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Abstract. Military tacticians require practice to learn their craft. Practice
requires adaptive opponents capable of responding to trainee actions in ways
that are realistic and instructionally productive. Current agents are generally too
brittle, too scripted and unresponsive to support adaptive training in this way.
What is required to develop adaptive agents are (1) real-time feeds of simulator
data that are sufficiently rich and realistic to support agent development and
execution; (2) agent architectures capable of generating realistic and instructive
behaviors from these data; and (3) a testbed that can deliver data and perfor-
mance measures in sufficient volume to enable modelers to accelerate agent
development by applying emerging analytics and machine learning. The 711th
Human Performance Wing/RHA has invested in precisely these capabilities over
four years, engaging eight of the leading developers of intelligent agents. In this
paper, we describe these capabilities, and, importantly, the data requirements
these solutions impose on simulators and operational systems that can employ
these technologies in the future.
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1 Introduction

U.S. Air Force pilots battle smart, agile enemy flyers in the wild. But in training
simulations, the automated enemies – Computer Generated Forces (CGF) – are often
predictable in flight and unresponsive to maneuvers by pilot trainees. Pilots can
rehearse textbook tactics against textbook adversaries under these circumstances. That
has high value early in pilot training. However, when pilots apply subtle, novel, or
erroneous tactics, CGF typically respond unrealistically or do not respond at all.
Human simulator operators often take over from CGFs when smart, agile behavior is
needed. This work-around raises the staffing cost of simulation-based training and thus
limits its availability to those times when staff are on hand.

Adaptive agents are needed to make simulation-based training more instructionally
effective and available. This capability requires three developments. First, agents must
be built using architectures capable of generating realistic and instructive behaviors.
Second, data from simulators must be sufficiently rich to drive these agents. If the same
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data feeds are available from operational flight equipment, then agents used in training
may eventually transition to the operational environment, to support pilot decisions and
accelerate tactical execution. Third, a testbed is needed that can deliver some of these
data and performance measures to support development of agents and evaluation of
their tactical smarts and agility. In the best case, the data and measures will be so
voluminous that developers can apply modern machine learning techniques to effi-
ciently create adaptive agents as powerful as the current AI champions of Go [1] and
many video games [2].

The Air Force Research Laboratory, 711th Human Performance Wing/RHA has
invested in precisely these capabilities over four years, engaging eight of the leading
developers of intelligent agents. In this paper, we describe key functionality of adaptive
agents, and the data requirements these solutions impose on simulators and operational
systems that drive them. We describe a testbed for agent development and evaluation
that fulfills many of these data requirements, and concisely profile the agent archi-
tectures that testbed currently hosts.

2 Functions of Smart, Agile Agents

Four functions enable pilot agents to behave in a smart and agile manner: tactical
inference, tactical action, modal behavior, and instructional capability. Two functions
support maintenance and extension and use of smart agents: evolution and trans-
parency. These functions can reside in agents themselves, or they can be distributed
across an agent and the system that hosts it. Here, we define these six functions.

Tactical inference enables the agent to interpret instants and streams of tactical data
(e.g., altitude, airspeed) in ways that support decision making. In Endsley’s termi-
nology of situation awareness [3], the agents must perceive the state of the environ-
ment, comprehend its tactical importance, and project (i.e., predict) potential evolutions
of the environment.

Tactical action is the agent’s capability to respond smartly to the tactical situation
with actions that drive the adversary toward defeat and (if the adversary is a trainee)
toward learning. An agent typically must synchronize its tactical actions with friendly
forces to achieve strong and sure effects, and so the concept of tactical action neces-
sarily includes communication and coordination between entities.

Modal behavior is the capacity of the agent to adopt distinct modes of tactical
inference, tactical action, and other characteristics. For example, agent inference might
be modeled on the doctrine of adversary force X in one mode and Y in another; an
agent’s tactical actions may vary on speed and synchronization as a function of the
mode of expertise (e.g., novice, apprentice, journeyman, master); or an agent might
vary its risk tolerance, and thus its tactical decisions, as a function of personality
modes1.

1 Just how much variability in behavior is instructionally or operationally useful is an empirical
question, as is the value of psychological realism (such as decision biases described by Tversky &
Kahneman [12]) in agent processing.
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Instructional capability is the ability of the agent to selectively produce tactical
behaviors that exercise and develop the skills of trainee pilots. Such an agent must
maintain a model of the trainee skill state, the target skill state (typically represented by
training objectives or a model of expert behavior), and the degree to which the
available tactical conditions exercise deficient trainee skills. In addition, a training
agent should generate guidance and feedback for trainees, and if it can do so, com-
municate these effectively but selectively based on some instructional strategy.

Evolution is the ability of an agent to learn from new data, whether those data arise
from training simulations, live operations, or other sources such as tactical simulations.
Evolution requires careful management. An agent must evolve at a deliberate pace,
meaning that the agent should learn or apply newly learned skills at a tempo that
ensures a reliable training environment or operational capability for each cohort of
human pilots who must fight from the same foundation of tactical knowledge.

Transparency is ability of an agent to describe the services it provides, the con-
ditions under which it provides them, the accuracy and reliability with which it
functions under those conditions, and the historical costs of modifying those services.
With these descriptive and administrative metadata [4], an instructor or instructional
system can select the optimal agent for a training task; and a user can estimate the
return on investment of modifying an agent to provide new or better services.

By enumerating and defining these functions, we are better able to design adaptive
instructional systems that can challenge trainees in a manner that is instructionally
effective. Further, we are assured that these capabilities can be maintained and applied
smartly and cost-effectively. In Fig. 1, we map the six functions, above, to three
capabilities of an agent-based adaptive training system: domain proficiency, instruc-
tional efficacy, and maintainability and applicability.

Fig. 1. Six functions (right) enable three capabilities (center) of adaptive instructional systems.
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3 Data Requirements of Smart, Agile Agents

Agents can implement the functions, above, only if they have access to a range of data,
which may be generated directly by agents, or by the host system on which they
operate. Here, we define some of these data requirements, then briefly describe a
testbed that delivers some of these data to agents developed by eight agent develop-
ment firms.

3.1 Tactical Inference

Tactical inference implements situational awareness (SA). The three levels of SA
defined by Endsley [3] impose distinct class requirements. To implement the percep-
tual level of SA requires a dynamic feed of data concerning the position, kinematics,
and tactical actions of each entity in the battlespace (friendly, adversary, and neutral)
and, in high fidelity simulations or operations, the state of the environment (e.g.,
visibility conditions ranging from dark to light, cloudy to clear).

To implement the comprehension level of SA requires the agent to infer missing
data and transform perceptions into tactically meaningful constructs. The inference
challenge is significant; an agent may need to infer missing dynamic data given
incomplete or inaccurate persistent data. Entity and environmental data may not be
available in their entirety to an agent either directly (e.g., through sensor readings) or
indirectly, through reports by other entities such as an Airborne Warning and Control
System (AWACS) or wingmen on a common network. Thus, an agent may need to
infer attributes of an entity from incomplete data, as when a pilot infers that an aircraft
is armed for battle given its speed, altitude, and heading. This inference requires
persistent data concerning the potential order of battle, meaning the type, capability,
number, and organization of entities in the battle space. Each of these may be complex
data. For example, in tactical aviation, the capability of an aircraft includes at least its
flight characteristics (e.g., potential speed, acceleration, and maneuverability), sensor
capabilities, communications capability, and weaponry. In operations, these data may
not be precisely known for any given platform, and it may not be known exactly which
platforms the adversary will bring to a given battle. Training simulations typically
evade the problem by providing agents with complete and accurate entity data,
reducing the need for agents to implement rapid and accurate forms of inference.
Comprehension SA also entails transformation of flight data into tactically meaningful
constructs. The locations of entities in space must be transformed into the labels and
parameters of formations documented in persistent data; the recent history of change in
position and kinematics must be transformed into maneuvers defined in persistent data.

The projection level of SA requires the agent to predict how the battle will evolve.
This, in turn, taps some persistent store of data concerning the responses of entities to
potential actions of their partners and adversaries, and the effects of those actions on the
mission. For example, an agent may accurately predict the maneuvers of enemy aircraft
and estimate the threat those maneuvers pose to friendly units and their mission.
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In sum, tactical inference, which implements situational awareness (perception,
comprehension, and projection), requires persistent and dynamic data concerning the
characteristics of entities and their behaviors.

3.2 Tactical Action

Tactical action entails selecting and dynamically adapting tactics to fulfill mission
objectives and/or drive a trainee to learn. This requires persistent data concerning the
effects that are appropriate given the mission (e.g., evade the enemy to approach a
target, or engage the enemy to defend an asset), the tactics available, and the effects
those tactics can achieve given the projected actions of the adversary. Persistent data
concerning tactics must define formations, maneuvers, use of sensors and weapons,
and, critically, coordination and communication with other members of the agent’s
force. Rich data supporting coordination might document a human or synthetic
wingman’s likely response time and accuracy of adherence to tactical doctrine and
specific orders. Rich data supporting communication actions might document the
effects of timing messages to arrive during periods of relative calm (when the recipient
can attend to them) or relative chaos. Estimates of the effects of tactics may require
relatively simple data (e.g., maneuver A has 75% likelihood of evading an adversary
that is employing tactic B), or historical data that support a more game-theoretic
decision strategy (e.g., with each repetition of tactic A, the likelihood of evasion drops
by 50%).

These persistent data concerning planned effects, tactical options, and likely effects
of tactical options in context may suffice to select tactics. To adapt tactical actions
continuously to the moment requires the same dynamic data used in tactical inference.

3.3 Modal Behavior

Modal behavior by agents requires configuration data that specify the agent charac-
teristics that an instructor (human or automated) or operator wants to evoke from an
agent.

An agent’s tactical behaviors might vary as a function of their configured nation-
ality, where an agent representing a poorly trained and equipped adversary might select
ill-fitting tactics predictably from a short playbook, while an agent representing a
sophisticated adversary might select surprising and effective tactics from larger
doctrine.

An agent’s configured task work expertise might determine the accuracy and
adaptability with which it executes a tactic at speed. Configurations for teamwork
capability might drive the speed, accuracy, and timeliness of agent communications.
Teamwork configuration data might control how well agents coordinate their actions
to, for example, execute a pincer movement attacking an enemy’s flanks.

A configuration of agent personality or attitude might address tolerance for risk,
which in turn might bias the agent to select tactics that achieve effects in a manner that
is more aggressive but potentially less survivable.

Implementation of modal behaviors requires persistent data that characterize the
decision and behavior biases of different adversaries, at varied levels of expertise, or
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among different personalities. Data concerning the behavioral effects of these modes
can be estimated from theory or research findings, or summarized from empirical data.
In addition, parameter values must be available to select among these modes.

3.4 Instructional Capability

Instructional capability enables an agent to apply tactics that train. Such instructive
behavior requires that an agent maintain a model of the trainee skill state relative to the
target skill state. Measures of performance and effectiveness (MOPs and MOEs)
populate trainee skill models; training objectives (or expert models) define the target
skill states. Both types of data are necessary for instructional capability. They are not
sufficient. To smartly select actions that train requires at least data that map training
objectives to the training conditions that grow skill. For example, to develop pilot
competence in tactical communication requires scenarios in which a wingman or
AWACS operator communicates accurately (or error-fully) with the trainee. There may
be many training conditions that exercise a given skill. It is not trivial to choose the
most effective among them for a given trainee. Ideally, an agent’s tactical actions
invoke a training challenge that is neither too small to trigger human learning, nor too
great to prevent it; rather, it falls in the Zone of Proximal Development [5] in which the
agent can manage student learning. To adapt the challenge to the trainee requires data
concerning the effects of the challenge on trainees’ task work and teamwork skills
given trainees’ state (or state history). Note that trainee state may include physiological
data that indicate attention, workload, and other conditions that bear on learning.
Systems that capture physiological data should make measures of these conditions
available to agents.

Human ability to learn from experience – from interaction with intelligent agents
and other humans – is robust. However, these effects increase for some trainees when
they are prepared for the specific learning experience, when they receive coaching (or
otherwise “scaffolded”) during it, and when they get feedback afterwards. Agents
should train more adaptively and effectively if they can generate, communicate, and
smartly deliver (or withhold) advanced organizers, real-time coaching, and debriefs
based on instructional strategy. For example, immediate feedback benefits less profi-
cient trainees, who are unable to assess their performance accurately, but may hamper
journeymen, who must assess themselves in operational settings. Agents thus require
data concerning the impact of instructional actions (not just tactical ones) on learning
given trainee state.

3.5 Evolution

Evolution ensures that agents maintain or grow their tactical and instructional effec-
tiveness as trainees, training objectives, measures, and the tactical environment change
over time. Agent developers typically deliver evolution by manually modifying agent
software. New machine learning techniques – notably deep learning from a static
dataset and reinforcement learning from a dynamically generated dataset – are a cost-
effective alternative that has produced superior agents in Go [1] and other domains [2].
Manual development benefits from, and automated learning requires, voluminous and
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variable data concerning tactical states (developed in tactical inference, above) and
tactical actions, as well as measurements of their effects in battle, and ideally of their
similarity to doctrinal tactics (procedures). These data can be captured in training
simulations, simulated tactical exercises, and real operations for use by agent devel-
opers and machine learning.

Evolution requires careful management, as we note above. An agent that evolves
more quickly than its users may appear to them to be unpredictable and untrustworthy.
Agents or training systems should provide some control over the frequency with which
agents learn or at which they apply what they learn. This implies a requirement for
learning rate and/or learning application parameters.

3.6 Transparency

Transparency enables an agent to describe itself to its users, both human and auto-
mated. The data required to do this are what the National Information Standards
Organization calls descriptive metadata and administrative metadata [4].

Descriptive metadata document the services that an agent provides (e.g., pilots an
F-35 and communicate with F-35 pilots and AWACS), the conditions under which it
provides them (e.g., air superiority missions and ground attack missions), and the
reliability with which it functions under those conditions (e.g., mean time between
failure of tactical engagements). These data enable a system that hosts many agents to
select those that are best for a given training task.

Administrative metadata enable users to manage a resource. Here, the required data
concern the cost of acquiring an agent if it is purchased per use or per user (as are some
software-as-service applications), applying that agent (particularly if its installation and
configuration are complex), and modifying it for new uses. These cost metadata are
sometimes competition sensitive, and agent vendors may not wish to publish them, but
purchasers know them and may be able to make them available on their own systems.
Doing so enables a user or a system to perform return-on-investment (ROI) calculations
that trade the effectiveness of an agent (documented in its descriptive metadata) against
its cost.

3.7 Summary

We have enumerated a representative sample of the data required to deliver six useful
functions of smart, agile agents for adaptive instructional systems. Such systems should
be able to generate instructional challenges for trainees by virtue of tactical inference
and tactical action functions. They should select among those challenges to optimize
learning speed (holding the proficiency target constant) and/or proficiency (holding
training time constant) by virtue of modal behavior and instructional capability). It
should be straightforward to maintain and apply these agents because they evolve in
tactical and instructional competence, and their utility and cost are documented in
metadata.

We know of no single agent or host system that satisfies all these data requirements.
However, one AFRL research program is systematically developing a testbed and
agents that fulfill some of these data requirements. We describe those products below.
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4 A Testbed for Developing and Evaluating Agile Agents

AFRL has developed a unique testbed for developing and evaluating smart, agile
agents [6]. We call this testbed AGENT, the Agent Generation & Evaluation Net-
worked Testbed (see Fig. 2). In general, the testbed is distinguished by (1) batch
configuration and execution of scenarios in which agents fight against agile CGF and
(2) automated performance measures that are (3) recorded in a common data store.
These functions enable developers and testers to generate large volumes of variable
performance and outcome data that sample a massive tactical space. Developers can
access those data for machine learning of agent capabilities such as classification of
tactical states from environmental data, and selection of tactical responses from
behavioral and outcome data.

The testbed fulfills some of the data requirements described above.
To support tactical inference, the testbed reports the standard entity position and

kinematics data available through the DIS protocol. It also describes the adversary
formation and location, much as an AWACS operator would do for pilots in flight,
through a special purpose protocol called m2DIS. Finally, it responds to requests for
certain fundamental tactical information at the comprehension level of SA, such as
“Am I being threatened? Am I in the adversary’s weapons engagement zone? Where is
my wingman in relation to me?” Agents in the testbed are responsible for predicting the
evolution of the engagement.

Agents hosted on this testbed are responsible for the tactic selection and parame-
terization, the core function of tactical action as we’ve defined it above. The testbed
enables agents to execute maneuvers by name (e.g., dogfight, posthole, drag) with
parameters (e.g., terminal speed and altitude). Similarly, it enables agents to control
sensors and weapons with fine granularity at an unclassified level. Testbed agents are
responsible for coordinating actions between one another, such as ensuring that each
agent is prosecuting a different adversary, or that both are converging on the same one.

To support modal behavior, the testbed employs a relatively expert enemy (to
developers’ agile agents), which is implemented as behavior transition networks in the
Next Generation Threat System [7]. We plan to eventually configure these to represent
the multiple levels of tactical expertise of human trainees. Testbed developers are free
to model and parameterize their agents to represent different nationalities, levels of
expertise, and psychological profiles (such as risk tolerance).

To support instruction, the testbed computes measures of tactical procedures and
effects. Agents can use those data to optimize their actions for instructional effects. The
testbed also provides a graphical interface in which agents report or explain their
actions. This feature has proved useful in assessing agents, and so we expect it to add
value in After Action Reviews. The testbed currently does not issue other data specific
to instructional decisions. However, members of the team have published [8] a spec-
ification for representing some of those data. Training Objective Packages represent
training objectives, their relationships to scenario conditions, and the performance
measures by which trainee skill on objectives is evaluated. TOPs are designed to enable
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trainers or simulators to generate scenario events that bear on training objectives, and to
measure the tactical and instructional effects. A future version of the testbed may
incorporate TOPs.

To support evolution, the testbed computes measures and stores them in a shared
data store from which any agent developer can draw data concerning the performance
of every agent. These data can be voluminous because the testbed’s batch operation
function and agile opponent pilots. This should provide enough data for manual
analysis and for machine learning.

To support transparency, the system will eventually document the capabilities of
each agent in context. With these data, we will implement a function that selects the
best agent for the training task from a library of agents.

Fig. 2. AGENT provides agent developers with a secure and private environment for exercising
their red AI pilots against blue CGF in scenarios defined in a shared library. Blue airframes, sensors,
and weapons are modelled in the Next Generation Threat System (developed initially by the Air
Force and now by the Naval Air Warfare Center Training Systems Division). AGENT publishes
standard entity state and interaction data using the DIS protocol. It computes tactically meaningful
information concerning the tactical situation over a custom Model to DIS (m2DIS) interface.
Measures of performance and effects are computed automatically by the PETS Performance
Evaluation and Tracking System. Users can observe scenario runs on the LNCS LVC Network
Control Suite (not shown). (Color figure online)
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5 Agent Architectures

The architectures and methods used to develop agents in this AFRL program are each
capable of fulfilling some mix of the functions, above. Here, we briefly profile the
architectures and call out just one or two agent functions each supports particularly
well.

TiER1 Performance Solutions, LLC, is using a hybrid architecture that integrates
two different human behavior representations. A task network model represents
operator goals or functions in graph form. An accumulator model aggregates data over
time to control transitions through the task network. Thus, this architecture can
smoothly adapt tactical inferences and actions (i.e., decision making) in a dynamic
tactical scenario.

Stottler Henke Associates, Inc., applies the SimBionic architecture [9], which
implements an agent as an integrated set of behavior transition networks. This open
source architecture supports a dynamic scripting machine learning algorithm, devel-
oped to adapt the behavior of agents by learning from experience. Thus, SimBionic has
unusual strength with respect to agent evolution.

Soar Technology, Inc., applies the Soar cognitive architecture [10], a production
system that searches a problem space and dynamically revises agent knowledge and
actions to accomplish goals. If programmed at sufficiently fine level of granularity, a
production system can effectively generate novel tactical inferences and actions. Thus,
Soar agents are particularly capable of tactical inference and action within scenarios,
and potentially of evolution over them.

Aptima, Inc., is applying deep learning techniques to infer tactical state and
appropriate tactical response. These populate a Behavior Definition Language
(BDL) that expresses goals, tactical state, behavioral constraints, actions, predictive
measures and other attributes necessary for intelligent agent behavior. BDL is input to
Soar agents. This work exemplifies automated evolution of agents.

Eduworks Corporation employs Brahms, a government-owned agent modeling
framework created to design, simulate, and develop work systems, which consist of
humans and technologies. Accurate representation of human-human and human-
machine interaction make Brahms particularly capable of realistic coordination in
tactical action [11].

Discovery Machine, Inc., applies a cognitive architecture called DMInd that rep-
resents hierarchies of pre-specified problem spaces and response strategies, which are
retrieved as a function of fit to context. These functions are designed for accurate
inference and action concerning tactics, but they can be applied to manage instruction
as well.

CHI Systems applies its Personality-enabled Architecture for Cognition (PAC), a
system that uses narrative threads to control perception and behavior. PAC explicitly
represents personality and emotion. This makes it capable of modal behavior as a
function of attributes such as risk tolerance and perception of threat.

Charles River Analytics, Inc., employs the Situation Assessment Model for Person-
in-the-loop Evaluation (SAMPLE), which emulates recognition-primed decision-
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making, and the Hap model of reactive, goal-focused behavior. Thus, SAMPLE is
well-suited to emulating expertise in tactical inference and action.

6 Conclusion

This article describes a set of functions that software agents should provide if they are
to be tactically smart, instructionally effective, and cost-effective opponents in
simulation-based flight training. Those functions, in brief, are tactical inference, tactical
action, modal behavior, instructional capability, evolution, and transparency. These
capabilities have interesting implications for data requirements, ranging from kinematic
data already published by many simulators to training objectives and student skill
assessments that are typically maintained only in the minds of expert instructors.
A testbed developed by AFRL satisfies some of these new data requirements. Several
agent development firms are testing the sufficiency of those data to drive smarter, more
agile agents for training and, one day, for operations in battle.
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