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Foreword

This Festschrift is dedicated to Bernhard Steffen on the occasion of his 60th birthday.
The title, Models, Mindsets, Meta: The What, the How, and the Why Not?, reflects
some of the guiding principles of Bernhard’s functioning (in both his professional and
his personal life): Once you choose to do something, question everything and gener-
alize, especially when you need to specialize. In that case, generalize the meta-level.
His contagious research enthusiasm, witnessed and enjoyed by his many scientific
collaborators, is consistently driven by these principles. His scientific credentials are
impressive, he initiated a number of novel research directions as well as solving a
variety of technically challenging problems and transforming them into software
solutions. In addition, Bernhard created “from scratch” an impressive research group at
TU Dortmund.

The variety of his contributions is impressive. Always a neat theoretical framework,
always made with some application in mind, and most of the time implemented in
some software tool that turns out to be useful in practice. Often “in advance of his
time”: Dataflow analysis as model-checking as a proper semantic framework for pro-
gram analysis and a starting point for software model-checking, he established a
well-founded framework of service-oriented computing and verification before the term
existed, model-based program generation as principle, and model extraction for legacy
systems via automata learning: if you do not have a specification, then learn it.

Owing to the wide variety of topics in the contributions, reflecting Bernhard’s
versatile interests, the best way to organize the volume was along Bernhard’s journey,
by the locations where he met his colleagues, most of whom double as friends. As is
seen on the cover image, Bernhard’s journey is a may/must KTS, starting in Kiel but
open ended. The may part comprises the various diversions to Uppsala, Cantoira, and
ISoLLA as a META-topos for symposia style inserts (in a sabbatical, on holiday, or at
the ninth ISoLLA) that combine research components with community and quality of
life. The introductory paper by the editors, the 23 refereed full papers, and the two
personal contributions showcase the wide recognition of his passion for science and his
success in striving for excellence.

November 2018 Tiziana Margaria
Susanne Graf
Kim G. Larsen



Personal Statement

To my dear friend and colleague Bernhard Steffen on the occasion of his 60th birthday!

One of the first emails I received from Bernhard, dated November 29, 1989, started
as follows:

Congratulations!! Our paper was rejected! However, it was not rejected because it
is bad, no because it is too theoretical. So, I submitted it just to LICS (slightly
improved). If it gets accepted there, then I will be able to get over the rejection.

I hope Bernhard does not mind me sharing this with you, but it is really funny and
perfectly illustrates his wry sense of humor and his ability to find humor even in the
not-so-happy moments. And the good news is that our LICS submission did get
accepted and so began our journey into the world of reactive, generative, and stratified
models of probabilistic processes. It has been a great ride and I am very proud and
happy to call Bernhard my dear friend and collaborator.

Cheers to you Bernhard on this very happy occasion. You are a remarkable person
and scientist and I am so happy to have this opportunity to acknowledge you for all you
have done.

Yours,
Scott Smolka



A Tribute to Bernhard Steffen

David Schmidt

Computer Science Department, Kansas State University,
Manhattan, KS, USA
das@ksu.edu

It is a pleasure and an honor to congratulate Bernhard Steffen on the occasion of his
60th birthday. Bernhard’s contributions are significant and span multiple fields. I have
most appreciated Bernhard’s support and friendship over the 30 years that I have
known him.

I first met Bernhard in the late 1980s, when I was visiting Edinburgh University.
Bernhard had come to Edinburgh from Kiel, where he had just completed his PhD.
I remember Bernhard’s enthusiasm, his impressive command of facts and results, and
most importantly, his strong interest in contributing to the research being undertaken at
that time in Edinburgh’s Lab for Foundations of Computer Science (LFCS). In retro-
spect, it seems somewhat inevitable that Bernhard would fall in with Rance Cleveland
and Joachim Parrow and help develop the Edinburgh Concurrency Workbench.

At that time, what struck me most strongly about my one-day meeting with Bernhard
was his search to connect what he already knew well (data-flow analysis) with what the
others in LCFS knew well (concurrency theory). It seemed as if Bernhard was on a
“search” towards an “enlightenment” that only he could sense: there was a connection
between his work and the work of the others, and time would make this clear.

The results of Bernhard’s “search” were revealed to me in a surprising way some
years later, in 1995: I had sabbatical leave from my position at Kansas State University
and I spent one term at Carnegie Mellon University. By chance, Ed Clarke was offering
a graduate seminar on model checking. Knowing little about the subject, I followed
Ed’s lectures. I was impressed by the use of fixed-point semantics and fixed-point
calculation algorithms for both defining and checking properties of state-transition
systems. The methodology looked familiar, almost uncomfortably familiar, but I
couldn’t quite explain why I had that feeling.

I wanted to learn more: I spent much of my time that term in the CMU Computer
Science library, reading everything I could find on model checking. It was there that I
encountered Bernhard’s 1993 Science of Computer Programming article, Generating
Data Flow Analysis Algorithms from Modal Specifications. That paper held the
explanation for which I was searching—all the connections that I had sensed between
model checking and data-flow analysis were there in that article, neatly expressed in the
box-diamond notation of branching-time temporal logic augmented with reverse
modalities. At that instant, I recalled the discussion I had with Bernhard that one day in
Edinburgh—there was indeed an “enlightenment” that Bernhard had sensed and had
achieved.
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The next step for me was to apply this enlightenment to the area in which I worked.
Using abstract-interpretation-based domain theory, I conceived models of behavior
trees whose properties could be expressed in box-diamond notation. Using Bernhard’s
explanation of data-flow-analysis-as-model-checking, I was able to generate abstract
interpretations mechanically from the box-diamond formulas I had written. It was also
easy to see how the notations could define the classic, equationally-stated forms of
data-flow analysis. Here was truly a unified theory of property specification and
implementation.

Bernhard’s work changed the direction of my research and led to many years of
results. I was honored when Bernhard contacted me in 1997 with a critique of my
attempts to apply his insights. In a subsequent meeting in Italy in 1998, Bernhard
suggested that we work together to develop further lines of research that followed from
his work.

The collaboration between Bernhard and me lasted well over a decade, and it
expanded to include Bernhard’s research group in Dortmund and the
programming-languages research group in Kansas. The collaboration went well beyond
authorship of jointly developed papers: it became a long-term exchange and devel-
opment of research directions, perspectives, and goals. The collaboration meant that T
made many visits to Dortmund and stayed at Bernhard’s and Tiziana Margaria’s home.
I enjoyed coffee from Bernhard’s impressive espresso machine, I took long walks with
Tiziana and Bernhard in the forest next to their home, and I watched their children,
Barbara and Bruno, grow to adulthood.

My technical expertise expanded greatly from interactions with Tiziana, Markus
Miiller-Olm, Jens Knoop, and Oliver Riithing, and the other members of the Dortmund
research group. And members of the Kansas group, notably, John Hatcliff and Matt
Dwyer, also became part of the research “family,” a family that functions to the present
day in the International Journal on Software Tools for Technology Transfer and the
ISoLA conference series.

Bernhard has always impressed me with his enthusiasm for work, his unending
desire to transfer his results into the technology mainstream, and especially by his
sureness of vision. Throughout his career, Bernhard has always followed a path of
certainty towards an “enlightenment” of how software specification, analysis, and
implementation should be undertaken. It is this sureness of vision that motivates and
justifies the tributes that Bernhard now receives on the occasion of his 60th birthday.

Bernhard, congratulations, and may your vision of computer science continue to
lead us for years to come!
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1 The Passion

Bernhard Steffen’s first major recognition concerned the collaboration on the
Concurrency Workbench, but his theoretical and practical work spans the devel-
opment and implementation of novel, specific algorithms, the establishment of
cross-community relationships with the effect to obtain simpler, yet more pow-
erful solutions, as well as the initiation of new lines of research.

Our personal relation with Bernhard is intertwined with the development
of CAV. At CAV 1989 in Grenoble, Susanne Graf was heavily involved in the
organization of the event. She started the discussions that would lay the basis
for their joint Compositional Minimization of Finite State Systems presented by
Bernhard at CAV’90. At CAV’90 in Rutgers, at DIMACS, Bernhard met Tiziana,
who was presenting a paper on automated test pattern generation for sequential
circuits using Ed Clarke’s original EMC model checker. And Bernhard, Susanne
and Tiziana plus Rance Cleaveland and Ed Brinksma were together at CAV’91 in
Aalborg organized by Kim Larsen. CAV’91 turned out to be quite consequential,
not only for Bernhard’s private life, but also as a prequel to what would become
in 1995 the first TACAS: organized in Passau by Bernhard and Tiziana, the
first proceedings appeared as LNCS N.1019, co-edited by Ed Brinksma, Rance
Cleaveland, Kim Guldstrand Larsen, Tiziana Margaria, and Bernhard Steffen.

Models were Bernhard’s first passion, along with building tools for working
with models. The Concurrency Workbench (CWB) [9-11], one of the first tools
for the process algebra and model checking-based analysis of concurrent systems,
initiated a still living trend of tool development which witnesses the step from
so called weak formal methods, which remain at the side of specification an
manual (interactive) proof to strong formal methods that aim at fully automatic
tool support. Bernhard’s innate tool-related thinking led him to a number of
conceptual breakthroughs like the first linear algorithm for CTL (a subclass of
the alternation-free mu-calculus) [27], the logical characterization of behavioural

© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 3-13, 2019.
https://doi.org/10.1007/978-3-030-22348-9_1
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relations as the basis for establishing semantic relations [12,48], and the first
model checkers for infinite state systems [3-7]. These developments were the basis
for the Fixpoint Analysis Machine [47] which exploited the Dataflow Analysis
and Model Checking paradigm to derive a homogeneous analysis framework
capturing even procedural programs.

Bernhard’s Dataflow Analysis and Model Checking paradigm (DFAMC)
[44-46] can be regarded as the starting point of modern software model check-
ing. DFA-MC based on the abstract view from the model checking world, where
algorithmic problems are formulated as collections of logic properties. With this
new mindset, it was possible to derive very powerful program analyses [18-22] as
layered fact-finding quests, and they became for the first time elegantly and effi-
ciently solvable with just one algorithm: CTL model checking. In particular the
lazy code motion algorithm had a strong practical impact: it is implemented in
almost every of today’s compilers, and as a recognition of this success it received
the 2002 PLDI Test of Time Award which is given ten years after publication
to the PLDI papers with the highest long term impact.

Both the CWB and the DFAMC developments initiated lines of research
which are still alive. In addition, the work on Reactive, Generative, and Strati-
fied Models of Probabilistic Processes with Rob van Glabbeek, Scott Smolka and
Chris Tofts [13] set the scene for modelling probabilistic processes and laid the
groundwork for a huge bulk of research on quantitative methods. With Hardi
Hungar, Harald Raffelt and Oliver Niese [14,17], Bernhard paved the way to
bringing the originally very theoretical work of active automata learning into
real practice. Practical analyses on telecommunication systems showed the strong
impact of this technique on testing: the classical model-based testing approaches
are in a sense converted into test-based modelling approaches [14,42]. As an addi-
tional benefit, this approach overcame a prohibitive hurdle to model-based test-
ing: the need of a priori availability of a model. Bernhard’s work continued with
the development of a corresponding learning framework, the LearnLib [41-43],
the extension of the methods to data-sensitive models [15], and to an algorithm
that optimally refines the abstraction level of a learning scenario to become
deterministic, a requirement for efficient learning [16].

On the software engineering side, he co-established a well-founded framework
for service-oriented computing (years before this term was coined) [39,40,51,52].
Underlying this framework is a development philosophy which can be regarded
as a well-founded way of extreme programming [28,37,38], now called eXtreme
Model Driven Development. XMDD in particular aims at the easy integration of
external /remote functionality [32,33,53], with the additional benefit of a formal
setting that supports analysis, reasoning and synthesis.

2 The Impact

The impact of Bernhard’s research career has been multidimensional.
Concerning the development of frameworks and tools, the Concurrency
Workbench, the Infinite state and Pushdown model checkers, the ABC/jABC
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saga with the many generations and variants, ETT/jETT and the LearnLib have
so far had the most success. More recently, the move towards meta-level DSLs
and the generation of entire IDEs for graph based modelling languages has led to
the development of the Cinco Meta-IDE and to the easier generation of special-
ized editors for domain specific modelling languages as so-called Cinco-products.

Concerning education, in the over 25 years as a professor in Aachen, Pas-
sau and Dortmund Bernhard has taught in many forms and under many titles
the concepts and rigour of Formal Methods in System Design. Most recent
achievements are his series of books for undegraduates “Grundlagen der Hoheren
Informatik” [55] with Oliver Riithing and Malte Isberner, and “Mathemati-
cal Foundations of Advanced Informatics” [54] with Michael Huth and Oliver
Riithing. These books are intended to set the mathematical scene for a for-
mal methods-based approach to comprehension, reasoning, and design. The over
51.000 chapter downloads for the German book witness the dissemination success
of this textbook.

Concerning industrial applications, many projects with leading IT com-
panies like Siemens Nixdorf in telecommunications, Bertelsmann and the Euro-
pean Patent Office, ThyssenKrupp and IKEA in Supply Chain Management, a
learning-based testing environment for T-Systems, order management for BASF-
IT, the online conference system OCS and its product line for the Springer Ver-
lag are only a few representatives for the direct impact not mediated by public
funding.

Concerning the promotion of tools as first class citizens in the software
engineering for system correctness, Bernhard’s impact has been vast and steady.
The impact on the culture of tool comparison and challenge started in 1997
with ETI, the Electronic Tool Integration platform born with STTT [53]. The
inaugural issue of STTT featured the introduction of UPPAAL in ETI by Kim
G. Larsen, Paul Pettersson and Wang Yi [26]. UPPAAL had been presented
originally in TACAS’96 [1]. ETI was a clear precursor of today’s service-based
composition environments. Its HLL (High Level Language) was an own ser-
vice and workflow composition language (in today’s terminology, a coordination-
oriented DSL) with rich tool descriptions ranging over taxonomies as lightweight
ontologies. ETT’s tool integration platform was later instantiated for a number
of application domains: FMICS-JETT [23,30,34] for verification tools stemming
from the FMICS Working Group of ERCIM, BiojETT [24,25,29] for bioinformat-
ics tools, and Plan-jETT [31] for the automatic synthesis of workflows through
various external and own planning tools and techniques. The ETI initiative was
followed by many more: the RERS Challenge on Rigorous Examination of Reac-
tive Systems is associated with ISoLLA and other events since 2010, the Software
Verification Competition (SV-COMP) takes place in association with TACAS
since 2012, and also the Toolimpics starting in the 2019 edition of ETAPS. Not
only do these initiatives promote the importance of tools as a means to foster the
understanding and wider adoption of new algorithms and techniques, they also
address how to make tool evaluation and comparison more systematic, objective
and fair. Related to this comparison is also the attention to creating, maintaining
and evolving adequate benchmarks and benchmark sets [49].
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Concerning the scientific community, his contributions to establishing
and maturing the culture of tools and the dignity of tool building and tool
evaluation as fields of research and investigation have spanned over 25 years of
success. Bernhard started TACAS, the Int. Conference on Tools and Algorithms
for the Construction and Analysis of Systems, with Ed Brinksma, Kim Larsen
and Rance Cleaveland. The first TACAS took place in 1995 in Passau [2] and the
conference quickly became the largest, highest rated and most impactful of the
ETAPS Joint Conferences. STTT, the International Journal on Software Tools
for Technology Transfer started in 1997 with Rance Cleaveland and Tiziana Mar-
garia [8] and more recently managed with John Hatcliff and Tiziana Margaria
is meanwhile the venue where to publish tool-related papers and case studies.
STTT has a high impact factor and since 2006 it publishes 6 issues per year.
As editor of Springer’s LNCS series, Bernhard has contributed for over a decade
to select thousands of monographs and conference proceedings, supporting the
wide dissemination of high quality research and indirecting impacting the career
of thousands of young and established researchers.

3 The Vision

Bernhard’s vision, developed in large part jointly with Tiziana Margaria and
shared - with different accents - by Susanne Graf, Kim Larsen and many other
contributors to this book, has always been that of injecting formal methods
into system and software development environments. Starting with the position
statement in 1997 for the 50 years of ACM [50] and with the IN-METAFrame
Environment [51], this approach of lightweight formal methods has been consis-
tently seen as a pathway towards the improvement of system design and software
quality by aiding both the skilled developers who may or may not master the
art and discipline of programming, and the skilled “subject matter experts” who
mostly know their application domain to a great depth but cannot program nor
are they versed in formal languages or methods. As we wrote in [35], “more than
90% of the software development costs arise worldwide for a rather primitive
software development level, during routine application programming or software
update, where there are no technological or design challenges. There, the major
problem faced is software quantity rather than achievement of very high quality,
and automation should be largely possible. AMDD is intended to address (a sig-
nificant part of ) this 90% ‘niche’”. AMDD is now XMDD, and it targets the 95%
‘niche’ of application developers who are key stakeholders in application and sys-
tem design. That vision was already embodied in the ideal software development
lifecycle depicted in Fig. 1.

Bernhard and his group, as well as many friends and family, worked consis-
tently over his entire career to deliver this vision. The vision pre-dates

— the idea of agility through fast turn-around times in prototype-driven design,
— the idea of service-oriented architectures due to the reusable building blocks
that are software (or system) black boxes and run “somewhere”, that led to



Models, Mindsets, Meta: The What, the How, and the Why Not? 7

—
\u Constraints
i - b ——=
Control ~ - Building ‘
Modification _ .-~ Control Synthesis  \___Blocks
P Ls % "
View Prototype

W

Compilation

Application
Program

Fig. 1. Application development process in METAFrame (from [51])

the development of the Service Centered Continuous Engineering approach
to evolution-friendly system design,

the manageability of complex artefacts through the use of abstraction and
perspective (or mindset)-oriented views, that anticipate aspect-oriented pro-
gramming

the lifting of application design and execution from the coding level to an
intuitive modelling level, in a move from the How to the What as advocated
in [36]. This approach allows a much earlier validation and verification of the
logic of applications and systems, enables model driven design of tests, and
it makes change management and maintenance at the model level faster and
much less costly,

the use of constraints to guide and check the correctness of the development.
This centrality of constraints and logics puts declarative knowledge (formu-
lated as collection of properties) at the centre of the quality assurance and,
by means of LTL synthesis, also at the centre of automatic synthesis of pro-
cesses and workflows that are correct by construction. The use of constraints
adds another level of from the How to the What above the use of models. It
also allows in many cases to answer Why not? questions constructively. This
helps understanding and debugging for example by providing counterexam-
ples to model checking properties, which is an indirect approach to test case
generation, as well as a source of knowledge (an oracle) for the automata
learning approaches. The LTL based constructive approach to workflow syn-
thesis yields a variety of solutions, delivering a set of correct by construction
implementations,

the use of domain specific languages that are both graphical and operational
transforms the art of application development to a craft manageable also by
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domain experts that are not programmers, and ideally into an easily learnable
and intuitive technology for the masses,

— the model extraction by active automata learning that led to the development
of the LearnLib, awarded in 2015 with the CAV artifact award. This tech-
nique allows to lift black box legacy systems to the model driven development
paradigm,

— the self-application of these techniques to the construction and extension of
the development environment itself, with the Genesis family of compilers, the
plugin generation environment, the synthesis of test cases for the MaTRICS,
and many other contributions to the creation of a completely model driven
tool-suite

— and more recently his embrace of meta-modelling as a means to generate
entire product lines of custom and profile specific editors for graph-based
modelling languages, that led to the Cinco environment, a generator-driven
development environment for domain-specific graphical modeling tools.

If we consider that Bernhard was never a software engineer nor part of the well
established software engineering community, this is a remarkable list of funda-
mental insights. It is even more remarkable that with his group he systematically
turned these insights into an impressive collection of coherent achievements that
span from fundamental theory to tools construction and to the field practice in
industrial and research projects.

4 The Contributions in this Volume

The invited contributions in this volume span the over 30 years of Bernhard Stef-
fen’s active research career. Some of the contributing scientists returned specif-
ically for this volume to the topics that were hot at the time of their initial
collaboration, while others chose to discuss topics closer to their current interest
and activity. We chose therefore not to organize the contributions thematically,
but along the main stations of Bernhard’s personal activity, each with its specific
cultural imprint and relevance to Bernhard’s own evolution and maturity.

Kiel 1983-87 with a contribution by

— Hardi Hungar on Applying Decision Graphs in the Context of Automated
Driving

Edinburgh 1987-89, with contributions by

— Kim Larsen, Bent Thomsen, Lone Leth Thomsen et al. on Analyzing spread-
sheets for parallel execution via model checking

— Eugenio Moggi et al. on System Analysis and Robustness

— Michael Mendler et al. on Logic Meets Algebra: Compositional Timing Anal-
ysis for Synchronous Reactive Multithreading

— Mariangiola Dezani Ciancaglini et al. on Intersection Types in Java: back to
the future

— and a personal statement by Scott Smolka
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Aarhus 1989-90, with contributions by

Flemming and Hanne Nielson et al. on Multi- Valued Logic for Static Analysis
and Model Checking

Stefania Gnesi, Alessandro Fantechi, Maurice ter Beek et al. on States and
Events in KandISTI: A Retrospective

Tiziana Margaria on Making Sense of Complexr Applications: Constructive
Design, Features, and Questions

Aachen 1990-93, with a contribution by

Gerald Liittgen et al. on Interface Automata for Shared Memory

Passau 1993-97 with contributions by

Didier Caucal et al. on Boolean algebras by length recognizability

Hubert Garavel and Radu Mateescu with Reflections on Bernhard Steffen’s
Physics of Software Tools

Sergei Gorlatch on Toward Structured Parallel Programming: Send-Receive
Considered Harmful

Klaus Havelund et al. on Refining the Safety/Lliveness Classification of Tem-
poral Properties According to Monitorability

Ulrike Lechner on Future Security: Processes or Properties? Research Direc-
tions in Cybersecurity

Dortmund 1997 - today with contributions by

Dimitra Giannakopoulou and Corina Pasareanu et al. on Statistical Prediction
of Failures in Aircraft Collision Avoidance Systems

Mike Hinchey et al. on The ASSL Approach to Formal Specification of Self-
Managing Systems

Michael Huth on The Merits of Compositional Abstraction: A Case Study in
Propositional Logic

Falk Howar et al. on JConstraints: A Library for Working with Logic Expres-
stons in Java

Axel Legay et al. On the Expressiveness of Joining and Splitting

Jakob Rehof et al. on Fast Verified BCD Subtyping

Wolfgang Reisig on Composition: A Fresh look at an Old Topic

Frits Vaandrager et al. on Benchmarks for Automata Learning and Confor-
mance Testing

Jaco van de Pol et al. on Synchronous or Alternating? LTL Blackbox Checking
of Mealy Machines by Combining the LearnLib and LTSmin

and a tribute to Bernhard Steffen by Dave Schmidt.

This volume, the talks and the entire B-Day at ISoLA 2018 are a tribute to

the first 30 years of Bernhard’s passion, impact and vision for many facets of com-
puter science in general and for formal methods in particular. Impact and vision
include the many roles that formal methods-supported software development
should play in education, in industry and in society. With Bernhard’s curiosity
and energy as unrelentless drivers, we look forward with great expectations to
the next generation of his ideas and initiatives in the years to come.
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Applying Decision Graphs in the Context
of Automated Driving

Hardi Hungar(g)

German Aerospace Center (DLR), Institute of Transportation Systems,
38108 Brunswick, Germany
hardi. hungar@dlr. de

Abstract. Techniques to enable automated driving currently receive a lot of
attention in computer science research. Car automation requires realizing several
cognitive functions by computers. One important functionality is environment
perception. This consists of several sub-tasks which are complex and thus
computation intensive when implemented. We propose the use of decision
graphs to speed up the execution of a consistency check. This check is applied to
the output of a of neural net which classifies regions in an environment image.
The check consists in evaluating a set of probabilistic rules. The paper describes
how the miAamics approach of pre-computing results of rule evaluations with
decision graphs may be profitably used in this application.

Keywords: Decision graphs * Probabilistic knowledge base *
Markov logic network - Environment perception * Automated driving

1 Introduction

Environment perception is a key functionality of assisted and automated driving.
Interpreting an environment image consists in detecting and classifying objects in the
image. The following describes an advanced approach to image interpretation com-
bining neural networks and probabilistic logical reasoning from [1].

A camera image is segmented into regions. These regions shall correspond to the
different objects visible in the image, like traffic participants, road elements, road
furniture, and scenery. A neural network performs the segmentation and labels the
regions with the kind of object depicted there. This identification process is not perfect.
Therefore, the result is subjected to a plausibility check. For that, rules are formulated
which express knowledge supporting the classification (or hint against it). These rules
use the spatial relations between object classes in a street scene. The following two
formulas are examples of such rules.

Road(x) A Sky(y) A Below(x,y) — Consistent(x) (1)
Car(x) A Road(y) A Inside(x, y) — Consistent(x) A Consistent(y) (2)

The formulas are intended to capture rules of thumb. The antecedent of (1) will
very often, but not always, be true for a correct classification. Also, (2) captures an

© Springer Nature Switzerland AG 2019
T. Margaria et al. (Eds.): Steffen Festschrift, LNCS 11200, pp. 17-23, 2019.
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indication for a correct assignment. But very often, the road region will not surround
the car. So this rule applies less often. And sometimes, a car image will be inside a
building image. And if the building is wrongly classified as a road, the rule will
erroneously apply.

Vague knowledge like that is difficult to formulate in pure predicate logic. Instead,
a probabilistic extension of predicate logic is used. To denote the degree of certainty
with which a formula holds, a numeric weight is attached to each formula. The higher
the weight, the higher the probability that the formula is true for instantiations of the
variables with regions in an image. Thus, a rule consists of a formula and a numeric
weight.

Such a set of rules is called a probabilistic knowledge base (PKB). Its semantics is
given by a Markov Logic Network. [2]. This semantics gives a probabilistic measure
with which a particular setting is a model of the PKB. In our case, the measure gives a
consistency estimate, i.e., a figure how much the classification can be trusted. And we
will see that the computation of this measure might profit from decision graphs to
represent partial evaluations, enabling a (hopefully) real-time consistency check.

2 A Probabilistic Consistency Measure for Object
Classifications

2.1 Markov Logic Networks

In the following definition, groundings of predicates and formulas are used. Given a set
of constants C, the groundings of an n-ary predicate P form the set

ground,(P) = {P(cy,...,cq)lct, ... cn € C}

And the set of groundings of a quantifier-free formula F with variables {xy,..., X,}
are the ground formulas

ground, (F) = {F[xi,...,Xa/C1,...,Cullc1,...,cn € C}.

We assume for simplicity that the formulas in the PKB are quantifier-free. This is
true for the rules in our application.

Definition. A Markov Logic Network (MLN) L is a set of pairs {(F;,w)..., (Fr,wp)}
with first-order formulas F; and real numbers w;.
Given a set of constants C = {cy,..., ¢}, L defines a Markov network My ¢ by

(A) The nodes of My ¢ are all elements of the sets ground.(P) for the predicates P
appearing in L. These nodes are binary variables which can take values in {0,1}.

(B) There is an edge between two nodes if the grounded predicates appear in one of
the groundings of a formula of L.

(C) ML has a binary feature for each grounding of each formula F; of L. A binary
feature is a function from the states of the associated node set to {0,1}. Here, it
gives the truth value (0 for false, 1 for true) of the formula, depending on the
values of the associated nodes.
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An MLN can be seen as a template for Markov networks. These are undirected
graphs, with additional labelings. This graph is a step in assigning a semantics to the
MLN for a particular set of constants, given a truth assignment to the nodes of the
network, i.e., given an interpretation of the predicates appearing in L for all constants.

Definition. If L is an MLN and C is a set of constants, an interpretation 1 is a function
assigning 0 or 1 (for false and true, resp.) to each node in My c.

Given I, the binary features provide the truth values of the ground instances of the
formulas F; under the assignment I. Le., for each Feground (F;) with atomic sub-
formulas P,..., P,, there is a binary feature B s.t. I(F) = BI(P,),..., I(P,)). In this way,
the Markov networks My ¢ introduced above capture the standard semantics of the
first-order formulas in the PKB. The probability aspect is introduced by the following
definition.

Definition. Let M| ¢ be a Markov network with interpretation I. Then

P() = (1/Z)exp (3, wimi(D)) 3)

where
n;(I) is the number true binary features of F;, and

Z=>, (exp (Zile Wi ni(I))), the sum over all interpretations

Thus, each interpretation gets assigned the sum of all weights of all true formula
instantiations. This value is turned into a probability by norming it, so that the set of
interpretations of atomic predicates over the constant set C forms a discrete probability
space. The more formulas (with high weights) are true in an interpretation, the more
likely the interpretation is a “true” model of the knowledge base. Though, usually, no
interpretation gets a probability of one. The intuition is that no formula needs to be true
in a particular domain. But the domain is more likely a model of the knowledge base, if
the formulas with positive weights are “mostly” true.

These are (slightly rephrased) the definitions from [2]. They are technically com-
plex, introducing a very explicit semantical domain. Indeed, for our purpose, they
could be simplified. The graphical structure of My ¢ (namely, clause (B)) is not really
relevant, here. It is used in some algorithms working on Markov networks, e.g.,
probabilistic reasoning. None of these algorithms is used in this paper, though they play
a role in the overall classification procedure. We could work on the formulas and
groundings and ignore the graphical semantics definition.

2.2 Defining Consistency via Probabilistic Knowledge Bases

In our application to image interpretation, the unary predicates appearing in a rule set L
are the possible classifications of the objects in the image, plus the “Consistent”
predicate. The binary predicates are the spatial relationships. The constants are region
identifiers.

The rules generally have the form of (1) and (2): The antecedent is some propo-
sition about classifications of regions and their spatial relationship. The consequent is a
consistency assertion. Weights may be positive and negative. A positive weight means
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that the antecedent is an indication that the classification is right. A negative weight
hints to the opposite.

The consistency check could be formulated as a probabilistic inference problem
(for which several algorithms on Markov networks are around). Namely, what is the
probability of consistency, given the regions, their spatial relationships, and their
classifications as computed by the neural network.

Or, employing the specific form of the rules, just the evidence from the antecedents
is computed: Each true antecedent adds to the probability of the consistency expressed
in the consequent of the respective rule, for a positive weight. And it discounts from the
probability, for a negative weight. This boils down to mainly compute the n;(I) for the
antecedents and multiply it by the respective weight w;, cf. Eq. (3). From that, by a few
additions (number of relevant rules), a consistency figure for a single classification can
be computed. Or, by adding all figures, one gets the overall consistency assessment
expressed by the PKB.

We will follow the second approach, computing the n;(I) for the antecedents, in our
solution to the plausibility check. The complexity of the task comes from the fact that it
is not easy to compute the number of true instantiations of a formula. We will show
how decision diagrams can be used to gain online efficiency by offline pre-
computation.

3 Decision Diagrams for Fast Evaluation

The following definitions are based on [3].
3.1 Algebraic Decision Diagrams

Definition. An Algebraic Decision Diagram (ADD) is a septuple
D = (N, T, r, succy, succy, X, V, var, val),
where

N is a finite set of nodes

reN is the root

T is a set of terminal nodes (leaves)

succy and succ; are functions from Nto N U T

X is a set of variables

V is a set of numeric values (e.g., R)

var and val are labeling functions, var: N — X, val: T — V

such that N U T are the nodes of a graph with edges succ, and succ, the graph is
acyclic, and its root is r.

An ADD is thus a rooted, acyclic graph with uniform degree 2, where each inner
node is labeled by a variable, and each leaf carries a value.
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Definition. An ADD D defines a function from valuations I:X — {0,1} to V as
follows.

D()(t) = val(t) for teT

D()(n) = if I(var(n)) = 1 then D(I)(succ,(n)) else D(I)(succy(n)) for neEN
D() = D()(r)

D(I) is well-defined because of the finiteness and acyclicity of D.

Intuitively, given a valuation of the variables of D, one follows the path from the
root, choosing the successor which is indicated by the valuation of the variable at each
node on the path. The label of the leaf at the end of the path gives the function value.
Thus, given a particular valuation of the variables, the function value is easy to
compute.

Definition. An ADD is

e reduced, if all nodes define different functions, i.e., foralln # m € N U T, there is
some I s.t. D(I)(n) # D(I)(m)

e ordered, if there is a linear order < on the variable set X, s.t. for all nodes n, m with
m = succy(n) or m = succ;(n), var(n) < var(m)

RO-ADD denotes the set of reduced, ordered ADDs.

Remark. For each ADD D and each order < on its set of variables X, there is an
RO-ADD D’ with order < which defines the same function as D. The RO-ADD D’ is
unique up to isomorphism. Le., an RO-ADD (given <) is a canonical form for a given
function.

By eliminating semantically redundant nodes (and redirecting dangling successor
pointers), an ADD can be reduced. This is obviously beneficial, as the reduced ADD
will have a smaller size. Variable orders are a different matter. They are useful because
they greatly simplify the construction of ADDs.

3.2 Applying ADDs

ADDs can efficiently store and retrieve numeric evaluations of weighted sets of logical
rules. This is the central idea underlying the patented miAamics machinery [4, 5]. This
machinery was developed by Steffen, Margaria, and the author of this paper nearly two
decades ago. This machinery can likely be employed in the computation procedure of
the consistency check. Somewhat similar to miAamics, we use RO-ADDs to represent
rule evaluations. Here, the RO-ADDs give the number of true groundings of
antecedents.

Let {Py,..., Py} be the atomic predicates in the PKB. And let C be constants naming
the regions in an image. Only the maximal number of regions is relevant, not the name
of the constant denoting a particular region. Let {A;,..., A¢} be the set of antecedents of
rules, and let P; < A; denote that P; occurs in A;. Then the set of variables of the
RO-ADD:s is the union over all ground.(P;), and an RO-ADD for A; will depend on the
variables in ground.(P;) for P; < A;.
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If D; is an RO-ADD s.t. D;(I) = n;(I) for all [, it is easy to compute n;(I), see above.
Such an RO-ADD can be constructed by standard operations on RO-ADDs.
The CUDD package, available at https://github.com/sysulic/cudd, offers all necessary
functions.

There is, however, a catch. A common obstacle to such usages of decision diagrams
is the fact that the size of the graph may explode. In the worst case, an ADD over m
variables equals a full binary tree with m + 1 levels (i.e., 2 ™-1 nodes and 2 ™ leaves).
And k regions will lead to 2%k + k? variables for the antecedent of (1), which gives an
example of a typical, small formula. Though the worst case will not occur for such
antecedents, it is not clear that the RO-ADD sizes will be manageable for a reasonable
number of regions.

Since we did not perform any experiments with ADD construction for the con-
sistency rules, no definitive answer can currently be given. If a direct encoding in RO-
ADDs does not work for all antecedents, there are several ways to cope with that. One
is to split the RO-ADD for an antecedent A by replacing A by the following collection
of formulas.

x = ¢y AA[x/cq]
X = o A Alx/ci]

The set of true groundings of A is the disjoint union of the true groundings of the
formulas above. By eliminating one of the variables of a spatial relation predicate in
this way, the number of variables on which the corresponding RO-ADD depends is
greatly reduced. E.g., there are 440 variables potentially relevant for the antecedent of
Formula (1), if there are 20 regions. After splitting the formula as indicated above, there
are at most 60 relevant variables for each of the resulting formulas. And splitting can
have a large effect on the total space requirements for the RO-ADDs as the combination
of two RO-ADDs is often much larger than the sum of their sizes. This way, a complex
combinatorial explosion in the pre-computation might be avoided, by committing to a
small number of extra additions in the online evaluation.

4 Conclusion

We have presented an approach of using ADDs in the realm of image interpretation.
The procedure of segmentation, classification and consistency check is the main topic
of the dissertation (in preparation, see also [6]) of Fouopi, a colleague of the author at
the DLR. The potential application of the miAamics machinery occurred to the author
at a presentation of the consistency check, where its computational complexity was
mentioned. The author would like to express his sincere thanks to his colleague for
discussing the approach described in this paper.

It should not be difficult to test that approach in practice. Though this has not been
done yet, the flexibility of the machinery is likely to enable some profitable usage of it.
In any case, the potential benefits should be motivation enough to do this in the near
future.
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Abstract. In this paper we briefly report on work in the Popular
Parallel Programming (P3) project where we follow in the footsteps of
Bernhard Steffen using the idea of program analysis via model checking
and abstract interpretation. The programs we analyze are spreadsheet
programs, which for long have been identified as an ideal programming
model for parallel execution. We translate spreadsheet programs into
Timed Automata Models, which may be analyzed by the UPPAAL model
checker and its derivatives, with the purpose of finding schedules for
parallel execution. In this paper we mainly focus on the techniques and
scalability issues of various variants of UPPAAL, but also report briefly
on the performance results achieved through the parallelization.

1 Introduction

Mani Chandy noted as early as in 1985 in his keynote at the fourth annual
ACM symposium on Principles of distributed computing (PODC 1985) entitled
Concurrent programming for the masses that a programming model based on
spreadsheets would reach a much wider audience and should be much easier to
parallelize than the traditional programming model(s) [7]. However, in the three
decades that have passed since this keynote only sporadic efforts have been made
in this area [2,4,11,21].

To realize the idea of parallel programming via spreadsheets, it is necessary
to adapt and further develop program analysis techniques to the spreadsheet
programming model to identify the parts of a program that can be executed in
parallel and subsequently find schedules for their execution.

The idea of program analysis via model checking was pioneered by Bernhard
Steffen and presented in his 1991 paper entitled Data Flow Analysis As Model
Checking [20] and further elaborated with David Schmidt in the paper entitled
Program Analysis as Model Checking of Abstract Interpretations [18].

The Popular Parallel Programming (P3) project! set out to follow in the
footsteps of Bernhard Steffen by using the idea of program analysis via model

! https://www.itu.dk/~sestoft /p3/.
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Fig. 1. Example spreadsheet

checking and abstract interpretation to investigate various approaches to paral-
lelizing the execution of spreadsheet programs based on the open source spread-
sheets Corecalc and Funcalc? implemented in C# and thoroughly described in
[19]. The P3 project views spreadsheets as a dataflow language with the pur-
pose of improving compilation of dataflow languages to shared-memory multicore
machines, partly by drawing on recent advances in static execution time esti-
mates based on abstract interpretation [6] and scheduling techniques based on
timed automata [1,3,5,10,12,16].

2 Spreadsheets and Dataflow

To see how spreadsheets can be viewed as dataflow programs we first look at
an example. Figure 1 shows a small spreadsheet with 8 active cells, A2, A3, A4,
B1, B5, C2, C3 and C4. Only the formulae are shown, whereas in a normal
spreadsheet application the results of the computations would be shown.

Bl is a data cell, where the remaining cells are formulae directly or indirectly
depending on Bl. In a small spreadsheet like this, it is easy to see that the
calculation of the value of the formula in cell B4 depends on the value of the
formulae in cell A4 and C4. The formula in cell C4 depends on cell C3, which
in turn depends on cell C2,; depending on cell B1. Similarly cell A4 depends on
cell B1 and A3, which depends on A2, which depends on B1. This dependency
relationship is depicted by the orange arrows in Fig. 1. Thus to calculate the
results presented in Fig.1 a dataflow in the reverse order of the dependency
relationship is needed, i.e. data from cell B1 flows into the formulae in cell A2
and C2. A2 flows into A3. C2 flows into C3 and A4. C3 flows into C4 and finally
A4 and C4 flow into B5.

Based on the dependency relationship one can construct a schedule for exe-
cuting the formulae in parallel on a dual-core machine such that the needed
dataflow between cells is upheld. One schedule could be on CPU 1 calculate cell
B1. Then in parallel calculate cell A2 on CPU1 and cell C2 on CPU2. Then in

2 http://www.itu.dk/people/sestoft /funcalc/.
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Fig. 2. Example spreadsheet with TA for cell C3

parallel A3 on CPU 1 and B3 on CPU 2, followed by cell A4 on CPU 1 and B4
on CPU2 in parallel. Finally cell B5 can be computed on CPU 1. This schedule
would require 5 time units, assuming that the calculation of each cell takes 1
unit. A sequential calculation would require 8 time units.

The example in Fig. 1 is small enough that the dependency relationship and
dataflow can be inspected or even constructed manually. However, the relation-
ship quickly becomes difficult to keep track of manually.

3 Generating Timed Automata Models
from Spreadsheets

In this section we show various translations from spreadsheet into Timed
Automata (TA) which in turn may be analyzed with various variants of the
UpPAAL model checker. Timed Automata and extensions such as Priced Timed
Automata, together with model checkers, especially the UPPAAL model checker,
have for more than a decade been used to solve scheduling problems by a refor-
mulation as reachability problems [1,3,5,10,12,16].

We regard each cell as a task which is translated into a separate process in
UpPPAAL. Similarly, we generate a process for each computation unit, i.e. CPU,
and the scheduling algorithm. These processes are then composed in parallel
into a single model. Processes synchronize using channels, and have access to a
number of functions, which allows for expressing more complex functionality in
a small C-like language.

Figure 2 shows an example spreadsheet with a UPPAAL TA task model for cell
C3. The general idea is to translate each cell in a spreadsheet into such models
which are then combined into one TA with dependencies between tasks. The task
model consists of three locations: Waiting, Ezecuting, Finished, which represent
the three states of a task. These three states are linked through two edges: The
first edge, from Waiting to Fxecuting contains a guard, synchronization, and an
update.
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The guard enabled(id) is a call to the function enabled(job_t id), this
must evaluate to true for enabling the transition to the Executing state. This edge
is synchronizing on channel exec [id]?, a receiving synchronization indicated by
7. The id of the process is used as index into the channel array exec[job_t].
Last, the update executing[id]=true atomically updates the executing flag for
the current task, indicating that it is currently executing. The second edge from
the Executing state to the Finished state is enabled when the channel exec[id]
is signaled. Taking this transition sets the done flag for this process and unsets
the running flag.

Idle

. @)

ask:job

c==cost[selectedtask] enabled(task) &&

id==selectCPU()
exec[selectedtask]!

execftask]!
idle[id]=true idle[id]=false,

selectedtask=task,

c=0

Executing ~

c<=cost[selectedtask]

Fig. 3. CPU template

Figure 3 shows the model of a CPU which consists of two locations, Idle
and FEzecuting, representing the two states of a CPU in our model. CPU is a
template parameterized with id of type cid_t, an integer subtype which ranges
from zero to the number of CPUs. Additionally, the CPU template has two
locally defined state variables: clock c, a clock variable for recording execution
time spent in location FExecuting, and job_t selectedtask, representing the
task this CPU is currently executing. In the FEzecuting location, the invariant
c<=cost [selectedtask] limits the time spent in this location to the execution
cost of the selected task.

In UPPAAL the system declarations for the resulting model then consist of:

1 Sheetl1_A2 = Task(1l);

2 Sheetl_A3 = Task(2);

3 Sheetl1_A4 = Task(3);

4 Sheetl_B1 = Task(4);

5 Sheetl_B5 = Task(5);

6 Sheetl1_C2 = Task(6);

7 Sheet1_C3 = Task(7);

8 Sheetl1_C4 = Task(8);

9 Cpus(const cid_t c¢) = CPU(c);
10

11 system Cpus, Sheetl_A2, Sheetl1_ A3, Sheetl_A4, Sheetl1_B1l, Sheetl_B5

, Sheet1_C2, Sheet1_C3, Sheetl_C4 ;
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Line 9 creates process instances of the CPU template for each value in cid_t,
named Cpus. Lines 1-8 create instances for each task, with a name representing
the cell in the spreadsheet. Each instance is created separately in order to give
identifiable names for each task in the resulting trace. The fastest trace will be
the optimal schedule. Here fast refers to lowest global clock value, not the length
of the trace, the latter being shortest trace in UPPAAL. The number of clocks
in this model is the number of CPUs plus one, for recording the global clock.
Unfortunately this approach does not scale beyond toy-like spreadsheets like the
one depicted in Fig. 2. This is not surprising as e.g. [13] reports on various task
graph scheduling examples with up to 16 tasks. Larger examples quickly run
into the state-space explosion problem.

However, often we do not need the optimal schedule, but a good enough
schedule is sufficient. Such schedules may be explored by UPPAAL-STRATEGO [8]
which can be used to model 11/2-player games where the opponent is stochas-
tic. Given a game UPPAAL-STRATEGO can synthesize near-optimal strategies
for complex systems. It has successfully been used for controlling floor heating
systems [14] and controlling traffic lights [9].

In a nutshell UPPAAL-STRATEGO synthesizes near-optimal strategies by: star-
ing with a uniform distribution over the controllable choices, generating runs,
evaluating how good are these runs, refining the distribution on the controllable
choices via learning algorithms, and iterating.

noJobs?
lallJobsDone() cpuAvailable(id) && jobcounter>0

L J
jobcounter==0 idle jobAvailable(jobID) busy

done
i ( )<,,,,D9Jpp§' ,,,,,, @ ,,,,,,,,,,,,, =
. ] cpubusy[id] =|r:eo currJoblid] = jobID, Q“’“’bd“r[‘d]
* EXB RATE nbommor.  EXP_RATE  jobdurlid] = jobList{currJoblid],
i d jobListStatus{currJoblid]] = 2,
i

! jobdurid]
I

) noJobs?

| allJobsDone() |
| resetJobs() o - *é

I
: jobListStatus[currJobfid]] = 0,

currJob[id] = 0.
éone jobdurfid] = 0,

x=0,

cpubusy[id] = false

I
|
x=0 :
I
i
i

time'==0

Fig. 4. Stratego model. (Left environment indicating if there are pending jobs Right).
CPU-model where controllable choices are among available jobs.

Figure4 illustrates the UPPAAL-STRATEGO model for 1-CPU. It is a game
between the scheduler and the environment which includes the jobs to execute.
The solid arrows are the scheduler choices whereas the dashed arrows correspond
to the environment choices. Note that the solid arrow has a select statement
joblD:job_t which is equivalent to the enumeration of all tasks with one solid
arrow for each task. The intuition from the model is as follows. First at location
idle a delay is chosen from the exponential distribution with rate EXP_RATE, if
there are no jobs left location done is reached, otherwise if a CPU and a job are
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available a job has to be taken. A job is taken by executing one of the solid arrows
induced by joblD:job_t leading to location busy, the CPU stays at this location
for the duration of the job. When the job duration has elapsed the environment
sets the status of the job to 0 indicating that the job is done, and returns to the
initial location. Table 1 shows the results of using UPPAAL-STRATEGO from Fig. 4
in different spreadsheets. In the generated models, all cell computing costs are
random values using same initial seed. These costs will in future implementations
be replaced by cost inferred based on abstract interpretations of the execution
time for cell formula [6].

Table 1. Results for UPPAAL-STRATEGO

Model CPUs Cost |Greedy|Time sec/Speedup %
Supportgraph 31 cells 119 dependencies | 2 7.047| 6.959 42 -1.20
4.884) 4.981 |45 1.95
8 4.611 4.611 |62 0.00
16 4.611 4.611 |59 0.00
Example 115 cells, 65 dependencies 2 24.890(25.411 [1.627 2.05

12.581/13.375 (1.373 5.94
8 6.484| 6.993 |2.202 7.28
16 3.450/ 4.035 199 14.50
Formulacopies 73 cells, 255 dependencies | 2 16.051/16.087 253 0,09
8.522 8.181 (10 -4,17
8 4.650 4.307 216 -7,96
16 3.900/ 3.982 683 2,06

4 The Dependency Scheduler

The dependency scheduler is a generic task scheduler for the .Net platform, orig-
inally developed by Mgller as part of his MSc [17]. The dependency scheduler
takes as input a set of tasks and a description of their dependencies. The sched-
uler will then execute these task in such a way that if a task depends on other
tasks, it will only execute when these tasks have completed, e.g. if we have three
tasks A, B and C, where task A and task B do not have any dependencies and
task C is dependent on task B, then the scheduler will execute task A and task
B concurrently, and when task B finishes, task C will start. The dependency
relationship is described via a dependency graph which may come from a task
dependency analysis produced by (various versions of) UPPAAL.

The dependency scheduler uses the thread pool from Microsoft .NET library,
which is used to keep track of the threads, managed by .NET. All threads are
created from system start up, so no additional time has to be spend on creating
new threads during execution.



Analyzing Spreadsheets for Parallel Execution via Model Checking 33

The dependency scheduler will first start all tasks without dependencies.
Tasks will signal when they finish and as soon as tasks dependent on finished
tasks are ready for execution, they will be released. Thus a kind of wave of tasks
goes through the set of tasks until all tasks have been executed. For spreadsheets,
this wave will follow the dataflow based on the schedule of tasks calculated by
UPPAAL.

The dependency scheduler has now been fully integrated into the Funcalc
platform and can take as input cell formulae wrapped as .Net tasks together
with a schedule produced by UpPAAL. For efficiency reasons null and constant
data cells will not be included in the dependency scheduler.

We have carried out a small performance study based on two spreadsheets,
the Building Design benchmark and the Ground Water daily benchmark, from
the LibreOffice Benchmarks [15] developed in connection with a study of paral-
lelisation of the LibreOffice spreadsheet on AMD GPUs [4]. These spreadsheets
have about one million data cells and about 50.000 formula cells. However, they
differ slightly in the complexity of the formulae and the dependencies between
cells.

Benchmarks - Spreadsheet Building Design
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Fig. 5. Benchmarks — building design

Figure 5 shows the average execution time of ten runs of the Building Design
benchmark using the original sequential version of Funcalc, the version of Fun-
calc with the dependency scheduler and an execution with the LibreOffice
GPU accelerated version. Lower is better. As can be seen LibreOffice is the
fastest executing at 84.86 ms, then Parallel Spreadsheet with 2668.8 ms and then
Singlethread with 13463.4 ms. So we obtain approximately a five-fold speedup on
a 6 core machine. The benchmark was executed on an 17-5930k 6 core machine
with a 3.5 GHz clock and 32 GB DDR4 RAM; the program was executed in
32bit mode limiting memory usage.

Figure 6 shows the average execution time of ten runs of the Ground Water
daily benchmark. Again Lower is better. On this benchmark the Parallel Spread-
sheet is the fastest at 7142.7ms, then LibreOffice with 15959.97ms, then
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Bencgwmarks - Ground Water Daily
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Fig. 6. Benchmark — ground water daily

Singlethread with 38327.9ms. In this benchmark we see at 5.3 time speedup
over the sequential version.

5 Conclusions

The Popular Parallel Programming (P3) project has been inspired by Bernhard
Steffen to use the idea of program analysis via model checking and abstract inter-
pretation. We translated spreadsheet programs into Timed Automata Models,
which were analyzed by the UPPAAL model checker and its derivatives, with the
purpose of finding schedules for parallel execution. Execution time for each for-
mula in the spreadsheet is estimated using abstract interpretation. We mainly
focused on the techniques and scalability issues of various variants of UPPAAL,
but also reported briefly on the performance results achieved through the par-
allelization analysis. On some benchmarks the parallel version of Corecalc and
Funcalc gain over a five-fold speed up on a six core machine.
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The following considerations are taken from the paper “Continuous modeling
of real-time and hybrid systems: from concepts to tools” [12] by Steffen et al.,
which was published in a special section on timed and hybrid systems. They
provide the context and motivations for the issues addressed in this short paper.
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Abstract. Software is increasingly embedded in a variety of physical
contexts. This imposes new requirements on tools that support the design
and analysis of systems. For instance, modeling embedded and cyber-
physical systems needs to blend discrete mathematics, which is suitable
for modeling digital components, with continuous mathematics, used for
modeling physical components. This blending of continuous and discrete
creates challenges that are absent when the discrete or the continuous
setting are considered in isolation. We consider robustness, that is, the
ability of an analysis of a model to cope with small amounts of impreci-
sion in the model. Formally, we identify analyses with monotonic maps
between complete lattices (a mathematical framework used for abstract
interpretation and static analysis) and define robustness for monotonic
maps between complete lattices of closed subsets of a metric space.

Keywords: Analyses - Robustness + Domain theory

Introduction

Having served as a successful paradigm in physics and engineering for more
than 300 years, starting with the discovery of the differential calculus by Leib-
niz and Newton at the end of the seventeenth century, the continuous inter-
pretation of time was overwhelmed by the digital revolution.
. The key point of formal description techniques is their mathematical exact-
ness: it is unambiguous how the specified system is going to behave. Exact-
ness should, however, not be confused with precision: “the system
must respond within at least 1 and up to 20s” is exact, although one might
argue that it is not precise. Exact specification makes the amount of
imprecision explicit.
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3. Typically the behavior of the controlled system is given a priori, while the
controlling system still needs to be designed in a way guaranteeing a correct
overall behavior. ..., for most embedded systems the open system approach
is insufficient as the correctness of the controlling system depends on
properties of the environment. Capturing these situations requires
modeling the environment as well.

Imprecision. In a discrete setting one can achieve absolute precision!, in a con-

tinuous setting there are two pervasive and unavoidable sources of imprecision:

1. imprecision in measurements, namely predictions based on a mathematical
model and observations on a real system can be compared only up to the
precision of instruments used for measurements on the real system, and

2. imprecision in representing continuous quantities in computer-assisted tools
for modeling and analyzing hybrid/continuous systems.

Thus, a real number z: R in mathematics, becomes x ¢ in physics, with € > 0
measurement error, in theory of computation becomes an interval [z, Z] with z
and T belonging to a subset of R with exact finite representations (e.g., floating-
point or rational numbers) [14]2. However, any z: R can be approximated by
proper rational intervals [z, T] with arbitrarily small imprecision, i.e., for any
0 > 0 there are rational numbers z and T such that z < * <Zand 0 < T—z < 4.

Approximability extends to continuous maps on R. First, a continuous map
f on R has a Scott continuous natural extension f(I) = {f(z)|z: I} on the cpo
IR of intervals ordered by reverse inclusion. Scott continuity implies that the
imprecision of f(I) goes to 0 when the imprecision of I goes to 0. Second, f
can be replaced by a Scott continuous F' mapping proper rational intervals to
proper rational intervals such that F([z]) = [f(x)] = f([x]), thus f(I) C F(I).
When f is not continuous, one must give up something. Namely, one can find a
monotonic F' on IR such that:

L. Vo:R.F([z]) = [f(x)], but I fails to be Scott continuous, or
2. F is Scott continuous, VI:IR.f(I) C F(I), but Vz: R.F([z]) = [f(z)] fails.

In both cases the property “F(I) converges to f(z) when I converges to x” fails.

Robustness. In [13], we introduced robustness, a property of monotonic maps
between complete lattices of (closed) subsets in metric spaces. Intuitively, robust-
ness requires that small changes to the input I of a map F' cause small changes
to its output, where the definition of small relies on the metrics. Often, analyses
can be identified with monotonic maps between complete lattices. For instance,
reachability analysis can be cast as a monotonic map F' on the complete lattice
P(S) of subsets of the state space S, that takes a set I of initial states and outputs
the set R(I) of states reachable from I, thus I C R(I) = R*(I).

! This does not exclude the possibility of using imprecise (aka loose) specifications.
2 Representing a real with a float, as done in traditional numerical methods, means
that the imprecision in computations is either ignored or is tracked manually.
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If S is a metric space, then one has the mathematical framework to measure
imprecision. The picture below shows the initial state s of three systems (red,
green and blue) consisting of a ball that can move (in a one-dimensional space)
under the effect of gravity. We assume that initially the speed is 0, thus from s
only s is reachable, i.e., R.({s}) = Ry({s}) = Rs({s}) = {s}, but:

— the red ball (top) is unstable, i.e., a small change s’ to s means
that R-({s'}) includes some states far from s;
— the green ball (middle) is stable, i.e., a small change s’ to s
implies that all states in R,({s'}) are close to s;
— the blue ball (bottom) is stable, if a small change s’ affects
only the position (while the speed remains 0); it is unstable,
o if the speed can change (and there is no friction).

These claims on s can be recast as follows: Ry is robust at {s}, R, is not.

Background. We assume familiarity with metric/topological spaces, the notions
of open/closed/compact subset of a space [4,10], and make limited use of Cate-
gory Theory [2,3] and Domain Theory [8]. We may write z: X for z € X.

— Every metric space is a topological space whose open subsets are given by
unions of open balls B(z,8) £ {y|d(z,y) < 6}.

— O(S) is the set of open subsets of a metric/topological space S, C(S) is the
set of closed subsets, and P(S) is the set of all subsets.

— P(S) is the complete lattice of all subsets of S ordered by reverse inclusion,
which is the natural information order on over-approximations (thus, sups
are given by intersections and infs by unions). Similarly, C(S) is the complete
lattice of closed subsets of S ordered by reverse inclusion (sups are given by
intersections, but only finite infs are given by unions).

Contributions. The contributions of this short paper are:

1. A definition of imprecision in the context of metric spaces (Sect. 2), related to
the noise model in [7] and §-safety in [11]. The main point is that imprecision
makes a subset S of a metric space S indistinguishable from its closure S.

2. A notion of robustness [13] (Sect. 3) for monotonic maps A: C(S;) — C(Ss),

the restriction to closed subsets is due to indistinguishability of S and S.
3. Results about existence of best robust approximations [13] (Sect. 4).

2 Imprecision in Metric Spaces

Definition 1. Given a metric space S, with distance function d, we define:

1. B(S,8) £ {y|3a: S.d(x,y) < 6}, where S:P(S) and & > 0. Intuitively, B(S,0)
is the set of points in S with imprecision < §. B(S, ) is open, because it is the
union of open balls B(s,d) with s: S, moreover B(B(S,0),0") C B(S,d+¢").

2. S:C(S) is the closure of S:P(S), i.e., the smallest C: C(S) such that S C C.
For S:P(S) and § > 0 the following holds: S C S C B(S,6) = B(S,0). Thus,
in the presence of imprecision, S and S are indistinguishable.
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3. S5 B(S,9) is the d-fattening of S: P(S). Intuitively, Ss is the set of points
in S with imprecision < 4. In fact, B(S,6) C S5 C B(S,0") when 0 < 4§ < 4"

For S:P(S) the following holds: S = (550 B(S,0) = (5=0Ss. Thus, the

closure S is the set of points that are in S with arbitrarily small imprecision.
We consider some examples of metric spaces motivated by applications.

Ezample 1 (Discrete). A set S can be viewed as a discrete metric space, i.e.,
d(s,s") = 1when s # s'. Any subset S of S is closed and open. Thus, C(S) = P(S),
and S5 = S for § < 1. More generally, if Vs,s":S.s £ = § < d(s,s’), then
vS:P(S).S5 = S, i.e., an imprecision < § amounts to absolute precision.

Ezample 2 (Euclidean). Euclidean spaces R™ (and Banach spaces) are used for
modeling continuous and hybrid systems [9]. For C: C(R™), d-fattening has a
simpler alternative definition, namely Cs = {y|3z: C.d(z,y) < §}.

Ezample 8 (Products, sub-spaces, sums). The product Sy X S; of two metric
spaces is the product of the underlying sets with metric d(z, y) £ max di(zi,yi)-
1

A subset S’ of S inherits the metric, thus can be considered a metric space S'.
If S’ is also closed, then C(S§') C C(S) and the d-fattening of S:P(S’) is Ss N S’.

The sum [,.; S; of an I-indexed family of metric spaces is {(,x)]i: I Ax:S;}
with metric d((i,2),(j,y)) £ if i = j then d;(x,y) else 1. The following hold:
P(I1,.;Si) = [L.; P(Si), i.e., a subset in the sum 4s a sum [[, ;S; of subsets.
Similarly, C(I1,.;Si) = ],.; C(S;). Moreover, ([1,.; Si)s = [1;.;(Si)s for 6 < 1.

Remark 1. Usually the state space of a hybrid automaton [1] is a (finite) sum of
closed sub-spaces of Euclidean spaces. A hybrid system on a Euclidean space S
is a pair H = (F, G) of relations on S. Equivalently, H is a subset F'+ G of the
metric space S? + S2. Therefore, closure and J-fattening are applicable to hybrid
systems on S as well as to subsets of S.

3 Analyses and Robustness

We identify analyses with arrows A: Po(X,Y) in the category Po of complete
lattices and monotonic maps between them. The partial order < allows to define
over-approximations and compare them. We consider < as an information order,
thus: o < = means that x( is an over-approximation of z, z; < zy means that
x7 is a bigger over-approximation than xy (hence, less informative).

The complete lattice L < T of truth values, usually denoted X, is isomorphic
to P(1) with 1 being the singleton set {fail}, namely T (true) corresponds to ()
(cannot fail), while L (false) corresponds to {fail} (may fail). Safety analyses are
arrows A:Po(X,Y), and over-approximations may give false negatives.

Ezxample 4. Safety analysis for transition systems on S corresponds to the arrow
Sf: Po(P(S?) x P(S) x P(S), ) such that Sf(R,I,B) = T <= R*(I) and B are
disjoint, i.e., the set R*(I) of states reachable from the set I of initial states by
(finitely many) R-transitions is disjoint from the set B of bad states.



40 E. Moggi et al.

Complete lattices do not have the structure to quantify imprecision. Thus, we
restrict to complete lattices of the form C(S), with S a metric space, and use
o-fattening (Sect. 2) to bound imprecision. Namely, given an over-approximation
C’ of C: C(S), i.e., C C C’ (or equivalently C’ < '), we say that the imprecision
of C" in over-approximating C' is < ¢ PENYeS CcC C' C Cs.

For a metric space S, there is an adjunction in Po (Galois connec-
tion) between P(S) and C(S). In particular, every S:P(S) has a best over-
approzimation S:C(S). In other words, C(S) is an abstract interpretation of

P(S) [5].

Definition 2 (Robustness [13]). Given A:Po(C(S;),C(S2)) with S; and S,
metric spaces, we say that:

— A is robust at C <= Ve > 0.36 > 0.A(C5) € A(C)..
— A is robust <= A is robust at every C.

Robustness is a trivial property of analyses in a discrete setting (Ex 1).
Proposition 1. If S; is discrete, then every A:Po(C(S1),C(S2)) is robust.

Most analyses are not cast in the right form to ask whether they are robust, but
usually one can show that they have the right form up to isomorphisms in Po.

Ezample 5. We consider analyses for (topological) transition systems [6].

1. Reachability Rf g: Po(P(S),P(S)) for a transition system R on S is not a map
on closed subsets, but can be replaced by the arrow C +— Rfg(C) on C(S).
This is the canonical way to turn arrows on P(S) into arrows on C(S), but it
may fail to be idempotent. A better choice is the best idempotent arrow on
C(S) over-approximating Rf g, denoted Rsy and called safe reachability in
[13], i.e., Rsp(C) £ the smallest C’: C(S) such that ¢ C ¢’ and R(C") C C".

2. Reachability Rf: Po(P(S?) x P(S),P(S)) for transition systems on S. First, we
replace P(S?) xP(S) with the isomorphic P(S?+-S) (see Example 3). Second, we
proceed as done for Rf . In particular, we can replace Rf with safe reachability
Rs: Po(C(S?) x C(S),C(S)) for closed transition systems on S.

3. Safety Sf: Po(P(S?) x P(S) x P(S), ¥) is definable in terms of reachability Rf,
namely Sf(R, I, B) PN Rf (R, I)#B, where # is the disjointness predicate.
Any replacement for Rf induces a corresponding notion of safety, e.g., safe
safety Ss: Po(C(S?) x C(S) x C(S),¥) is Ss(R, I, B) <= Rs(R,I)#B.

Remark 2. An analysis A:Po(C(S1),C(S2)) is often robust at some C:C(S;),
but it is rarely robust at every C'. For instance, let R¢c be the diagonal relation
on C:C(R), which is a closed transition system on R, then

— Rspg,, is robust, since Rsg, (I) = I for every I: C(R);
— Rs is robust at (Ry, I) for every I: C(R), but
— Rs is not robust at (Rr,I) when () C I C R, because Rs((Rr)s,1) = R.
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Time automata are a special case of hybrid automata (e.g., see [12]), and
the latter are subsumed by hybrid systems [9]. Timed transition systems are
an abstraction for all these systems. In particular, there is an abstraction map
a: Po(P(S? +S?),P(T x S?)) from hybrid systems on (the Euclidean space) S to
timed transition systems on (the topological space) S, where T is the continuous
time line, i.e., the space of non negative reals [0, +00).

Ezxample 6. Reachability is not appropriate when time matters. For a timed
transition system R on S, a better analysis is evolution Ef g: Po(P(S), P(T xS)),
which gives the time at which a state is reached, namely Ef z(I) £ the smallest
E:P(T x S) such that {0} x I C E and {(t +d,s')|(t,s): E A (d,s,s'): R} C E.
By analogy with reachability, one can define Ef: Po(P(T x S?) x P(S), P(T x S))
and safe variants Es: Po(C(T x S?) x C(S), C(T x S)), and cast them in the form
required by robustness. Safe evolution can be extended to include asymptotically
reachable states Es: Po(C(T x S?) x C(S), C(T x S)), where T is [0, +o0].

4 Best Robust Approximations

Intuitively, when an analysis A: Po(C(S;),C(Ss)) is robust at C, A(C) is useful
also in the presence of small amounts of imprecision. This is obvious for analyses
A:Po(C(Sy),X), where robustness at C means A(Cs) = A(C) when 0 is small.

Definition 3. Given A:Po(C(S1),C(Ss2)), we say that:

~ A Po(C(S1),C(Sy)) is a robust approzimation of A <=
A’ is robust and VC.A'(C) < A(C).

— AP Po(C(S1),C(Sy)) is a best robust approzimation of A <=
A" s a robust approzimation of A such that A'(C) < AB(C) for every robust
approzimation A" of A and C.

Every arrow has a worst robust approximation, namely the map C' +— L, where L
is the least element in C(S3). There are A: Po(C([0, 1]), C(R)) that do not have a
best robust approximation (see [13, Ex 4.6]). When S; and S, are discrete metric
spaces, every A: Po(C(S;), C(Sy)) is robust, thus A” = A. We give conditions on
metric spaces implying existence of best robust approximations. The first result
applies to safety analyses and is related to the notion of robustness in [7, Def 2].

Theorem 1. If S, is a finite metric space, then A:Po(C(S1),C(S2)) has a best
robust approzimation AP given by AP(C) = ﬂ{A(C(;)|5 > 0}.

Proof. C(Sg) =P(S2) & X" is a finite complete lattice, when S, is a finite (and
necessarily discrete) metric space with n points. Therefore, A”: Po(C(S), C(S2))
robust at C' means that there exists § > 0 such that A’'(C) = A’(Cs).

Since {A(C5)|d > 0} is a chain in a finite lattice, there exists 6 > 0 such that
A(Cs) = A(Cs) when ¢’ < §. Let 6(C) be the biggest element in (0, +o0c] such
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that A(Cs/) = A(C5) when & < & < 6(C). Define AD(C) £ A(Cj) for § < §(C),
then A™ is monotonic, since A¥(C) = A(C;) < A(C%) < AP(C") when C < '
and ¢ < 6(C), and AY is a robust approximation of A, since

~ AB(C) = A(C5) < A(C) when § < §(C), and
— AB(C) = A(Cs) = AY(Cs)[= A(Cs/)] when &' < § < §(C).

Finally, A” is the best robust approximation of A, because A’(C) = A'(Cjs)

<
A(Cs) = A¥(C) when A’ is a robust approximation of A and § is small. O

Table 1. Safe and robust over-approximations of the set of reachable states.

H ]S s s, |s. S, | Sk

He | [0,1] 0 o | S; So | So
0<s<1|[s,1] |y Sy | Sy

hsp |[0,1] 0 So So So | So
0<s<1[(0,] |So So | So

Hr | {(z,y)|0 <z <y <1} (0,1) S7(0) | Sy Sg | Sy b=0
(01) | S°(b) ScwS(0) S. S, 0<b<l
o1 |81) | S S;|So b=l

For Hg and Hp we take Ho = (Fp, Go) with Fy = [0,1]x[—1,1] and G = [0, 1]°.
For Hr = (F,G) we take Ho = (F,Go) with Go = {(y,y)|y:[0,1]} x
{(0,9)|y: [0, 1]}, and we use the notation S(b) = [0,b] x [b] and S*(b) = U, S(b™)
for subsets of Sy.

The differences in the approximations of the reachable states are highlighted in
bold.

Theorem 2. IfS; and Sy are compact metric spaces, then A: Po(C(S1),C(Ss))
has a best robust approzimation A¥ given by AP (C) = ﬂ{A(C(;)|5 > 0}.

Proof. We refer to [13] for details of the proof. The key points are:

— if S is a compact metric space, then C(S) is a continuous lattice;
— if S; and Sy are compact metric spaces, then a map A’: Po(C(S;),C(Ss)) is
robust exactly when it is Scott continuous. g

5 Examples

We conclude by comparing different reachability analyses for three deterministic
hybrid systems H [9]:

‘Hg a quantity x grows according to ODE & = x when 0 < x < 1, and stays
constant when it reaches the threshold 1, i.e., = 0 when z = 1.
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‘Hp a quantity x decreases according to ODE & = —z when 0 < x < 1, and it is
instantaneously reset to 1 when it is 0, i.e., 27 = 1 when z = 0.

‘Hr a timer x grows while the timeout y stays constant, i.e., £ = 1&gy = 0 when
0 <z <y <1, when x reaches y it is reset and the timeout updated, i.e.,
2t = 0&y™ = by when 0 < x = y < 1 (with b constant in the interval [0, 1]),
moreover x+ = 0&yt =1 when 0 =z =y < 1, i.e., y is reset to 1.

Table 1 gives for each H above (and initial state s) the following sets:

- S £ Rfy(s) set of states reachable (from s) in finitely many transitions, S I
is always a subset of the set S of the states reachable in finite time;

- S, 4 Rsy(s) superset of S computed by safe reachability;

S Rs%(s) superset of S5 robust w.r.t. over-approximations of s;

~ Sp £ Rs” (H, s) superset of Ss robust w.r.t. over-approximations of H & s.

Note that S, depends on a compact subset Sy (over-approximating s and the
support of H), and Sk depends also on a compact hybrid system H, (with
support Sy and over-approximating H). In particular, Hy constrains the over-
approximations of H. The inclusions [s €]S¢[C S] C Sy C S, C Sg[C S| hold
always. We explain why some of these inclusions are strict.

~-H=Hg &s=0:5;=S5=S5, CS,, because any small positive change to s
causes the quantity to grow and eventually reach the threshold.

-~ H=Hp & s>0:S5; =5 C S, because safe reachability includes 0, which is
reachable only asymptotically (not in finite time), and any state in Rf;(0).

- H=Hr &s=(0,1) &0<b< 1l S CS =S5, because the system has a
Zeno behaviour, namely the state z = y = 0 is reachable from x =y =1 in
time b/(1 —b), but it requires infinitely many updates to the timeout y. Thus
Sy computes an under-approximation of what is reachable in finite time.

~-H=Hr &s=(0,1) &b=1: Sy =5 =5, C Sk, because the imprecision
in Hs means that y can be updated with any value y* in [max(0,y — §),y]
when 0 < 2 = y < 1. Therefore, = y = 0 is reachable in O(§~!) transitions.
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Abstract. The intuitionistic theory of the real interval [0, 1], known
as Skolem-Godel-Dummet logic (SGD), generates a well-known Heyt-
ing algebra intermediate between intuitionistic and classical logic. Orig-
inally of purely mathematical interest, it has recently received attention
in Computer Science, notably for its potential applications in concur-
rency theory. In this paper we show how the logical operators of SGD
over the discrete frame Z, extended by the additive group structure
(Z,0,4), provides an expressive and yet surprisingly economic calcu-
lus to specify the quantitative stabilisation behaviour of synchronous
programs. This is both a new application of SGD and a new way of
looking at the semantics of synchronous programming languages. We
provide the first purely algebraic semantics of timed synchronous reac-
tions which adapts Berry’s semantics for Esterel to work on general con-
current/sequential control-flow graphs. We illustrate the power of the
algebra for the modular analysis of worst-case reaction time (WCRT)
characteristics for time-predictable reactive processors with hardware-
supported multi-threading.

1 Introduction

Synchronous control-flow programming (SCP) extends standard imperative pro-
gramming by deterministic concurrency. This is achieved by forcing threads to
execute under the control of a logical clock in lock-step synchronisation, thereby
generating a sequence of global macro steps, also called logical instants or clock
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ticks. During each tick, threads use signals to communicate with each other. In
contrast to shared variables, signals are accessed using a synchronisation proto-
col which makes all writes to a signal happen before any read and the value read
to be a value uniquely combined from the values written. Programs that cannot
be scheduled in this way, tick by tick, are detected at compile-time and rejected
as mon-constructive. Synchronous programs can be compiled into sequential C
code, hardware circuits for parallel execution or multi-threaded assembly code.

The physical time spent by the running threads to compute the tick reaction
is functionally immaterial, because of the clock synchronisation. The functional
semantics of SCP is fully captured by the synchronous composition of Mealy
machines. The physical timing of a module can be ignored until it is compiled
and mapped to an execution architecture. Then it becomes crucial, however,
since the worst-case reaction time (WCRT) determines the correct physical syn-
chronisation of the compiled modules and the environment. This WCRT value
gives the maximal frequency of the clock and the minimal length of a reaction
cycle. Assuming an implementation on clocked instruction set processors, the
purpose of the WCRT analysis is to determine, at compile time, the maximal
number of instruction cycles in any tick.

This paper extends previous work by the authors [1,21-23,28] on the WCRT
analysis of imperative multi-threaded SCP code running on Precision-timed
(PRET) architectures. It discusses the Skolem-Gédel-Dummett intuitionistic
logic SGD[X] of formal power series for the cycle-accurate modelling of sequen-
tial and concurrent program behaviour. Formal power series arise from adjoining
an abstract variable X to build polynomials. This is the first time that SGD[X] is
presented as a component model, exploring its applications for modular analysis
and timing abstractions to trade efficiency and precision. The power of SGD[X]
is shown using the Esterel program in Fig. 1 as case study.

We believe the algebraic approach for WCRT analysis of SCP can be an
elegant and powerful alternative to other more combinatorial techniques, such
as those based on graph traversal [4,22], state exploration [17,30], implicit path
enumeration with integer linear programming (ILP) solving and iterative nar-
rowing [15,16,24,29] or timed automata [27]. The advantage of SGD[X] algebra
over combinatorial definitions of WCRT is that it combines timing and func-
tional specifications in a simple equational calculus. It permits us to study the
timed behaviour of SCP employing standard mathematical tools familiar from
linear and non-linear system theory. The logical interpretation of SGD[X] sup-
ports modular reasoning and timing abstractions at a fine-grained level. Existing
WCRT algorithms may be studied as decision procedures for specialised frag-
ments of SGD[X] algebra.

This paper ties up previous work of the authors spread over different publi-
cations which have not all used the same mathematical setting. By presenting a
single case study, covering all aspects studied separately before, this paper lays
out clearly the theoretical background of our approach in a new and uniform
way. Regarding the practical usefulness of the approach we refer to our other
publications, as cited herein. The relationship with the authors’ previous work
is discussed both as we go along and in Sect. 6.
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LO1: TO: PAR 1,G0,1
L02: PAR 1,H0,2
LO03: PARE Al
L04: GO: PRESENT [,G1
L05: EMIT R
o L06: G1: PRESENT 1,G3
LO7: GOTO G2
1 | [ % thread G vO fork L08: G3: EMIT S
2 present | then LO09: EMIT T
3 emit R L10: G2: EMIT U
4 end present;
5 present | else L11: HO: WABORT |, H1
6 emit S; L12: H3: PAUSE
7 emit T L13: EMIT R
8 end present; L14: GOTO H3
9 emit U; L15: H1: PRESENT E,H2
10 || L16: HALT
11 % thread H L17: H2: EMIT S
12 weak abort L18: NOTHING
13 loop
14 pause; L19: Al: JOIN
15 emit R L20:
16 end loop
17 when immediate |[;
18 present E then (d) KEP assembler
19 halt
20 end present;
21 emit S; Tick 1:
22 nothing; v16oin L01,L02,L03,
23 | ] L11,L12,
ILZ" L04,L06,L08,L09,L10,
L19
(a) Module M (c) CKAG Tick 2:
U T U T.L12,|-_13,L14,L12
T RT ick 3:
SRSSR L12,L13,L14,L12,
] L15,L17,L18,L19
E | | | |
7 T E E

(b) Exccution Trace (e) KEP sample trace

Fig. 1. A simple Esterel module M with its corresponding control-flow graph and the
resulting KEP Assembler (example from [13]).

2 Esterel-Style Multi-threading and WCRT Analysis

A representative example of a high-level SCP language is Esterel [3]. Esterel
signals are either present or absent during one tick. Signals are set to present
by the emit statement and signal state is tested with the present test statement.
They are reset to absent at the start of each tick. Esterel statements can be
either combined in sequence (;) or in parallel (||). The loop statement restarts
its body when it terminates. All Esterel statements complete within a single
tick, called (instantaneous) termination, except for the pause statement, which
pauses for one tick, and derived statements like halt (= loop pause end), which
pauses forever. Esterel supports multiple forms of preemption, e. g., via the abort
statement, which simply terminates its body when some trigger signal is present.
Abortion can be either weak or strong. Weak abortion permits the execution of
its body in the tick the trigger signal becomes active, strong abortion does not.
Both kinds of abortions can be either immediate or delayed. The immediate
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version already senses for the trigger signal in the tick its body is entered, while
the delayed version ignores the trigger signal during the first tick in which the
abort body is entered.

Consider the Esterel fragment in Fig. 1a, which consists of two threads. The
first thread G emits signals R, S, T depending on some input signal |. In any case,
it emits signal U and terminates instantaneously. The thread H continuously
emits signal R, until signal | occurs. Thereafter, it either halts, when E is present,
or emits S and terminates otherwise. The time line seen in Fig. 1b illustrates a
sequence of ticks in which the Esterel program module M in Fig. 1a is activated
twice by its execution context, first in tick 1 and then again in tick 4. Below
the horizontal line we list the input stimulus at each tick and above the line the
reaction output. The arrows indicate when the module is activated (below the
time line) and terminated (above the line).

PRET processing architectures have been proposed as a new class of general
purpose processors for real-time, embedded applications [7,8,19,26]. PRETs are
designed not only to make worst-case execution times predictable, but also to
simplify the derivation of this worst case through careful architectural choices.
There have also been a number of reactive processor designs dedicated to SCP
with instruction set architectures that can express concurrency and preemption
and preserve functional determinism [12]. Here we use the Kiel Esterel Processor
(KEP) [18], which allows a direct mapping from the control-oriented language
Esterel.

The KEP assembly code for our example module M is seen in Fig. 1d. KEP
handles abortion by watchers, which are executed in parallel with their body and
simply set the program-counter when the trigger signal becomes present. Syn-
chronous parallelism is executed by multi-threading. The KEP manages multiple
threads, each with their own program counter and a priority. In each instruction
cycle, the processor determines the active instruction from the thread with the
highest priority and executes it. New child threads are initialised by the PAR
instruction. The PARE instruction ends the initialisation of parallel threads and
sets the program counter of the current thread to the corresponding JOIN. By
changing the priorities of the threads, using PRIO instructions, arbitrary inter-
leavings can be specified; the compiler has to ensure that the priorities respect
all signal dependencies, i. e., all possible emits of a signal are performed before
any testing of the signal. For all parallel threads one join instruction is executed,
which checks whether all threads have terminated in the current tick. If this is
the case, the whole parallel terminates and the join passes the control to the next
instruction. Otherwise the join blocks. On KEP, most instructions, like emit or
entering an abort block, are executed in exactly one instruction cycle (ic). The
pause instruction is executed both in the tick it is entered, and in the tick it is
resumed, to check for weak and strong abortions, respectively. Note that the halt
instruction is executed in one ic. Priority changing instructions may be treated
like the padding statement nothing, which has no effect other than adding a time
delay.
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The KEP assembler’s control flow is represented in the concurrent KEP
assembler graph (CKAG) depicted in Fig.lc. The CKAG is an intermediate
representation compiled from the Esterel source Fig. 1a which, due to the nature
of the KEP architecture, retains much of the original Esterel program structure.
It is important to observe that the CKAG and the KEP assembler have a very
close and timing-predictable relationship. Hence, the timing of the KEP can be
back-annotated in the CKAG by associating WCRT weights to nodes and edges.
We distinguish two kinds of edges, instantaneous and non-instantaneous. Instan-
taneous edges can be taken immediately when the source node is entered, they
reflect control flow starting from instantaneous statements or weak abortions of
pre-empted statements. Non-instantaneous edges can only be taken in an instant
where the control started in its source node, like control flow from PAUSE state-
ments or strong abortions. The CKAG can be derived from the Esterel program
by structural translation. For a given CKAG, the generation of KEP assembler
(see Fig. 1c) is straightforward [4]. Most nodes are translated into one instruction,
only fork nodes are expanded to multiple instructions to initialise the threads.
In our example, the fork vy is transformed into three instructions (L01-L03).

3 Max-Plus Algebra and Skolem-Godel-Dummet Logic

A standard setting for timing analysis is the discrete max-plus structure over
integers (Zso,®,®,0,1) where Zy =g Z U {—00,+00} and & is the maximum
and ©® stands for addition. Both binary operators are commutative, associative
with the neutral elements 0 =4 —oo and 1 =4 0, respectively, i.e., z D0 =2
and x ® 1 = x. The constant 0 is absorbing for ®, ie., 0 =006z = 0.
In particular, —co ® +00 = —o0. Addition ® distributes over @, i.e., z ® (y ®
z) =z + max(y, z) = max(z + y,z + z) = (x © y) ® (vodotz). This induces on
Z oo & (commutative, idempotent) semi-ring structure. Multiplicative expressions
x ® y are often written xy and © is assumed to bind more strongly than &.
Extending Z to Z., weakens the ring structure, because the limit values +oo
and —oo cannot be subtracted. E.g., there is no x such that z ® 400 = 0.
There is, however, a weak form of negation, the adjugate x* = —x which is an
involution (z*)* = z and antitonic, i.e., x < y iff 2* > y*. The adjugate satisfies
x©a* € {0,1} and = ® z* = 1 iff x is finite, i.e., x € Z. The set Z is not
only an adjugated semi-ring but also a lattice with the natural ordering <. Meet
and join are z Ay = min(z,y) and = V y = maz(x,y), respectively. In fact, with
its two limits —oo and 400 the order structure (Z,, <, —00,+00) is a complete
lattice. The operators @, ® are monotonic and upper continuous. Note that ©®
is upper continuous, z ® \/, y; = \/;(z ® y;), but not lower continuous. Indeed,
+00 O \;ez —i = +00® —00 = —00 # +00 = \;c; +00 = A\, (+00 © —i).
Max-plus algebra is well-known and widely exploited for discrete event system
analysis (see, e.g., [2,10]). What we are going to exploit here, however, is that Z.,
also supports logical reasoning, built around the meet (min) operation and the
top element of the lattice (Z, <). The logical view is natural for our application
where the values in Z, represent activation conditions for control flow points, or
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measure the presence or absence of a signal during a tick. Logical truth, T = 400
indicates a signal being statically present without giving a definite bound. All
other stabilisation values d € Z codify timed presence which are forms of truth
stronger than T. On these multi-valued forms of truth (aka “presence”) the meet
A acts like logical conjunction while the join V is logical disjunction. The bottom
element | = —oo corresponding to falsity indicates that a signal is absent.

The behaviour of L and T, as the truth values for static signals follows the
classical Boolean truth tables with respect to A and V. However, like ® has no
inverse for the limit elements +o0o and —oo, there is no classical complemen-
tation for the finite truth values, i.e., those different from 400 and —oo. For
SCP, however, negation is important to model data-dependent branching, prior-
ities and preemption. As it happens, there is a natural pseudo-complement, or
implication D, turning the lattice Z, into an intuitionistic logic, or which is the
same, a Heyting algebra [5]. The implication D is the residual with respect to
conjunction A, i.e, x D y is the largest element z such that z A z < y. It can be
directly computed as follows: * Dy =y if y <z and z Dy = +oo if z < y.
Implication internalises the ordering relation in the sense that x D y = T iff
2 < y. Taking x = y as an abbreviation of (z D y) A (y D z), then two values are
logically equivalent x = y = T iff they are identical x = y. Implication generates
a pseudo-complement as ~x =4 x O L with the property that -z = T if x = L
and -z = L if x > —oo. There is also a residual operation © of ® so that
zOx <yiff z <y x. This is a weak form of subtraction so that yQx =y —=x
if both y and x are finite, yQz =40 if y=4occorx = -0 and yQz = —c0
if —oco =y <z ory<xz=400. One shows that for all z with z ©® z* = 1 we
have y QO x =y ® z*.

The logic (Zeo, T,L,A,V,D) is isomorphic to the Skolem-Godel-Dummet
logic [6] of the interval [0, 1] C R, which is decidable and completely axiomatised
by the laws of intuitionistic logic plus the linearity axiom (x D y)V (y D ). This
logic, which we name! SGD, has played an important role in the study of logics
intermediate between intuitionistic and classical logic. It has recently received
attention for its applications in Computer Science, notably as a semantics of
fuzzy logic [11], dialogue games [9] and concurrent A-calculus [14].

For our application of SGD, both its semi-ring (Zs,®,®,0,1) and intu-
itionistic truth algebra (Zs, L, T, A, V, D) structure are equally important. The
former to calculate WCRT timing and the latter to express signals and reaction
behaviour. To state that a signal a is present with a worst-case delay of 5 ic we
can write the equation a & 5 = 5 or the formula a D 5. That ¢ becomes active
within 5 ticks of both signals a and b being present is stated by the formula
c¢D (5® (aVb)). Every SGD expression is at the same time the computation of
a WCRT and a logical activation condition.

! Dummett (1959) calls it LC, yet Skolem (1931) and Gédel (1932) studied LC earlier.



WCRT Analysis for Synchronous Multithreading 51

4 Max-plus Formal Power Series

To capture the behaviour of a program along sequences of macro ticks, we extend
the adjuagated semi-ring Z., to formal power series. A (maz-plus) formal power
series, fps, is an w-sequence

A:@aiXi:a0®a1X€Ba2X2@a3X3~-~ (1)

i>0

with a; € Zo, and where exponentiation is repeated multiplication, i.e., X° =1
and X*1 = X X* = X ® X*. An fps stores an infinite sequence of numbers
ag,a1,as,as, ... as the scalar coefficients of the base polynomials X*. An fps A
may model the time cost a; for a thread A to complete each tick i, to reach a
given state A or to activate a given signal A. If a; = 0 = —oo this means that
thread A is not executed during the tick ¢, or that a state A is not reachable.
This contrasts with a; = 1 = 0 which means A is executed during tick ¢ with
zero cost, or that the state A is active at the beginning of the tick. If a; > 0
then thread A is executed taking at most a; time to finish tick i, or state A is
reached within a;-time during the selected tick. We evaluate A with X = 1 for
the worst-case time cost A[1] = maz{a; | i > 0} across all ticks.

Let Z[X] denote the set of fps over Z.,. For a comprehensive discussion of
formal power series in max-plus algebra the reader is referred to [2]. Constants
d € Zs, are naturally viewed as scalar fps d = d ® 0X © 0X2? @ ---. If we want
d to be repeated indefinitely, we write an underscore d = d & dX ® dX?---.
For finite state systems the fps are ultimately periodic. For compactness of
notation we write, e.g., A = 1:2:1:4 for the ultimately periodic sequence sat-
isfying A = 2X ® 1X2 @ X3B and B = 4 @ XB. The semi-ring and logi-
cal operations x € {®,0,V,A,D, S} are lifted to Z.,[X] in a tick-wise man-
ner, Ax B = @,-q(a; x b;) X" and negation is A = @,., ~a;X"*. For mul-
tiplication ® there are two ways to lift. First, the tick-wise lifting A ® B =
@D, (a; ©b;) X" models multi-threaded parallel composition. It executes A and
B synchronously, adding the tick costs to account for the interleaving of instruc-
tions. The other “lifting” is convolution A® B = @5 @®,_;, 14, (@i, © biy) X
modelling a form of sequential composition. A special case is scalar multiplication
dOA=@,~,(d®a;)X" =d® A. The structure (Zo[X],0,1, 8,0, ®,®) forms
a semi-ring for both “multiplications” ® and ® and (Zeo[X], L, T, A, V, D, ) is
a tick-wise Skolem-Godel-Dummett logic. To stress the logical interpretation we
will denote both as SGD[X] in the sequel.

5 Equational Specification of Synchronous Control-Flow

We now go on to illustrate the application of SGD[X] to specify the sequential
control flow of our running example in Fig. la. We first focus on the thread H
consisting of the fragment of nodes vg—vy5, seen in Fig.2. All edges are instan-
taneous except the edge L13 out of vg, see below.
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+ HO Esterel Program H:
weak abort
loop
pause;
emit R
end loop
when immediate |;
present E then
9 halt
10 | end present;
11 | emitS;
12 | nothing;

vg wabort [

H3

o B S

|v12 present E| |U10 emit R|

L16 =
v H2 L14 Y

|v14 emit S| | v11 goto |

(b) Esterel

KEP FRAGMENT H

L11: HO: WABORT | H1
L12: H3: PAUSE

L13: EMIT R

L14: GOTO H3

L15: H1: PRESENT E,H2
L16: HALT

L17: H2: EMIT S

L18: NOTHING

KEP bl
(a) KEP Assembler Control Flow Graph (CKAG) () assembier

Fig. 2. The synchronous thread H.

Let us assume that each of the basic instructions take 1 instruction cycle
(ic) regardless of how they are entered or exited. This is a simplification of the
situation in the KEP processor where the delays may be different. We also gen-
erally assume, for convenience, that the code has been checked for causality and
that the control flow respects the signal dependencies. This means for the timing
of signal communication that input signals may be treated as static booleans,
satisfying the axiom ——a = a, or equivalently a V —a = T, for a € {E, I}.

We calculate the time delay to reach a given node A from HO for each tick.
More specifically, let V the set of control primitive variables and A € V. We
identify A with the fps specifying the instants in which the control flow reaches
the control point A. The timing value A[i] at tick ¢ then is the maximal waiting
time to reach A in tick i. If A[i] = L = —oo then A cannot be reached in this
tick. If we are not interested in the time when A is activated but only whether
it is reached, then we use the double negation —=—A. This abstracts from the
absolute costs and reduces A to a purely boolean clock. Sometimes it is useful to
abstract not to a boolean but an arithmetic clock that is 1 when A is present and
1 when it is absent. This collapse is done by the operation tick(A4) = 1 A ~—A.

From Fig. 2 we see that edge L12 is reached instantaneously in each tick in
which control reaches the start edge HO, and this is the only way in which L12
can be activated. This can be expressed by the equation

L12=16 H0=1® HO0. ()
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In each tick, the activation time of L12 is 1 instruction cycle (ic) larger than that
of the upstream edge H0. The conditional branching through node v12 depends
on the status of (static) signal E. In forward direction, the node v;2 is:

H2= (10 H1)A-E L16=(10HI)AE (3)

The left equivalence states that H2 is active in a tick at some ic t iff F is absent
and H1 was active 1 ic earlier. Analogously, L16 is active iff H1 was active one
ic before and F is present. Algebraically, the equalities can be used to compute
H2 and L16 from H1 and E.

Next, consider the pause node vg. It can be entered by two controls, the line
number L12 and the program label H3 and left via two exits, a non-instantaneous
edge L13 and an instantaneous exit H1 (weak abortion). When a thread enters
vg then either it terminates the current tick inside the node if I is absent or
leaves through the weak abort H1 if I is present, thereby continuing the current
tick, instantaneously. A thread entering vg never exits through L13 in the same
tick. On the other hand, if a thread is started (resumed) from inside the pause
node vg then control can only exit through L13. Algebraically, we specify the
pause node as follows:

Hl=(1®(L12® H3)) AT (4)
L13 =16 X O tick(~I A ~=(L12 & H3)) (5)

Equation (4) captures that if a set of schedules activates H1 then signal I must
be present and one of L12 or H3 must have been activated 1 ic earlier. Since
we are interested in the worst-case we take the maximum. Equation (5) deals
with the non-instantaneous exit L13 from the pause. The control flow must first
pause inside node wvg. This happens in each tick in which one of L12 or H3 is
reached and I is absent. These instants are specified with boolean coefficients
by the sub-expression C' = —I A =—(L12 @ H3). The operator tick translates
these pausing instances into the neutral element for sequential composition ©.
Specifically, tick(C) = 1L A =—C forces a coeflicient C' = T = +o0o describing
presence to become tick(C') = 0. On the other hand, C = L = —oc for absence
remains unchanged, tick(C) = L. Finally, the delay 1 ® X shifts the whole time
sequence by one instant and adds a unit delay. This unit delay is the cost of
exiting the pause node at the start of the next tick.

The second node with memory behaviour in thread H of Fig.2 is the halt
node v13. Once control flow reaches vy3 it pauses there forever. Using the auxil-
iary controls in(vi3) and out(vy3) for pausing inside v13 and resuming from it,
respectively, we get

in(viz) =10 (L16 ® out(v13))  out(viz) =10 X O tick(in(viz)).  (6)

The left equation specifies the external entry L16 and the fact that exiting the
pause immediately re-enters, with 1 ic delay. The right equation states that if
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the pause is entered it is left in the next tick. Finally, here is the remaining part
of H’s sequential control flow:

L14=1®L13 H3=10L14 (7)
L16 =10 (HLAE) L18=1® H2 L19=16L18  (8)

Well, not quite, we are missing the output signals emitted into the environment.
Output responses are generated by thread H in nodes vyg and v14 as implications

R>D>16L13 $516 H2 (9)

assuming a unit delay between activating the emission statement and the appear-
ance of the signal. The implications express only upper bounds R < L13+1 and
S < H2 + 1 on the emission of signals R and E. This permits other threads
concurrent to H also to emit them, possibly at an earlier time.

The Eqgs. (2)—(8) form a recursive equation system with independent vari-
ables HO, I and E. The recursive dependency of variables L13, L14 and H3 on
themselves is guarded by the X operator. Hence, for each fixed choice of the inde-
pendents HO, I and FE, all the dependents L12-L19 and H1-H3 can be solved
uniquely. Let us go though the motions to see how this works. To power up the
system as in example trace Fig. 1b we activate the start control HO in the first
and again in the fourth tick, with initial delay of 3 to account for the upstreaming
fork, HO = 3:1:1:3:L. Signal I is absent initially and then present every second
instant, and F is present every fourth tick, I = L: 1:(T@I)and E = T:1:1: 1:E.
Note that =1 = T:T:(L:T A —I) = T:T:L:T:(L:T A —=I). First, it follows
L12=10H0=4:1:1:4:1. From (7) weget H3 = 160L14 = 160160L13 = 20L13
and so Eq. (5) becomes

L13 = f(L13) =10 X O tick (-1 A ——(4:L:1:4: L @ (20 L13))).  (10)

This is solvable by least fixed point iteration starting with L13g = L for which
we get L13; = f(L13p) = L:1:1:1:1:L. The second iteration through (10)
yields L139 = f(L137) = L:1:1:1:1:L which is already the fixed point, L13 =
L135 = f(L133). The solution L13 = 1:1:1:1:1:L corresponds to the trace in
Fig. 1b with the WCRT value guaranteeing L13 is always reached 1 ic after the
beginning of the tick. The closed solution for L13 generates a closed solution
for L14 and H3 by simple substitution, viz. L14 = 1 ® L13 = 1:2:2:1:2:1
and H3 = 1® L14 = 1:3:3:1:3: L. Similarly, we obtain H1 from (4), Hl =
1o (I AN(L12@ H3)) = L:1:4:1:4: L. Indeed H1 is activated exactly in ticks 2
and 4 with a delay of 4. Since E is absent in tick 2 but present in tick 4, control
moves to H2 the first time and to L16 the second time: The equations give
H2=10(HIAN-E)=106 (L:L:4:1:4:1L A L:T:T:T:-E) = L:1:5:L. Finally,
for L16 we have L16 =10 (HIAE) = L:1:1:1:5:L.

To sum up, Egs. (2)—(8) describe the cycle-accurate semantics of thread H
in Fig. 2. It is timing and causality sensitive and fully parametric in environment
signals. Note that the algebraic specification method outlined in this section is
completely uniform and generalises to arbitrary CKAG concurrent control-flow
graphs.
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5.1 WCRT Component Model

The specification technique described above is
fully expressive for Esterel-style synchronous
control flow. It is compositional at the level
of the primitive controls of the flat control
flow graph. It is not modular, however, as
it does not permit structural abstraction. An
axiomatic specification language that permits
behavioural abstraction for timed synchronous
components, called (first-order, elementary)
WCRT-interfaces has been proposed in [22]. Tt
i§ based‘on realisability sem@ntigs for construc- paths: through path (a), sink path
tive logic and was formalised in [21]. These (b), source path (c), internal path
interfaces capture the purely combinational (d) (taken from [22]).
behaviour CKAGs, i.e., single ticks. They do

not describe the sequential dependencies across sequences of ticks. By translat-
ing the model of [21,22] into SGD[X] algebra we now extend WCRT interfaces
for a full semantics of synchronous components.

The key for modularity is to move from primitive control variables V to a
description based on (synchronous) reactive blocks. Figure 3 depicts a program
fragment T abstracted into a reactive block with entry and exit controls. The
paths inside T seen in Fig. 3 illustrate the four ways in which a reactive block
may participate in the execution of a logical tick: Threads may (a) arrive at some
entry control (;, pass straight through the block and leave at some ezit control
&k; (b) enter through ¢; but pause inside in some state control in(o;), waiting
there for the next tick; (c) start the tick inside the block from a state out(o;)
and eventually (instantaneously) leave through some exit control &, or (d) start
and pause inside the block, not leaving it during the current tick. These paths
are called through paths (a), sink paths (b), source paths (c) and internal paths
(d), respectively.

Each block T is described by a multi-dimensional WCRT system function in
SGD[X] viewing it as a Mealy automaton over control variables. Let us suppose
for the moment, that the block 7" has only one entry (, one exit £ and one
state control . The system function for such a block is given as a forward
transformation matrix 7" which connects the logical interface controls in the
{®, ®}-fragment of SGD[X]:

(60) =7 (i) = (BT o (o) 0

All entries of the matrix are logical time series describing the tick-wise WCRT
behaviour on the four types of control paths: T.thr for the through path, T.snk
for the sink paths, T.src for the source paths and T.int for the internal paths.
Blocks T' with more than one entry, exit or state controls have a system matrix

Fig. 3. The four types of thread
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T with more columns and rows, accordingly. Unfolding the matrix multiplica-
tion (11) we get the SGD[X] equations

&= (T.thr ® ¢) ® (T.src @ out(0)) (12)
in(o) = (T.snk @ () ® (T.int ® out(o)) (13)

The Eq. (12) determines the timing at exit £ as the tick-wise worst-case @ of two
contributions, those activations arriving from entry ¢ increased by the weight
of the through path T.thr and those arriving from a state control out(o) inside
T increased by the weight of the source path T.src. The increase is achieved by
® in SGD[X] which is the tick-wise addition ® in SGD. In an analogous way,
Eq. (13) captures the activities arriving at the state control in(c) which may
also come from entry & or a state out(o). It is useful to split (11) column-wise

(& in(o))T = ((T.thr T.snk;)T ®¢) ® ((T.src T.int)T ® out(o)). (14)

thereby obtaining what are called the surface and depth behaviours T.srf =
(T.thr T.snk)T and T.dpt = (T.src T.int)T, which can be manipulated sepa-
rately.

The Eq. (11) expresses the purely combinational behaviour of T. The passage
from one tick to the next arises by coupling out(T') and in(T') through the register
equation

out(T) =10 X © tick(in(T)). (15)

Note the generality of the pseudo-linear system model (11). All matrix entries
T.thr, T.src, T.snk, T.int and the input and output variables ¢, out(c), £ and
in(o) may be arbitrary SGD[X] expressions involving arithmetical and logical
operators. For instance, the main thread 7" of Fig. 1c has state control such as
—L11 Ain(vg), capturing ticks in which child H is pausing in node vg while
child G has already terminated in a previous tick, whence L11 has value L, and
a fortiori, all other nodes v in G satisfy —w, too. In this way, the Eq. (11) can
specify both the temporal and the logical behaviour of block T'. This will become
clear in the next section.

5.2 Module Abstraction

Pseudo-linear specifications like (11) generalise to composite blocks what the
Egs. (2)—(8) do for primitive controls. The vector formulation can be applied as
a component model at various levels of abstraction.

For instance, take the pause node vg in Fig.2 as a primitive block with the
“forward” Eqs. (4) and (5). It has entry controls L12, H3 and exit controls H1
and L13. The auxiliary controls in(vg) and out(vg) express conditions for pausing
inside the node and for exiting it, respectively. As shown below, Eqgs. (4)—(5)
induce the surface and depth behaviours vy = (vg.srf vg.dpt) with

(H1L13 in(vg))T = (vg.srf @ (L12 H3)T) ® (vg.dpt @ out(vg))  (16)
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IANT 1IANT L
vg.srf = | L L vg.dpt = | 1 (17)
=7 =7 L

Notice how the entries combine timing with logical conditions. In particular,
the constant _L indicates where control flows are absent. If we unfold the matrix
multiplications in (16) together with (17) we get the following explicit equations:

Hl=(1IAND)®L12)® (LAI)® H3) ® L out(vg) (18)
L13= 1 L12& 1 H3® 1 out(ve) (19)
in(vg) = (-1 ® L12) ® (-1 ® H3) & L out(vy). (20)

slightly simplified using the law d ® x = dx. The first Eq. (18) can be seen as
logically equivalent to (4) considering a number of laws, such as L ©® ¢ = L,
r® L=z (dox)ANI=(dANI)® x for static signal I, and that both ® and
A distribute over @. Also one shows that (19) and (20) in combination with the
register equation out(vg) =1 ® X @ tick(in(vg)) is the same as (5).

At a higher level of the component hierarchy we can consider thread H in
Fig.2 as a composite block. Its behaviour is given by the global 3 x 3 matrix

L19 SANIN-FE TAIN-E L HO
in(vg) | = 2A~1 4N-1 L] ® | out(ve) (21)
in(v13) ANINE 6ANINE 1 out(v13)

which is the exact behavioural description of H equivalent to the Egs. (2)—(8),
solely in terms of the external controls and the internal states vg and v13.

From here we may reduce the complexity and precision in various way. For
instance, we may abstract from the state information, working with a single state
control in(H) = in(vg) ®in(vi3) and out(H) = out(vg) ® out(v13). This collapse
is a “base transformation” achieved by pre- and post-multiplication of H with
suitable matrices. Specifically, the expansions

() = (48 e (o ) (o) = (12 ()

permit us to approximate (21) via a 2 x 2 matrix H;

(L19in(H))" < Hy ® (HO out(H))" (22)
S5ANIN-FE ININ—-FE
H1=<(2Aﬁ)@(4MAE) <4Aﬁf)@<6AIAE>> (23)

Let us suppose we know that input signals E and I are always opposite values.
The associated invariant I = —FE and —I = E implies tAIAN-F = 2 A—FE as well
asz® (YAIANE) =xz® L = x. In a next step we may decide to give up tracking
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L5
i A\l
So
G1i
L6

vy emit U : i

L1l j L y Li1

(a) Path Decomposition (b) Net Decomposition  (¢) Bundle Decomposition

Fig. 4. Different structural decompositions of thread G

signal E, abstracting from its value with the over-approximations z A = F < x
and x A E < z. This yields a sequence of approximated behaviours

H<H =Hy =y <5AﬁE 7AﬁE>< (5 1

S < (3 4) — Hs. (24)

There are further combinatorial optimisations possible that can be justified alge-
braically in SGD[X]. For instance, the WCRT algorithm [4] reduces the dimen-
sions of the surface and depth behaviours each by one. This exploits the fact
that every schedule reaching in(H) is pausing inside H and thus cannot be
extended to a longer instantaneous path of H. In other words, all paths that
have length at least 1 ® in(H) must be going through L19. Logically, this is
the axiom L19 @ din(H) = L19 for all d > 1. Under this assumption, the two

systems
(i) = G £ (uatzn)  9=6D® (outan)

are equivalent. This reduces the WCRT specification further from Hs to Hy =
(5 Z) without loss of precision. The algorithm [4] exploits this interface optimi-
sation aggressively, at all levels. This renders the analysis of parallel composition
particularly efficient, as we shall see in Sect. 5.3.
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In more recent work a differ-
ent abstraction via so-called tick cost (L5> _ (1/\I
automata (TCA) has been proposed [28]. G1)  \1A-I
It abstracts from signal dependen- G2
cies like [4], but preserves the depen- L11= 1l)® ( Ll())
dency on state controls. Also, it is (L?) (1/\] 1/\1) (LG)
assumed that there are no through = ®
paths Ty, = L (Moore automaton) G3 IA=TIAST Gl
and the unique entry control ¢ is G2=1Q® L7
connected to a single state so with =1 L5
zero cost. These refstrictions are with- L9 :i 2 G3
out loss of generality as they can be
achieved by judicious block decompo-
sition. We can understand TCA in
terms of SGD[X] using abbreviations Fig. 5. Basic blocks vi—v7 of thread G.
in(s) = (in(so) n(s1) -+ in(sp—1)T
and out(s) = (out(sg) out(sy) --- out(s,—1))T for the state controls vec-
tors. The general system equations then are £ = Tepit ® out(s), and in(s) =
Tiick ® out(s) together with the entry in(sp) = ¢ and the register equation
out(s) = X tick(in(s)). These system equations in which T,,;; and Ty, consist
of scalars Z, are solved by numeric fixed point iteration. The work [28] imple-
ments these operations using max-plus algebra and explicit normal form TCAs
representing the ultimately periodic system solutions.

) oo

L1I0=1® L9

5.3 Module Composition

SGD[X] permits compositional specifications at different abstraction levels using
(max-plus) pseudo-linear transformations. This is the key for dynamic program-
ming techniques and suggests the composition of blocks by matrix multiplication.
Depending on how we apply the algebra we can implement different strategies for
practical WCRT analysis. We illustrate this for our example program in Fig. 1c.
The starting point is the block description of thread G seen in Fig. 5.

Path Decomposition. The naive strategy would be to enumerate all paths
from GO to L11, sum up the delays on each path and then take the maximum.
Each of these paths defines a sub-graph of G with specific side-inputs and side-
outputs. For instance, path p; as indicated in Fig. 4a has the side-outputs G1,
G3 and side-inputs G1, L10. Its SGD[X] reaction function (G1 G3 L11)" =

D, ® (GO L10 Gl)T has the system matrix in Fig. 6.
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The entries measure if and how p; con-

nects the respective controls. For instance, the In=-r L L
entry 3 A I A —I is the delay between input Dy=(3AIN—T % 13/\ }[
1 3N

G0 and output G3. This segment (see Fig. 4a) aNnI
has delay 3 but is only sensitisable if signal I
is simultaneously present and absent. This is
impossible since 3 A I A =1 = 1. The entries
L in D, capture that there is no causal con-
trol flow from the corresponding input to the corresponding output line. D; can
be obtained by successively multiplying (in fps max-plus algebra) the timing
matrices of the individual nodes traversed by p;.

If we are not interested in all combinations of side-inputs and side-outputs
we can reduce the matrix D;. The side-inputs G1 and L10 are eliminated
by selecting only the first column of Dy, i.e., D} = D; ® (Q;;)T, so that

(Gl G3 Lll)T = D} ® GO. Getting rid of the side-outputs G1 and G3 is not so
simple. We cannot simply drop the rows and write L11 = (5 A I) ® GO. This
would be unsound since not every execution of path p; exiting from L11 must
necessarily originate in GO and imply that I is present. What s correct, is to
say that L11 is equivalent to (5 A I) ® GO if neither side-output G1 or G3 ever
becomes active is the set of control flows determining the WCRT. Formally, this
is (FG1 A —=G3) D (L11 = (5 A I) ® GO). Calculating all other paths through G
in a similar fashion finally obtains:

Fig. 6. System matrix for path p;.

p1: (AG1 A =G3) D (L11 = DY @ GO) DY =(BAI)

ps : (WG1A=L7) D (L11 = D5 ® GO) DY =(6ANINA-I)

P4 : (ﬁL5 AN ﬁL7) D (Lll = DZ & GO) DZ = (5/\ ﬁ]). (28
The path schedules (25)—(28) can now be woven together in SGD[X] algebra to
obtain the final result L11 = D ® GO where D = DY & D4 & DY & D} = 5. For

this we exploit, among other laws, that I A= = L, I & -1 = T as well as that
z; O (L11 = y;) implies ®;x; D (L11 = dy;), and the equation

(25)

p2 i (AL5 A =G3) D (L11 = DY ® GO) Dy =(A4NIN—I) (26)
(27)

)

(-G1A-=G3) ® (L5 A-G3) & (-G1A-LT) @ (-L5A-LT) = T.

The latter is a consequence of the fact that G is single-threaded: Each activation
must make a split decision for either exit L5 or G1 at node v and for either L7
or G3 at node vs.

Weaving Nets. WCRT analysis by path enumeration, though sound, is of
worst-case exponential complexity. A more efficient way of going about is to
exploit dynamic programming. In the following we illustrate this process in
SGD[X] algebra using the net decomposition of G seen in Fig.4b. The strat-
egy is to propagate WCRT information forward through G, composing sub-nets
N1, N2, N3 rather than paths.
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We obtain the system matrix of N1 first by combining the matrices of v; and
v from Fig. 5. To compose them we first lift vo as an equation in L5 and G1 to
get L6 = 1L5® LGl = (1 L) ® (L5 G1)". Since G1 = (L 0) ® (L5 G1)" we
can compose with equation v1:

(@)= (15)= (1) = (1)« () o= (B0 5 o e

In a similar fashion one obtains the specifications of sub-blocks N2 and N3:

Gﬁ)‘(ﬁfﬂfﬁi)®<é® LU—41$®<g®- (30)

If we compose the three sub-nets N1, N2, N3 in sequence, our schedule of GG all
the way from entry point GO to exit L11 is complete:

L11:<13)®(2/\I 2/\[) (2/\[

IA-T1A-T 1/\—|I> G0 =5G0. (31)

This is indeed the weight of the longest path ps through G.

Bundling Abstractions. There are of course other ways of arriving at the
WCRT, corresponding to different network decompositions of G. It is also pos-
sible to condense the timing information by bundling the inputs and outputs
of N1, N2, N3 before they are composed. For instance, one might decide to
compress the system equation for N1 into a single entry-exit delay N1’ specified
as L6 ® G1 = d GO which gives the maximal delay d for an execution entering
through GO to come out at L6 or G1, without distinguishing between paths
exiting on L6 and those exiting on G1. This is applied also to N2 and N3 as
indicated in Fig. 4c.

Algebraically, this compression is justified for N1 by pre-composing with
(0 0) which yields L6®G1 = (00)® (L6 G1)T = (00)® (2A T LA -1)T®GO0 =
2AT®1A-I)® GO. For N2 and N3 we also need compression on the input
side. For N2 this is possible without losing precision and for N3 we need the
approximation (G2 G3)" < (00)"®(G2® G3). We get approximations N2 and
N3’ from (29) and (30):

2AT 2AT L6\
GQ@GB(OO)®(1Aﬁ11AﬁI>®<G1) =Q2AI®1A-I)(L6D GL)

-y () <03 (f) @0 -sG200

Composing N1/, N2', N3’ is more efficient than composing N1, N2, N3 since
it involves only scalars rather than matrices.

Parallel Composition and WCRT Analysis. The main thread T in Fig. 1c
is the parallel composition of threads G and H, synchronised by the fork and join
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nodes vy and v14, respectively. Even without reducing threads G and H to their
externally observable system functions (21) and (31) we can compose them in
parallel. All we need are equations for the fork and join nodes. The fork node vg
activates both GO and HO, when it is reached, taking 3 ics (2 PAR and 1 PARE,
see Fig. 1d):

(Go HO)" = (33)" ® T0. (32)

The join node v becomes active as soon as one of G or H reaches its termination
control. The join finishes its activity in the tick when both have arrived. It then
passes control and reactivates the parent at L20. At each input L11, L19 the
join behaves like a synchroniser with latching behaviour. We define the operator
sync(C, R), which waits for C' to become active at which point it inherits the
cost of C. From the next tick onwards it takes a constant cost?, say 2 ics, until
it is reset by R. This leads to the recursive definitions

sync(C,R) = ~XRA (C® X (2 A —~—sync(C, R))) (33)
L20 = sync(L11, L20) ® sync(L19, L20) (34)

where L20 adds up the delays from both threads by ® in line with the multi-
threading model of execution.

The equations (32)—(34) for fork and join are a surprisingly simple and com-
positional way of specifying timed concurrent structures. To illustrate let us
revisit our sample simulation from Sect. 5 (see also Fig. 1b). The threads G and
H arrive at their termination points with L11 = 6:1:1:6: L and L19 = 1:1:7: 1,
respectively. Thread G terminates in tick 1 and 4 while H finishes only in tick
3. The cost arising from synchronising G is sync(L11, L19) = 6:2: 1:6:2 which is
6 at G’s first termination time, then 2 while waiting for H, again 6 at the next
re-entry in tick 4, when G terminates a second time. But since then H never
terminates, the join stays active, generating cost 2 in each subsequent tick. On
the other side we have sync(L19, L11) = 1:1:7:L, which is the completion time
for H. There are no extra cost as H does not need to wait for G. The output of
the join has cost L20 = 1:1:9:L which at termination in tick 3 combines the 7
ic cost from H plus 2 ic overhead for the join.

We are now nearly complete with our story. The equations tells us for each
stimulation environment and control v € V if and when v is reachable in any tick.
The equations can be used for formal analysis, compiler verification, program
transformations, timing-accurate simulation or even directly for implementation.

Here we are interested in obtaining the total WCRT of a program. When
concurrency is present, the WCRT of a thread ¢ is not the WCRT of any single
control, but the WCRT of a set of controls. It is the worst case cost, over all ticks,
of any set of controls that are potentially concurrent in t. A set of controls C C V
is concurrent, written conc(C), if all its elements belong to different child threads.
For instance, {L11, L14} is concurrent but {L6, L11} is not. Concurrent controls

2 In the KEP processor the join is executed at each tick until both threads have
terminated, during which time it invokes some constant overhead cost.
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execute in independent KEP hardware threads which are interleaved, whence
their costs are added. In the search for such C we may restrict to the completion
controls ¢cmpl(t) of a thread t. These are the controls in which ¢ may terminate
or pause. For instance, cmpl(G) = {L11} and empl(H) = {in(ve), in(vis), L19}.
For parent threads these must be included, i.e., we have empl(T) = cmpl(G) U
empl(H)U{L20}. The control L20 describes the situations in which T terminates.
The controls in ¢mpl(G) are concurrent to those in empl(H) and vice versa. None
of them is concurrent with L20 which happens in their parent.

The worst case reaction time wert(¢) of a synchronous program ¢ the maximal
sum of WCRT of any set of concurrent completion controls in any tick,

wert(t) = max{(@ v)[1] | C C empl(t), conc(C)}, (35)

veC

where (Q,ccv)[1] = maz{Q,ccv(i) | i > 0} = maz{d e v(i) | i > 0}.
Explicit solutions of (35) are non-trivial as it maximises over an infinite number
of ticks ¢ and choices of sets C whose number may grow exponentially with the
number of threads. We do not know of any algorithm to solve (35) in its general
form, yet solutions exist for special cases.

For normal clock-guarded synchronous programs the fps v are rational and
thus can be represented as finite input-output tick cost automata, called 10-
BTCA [23]. A given sum @), . v of controls can then be obtained by synchronous
composition of automata. This is a well-understood construction, though it
requires symbolic reasoning on boolean signals and is subject to the state-space
explosion problem. The period (number of states) in the fps v; ® v2 may be the
product of the periods of v; and vs. The automata-theoretic approach has been
explored in [25] for timed concurrent control flow graphs TCCFGs (similar to
CKAGs) using UPPAAL, but it does not scale well.

The situation is simpler for autonomous systems without input signals, which
reduce to ultimately periodic sequences over Z.,. Any I0-BTCAs can be over-
approximated to an autonomous system, called tick cost automaton TCA, by
eliminating signal dependencies, as discussed in Sect. 5.2, replacing each refer-
ence to a signal S or its negation —S by T. Such approximations are sound
but ignore inter-thread communication. The advantage is that the autonomous
case of (35) can be translated into an (0/1) ILP. This implicit path enumeration
(IPE) technique for WCRT analysis yields much better results [29] compared to
the automata-theoretic approach.

The IPE approach has been considered the most efficient technique for
autonomous approximations until recently, when explicit algebraic solutions
for (35) have been attempted. In [23] it is observed that for the natural class of
so-called patient TCA the computation of the normal form for each v is polyno-
mial. This reduces the problem of computing the tick-wise additions ), v for
ultimately periodic sequences v to the tick alignment problem studied in [20,23]
which can be solved using graph-theoretic algorithms. This has led to signifi-
cant speed-up in the original ILP implementation of [29]. Still, even under signal
abstraction, the theoretical complexity of computing the periodic normal form
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of a control v € empl(T) and solving the tick alignment problem remain open
problems. Rather interestingly, recent experiments implementing the explicit
fixed point construction mentioned in Sect. 5.2 indicate that for autonomous
systems both problems may be polynomial in practice [28], despite the theoret-
ical exponential blow-up.

The fastest polynomial algorithm to date for solving (35), unsurprisingly,
is also the most over-approximating one. The dynamic programming approach
of [4] not only abstracts from signals but also from state dependencies, as
explained in Sect. 5.2. It bundles all state controls o; of a given program block
t into a single pair out(t) = @®;out(0;), in(t) = &;in(o;). The system equation
of t then becomes (£ in(t))" = Dy ® (¢ out(t))" where D; is a matrix of scalar
constants. With the register equation out(t) = X ® tick(in(t)) for the feedback,
the closed solution is attainable in a single fixed point iteration, in O(1) time.
Moreover, the fps for each control v is of the form dy:d; a delay for the initial
tick and all subsequent ones being identical. Hence the calculation of &), ¢ v is
done in O(1) time, too. Moreover, the fact that each control has only two entries
v = v(0):w(1) helps greatly in the maximisation over all C: For each given i
the tick-wise maximum wert;(t) = maz{@,ccv(i) | C S cmpl(t), conc(C)}
can be obtained bottom-up by induction over the thread hierarchy. The rea-
son is that in the maximum wert;(t) = @,cc,  v(i) the constituent controls
C" = Cinaz N empl(t') for each child ¢’ of ¢ are not only concurrent conc(C’), but
necessarily constitute the tick-specific maximum wert;(t') = @, ¢ v(i) for the
child, too.

6 Related Work and Conclusions

A rudimentary version of the WCRT interface model has been proposed origi-
nally in [22]. That work focused on the algorithmic aspects of the modular timing
analysis of synchronous programs. It was implemented in the backend of a com-
piler for Esterel, analysing reactive assembly code running on the Kiel Esterel
Processor (KEP). A rigorous mathematical definition of the behavioural seman-
tics of the interface models was presented in [21]. The axiomatic approach of [21]
highlighted the essentially logical nature of the WCRT interfaces. It was shown
how the logical interface language can specify, and relate with each other, stan-
dard analysis problems such as shortest path, task scheduling or max-flow prob-
lems. However, the logical theory developed by [22] and [21] was still restricted to
the modelling of the purely combinational behaviour of a synchronous module,
i.e., its reactive behaviour during a single tick. This yields the worst-case timing
over all states rather than just the reachable ones. In general, this is an over-
approximation of the exact WCRT. The tick dependency of WCRT behaviour,
also called tick alignment, was subsequently studied in [23]. It was observed
that the combinational timing of single ticks can be modelled in max-min-plus
algebra, which is the intuitionistic algebra of SGD. This makes it possible to
express the timing behaviour of a synchronous module over arbitrary sequences
of clock ticks as formal power series. The composition of synchronous systems
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arises from the lifting of SGD algebra to formal power series. The paper [23]
investigates the tick alignment of timing in its pure form, i.e, without signal
communication between concurrent synchronous threads. This induces a form of
data abstraction which reduces the WCRT analysis to the maximum weighted
clique problem on tick alignment graphs. It is shown in [23] how this reduction
permits a considerable speed-up of an existing ILP algorithm that was proposed
earlier. By exploiting the logical expressiveness of SGD algebra, formal power
series can handle not only tick-dependent timing but also signal communication.
This is applied in [1,28] to obtain the full behavioural semantics of timed and
concurrent synchronous control flow graphs in a structural fashion.

In this paper we revisit this earlier work on WCRT interface algebra and in
doing so combine, for the first time, the algebraic semantics of [1,23,28] with the
logical setting of [21,22]. This is the first timing-enriched and causality-sensitive
semantics of SCP which is modular and covers full tick behaviour. The SGD[X]
equations constitute a cycle-accurate model and can be used for program analysis
and verification. This can also be used to compile Esterel via CKAG control-
flow graphs directly into data flow format. In future work it will be interesting to
explore the possibility of generating hardware circuits and compare with existing
hardware compilation chains for Esterel. On the theoretical side we plan to
study algebraic axiomatisation for SGD[X] and its expressiveness, specifically
its relationship with ILP.
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Abstract. In this paper we figure out the future of intersection types in
Java developments, based both on the primary meaning of the intersec-
tion type constructor and on the present approach in Java. In our vision,
the current use of intersection types will be extended in two directions.
Firstly, intersections will be allowed to appear as types of fields, types of
formal parameters and return values of methods, therefore they will be
significantly used as target types for A-expressions anywhere. Secondly,
the notion of functional interface will be extended to any intersection of
interfaces, including also several abstract methods with different signa-
tures. Thus a single target type will be able to express multiple, possibly
unrelated, properties of one A-expression.

We formalise our proposal through a minimal Java core extended with
these novel features and we prove the type safety property.

1 Introduction

Intersection types have been invented originally for the A-calculus to increase
the set of terms having meaning types [3]. The power of this type system lies
on the fact that the set of untyped A-terms having types is exactly the set of
normalising terms, that is terminating programs. This prevents the adoption of
this full system in programming languages, but the intuition behind intersection
types can be particularly inspiring for language designers looking for mechanisms
to improve flexibility of typechecking.
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The development of the successive versions of Java shows a careful and even
more significant entry of intersection types in the shape of intersection (denoted
by &) of nominal types. In particular, we remark that the version Java 5 intro-
duced generic types and intersection types later appeared as bounds of generic
type variables. It is worth noting that already in the last century Biichi and
Weck [2] had proposed to extend Java 1 by allowing intersection types (called
there compound types) as parameter types and return types of methods, by
showing interesting examples of their use for structuring and reusing code. Java
still does not allow these uses of intersections, that are confined to be target
types of type-casts. However, one could assume that the proposal of [2] is now
realised, in some fashion, in Java with generic types, given that a generic type
variable, bounded by an intersection type, can appear as parameter type as well
as return type of a method. Unfortunately, the above argument does not fit the
case of A-expressions, which are the key novelty of Java 8, since a generic type
variable cannot be instantiated by the type of a A-expression. Java A-expressions
are poly expressions in the sense they can have various types according to context
requirements. Each context prescribes the target type for the A-expression used in
that context, and Java does not compile when this target type is unspecified. The
target type can be either a functional interface (i.e., an interface with a single
abstract method) or an intersection of interfaces that induces a functional inter-
face. Notably, the A-expression must match the signature of the unique abstract
method of its functional interface. When we cast a A-expression to an intersection
type, this intersection becomes its target type, and so the A-expression exploits
its poly expression nature, having all the types of the intersection. So, in addition
to implementing the abstract method, it also acquires all the behaviours that are
represented by the default methods defined in the various interfaces forming the
intersection. However, when the \-expression is passed as argument to a method
or returned by a method, then its target type cannot be an intersection type.
Our proposal wants to free intersection types of all those bindings and restric-
tions, so that they can appear as types of fields, types of formal parameters and
value results of methods, thus playing the role of target types for A-expressions
anywhere these expressions can be used.

The second limitation of Java we want to overcome relates to the definition
of functional interface, which must contain one and only one abstract method.
In Java a A-expression is able to match multiple headers of abstract methods,
with different signatures, but its target type in each context expresses just one
of such signatures. This can be frustrating for Java programmers in many situ-
ations, where they are compelled to use several copies of the same A-expression,
each one matching a single signature. Completely different, the main idea behind
intersection type theory is that an intersection type expresses multiple, possibly
unrelated, properties of one term in a single type. The prototypical example is
represented by the term Az.z z, denoting the auto-application function, which
can be assigned, for instance, the type (a&(a — (3)) — 3, where «, 5 are arbi-
trary types and the arrow denotes the function type constructor. The intersection
type ad&(a — () says that the parameter must behave both as function and as
argument of itself. We can retrieve this powerful feature from intersection type
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theory to Java, by allowing any intersection of interfaces to be a functional inter-
face having multiple abstract methods. For example, let us consider the method
C auto (Arg&Fun x){return x.mFun(x).mArg(new C( ));}

where C is any class (without fields for simplicity), Arg and Fun are two Java
interfaces with the abstract methods ¢ mArg (C y) and Arg mFun (Arg z), respec-
tively. Although the method is greedy with requirements about its argument,
many A-expressions are ready to match the target type Arg&Fun, first of all the
simple identity x->x.

In conclusion, this paper wants to flash forwards to a future development of
Java, in which the use of intersection types is extended in the two directions
discussed above, in order to study its formal properties. To this end, we for-
malise the calculus FJP& A (Featherweight Java with Polymorphic Intersection
types and A-expressions), based on the core language FJ&A [1], that models the
treatment of A-expressions and intersection types in Java 8. As main result, we
prove that FJP&A\ preserves type-safety.

2 Syntax

In defining the syntax of FJP&A we follow the notational convention of [1],
recalled here for self-containment. We use A,B,C,D to denote classes, I,J to
denote interfaces, T,U to denote nominal pre-types, i.e., either classes or inter-
faces; f, g to denote field names; m to denote method names; t to denote terms;
x,y to denote variables, including the special variable this; 7,0 to denote pre-
types as defined below. We use T as a shorthand for the (comma separated) list
l1,...,1, and M as a shorthand for the sequence M ... M,, and similarly for the
other names. Sometimes order in lists and sequences is unimportant. In rules,
we write both N as a declaration and N) for some name N: the meaning is that a
sequence is declared and the list is obtained from the sequence adding commas.

The notation 7f; abbreviates 7if1;...7nfn; and ?? abbreviates
71f1, ..., Tufn (likewise 7 X) and this.f = f; abbreviates this.f; = f1;. .. this.fy, = fn;.
Lists and sequences of interfaces, fields, parameters and methods are assumed

CD ::= class C extends D implements | {Ff;KM}  class declarations

ID ::= interface | extends | {H; M} interface declarations
K= C(??){super(?); this.f = f; } constructor declarations
H:=mm(7X) header declarations

M ::= H {return t; } method declarations

Fig. 1. Declarations
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—

CT(l) = interfacel extends | {H; M}

I {
A-mh(l) = H wA-mn( 1)
CT(l) = interfacel extends | {H;M} M =H{return t; }
)

A-mh(ly,... 1) = A-mh(h& ... &) = A-mh(C&L & ... &lo) = W, ., A-mh(l;)

*>
D-mh(l) = H' W D-mh(_l>

D-mh(ly,...,ln) =D-mh(h&...&ln) =D-mh(C&h& ... &ln) =, ., ,, D-mh(l;)
if D-mh(l;) N D-mh(l;) # € implies either |; <: 1, or Iy <: 1,

mh(Object) = ¢

CT(C) = class C extends D implements? {F7f;KM} M =H {return t; }

uh(C) = H @mh(D) wuh( 1)

mh(T) = A-mh(T)wD-mh(1)  if A-mn(1)ND-mh(T) =

mh(ll& .. &ln) = Il.‘lh(ll7 ey In) mh(C&Il& .. .&ln) = mh(C) H‘Jl‘ﬂh(ll, ey In)

Fig. 2. Functions A-mh, D-mh and mh

to contain no duplicate names. The keyword super, used only in constructor’s
body, refers to the superclass constructor. Figure 1 gives declarations: CD ranges
over class declarations; ID ranges over interface declarations; K ranges over
constructor declarations; H ranges over method header (or abstract method)
declarations; M ranges over method (or concrete method) declarations.

A main novelty of FJP&A with respect to Java is that the types of fields,
parameters and return terms are intersections instead of nominal types. The
syntax of FJP&A\ is obtained from the syntax of FJ&A with default methods of
[1] by replacing everywhere nominal pre-types by arbitrary pre-types. As usual
a class declaration specifies the name of the class, its superclass and the imple-
mented interfaces. A class has fields f, a single constructor K and methods M.
The instance variables f are added to the ones of its superclasses and should have
names disjoint from these. An interface declaration lists the extended interfaces,
the method headers, and the default methods (omitting the keyword default).
The arguments of the constructors correspond to the immutable values of the
class fields. The inherited fields are initialised by the call to super, while the new
fields are initialised by assignments. Headers relate method names with result
and parameter pre-types. Methods are headers with bodies, i.e., return expres-
sions. We omit implements and extends when the lists of interfaces are empty.
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Object is a special class without fields and methods, does not require a
declaration and it is the top of the class hierarchy.

A class table CT is a mapping from nominal types to their declarations. A
program is a pair (CT,t). In the following we assume a fixed class table.

Pre-types (ranged over by 7, 0) are either nominal types or intersections of:

— interfaces or
— a class (in leftmost position) and any number of interfaces.

Using ¢ to denote either an interface or an intersection of interfaces we define:
7 u:=C|e|C&t where ¢ u=1]w&l

The notation C[&:¢] means either the class C or the pre-type C&u.

Types are pre-types whose method declarations are consistent. To define
consistency we use the partial functions A-mh, D-mh and mh that map pre-types
to lists of method headers, considered as sets, see Fig.2. As in [1], A-mh and
D-mh collect abstract and default methods in interfaces, whereas the function mh
collects all method headers of interfaces and classes. We use ¢ for the empty list.
With [+ we denote the set-theoretic union of lists of method headers, that is
defined only if the same method name does not occur with different pre-types.

For example C mArg(C x) |4 Arg mFun(Arg x) is defined, while

C mArg(C x) |4 Arg mArg(Arg x)
is not defined.

As we can see from the penultimate line of Fig. 2, function mh is defined for a
list of interfaces only if the same method name is not declared both as abstract
and default method, see page 292 of [6].

Definition 1 (Types). A pre-type T is a type if mh(7) is defined.

For example, if we consider
interface Arg {C mArg(C x);} and interface Fun {Arg mFun(Arg x);}
then Arg&Fun is a type; whereas if we define
interface ArgD {D mArg(D x);}
where the class D differs from the class C, then the pre-type Arg&ArgD is not a
type, since mh(Arg) ) mh(ArgD) is not defined.

Notice that the present definition of type coincides with that in [1], and
therefore all types here are Java types.

In the following we will always restrict T, U, 7,0,¢ to range over types. The
typing rules for classes and interfaces (see Fig. 11) assure that all nominal pre-
types in a well-formed class table are types.

Terms are defined in Fig.3. Terms are a subset of Java terms, with the
addition that A\-expressions may or may not be decorated by intersections of
interfaces. The intersection of interfaces decorating a A-expression represents
its target type. Values, ranged over by v, u, are either proper values or pure A-
expressions. Proper values, ranged over by w, are either objects or decorated
A-expressions. Pure A-expressions are written by the user, whereas decorated
A-expressions are generated by reduction. A parameter p of a A-expression can
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V= values
to= terms w proper value
v value T ot pure A-expression
X variable W= proper values
t.f R field access new C(V) object
t.m(t) method invocation (P — t)* decorated A-expression
new C(?) object p = parameters
()t cast X untyped
T X typed
Fig. 3. Terms
. B
CT(C) = class Cextends D implements | {7f; KM} [ |
<:C
C<:D C<:l; VIjel
. -
CT(l) = interfacelextends | {H; M}
[<:1] T <: Object [<: Object]
I <: |j 4 |j e |
7<:T; foralll1<i<n T,<:7 forsomel<i<n
[<: &R] [<: &L]
T<:T1&...&T, T.:&.. . &T, <: 7

Fig. 4. Subtyping

be either untyped or typed, but typing rules forbid to mix untyped and typed
parameters in the same A-expression. A difference with [1] is the freedom of
decorating A-expression with interfaces and intersections of interfaces without
requiring exactly one abstract method as in Java (see [6], page 321).

We use t) to range over pure A-expressions.

The subtype relation <: is the reflexive and transitive closure of the relation
induced by the rules of Fig. 4. It takes into account both the hierarchy between
nominal types induced by the class table and the set theoretic properties of
intersection. Rule [<: &R] formalises the statement in the last two lines of page
677 in [6].

Our definition of intersection types is consistent with the requirements of the
Java Language Specification [6] (pages 70-71). In particular, on one side from
Definition 1, 7 is a type if “mh(7) defined”, and therefore we can define a nominal
class that is a subtype of 7. On the other, the existence of a nominal class which
is a subtype of 7 assures mh(7) defined since rule [C OK] in Fig. 11 requires mh(C)
defined and mh(7) C mh(C), see the proof of Lemma 1(2).

Notice that ¢ <: Object&: <: ¢ for all ¢, but these types cannot be considered
equivalent, since ¢ can be the target type of a A-expression whereas Objecté&
cannot.
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3 Operational Semantics

For the evaluation and typing rules we need the auxiliary definitions of Figs.5
and 6. The fields of a class C, dubbed fields(C), are specified by a list of pairs
associating names and types of the fields that are defined in C or in one of its
superclasses. To give the signature of methods, i.e. the parameters and result
types, we specify method name and type. Moreover, it is useful to distinguish
between abstract and default method in interfaces. Therefore, we have three
lookup functions: A-mtype(m;7), D-mtype(m;7) and mtype(m; 7). Their defini-
tion uses the functions given in Fig. 2.

CT(C) = class C extends D implements T {7, KM}

fields(Object) = ¢ tields(D) =o' ¢
fields(C)= o g, 7 f
om(@X) € A-mh(7) om(@X) € D-mh(T) om(@X) € mh(r)

A-mtype(m;7) =0 — 0 D-mtype(m;7) = 0 — o mtype(m;7) =70 — o

Fig. 5. Lookup fields and method types

The body of a method m for a type 7 is specified by mbody(m;7) of Figure 6.
If 7 is a class C, we first look for a definition of m in C, then in its superclass,
and, if not found, we look for a default method with name m in the interfaces

T implemented by C. The fact that the function D-mh(7) of Fig.2 (used by

D-mtype(m; T) of Fig.5) is defined ensures that, if there is more than one defi-
nition of m, then there is a most specific one which is the one returned. This is
enforced by the rules for mbody(m; _I)) and mbody(m; 1 & ... &ly,).

In typing the source code, Java uses for A-expressions the types prescribed by
the contexts enclosing them. These types are called target types. This means that
A-expressions are poly expressions, i.e. they can have different types in different
contexts, see page 93 of [6]. More precisely:

(1) the target type of a A-expression that occurs as a actual parameter of a
constructor call is the type of the field in the class declaration;

(2) the target type of a A-expression that occurs as a actual parameter of a
method call is the type of the parameter in the method declaration;

(3) the target type of a A-expression that occurs as a return term of a method
is the result type in the method declaration;

(4) the target type of a A-expression that occurs as the body of another A-
expression is the result type of the target type of the external \-expression;

(5) the target type of a A-expression that occurs as argument of a cast is the
cast type.
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CT(C) = class C extends D implements T {7f;KM}
om(@ X ){return t;} € M

mbody(m; C) = (X, t)

CT(C) = class C extends D implements T {7f;KM}
m is not defined in M mbody(m; D) is defined

mbody(m; C) = mbody(m; D)

— -
CT(C) = class Cextends Dimplements | {7f; KM}
m is not defined in mbody(m; D) is not defined

mbody(m; C) = mbody(m; —|>)

cT(l) = interface | extends |’ {H;M} mm(7X){return t;} € M

mbody(m; 1) = (¥,t)

CT(l) = interface | extends | {H;M} m is not defined in M

mbody(m; 1) = mbody(m; ?)

mbody(m; Iy, ..., l,) =mbody(m; 1 & ... &l,) = mbody(m;l;)
if mbody(m;l,) defined implies I; <: I,

mbody(m; C) if defined

mbody(m;li,...,1,) otherwise

mbody(m; C&li& ... &ly,) = {

Fig. 6. Method body lookup

According to [6] (page 602): “It is a compile-time error if a lambda expression
occurs in a program in someplace other than an assignment context, an invo-
cation context (like (1), (2), (3) and (4) above), or a casting context (like (5)
above).”

FJP& )\ extends Java allowing any intersection of interfaces as target type,
while Java requires exactly one abstract method.

Following [1] the reduction rules assure that the pure A-expressions are dec-
orated by their target types in the evaluated terms. The mapping (t)°” defined
as follows:

? {(t)T if t is a pure A-expression,
(t)7 = .
t otherwise
decorates with 7 pure M-expressions, whereas leaves all the other terms
unchanged. This mapping is used in propagating the type expected for

A-expressions in constructor and method calls and in casts. The typing rules
assure that if t is a pure A-expression, then 7 is an interface or an intersection
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of interfaces, i.e. reducing well-typed terms we only get decorated terms of the
shape (ty)".

As usual [x — t] denotes the substitution of x by t and it generalises to an
arbitrary number of variables/terms as expected.

The notation X — (V)?7 is short for x; — (v1)7™, ... %, — (vu)"™.

7f; € fields(C) ) C<r
e CI s (a) eI )  new (V)
mbody(m; C) = (X,t) mtype(m;C) =7 — 7
new C(V).m(TW) — [X + ()’ , this — new C(V)](t)
A-mtype(m;) =7 — 7
(Y = 0)'m(V) — [Y = (V)7 ](1)
A-mtype(m;) =7 — 7
(7Y = 0'm(V) — [¥ = (V)7
mbody(m;¢) = (X,t) D-mtype(m;u) =7 — 1
(t2)".m(V) — [X > (V)77 , this — (t2)'](t)" [E-Tnvir-D]

|[E-CastNew|

- [E-InvkNew]

o= [E-InvkAU-A]

o= [E-InvkAT-A]

(1) tx — (tr)" [E-Cast)] L<—L |[E-CastATarget]
() (ta)" — (t2)"

Fig. 7. Computational rules

The reduction rules are given in Figs.7 and 8. The rules for method calls
decorate actual parameters and bodies that are A-expressions with the expected
types. This is also the case for the rule of field access and the rule for cast of
A-expressions. It is easy to verify that all pure A-expressions being actual param-
eters or resulting terms in the l.h.s. are decorated by their target types in the
r.h.s. We only comment the rules regarding method calls when the receivers are
A-expressions, since the others are obvious. A decorated A-expression implements
all the abstract methods declared in the interfaces of its target type, so in rules
[E-InvkAU-A] and [E-InvkAT-A] the call of one of such methods reduces to the
body of the A-expression in which the formal parameters are substituted by the
actual ones. In case the method called is one of the default methods with body t,
the A-expression acts as the object on which the method is called. Then the call
reduces to t in which the (decorated) A-expression replaces this and the actual
parameters replace the formal ones. In this way we follow Java 8 specification [6]
(page 480), but for the decoration of the A-expression.

The reduction rules in Fig. 8 specify the (standard) execution strategy.

For example, assuming that the method auto of the Introduction is defined
in class AutoApp we get



Intersection Types in Java: Back to the Future 7

’

t’ t—t
——— |E-Field] ———— [E-Cast]
tf—t'f (M)t — (1)t
t—t
[E-Invk-Recv]

tm(t) — t'.m(T)

t—t
[E-Invk-Arg]

wm(V,t, t) — wm(V,t, T

t—t’

[E-New-Arg|
new C(V, t, ?) — new C(V, 1, ?)

Fig. 8. Congruence rules

new AutoApp() .auto (x->x) —> (x->x)AT84F ppun ((y->y) Ar8&Funy parg(new CQ))
— (y->y) AredFun pare(new CO))
—mnew CO)

where in duplicating the parameter of auto we used two renamings of the identity
(x->x)Ar8&Fun and  (y->y)Ar8&Fum ¢4 clarify that they have different roles.

4 Typing Rules

FJP&A generalises FJ& A allowing to use intersections everywhere and avoiding
the restriction that target types must have a single abstract method. We start
discussing the rules for terms shown in Fig.9. The typing judgment is I' -t : 7,
where an environment I is a finite mapping from variables to types.

Field access is well typed, rule [T-FIELD], if the type is an intersection with
at least one class (our interfaces cannot have fields) and the class contains the
required field. In rules [T-INVK] and [T-NEW] the actual parameters are typed
with the type judgement F* which behaves differently depending on the fact that
the term is a pure A-expression or any other term. The judgment F* is defined
as follows

I'ktt:o o<:T IE(t)" e
' t:71 J AR SN
and taking advantage of the notation ()?, can be synthesised by:
't)7:0 o<:7
o ' t:r
Asusual I'* t : 7 isshort for I'H*ty :7m,..., [ F*t, : 7.

According to the judgment F*, actual parameters that are not pure A-
expressions can have any type which is a subtype of the type of the matching
parameter, whereas pure A-expression can only have the type required by the
context, which is the type of the matching parameter. The premise of the rule
F* for pure A-expressions requires that we derive for A-expressions decorated

-+
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with their target type exactly their target type. The rules for typing decorated
A-expressions are [T-AU], if the parameters are untyped, and [T-AT], if they
are typed. Note that, in the type system F there is no typing rule for pure \-
expressions, since we expect each A-expression to be decorated with its target
type. Rule [T-AU] requires that the body of the A-expression be well typed for
all the headers of the abstract methods declared in the interfaces occurring in
its target type. The body of the A-expression is typed by means of F* to use the
correct typing judgement for pure M-expressions and other terms. In addition
to the requirements of [T-AU], when the types of the parameters are specified,
rule [T-AT] prescribes that they coincide with the types of the parameters of all
the abstract methods declared in the interfaces occurring in the target type of
the A-expression. We observe that rules [T-AU] and [T-AT] can give type to any
A-expression when A-mh(¢) is the empty list. This is consistent with our formal
setting, where we use any A-expression just for calling default methods in the
absence of abstract methods.

x:Tel I'kFt:Cl&] 7f € fields(C)
— |T-VAR] [T-FIELD]
I'Ex:t I'ctf:r

I'bt:7 mtype(m;7) =7 =0 ret:3

I+ t.m(?) io

[T-INVK]

fields(C) = 2T 7.7
I'FnewC(t):C

[T-NEW]

rm(7X) € A-mh(:) implies I,y : 7 F t: 7
TH(Y =1

[T-AU]

't (Y =1t)":¢ mm(dX) € A-mh(:) implies & = 7

(7Y =t e [T-XT]

Fig. 9. Syntax directed typing rules

I'F"t:r
—  [T-UCAST]
r-(mt:r

I't:7 7~C&] o~D&] 7#:0 either C<:DorD<:C
[T-UDCAST]

I'(o)t:o

Fig. 10. Cast typing rules
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The rules for type casts in Fig. 10 are as in [1]. We use 7/ ~ ¢’ as short for
7' <: 0’ and ¢’ <: 7'. The condition 7 ¢: o forbids to apply rule [T-UDCAST]
when rule [T-UCAST] can be used instead.

A type derivation for the term reduced at the end of Sect. 3 is:

F new AutoApp() : AutoApp mtype(AutoApp;auto) = Arg&Fun — C A

F new AutoApp().auto(x->x) : C

where A is the derivation:
A-mh(Argg&Fun)={C mArg(C x), Arg mFun(Arg x)} y:Cky:C y:Argh y: Arg

F (y->y) Arg&Fun Arg&Fun

F* (y->y) : Arg&Fun

Finally, we define the rules for checking that method, class and interface
declarations are well formed. Note the use of the judgement H* for typing the
bodies of the methods. For methods the key difference with respect to the corre-
sponding rule of FJ&A\ is the presence of intersection types in place of nominal

types.

X :7,this: TH t:7 m(7X) € mh(T)

Tm(?7){return t;} 0K in T [M 0K in T]

K=C(7g, ??){super(?);this.f =f;} fields(D)=77¢ M 0k in C
mh(C) defined mtype(m;C) defined implies mbody(m; C) defined [ |
C ok

class C extends D implements T {7f; KM} 0k

M 0k in | mh(l) defined
[I ox]

interface l extends | {H; M} 0k

Fig. 11. Method, class and interface declaration typing rules

To sum up, the program (CT,t) is well typed if the class table CT is well
formed and for some 7 we have that - t : 7, using the declarations and the
subtyping of CT.

5 Subject Reduction and Progress

The subject reduction proof of FJP&A extends that of FJ&A taking into account
the replacement of nominal types by intersection types and the generalisation of
target types.

As usual our type system enjoys weakening, ie., I' F t : 7 implies
I'x:oFt:7and I'F*t: 7 implies I',x: o F*t: 7.
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Lemma 1. (1) If C[&:] <: D[&(/], then fields(D) C fields(C).
(2) If mtype(m;T) = p — p, then mtype(m;o) = p — p for all o <: .

Proof. (1) Assume that ¢ and ¢/ are present and D is not Object, the proof in
the other cases is simpler. From C&: <: D& and rule [<: &R] of Fig.4 we
get C&t <: D. Therefore, since ¢ <: D cannot hold, from rule [<: &L] of Fig. 4
we have that C <: D.

(2) By induction on the derivation of o <: 7 it is easy to prove mh(7) C mh(o).

Lemma 2 (Substitution).

(1) If I'x:obF*t:7 and I' +* v : o, then I' F* [x>—>(y)?"]t:r.
(2) If I'x:okt:7 and I'F* v :o, then I'F [x+— (v)]t: p for some p <: T.

Proof. (1) and (2) are proved by simultaneous induction on type derivations.
(1). f I'yx : o F* t : 7, then the last rule applied is [ F*]. We consider first
the case of t being a pure A-expression, and then t being any of the other terms.
Caset =y — t’. The premise of rule [~ =*] must be I',x : o - (Y — /)" : 7. By
part (2) of the induction hypothesis we have that I" - ([x — (v)7?](Y —t'))" : p
for some p <: 7. Since the last rule applied in the derivation is [T-AU], we get
p = 7. Using rule [~ F*] we conclude I' F* [x — (v)??](yY — t') : 7. The proof
for the case t = 7y — t’ is similar.
Case t not a pure M-expression. The premise of rule [ F*]is I'x: o Ft: p
for some p <: 7. By part (2) of the induction hypothesis I" I [x — (v)*]t : o’
for some p’ <: p. The transitivity of <: gives p’ <: 7. Applying rule [ F*] we
conclude I" F* [x = (v)?]t : 7.
(2). By cases on the last rule used in the derivation of I'x: o Ft: 7.
Case [T-VAR]. I')x : 0 F x : 7 implies 0 = 7. The judgment I' F* v : 7 must
be obtained by applying rule [~ F*] with premise I" - (v)°7 : p for some p <: T,
as required.
Case [T-FIELD]. In this case t = t’.f and

Ix:okt:C& 7fe€fields(C)
I'x:obFtf:r

case in which & is missing is easier). The induction hypothesis implies

[x = (V)?]t' : p for some p <: C&t. The subtyping rules of Fig.4 give
D[&!] for some D and /. By Lemma 1(1) we have that fields(C) C

fields(D) and then 7f € fields(D). Therefore applying rule [T-FIELD] we

conclude I" = [x — (V)" ]t .f : 7.

Case [T-INVK]. In this case t = t'.m(t) and

(the
I+
p =

Ix:obFt:p mtype(m;p)=7 — 7 Rx:al—*?:?
Ix:obtm(t):r

From I'')x : 0 F* t : 7 we get ' [x — (vV)?°]T : 7 by part (1) of the
induction hypothesis By induction hypothesis on I';x : ¢ F t’ : p we have that
Tt [x (v)"]t": p’ for some p’ <: p. Lemma 1(2) gives mtype(m;p’) = 7 — 7.
Applying rule [T-INVK] we conclude I' F [x — (v)?](t.m(t)) : 7.
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Case [T-NEW]. By part (1) of the induction hypothesis on the judgments for
the parameters.
Case [T-AUJ. In this case t = (Y — t/)7 and
p (M p)x € A-mh(7) implies I,x: 0,y : p F*t :p
Ix:ob (Y —=t) 7
By part (1) of the induction hypothesis we have that p ( )x € A-mh(7) implies
LY . F [x— (v)"]t' : p. Applying rule [T-AU] we conclude

——
mp

I (x—=W7IY =) 7
Case [T-)AT]. In this case t = (T y — t')” and
Ix:ob (Y =t):7 pm(pX) € Amh(.) implies p =7

F,X:O'F(?V)Ht/)TST

By induction hypothesis we have that I' F ([x — (v)’](y — t))7 : 7. Applying

—

rule [T-AT] we conclude I' - ([x — (V)" }(TY — t'))7 : 7.

Lemma 3. If mtype(m;7) = 0 — o and mbody(m;7) = (X,t), then

X : 7, this: TH t: o for some T such that T <: T.

Proof. Let 7 = C&u, the other cases being simpler. By definition of mbody
method m must be declared in:

— class C or
— some interface in ¢ or
— some class or interface from which either C or an interface in ¢ inherits.

In all cases rule [M 0K in C] or [M 0K in I] of Fig. 11 gives the desired typing
judgement.

Lemma 4. If ' t: 7, then I' - ()" : o for some o <: 7.

Proof. The judgment I' H* t : 7 must be obtained by applying rule [~ F*] with
premise I' - (t)°7 : o for some o <: 7, as required.

Theorem 1 (Subject Reduction). If I' + t : 7 without using rule
[T-UDCAST] and t — t’, then I' - t' : o for some o <: 7.

Proof. By induction on a derivation of t — t’, with a case analysis on the final
rule. We only consider interesting cases.
Tf; € fields(C)

Case E-ProjNew
new C(V).f; — (v;)7 : iNew]

fields(C)=7 f I'F*V:7

The Lh.s. is typed as follows: I'FnewC(V): C 7f; € £ields(C)

I'FnewC(V).fj:7
From Lemma 4 and I' F* V' : 7 we derive that

'k (v;)" : o for some o <: T.
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Case

mbody(m; C) = (X,t”) mtype(m;C) =7 — 7
— [E-InvkNew]
X

new C(V).m(T) — [X — (T)"7, this — new C(V)](t")""
The Lh.s. is typed as follows:
I'newC(V):C mtype(m;CQ)=7 —7 ' U:7
I'FnewC(V).m(TW):7
By Lemma 3 mbody(m;C) = (X,t”) implies X : 7,this : T F* t” : 7 with
C <: T for some T. Let I" = X : 7,this : T. By Lemma 4 I’ - (/)7 : p for
some p <: 7 and by weakening I', I I ()" : p. From I' - new C(V') : C and

C<:Tweget ' F*newC(V):T.From I'-* 0 : 7 and I' F* newC(V) : T
and I', I F (")’ : p and Lemma 2(2) we get

I'H[X — ()7, this — new C(V)](t")"" : o for some o <: p.
Finally by transitivity of <: we have o <: 7.
A-mtype(m;t) =T — T
(Y = t)'m(¥) — [y = (V)71

The L.h.s. is typed as follows:

Case

[E-InvkAU-A]

an(7X) € A-mh(¢) implies I,y : @ F*t" . 7

r'E(y —t) mtype(m;e) =7 —7 [ V:7T

' (y —=t")m({):7

The premise of rule [E-InvkAU-A] implies I,y : 7 F* t” : 7. By Lemma 4
I,y : 7 F (") : p for some p <: 7. By Lemma 2(2) we derive
THY — (V)T : o for some o <: p
Finally by transitivity of <: we have o <: 7.
mbody(m;¢) = (X,t”) D-mtype(m;t) =7 — T
(t)-.m(V) — [X = (V)77 this i (ty)"](t")"7

The Lh.s. is typed as follows:

Case [E-InvkA-D]

I'F(ty) :¢ mtype(m;)=7 -7 I'F*V:7T

' (t)'m(V):7

By Lemma 3 mbody(m;:) = (X,t”) implies X : 7,this: TF*t” : 7 with ¢ <: T
for some T. Let I” = X : 7,this : T. By Lemma 4 I'"" I (t/)°" : p for some
p <: 7 and by weakening I, I"" F* (t")*7 : p. From I' I (t))* : ¢ and + <: T by

rule [F F*] we derive I F* (t))" : T. Therefore, by Lemma 2(2) we derive
T'F[X — (V)7 this — (t4)"](t")"" : 0 where o <: p

The transitivity of <: implies o <: 7.
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t—t'
Case —— [E-Invk-Arg]

wm(V,t, t) — wm(V,t

1)
The Lh.s. is typed as follows:
I'w:p mtype(m;p)=7 -7 I'F"V:7 I'F't:o ==

Ftwm(V,t, t):7

where 7 = 7,0, 7. By Lemma 4 I' F* t : o implies I" I (t)’? : o’ for some
o' <: 0. Since t — t’ implies that t cannot be a A\-expression we get ()’ = t.
By induction hypothesis I' - t’ : p’ for some p’ <: ¢’. Being p’ <: o applying
rule [F F*] we derive I H* t' : 0. Therefore using the typing rule [T-INVK] we
conclude

I+ w.m(7,t7?) iT

Rule [T-UDCAST] breaks subject reduction already for FJ, as shown in
[8] (Sect.19.4). Following [8] we can recover subject reduction by erasing the
condition “either C <: D or D <: C” in rule [T-UDCAST]. In this way the rule
becomes:

I'Ft:7 7&0
I'H(o)t:o

[T-STUPIDCAST]

The closed terms that are typed without using rule [T-UDCAST] enjoy the
standard progress property. This can be easily proven by just looking at the
shapes of well-typed irreducible terms.

Theorem 2 (Progress). If F* t : 7 without using rule [T-UDCAST] and t
cannot reduce, then t is a proper value.

Using rule [T-UDCAST] we can type casts of proper values which cannot
be reduced, for example, (C) (new Object()) with C different from Object. An
example involving a A-expression is (C) (e — newO0Object())!, where | is the
interface with the only signature Object m(). This term can be obtained by
reducing (C) (1) (¢ — new Object()).

To characterise the stuck terms, i.e., the irreducible terms which can be
obtained by reducing typed terms and are not values, we resort to the notion of
evaluation context, as done in [8] (Theorem 19.5.4). FEvaluation contexts £ are
defined as expected:

Eu=[]1EF|Em(T) | wm(V,ET) | newC(V,E 1) | (7)€

Stuck terms are evaluation contexts with holes filled by casts of typed proper
values which cannot reduce, i.e., terms of the shapes (7) new C(V') with C «: 7
and (7) (ty)* with ¢ #: 7. Notice that (A[&¢]) new C(V') cannot be typed when
A, C are unrelated classes. Instead rule [T-UDCAST] allows us to type all terms
of the shape (7) (t))*, when (t))* has a type.
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6 Type Inference

Our type system naturally uses the technique of bidirectional checking [4,9]. In
fact the judgments | operate in synthesis mode, propagating typing upward from
subexpressions, while the judgments -* operate in checking mode, propagating
typing downward from enclosing expressions.

We assume a given class table to compute the lookup functions and the
subtype relation. The partial function tInf(I';t) gives (if any) the type 7 such
that I' -t : 7. It is defined by mutual recursion with the predicate tCk(I;t;7)
which is true if I F* t : 7. So, according to rule [~ F*]:

tCk(I;t;7) if tInf(I5 (1)) =ocando <: 7

This asserts that, if we can infer the type of an expression, then we can check
that it has this type and, in case it is not a A-expression, also all its supertypes.
We write tCk(I; T :7) as short for tCk(I';t1;71),. .., tCk(I;t,; 7, ). Figure 12
gives tInf. The deﬁnltlon is an algorithmic reading of the rules of Figs. 9 and 10.
The definition of tInf uses the predicate tCk (on subexpressions) to check the
types of actual parameters, type casts, and bodies of decorated A-expressions
against the types expected from the contexts. As we can see, tInf is undefined
for pure A\-expressions.

tInf(Fx) =7ifx:Tel’

tInf(I;t.f) =7 if tInf(I;t) = C[&] and 7f € fields(C)
- e - N

tInf(l’; new C( t)) = Cif fields(C) =7 f and tCk(I; t';7)

tInf([;t. m( t)) = 7 if tInf(I';t) = o and mtype(m;0) = 7 — 7

and tCk(I; ?; 7)
7 if one of the following conditions holds
o tCk(I;t;7)
e 7 =C[&] and tInf([;t) = D[&!]
and either C<:Dor D <: C

tInf ([ (7)t)

tInf (5 (Y — 1)) = if tCk(1, Y : 7;t;7) for all 7m(7 X )€A-mh()

tInf([5 (7Y — 1)) = if tCk(I, Y : &;t;7) and o = 7 for all 7m(0 X)€A-mh(s)
Fig. 12. Type inference function

OK(rm(7 X){return t;},T) if r7m(7X) € mh(T) and

tCk(I, X : 7, this: T;t;7)
OK(class C extends D implements T {7, KM}) if
K=C(?¢, ??){super(?); this.f = f; }
and fields(D) = @ g and OK(I\_/|>, Q)
and mh(C) def. and for any m
mtype(m; C) def. impl. mbody(m; C) def.
OK(inten‘aceIextends_I> {H; M}) if OK(m7 [) and mhg def.
OK(CT) if OK(C) and OK( I

Fig. 13. Well-formedness function
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Building on Fig.11, Fig.13 defines a predicate OK which tests well-
formedness of class tables, i.e. of classes, interfaces and methods.
We use the following abbreviations: def. for defined, impl. for implies,

OK(M, T) for OK(My, T),..., OK(M,, T), and OK(M) for OK(My), ..., OK(M,,).

7 Conclusion and Related Works

The core language presented here is essentially based on FJ&A [1], which in turn
extends [7]. Our objective was to investigate how to extend the present use of
intersection types in Java through a formal account. As a main result, we proved
that the cross fertilisation between intersection types and A-expressions can be
further enhanced, getting a more interesting usability of Java A-expressions while
preserving the language type safety. Notably, nominal intersection types are used
everywhere, and the functional interface of a A-expression can provide more than
one abstract method (hence, an intersection type for the function). In this way,
a A-expression can be used with different types in different contexts, similarly
to what happens in a functional language.

We refer to [1] for a wide survey of the works that are related to this topic,
concerning both intersection type theory and the modelling of object-oriented
features by intersection types. We refer to Oracle documentation [6] for Java
with A-expressions and intersections.

This paper concentrates mostly on the formal foundation of our proposal.
Concerning feasibility of its implementation, in ongoing work we are devising a
translation from our calculus into FJ&A which exactly models the present Java
approach. Moreover, we want to investigate how programming methodologies can
benefit from these novel features, that seem to be very promising for avoiding
the application of design patterns [5] and getting a reduced amount of code.

Acknowledgements. We would like to thank the anonymous referees for their helpful
comments.
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Abstract. We extend Alternation-Free Least Fixed Point Logic to
be based on Belnap logic, while maintaining the close correspondence
between static analysis and model checking pioneered by Bernhard
Steffen, and opening up for handling access control policies central to
the construction of secure IT systems.

1 Introduction

Static Analysis. A variety of techniques are used to ensure properties of programs
before they are being deployed for execution. The area of static analysis covers
techniques like the use of type and effect systems, data flow analysis, constraint
based analysis, and abstract interpretation. Much of the early work of Bernhard
Steffen was in the area of data flow analysis for ‘optimizing’ the implementation
of programming languages [15,32-34].

Traditionally data flow analyses are presented in equational form and are
classified with respect to two criteria. One is whether they present a forward
flow of information (in the direction of normal execution) or a backward flow of
information (in the opposite direction of normal execution). The other is how
to combine data flow information when paths merge, whether to take a union
(or least upper bound) or an intersection (or greatest lower bound). The latter
criterion tends to also determine whether one desires least or greatest solutions
to the dataflow equations.

Static Analysis as Model Checking. The more complex static analyses involve
several sets of data flow equations that need to interact and a key consideration
is how best to do so. Bernhard Steffen was the first to realise that some of the
program logics were useful for expressing this interaction and subsequently that
many static analysis problems could be recast as model checking [29,31]. At the
conceptual level this opened up for an understanding of the interplay between
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static analysis and model checking and how developments in one area could
facilitate advances in the other.

At the practical level the areas continued to develop largely independently,
however, and to some extent this was due to the different focus of the two areas.
Static analyses generally aims for approximative answers (due to undecidability
of the precise answers when dealing with infinite state systems) that can be
obtained in polynomial time with respect to the size of the programs; model
checking generally aims for precise answers (on finite state systems) that seem
to require exponential time with respect to the size of programs. Combinations
of static analysis and model checking were considered in [8].

Model Checking as Static Analysis. The interplay between static analysis and
model checking is more intimate than the work of Bernhard Steffen would sug-
gest. It is not only possible to reduce many static analysis problems to model
checking [29,31] but it is in fact also possible to reduce some model checking
problems to static analysis [19,35]. This insight builds on the use of a general-
isation of Datalog, called Alternation-Free Least Fixed Point Logic, originally
employed for the development of static analysis for process calculi [22,23,25].

Beyond Two-Valued Logic. The approximative nature of static analysis means
that if a static analysis provides a boolean answer then at most one of the answers
can be precise; usually static analyses are formulated so that a negative answer
can be trusted whereas a positive answer can be the result of overapproximation.
In contrast, the nature of model checking is such that both the negative and
positive answers can be precise (but the models need to be sufficiently simple).
This suggests that two-valued logics are not the best way to describe the results of
static analyses, and some work on heap analyses have already been using Kleene’s
three-valued logic to get the precision required [28]. Also in model checking there
has been interest in studying modal transition systems [17] and corresponding
three-valued versions of computation tree logic [2,3,10]. Finally, when studying
security properties of programs it is clear that the proper modelling of access
control decisions require considerably more than two logical values [4,5,13,27]:
as is evident from the ‘eXtensible Access Control Markup Language’ (XACML)
composite policies not only may grant or deny access but can also be inapplicable
and even contradictory.

This motivates the development of the present paper, of presenting a logical
approach to static analysis that builds on multi-valued logics, and of showing its
ability to deal with model checking of modal transition systems.

2 Multi-valued Logic

There are a multitude of multi-valued logics and our treatment cannot be com-
prehensive. One that arises naturally also from the considerations of static anal-
ysis, is the four-valued Belnap logic, and one that has been used for pointer
analysis is Kleene’s three-valued logic.
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Belnap Logic as a Bilattice. Belnap logic [1,9] generalises the two standard
logical values t and f to also include two non-standard logical values: L that
denotes unknown, and T that denotes conflict. It is standard to write Four =
{L,t,f, T}

2] /T\ /t\ \%
~ t K f L L T =
\/ \ /
® 1 f A

Fig. 1. The knowledge order (Four,~-) and the logical order (Four,=>).

Belnap logic is equipped with a partial order ~» called the knowledge order
(or information order) and depicted in the left part of Fig. 1. The partial order
illustrates the point that T presents conflicting information in that both t and f
seem possible, whereas | presents the absence of any information. The partial
order (Four,~) is in fact a complete lattice with binary greatest lower bound
denoted ® and binary least upper bound denoted @. Clearly the operators ®
and @ are commutative, associative, idempotent and monotonic with respect to
the knowledge order.

In the context of static analysis this partial order naturally arises when con-
sidering booleans. The set of booleans is Two = {t,f} and for static analysis it
would be natural to use an analysis domain (P(Two), C) that is the powerset
of Two ordered under subset inclusion. It is immediate that the partial order is
isomorphic to the partial order (Four,~) introduced above.

Belnap logic is also equipped with a partial order = called the logical order
(or truth order) and depicted in the right part of Fig. 1. The partial order illus-
trates how Four contains the traditional logical values ordered under classical
implication. The partial order (Four,=>) is also a complete lattice with binary
greatest lower bound denoted A and binary least upper bound denoted V. Clearly
the operators A and V are commutative, associative, idempotent and monotonic
with respect to the logical order.

We can extend negation — from Two to Four by setting =(L) = L, =(t) =f,
—(f) =t, and =(T) = T. Similarly we can define conflation ~ by setting ~(L) =
T, ~(t)=t, ~(f)=f,and ~(T) = L.

Belnap Logic is Interlaced. For the purposes of static analysis it is essential that
the transfer functions (i.e. the analysis version of the semantic functions) are
monotonic because we usually rely on Tarski’s fixed point theorems for ensuring
that a static analysis has a best (usually least) solution. These considerations
usually only consider the knowledge order but here we shall extend the consid-
erations to also consider the logical order. The following facts show that Belnap
logic nicely intertwines the monotonicity considerations of the two partial orders.
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Fact 1. The operators ®, A, @, V are monotonic with respect to the knowledge
order (~) as well as the logical order (= ).

Fact 2. Negation (—) is monotonic with respect to the knowledge order (~) but
anti-monotonic with respect to the logical order (= ). Conflation (~) is mono-
tonic with respect to the logical order (=) but anti-monotonic with respect to the
knowledge order (~).

Belnap Logic is Distributive. It is useful to explore the algebraic laws enjoyed
by the Belnap operators as this allows rephrasing the transfer functions of static
analysis.

Fact 3. All the distributive laws
(f1 opy f2) opy f3 = (f1 opy f3) opy (f1 opy f3)

hold for all choices of fi, fa, f3s € Four and for all choices of opy,opy €
{®,N, &, V}.

Fact 4. We have the following version of De Morgan’s laws:

=(fiV f2) = (=f)A(=f2) ~(finfe) = (=f1)V(=f2)
(f1© fo) = (=f1) @ (=f2) ~(fri® f2) = (=f1) ® (=f2)
~(fiV f2) = (~f1) V(~f2) ~(fi A f2) = (~f1) A(~fa)
~(fi® f2) = (~f1) @ (~f2) ~(f1® f2) = (~f1) © (~f2)

Kleene’s Three-Valued Logic. Kleene’s three-valued logic has already been used
extensively for static analysis of heap structures [28]. It is often presented as
Three = {0, %, 1} and is partially ordered by the usual ‘less than or equal to’ on
the numbers. The number 0 corresponds to falsity, the number 1 to truth, and
the number % to an undecided truth value. It is clear that Kleene’s three-valued
logic can be seen as a fragment of (Four,=-) by mapping 0 to f, 1 to t, and %
to either | or T. In this case = generalises ordinary implication to Kleene’s
three-valued logic.

Taking the knowledge order into account the traditional approach [9] (also
taken in [35, Chapter 4]) is to map % to L indicating that the undecided truth
value arises due to lack of information. But a number of papers on static analysis
(e.g. [28] and including our own [18,21]) instead map 3 to T as this better
indicates that the truth value arises due to conflicting information. In this paper
we shall be using the notation from Four so as to avoid any confusion as to which
embedding is intended.

3 Alternation-Free Least Fixed Point Logic

We shall introduce a version of Alternation-Free Least Fixed Point Logic (ALFP)
[22,23,25] based on Belnap logic in a simplified form that makes the semantic
treatment more succinct.
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In the following let U be a non-empty and finite universe of values with u as
a typical element, let C C U be a finite and non-empty set of constants with ¢
as a typical element, let V be a finite and non-empty set of variables with = as a
typical element, let R be a finite and non-empty set of relation symbols with R
as a typical element, let v be a typical element of C UV, and let f be a typical
element of Four. We shall write ¥ is a shorthand for a non-empty list vy, -+ , v,.

The syntax of ALFP based on Belnap logic is based on clauses cl and pre-
conditions pre defined by the following grammar:

cl::=true|clAcl|Vz:cl|pre~ R(D) | pre = R(7)
pre:: = f | R(¥) | ~R(v) | ~R(v) | preop pre | OP x. pre
opu=V|A|D|®
OP:=3 VIR

At the clause level we have some standard constructions from two-valued pred-
icate logic and we have two base clauses: pre ~~ R(7) and pre = R(7). The
intention is that pre will evaluate to an element of Four as will R(7) and we then
check the appropriate order between them.

At the precondition level we have constants in Four and we have three base
queries: R(7), ~R(7), and~R(7). (The limited placement of negation and con-
flation is no restriction thanks to Fact 4.) Preconditions can be combined using
the operators V, A, @, and ® that denote the binary lattice operations asso-
ciated with Four. The binary lattice operations extend to general least upper
bound and greatest lower bound operations; we prefer to write them in logi-
cal form as a form of quantifiers denoted 3, V, €, and ). The semantics will
make it clear that when & = {uy,--- ,uy} then OP x. R(z) will be equivalent to
R(uy)op---opR(uy) for corresponding choices of OP and op.

Stratified ALFP. So far the syntax is too liberal and allows writing clauses like
—R(c1) = R(cz) that would seem to have no least solution (when ¢; # cz). We
therefore introduce a notion of stratification ensuring that relations cannot be
defined non-monotonically on themselves.

Stratification is based on a mapping -¥ : R — Ny that gives a non-negative
rank to each relation and we shall assume that relations of rank 0 are predefined
(and hence cannot be defined in clauses) and write Rg = {R € R | R* = 0}. Since
we are based on Belnap logic we shall also need a mapping -” : N; — {K, L} that
associates each positive rank with an order that is either the knowledge order
or the logical order.

Definition 1. A clause cl is closed when it contains no free variables from V.
A clause cl is stratified when it satisfies the following two conditions:

— In each subclause pre ~ R(T) occurring in cl we have R* > 0 and R® = K
as well as for each base query R'(T') occurring in pre we have R < R, for
each base query =R'(v') occurring in pre we have R'® < R*, and for each base
query ~R'(v') occurring in pre we have R < RF.
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— In each subclause pre = R(T) occurring in cl we have R* > 0 and R¥ = L
as well as for each base query R'(T') occurring in pre we have R < R, for
each base query =R'(T') occurring in pre we have R'® < RE, and for each base
query ~R'(v') occurring in pre we have R < RF.

This means that =R'(¢;) = R(cy) and ~R'(c1) ~» R(ce) are stratified only
if the rank of R’ is strictly smaller than that of R, and hence that neither
—R(c1) = R(cz) nor ~R(¢q) ~ R(ce) can be stratified.

When we define the semantics below it will become clear that Facts 1 and
2 then ensure that the definition of a relation only depends monotonically on
itself as will be exploited in the proof of Theorem 1.

Semantics. An interpretation of a relation R will be a mapping from tuples
of elements of the universe into Four. We shall dispense with the bookkeeping
needed to keep track of the intended arity of each relation R (and we did not do
so above) but we cannot merely let R be a mapping in 4* — Four from the set of
all tuples of elements of the universe into Four because U* is infinite even when
U is finite. Hence we shall assume that there is a maximal arity a of relations (as
can be read off from the clause considered) and let R be a mapping U<?* — Four
where U=? denotes the set of tuples of length between 1 and a.
The semantics of ALFP amounts to defining when an interpretation

p € Int = (R — U=* — Four)
of relations and a partial interpretation
c:V—U
of variables satisfy a given clause cl, written

(p.0) Ed

and producing an ordinary truth value in Two, and this requires defining the
semantics of a precondition pre, written

[pre] (p; o)

and producing a value in Four.

We shall extend o : V < U to a mapping o : (V UC)S? — US? by setting
o(c)=cand o(v1, - ,v,) = (0(v1), - ,0(v,)). The definitions are then rather
straightforward and given in Fig.2. It is immediate that (p,[]) = cl is a well-
defined boolean value (in Two) whenever the clause cl is closed and stratified.

Lexicographic Order. It is useful to be able to relate interpretations of relations
by means of a lexicographic order. In order to cut down on the length of the
definitions we shall write CX for ~» and C! for = and extend the orderings on
Four to =2 — Four in the standard way, i.e. R; C° Ry iff Vi e U2 : R, (w) &°
R, (ﬂ)
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[R@)](p,0) = p(R)(c(v))
[-R(®)](p,0) = ~(p(R)(c(?)))
[~R@)](p, o) = ~(p(R)(c(7)))
[pre; oppre,](p, o) = [pre,](p, o) op [pre,](p, o)
[OP z. pre](p, o) = OPucu [pre](p, oz — u])
[[f]] (97 J) = f
(p,0) = true
(p,0) |E cli Aclaiff ((p,0) = cli) A ((p,0) = cl2)
(p,o) =V :cliff Yu e : (p, oz — u]) =cl
(p,0) E pre ~ R(D) ift [pre](p, 7) ~ p(R)(o(7)
(p,0) |= pre = R(v) iff [pre](p, o) = p(R)(c(v))

Fig. 2. The Belnap semantics of ALFP: [pre](p, o) is an element in Four, and (p, o) = cl
is an element in Two.

Definition 2. The lexicographic order p1 T py is defined by:

p1 E p2 iff pr = p2 V p1 T p2

JReR: R =k A pi(R) # p2(R)A
R* <k = p1(R) = pa(R)A
VRER:
© {Rn =k = pi1(R) C* p2(R)

pCpeiff 3k >0:

For an interpretation p : R — US? — Four write plo : Ro — U= — Four
for the interpretation defined by plo(R) = p(R) whenever R* = 0. Next write
Int[o] = {p € Int | VR € Ro : p(R) = o(R)} whenever g: Ry — U= — Four.

Lemma 1. The lexicographic order C is a partial order. Furthermore, for each
choice of 0 : Ro — U= — Four, the set Int[g] is a complete lattice.

Proof. To show that C is a partial order we first note that C is reflexive. For
anti-symmetry suppose by way of contradiction that p; # po, that p;1 T po
(which gives a number k; > 0) and ps C p; (which gives a number ky > 0);
since U<?* — Four is a complete lattice (under either one of ~» and =) this gives
a contradiction both when k; = ko and when k; # ko. For transitivity suppose
that p1, p2, ps are distinct (as otherwise the result will be trivial) and p; T po
(which gives a number k; > 0) and ps T ps3 (which gives a number ky > 0);
choosing k to be the smaller of k1 and ks establishes the result.

To see that Int[g] is a complete lattice it suffices to consider an arbitrary
subset My and construct its greatest lower bound. Define pg such that pg(R) =
o(R) when Rf = 0 and arbitrary otherwise. We proceed inductively by defining
pi+1 to give the proper interpretation to relations of rank at most ¢ + 1 using
that p; does so for relations of rank strictly less than i + 1. Given M; and p;
define the set of interpretations M;;1 C M; relevant for the extension of p; to
pi+1 by

M1 ={pe M;|YReER: R <i= p(R)=pi(R)}
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and next define p; 1 as an extension of p; on relations of rank ¢ + 1 (making
an arbitrary definition for relations of higher rank just to ensure that we have a
total function) by

pi(R)if RF <
pi+1(R) = |_|§,1§1\14)+1 ( )lfRﬁ*Z+1
TH RS i+ 1

. K . . — . —
where |_|p€M o 38 Npentinrs [oenris, 8 @pensy, s 1t is Aw.f, and 1K is Mo L.
Note that for relations of rank i 4+ 1 the appropriate order (L or K) is given by

o= (i+1)" and ﬂ;lg]\blﬂ p(R) =[1° M;;1 gives the proper interpretation of R
by taking the appropriate greatest lower bound (/A or &) of M; 1.
Since R is finite there will be a maximal rank k£ and py, is the desired greatest

lower bound of M.

Algebraic Laws. In the AFLP approach to static analysis the transfer functions
are encoded as preconditions and it is useful to have algebraic laws that allow
rearranging these. We are free to use the algebraic laws from Facts 3 and 4 as
they preserve stratification and closedness as well as the semantics of precondi-
tions and clauses. At the clause level we can use the usual logical properties of
conjunction and quantification, e.g. that conjunction is associative and commu-
tative.
Additionally we can combine distinct clauses into one. The two clauses

(pre; = R(®@)) A -+ A (pre, = R(7))
(pre; V- -+ V pre,,) = R(7)

are equivalent as are the two clauses

(pre; ~ R(V)) A~ A (pre, ~ R(V))
(pre; @ --- @ pre,,) ~ R(v)

Moore Families. Recall that a Moore family is a subset of a complete lattice that
is closed under greatest lower bounds (and hence is non-empty). In the abstract
interpretation approach to static analysis [6,7,20] the establishment of a Moore
family result shows that there is a least solution to the static analysis problem,
in our case [ |{p € Int[g] | (p,[]) = cl}, for the analysis problem that cl expresses.

Theorem 1. For each choice of an interpretation o : Rg — U2 — Four and a
closed and stratified clause cl, the set {p € Int[g] | (p,[]) = cl} is a Moore family.

Proof. Using the algebraic laws we can rewrite cl into the equivalent formula
true Acly A~ - - Aclg such that cl; defines only relations of rank i. Let pg, - - - , px be
the construction of the greatest lower bound py, of My = {p € Int[g] | (p,[]) E cI}
as in the proof of Lemma 1. We shall prove by induction on 4 that (p;,[])
true Acly A --- Acl; and the base case ¢ = 0 is immediate.
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For the inductive case write Int; 1 for the set of interpretations of relations
of rank i + 1, and write p;[p] for the interpretation that uses p on relations
of rank ¢ + 1 and uses p; otherwise. It follows from the induction hypothesis
that (pi[p],[]) E true Acly A -+ Acl; for all p and in particular (p;+1,[]) E
true Acly A--- Acl;. We can define a function Fj41 : Int;11 — Int; 1 such that
(pilpls []) E cliy1 is equivalent to F;i1(p) C(+D" p which we shall abbreviate
to Fiy1(p) C p. By Facts 1 and 2 and Definition 1 this is a monotonic function.
Then {p € Int;y1 | Fitr1(p) C p} is a Moore family, as F;1([|M) C F11(p) Cp
for each p € M and hence Fi11([|M) C []M. It follows that (pit1,[])
true A C|1 VARERIVAN C|i AN C|7;+1.

4 Model Checking as Static Analysis

Modal Transition Systems. There are many three-valued formulations of tran-
sition systems in the literature. Examples include Partial Kripke structures [3],
Modal transition systems (MTSs [16,17]), and Kripke modal transition systems
(Kripke MTSs) [11,14,30]. It has been shown in [12] that these approaches are
equally expressive and we shall follow the approach of [30] in this section.

Definition 3 (Kripke Modal Transition Systems). A Kripke Modal Tran-
sition System (Kripke MTS) over a finite atomic propositions set P is a tuple
M = (S, So,%t,%,L), where S is a nonempty finite set of states, Sy C S

s a set of initial states, wg S xS and "ﬂfg S x S are transition relations

such that both ™% and ™% are total and ”ﬁfgw, and L: S x P — {t,T,f}
is an interpretation that associates a truth value in {t,T,f} with each atomic
proposition in P for each state in S.

Transitions in ™% (resp. %) are must transitions (resp. may transitions), and
we write s T3 ¢ (resp. s =4 ') to denote (s,s') €™ (resp. (s,s') €—4).
State s is a must (resp. may) successor of s if s 223 & (resp. s ¥ s'). Totality
means that all states always have at least one successor.

A must (resp. may) path from state s is an infinite sequence of states = =
$0,S1..., where s = s and we have s; must Si+1 (resp. s; Ty s;+1) for each
consecutive pair of states s;,s;11 in m. We use II(s)must (resp. II($)may) tO
represent the set of must (resp. may) paths from state s. For an infinite path
T = 80, 81..., we use w[k] for 0 < k to denote the (k + 1)th state sj of .

Three-Valued Computation Tree Logic (CTL). Reasoning about properties of
Kripke MTSs entails the use of a three-valued logical formalism, where we can
characterize uncertainties of system behaviors using the truth value T, denoting
that it is unknown whether the formula holds or not. We consider a fragment of
the game-based three-valued CTL studied in [30] (that used L instead of T but
this does not relate well to the meaning of the knowledge order of Belnap logic.).
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This amounts to defining CTL state formulas ¢ based on a set of propositions
P, with p as a typical element, as follows:

¢ = true [ p| =g | g1 Ao [ o1V 2 | Ep | Ay

where ¢ are CTL path formulas. CTL path formulas are defined as follows, where
¢ are CTL state formulas:

Y= X¢ | 01 Ups | Fo | Go

We give the semantics of three-valued CTL with respect to Kripke MTSs in
Fig. 3. The semantics is obtained from [30], and we derived the case for the F
operator by using that F¢ is a shorthand for trueU¢, and the case for the G
operator by using that G¢ is a shorthand for (—true)Ve.

Least Fized Point CTL. We show in Appendix B that the following fragment
suffices to define the full CTL:

¢ZI = true | p | _\¢ I (bl /\¢2 | ¢1 \/¢2 | EX¢ | AX(b | E[¢1U¢2] | AF(b

Results like these are standard in traditional two-valued model checking where
it is more common to use Existential Normal Form with EG¢ instead of the
dual AF¢, but to better relate to the ALFP development below we chose an
operator for which the least fixed point is desired.

In preparation for the encoding in ALFP we establish two facts on unfolding
that are standard in the two-valued setting but also hold in our setting. We say
that two CTL formulae are equivalent, written ¢1 = ¢o, whenever [(M,s) =
d1] = [(M, s) E ¢o] for all M and s.

Fact 5. The equivalence E[p1 Ups] = ¢o V (¢1 A EXE[p1 Ugs)) holds in three-
valued CTL.

Fact 6. The equivalence AFp = oV AXAF$ holds in three-valued CTL.

Three-Valued CTL Encoded in Multi- Valued ALFP. We now show that the
semantics of least fixed point CTL can be encoded in ALFP.
must may

To encode a Kripke MTS (S, Sy, —,—>, L) into three-valued ALFP, we
take the universe U to be S and define corresponding relations in g as follows:

— for each atomic proposition p over P, we define a relation P, such that
o(Bp)(s) = L(s, p),

— we define a transition relation 7' such that o(T)(s,s’) = t if (s, ) e
o(T)(s,8') = T if (s,8') €™ but (s,s') g™, and o(T)(s, s') = f otherwise.

Our approach follows the syntax-directed approach of flow logic tradition [24,26].
For each CTL formula ¢, we define a corresponding relation R4, and we define
a judgement of the form R ¢ that is intended to ensure that [(M,s) | ¢'] =
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[(M,s) E true] =t
(M, s) = p] = L(s,p)
(M, s) = —d] ==[(M,s) = ¢]
(M, s) = ¢1V d2] = [(M,s) = ¢1] V[(M,s) | ¢2]
[(M,s) & ¢1 A 2] = [(M,s) E ¢r] A [(M 75) = ¢2]
t if 3m € H(8)must : [(M,7) E ] =t
(M,s) EEY] = f VT € I(8)may : [(M,7) E o] =f
T otherwise
t iV € H(S)may : [(M,7) =] =t
[[(M,s) = Ay =< f if 37 € H(8)must : [(M,7) E ] =F
T otherwise
t if [(M,m[1]) | ¢] =t
[(M,m) | Xg] =4 Ff if [(M,7[l]) = ¢] =f

T othervvlse

(M, m[j]) = ¢1] =)
(M, 7) = ¢1Uds] = ¢ f VO<k:(B0<j<k:[(Mx[j]) F ¢] =
) VUM, w[k]) | ¢2] =)

T otherwise

t 30<k:[(M,x[k]) |- ¢] =t
(M,7)EF¢] ={f VO<k:|[(Mn[k])Eg=f

T otherwise

t VO<k:[(M7[k]) = ¢] =t
(M) = Gl f 30<k:[(Mxk])E¢]=f

{t 0<k:([(M,rk]) Ede] =tAVO<j<k:

T otherwise

Fig. 3. Three-valued semantics for CTL.

p(Rg)(s) holds in the least model for all subformulas ¢’ of ¢. (Here R denotes
a family of relations that includes Ry whenever ¢ is a subformula of ¢.) The
ALFP clauses defining the judgement R + ¢ in Fig.4 impose the constraints
needed to ensure that the least solution (in the manner of Theorem 1) to the
constraint system provides the correct value of Ry for all subformulas ¢’ of ¢.
If a subformula ¢’ occurs in several places in ¢ we will be generating the same
constraints several times but this does not affect the set of solutions.

Equivalence. Tt is immediate that Fig. 4 defines a closed formula R+ ¢ of ALFP
whenever ¢ is a formula of CTL. To obtain stratification, we let Rg = {T'}U{P, |
p € P}, and we define R?b, such that R(ﬁb/ < R(ﬁb,, whenever ¢’ is a subformula of
¢", and finally we take the order to be always L.
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R true iff Vs :t = Rirue(s)]
Rbp iff [Vs : Pp(s) = Rp(s)]
RE¢p1 Ve HEREG1ARFE ¢2A
[VS : R¢1 (S) \ R¢>2 (5) = R¢1V¢2 (S)]
RF —¢ iff RE oA
[Vs: =Re(s) = R-4(s)]
RFEX¢  iff RF ¢A
[Vs:[3s": T(s,8") A Ry(s")] = Rexs(3)]
RFAX¢  if RF ¢A
[Vs: [Vs': =T(s,s") V Ry(s')] = Raxe(s)]
RFEE[p1Ugo] iff RF ¢1 A RF ¢aA
[Vs : Ry, () = RE[p, U] (8)]A
[VS : [35, : T(s’ 3/) A Ry, (S) A RE[¢1U¢2](5,)}
= REe(g,U4,](5)]
RFAF¢  if RF 6A
[Vs : Ry(s) = Rarg(s)|A
Vs : [Vs' : =T(s,s") V Rars(s’)] = Rare(s)]

Fig. 4. Least fixed point CTL encoded in multi-valued ALFP.

We then have the following theorem (motivated by [35, Chapter 4]) saying
that the best analysis result of our flow logic approach to the analysis of Kripke
MTSs coincides with the solutions for the model checking problem for three-
valued CTL with respect to Kripke MTSs.

Theorem 2. The interpretation p given by Vs € S : p(Ry)(s) = [(M, s) = @] is
obtained by defining p = [’ € Intlo] | (¢',1]) b= (B &)}.

Proof. For the relation Ry corresponding to the CTL formula true, p(Rirue)
should map each state s to t and this is guaranteed by the ALFP clause Vs :
t= Rtrue(s).

For the atomic proposition p we make use of the predefined relation P, and
impose the constraint Vs : P,(s) = R,(s) such that in the least solution p(R,)
maps a state s to the same truth value as o(P,) does.

The clauses for boolean operators V, A and — follow the same pattern so we
just explain one of them, namely disjunction ¢;V ¢s. The judgements R F ¢; and
R+ ¢9 ensure that for the relations Ry corresponding to subformulas ¢’ of ¢; or
¢2, p(Rg/) map states to truth values correctly. The clause Vs : Ry, (s)VRg,(s) =
Ry, vs,(s) requires that Re,ve,(s) is mapped to t if Ry, (s) or Ry, (s) is mapped
to t, and allows that Ry, ve,(s) is mapped to f if both R, (s) and Rg,(s) are
mapped to f, and otherwise allows Ry, v4,(s) to be mapped to T.

In the case of EX¢, the first conjunct ensures that for the relations Ry
corresponding to subformulas of ¢, p(R, ) maps states to truth values correctly.
The second conjunct requires that if there is a must transition from s to s,
ie. o(T)(s,s") equals t, and Ry4(s’) is mapped to t, then Rgxq(s) is mapped
to t. Conversely, if Rgx¢(s) is forced to be mapped to t there must be a must
transition from s to some s’ where Ry(s") is mapped to t. Also, if for all may
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transitions from s to §', i.e. o(T')(s, s’) equals either t or T, Ry(s’) is mapped to
f, then REgx4(s) is allowed to be mapped to f. Conversely, if Rgx(s) is allowed
to be mapped to f then all may transitions from s to s’ must have that Ry (s’)
is mapped f. This ensures that the least solution to the clauses generated treats
the EX operator in accordance with Fig. 3.

In the case of AX¢, the first conjunct plays the same role as in the case
of EX¢. The second conjunct requires that if for all may transitions from s to
s’ 1e. o(T)(s,s’) equals either t or T, Ry(s’) is mapped to t, then Rax(s) is
mapped to t. Conversely, if Raxg(s) is forced to be mapped to t then for each
may transition from s to some s’ it must be the case that Ry (s") is mapped to
t. Also, if there is a must transition from s to s, i.e. o(T)(s,s’) equals t, and
R4(s’) is mapped to f, then Raxe(s) is allowed to be mapped to f. Conversely,
if Raxq(s) is allowed to be mapped to f there must be a must transition from s
to some s” such that Ry(s’) is mapped to f. This ensures that the least solution
to the clauses generated treats the AX operator in accordance with Fig. 3.

In the case of E[¢;Ugs], the judgements R ¢; and R I ¢ play the same
role as in the case of ¢1 V ¢s. Using the algebraic laws of Sect. 3 the remaining
two conjuncts can be reformulated as the equivalent

Vs : (R¢2 (S) V [38/ : T‘(S7 S/) A R¢1 (S) A\ RE[¢1U¢2](S/)]) = RE[¢1U¢2](S)

and for the least solution we then have that

Vs [[R¢2 (8) \ [EIS/ : T(S, S/) A R¢1 (S) A RE[¢1U¢2](SI)H] = [[RE[¢1U¢2] (3)]]

which is in agreement with Fact 5, where also the least solution is intended.

In the case of AF¢, the first conjunct plays the same role as in the case of
EX¢. Using the algebraic laws of Sect.3 the remaining two conjuncts can be
reformulated as the equivalent

Vs: (Rg(s) V Vs : =T(s,s") V Rars(s')]) = Rars(s)
and for the least solution we then have
Vs [Ry(s) v [Vs': =T(s,5") V Rarg(s)]] = [Rars(s)]

which is in agreement with Fact 6, where also the least solution is intended.

5 Access Control

Access control is a security mechanism that intends to ensure the confidentiality
and integrity of data by placing restrictions on whom can read and modify data.
It is usually implemented by a reference monitor that inspects each request for
reading or modifying data and determines whether or not to grant the operation
based on the access control policy in place. Access control policies can be quite
complex and to control the complexity it is usually necessary to construct them
in a compositional manner.
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Access control decisions are basically two-valued: either the request is granted
or it is denied. However, a two-valued logic is insufficient for a compositional
approach as policies may be inapplicable or even provide conflicting advice.
Researchers have therefore proposed the use of compositional policy languages
based on Belnap logic [4,5,13] and this is the approach we shall be taking in
the present section. Realistic access control languages like XACML 3.0 actually
require going beyond having four truth values [27].

Policies and Their Semantics. In this paper we are inspired by the development
of [13] and we shall define a policy language that embeds the Belnap operators
introduced in Sect. 2; it is given by the following syntax

pol :: = f | bpol | =pol | ~pol | pol A pol | pol V pol | pol & pol | pol & pol

where f € Four and bpol is the basic policies.

The basic policies will be matched against the actions of the system of interest
and we shall pay special interest to the actions requesting access to data and
leave the remaining ones unspecified:

act:: = read(s, 0,t) | write(s,0,t) | - -

Here read(s,o0,t) is an action where the subject s requests read access to an
object of type t owned by o, and write(s, 0,t) is an action where the subject s
requests write access to an object of type t owned by o.

The semantics of the basic policies is given by a function [bpol] that given
an action will evaluate to a value in Four with the idea being that t means that
the action is allowed, f that it is denied, L that the policy does not apply, and T
that we have conflicting information. Examples of such basic policies and their
semantics is given in Fig.5 and will be explained in more detail shortly. This
function is then lifted to general policies in a straightforward manner by taking:

[f1(act) = f
[op pol](act) = op([pol](act)) for op € {—,~}
[poly op pola](act) = [poli](act) op [polz](act) for op € {A,V,®, @}

When specifying policies it is often useful to be able to specify that one policy
takes priority over another, written pol; > pols, and meaning that the intended
policy is poly whenever pol; is not applicable and otherwise it is pol; . The priority
operator on Four is traditionally [13] defined as:

(f1>f2){j;ii££;j

However, it turns out to be a derived operator in our setting:

Fact 7. All multi-argument functions over Four are derived operators; in par-

ticular, (f1 > fo) = 1 ® (fo @ ~(f1 ® (=f1))).
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[READ.us] (act) Q ) if act = read(s, o, t)
oun] otherwise
[WRITEqun] (act) { EQ(s, 0) if act = write(s, o, 1)
otherwise
AC(s,0,t,r) if act = read(s,o0,t) A D(s) A P(0)

[READgoc] (act) otherwise

t)
0 AC(s,o0,t,r) if act = read(s,o0,t) A N(s) A P(o0)
otherwise

[READns] (act)

[WRITEgoc] (act) otherwise

AC(s,0,t,w) A EQ(t, cp) if act = write(s,0,t) A N(s) A P(o)

[WRITEs] (act) otherwise

if act = write(s,0,t) AP(s) As=0At# ps

1 otherwise

{2
{2
{ AC(s,0,t,w) AEQ(t, mr) if act = write(s,0,t) A D(s) A P(0)
-{
[WRITEa:](act) = {

Fig. 5. Basic policies and their semantics.

Example Scenario. Let us consider a hospital scenario where three boolean data
bases D, N and P indicate whether or not principals are doctors, nurses or
patients, respectively. An access control matrix AC governs the access to the
patient records and following [13] we shall assume that it contains three types
of information: medical records (mr), care plans (cp) and patient surveys (ps).
Given a subject s, an object o and a type ¢t we write AC(s,o0,t,r) € Two for
whether or not read access is permitted, and AC(s,o,t,w) for whether or not
write access is permitted.

Figure 5 gives a number of examples of basic policies. The first two are exam-
ples of general policies saying that anyone should be able to read and write their
own data. Here we use EQ for an equality predicate. As an example the policy
READgn only applies to a read action and it will check whether the subject
equals the object; if the action is not a read action the policy simply evaluates
to L as it is not applicable.

In the hospital context the access control matrix will allow doctors and nurses
to read the different kinds of patient records; this is expressed by the basic
policies READgoc and READ,s specified in Fig.5. The boolean data bases D, N
and P are used to check the relevant roles of the subjects and objects and only
in that case the access control matrix AC is consulted to check the rights. Using
the priority operator we can express the combined policy

READgyn > (READgoc @ READ,)
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that ensures that the patient has the right to read his own data but at the same
time the doctors and nurses have access to the patient records.

In the scenario of [13] only doctors may write medical records whereas nurses
only are allowed to write care plans; this is expressed by the basic policies
WRITEgoc and WRITE,s of Fig. 5. The main difference from before is that extra
checks are inserted on the type of information being accessed. In analogy with
above we can form the policy:

WRITEgun > (WRITEgoc & WRITE)

However, this is too permissive as it will permit the patient to write his own med-
ical records and care plans. To prevent this we make use of the policy WRITE5
that only applies if the patient attempts to write anything but a patient survey
in his/her patient records and it will prevent that from happening. The overall
policy can then be formulated as

WRITE 0t > (WRITEqwn > (WRITEgoc & WRITE,))

Thus if the patient attempts to write, say a medical record, then WRITE
evaluates to f and the access will be denied. On the other hand if he/she attempts
to write a patient survey then WRITE,,; does not apply and the general policy
WRITE,w, will grant the access.

Our requirement to the overall policy HOSPITAL for the hospital therefore
is that it incorporates all of the above ingredients. To this end define

(READgyn > (READgoc @ READps)) &

HOSPITAL = (WRITE e > (WRITEqun > (WRITEqec © WRITE,))

To connect this to our development of Alternation-Free Least Fixed Point Logic
we proceed as follows.

The reference monitor will grant or deny access based on a basic policy
RefMon. Given an action act this gives us a value [RefMon](act) € Four but
access control decisions will either grant the access or deny it and hence we need
to map values in Four to values in Two. There are several approaches for this
and we shall take what is known as the liberal approach: access is denied if some
evidence suggests so and otherwise it is granted. This amounts to defining

deny(f) =f~ f
grant(f) = f ~t

Thus the decision made by the reference monitor is grant([RefMon](act)) € Two.
To express that the decisions of the reference monitor should be faithful to
the intended policy we may write

Vact : [HOSPITAL](act) ~» [RefMon](act)

and this produces a closed clause of ALFP when ‘partially evaluating’ the def-
initions of the basic policies. It is a stratified clause when we take the order to
be always K and let AC and EQ have rank 0 and RefMon have rank 1.
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6 Conclusion

We believe that the use of logical formalisms for static analysis provides a stable
framework for allowing complex analyses to interact. Our previous work on Flow
Logic (including [24,26]) have shown how a logical approach can provides a
general framework for developing static analyses for a variety of programming
languages and process calculi. The development of the Succinct Solver [23] for
clauses in two-valued Alternation-Free Least Fixed Point Logic proved to be a
sound and powerful implementation strategy for many of these analyses.

In this paper we have shown how to extend Alternation-Free Least Fixed
Point Logic to be based on Belnap logic, while maintaining the close corre-
spondence between static analysis and model checking pioneered by Bernhard
Steffen, and opening up for handling security policies central to the construction
of secure IT systems.

We leave the generalisations and extensions to future papers but conclude by
briefly sketching some of them. In fact we can freely choose complete lattices and
transfer functions for each stratum, ensuring that we change statum whenever we
use non-monotonic functions, and imposing suitable well-formedness conditions
using a simple type system.

While we did not establish an algorithm for computing the solution guaran-
teed by Theorem 1, it is possible to adapt the development of the Succinct Solver
to obtain an implementation taking time that is only exponential in the nesting
depth of quantifiers and the maximal arities of relations but otherwise essentially
linear in the size of clauses and the universe. Alternatively, using ideas in [35,
Chapter 4] clauses using Belnap logic can be translated to only linearly larger
clauses using classical logic and then the Succinct Solver can be applied directly.

A Proofs of Key Facts

Proof of Fact 1. There is an easy graphical proof of the interesting cases. First
observe that the Hasse diagram for = in Fig.1 is obtained from the Hasse
diagram for ~-» by rotating it 90° clockwise. Next observe that in the Hasse
diagram for = the operator ® ‘moves to the left’ whereas the operator @& ‘moves
to the right’. Similarly observe that the Hasse diagram for ~~ in Fig. 1 is obtained
from the Hasse diagram for = by rotating it 90° anti-clockwise. Next observe
that in the Hasse diagram for ~» the operator A ‘moves to the right’ whereas
the operator V ‘moves to the left’.

Proof of Fact 3. The interesting cases are when op; € {®,®} and opz_; €
{An,V} (for i € {1,2}) as the other cases follow since (Four,~) and (Four,=>)
are distributive lattices. It is straightforward to validate the remaining eight
interesting cases.

Proof of Fact 4. There is an easy graphical proof of these laws. For the first two
we observe that negation (—) is also the dualisation operator on (Four, =) where
A is greatest lower bound and V is least upper bound. For the next two observe
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that negation (—) works ‘sideways’ on (Four,~-). The remaining four laws are
analogous.

Proof of Fact 7. We first show the equation (f; > f2) = 1D (fo@~(f1D(=f1)))
by considering two cases for the value of f1. If f; = L we note that (f1®(—~f1)) =
1 and hence that f1 ® (fo @ ~(f1® (—f1))) = LB (f2o® T) = f2 as desired. If
f1 # L we note that (f1®(—f1)) = T and hence that f1 ®(fo@~(f1D(~f1))) =
f1® (fo® L) = f1 as desired.

For the general result, it follows from [1, Proposition 17] that all multi-
argument functions over Four are expressible in terms of =, @, | and D defined
by
faift~ f1

t otherwise

(fiDfo)= {
Define S[f] = (f A T) ® (=(f A T)) and note that

ﬂﬂ:{Tﬁtwf _{TﬁfemT}

1 otherwise | Lif fe{f, L}

so that is suffices to verify that (f1 D f2) = (f2 ® (S[f1])) © (t ® (~S[f1]))-

B Least Fixed Point CTL Suffices for CTL

We need to show that the following CTL operators can be defined using the
least fixed point fragment of CTL: A[p1Ugs], EF¢p, AG¢o and EG¢. This is
standard in the two-valued setting but also holds in our setting as expressed by
the following facts (where we dispense with the proofs). We begin with two facts
on path formulas.

Fact 8. For any M and &, (M, n) = F¢| = [(M,7) = trueUsp|.
Fact 9. For any M and w, [M,7) = G¢| = -[(M,7) = F-¢].

We continue with four facts on state formulas. (One may check that we have
the equivalence AX¢ = “EX-¢ but the explicit presence of AX in least fixed
point CTL is helpful for our development.)

Fact 10. The equivalence EF$ = EltrueUg| holds in three-valued CTL.
Fact 11. The equivalence EGp = ~AF—¢ holds in three-valued CTL.
Fact 12. The equivalence AG¢p = ~EF-¢ holds in three-valued CTL.

Fact 13. The equivalence A[py Ups] = —E[~¢p U(~p1 A —a)] A AF¢o holds in
three-valued CTL.
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The development of expressive models of transitions systems that are capable
of efficiently supporting formal verification by means of model-checking algo-
rithms has been one of the concerns of Bernhard Steffen’s career in research.
The traditional model for the interpretation of modal and state-based logics, i.e.
a Kripke structure [1], in which states are labelled by atomic propositions, was
adopted by the early model-checking algorithms for CTL and LTL (cf. [2] and
the references therein). On the other hand, Labelled Transition Systems (LTS),
in which transitions instead are labelled with events, emerged as the most appro-
priate semantic model for process algebrae and process calculi [3,4]. In search
for more expressivity and flexibility, the work by Bernhard Steffen and others
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has addressed models in which both states and transitions are labelled, such
as Doubly-Labelled Transition Systems [5], Kripke Transition Systems [6], and
Labelled Kripke Structures [7].

It is well known that model checking is affected by the state-space explosion
problem, for which realistic system models may require an exponential number
of states (which may not fit the available computer memory). Or, as Cleaveland
puts it in [8], “Consequently, while the best traditional model-checking algo-
rithms [9-12] are linear in the number of states of a system, their applicability
is severely restricted by the prohibitive number of states systems can have.”
Bernhard Steffen has made seminal contributions to the efficiency of model-
checking algorithms [10,13]. To mitigate the state-space explosion problem, local,
on-the-fly model-checking algorithms [14-16] can be of help. While these have
the same worst-case complexity, they generally perform better in the many cases
in which only a subset of the system states, generated ‘on demand’, needs to
be analysed to determine whether a system model satisfies a formula. Local
model checking moreover may provide results for infinite state spaces. Bernhard
Steffen has made several important contributions also to this development (cf.,
e.g., [17,18]). In this paper, we list some models and logics that combine state
and transition labelling and show how the KandISTI model-checking environ-
ment [19] and its rich logic, presented in this paper, exploit these features and
thus relate to the aforementioned contributions of Bernhard Steffen.

KandISTI! is a family of model checkers developed at ISTI-CNR for over
two decades now, which includes UMC [20], CMC [21], VMC [22], and FMC [23].
Each tool allows the efficient verification, by means of explicit-state on-the-fly
model checking, of functional properties expressed in a state-based and event-
based branching-time temporal logic, which builds upon the family of logics
based on ACTL [24-26], i.e. action-based versions of CTL [9,27]. The KandISTI
model checkers allow on-the-fly model checking with a complexity that is linear
with respect to the size of the model and the size of the formula?.

This paper is organised as follows. Sections 2 and 3 introduce transition sys-
tem models and temporal logics, respectively, that explicitly combine state-based
and event-based information. Section 4 discusses how KandISTI exploits states
and events in a rich modelling and verification environment based on a com-
prehensive temporal logic, and highlights some of its more interesting features.
Section 5 concludes the paper.

2 Modelling Structures for Reasoning on both
State-Based and Event-Based Properties

In the literature, one can find several variants of graph structures that have
information associated with both their nodes and their edges, used as models
for state/event-based logical specifications.

! Available online at http://fmt.isti.cnr.it /kandisti.
2 When ignoring the fixed point operators and the parametric aspects of the logic.
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One of the first structures that comes to mind is the one adopted for the
propositional p-calculus [28]. These models are constituted by a set of states, a
set of propositional constants and a set of program constants. From a semantic
point of view, the interpretation of a propositional constant is a set of states.
Therefore each (control) state might have several state labels. The interpretation
of a program constant, instead, is a transition relation (i.e. edges associated with
exactly one label).

In the Doubly-Labelled Transition Systems (L?TS) introduced by De Nicola
and Vaandrager [5], the same concept was reshaped by explicitly assigning to
each state a set of atomic propositions, and by describing the (now unique)
transition relation as a set of triples of the form (source state, observable or
silent event, target state). No constraints are explicitly imposed on the finiteness
or absence of internal structure of atomic propositions and events.

Lawford, Ostroff and Wonham [29] introduced so-called State-Event Labeled
Transition Systems (SELTS), which are equivalent to the underlying model of
the state/event systems of Graf and Loiseaux [30], in which a model is described
by a countable set of states, a finite set of binary relations on the states, an
initial state, and a mapping from the states to sets of atomic predicates (i.e.
edges are still associated with precisely one label).

In 1999, together with Miiller-Olm and Schmidt, Bernhard Steffen coined the
term Kripke Transition System (KTS) [6]. In a KTS, states are labelled with
sets of atomic propositions and transitions are labelled with sets of events. No
constraint is imposed on the absence of internal structure of the labels, nor on
the totality of the transition relation, and the presence of an explicit initial state
is allowed (i.e. rooted structures). The authors point out that edge labellings
can be encoded by node labellings and vice versa, such that theoretical analyses
typically study one form of labelling. Nevertheless, we very much agree with
their motivation for introducing KTS: “For modeling purposes, however, it is
often natural to have both kinds of labeling available.”

In 2004, Chaki et al. introduced Labelled Kripke Structures (LKS) [7], which
are characterised by a finite set of states, an initial subset of states, a finite
set of atomic state propositions, a finite set of events and a binary transition
relation among states. The transition relation is no longer required to be total.
A state-labelling function associates each state with a set of state propositions,
and a transition-labelling function associates each pair of (source, target) states
with a set of events (i.e. we cannot have two transitions between the same two
states with different labellings).

In 2006, Pecheur and Raimondi use Mized Transition Systems [31], not to be
confused with Larsen’s Modal Transition Systems [32-34], to denote a generali-
sation of both state-based models (Kripke structures) and action-based models
(LTS) into a common super-structure very similar to L2TS, which is charac-
terised by a set of states (a subset of which can be qualified as initial states),
a transition relation defined as a set of triples of the form (source state, event,
target state) and two interpretation functions that associate each state and event
with a set of propositional atoms over states and events, respectively.
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3 Temporal Logics for Reasoning on both State-Based
and Event-Based Properties

As already apparent form the previous section, state- and event-based models
have been proposed often together with specific temporal logics having those
models as interpretation structures.

We already mentioned the propositional p-calculus [28], which is an extension
of modal logic with propositions and fixed point operators [35]. Atomic propo-
sitions can be satisfied by single states. Modal operators are indexed by events
that label the transitions. Fixed point operators are then introduced to extend
the meaning of logic formulae over full, possibly infinite, computations.

Next to the Boolean constants false and true, the p-calculus contains atomic
propositions, logical connectives and the diamond and box operators () and []
of modal logic. The least and greatest fized point operators p and v provide
recursion used for ‘finite’ and ‘infinite’ looping, respectively.

Kindler and Vesper [36] introduced the Fvent-and-State-based Temporal Logic
(ESTL) to reason over events and states of Petri nets, which are a typical exam-
ple of a formal model for reasoning over states (places) and events (transitions).
ESTL is a linear-time logic based on four basic temporal operators, namely
eventually and once (eventually in the past), working on state properties, and
sometime and sometime in the past, working on transition properties. From these
operators, four dual operators called always, so far, every-time and every-time
in the past can be derived. We refer to [36] for their precise meaning,.

Also the logic interpreted over the LKS introduced in [7], called SE-LTL, is a
linear-time logic. This logic is based on the X (next), G (always), F (eventually)
and U (until) linear-time operators, which can be applied both to state and to
transition properties.

The Mixed Transition Systems introduced in [31] serve as interpretation
model for the Action-Restricted CTL (ARCTL) logic, which extends CTL but
is less expressive than ACTL from [24]. In fact, ARCTL is instead a branching-
time logic over mixed state/event models introduced as a generalisation of CTL.
ARCTL has the same temporal operators as CTL, except that they can be
restricted to paths whose actions satisfy a given action formula.

Among the various state- and event-based logics proposed in the litera-
ture, UCTL [20] was designed to include both the branching-time action-based
logic ACTL [24,25] and the branching-time state-based logic CTL [27,37], with
the aim to reason over UML state diagram specifications and L2TS. The logic
UCTL is adequate with respect to strong bisimulation equivalence on L2TS [38].
Adequacy [39], as also investigated by Bernhard Steffen in [40], means that
two L2TS A; and Ay are strongly bisimilar if and only if F; = F,, where
F, ={y € UCTL | A; E ¢} for i = 1,2. In other words, adequacy implies
that if there is a formula that is not satisfied by one of the L2TS but satisfied by
the other L2TS, then the two L2TS are not bisimilar, and—on the other hand—if
two L2TS are not bisimilar, then there must exist a distinguishing formula.
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The UCTL logic initially was supported by the UMC v3.3% model checker,
which later evolved into the KandISTI family of model checkers, as explained in
the next section.

4 Exploiting States and Events in KandISTI

In this section, we first introduce the KandISTT tool and we show how it exploits
states and events in a rich modelling and verification environment, based on a
comprehensive temporal logic interpreted over L2TS, after which we discuss some
of its more interesting features in more detail.

4.1 KandISTI

For over more than two decades, we are developing the KandISTT family of model
checkers, each one based on a different specification language, but all sharing a
common temporal logic and verification engine. The main objective of KandISTI
is to provide formal support in the design phase of a software system, especially
in its early stages, i.e. when a design is still likely to be incomplete and contain
mistakes. The main features of KandISTT focus on the possibility to (i) explore
the evolution of a system and generate a summary of its behaviour; (ii) investi-
gate abstract system properties using a temporal logic supported by an on-the-fly
model checker; and (iii) obtain a clear explanation of the model-checking results,
in terms of possible evolutions of the specific specification model.

While the specification models supported by KandISTI are rather different,
ranging from UML statecharts to various process algebrae, its verification engine
is unique and based on a common temporal logic which encompasses the spe-
cific logics initially associated to the specific tools: ACTL for FMC, UCTL for
UMC, SocL for CMC and v-ACTL for VMC. This is feasible by separating
state-space generation (which depends on the underlying specification model)
from L2TS analysis, and by the introduction of an explicit abstraction mecha-
nism that allows to specify the details of the model that should be observable as
labels on the states and transitions of the L2TS. Another essential characteris-
tic of KandISTTI is the on-the-fly structure of the model-checking algorithm: the
L2TS corresponding to the specification model is generated on demand, following
the incremental needs of the verification engine. Given a state of an L2TS, the
validity of a logic formula on that state is evaluated by analysing the transitions
allowed in that state, and by analysing the validity of the necessary sub-formulae
possibly in some of the necessary next reachable states, and all this recursively.

Hence, each tool consists of two separate, interacting components: a tool-
specific LTS generator engine and a common logical verification engine. The
L2TS generator engine is again structured in two components: a ground evo-
lutions generator, strictly based on the operational semantics of the specifica-
tion language, and an abstraction mechanism which allows to associate abstract
observable events to system evolutions and abstract atomic propositions to the
system states. The overall structure of KandISTI is depicted in Fig. 1.

3 Still available online at http://fmt.isti.cnr.it/umc/legacy/V3.3.
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Fig. 1. The architecture of the KandISTI framework (from [41])

All KandISTI model checkers offer a downloadable command-line version of
the tool as well as an online GUT through http://fmt.isti.cnr.it /kandisti. Detailed
descriptions of the model-checking algorithms and architecture underlying Kan-
dISTT are beyond the scope of this paper, but they can be found in [20,21,41-43].

4.2 Modelling with KandISTI

The structure of the models underlying the KandISTT framework (still called
L2TS) is very similar to the KTS of Bernhard Steffen and colleagues and to the
L2TS of De Nicola and Vaandrager, in the sense that both states and transitions
can be labelled with finite sets of predicates or events, and a unique initial state
is explicitly required. None of the domains of states, predicates and events is
required to be finite, and a matching function is required to evaluate whether
an event expression or state predicate is satisfied by the set of labels associated
to the states or transitions.

Very few model-checking tools provide support for sets of structured labels
associated with the edges of a model’s evolution graphs. KandISTI, for what we
know, is the only publicly available framework that supports this. The tool of the
KandISTT framework that better allows to exploit the doubly-labelling feature
is UMC. In UMC, a model describes the possible evolutions of a set of UML-like
state machines. The state labels of the abstract model contain the relevant state
information that we want to observe (typically the values of a subset of the local
variables of the state machines), while the transition labels contain the relevant
information that we want to observe concerning the occurrence of events during
system evolution.

The KandISTI framework allows an abstract view (in terms of an L2TS) to
be associated with the basic operational model of the specification language.
So-called “abstraction rules” need to be defined by the user to associate a set of
abstract observable (composite) state and event predicates with relevant states
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and transitions, hiding in the abstract view all other details. This abstract view of
the system model is the one used during verification, while all the internal details
of the traversed states and transitions remain available during the exploration of
the model or the analysis of a counterexample. Figure 2 shows an example of an
L2TS associated with an UML model once the desired abstractions have been
applied.

Model

Abstractions Evolutions L2TS

UMC model

Class Example is Cl
Vars, x,y,z {x(0)}
Tran3|t|or11$ Abstractions {

SO >_3 /{ Action assign(x,$v) -> Xincr ’
- _[X— ] / Action $1 > $1 : ;
)(_=x+:II ; State x=$v > x($v) {Xincr, moving}
y=y-1;
Z:= X+Y; ; l
OUT.moving}
end Example; 2

Obj: Example (x=> 0) {x(D}

Fig. 2. From UMC model + abstractions to L*TS

4.3 Verification with KandISTI

Figure 3 provides the syntax of the logic supported by the KandISTT framework.
It encompasses the various logics of the individual model-checking tools, ranging
from UCTL (cf. Sect.3) to the most recent addition, v-ACTL, for the analysis
of so-called Modal Transition Systems with variability constraints (MTSwv) [43].
The logic of KandISTI includes the following rich set of features:

— Parametric state predicates (represented by the state labels of the L2TS), e.g.
predl(argl, arg2), pred2, and pred3(x, arg3), where * means ‘don’t care’.

— Parametric event formulae (represented by Boolean expressions over the
transition labels (events) of the L2TS), e.g. (actl(argl,arg2) V act2) and
- act3(arg3, , *).

— Classical diamond and box modalities from Hennessy—Milner logic [44], e.g.
[actl] (predl — (act2) true ).

— Classical high-level CTL operators (e.g. next, always, eventually, globally,
until, and weak until) in their state-based, action-based as well as mixed
modality flavours, e.g. EX pred!, Alpredi(argl) U pred2], AG EF predl,
and E [pred(argl) W pred2].

— High-level ACTL-like operators (i.e. action-based variants of above CTL oper-
ators), e.g. EX etz true, Apredl(argl) qet1Uscte pred2], AG EF,.iq predl,
and E [pred! (argl) qctsW pred2].
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KandISTI logic

State predicates

=0 | le,...)
£ = id
e n=wal | * | %var

Event formulae

X = true | false | £ | L(e,..) | T | =x | xAX | xVX
£u=1dd | * | Svar | %wvar
e m=wal | * | $var | %var

State fomulae

¢ u=rel | true | false | P | (¢) | =¢ | oA | 6V | o= ¢ |
) 1 ()70 | o | XI"¢ | BEn | An

%var relop %ovar | %var relop val
rlopi=< | < | = | £ 1 > | 2

rel ::

Path fomulae

oxUe &1 | [9xU ¢ | [0 W &] | [0,V 6] |

ma= Xy 9 |XE¢> |
| FP¢ | F\o | Go | Gy | G7o | GYo

Fo | Fx¢
%var denotes a bound variable, whereas $var denotes a free variable, and it may only occur

inside certain contexts (viz. next, diamond, box, eventually, and on the right side of the until
operators) but not inside Boolean disjunctions or negations of event formulae.

Fig. 3. Full syntax of the KandISTI logic. Actually, the logic of the KandISTI frame-
work supports also (not optimised) versions of the least and greatest fixed-point opera-
tors u and v from the p-calculus (cf. Sect. 3), to be written as min and max, respectively.

— Parametric formulae expressing data correlations among actions and subfor-
mulae, e.g. [actl($1,$2)] AF,c12(%1,%2) true and EFg; EFy, true.

— Deontic variants of some of the above operators (which allow to reason on
classical Modal Transition Systems (MTS) [32,34,43], whose transitions are
partitioned into mandatory and optional transitions), e.g. (act1)® true and
EF aDct , predl.

— Special-purpose predefined state predicates, e.g. PRINT (msg,argl, arg2)
(prints the current state and the message msg each time it is evaluated),
DEPTH_LT_n (returns TRUE if when evaluated the current evaluation depth

is less than n), and FINAL (shorthand for a final state).
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The latter category of special-purpose predefined state predicates allows a
better control and understanding of the ongoing evaluation process. Indeed,
model checking is a technique that can be used for a variety of goals. On one
side we have pure validation of a system design which is supposed to be correct
with a high probability, as a final result of a development phase. In this case, the
design of the verification tools is often focussed on techniques that contrast the
state-space explosion problems (e.g. minimising memory requirements), often at
the expense of a clear, easily understandable explanation when the validation
fails.

On the opposite side we have the goal of an easy but exhaustive analy-
sis/debugging of an initial (likely wrong) design. In this case, the focus of the
tool can be more oriented to the collection and preservation of all the diagnostic
information that might be useful to explain a negative result, even at the cost
of an increased or less efficient usage of the resources.

Our KandISTI framework falls in this second class of verification environ-
ments. During the (on-the-fly) evaluation process all the local information of
the generated states and transitions is preserved, to be eventually used when an
explanation of the evaluation result is requested. The exploitation of this app-
roach is made possible by the lazy, left-to-right evaluation approach for Boolean
operators, and the top-down evaluation process with respect to the formula struc-
ture.

In the KandISTI framework, the logical verification engine shared by all the
tools observes the underlying model as an abstract L2TS. This L2TS is inde-
pendent from the operational semantics of the particular specification language
adopted by the various tools, thanks to the intermediate set of abstraction rules
associated to the specification itself. We do not provide the full semantics in this
paper, but instead refer to its exhaustive (incremental) treatment in [20,21,43].

We note that not all KandISTI model checkers are able to fully exploit all
features of the logic. For instance, VMC and FMC specifications do not sup-
port state labelling (and therefore neither state predicates), whereas variability-
related aspects (e.g. the deontic ‘boxed’ operators) are fully supported only by
VMC specifications (but partially supported by FMC and UMC specifications).

The actual usage of the logic in the KandISTI framework exploits a machine-
friendly, ASClII-only, syntax. In particular, the silent event 7 must be written
as tau; the propositional connectives =, A, V, and — must be written as not
(or ~), and (or & or &&), or (or | or ||), and implies; the relational operators
<, #, and > must be written as <=, != (or \=), and >=, respectively (and =
may also be written as ==); the ‘boxed’ variants (x)&, [x]7, X, FU, and GV
of the modal and temporal operators (x), [x], X, F, and G, respectively, must
be written by appending # to the operators (e.g. <># and F#); finally, the event-
based variants of the temporal operators U, W, X, F, and G must be written
by (prefixing and) suffixing the operators with the event formulae between curly
brackets (e.g. {e1} U {e2} and X {e}).

In the following sections, we focus in detail on two particular features that
have allowed KandISTI to cope with specialised formal verification tasks.



States and Events in KandISTI 119

4.4 Variable Binding

In certain cases, it is useful to express the fact that an event expression that
appears in a formula can make use of variable names (e.g. $var), which can either
be free variables or variables bound to a value by a previous binding operator
in the same formula. This data extraction feature from transition labels can be
found also in other p-calculus-based languages, like for example MCL [45].

The contexts in which a variable name is allowed to appear are only the next
operator X, the diamond and box operators () and [], the eventually operator
F, and on the right side of the (weak) until operators W and U. Moreover, in
these contexts, the event expression can only have the form of a basic event
predicate, or a conjunction of basic event predicates, and the variable name can
only appear in the place of the event name or the place of an event argument.
Here are some examples of legal occurrences of variable names:

[Sevent] ..., (aa($1,82)) ..., E[... Uscvent($var,123) - -1
EFevent($var)/\—|event(11) EEER AF$Uar v

When such an event expression is evaluated with respect to a set of transition
labels, if the expression matches the labels, then a set of variable bindings occurs,
and the obtained bound values can be referred inside the subsequent part of the
formula by using the %war notation. Let us consider the L2TS shown in Fig. 4a.

With the following formula we can express the property that along any path,
any event may occur at most once (the formula is true in the L2TS of Fig. 4a).

AG [$€U€nﬂ _‘EF%e'Uent

The next formula, instead, states that whenever an event of the form cc(arg?,
arg2) occurs, its arguments differ (the formula is true in the L2TS of Fig. 4a).

AG [ee($1,$2)] (%1 # %2)

The following formula states the existence of a path in which an aa event with
one argument is always eventually followed by a cc event with two arguments,
where the second argument of cc is equal to the first argument of aa (again, the
formula is true in the L2TS of Fig. 4a).

EFaas1) AFce(x,%1)

Finally, below formula, instead, expresses that for all the transitions that contain
the event aa with an argument that is different from the value 3 lead to a state
from which it is possible to perform a cc event with two arguments, of which the
first one is equal to the argument of aa and the second one is greater than the
first one (also this formula is true in the L?TS of Fig. 4a).

[aa($1) A —aa(3)] (cc(%1,$2)) (%1 < %2)
Note that this formula might have been encoded in an equivalent way as follows.

[aa($1)] ((%1 # 3) — (cc(%1,$2)) (%1 < %2))
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R s

{aa(1)} {d} {aa(3)} E %
‘ @ {cc}
{cc(1,2)} {cc(2,3)}

v {(‘ld}. {ee} {dd,may}

{ee}

{aa} {bb.may}

0;

@

(a) A sample LTS (b) A sample MTS and its L>TS encoding

Fig. 4. Sample L*TS and MTS

Note that the presence of the bound value notation %war introduces also the
possibility of a new class of basic state predicates that have the form of a simple
relation, where a bound value is compared with another bound value or literal.

4.5 MTS Model Checking

The VMC, UMC, and FMC tools of the KandISTI framework exploit another
interesting use of the composite labelling of a model’s transitions. In this case,
the model is defined by a sequential algebraic process, and the first parameter
of the events, if corresponding to the “may” literal, indicates the optionality of
the corresponding evolution. This allows a direct encoding of an aforementioned
MTS as an L2TS, using the additional “may” label to denote the deonticity of the
evolution. When displayed to the user (cf. Fig.5), the corresponding graphical
view of the L2TS simply removes the optional “may” labels and shows this
information via a dashed representation of the transition edge.

One of the purposes of MTS is to describe families of implementations, where
edges may be associated with an ‘optional’ flavour that explicitly pinpoints the
variability allowed among the possible implementation variants. In Fig.4b, we
show an example of an MTS and its LTS encoding, which will be used to show
the way in which our KandISTI logical engine allows to reason on this kind of
systems. Figure6 depicts the four implementation variants that constitute the
family represented by the MTS of Fig. 4b.

Now suppose we try to evaluate the formula E Xy, true on the MTS/L2TS
of Fig. 4b. The formula will appear to be satisfied by the MTS because actually
there is an initial transition that satisfies the event expression bb. However, it
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VMC model Underlying L2TS MTS View

{T1}

T1 = euro(may).T2 +
dollar(may).T3
T3 = coffee.T1

{may, euro} {may, dollar} {curc;} {&ollar}

T2 = cappuccino.T1
net Sys=T1 4 R
{cappuccino} {coffee} {cappuccino} {coffee}
Fig. 5. From VMC model to L>TS (MTS)
{aa} {aa} {bb} {aa} {bb}

{cc} {cc} {cc}

{ee} {ec} {dd} {ec} {dd} {ee}

Fig. 6. All four implementation variants of the MTS of Fig. 4b

is also clear that it is not true that this formula holds for all the MTS variants.
This means that a TRUFE result returned by the FX,.; operator on an MTS,
might in general not be preserved by all the implementation variants of the MTS.
Note, instead, that a negation of a next operator that returns a FALSFE result is
indeed preserved by all the allowed variants (i.e. EX,. true is does not hold on
the MTS and neither on all its implementation variants). If we want to verify
the existence of a next transition in all the variants, by checking a formula on
the MTS, e.g. the existence of an initial aa transition, then we should verify the
following formula.
EX jan—may true

The KandISTT logic allows to simplify the writing of formulae like the above
(making use of implicit ... A—may event expressions) by offering ‘boxed’ versions
of most temporal operators. The above formula can hence be written as follows.
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EX aDa true

The temporal operators for which such ‘boxed’ versions are supported in Kan-
dISTI are (x)7, [x]”, EXY,EXY, EFP, EFD, AFD, and AFD (cf. Fig.3).

When a formula is satisfied by the MTS and its structure guarantees that the
TRUEF result is preserved by the MTS variants, then the model checker VMC
notifies this fact to the user. For example, if we evaluate (on the MTS of Fig. 4b)
the formula AG EFEC true, the result will be as shown in Fig. 7.

The Formula: AG E[true {not may} U {cc and not may}true]
is TRUE

The formula holds for ALL the MTS variants |

(evaluation time= 0.060 sec.)

Fig. 7. Successful evaluation of AG EFY true

The following are some exemplary formulae that are satisfied by the MTS of
Fig. 4b and preserved by all variants depicted in Fig. 6:
EX aDa true an initial mandatory aa transition exists
AG EF'CjC true  from any state there is a mandatory path to cc
[bD] (cc)P true  an initial bb transition, if present, is followed by cc transition
—(cc) true no initial cc transition exists

AG (true)Ptrue in any state, at least one mandatory transition is possible

The general rule, proved in [43], is that a TRUE result of any of the operators
(0% [, EXT, EXY, EFY, EF], AFD, AFD, AG

is preserved by all the variants when appearing in a context without negations
(or under an even number of negations), whereas a FALSE result of the operators

<X>a [X}Da EX; EXX? EFa EFX? AFa AFX

is preserved by all the variants when appearing in a context under an odd number
of negations.

If we observe closely the MTS of Fig. 4b, we immediately see that it satisfies
a particular property, namely that all its nodes are the source of at least one
mandatory (i.e. not labelled with may) transition. A node that satisfies this
property or which is final (i.e. without outgoing edges) is called live and an
MTS is called live if all its nodes are. Under these circumstances, we have the
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additional property that also AF and AF, formulae, if TRUE, preserve their
validity in all the implementation variants [43].

For example, we can verify that the MTS of Fig.4b (and therefore all its
variants depicted in Fig. 6) satisfies the property that any path from any state
(in any variant) will eventually and necessarily reach a cc event. The property
can be expressed by the following formula.

AG AF,.. true

One of the tools of the KandISTI framework, namely the variability model
checker VMC [22,46], is explicitly tailored for the verification of behavioural
models of so-called (software) product families in the form of MTS with vari-
ability constraints (MTSv) [43]. One of the particular features supported by
VMC is the possibility to express variability constraints that allow to fine-tune
the set of valid implementation variants, and in particular allow to extend further
the notion of live nodes.

Let us consider the MTSv shown in Fig. 8. The constraint aa ALT bb allows
to specify that we consider as valid variants (products) of the MTSwv only those
variants that either have the aa event or the bb event, but not both of them,
nor none of them (i.e. equivalent to a logical xor). Therefore there exist precisely
two valid implementations, for both of which the formula AF,. true holds. This
property can be checked directly on the MTSwv, because the specified variability
constraint has the effect of transforming the C1 node into a live node.

The second constraint aa OR bb, instead, allows to specify that we consider
as valid variants (products) of the MTSv only those variants that have either the
aa event or the bb event, and possibly both of them, but not none of them (i.e.
equivalent to a logical or). In this case, we end up with three valid LTS variants,

© ©

{aa} {bb} {aa} {bb}
{cc} {cck {cc} {ec}
Constraints { Constraints {
aa ALT bb @ aa OR bb
} }
(a) A sample MTSv (b) A sample MTSv

Fig. 8. Sample MTSwv with different variability constraints
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and the formula AF.. true continues to hold. Also in this case the effect of the
variability constraint is to change the status of the node C1 into a live node,
thus allowing the verification of the above formula directly on the MTSv with
the guarantee the TRUFE result is preserved by all the valid variants.

5 Conclusion

The KandISTT family of model checkers fully exploits the expressive power of
the underlying L2TS models. The framework plays the role of an experimental
workbench, targeted mainly at teaching and research activity, without having in
mind verification efficiency as its major aim.

The capability to navigate the state space both at the concrete and at
an abstract level, together with useful debugging-oriented tools allow easy but
exhaustive analysis/debugging of an initial (likely wrong) system design: in such
cases, the focus of the tool is oriented to the collection and preservation of all
the information that might be useful to explain a negative result, even at the
cost of an increased or less efficient usage of the resources. Indeed, during the
(on-the-fly) evaluation process all the local information of the generated states
and transitions is preserved, to be possibly used once an explanation of the
evaluation result is requested. Moreover, a small set of basic state predicates is
defined, which allows to better control and understand the ongoing evaluation.
The exploitation of this approach is made possible by the lazy, left-to-right eval-
uation approach for Boolean operators and the top-down (with respect to the
formula structure and initial root state) evaluation process.

The characteristics of the KandISTI framework outlined in this paper have
favoured its use in numerous exploratory studies, such as those in [47,48] (intel-
ligent domotic environments), [49-51] (deadlock avoidance in train schedul-
ing), [52] (distributed railway interlocking concept) and [53] (web-based commu-
nication interworking). The versatility of its underlying L2TS models moreover
allowed to map rich logics developed in the context of trust and reputation sys-
tems, like the so-called trust temporal logic originally defined over trust LTS, onto
UCTL [54,55]. Finally, KandISTT is much appreciated as an effective teaching
tool by students at the University of Florence.
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Abstract. We highlight how concepts of constructive design help in
the comprehension of complex systems, using the history and evolution
of the Online Conference Service (OCS) and its product line, including
the Online Journal Service for journal management, as examples for the
needs and solutions of how to master design of systems with complex
behaviour. They nicely summarize over 20 years of evolution of one of the
most exciting and long lived joint research streams with Bernhard Steffen
and our research group. The constructive design concepts we found most
useful include the use of features to make large and complex systems more
manageable, properties to formulate behavioural requirements on the
models’ functionality as well as policies and access rights, and the role of
questions as model checking problems as well as test-driven exploration.

1 The Online Conference Service (OCS) over the Years

The Online Conference Service (OCS) was first designed in 1998-99 [14,17,20],
in a collaboration with Springer Verlag that continues until this day, and in a
time where we had successfully embraced the service oriented culture prevalent
in Intelligent Network (IN) Services in those years. Following the collaboration
with Siemens in their INXpress product in 1994-96 [41], we had successfully
transported the same culture of service orientation into the METAFrame devel-
opment framework described in [40]. We transported it from the telecommuni-
cation into the internet domain, with initial collaborations with Bertelsmann’s
Telemedia for the METACatalogue online shop [36]. At about the same time, we
used the same service-oriented and model driven technology to integrate printed
and online information in a pioneering multiplatform mashup that included the
very first QR codes, based on IDOCs, the NeoMedia Technologies’ Intelligent
Document Solutions. This Online Integrated Print Service (IPS) was presented
in cooperation with Springer Verlag at the CeBIT 1998 [5].

The OCS (see [17,19]) proactively helped authors, Program Committee
chairs, Program Committee members, and reviewers to cooperate efficiently dur-
ing their collaborative handling of the composition of a conference program. Its
strength in terms of adaptation to the needs of each conference and community
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was its customization ability: it was in fact flexibly reconfigurable online at any
time for each role, for each conference, and for each user [15].

The original OCS was extremely successful: it formed a Software Product
Line with the Online Journal Service (OJS), the Management Overview System
(MOS), and the LNCS Proposal Service for the LNCS Editors (this last ser-
vice hosted by Springer Verlag in Heidelberg). This initial OCS implementation
served hundreds of conferences, mostly in non-CS domains, and today this OJS
is still in use for STTT, Springer’s International Journal on Software Tools for
Technology Transfer. An example of OCS’s continued use was presented in [20],
where we analyzed its use and discussed its effectiveness in the ETAPS joint
federated conferences, that widely adopted it in the early 2000s.

Together, these online decision systems formed a family of services sharing
the same concept of role-based management of user rights. These services have
been successfully used over the last 8 years for a number of collaborative edi-
torial processes revolving around the management of scientific publications for
conferences and journals. With increasingly complex access management tasks
within the family of services, we needed to accommodate both flexible roles and
flexible exception handling which led us gradually towards a web-based, model
driven Role Management Service. Such reconfigurability at runtime in this type
of system was innovative when it was created 10 years earlier.

The next generation of the OCS [32] has been built in jJABC4 [33] and in
a model-driven and service-oriented online fashion that led to an agile, phase-
oriented and role-driven organization of the software. This organisation lent itself
to a large variety of analyses by means of formal methods model checking of
the emerging global behavior that resulted as emergent property from the col-
laboration (and coordination) of the basic features. We reconstructed the global
behavior models via active automata learning, with successive validation of these
global models for global properties.

This generation of OCS services has supported hundreds of conferences for
the Springer Verlag, and it is available as well for FoMaC, the LNCS Transactions
on Foundations for Managing Change [1,37].

The current generation of OCS, called Equinocs, is being completely
redesigned in a DSL-meta-modelling supported fashion. The meta-model based
design approach covered initially the data models and persistency management
in DyWA [31]. In Equinocs it covers now the complete web application design
thanks to DIME [3], the DyWA Integrated Modelling Environment, the most
advanced and comprehensive CINCO-product [30].

In this paper, we summarize the service and feature-based design of the OCS
software product line (SPL) in Sect. 2, highlighting in particular how thinking
in terms of units of functionality naturally led to the adoption of a feature based
development. The adoption of a feature-oriented service description that goes
beyond the traditional concept stemming from the Intelligent Network systems
is further detailed in Sect. 3. The user-centric model based on intents adopted
in the New OCSI is described in Sect. 4, as well as the use of automata learn-
ing technologies to reconstruct the emerging global behaviour and to make it
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Fig. 1. Client/Server architecture of the OCS

amenable to model checking. The new meta-modelling approaches that underlie
the design of the third and current generation of the OCS and similar applica-
tions, DyWA and DIME, are sketched in Sect.5. Finally, Sect.6 concludes the
paper and identifies a new challenge related to behavioural synthesis.

2 Service and Feature-Based Design of the OCS Software
Product Line

The OCS, like the OJS, exhibited a typical Client-Server Architecture (see Fig. 1)
with a distributed backend. It ran on an application server that executed the
whole workflow of the application. The back-end services comprised Database,
News, CVS, and Mail services, and they were running on separate servers acces-
sible by the OCS. The database was used to store the article’s meta data and
service specific data, e.g. user profiles, roles, and reports, whereas the article files
and sources were handled by the CVS version control system. All the services
and their functionalities were accessible to the users via the common internet
browsers without the need to install any software on the client side.

The OCS was designed as a process controlled system whose business logic
was consistently designed in an eXtreme Model Driven paradigm [26] according
to the Lightweight Process Coordination approach [25]. A central advantage of
this model driven development style is the agility at the business process mod-
elling level: decoupling the design of the logic from the implementation level we
achieved a high degree of reuse of features inside the services. This organisation
in features was a central asset when transitioning to a family of services.
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Concretely, we used the jABC [44] development environment! along the whole
lifecycle of the services. The models in JABC/ABC are at the same time abstract,
coarse grained formal models of the business logic [17], represented as graphs.
This way, designers enjoy a visual, concise representation of the models, which is
particularly appealing or the collaborative requirement elicitation and reviewing
with non-IT experts [7]. At the same time, these (finite state) models are directly
analyzable with formal methods, e.g. via model checking, so that the compliance
to descriptive policies, regulations, and constraints can be proven, and easily
checked once the business logic evolves.

2.1 Thinking in Units of Functionality

The most common perspectives taken on “units” are the user-centered view
and the platform-centered view. These two perspectives are usually mutually
exclusive and not easy to reconcile.

A user-centered view is popular in the telecommunications domain: it is
embodied by the “idea” of a SIB, a Service Independent Building Block that
is defined by the use one can make (which meaningful service does it offer to
me?) and not by its implementation. The library of SIBs for Intelligent Network
services was itself standardized [10], leading to a well-defined set of capabili-
ties that defined the DSL available to a library user (here an IN application
designer). This standardization “from the outside” ensured the interoperation
between functionalities offered by the different vendors, independently of the
technology, platform, operating system, programming language chosen by any
particular member of this complex ecosystem.

A platform-centered model is native to the Service Component Architec-
ture (SCA) [13] idea of a service, and provides a completely different take on
the concept of service: it is the inside-out perspective from the point of view of
a provider. It is the same perspective that underlies other architectural perspec-
tives popular in software engineering: the “unit” is a static building block that
offers its many and articulated capabilities to an environment that must know
how to use it. The concept of “use” is here the static composability with other
components, not what functionality it provides to the users.

We follow the principle that form follows function: first we determine a use,
and then we see how best to cater to that use. So architecture, granularity, inter-
faces and implementations must follow the use, and not the other way around.
In view of continuous evolution of software systems, change management process
is ubiquitous. Change comes in terms of maintenance and upgrade, for example
with extension of the SIB palettes, in new implementations of the same SIBs,
and in the evolution of the classification of the SIB palettes along a domain
specific organization in taxonomies [23].

Already back then we were thinking semantically. Simple but powerful seman-
tic descriptions in terms of atomic propositions ranging over taxonomies were

! The releases prior to 2005 were realized in the ABC [38], the C++ predecessor of
the jABC.
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Fig. 2. Role-based management in the OCS: the user’s view

attached to the SIBs and used to express properties. Our CTL model checker
and the LTL synthesis algorithm were able to use these properties to check the
SLG models or to build property-compliant workflows.

2.2 Feature Model in the OCS

The service’s capabilities are grouped in features, which are assigned to specific
roles, described in more details in [17]. Figure 2 shows the feature structure for
the management of the List of Articles from the service user’s point of view. In
the OCS, a single user may be assigned many roles: e.g., a PC Chair could be
also a PC Member, thus do reviews, or a PC Member may be allowed to submit
papers and thus be simultaneously Author. Users can switch between their roles
at any time during a working session. In the snapshot of Fig.2 the user has
selected the PC Chair role This is the main role of the service providing the full
access on the necessary service components for managing the conference. A fine
granular roles and rights management system takes care of the adequate admin-
istration of the context, role and user-specific permissions and restrictions. We
distinguish between Main Features in the navigation bar and their Subfeatures
placed in the content page. The navigation bar provides a set of first level features
according to the active role of the user. Users in different roles cooperate during
the lifetime of a PC’s operations and make use of the OCS capabilities which
are provisioned at the feature level. It is through the cooperation of its features
that the OCS provides timely, transparent, and secure handling of the papers
and the related submission, review, report and decision management tasks.
From the point of view of the user and role management, features are seen
as a collection of functionalities of the service which can be switched on and off
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for single roles and for single users. Figure 3 shows a schematic example of the
relations between the users, roles, and rights.

3 Feature-Oriented Service Description: Beyond IN

The definition of feature depends heavily on their use as well as on the con-
text. We learned to know and use features in the context of Intelligent Net-
works [9,39,43]. In IN services, the base system was large: a switch that offered
POTS (plain old telephone service) functionality. The features were compar-
atively small extensions of that behaviour, as implemented in our environ-
ment for the creation of Intelligent Network Services [41] and in the original
METAFrame’95 environment [40].

Our own notion of OCS features has been more general and more similar to
a DSL in order to capture services that tend to have a lean basis service that



Making Sense of Complex Applications 135

deals with session, user, and role-rights management, and a collection of very rich
features. This different balance and organisation brings a different perspective
on the role and purpose of features.

Definition 1 (Feature). (see [28])

1. A feature is a piece of (optional) functionality built on top of a base system.

2. It vs monotonic, in the sense that each feature extends the base system by an
increment of functionality.

8. The description of each feature may consider or require other features, addi-
tionally to the base system.

4. It is defined from an external point of view, i.e., by the viewpoint of users
and/or providers of services.

5. Its granularity is determined by marketing or provisioning purposes.

To support the complex evolution of services, we adopted a multilevel organi-
zation of features whereby more specialistic features build upon the availability
of other, more basic, functionalities. In order to keep this structure manageable
and the behaviours easily understandable, we restrict our focus to monotonic
features which are guaranteed to add behaviour. Restricting behaviour, which is
also done via features in other contexts (e.g. [6]), is done in an orthogonal way
in our setting, via constraints at the requirements level.

The definition of the feature-based architecture of our systems was already
back then based on

— DSLs where the SIBs are the domain specific primitives, and features as SLGs,
available both as descriptions (services) and implementations, and

— knowledge about the properties of SIB and feature behaviours expressed as
constraints.

Definition 2 (Feature-oriented Description). (see [28])

1. A feature-oriented service description of a complexr service specifies the
behaviours of a base system and a set of optional features.

2. The behaviour of each feature and of the basic system are given by means of
Service Logic Graphs (SLGs) [43].

8. The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

4. The feature-oriented service description includes also a set of abstract require-
ments that ensure that the intended purposes are met.

5. Interactions between features are regulated explicitly and are usually expressed
via constraints.

6. Any feature composition is allowed that does not violate any constraint.

We distinguish the description of the feature’s behaviour from that of the
legal use of a feature. Restrictions on behaviours are expressed at a different
level, i.e. at the requirements level. They are part of an aspect-oriented descrip-
tion of properties that we want to be able to check automatically, using formal
verification methods.
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Thinking in features was essential to mastering the complexity of the OCS
and its transformation into a Product Line: although we never published the
feature models of these systems, they share not only portions of code (as common
in code-based reuse) but entire SLG palettes and SLGs themselves. In fact, the
article, delegation, and report management are similar to those of the OCS
and can be reused without problems. What changes in this approach is the
decision structure: a journal has an asynchronous, noncompetitive evaluation
of single papers, rather than the synchronous, competitive evaluation of a set
of submissions for a conference. Features like the discussion forums for single
papers are seldom used. Instead there is a more sophisticated status and progress
management, the management of several cycles of revision for a submission, and
a number of management roles that cover different aspects (Editor, Editor in
Chief, Guest Editor, Editorial Office for the manuscript management, ...). Due
to the longer life of the OJS instances, the personal situation of single users
is usually subject to changes and compartmentation, requiring a finer grained
management of the roles and rights. This fine grained management could be
done via exception handling within an OCS-style role management, though this
solution does not scale elegantly.

We chose instead to introduce an additional personalisation layer to the role
management concept to handle the individual differences from the norm [15].
Personalization is added to the OJS dynamically via an additional user permis-
sion concept that is implemented by a user-role-rights modifier to the OCS-style
role management. We extended the user/role management and made it possible
to assign rights to single users. Such properties were model checkable as shown
in [15] and amounted to a dynamic extension of a RBAC model as shown in [16].
Having well exceeded the approximately 2500 nodes and 3500 edges of the orig-
inal OCS, this organization form was not able to master the model complexity
and the related system complexity. A new User-centric mindset provided the
solution.

4 The User-Centric Model in the New OCS

Changing the perspective from a system construction mindset to a user-centric
mindset that expresses the point of view and the experience of any user, with one
or more roles, brought us to approach the design of the new the OCS as the design
of a reactive system with a graphical user interface that is provided as a web
application. Users decide autonomously when they execute their tasks, which
typically consist of small workflows. In case of multiple tasks, they also choose
the order in which they want to process or perhaps reject a task. The potential
interactions offered by the OCS application strongly depend on the specific phase
(submission, reviewing, discussion, ...) of the evaluation process, which has a
control-oriented character. Considering the high degree of freedom in choosing
individual tasks and the large number of involved actors, we moved away from
modeling this coordination directly, in terms of control-oriented graph structures.
This decision was made due to the complexity of a prescriptive logic for such
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coordination mechanisms. As seen with the previous design, direct coordination
indirectly reintroduced at the SLG and feature level a coordination-style state
explosion problem [4]. We decided instead to adopt a hybrid modeling approach
comprised of

— a collection of individual models for each business entity (like conference,
paper, ...) organized and synchronized by means of events and resource shar-
ing,

— individual models in terms of control-flow graph-like structures, expressing
the stepwise evolution of the individual processes for each of the involved
business objects within the overall evaluation process, which consist of

— states embedding Event-Condition-Action-rules. As shown in Fig.4,
ECA-rules model the potential of user interactions as a set of rules which
can be accessed concurrently, and which are selected according to a current
event and an associated condition. They declaratively express the alternative
behaviors that the system offers in each state.

In practice, we did not have anymore a predefined SLG structure, but rather
a collection of individual models for the various business entities that could be
verified by means of techniques like model checking [32]. At this time we had also
built the LearnLib [29,35] that had become an efficient and scalable automata
learning platform. We dealt with the overall correctness of the evaluation pro-
cesses along an alternative approach: we used automata learning to build via
guided experimentation the overall behavioral model from the real implementa-
tion, and then model checked that inferred automaton w.r.t the desired proper-
ties. The charm of this approach is that it suppresses all the internal details of the
complex design models as well as the difficulty of dealing with the complex com-
munication and synchronization methods in modern enterprise architectures,
and clearly focussed on the primary issue: the user level correctness. Figure 5
sketches how we proceeded. We started with some local models describing for
example the overall evaluation pattern for conference proceedings and the life-
cycle of papers from the user’s perspective. These models can then be model
checked for essential properties, comprising security aspects, progress proper-
ties, or simply the intended causality. Subsequently, these ‘local’ models were
semi-automatically combined and transformed to run on an enterprise platform
using complex communication and synchronization primitives, like event han-
dling, process creation, etc. In particular, this means that we did not construct
a global model of the OCS. We gave instead full freedom for the above-mentioned
transformation, which we then complemented by automata learning techniques
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to retrospectively infer a global model. Key to the global validation of the cor-
responding emergent behavior is the experimental exploration of and behavioral
model construction for the system via automata learning.

4.1 Intent-Oriented Decomposition: Declarative Meets Prescriptive

Figure 6 depicts the user model of a conference paper’s behavior as a hybrid
graph. Syntactically, the first state is the ‘Start’ node and the control flows
along the edges. Edge labels represent events (either system events or user inter-
actions) that trigger the transition to a successor state. For example, system
events occur when a deadline expires and cause the system to transition to a
different phase (state) with a different behavior. The available actions in a given
state are recognizably modeled as ECA rules. It is not uniquely determined what
of the rich control structure is best captured as control structure and what as
ECA rule: this is clearly a matter of design. In fact, if one wishes less states and
more compact graphs it is possible to introduce more preconditions than just
those defined by the state and the role.

4.2 Learning and Validating Emerging Global Behaviour

Automata learning [8,34] has the potential to infer or extrapolate approxima-
tions and views of a user process via systematic experimentation with the appli-
cation running on an enterprise platform. The arising models can then be used
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for test generation and in particular for regression testing, for verification via
model checking (see Fig. 5), and for manual inspection. Through automata learn-
ing we learned several abstract views of the global user behaviour at different
levels of aggregation of the user actions.

o o+ 4o

default default default

v

0 !
i <

create new conference submit paper interrupt submit phase

Fig. 7. Input sequences as an enhancement to the alphabet (from [32])

The LearnLib offers a collection of different approximations for the equiva-
lence oracle. A very simple extension to the ‘one look-ahead’ version is to enhance
the input alphabet with sequences of elementary input symbols, like the ones
shown in Fig.7 for the OCS. This alphabet enhancement directly leads to the
refined 5-state model displayed in Fig. 8. The slight look-ahead extension caused
by the three combined alphabet symbols is sufficient for our simple approxi-
mation of the equivalence query to detect that the path in the hypothesis that
allows to submit a paper after a logout is not valid in the OCS. By choosing what
user actions to consider and the granularity of the interaction, it is possible to
control both the performance of the learning step and the specific perspective we
wish to have. This way we can successively explore parts of the global behaviour
through the learned models. We can be sure that they correspond to the exact
behaviour provided by the OCS at runtime while still managing the model size
and thus the ease of comprehension also for users less familiar with the system’s
design.

5 The New Meta-Modelling Approach

Equinocs, our current system, is used to manage the contributions to this
Festschrift as well as the ISoLA 2018 conference. It represents a further gen-
erational change of mindset and an evolution towards a more comprehensive
adoption of domain specific models and metamodelling. In Equinocs, the inte-
gration of aspects in the code includes data models and persistency management
via DyWA [31] and also the GUI for user interaction through a web application
via DIME [3].

5.1 Evolvable Data Schema in DyWA

The case study used to introduce DyWA in [31] was OCS-Lite. It showcased
a new form of support for the design of business activities required to intro-
duce, control, and manage new business objects and resources. We contrasted
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Fig. 8. Learned Mealy automaton with symbol sequences (Fig.7) (from [32])

the standard BPM approaches, focused on the business logic only, with DyWA’s
ease of definition and management for the data and objects that occur in the
applications. We demonstrated its efficient and robust support for evolution
and change. The name DyWA stands for Dynamic Web Application, where the
“dynamics” concern the ease of evolution and change of the data architecture
and data schema, a holy grail in traditional software maintenance. We intro-
duced the Online Conference Service (OCS)-lite as a small case study, modelled
its types in DyWA, created the necessary processes in jJABC, and exported them
back into DyWA in order to offer to the end users a running web application
obtained entirely without manual coding. We then changed the requirements,
impacting both the data types and the business logic of the application, and
showed how the application was evolved by users accordingly without writ-
ing new code. The power of DyWA is connected with behavioral model-driven
design as auspicated in [21] and [22]: the original DyWA was for the user a web-
based definition facility for the type schema of any application domain of choice.
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Fig. 9. Schematic layout of the OCS-lite business objects. Objects (green) reference
their specific types and fields (blue), and hold references to other objects. (From [31])
(Color figure online)

Coupled with the defined types is the automatic generation of corresponding Cre-
ate, Read, Update, Delete (CRUD) operations, so that application experts are
able to model domain specific business processes which are directly executable
in our modelling environment. Upon change, the prototype can be augmented
or modified stepwise by acting on one or more types in the type schema, the cor-
responding data-objects, and the executable process models, while maintaining
executability at all times. As every step is automated via a corresponding code
generator, no manual coding is required.

As shown in Fig. 9, the web application runs on a meta schema that describes
data in terms of MS-types and MS-objects, both stored in the meta schema
database. A MS-type is used to model the concrete types and associations of
an application domain, whereas MS-objects hold the actual data of the appli-
cation and thus constitute instantiations of the respective MS-Types. Objects
are linked to a type, yielding a concept of typed domain specific data. This
organization allows to save domain unspecific, arbitrary data as long as they
can be described with the type schema. The concrete basic types are the Java
types. This design decision greatly simplifies the ORM aspects because referen-
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tial integrity is guaranteed by design, independently from the names of types
and fields. As a consequence, the further goal of independence from the kind of
database is easily achievable. Indeed, the DyWA design is mappable to a large
variety of persistence paradigms, e.g., to a NoSQL, relational, or any other class
of database.

5.2 Evolvable Web Applications in DIME

Equinocs is implemented in DIME, the DyWA Integrated Modeling Environ-
ment [3] that allows the integrated modelling of all the aspects needed for the
design of a complete web application in terms of Graphical Domain-Specific
Languages (GDSLs). Figure 11 shows that models capture the control flow as so
far happened in the Service Logic Graphs, but we have additionally also data
models and Ul models in the same IDE. All these models are interdependently
connected, shaping the ‘one thing’ in a manner which is formal, yet easy to
understand and to use. The continuous and model driven deployment cycle is
simplified to the extent that its code can be one-click-generated and deployed as
a complete and ready to run web application. This happens along the process
sketched in Fig. 10.

We did not yet report on Equinocs, but we have used the same DIME tech-
nology to design a smaller service for the matchmaking of students with Final
Year Project topics proposed by supervisors in the Computer Science and Infor-
mation Systems Department in Limerick, called the CSIS FYP service. This
service is used as a common case study for applied XMDD in the 5 modules
taught to 3rd semester Computer Science bachelor students. The students learn
the various kinds of models supported by DIME, compare them with the UML
standard, E-R diagrams, and other state-of-the-art techniques for modelling and
OOP design/development. They apply requirement engineering methods to the
description of the system “as-is” and identify ways to extend or improve it along
the wishes of various stakeholders they interview. The generative approach in
DIME is compared with the manual modelling + coding approach taught in



144 T. Margaria

@oaxa 2§ conerol (B =0 [Dosws Pcowd 8B Hut = 0 [Jows B Bux = oO
. 5 v > m o= - - =
x \ x ~
» @ somicsin v BX) #asic - @ ou
v [7) wdodata B9 Createuser process ) rosusigu
» O nole b B5 Interactable () AdsOwmr g
v (3 1000kmry » B5) Interacvon (3) Aa91000 gu
descripbon Text v B Native [3) rome gu
8 lst: TODOUst » B stome.sibs (@) vanagetreret g
« @ T000Lst v &) security @) ManageOwners g
2 entries  [TODOENry) mhdﬂno'o.\nu‘;:cc(cu
(a) (b) (c)
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Object Oriented Development. The DyWA is compared to the standard rela-
tional database design and use. As a different approach to Software Quality,
they also apply model checking to the models, building upon the knowledge of
CTL gained in the first semester and using the GEAR model checker they used
on the first semester projects [2]. Finally, we use the active automata learning
approach based on LearnLib [24] and specifically the ALEX front-end [27] in
order to extract a complete and checkable model from the running system, com-
pare it to the design models, and generate both model driven and model based
test suites in the Software Testing module.

6 Conclusions and Perspectives

Constructive design, tied to executable systems and “living” models, proved
to significantly support the comprehension of complex systems. For example,
during this semester we have used all these papers and material to teach the
new module Software Requirements and Modelling at the University of Limer-
ick. The concepts of traditional model driven design vs. XMDD, the use and role
of properties for constraint-guarded vs. constraint-based design [12], the essence
of features as a means to organise and reuse, and the feature interaction prob-
lem [11]. Properties were used to formulate verifiable behavioural requirements
on the models’ functionality as well as policies and access rights, and we explored
the role of “questions” both as model checking problems as well as for test-driven
exploration of the final system.

Although working in practice with the modern CSIS FYP service, a web
application designed in DIME and thus from the point of view of the OCS evo-
lution, at the leading edge of our current technology, the research papers about
the older versions of the OCS served excellently as a scaffolding support. The
students were able to compare the much smaller FYP service with the “logic”
of the concrete design and the design principles of the previous generations,
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retracing the evolution and development of the concepts, the IDEs, and the cor-
responding capabilities. They could better appreciate the interplay between all
these capabilities. Making sense of a complex system is greatly aided by the
organisation along intents in a user-centred way.

Considering the 20 years of our technology journey embodied by the various
stages of the OCS, we see that we did not yet include the synthesis of new
behaviours by using model construction [42], e.g. using PROPHETS [18], which
would constitute the ultimate level of automation: constructing new portions of
the system directly from questions, at the borderline between declarative and
prescriptive. We look forward to tackling this further challenge with Bernhard
Steffen.
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