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Abstract. The increasing use of ever-smarter AI-technology is changing
the way individuals and teams learn and perform their tasks. In hybrid
teams, people collaborate with artificially intelligent partners. To utilize
the different strengths and weaknesses of human and artificial intelli-
gence, a hybrid team should be designed upon the principles that foster
successful human-machine learning and cooperation. The implementa-
tion of the identified principles sets a number of challenges. Machine
agents should, just like humans, have mental models that contain infor-
mation about the task context, their own role (self-awareness), and the
role of others (theory of mind). Furthermore, agents should be able to
express and clarify their mental states to partners. In this paper we
identify six challenges for humans and machines to collaborate in an
adaptive, dynamic and personalized fashion. Implications for research
are discussed.
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1 Introduction

The literature on teams (e.g., [48,52]) has produced knowledge on how to design
a training environment and the operational environment to ensure that a team
of experts is also an expert team [47]. Now, with the introduction of advanced
technology, people also have to form effective teams with artificially intelligent
partners. The principles derived from studies on the effectiveness of human-
human teams are valuable for designing human-technology teams, but there are
also differences between human intelligence and Artificial Intelligence (from now
on: AI) that must be taken into account. Modern AI-applications acquire knowl-
edge about their domain and tasks by establishing correlations and patterns in
the large sets of data they collect about their environment. It then uses this
knowledge to solve new problems. When the environment provides sufficient
data, the algorithm can become very successful (e.g., for example, recognizing
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cancerous tissue in MR-images [62]). However, the intelligence of such applica-
tions remain within the boundaries of the trained task. If these are narrow and
well-defined, then AI is doing well. However, when the task context imposes a
rich and an a priori unknown variety of conditions (wide system boundaries),
then the problem-solving intelligence of AI drops dramatically [3]. Where AI
still falls short is thinking in the abstract, in applying common sense, and in
transferring knowledge from one area to another [7]. Thus, humans and AI each
have their strengths and weaknesses. Humans, for example, are poor at stor-
ing and processing information, unlike AI. However, humans can make abstract
decisions based on intuition, common sense, and scarce information [29]. Rather
than acting as separate and equal entities, humans and AI should collaborate
in a coordinated fashion to unlock the strengths of a heterogeneous team. It is
believed that this needs to develop iteratively by interaction between partners
[4,19,27]. This paper discusses the challenges for developing systems that enable
humans and artificially intelligent technology to jointly learn and work together,
adaptively and effectively.

1.1 Hybrid Teams

A hybrid team is a team of multiple agents that interdependently work together,
and where agents can be either humans or machines. The cooperation of humans
and machines sets new demands as the nature of intelligence is different between
agents [3]. One demand is that the conditions must be created in which all agents
come to recognize and acknowledge their respective capabilities. This may apply
to a single human-machine combination, but it may also concern a team of multi-
ple human-machine combinations. Another demand is that team members should
have a shared understanding of how to exploit their complementary strengths to
the benefit of the team. How team members should adapt to form an effective
team varies from occasion to occasion. It is dependent upon many factors, like
for example the specific demands of the context, the capabilities and preferences
of the other team members, and many other variables. Learning how to adapt
always take place, with every new performance of a team. Each training and
each operation provides opportunities for team members to develop their skills,
to refine their understanding of their own role within the team, and to deepen
their knowledge of the other team members’ roles, capabilities, and preferences.
A further demand is that the members of a hybrid team should be able to use the
progressive insights of its members to formalize and tune the work agreements.
Figure 1 shows a representation of a hybrid team.

The green inner area of Fig. 1 shows a team consisting of four human-machine
unit. One human-machine unit is shown enlarged for explication purposes. The
human and the machine both have, develop, and maintain a mental model
(shown in the lower two clouds). The mental model of the human involves
knowledge about the task, a concept of its own role in the team, and expec-
tations about the contributions of other team members. The mental model of a
machine is likely to be much less elaborated, involving specific knowledge about
the task to be performed by the machine, and some aspects of the context.
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Fig. 1. Human-machine cooperation in a hybrid team (Color figure online)

Both the human and the machine have an ePartner, an AI-based agent [5,40].
The purpose of an ePartner is to assist its user to act as a good team mem-
ber. An agent (either machine or human) and its ePartner form a unit (hence
the dotted ellipses). Indirectly, by assisting its user, the ePartner supports the
team as a whole. An ePartner collects and processes information about the task
(grey middle zone) and the context (outer yellow zone). It also collects and
processes information about its user, about the partner of its user, as well as
of the other human-machine units of the team (green inner zone). The ePart-
ners use this information to construct and maintain an elaborated mental model
(shown in the two upper blue clouds) containing a representation of its user (a
‘self’-model), as well as a representation of the perspective of the partner-agent
(a theory of mind model). Through these mental models the ePartners develop
an understanding of the task, users, and team. Based on this understanding, the
ePartner can initiate various support actions.

A hybrid team consists of agents. An agent is an entity that is autonomous,
intentional, social, reactive, and proactive [61]. So a human is an agent. A machine
can also be an agent, but only if it meets the criteria above. For instance, a robot
arm that mechanically performs some kind of action is not considered an agent,
even though its actions may be valuable to the team. In the hybrid team outlined
in Fig. 1, we have machines in mind that are more or less intelligent agents. A
machine’s mental model is typically targeted at the intelligence needed for act-
ing adequately in a bounded variety of task conditions. It generally does not
include the ability to acknowledge the needs of its partner, or of other members
of the team. Thus a mental model of the machine supports task behavior, not
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team behavior [51]. However, in a machine-ePartner unit (right dotted ellipse),
the ePartner-agent is able to develop a mental model that covers the needs of oth-
ers; not only of its machine-partner, but also of other agents in the team. This
enables this ePartner to initiate supportive actions (e.g., informing its machine
that a task has already been done by others in the team; informing the ePartner
of the human partner that the machine’s battery is about empty). In a human-
ePartner unit (left dotted ellipse), both the human as well as its ePartner-agent
develop a mental model of the task and of the team. However, the mental models
of these agents are not the same. The human’s ePartner-agent can, for example,
receive information from the ePartner of the machine about the status of its task
work (e.g., the remaining battery power of the machine). It can also determine con-
ditions of its partner (e.g., fatigued; high-work load) that the human may self not
be aware of [16]. Again, this enables the ePartner to initiate supportive actions
(e.g., issue warning to human partner; request other agents in the team to take
over tasks).

This envisioned cooperation between humans and machines in a hybrid team
needs to develop through interaction and feedback during learning and opera-
tions, enabling all agents to acquire implicit and explicit knowledge about them-
selves and about their partners. Implicit knowledge about the partner is, for
example, intuitively knowing how the partner will respond to a particular sit-
uation (often without realizing why). This is called ‘tacit knowledge’ [46], as
it often cannot be adequately articulated. Explicit knowledge is, for example,
knowing what the partner is likely to achieve, and accordingly, how it will act.
Explicit knowledge is often obtained by deduction, logic, and reasoning [10].

The next chapter presents a use case of human-AI co-learning in hybrid
teams, relating it to the literature for principles of successful development of
human-AI partnerships. These principles are used to define the challenges for
establishing human-AI Co-learning in Sect. 3. The final chapter discusses the
implications for research.

2 Co-learning in Hybrid Teams

The increasing use of ever-smarter AI technology is changing the way individuals
and teams perform their tasks. Designing the models for successful hybrid teams
should be based upon the principles that foster the cooperation between units
consisting of human-machine combinations, and that promote the collaboration
of multiple human-machine combinations at the team level (see Fig. 1). This
section proposes a set of principles for human-AI co-learning, derived from the
literature on human-machine interaction, human-agent teaming, and teamwork
in general. It starts with a general use case to illustrate the co-learning process.

2.1 Use Case

Figure 2a presents an overview of a Human-ePartner-Robot-Team (HeRT) at a
disaster scene of our use case (inspired by the TRADR use cases for robot-assisted
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(a) Human-ePartner-Robot-Team (b) Example scenario

Fig. 2. HeRT team and scenario map (scene)

disaster response; [14,28]). In this team, all agents have sensors for monitoring the
environment (e.g., to identify human beings, passageways, objects) and their own
states (e.g., health and location). However, machine agents will only have limited
state-sensing capability. To support collaboration, humans and ePartners are also
equipped with sensors that assess states of other agents (such as workload; [16]).
There is a shared knowledge base; policies define the obligations, permissions and
prohibitions for knowledge exchange (e.g., as adjustable work agreements [38]).

When approaching the disaster scene, the Team Leader (TL) assesses the
situation, selects the first Point-of-Interests (PoI) to explore, and estimates the
corresponding priorities. Based on previous missions, the ePartner of the Team
Leader, i.e., ePartner(TL), proposes task allocations and work agreements for
the team. Figure 2b gives an overview of the task context. The PoI is in a valley
in between mountains. Victims might be found there, but the area is dangerous
for humans due to the possible presence of toxic gases. The ePartners initiate
the operation by issuing work agreements among the groups and units, i.e., for
notifying progress, agent states, and environmental events. A first example is
that the TL will be notified about the progress of (all) groups, when there is a
(i) deviation of the plan, (ii) change of agent’s state, or (iii) unforeseen critical
event. Second, specific for the Air-group, there is the agreement that the TL-unit
will get regular updates (“situation reports”, provided by the ePartner of air-
group’s Explorer, i.e., ePartner(E-air)) with the overview pictures of the UAV
(so that TL will maintain a general overview, and can immediately help the less
experienced Air-group when needed). Third, specific between the Ground-group
and the Air-group, there is the agreement that the other group is notified when
a new obstacle is detected in the planned navigation routes.

Following the plan, the Explorer(air) initiates the first (high-priority) task:
The UAV has to explore the area between the base station and PoI to assess
its accessibility for UGV navigation. In parallel, Explorer(ground) initiates the
first (high-priority) task: navigation of UGV to PoI, to gather information about



Six Challenges for Human-AI Co-learning 577

the environment during the navigation and, subsequently, at PoI. Based on the
available information of the environment, the UGV calculates the best navigation
route and starts navigating. The Air-group identifies a blockade of the planned
route and ePartner(E-air) notifies the Ground-group. The UGV changes its route
and continues; ePartner(UGV) provides an explanation; ePartner(TL) notifies
the TL about the changed route plan with the explanation (and the information
that the time of arrival at PoI is extended).

In the meantime, the Air-group (i) is processing a large amount of environ-
mental data with inconclusive outcomes, (ii) has to anticipate for a required
battery change, and (iii) is notified that storm and rain are approaching. The
ePartner(E-air) identifies a “cognitive lock-up” in the data-processing task of
its partner, draws her attention to the battery level and weather forecast, and
notifies unit(TL). The TL assesses the adapted task plan, UAV’s battery level
and the weather forecast, and determines that the UAV can stay in air till the
UGV approaches the PoI.

After the mission, all agents participate in a debriefing session. The
ePartner(E-air) points to the cognitive-lock-up event, and explains its assess-
ment. The TL refines the explanation, enhancing ePartners’ knowledge base.
Explorer(air) understands what happened and selects training scenarios to prac-
tice this type of situations in virtual reality.

2.2 Principles of Human-AI Co-learning

Research in human-machine interaction provides useful models and methods
for the required communication in the envisioned use case of Sect. 2.1, such as
chat bots [11], virtual assistants [16,54], and personal teaching agents [25,55].
ePartners should tailor their communication to the specific characteristics of
their human partner (e.g., preferences, experiences, mental state), the team (e.g.,
roles, work procedures, communication protocols) and the context (e.g., move-
ment, noise, time pressure). However, collaboration and collaborative learning
are not driven by explicit demarcated communicative acts only. A joint task
performance of human and a machine agent requires that their social, cogni-
tive, affective and physical behaviors are harmonized for the work processes. For
establishing such harmonization, we identify a number of important principles:
OPED (observability, predictability, explainability & directability), trust gener-
ation & calibration, self-awareness & theory of mind, lifelong learning on the
job, and teams learning from teams.

Observability, Predictability, Explainability and Directability
Joint task performance requires that the agents deal with interdependencies: the
coordinated adaptation of task performance of humans and machines to opti-
mize their performance as a team [19,42]. Johnson et al. define three require-
ments for successful interdependent collaboration: Observability, Predictability
and Directability [19]. In addition, Explainability has been identified as an impor-
tant prerequisite for collaboration and learning (e.g., [12,41]).
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Observability implies that the human agent and the machine agent are
informed of their own actions, each other’s actions, and the status of their role
and progress in the task. In a human-machine partnership this requires that
the state of a machine agent should be observable to a human partner, and the
machine-agent should be informed about the human’s status from explicit and
implicit behavioral cues. The use case of Sect. 2.1 provides several example work
agreements for establishing observability within a team (e.g., on agent’s state,
like robot’s battery level and explorer’s stress level).

Predictability means that actions of a team member are -to some extent-
predictable, so that team members can understand it, and anticipate to it. The
use case shows, for example, the processing of prediction information within the
team on robot state (battery level), weather and reaching the PoI, to decide on
the UAV’s route.

Explainability is needed in circumstances where partners desire a clarification
of each other’s behavior. One way of achieving this is by requesting explanations.
In order to generate an explanation that fits the objective of the requesting agent,
partners should have the capabilities to diagnose the state of the other agent
(related to observability), and the partner’s intention of the request (related to
predictability). In the use case of Sect. 2.1, for example, the ePartner of the UGV
provides an explanation of the changed route towards the PoI.

Directability refers to the property of agents to take over and delegate tasks,
both reactively and pro - actively. In the use case, for example, the TL takes
over part of the task of explorer(air), when she is in a “lock-up”.

Trust Generation and Calibration
The research community has not (yet) provided a unified definition of trust, but
it is commonly recognized that trust is as a psychological state that is influenced
by the complex interrelations between expectations, intentions and dispositions
[9]. For now, we will use Mayer’s trust definition: “The willingness of a party to
be vulnerable to the actions of another party based on the expectation that the
other will perform a particular action important to the trustor, irrespective of the
ability to monitor or control that other party” [36] (p. 712). Trust development is
a continuous process in teamwork, involving trust establishment and adjustment
based on team-members’ experiences concerning each other’s performances and
the overall team performance. In teamwork, three processes should be considered:
(i) interpersonal trust between members, (ii) collective trust at the team level,
and (iii) the cross-level influences and dynamics [9]. It should be noted that high
levels of team trust may have negative consequences, like the pressure to conform
to group’s norms in “groupthink” [18]. Adequate trust calibration is crucial to
establish appropriate attitudes and performances in teamwork.

In the use case of Sect. 2.1, for example, the TL developed a higher level of
trust for the (experienced) Ground group than for the (less experienced) Air
group. Based on the low level of trust, a specific work agreement was made for
the last group: ePartner(E-air) provides regular updates with overview pictures
to unit(TL), so that the TL can immediately help the Air-group when needed.
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Self-awareness and Theory of Mind
In a well-functioning team, the team-members learn to perform the tasks, how
their tasks relate to those of the other(s), and how to manage their tasks.
They develop “self-awareness” of their own state and role in the partnership,
“self-management capabilities” and a “Theory of Mind” (i.e., knowledge of
the other, [45]). Current AI developments are enhancing machine’s capabilities
on the “self-awareness & management” [59]. However, developing a Theory of
Mind also proves to be crucial for effective human-human teamwork [35] and
human-machine teamwork [24,30,43,53,60]. Furthermore, the self-awareness,
self-management and Theory of Mind can develop at four levels: agent, unit,
group and team. The ePartners aim to enhance this by sensing, modeling, acti-
vating and sharing the relevant information (see Fig. 1). With the capabilities to
form Theories of Mind, humans and ePartners develop the capability to maintain
common ground, thereby meeting the challenge of Klein and colleagues [26] for
successful joint activity. In the use case of Sect. 2.1, ePartner(E-air) detected a
“cognitive lock-up” of its partner, sharing it (i) with the TL-unit (team level) to
ensure an effective air-group task performance, and (ii) with its partner (“self-
awareness at unit level”) for experienced-based learning.

Lifelong Learning on the Job
Appropriate experience sharing will help teams to learn from their practices
and improve their adaptive capabilities. For example, team reflections can make
“tacit” knowledge explicit in a systematic way in such a way that the team can
better cope with similar situations in the future (i.e., team’s resilience increases,
[49]). The ePartner will support this process by (i) providing the “episodic mem-
ory” with the features that affect performance and resilience, and (ii) the proce-
dures to reflect on these episodes [16]. One way to do this, is to share experiences,
and to reflect upon these experiences [58], for example by engaging in an After
Action Review [39].

The previous principle (“Self-awareness and Theory of Mind”), already
referred to the learning of Explorer(air) in the use case by recalling the “cogni-
tive lock-up” episode. In addition, the TL-unit will learn from this episode about
the effectiveness of its back-up behavior (i.e., enhancing team’s resilience).

Teams Learning from Teams
A learning organization requires that team experiences and knowledge are shared
with other teams continuously (cf., [6]). Concerning this capability, ePartners will
provide excellent support: Their knowledge-base can be, almost instantaneously
and completely, shared with all the other ePartners. This way, an evolving library
of constructive and destructive team patterns can be build and shared [57].
Subsequently, the ePartners can help to identify such patterns when they appear
with the corresponding supporting or mitigating strategies. For the use case of
Sect. 2.1, for example, the set of work agreements that proved to be effective will
be shared by all teams.
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3 Challenges for Developing Hybrid Team Agents

The previous chapter discussed the principles for human-AI co-learning from a
team perspective. In this chapter we address the implementation of these princi-
ples: the challenges of creating learning human-AI partnerships, the constituting
elements of a hybrid team.

An important prerequisite for effective task and team performance is that
humans and machines become aware of each other’s knowledge, skills, capabili-
ties, goals, and intentions. Humans store and structure such information in their
brain in the form of mental models [8,21]. Mental models can be regarded as
personal and subjective interpretations of what something is, and how some-
thing works in the real world. Humans use their mental models to explain and
predict the world around them, for example interpreting the behavior of oth-
ers. In fact, it has been demonstrated that a mental model of the environment,
including information about the task and knowledge of other agents, is required
for efficient cooperation between humans in a team [35]. We argue that if a team
consists of humans and machines, machine agents need to be initiated with a
basic model of the task context, their own role, and the role of others. Further-
more, they need to be able to learn from experiences and feedback; to refine and
adjust their mental models. Not all knowledge and functions need to reside in
the individual agents; agents are able to share information, thus creating a kind
of “team cloud” database. We identify the following six challenges to achieve
effective human-machine team collaboration:

1. Agents of a hybrid team should have, develop, and refine a shared vocabulary
of concepts and relations (taxonomy model)

2. Agents of a hybrid team should have access to a shared set of work agree-
ments and interdependencies. This include agreements on how agents can
dynamically update this as a result of learning (team model)

3. An agent should have, develop, and refine a mental model containing knowl-
edge about the regularities between task conditions, actions and outcomes
(task model)

4. An agent should have, develop, and refine a mental model containing knowl-
edge about itself, including its needs, goals, values, capabilities, resources,
plans, and emotions (self-model)

5. An agent should have, develop, and refine a mental model containing knowl-
edge of other agent’s needs, goals, values, capabilities, resources, plans, and
emotions (theory-of-mind model)

6. An agent should have the functionalities, instruction, and training to com-
municate and explain experiences to other agents (communication model)

Challenges concerning the contents of agents’ mental models are discussed
in Sect. 3.1. The mental models of agents should not constitute a fixed repre-
sentation of the world, but a dynamic one. The models’ contents need to be
constantly refined and adjusted, as a result of learning from experiences. This
raises the question how machine agents should restructure their mental models in
order to assimilate and represent newly acquired knowledge. Such representation
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challenges are discussed in Sect. 3.2. A mental model is functional in the sense
that it helps the agent to determine and tune its behavior and to develop an app-
roach for solving a problem. At best, an agent’s operations may be experienced
as logical, plausible, or understandable by other agents. However, sometimes
they lead to surprise or incomprehension. Establishing a flexible and resilient
hybrid team requires mechanisms that enable agents to resolve misconceptions,
ambiguities and inconsistencies. These challenges are discussed in Sect. 3.3.

3.1 Components of Mental Models

Conceptually, we distinguish between three types of integrated knowledge in a
mental model of a hybrid team agent: knowledge about the task and context;
knowledge about oneself; and knowledge about the partner.

Knowledge about the task and context : through instruction and experience,
an agent accumulates its knowledge about about the regularities between task
conditions, actions and outcomes. The agent should be able to expand its task
model with the acquired knowledge (challenge 3). The agent may or may not be
aware of its knowledge. Some of the relationships may be formally coded in the
mental model (e.g., the task condition of seeing a ‘stop’ sign, triggers the act of
stopping the car, leading to the outcome of a safe crossing of the intersection). An
agent’s mental model should also contain strategies for conducting a task. Formal
knowledge about relationships and strategies can be easily communicated to
other agents. In addition, agents may also have implicit knowledge of regularities
in their mental model. For example, when having to make a right turn, a driver
agent uses subtle environmental cues to apply the forces to the steering wheel and
gas pedal that produce an adequate bend. The implicit nature of such knowledge,
also called ‘tacit knowledge’ [44], makes it hard to articulate it, and thus to
communicate it with other agents.

Knowledge about oneself : the mental model of a hybrid team agent should con-
tain information about its own needs, goals, values, capabilities, resources, plans,
and emotions (challenge 4). This enables the agent to be self-aware, an essential
principle for self-management, as well as for alignment and adaptation in a team.
An agent’s self-knowledge should be adjustable under influence of interactions,
experiences and feedback.

Knowledge about other(s): Agents should also be able to construct models of
other agents (challenge 5), a theory of mind. The agent should have the meta-
cognitive ability to attribute mental capacities and states to others [45], such
as their assumed motivations, beliefs, values, goals, and aspects of personality.
Furthermore, this theory-of-mind model should also include information about
how the other agent thinks about its partner (i.e., “what could the other agent
know about my knowledge, beliefs, values, and emotions?”).

Another challenge is that an agent should be able to retrieve and connect infor-
mation from the different sources of knowledge (challenge 1) so that the agent can
detect and understand interdependencies within the team (challenge 2). It allows
the agent to infer, for example, that a team agent may be too fatigued to carry out
its task, and to offer assistance to this team agent.
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3.2 Representational Challenges for Mental Models

As argued in Sect. 3.1, agents should be able to develop a mental model con-
sisting of different types of information, like observations or factual information
in the task environment (e.g., whether something or someone is present or not),
known or perceived relationships between events and actions (e.g., “if I see fire,
and I press this button, then an alarm will sound”), and assumptions (e.g., “if
my partner is very busy, then he is more likely to ignore my request”). In a task
domain, there often exist many relationships between different types of infor-
mation. An agent’s mental model should be able to represent all these, and the
representations should allow the agent to make connective associations between
them. The sections below discuss the challenges associated with this requirement.

Hybrid AI
The literature reports a variety of models that can represent an individual’s perfor-
mance and psychological states, such as emotion, trust, stress, memory, and the-
ory of mind (see [31] for an overview). A symbolic approach, for example, is based
on knowledge and rules and works best in well-defined problems. An advantage
of symbolic models is that they are understandable to people. Another approach
is to represent knowledge as a network of nodes and associations (e.g., [50]). This
data-driven, sub-symbolic approach to modeling is suited for ill-defined problem
environments. However, a disadvantage is that knowledge is distributed through-
out the network, and is therefore non-transparent for humans.

It has been advocated to combine both approaches, for example as shown in
Fig. 3. This is called hybrid AI [1,32,41,56]. Interestingly, human thinking is also
considered to be the result of a combination of implicit intuitive knowledge (cf.
sub-symbolic), and explicit, conscious reasoning (cf. symbolic) [22]. The nature
of human information processing has recently been aptly described by Harari:
“[..] the mind is a flow of subjective experiences [..] made of interlinked sensa-
tions, emotions and thoughts [..]. When reflecting on it, we often try to sort the
experiences into distinct categories such as sensations, emotions and thoughts
[..]”. ([15], p. 123).

For humans and intelligent machines to jointly learn and perform a task, both
should develop and maintain a common vocabulary of concepts and relations
(challenge 1); to reason and communicate with each other (challenge 6), about the
task and environment (challenge 3), their own perspective (challenge 4), and the
perspective of the other (challenge 5). This means, for example, that an ePartner
of a machine agent should be able to translate implicit sub-symbolic knowledge,
that is acquired through associations, into symbolic concepts (see Fig. 3). Only
then can this ePartner-agent communicate with other agents about it.

Perceptual, Cognitive, and Social Components
Machine agents and ePartner agents should be able to represent knowledge
obtained from sensory experiences by building associative networks of percep-
tual inputs (challenge 3). This would allow the agent to, for example, perform
image classification and object recognition.
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Fig. 3. A human-machine combination consisting of a human agent with its ePartner
agent, and an intelligent robot (e.g., an UGV), also with its ePartner agent. All agents
build and maintain their own mental models that contain learned regularities (acquired
through e.g., Machine Learning), as well as symbolic knowledge (e.g., in terms of BDI).
To enable communication, ePartner-agents should be able to translate sub-symbolic
knowledge into symbolic terms. This symbolic model functions as a shared vocabulary
for agents.

In the Human-AI co-learning concept, agents have different capabilities and
they communicate in order to exploit their complementary strengths to the ben-
efit of the team. Agents should therefore be able to show and share their status
and intentions to their partners (challenge 6), demanding a mental model that
allows them to express and explain their beliefs, goals, intentions, and actions in
terms that are adequate for human understanding and appreciation (challenge 5)
[41]. If necessary, the mental model can be expanded with computational mod-
els of emotion [23], enabling agents to take affective states into account when
deciding upon which goals to pursue and which actions to perform. Some of the
socially adaptive behavior of agents can be streamlined in advance by setting and
agreeing upon work agreements. However, in order for agents to know when and
how to adapt to changes, they should be able to continuously collect and update
information about the individual team member(s) and the context (challenge
2). The agent’s mental model should therefore have slots for social information;
with strategies for obtaining information from the task context to fill and refine
the value of these variables; and with algorithms to make social inferences from
the data in the model (challenge 1).

3.3 Functional Challenges for Mental Models

Constructing mental models for agents that allow them to represent perceptual,
cognitive-affective, and social knowledge, is only part of the challenge. Agents
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should also have the capabilities to dynamically update and refine their models.
This can be achieved in various ways, like internal consistency checks, deduction,
induction, reasoning, and validation. The sections below discuss the challenges
associated with establishing these functions.

Dynamic Mental Models
Human-AI co-learning demands mental models to be dynamic, because human
and machine agents will generally not have a mutual understanding right from
the start. Instead, understanding develops over time, from experiences and inter-
actions during training and operations. Of course, there may be some prior
experience in the form of memories, ‘lessons learned’, and assumptions in the
human agent, as well as computational task models in the machine agent. Fur-
thermore, the human may have provided the machine agent with personal data
to make itself better known. But a deeper understanding and mutual awareness
develops through prolonged collaboration, interaction, shared experiences, and
feedback from the environment (see also Sect. 2.2). To facilitate these processes,
the human should be instructed and trained for understanding an AI-agent, and
the AI-agent should have the functionalities to develop an understanding of his
human teammate (challenge 5).

Mental Models That Support Observability, Predictability, Explain-
ability, and Directability
Humans are cognitively wired to automatically infer mental states from subtle
behavioral cues expressed by other agents [17,34]. To enhance its observabil-
ity [19] for a human partner, a machine agent should be able to express such
information about its ‘mental’ state in a way that is easy to comprehend for
its human partner (challenge 6). In addition, a machine agent should be able to
infer its human partner’s mental state from their behavior (challenge 5). Agents
should also be able to use their theory of mind model to make predictions about
the behavior of team partners. Comparisons with observed behavior should be
used to validate the model, and to make adjustments if necessary.

Members of an effective human-human team try to detect and solve discrep-
ancies in their mental models. They discover misunderstandings, diagnose the
cause, and provide corrective explanations that gets the team back on track
[12,37]). Likewise, machine agents too need to be explainable. They need to be
able to generate explanations that shed light on the underlying causes of their
actions, and are attuned to the characteristics of the receiving agent (challenge
6) [37]. Agents may form explanations reactively, in response to a request by a
partner, but also pro-actively, when the agent anticipates that a partner may
not understand its (choice of) behavior.

Directability refers to the property of agents to take over and delegate tasks,
both reactively and pro-actively. The agent should be able to consult its model
of the team (challenge 2), taking also into consideration the level of interpersonal
trust (see Sect. 2.2).
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4 Addressing the Challenges

In a successful hybrid team, humans and machines collaborate in an adaptive,
dynamic, and personalized fashion. This requires that machine agents, just like
humans, have mental models that contain information on the task context, their
own role, and the role of others. Furthermore, human and machine agents should
be able to express and clarify their mental states in a way that is easy to compre-
hend for their partner and that allows them to act in a coordinated and adaptive
manner.

In this paper, we have proposed six challenges to achieve successful human-AI
partnership in hybrid teams. These challenges should be addressed and tested
in research. A good start would be, for example, to investigate how learning of
an individual agent can be organized and supported, studying how this learning
affects performance of others, first at the unit level and successively at the team
level. Research questions would concern the construction, maintenance, and use
of mental models (e.g., what information should an agent disclose to elicit adap-
tive responses from its partner or partners?, and what are the effects of different
explanations by others on an agent's learning?).

In order to address the challenges, a suitable research simulation environment
is needed. This needs to involve a task that is representative for a real world
environment in which humans and intelligent technology jointly work together.
Yet the research task should allow simple and unambiguous manipulation and
control of demands on human-AI cooperation, and should allow the measurement
of learning. A suitable research environment is needed that meets the following
requirements: (1) control over what information is available. If some information
about the task is unknown or uncertain to some agents, this requires them to
communicate and to generate explanations that facilitate mutual understanding;
(2) the opportunity to create hard interdependencies [19], compelling agents
to cooperate because each have unique capabilities; (3) control over resources
needed to carry out the task (e.g., imposing time limits); and (4) the opportunity
to make task goals achievable in several ways. This feature requires agents of
a unit or team to search for common ground on strategy, and to explore the
division of roles and tasks that result in good collective performance. Earlier
studies on human-AI collaboration have been using research environments that
meet the requirements above, like Blocks World for Teams [20] and Hanabi [2].

We intend to use such environments to conduct experimental research into
human-AI learning. As a first study we aim to investigate how a human and
machine agent can evaluate their joint task performance in terms of lessons for
the future (i.e., how to re-assign tasks to improve overall performance). Con-
trolled studies in the lab are needed to design, implement and evaluate the
principles for successful Human-AI Co-learning. In addition, these principles
should be tested further in practical field settings (e.g., similar to experiments by
De Greeff et al. [13] and Looije et al. [33]). For example, trust has been shown
to be an important aspect of human-AI cooperation in real-life. The co-learning
of humans and agents over a prolonged period of time may not only benefit
performance, but also trust calibration [58].
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Given the developments in society, the future will unequivocally demand
humans and intelligent systems to work together. This paper addresses the chal-
lenges facing hybrid human-AI teams to acquire the strengths of human-human
teams, and to exploit the unique benefits of intelligent technology at the same
time.

Acknowledgments. This study has been funded by the Netherlands Ministry of
Defence, under program V1801.
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28. Kruijff-Korbayová, I., et al.: TRADR project: long-term human-robot teaming for
robot assisted disaster response. KI-Künstliche Intell. 29(2), 193–201 (2015)

29. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behav. Brain Sci. 40, e253 (2017)

30. Lemaignan, S., Warnier, M., Sisbot, E.A., Clodic, A., Alami, R.: Artificial cognition
for social human-robot interaction: an implementation. Artif. Intell. 247, 45–69
(2017)

31. Lin, J., Spraragen, M., Zyda, M.: Computational models of emotion and cognition.
In: Advances in Cognitive Systems. Citeseer (2012)

32. Liszka-Hackzell, J.J.: Prediction of blood glucose levels in diabetic patients using
a hybrid AI technique. Comput. Biomed. Res. 32(2), 132–144 (1999)

33. Looije, R., Neerincx, M.A., Cnossen, F.: Persuasive robotic assistant for health
self-management of older adults: design and evaluation of social behaviors. Int. J.
Hum. Comput. Stud. 68(6), 386–397 (2010)

34. Malle, B.F.: How the Mind Explains Behavior. Folk Explanation, Meaning and
Social Interaction. MIT Press, Cambridge (2004)

https://doi.org/10.1007/978-3-642-10203-5_26
https://doi.org/10.1007/978-3-319-47665-0_28
https://www.technologyreview.com/s/609331/more-evidence-that-humans-and-machines-are-better-when-they-team-up/
https://www.technologyreview.com/s/609331/more-evidence-that-humans-and-machines-are-better-when-they-team-up/
https://www.technologyreview.com/s/609331/more-evidence-that-humans-and-machines-are-better-when-they-team-up/


588 K. van den Bosch et al.

35. Mathieu, J.E., Heffner, T.S., Goodwin, G.F., Salas, E., Cannon-Bowers, J.A.: The
influence of shared mental models on team process and performance. J. Appl.
Psychol. 85(2), 273 (2000)

36. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

37. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
In: Artificial Intelligence (2018)

38. Mioch, T., Peeters, M.M., Nccrincx, M.A.: Improving adaptive human-robot coop-
eration through work agreements. In: 2018 27th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pp. 1105–1110. IEEE
(2018)

39. Morrison, J.E., Meliza, L.L.: Foundations of the after action review process. Tech-
nical report, Institute for Defense Analyses, Alexandria, VA (1999)

40. Neerincx, M., et al.: The mission execution crew assistant: improving human-
machine team resilience for long duration missions. In: Proceedings of the 59th
International Astronautical Congress (IAC 2008) (2008)

41. Neerincx, M.A., van der Waa, J., Kaptein, F., van Diggelen, J.: Using perceptual
and cognitive explanations for enhanced human-agent team performance. In: Har-
ris, D. (ed.) EPCE 2018. LNCS (LNAI), vol. 10906, pp. 204–214. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91122-9 18

42. Nikolaidis, S., Hsu, D., Srinivasa, S.: Human-robot mutual adaptation in collabo-
rative tasks: models and experiments. Int. J. Robot. Res. 36(5–7), 618–634 (2017)

43. Parasuraman, R., Barnes, M., Cosenzo, K., Mulgund, S.: Adaptive automation for
human-robot teaming in future command and control systems. Technical report,
Army Research Lab Aberdeen proving ground MD Human Research and Engineer-
ing Directorate (2007)

44. Patterson, R.E., Pierce, B.J., Bell, H.H., Klein, G.: Implicit learning, tacit knowl-
edge, expertise development, and naturalistic decision making. J. Cogn. Eng. Decis.
Mak. 4(4), 289–303 (2010)

45. Premack, D., Woodruff, G.: Does the Chimpanzee have a theory of mind? Behav.
Brain Sci. 1(4), 515–526 (1978)

46. Reber, A.S.: Implicit learning and tacit knowledge. J. Exp. Psychol. Gen. 118(3),
219 (1989)

47. Salas, E.: Team Training Essentials: A Research-Based Guide. Routledge, London
(2015)

48. Salas, E., Reyes, D.L., McDaniel, S.H.: The science of teamwork: progress, reflec-
tions, and the road ahead. Am. Psychol. 73(4), 593 (2018)

49. Siegel, A.W., Schraagen, J.M.: Team reflection makes resilience-related knowledge
explicit through collaborative sensemaking: observation study at a rail post. Cogn.
Technol. Work 19(1), 127–142 (2017)

50. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

51. Stout, R.J., Salas, E., Carson, R.: Individual task proficiency and team process
behavior: what’s important for team functioning? Mil. Psychol. 6(3), 177–192
(1994)

52. Stout, R.J., Cannon-Bowers, J.A., Salas, E.: The role of shared mental models in
developing team situational awareness: implications for training. In: Situational
Awareness, pp. 287–318. Routledge (2017)

https://doi.org/10.1007/978-3-319-91122-9_18


Six Challenges for Human-AI Co-learning 589

53. Teo, G., Wohleber, R., Lin, J., Reinerman-Jones, L.: The relevance of theory to
human-robot teaming research and development. In: Savage-Knepshield, P., Chen,
J. (eds.) Advances in Human Factors in Robots and Unmanned Systems. AISC,
vol. 499, pp. 175–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
41959-6 15

54. Tielman, M.L., Neerincx, M.A., Bidarra, R., Kybartas, B., Brinkman, W.P.: A
therapy system for post-traumatic stress disorder using a virtual agent and virtual
storytelling to reconstruct traumatic memories. J. Med. Syst. 41(8), 125 (2017)

55. Tielman, M.L., Neerincx, M.A., van Meggelen, M., Franken, I., Brinkman, W.P.:
How should a virtual agent present psychoeducation? Influence of verbal and tex-
tual presentation on adherence. Technol. Health Care 25, 1–16 (2017). Preprint

56. Tsaih, R., Hsu, Y., Lai, C.C.: Forecasting s&p 500 stock index futures with a
hybrid ai system. Decis. Support Syst. 23(2), 161–174 (1998)

57. Van Diggelen, J., Neerincx, M., Peeters, M., Schraagen, J.M.: Developing effective
and resilient human-agent teamwork using team design patterns. IEEE Intell. Syst.
34(2), 15–24 (2018)

58. de Visser, E.J., et al.: Longitudinal trust development in human-robot teams: mod-
els, methods and a research agenda. IEEE Trans. Hum. Mach. Syst., 1–20 (2018)

59. Werkhoven, P., Kester, L., Neerincx, M.: Telling autonomous systems what to do.
In: Proceedings of the 36th European Conference on Cognitive Ergonomics, p. 2.
ACM (2018)

60. Wiltshire, T.J., Fiore, S.M.: Social cognitive and affective neuroscience in human-
machine systems: a roadmap for improving training, human-robot interaction, and
team performance. IEEE Trans. Hum. Mach. Syst. 44(6), 779–787 (2014)

61. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a
survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890,
pp. 1–39. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58855-8 1

62. Xiao, Z., et al.: A deep learning-based segmentation method for brain tumor in MR
images. In: 2016 IEEE 6th International Conference on Computational Advances
in Bio and Medical Sciences (ICCABS), pp. 1–6. IEEE (2016)

https://doi.org/10.1007/978-3-319-41959-6_15
https://doi.org/10.1007/978-3-319-41959-6_15
https://doi.org/10.1007/3-540-58855-8_1

	Six Challenges for Human-AI Co-learning
	1 Introduction
	1.1 Hybrid Teams

	2 Co-learning in Hybrid Teams
	2.1 Use Case
	2.2 Principles of Human-AI Co-learning

	3 Challenges for Developing Hybrid Team Agents
	3.1 Components of Mental Models
	3.2 Representational Challenges for Mental Models
	3.3 Functional Challenges for Mental Models

	4 Addressing the Challenges
	References




