
Chapter 37
DeepDGA-MINet: Cost-Sensitive Deep
Learning Based Framework for Handling
Multiclass Imbalanced DGA Detection

R. Vinayakumar, K. P. Soman, and Prabaharan Poornachandran

Abstract Contemporary malware families typically use domain generation algo-
rithms (DGAs) to circumvent DNS blacklists, sinkholing, or any types of security
system. It means that compromised system generates a large number of pseudo-
random domain names by using DGAs based on a seed and uses the subset
of domain names to contact the command and control server (C2C). To block
the communication point, the security organizations reverse engineer the malware
samples based on a seed to identify the corresponding DGA algorithm. Primarily,
the lists of reverse engineered domain names are sink-holed and preregistered in
a DNS blacklist. This type of task is tedious and moreover DNS blacklist able
to detect the already existing DGA based domain name. Additionally, this type
of system can be easily circumvented by DGA malware authors. A variant to
detect DGA domain name is to intercept DNS packets and identify the nature of
domain name based on statistical features. This type of system uses contextual data
such as passive DNS and NXDomain. Developing system to detect DGA based
on contextual data is difficult due to aggregation of all data and it causes more
cost in real-time environment and moreover obtaining the contextual information
in end point system is often difficult due to the real-world constraints. Recently,
the method which detects the DGA domain name on per domain basis is followed.
This method doesn’t rely on any external information and uses only full domain
name. There are many works for detecting DGA on per domain names based on both
manual feature engineering with classical machine learning (CML) algorithms and
automatic feature engineering with deep learning architectures. The performance of

R. Vinayakumar (�) · K. P. Soman
Center for Computational Engineering and Networking (CEN), Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India
e-mail: r_vinayakumar@cb.amrita.edu

P. Poornachandran
Centre for Cyber Security Systems and Networks, Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Amritapuri, India
e-mail: praba@amrita.edu

© Springer Nature Switzerland AG 2020
B. B. Gupta et al. (eds.), Handbook of Computer Networks and Cyber Security,
https://doi.org/10.1007/978-3-030-22277-2_37

905

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22277-2_37&domain=pdf
mailto:r_vinayakumar@cb.amrita.edu
mailto:praba@amrita.edu
https://doi.org/10.1007/978-3-030-22277-2_37

906 R. Vinayakumar et al.

methods based on deep learning architectures is higher when compared to the CML
algorithms. Additionally, the deep learning based DGA detection methods can stay
safe in an adversarial environment when compared to CML classifiers. However,
the deep learning architectures are vulnerable to multiclass imbalance problem.
Additionally, the multiclass imbalance problem is becoming much more important
in DGA domain detection. This is mainly due to the fact that many DGA families
have very less number of samples in the training data set. In this work, we propose
DeepDGA-MINet which collects the DNS information inside an Ethernet LAN
and uses Cost-Sensitive deep learning architectures to handle multiclass imbalance
problem. This is done by initiating cost items into backpropogation methodology to
identify the importance among each DGA families. The performances of the Cost-
Sensitive deep learning architecture are evaluated on AmritaDGA benchmark data
set. The Cost-Sensitive deep learning architectures performed well when compared
to the original deep learning architectures.

Keywords Cyber security · Cybercrime · Multiclass imbalance · Cost-Sensitive
learning · Deep learning · Domain fluxing · Domain generation algorithm ·
Malware · Botnet · Malicious domain name

1 Introduction

Contemporary malware families installed on infected computers typically use
domain generation algorithms (DGAs) [17]. As stated by DGArchive,1 there are
72 different DGA families. The DGA families might increase in the near future
because it can oppose the botnet takedown mechanism [17]. A malware family
which uses DGAs is called as domain fluxing [19]. DGAs support to generate
many pseudo-random domain names and a subset of the domain names is used to
establish a connection to command and control (C2C) server. To make a successful
communication, an author has to register only a small subset of domain names.
Based on the successful establishment of communication, the malicious author can
start executing malicious activities while the entire information is passed to the
botmaster. Then the botmaster issues instructions to bots and sometime even to
update the malware family itself. Analysis of DNS traffic provides a way to detect
malicious activities hosted by botnet. In recent days, botnet has been used as a
primary approach to countermeasure many malicious activities [26].

Recent days, botnet has remained as a serious threat to the Internet service
community. Thus detecting DGAs has been a significant problem in the domain
of cyber security [11]. DNS blacklisting is the most commonly used method for
detecting DGA domain name in earlier days. The significance of DNS blacklisting

1https://dgarchive.caad.fkie.fraunhofer.de/.

https://dgarchive.caad.fkie.fraunhofer.de/

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 907

method for DGA analysis is studied by Kührer et al. [11]. The study used both
public and private blacklists. Private blacklisting is prepared by vendors and the
experimental results show that the private blacklisting survived better than the
public blacklisting. The results of public blacklisting performance varied for DGA
malware families. They suggest that the DNS blacklisting is very useful and can
be used along with the other approach to provide a more appropriate level of
protection. Another approach is to reverse engineer the malware along with its DGA
to identify the seed. Once the seed is known, then subsequent domain names can be
registered and those registered domain names act as an impersonator C2C server
to seize botnets. This type of process is typically called as sinkholing [23]. Once
the botnet is seized, an adversary has to redeploy new botnet with revised seeds
to further continue the process to do malicious activities. Both blacklisting and
sinkholing methods consume more time and resource intensive approaches. More
importantly blacklisting completely fails to detect new types of domain name or
variants of existing domain name. Sinkholing has low success rate in detecting
new types of DGA domain and variants of existing DGA domain name. Later,
DGA classifiers are built using machine learning (ML) algorithms. This type of
DGA classifier stays in the network and captures the DNS requests and looks
for the DGA domain name. Once the DGA domain name is detected, it gives
an alert to the network admin to further examine the foundation of a DGA. The
existing works on ML based detection are classified into retrospective and real-
time. Retrospective detection methods follow clustering and estimate the statistical
properties for each cluster for classification [3, 43, 44]. To enhance the system
detection rate, retrospective methods use other contextual information WHOIS
information, NXDomain, HTTPheaders. Most of the existing methods belong to
retrospective detection and contain several issues in deploying in real-time systems
[10, 43, 44]. On the other side, real-time detection method acts on domain name
only to detect the DGA domain name. Most of the ML based real-time detection
methods are based on feature engineering. These methods are easy to evade and
require extensive domain knowledge to extract significant features to distinguish
the domain name into either legitimate or DGA domain name [20]. In recent days,
to avoid feature engineering phase, the application of deep learning is leveraged in
the field of cyber security [25, 27–32, 34, 35, 37, 39]. In [42] the authors proposed
LSTM based DGA detection and categorization and the method can be deployed in
any environment. Generally, the deep learning architectures are prone to multiclass
imbalance problems. There are a few DGA families that contain few samples of
domain name. Thus the deep learning architectures bias towards the classes which
have more number of samples and as a result DGA families which contain very few
samples remain undetected. Additionally, deep learning based DGA detection stays
safe in an adversarial environment when compared to CML based DGA detection.
To handle multiclass imbalance problem, [24] proposed Cost-Sensitive LSTM
which performed better than the Cost-Insensitive LSTM architecture. Consequently,
in this work we use Cost-Sensitive LSTM and additionally other Cost-Sensitive

908 R. Vinayakumar et al.

deep learning based architecture are considered to evaluate the performances on
AmritaDGA2 data set. The main contributions of the proposed work are given
below:

– This work proposes DeepDGA-MINet, which uses Cost-Sensitive deep learning
based architectures which can handle the multiclass imbalance in DGA family
categorization. The performances of various Cost-Sensitive deep learning based
architectures are shown on AmritaDGA data set.

– A detailed experimental analysis of various Cost-Sensitive deep learning based
architectures is shown on two different types of testing data sets. These data sets
are completely disjoint and include time information. Thus models evaluated on
these data sets facilitate to meet zero day malware detection.

The rest of the part of this chapter is organized as follows: Sect. 2 discusses
the background details of DNS, botnet, DGA, Keras embedding, deep learning
architectures, and Cost-Sensitive deep learning architectures. Section 3 discusses
the related works on application of deep learning on DGA analysis. Section 4
discusses the description of data set. Section 5 discusses the statistical measures.
Section 6 includes the proposed framework. Section 7 includes experimental results
and observations. At last, conclusion, future work, and discussions are presented in
Sect. 8.

2 Background

2.1 Domain Name System (DNS)

Domain name system (DNS) is a critical component in an Internet service system. It
maintains a distributed database that facilitates to translate domain name to Internet
protocol (IP) address and vice versa. Thus DNS is a main component for nearly
all network services and has been a main target for attackers. Domain name is a
name of a particular application in an Internet service system which follows naming
convention system defined by DNS. The maximum length of the domain name is
63 and parts of the domain name are separated by dots. Generally, the right most
element in a domain name is root and left most element is the host label. DNS
maintains a hierarchy to manage the domain name named as domain name space.
The domain name space is divided into different authorities called as DNS zone.
The hierarchy is shown in Fig. 37.1 and it represents the organizational structure.
The domain name with the host label and root is called as fully qualified domain
name (FQDN). Primarily, there are two types of DNS server, they are recursive
and non-recursive. Recursive server contacts the nearby DNS server if the requested

2https://vinayakumarr.github.io/AmritaDGA/.

https://vinayakumarr.github.io/AmritaDGA/

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 909

Fig. 37.1 An overview of
domain name system

Root Level

.com .net

.cen

.eos host ‘eos’

.edu .org
Top Level

Domains (TLDs)
Second Level

Domains

Sub-Domain of
parent

‘amrita.edu’

.amrita

information doesn’t exist. Thus there may be a possibility for various attacks such as
denial of service (DoS), distributed denial of service (DDoS), DNS cache poisoning,
etc.

2.2 Botnet

Botnet is a network of compromised computers that is remotely controlled by
botmaster or bot herder. The compromised computers use same malicious code and
each compromised computer in a network is called as bot. Botmaster frequently
updates the code of bot to evade the current detection methods. A bot uses DGAs
to establish a communication channel to a command and control (C2C) server.
Recently, botnet behavior is discussed in detail by Alomari et al. [2]. Botnet has been
most commonly used by cyber criminals nearly to inject various types of malicious
activities and has become a serious threat in the Internet service. Recent botnets use
fluxing approach to establish a communication point between bot and C2C server.
Mostly, two types of fluxing are used. They are IP flux and domain flux. This work is
towards domain flux and domain flux uses the DGA. The DGA algorithm is shared
between the botmaster and bots. To establish a connection to C2C server, there may
be possibility that DGA generates many failed DNS queries.

Based on the architectures, botnets are grouped into three categories [6]. They
are centralized, decentralized, and hybrid. In centralized architecture a botmaster
controls all the connected bot in a single point called command and control server
(C2C server). Centralized botnet architecture uses star and hierarchical topology
and Internet relay chat (IRC) and Hyper Text Transfer Protocol (HTTP) protocols.
Decentralized architecture contains more than one C2C server and peer-to-peer
protocol. Hybrid architecture is a combination of centralized and decentralized
architecture.

910 R. Vinayakumar et al.

2.3 Domain Generation Algorithms (DGAs)

Mostly, recent malware families use DGA instead of hardcoded addresses [17]. This
is due to the fact that the DGA is an algorithm which generates large number of
pseudo-random domain names based on a seed and appends a top level domain
(TLD) such as .com, .edu, etc. to the pseudo-random domain names. A seed can be
anything mostly used are data and time information and a seed is shared between
the botmaster and bots.

2.4 Domain Name Representation Using Keras Embedding

In this work, Keras embedding is used for domain name representation. In the
beginning, a dictionary is formed for the DGA data set which contains only unique
characters. Generally, it includes an extra position to handle an unknown character
in the testing phase. Each character in a domain name is replaced by a particular
index of the dictionary. This transforms the index value in a domain name vector
into N dimensional continuous vector representation. The N acts as hyperparameter.
This type of representation captures the similarity among the characters in a domain
name. The Keras embedding takes the following parameters as input:

– Dictionary-size: The number of unique characters
– Embedding-length: The size of the embedding vector dimension
– Input-length: The size of the input vector

We used Gaussian distribution to initialize the weights during beginning phase in
training. The weights are fine-tuned during backpropogation and it coordinatively
works with other deep learning layers.

2.5 Deep Learning Architectures

Deep learning is an advanced model of classical machine learning (CML) [13].
They have the capability to obtain optimal feature representation by taking raw
input samples. Generally, there are two types of deep learning architectures, one is
convolutional neural network (CNN) and another one is recurrent structures (RSs)
such as recurrent neural network (RNN), long short-term memory (LSTM), and
gated recurrent unit (GRU). Primarily CNNs are used on data which includes spatial
properties and RSs are used on data which includes time or sequence information.
Basic information along with mathematical details for RNN and CNN is discussed
below.

Recurrent neural network (RNN), enhanced model of RNN named as long short-
term memory (LSTM) [13], minimized version LSTM named as gated recurrent

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 911

Xt
ht-1

ht-1

ht-1

Input sequence

Peepholes

Forget gate

Output (On)

Output gateInput gate

Memory
Cell

xt

ht

ot

Activation function, generally tanh

Element-wise multiplication

Weighted connection

Un-weighted connection

Connection with time-lag

Recurrent hidden weights

Input

Output

s
s

ht –1

xt

ct

otit

ft

1.0

xt

ht-1

ht-1 ht-1

xt

xt xt

Fig. 37.2 Architecture of recurrent neural network (RNN) unit (left) and Long short-term memory
(LSTM) memory block (right)

unit (GRU) [13] belong to the family of RSs. They are most commonly used
on sequential data tasks. The structures of RSs look similar to classical feed-
forward networks (FFN) and additionally the neurons in RSs contain a self-recurrent
connection. All RSs are trained using backpropagation through time (BPTT). RNN
in RSs generates vanishing and exploding gradient issue when the network is trained
for longer time-steps [13]. To handle vanishing and exploding gradient issue, LSTM
was introduced. It replaces the simple RNN unit with a memory block. This has the
capability to carry out the important information across time-steps. A memory unit
contains a memory cell and gating functions such as input gate, output gate, and
forget gate. All 3 different gating functions control a memory cell. However, LSTM
contains more parameters. Later a minimized version of LSTM, named as GRU is
introduced. GRU achieves the same performance as LSTM and additionally it is
computationally inexpensive. A basic unit in RNN, LSTM, and GRU is shown in
Figs. 37.2 and 37.3, respectively. The computational functions for RNN, LSTM, and
GRU are defined mathematically as follows:

Generally RSs take input x = (x1, x2,, xT) (where xt ∈ Rd) and maps
to hidden input sequence h = (h1, h2, . . . , hT) and output sequences o =
(o1, o2, . . . , oT) from t = 1 to T by iterating the following equations:

Recurrent Neural Network (RNN)

ht = σ(wxhxt + whhht−1 + bh) (37.1)

ot = sf (whoht + bo) (37.2)

912 R. Vinayakumar et al.

Fig. 37.3 Architecture of
unit in gated recurrent unit
(GRU)

Input sequences

update
gate up

da
te

d
m

em
or

y

current memory

reset gate

xt

ht

ft

ht-1

1-ft
ft

ct

ut

Long Short-Term Memory (LSTM)

it = σ(wxixt + whiht−1 + wcict−1 + bi) (37.3)

ft = σ(wxf xt + whf ht−1 + wcf ct−1 + bf) (37.4)

ct = ft � ct−1 + it � tanh(wxcxt + whcht−1 + bc) (37.5)

ot = σ(wxoxt + whoht−1 + wcoct + bo) (37.6)

ht = ot � tanh(ct) (37.7)

Gated Recurrent Unit (GRU)

ut = σ(wxuxt + whuht−1 + bu) (37.8)

ft = σ(wxf xt + whf ht−1 + bf) (37.9)

ct = tanh(wxcxt + whc(f � ht−1) + bc) (37.10)

ht = f � ht−1 + (1 − f) � c (37.11)

where w terms for weight matrices, b terms for bias, σ is the sigmoid activation
function, sf at output layer denotes the sof tmax activation function, tanh denotes

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 913

x1

x2

xn

Convolutional layer

Max-pooling layer
o1

on

R
ec

ur
re

nt
 s

tr
uc

tu
re

s-
 L

S
T

M

F
ul

ly
 c

on
ne

ct
ed

 la
ye

r

Fig. 37.4 An overview of combination of convolutional neural network (CNN) and long short-
term memory (LSTM) architectures

the tanh activation function, i, h, f, o, c denotes the input, hidden, forget, output,
and cell activation vectors, in GRU input gate and forget gate are combined and
named as update gate u.

Convolutional neural network (CNN) is a type of deep learning architecture
which is most commonly used in spatial data analysis [13]. Primarily, CNN is
composed of three different sections, they are convolution, pooling, and fully
connected layer. Convolution operation is composed of convolution and filters that
slide over the domain name vector and extracts the features. The collection of
features of convolutional layer is called as feature map. The feature map is huge
and to reduce the dimension pooling is used, pooling can be max, min, or average
pooling. Finally, the reduced feature representation is passed into fully connected
layer for classification. Moreover, the pooling layer can also be passed into RSs to
extract the sequence information among the character in the domain name. This type
of hybrid architecture is shown in Fig. 37.4.

2.6 Employing Cost-Sensitive Model for Deep Learning
Architectures to Handle Multiclass Imbalance Problem

All deep learning architectures focus on minimizing the cost function of the network
by considering the true output yl and a target t l , where l defines the number of
neurons and let’s define the cost function for sof tmax.

E(t) = −
∑

S∈samples

∑

l

t l(t) log yl(t) (37.12)

Generally gradient descent with truncated version of real-time recurrent learning
(RTRL) is used to minimize the cost function [13]. As Eq. (37.12) indicates that

914 R. Vinayakumar et al.

the deep learning architectures consider all the samples of each class equally.
Thus, deep learning architectures are more prone to class imbalance problem.
This type of architectures biased towards the classes which has more number of
samples and shows less performance for detecting DGA families which contains
less representation in training data set [42]. Cost-Sensitive learning is an important
approach in many of the real-time data mining applications and capable to handle
multiclass imbalance problem [18].

There are various methods exist to convert the Cost-Insensitive LSTM to Cost-
Sensitive method [48]. One of the most commonly used methods is to accommodate
the balanced training samples via following oversampling or under sampling
[49]. In [48] the authors reported the resampling approach is not an efficient
method in dealing with class imbalance on multiclass applications. Later, several
methods were introduced based on threshold. In [12] the authors proposed Cost-
Sensitive based neural networks to handle multiclass imbalance problem by using
the error minimization function with the aim to achieve the expected costs. They
haven’t mainly targeted the class imbalance problem in their experiment. Following
[24], introduced Cost-Sensitive LSTM which incorporates the misclassification
costs into the backward pass of LSTM. Each sample S is coupled with a cost
item c[class(S), k], where k and class(S) define the predicted and actual class,
respectively. A cost weight is assigned based on the frequency of samples of a class.
Generally, the cost items indicate the classification importance.

E(t) = −
∑

S∈samples

∑

l

t l(t) log yl(t)c[class(S), k (37.13)

Based on Eq. (37.13), the basic equations for all deep learning architectures are
changed by including the cost item. A cost item typically controls the magnitude of
weight updates [9].

Initially for an input data samples the cost matrix is not known. Application
of genetic algorithm can be used to identify the optimal cost matrix. However, it
requires more time and considered as a difficult task [41]. Let’s assume the data
samples in one type of class are equal cost. C[i, i] indicates the misclassification
cost of the class i, which is produced using the class distribution as

c[i, i] =
(

1

ni

)γ

(37.14)

where γ ∈ [0, 1] is a hyperparameter, if c[i, i] is inversely proportional to the class
size ni , then γ = 1 amd γ = 0 indicate the deep learning architectures are Cost-
Insensitive.

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 915

3 Related Works on Domain Generation Algorithms (DGAs)
Analysis

A detailed review of detecting malicious domain names is reported by Zhau-
niarovich et al. [47]. In earlier days, blacklisting is the most commonly used method.
These methods completely fail to detect new kinds or variants of DGA based domain
name. Later, many approaches have been introduced based on machine learning
(ML). These ML based solutions are mostly retrospective which means the methods
build clusters based on the statistical properties [3, 43, 44]. These methods are not
efficient in real-time DGA domain name detection. Additionally, the retrospective
methods take advantage of additional information obtained from HTTP headers,
NXDomains, and passive DNS information. Later, real-time detection based on
ML is introduced. These methods act on a per domain information which means
extract different features from domain name and pass into ML algorithms for
classification [20]. However, these ML based solutions rely on feature engineering.
This is considered as one of the daunting tasks and these solutions are vulnerable in
an adversarial environment.

Recently the application of deep learning is leveraged for DGA detection which
completely avoids feature engineering [33, 42]. In [42] the authors proposed a
method for DGA detection and categorization. The method uses LSTM which looks
for DGA domain name on per domain bases. The method performed well when
compared to the benchmark classical methods based on HMM and also results
are compared with the feature engineering methods. In [33] the authors proposed
a method to collect DNS logs inside an Ethernet LAN and to analyze the DNS
logs the application of deep learning architectures such as RNN and LSTM was
used. The results are compared with the classical method, feature engineering with
Random Forest classifiers. A detailed experimental analysis is shown for various
data sets collected in real-time and public sources. The application of various
deep learning architectures such as RNN, GRU, LSTM, CNN, and CNN-LSTM is
evaluated for DGA detection and categorization [40]. For comparative study bigram
with logistic regression and feature engineering with Random Forest classifier is
mapped. In all the experiments, the deep learning architectures performed well
when compared to the classical methods. In [26] the authors developed a cyber-
threat situational awareness framework by using DNS data. They showed a method
to collect the DNS logs at an Internet service provider level and application of deep
learning architecture is used for DNS data analysis with the aim to detect the DGA
domain names. In [45] the authors proposed a method to automatically label the
data into DGA or non-DGA and used deep learning architecture for DNS data
analysis. For comparative study, 11 different feature sets are extracted based on
the domain knowledge and passed into Random Forest classifier. A detailed study
of all the different models was evaluated on very large volume of data set which
was collected from both the public source and real-time DNS streams. The deep
learning model particularly CNN performed well when compared to feature based
approach and the system performance has been shown on live stream deployment.
In [14] the authors evaluated the performance of recurrent networks on very large

916 R. Vinayakumar et al.

volume of data set which consists of 61 different DGA malware families. In
recent days, many deep learning architectures based on character level embedding
are introduced for many text applications in the field of NLP. To leverage the
application of these models [46] evaluated the performance of various benchmark
deep learning architectures with character based models for DGA detection and
compared with classical methods, feature engineering with Random Forest and
multilayer perceptron (MLP) classifiers. The methods based on deep learning
with character level embedding performed better than the classical methods. The
application of various Image Net models such as AlexNet, VGG, SqueezeNet,
InceptionNet, ResNet are transformed for DGA detection by Feng et al. [7]. They
followed preprocessing approach to convert the domain name into image format and
followed transfer learning approach. In [15] the authors evaluated the performance
of various supervised learning models such as LSTM, recurrent SVM, CNN with
LSTM, and bidirectional LSTM and compared it with the classical methods HMM,
C4.5, ELM, and SVM on the 38 DGA families data set which was collected in real-
time. In [5] the authors proposed a method which uses recurrent networks for DGA
detection. The method takes the benefit of side information from WHOIS database.
This is due to the fact that the DGA families with a high average Smashword score
are very difficult to detect based on the domain information alone in the case of a
per domain basis method. Smashword score defines the average of n-gram (n ranges
[3–5]) intersection with words from an English word dictionary. Generally, it is the
measure that gives the measure of closeness between DGA and English words. In
[24] the authors proposed Cost-Sensitive LSTM to handle multiclass imbalance in
DGA families detection. The proposed method showed 7% improvement in both
precision and recall when compared to the Cost-Insensitive LSTM. Additionally,
the Cost-Sensitive LSTM showed better performance in detecting 5 additional
DGA based bot families. In [22] the authors evaluated the performance of various
benchmark character based models for DGA detection and categorization. These
models are based on ensemble of human engineered and machine learned features.
The importance to time and seed is given while selecting the data set for train and
test. Thus this type of methodology allows effectively to evaluate the robustness of
the trained classifiers for identifying domain names initiated by the same families at
various times or even seed changes. They also state that their method performed
well for detecting DGA in the case of time dependent seed when compared to
time invariant DGAs. They also evaluated the best performed model on real-time
DNS traffic and showed that many of the legitimate domain names are flagged as
legitimate. This is mainly due to the reason that Alexa is not completely a non-
malicious domain name in real-time DNS traffic. In [16] the authors proposed
a unique deep learning architecture typically called as spoofnet which correlates
both DNS and URL data to detect malicious activities. Following, the spoofnet
architecture is evaluated on various types of data sets of DGA and URL and
additionally employed for spam email detection [38]. To meet zero day malware
detection, [37] incorporated the time information in generating the data sets for train
and test. To leverage the application of various character based benchmark models,
[35] transformed these approaches to DGA analysis.

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 917

4 Description of Data Set

To measure the performance of Cost-Sensitive based deep learning architectures,
we have used the AmritaDGA3 data set [36]. This data set has been used as part
of DMD-2018 shared task. Along with the data set, baseline system4 is publically
available for further research. This data set contains domain names which are
collected from publically available sources and real-time DNS traffic inside an
Ethernet LAN. Additionally, the data set has been designed by giving importance
to the time information. Thus, the trained models on this type of data set have the
ability to meet zero day malware detection. The data set is composed of two types
of testing data sets. Testing 1 data set is formed using publically available sources
and Testing 2 data set is formed using DNS traffic inside an Ethernet LAN. The
statistics of AmritaDGA is shown in Table 37.1. The data set was used for two
tasks, one is binary and other is multiclass classification. Binary class classification

Table 37.1 AmritaDGA data
set used in DMD-2018 shared
task

Class Training Testing 1 Testing 2

benign 100,000 120,000 40,000

banjori 15,000 25,000 10,000

corebot 15,000 25,000 10,000

dircrypt 15,000 25,000 300

dnschanger 15,000 25,000 10,000

fobber 15,000 25,000 800

murofet 15,000 16,667 5000

necurs 12,777 20,445 6200

newgoz 15,000 20,000 3000

padcrypt 15,000 20,000 3000

proslikefan 15,000 20,000 3000

pykspa 15,000 25,000 2000

qadars 15,000 25,000 2300

qakbot 15,000 25,000 1000

ramdo 15,000 25,000 800

ranbyus 15,000 25,000 500

simda 15,000 25,000 3000

suppobox 15,000 20,000 1000

symmi 15,000 25,000 500

tempedreve 15,000 25,000 100

tinba 15,000 25,000 700

Total 397,777 587,112 103,200

3https://vinayakumarr.github.io/AmritaDGA/.
4https://github.com/vinayakumarr/DMD2018.

https://vinayakumarr.github.io/AmritaDGA/
https://github.com/vinayakumarr/DMD2018

918 R. Vinayakumar et al.

aims at classifying the domain name as either legitimate or DGA and multiclass
categorizes the domain name to their families.

5 Statistical Measures

To measure the performance of trained models of various deep learning archi-
tectures, we adopted the various statistical measures. These various measures are
approximated based on the positive (PD) : legitimate domain name, negative
(NG): DGA domain name, true positive (TPD) : legitimate domain name that is
predicted as legitimate, true negative (TND) : DGA domain name that is predicted
as DGA domain name, false positive (FPD) : DGA domain name that is predicted
as legitimate, and false negative (FND) : legitimate domain name that is predicted
as DGA domain name. Using confusion matrix TPD , TND , FPD , and FND are
obtained. Confusion matrix is represented in the form of matrix where each row
denotes the domain name samples of a predicted class and each column denotes
domain name samples of actual class. The various statistical measures considered
in this study are defined as follows:

Accuracy = TPD + TND

TPD + TND + FPD + FND

(37.15)

Recall = TPD

TPD + FND

(37.16)

Precision = TPD

TPD + FPD

(37.17)

F1−score = 2 ∗ Recall ∗ Pr ecision

Recall + Pr ecision
(37.18)

T PR = TPD

TPD + FPD

(37.19)

FPR = FPD

FPD + TND

(37.20)

Accuracy estimates the fraction of correctly classified domain name, Precision

estimates the fraction of DGA domain name which is actually DGA domain name,
Recall or Sensitivity or T PR estimates the fraction of DGA domain names that
are classified as DGA domain name, and F1-score estimates the harmonic mean of
precision and recall.

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 919

6 Proposed Architecture: DeepDGA-MINet

The proposed architecture named as DeepDGA-MINet is shown in Fig. 37.5. A
detailed overview of DeepDGA-MINet is shown in Fig. 37.6. This contains mainly
3 different sections: (1) data collection, (2) Cost-Sensitive deep learning layers, and
(3) classification.

In data collection, the system collects the DNS logs inside an Ethernet LAN in
a passive way. The data has been passed into NoSQL database. Further, the domain
name information is extracted from the DNS logs and passed into the Cost-Sensitive
deep learning layers. This implicitly composed of character level embedding layer
which helps to map the domain name characters into domain name numeric

Fig. 37.5 Proposed
architecture:
DeepDGA-MINet

Ethernet LAN

Log Collector

Log Parser

Parsed DNS

Alert

Parsed logs

Raw logs

DeepDGA-MINet

Front End Broker

NoSQL

NoSQL

Fig. 37.6 A detailed
overview of
DeepDGA-MINet

Domain Names

Preprocessing

Keras Embedding

DGA Family

Cost-sensitive Deep learning layers

920 R. Vinayakumar et al.

representation. The character level embedding layer works with Cost-Sensitive deep
learning layers to extract the similarity among characters during backpropogation.
Further, Cost-Sensitive deep learning layer extracts significant features from the
character level embedding vectors. Finally, the feature set is passed into the fully
connected layer for classification. This composed of sof tmax activation function
which uses categorical cross-entropy loss function. The sof tmax and categorical
cross-entropy loss function are defined mathematically as follows:

Sof t max (x)i = exi

∑n
j=1 exj

(37.21)

loss(p, e) = −
∑

x
p(x) log(e(x)) (37.22)

where x denotes an input , e and p denote true probability distribution and predicted
probability distribution, respectively. To minimize the loss function adam optimizer
is used. Finally, the classification results are displayed in Front End Broker.

7 Experiments, Results, and Observations

The detailed configuration details of deep learning architectures are reported in
Table 37.2. In this research all the deep learning architectures are implemented
in TensorFlow [1] with Keras [4] higher level library and various experiments
of deep learning architectures are run on GPU enabled TensorFlow inside Nvidia
GK110BGLTeslak40. All deep learning architectures are trained using AmritaDGA
data set. To control the train accuracy across the more number of epochs, we have
used validation data set that was from 20% of train data set taken randomly. The
domain name samples are transformed into numeric vectors using Keras embedding.
Keras embedding implicitly builds a dictionary which contains 39 unique characters.
The character list is given below:

abcdefghijklmnopqrstuvwxyz0123456789._ -

Using dictionary the characters of a domain name are transformed into indexes.
The maximum length of the domain name is 91. Thus the domain name which con-
tains less than 91 is padded with 0s. The index vector is passed into Keras embed-
ding. It takes 3 different parameters such as Dictionary-size is 39, Embedding-length
is 128, and Input-length is 91. Keras embedding follows deep learning layers and
the detailed configuration details of deep learning layers are reported in Table 37.2.
The deep learning layers follow fully connected layer for classification. All the
trained models of various deep learning architectures are tested on the two types of
AmritaDGA data set and the detailed results are reported in Tables 37.3, 37.4, 37.5,
and 37.6. All DMD-2018 shared tasks submitted systems have used Cost-Insensitive
deep learning architectures. The proposed deep learning architectures based on

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 921

Table 37.2 Detailed configuration of deep learning architectures

Layer (type) Output shape Param #

RNN

embedding_1 (Embedding) (None, 91, 128) 5120

simple_rnn_1 (SimpleRNN) (None, 128) 32,896

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 21) 2709

activation_1 (Activation) (None, 21) 0

Total params: 40,725

LSTM

embedding_1 (Embedding) (None, 91, 128) 5120

lstm_1 (LSTM) (None, 128) 131,584

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 21) 2709

activation_1 (Activation) (None, 21) 0

Total params: 139,413

GRU

embedding_1 (Embedding) (None, 91, 128) 5120

gru_1 (GRU) (None, 128) 98,688

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 21) 2709

activation_1 (Activation) (None, 21) 0

Total params: 106,517

CNN

embedding_1 (Embedding) (None, 91, 128) 5120

conv1d_1 (Conv1D) (None, 87, 64) 41,024

max_pooling1d_1 (MaxPooling1) (None, 21, 64) 0

dense_1 (Dense) (None, 21, 128) 8320

dropout_1 (Dropout) (None, 21, 128) 0

activation_1 (Activation) (None, 21, 128) 0

dense_2 (Dense) (None, 21, 21) 2709

activation_2 (Activation) (None, 21, 21) 0

Total params: 57,173

CNN-LSTM

embedding_1 (Embedding) (None, 91, 128) 5120

conv1d_1 (Conv1D) (None, 87, 64) 41,024

max_pooling1d_1 (MaxPooling1) (None, 21, 64) 0

lstm_1 (LSTM) (None, 70) 37800

dense_1 (Dense) (None, 21) 1491

activation_1 (Activation) (None, 21) 0

Total params: 85,435

922 R. Vinayakumar et al.

Table 37.3 Detailed Testing 1 data set results of DMD-2018 shared task participated systems [36]

Team name Accuracy (%) Recall (%) Precision (%) F1-score (%)

UWT 63.3 63.3 61.8 60.2

Deep_Dragons 68.3 68.3 68.3 64

CHNMLRG 64.8 64.8 66.2 60

BENHA 27.2 27.2 19.4 16.8

BharathibSSNCSE 18 18 9.2 10.2

UniPI 65.5 65.5 64.7 61.5

Josan 69.7 69.7 68.9 65.8

DeepDGANet 60.1 60.1 62 57.6

Table 37.4 Detailed Testing 2 data set results of DMD-2018 shared task participated systems [36]

Team name Accuracy (%) Recall (%) Precision (%) F1-score (%)

UWT 88.7 88.7 92.4 90.1

Deep_Dragons 67 67 67.8 62.2

CHNMLRG 67.4 67.4 68.3 64.8

BENHA 42.9 42.9 34 27.2

BharathibSSNCSE 33.5 33.5 22.9 22.3

UniPI 67.1 67.1 64.1 61.9

Josan 67.9 67.9 69.4 63.6

DeepDGANet 53.1 53.1 65.3 54.1

Table 37.5 Detailed Testing 1 data set results of AmritaDGA baseline system for multiclass
classification [36]

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

RNN 65.8 63.6 65.8 62.6

LSTM 67.2 66.3 67.2 62.2

GRU 64.9 65.5 64.9 60.1

CNN 60.4 62.9 60.4 56.8

CNN-LSTM 59.9 61.5 59.9 55.6

Table 37.6 Detailed Testing 2 data set results of AmritaDGA baseline system for multiclass
classification [36]

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

RNN 66.2 62.7 66.2 60.9

LSTM 66.9 69.5 66.9 62.7

GRU 66.5 71.8 66.5 63.7

CNN 64.3 69.1 64.3 59.6

CNN-LSTM 65.8 67.6 65.8 62.5

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 923

Table 37.7 Detailed Testing 1 data set results of the proposed method—deep learning architec-
tures based on Cost-Sensitive data mining concept

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

Cost-Sensitive-RNN 65.8 63.6 65.8 62.6

Cost-Sensitive-LSTM 68.3 65.8 68.3 64.0

Cost-Sensitive-GRU 68.3 65.8 68.3 66.0

Cost-Sensitive-CNN 62.8 63.8 62.8 59.5

Cost-Sensitive-CNN-LSTM 64 64.3 64 62

Table 37.8 Detailed Testing 2 data set results of the proposed method—deep learning architec-
tures based on Cost-Sensitive data mining concept

Architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

Cost-Sensitive-RNN 65.8 63.6 65.8 62.6

Cost-Sensitive-LSTM 67.3 69.9 67.3 63.1

Cost-Sensitive-GRU 67.6 67.6 67.6 63.9

Cost-Sensitive-CNN 67.1 74.8 67.1 65.6

Cost-Sensitive-CNN-LSTM 67.1 70.7 67.1 64.7

Cost-Sensitive performed better than the baseline system of DMD-2018 and all the
submitted entries of DMD-2018 shared task, as shown in Tables 37.7 and 37.8. The
detailed results for Testing 1 AmritaDGA data set are reported in Tables 37.9 and
37.10 for Testing 2 AmritaDGA data set. All baseline system of DMD-2018 and
all the submitted entries of DMD-2018 shared task methods are based on Cost-
Insensitive models. The Cost-Sensitive models can even perform well in detecting
real-time DGA. This is due to the reason that most of the data set in real-time
are highly imbalanced. This work has given importance only to achieve the best
performance when compared to the baseline system and other submitted system
entries of DMD-2018 shared task. However, the proposed method can perform well
in any other data set and real-time detection of DGA domain name. Mostly, the
results obtained by all the models are closer in nature. Moreover, the LSTM model
has outperformed other deep learning architectures. However, the reported results
can be further enhanced by following parameter tuning method. This is due to the
reason that the optimal parameters implicitly have direct impact on getting the best
performance in deep learning [13].

8 Conclusion, Future Works, and Discussions

This work proposes DeepDGA-MINet tool which provides an option to collect a live
stream of DNS queries and checks for DGA domain name on a per domain basis.
It uses the application of Cost-Sensitive deep learning based methods to handle
multiclass imbalance problem. Each class or DGA family is associated with cost
items and these are directly initiated into backpropogation learning algorithm. The

924 R. Vinayakumar et al.

Table 37.9 Class-wise test results of the proposed method for Testing 1 data set of AmritaDGA

Cost-Sensitive
RNN

Cost-Sensitive
LSTM

Cost-Sensitive
GRU

Cost-Sensitive
CNN

Cost-Sensitive
CNN-LSTM

Classes FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

benign 0.056 0.906 0.069 0.947 0.016 0.864 0.057 0.937 0.048 0.855

banjori 0.004 0.0 0.001 0.0 0.001 0.0 0.0 0.0 0.001 0.0

corebot 0.001 0.996 0.004 1.0 0.008 0.999 0.002 0.998 0.004 0.999

dircrypt 0.036 0.712 0.029 0.817 0.045 0.767 0.035 0.594 0.066 0.631

dnschanger 0.052 0.988 0.051 0.994 0.053 0.993 0.082 0.863 0.061 0.993

fobber 0.009 0.0 0.008 0.0 0.008 0.0 0.024 0.0 0.02 0.0

murofet 0.075 0.0 0.061 0.0 0.067 0.0 0.003 0.006 0.009 0.0

necurs 0.004 0.839 0.004 0.86 0.009 0.857 0.021 0.762 0.015 0.644

newgoz 0.001 0.99 0.001 0.999 0.0 1.0 0.017 1.0 0.002 1.0

padcrypt 0.001 0.99 0.0 1.0 0.0 1.0 0.0 0.999 0.001 1.0

proslikefan 0.018 0.673 0.014 0.689 0.022 0.71 0.013 0.633 0.022 0.506

pykspa 0.034 0.738 0.033 0.886 0.034 0.771 0.031 0.663 0.031 0.712

qadars 0.001 0.764 0.0 0.119 0.001 0.892 0.0 0.302 0.0 0.528

qakbot 0.036 0.426 0.043 0.605 0.021 0.372 0.058 0.486 0.061 0.309

ramdo 0.0 0.998 0.0 1.0 0.0 1.0 0.001 0.999 0.0 1.0

ranbyus 0.004 0.854 0.003 0.874 0.003 0.842 0.008 0.711 0.002 0.75

simda 0.001 0.001 0.0 0.001 0.0 0.0 0.0 0.35 0.002 0.309

suppobox 0.005 0.742 0.002 0.812 0.005 0.95 0.002 0.823 0.008 0.612

symmi 0.0 0.176 0.0 0.601 0.0 0.613 0.0 0.152 0.0 0.585

tempedreve 0.018 0.124 0.015 0.135 0.035 0.131 0.023 0.178 0.025 0.114

tinba 0.008 0.922 0.003 0.97 0.003 0.886 0.017 0.573 0.005 0.966

Accuracy (%) 65.8 68.3 68.3 62.8 64.0

proportion of cost is a hyperparameter and selected based on hyperparameter tuning
method. The performance obtained by Cost-Sensitive based deep learning architec-
tures is good when compared to the Cost-Insensitive deep learning architectures.
Moreover, the performance shown by various Cost-Sensitive deep learning based
architectures is almost similar. Hence, a voting methodology can be employed to
enhance the DGA domain detection rate. This remains as one of the significant
direction towards future work. This work has considered only 20 DGA families.
The performance is shown for classifying a domain name into corresponding DGA
family. Therefore, the further research on investigating the performance of Cost-
Sensitive deep learning architectures on more number of DGA families remain as a
significant direction towards future work. As well as in this work the hyperparameter
tuning is not followed for deep learning architectures. Hyperparameters have direct
impact on the performance of deep learning architectures. Thus investigation of
proper hyperparameter tuning remains as another significant direction towards
future work.

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 925

Table 37.10 Class-wise test results of the proposed method for Testing 2 data set of AmritaDGA

Cost-Sensitive
RNN

Cost-Sensitive
LSTM

Cost-Sensitive
GRU

Cost-Sensitive
CNN

Cost-Sensitive
CNN-LSTM

Classes FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

benign 0.192 0.956 0.106 0.984 0.106 0.978 0.088 0.944 0.098 0.979

banjori 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.336 0.0 0.0

corebot 0.0 0.229 0.0 0.228 0.0 0.228 0.0 0.227 0.0 0.228

dircrypt 0.058 0.7 0.101 0.797 0.092 0.767 0.055 0.45 0.105 0.41

dnschanger 0.011 0.988 0.01 0.994 0.01 0.99 0.022 0.901 0.012 0.987

fobber 0.001 0.0 0.001 0.0 0.002 0.0 0.006 0.0 0.003 0.0

murofet 0.003 0.0 0.001 0.0 0.002 0.0 0.001 0.001 0.001 0.0

necurs 0.029 0.838 0.023 0.857 0.024 0.854 0.015 0.662 0.011 0.619

newgoz 0.008 0.99 0.05 1.0 0.055 1.0 0.06 0.999 0.064 0.999

padcrypt 0.017 0.99 0.0 1.0 0.0 1.0 0.001 0.997 0.0 0.999

proslikefan 0.007 0.332 0.004 0.33 0.005 0.4 0.019 0.542 0.012 0.679

pykspa 0.033 0.735 0.031 0.89 0.029 0.882 0.038 0.78 0.022 0.65

qadars 0.001 0.497 0.0 0.049 0.0 0.183 0.002 0.117 0.0 0.391

qakbot 0.032 0.399 0.029 0.601 0.025 0.516 0.016 0.328 0.01 0.376

ramdo 0.0 0.996 0.0 1.0 0.0 1.0 0.0 0.968 0.0 1.0

ranbyus 0.001 0.848 0.001 0.87 0.001 0.872 0.008 0.684 0.003 0.756

simda 0.001 0.0 0.0 0.017 0.0 0.0 0.003 0.001 0.0 0.224

suppobox 0.003 0.787 0.001 0.89 0.002 0.918 0.005 0.935 0.003 0.521

symmi 0.0 0.956 0.0 0.974 0.0 0.998 0.0 0.994 0.0 0.968

tempedreve 0.013 0.17 0.014 0.16 0.017 0.17 0.016 0.1 0.024 0.17

tinba 0.004 0.129 0.001 0.283 0.001 0.279 0.012 0.386 0.004 0.657

Accuracy (%) 65.8 67.3 67.6 67.1 67.1

Acknowledgements This research was supported in part by Paramount Computer Systems and
Lakhshya Cyber Security Labs. We are grateful to NVIDIA India, for the GPU hardware support
to research grant. We are also grateful to Computational Engineering and Networking (CEN)
department for encouraging the research.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). TensorFlow: A
system for large-scale machine learning. In OSDI (Vol. 16, pp. 265–283).

2. Alomari, E., Manickam, S., Gupta, B. B., Anbar, M., Saad, R. M., & Alsaleem, S. (2016). A
survey of botnet-based DDoS flooding attacks of application layer: Detection and mitigation
approaches. In Handbook of research on modern cryptographic solutions for computer and
cyber security (pp. 52–79). Pennsylvania, PA: IGI Global.

3. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., et al. (2012).
From throw-away traffic to bots: Detecting the rise of DGA-based malware. In USENIX
Security Symposium (Vol. 12).

4. Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.

926 R. Vinayakumar et al.

5. Curtin, R. R., Gardner, A. B., Grzonkowski, S., Kleymenov, A., & Mosquera, A. (2018).
Detecting DGA domains with recurrent neural networks and side information. arXiv preprint
arXiv:1810.02023.

6. Eslahi, M., Salleh, R., & Anuar, N. B. (2012). Bots and botnets: An overview of character-
istics, detection and challenges. In 2012 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE) (pp. 349–354). Piscataway, NJ: IEEE.

7. Feng, Z., Shuo, C., & Xiaochuan, W. (2017). Classification for DGA-based malicious domain
names with deep learning architectures. In 2017 Second International Conference on Applied
Mathematics and Information Technology (p. 5).

8. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ICML
(Vol. 96, pp. 148–156).

9. He, H., & Garcia, E. A. (2008). Learning from imbalanced data. IEEE Transactions on
Knowledge & Data Engineering, 21(9), 1263–1284.

10. Krishnan, S., Taylor, T., Monrose, F., & McHugh, J. (2013). Crossing the threshold: Detecting
network malfeasance via sequential hypothesis testing. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN) (pp. 1–12). Piscataway,
NJ: IEEE.

11. Kührer, M., Rossow, C., & Holz, T. (2014). Paint it black: Evaluating the effectiveness of
malware blacklists. In International Workshop on Recent Advances in Intrusion Detection (pp.
1–21). Cham: Springer.

12. Kukar, M., & Kononenko, I. (1998). Cost-sensitive learning with neural networks. In ECAI
(pp. 445–449).

13. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
14. Lison, P., & Mavroeidis, V. (2017). Automatic detection of malware-generated domains with

recurrent neural models. arXiv preprint arXiv:1709.07102.
15. Mac, H., Tran, D., Tong, V., Nguyen, L. G., & Tran, H. A. (2017). DGA botnet detection

using supervised learning methods. In Proceedings of the Eighth International Symposium on
Information and Communication Technology (pp. 211–218). New York, NY: ACM.

16. Mohan, V. S., Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2018). Spoof net:
Syntactic patterns for identification of ominous online factors. In 2018 IEEE Security and
Privacy Workshops (SPW) (pp. 258–263). Piscataway, NJ: IEEE.

17. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., & Gerhards-Padilla, E. (2016). A comprehen-
sive measurement study of domain generating malware. In USENIX Security Symposium (pp.
263–278).

18. Qiu, C., Jiang, L., & Kong, G. (2015). A differential evolution-based method for class-
imbalanced cost-sensitive learning. In 2015 International Joint Conference on Neural Net-
works (IJCNN) (pp. 1–8). Piscataway, NJ: IEEE.

19. Schiavoni, S., Maggi, F., Cavallaro, L., & Zanero, S. (2014). Phoenix: DGA-based botnet
tracking and intelligence. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (pp. 192–211). Cham: Springer.

20. Schüppen, S., Teubert, D., Herrmann, P., & Meyer, U. (2018). FANCI: Feature-based
automated NXDomain classification and intelligence. In 27th USENIX Security Symposium
(USENIX Security 18) (pp. 1165–1181).

21. Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A hybrid
approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans, 40(1), 185–197.

22. Sivaguru, R., Choudhary, C., Yu, B., Tymchenko, V., Nascimento, A., & De Cock, M. (2018).
An evaluation of DGA classifiers. In 2018 IEEE International Conference on Big Data (Big
Data) (pp. 5058–5067). Piscataway, NJ: IEEE.

23. Stone-Gross, B., Cova, M., Gilbert, B., Kemmerer, R., Kruegel, C., & Vigna, G. (2011).
Analysis of a botnet takeover. IEEE Security & Privacy, 9(1), 64–72.

24. Tran, D., Mac, H., Tong, V., Tran, H. A., & Nguyen, L. G. (2018). A LSTM based framework
for handling multiclass imbalance in DGA botnet detection. Neurocomputing, 275, 2401–2413.

37 Cost-Sensitive Deep Learning Method for Multiclass Imbalanced DGA Detection 927

25. Vinayakumar, R., Barathi Ganesh, H. B., & Anand Kumar, M., Soman, K. P. DeepAnti-
PhishNet: Applying deep neural networks for phishing email detection cen-aisecurity@iwspa-
2018 (pp. 40–50). http://ceur-ws.org/Vol2124/#paper_9

26. Vinayakumar, R., Poornachandran, P., & Soman, K. P. (2018). Scalable framework for cyber
threat situational awareness based on domain name systems data analysis. In Big Data in
Engineering Applications (pp. 113–142). Singapore: Springer.

27. Vinayakumar, R., & Soman, K. P. (2018). DeepMalNet: Evaluating shallow and deep networks
for static PE malware detection. ICT Express, 4(4), 255–258.

28. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Applying convolutional neural
network for network intrusion detection. In 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) (pp. 1222–1228). Piscataway, NJ:
IEEE.

29. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Evaluating effectiveness of
shallow and deep networks to intrusion detection system. In 2017 International Conference
on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1282–1289).
Piscataway, NJ: IEEE.

30. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Evaluation of recurrent neural
network and its variants for intrusion detection system (IDS). International Journal of
Information System Modeling and Design, 8(3), 43–63.

31. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Long short-term memory based
operation log anomaly detection. In 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI) (pp. 236–242). Piscataway, NJ: IEEE.

32. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017). Secure shell (SSH) traffic
analysis with flow based features using shallow and deep networks. In 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp.
2026–2032). Piscataway, NJ: IEEE.

33. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2018). Detecting malicious domain
names using deep learning approaches at scale. Journal of Intelligent & Fuzzy Systems, 34(3),
1355–1367.

34. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2018). Evaluating deep learning
approaches to characterize, signalize and classify malicious URLs. Journal of Intelligent and
Fuzzy Systems, 34(3), 1333–1343.

35. Vinayakumar, R., Soman, K. P., Poornachandran, P., Alazab, M., & Jolfaei, A. (in press).
Detecting domain generation algorithms using deep learning. In Deep learning applications
for cyber security. Cham: Springer.

36. Vinayakumar, R., Soman, K. P., Poornachandran, P., Alazab, M., & Thampi, S. M. (in press).
AmritaDGA: A comprehensive data set for domain generation algorithms (DGAs). In Big
Data Recommender Systems: Recent Trends and Advances, Institution of Engineering and
Technology (IET).

37. Vinayakumar, R., Soman, K. P., Poornachandran, P., & Menon, P. (2019). A deep-dive on
machine learning for cyber security use cases. In: Machine Learning for computer and cyber
security: Principle, algorithms, and practices. Boca Raton, FL: CRC Press.

38. Vinayakumar, R., Soman, K. P., Poornachandran, P., Mohan, V. S., & Kumar, A. D. (2019).
ScaleNet: Scalable and hybrid framework for cyber threat situational awareness based on DNS,
URL, and email data analysis. Journal of Cyber Security and Mobility, 8(2), 189–240.

39. Vinayakumar, R., Soman, K. P., Poornachandran, P., & Sachin Kumar, S. (2018). Detecting
Android malware using long short-term memory (LSTM). Journal of Intelligent & Fuzzy
Systems, 34(3), 1277–1288.

40. Vinayakumar, R., Soman, K. P., Poornachandran, P., & Sachin Kumar, S. (2018). Evaluating
deep learning approaches to characterize and classify the DGAs at scale. Journal of Intelligent
& Fuzzy Systems, 34(3), 1265–1276.

41. Wang, S., & Yao, X. (2012). Multiclass imbalance problems: Analysis and potential solutions.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4), 1119–1130.

42. Woodbridge, J., Anderson, H. S., Ahuja, A., & Grant, D. (2016). Predicting domain generation
algorithms with long short-term memory networks. arXiv preprint arXiv:1611.00791.

http://ceur-ws.org/Vol2124/#paper_9

928 R. Vinayakumar et al.

43. Yadav, S., Reddy, A. K. K., Reddy, A. L., & Ranjan, S. (2010). Detecting algorithmically
generated malicious domain names. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement (pp. 48–61). New York, NY: ACM.

44. Yadav, S., Reddy, A. K. K., Reddy, A. N., & Ranjan, S. (2012). Detecting algorithmically gen-
erated domain-flux attacks with DNS traffic analysis. IEEE/ACM Transactions on Networking,
20(5), 1663–1677.

45. Yu, B., Gray, D. L., Pan, J., De Cock, M., & Nascimento, A. C. (2017). Inline DGA detection
with deep networks. In 2017 IEEE International Conference on Data Mining Workshops
(ICDMW) (pp. 683–692). Piscataway, NJ: IEEE.

46. Yu, B., Pan, J., Hu, J., Nascimento, A., & De Cock, M. (2018). Character level based detection
of DGA domain names. In 2018 International Joint Conference on Neural Networks (IJCNN)
(pp. 1–8). Piscataway, NJ: IEEE.

47. Zhauniarovich, Y., Khalil, I., Yu, T., & Dacier, M. (2018). A Survey on malicious domains
detection through DNS data analysis. ACM Computing Surveys, 51(4), 67

48. Zhou, Z. H., & Liu, X. Y. (2006). Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engi-
neering, 18(1), 63–77.

49. Zhou, Z. H., & Liu, X. Y. (2010). On multi-class cost-sensitive learning. Computational
Intelligence, 26(3), 232–257.

	37 DeepDGA-MINet: Cost-Sensitive Deep Learning Based Framework for Handling Multiclass Imbalanced DGA Detection
	1 Introduction
	2 Background
	2.1 Domain Name System (DNS)
	2.2 Botnet
	2.3 Domain Generation Algorithms (DGAs)
	2.4 Domain Name Representation Using Keras Embedding
	2.5 Deep Learning Architectures
	2.6 Employing Cost-Sensitive Model for Deep Learning Architectures to Handle Multiclass Imbalance Problem

	3 Related Works on Domain Generation Algorithms (DGAs) Analysis
	4 Description of Data Set
	5 Statistical Measures
	6 Proposed Architecture: DeepDGA-MINet
	7 Experiments, Results, and Observations
	8 Conclusion, Future Works, and Discussions
	References

