text for a proof p : i ∈ Dom function invk is used
to obtain premise i of the proof.

The denotational interpretation is defined in Fig. 1 and exactly follows each
step of the subtype relation. The range restriction {o ∈ O | i � o} ensures
soundness wrt. the relational semantics. On paper it has to be checked manually,
while in Coq a Σ-type is used to attach proofs of i � p to each function result.
Completeness follows from Lemmas 1 and 2, which ensures that every possible
instruction gives rise to an instance of the termination certificate.

Lemma 2 (Totality). For all instructions i ∈ I, i ∈ Dom.

Proof. Induction on B to obtain [subty ω of B] ∈ Dom.
Then for [subty A of B] induction on the maximal depth of A and B followed
by induction on the structure of B. Either cast decreases the depth of com-
pared components, or it returns an empty list or a list only containing ω or
(ω, ω). In the first case, an induction hypothesis can be used and in the sec-
ond case [subty ω of B] ∈ Dom can be used. Using the prior result, for
[tgt for srcs gte B in Δ] simple induction on the length of list Δ is suffi-
cient. 	

When extracting the above specification from Coq to OCaml or Haskell, the
termination certificate i ∈ Dom and the soundness proof i � o are automatically
erased, because these languages do not require termination certificates or proofs.
Also uses of cast are surrounded by type-casts in the target language (Obj.magic,
unsafeCoerce) since neither OCaml nor Haskell can natively express the type
dependency between the input and output of cast which is encoded by function
arity. In all other aspects, the extracted code exactly follows the specification
up to syntax, which is why we elide it here and refer to the online sources.

It remains to show, that the machine specification is correct wrt. the BCD
subtype relation. First, some properties of ≤ are established in Lemma 3.

Lemma 3 (Properties of the BCD-Relation).

Fast Verified BCD Subtyping 365

1. intersect(map(λAi.M, [::A1 & [::A2 & . . . [::An & Δ]]])) ≤
intersect(map(λAi.M, [::A1 & [::A2 & . . . [::An & [::]]]])) ∩
intersect(map(λAi.M,Δ))

2. isOmega(B) implies A ≤ B
3. castc(B)(A) �= [::] implies A ≤ c(

⋂
Ai∈castc(B)(A) Ai)

4. A ≤ ⋂
Ai∈castB1→B2 (A)(Ai.1 → Ai.2)

5. A ≤ ⋂
Ai∈castB1×B2 (A)(Ai.1 × Ai.2)

6. (A1 → B1) ∩ (A2 → B2) ≤ (A1 ∩ A2) → (B1 ∩ B2)

Fig. 1. Interpreter for the subtype machine

366 J. Bessai et al.

7.
⋂

Ai∈Δ
(Ai.1 × Ai.2) ≤ (

⋂

Ai∈Δ
Ai.1) × (

⋂

Ai∈Δ
Ai.2) if Δ �= [::]

Proof. Easy induction and case analysis. 	

Now soundness, which is the easier part of the correctness proof, can be shown.

Lemma 4 (Soundness). Relation � is sound wrt. relation ≤, i.e.
[subty A of B] � [Return true] implies A ≤ B.

Proof. First induction on the depth maximum of the depths of types A and
B. Then induction on the derivation of [subty A of B] � [Return true].
The induction hypotheses generated by the second induction are strong enough
to solve the cases when B is ω, c(B), B1 × B2, and B1 ∩ B2 with the help of
Lemma 3. For rule (Step→) with B = B1 → B2, the outer induction hypoth-
esis is required to allow for the covariant position of B1. The proof requires
using a transitive step with an intersection of arrows selected by executing
[tgt for srcs gte B1 in castB1→B2A] as the center element. It then suc-
ceeds using Lemmas 3.4, 3.6, the induction hypotheses and an extra case-analysis
for isOmega(B2), and castB1→B2A = [::]. 	

The converse direction, completeness, is more difficult to prove. It follows
from Lemma 5, the sub-cases of which should be proven in the order they are
presented.

Lemma 5 (Properties of the subtype machine).

1. isOmega(B) implies [subty A of B] � [Return true]
2. [tgt for srcs gte B1 in Δ] � [check tgt Δ′] implies

Δ′ � map(λAi.Ai.2,Δ).
3. [tgt for srcs gte B1 in castB1→B2A] � [check tgt Δ] and

isOmega(A) implies isOmega(Ai) for all Ai in Δ
4. [subty A of B] � [Return true] and isOmega(A) implies isOmega(B)
5. Δ2 � Δ1 and [tgt for srcs gte B1 in Δ1] � [check tgt Δ′

1] and
[tgt for srcs gte B1 in Δ2] � [check tgt Δ′

2] implies Δ′
2 � Δ′

1

6. Δ � Δ′ and [subty
⋂

Ai∈Δ Ai of A] � [Return true] implies
[subty

⋂
Bi∈Δ′ Bi of A] � [Return true]

7. Δ1 = [::A1 & [::A2 & . . . [::An & [::]]]] for n ≥ 0 and
[subty A of

⋂
Ai∈Δ1

Ai] � [Return b1] and
[subty A of

⋂
Ai∈Δ2

Ai] � [Return b2] implies
[subty A of

⋂
Ai∈Δ3

Ai] � [Return b1 ∧ b2] for
Δ3 = [::A1 & [::A2 & . . . [::An & Δ2]]]

8. [subty A of B] � [Return true] implies
[subty

⋂
Ai∈castc(C)A

Ai of
⋂

Bi∈castc(C)B
Bi] � [Return true]

9. [tgt for srcs gte B in [::(ω,A)]] � [check tgt Δ] implies Δ = [::A]
10. [subty A of A] � [Return true]

Fast Verified BCD Subtyping 367

11. Δ1 = [::A1 & [::A2 & . . . [::An & [::]]]] for n ≥ 0 and
Δ′

1 = [::A′
1 & [::A′

2 & . . . [::A′
m & [::]]]] for m ≥ 0 and

[tgt for srcs gte A in Δ1] � [check tgt Δ′
1] and

[tgt for srcs gte A in Δ2] � [check tgt Δ′
2] implies

[tgt for srcs gte A in Δ3] � [check tgt Δ′
3] for

Δ3 = [::A1 & [::A2 & . . . [::An & Δ2]]] and
Δ′

3 = [::A′
1 & [::A′

2 & . . . [::A′
m & Δ′

2]]]
12. [subty A of B1 ∩ B2] � [Return true] implies [subty A of B1] �

[Return true] and [subty A of B2] � [Return true]
13. C = c(C ′) or C = C1 × C2 and castCB �= [::] and [subty A of B] �

[Return true] implies castCA �= [::]
14. [subty A of B] � [Return true] and

[subty B of C] � [Return true] implies
[subty A of C] � [Return true]

15. [subty a(A1) ∩ a(A2) of a(A1 ∩ A2)] � [Return true]
16. [subty A ∩ A of A] � [Return true]

where list Δ is a sublist of Δ′, Δ � Δ′, if Δ′ = [::A1 & [::A2 & . . . [::An & [::
B1 & [::B2 & . . . [::Bm &Δ′′]]]]]] and Δ = [::B1 & [::B2 & . . . [::Bm]]] for some
n,m ≥ 0.

Proof. Mostly straightforward induction, case-analysis, and applying the previ-
ously proven facts. The weakening property expressed in 6 is inspired by [20] and
is crucial for the proof of the reflexivity property 10 in the case for A = A1 ∩A2.
Just as in sequent calculus, the proof of the transitivity property 5 is compli-
cated. Similar to the proof of Lemma 4 it needs nested induction on the maximal
depth of types A and C, and then on the structure of C. The cases for construc-
tors, products, and targets of arrows need an additional nested induction on the
left proof. The case for collecting sources needs an additional induction on the
casted type A. 	

Lemma 6 (Completeness). Relation � is complete wrt. relation ≤, i.e. A ≤
B implies [subty A of B] � [Return true].

Proof. By induction on the proof of A ≤ B. The cases are either immediate, or,
like (Trans) follow from Lemma 5 and the induction hypothesis. 	

Logical properties of the semantic relation also hold for the interpreter, allow-
ing to proof that subtypes of Fig. 1 really is a decision procedure for the BCD
subtype relation.

Theorem 1 (Correctness). Function subtypes of Fig. 1 is a correct deci-
sion procedure for BCD subtyping, i.e.: for all types A and B, there exists
a proof p : [subty A of B] ∈ Dom and A ≤ B if and only if
subtypes([subty A of B])(p) = [Return true].

Proof. The termination certificate p always exists because of Lemma 2. Ele-
ments r in the image of subtypes([subty A of B])(p) are those which satisfy

368 J. Bessai et al.

[subty A of B] � r. This implies A ≤ B by Lemma 4. Lemma 6 allows to
deduce [subty A of B] � r from A ≤ B. Lemma 1 implies that r is equal to
subtypes([subty A of B])(p). 	

5 Quadratic Runtime

The termination certificate Dom ensures that function subtypes does not loop
and can also be used to put an upper bound on the function runtime. To this
end, Dom is indexed with the size of its proof. Formally:

p ∈ Dom1+n1+n2 iff p ∈ Dom and for k = 1, 2 :
invk(p) ∈ Domnk

or invk(p) does not exist and nk = 0.

It is easy to check by induction, that every termination certificate p : i ∈ Dom
is also valid for Domn and the opposite holds by definition. For a termination
certificate p : i ∈ Domn, subtypes can perform no more than n recursive steps:
all recursive calls are started with the result of invk and every certificate is only
used once. The next lemma establishes a bound on n for any instruction i.

Lemma 7 (Domain size). For any i, n: if p : i ∈ Domn exists, then n ≤
cost(i), where

cost(i) =

⎧
⎪⎨

⎪⎩

2 · ‖A‖ · ‖B‖ if i = [subty A of B]
1 + ‖B‖ · ∑k

i=1(1 + 2 · ‖Ai.1‖)
if i = [tgt for srcs gte B in [::A1 & [::A2 & [:: . . . & [::Ak]]]]]

Proof. By induction and case-analysis on casted types, their size is less or
equal to the size before casting. The only exception is the case castB1→B2A
if isOmega(B2) is true and the size of A is less than 3. Now the lemma follows
by induction on p, taking care of the special case by observing that its minimal
value for cost is 3, which is enough to bound the proof-tree. 	

Bounding the size of Dom is the most fine-grained analysis possible in a
formally verified way. In the present formalization this only limits the number
of recursive steps, but not the amount of time spent on “primitive” operations
such as cast. In future work, these could be removed and their stepwise execution
made part of the instruction set. For now, the cost-annotations on the (Step)-
rules allow for a more detailed, albeit manual, analysis. Every rule has overhead
and recursive costs. Overhead costs are stated in O-Notation and recursive costs
are given as variables m and n. If present, the recursive costs can grow up to
O(‖A‖ · ‖B‖) by the prior argument about Dom. This always dominates over
the overhead costs, which are constant or bound by the sum of the breadth
and length of the types, since breadth(A) ≤ ‖A‖ and length(B) ≤ ‖B‖. Hence,
O(‖A‖ · ‖B‖) is an upper bound on the runtime of the presented algorithm.

Fast Verified BCD Subtyping 369

6 Conclusion and Future Work

A procedure to decide the BCD subtyping relation of intersection types has been
presented and formalized. The BCD relation is at the core of countless extended
subtype systems [7,8,11,16]. Advances in formalized procedures for its decision
may one day help to deal with the current undecidability issues in the type
systems of modern programming languages [12,17]. The formalization is based
on the Coq theorem-prover and makes use of a technique newly introduced by
Larchey-Wendling and Monin [19]. The asymptotic complexity of the algorithm
is in O(n2) and thereby on a par with the currently best known result presented
by Dudenhefner et al. in 2017 [10]. In contrast to the former algorithm it does
not require preprocessing types. This avoids redundant work if types are large
and requests fails early, which is often the case during proof search. It makes it
a candidate for future integration into the (CL)S framework [5]. The formaliza-
tion can be extracted to purely functional executable OCaml or Haskell code,
which closely matches its specification. The key properties of soundness and
completeness wrt. the BCD subtype relation could be proven without referring
to any termination arguments. Additionally, a formalized proof for a bound on
the number of recursive calls was enabled by the technique. Proving asymptotic
bounds with theorem provers is an active field of study [1,13,15]. The relatively
easy established bound on recursive calls might be interesting for its further
development. In reverse, the O(n2) runtime result could be proven in Coq using
one of the aforementioned results. All current attempts without adding another
heavy weight framework were hindered by the tediousness of solving inequations
performing rewrite steps (especially for associativity) in the theorem prover by
hand. Here, clearly more automation would help. The currently experimental
early stage project of making to the existing automation compatible with the
mathematical components library [21], which was employed in the proof, has
great potential benefit.

Acknowledgments. The authors would like to thank Olivier Laurent, as well as
Andrej Dudenhefner, Tristan Schäfer, Anna Vasileva, and Jan Winkels for the prior
work, and patient as well as enlightening discussions without which the results in this
paper would have been impossible.

References

1. Avigad, J., Donnelly, K.: Formalizing O notation in Isabelle/HOL. In: Basin,
D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 357–371.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8 27

2. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor. Com-
put. Sci. 102(1), 135–163 (1992). https://doi.org/10.1016/0304-3975(92)90297-S

3. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Per-
spectives in logic. Cambridge University Press (2013). http://www.cambridge.org/
de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-
types

https://doi.org/10.1007/978-3-540-25984-8_27
https://doi.org/10.1016/0304-3975(92)90297-S
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types

370 J. Bessai et al.

4. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symb. Log. 48(4), 931–940 (1983). https://
doi.org/10.2307/2273659

5. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory logic
synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
26–40. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9 3

6. Bessai, J., Dudenhefner, A., Düdder, B., Rehof, J.: Extracting a formally verified
Subtyping algorithm for intersection types from ideals and filters. Types (2016)

7. Bi, X., Oliveira, B.C.d.S., Schrijvers, T.: The essence of nested composition. In:
32nd European Conference on Object-Oriented Programming, ECOOP 2018, Ams-
terdam, The Netherlands, 16–21 July 2018, pp. 22:1–22:33 (2018). https://doi.org/
10.4230/LIPIcs.ECOOP.2018.22

8. Damm, F.M.: Subtyping with union types, intersection types and recursive types.
In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57887-0 121

9. Damm, F.M.: Subtyping with union types, intersection types and recursive types
II. Ph.D. thesis, INRIA (1994)

10. Dudenhefner, A., Martens, M., Rehof, J.: The algebraic intersection type unifica-
tion problem. Log. Methods Comput. Sci. 13(3) (2017). https://doi.org/10.23638/
LMCS-13(3:9)2017

11. Dunfield, J.: A unified system of type refinements. Ph.D. thesis, Carnegie Mellon
University (2007)

12. Grigore, R.: Java generics are turing complete. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, 18–20 January 2017, pp. 73–85 (2017). http://dl.acm.org/citation.
cfm?id=3009871

13. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing asymp-
totic complexity claims via deductive program verification. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 19

14. Hindley, J.R.: The simple semantics for Coppo-Dezani-Sallé types. In: Dezani-
Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp.
212–226. Springer, Heidelberg (1982). https://doi.org/10.1007/3-540-11494-7 15

15. Hoffmann, J., Das, A., Weng, S.: Towards automatic resource bound analysis for
OCaml. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, 18–20 January 2017, pp.
359–373 (2017). http://dl.acm.org/citation.cfm?id=3009842

16. Honsell, F., Liquori, L., Stolze, C., Scagnetto, I.: The Delta-framework. CoRR
abs/1808.04193 (2018). http://arxiv.org/abs/1808.04193

17. Kennedy, A., Pierce, B.C.: On decidability of nominal subtyping with variance.
In: International Workshop on Foundations and Developments of Object-Oriented
Languages (FOOL/WOOD), January 2007

18. Kurata, T., Takahashi, M.: Decidable properties of intersection type systems. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 297–
311. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014060

19. Larchey-Wendling, D., Monin, J.F.: Simulating induction-recursion for partial algo-
rithms. In: TYPES (2018)

20. Laurent, O.: Intersection subtyping with constructors. In: Pagani, M. (ed.) Pro-
ceedings of the Ninth Workshop on Intersection Types and Related Systems (2018)

https://doi.org/10.2307/2273659
https://doi.org/10.2307/2273659
https://doi.org/10.1007/978-3-662-45234-9_3
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1007/3-540-57887-0_121
https://doi.org/10.23638/LMCS-13(3:9)2017
https://doi.org/10.23638/LMCS-13(3:9)2017
http://dl.acm.org/citation.cfm?id=3009871
http://dl.acm.org/citation.cfm?id=3009871
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1007/3-540-11494-7_15
http://dl.acm.org/citation.cfm?id=3009842
http://arxiv.org/abs/1808.04193
https://doi.org/10.1007/BFb0014060

Fast Verified BCD Subtyping 371

21. Magaud, N.: Transferring arithmetic decision procedures (on Z) to alternative rep-
resentations. In: CoqPL 2017: The Third International Workshop on Coq for Pro-
gramming Languages (2017)

22. Pierce, B.C.: A decision procedure for the subtype relation on intersection types
with bounded variables. Citeseer (1989)

23. Rehof, J., Urzyczyn, P.: Finite combinatory logic with intersection types. In: Ong,
L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 169–183. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21691-6 15

24. Statman, R.: A finite model property for intersection types. In: Proceedings Sev-
enth Workshop on Intersection Types and Related Systems, ITRS 2014, Vienna,
Austria, 18 July 2014, pp. 1–9 (2014). https://doi.org/10.4204/EPTCS.177.1

25. Steffen, B., Cleaveland, R.: When is “partial” adequate? A logic-based proof tech-
nique using partial specifications. In: Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS 1990), Philadelphia, Pennsylvania, USA, 4–7
June 1990, pp. 440–449 (1990). https://doi.org/10.1109/LICS.1990.113768

https://doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.4204/EPTCS.177.1
https://doi.org/10.1109/LICS.1990.113768

Composition: A Fresh Look
at an Old Topic

Wolfgang Reisig(B)

Humboldt-Universität zu Berlin, 10099 Berlin, Germany
reisig@informatik.hu-berlin.de

Abstract. Composing separate components is a fundamental design
principle for concurrent systems. Composition A1 · A2 of two compo-
nents A1 and A2 is mostly modeled by “gluing” according elements of
the interfaces of A1 and A2. Composition of many components is usu-
ally assumed to be associative (i.e. (A1 · A2) · A3 = A1 · (A2 · A3)). In
this paper we suggest such a composition operator for any kind of graph
based structures. The central and new idea exploits the observation that
in a composed system A1 · ... · An, every component Ai (2 ≤ i ≤ n − 1)
has a left partner Ai−1 and a right partner Ai+1. The interface of Ai

hence canonically partitions into the left and the right port of Ai. To
gain A1 ·A2, elements of the right port of A1 are glued with correspond-
ing elements of the left port of A2. We present two instantiations of
this framework, modeling synchronous and asynchronous composition,
respectively, of components with local states.

1 Introduction

1.1 Composing Components

Large systems are usually composed of (smaller) components. A component typ-
ically operates autonomously to some extent, and is equipped with an interface
to establish some kind of cooperation with other components. Cooperating com-
ponents may asynchronously exchange messages, or jointly perform steps. In a
more technical setting, cooperation of two components A and B is frequently
organized as some kind of composition, A · B, such that A · B is again a com-
ponent. A system is then just a component that may be composed of some
(more elementary) components. A lot of modeling techniques employ the prin-
ciple of composition to inductively construct system models. Pertaining exam-
ples include process algebras, statecharts, and special classes of (e.g. “open”)
Petri Nets.

1.2 The Quest for Associativity

In general, more than two components are to be composed. For example, a
business supply chain may be composed of an ore producer C1, steel works C2,
metal wholesale C3, cutlery factory C4, retailer C5 etc., yielding a system shaped

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 372–389, 2019.
https://doi.org/10.1007/978-3-030-22348-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_22

Composition: A Fresh Look at an Old Topic 373

C1 · ... · Cn. (1)

Composition is assumed to be associative (i.e.Ci · (Ci+1 · Ci+2) = (Ci · Ci+1) ·
Ci+2)); therefore brackets can be skipped in (1). Associativity is indeed required
in most areas where more than two components are composed. But many mod-
eling techniques struggle with this requirement. For example Lotos and I/O-
Automata do with composition operators that are associative in special cases
only.

1.3 Property Preservation

With n and m the number of states of two systems A and B, the number of
states of a composed system A · B is in the order of n · m. Hence, proving a
property of A · B is usually much more costly than proving a property of A and
of B separately. Therefore, interesting and relevant properties are those that are
preserved under composition: If A and B both have property p, so has A · B.

1.4 Interface Based Composition

Behavioural system models are frequently based on graphs. Nodes and arcs of
such a graph are partitioned into inner and interface elements. Composition
of two such systems is then gained by unifying (gluing, overlying, identify-
ing) “according” interface elements. Examples include various versions of pro-
cess algebras, data flow graphs, bigraphs, control flow graphs, network layouts,
automata, BPMN-models, open Petri Nets, etc. As outlined above, associativity
of composition of such systems is highly desirable.

In this paper we suggest a notion of composition, applicable to this kind of
system models, that we proved to be associative. We furthermore show two
instantiations of this principle of composition, an asynchronous and a syn-
chronous version, depending only on the shape of the interface. For both versions
we show special subclasses of models, for which composition preserves important
properties.

The forthcoming composition operator is motivated by the observation that
a component Ci (2 ≤ i ≤ n − 1) as in (1) has a left and a right partner, Ci−1

and Ci+1, respectively. These partners frequently play different roles for Ci: In
a business supply chain, Ci−1 and Ci+1 may be supplier and customer, provider
and requester, buy side and sell side, predecessor and successor, respectively,
of Ci. So, it is overly intuitive to assume the interface of a component C be
partitioned into two ports, the left port ∗C and the right port C∗. Composition
C · D of two components C and D then means to glue the elements of the right
port C∗ of C with the corresponding elements of the left port ∗D of D. This is
a fundamental concept. Its consequences and some applications will be studied
in the rest of this paper.

374 W. Reisig

2 The General Framework

As explained above, it is overly intuitive to partition the interface of a component
into its left and its right port. Here we introduce an abstract framework for such
components, and we suggest a composition operator for components that reflects
and exploits this structure. We denot this kinds of structures as interface graphs.
Technically, an interface graph is a graph C together with two subsets of labeled
nodes, the left port and the right port of C. The remaining nodes are the inner
nodes of C.

2.1 Index Labeled Sets

The labeling of the ports of an interface graph exhibits a particular structure:
Each node of a port carries a label from a globally given set L of labels, as well
as a number (its “index”) that is the node’s position in the set of equally labeled
nodes in the port. Labels and indices of nodes together constitute the port’s
index label.

For the sake of simplicity, in the rest of this paper we assume

a set L of labels. (2)

Definition 1. Let A be a set and let λ : A −→ L.

(i) For l ∈ L, let #(l, A) =def |λ−1(l)|.
(ii) Let δ : A −→ N such that for each l ∈ L and each 1 ≤ i ≤ #(l, A) there

exists exactly one a ∈ A with λ(a) = l and δ(a) = i.

Then δ is an index for λ, and (λ, δ) is an index label for A. A is said to be
index labeled by λ and δ. The index labeling of an index labeled set A is usually
written λA and δA.

Observation 1. Let A, l, δ and #(l, A) be as in Definition 1.

(i) The number of l-labeled elements of A is given by #(l, A).
(ii) The indices of the l-labeled elements of A are pairwise different and range

between 1 and #(l, A).

2.2 Interface Graphs

We are now prepared to define the fundamental notion of this paper. As outlined
above already, an interface graph is just a graph C with two distinguished subsets
∗C and C∗ of nodes. Both these subsets are assumed to be index labeled:

Definition 2. Let A be a finite set and let Q ⊆ A × A.

(i) C =def (A,Q) is a graph.
(ii) Let ∗C,C∗ ⊆ A both be index labeled. Then C together with ∗C and C∗ is an

interface graph.
A and Q are the nodes and edges of C. ∗C and C∗ are the left and the right
port of C. inner(C) =def A \ (∗C ∪ C∗) is the set of inner nodes of C.

Composition: A Fresh Look at an Old Topic 375

2.3 Composing Interface Graphs

To prepare the notion of composition C ·D of two interface graphs C and D, we
introduce the notation C � D for the set of elements of C∗ and ∗D with equal
labels and equal indices:

Definition 3. Let C and D be disjoint interface graphs. Let C � D =def

{(c, d)|c ∈ C∗, d ∈∗ D,λC∗(c) = λ∗D(d) and δC∗(c) = δ∗D(d)}.
Upon composing two interface graphs C and D, each (c, d) ∈ C � D is a new
inner element of C · D, replacing c ∈ C and d ∈ D. The inner elements of C and
D turn unchanged into inner elements of C · D. The remaining elements of ∗D
go to ∗(CD) “on top” of ∗C, and the remaining elements of C∗ go to (CD)∗ “on
top” of D∗. All arcs of C and of D remain in C · D, up to the above outlined
replacement of nodes c and d in (c, d) ∈ C � D. Figure 1 outlines this construct.
Notice that � is not commutative, i.e., in general, C � D �= D � C.

Fig. 1. Interface graphs N1, N2 and N1•N2 Left ports: ; right ports: . Indices of equally
labelled elements: (index “1” is mostly skipped). The inner nodes of N1 and N2 are
sketched as boxes.

Definition 4. Let C and D be interface graphs. Then the interface graph C · D
is given by

(i) inner(C) =def inner(C) ∪ inner(D) ∪ (C � D)
(ii) x ∈∗ (CD) iff

– (a) x ∈ ∗C, with λ∗(C·D)(x) = λ∗C(x) and δ∗(C·D)(x) = δ∗C(x),
or

– (b) x ∈∗ D \ pr2(C �D), where with l =def λ∗D holds: λ∗(C·D)(x) = l and
δ∗(C·D)(x) = #(l,∗ C) + δ∗D(x) − #(l, C � D)

(iii) x ∈ (CD)∗ iff
– (a) x ∈ D∗, with λ(C·D)∗(x) = λC∗(x) and δ(C·D)∗(x) = δC∗(x),

or
– (b) x ∈ D∗ \ pr1(C � D), where with l =def λC∗ holds: λ(C·D)∗(x) = l and

δ(C·D)∗(x) = #(l,D∗) + δC∗(x) − #(l, C � D)

376 W. Reisig

(iv) Each arc (x, y) of C and of D with x, y �∈ pr1(C �D)∪pr2(C �D) is an arc
of C ·D, where for i = 1, 2, pri denotes the projection to the i-th component.

(v) For each (c, d) ∈ C � D and each node a of C and D holds:
(a, (c, d)) is an arc of C · D iff (a, c) is an arc of C or of D,
((c, d), a) is an arc of C · D iff (c, a) is an arc of C or of D.

Figure 1 shows an example.

Observation 2. (i) ∗C ⊆∗ (C · D) and D∗ ⊆ (C · D)∗.
(ii) If ∗C ∩ C∗ =∗ D ∩ D∗ = ∅, then ∗(C · D) ∩ (C · D)∗ = ∅.

Observation 2 (ii), implies that the set of interface graphs with disjoint ports
is closed under composition.

The above definition does not require ∗C and C∗ be disjoint. In fact, they
may even be identical. Even more, for an element c in ∗C ∩ C∗, the label and
the index of c in ∗C may differ from the label and the index of c in C∗. Some
instantiations of interface graphs exploit this technical option. In this paper we
stick however to examples with disjoint left and right ports.

The case of a port with equally labeled elements guarantees that composition
is total on the set of interface graphs, i.e. that any two such graphs can be
composed. Notice that composition is not commutative in general (because �
is not commutative). Other composition operators are frequently commutative.
Much more important, in fact fundamental and non-trivial is associativity, i.e.
the advantage of bracket-free composition of more than two components:

Theorem 1. Let C,D,E be interface graphs. Then (C · D) · E = C · (D · E).

Proof of this Theorem will appear in [13].

3 Synchronous and Asynchronous Composition

Here we consider two instantiations of interface graphs, i.e. classes of compo-
nents with two distinguished ports. Each component exhibits discrete, dynamic
behavior, i.e. some kind of steps. Such systems are usually designed as transi-
tion systems. For two transition systems Ci with ki states (i = 1, 2), any kind
of composition C1 · C2 usually yields a transition system with an amount of
states in the order of k1 · k2. Hence the number of states grows exponentially for
transition systems shaped C1 · ... · Cn. This well-known state explosion problem
can be overcome by means of system models that do not explicitly represent
all reachable states. Examples of such system models include Process algebras,
Petri nets, statecharts, etc.

Synchronously and asynchronously communicating systems can conveniently
be modeled by means of Petri nets. A Petri net together with two index labeled
subsets of elements (i.e. places and transitions) is an interface net. An interface
net can be conceived as an interface graph, as studied in Sect. 2. Composition of
interface nets can then be inherited from interface graph composition, and thus

Composition: A Fresh Look at an Old Topic 377

Fig. 2. Three interface nets. As in Fig. 1, elements of left and right port are colored
blue and red, respectively.

is guaranteed to be associative. In general, a port of an interface net N may
contain places as well as transitions. Figure 2 shows intuitive examples.

In the sequel we recall some fundamental notions and notations of Petri nets
as e.g. given in [12] , and define the special class of interface nets, workflow nets
and sound workflow nets.

3.1 Interface Nets

The static structure of a Petri Net N , together with two index labeled subsets,
yields an interface net. Each interface net is obviously an interface graph. As
usual, we define:

Definition 5. Let P and T be finite, disjoint sets, and let F ⊆ (P ×T)∪(T ×P).

(i) N = (P, T, F) is a net structure. The elements of P, T and F are places,
transitions and arcs, respectively.

(ii) For x ∈ P ∪ T , let ∗x =def {y|(y, x) ∈ F} and x∗ =def {y|(x, y) ∈ F}.
A net structure, equipped with two index labeled subsets of its elements, is

an interface net, and canonically an interface graph:

Definition 6. Let N = (P, T, F) be a net structure, let ∗N,N∗ ⊆ P ∪ T both be
index labeled.

(i) N together with ∗N and N∗ is an interface net.
(ii) (P ∪T, F) together with ∗N and N∗ is an interface graph, the interface graph

of N , written N .

378 W. Reisig

Figure 2 in fact shows three interface nets. Elements of the corresponding left
port are colored blue; elements in the right port are colored red.

Two interface nets N1 and N2 can be composed iff each two elements to be
“glued” both are either places or transitions. More technically N1 and N2 are
composable iff no tuple in N∗

1 �∗ N2 consists of a place and a transition:

Definition 7. For i = 1, 2 let Ni = (Pi, Ti, Fi) be interface nets.

(i) Let P =def {(x, y) ∈ N1 � N2|x ∈ P1 and y ∈ P2}. Let T =def {(x, y) ∈
N1�N2|x ∈ T1 and y ∈ T2}. N1 and N2 are composable iff N1�N2 = P ∪T .

(ii) Assume N1 and N2 be composable, with P and T in (i). Let N be the
interface net with places (P1 ∪ P2 ∪ P)\(pr1(P) ∪ pr2(P)), transitions
(T1 ∪ T2 ∪ T)\(pr1(T) ∪ pr2(T)), and arcs and ports as obviously inher-
ited from N1 · N2. The interface net N is the composition of N1 and N2,
written N1 · N2.

The notation N1 · N2 is justified by the following observation:

Observation 3. Let N1, N2 be two composable interface nets. Then N1 · N2 =
N1 · N2.

Figure 2 shows three interface nets. Together they represent a business case
where a producer and a broker synchronously (e.g. by phone) agree on an offer.
The broker sends the offer to the client. If the client rejects the offer, a new
offer is prepared and sent to the client. Producer and broker, as well as broker
and client, are composable (producer and client are also composable, but their
composition does not make much sense). Notice that (producer·broker)∗, as well
as ∗(broker · client) contains a c-labeled place: The producer ships the produced
goods directly to the client, bypassing the broker.

The two ports of an interface net frequently include either only transitions of
only places. We consider two special classes of interface nets in the sequel, fos-
tering synchronous and asynchronous composition, respectively. In both classes,
any two interface nets are composable, and the resulting interface net remains
in the class.

Definition 8. Let N be an interface net.

(i) N is synchronous iff its two ports ∗N and N∗ include only transitions of N.
(ii) N is asynchronous iff its two ports ∗N and N∗ include only places of N .

In Fig. 2, the client interface net is asynchronous. The other two interface
nets are neither synchronous nor asynchronous. Forthcoming Fig. 7 shows two
synchronous interface nets, N1 and N2: The interface nets in Figs. 8 and 10 are
all asynchronous.

Theorem 2. Let N1 and N2 be synchronous interface nets

(i) N1 and N2 are composable.
(ii) N1 · N2 is again an synchronous interface net.

Composition: A Fresh Look at an Old Topic 379

Proof. By Definition 3 and Definition 12, all tuples (x, y) ∈ N1 � N2 consist of
transitions x and y. Proposition (i) then follows from Definition 9. Proposition
(ii) follows from Definition 4.

Theorem 3. Let N1 and N2 be asynchronous interface nets.

(i) N1 and N2 are composable.
(ii) N1 · N2 is again an asynchronous interface net.

This theorem can be proven in analogy to the proof of Theorem 2.

3.2 Dynamic Behavior

This subsection compiles the well-known concepts of dynamic behavior of Petri
nets.

Definition 9. Let N = (P, T, F) be a net structure.

(i) For x ∈ P ∪ T , let y ∈ •x iff (y, x) ∈ F , and y ∈ x• iff (x, y) ∈ F .
(ii) A mapping M : P −→ N is a marking of N .
(iii) A marking M ′ exceeds a marking M (written M ′ > M) iff for all places p

of N , M ′(p) ≥ M(p) and M ′ �= M .
(iv) A marking M is 1-bounded iff M(p) ≤ 1 for all p ∈ P . By abuse of

notation, M occasionally denotes the set {p ∈ P |M(p) = 1}.
(v) A marking M enables a transition t iff M(p) ≥ 1 for all p ∈ •t.

Definition 10. Let N be a net structure.

(i) Two markings M and M ′, and a transition t of N form a step, written
M

t→ M ′, if M enables t, and for each p ∈ P

M ′(p) =

⎧
⎪⎨

⎪⎩

M(p) − 1 iff p ∈ •t \ t•

M(p) + 1 iff p ∈ t• \ •t
M(p), otherwise

(ii) Steps Mi−1
ti→ Mi(i = 1, ..., n) form a sequential run from M0 to Mn,

written M0
t1→ M1

t2→ ...
tn→ Mn.

(iii) A marking M ′ is reachable from M in N iff there exists a sequential run
from M to M ′.

(iv) For two markings M and M ′ of N , the marking M + M ′ of N is defined
by (M + M ′)(p) =def M(p) + M ′(p), for each place p of N .

3.3 Workflow Nets

A workflow net is a net structure N together with two distinguished markings,
startN and stopN . The idea is to focus on sequential runs from startN to stopN ,
and to define the semantics of such nets as the set of sequential runs from
startN to stopN . The original definition of workflow nets in [15] is much more
restrictive, assuming places p, q with startN (p) = stopN (q) = 1, and all other
places unmarked.

380 W. Reisig

Definition 11. Let N be a net structure and let startN and stopN be markings
of N . Then

(i) N together with startN and stopN is a workflow net.
(ii) A sequential run M0

t1→ M1
t2→ ...

tn→ Mn with M0 =startN and Mn =stopN
is a run of N .

Fig. 3. Non-sound work net: a client of an internet shop

Fig. 3 shows a workflow net. The initial marking has a token on A; the final
marking has a token on B.

Fig. 4. Sound workflow net: client and internet shop

Figure 4 extends Fig. 3 to a workflow net with initial and final markings,
each of which includes two places. As a general rule, the initial marking of a
workflow net is represented by black dots (tokens), as usual in Petri nets. The
places including final markings are boldfaced. This is unique in case, the final
marking is 1-bounded (as in all our examples).

Composition: A Fresh Look at an Old Topic 381

The notion of soundness characterizes semantically reasonable, well struc-
tured systems: each transition can be enabled, each sequential run can be fin-
ished, the final markings is reached without leaving tokens behind, and a token
of a final marking can not be used to fire another transition. It will furthermore
turn out useful to assume the start- and stop marking be 1-bounded:

Definition 12. Let N be a workflow net. N is sound if and only if

(i) startN and stopN are 1-bounded.
(ii) For each transition t of N there exists a marking M that is reachable from

startN and enables t.
(iii) stopN is reachable from each reachable marking in N .
(iv) No marking M > stopN is reachable from startN .
(v) For each place p with stopN (p) = 1 holds: p• = ∅.

This definition corresponds to van der Aalst’ definition of soundness (modulo
the slightly more general start- and stop markings.) The workflow net as in Fig. 3
is not sound: it violates requirement (iv). Figure 4 is sound.

4 Interface-Workflow-Nets

This section brings the core of this paper: The combination of interface nets with
workflow nets:

4.1 The Notion of Iw-Nets

Interface nets are equipped with initial and final markings. (The same said dif-
ferently: workflow nets are equipped with left and right ports.) In the sequel we
denote such nets as interface-workflow-nets.

Definition 13. Let N be an interface net as well as an workflow net. Then N
is an interface-workflow-net (iw-net, for short).

The three nets in Fig. 2 are in fact iw-nets. The ports ∗producer and client∗

are empty. Elements belonging to the left port, the right port, the initial marking
and the final marking are colored blue, red, marked by a token and are boldfaced,
respectively. In fact, all Figures of this paper with the exception of Fig. 1, can
be conceived as iw-nets, some with empty ports.

Composition of iw-nets N1 and N2 should yield again an iw-net N1 ·N2. This
rises the quest of fixing the initial and the final marking startN1·N2 and stopN1·N2 .
We are not interested in a “most general” definition of startN1·N2 and stopN1·N2 .
Instead, we strive for classes of iw-nets that are closed under composition, and
where composition preserves important properties. In particular, criteria would
be useful that guarantee N1 · N2 be sound, provided N1 and N2 both are sound.
For the two classes of synchronous and asynchronous interface nets, as defined
in Sect. 3, we derive such criteria in the sequel.

382 W. Reisig

4.2 Parallel Composition of Iw-Nets

Composition N1 · N2 of two composable iw-nets is often ment to execute N1

and N2 in parallel, where N1 and N2 communicate or synchronize along N∗
1 and

∗N2. Initial and final marking of N1 · N2 is in this case just the sum of the
corresponding markings of N1 and N2:

Definition 14. Let N1 and N2 be two composable iw-nets.

(i) Let startN1·N2 =def startN1 + startN2 , and stopN1·N2 =def stopN1
+ stopN2

.
(ii) N1 · N2 together with startN1·N2 and stopN1·N2 as in (i) is the parallel com-

position of N1 and N2.

Obviously, N1 · N2 is again an iw-net.

Fig. 5. Producer • broker, and broker • client

Figures 5 and 6 show the parallel composition of components of Fig. 1. All
involved nets are iw-nets, though some with empty ports. In particular, both
ports ∗N and N∗ of the iw-net N in Fig. 6 are empty. So, N can be conceived as
a workflow net. In fact, this workflow net is sound.

With the definition of workflow nets as in [15], with initial and final mark-
ings restricted to a single place, parallel composition of iw-nets would yield no
workflow net (and hence no iw-net). So, our slightly generalized definition turns
out quite useful.

One can not expect this general setting of composition to preserve any rele-
vant property, in particular not the soundness property. However, soundness is
preserved in the special case, where

Composition: A Fresh Look at an Old Topic 383

Fig. 6. Producer • broker • client

– N1 and N2 communicate synchronously,
– each nondeterministic choice inside N1 and N2 is “observed” by N∗

1 and ∗N2,
respectively, and

– the projections of the runs of N1 and N2 to the labeled transitions of N∗
1 and

∗N2, coincide

Formulated more intuitively, we say a marking M “chooses” two or more
transitions, if M enables them all. A port A “observes” this choice iff all those
transitions belong to A.

A sequential run as in Definition 14 (ii) defines a sequence of transition
occurrences. Transitions belonging to a port A yield a subsequence u1 · · · un

of transitions ui ∈ A. Replacing ui by its index label yields a sequence
< λ(u1), δ(u1) > · · · < λ(un), δ(un) >. Those sequences constitute the language
L(A) of A:

Definition 15. Let N be an iw-net, let A be a port of N , and let w = M0
t1→

M1
t2→ ...

tn→ Mn be a sequential run of N .

(i) A observes w iff for all 1 ≤ i ≤ n holds: If Mi−1 enables some t �= ti, then
t, ti ∈ A.

(ii) With w′ = M0
t1→ M1

t2→ ...
tn−1→ Mn−1,

let A(w) =

⎧
⎪⎨

⎪⎩

ε if n = 0
A(w′) < λ(wn), τ(wn) > if tn ∈ A

A(w′) iftn �∈ A

(iii) Let L(A) =def {A(w) | w is a run of N}

384 W. Reisig

We are now prepared to formulate a sufficient criterium to preserve soundness
of synchronous iw-nets:

Theorem 4. Let N1, N2 be sound, synchronous interface workflow nets, such
that

– N∗
1 observes each run of N1,

– ∗N2 observes each run of N2,
– L (N∗

1) = L (∗N2).

Then the parallel composition of N1 and N2 is also sound.

Proof follows by induction on the length of words in L(N∗
1) and in L(∗N2).

Fig. 7. Two sound, synchronous interface workflow nets, N1 and N2. By construction,
N1 • N2 is also a sound, synchronous interface workflow net (with empty ports).

As an example, N1 and N2 in Fig. 7 are sound, synchronous iw-nets, and
meet the three properties. (with L(N∗

1) = (bc)∗a ∪ (bc)∞). Hence N1 · N2 (as in
Fig. 7) is sound by Theorem 19.

4.3 Sequential Composition of Iw-Nets

Asynchronous composition couples iw-nets more loosely than synchronous com-
position. Property preservation hence requires stricter requirements in this case.

In the sequel we consider asynchronous iw-nets with the left port used for
input and the right port for output. In view of workflows it is worthwile to
identify the left port with the initial marking and the right port with the final
marking (by abuse of notation we identify 1-bounded markings M with {p |
M(p) = 1}). This kind of nets is denoted as “i/o-interfaced”. Figure 8 shows a
very simple example of an i/o-interfaced net N , as well as composition of 2 or 3
instances of this kind of nets.

Composition of i/o-interfaced iw-nets is essentially sequential composition.
However, in N1 · N2, some transitions of N2 may occur already before all tran-
sitions of N1 occurred. This kind of iw-nets has beautiful properties. They are
closed under composition, and composition preserves soundness.

Composition: A Fresh Look at an Old Topic 385

Fig. 8. Model N of a simple workflow, transforming material into products by help of
a machine, together with N • N and N • N • N

Definition 16. Let N be an asynchronous iw-net with 1-bounded markings
startN and stopN . N is i/o-interfaced iff startN =∗ N and stopN = N∗.

The set of i/o-interfaced iw-nets is closed under composition:

Theorem 5. Let N1, N2 be i/o-interfaced nets. Then N1 · N2 is also an
i/o-interfaced net.

This follows from the definition of composition and of i/o-interfaced nets.

As a final example we consider the above models of an internet shop and its
client. The iw-net N1 in Fig. 9 extends the workflow net model of a client as in
Fig. 3, with a right interface.

The iw-net N2 in Fig. 9 models the behavior of an internet shop. The workflow
net in Fig. 5 is the composed iw-net N1 · N2, with empty ports ∗(N1 · N2) and
(N1 ·N2)∗. Hence, N =def N1 ·N2 is a workflow net. It is simple (but out of scope
of this paper) to show that N is sound. Now we conceive N as i/o-interfaced,
with some re-labeling of the final places, as sketched in Fig. 10a.

Figure 10b shows the composition N · N of two instances of N . Notice that
the client (upper line) may choose his second product and order it, while the
internet shop (lower line) is still pending for the delivery timeout of the first
product. According to Theorem 10, N · N is sound (as N is sound).

386 W. Reisig

Fig. 9. Two interface workflow nets, N1 and N2, modeling a client and an internet
shop.

Fig. 10. Sequential composition of two instances of the internet shop and its client

5 Related Work

During the last decades, many ideas have been published as how to model compo-
nents and their composition. Some are based on automata [6], [8]. The FOCUS-
approach specifies the semantics of a component as a relation over streams of
symbols, together wirh a fully-fledged software development method, e.g. [4] or
the recent [3]. The REO framework [1] composes components by means of special-
ized channels and fitting connectors [5]. Generalizes this approach to component
networks. Composition of components is a central concern of software architec-

Composition: A Fresh Look at an Old Topic 387

ture languages (cf. [9]) and [14] In fact, many software architecture languages
can be embedded into our framework. In particular, microservice architectures
fit in our framework, by composing many small components [10].

A number of related contributions construct variants of process algebras,
e.g. [7], [17]. Define a π -calculus like formalism to represent service-based sys-
tems [11]. Considers questions similar to ours, and develop a π -calculus based
formalism.

A couple of Petri net based formalisms define building blocks and several
composition operators in an algebraic style, such as the box calculus [2], [16].
Identifies a class of “distributable” Petri nets, and shows that any distributable
nets may be implemented on a network of asynchronously communicating com-
ponents.

6 Conclusion

We suggest a composition operator for components with a number of important
aspects:

1. The operator is particularly structured: among the many suggestions to model
components and their composition by help of “glueing” interface elements,
none partitions the interface elements into “right” and “left”, and defines
the composition A · B of two components A and B, by composing the right
interface elements of A with the left interface elements of B.

2. The operator is universal in the sense that any kind of composition in any
network of components can be represented: Properties p of a specific compo-
sition A · B, including those mentioned in the relades work section, can be
modeled by help of a mediator (adapter) C, such that A · C · B guarantees p.
Any network with components A1, . . . , An can be represented by A1 · . . . ·An,
with interface elements properly discriminated as left and right: if for indices
i and j with i < j, the interface element ei of Ai is to be glued with ej from
Aj , select ei as right and ej as left. This also shows there is no need for three
or more kind of interface elements: two (“left” and “right”) suffice.

3. The operator can easily be implemented: Only a minimum of computational
infrastructure is required because the aspect of composition is maximally
detached from the inner structure of components: The interface elements
are linked by a relation to any kind of internal elements of components. All
semantical aspects are hidden from the mechanics of composition.

Acknowledgements. Holger Hermann’s remarks and questions on a previous version
of this paper significantly improved its contents. I am also grateful for the referee’s
comments.

388 W. Reisig

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2014)

2. Best, E., Devillers, R.R., Koutny, M.: Petri Net Algebra. Monographs in Theoret-
ical Computer Science. Springer, Heidelberg (2001). https://doi.org/10.1007/978-
3-662-04457-5

3. Broy, M.: A logical approach to systems engineering artifacts: semantic relation-
ships and dependencies beyond traceability - from requirements to functional and
architectural views. Softw. Syst. Model. 17(2), 365–393 (2018)

4. Broy, M., Stølen, K.: Specification and Development of Interactive Systems -
Focus on Streams, Interfaces, and Refinement. Monographs in Computer Science.
Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0091-5

5. Dastani, M., Arbab, F., de Boer, F.S. Coordination and composition in multi-
agent systems. In 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pp. 439–446, Utrecht, The Netherlands, 25–29
July 2005 (2005)

6. de Alfaro, L., Henzinger, T.A. Interface automata. In: Tjoa, A.M., Gruhn, V. (Eds.)
Proceedings of the 8th European Software Engineering Conference held Jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, 10–14 September 2001. ACM, pp. 109–120
(2001)

7. Garavel, H., Sighireanu, M.: A graphical parallel composition operator for process
algebras. In: Formal Methods for Protocol Engineering and Distributed Systems,
FORTE XII / PSTV XIX 1999, IFIP TC6 WG6.1 Joint International Confer-
ence on Formal Description Techniques for Distributed Systems and Communica-
tion Protocols (FORTE XII) and Protocol Specification, Testing and Verification
(PSTV XIX), pp. 185–202, 5–8 October 1999, Beijing, China (1999)

8. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, pp. 137–151, Vancouver, British Columbia, Canada, 10–
12 August 1987 (1987)

9. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Software Eng. 26(1), 70–93
(2000)

10. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architec-
ture: Aligning Principles, Practices, and Culture. O’Reilly, Newton (2016)

11. Nierstrasz, Oscar, Achermann, Franz: A calculus for modeling software compo-
nents. In: de Boer, Frank S., Bonsangue, Marcello M., Graf, Susanne, de Roever,
Willem-Paul (eds.) FMCO 2002. LNCS, vol. 2852, pp. 339–360. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-39656-7 14

12. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,
Case Studies. Springer, Heidelberg (2013)

13. Reisig, W.: Associative composition of components with double-sided interfaces.
submitted to Acta Informatica (2018)

14. Rostami, N.H., Kheirkhah, E., Jalali, M.: An optimized semantic web service com-
position method based on clustering and an colony algorithm. CoRR abs/1402.2271
(2014)

15. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3), 333–363 (2011)

https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-540-39656-7_14

Composition: A Fresh Look at an Old Topic 389

16. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.: On distributability of petri
nets - (extended abstract). In: Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012, 24
March - 1 April 2012, Tallinn, Estonia, Proceedings, pp. 331–345 (2012)

17. Vieira, Hugo T., Caires, Lúıs, Seco, João C.: The conversation calculus: a model of
service-oriented computation. In: Drossopoulou, Sophia (ed.) ESOP 2008. LNCS,
vol. 4960, pp. 269–283. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78739-6 21

https://doi.org/10.1007/978-3-540-78739-6_21
https://doi.org/10.1007/978-3-540-78739-6_21

Benchmarks for Automata Learning
and Conformance Testing

Daniel Neider1, Rick Smetsers2, Frits Vaandrager2(B), and Harco Kuppens2

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Institute for Computing and Information Sciences, Radboud University,

Nijmegen, The Netherlands
F.Vaandrager@cs.ru.nl

Abstract. We describe a large collection of benchmarks, publicly avail-
able through the wiki automata.cs.ru.nl, of different types of state
machine models: DFAs, Moore machines, Mealy machines, interface
automata and register automata. Our repository includes both randomly
generated state machines and models of real protocols and embedded
software/hardware systems. These benchmarks will allow researchers to
evaluate the performance of new algorithms and tools for active automata
learning and conformance testing.

1 Introduction

Active automata learning (or model learning) aims to construct black-box state
machine models of software and hardware systems by providing inputs and
observing outputs. State machines are crucial for understanding the behavior
of many software systems, such as network protocols and embedded control
software, as they allow us to reason about communication errors and compo-
nent compatibility. Model learning is emerging as a highly effective bug-finding
technique, and is slowly becoming a standard tool in the toolbox of the software
engineer [35,68]. Bernhard Steffen has been (and still is) the main intellectual
driving force behind this important development, and together with his students
and coworkers he has made numerous important contributions to the theory and
application of model learning, see e.g., [9,14,15,34,35,37,38,63]. His ideas have
been implemented in the open source automata learning framework LearnLib
[49,55,56], which has become the most prominent tool in this area.

Many model learning algorithms have been proposed in the literature, for
instance by Angluin [8], Rivest and Schapire [57], Kearns and Vazirani [40],
Shahbaz and Groz [61], Bollig et al. [10], Howar [33], Isberner et al. [37], Aarts
et al. [1], Cassel et al. [14,15], and Moerman et al. [50]. Often variations of
algorithms exist for different classes of models, e.g., DFAs, Mealy machines,
Moore machine, interface automata, and various forms of register automata.

R. Smetsers—Supported by NWO/EW project 628.001.009 (LEMMA).
F. Vaandrager—Supported by NWO project 13859 (SUMBAT).

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 390–416, 2019.
https://doi.org/10.1007/978-3-030-22348-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-22348-9_23

Benchmarks for Automata Learning and Conformance Testing 391

Active automata learning is closely related to conformance testing [9]. Whereas
automata learning aims at constructing hypothesis models from observations,
conformance testing checks whether a system under test conforms to a given
model. Conformance test tools play a crucial role within active automata learn-
ing, as a way to determine whether a hypothesis model is correct or not. Also in
the literature on conformance testing many algorithms have been proposed for
different model classes, for surveys see [23,43,44,67].

Although there has been some experimental work on evaluating algorithms
for model learning and conformance testing, see e.g., [3,12,23,24], the number of
realistic benchmarks is rather limited, and different papers use different models
and/or black-box implementations. Often the benchmarks used are small, aca-
demic, or randomly generated. Small, academic benchmarks are useful during
tool development, but do not say much about the performance on industrial
cases. The performance of algorithms on randomly generated benchmarks is
often radically different from performance on benchmarks based on real systems
that occur in practice. A mature field is characterized by the presence of a rich
set of shared benchmarks, used to evaluate the efficiency of algorithms and tools,
and as challenges for pushing the state-of-the-art.

In this article, we describe a large collection of benchmarks, publicly avail-
able through the wiki repository automata.cs.ru.nl, that includes both ran-
domly generated state machines and models of real protocols and embedded
software/hardware systems. Our benchmarks will allow researchers to compare
the performance of algorithms and tools for learning and conformance testing,
to check whether tools and methods advance, and to demonstrate that new
methods are effective.

We are aware of a few other repositories with benchmarks for model learning
and/or conformance testing. The ACM/SIGDA benchmark dataset [12,24] con-
tains behavioral models for testing, logic synthesis and optimization of circuits.
We have included Mealy machine versions of these benchmarks in our reposi-
tory. The goal of the GitHub repository AutomatArk [19] is to collect benchmark
problems for different models of automata, transducers, and related logics. In
particular, AutomatArk contains NFAs that are adapted from a few verification
case studies. The RERS challenges [38], www.rers-challenge.org, aim to provide
realistic benchmarks that allow researchers to compare different software vali-
dation techniques, e.g., static analysis, model checking, symbolic execution and
(model-based) testing. Benchmarks of previous challenges are still available via
the website. The StaMinA competition [71], stamina.chefbe.net, focused on
the complexity of learning with respect to the alphabet size. The competition is
closed, but the website still hosts all of its benchmarks, a total of 100. Finally, we
mention the Very Large Transition Systems (VLTS) benchmark suite, http://
cadp.inria.fr/resources/vlts/, which has been set up by CWI and INRIA to sup-
port the evaluation of algorithms and tools for explicit state verification. Whereas
the benchmarks in our repository model the behavior of individual components
with at most a few thousand states, the VLTS benchmarks typically describe the
behavior of concurrent systems that are composed of multiple components and

www.rers-challenge.org
http://cadp.inria.fr/resources/vlts/
http://cadp.inria.fr/resources/vlts/

392 D. Neider et al.

that have a global state space with milions of states. Most VLTS benchmarks
are completely out of reach for state-of-the-art learning and testing tools.

The remainder of this article is organized as follows. In Sect. 2, we discuss
the different types of automata frameworks that are supported in our reposi-
tory (DFAs, Moore machines, Mealy machines, interface automata, and register
automata) and behavior preserving translations between these frameworks. Even
though most of the definitions are standard, and most of the translations are
folklore, this is the first time all these definitions and translations are presented
together in a comprehensive manner, using consistent terminology and notation.
The translations play a crucial role in our automata repository, since they allow
us to transfer benchmarks from one framework to another, and thus obtain
many benchmarks “for free”. Section 3 gives an overview of the network pro-
tocols, embedded controllers, circuits, and other realistic applications for which
models have been included in our benchmark collection. Section 4 discusses algo-
rithms for generating the random automaton models that we have included in
our repository. Finally, Sect. 5 draws some conclusions.

2 State Machine Frameworks

Below we recall the definitions of the different types of state machines for which
we have collected benchmarks, discuss data formats to represent different model
classes, define the corresponding notions of behavioral equivalence, and describe
behavior preserving translations between types of state machines.

DFA Moore Mealy DFIA Register

genMoore genMealy

FSM

LTS

IA

Fig. 1. Overview of state machine frameworks.

Figure 1 presents an overview of the different state machine frameworks that
we will discuss, and their relationships. For the finite state frameworks indi-
cated with red boxes, benchmark models have been included in our repository:
DFAs, Moore machines, Mealy machines, deterministic finite interface automata

Benchmarks for Automata Learning and Conformance Testing 393

(DFIAs), and register automata. For some frameworks, more general (nondeter-
ministic and infinite state) variants have been studied in the literature: general-
ized Moore machines, generalized Mealy machines, and interface automata (IAs).
All finite state frameworks have an underlying finite state machine (FSM), and
all infinite state frameworks have an underlying labeled transition system (LTS).
In Fig. 1, a regular arrow indicates that one framework is a substructure of
another, a dashed arrow that one framework is a special case of another, and a
dotted arrow that a behavior preserving translation exists.

2.1 Labeled Transition Systems

All the state machines that we consider are labeled, directed graphs, equipped
with some extra structure. Following standard terminology, we refer to the under-
lying graphs as labeled transition systems [41].

Definition 1 (Labeled transition systems). A labeled transition system
(LTS) is a tuple S = 〈Q,Q0, A,→〉, where

– Q is a non-empty set of states,
– Q0 ⊆ Q is a non-empty set of initial states,
– A is a set of actions, and
– →⊆ Q × A × Q is a transition relation.

We write q
a−→ q′ if (q, a, q′) ∈→. An LTS S is deterministic if Q0 is a singleton

set, and for each state q ∈ Q and each action a ∈ A, there is at most one state
q′ ∈ Q such that q

a−→ q′. An action a ∈ A is enabled in state q ∈ Q, notation
q

a−→, if there exists a state q′ ∈ Q such that q
a−→ q′. An LTS S is completely

specified (or complete) if each action is enabled in each state. An LTS S is finite
and is called a finite-state machine (FSM) if sets Q and → are both finite.

For a sequence of actions σ = a1a2 · · · am ∈ A∗ and states q, q′ ∈ Q, we
write q

σ⇒ q′ if there exist states q0, . . . , qm ∈ S such that q0 = q, qm = q′, and
qj−1

aj−→ qj for all 1 ≤ j ≤ m.

FSMs and the various extensions that we will review below are syntactically
represented in our repository using the graph description language DOT [28].
Scripts are provided to translate between DOT and other common formats for
representing state machines. Figure 2 shows the graphical representation of a
simple FSM (left) and its representation in DOT (right). The graphical repre-
sentation follows the usual conventions for representing graphs. Initial states are
indicated by a small incoming edge. The DOT representation first lists all the
states, then the start states, and then the transitions. In order to mark the initial
states, an auxiliary “invisible” node is created with edges to all the start states.
Actions are indicated as labels of transitions.

Definition 2 (Bisimulation). Let S1 = 〈Q1, Q
1
0, A,→1〉, S2 = 〈Q2, Q

2
0, A,→2〉

be LTSs. A bisimulation between S1 and S2 is a relation R ⊆ Q1 ×Q2 that satisfies:

394 D. Neider et al.

q0start

q1start

q2

b

b

a

c

b

digraph S {

__start0 [label="" shape="none"]

__start1 [label="" shape="none"]

q0 [shape="circle" label="s0"]

q1 [shape="circle" label="s1"]

q2 [shape="circle" label="s2"]

__start0 -> q0

__start1 -> q1

q0 -> q1 [label="b"]

q1 -> q0 [label="a"]

q1 -> q2 [label="b"]

q2 -> q1 [label="c"]

q2 -> q2 [label="b"]

}

Fig. 2. An FSM and its representation in DOT.

1. for every q1 ∈ Q1
0 there exists a q2 ∈ Q2

0 such that (q1, q2) ∈ R,
2. for every q2 ∈ Q2

0 there exists a q1 ∈ Q1
0 such that (q1, q2) ∈ R,

3. for every q1, q
′
1 ∈ Q1, a ∈ A and q2 ∈ Q2 with (q1, q2) ∈ R and q1

a−→ q′
1, there

exists a q′
2 ∈ Q2 such that q2

a−→ q′
2 and (q′

1, q
′
2) ∈ R,

4. for every q2, q
′
2 ∈ Q2, a ∈ A and q1 ∈ Q1 with (q1, q2) ∈ R and q2

a−→ q′
2, there

exists a q′
1 ∈ Q1 such that q1

a−→ q′
1 and (q′

1, q
′
2) ∈ R.

We say that S1 and S2 are bisimilar, and write S1 	 S2, if there exists a
bisimulation between S1 and S2.

2.2 Finite Automata

A finite automaton [32] extends an FSM by identifying some states as accepting.

Definition 3 (Finite automaton). A (nondeterministic) finite automaton (or
NFA) is a tuple A = 〈Q,Q0, Σ,→, F 〉, where 〈Q,Q0, Σ,→〉 is an FSM and
F ⊆ Q is a set of final (or accepting) states. Elements of Σ are referred to as
input symbols. A deterministic finite automataton (DFA) is an NFA for which
the underlying FSM is deterministic and complete.

In the DOT format, accepting states of a finite automaton are denoted by a
double circle, following the standard convention:

digraph g {
...
q [shape="doublecircle"]
...

}

Benchmarks for Automata Learning and Conformance Testing 395

Definition 4 (Equivalence of NFAs). A finite sequence (or word) w ∈ Σ∗

is accepted by NFA A iff there exists an initial state q ∈ Q0 and a final state
q′ ∈ F such that q

w⇒ q′. If w is not accepted then we say it is rejected. The
language L(A) of A is the set of all words accepted by A. Two NFAs A and B
are equivalent, notation A ≈ B, if they have the same set of input symbols and
L(A) = L(B).

2.3 Moore Machines

A (generalized) Moore machine [51] extends an LTS by assigning an output to
each state.

Definition 5 (Generalized Moore machine). A generalized Moore machine
(or genMoore) is a tuple M = 〈Q,Q0, Σ, Γ,→, ω〉, where 〈Q,Q0, Σ,→〉 is an
LTS, Γ is a set of output symbols, and ω : Q → Γ is an output function. We
call elements of Σ input symbols. A Moore machine is a genMoore for which
the underlying LTS is deterministic, complete and finite.

In the DOT representation of a Moore machine, the value o of the output
function in state q is listed after a “|” in the label of state q:

digraph g {
...
q [shape="record", style="rounded", label="{ q | o }"]
...

}

Definition 6 (Equivalence of genMoores). Suppose w = i1i2 · · · im ∈ Σ∗,

q0 ∈ Q0, and q1, . . . , qm ∈ Q with qj−1
ij−→ qj for all 1 ≤ j ≤ m. Then the

sequence ω(q1) · · · ω(qm) ∈ Γ ∗ is an output of genMoore M in reponse to w.1

The output function of M is the function λM that assigns to each input word
w ∈ Σ∗ the set of all outputs of M in response to w. Two genMoores M and
N are equivalent, notation M ≈ N , if they have the same input symbols and
λM = λN .

A DFA A = 〈Q,Q0, Σ,→, F 〉 can be translated to a Moore machine
DFA2Moore(A) = 〈Q,Q0, Σ, Γ,→, ω〉 by associating to each state q ∈ Q an output
that indicates whether or not q is final [32]. That is, we define Γ = {0, 1} and

ω(q) =
{

1 if q ∈ F,
0 otherwise.

Suppose A and B are DFAs with ε ∈ L(A) ⇔ ε ∈ L(B). Then A ≈ B iff
DFA2Moore(A) ≈ DFA2Moore(B). Thus, the translationDFA2Moore preserves the
behavior of DFAs. The counterexample of Fig. 3 shows that if we lift translation
1 Following Hopcroft and Ullman [32], we ignore the initial output in order to obtain

equivalence of Moore and Mealy machines.

396 D. Neider et al.

Moore to NFAs, the behavior is no longer preserved: A ≈ B since L(A) = L(B) =
{a, aa}, butDFA2Moore(A) �≈ DFA2Moore(B) since λDFA2Moore(A)(a) = {0, 1} and
λDFA2Moore(B)(a) = {1}.

s0start

s1

s2

s3 s5

s6

s4start

A B

a
a

a

a

a

Fig. 3. Two NFAs A and B with A ≈ B and DFA2Moore(A) �≈ DFA2Moore(B).

2.4 Mealy Machines

A (generalized) Mealy machine [48] is an LTS in which the labels of transitions
are input/output pairs.

Definition 7 (Generalized Mealy machine). A generalized Mealy machine
(genMealy) is a tuple M = 〈Q,Q0, Σ, Γ,→〉, where 〈Q,Q0, Σ×Γ,→〉 is an LTS.
We refer to elements of Σ as input symbols and to elements of Γ as output

symbols. We write q
i/o−−→ q′ if (q, (i, o), q′) ∈→. We say that M is input enabled

if, for each state q and input symbol i, there exists an output symbol o and a

state q′ such that q
i/o−−→ q′. We call M deterministic if Q0 is a singleton set, and

for each state q and each input i, there is exactly one output o and one state q′

such that q
i/o−−→ q′. We call M finite if its underlying LTS is finite, and a Mealy

machine if it is input enabled, deterministic, and finite.

In the DOT encoding of a Mealy machine, inputs and outputs are separated
by a “/” in the definition of transitions:

digraph g {
...
q1 -> q2 [label="i/o"]
...

}

Benchmarks for Automata Learning and Conformance Testing 397

Definition 8 (Equivalence of genMealys). Suppose w = i1i2 · · · im ∈ Σ∗

and u = o1o2 · · · om ∈ Γ ∗. Then u is an output of genMealy M in response
to w if there exists q ∈ Q0 and q′ ∈ Q such that q

z⇒ q′, where z =
(i1, o1)(i2, o2) · · · (im, om). The output function λM of M assigns to each input
word w ∈ Σ∗ the set of outputs of M in response to w. Generalized Mealy
machines M and N are equivalent, notation M ≈ N , if they have the same
input symbols and λM = λN .

Equivalence of deterministic genMealys can alternatively be characterized
using bisimulations. Call genMealy’s M and N bisimilar, written M 	 N , if
they have the same input symbols and their underlying LTSs are bisimilar. Then
the following proposition holds:

Proposition 1. Let M and N be deterministic genMealys. Then M ≈ N iff
M 	 N .

Each generalized Moore machine M = 〈Q,Q0, Σ, Γ,→, ω〉 can be translated
to a generalized Mealy machine Moore2Mealy(M) = 〈Q,Q0, Σ, Γ,→′〉 by mov-
ing the output symbol of each state to all of the incoming transitions of that
state. Thus, for each transition q

i−→ q′ of M, Moore2Mealy(M) has a transition

q
i/ω(q′)−−−−→′q′. Then we have λM = λMoore2Mealy(M) (see e.g., [32]). This implies that

genMoores M and N are equivalent iff Moore2Mealy(M) and Moore2Mealy(N)
are equivalent. The reader may check that if we take a Moore machine and apply
translation Moore2Mealy, the result is a Mealy machine.

Example 1. Figure 4 shows a Moore machine and its associated Mealy machine.

q0
xstart

q1
y

a

b

b

a

q0start q1

a/x

b/y

b/y

a/x

Fig. 4. A Moore machine (left) and its translation to a Mealy machine (right).

Conversely, a generalized Mealy machine M = 〈Q,Q0, Σ, Γ,→〉 can be trans-
lated to a generalized Moore machine Mealy2Moore(M) = 〈Q′, Q′

0, Σ, Γ,→′, ω〉
by taking the output of a state to be equal to the output of the preceding tran-
sition. For initial states we pick an arbitrary output o0 ∈ Γ . Formally:

– Q′ = Γ × Q,
– Q′

0 = {(o0, q) | q ∈ Q0}, where o0 is an arbitrarily element of Γ ,2

2 If Γ = ∅ then also →= ∅, which means that M is equivalent to M with Γ replaced
by an arbitrary set. Thus, we may assume w.l.o.g. that Γ �= ∅.

398 D. Neider et al.

– →′ is the smallest set such that o ∈ Γ and q
i/o′
−−→ q′ implies (o, q) i−→′(o′, q′),

– ω((o, q)) = o.

Then we have λM = λMealy2Moore(M) (see e.g., [32]). This implies that gen-
eralized Mealy machines M and N are equivalent iff Mealy2Moore(M) and
Mealy2Moore(N) are equivalent. The reader may check that if we take a Mealy
machine and apply translation Mealy2Moore, the result is a Moore machine.

Example 2. Figure 5 shows a Mealy machine and its associated Moore machine.

q0start q1

a/x

b/x

b/y

a/y

(x, q0)
x

(x, q1)
x

(y, q0)
ystart

(y, q1)
y

a
b

b
a

a
b

a
b

Fig. 5. A Mealy machine (left) and its translation to a Moore machine (right).

2.5 Interface Automata

A restriction of Mealy and Moore machines is that each input generates exactly
one output. In real-world systems, some inputs do not induce any output,
whereas others induce several consecutive outputs. In order to model such behav-
iors, De Alfaro and Henzinger [21] introduced interface automata, a modeling
framework related to the I/O automata of Lynch and Tuttle [46,47] and Jons-
son [39], and the I/O transition systems of Tretmans [65,66]. Interface automata
extend LTSs by declaring actions to be either inputs or outputs.

Definition 9. (Interface automata). An interface automaton (IA) is a tuple
T = 〈Q,Q0, Σ, Γ,→〉, where 〈Q,Q0, Σ ∪ Γ,→〉 is an LTS and Σ ∩ Γ = ∅.
We refer to elements of Σ as input symbols and to elements of Γ as output
symbols. An interface automaton is deterministic (resp. finite) if its underlying
LTS is deterministic (resp. finite). We refer to a finite deterministic interface
automaton as a DFIA.

Figure 6 shows the graphical representation of a simple DFIA (left) and its
representation in DOT (right). The DFIA has inputs Σ = {a, b} and outputs
Γ = {x, y}. There are three states: an initial idle state q0, a state q1 in which out-
put x is produced, and a state q2 in which output y is produced. From each state,

Benchmarks for Automata Learning and Conformance Testing 399

q1

q0start

q2

!x

?a

?b

?b

?a

!y

?b

?a

digraph S {

__start0 [label="" shape="none"]

q0 [shape="circle" label="q0"]

q1 [shape="circle" label="q1"]

q2 [shape="circle" label="q2"]

__start0 -> q0

q0 -> q1 [label="?a"]

q0 -> q2 [label="?b"]

q1 -> q0 [label="!x"]

q1 -> q1 [label="?a"]

q1 -> q2 [label="?b"]

q2 -> q0 [label="!y"]

q2 -> q1 [label="?a"]

q2 -> q2 [label="?b"]

}

Fig. 6. A DFIA and its representation in DOT.

input a brings the DFIA to state q1 and input b brings it to state q2. In DOT for-
mat, input symbols of an IA are of the form ?a, whereas output symbols are of the
form !x.

Various preorders have been advocated for IAs: Lynch and Tuttle propose
inclusion of (fair) traces [47], De Alfaro and Henzinger alternating refinement
[21], Tretmans [65] the ioco conformance relation, and Volpato and Tretmans
[69] uioco conformance. For deterministic automata all these relations coincide,
and their kernel coincides with bisimulation equivalence. Therefore, since our
benchmark repository focuses on deterministic IAs, we only consider bisimula-
tion as behavioral equivalence on IAs.

Definition 10. (Equivalence of IAs). Interface automata T and U are bisim-
ilar, written T 	 U , if they have the same input symbols and their underlying
LTSs are bisimilar.

Suppose M = 〈Q,Q0, Σ, Γ,→〉 is a generalized Mealy machine with disjoint
input and output symbols. Then M can be translated to an interface automaton

Mealy2IA(M) by adding states Γ ×Q, and splitting each transition q
i/o−−→ q′ of M

into a pair of consecutive transitions q
i−→ (o, q′) and (o, q′) o−→ q′. Note that if M

is a Mealy machine, Mealy2IA(M) is a DFIA. Figure 7 shows a Mealy machine
and its associated DFIA.

Proposition 2. Let M and N be deterministic genMealys. Then M ≈ N iff
Mealy2IA(M) 	 Mealy2IA(N).

For any generalized Mealy machine M, Mealy2IA(M) has a specific form
in which inputs and outputs alternate: (a) the set of states can be partitioned

400 D. Neider et al.

q0start q1 q2

b/y

a/x

b/y

a/x a/z

b/y
q0start

(x, q0)

q1

(y, q1)

q2

(z, q1)

(y, q2)

a

b

x

a

by

z
a

b y

Fig. 7. A Mealy machine (left) and its translation to a DFIA (right).

into two sets Qin and Qout, with Q0 ⊆ Qin, (b) states in Qin enable no outputs,
whereas states in Qout enable no inputs, (c) all transitions go from states in Qin

to states in Qout, or from states in Qout to states in Qin (i.e., the underlying graph
is bipartite). We call an IA T that satisfies properties (a)–(c) Mealy-like. Any
Mealy-like IA T can be translated to a generalized Mealy machine IA2Mealy(T)
by taking Qin as set of states, Qin as the set of initial states, and merging each

pair of consecutive transitions q
i−→ q′ o−→ q′′ of T into a single transition q

i/o−−→ q′′.
Note that if T is a Mealy-like DFIA with each input enabled in each state from
Qin and a single output enabled in each state of Qout, IA2Mealy(T) is a Mealy
machine. Also note that IA2Mealy ◦ Mealy2IA is the identity function, whereas
Mealy2IA ◦ IA2Mealy is not. However, we do have the following proposition:

Proposition 3. Let T and U be Mealy-like deterministic IAs. Then T 	 U iff
IA2Mealy(T) ≈ IA2Mealy(U).

2.6 Register Automata

Register automata extend FSMs with data values that may be communicated,
stored and tested. Below we recall the definition of register automata from [15],
slightly adapted to the setting of interface automata. Register automata are
parameterized on a vocabulary that determines how data can be tested, which
in our setting is called a structure.3 A (relational) structure is a pair 〈D,R〉 where
D is an unbounded domain of data values, and R is a collection of relations on
D. Relations in R can have arbitrary arity. Known constants can be represented
by unary relations. Examples of simple structures include:

– 〈N, {=}〉, the natural numbers with equality; instead of the set of natural
numbers, we could consider any other unbounded domain, e.g., the set of
strings (representing passwords or usernames).

– 〈R, {<}〉, the real numbers with inequality: this structure also allows one to
express equality between elements.

3 In [15] this is called a theory, but we prefer the standard terminology from logic [18].

Benchmarks for Automata Learning and Conformance Testing 401

Operations, such as increments, addition and subtraction, can in this frame-
work be represented by relations. For instance, addition can be represented by a
ternary relation p1 = p2 + p3. In the following definitions, we assume that some
structure 〈D,R〉 has been fixed.

We assume a set of registers V = {x1, x2, . . .}, and we assume that actions
carry a single formal data parameter p �∈ V.4 A guard is a conjunction of negated
and unnegated relations (from R) over the formal parameter p and the registers.
We use Φ to denote the set of guards. An assignment is a partial function in
V ⇀ (V ∪ {p}). We use Υ to denote the set of assignments. A valuation is a
partial function in (V ∪ {p}) ⇀ D.

Definition 11 (Register automaton). A register automaton (RA) is a tuple
A = 〈L,L0,X , Σ, Γ,→〉, where 〈L,L0, (Σ ∪ Γ) × Φ × Υ,→〉 is an FSM, we refer
to elements of L as locations, Σ ∩Γ = ∅, X maps each location l ∈ L to a finite
set X (l) of registers, and for each transition 〈l, a, g, π, l′〉 ∈→, g is a guard over
X (l)∪{p} and π is a mapping from X (l′) to X (l)∪{p}. Function π specifies, for
each register x from target state l′, the parameter or register from source state l
whose value will be assigned to x.

Within the Tomte and RALib tools, XML formats have been defined for
representing register automata syntactically. We will not discuss these formats
here but refer to the tool websites http://tomte.cs.ru.nl/ and https://bitbucket.
org/learnlib/ralib/ for more details.

Example 3. Figure 8 shows a register automaton over structure 〈N, {=}〉 that
models a FIFO-set with capacity two, similar to an example in [34]. A FIFO-
set is a queue in which only different values can be stored. The automaton has
an input Push that tries to insert a value in the queue, and an input Pop that
tries to retrieve a value from the queue. Push triggers an output NOK if the
input value is already in the queue or if the queue is full. Pop triggers an output
NOK if the queue is empty, and otherwise an output Out with as parameter the
oldest value from the queue. We write x := y for the function that maps x to
y, and acts as the identity for the other variable in the target state. We omit
guards true, trivial assignments, and parameters that not occur in the guard and
are not touched by the assignment. Thus we write, for instance, Pop instead of
Pop(p). Function X assigns variable set ∅ to locations l0 and l3, variable set {v}
to locations l1, l4 and l6, and variable set {v, w} to locations l2, l5 and l7.

Example 4. By just a minor change of the register automaton of Example 3, we
may define a priority queue with capacity 2. This register automaton over the
structure 〈R, {<}〉 is identical to the register automaton of Fig. 8, except that
the two outgoing Push-transitions of l1 have been replaced by transitions

l1
Push,p<v,v:=p;w:=v−−−−−−−−−−−−−→ l2 l1

Push,p≥v,w:=p−−−−−−−−−→ l2

4 Actually, our repository supports actions with zero or more data parameters, but
this assumption simplifies the presentation.

http://tomte.cs.ru.nl/
https://bitbucket.org/learnlib/ralib/
https://bitbucket.org/learnlib/ralib/

402 D. Neider et al.

l0start l1 l2

l4 l5l3

l6 l7

Push(p)
v:=p

Pop

p �= v
Push(p)
w:=p

p = v
Push(p)

Pop

Push(p)

Pop

p = v
Out(p)

p = v
Out(p)
v:=w

NOK

NOK NOK

Fig. 8. FIFO-set with capacity 2.

This ensures that in location l2, the value in register v is less than or equal to
the value in register w. As a result, output Out will return the smallest value in
the queue.

Semantically, a register automaton is just a finite representation of an infinite
interface automaton.

Definition 12 (Semantics register automata). Let A=〈L,L0,X , Σ, Γ,→〉 be
a register automaton. The interface automaton RA2IA(A) is the tuple 〈Q,Q0, Σ×
D, Γ × D,→′〉, where

1. Q is the set of pairs 〈l, ν〉 with l ∈ L and ν : X (l) → D.
2. Q0 is the set of pairs 〈l, ν〉 ∈ Q with l ∈ L0.

3. 〈l, ν〉 a(d)−−−→′〈l′, ν′〉 iff A has a transition l
a,g,π−−−→ l′ such that g is satisfied in l

and by parameter d (i.e., ι |= g, where ι = ν ∪ {(p, d)}), and ν′ = ι ◦ π.

Two register automata A and A′ are bisimilar iff their associated interface
automata are bisimilar, i.e., RA2IA(A) 	 RA2IA(A′). Similarly, we call regis-
ter automaton A deterministic iff its associated interface automaton RA2IA(A)
is deterministic.

The interface automaton associated to the register automaton of Fig. 8 is
deterministic and, for instance, has the following sequence of transitions:

〈l0, ∅〉 Push(4)−−−−→ 〈l1, {(v, 4)}〉 Push(5)−−−−→ 〈l2, {(v, 4), (w, 5)}〉 Pop−−→ 〈l5, {(v, 4), (w, 5)}〉

Out(4)−−−−→ 〈l1, {(v, 5)}〉 Push(5)−−−−→ 〈l6, {(v, 5)}〉 NOK−−−→ 〈l1, {(v, 5)}〉.
Register automata over structure 〈N, {=}〉 can be translated to a finite interface
automaton by restricting the data domain D to a finite set. Let RA2IAn(A) be

Benchmarks for Automata Learning and Conformance Testing 403

the finite interface automaton obtained by replacing D by {0, . . . , n − 1} in the
definition of RA2IA(A), for any n ∈ N. Heidarian [22, Chapter 8] showed that two
register automata A and A′ are bisimilar iff RA2IAn(A) 	 RA2IAn(A′), for large
enough n. Via the translations RA2IAn, each deterministic register automaton
benchmark can be used to generate an infinite number of DFIA benchmarks, in
which the numbers of states and transitions grow unboundedly. In several of our
register automata benchmarks, inputs and outputs alternate. As a result, the
DFIAs obtained via translations RA2IAn are Mealy-like, and can subsequently
be converted to Mealy machines via translation IA2Mealy from Sect. 2.5.

Thus far, all the register automaton benchmarks in our repository are deter-
ministic register automata over structure 〈N, {=}〉, but we are planning to
include register automata benchmarks over different structures, such as the mod-
els described in [25].

3 Benchmarks Derived from Applications

Our repository automata.cs.ru.nl contains four types of benchmarks: (1) ran-
domly generated automata, (2) small toy examples, (3) benchmarks derived from
realistic applications, and (4) benchmarks obtained via the translations from
Sect. 2. In this section, we focus on the benchmarks derived from realistic appli-
cations, and briefly pay attention to some of the smaller “toy” models that have
been included in the repository. All the benchmarks in this section are either
Mealy machines or register automata. In the next Sect. 4, we discuss algorithms
for generating random automata, and a collection of randomly generated DFAs
and Moore machines that we have included in the repository.

3.1 Mealy Machines

The large majority of the Mealy machine benchmarks in our repository has fewer
than 100 states, fewer than 20 inputs, and fewer than 50 outputs. For a detailed
listing of the numbers of states, inputs and outputs of all the benchmarks we
refer to automata.cs.ru.nl/Table.

Toy Examples. We included several toy Mealy machines, such as a simple model
of a coffee machine used as running example in [63], a trivial three state model
used to explain L∗ in [68], and some instructive examples from [44,52].

Circuits. The logic synthesis workshops (LGSynth89, LGSynth91 and LGSyn-
th93) provided 59 behavioral models for testing, logic synthesis and optimization
of circuits, see [12,24]. These models can be viewed as Mealy machines in several
ways. We provide four interpretations of each model as a Mealy machine. If two or
more interpretations give equivalent results, we have included only one of them in
the repository. The circuit benchmarks have been used recently for Mealy machine
testing by Hierons & Türker [31].

404 D. Neider et al.

TCP. The Transmission Control Protocol (TCP) is a widely used transport layer
protocol that provides reliable and ordered delivery of a byte stream from one
computer application to another. The authors of [26] combined model learning
and model checking in a case study involving Linux, Windows and FreeBSD
implementations of TCP. Model learning was used to infer models of different
software components and model checking was applied to fully explore what may
happen when these components (e.g., a Linux client and a Windows server)
interact. The analysis revealed several instances in which TCP implementations
do not conform to their RFC specifications.

TLS Protocol. TLS, short for Transport Layer Security, is a widely used protocol
that aims to provide privacy and data integrity between two or more communi-
cating computer applications, for example in HTTPS. The authors of [58] ana-
lyzed both server- and client-side implementations of TLS with a test harness
that supports several key exchange algorithms and the option of client certificate
authentication. Using LearnLib, they succeeded to learn Mealy machine mod-
els of a number of TLS implementations. They showed that this approach can
catch an interesting class of flaws that is apparently common in security proto-
col implementations: in three of the TLS implementations that were analyzed
(GnuTLS, the Java Secure Socket Extension, and OpenSSL), new security flaws
were found. This indicates that model learning is a useful technique to system-
atically analyze security protocol implementations. As the analysis of different
TLS implementations resulted in different and unique state machines for each
one, the technique can also be used for fingerprinting TLS implementations.

SSH Protocol. SSH, short for Secure Shell, is a cryptographic network protocol
that is widely used to interact securely with remote machines. The authors of
[27] applied model learning to three SSH implementations (OpenSSH, Bitvise
and DropBear) to infer Mealy machine models, and then used model checking
to verify that these models satisfy basic security properties and conform to the
RFCs. The analysis showed that all tested SSH server models satisfy the stated
security properties. However, several violations of the standard were uncovered.

ABN AMRO e.dentifier2. The e.dentifier2 is a hand-held smart card reader with
a small display, a numeric keyboard, and OK and Cancel buttons. Customers of
the Dutch ABN AMRO bank use it for Internet banking in combination with a
bank card and a PIN code. The authors of [16] showed that model learning can be
successfully used to reverse engineer the behavior of the e.dentifier2, by using a
Lego robot to operate the devices. The Mealy machines that were automatically
inferred by the robot revealed a security vulnerability in the e.dentifier2, that
was previously discovered by manual analysis, and confirmed the absence of this
flaw in an updated version of this device.

EMV Protocol. Bank cards (debit cards) are smart cards used for payment
systems. Most smart cards issued by banks or credit cards companies adhere
to the EMV (Europay-MasterCard-Visa) protocol standard, which is defined

Benchmarks for Automata Learning and Conformance Testing 405

on top of ISO/IEC 7816. In [6], LearnLib and some simple abstraction tech-
niques were used to learn Mealy machine models of EMV applications on bank
cards issued by several Dutch banks (ABN AMRO, ING, Rabobank), one Ger-
man bank (Volksbank), and one MasterCard credit cards issued by Dutch and
Swedish banks (SEB, ABN AMRO, ING) and of one UK Visa Debit card (Bar-
clays). These models provide a useful insight into decisions (or indeed mistakes)
made in the design and implementation, and would be useful as part of security
evaluations—not just for bank cards but for smart card applications in general—
as they can show unexpected additional functionality that is easily missed in
conformance tests.

MQTT Protocol. The Message Queuing Telemetry Transport (MQTT) proto-
col is a lightweight publish/subscribe protocol that is well-suited for resource-
constrained environments such as the Internet of Things (IoT). The authors of
[64] used model learning to obtain Mealy machine models of five freely avail-
able implementations of MQTT brokers (included in Apache ActiveMQ 5.13.3,
emqttd 1.0.2, HBMQTT 0.7.1, Mosquitto 1.4.9 and VerneMQ 0.12.5p4). Exam-
ining these models, the authors found several violations of the MQTT speci-
fication. In fact, all but one of the considered implementations showed faulty
behavior.

ESM Printer Controller. The Engine Status Manager (ESM) is a software com-
ponent that is used in printers and copiers of Oce. Using a combination of Learn-
Lib and a novel conformance testing algorithm, the authors of [62] succeeded to
learn a Mealy machine model of this component fully automatically. Altogether,
around 60 million queries were needed to learn a model of the ESM with 77
inputs and 3.410 states. They also constructed a model by flattening a Rational
Rose Real-Time description from which the ESM software was generated, and
established equivalence with the learned model.

An Interventional X-ray System. Model learning and equivalence checking are
used by [60] to improve a new implementation of a legacy control component.
Model learning is applied to both the old and the new implementation of the
Power Control Service (PCS) of an interventional X-ray system. The result-
ing models are compared using an equivalence check of a model checker. The
authors report about their experiences with this approach at Philips. By grad-
ually increasing the set of input stimuli, they obtained implementations of the
PCS for which the learned behavior is equivalent.

From Rhapsody to Dezyne. In his PhD thesis, Schuts [59, Chapter 8] describes
a case study, carried out at Philips, in which models created with a legacy
tool (Rhapsody) are transformed to models that can be used by another tool
(Dezyne). The transformation is established by means of a DSL for the legacy
models. Model learning was applied to increase confidence in the correctness of
the generated code. Two versions of state-machine code, generated by Rhapsody
and Dezyne, were stimulated by all possible inputs and the resulting outputs were

406 D. Neider et al.

examined by LearnLib. The two models constructed by LearnLib were compared
by the equivalence checker of the mCRL2 tool set. With this approach two
errors were found in the Dezyne models that were not detected by the existing
regression test set.

3.2 Register Automata

Toy examples. We included several toy models in the repository: the sender and
receiver of the well-known Alternating Bit Protocol, a simple login protocol, an
automaton that test whether a list of numbers is a palindrome or a repdigit, and
a river crossing puzzle.

SIP. The Session Initiation Protocol (SIP) is a signalling protocol used for initi-
ating, maintaining, and terminating real-time sessions that include voice, video
and messaging applications. In [4], an abstract Mealy machine model was inferred
that describes the SIP Server entity when setting up connections with a SIP
Client. The model was obtained by connecting LearnLib with the protocol simu-
lator ns-2, and generated a model of the SIP component as implemented in ns-2.
Using a (manually constructed) mapper component, concrete SIP messages were
converted into abstract input and output symbols. Even though no implementa-
tion errors were found, the work of [4] showed the feasibility of the approach for
inferring models of implementations of realistic communication protocols. In [2],
the Mealy machine model of [4] was converted into a register automaton model
that is included in the repository.

Data Structures. As observed by Howar et al. [34], register automata with input
and output events can be used to represent semantic interfaces of simple data
structures such as stacks, queues, and FIFO-sets with fixed capacities. Since
they are parametrized by their capacity, these data structures provide excellent
benchmarks for model learning tools, see e.g., [3].

Biometric Passport. The biometric passport is an electronic passport provided
with a computer chip and antenna to authenticate the identity of travelers.
Examples of used protocols are Basic Access Control (BAC), Active Authen-
tication (AA) and Extended Access Control (EAC) [13]. Official standards are
documented in the International Civil Aviation Organisation’s (ICAO) Doc 9303
[36]. In [7], LearnLib was used to automatically generate a model of fragments
of these protocols as implemented on an authentic biometric passport. The data
on the chip could be accessed via a smart card reader with JMRTD serving as
API. A simple mapper component serves as an intermediary between the SUT
and LearnLib.

Bounded Retransmission Protocol. The Bounded Retransmission Protocol
(BRP) is a well-known benchmark case study from the verification literature
[20,30]. The BRP is a variation of the classical alternating bit protocol that
was developed by Philips to support infrared communication between a remote

Benchmarks for Automata Learning and Conformance Testing 407

control and a television. In [5], a reference implementation of the protocol is
described, as well as six faulty mutants of this implementation. The authors use
a combination of model learning, model-based testing and verification to detect
behavioral differences between the mutants and the reference implementation.

4 Random Generation of Benchmarks

As argued throughout this paper, high-quality benchmarks are an integral part
of the evaluation of (automata learning) algorithms. In this context, synthetic,
i.e., randomly generated, automata play an important role due to their relevancy
to average case analyses and their usually high Kolmogorov complexity [17,45].
Contrary to what one might think, however, randomly generating automata is
not a trivial task: automata carry a semantics (in form of the accepted language)
and, hence, properties such as connectedness and minimality with respect to
the accepted language are of great importance. In fact, estimating the number
of pairwise non-equivalent automata of a certain size is already a challenging
problem [17,29].

In this section, we survey three popular algorithms for generating random
DFAs, taken both from the literature and from automata learning competitions:

1. the algorithm used in the Abbadingo DFA learning competition [42], which
we present in Sect. 4.1;

2. the algorithm used in the Stamina DFA learning competition [70,71] (based
on the forest-fire algorithm [45] for generating random graphs), which we
present in Sect. 4.2; and

3. Champarnaud and Paranthoën’s method [17], which we present in Sect. 4.3.

Methods for generating other types of state machines (such as NFAs, Mealy and
Moore machines, etc.) exists as well, but are often ad-hoc approaches and far
less studied.

In Sect. 4.4, we briefly describe a series of random DFAs and random Moore
machines, which we have generated on the occasion of Bernhard Steffen’s 60th

birthday. In this section, we also sketch a simple method for randomly generating
Moore machines.

For the following description, recall from Sect. 2.2 that a DFA is a tuple
A = 〈Q,Q0, Σ,→ , F 〉 where 〈Q,Q0, Σ,→〉 is a complete and deterministic
FSM and F ⊆ Q is a set of final states. Moreover, let n = |Q| denote the desired
size, i.e., the number of states, of the DFA to be generated.

4.1 Abbadingo Competition Random DFA Algorithm

The Abbadingo random DFA algorithm [42] is a simplistic algorithm, which
constructs a DFA with n states (n > 0) in four steps:

1. It creates n states, say Q = {q1, . . . , qn}.
2. For each pair of state p ∈ Q and input symbol a ∈ Σ, it chooses a destination

state q ∈ Q uniformly at random and adds the transition p
a−→ q.

408 D. Neider et al.

3. It chooses a state q0 ∈ Q uniformly at random and marks it as the initial
state, i.e., Q0 = {q0}.

4. For each state q ∈ Q, it determines whether q is a final state by flipping a
fair coin, i.e., it adds q to F with probability 1/2.

Clearly, a major drawback of this simple approach is the neglect of any
structural property of the generated DFA—except for the fact that the resulting
automaton is deterministic. In particular, the algorithm neither guarantees that
the resulting DFA is accessible, i.e., that all its states are reachable from the
initial state, nor that it is minimal. For this reason, the Abbadingo competition
used the following procedure: in order to obtain a DFA of size roughly n, a DFA
of size 1.2n is generated and all states that are not reachable from the initial
state are removed. Although this additional step ensures that the resulting DFA
is accessible, it might still not produce minimal DFAs.

4.2 Stamina Competition Random DFA Algorithm

The algorithm used in the Stamina competition [70] has been designed to pro-
duce random DFAs that are representative of software models. Its basis is the
forest-fire algorithm by Leskovec, Kleinberg, and Faloutsos [45], which produces
directed graphs that resemble complex networks arising in a variety of domains.
The forest-fire algorithm is an iterative algorithm (each iteration adds one new
vertex as well as edges from and to this vertex) that takes three parameters as
input: a number N > 0 of vertices, a forward burning probability p ∈ [0, 1], and
a backward burning ratio r ∈ [0, 1].

The forest-fire algorithm proceeds in N rounds. In the first round, it initial-
izes the graph with a single vertex. In each subsequent round, it performs the
following four steps (Step 1 inserts a new vertex, while Steps 2, 3, and 4 insert
new edges):

1. The algorithm creates a new vertex v. Moreover, it initializes an auxiliary set
U = ∅, which is used to mark vertices that have been visited by the algorithm
in the current round.

2. It picks a vertex w �= v, called ambassador vertex, uniformly at random and
adds the edge v → w. Moreover, it adds w to U , marking w as visited.

3. It draws a random number x ∈ N from a geometric distribution with mean
p/(1−p) and a second random number y ∈ N from a geometric distribution
with mean rp/(1−rp). Then, it selects

– x incoming edges of w, say v1 → w, . . . , vx → w, and
– y outgoing edges of w, say w → v′

1, . . . , w → v′
y,

uniformly at random such that {v1, . . . , vx, v′
1, . . . , v

′
y} ∩ U = ∅, i.e., none of

the vertices v1, . . . , vx and v′
1, . . . , v

′
y have been visited in this iteration; if not

enough edges are available, the algorithm selects as many as possible.
4. It adds the edges v → v1, . . . , v → vx, v → v′

1, . . . , v → v′
x and then applies

Step 2 recursively with each of the vertices v1, . . . , vx, v′
1, . . . , v

′
y as ambassador

vertex. Note that this procedure stops eventually as vertices cannot be visited
more than once.

Benchmarks for Automata Learning and Conformance Testing 409

To generate a DFA (rather than a directed graph), the algorithm used in
the Stamina competition takes three additional parameters as input: a set Σ
of input symbols, a self-loop probability l ∈ [0, 1], and a parallel-edge probability
e ∈ [0, 1]. (Note that the forest-fire algorithm can neither create self-loops nor
parallel edges.) Based on these additional parameters, the forest-fire algorithm
is adapted as follows:

– The initial state is chosen uniformly at random, and each vertex has the
probability 1/2 of being a final state.

– In order to make sure that each state is reachable, edges added in Step 2 are
added in the reverse direction, i.e., w → v.

– Whenever the forest-fire algorithm adds an edge in Step 4, with probability l
this edge gets instead redirected to form a self-loop.

– Whenever the forest-fire algorithm inserts an edge, the edge is turned into a
transition that is labeled with an input symbol a ∈ Σ. The input symbol a is
drawn uniformly at random from the set Σ such that the automaton remains
deterministic, i.e., symbols that are already used in an outgoing transition
from the state in question are not considered. If all symbols from Σ already
occur on an outgoing transition, then no transition is added.

– Finally, every time a transition is inserted, a second, parallel transition is
added with probability e. The second transition is labeled using the labeling
rule described above.

Although this algorithm produces accessible DFAs, it does not guarantee that
these DFAs are minimal. To account for this, the DFAs used in the Stamina com-
petition have been generated slightly larger than desired and have subsequently
been minimized. The parameters used to generate the competition DFAs were
Σ = {1, . . . , a} for a ∈ {2, 5, 10, 20, 50}, n = 50 (the actual value N has been cho-
sen slightly larger than 50 due to the subsequent minimization process), f = 0.31,
r = 0.385, l = 0.2, and e = 0.2.

4.3 Champarnaud and Paranthoën’s Method

Champarnaud and Paranthoën’s method [17] is a generalization of an algorithm
proposed by Nicaud [53], which randomly generates accessible DFAs over two
input symbols. An interesting property of Nicaud’s algorithm is that it generates
minimal DFAs with a probability of about 4/5. Champarnaud and Paranthoën’s
method shares this property when generating DFAs over two input symbols,
while an experimental evaluation with over a million DFAs has shown that
nearly all generated DFAs were minimal if the number of input symbols was
chosen greater than two [17]. Hence, should a minimal DFA be required, a viable
approach is to simply repeat Champarnaud and Paranthoën’s method until the
resulting DFA is minimal.

Champarnaud and Paranthoën’s method is a fairly complex algorithm, which
is based on two ideas:

410 D. Neider et al.

– The FSM 〈Q,Q0, Σ,→〉 underlying any DFA can be represented by a
Σ-labeled tree of arity m = |Σ| with n = |Q| inner nodes, i.e., a tree of
arity m with n inner nodes whose edges are labeled with symbols from Σ.

– Labeled trees can be encoded by a special type of tuples over the natural
numbers, which Champarnaud and Paranthoën call generalized tuples.

Hence, one can generate a random DFA by first randomly generating a general-
ized tuple, then constructing the corresponding tree, and finally deriving a DFA
from the tree. Although an in-depth description of this procedure is out of the
scope of this paper, the remainder of this section sketches the main steps of the
algorithm.

At the heart of Champarnaud and Paranthoën’s method lies the observation
that every Σ-labeled tree is determined (up to isomorphism) by one of its pre-
fix traversals. More precisely, a complete m-ary tree with n inner nodes—and,
therefore, s = n(m − 1) + 1 leaf nodes—can be encoded by the tuple

(k1, . . . , ks−1) ∈ {1, . . . , n}s−1,

where the i-th entry ki corresponds to the number of inner nodes visited during
a prefix traversal of the tree prior to the visit of the i-th leaf (note that there
is no need to store this information for the last leaf as this number is n). The
set of all generalized tuples of length l + 1 can be constructed recursively from
the set of generalized tuples of length l, and Champarnaud and Paranthoën give
an algorithm to draw such tuples randomly. Once a generalized tuple of length
s − 1 has been generated, the corresponding tree with n inner nodes can be
constructed effectively.

The tree generated in the previous step represents a deterministic transition
structure that serves as template for a number of (non-isomorphic) n-state DFAs.
Constructing a DFA from such a template involves two steps: first, edges to leaf
nodes need to be redirected to inner nodes (so as to be able to produce a DFA
that is complete and accepting an infinite language); second, final states have
to be selected. However, edges cannot be redirected arbitrarily as this might
result in the same DFA being generated from two different generalized tuples. In
order to prevent this from happening, Champarnaud and Paranthoën’s method
redirects edges only to inner nodes that have been visited earlier during the
prefix traversal. The final DFA is then obtained by setting the initial state to
be the root node and choosing uniformly at random one possibility of inserting
back edges and selecting final states. Note that this implies in particular that
the probability of a state being final is 1/2.

4.4 Random DFAs and Moore Machines Dedicated to Bernhard
Steffen’s 60th Birthday

On the occasion of Bernhard Steffen’s 60th birthday, we have included four sets
of randomly generated DFAs and Moore machines in our repository:

1. 60 × 60 DFAs with 1 000 states each over the alphabet Σ = {0, 1, . . . , 19};

Benchmarks for Automata Learning and Conformance Testing 411

2. 60 × 60 DFAs with 2 000 states each over the alphabet Σ = {0, 1, . . . , 9};
3. 60 × 60 Moore machines with 1 000 states each over the input alphabet Σ =

{0, 1, . . . , 19} and output alphabet Γ = Σ; and
4. 60 × 60 Moore machines with 2 000 states each over the input alphabet Σ =

{0, 1, . . . , 9} and output alphabet Γ = Σ.

The number of states and the number of elements in the input/output alphabets
of these automata were chosen to be challenging, though still manageable for
state-of-the-art algorithms.

All DFAs were generated using libalf’s [11] off-the-shelf implementation of
Champarnaud and Paranthoën’s method. To generate Moore machines, we used
the following two-step process: first, we randomly generated a DFA using Cham-
parnaud and Paranthoën’s method, which serves as the LTS underlying our
Moore machines; second, we assigned to each state an output symbol that was
drawn uniformly at random from the output alphabet. Note that the second
step is in fact a generalization of the way Champarnaud and Paranthoën select
final states, which is essentially by flipping a fair coin for each state. As with all
methods described in this section, however, our DFAs and Moore machines are
accessible but might not be minimal.

5 Conclusions

Many of the benchmark models in our repository have clear practical relevance,
e.g., they helped to reveal standard violations in network protocols and eliminate
bugs in industrial software. Nevertheless, the benchmarks are surprisingly small:
several models have less than ten states and our largest models only have a few
thousand states. A possible explanation is that model learning and testing typi-
cally focus on a single component (e.g., a TCP server) and there is already some
implicit abstraction in the selection of the interface. This should be contrasted
with benchmarks used for explicit model checking, which typically focus on the
behavior of networks of components, and have millions of states.

Even though our benchmarks are small, they still pose enormous challenges
for state-of-the-art automata learning and conformance testing tools. In prac-
tice, conformance testing algorithms often have difficulties to find subtle bugs in
implementations for models with more than say a hundred states and a dozen
inputs. For instance, with 3.410 states and 77 inputs the ESM printer controller
model is at the limit of what current algorithms can handle [62]. In particular,
state-of-the-art techniques are unable to learn models of the printer controller for
slightly different configurations of the same software. Also, input/output inter-
actions and resets of software and hardware often take a significant amount of
time. For instance, in the case study of the interventional X-ray system [60], it
took up to 9 hours to learn models with up to 9 states and 12 inputs. This was
because running a single test sequence took on average about 10 seconds and a
reset of the implementation took about 5 seconds. This means that any reduc-
tion of the number of queries needed for learning and testing reliable models has
immediate practical relevance. Clearly, a comprehensive evaluation of existing

412 D. Neider et al.

learning and testing algorithms on our benchmarks is an important direction for
future research.

Finally, we would like to encourage all our colleagues to contribute new bench-
marks to the repository! Our automata wiki is built using the PmWiki software,
which makes it easy to add new benchmarks.

Acknowledgements. This article was initiated at the Dagstuhl Seminar 16172
“Machine Learning for Dynamic Software Analysis: Potentials and Limits” organized
by Amel Bennaceur, Reiner Hähnle, and Karl Meinke. We thank Fides Aarts, Petra
van den Bos, Alexander Fedotov, Paul Fiterău-Broştean, Falk Howar, Joshua Moer-
man, Erik Poll, and Joeri de Ruiter for helping with the repository. Many thanks to
Pierre van de Laar and the anonymous reviewers for their suggestions on an earlier
version of this paper.

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 11

2. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

3. Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.: Algorithms for inferring register
automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
202–219. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-
9 15

4. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3 14

5. Aarts, F., Kuppens, H., Tretmans, G.J., Vaandrager, F.W., Verwer, S.: Improving
active Mealy machine learning for protocol conformance testing. Mach. Learn.
96(1–2), 189–224 (2014)

6. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: IEEE
International Conference on Software Testing Verification and Validation Work-
shop, Los Alamitos, CA, USA, pp. 461–468. IEEE Computer Society (2013)

7. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0 54

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

9. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-540-31984-9_14

Benchmarks for Automata Learning and Conformance Testing 413

10. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: Boutilier, C. (ed.) Proceedings of IJCAI 2009, pp. 1004–1009 (2009)

11. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 32

12. Brglez, F.: ACM/SIGDA benchmark dataset (1996). http://people.engr.ncsu.edu/
brglez/CBL/benchmarks/Benchmarks-upto-1996.html. Accessed 14 Aug 2018

13. BSI: Advanced security mechanisms for machine readable travel documents -
extended access control (EAC) - version 1.11. Technical report TR-03110, Ger-
man Federal Office for Information Security (BSI), Bonn, Germany (2008)

14. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)

15. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

16. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engi-
neering using Lego. In: Proceedings WOOT 2014, Los Alamitos, CA, USA. IEEE
Computer Society, August 2014

17. Champarnaud, J.-M., Paranthoën, T.: Random generation of DFAs. Theor. Com-
put. Sci. 330(2), 221–235 (2005)

18. van Dalen, D.: Logic and Structure. Springer, London (1983)
19. D’Antoni, L.: AutomatArk. https://github.com/lorisdanto/automatark. Accessed

14 Aug 2018
20. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-

mission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416–431. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035403

21. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings ESEC/FSE-01,
Software Engineering Notes, vol. 26, pp. 109–120. ACM Press, New York, Septem-
ber 2001

22. Heidarian Dehkordi, F.: Studies on verification of wireless sensor networks and
abstraction learning for system inference. Ph.D. thesis, Radboud University
Nijmegen, July 2012

23. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Inf. Softw. Technol. 52(12), 1286–1297 (2010)

24. Fiser, P.: Collection of digital design benchmarks. https://ddd.fit.cvut.cz/prj/
Benchmarks/. Accessed 14 Aug 2018

25. Fiterău-Broştean, P., Howar, F.: Learning-based testing the sliding window behav-
ior of TCP implementations. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.)
FMICS/AVoCS -2017. LNCS, vol. 10471, pp. 185–200. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67113-0 12

26. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

27. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., Verleg,
P.: Model learning and model checking of SSH implementations. In: Proceedings
SPIN Symposium, SPIN 2017, pp. 142–151. ACM, New York (2017)

28. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)

https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
http://people.engr.ncsu.edu/brglez/CBL/benchmarks/Benchmarks-upto-1996.html
http://people.engr.ncsu.edu/brglez/CBL/benchmarks/Benchmarks-upto-1996.html
https://github.com/lorisdanto/automatark
https://doi.org/10.1007/BFb0035403
https://doi.org/10.1007/BFb0035403
https://ddd.fit.cvut.cz/prj/Benchmarks/
https://ddd.fit.cvut.cz/prj/Benchmarks/
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25

414 D. Neider et al.

29. Harary, F., Palmer, E.M.: Enumeration of finite automata. Inf. Control. 10(5),
499–508 (1967)

30. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 75

31. Hierons, R.M., Türker, U.C.: Incomplete distinguishing sequences for finite state
machines. Comput. J. 58(11), 3089–3113 (2015)

32. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

33. Howar, F.: Active learning of interface programs. Ph.D. thesis, University of Dort-
mund, June 2012

34. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic
interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7609, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34026-0 41

35. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

36. ICAO: Doc 9303 - machine readable travel documents - part 1–2. Technical report,
International Civil Aviation Organization, Sixth edition (2006)

37. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

38. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In:
Proceedings SPIN Symposium, pp. 11–20. ACM (2017)

39. Jonsson, B.: Modular verification of asynchronous networks. In: PODC 1987 [54],
pp. 152–166

40. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

41. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

42. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054059

43. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

44. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
— a survey. Proc. IEEE 84(8), 1090–1123 (1996)

45. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. TKDD 1(1), 1–41 (2007). https://doi.org/10.1145/1217299.
1217301

46. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Fransisco (1996)

47. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC 1987 [54], pp. 137–151. A full version is available as MIT Tech-
nical Report MIT/LCS/TR-387

48. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34(5), 1045–1079 (1955)

https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301

Benchmarks for Automata Learning and Conformance Testing 415

49. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 18

50. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: Proceedings POPL 2017, pp. 613–625. ACM (2017)

51. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Studies.
Annals of Mathematics Studies, vol. 34, pp. 129–153. Princeton University Press
(1956)

52. Naik, K.: Efficient computation of unique input/output sequences in finite-state
machines. IEEE/ACM Trans. Netw. 5(4), 585–599 (1997)

53. Nicaud, C.: Étude du comportement en moyenne des automates finis et des lan-
gages rationnels. Ph.D. thesis, Université Paris 7 (2000)

54. Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-
puting, August 1987

55. Raffelt, H., Steffen, B., Berg, T.: LearnLib: a library for automata learning and
experimentation. In: Proceedings FMICS 2005, pp. 62–71. ACM Press, New York
(2005)

56. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. STTT 11(5), 393–407 (2009)

57. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

58. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: Proceed-
ings USENIX Security 15, pp. 193–206. USENIX Association, August 2015

59. Schuts, M.: Industrial experiences in applying domain specific languages for system
evolution. Ph.D. thesis, Radboud University Nijmegen, September 2017

60. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 20

61. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams,
D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

62. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25423-4 5

63. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

64. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communica-
tion via active automata learning. In: Proceedings ICST 2017, pp. 276–287. IEEE
Computer Society (2017)

65. Tretmans, J.: Test generation with inputs, outputs, and repetitive quiescence.
Softw. Concepts Tools 17, 103–120 (1996)

66. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

67. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

https://doi.org/10.1007/978-3-642-19835-9_18
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

416 D. Neider et al.

68. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
69. Volpato, M., Tretmans, J.: Towards quality of model-based testing in the ioco

framework. In: Proceedings JAMAICA 2013, pp. 41–46. ACM, New York (2013)
70. Walkinshaw, N., Bogdanov, K., Damas, C., Lambeau, B., Dupont, P.: A framework

for the competitive evaluation of model inference techniques. In: Proceedings MIIT
2010, pp. 1–9. ACM (2010)

71. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

Synchronous or Alternating?

LTL Black-Box Checking of Mealy Machines
by Combining the LearnLib and LTSmin

Jaco van de Pol(B) and Jeroen Meijer

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{j.c.vandepol,j.j.g.meijer}@utwente.nl

Abstract. Mealy machines transduce inputs to outputs, based on finite
memory. They are often used to model reactive systems. The require-
ments on their behaviour can be specified by formulas in Linear-time
Temporal Logic. We will study two interpretations of LTL for Mealy
machines: the synchronous semantics, where inputs and outputs occur
simultaneously; and the alternating semantics, where inputs and outputs
strictly alternate. We define and study Mealy-robust LTL properties,
which are insensitive to which of these interpretations is chosen.

The motivating application is in the context of black-box checking:
Given the interface to some reactive system, one would like to test that a
particular LTL property holds. To this end, we combine active automata
learning with model checking into sound black-box checking. Here the
LTL properties are already checked on intermediate hypotheses, in order
to speed up the learner. Finally, we perform an experiment on the Mealy
machines provided by the RERS challenge (Rigorous Examination of
Reactive Systems). We investigate how many LTL properties from the
RERS challenges in 2016 and 2017 are actually robust.

1 Introduction

The problem of black-box checking is to verify (or test) that a reactive system
satisfies a number of properties. Here the system is provided as black-box, acces-
sible through its input/output interface only. Assuming that the reactive system
has a finite number of states, it can be modeled by a Mealy machine [10]. The
properties on the system’s behaviour can be specified in Linear-time Temporal
Logic (LTL [13]). A solution to the black-box checking problem can be obtained
by combining active automata learning [1,6,17] and model checking [2].

A realisation of the black-box checking approach is provided by inte-
grating LearnLib1 [7,15] with LTSmin2 [9]. The yearly RERS challenge3

(Rigorous Evaluation of Reactive Systems [5,8]) provides an excellent testbed

1 The LearnLib: https://learnlib.de.
2 LTSmin: ltsmin.utwente.nl and https://github.com/utwente-fmt/ltsmin.
3 RERS challenge: http://rers-challenge.org.

c© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 417–430, 2019.
https://doi.org/10.1007/978-3-030-22348-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22348-9_24&domain=pdf
http://orcid.org/0000-0003-4305-0625
http://orcid.org/0000-0002-1591-1195
https://learnlib.de
https://github.com/utwente-fmt/ltsmin
http://rers-challenge.org
https://doi.org/10.1007/978-3-030-22348-9_24

418 J. van de Pol and J. Meijer

for checking properties on reactive systems. The combination of LearnLib +
LTSmin has been applied on the problems in the RERS Challenge 2017, as
reported in [11].

1.1 Motivating Context: Sound Black-Box Checking

The sound approach to black-box checking is illustrated in Fig. 1. A naive app-
roach to black-box checking would be to first learn a Mealy machine that mod-
els the System Under Learning (SUL) and to subsequently check the properties
on that automaton. Learning proceeds according to the Angluin-style active
automata-learning paradigm [1,6], adapted to Mealy machines in [17]. Here
the learner proceeds by performing I/O sequences (membership queries ∈) on
the system. When it believes that it has complete information, it generates a
hypothesis automaton (H). This hypothesis is validated on the system using a

∈ SUL

w ∈ L?

yes/no

until complete

|= MC

H

H |= φ?

yes/no:ce

∈ω SULω

no:ce

ce ∈ Lω?

yes/dk/no:w

no:w

= test

dk:H

no:w

yes

L(H) = L?

yes/no:w

Violation!

yes

Fig. 1. Sound black-box checking procedure, adapted and simplified from [11]

Synchronous or Alternating? 419

model-based tester (=); this is an expensive step, involving many queries. This
procedure is iterated as long as testing reveals a counterexample (w). The final
hypothesis can be used to check the LTL properties, for instance using the Nested
Depth-First Search algorithm [3].

A smarter approach to black-box checking [12] applies the model checker
(MC) already on the intermediate hypotheses (�). If the model checker provides
a counter-example (ce) to the property, this is tested on the reactive system. If
the counter-example can be simulated on the system, we found a violation of the
property. If not, a prefix of the counter example (w) is provided to the learner,
saving one expensive test-procedure.

A complication is that the counter-example provided by the model checker is
an infinite path, presented by a lasso xyω. In principle, one can only check finite
unrollings xyn on the system. However, this yields an unsound method, unless
one knows an upperbound on the number of states of the reactive system.

A sound approach to black-box checking was proposed in [11]. We adapt
the check for infinite words (∈ω), by assuming that one can additionally save
states and check their equivalence. So we test the word and save intermediate
states x(s0)y(s1)y(s2), . . . , y(sn). As soon as we find that sk = sj for some
0 ≤ k < j ≤ n, we definitely know that xyω is a valid counterexample, and
report a violation. If the path cannot be continued, we have a found a finite
prefix w for the learner. Otherwise, we don’t know if xyω holds, and we proceed
to the tester.

The adapted procedure is sound, in the sense that it only reports true viola-
tions. However, it may miss some violations, so it is incomplete: First, the final
hypothesis may still not reflect all system behaviour. Second, the model checker
may have detected a lasso that could not be confirmed within the bound. Note
that the state recording facility could in principle be used for a full model check.

1.2 Problem Statement and Contribution

This paper, dedicated to Bernhard Steffen on the occasion of his 60th birthday, is
devoted to taking a closer look at the precise LTL semantics for Mealy machines.
In particular, we study the difference between the synchronous semantics and the
alternating semantics. The RERS organisers clearly stipulate that LTL proper-
ties are interpreted in the alternating semantics, i.e. interpreted over alternating
traces of the form i, o, i, o, . . . However, in the first RERS attempt in 2012 [14],
LTSmin used the synchronous semantics, interpreted over synchronous traces of
the form i/o, i/o, . . .

Surprisingly, this discrepancy leads to only very few wrong answers. When
applying sound black-box learning (Fig. 1) to the first 4 problems of the RERS
2017 challenge, with 100 LTL formulas each, we detect the following number of
LTL violations for the alternating, resp. synchronous semantics. So there is only
a 0.5% deviation! We will show a deviating LTL property from RERS 2017 in
Example 4.

We will try to explain this, by studying the class of Mealy-robust LTL proper-
ties, which are insensitive to choosing the synchronous or alternating LTL seman-

420 J. van de Pol and J. Meijer

Semantics Problem 1 Problem 2 Problem 3 Problem 4

Alternating 52 46 54 69

Synchronous 50 46 54 69

tics. In Sect. 2, we formally define (partial) Mealy machines, the synchronous
and alternating semantics of LTL properties, and the set of Mealy-robust LTL
properties. Section 3 studies Robust LTL in more detail; we restrict ourselves
to properties in LTL\X. To this end, we need to introduce a number of finer
distinctions (α-, α1-, σ and σ1-robustness). A Prolog program summarises and
automates the derivation rules for robustness. Its correctness depends on the
lemmas proved in Appendix A. Section 4 performs a small experiment on the
problems of the RERS challenge, checking how many of them we can detect to
be robust. Finally, we conclude with some problems left for future research.

2 Preliminaries: LTL Interpretations for Mealy Machines

s0

s2

s1

a/x

a/y
b/z b/z

b/z

Fig. 2. Mealy machine M with
I = {a, b} and O = {x, y, z}.

A (partial) Mealy machine M = (S, s0, I, O, δ)
consists of a finite set of states S, initial state s0 ∈
S, nonempty finite disjoint sets of input symbols
(I) and output symbols (O), and a partial transi-
tion function δ : S×I ↪→ O×S. An example is pro-
vided in Fig. 2. We will distinguish its synchronous
traces and alternating traces. In a synchronous
trace, inputs and outputs happen simultaneously,
for example a/x, a/y, a/x, a/y, b/z, b/z, In an
alternating trace, inputs and outputs happen in
strict alternation, as in a, x, a, y, a, x, a, y,

An (infinite) sequence over A is a function
N → A. Given a sequence π, we write πi for the
i-th element (so π = π0, π1, . . .) By πi we denote the suffix πi, πi+1, πi+2,

We formally define the set of synchronous traces Trs = N → I × O over I
and O, and the set of alternating traces Tra = π : N → I ∪ O, with πi ∈ I ⇐⇒
πi+1 ∈ O. The latter can be split in Trai (starting with an input: π0 ∈ I)
and Trao (starting with an output: π0 ∈ O). With Trs(M) (resp. Tra(M)) we
denote the synchronous (resp. alternating) traces that start in s0 and follow
transitions in M . Note that Tra(M) ⊆ Trai . For π ∈ Trai , we write σ(π) for the
corresponding synchronous trace. For π ∈ Trs , α(π) denotes the corresponding
alternating trace. Note that σ = α−1 forms a bijection between Trs and Trai .
However, traces in Trao still arise as suffixes.

Example 1. Let M be the Mealy machine in Fig. 2. Define the synchronous trace
π := a/x, a/y, a/x, a/y, . . . and the alternating trace ρ := a, x, a, y, b, z, b, z, . . .
Indeed, π ∈ Trs(M) and ρ ∈ Tra(M). In particular, ρ ∈ Trai and ρ1 ∈ Trao .
Finally, α(π) = a, x, a, y, a, x, a, y, . . ., while σ(ρ) = a/x, a/y, b/z, b/z, . . . How-
ever, σ(ρ1) is not defined.

Synchronous or Alternating? 421

The distinction between synchronous and alternating traces may seem a small
technical detail, but it does have a crucial impact on the corresponding LTL
semantics. Let us first define action-based LTL formulas with atomic properties
in I ∪ O, using the following grammar (U is until; X is next):

Φ :: = I | O | ¬Φ | Φ ∧ Φ | Φ U Φ | XΦ

We permit the usual abbreviations φ ∨ ψ := ¬(¬φ ∧ ¬ψ), Fφ := true U φ
(future), Gφ := ¬F¬φ (globally), φRψ := ¬(¬φU¬ψ) (release), and φWUψ :=
(φ U ψ) ∨ (Gφ) (weak until). We also introduce conveniently defined atomic
properties: false := i0∧¬i0 (with i0 ∈ I arbitrary), true := ¬false, input :=

∨
i∈I i,

output :=
∨

o∈O o, which hold for none, all, all input, and all output actions,
respectively.

Next, we define the LTL semantics over both synchronous and alternating
traces, i.e. � ⊆ (Trs ∪ Tra) × Φ, by induction over φ:

π � i ⇐⇒ π0 ∈ {i/o, i}, for some o ∈ O

π � o ⇐⇒ π0 ∈ {i/o, o}, for some i ∈ I

π � ¬φ ⇐⇒ π �� φ

π � φ ∧ ψ ⇐⇒ π � φ and π � ψ

π � φ U ψ ⇐⇒ ∃j : (∀k < j : πk � φ) and πj � ψ

π � Xφ ⇐⇒ π1 � φ

We are now ready to define the synchronous and alternating semantics of
LTL. Note that the following definition discards finite executions of the Mealy
machine, even when they lead to a deadlock. The motivation for handling partial
Mealy machines, but ignoring finite traces, is simply to abide to the rules of the
RERS challenge.

Definition 2 (LTL semantics). For a Mealy machine M and LTL formula φ,
we define:

– M �s φ if and only if for all synchronous traces π ∈ Trs(M), π � φ
– M �a φ if and only if for all alternating traces π ∈ Tra(M), π � φ

The alternating semantics is the official LTL semantics of the RERS chal-
lenge. Indeed, it supports the intuition that the current state and the input
determine, so should precede, the next state and the output. However, when
mapping this to a standard LTS for model checking, one typically introduces
an “intermediate state” between an input and its subsequent output, which
seems unnatural and superfluous. This would lead to |S| · |I| extra states, which
makes model checking less efficient. The synchronous semantics avoids introduc-
ing intermediate states, so it would lead to a more efficient model checking pro-
cedure. This is in particular useful when applying brute-force white-box model
checking to the RERS problems, for which LTSmin has traversed state spaces
of over 5.109 states and 5.1010 transitions [14], but it is also convenient in the
black-box checking scenario.

422 J. van de Pol and J. Meijer

So the main question is: when is using the synchronous semantics justified?
We will call LTL properties that are insensitive to choosing the synchronous or
alternating semantics Mealy-robust.

Definition 3 (Mealy-Robust LTL properties). We call LTL formula φ
Mealy-robust if for all Mealy machines M , it holds that M �s φ ⇐⇒ M �a φ.

Example 4. Property 2 of Problem 1 of the RERS challenge 2017 is:
(false R (! ((oY & ! iC) & (true U iC)) | (! oU U (iB | iC))))

In standard notation: G(¬oY ∨ iC ∨ (G¬iC) ∨ (¬oU U (iB ∨ iC))). This happens
to be one of the examples from the Introduction (Sect. 1) where the alternating
and synchronous semantics differ, so it is not robust.

Example 6 will introduce some simpler robust and non-robust formulas.

3 Mealy-Robust LTL Properties

We will now investigate the following question: Which LTL formulas φ are Mealy-
robust? We start by defining a number of fine-grained robustness notions on
paths. Subsequently, we will prove preservation of robustness by LTL operators.
This will yield a procedure to identify a class of robust LTL properties.

3.1 Robustness Notions

Note that to prove robustness of φ, we can focus on the robustness for individual
paths. We need preservation in two directions, leading to the notions of α- and
σ-robustness. However, for the alternating semantics we also need to consider
the situation between an input and output action. Hence the notions of α1- and
σ1-robustness, which consider traces that start with an output action.

Definition 5 (Robustness w.r.t. paths).

– φ is α-robust if ∀π ∈ Trs : π � φ =⇒ α(π) � φ
– φ is σ-robust if ∀π ∈ Trai : π � φ =⇒ σ(π) � φ
– φ is α1-robust if ∀π ∈ Trs : π � φ =⇒ α(π)1 � φ
– φ is σ1-robust if ∀π ∈ Trai : π1 � φ =⇒ σ(π) � φ
– φ is input-universal (ι) if ∀π ∈ Trai : π � φ

The last notion states that a property holds universally on traces starting
with input (for instance: ¬o1 is input-universal). This will sometimes be needed
to “fill the gap” between two outputs.

Example 6. Recall the traces π ∈ Trs(M) and α(π) ∈ Trai(M) of Example 1:
π = a/x, a/y, a/x, a/y, . . . and α(π) = a, x, a, y, a, x, a, y, Let φ := G(x U y).
Clearly, π � φ, but α(π) �� φ, since in the first alternating action “a”, neither x
nor y holds. So φ is not α-robust.

On the other hand, let ψ = G(¬z U y). Then both π � ψ and α(π) � ψ.
Indeed, it will turn out that ψ is robust.

Synchronous or Alternating? 423

3.2 Robustness Preservation by LTL\X Operators

Fig. 3. α/α1/σ/σ1-robustness,
input-universality and Mealy-
robustness for atomic formulas.

We will now first check how robustness is pre-
served by the Boolean connectives conjunction
and disjunction, and establish a duality for nega-
tion. Subsequently, we will discuss robustness of
the atomic properties (cf. Fig. 3). Finally, we will
investigate the robustness properties of the until-
operator. Robustness of the neXt-operator is left
for future research.

All lemmas in this section are summarised
in Fig. 4, in the form of a Prolog program. This
program can actually be run. For a formula P,
if robust(P) succeeds, then robustness is guar-
anteed. However, if the query fails, the property
may still be robust. We do not claim that our
derivation rules are complete. The soundness of all rules is proved in detail in
Appendix A.

First, we establish that α-robustness and σ-robustness are dual, and so are
α1- and σ1-robustness. Next, all notions of robustness are preserved by ∧ and
∨. Also, we claim compositionality of input-universality for ∧ and ∨.

Lemma 7 (Boolean connectives).

1. φ is α-robust, if and only if ¬φ is σ-robust.
2. φ is α1-robust, if and only if ¬φ is σ1-robust.
3. If φ, ψ are α/σ/α1/σ1-robust, then so are φ ∧ ψ and φ ∨ ψ.
4. If φ and ψ is input-universal, then so is φ ∧ ψ. If either of φ or ψ is input-

universal, then also φ ∨ ψ is.

Next, we check the robustness of atomic properties and their negations. These
results are also tabulated in Fig. 3. We also show whether the atomic properties
are input-universal, and Mealy-robust.

Lemma 8 (Robustness of atomic properties).

1. Let i ∈ I. Then i and ¬i are α-robust and σ-robust.
2. Let o ∈ O. Then o and ¬o are α1-robust and σ1-robust.
3. Let i ∈ I. Then i is σ1-robust and ¬i is α1-robust.
4. Let o ∈ O. Then o is σ-robust and ¬o is α-robust.
5. Let o ∈ O. Then ¬o is input-universal.
6. Let i ∈ I. Then i and ¬i are Mealy-robust.

Obviously, o is not α-robust, since it holds in i/o, π but not in i, o, α(π).
Similarly, i is not α1-robust, since it holds in i/o, π, but not in o, α(π).

424 J. van de Pol and J. Meijer

Fig. 4. Prolog program for deriving robustness of LTL properties. This program can
be viewed as a summary of Lemmas 7–11.

Fig. 5. Illustration of subcases of Lemmas 9 and 10

Synchronous or Alternating? 425

We now get to the main lemmas, first providing the criteria for the
α-robustness of until-formulas (cf. Fig. 5, left):

Lemma 9 (α-Robustness of Until-formulas).

1. Let φ be α-robust and α1-robust; let ψ be α-robust. Then φ U ψ is α-robust.
2. Let φ be α1-robust and input-universal; let ψ be α1-robust. Then φ U ψ is

α-robust and α1-robust.

We will now apply Lemmas 8 and 9 to derive α-robustness of basic Until
formulas (see also Fig. 6). From Lemma 8 we obtain that ¬i and ¬o are α- and
α1-robust. Also, we obtain that i, ¬i and ¬o are α-robust (∀i ∈ I, o ∈ O). Hence,
by Lemma 9, Case 1, the first six shapes below are α-robust. Furthermore, by
Lemma 8, ¬i, o and ¬o are α1-robust. Note that ¬o is input-universal, since
iπ � ¬o (∀o ∈ O, i ∈ I, π ∈ Trao). Hence by Lemma 9, Case 2, we obtain that
last three shapes below are α-robust. In total this gives 7 α-robust shapes. Only
the last three are guaranteed to be α1-robust.

¬i1 U i2 | ¬i1 U ¬i2 | ¬i1 U ¬o2 | ¬o1 U i2 | ¬o1 U ¬i2 | ¬o1 U ¬o2 | ¬o1 U o2

Recall that this means that whenever a synchronous trace π satisfies one of
those formulas, the corresponding alternating trace α(π) satisfies it as well. The
last three are even satisfied by α(π)1.

We continue with σ-robustness of Until-formulas (cf. Fig. 5, right).

Lemma 10. σ-Robustness of Until-formulas

1. Let φ be σ-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is σ-
robust.

2. Let φ be σ1-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust and σ1-robust.

Note that if φ is just σ-robust and ψ is both σ- and σ1-robust, it is not
necessary that φ U ψ is σ1-robust. For instance, take π = o1, i2, o2, . . . ∈ Trao .
Then π � ¬i1 U o1. However, we don’t have i1/o1, i2/o2, . . . � ¬i1 U o1.

Since i, ¬i, o and ¬o are all σ- or σ1-robust, and since only i and o are
σ1-robust, we obtain the following 8 σ-robust basic Until formula shapes. Since
¬i is not σ1-robust, only the last six are also σ1-robust.

¬i1 U i2 | ¬i1 U o2 | i1 U i2 | i1 U o2 | o1 U i2 | o1 U o2 | ¬o1 U i2 | ¬o1 U o2

Lemma 11 (Input-universal Until). If ψ is input-universal, then φ U ψ is
input-universal.

Theorem 12 (Correctness). If the Prolog program in Fig. 4 derives the goal
robust(φ), then φ is Mealy-robust.

426 J. van de Pol and J. Meijer

Fig. 6. α/α1/σ/σ1-robustness
and input-universality for sim-
ple until-properties. The last
column concludes whether the
property is robust for all Mealy
machines.

Figure 6 indicates the robustness of basic
until formulas without nesting. Here ✓ means
that robustness can be proved using previous
theorems. ✗ only means that the property can-
not be proved, but these might still hold for spe-
cial cases. The last row deserves some attention:
If o1 = o2, then ¬o1 U ¬o2 = ¬o1, which is
really not σ-robust. However, if o1 �= o2, then
¬o1 U ¬o2 = true, since the first action can-
not be both o1 and o2, so this is σ-robust. Also,
∀π ∈ Trai : π � φU¬o2. So φU¬o2 is trivially α-
robust. Finally, note that inputUoutput is input-
universal, but not recognized by our derivation
rules.

All theorems in this section are proved in
Appendix A. The theorems in this section can be
turned into derivation rules, as presented in the
Prolog program in Fig. 4. Given an LTL property
P , it tries to derive robust(P) by applying the
rules, proving α/σ-robustness where necessary.
However, this program may fail on some robust
formulas since we don’t guarantee completeness.
Also, it cannot handle formulas that contain the
neXt-operator.

4 Experiment: Robustness of RERS Constraints

Fig. 7. Experiments on the LTL
properties from RERS 2016 and
RERS 2017.

We applied our Prolog program to the con-
straints of the sequential LTL properties from
the RERS 2016 and 2017 problems [4,8] (after
a syntactic transformation). Both years fea-
tured 9 problems, with 100 LTL properties
each. We first filtered out the properties that
contain the X-operator. For each property P ,
we ran the query robust(P) in Prolog. The
results are displayed in Fig. 7. Here #\X shows
the number of X-free formulas; #R shows the
number of LTL formulas proven robust.

Apparently, 30% of the formulas was
X-free. From these formulas 38% could be
established robust. We conclude that this
result only partly explains why applying an
“alternating model checker” to the “syn-
chronous RERS problems” resulted in a couple
of errors only. Either, some formulas are robust but are not recognized by our

Synchronous or Alternating? 427

method, or they are not robust, but the Mealy machines corresponding to these
problems don’t distinguish the two interpretations.

5 Conclusion

We introduced robustness of LTL properties, which indicates that they are insen-
sitive to their interpretation over synchronous or alternating traces. We proved
a number of derivation rules for robust properties, implemented them in Prolog,
and tested them on the RERS 2016 and 2017 challenges. We found that 38% of
the X-free LTL properties could be proven robust.

Of course, the model checker should be correct in all cases. We have solved
this in RERS 2017 [11] by transforming the Mealy machine M to an incomplete
DFA M ′, introducing an extra state for each edge, in between an input and the
subsequent output. On M ′ we can apply the standard model checking procedure.
For the transformed M ′, we have: M �a φ ⇐⇒ M ′ � φ. An alternative
procedure could be to transform formula φ instead, such that M �a φ ⇐⇒
M �s φ′. We leave the study of the feasibility of this approach for future research.

Future work also includes a complete (precise) characterisation and deci-
sion procedure for robust properties. This would also require a study of the
neXt-operator. Maybe previous work on stutter-invariant LTL properties can be
useful [16]. Another line would be to extend to input-output systems without
strict alternation, like I/O-automata. Finally, it would be interesting to consider
the robustness of model checking under general action refinement.

Acknowledgement. The authors are supported by the 3TU.BSR project and the
TTW project SUMBAT, grant 13859. We thank Mirja van de Pol for carefully reading
a preliminary version of this document. We also profited from the numerous suggestions
by the anonymous reviewers. Finally, we thank Bernhard Steffen and his team, for their
wonderful work in designing, maintaining and sharing the LearnLib, and organising the
RERS challenge series.

A Full Soundness Proofs for Robustness Derivation Rules

Lemma 7 (Boolean connectives)

1. φ is α-robust, if and only if ¬φ is σ-robust.
2. φ is α1-robust, if and only if ¬φ is σ1-robust.
3. If φ, ψ are α/σ/α1/σ1-robust, then so are φ ∧ ψ and φ ∨ ψ.
4. If φ and ψ is input-universal, then so is φ ∧ ψ. If either of φ or ψ is input-

universal, then also φ ∨ ψ is.

Proof. 1. ⇒. Let φ be α-robust. Let π ∈ Trai and assume π � ¬φ, so π �� φ.
Note that π = α(σ(π)). By α-robustness and contraposition, σ(π) �� φ, so
σ(π) � ¬φ. Hence ¬φ is σ-robust.
⇐: Similar, by noting that for π ∈ Trs , π = σ(α(π)).

428 J. van de Pol and J. Meijer

2. ⇒: Let φ be α1-robust. Let π ∈ Trai . Assume π1 � ¬φ, so π1 �� φ. Note that
π1 = α(σ(π))1 By α1-robustness and contraposition, σ(π) �� φ, so σ(π) � ¬φ.
Hence ¬φ is σ1-robust.
⇐: Similar, by noting that for π ∈ Trs : π = σ(α(π)).

3. Holds obviously for φ∧ψ by inspecting the LTL semantics. It follows for φ∨ψ
by dualities.

4. Trivial.

Lemma 8 (Robustness of atomic properties)

1. Let i ∈ I. Then i and ¬i are α-robust and σ-robust.
2. Let o ∈ O. Then o and ¬o are α1-robust and σ1-robust.
3. Let i ∈ I. Then i is σ1-robust and ¬i is α1-robust.
4. Let o ∈ O. Then o is σ-robust and ¬o is α-robust.
5. Let o ∈ O. Then ¬o is input-universal.
6. Let i ∈ I. Then i and ¬i are Mealy-robust.

Proof. 1. Let i ∈ I. Let π = i0/o0, π
′. Note that α(π) = i0, o0, α(π′). Then

π � i ⇐⇒ i = i0 ⇐⇒ α(π) � i.
2. Let o ∈ O. Let π = i0/o0, π

′. Note that α(π)1 = o0, α(π′). Then π � o ⇐⇒
o = o0 ⇐⇒ α(π)1 � o.

3. Let i ∈ I and π ∈ Trao . Then π = o, π′, so π �� i. So i is trivially σ1-robust,
and ¬i is α1-robust by Lemma 7.

4. Let o ∈ O and π ∈ Trai . Assume π = i0, o0, π
′. Then π �� o (since I and O

are disjoint). So o is trivially σ-robust. Hence ¬o is α-robust by Lemma 7.
5. Any trace in Trai is of the form i, o, π′, so π � ¬o.
6. These formulas are both α- and σ-robust, so they agree on the synchronous

and alternating traces from any Mealy machine.

Lemma 9 (α-Robustness of Until-formulas)

1. Let φ be α-robust and α1-robust; let ψ be α-robust. Then φU ψ is α-robust.
2. Let φ be α1-robust and input-universal; let ψ be α1-robust. Then φ U ψ is

α-robust and α1-robust.

Proof. 1. (cf. case 1 in Fig. 5, left) Let φ be α- and α1-robust and let ψ be α-
robust. Let π ∈ Trs ; assume π � φ U ψ. Then ∃j : (∀k < j : πk � φ) ∧ πj � ψ.
Note that ∀k : α(πk) = α(π)2k. By α-robustness of ψ, α(π)2j � ψ. By α- and
α1-robustness of φ, for each k < j, α(π)2k � φ and α(π)2k+1 � φ. Hence, for
j′ = 2j, we obtain: ∃j′ : (∀k < j′ : α(π)k � φ) ∧ α(π)j′ � ψ, so α(π) � φ U ψ.

2. (cf. case 2 in Fig. 5, left) The proof is similar, but now for j′ = 2j + 1 we
obtain α(π)j′ � ψ. For k′ = 2k < j′, we derive φ because it is input-universal.
For k′ = 2k+1 < j′, we derive φ because it is α1-robust. Hence, α(π) � φUψ.
In this case, α1-robustness follows as well (even if j = 0).

Lemma 10 (σ-Robustness of Until-formulas)

1. Let φ be σ-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust.

Synchronous or Alternating? 429

2. Let φ be σ1-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust and σ1-robust.

Proof. We first prove the conclusions on σ-robustness, then σ1-robustness.

– σ-robustness: Let φ be σ- or σ1-robust; let ψ be σ- and σ1-robust. Let π ∈ Trai
be given, with π � φ U ψ. Then ∃j : (∀k < j : πk � φ) ∧ πj � ψ. Note that
σ(π)k = σ(π2k). If j = 2j′ (case 1 in Fig. 5, right), then σ(π)j′ � ψ because ψ
is σ-robust. If j = 2j′ + 1 (case 2 in Fig. 5, right), then σ(π)j′ � ψ because ψ
is σ1-robust. In both cases, for k′ < j′, we obtain σ(π)k′ � φ either from π2k′

(if φ is σ-robust), or from π2k′+1 (if φ is σ1-robust). So indeed σ(π) � φ U ψ.
– σ1-robustness: Similar, but we start with π ∈ Trao with π � φ U ψ. We now

need σ1-robustness of φ to infer φ at the first state of σ(π).

Lemma 11. If ψ is input-universal, then φ U ψ is input-universal.

Proof. Trivial: If π � ψ then π � φ U ψ (at π0).

Theorem 12 (Correctness). If the Prolog program in Fig. 4 derives the goal
robust(φ), then φ is Mealy-robust.

Proof. Note that α- and σ-robustness imply robustness. All other rules of the
program correspond to previous lemmas.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

3. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Meth. Syst. Des. 1(2/3),
275–288 (1992)

4. Geske, M., Jasper, M., Steffen, B., Howar, F., Schordan, M., van de Pol, J.: RERS
2016: parallel and sequential benchmarks with focus on LTL verification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 787–803. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 59

5. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Pasareanu, C.S.: Rig-
orous examination of reactive systems - the RERS challenges 2012 and 2013. STTT
16(5), 457–464 (2014)

6. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

7. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

8. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In:
24th ACM SIGSOFT IS SPIN on Model Checking of Software (SPIN 2017), pp.
11–20 (2017)

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-47169-3_59
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32

430 J. van de Pol and J. Meijer

9. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

10. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34(5), 1045–1079 (1955)

11. Meijer, J., van de Pol, J.: Sound black-box checking in the LearnLib. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 349–366.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 24

12. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang.
Comb. 7(2), 225–246 (2002)

13. Pnueli, A.: The temporal logic of programs. In: 18th AS on Foundations of Com-
puter Science (FOCS 1977), pp. 46–57 (1977)

14. van de Pol, J., Ruys, T.C., te Brinke, S.: Thoughtful brute-force attack of the
RERS 2012 and 2013 challenges. STTT 16(5), 481–491 (2014)

15. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. STTT 11(5), 393–407 (2009)

16. Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model
checking of stutter-invariant properties using generalized testing automata. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 440–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 38

17. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-77935-5_24
https://doi.org/10.1007/978-3-642-54862-8_38
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8

Author Index

Aguado, Joaquín 45

Bessai, Jan 356
Bodin, Bruno 45
Bøgholm, Thomas 27

Caucal, Didier 169

Dezani-Ciancaglini, Mariangiola 68
Düdder, Boris 356

Fantechi, Alessandro 110
Farjudian, Amin 36

Garavel, Hubert 186
Gareis, Johannes 151
Giannakopoulou, Dimitra 249
Giannini, Paola 68
Given-Wilson, Thomas 326
Gnesi, Stefania 110
Gorlatch, Sergei 208
Graf, Susanne 3

Havelund, Klaus 218
He, Yuning 249
Hinchey, Mike 268
Howar, Falk 310
Hungar, Hardi 17
Huth, Michael 297

Jabbour, Fadi 310

Kuppens, Harco 390

Larsen, Kim G. 3, 27
Lechner, Ulrike 235
Legay, Axel 326
Lüttgen, Gerald 151

Margaria, Tiziana 3, 129
Mateescu, Radu 186
Mazzanti, Franco 110
Meijer, Jeroen 417
Mendler, Michael 45
Moggi, Eugenio 36
Mues, Malte 310
Muñiz, Marco 27

Neider, Daniel 390
Nielson, Flemming 89
Nielson, Hanne Riis 89

Peled, Doron 218

Rehof, Jakob 356
Reisig, Wolfgang 372
Rispal, Chloé 169
Roop, Partha 45

Schinko, Ayleen 151
Schumann, Johann 249
Smetsers, Rick 390

Taha, Walid 36
ter Beek, Maurice H. 110
Thomsen, Bent 27
Thomsen, Lone Leth 27

Vaandrager, Frits 390
van de Pol, Jaco 417
Vassev, Emil 268
Venneri, Betti 68
Vogler, Walter 151
von Hanxleden, Reinhard 45

Zhang, Fuyuan 89

	Foreword
	Personal Statement
	A Tribute to Bernhard Steffen
	Contents
	Introduction
	Models, Mindsets, Meta: The What, the How, and the Why Not?
	1 The Passion
	2 The Impact
	3 The Vision
	4 The Contributions in this Volume
	References

	Kiel 1983–1987
	Applying Decision Graphs in the Context of Automated Driving
	Abstract
	1 Introduction
	2 A Probabilistic Consistency Measure for Object Classifications
	2.1 Markov Logic Networks
	2.2 Defining Consistency via Probabilistic Knowledge Bases

	3 Decision Diagrams for Fast Evaluation
	3.1 Algebraic Decision Diagrams
	3.2 Applying ADDs

	4 Conclusion
	References

	Edinburgh 1987–1989
	Analyzing Spreadsheets for Parallel Execution via Model Checking
	1 Introduction
	2 Spreadsheets and Dataflow
	3 Generating Timed Automata Models from Spreadsheets
	4 The Dependency Scheduler
	5 Conclusions
	References

	System Analysis and Robustness
	1 Introduction
	2 Imprecision in Metric Spaces
	3 Analyses and Robustness
	4 Best Robust Approximations
	5 Examples
	References

	Logic Meets Algebra: Compositional Timing Analysis for Synchronous Reactive Multithreading
	1 Introduction
	2 Esterel-Style Multi-threading and WCRT Analysis
	3 Max-Plus Algebra and Skolem-Gödel-Dummet Logic
	4 Max-plus Formal Power Series
	5 Equational Specification of Synchronous Control-Flow
	5.1 WCRT Component Model
	5.2 Module Abstraction
	5.3 Module Composition

	6 Related Work and Conclusions
	References

	Intersection Types in Java: Back to the Future
	1 Introduction
	2 Syntax
	3 Operational Semantics
	4 Typing Rules
	5 Subject Reduction and Progress
	6 Type Inference
	7 Conclusion and Related Works
	References

	Aarhus 1989–1990
	Multi-valued Logic for Static Analysis and Model Checking
	1 Introduction
	2 Multi-valued Logic
	3 Alternation-Free Least Fixed Point Logic
	4 Model Checking as Static Analysis
	5 Access Control
	6 Conclusion
	A Proofs of Key Facts
	B Least Fixed Point CTL Suffices for CTL
	References

	States and Events in KandISTI
	1 Introduction
	2 Modelling Structures for Reasoning on both State-Based and Event-Based Properties
	3 Temporal Logics for Reasoning on both State-Based and Event-Based Properties
	4 Exploiting States and Events in KandISTI
	4.1 KandISTI
	4.2 Modelling with KandISTI
	4.3 Verification with KandISTI
	4.4 Variable Binding
	4.5 MTS Model Checking

	5 Conclusion
	References

	Making Sense of Complex Applications: Constructive Design, Features, and Questions
	1 The Online Conference Service (OCS) over the Years
	2 Service and Feature-Based Design of the OCS Software Product Line
	2.1 Thinking in Units of Functionality
	2.2 Feature Model in the OCS

	3 Feature-Oriented Service Description: Beyond IN
	4 The User-Centric Model in the New OCS
	4.1 Intent-Oriented Decomposition: Declarative Meets Prescriptive
	4.2 Learning and Validating Emerging Global Behaviour

	5 The New Meta-Modelling Approach
	5.1 Evolvable Data Schema in DyWA
	5.2 Evolvable Web Applications in DIME

	6 Conclusions and Perspectives
	References

	Aachen 1990–1993
	Interface Automata for Shared Memory
	1 Introduction
	2 The IAM Setting
	3 Parallel Composition
	4 Embedding IAM into IA
	5 Ground Semantics
	6 Conclusions
	References

	Passau 1993–1997
	Boolean Algebras by Length Recognizability
	1 Introduction
	2 Word Automata
	3 Recognizability
	4 Recognizability by Length
	5 Synchronization by Length
	6 Superposition by Length
	7 Boolean Algebras of Context-Free Languages
	8 Boolean Algebras of Context-Sensitive Languages
	References

	Reflections on Bernhard Steffen's Physics of Software Tools
	1 Introduction
	2 Current status and difficulties
	3 Analysis of human factors
	4 Actions and remedies
	4.1 Individual actions
	4.2 Collective actions

	5 Conclusion
	References

	Toward Structured Parallel Programming: Send-Receive Considered Harmful
	1 Introduction
	2 The Challenge of Simplicity
	3 The Challenge of Programmability
	4 The Challenge of Expressiveness
	5 The Challenge of Performance
	6 The Challenge of Predictability
	7 Conclusion
	References

	Refining the Safety–Liveness Classification of Temporal Properties According to Monitorability
	1 Introduction
	2 Preliminaries
	2.1 Runtime Verification
	2.2 Linear Temporal Logic

	3 Characterizing Temporal Properties
	4 Monitorability
	4.1 Defining Monitorability
	4.2 Runtime Verification Algorithms for Monitorability
	4.3 Refining Monitorability

	5 Conclusion
	References

	Future Security: Processes or Properties?—Research Directions in Cybersecurity
	Abstract
	1 Introduction and Motivation
	2 Risk Perception and Reaction - the Human Factor
	3 Security and Processes – the Case Study Series Case Kritis Revisited
	4 Towards Future Research Directions
	5 A Discussion on Future Security
	Acknowledgements
	References

	Dortmund 1997 – Today
	Statistical Prediction of Failures in Aircraft Collision Avoidance Systems
	1 Introduction
	2 Related Work
	3 The ACAS X System
	4 Prediction of NMAC Events
	4.1 The Learning Model
	4.2 Model Selection and Dimension Reduction
	4.3 Experiments and Results

	5 Timeseries Safety Boundary Learning and Characterization
	5.1 Learning
	5.2 Experiments and Results

	6 Conclusions
	References

	The ASSL Approach to Formal Specification of Self-managing Systems
	Abstract
	1 Introduction
	2 Formalism for Autonomic Systems
	2.1 Formal Approaches to AC
	2.2 The ASSL Formalism

	3 ASSL Specification Model
	3.1 ASSL Tiers

	4 ASSL Notation and Semantics
	4.1 ASSL Operational Semantics
	4.2 Operational Evaluation of ASSL Actions
	4.3 Operational Evaluation of ASSL Policies

	5 Case Study - ASSL Specifications for NASA ANTS
	5.1 Nasa Ants
	5.2 Specifying ANTS with ASSL
	5.3 Self-configuring
	5.4 Self-healing

	6 Formal Verification with ASSL
	6.1 Consistency Checking
	6.2 Model Checking

	7 Summary
	Acknowledgement
	References

	The Merits of Compositional Abstraction: A Case Study in Propositional Logic
	1 Introduction
	2 A Lattice for Cartesian Abstraction
	3 Disjunctive Normal Forms of Implicants
	4 Compositional Computation of Prime Implicants
	5 Exploring This Algorithm with Students
	6 Conclusions
	A Exercises
	References

	JConstraints: A Library for Working with Logic Expressions in Java
	1 Introduction
	2 The JConstraints Library
	3 Feal: Multi-theory Solving for Floats
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	On the Expressiveness of Joining and Splitting
	1 Introduction
	2 Calculi
	3 Encodings
	4 Coordination and Synchronism
	5 Coordination and Arity
	6 Coordination and Communication Medium
	7 Coordination and Pattern-Matching
	8 Coordination and Other Features
	9 Within Coordination
	10 Conclusions
	References

	Fast Verified BCD Subtyping
	1 Introduction
	2 Related Work and Contribution
	3 Types and Subtyping
	4 Decision Procedure
	5 Quadratic Runtime
	6 Conclusion and Future Work
	References

	Composition: A Fresh Look at an Old Topic
	1 Introduction
	1.1 Composing Components
	1.2 The Quest for Associativity
	1.3 Property Preservation
	1.4 Interface Based Composition

	2 The General Framework
	2.1 Index Labeled Sets
	2.2 Interface Graphs
	2.3 Composing Interface Graphs

	3 Synchronous and Asynchronous Composition
	3.1 Interface Nets
	3.2 Dynamic Behavior
	3.3 Workflow Nets

	4 Interface-Workflow-Nets
	4.1 The Notion of Iw-Nets
	4.2 Parallel Composition of Iw-Nets
	4.3 Sequential Composition of Iw-Nets

	5 Related Work
	6 Conclusion
	References

	Benchmarks for Automata Learning and Conformance Testing
	1 Introduction
	2 State Machine Frameworks
	2.1 Labeled Transition Systems
	2.2 Finite Automata
	2.3 Moore Machines
	2.4 Mealy Machines
	2.5 Interface Automata
	2.6 Register Automata

	3 Benchmarks Derived from Applications
	3.1 Mealy Machines
	3.2 Register Automata

	4 Random Generation of Benchmarks
	4.1 Abbadingo Competition Random DFA Algorithm
	4.2 Stamina Competition Random DFA Algorithm
	4.3 Champarnaud and Paranthoën's Method
	4.4 Random DFAs and Moore Machines Dedicated to Bernhard Steffen's 60th Birthday

	5 Conclusions
	References

	Synchronous or Alternating?
	1 Introduction
	1.1 Motivating Context: Sound Black-Box Checking
	1.2 Problem Statement and Contribution

	2 Preliminaries: LTL Interpretations for Mealy Machines
	3 Mealy-Robust LTL Properties
	3.1 Robustness Notions
	3.2 Robustness Preservation by LTLX Operators

	4 Experiment: Robustness of RERS Constraints
	5 Conclusion
	A Full Soundness Proofs for Robustness Derivation Rules
	References

	Author Index

