
597© Springer Nature Switzerland AG 2020
M. L. Gullino et al. (eds.), Integrated Pest and Disease Management 
in Greenhouse Crops, Plant Pathology in the 21st Century 9, 
https://doi.org/10.1007/978-3-030-22304-5_21

Chapter 21
Implementation of IPDM in Strawberries 
and Other Berries

Surendra K. Dara

Abstract Several high value small fruit crops are grown under greenhouse condi-
tions around the world. Integrated pest and disease management (IPDM) in green-
house production of small fruits can take advantage of a number of practices for 
maintaining optimal crop health while ensuring good yields and sustainability. 
These practices include the use of resistant cultivars and clean plant material free of 
pests and diseases, effective substrate, irrigation, and nutrient management, regular 
monitoring and good sanitation practices, substrate disinfestation and sterilization 
with fumigation alternatives, modifying the environmental conditions to reduce pest 
and disease pressure, chemical and non-chemical control options, along with bios-
timulants and beneficial microbes. Several examples of successful use of these tac-
tics are discussed and general IPDM guidelines are presented in this chapter.

Keywords Small fruits · Strawberry · Cultural practices · Non-chemical 
alternatives · Beneficial microbes · Induced resistance · Substrate disinfestation · 
Fumigation alternatives · Microbial control · Entomovectoring

21.1  Introduction

Strawberries, raspberries, blackberries, and blueberries are high value crops. 
Although they are primarily grown in open fields or under high tunnels in major 
producing regions in the world, considerable amounts of greenhouse production 
also take place, especially in Europe and other areas. Greenhouses offer a unique 
opportunity to regulate the environment or administer specific production practices 
that are required for these specialty crops. However, the same conditions that pro-
mote plant growth can also be ideal for arthropod pests and diseases, which warrant 
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aggressive management tactics that include pesticide applications. Greenhouses 
used for producing nursery plants need to maintain a higher standard of crop 
 protection to produce pest and disease free berry transplants. Many a time, pest-
infested or disease-infected transplants lead to major problems in the fruit produc-
tion. While the basic IPDM principles for greenhouse berry production are same as 
those employed under field conditions, some approaches can be different.

Compared to the pest and disease management in the fields, pesticide applica-
tions can be higher in greenhouses, and IPDM is necessary to reduce their use and 
residue levels. A comparison made among greenhouse, conventional, and organic 
cucumber production systems in Egypt revealed highest levels of pesticide residues 
in greenhouse cucumbers (Mansour et  al. 2009). Similarly, a study in Colombia 
showed that greenhouse tomatoes had a higher number of pesticide residues per 
sample compared to those produced in open fields (Bojacá et al. 2013). A Norwegian 
greenhouse study recommended 7–14 days of preharvest interval for certain fungi-
cides, which is a challenge because strawberries are harvested more frequently 
(Stensvand 2000; Baker et  al. 2002). On the other hand, pesticide residues are 
reported to be generally higher in strawberry (Safi et al. 2002) warranting a need for 
non-chemical pest management strategies.

Although several biocontrol options are available for pest management in green-
houses, chemical pesticides are still important tools and IPDM practices are also 
necessary for resistance management. While there are several mechanisms for the 
development of pesticide resistance, in general, there is an increased risk of breed-
ing resistant pest populations or pathogen propagules in greenhouses due to a high 
selection pressure as well as the lack of unexposed, wild alleles dilute the frequency 
of resistant mutants. Pesticide resistance is frequent around the world in twospotted 
spider mite, Tetranychus urticae, greenhouse whitefly, Trialeurodes vaporariorum, 
and western flower thrips, Frankliniella occidentalis, which are some of the com-
mon greenhouse pests of strawberry and other small berries (Gorman et al. 2001; Bi 
et al. 2002; Herron and James 2005; Van Leeuwen et al. 2010). Fungicide resistance 
is also an issue in disease management. For example, there are several reports of 
fungicide resistance in Botrytis cinerea, an important pathogen of strawberry, black-
berry, raspberry and blueberry causing gray mold or blight (Elad et al. 1992; Raposo 
et al. 1996; Yourman and Jeffers 1999).

This chapter will cover the key aspects of IPDM for strawberry and other berries 
with examples from both field and greenhouse studies. Some examples of from 
other crops will also be included as those management practices are applicable to 
berries or similar pests or diseases affect berries.

21.2  Resistant Cultivars

Cultivar choice usually depends on the berry quality, yield potential, shelf life, and 
consumer preference, among other factors. Selection of appropriate cultivars suited 
for the local conditions based on the risk of a particular pest or disease in the region 
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can be one of the key steps in IPDM. In general, berry cultivars are bred more for 
disease resistance than for pest resistance. An earlier review of strawberry breeding 
programs around the world identified fruiting season, fruit size, firmness, quality, 
and disease resistance as the main objectives in developing new cultivars (Faedi 
et  al. 2002). Resistance in strawberry cultivars Aromas, Camino Real, Festival, 
Portola, San Andreas, Ventana to Fusarium oxysporum f. sp. fragariae (Fang et al. 
2012; Koike and Gordon 2015), cultivars Bounty, Cabot, and Cavendish to black 
root rot caused by Rhozoctonia fragariae, Pythium, an Patylenchus penetrans 
(Particka and Hancock 2005), and cultivars Camino Real, Marquis, Pataluma, San 
Andreas to Verticillum dahliae (Ivors, personal communication) were reported in 
multiple studies in Australia and United States. However, some cultivars that were 
highly resistant in some studies were susceptible in others and it is important to 
verify the performance of each cultivar under local conditions. Averre et al. (2002) 
reported relative resistance of several strawberry cultivars to anthracnose, leaf spot, 
leaf blight, powdery mildew, and red stele where most of the cultivars recommended 
for North Carolina were resistant to powdery mildew, but had varying levels of 
resistance to other diseases. Such information helps the growers to choose an appro-
priate cultivar for the local conditions.

While a few strawberry cultivars possess pest resistance to some extent, breeding 
for arthropod resistance does not seem to be a focus even today for a major berry 
crop, like strawberry, that has several pest problems (Ferrer et al. 1993; Hancock 
et al. 2008). Although the development of aphid resistant raspberry cultivars has 
been practiced for several decades, the primary focus is to manage different viruses 
that aphids transmit (Keep and Knight 1967; Birch and Jones 1988).

In blackberry, varying levels of resistance to various diseases, such as anthracnose 
(Elsinoe veneta), botrytis fruit rot (Botrytis cinerea), and double blossom/rosette 
(Cercosporella rubi) is seen among cultivars and some thornless ones are more resis-
tant to certain diseases (Bruzzese and Hasan 1987; Ellis et al. 1991; Gupton 1999; 
Kidd et al. 2003). An older study also reported that cultivars having the germplasm 
of North American species are more resistant that those with European blackberry 
species to European blackberry rust (Phragmidium violaceum). However, blackberry 
breeding centered around improving fruit quality, thornlessness, environmental 
adaptation, and primocane fruiting especially in cultivars released between 1985 and 
2005 (Clark and Finn 2008).

In blueberries, lowbush varieties or others that have a higher level of lowbush 
blueberry germplasm are resistant to Monilinia vaccinia-corymbosi that causes 
blight in emerging shoots and leaves and mummy berry in fruits (Ehlenfeldt et al. 
2010). Susceptibility of highbush blueberry to M. vaccinia-corymbosi also varies 
among cultivars and there are several resistant or moderately resistant cultivars to be 
considered (Schilder et al. 2008). The incidence of another important blueberry dis-
ease, anthracnose, caused by Colletotrichum acutatum is less in cultivars that grow 
vigorously and produce higher yields (Polashock et al. 2005). Half-high blueberry 
cultivars appear to be more resistant than lowbush, highbush, southern highbush, 
and rabbiteye cultivars to botryosphaeria stem blight caused by Botryosphaeria 
dothidea and phomopsis twig blight caused by Phomopsis vaccinia (Polashock and 
Kramer 2006).
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21.3  Cultural Practices

Cultural practices such as choosing a clean source of transplants, appropriate type 
of soil/substrate, spacing, irrigation, nutrient management, sanitation, and pest and 
disease monitoring play a significant role in reducing pest and disease occurrence 
and spread.

In general, plants that receive optimum irrigation and nutrient inputs maintain 
good health and withstand pests and diseases better than those under water stress 
and excessive or insufficient nutrient inputs. For example, excessive nitrogen fertil-
izers, water stress, high temperatures, or dust on foliage can increase infestations of 
the twospotted spider mite, Tetranychus urticae in strawberry, raspberry, and other 
crops (Alston 2017; Garcia 2017; Ruckert 2017). On the other hand, soil amend-
ment with poultry litter in greenhouse strawberry effectively reduced the viability of 
microsclerotia of Macrophomina phaseolina, causal organism of charcoal rot or 
crown and root rot (Pratt 2006) and poultry manure and compost suppressed root- 
lesion nematode, Pratylenchus penetrans in raspberry (Forge et al. 2015). While 
high irrigation reduced western flower thrips (Frankliniella occidentalis) adult 
numbers, high nitrogen and phosphorus promoted thrips populations (Schuch et al. 
1998; Chow et al. 2012; Chen et al. 2014). Very low soil moisture (0 or 25% water 
holding capacity) or flooded conditions (125% moisture) reduced the viability of 
M. phaseolina microsclerotia (Pratt 2006). Other studies had also indicated that 
high soil moisture content affects their viability (Short et al. 1980; Zveibil et al. 
2012). Maintaining good soil fertility, particularly optimal levels of phosphorus, 
along with avoiding water and heat stress are recommended for mitigating M. pha-
seolina severity in strawberry (de los Santos et al. 2016). Manipulating irrigation 
and nutrient management practices can be an effective tool in pest and disease 
management.

Several pests and diseases can be introduced into greenhouses through infested 
or infected transplants and multiply when the soil or substrate or contaminated. 
Obtaining clean transplants from a reputable source and using a substrate free of 
pests and disease propagules is a critical a step in IPDM. If the substrate is used 
multiple times or there is a risk of pests or diseases, there are multiple ways to dis-
infest using non-chemical alternatives, which are discussed later in this chapter.

Regular monitoring for early identification of problem areas and timely adminis-
tration of corrective actions will reduce potential yield losses and pest and disease 
problems. Sanitation practices, such as the removal of infected fruit or plant mate-
rial, play a big role in reducing pathogen inocula or pest infestations in the environ-
ment. Removal of discarded or fallen berries is a recommended management 
practice for anthracnose (C. acutatum), Rhizopus fruit rot (Rhizopus spp.) and 
Mucor fruit rot (Mucor spp.) in strawberry (Dara 2015a), mummy berry in blue-
berry (Schilder et al. 2008), and spotted-wing drosophila (Drosophila suzukii) in 
different berries (Leach et al. 2016).
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21.4  Substrate Disinfestation with Fumigation Alternatives

Compared to the field production of berries, where chemical fumigation is fre-
quently practiced for managing several soilborne pests, pathogens, nematodes, and 
weeds, using a clean substrate in greenhouses eliminates the need for fumigation 
and reduces the risk of those problems. However, techniques such as solarization, 
steam sterilization, anaerobic soil disinfestation (ASD), or biofumigation can be 
used when there is a risk of contamination (Stapleton 2000; Tanaka et  al. 2003; 
Bañuelos and Hanson 2010; Shennan et al. 2017).

Solarization can be done in multiple ways depending on the greenhouse condi-
tions, but passive solar energy is employed for heating moist substrate usually cov-
ered by transparent plastic mulch. In addition to killing parasitic and pathogenic 
organisms, solarization increases the availability of soluble mineral nutrients and 
the activity of beneficial microorganisms (Stapleton 2000; Candido et al. 2008). In 
a field study in Turkey, several weeds and pathogens (Rhizoctonia spp. and 
Phytophthora cactorum) were effectively controlled and strawberry fruit yield was 
maintained from soil solarization at a level comparable to the methyl bromide treat-
ment (Benli̇oğlu et al. 2005). Compared to metam sodium fumigation, soil solariza-
tion resulted in a higher strawberry yield in another study conducted in Spain 
(Campruí et al. 2007). It also appeared that arbuscular mycorrhizal fungi were not 
affected by both solarization and fumigation in this study.

Steam sterilization is another non-chemical soil disinfestation process where soil 
or substrate are exposed to steam. This technique is especially useful in temperate 
regions where solarization is not possible. In a field study conducted in California 
strawberries, weed control from steam or steam+solarization was similar to that 
achieved by methyl bromide+chloropicrin fumigation (Samtani et al. 2012). Some 
stream treatments were also as effective as chemical fumigation in reducing 
Verticillium dahliae microsclerotia at a depth of 15 cm. Steam sterilization decreased 
soil fungi and bacteria (including those that oxidize ammonia and nitrite) to a 
greater extent and for a longer duration than methyl bromide fumigation in a 
Japanese study while increasing the ammonical nitrogen content in the soil (Tanaka 
et al. 2003).

Biofumigation generally refers to pest, disease, or weed suppression through soil 
incorporation of Brassica plant material or seed meal as green manure that releases 
phytochemicals. Use of microbes, manure or other organic waste that produce vola-
tile compounds or gases is also considered as biofumigation. Glucosinolates in 
Brassica plants produce allyl isothiocyanate, nitriles, and other compounds that 
have antimicrobial and insecticidal properties (Fenwick et al. 1983; Mattner et al. 
2008). These plant-based isothiocynates or sulfur-containing compounds are simi-
lar to methyl isothiocyanate, a byproduct of chemical fumigants metam sodium, 
metam potassium and dazomet. The combination of steam sterilization with mus-
tard seed meal resulted in good weed and pathogen (M. phaseolina, Pythium ulti-
mum) suppression along with improved strawberry yields comparable to chemical 
fumigation in a California study (Fennimore et al. 2014). In Spain, the combination 
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of solarization and biofumigation with chicken manure was superior to solarization 
alone in weed control and improving strawberry growth and yield (Medina-Mínguez 
2002). Bañuelos and Hanson (2010) reported improved weed suppression and 
strawberry yield in a California study with selenium-enriched mustard and canola 
seed meals that served as both bioherbicides and green fertilizers. Some degree of 
weed and pathogen (P. cactorum) suppression was seen from soil incorporation of 
B. rapa/B. napus crop in a field evaluation, but a higher degree of suppression in six 
soilborne pathogens of strawberry was seen from isothiocyanates of these plants in 
laboratory assays (Mattner et al. 2008). It also appeared the roots of B. rapa/B. napus 
plants have higher quantities of isothiocyanates than the shoots. A combination of 
techniques that included summer irrigation, solarization, mulching, and biofumiga-
tion with cruciferous residues caused a significant reduction in M. phaseolina popu-
lations and viability (Lodha et al. 1997). Similarly, biofumigation with mustard seed 
meal followed by solarization, mustard seed meal supplemented with steaming, and 
steaming followed by solarization resulted in significant yield improvement com-
pared to untreated control (Daugovish and Fennimore 2011) and incorporation of 
mustard pod residues followed by solarization nearly eradicated M. phaseolina and 
F. oxysporum f.sp. cumini propagules in soil (Israel et al. 2005).

Preliminary studies in California strawberries with a new commercial formula-
tion of the fungus Muscodor albus showed its potential as a biofumigant (Melissa 
O’Neal, personal communication). Isobutyric acid and 2-methyl-1-butanol from 
M. albus have antifugal properties against a variety of pathogens including Botrytis 
spp., Colletotrichum spp., and Rhizopus spp. (Mercier and Jiménez 2004).

Antagonism by beneficial bacteria, fungi, and yeasts is another strategy for  
managing soilborne pathogens. Several species of Azorhizobium, Azospirellum, 
Azotobacter, Bacillus, Comamonas, Citrobacter, Enterobacter, Glomus, 
Paecilomyces, Pseudomonas, Rhizobium, Rhizophagus, Streptomyces, 
Saccharomyces, and Trichoderma are sold as biopesticides (fungicides and nemati-
cides), biostimulants, or soil builders which are expected to improve crop health and 
yields through antibiosis, antagonism, competitive displacement, or induced sys-
temic resistance (Table 21.1). Although some of these microorganisms are indepen-
dently sold as biopesticide formulations, various combinations of multiple species 
are currently marketed as biostimulants or soil amendments. Field studies con-
ducted in California strawberry suggested that beneficial microbes could play a 
positive role in improving crop yield or health especially when there is a disease 
pressure (Dara and Peck 2016, 2017). Beneficial microbes were applied as trans-
plant dip at the time of planting and/or through drip irrigation at periodical intervals. 
Preplanting dip allows inoculation of transplants with beneficial microbes before 
they are exposed to plant pathogens. Greenhouse and field studies conducted in 
Germany demonstrated that rhizobacteria, Raoultella terrigena, B. amyloliquefa-
ciens, and P. fluorescens were very effective in antagonizing Phytophthora fragar-
iae var. fragariae, causal agent of red stele, and P. cactorum, causal agent of crown 
rot, sometimes equal to the chemical fungicide aluminum tris (O-ethyl phospho-
nate) in strawberry (Anandhakumar and Zeller 2008). In another German field 
study, transplant dip in the chitinolytic rhizobacterium, Serratia plymuthica strain 
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Table 21.1 Examples of commonly used beneficial microbes formulated as biostimulants and 
biopesticides

Microorganism Intended purpose or target pests/pathogens

Biostimulants or soil conditioners – promote plant and root growth, health, soil structure, and 
yields
Bacteria Azorhizobium spp. Crop and soil health

Azospirillum spp. Crop and soil health
Azotobacter spp. Crop and soil health
Bacillus spp. Crop and soil health
Citrobacter spp. Crop and soil health
Enterobacter spp. Crop and soil health
Pseudomonas spp. Crop and soil health
Rhizobium spp. Crop and soil health
Rhizophagus irregularis Crop and soil health
Streptomyces spp. Crop and soil health

Fungi Glomus spp. Crop and soil health
Rhizophagus spp. Crop and soil health
Trichoderma spp. Crop and soil health

Yeast Saccharomyces cerevisiae Crop and soil health
Biopesticides – pest, disease, and nematode management
Bacteria Agrobacterium agrobacter Plant pathogens

Bacillus amyloliquefaciens Plant pathogens
B. firmus Plant parasitic nematodes
B. thuringiensis Insect pests
B. subtilis Plant pathogens
Burkholderia rinojensisa Arthropod pests
Chromobacterium subtsugae Arthropod pests
Panibacillus popilliae Lepidopteran pests
Streptomyces lydicus Plant pathogens

Fungi Beauveria bassiana Arthropod pests
Coniothyrium minitans Plant pathogenic fungi
Gliocladium spp. Plant pathogens
Glomus spp. Plant pathogens
Hirsutella thompsonii Insect pests
Isaria fumosorosea Arthropod pests
Lecanicillium giganteum Mites
L. lecanii Scale insects
L. longisporum Aphids
L. muscarium Thrips and hemipteran pests
Metarhizium anisopliae Arthropod pests
M. brunneum Arthropod pests
Paecilomyces lilacinus Plant parasitic nematodes
Pseudomonas spp. Plant pathogenic fungi
Pseudozyma flocculosa Plant pathogenic fungi
Trichoderma spp. Plant pathogens

(continued)
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HRO-C48 reduced Verticillum wil (caused by V. dahliae) and crown rot (P. cacto-
rum) and improved strawberry yields (Kurze et al. 2001).

Entomopathogenic fungi also appear to have an impact on strawberry health and 
yield through their direct interaction with plants and potentially pathogenic organ-
isms (Dara and Peck 2016). In a greenhouse study conducted in California, com-
mercial formulations of B. bassiana (BotaniGard ES), I. fumosorosea (PFR-97), 
and M. brunneum (Met52) effectively antagonized F. oxysporum f. sp. vasinfectum 
and improved the health of cotton seedlings as effectively, or superior, to botanical 
(Regalia, based on the giant knotweed extract) and microbial (Actinovate AG, based 
on Streptomyces lydicus strain WYEC108 and Stargus, B. amyloliquefaciens strain 
F727) fungicides (Dara et al. 2017a). Lozano-Tovar et al. (2013) showed antago-
nism of B. bassiana and M. brunneum in a laboratory study in Spain. Compared to 
Trichoderma atroviride which resulted in a 64–79% reduction in the mycelial 
growth of Phytophthora spp. and V. dahliae, entomopathogenic fungi caused a 
42–62% reduction in Phytophthora spp. and 40–57% reduction in V. dahliae growth. 
Another recent study also demonstrated that culture filtrates of two Korean isolates 
of B. bassiana and M. anisopliae had antifungal activity against B. cinerea (Yun 
et al. 2017). These studies shed light on the potential of entomopathogenic fungi in 
managing plant pathogens in addition to arthropod pests.

ASD technique involves adding a carbon source such as rice bran or molasses to 
the soil followed by irrigation and covering with plastic mulch to create anaerobic 
conditions. Anaerobic decomposition of the carbon source results in the production 
of organic acids and volatile compounds that are toxic to pathogens and other soil 
pests. In a recent report based on multiple California studies, varying levels of sup-
pression of Fusarium spp., Rhizoctonia spp., Pythium spp., and V. dahliae resulted 
from ASD, but it was dependent on soil temperature, the type of carbon source used, 
the extent of anaerobic conditions, and the location of the experiment (Shennan 
et  al. 2017). ASD did not provide weed control in these studies. Inoculating the 
substrate with beneficial microbes following the disinfestation process can be a 
good strategy to promote microbial activity for additional protection.

While several studies demonstrated the potential of nonfumigation alternatives 
in reducing disease or weed pressure, it is important for the suppression to translate 
into increase fruit yields.

Table 21.1 (continued)

Microorganism Intended purpose or target pests/pathogens

Nematodes Heterorhabditis spp. Insect pests
Steinernema spp. Insect pests

Viruses Granuloviruses Lepidopteran pests
Nucleopolyhedroviruses Lepidopteran pests

Yeast Aureobasidium pullulans Plant pathogenic fungi
Candida spp. Plant pathogenic fungi

Sources: Product labels and Dara et al. (2017)
aNo live microbes are present

S. K. Dara



605

21.5  Manipulating Environmental Conditions

Environmental conditions that promote plant growth and reproductive development 
also influence pests and diseases. A thorough understanding of optimal conditions 
that are ideal for good yields while limiting the pest and disease proliferation help 
manipulate the greenhouse environment as an IPDM strategy.

Adequate chilling of strawberry plants is critical for plant vigor, which indirectly 
impacts the ability of plants to withstand pests and diseases (Husaini and Xu 2016). 
Additionally, cooler temperatures favor root rot causing pathogen Pythium spp. and 
botrytis fruit rot/gray mold causing pathogen B. cinerea, while warmer conditions 
favor Fusarium spp. that cause wilt and M. phaseolina (Bulger et al. 1988; Olaya 
and Abawi 1996; Maas 1998; Husaini and Xu 2016). On the other hand, the pow-
dery mildew causing Podosphaera macularis (=Sphaerotheca macularis f. sp. 
fragariae) favored relative humidity above 75% and temperatures between 15 and 
30 °C for conidial germination (Amsalem et al. 2006). However, disease severity 
was the lowest at 10 and 30 °C, a relative humidity of 95%, and light intensity of 
7000 lux in growth chambers. In a different study, the efficacy of microbial control 
of B. cinerea with beneficial fungi appeared to increase when temperatures increased 
from 10 to 25 °C (Sutton and Peng 1993).

High relative humidity above 80% favored the development of second instar lar-
vae and promoted pupation of F. occidentalis on plants rather than in the soil (Steiner 
et al. 2011). However, increasing relative humidity by 15% increased B. bassiana 
infections by 17–25% and helped reduce F. occidentalis and the greenhouse white-
fly, Trialeurodes vaporariorum populations in greenhouse (Shipp et  al. 2003). 
Relative humidity and temperature will also influence the natural enemies and their 
biocontrol efficacy. Predation of T. urticae by the predatory gall midge, Feltiella 
acarisuga increased with increasing greenhouse temperatures from 15 to 27 °C and 
with increasing relative humidity at 27 °C (Gillespie et al. 2000). Predation was 
affected by extended periods of low relative humidity below 60%.

Moisture on the flower or fruit surface favors B. cinerea, which is a major patho-
gen of strawberry, raspberry, blackberry and other hosts (Jarvis 1962; Ellis 2008). 
Good air circulation and plant spacing that allows a quick drying of wet plant sur-
faces helps reduce gray mold development. Early morning heating in the green-
house can help dry the plant surface and reduce B. cinerea incidence (Dik and 
Wubben 2004). Williamson et al. (2007) discussed manipulating ventilation, UV 
light, and temperature among other control options for managing B. cinerea in 
blackberry, raspberry, strawberry and other crops. Disease forecasting models have 
been developed based on ambient temperature and leaf wetness to predict the time 
for fungicide applications for B. cinerea (MacKenzie and Peres 2012; Rasiukevièiûtë 
et al. 2013). Under greenhouse conditions, such models are not only useful for cura-
tive actions, but may also help manipulate the environment to avoid or delay dis-
ease onset.

Anthracnose infections in blueberry increased with increasing May temperatures 
(Polashock et al. 2005). On the other hand, class II chitinases that accumulate in 
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stems at low temperatures and important in cold hardiness imparted resistance to 
anthracnose (Miles et al. 2011). Cold acclimation or exposure to sublethal cold tem-
peratures increase the accumulation of pathogenesis-related proteins, abscisic acid, 
total phenolics, and other compounds that aid plants in fighting diseases (Meyer and 
Kirkpatrick 2011). Cold tolerant strawberry species, for example, possessed resis-
tance to a wide variety of diseases, nematodes, and environmental stress factors 
(Sjulin and Dale 1987). Zveibil et al. (2012) reported that the viability of microscle-
rotia of M. phaseolina reduced when the soil temperatures were kept at 25 °C or 
fluctuated between 18 and 32 °C under greenhouse conditions compared to a con-
stant temperature at 30 °C. Dara et al. (2017) discussed manipulation of relative 
humidity, temperature, soil moisture and other environmental conditions to improve 
microbial control of arthropod pests including greenhouse pests.

Since CO2 levels are elevated in the greenhouses for improved plant growth and 
yields, it is important to determine optimal levels that do not interfere with pest and 
disease management efforts. Increasing atmospheric CO2 is reported to have an 
impact on pests and diseases and also affect the resistance of some crops (Ziska and 
Runion 2007; Zavala et al. 2008; Gregory et al. 2009). While elevated CO2 pro-
moted the growth and development of some pests, it negatively impacted the others 
(Ziska and Runion 2007). Tetranychus urticae, a significantpest of many berry 
crops, is one of those pests that benefits from increased nonstructural carbohydrate 
content as a result of elevated CO2 level (Heagle et al. 2002). However, the negative 
impact of elevated CO2 on resistant alleles on rendering some resistant cultivars 
susceptible is a significant one to consider. For example, aphid resistance of a red 
raspberry cultivar broke down by elevated CO2 levels (Martin and Johnson 2010). 
The European large raspberry aphid, Amphorophora idaei grew faster and larger at 
700 μmol/mol of CO2 compared to plants grown at 375 μmol/mol on of the two 
resistant cultivars. It is necessary to understand such interactions with different 
 cultivars and either use the ones whose resistance is not altered or use appropriate 
CO2 levels.

Positive pressure ventilation system can also be used a means of pest manage-
ment in greenhouses. In addition to the screening that prevents the entry of pests, 
maintaining air velocity higher than the flying speed of insects through positive 
internal greenhouse pressure and adjusting the ventilation windows is recommended 
by Mears and Both (2002) to exclude pests in tropical and subtropical regions.

UV light transmission has an impact on greenhouse production and pest manage-
ment practices. For example, photodegradation of insecticides such as bifenthrin, 
esfenvalerate, imidacloprid, thiamethoxam, and spinosad was significantly reduced 
in raspberry under tunnels with UV-reducing plastic compared to uncovered or tun-
nels with transparent plastic (Leach et al. 2017). Residual activity of the insecticides 
and their efficacy against D. suzukii also improved under UV-reducing plastic. 
However, UV-protection did not have such a positive impact on insecticides acet-
amiprid, cyantraniliprole, cypermethrin, and malathion in this study. Preliminary 
studies conducted by Janisiewicz et al. (2015) suggested UV-C irradiation of straw-
berry plants followed by a dark period and application of beneficial microbes as a 
strategy for managing B. cinerea, C. acutatum, and P. aphanis.
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21.6  Biological Control

Biological control is an integral part of greenhouse pest management and predators 
and parasitoids have been successfully used against insect and mite pests for several 
decades (Van Lenteren and Woets 1988). With the increase in greenhouse acreage, 
the use of predatory phytoseiid mite Phytoseiulus persimilis against T. urticae, pra-
sitoid Encarsia formosa against T. vaporariorum significantly increased in 1970s 
and 80s in Europe. Commercial production and use of other natural enemies also 
proliferated during this period. Currently, several species of natural enemies are 
produced on a commercial scale for greenhouse and field pest management around 
the world (Table 21.2). Releasing predatory mites is a popular practice for manag-
ing spider mites in strawberry, blackberry, and raspberry in California (Godfrey 
2011; Zalom et al. 2016). Several species of predators and parasitoids are recom-
mended and released for augmentative biological control for managing various 
greenhouse pests (Van Lenteren 2000; Smith 2015; Van Lenteren et  al. 2017). 
Selection of the right natural enemy, releasing at appropriate times and numbers, 
maintaining ideal environmental conditions to promote their activity, providing ref-
uge, and avoiding pesticide sprays that are harmful to natural enemies are among 
some of the tactics to enhance biocontrol efficacy.

21.7  Botanical Control

Azadirachtin, essential oils, giant knotweed extract, and pyrethrum are some of the 
plant extracts that are used as antifeedants, repellents, acaricides, insecticides, fun-
gicides or insect growth regulators. Azadirachtin, extracted from the seeds of neem 
(Azadirachta indica), has insecticidal and antifeedant properties and also acts as an 
insect growth regulator. Neem oil, also extracted from neem seeds, is used as a fun-
gicide, acaricide, and insecticide. Studies conducted in California strawberry 
showed its potential for managing L. hesperus and other insect pests (Dara et al. 
2013; Dara 2016). Extract of the giant knotweed (Reynoutria sachalinensis) effec-
tively antagonized Fusarium oxysporum f.sp. vasinfectum (Dara et  al. 2017a). 
Pyrethrum, extracted from Chrysanthemum cinerariaefolium flowers, is an effective 
pesticide, but it is also very toxic to natural enemies. Simmonds et  al. (2002) 
reported that azadirachtin and pyrethrum to be very effective against T. vaporario-
rum, but found pyrethrum to be very harmful to the parasitoid Encarsia formosa. 
Similarly, Contreras et al. (2006) reported very effective control of F. occidentalis 
by spinosad and pyrethrum, but the latter was highly toxic to the predator Orius spp. 
Essential oils extracted from aromatic plants are used for pest management in stored 
grains, agriculture, and urban enviroments (Isman 2000). The green peach aphid, 
Myzus persicae and T. urticae are among the pests that can be effectively controlled 
by essential oils (Isman 2000; Miresmailli and Isman 2006; Dara 2015b). Neem and 
essential oils can also be effective against plant pathogens. Essential oils of rose-
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mary, lavender, and origanum were very inhibitory to B. cinerea in both in vivo and 
in vitro (Soylu et al. 2010). In an in vitro study, essential oils of dictamnus, oregano, 
and thyme completely inhibited the growth of B. cinerea, Fusarium solani var. coe-

Table 21.2 Examples of commercially available natural enemies and their target pests

Natural enemy Target pests

Parasitoids
Hymenoptera Aphidius spp. Aphids

Cotesia spp. Lepidopterans
Dacnusa spp. Leafminers
Encarsia spp. Whiteflies
Trichogramma spp. Lepidopterans

Predators
Acari Amblyseius spp. Mites and thrips

Euseius spp. Thrips, whiteflies
Galendromus spp. Mites
Hypoapsis spp. Fungus gnats and thrips
Mesoseiulus spp. Mites
Neoseiulus spp. Mites
Phytoseiulus spp. Mites

Coleoptera Adalia spp. Aphids, other small insects and mites
Atheta spp. Fungus gnats
Coccinella spp. Aphids, other small insects and mites
Cryptolaemus spp. Mealybug
Harmonia spp. Aphids, other small insects and mites
Hippodamia spp. Aphids, other small insects and mites
Stethorus spp. Mites

Diptera Aphidoletes spp. Aphids
Feltiella spp. Mites and thrips

Hemiptera Diaeretiella spp. Aphids
Geocoris spp. Aphids, hemipterans, mites, thrips, and 

whiteflies
Macrolophus spp. Whiteflies
Orius spp. Aphids, hemipterans, mites, thrips, and 

whiteflies
Pediobius spp. Coleopterans
Tamarixia spp. Psyllids
Thripobius spp. Thrips
Trissolcus spp. Hemipeterans
Xylocoris spp. Aphids, hemipterans, mites, thrips, whiteflies

Neuroptera Chrysoperla spp. Aphids, mites, thrips, and whiteflies
Micromus spp. Aphids

Thysanoptera Scolothrips spp. Mites and thrips

Sources: Hale and Hensley (2010) and Van Lanteren et al. (2017); several commercial insectary 
listings
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ruleum, and Clavibacter michiganensis subsp. michiganensis (Deferera et al. 2003). 
Koul et  al. (2008) discussed various insecticidal, ovicidal, larvicidal, oviposition 
inhibitory, antifeedant, repellent, attractant, antifungal, antiviral, and fumigant of 
cinnamon, clove, eucalyptus, holy basil, lavender, lemongrass, mint, orange, rose-
mary, thyme, turmeric, and other essential oils against a variety of arthropod pests 
and plant pathogens suggesting their potential as green pesticides.

21.8  Chemical Control

Chemical pesticides are widely used for managing pests and diseases around the 
world and are generally considered as an affordable and effective control option. 
While insecticides and acaricides are typically applied when pest populations are 
present and reach damaging levels, prophylactic fungicide treatments are not 
uncommon to protect crops from common diseases. For example, some protectant 
fungicides are applied to control M. vaccinia-corymbosi in blueberry before envi-
ronmental conditions become conducive for fungal infections (Schilder et al. 2008). 
Since B. cinerea can multiply in plant debris and be present in the crop environment 
throughout the production season, frequent fungicide applications are made starting 
before flowering in blackberry, raspberry, and strawberry to manage grey mold 
(Eckert and Ogawa 1988). In California strawberries, chemical fungicides are rou-
tinely used for controlling B. cinerea, Podosphaera aphanis, Rhizopus spp., and 
other foliar and fruit diseases and fumigation continues to be the main choice for 
managing soilborne pathogens C. acutatum, Fusarium oxysporum f. sp. fragariae, 
M. phaseolina, Phytophthora spp., and Xanthomonas fragariae which cause crown 
or root rot and foliar diseases (Dara 2015a). Chemical fungicides are also com-
monly used or recommended for controlling several diseases in blueberry (Scherm 
and Stanaland 2001; Cline et  al. 2006), blackberry (Ivey et  al. 2016), raspberry 
(Heidenreich 2006) and other berries. Since the efficacy of fungicides varies 
depending on the crop, disease, and other factors, treatment decisions based on the 
crop needs and efficacy data from local or regional data would be useful. For exam-
ple, in a study was conducted in North Carolina blueberries against leaf spot fungi, 
Septoria albopunctata and Gloeosporium minus (Cline 2002) fungicide efficacy 
varied among various parameters evaluated. Fenbuconazole (Indar®) was very 
effective in reducing defoliation and improving bud set and fruit yield. While fen-
hexamid (Elevate®) and cyprodinil + fludioxonil (Switch®) were not effective, cap-
tan (Captan®) + bonomyl (Benlate®) combination was moderately effective in 
improving bud set and berry yields. In a recent Serbian study, tebuconazole, fluopi-
ram, and boscalid provided 95–100% control of the spur blight (Didymella appla-
nata) of raspberry (Stević et al. 2017). Chlorothalonil, copper-hiroxide, dithianone, 
and mancozeb resulted in a 64–82% disease suppression while the efficacy of 
azoxystrobin, fluazinam, and pyraclostrobin was low and varied from 14% to 38% 
suppression.
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Although chemical pesticides play an important role in pest and disease suppres-
sion, preventing yield losses, and ensuring returns, excessive reliance on chemical 
control led to several resistance problems around the world. For example, high lev-
els of resistance to both an older (carbendazim) and a newer (cyprodinil) fungicide 
among others was seen in B. cinerea from greenhouse strawberry in China (Fan 
et al. 2017). Similarly, high levels of neonicotinoid, pyrethroid, and ketoenol resis-
tance to T. vaporaiorum in Greece (Kapantaidaki et al. 2017) and pyrethroid and 
avermictin resistance in T. urticae in Cypress and Greece (Ilias et al. 2017), and 
resistance to several groups of insecticides in F. occidentalis (Gao et  al. 2012). 
Considering the high risk of pesticide resistance, non-chemical control options 
should be fully exploited before chemical insecticides, acaricides, and fungicides 
are used. When necessary, chemical pesticides should be used at the recommended 
rates when treatment thresholds have reached. It is also important to avoid the 
repeated use of same pesticide and rotating those among different mode of 
action groups.

21.9  Mechanical or Physical Control

Pest exclusion through proper screening of doors and ventilation windows is a com-
mon practice in greenhouse production. Yellow sticky cards/tapes or traps equipped 
with attractants or pheromones, reflective materials, barriers, footbaths, and other 
such mechanical and physical control tactics are also frequently used for managing 
several arthropod pests, disease vectors, or diseases. Bug vacuums can also be used 
to aspirate larger insects and for spot treatments. Yellow sticky cards are also useful 
for monitoring pests and help with treatment decisions.

21.10  Microbial Control

Microbial control refers to the use of beneficial microorganisms for controlling 
pests and diseases. Several bacterial and fungal formulations are commercially 
available as fungicides for controlling a variety of diseases. Bacteria such as Bacillu 
spp., Pseudomonas spp. Streptomyces spp., and fungi such as Gliocladium spp., 
Penicillium spp., Trichoderma spp. have been used for disease control.

Sutton and Peng (1993) reported a very high level of B. cinerea control in straw-
berry using Gliocladium roseum, a Penicillium sp., and Trichoderma viridae. 
Efficacy of the three mycofungicides was as effective as chlorothalonil in several 
field and greenhouse studies. Three applications of the commercial formulations of 
Gliocladium catenulatum (Prestop) and T. harzianum (PlantShield) resulted in up to 
45% of reduction in anthracnose by C. acutatum in blueberry (Verma et al. 2006). 
Similarly, inhibition of M. vaccinia-corymbosi, which causes mummy berry disease 
in blueberries, was reported by commercial formulations of B. subtilis (Serenade) 
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and Pseudomonas fluorescens (BlightBan) in a laboratory study (Scherm et  al. 
2004). Scherm and Krewer (2008) discussed mummy berry and foliar disease man-
agement in organic rabbiteye blueberries using B. subtilis and fish oil-based prod-
ucts among others with varying levels of disease control.

Several studies demonstrated the efficacy of Trichoderma spp. against multiple 
strawberry diseases. Ahmed and El-Fiki (2017) reported that root rot causing fungi 
Fusarium oxysporum, F. solani, M. phaseolina, and Rhizoctonia solani were effec-
tively controlled by Trichoderma album, T. harzianum, T. hamatum, and T. viridae 
in a strawberry field study in Egypt. Plant growth, fruit yield, and total chlorophyll, 
nitrogen, and phenol content was also improved from these treatments that included 
both commercial and local isolates of Trichoderma spp. Barakat and Al-Masri 
(2017) reported a complete control of B. cinerea in greenhouse strawberry with the 
combination of T. harzianum (at 109 spores/ml) and pyrimethanil or 
cyprodinila+flydioxonil. Compared to the stand-alone treatments of fungicide and 
T. harzianum or their combination with 108 spores/ml rate of T. harzianum that pro-
vided 38–70% of control, the higher rate of fungus made a significant difference in 
providing 100% control. Good control of damping off (R. solani) of multiple green-
house crops was also achieved with a formulation of Trichoderma spp. and 
Gliocladium spp. growing on vermiculite-bran mixture (Lewis and Lumsden 2001).

Studies with yeasts also showed promising results in post-harvest control of 
B. cinerea in strawberry. Sporidiobolus pararoseus suppressed natural infections of 
B. cinerea, Mucor spp., Penicillium spp., and Rhizopus spp. in strawberry (Huang 
et al. 2012). Volatile organic compounds produced by S. pararoseus also suppressed 
mycelial growth and conidial germination of B. cinerea in  vitro. Another yeast 
Rhodotorula mucilaginosa was also found to be effective in post-harvest protection 
of strawberry from B. cinerea (Zhang et  al. 2013). Combining phytic acid, with 
R. mucilaginosa enhanced the efficacy of post-harvest protection in this study. 
Phytic acid is the primary storage form of phosphorus mainly found in cereal grains, 
legumes, and nuts and used as a food preservative.

Several entomopathogenic bacteria, fungi, nematodes, and viruses are also com-
mercially available for managing a variety of arthropod pests on small fruits and 
greenhouse crops (Dara 2017; Wraight et al. 2017). Since bacteria (e.g., B. thuringi-
ensis subsp. kurstaki against lepidoptera and B. thuringiensis subsp. tenebrionis 
against coleoptera) and viruses (e.g., Spodoptera exigua multiple nucleopolyhedro-
virus) need to be ingested by the host insect to be infective, they are more suited for 
insects such as lepidopteran larvae that have chewing mouthparts. However, formu-
lations based on metabolites of bacteria such as Chromobacterium subtsugae and 
Burkholderia rinojensis are also available as insecticides and acaricides. 
Entomopathogenic fungi (e.g., Beauveria bassiana, Isaria fumosorosea, 
Lecanicillium lecanii, and Metarhizium brunneum) infect hosts through contact and 
are popular in greenhouse management of thrips, whiteflies, aphids, mealybugs, 
scales, and other sucking pests and mites. The fungus, Paecilomyces lilacinus is 
available as a myconematicide for controlling plant parasitic nematodes. 
Entomopathogenic nematodes (e.g., Heterorhabditis spp. and Steinernema spp.), on 
the other hand, are ideal for soil pests or pests that have soil inhabiting life stages. 
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In general, entomopathogenic bacteria are used for lepidopteran and coleopteran 
pests, viruses for lepidopteran pests, nematodes for soil inhabiting stages, and fungi 
for mites, thrips, and sucking pests. Because of their contact mode of infection, 
entomopathogenic fungi can be used against almost all kinds of arthropod pests for 
soil and foliar treatments.

Multiple studies conducted in field or greenhouse strawberries in California 
showed that B. bassiana, I. fumosorosea, and M. brunneum can be potential control 
options for managing various arthropod pests (Dara et al. 2013; Dara 2015b, 2016). 
These studies suggested that combining or rotating entomopathogenic fungi with 
botanical or chemical pesticides is a better strategy for pest management. Synergism 
between M. anisopliae and entomopathogenic nematodes, Heterorhabditis bacte-
riophora, Steinernema feltiae, and S. kraussei was also seen against the black vine 
weevil, Otiorhynchus sulcatus under greenhouse conditions (Ansari et  al. 
2008, 2010).

Rhizosphere bacteria, mycorrhizae, and even entomopathogenic fungi that endo-
phytically colonize plants are reported induce systemic resistance in plants to pests 
and diseases (Van Loon et al. 1998; Van Wees et al. 2008; Lopez et al. 2014; Mauch- 
Mani et al. 2017; When plants are treated or primed with these beneficial microbes, 
certain defensive genes are upregulated in a manner similar to pathogen-induced 
immune response helping them withstand pests and diseases. These beneficial 
microbes directly and indirectly contribute to improving crop health and yields and 
managing pests and diseases.

21.11  Entomovectoring or Beevectoring of Beneficial 
Microbes

Honey bees and bumble bees, which are used to enhance pollination in greenhouse 
berries can also be used to dispense the inocula of mycopesticides. This technology 
is referred to as beevectoring or entomovectoring and is now commercialized by 
companies such as Biobest (Flying Doctors®) and Bee Vectoring Technologies, 
which equip bee hives/boxes with trays that hold microbial pesticides. Since bees 
are employed to improve pollination in greenhouse berries, using them to deliver 
the inocula of beneficial microbes is an added advantage. Bees pick up the microbial 
pesticide formulations as they exit their hives and disperse them as they visit differ-
ent flowers. Gliocladium roseum and T. harzianum have been successfully used for 
managing B. cinerea in strawberry for a long time (Peng et al. 1992; Kovach et al. 
2000; Bilu et  al. 2003). Bumble bee (Bombus terrestris) dissemination of 
Gliocladium catenulatum over 3 years resulted in a significant decrease in B. cine-
rea infections in field strawberry (Karise et al. 2016). Field study in lowbush blue-
berry reported a 10–20% decline in B. cinerea infections by Clonostachys rosea 
vectored by B. impatiens (Reeh et al. 2014).
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Beevectoring can also be used for delivering entomopathogens for insect and 
mite control. In a caged field study in UK, Butt et al. (1998) demonstrated effective 
control of the pollen beetle, Meligethes aeneus with Metarhizium anisopliae deliv-
ered by honey bee, Apis mellifera. In a different study, A. mellifera carried and dis-
persed Heliothis nucleopolyhedrovirus in crimson clover fields causing significant 
infections in corn earworm (Helicoverpa zea) populations (Gross et al. 1994). They 
had observed 100% of beetle mortality in spring rape especially when the beetle and 
bee activity was the highest. Jyoti and Brewer (1999) reported that Bacillus thuring-
iensis delivered by A. mellifera was equal or superior to manual application in con-
trolling the banded sunflower moth, Cochylis hospes and resulted in higher sunflower 
yields. In a greenhouse, B. bassiana (BotaniGard 22WP) was effectively delivered 
by Bombus impatiens without affecting their mortality (Shipp et al. 2012). Although 
survival of the minute pirate bug, Orius insidiosus was negatively impacted by 
B. bassiana, the level of parasitism by multiple parasitoids (against T. vaporariorum 
and M. persicae) and predation by O. insidiosus or the predatory mite Amblyseius 
swirskii (against F. occidenatalis) were not affected. Honey bee-vectored B. bassi-
ana caused significant levels of infection in tarnished plant bug, Lygus lineolaris, in 
caged canola (Al Mazra’awi et al. 2006). Based on these studies, beevectoring can 
be a very effective tool especially in an enclosed greenhouse environment and could 
save on pesticides and their application costs.

21.12  Non-conventional Chemicals and Induced Resistance

In addition to the conventional pest and disease management practices, treating 
plants with certain minerals and chemicals can be a prophylactic strategy to induce 
systemic resistance and improve plant performance under biotic and abiotic stress 
factors. Abscisic acid, jasmonic acid, silicates, salicylate-based compounds, chito-
san, beneficial bacteria, mycorrhizae and other treatments have a positive impact on 
crop growth, yield, and disease and pest resisting abilities (Archbold et al. 1997; 
Reddy et al. 2000; Dihazi et al. 2003; Holopainen et al. 2009; Meyer and Kirkpatrick 
2011; Pieterse et al. 2014). Application of such materials is a good preventive and 
curative strategy in IPDM.

Methyl jasmonate, salicylic acid, methyl salicylate, and benzothiadiazole are 
some of the elicitors or compounds that stimulate plant defenses through the pro-
duction of phenolic compounds (Holopainen et al. 2009). A significant reduction in 
crown rot caused by Phytophthora cactorum and P. fragariae var. fragariae was 
observed when strawberry plants were treated with putative disease resistance elici-
tors, acibenzolar-S-methyl and chitosan, a polysaccharide compound (Eikemo et al. 
2003). Treating strawberry plants with chitosan, 5 or 10 days before harvest, signifi-
cantly reduced postharvest B. cinerea incidence in storage (Reddy et  al. 2000). 
Chitosan also improved strawberry quality in terms of fruit firmness and slower 
ripening. Similarly, natural volatile compounds like hexanal, methyl salicylate, and 
methyl benzoate inhibited B. cinerea in postharvest storage of strawberry, black-
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berry, and grape (Archbold et al. 1997). A laboratory study in Italy demonstrated 
that treating harvested strawberries with chitosan, benzothiadiazole, and a commer-
cial formulation of calcium and organic acids up-regulated several defense genes 
(Landi et al. 2014). In table grapes, preharvest application of chitosan alone or in 
combination with postharvest irradiation with UV light improved protection from 
B. cinerea (Romanazzi et al. 2006). Carlen et al. (2004) reported the results of mul-
tiple greenhouse and field studies in Europe where commercial formulations of the 
synthetic elicitor, acibenzolar-S-methyl and the extract of giant knotweed, 
Reynoutria sachalinensis provided a good control of P. aphanis on strawberry. The 
extract of R. sachalinensis was as effective as fungicide treatments in controlling 
B. cinerea. Soil amendment with silicon, considered as a beneficial nutrient, resulted 
in a significant reduction of P. aphanis in high tunnel strawberry in Canada (Ouellette 
et al. 2017). Foliar application of silicon, on the other hand, had conflicting effects 
in reducing P. aphanis (Wang and Galletta 1998; Palmer et  al. 2006). Silicon is 
thought to interfere with biotrophic or parasitic pathogens such as P. aphanis in 
finding target sites in the host plant (Vivancos et al. 2015).

21.13  General Guidelines for IPDM

General guidelines that prevent and control pests and diseases are listed below 
(Fig. 21.1):

• Choose cultivars that are resistant to pests and diseases especially in areas are 
prone to these problems.

• Obtain healthy and certified transplants, free of pests and diseases, from reputed 
nurseries.

• Inoculate transplants with beneficial microbes for a healthy start and to induce 
systemic resistance against potential pests and diseases. Continue periodical 
inoculation to maintain crop health.

• Use clean substrate or consider non-chemical fumigation alternatives to disinfest 
if substrate has to be used multiple times.

• Secure the greenhouse with proper screening, positive pressure ventilation, foot-
baths/sticky mats, double-doors, restricted accesses, and other measures that 
minimize the entry of pests.

• Maintain optimal temperature, relative humidity, ventilation, plant density that 
are ideal for healthy crop growth without promoting pest and disease 
populations.

• Regularly monitor crop health, pest and disease levels, and employ appropriate 
control measures as warranted by treatment thresholds.

• Maintain proper sanitation by removing dead, diseased, or infested plant 
material.
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• Adopt ideal fertility and irrigation management practices as healthy plants can 
withstand pest and disease pressure and reduce the need for corrective 
treatments.

• Release predators and parasitoids to promote biological control.
• Make use of yellow sticky cards, pheromones, attractants, vacuums and other 

such mechanical or physical control options.
• Take advantage of botanical and microbial pesticides, biostimulants, and materi-

als that induce systemic resistance and use chemical control options only when 
necessary.

• Use pollinators for delivering beneficial microbes that control pests and 
diseases.

• When chemical pesticides and fungicides are applied, be judicious in their use 
and rotate among different mode of action groups to reduce the risk of resistance 
development.

Fig. 21.1 Preventive, curative, maintenance, and regulatory approaches in IPDM
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• Enforce regulatory control to prevent the spread of pests and diseases from nurs-
eries and between greenhouse operations, to ensure application of recommended 
rates and amounts of pesticides, and to encourage IPDM practices.

• Implement good outreach efforts to disseminate information to the growers and 
pest management experts, and encourage grower collaboration and exchange of 
ideas for area-wide management of pests and diseases.

• Increase public awareness of invasive pests and diseases to prevent their acciden-
tal introduction, and of IPDM practices to promote their preference and thus 
sustainable management practices.

21.14  Conclusion

IPDM, by adopting a variety of management techniques, maintains high productiv-
ity while ensuring environmental sustainability and affordability. Sustainable prac-
tices such as IPDM may also improve the quality of the fruits as seen in the Asami 
et al. (2003) study where marionberry and strawberry had significantly higher anti-
oxidant (total phenolic and ascorbic acid) content compared to conventionally pro-
duced berries. Such antioxidants are also important in plant defense against pests 
and diseases. As new crop protection technologies emerge, they need to be 
 continuously evaluated and adopted as appropriate for pest and disease management 
in greenhouse berries. Outreach of IPDM practices, new research developments, 
and emerging threats, and regulatory changes is also important to enable growers 
for taking appropriate actions. While some pest management techniques might be 
guarded as proprietary information by some growers, exchanging best management 
practices and new ideas among the grower community helps address area wide 
issues. Increasing consumer awareness about IPDM practices and their contribution 
to healthy and sustainable food systems also promotes the adoption of IPDM.
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