)

Check for
updates

Fundamentals, Flavors, and Foibles
of Adaptive Instructional Systems

Paula J. Durlach®?

U. S. Army DEVCOM Soldier Center, Orlando, FL 32826, USA
Paula.J.Durlach. civ@mail.mil

Abstract. Adaptive instructional interventions have traditionally been provided
by a human tutor, mentor, or coach; but, with the development and increasing
accessibility of digital technology, technology-based methods of creating
adaptive instruction have become more and more prevalent. The challenge is to
capture in technology that which makes individualized instruction so effective.
This paper will discuss the fundamentals, flavors, and foibles of adaptive
instructions systems (AIS). The section on fundamentals covers what all AIS
have in common. The section on flavors addresses variations in how different
AIS have implemented the fundamentals, and reviews different ways AIS have
been described and classified. The final section on foibles discusses whether AIS
have met the challenge of improving learning outcomes. There is a tendency
among creators and marketers to assume that AIS—by definition—support
better learning outcomes than non-adaptive technology-based instructional
systems. In fact, the evidence for this is rather sparse. The section will discuss
why this might be, and potential methods to increase AIS efficacy.
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1 Introduction

Park and Lee (2004) defined adaptive instruction as educational interventions aimed at
effectively accommodating individual differences in students while helping each stu-
dent develop the knowledge and skills required to perform a task. Traditionally, this
type of customized instruction has been provided by a human tutor, mentor, or coach;
but, with the development and increasing accessibility of digital technology,
technology-based methods of creating adaptive instruction have become more and
more prevalent. Shute and Psotka (1994) point out that availability to computers began
occurring at about the same time that educational research was also extolling the
benefits of individualized learning; so, it was natural that harnessing computers was
seen as a practical way to increase individualized instruction for more students. From
the beginning, the challenge has been: how to capture in technology that which makes
individualized instruction so effective. This paper will discuss the fundamentals, fla-
vors, and foibles of adaptive instructions systems (AIS). The section on fundamentals
covers what all AIS have in common. The section on flavors addresses variations in
how different AIS have implemented the fundamentals, and reviews different ways AIS
have been described and classified. The final section on foibles discusses whether AIS
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have met the challenge of improving learning outcomes. There is a tendency among
creators and marketers to assume that AIS—by definition—support better learning
outcomes than non-adaptive technology-based instructional systems. In fact, the evi-
dence for this is rather sparse. The section will discuss why this might be, and potential
methods to increase AIS efficacy.

2 Fundamentals of AIS

All AIS have three things in common: (1) Automated measurement of the learner’s
behavior while using the system (2) Analysis of that behavior to create an abstracted
representation of the learner’s level of competency on the knowledge or skills to be
learned, and (3) Use of that representation (the student model) to determine how to
adapt the learner’s experience while engaged with the system. The first two have to do
with assessing learner competency, while the third is concerned with how to ameliorate
competency weaknesses. The first two together constitute formative assessment, while
the third is the adaptive intervention.

2.1 Formative Assessment in AIS

Formative assessments in AIS can be thought of as experiments about learners’
knowledge. The AIS user experience is designed so as to test theories about that
knowledge. The theories predict how a learner should behave if they possess such and
such knowledge, given the stimuli and behavioral affordances of the learning envi-
ronment. Consider a multiple choice question. Inferences about knowledge based on
the student’s selection depend on an implicit theory, though it is rarely explicitly stated:
If the student understands the content, they will choose the right answer. But competing
theories are possible; e.g., perhaps the student selected the correct answer by chance.
Because both theories make the same prediction, it might be necessary to assess the
knowledge multiple times and in various ways, until enough evidence has accumulated
to make a competency inference with more certainty. Questions can provide more fine-
grained information about learner competency by wisely selecting the foils to detect
common misconceptions, or by varying the difficulty of the question, based on nor-
mative data. This allows a deeper understanding of the student’s competency vs. just a
binary rating. Other methods besides direct questions, of course, can be used to assess
student knowledge. Learners can be asked to create artifacts, or perform activities.
“Stealth assessment” refers to assessing student behavior during the performance of an
activity, such that assessment occurs without any explicit question-asking (Shute et al.
2016).

The process of designing assessments has been formalized in various ways (Shute
et al. 2016). Here I will focus on the Evidence-Centered Design (ECD) framework
(e.g., Behrens et al. 2010; Mislevy et al. 2001; Shute et al. 2008). The first step in
designing an assessment is to determine what mixture of knowledge, skills, and other
factors should be assessed. An explicit representation of this in ECD is the competency
model (also referred to as a domain model or an expert model in other contexts). For
any particular domain (e.g., troubleshooting a washing machine) the competency
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model organizes the things people need to know (e.g., the pump won’t work if the lid is
open), things they need to do (check there is power to the pump), and the conditions
under which they have to perform (e.g., determine why the pump failed to run in the
spin cycle). Collecting and organizing the domain information into a competency
model may be one of the most challenging steps in creating an AIS, particularly for
domains in which there are multiple ways of solving problems, and one best solution
might not exist. Traditionally, the domain knowledge must be captured from experts,
and experts don’t always agree or have explicit access to the knowledge they use. Even
for well-defined domains, like algebra, consulting experts is needed in order to capture
instructional knowledge (e.g., common mistakes and various teaching methods), which
are not represented in text books (Woolf and Cunningham 1987). This knowledge may
be used in designing the AIS content and interventions, even if not represented in the
competency model.

Making the competency model explicit is not required for assessment, nor for an
AIS; but it is recommended, especially for complex knowledge structures and/or stealth
assessment. For relatively simple learning, the domain model may remain in the
designer’s head and only be implicitly represented in the content presented to the
student. An AIS designed for learning by rote (e.g., learning the times tables or
vocabulary) is an example. An adaptive intervention for these types of AIS is to give
each student practice on each association in inverse proportion to their ability to recall
it (so for each student, their own pattern of errors determines how frequently specific
association probes occur). The domain model may be represented only implicitly by the
associations chosen for the student to learn.

Hypotheses about the state of the learner’s ability with respect to the elements of
the competency model are represented in the student model (or learner model or
competency profile in other contexts), by assigning values against each ability. The
student model may be a single variable reflecting an overall proficiency, or multiple
variables representing finer grains of knowledge, and arranged in a network hierarchy
with required prerequisite knowledge also represented. Typically the complexity of the
competency model is reflected in the student model. When the competency model is
not even explicit, the student model tends to be relatively simple, such as a list of
values (e.g., percent correct on each cell of the times tables). For more complex
competency models, the student model may be represented computationally, for
example as a Bayesian network. A Bayesian network provides the ability to make
predictions about how students might respond to a new problem, based on the current
student model values. Regardless of the specific model, student model values are
updated when new relevant information becomes available. That information comes
from the student’s performance on tasks specifically designed for that purpose. In ECD,
these tasks are the task model. The task model consists of the learning environment the
learner experiences, materials presented, actions that the student can take, and products
they may produce. It specifies what will be measured and the conditions under which
they will be measured. Elements in the task model are linked to elements in the
competency model by the evidence model, so as to specify how student actions under
different conditions indicate evidence with respect to different competencies. This
requires a two-step process. First is evaluating the appropriateness or correctness of a
student behavior or product (the evaluation step). This might be something like: correct
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vs. incorrect, or low, medium, high. Second is turning these evaluations into student
model values. ECD calls this the statistical step. The statistical step turns the evalua-
tions into beliefs (or likelihoods) of student model values. In other words, if the student
did x under conditions a and e, the probability is .68 that they understand the relation
between the switch activated by lid closure and the pump (in keeping with the washing
machine troubleshooting example). The actual probability to assign might be deter-
mined using expert input, approximations based on task features, a fitted model, or
cognitive task analyses of students at known levels of mastery.

The student model values are made by inferences based on evidence collected,
therefore the assessment designer must set rules for how to collect the evidence and
when enough evidence has been amassed. In ECD these rules are called the assembly
model. The assembly model controls the sequence of tasks and the rules for ending the
assessment. When the sole purpose of the assessment is to gauge aptitude (summative
assessment), a rule for ending the assessment may be determined by time to complete.
A traditional aptitude test allowing a specific amount of time and using paper and
pencil is an example of a fixed summative assessment. All the students have the same
questions and are given the same amount of time. In contrast, an adaptive summative
assessment is possible. It changes the sequence of tasks for each student, depending on
the values in the student model, in order to collect evidence as efficiently as possible.
Therefore different students may have a different sequence of questions and be allowed
to work for different amounts of time. The Graduate Management Admissions Test
(GMAT) is an example of an adaptive summative assessment. In AIS, the purpose of
assessment is not to rank students, but rather to diagnose student misconceptions and to
identify where special attention might be needed. Stopping rules therefore may be
based on some sort of threshold (e.g. student model value of .90) or criterion (e.g.,
correctly diagnosing why the pump won’t run in less than three minutes), indicating
that mastery of the competency has been achieved, and no further practice is required.
Adaptive sequencing rules in AIS are intended to give the student the next “best”
learning experience to advance their progress; they are not part of the assessment, but
rather one of several possible adaptive interventions.

2.2 Adaptive Interventions in AIS

Once an AIS has an abstracted representation of the learner’s competency profile with
respect to particular learning objectives, how can an AIS adapt to the individual? To
answer this, several researchers have analyzed tutor-learner interactions to extract
information about what occurs during one-to-one human tutor-tutee sessions. Much of
this research is summarized in VanLehn 2011; see also Lepper and Woolverton 2002).
Other sources of adaptive interventions have been educational research (e.g., the
mastery learning technique) and psychological research (e.g., spacing). Bloom’s
research (1976, 1984), as well as Western interpretations of Vgotsky (1978), have had a
large influence on instructional interventions in AIS, particularly the use of the mastery
learning technique. Both essentially suggested that students should progress at their
own rate. Tasks should not be too hard, so as to be frustrating, or too easy, so as to be
boring. Learners should be given assistance with new tasks or concepts until they have
been mastered. Formative assessments should be used to determine where a learner
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needs help and when they are ready to move to a higher level of challenge. Help can be
given in a number of ways, and this can also be adapted to the learner. Different
learners may need different forms of help, so different methods for remediating
weaknesses should be available (e.g., hints, timely feedback, alternative content and
media, examples, self-explanation, encouragement, etc.). As far as implementing these
recommendations in technology, almost all AIS have incorporated the mastery learning
technique, and provide learners with feedback on their performance. Feedback is
known to be critical to learning; however, whether it is considered adaptive is kind of a
grey area. Positive feedback can be motivating and reduce uncertainty. Sadler (1989)
suggested that one critical role of feedback is to support the student in comparing his or
her own performance with what good performance looks like, and to enable students to
use this information to close that gap. In general, the more fine-grained the feedback,
the more likely it is to fit these requirements. Durlach and Spain (2014) suggested that
feedback can be at different levels of adaptivity depending on how helpful it is in
allowing the learner to self-correct, or how it is used as a motivational prop.

Another adaptive intervention that appears frequently in AIS stems from the psy-
chological literature on the scheduling of practice “trials.” It is a well-established from
learning science that retention is better when learning experiences are spaced over time
compared to when they are massed (Brown et al. 2014). Repeated recall of information
just on the edge of forgetting seems to solidify it better in memory compared to when it
is recalled from relatively short term memory (which occurs when repetitions are close
together). But people learn and forget at different rates for different items, so some AIS,
particularly those aimed at learning associations (like the times tables or foreign lan-
guage vocabulary), have devised adaptive spacing algorithms such that the sequencing
of trials is personalized to the learner based on their accuracy for each association. So if
you are learning French vocabulary, once you get the chien-dog association correct
several times, you will be tested for it less and less frequently. These AIS are some-
times referred to as electronic flashcards. Although this “drill and practice” method of
learning is sometimes looked down on as primitive, Kellman et al. (2010) have argued
that it is a good way of learning structural invariance across otherwise variable cases,
which is required for expertise. They argue that it can be applied to conceptual
materials to increase fluency (greater automaticity and lesser effort), a hallmark of
expertise; Kellman and colleagues have demonstrated this for several mathematical
concepts (Kellman and Massey 2013). Note that adaptive spacing can be applied within
a learning session or across days, weeks, months, etc. Bringing back items from an
earlier topic at the right time may be particularly useful when the goal is to discriminate
when to apply certain methods of problem solving vs. executing the method itself (Pan
2015; Rohrer 2009).

2.3 PLATO (Programmed Logic for Automatic Teaching Operation)

To illustrate the fundamentals of AIS, the workings of PLATO, one of the first AIS, is
summarized (Bitzer et al. 1965). PLATO was developed to explore the possibilities of
using computers to support individualized instruction. Several variations were created,
but only the simplest of the “tutorial logics” will be outlined here (see Fig. 1). This
logic led a student through a fixed sequence of topics, by presenting facts and examples
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and then asking questions covering the material presented (the Main Sequence in
Fig. 1). PLATO responded with “OK” or “NO” to each answer. Students could re-
answer as many times as they liked, but could not move on to new content until they
got an “OK.” If required, the student could ask for help by pressing a help button. This
took them off to a branch of help material (Help Sequence in Fig. 1), which also had
questions and additional branches as needed. After completing each help branch, or
short-circuiting the help sequence by selecting an “AHA!” button, the student returned
to the original question and had to answer it again. Each question had its own help
branch, and in some versions different help branches for different wrong answers. If a
student used all the help available, and could still not answer the original question, then
PLATO supplied the correct answer. Teachers could create the content and questions
on the computer itself, and could also examine stored student records. Records could
also be aggregated for different types of analysis. One thing to notice about PLATO is
that it is the type of system where the competency model is not explicit. The com-
petency model is only implicit in the content and questions that are included by the
teacher/author. Another thing to notice is that the student model is quite simple. It is
made up of the correct and incorrect answers chosen by the student. The computer
supplies the branching logic, depending on those answers. Although created in the
1960°s PLATO’s outward behavior is quite similar to many AIS in use today.

Main Sequence

Question
Answer

Help Sequence

Help
Content

Question

| Help
Content
J
rrrrrrrrrrrrr
Coiar
[Answer ]

‘—-m
®

End of Help
End of

Lesson

More
Content

Fig. 1. Tllustration of sequencing in PLATO. Students could request help for each question. The
depth of help branches was determined by the content author.
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Advances in computing power have allowed today’s AIS to be more sophisticated,
by using explicit competency models and artificial intelligence; however, it is not
entirely clear whether AIS in 2019 are any more effective.

3 Flavors of AIS

Like ice cream, AIS come in many different flavors and qualities. You can get basic
store-brand vanilla. You can get artisanal Salt & Straw’s Apple Brandy & Pecan Pie;®
or you can get up-market varieties in stores (e.g., Chunky Monkey®). PLATO is kind
of like a store brand. It provides different paths through material and problems, with
each decision based on only an isolated student action. The equipment is the same for
each domain; only the ingredients (the content) differ. More complicated machinery
(artificial intelligence) or customization (hand crafting) are required for more up-market
brands. The analogy for “Artisanal” consist of AIS from academic researchers. These
typically have been hand-crafted, use computational models, and are experimented
with and perfected over years. Such AIS are typically referred to as Intelligent Tutoring
Systems (ITS). ITS tend to provide coached practice on well-defined tasks requiring
multiple steps to reach a solution (such as solving linear equations), although one
particular type—constraint-based reasoning ITS (e.g., Mitrovic 2012) have had success
with more open-ended domains such as database design. ITS are domain-specific, and
cannot be repurposed easily for a different domain. Defining what makes an ITS
“intelligent” has never been clearly agreed upon. Some researchers suggest it is only
the appearance of intelligence, regardless of the underlying engineering, while others
require explicit competency, student, and/or learner models (Shute and Psotka 1994).
Most AIS use mastery learning and provide feedback; but other ingredients can be
added: on-demand help, dashboards showing progress, interactive dialogue, simula-
tions, and gamification, to name a few. Some AIS also use student models that include
student traits (e.g., cognitive style) or states (frustration, boredom), in addition to the
student’s competency profile. The states or traits are used to influence adaptive inter-
ventions such as altering feedback or content (e.g., D’Mello et al. 2014; Tseng et al.
2008). Durlach and Ray (2011) reviewed the research literature on AIS and identified
several adaptive interventions for which one or more well-controlled experiments
showed benefits compared to a non-adaptive parallel version. These were (1) Mastery
learning, which has already been explained; (2) Adaptive spacing and repetition, which
also has already been explained; (3) Error-sensitive feedback—feedback based on the
error committed; (4) Self-correction, in which students find errors in their own or
provided example problems; (5) Fading of worked examples (here students are first
shown how to solve a problem or conduct a procedure; they are not asked to actually
solve steps until they can explain the steps in the examples); (6) Metacognitive
prompting—prompting students to self-explain and paraphrase. Because there are
many ways that AIS can differ, different ways to classify the various types have been
suggested.
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4 Macro and Micro Adaptation

Shute (1993) and Park and Lee (2004) describe adaptive interventions as being either
macro-adaptive or micro-adaptive. A single AIS can employ both. Macro-adaptation
uses pre-task measures or historical data (e.g., grades) to adapt content before the
instructional experience begins. Two types of macro-adaptive approaches are
Adaptation-as-Preference, and Mastery. With Adaptation-as-Preference, learner pref-
erences are collected before training and this information is used to provide person-
alized training content. For example, it may determine whether a student watches a
video or reads; or whether examples are given with surface features about sports,
business, or the military. With Mastery macro-adaptation, a pretest determines the
starting point of instruction, and subsequently already-mastered material, as determined
by the pretest, may be skipped. For both these macro-adaptations, the customization is
made at the beginning of a learning session or learning topic. In contrast, micro-
adaptive interventions respond to learners in a dynamic fashion while they interact with
the AIS. These systems perform on-going adaptations during the learning experience,
based upon the performance of the learner or other behavioral assessment (e.g., frus-
tration, boredom). They may use a pattern of response errors, response latencies, and/or
emotional state to identify student problems or misconceptions, and make an inter-
vention in real-time. Micro-adaptive interventions may be aimed at correcting specific
errors or aimed at providing support, such as giving hints or encouragement.

4.1 Regulatory Loops

VanLehn (2006) popularized the idea of characterizing ITS behaviors in terms of
embedded loops. He originally suggested that ITS can be described as consisting of an
inner loop and an outer loop. The inner-loop is responsible for providing within-
problem guidance or feedback, based on the most recently collected input. The outer
loop is responsible for deciding what task a student should do next, once a problem has
been completed. In ITS, data collected during inner-loop student-system interactions
are used to update the student model. Comparisons of the student model with the
competency model drive the outer loop decision process, tailoring selection (or rec-
ommendation) of the next problem. In order to do this, the available problems must be
linked to the particular competencies their solution draws upon. Zhang and VanLehn
(2017) point out that different particular AIS use different specific algorithms for
making this selection or recommendation. The complexity of the algorithm used tends
to depend on how the competency model is organized, e.g., whether knowledge is
arranged in prerequisite relationships, difficulty levels, and/or whether there are one-to-
one or a many-to-one mappings between underlying competencies and problems. There
is no one algorithm, nor even a set of algorithms proven to be most effective.
VanLehn (2011) introduced the interaction granularity hypothesis. According to
this hypothesis, problem solving is viewed as a series of steps, and a system can be
categorized by the smallest step upon which the student can obtain feedback or support.
The hypothesis is that the smaller the step, the more effective the AIS should be. This is
because smaller step sizes make it easier for the student (and the system) to identify and
address gaps in knowledge or errors in reasoning. The granularity hypothesis is in
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accord with educational research on the effects of “immediacy” (Swan 2003). Com-
bining the notion of loops and of granularity, it seems natural to extend the original
conception of inner and outer loops to a series of embedded loops in which the inner
loop is the finest level of granularity. Loops can extend out beyond the next task or
problem to modules, chapters, and courses. Different types of adaptations can be made
to help regulate cognitive, meta-cognitive, social, and/or motivational states at different
loop levels (VanLehn 2016).

4.2 Levels of Adaptation

Durlach and Spain (2012, 2014) and Durlach (2014) proposed a Framework for
Instructional Technology (FIT), which lays out various ways of implementing mastery
learning, corrective feedback, and support using digital technology. Mastery learning
and feedback have already been discussed. Support is anything that enables a learner to
solve a problem or activity that would be beyond his or her unassisted efforts. In FIT,
mastery learning is broken down into two separate components, micro-sequencing and
macro-sequencing. Micro-sequencing applies to situations in which a given mastery
criterion has yet to be met, and a system must determine what learning activity should
come next to promote mastery. It can roughly be equated with remediation. Macro-
sequencing applies to situations in which a mastery criterion has just been reached and
a system must determine the new mastery goal-what learning activity to provide next.
It can be equated with progression to a new topic or deeper level of understanding. For
each of the four system behaviors (micro-sequencing, macro-sequencing, corrective
feedback, and support), FIT outlines five different methods of potential implementa-
tion. These are summarized in Table 1. Except for macro-sequencing, the five methods
of implementation fall along a continuum of adaptation. At the lowest level (Level 0),
there is no adaptation — all students are treated the same. Each successive level is
increasingly sophisticated with respect to the information used to trigger a system’s
adaptive behavior. The type of intervention (macro-sequencing, micro-sequencing,
feedback, and support) crossed with the level of adaptation (0 to IV) do not fit into a
nice neat four x five matrix, however. This is because the adaption levels advance
differently for the different types, based on differences in the pedagogical functions of
the types. Macro-sequencing and micro-sequencing are about choosing the next
learning activity. So, e.g., the adaptive levels of micro-sequencing have to do with how
personalized the remedial content is, which is in turn, based on the granularity of the
student model. The more granular the student model, the more personalized the
remedial content can be (though this is not explicitly acknowledged in the framework).
Analogously, the macro-sequencing levels depend on the student information used to
determine the content of the next topic (e.g., job role). Clougherty and Popova (2015)
also proposed levels of adaptivity for content sequencing, but they were organized as
seven levels along a single dimension. The levels progress with increasingly flexible
methods of “remediation” and ‘“advancement,” where remediation is analogous to
FIT’s micro-sequencing, and “advancement” is analogous to FIT’s macro-sequencing.
At their first level, all students receive the same content and the only flexibility is that
they can proceed at their own pace. The next level is quite similar to the sequencing
outlined in Fig. 1 for Plato. Clougherty and Popova’s top level, which they call an



Fundamentals, Flavors, and Foibles of Adaptive Instructional Systems 85

adaptive curriculum, exceeds what is specified by FIT. The adaptive curriculum allows
students, assisted by an AIS, to pursue personalized, interdisciplinary learning.

Table 1. Framework for Instructional Technology (FIT)

Corrective feedback

Level | Description
0 No item level feedback—summary score only
I Minimal item feedback—item accuracy information
II Correct answer or explanation of correct answer
1T Error-sensitive feedback—compares and contrasts correct answer to specific
incorrect answer
v Context-aware feedback—knowledge of past performance used to influence
feedback message
Support
Level | Description
0 None
I Fixed sources of information (e.g. glossary); problem-determined hints; student
initiates access
11 Locally adaptive hints (answer determined)
a. on request
b. triggered
11 Context-aware hints, prompts, or pumps (faded scaffolding)
a. on request
b. triggered
v Level III + mixed initiative interactive dialogue
Micro-sequencing
Level | Description
0 Recycling (repeat already seen content)
I Supplemental Remediation (one remedial content set)
II Supplemental Remediation levels (multiple remedial content sets)
I Adaptive Content (remedial content composed for the individual)
v Real Time Adaptation (remediation via within—task adaptation)
Macro-sequencing
Level | Description
0 Fixed sequence—one version only
I Student choice or hybrid choice/fixed
11 Test-out (placement)
III Adapted ahead (multiple versions)
v Adapted During (multiple versions)

In contrast to sequencing, the functions of feedback and support are to guide
attention and to assist recall and self-correction for the current learning activity. The
advancing FIT levels of adaptation for these are based on how much of the learning
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context is taken into account in deciding how feedback and support are provided.
Support will be used as an example. For Level O there is no support. Level I support is
the same for all learners, and accessed on learner initiative. This includes support like
glossaries and hyperlinks to additional explanatory information. Level I also includes
problem-determined hints, where students are given the same advice for fixing an error
no matter what error was made. Answer-based hints are at Level II. Answer-based hints
are different, depending on the type of error made. FIT refers to this type of support as
locally adaptive because it depends on the specific error the student made at a specific
(local) point in time. Nothing needs to be accessed from the student model in order to
supply answer-based support. In contrast, context-aware support needs to draw upon
information from the student model. Context-aware support provides different levels of
support as the student gains mastery; this is often referred to as fading. For example, at
Level III the availability of hints may change depending on a student’s inferred
competency. Finally, Level IV adds more naturalistic interactive dialogue to Level III.
It should be noted, however, that interactive dialog can be implemented at Level II; it
does not necessarily require access to a student model that persists across problems
(Level III). Autotutor (D’Mello and Graesser 2012) is an example of a Level II AIS
with interactive language. Autotutor supports mixed-initiative dialogues on problems
requiring reasoning and explanation in subjects such as physics and computer science;
but the interaction is not influenced by information about student mastery from one
problem to the next.

One intention behind FIT was to provide procurers of instructional technology with
a vocabulary to describe the characteristics they desire in to-be-purchased applications.
Terms like “adaptive” and “ITS” are not precise enough to ensure that the customer and
the developer have exactly the same idea of the features that will be engineered into the
delivered product. However, in an attempt to be precise, the resulting complexity of the
FIT model may have undermined its ability to meet the intention. And despite this
complexity, there are multiple factors that FIT does not deal with at all. For example, it
does not make distinctions according to different kinds of competency, student, or
domain models. Nor does it address factors like the quality of the instructional content,
instructional design, nor user interface considerations.

Tyton Parners’ white paper (2013) presented another framework for instructional
technology, using six attributes: (1) Learner profile, (2) Unit of adaptivity,
(3) Instruction coverage, (4) Assessment, (5) Content Model, and (6) Bloom’s
Coverage. An AIS can be located at a point along each attribute’s continuum (e.g., an
AIS can be high on one attribute and low on another). Explanation of the attributes and
each’s continuum are shown in Table 2. The white paper suggests that, along with
maturity (defined by eight attributes), the taxonomy can be a useful guide to selecting
instructional technology. They also suggest consideration of instructor resources (e.g.,
dashboards and data analytics) and evidence on learning outcomes. FIT and Tyton’s
frameworks are largely complementary. The Tyton taxonomy covers attributes not
addressed by FIT (Assessment frequency, Instruction Coverage, Content Model,
Bloom’s coverage), whereas FIT provides finer-grained detail on Tyton’s Unit of
adaptivity and Learner profile attributes.
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Table 2. Taxonomy and adaptivity continua proposed by Tyton Partners (2013).

Attribute

Low <— Adaptivity Level Continuum — High

Learner Profile is a
structured repository of
information about the
learner used to inform
and personalize the
learning experience
Unit of Adaptivity refers
to the structure of the
instructional content and
the scale at which that
content is modified for
specific learner needs
Instruction Coverage
refers to the pedagogical
flexibility of a product to
deliver an adaptive
learning experience and
the scope/scale of that
experience within the
context of a course

Assessment is the
frequency, format, and
conditions under which
learners are evaluated
Content Model
describes the
accessibility of the
product’s authoring
environment to
instructors or other users
and their ability to add
and/or manipulate
instructional content in
the system

Bloom’s Coverage
highlights to what extent
a product can support
the learning objectives
within the Cognitive
Domain of Bloom’s
Taxonomy

Student data informs
initial placement

Course prerequisite
level

Targeted study aid

Infrequent/Benchmark

Closed, with some
configurability

Understanding/
Remembering

Student data drives
adaptivity during a
learning sequence

Unit/lesson

Supplemental
instruction

Formative

Authoring
capability offered as
a service

Analyzing/Applying

Student data is
dynamic following
each adaptive
experience

Learning object level

Whole course

Adaptive/Continuous

Open, authoring
platform

Creating/Evaluating
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5 Foibles of AIS

AIS have been seen as a way to scale up individualized instruction. While the aim is to
produce better learning outcomes than can be achieved with less adaptive methods,
head-to-head comparisons of AIS to equivalent-in-content non-adaptive instructional
technology has been rare (Durlach and Ray 2011; Murray and Perez 2015; Yarnall
et al. 2016). More typically, AIS have been assessed as a supplement to traditional
classroom instruction (e.g., Koedinger et al. 1997), and/or by looking at pre-AIS vs.
post-AIS assessment outcomes. In that context, it has been suggested that an effect size
of one be set as a benchmark for AIS learning gains; i.e., learning gains should raise
test scores by around one standard deviation, on average (Slavin 1987; VanLehn 2011),
to be on par with human tutoring (or, if compared with a non-adaptive control inter-
vention, an effect size of about .75 or greater). While some AIS have been shown to
meet or exceed this benchmark (e.g., Fletcher and Morrison 2014; VanLehn 2011); this
is not always the case (Durlach and Ray 2011; Kulik and Fletcher 2016; Pane et al.
2010; Vanderwaetere et al. 2011; Yarnall et al. 2016). Consequently, the inclusion of
some kind of adaptive intervention in instructional technology does not guarantee
better learning outcomes. A generalized “secret sauce” — the right combination of
instructional design, content selection, and individualized feedback and support that
will boost learning outcomes for any given set of learning objectives (and for any
learners in any context)—has yet to be identified. Evaluation studies conducting sys-
tematic manipulation of AIS features and behaviors to determine those which are
required for superior learning outcomes have rarely been conducted (Brusilovsky et al.
2004; Durlach and Ray 2011); but, perhaps this is not surprising due to the myriad
decisions that must be made during AIS design (thus the large number of variables that
could be systematically examined), and the challenge of conducting educational
research in naturalistic settings (Yarnall et al. 2016). This section will review some of
the factors that might help improve AIS efficacy.

5.1 AIS Design

There is still much “art” in AIS design. Many decisions are made by intelligent
guesswork (Koedinger et al. 2013; Zhang and VanLehn 2017). What should the
mastery criteria be? What algorithms should be used to update the student model or to
select the next learning task? There are no standard solutions to these questions. Even if
mirroring approaches that have proven successful for others (e.g. using a Bayesian
model), there are still many parametric decisions required; and what if the designed
model does not align with learners’ actual knowledge structures? There is little learning
science available to guide these decisions. Some researchers have looked to improve
student models by re-engineering them based on whether the data produced by students
using their AIS fit power-law curves (e.g., Koedinger et al. 2013; Martin and Mitrovic
2005). Poor fits suggest a misalignment. More recently, machine learning approaches
are being applied to optimize pedagogical interventions (e.g., Chi et al. 2011; Lin et al.
2015; Mitchell et al. 2013; Rowe et al. 2016). Whether these data-driven approaches
lead to better learning outcomes remains to be seen.
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Much AIS design has been inspired by what human tutors do; but, AIS pedagogical
interventions have focused more on knowledge and skill acquisition compared with
motivational interventions. Tutoring behaviors concerned with building curiosity,
motivation, and self-efficacy are known to be important (Clark 2005; Lepper and
Woolverton 2002). Therefore AIS learning outcomes may benefit from greater incor-
poration of tactics aimed at bolstering these. Many AIS do not incorporate “instruc-
tion;” but, rather focus on practice. They therefore do not necessarily abide by
instructional design best practices. Merrill (2002) described five principles of instruc-
tion and multiple corollaries; but, it is not clear that these have had much impact on the
design of AIS content. Instructional design advises on what content to provide and
when during the learning process (e.g., ordering of concrete vs. abstract knowledge).
“Content is king” and may outweigh the effects of adaptive intervention. The tech-
nology used to provide content is less relevant than the content itself (Clark 1983).
Finally, with respect to content, it is possible that greater effort at including “peda-
gogical content knowledge” in AIS intervention tactics may improve AIS effectiveness.
Pedagogical content knowledge is knowledge about teaching a specific domain (Hill
et al. 2008). This includes what makes learning a specific topic difficult, common
preconceptions, misconceptions, and mistakes. An AIS that can recognize these may be
better able to help students overcome them. Only a few AIS have included explicit
representation of pedagogical content knowledge, often referred to as bug libraries
(Mitrovic et al. 2003).

Greater attention to heuristics for good human-computer interaction might also help
AIS effectiveness. Certainly, interfaces that incur a high cognitive load will leave
students with fewer cognitive resources for learning. Beyond good usability design, it
has been suggested that the structure of interactions can affect knowledge integration
and the mental models formed by students (Swan 2003). Woolf and Cunningham
(1987) suggest that AIS environments should be intuitive, make use of key tools for
attaining expertise in the knowledge domain, and as far as possible resemble the real
world in which the tasks need to be conducted. Learners should have the ability to take
multiple actions so as to permit diagnosis of plausible errors.

Finally, a shift from focusing on improving performance during the use of an AIS
to improving retention and transfer may enable AIS to provide better learning out-
comes. The performance measured during or immediately after an AIS experience may
fail to translate into retention and transfer. Interventions aimed at improving perfor-
mance during practice may actually have the inverse effect on retention and transfer
(Soderstrom and Bjork 2015). An example is massed vs. spaced practice: performance
during practice may appear better when practice opportunities are massed in time;
however, retention over the long term is better when it is spaced in time. Research has
shown that the optimal spacing depends on encoding strength, and so may be different
for different items and different across learners. Therefore an inferred measure of
encoding strength can be used to adapt when a repetition will likely enhance that
strength further. As already mentioned, some AIS do use adaptive spacing algorithms
to schedule tasks so as to improve retention. Most of these are applied in the context of
simple associative learning, and use measures such as accuracy, reaction time, and/or
student judgement of certainty to infer encoding strength. This tactic has found less
application in AIS concerning more complex types of learning (Kellman and Massey
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2013). Therefore more consideration of when tasks should be retested might improve
AIS impacts on retention. Methods of practice that tend to impair performance during
initial learning but facilitate retention and transfer have been referred to as “desirable
difficulties” (Bjork and Bjork 2011). These desirable difficulties include making the
conditions of practice less predictable, including variations in format, contexts, timing,
and topics. Formative assessment using recall (vs. recognition) is also desirable. Not all
sources of difficulty are desirable (e.g., unintuitive user interfaces, or content too
advanced for the learner). Desirable difficulties are ones that reinforce memory storage
and de-contextualize retrieval. Just as spacing effects can be made adaptive, it is
possible that implementation of some of the other desirable difficulties can be done
adaptively (e.g., personalizing when to vary the format of a task based on prior per-
formance). Except for spacing, the potential benefits of implementing these desirable
difficulties adaptively has received little attention.

5.2 AIS Deployment

The impact of AIS on learning outcomes is not only dependent on AIS design, but also
on the deployment environment. The quality and context of AIS implementation is
important. The same piece of courseware can be used in different ways, and the
specifics of usage can affect learning outcomes (Yarnall et al. 2016). First-order barriers
to successful technology integration include limitations in hardware capability, hard-
ware availability, time, systems interoperability, technical support, and instructor
training (Ertmer and Ottenbreit-Leftwich 2013; Hsu and Kuan 2013). But AIS are
socio-technical systems, so their impact also depends on human activities, attitudes,
beliefs, knowledge, and skills (Geels 2004). Educational technology integration is
facilitated when instructors believe that first-order barriers will not impede its use, have
had adequate training, and perceive institutional support (Ertmer and Ottenbreit-
Leftwich 2013; Hsu and Kuan 2013). Additionally, the instructor’s ability to co-plan
lessons and/or content with the technology can have an impact on technology inte-
gration (Ertmer and Ottenbreit-Leftwich 2013) and learning outcomes (Yarnall et al.
2016). Much research has examined the factors that affect technology integration in
education in general (e.g., Knezek and Chritensen 2016); and much advice can be
found on how to facilitate technology integration (e.g., https://www.edutopia.org/
technology-integration-guide-description and https://www.iste.org/standards/essential-
conditions); but, there is rather less available on how to assess it objectively or on its
relation to learning outcomes. The literature on human aspects of technology inte-
gration in education has tended to focus almost exclusively on the teacher and has
devoted far less attention to other factors including social variables like class size,
student demographics, or student attitudes.

With respect to implementing AIS specifically, Yarnall et al. (2016) suggest that
AIS providers work with their institutional partners and researchers to articulate and
validate implementation guidelines. The technology needs to fit the environment in
which it will be used. AIS providers need to fully explore the boundary conditions of
recommended use. If the provider recommends one hour per day but the program of
instruction can only accommodate three hours per week, what are the implications?
Instructors deviating from recommended guidelines may undermine AIS effectiveness;
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but it is not entirely clear that guidelines have been validated through empirical testing
for multiple types of learning environments and learners. Beyond following guidelines,
Tyton Partners (2016) recommend establishing a shared understanding of the impact of
AIS on the teaching process among all stakeholders, and involving faculty in the
selection and implementation processes throughout. They also recommend educating
faculty on AIS in general, including the concepts, models and techniques used, and the
learner data that can be accessed.

6 Conclusions

AIS have three fundamental characteristics: (1) Automated measurement of the lear-
ner’s behavior while using the system (2) Analysis of that behavior to create an
abstracted representation of the learner’s level of competency on the knowledge or
skills to be learned, and (3) Use of that representation (the student model) to determine
how to adapt the learner’s experience while engaged with the system. Different flavors
of AIS do this in different ways, however, and there is still much art in their design. AIS
can provide learning benefits including reduction in time to learn and increasing
passing rates; but, this is not a guaranteed outcome. AIS is not a homogeneous category
that can be established as “effective” or “ineffective” (Yarnall, Means, & Wetzel). It is
likely an AIS will not be any less effective than a non-adaptive analog; however, an
AIS will typically require more upfront resources, and potentially more radical changes
to an existing program of instruction. This is because AIS require more content and
under-the-hood engineering, and allow for different learners within a class to be at
substantially different places in the curriculum. The decision to use AIS also introduces
new issues of privacy and security concerning the usage of the learner data generated
(Johanes and Lagerstrom 2017). Some have suggested that a great value of AIS may be
in the revelation of those data to the instructor and perhaps the learners themselves
(e.g., Brusilovsky et al. 2015; Kay et al. 2007; Martinez-Maldonado et al. 2015). If the
data can be provided in a form that is meaningful for instructors and learners, that may
enable beneficial instructional adaptation on the part of an instructor, or self-regulation
on the part of the learner, without necessarily requiring especially effective use of the
data for adaptive intervention by the system itself. Given the current state of the art of
artificial intelligence applied to AIS, one of AIS’s greatest potential benefits may be to
empower the “more knowledgeable other” (words attributed to Vygotsky) to guide
learning. Further breakthroughs may provide AIS to become more reliably effective in
and of themselves.
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