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Abstract The objective of this chapter is to propose new quantitative models to
assess security threats of information systems. We adopt methods for assessing
the failure cost due to security breakdowns. In fact, the importance of quantifying
security risk continues to grow as individuals, enterprises, and governments become
increasingly reliant on information systems. Moreover, nowadays security of these
deployed systems has suffered because they lack significant security measures
and accurate information security risk assessment which is considered as an
ongoing process of discovering, correcting, and preventing security problems by
providing appropriate levels of security for information systems. In this context,
we define economic security risk models to help managers to assess accurately the
security threats: the internal mean failure cost and the external mean failure cost,
respectively, MFCint and MFCext, which studied the threat space and identified
the source of threats space risk by estimating their costs. Moreover, we define the
mean failure cost extension (MFCE) model which is based on our hybrid threat
classification model.
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1 Introduction

Organizations, governments, and individuals are facing many information security
risks. These risks can cause serious damages that might lead to significant financial
losses, breach of the confidentiality of sensitive information, or loss of integrity
or availability of sensitive data. In fact, the financial (or economic) security threat
loss to organizations could be significant. Recent literature has also documented
significant costs related to information systems security breaches. For example, the
2015 Global State of Information Security Survey [2] reveals that a huge heists
of consumer data were also reported in South Korea, where 105 million payment
card accounts were exposed in a security breach in 2015. The survey compared also
the security incidents cost in small and large organizations. In fact, it claimed that
small organizations proved the exception in discovering compromises. That is to
say companies with revenues of less than $100 million detected 5% fewer incidents
this year (in 2014) compared to 2009. However, larger companies have seen a huge
increase in the numbers of incidents between 2009 and 2014. In fact, the number of
incidents detected by medium size and large organizations (those with revenues of
$100 million to $1 billion) jumped by 64% between 2009 and 2014.

Due to serious impacts of security threats, managers must find ways to retrieve
and understand threats sources so as to mitigate them. To facilitate effective
protection of information systems, we propose in this chapter two economic security
risk models that estimate security threats failure of information system.

The chapter addresses quantitative cybersecurity models based on our threats
classification models defined in our previous work [22] in order to accurately
assess threats breaches. In fact, information system threat classifications help system
managers to build their organizations’ information systems with less vulnerabilities
and implement information security strategies and thus protect their assets from
these threats. The first model assesses security risk and let managers identifying the
source of space intrusion (either internal or external) to propose appropriate counter
measure to mitigate them. The second model is based on our threats classification
model that allows studying the threats class impact instead of a threat impact as a
threat varies over time. Furthermore, we illustrate the use of our quantitative security
analysis model on Cloud Computing (CC) system.

This chapter is organized as follows: The first section presents the context of
our chapter. The second section presents the motivation of our work. The third
section shows an overview of Cloud Computing environment. The fourth section
presents an economic cybersecurity model based on a threat source criterion that
we called the internal mean failure cost model (M F C;;;) and external mean failure
cost model (M F C,y;). In addition, we provide a new method to validate our security
risk models and illustrate their use using a Cloud Computing application. The fifth
section introduces the mean failure cost extension (MFCE) model. Also, we validate
the MFCE model and show an illustration on practical application of this model.
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2 Motivation: Quantitative Cybersecurity Risk Assessment
Models

To make effective security decisions, managers need to assess or estimate the
cybersecurity breaches of the system and well characterize it. There are many
measures in literature to support the analysis of how well a system meets its security
objectives [4, 18, 20, 23, 40], and [21]. Several economic security risk assessment
models exist in literature. We can cite, for example, the mean failure cost (MFC)
model [3] that quantifies the security of information systems that we will present in
this section.

2.1 Related Work

Although the ability of existing models to estimate the security breaches due
to security threats and vulnerabilities may suffer from several limitations which
motivate researchers to develop more models. Basically, there are two security risk
analyses or risk assessment approaches: Qualitative and Quantitative methods that
we are interested in this work.

Quantitative methods [5, 8, 9, 13, 14, 28, 33, 36, 37, 42], and [7] allow the
definition of the consequences of security risks occurrence in a quantitative way.
In fact, they estimate the costs in numerical values and hence give an accurate
estimation of it. For example, the mean time to failure (MTTF) quantifies the failure
rate of the system and the MFC model gives the cost per system stakeholder due
to security breaches. However, the existing method analysis results are not precise
and are even confusing. In fact, quantitative measures must depend on the scope
and accuracy of defined measurement scale. Therefore, they fail to present accurate
costs and precise results. On the other side, the analysis results must be enriched by
qualitative descriptions to be more precise and comprehensive [5].

For example, in [28], the authors propose a SAEM method which is a cost—
benefit analysis process for analyzing security design decisions based on the
comparison of a “threat index.” The authors in [12] propose security ontology
for organizing knowledge on threats, safeguards, and assets. This work constructs
classification for each of these groups and creates a method for quantitative risk
analysis, using its own framework. The work does not use known standards
or guidelines as an input for its evaluation model, so desired mechanisms and
countermeasures have to be defined in the process of risk analysis. The ENISA
report [13] also provided an approach for risk assessment based on the estimation
of risk levels on ISO/IEC 27005:2008. Security risk would be high if both the
probability of the event and its impact are high. The assessment provided is semi-
quantitative, as it uses value ranges for both event probability and impact, but does
not consider their combined influence in a quantitative manner. Bojanc and Jerman
suggested in [33] a model that evaluates the information assets, their vulnerability,
and the threats to information assets. The values of the risk parameters are the
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basis for selecting the appropriate risk treatment and the evaluation of the various
security measures that reduce security risks. Singh and Joshi proposed in [36]
a risk assessment framework for University computing environment that reduces
the security risk breach. The model supports three phase activities, the first phase
assesses the threats and vulnerabilities in order to identify the weak point in
educational environment, the second phase focuses on the highest risk and creates
actionable remediation plan, the third phase of risk assessment model recognizes the
vulnerability management compliance requirement in order to improve University’s
security position.

Yang et al. propose in [8] a measurement and assessment model of Cloud
Computing based on Markov chain to describe random risk environment. The
model used information entropy to measure risk, effectively reduced the existing
subjective factors in the assessment process, provided a practical and reliable
method for risk management decisions. Finally, Cayirci and de Oliveira introduce in
[7] a quantitative security risk assessment model based on cloud service providers’
performance history. The model addresses provider and consumer concerns by
relying on trusted third parties to collect soft and hard trust data elements, allowing
for continuous risk monitoring in the cloud.

We notice that the existing quantitative security risk models reflect the loss risk of
the whole system and they ignore the variance stakes among different stakeholders.
In fact, the operation of a system involves many stakeholders, who have different
cares (stakes). These models ignore others factors like the failure cost with respect
to requirements, the variability of system threats. Nevertheless, the mean failure cost
(MFC) considers many factors that we will enumerate in the next section.

2.2 Mean Failure Cost Model (MFC): A Quantitative
Cybersecurity Risk Assessment Model

The MFC [3] represents a stochastic model that quantifies this random variable in
terms of financial loss per unit of operation time (e.g., $/h) due to security threats.
It represents for each stakeholder the amount of loss that results from security
threats and system vulnerabilities. The MFC varies by stakeholder and takes into
account the variance of the stakes that a stakeholder has in meeting each security
requirement. The infrastructure in question reflects the values that stakeholders
have in each security requirement, the dependency of security requirements on the
operation of architectural components, and the impact that security threats have on
these components.
The MFC process proceeds in four steps:

— Generation of Stakes Matrix (ST) which represents the cost that each stakeholder
would lose if the system failed to meet a security requirement of the system.

— Generation of Dependency Matrix (DP) which represents how to estimate the
probability that a particular security requirement is violated in the course of
operating the system for some period of time.
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— Generation of Impact Matrix (IM) which determines which threats affect which
components and assesses the likelihood of success of each threat in light of
perpetrator behavior and possible countermeasures.

— Generation of the Threat Vector (PT) which represents the probability that a
threat materializes during unitary period of operation.

The mean failure cost is defined by the following formula:
MFC =S8SToDPolIMoPT (3.1)

We will propose in this chapter two new models extension of the mean failure model
(MFC). In fact, the MFC model considers the following characteristics:

— It quantifies the cost in terms of financial loss per unit of operation time (dollars
per hour).

— It quantifies the impact of failures: it provides cost as a result of security attacks.
It offers decision support for security countermeasure design.

— It distinguishes between stakeholders: it provides cost for each system’s stake-
holder as a result of a security failure.

— It distinguishes between specification components: it considers that each system
has many security requirements that represent concerns of the stakeholders.

However, the MFC model does not consider any classification threats and does
not take into account any threat perspective either. In fact, such results take a global
view at the threats targeting an information system which leads to inaccurate results.

2.3 Mean Failure Cost (MFC) Limits

Security threats may be originating from within or from outside threats that may be
manifested, as well, via a threat agent using a particular penetration technique to
cause dangerous effects [10, 29], and [22]. Thus, managers need to know and find
threats that influence their assets and identify their impact to determine what they
need to do to prevent attacks by selecting appropriate countermeasures. Then, they
need to evaluate the extent of the damage caused by these threats.

Therefore, it is necessary to have an understanding of the threats and the
vulnerabilities. Security threats can be observed and classified in different ways
by considering different dimensions or classes of the system like its source code,
attacker’s motivation or its users, or their roles.

On the other hand, understanding and identifying the threats represent the first
step in building a secure system. Indeed, to identify threats and evaluate existing
control techniques, it is important to understand well security threat and especially
security sources [1, 2, 6, 21, 22, 34], and [35]. Threats classification allows better
identifying of threats characteristics and thus an accurate estimation of security
risks. For example, if you know that there is a risk that someone could order products
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from your company but then repudiate receiving the shipment, you should ensure
that you accurately identify the purchaser and then log all critical events during
the delivery process [34]. Moreover, prior work has been based on the assumption
that similar systems tend to produce similar vulnerabilities. For example, the kinds
of vulnerabilities in a Windows operating system might be similar to those in
the Linux operating system because both operating systems exhibit similar basic
functionality [17].

Therefore, threats classification is an important task in security risk assessment
models to assess accurately risks. After studying the MFC model in previous
section, we notice that this model does not include threat classes and more especially
it includes the following shortcomings:

— Security threats are evolutive and variable over time and have several charac-
teristics, and in PT vector, there is no logical or hierarchical structure between
the different catalogued threats as they are not based on a particular attribute to
classify them.

— Underestimation of the MFC: In fact, in the threat vector PT, the term used to
define the threat can be ambiguous (do not include threats classes); this can
lead to an overlap between the various threats, i.e., each threat may belong
to several classes at once and thus it is computed many times, so we have an
underestimation of the mean failure cost.

— Managers cannot identify the source of threats risks in order to suggest appropri-
ate countermeasures.

— The MFC is blind towards the structure and the dimensions of security threats.
It considers that any failure due to a threat is a failure with respect to the whole
specification. But stakeholders may have different stakes in different security
threats dimensions and perspectives which are not reflected in the MFC.

We aim in this chapter to propose three cybersecurity metrics that overcome the
limits of the mean failure cost model (MFC). We propose new metrics that take
into account security threat dimensions or criteria that give accurate security risk
assessment. The proposed models will be applied to a practical case study, namely
a Cloud Computing system.

3 Cloud Computing Environments

Cloud Computing is the result of Information and Communication Technology
(ICT) evolution. In fact, it is based on several technologies like virtualization,
distributed systems, web service oriented architecture, service flows and workflows,
and web 2.0. Two major events triggered the spread of Cloud Computing in 2006.
The first was the announcement of a new business model, “Cloud Computing,” by
Google CEO Eric Schmidt.
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Cloud Computing is a system that enabling access to remotely hosted data and
computation resources from anywhere. In the same year, Amazon.com announced
one of themost important Cloud Computing services till date called Elastic Cloud
Computing (EC2) [12].

The National Institute of Standards and Technology defines Cloud Computing as
“a model which grants convenient, on demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [26], and [27].

Cloud Computing plays an important role in many recent critical applications,
such as astronomy, weather forecasting, and financial applications.

3.1 Cloud Computing Architecture

The Cloud Computing Architecture of a Cloud Computing system is the structure
of the system which includes cloud resources, services, middleware, software
components, and the relationships between them [4, 18], and [23]. It is composed
mainly of two parts: the front end and the back end connecting to each other through
the Internet. The front end is the side of the computer user or client including the
client’s computer and the application required to access to the Cloud Computing
system. The back end is the “cloud” section of the system which includes the various
physical/virtual computers, servers, software, and data storage systems. Figure 3.1
summarizes the proposed Cloud Computing architecture [4, 18], and [23].
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Cloud Computing providers can offer services at different layers:

— Infrastructure as a Service (IaaS): This layer provides the basic computing
infrastructure of servers, processing, storage, networks where the consumer is
able to deploy and run arbitrary software, which can include operating systems
and applications.

— Platform as a Service (PaaS): This layer provides a platform upon which
applications can be written or deployed.

— Software as a Service (SaaS): This layer delivers applications through a web
browser to thousands of customers without having to be installed on their
computers.

3.2 Cloud Computing Security Issues

In the last few years, the Cloud Computing reveals a remarkable potential to provide
on-demand services to users with greater flexibility in a cost-effective manner.
While moving towards the concept of on-demand service, resource pooling, shifting
everything on the distributive environment, security is the major obstacle for this
new dreamed vision of computing capability. In fact, users’ data are stored outside
the cloud in data centers where risks out number rewards. In fact, customers’ data
in the Cloud are stored on multiple third-party servers and thus it is not cared
by the user and no one knows where exactly data are saved. Among these we
mention the loss of control and the loss of security [22, 24, 30, 36, 38, 41], and [39].
Indeed, by trusting critical data to a service provider (externalization of service),
a user (whether an individual or an organization) takes risks with the availability,
confidentiality, and integrity of this data. For example, availability may be affected
if the subscriber’s data is unavailable when needed (due, for example, to a denial of
service attack or merely to a loss) and integrity may be affected if the subscriber’s
data is inadvertently or maliciously damaged or destroyed.

Many surveys deal with security risks in Cloud environment. For example,
according to a Forbes’ report published in 2015, cloud based security spending
is expected to increase by 42%. According to another research, the IT security
expenditure had increased to 79.1% by 2015, showing an increase of more than
10% each year. International Data Corporation (IDC) in 2011 showed that 74.6% of
enterprise customers ranked security as a major challenge [15, 16, 38], and [11].

In addition, Cloud Computing is based on several technologies like virtualization
that may cause major security risks which can be classified into three categories
like virtual machine modification, denial of service, monitoring virtual machines
from host (MVM), communications between virtual machines and host (CBVH),
etc. [4, 18], and [23].

We propose in this section classification of CC security issues into nine sub-
categories [19], which include: virtualization security issues, business services
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continuity, management interfaces risks, privacy issues, data location, data breaches,
accountability problems, multi-tenancy problem, and regulation and governance
problem.

Security Issues in Virtualization Cloud Computing architecture is based on many
virtualization components such as hypervisor and virtual machine. Hypervisor is a
controller known also as virtual machine manager (VMM), which allows multiple
operating systems to be run on a system at a time. Since multiple operating systems
may be running on a single hardware platform, it is not possible to keep track of
all such systems and hence maintaining the security of the operating systems is
difficult. In this case, guest system can run malicious code on the machine system
and bring the system down or take full control of the system and block access to
other guest operating systems [22], and [41]. Malicious insiders are very serious
attacks; hence, it presents an opportunity for an adversary to harvest confidential
data or gain complete control over the Cloud services with little or no risk of
detection [22, 41], and [11].

Business Services Continuity One more availability problem in CC environment is
distributed denial of service (DDoS) attacks. Attackers make use of large botnets
(zombies) to reduce the profits of SaaS providers by DDoS by making their services
unavailable [13]. Furthermore, a major risk to services continuity in the Cloud
Computing environment is loss of internet connectivity (that could occur due to
some circumstances like natural disasters) as Cloud businesses are dependent on
the internet access to their information. In addition, there are also concerns that
the seizure of a data hosting server by law enforcement agencies may result in the
unnecessary interruption or cessation of unrelated services whose data are stored
on the same physical machine. This resulted in the unintended consequence of
disrupting the continuity of businesses whose data and information are hosted on
the seized hardware.

Management Interfaces Risks Cloud Computing providers expose a set of software
interfaces that customers use to manage and interact with Cloud services (like pro-
visioning, management, orchestration, and monitoring). The customer management
interfaces of public Cloud providers are Internet accessible and mediate access
to larger sets of resources and therefore pose an increased risk especially when
combined with remote access and web browser vulnerabilities [13]. Unauthorized
access to the management interface is therefore an especially relevant vulnerability
for Cloud systems. These interfaces must be designed to protect against both
accidental and malicious attempts because they allow authentication and access
control to encryption and activity monitoring that depend directly on the security
and availability of general Cloud services [11].

Data Breaches Cloud Computing system allows the storage of customer data in
different ways. In fact, data in Cloud systems travel in clusters, in virtual machines,
in databases, or into third-party storages, which increase the risk of information leak
and data corruption. Indeed, operations in data centers might lead to information
leak caused, for example, by a customer’s information being mistaken by another’s.



72 M. Jouini and L. Ben Arfa Rabai

Furthermore, most of the Cloud providers instead of acquiring a server try to rent a
server from other service providers because they are cost affective and flexible for
operation. This gives a high possibility for malicious insiders to steal customers’
data from the external server [12, 22], and [41].

Compliance and Governance As security in Cloud Computing systems presents
a big challenge, cloud vendor has to provide some assurance in service level
agreements (SLA) to convince the customer on security issues. The SLA illustrates
different security levels and tries to make the customer understand the security
policies that are being implemented. Customers may also in the SLA indicate its
expectations in terms of security for these types of systems. Providers must deliver a
comprehensive list of regulations that govern the system and associated services and
how compliance with these items is executed [22], and [11]. However, the SLA may
not offer a promise to provide such services on the part of the Cloud provider which
can create several security breaches (for example, meet privacy and confidentiality
needs) for many reasons. In fact, Cloud providers cannot give evidence of their own
conformity with the relevant requirements and do not permit external audit by the
Cloud customer and/or security certifications [11, 22, 41], and [13].

In addition, a more serious problem is that there is no way to specify the
policies on how sensitive data are shared, treated, and located among Cloud service
providers. In fact, information is routinely leaked with poor data management
practices. Cloud service providers must ensure, for example, the data security in
natural disasters. Indeed, there are certain legal issues entangled with Cloud security
as well, because there are certain laws that Cloud service providers should comply
with and these laws vary from country to country which may cause data replication
across multiple sites.

Access Problem: Data Location Cloud Computing environments suffer from lack
of transparency since customer’ data are located in Cloud provider data centers
and anywhere in the world, and hence are out of the customer’s control which
leads to many problems [11, 22, 32, 41] and [13]. In fact, the user space may be
shared across applications that can lead to data replication, making mapping of users
and their privileges a complicated task. This, also, requires the user to remember
multiple accounts/passwords and maintain them which may entail forgetting them
in many cases. Indeed, by using the Cloud, users need to look at who (their role and
their privileges, etc.) is managing (get access to) their data (when they release the
information into the Cloud for processing) and what types of controls are applied to
these individuals [11, 31], and [16].

Data breaches present a crucial problem for organizations. For example: many
organizations such as financial institutions, health care providers, and government
agencies are legally required to protect their data from compromise due to the sen-
sitivity of their information. Generally, these organizations are required to manage
and maintain their own datacenters with stringent physical and logical protection
mechanisms ensuring that their data remain protected. These organizations simply
cannot utilize Cloud Computing in a generic manner due to the inherent risk of data
compromise from systems they do not control.
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Privacy Issues Privacy problems in Cloud Computing environments come from
many reasons. First, Cloud Computing customer’s data and especially personal
information can be breached more easily than if stored in users’ machines. In
fact, customer’s data are stored in services provider’s data centers and thus it is
not guaranteed if the providers will protect their data and especially their personal
information. Indeed, as most of the servers are external, the provider should make
sure who is accessing the data and who is maintaining the server to protect the cus-
tomer’s personal information. Also, in the shared infrastructure, customers’ private
information risk more potential unauthorized access and exposure [22,41], and [13].
Moreover, privacy problems for organizations stem from the diversity of privacy
regulations from country to country. In fact, data in Cloud system are stored
anywhere and user cannot guess if you are violating privacy regulations in the
countries where you operate [22, 41], and [13]. Indeed, there is a need for
approaches to label directly the data with security and privacy policies that would
travel with sensitive data from one provider to another so that the proper technical
controls can be employed by various Cloud providers to protect the data [32]. Data
are prone in this case to many attacks like: sniffing, spoofing, man-in-the-middle
attacks, side channel, and replay attacks and so in some cases the CP does not
guarantee respect for the confidentiality or the nondisclosure of information [13].

Isolation Failure (Multi-Tenancy Problem) Multi-tenancy and shared resources
(computing capacity, storage, network, memory, routing, etc.) represent main
characteristics of Cloud Computing environments. There is a risk of failure of
deferent mechanisms between different tenants of the shared infrastructure due to
principally hypervisor vulnerability. In fact, infrastructure as a service (IaaS) Cloud
layer relies on architectural designs where physical resources are shared by multiple
virtual machines and therefore multiple customers. In fact, resource sharing means
that malicious activities (spamming, port scanning, etc.) carried out by one tenant
may affect and get access to another tenant host [13].

Accountability Problems Accountability has to do with keeping track of actions
that are related to security actions and responsibilities [41]. It aims to give tracking
evidence on user behaviors and system status, which can also be used in system
performance analysis or intrusion detection purposes.

As security is the most concern for Cloud Computing adoption, we propose in
this chapter secutiy metrics to quantify cybersecurity risk in order to let managers
to select appropriate countermeasures.

4 MFC, and MF Cj,;: New Quantitative Security Risk
Assessment Models

In this section, we illustrate an extension of the MFC model [3] by suggesting a
classification of the identified threats to propose two types of measures: The Internal
MFC (M F C;,;) and the External MFC (M FC,,;) in order to know the source of
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threats shaped information systems and especially the Cloud Computing systems to
take appropriate security strategies or mitigate their effects.

4.1 Security Threat Space Intrusion

Threat source or threat space intrusion represents a primordial criterion for identi-
fying threat source in order to take appropriate security decisions. For the purpose
of our system, we propose to classify the threat space into subspaces according to
a model of three dimensions labeled Internal, External, and InternalExternal. This
classification allows to localize the origin (or source) of a threat. In fact, threat is
caused either from within an organization, system, or/and architecture or from an
external point of origin [18].

4.1.1 Internal Threats

Internal threats occur when someone has authorized access to the network with
either an account on a server or physical access to the network. A threat can
be internal to the organization as the result of employee action or failure of an
organization process [18].

Regarding internal attacks, we can cite theft of proprietary information, acci-
dental or non-malicious breaches, sabotage, fraud, and eavesdropping/snooping as
instances of insider threats.

4.1.2 External Threats

External threats can arise from individuals or organizations working outside of a
company. They do not have authorized access to the computer systems or network.
They work their way into a network mainly from the Internet or dialup access
servers. The most obvious external threats to computer systems and the resident
data are natural disasters like hurricanes, fires, floods, and earthquakes. External
attacks occur through connected networks (wired and wireless), physical intrusion,
or a partner network [18].

Lacey et al. provide an updated profile of sophisticated outside attacks which
can compromise the security of Mobile Ad hoc Network (MANET) [25]. They
include eavesdropping, routing table overflow, routing cache poisoning, routing
maintenance, data forwarding, wormhole, sinkhole, byzantine, selfish nodes, exter-
nal denial of service, internal denial of service, spoofing, Sybil, badmouthing,
viruses, and flattering.
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4.1.3 Internal/External Threats

Internal/external threats take place when someone having authorized access to the
network (for example, an employee of the organization) causes external threats to
the system [18].

4.2 MFC,yt and MFCjy: The Proposed Model

The threats vector is a vector of probabilities of attack to the system during a time
unit. These threats, as we said above, come from external or internal boundaries
of the system. This classification lets us to propose two new extension of the threat
vector (PT) of the MFC metric. Consequently, there will be two extensions measures
of the mean failure cost (MFC). We can calculate the external mean failure cost
MFCext and the internal mean failure cost MFCint. Depending on the attack space
vector AS, the new MFC formula will be

MFCuyt =SToDPolIMoPT o ASey; (3.2)
and
MFCipy; =SToDPolIMo PT o ASiy; 3.3)

ASin and A S,y are two vectors having the same dimension of the threat vector
PT containing the probability values of threat related to intrusion types (internal or
external). Figure 3.2 shows AS;,; and AS,,, structures.

These new extensions of MFC model improve analysis of the vulnerability of
the system. They allow specifying the nature of security solution that minimizes the
mean failure cost.

Fig. 3.2 Space intrusion
Vegtor P Asint or Asext
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4.3 Illustration of the Cybersecurity Model: A Cloud
Computing System

In this section, we illustrate the use of the M FC;,; and the M FC,y; in a Cloud
Computing system [4]. We identify, hence, the threats intrusion space in Cloud
system through the extension mentioned above.

We identify, firstly, the security requirements, the stakeholders and their stakes in
meeting these requirements, the architectural components, and the security threats
that affect the Cloud Computing system. Then, we fill the matrixes ST, DP, ICM,
CM, and PT using empirical data from [38] to obtain the following MFCext and
MFCint vectors.

We consider four classes of stakeholders (as described in Sect. 3) in this case
study, namely: a Cloud Computing provider (PR), a corporate subscriber (CS), a
governmental subscriber (GS), and an individual subscriber (IS).

As for security requirements, we identify seven generic security requirements
classified based on the levels of criticality of data as shown in our previous work
[4], and [23], namely:

— Availability of critical data (AVC),

— Availability of archival data (AVA),

— Integrity of critical data (INC),

— Integrity of archival data (INA),

— Confidentiality of classified data (CC),

— Confidentiality of proprietary data (CP), and
— Confidentiality of public data (CB).

Based on a quantification of these stakes in terms of thousands of dollars ($K)
per hours of operation, we produce the following stakes matrix ST as shown in
Table 3.1.

Based on the Cloud Computing system architecture defined in our previous work
[4], and [18], we generate the dependency matrix shown in Table 3.2. We consider
that the Cloud Computing system components include: a browser (Br), a proxy
server (Prx), a router/firewall (R/F), a load balancer (LB), a web server (WS), an
application server (AS), a database server (DS), a backup server (BS), and a storage
server (SS).

Table 3.1 Matrix of stakes:
cost of failing a security
requirement in $K/h

Security requirements

AVC |AVA |INC |INA |CC CP CB
Stakeholders
PR | 500 90 800 150 1500 | 1200 |120
CS | 150 40 220 80 250 180 60
GS |60 20 120 50 2500 |30 12
IS 10.050 |0.015 | 0.300 |0.200 | 0.300 | 0.100 |0.010
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Table 3.2 Dependency matrix

Components
Br R/F LB WS AS DB BS SS NoF

Security requirements

AVC 0.14 0.14 0.14 0.14 0.06 0.04 0.14 0.06 0.14 0
AVA 0.16 0.16 0.16 0.16 0.07 0.05 0.05 0.03 0.16 0
INC 0.03 0.03 0.2 0.2 0.09 0.03 0.2 0.02 0.2 0
INA 0.04 0.04 0.32 0.32 0.14 0.04 0.04 0.01 0.32 0
CB 0.1 0.03 0.23 0.23 0.1 0.1 0.1 0.01 0.1 0
Cp 0.1 0.03 0.23 0.23 0.1 0.1 0.1 0.01 0.1 0
CcC 0.1 0.03 0.23 0.23 0.1 0.1 0.1 0.01 0.1 0
Table 3.3 Probability of threat space intrusion

Threats Probability outsider committed Probability insider committed
(MVM) 1 0

(BVH) 1 0

(VMm) 0.6 0.4

(VMS) 1 0

VMM) 0.5 0.5

(VMC) 0.5 0.5

VMM) 0.6 0.4

(DoS) 0.136 0.864

(FA) 1 0

(DL) 0.8 0.2

(MI) 0 1

(ASTH) 1 0

(ANU) 0 1

(IAD) 0.8 0.2

Using empirical data from [3], we can decompose the probability of event threat
committed in two complementary probabilities (outsider/insider system committed)
as shown in Table 3.3.

We have catalogued fourteen distinct types of threats (Table 3.5). To compute
the MFCqy: and the M FC;,; we need to know the probability of the attack
for each threat during 1h. Also, we need to fill the values of impact matrix
IM. The IM matrix relates component failure to security threats; specifically, it
represents the probability of failure of components given that some security threat
has materialized.

Tables 3.4 and 3.5 represent the impact matrix and the threat vector.

Thus, we compute the mean failure cost of external threats (see Table 3.6) and
the mean failure cost of internal threats (see Table 3.7) using the formulas presented
above. Entries of these three matrices and the two vectors come from our empirical
study [3] which has an immense source of references.
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Table 3.5 Threat vector
Threats Probability
Monitoring virtual machines from host (MVM) 8.063 x 104
Communications between virtual machines and host (CBVH) 8.063 x 10~*
Virtual machine modification (VMm) 8.063 x 10~
Placement of malicious VM images on physical systems (VMS) 8.063 x 10~
Monitoring VMs from other VM (MVV) 40.31 x 1074
Communication between VMs (VMC) 40.31 x 1074
Virtual machine mobility (VMM) 40.31 x 1074
Denial of service (DoS) 1439 x 1074
Flooding attacks (FA) 56.44 x 10~
Data loss or leakage (DL) 5.75 x 1074
Malicious insiders (MI) 6.623 x 1074
Account, service, and traffic hijacking (ASTH) 17.277 x 1074
Abuse and nefarious use of Cloud Computing (ANU) 17.277 x 10~
Insecure application programming interfaces (IAI) 29.026 x 10~*
No threats (NoT) 0.9682
Table 3.6 The MFC of Stakeholders | M FC,,/($K/h)
external threats PR 10.61051
CS 2.46562
GS 6.278502
IS 0.002382
Table 3.7 The M FC of Stakeholders | M FCjp ($K/h)
internal threats PR 45932
CS 1.07261
GS 2.7060
IS 0.001035

Computing the new values of the MFC extensions can give us the critical space

of intrusion. In our case, we can adapt some solutions like adding more firewalls,
proxy servers, and antivirus servers. In fact, the MFCext values for Cloud systems
are more significant compared to the MFCint values and hence the Cloud security
risks come mainly from external threats.

The M FC,y; and the M FC;,; give the critical threats space to help managers
to take the appropriate countermeasures. They improve the analysis of the system
vulnerability. They specify the type of solution to minimize the average cost
of failure. In fact, using the threat classification source dimension, they allow
identifying the source of the threats space (either internal or external source) to let
managers concentrate on the intrusion space having the higher mean failure costs.
However, this quantification is not sufficient since threats have several dimensions
like motivation and intention that we must take into account. Therefore, these
models do not provide accurate estimation of costs resulting from threats breaches.
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4.4 Validation of the M F C;,; and the M F C,y;

System stakeholders seek secure information systems to reduce cost and protect
their assets from damage and ensure the confidentiality, availability, and the integrity
of information. To help stakeholders, the MFC metric gives a quantitative value of
security system without any qualification as the security quantification did not allow
deciding whether the system is secured or not. The question for all stakeholders is
whether their system is secure or not.

For this purpose, we propose to find an interval that classifies the security of
information systems. Thus, we propose to find lower and upper bounds of this
interval which present, respectively, the mean failure cost for a 100% secure and
a 100% unsecure system. In fact, the lower bound Blow represents a secure system
with the minimum cost and the upper bound Bupp represents an unsecure system
with a maximum cost. Therefore, we say that a system is secure if its MFC is
lower than the average between the upper bound and the lower bound, that is,
if the MFC < ([Blow + Bupp]l/2) and the system is not secure if M FC >
([Blow + Bupp]/2). Finally, we proceed to the classification of our MFC as secure
or not.

Assuming that the system is secure, the probabilities of system components
failure are very low see null. For this goal, we modify the impact threat classes
matrix ICM as follows: we put O for lines, 1 at the last column, and the last line is
made complementary to the columns and the equilibrium of the line. For an unsecure
system, we make the reverse of founded bounds.

We compute, finally, the lower bound vector of mean failure costs and the upper
bound vector of MFC as shown in Tables 3.8 and 3.9, using our new formula.

To validate our MFC external vector (M FC,y,,;) and the MFC internal vector
(M FCjy;) presented in Tables 3.10 and 3.11 for Cloud Computing system, we
propose to evaluate the stakeholders’ security costs in order to decide if this system
is secure or not.

Table 3.8 M FCey lower Stakeholders | M FC,y; ($K/h)
bound PR 14.92

Cs 3222

GS 10.38

IS 0.0032
Table 3.9 M FCexs upper Stakeholders | M FC,y; ($K/h)
bound PR 4400.5

Cs 1001.6

GS 2805.5

IS 1.029
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Table 3.10 M FCiy; lower Stakeholders | M FC;,; ($K/h)
bound

PR 12.899

cs 2759

GS 9.120

IS 0.0027
Table 3.11 M FCiy; upper Stakeholders | M FC;p; ($K/h)
bound

PR 4260.564

cs 969.749

GS 2716.285

IS 0.9969

For the MFC external model, we notice that for each stakeholder the MFCext
value is lower than ([Blow + Bupp]/2) (M FCey; < [Blow 4+ Bupp]/2); thus, the
system is secure. For the MFCint vector, for each stakeholder we notice as well that
MFCint value is lower than ([Blow + Bupp]/2) (M FCj,; < [Blow + Buppl/2);
thus, the system is secure. Thus, we can deduce that Cloud Computing environment
is a secure system.

In addition to the contribution of the application of MFC model, we can say that
in certain level of Cloud Computing services like the infrastructure as a service layer
(TaaS), it is very difficult to specify a threat in a system component because we can
find a large number of components, in this layer, so it can be better to associate
a class of threats rather than a specific threat for each component. Indeed, as
countermeasures, one solution will solve several problems rather than one problem.

4.5 MFC,yt and M FC;y,; Limits and Advantages

The MFCext and MFCint models present several advantages. In fact, they can
identify the source of the most severe threats causing risk to let managers take the
necessary countermeasures against this intrusion space. So, these models take into
account the source criterion of security threats.

As these models do not take into account all threats characteristics and just
consider one criterion which does not accurately describe a security threat (the
source of a threat), they do not give accurate values on the cost of security failure.

On the other hand, the considered criteria are based on a binary classification
(internal or external), while threat sources may include three subclasses. Subse-
quently, these models do not illustrate accurate estimation of security failure cost
values. In addition, the underestimation of security threat risk presented does not let
managers propose adequate security strategies to mitigate the risk.
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5 The MFC Extension Model (MFCE)

In the next section, we will suggest two cybersecurity measures in order to better
quantify system threats using the source dimension of security threats. In this
section, we propose a new cybersecurity metric referred to as mean failure cost
extension (MFCE), based on threats classification and especially on the hybrid threat
classification (HTC) model [22]. We, then, illustrate this infrastructure by means of
a Cloud Computing application.

5.1 The MFCE Model

In order to improve the estimation of the costs due to security breakdowns, we
propose a quantitative security threats model based on our threats classification
(HTC) [22]. We propose a security solution per threat class. For this reason,
we propose a novel model in which we focus on refining the estimation of the
impact matrix IM and the threat vector PT of the mean failure cost (MFC) model
introduced in Sect. 3. We call this model the MFC extension model (MFCE) [18].
Our cybersecurity model allows studying the impact of a whole class of threats
rather than a mere threat. Indeed, threats are variable in time and security solutions
change over time. The basic idea is to consider a class of threats, try to find solutions
to this class, and consider the probability that a class is present will be the average
of the probabilities of present threats in this class threats in order to achieve a certain
stability of this class in time. This allows converging towards a stability of existence
of a class [18].

For the impact matrix IM, we generate two matrices: the new impact matrix IMC
and the threat classes matrix CM, as shown in Figs. 3.3 and 3.4. Thus, the MFC
extension (MFCE) has the following new formula:

MFCE =SToDPoICMoCM o PT (3.4)

The MFCE model represents a cybersecurity metric as a decision-making
technique to derive relevant decision-making security solutions. This quantitative

Fig. 3.3 The impact threat ICM | Threat classes
classes matrix structure CcH I O I Cls+1
Components
Ci [ |
Prob that Component Ck
fails once threat Class Clr
Ch has materialized
Ch+1 [ |
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Fig. 3.4 The threat classes CM Threats
matrix structure
T I o I Tp+1
Threats classes
Ci1
Prob of having Class Clr
Clr once Threat Tq has
materialized
Cls+1 [

decision-making metric allows selecting countermeasures per threats class rather
than a threat to better study and identify security threats.

5.2 Ilustration of the MF C Extension Model: Cloud
Computing System

We illustrate in this section the application of our new cybersecurity metric (MFC
extension model) on the same computing system in order to compare the derived
results.

We identify, firstly, the security requirements, the stakeholders and their stakes in
meeting these requirements, the architectural components, and the security threats
that affect the Cloud Computing system. Then, we used the matrixes ST, DP, and PT
defined in the previous section. These matrices are shown in Tables 3.1, 3.2, and 3.5.

5.2.1 The Impact Threats Classes Matrix

The following step in our model is to derive the impact threat classes matrix,
i.e., the derivation of the set of threat classes we wish to consider in our system.
We applied our hybrid threat classification presented in previous work [22] on
this case study to generate threat classes. In fact, we proposed in earlier work
[22] a dynamic and multidimensional threat classification model that allows better
defining and articulating of threat characteristics [18]. The model contains the
following criteria:

— Threat source: Origin of threat either internal or external.

— Threat agents: Agents that cause threats that can be human, accidental environ-
mental or technological.

— Security threat motivation: Goal of attackers on a system which can be malicious
or non-malicious.

— Security threat intention: The intent of the human who caused the threat that is
intentional or accidental.

Thus, the classes we have are presented in Table 3.12.
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Table 3.12 Security threat classes for Cloud Computing system

Security threat Classes description

IHMA Insider human malicious accidental threat
IHMI Insider human malicious intentional threat
IHNMA Insider human non-malicious accidental threat
IHNMI Insider human non-malicious intentional threat
OHMA Outsider human malicious accidental threat
OHMI Outsider human malicious intentional threat
OHNMA Outsider human non-malicious accidental threat
OHNMI Outsider human non-malicious intentional threat
EV Environmental threat

IT Insider technological threat

oT Outsider technological threat

Components in a system may fail to meet security requirements due to malicious
activity when a threat class is materialized. The ICM matrix represents eleven
columns, one for each threat class plus one for the absence of threats classes (NoC),
and ten rows, one for each component plus one for the event that no component has
failed during one period of time (NoF). The impact threats classes matrix is given
in Table 3.13 [18].

5.2.2 The Threat Classes Matrix

The threat classes matrix (Table 3.14) shows that each security threat belongs at
most to one threat class, that is, each threat has its proper characteristics. In CM
matrix, columns represent security threats (the last column represents the absence
of threat (NoT)), rows represent threat classes, and a cell CM(q, s) represents the
probability of having Class Clr once Threat Tq has materialized: if a class defines n
threats, then this is 1/n and 0O if it is outside.

We have catalogued fourteen distinct types of threats and eleven threat classes.
To compute the MFC extension (MFCE), we need to know the probability of the
attack class for each threat during 1 h. We need also to fill the values in Table 3.14,
they come from our empirical study [3].

Using the four Matrices (stakes, dependency, impact threat classes, and threat
classes) and the threat classes vector, we can compute the vector of mean failure
costs extension (Table 3.15) for each stakeholder of Cloud Computing system using
the formula:

MFCE =SToDPolICMoCMoPT (3.5)

The MFC vector is shown in Table 3.15.
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Table 3j15 Stakeholder. Stakeholders | MFCE ($K/h)
mean failure cost extension
PR 280.551
CS 63.856
GS 178.863
IS 0.065
Table 3.16 M FC lower Stakeholders | MFC ($K/h)
bound
PR 8.018
CS 1.824
GS 5.111
1S 0.001
:ablz 3.17 MFC upper Stakeholders | MFC ($K/h)
ount PR 1923.666
CS 437.846
GS 1226.416
1S 0.065

5.3 Validation of the MFCE Model

Using the same method presented in the previous section, we calculate the upper
and the lower bounds for the mean failure cost extension (MFCE) model.

Assuming that the system is secure, the probabilities of failure of system
components are very low see null. For this goal, we modify the impact threat classes
matrix ICM as follows: we put O for lines, 1 at the last column, and the last line is
made complementary to the columns and the equilibrium of the line. For an unsecure
system, we make the reverse of founded bounds.

We compute, finally, the lower bound vector of mean failure costs and the upper
bound vector of MFC as shown in Tables 3.16 and 3.17, using our new formula.

To validate our MFC extension vector (MFCE) presented in Table 3.15 for Cloud
Computing system, we propose to evaluate the stakeholders’ security costs in order
to decide if this system is secure or not. As we notice that the MFC values for
Cloud Computing system are lower than the average of the MFC bounds for each
stakeholder presented in Tables 3.16 and 3.17, so we can say that Cloud Computing
environment is a secure system.

6 Conclusion

Security represents a major problem for information systems and organizations must
estimate costs due to security breaches. Security risks are caused by various inter-
related internal and external factors. A security vulnerability could also propagate
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and escalate through the causal chains of risk factors via multiple paths, leading to
different system security risks. In order to estimate threats risks we propose three
models that are based on threats classification. The M FC;,,; and the M FC,,; are
based on the threat source dimension to identify the source of threat space. The
MEFCE enables a system’s stakeholders to quantify the risks they take with the
security of their assets and it is based on the HTC model. In addition, we propose to
qualify security breaches costs by suggesting a cost interval to classify the security
quantification for information system to decide whether the system is secure or not.
These security analysis models enable organizations to predict the financial costs to
lose due to threats breaches, which is validated via a case study.

We envision to develop an extendable quantitative security risk assessment model
that considers several threats dimensions to give more accurate security loss values.
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