
Chapter 2
An Investigation Study of Privacy
Preserving in Cloud Computing
Environment

Ahmed M. Manasrah, M. A. Shannaq, and M. A. Nasir

Abstract Cloud computing allows users with limited resources to farm out their
data to the cloud for computation, bandwidth, storage, and services on a pay-per-
use basis. Consequently, researchers worldwide are trying to address issues related
to the user’s data privacy through proposing various methods such as outsourcing
data in an encrypted form. However, encrypting data will conceal the relationships
between data. Moreover, due to the voluminous data at the data centers, designing an
efficient and reliable online-encrypted text-based searching scheme is challenging.
Therefore, this paper surveys the state of the art on the data privacy preserving over
the cloud through analyzing and discussing the various privacy-preserving methods
that were proposed to sustain the privacy of the user’s data. The pros and cons of the
surveyed approaches are drawn in comparison with each other. Finally, the results
are consolidated and the issues to be addressed in the future are concluded for the
advancements in cloud data privacy preserving.

Keywords Cloud computing · Cloud storage · Privacy preserving

1 Introduction

The establishment of cloud has brought tremendous benefits to users and enterprises.
The idea behind the establishment of the cloud is to allocate ubiquitous, on-demand
access to processing resources and data storage to computers and other devices to
store and process their data at a third-party data centers that might be located outside
their premises. The allocated on-demand resources can be invoked and revoked with

A. M. Manasrah (�)
Computer and Information Science Department, Higher Colleges of Technology, Sharjah, UAE

Computer Sciences Department, Yarmouk University, Irbid, Jordan
e-mail: amanasrah@hct.ac.ae; ahmad.a@yu.edu.jo

M. A. Shannaq · M. A. Nasir
Computer Sciences Department, Yarmouk University, Irbid, Jordan

© Springer Nature Switzerland AG 2020
B. B. Gupta et al. (eds.), Handbook of Computer Networks and Cyber Security,
https://doi.org/10.1007/978-3-030-22277-2_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22277-2_2&domain=pdf
mailto:amanasrah@hct.ac.ae
mailto:ahmad.a@yu.edu.jo
https://doi.org/10.1007/978-3-030-22277-2_2

44 A. M. Manasrah et al.

SaaS

PaaS

IaaS

Cloud
Provider

PDA/phone

Laptops

Pc

Email, Games..etc

Database, webservers,...etc

Storage, servers, network,...etc

Fig. 2.1 Cloud component, typically Infrastructure as a Service (IaaS), Software as a Service
(SaaS) or Platform as a Service (PaaS) [1]

minimal administration efforts. The shared resources aim to provide coherence and
economy of scale, such as the utilities over the networks (electricity, gas, water,
etc.). Therefore, companies and enterprises can avoid different infrastructure costs
and focus more on their business and productivity.

A cloud provider (or cloud service providers or CSPs) offers some cloud
computing components (see Fig. 2.1) on a “pay as you go or pay per use” basis.
This may lead to high charges if the cloud-pricing model is not well adapted by the
administrators.

With the constant growth in demand for cloud computing, the cloud provider
might not meet the different organizations legal need while they need to contemplate
the benefits of using the cloud against its risks. For instance, the control of the
back-end infrastructure is limited only to the CSP. Moreover, CSPs often decide
on the usage and management policies, which might abate the cloud user’s ability
over their deployment. Cloud users are also restricted with certain control and
management policies of their applications, data and services, such as allocating
certain amount of bandwidth for each customer and are often shared among other
cloud users. Cloud computing involves constraints that make the progress in cloud
computing services challenging; these constraints are consolidated in Table 2.1.

The reliance of the cloud computing usage by organizations and users has
taken a long time since the time cloud computing came into existence. The reason
behind this delay in adopting cloud computing is the security concerns because
IT security is challenging even under the best of circumstances. Typically, the
cloud environments are likely to have strong security measures deployed at their
infrastructures. However, companies and organizations are of more concern of
security at the CSP.

The CSP might not be able to meet the regulatory requirement of a company or
organization. For instance, a law that allows the government to get at the data in
secret is a demotivating factor for foreign companies to store their data inside such
countries. Other countries may have even more rigorous government-access rules.

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 45

Table 2.1 Cloud computing constraints and challenges

Constraint/Challenge Description

Naming
heterogeneity

When the customers and the cloud service providers, using different
names to identify attributes

Multi-occupancy Allows multi-occupants to have an isolated environment for each one in
terms of (CPU, memory, and network) in the same physical machine

Virtualization Allows multi-occupants to execute their applications on the same
physical environment, but separately

Forward secrecy Old security keys cannot be accessed by any group member
Backward secrecy Future generated keys should not be accessible to previous group

members hence, cloud data is only accessible to privileged users
Searchable
encryption

Encrypted cloud data should be searchable without decrypting the data
neither the query and the returned records satisfy the search query

Typically, in the cloud environment, the data are processed or stored at data centers
that are located far away from the organization city or country. Therefore, losing
the control of the data is a security risk to most of the world organizations because
in this case, someone else is controlling the data (i.e., the CSP). The concern is
even amplified with free CSPs especially that SCPs can delete the outsourced data
if they believe that the data violating some service terms [2–4]. Even though the
demand for cloud computing is increasing, the concerns about users’ data privacy
are also increasing and formidable. Therefore, another set of issues concerning the
advances in the field of privacy preserving for users’ identity and their data also
exists and acts as a barrier in this regard as shown in Table 2.2. Unfortunately,
providing and preserving data privacy in the cloud have not been fully developed
yet, and still require extra efforts in order to achieve successful results. Therefore,
addressing all these issues could assist in designing novel privacy-preserving
searching mechanisms over encrypted cloud data that are secure against intruders
or attackers. Such designs could be a mark of success in the preservation of privacy
in Cloud Computing.

In this paper, the issues related to cloud data privacy preserving are addressed.
Various existing approaches related to data encryption concerning cloud data
privacy preserving are discussed. After studying the existing approaches, issues and
challenges are pointed out. To the best of our knowledge, this is the first survey
that shortlist the issues and challenges of users and data privacy preserving over the
cloud along the various possible solutions for the future researches.

2 Privacy-Preserving Methods

Various efforts have been made to address the preservation of data privacy over the
cloud. This paper analyzes some of those efforts and provides a brief overview to
the most known approaches in the field. This paper therefore classifies the privacy-
preserving approaches in cloud computing into five broad categories as illustrated
in Fig. 2.2.

46 A. M. Manasrah et al.

Table 2.2 Privacy-preserving issues and challenges

Issue Challenge

Insufficient control The data are stored and processed in the cloud out of the data
owner control

Lack of training and expertise The constant change and complexity of the cloud environments
forces the data owners to provide special expertise to manage the
different cloud technologies. Therefore, recruiting and training
talents are the barriers against implementing cloud strategies

Information disclosure Since sensitive information and user’s data move across the
cloud, does the CSPs disclose any information to governments

Unauthorized storage/usage Backups should not reveal neither it is possible to access and
retrieve Sensitive information should not be accessed or revealed
from Backups

Uncontrolled data
proliferation

The data flow in the cloud should not be predictable neither
controllable

Dynamic provision The dynamic nature of the cloud should always keep the privacy
of the data and their owners unclear, even for a legally
responsible entity

Data accessibility, transfer
and retention [5]

How the data on cloud are being accessed, destructed and by
whom?

Location of data The physical location of the storage servers may have legal
implications (such as Jurisdiction issues)

Data security and disclosure
of breaches

How the customer’s data being protected by the CSPs. Does the
CSP alert customers when cloud security is breached?

Addressing transborder data
flow restriction [6]

Does the CSP adopt an international regulatory and compliance
laws and rules? How the data protection across different
regulatory and legal jurisdictions is maintained?

Query Integrity
based Techniques

Data Partitioning
based Techniques

Trusted
Computing
Techniques

Searchable
Encryption based

Techniques

Access Control
based Techniques

Privacy Preserving techniques in the Cloud

Fig. 2.2 Categories of privacy-preserving techniques in cloud computing

The following subsections examine most of the known cloud-based privacy-
preserving methodologies and analyze these methodologies in terms of their pros
and cons in comparison with each other.

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 47

3 Searchable Encryption-Based Techniques

Generally, IT managers and even individuals are likely to be cautious of delegating
the control of their data to outside service providers because information stored at a
third party may have weaker privacy protections than information in the possession
of the creator of the information. Moreover, the outside provider has the right to
change their underlying technology without their customer’s consent, which may
cause issues related to performance, and latency [4, 7]. Traditionally, data privacy is
preserved by cryptographic primitives by the side of unique and secure identities for
the queries and their responses jointly with usage/access rights policies. However,
searching over the encrypted data is a formidable mission. Moreover, users normally
lose control over their encrypted outsourced data in a tradeoff relation to their
security and privacy preservation of the outsourced data. However, considering the
diverse types of data that can be stored in the cloud and the user’s demand for the
data safety, preserving the data privacy in the cloud becomes even more challenging
[8].

For instance, looking for certain data that are stored in an encrypted form in
the cloud, one may need to download all encrypted data, and then decrypts and
searches them. However, it is not efficient neither convenient especially with huge
encrypted data or a resource constraint devices. Alternatively, the user may require
sending his private key to the cloud server to perform the decryption and searching
procedures on his behalf. However, sending the private key to the cloud server may
cause serious issues with data files integrity and secrecy [9–13]. Therefore, to ensure
the privacy of the outsourced data, different searchable encryption-based systems
have been proposed. These searchable encryption-based systems entail encrypting
the data by the data owner before outsourcing it to the cloud with the ability to
search and retrieve relevant data through a keyword search or ranked keyword
search techniques. These searchable encryption schemes can be divided into three
categories: Symmetric-key based techniques, Fuzzy-searchable based techniques,
and Public-key based techniques as portrayed in Fig. 2.3.

Searchable Encryption based Techniques

Symmetric Key
Based Techniques

Fuzzy-searchable
based Techniques

Public key based
Techniques

Fig. 2.3 Taxonomy of searchable encryption-based techniques

48 A. M. Manasrah et al.

3.1 Symmetric-Key Based Techniques

The symmetric-key encryption system allows a data owner to outsource his data,
encrypted with a symmetric encryption-based techniques (i.e., stream cipher), to un-
trusted locations over the cloud. The encrypted outsourced data are still searchable
for relevant files by means of a trapdoor (i.e., a keyword) that is generated via the
data owner private key. The generated trapdoor will be transferred to the server to
search for a matched encrypted data with the trapdoor. In this regards, Song, Wagner
[14] introduced an encryption and a searching technique over encrypted data
with sequential scanning. The authors construct a special two-layered encryption
technique that allows searching over cipher-texts without disclosing any sensitive
information to the server. The authors proposed to encrypt each word separately
assuming that each word has the same length, and then compute the bitwise
exclusive or (XOR) with a special sequence of pseudorandom bits inside the plain
text. To carry out the search, the data owner must create a private key (ki) that is
corresponded to the locations of the searched word (Wi). The generated private key
is then XORed with the cipher-text (Ci ⊕ Wi) to extract a corresponding structure
that is in the form 〈s, Fki(s)〉 where (s) is some pseudorandom sequence values
generated using some stream cipher, and Fki(s) is a pseudorandom function. In
this technique, the complexity of encrypting the data and searching for a specific
keyword over the encrypted data increases at most linearly with the size of the
files collection and the data length. For instance, for a document of length (n)
words, the encryption and the searching algorithms require O(n) stream and block
cipher operations. However, the proposed technique leaks important information
about the documents using any statistical techniques. To handle the variable length
words, Goh [15] developed a semantic secure indexes model to prevent leaking any
sensitive or statistical information of the outsourced documents against adaptive
chosen keyword attacks. The proposed model constructs an index for each document
based on pseudo-random functions used as hash functions, and Bloom filters (BF)
as a document word index. The word in this model is represented in an index by a
codeword for each document which is derived through applying the pseudorandom
function once with the word as input and another with a unique document identifier.
The non-standard use of the pseudorandom function is to prevent correlation attacks.
To search over encrypted documents for the word (y), the user should compute the
trapdoor Ty ← Trapdoor

(
Kpriv, IDi

)
for the word (y), where (Kpriv) is the master

private key, (Di) is a unique document identifier, and IDi is the index for each
document (Di). The trapdoor (Ty) is then send to the server where the encrypted
documents and the corresponding BF index IDi = (Di, BF) existed. The server tests
for a match with the documents through the function SearchIndex

(
Ty, IDi

)
. The BF

is represented as an array of bits initially set to 0, and a set of hash functions to mark
a set element as 1 of some array positions. To verify if an element belongs to the BF
array, the hash values for this element are computed to identify the corresponding
array positions. If any of the bits at these positions is 0, then the element is not in
the set. This technique provides O (1) search time complexity per document and

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 49

can handle variable length words. However, this scheme only supports exact match
queries.

Similarly, Chang and Mitzenmacher [16] built a dictionary-based keyword index
for each document based on pseudo-random functions. The authors aim to mask
a dictionary keyword index for each file using pseudo-random bits to be kept at a
remote server. On the other hand, the users can easily retrieve certain files using a
short seed that enables the server to unmask selective parts of the index. For each
file, an index is created as a set of linked lists, each linked list is associated with a
list of keywords in the dictionary of the corresponding file. Initially, all values are
set to 0, then if the document mj contains the keyword wi, its index position Ij[Ps(i)]
is set to 1. The users compute a secrete value ri using a mapping function F where,
ri = Fr(i), i ∈ [2d]. For each document, a masking index string Mj is created through
a document mapping function G, such that Mj[i] = Ij[i] ⊕ Gri(j). The documents
are then encrypted using an encryption algorithm and the encrypted documents are
outsourced to the cloud along with the corresponding index mask string Mj. Two
secrets keys (s) and (r) along with the dictionary are kept at the user’s device. Since
the authors presume that the data owners are using mobile devices with limited
bandwidth and storage space, their solution incur minimum overhead in terms of
bandwidth and storage. The search time for this approach is O(n/p), where (n) is
the size of the documents collection and (p) is the number of cores. However, this
scheme supports an exact single keyword match queries.

To improve the efficiency and the security to a higher degree compared to
the previous schemes and to support multi-user environments, Curtmola, Garay
[17] proposed a searchable broadcast encryption scheme. The proposed searchable
symmetric encryption (SSE-1 and SSE-2) is based on an index per document.
The user that owns the data can grant/revoke privileges to authorized users to
access/query the outsourced data. In this schema, the proposed index has an array
that holds a collection of linked list for documents identifier containing a keyword
D(wi) in an encrypted form and a look-up table to trace and decrypt the first elements
of each list in the array. The nodes of the linked list Li are the document identifiers
D(wi) that contain the keyword wi. The array locations are the nodes of all Liin a
scrambled way. The lookup table (T) entries on the other hand are the keywords wi

index in the array and the decryption key of the first element in Li. Both the array and
the lookup table are encrypted and kept at the server along with the encrypted files.
However, if a position in the array is known along with first node encryption key,
one can trace and decrypt the other nodes of Li which correspond to the document
identifiers D(wi). In this schema, the server complexity is constant per document
with the searched word, and the overall complexity for each query is proportional
to the number of documents that have the searched single word. The computation
and the storage complexity at the user side is O(1) and the search time for the server
is optimal, but the update of the index is inefficient. Similarly, Chase and Kamara
[18] considered stronger security definitions to produce schema that is efficient,
associative, and adaptively secure in structured data. The authors of this schema
proposed an encryption model for structured data like social networks, images,
maps, location information, etc. and, at the same time, the proposed structured

50 A. M. Manasrah et al.

data can be privately queried. The focus of this scheme is to build a structured
encryption algorithm that is searchable using specific query token if the secrete
key is known. The structured data encryption algorithm operates over a labeled
data that has a label (L) and a sequence of data items (m) (i.e., connecting a set
of keywords to each data item). For each keyword (w), an array is initiated to
hold a pointer j from the pseudo-random permutation set GK(L(w)) and the semi-
private item vi. In this schema, the dictionary was implemented based on hash
tables which makes this schema yields an optimal search time O(|I|). However, the
encrypted index can be very large. Similarly, van Liesdonk et al. [19] proposed
a schema to deal with adaptive security based on one index per keyword to
support efficient search and updates of the documents stored at a CSP server. Their
proposed scheme converts each distinct keyword into a searchable representation
of the form SW = (fkf(w), m(Iw), R(w)) that can be tracked by the trapdoor Tw =(
fkf (w) , R′ (w)

)
with the ability to efficiently update the searchable representation

whenever needed. fkf
(w) is a pseudorandom function that identifies SW , m(Iw) is a

masking function for the collection of documents IDs that contains the keyword
(w), R(w) and R

′
(w) are the associated unmasking functions. In case fkf

(w) is
found, the server sends back the encrypted data items with the matched IDs in Iw

to the client. Even though this schema uses only a simple primitive like pseudo-
random functions, but it still obliges for two rounds of communication to generate,
update the index, and to search for the documents. Finally, the proposed schema
may produce a very large encrypted index. Kurosawa and Ohtaki [20] proposed a
schema that is slightly stronger than Curtmola et al. [17]. They proposed a verifiable
searchable symmetric encryption scheme that is universally composable (i.e.,
Protocols security is preserved even if arbitrarily composed with other instances of
the same or other protocols) [21] and reliable against active adversaries or malicious
servers. They address the issue of an active adversary who might forge the encrypted
files to make the retrieving of the files incorrect. The proposed schema is translated
to a client/server protocol. The protocol has two phases: (1) the store phase which
is executed once by the client to compute (I, C) ← Enc(Gen(1k), D, W), where I
is an encrypted index of the keywords W, C is the encrypted documents D, and
the Gen(1k) is the secrete key. (2) The search phase which is executed many times
by the server to compute (C(w), Tag) ← Search(I, C, Trpdr(K, w)), where C(w) is
a ciphertext of D, t(w) ← Trpdr(K, w) is a trapdoor generated by the client in
response to a keyword w query and Tag is MAC(K, m) a tag generation algorithm

for a message m encrypted using the key K. If the client receives
(

C̃ (w) , Tag
)

from the server, the client verifies the validity of the received Tags the Tag

Accept/Reject ← Verify
(
K, Trpdr (K,w) , C̃(w), Tag

)
. The client decrypts the

files if the verification functions returns accept. The proposed scheme consists of
six polynomial time algorithms and requires a linear searching time, but supports
only single-keyword search.

None of the previous schemes is explicitly dynamic with the ability to add, delete,
and update files efficiently. Therefore, Kamara and Papamanthou [22] proposed
to extend the inverted index approach proposed in Curtmola and Garay [17] and
construct a new sublinear-time schema that is secure against adaptive chosen

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 51

keyword attacks. The proposed schema has reduced index sizes with the ability
to add/delete files efficiently. Therefore, they added three extra encrypted data
structure, namely search array, search table (i.e., dictionary), and a deletion array
that can be used by the server to monitor the search array positions in case of
an update. They used a homomorphic encryption scheme to encrypt the node’s
pointers. To modify the pointer without ever having to decrypt the node, they used
a private-key encryption scheme which consists of XORing the message with two
pseudo-random functions. Finally, they added a free list that can be used by the
server to determine the free locations to add new files. The proposed dynamic
index-based schemes are a tuple of nine polynomial-time algorithms. The client
generates a secret key K ← Gen(1k) to be used for the files (D) encryption to
produce an encrypted index I and a sequence of ciphertexts C (I, C) ← (K, D).
In order for the client to search for a keyword, the client builds a search token
τs ← SrchToken(K, w). The client can also request to add or delete a file (f) through
generating add (τa, Cf) ← AddToken(K, f) or delete τa ← DelToken(K, f) tokens.
The clients also can issue a search request Iw ← Search(I, C, τs) with the encrypted
index I, a sequence of ciphertexts C and a search token τs to retrieve a sequence of
files identifiers Iw ⊂ C. In this schema, the searching time for the server is linear (by
using a hash table) which is optimal, but this approach is very complex and difficult
to implement.

Moreover, the search procedure cannot be parallelized on the server because
they represent a T-set as a linked list. As a result, Kamara and Papamanthou
[23] improved the efficiency further through proposing a new dynamic and highly
parallelizable sub-linear searchable symmetric encryption scheme based on the
multi-core architectures. In this schema, they used a new tree-based multi-map
data structure which they call a keyword red-black tree (KRB). The KRB tree is a
dynamic data structure that is similar to an inverted index but can be used to answer
multi-map queries efficiently. The KRB allows both keyword-based search and file-
based search operations. This schema is useful for handling updates efficiently. The
parallel search is executed similar to the binary trees, where the first processor
searches for a specific keyword at the root of the tree. The tree will be divided
into two sub-trees, the first processor continues with one sub-tree while another
processor is assigned to the other sub-tree. The set of keywords are kept in a
keyword hash table as a tuple (key, value) with a key of exponential size and the
value is an encryption of a Boolean value. This approach yields very efficient
schemes in less than the optimal sequential search time, and allows efficient updates,
but this scheme is designed only for single keyword Boolean search, that means
whether or not the keyword exists. A complete comparison of all the schemes can
be found in Table 2.3 and Table 2.4.

Although these searchable symmetric encryption techniques allow a user to
search securely over encrypted data through keywords, the main disadvantage with
these techniques is that they support only exact keyword searches. Consequently,
this reduces the system efficiency because the search complexity will be the number
of distinct keywords in the document collection. Another approach to solve such
problems are the Fuzzy-Searchable Encryption based systems.

52 A. M. Manasrah et al.

Table 2.3 Comparison of several symmetric-key encryption schemes

Scheme Dynamism Search time Index size

Song et al. [14] Static O(n/p) N/A
Goh [15] Dynamic O(n/p) O(n)
Chang and Mitzenmacher [16] Static O(n) O(mn)
Curtmola et al. [17] Static O(r) O(m + n)
van Liesdonk et al. [19] Dynamic O(r) O(mn)
Chase and Kamara [18] Static O(r) O(mn)
Kurosawa and Ohtaki [20] Static O(n) O(mn)
Kamara et al. [22] Dynamic O(r) O(m + n)
Kamara and Papamanthou [23] Dynamic O((r/p) log n) O(mn)

Where n is the size of the document collection, r the number of documents containing keyword w,
m the size of the keywords space, and p the number of cores

Table 2.4 Comparison of several symmetric-key encryption schemes

Scheme Description Main drawbacks

Song et al. [14] A technique for searching in encrypted data
with sequential scanning by using a special
two-layered encryption construct that allows
searching the cipher-texts

It leaks important
information about the
documents using statistical
techniques, and only works
with words of the same
length

Goh [15] An efficient secure index construction based
on pseudo-random functions and Bloom filters

Supports only exact match
queries

Chang and
Mitzenmacher
[16]

A dictionary-based keyword index for each
document based on pseudo-random functions

Supports only exact match
queries

Curtmola et al.
[17]

A solution for the multi-user problem based
on broadcast encryption

Updates to the index are
inefficient

Kamara et al. [22] An efficient, associative, and adaptively
secure schema based on creating a model for
structured data

The encrypted index can be
very large

van Liesdonk et
al. [19]

Two schemes based on one index per keyword
to support efficient search and updates of the
database

The encrypted index can be
very large

Kurosawa and
Ohtaki [20]

A verifiable searchable symmetric encryption
scheme that is universally composable

Supports only
single-keyword search

Kamara et al. [22] A new schema that achieves the properties
based on the inverted index approach [17]

Complex and difficult to
implement

Kamara and
Papamanthou [23]

A new dynamic and sub-linear searchable
symmetric encryption scheme that is highly
parallelizable based on the multi-core
architectures

Single keyword Boolean
search

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 53

3.2 Fuzzy-Searchable Encryption

Fuzzy keyword search returns the matching files to the users’ searching inputs
that even matched exactly to a set of predefined keywords or the closest possible
matching files based on keyword similarity semantics, because fuzzy keyword
search can tolerate minor typos and formatting inconsistencies [24]. In this regards,
Adjedj et al. [25] described a way to solve the issue of preserving privacy in a
biometric identification system using a fuzzy search scheme. They used symmetric
searchable encryption (SSE) which allows a client to encrypt the data in such a
way that these data can still be searched to achieve reasonable computational costs
for each identification request. In this schema, they combined SSE and locality-
sensitive hashing (LSH). The main purpose of using LSH is to make outputs the
same result for near points and a different result for distant points by using a
matching algorithm which computes a similarity score between the two points. By
using SSE architecture, the secret keys are stored on the client side but not on the
database side (i.e., server side stores the encrypted data without secret keys). This
will ensure the privacy of the stored data, but it is unsuitable for many applications,
such as when data are frequently updated or streaming.

In an attempt to tolerate minor typos and formatting inconsistencies, Li et al. [24]
realized that depending on a spell checker mechanism does not address the problem
(i.e., mistyped words or two valid words typed interchangeably) due to the extra
communication cost with the users to identify the correct words. Therefore, they
proposed the first solution for effective fuzzy keyword search over encrypted cloud

data. They constructed a wildcard-based fuzzy set Swi,d =
{
S′

wi,0
, S′

wi,1
, . . . , S′

wi,d

}

with edit distance d for each keyword wi ∈ W before building the index. The
S′

wi,τ
denotes the set of words w′

i with τ wildcards representing the edit operations
on wi ∈ W. This technique can deal with minor typo errors when users type in
query keywords through using the edit distance to quantify keyword similarity
through semantic keyword with edit distance d = 1 from wi. That is, all the
words that are satisfying the similarity criteria ed

(
wi, w′

i

) ≤ d are listed. The

index
{({

Tw′
i

}
w′

i ∈ Swi,d, Enc
(

sk, FIDwi

∥∥
∥wi

))}
wi ∈ W with the set of encrypted

files IDs (FIDwi) that contain the keyword wi is built and a trapdoor set
{

Tw′
i

}
is

computed for each wordw′ ∈ Swi,d. The index and the encrypted files are then
outsourced to the cloud server for storage. The secret key sk is shared between the
data owner and authorized users. To search for a keyword w with a private key k, the

authorized user computes the trapdoor set
{

Tw′
i

}
w′ ∈ Sw,k and send to the server.

The server then compares the request with the index table and returns all possible

encrypted file identifiers
{

Enc
(

sk, FIDwi

∥∥∥wi

)}
. The size of the index Swi,d with a

keyword length of l and edit distance of d is O(ld). This schema is secure and privacy
preserving, but it is only applicable to strings under edit distance, and fuzzy sets
may become too big with longer words, which necessitates issuing large trapdoors
sets. Therefore, Kuzu et al. [26] described an efficient similarity search over the

54 A. M. Manasrah et al.

encrypted data based on the locality sensitive hashing (LSH) which is the nearest
neighbor algorithm for index creation and the bloom filter (BF) for translation of
strings, to provide a more generic solution and to utilize the distinct similarity search
contexts. Similar features are put into one bucket with high probability due to the
property of LSH while not similar features are kept into different buckets. This
schema embeds the query string into the BF and represented as a set of n-grams.
Each n-gram is then subject to a hash function and the corresponding bit locations
are set to 1. They use a publicly available typo-generator which produces a variety of
spelling errors to check if the keywords contain typographical errors, and to measure
the Jaccard distance between the encodings of the original and perturbed versions,
to determine distance thresholds for their Fuzzy Search scheme. In this schema, one
round is needed for a limited number of data items with large set of features, and
two rounds are needed if the number of data items is huge, but it introduce a certain
degree of false positive rate in the searching results.

However, a semi-honest-but-curious cloud server might save its computation
or download bandwidth through executing only a fraction of the search operation
honestly and return a fraction of the search results honestly as well. Therefore,
a verifiable scheme is needed to ensure that the user can verify the correctness
and the completeness of the search results. In this regards, Wang et al. [27]
proposed a new efficient and verifiable fuzzy keyword search (VFKS) scheme
over the encrypted data in cloud computing to return the closest possible results
based on similarity semantics. They use a wildcard-based fuzzy keyword set
and the BF to enable a fuzzy keyword search over encrypted data and maintain
keyword privacy and the verifiability of the search result. Their approach consists of
the algorithms (Keygen, Buildindex, trapdoor, search, Verify). In which the Keygen
algorithm (sk, sk

′
) ← (Keygen(1k)) executed by the data owner with a security

parameter k to produce the secrete key (sk) to generate the index and the document
encryption key (sk

′
) used to decrypt the document. The Buildindex algorithm

GW ← Buildindex(sk, W) executed by the data owner to create the index GW, i.e.,
a symbol-based tree using the secrete key (sk) and the distinct keyword set of the
documents collection D.

The symbol-based index tree GW and the encrypted documents are outsourced
to the cloud server. The user can generate a trapdoor set {Tω′ } ω′ ∈
Sω,d ← trapdoor

(
sk, Sω,d

)
for all wildcard-based fuzzy keywords Sωi,d ={

S′
ωi,0

, S′
ωi,1

, . . . , S′
ωi,d

}
of the keyword ω

′
with edit distance ed(ω, ω

′
) < d. The

server executes the search algorithm (flag, IDω, proof) ← Search (GW , {Tω′ }) upon
receiving the user trapdoor set {Tω′ } to search for the document with keyword ω and
return the document identifier IDω, true and a proof if document existed otherwise
false, and a proof. The user executes (true/false) ← Verify(Tω, (flag, IDω, proof)) to
verify whether the server is honest or not over the search result (flag, IDω, proof)
and outputs true if the server honestly search, otherwise false is returned. They
utilized the well-known multi-way tree to store the fuzzy keyword set over a
predefined symbol set, which might grow in size if the keyword length is huge. This
schema is secure and privacy preserving, while supporting efficient verifiability

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 55

Table 2.5 Comparison of several Fuzzy-searchable encryption schemes

Scheme Description Main drawbacks

Adjedj et al.
[25]

A way of solving the issue of preserving
privacy in a biometric identification system
based on a fuzzy search scheme

Unsuitable for many
applications when data are
frequently updated or streaming

Li et al. [24] The first solution for effective fuzzy
keyword search over encrypted cloud data
based on a fuzzy set for the keywords before
building the index

Has a long word which
necessitates performing large
trapdoors

Kuzu et al. [26] An efficient similarity search over the
encrypted data based on LSH and BF

Introduces a certain degree of
false positive rate in the
searching

Lu [28] A privacy-preserving search logarithm over
the encrypted data to support a range of
queries based on Logarithmic Search on
Encrypted Data

The indexing information
makes it as vulnerable as
order-preserving encryption

Wang et al. [27] A new efficient and verifiable fuzzy
keyword search based on the method of
wildcard-based fuzzy keyword set and the
BF

The same key is used to encrypt
and decrypt the data

of the searching result. However, this schema focuses on key word search but
does not consider a phrase search. Moreover, the index generation is handled by
the data owner, which means that the owner might abandon the exact keyword
index constructed before and generate a specialized fuzzy-keyword index for fuzzy
search, hence wasting much more computation and storage resources (Table 2.5).

All these previous techniques are based on symmetric key encryption, in which
the same key is used to encrypt and decrypt the data. To enable an authorized user to
access the encrypted data, the data owner must share this key. By sharing this key,
unauthorized users can also use this key to access the encrypted data.

3.3 Public-Key Encryption

A searchable symmetric key-based encryption schema are valid for users owning the
data and wish to upload it to a third-party and untrusted server (i.e., cloud server). On
the other hand, there are cases when the outsourced data (medical data, stock quotes,
emails, etc.) are public and uploaded by different owners and the user is not aware of
it, at the same time, the user wishes to retrieve certain files without revealing to the
server which file he wants. The public-key encryption with keyword search is the
solution for such cases. The public-key encryption uses two different keys, private
and a public key. The private key is given by the data owner to the users and the
public key is given to the server in this context as illustrated in Fig. 2.4.

The first searchable encryption scheme using a public key system was proposed
in [29]. This scheme can be extended to handle range, subset, and conjunctive

56 A. M. Manasrah et al.

Fig. 2.4 Public-key encryption architecture

queries. It also hides the attributes for messages that match a query. They use
identity-based encryption (IBE), in which the keyword acts as the identity. The
proposed searchable public-key encryption consists of four polynomial time ran-
domized algorithms (KeyGen, PEKS, Trapdoor, Test). The data owner generates
his public/private key pair using the algorithm (Apub, Apriv) ← KeyGen(s) over a
security parameter s. In order to search for any keyword W, the user generates a
trapdoor TW ← Trapdoor(Apriv, W) using their private key Apriv for certain key-
words W. The server determines whether a document contains one of the keywords
W specified by the users (yes ‖W = W

′ | no ‖W �= W
′
) ← Test(Apub, S, TW) through

the received Trapdoor TW, the given public key Apub and a searchable encryption
S = PEKS(Apub, W

′
). The proposed scheme has two constructions for 12public-key

searchable encryption: (1) An efficient construction based on a variant of the Diffie–
Hellman (BDH) assumption by building a non-interactive searchable encryption
scheme from a bilinear map. They have proved that this scheme is semantically
secure against a chosen keyword attack in the random oracle model based on the
difficulty of the bilinear Diffie–Hellman problem. (2) A limited construction using
any trapdoor permutation, which is less efficient because this construction assumes
that, general trapdoor permutations assuming that the total number of keywords the
user wishes to search for is bounded by some polynomial function in the security
parameter. They can reduce the size of the public file by allowing the user to re-use
individual public keys for different keywords. In this schema, the searching time is
linear, but Public key solutions are usually computationally expensive. Furthermore,
the keyword privacy cannot be protected in the public key setting, since the server
could encrypt any keyword with a public key and then use the received trapdoor
to evaluate the ciphertext. Finally, the proposed constructions are applicable to
searching on a small number of keywords rather than an entire file.

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 57

Bellare et al. [30] proposed a deterministic searchable public-key encryption
scheme. The main idea in this technique is to associate a tag with a plaintext,
which can be computed by the client to form a particular query F(pk, x1) and by
the server from a ciphertext that encrypts it G(pk, c). They can then use this tag
(i.e. the output of the polynomial time algorithms F, G) to create a tree-based index
that can be used for searching. Since searchable tags are deterministic, the server
can organize them in a sorted system and match the minimum logarithmic time.
The proposed scheme consists of three polynomial time algorithms AE = (K, E, D).
This schema is t-efficiently searchable encryption where t(.) < 1 ∀ xi ∈ Ptsp(k),
Ptsp(k) is the plaintext space and the probability F(pk, x1) = G(pk, c) = 1 over
(pk, sk) ← K(1k)andc ← E(pk, x1). This technique is a combination of any public-
key encryption scheme and any deterministic hash function and so this scheme is
secure, but they have left without solution the problem of finding standard model
schemes. The issue of this proposed approach is that it only provides privacy to text
drawn from a space of large min-entropy.

A range of queries over multiple attributes in the public key settings have been
studied in the herein cited study [31]. They proposed an encryption scheme called
Multi-dimensional Range Query over Encrypted Data (MRQED) that allows a
network gateway to encrypt summaries of network flows before submitting them
to the cloud. The proposed scheme was proven with the network audit logs. An
authority can release a public key to an auditor to decrypt flows within certain
ranges only. The proposed scheme operates over a tuple of flow features (t, a, p)
representing the flow timestamp range t ∈ [t1, t2], the flow source address range
a ∈ [a1, a2] and the destination flow port number range p ∈ [p1, p2]. Their
proposed range queries imply (t ≥ t1) ∧ (a = a1) ∧ (p1 ≤ p ≤ p2) where
all flows (t, a, p) within the defined range can be decrypted with the provided
decryption key without revealing the other flow attribute values nor issuing huge
number of keys. The proposed schema consists of four polynomial-time algorithms
(Setup(k, L�), Encrypt(PK, X, Msg), DeriveKey(PK, DK, B), QeurtyDecrypt (PK,
SK, C)) in which the setup algorithm (PK, SK) ← Setup(k, L�) over a security
parameter k and a point in lattice L� (represents a tuple as a point in L�)
produces a public key PK and a private key SK. The gateway encrypts the
pair (Msg., X) that consists of an arbitrary string representing the entire flow
summary and a point X in a multi-dimensional space representing the attributes
using the public key PK to produce the ciphertext C ← Encrypt(PK, X, Msg).
The authority derives a decryption key DK ← DeriveKey(PK, SK, B) for a
hyper-rectangle B in L� (i.e., test whether a point X falls inside it) using
the public and the private key pair (PK, SK). Finally, an auditor can decrypt
(plaintext/null) ← QeurtyDecrypt(PK, DK, C) relevant flows using the provided
key pair (PK, DK) over the retrieved ciphertext C. However, in this schema, each
flow is represented as a hyper-rectangle B in L�. This requires issuing one pair of
keys for each flow, having a huge number of flows would require a huge number of
key pair pools.

Liu et al. [32] proposed an Efficient Privacy Preserving Keyword Search Scheme
(EPPKS) in cloud computing, which reduces a client’s computational overhead

58 A. M. Manasrah et al.

by allowing the cloud service provider to participate partially in the decipherment
process while protecting the data and the queries privacy. The proposed schema does
not require a private key transmission; to make it suitable for the cloud environment.
This schema consists of the following seven randomized polynomial time algo-
rithms EPPKS = (Keygen, EMBEnc, KWEnc, TCompute, Test, Decrypt, Recovery).
The user and the service provider execute the Keygen function to produce pub-
lic/private key pair. For the user U, he executes U : (Upub, Upriv) ← Keygen(k1)
over a sufficiently large security parameter k1 to produce his key pair (Upub, Upriv).
Similarly, the service provider S executes S : (Spub, Spriv) ← Keygen(k2) over
a sufficiently large security parameter k2 to produce his public/private key pair
(Spub, Spriv). The user encrypts the data using his public key and the service provider
private key to produce the message m ciphertext Cm ← EMBEnc(Upub, Spriv, m).
The keywords are also encrypted before outsourcing the data to the service
provider using the user public key Cwi ← KWEnc

(
Upub, Wi

)
. In order to

retrieve a file with keywords Wj, the user executes TWj ← TCompute
(
Upriv, Wj

)

and sends it to the CSP. The CSP on the other hand executes
(

Wi
?= Wj

)
←

KWTest
(
Upub, CWi , TWj

)
to determine whether a given file has the keyword Wj. An

intermediate result Cρ will be calculated by the CSP before returning the matching
file to the user as a result of executing Cρ ← PDecrypt(Spriv, Upub, Cm). Upon
receiving the files, the user executes m ← Re coery(Upriv, Cm, Cρ). This schema
supports multiple keyword searching on the encrypted data and it is semantically
secure, because the service provider could search in the encrypted files efficiently
without leaking any information, but there is a big challenge if the user requires the
service provider to provide the computational service.

All these schemes achieve good security and privacy but they require high
computations and memory of the end-devices during the encryption and decryption
process. Moreover, these schemes provide unsearchable encryption, but do not fit
well for less powerful client devices, which have only limited bandwidth, CPU, and
memory as discussed in [33]. Table 2.6 consolidates the various public key-based
privacy-preserving approaches advantage and their shortcomings.

Among the different available solutions that aim to design operations compatible
with data encryptions while preserving the privacy of the data outsourced to the
cloud, Searchable Encryption (SE) schemes seem to allow a curious party to carry
out searches on encrypted cloud data without having to decrypt it, hence maintaining
its privacy. Table 2.7 summarizes the advantages and the disadvantages of the
common searchable encryption schemes in cloud computing.

4 Conclusion and Future Work

While data encryption seems to be the right countermeasure to prevent privacy
violations, classical encryption mechanisms fall short of meeting the privacy
requirements in the cloud setting. Typical cloud storage systems also provide basic
operations on stored data such as statistical data analysis, logging and searching

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 59

Table 2.6 Comparison of several public-key encryption schemes

Scheme Description Main drawbacks

Boneh et al. [29] The first scheme to use a public key system
based on identity-based encryption

Keyword privacy is not
protected in the public key
setting

Bellare et al.
[30]

A deterministic searchable public-key
encryption scheme based on associating a tag
with a plaintext

Cannot find a standard model
schemes

Katz et al. [34] The first notion of predicate encryption based
on IBS, hidden vector encryption (HVE) and
attribute-based encryption

This scheme is only proven to
be selectively secure and no
delegation functionality is
provided

Attrapadung and
Libert [35]

A protocol based on functional encryption and
public key schemes using Inner Product
Encryption

Cannot be proven fully secure
under some natural
assumptions

Liu et al. [33] A SPKS scheme for cloud storage services
based on enabling cloud service providers to
participate in the decryption process partially

It may disclose information to
CSP to participate in the
decryption process

Table 2.7 Comparison of searchable encryption schemes in cloud computing

Advantages Disadvantages

Symmetric-key
encryption

• The private keys are used in
symmetric-key encryption and are resistant
to external attacks
• Simple to generate keys
• Symmetric-key encryption algorithms
require low computing power to be created

• The same key is used to encrypt
and decrypt the data and by
sharing this key, unauthorized
users can access the encrypted
data
• The private key must be
exchanged in a secure manner
• Every participant must have an
identical private key
• Symmetric-key encryption
supports only exact keyword
search

Fuzzy-
searchable
encryption

Enhances system usability by returning the
matching files or the closest possible
matching files based on keyword similarity
semantics

The same key is used to encrypt
and decrypt the data. Through
sharing this key, unauthorized
users can access the encrypted
data

Public-key
encryption

The unique private and public keys are
provided for each user, which will allow
them to perform secure exchanges of
information

• Generating the keys is expensive
• Public-key encryption algorithms
require more computational cost
than Symmetric-key encryption

and these operations would not be feasible if the data were encrypted using classical
encryption algorithms. Among various solutions aiming at designing operations that
would be compatible with data encryption, Searchable Encryption (SE) schemes
allow a potentially curious party to perform searches on encrypted data without
having to decrypt it. SE seems a suitable approach to solve the data privacy problem

60 A. M. Manasrah et al.

in the cloud setting. A further challenge is raised by SE in the multi-user setting,
whereby each user may have access to a set of encrypted data segments stored by
a number of different users. Multi-user searchable encryption schemes allow a user
to search through several data segments based on some search rights granted by the
owners of those segments. Privacy requirements in this setting are manifold, and
not only the confidentiality of the data segments but also the privacy of the queries
should be ensured against intruders and potentially malicious CSP. Recently, few
research efforts came up with multi-user keyword search schemes meeting these
privacy requirements, either through some key sharing among users or based on a
Trusted Third Party (TTP).

These studies provide limited keyword search functionality for cloud storage
services. Thus, service providers must implement a complete secure search scheme
to promote their services. This study proposes a scheme for performing ranked
multikeyword searches with fault tolerance in cloud storage systems. The proposed
scheme uses similar keyword sets to perform a similarity search, and a secure
k-nearest neighbor (kNN) scheme to perform a ranked multikeyword search.
Moreover, the proposed scheme is fault tolerant to account for cloud users inputting
an incorrect keyword, and still involves performing a file search. When the files are
located, they are assigned an associated correlation value.

References

1. Manasrah, A. M., Smadi, T., & ALmomani, A. (2016). A variable service broker routing
policy for data center selection in cloud analyst. Journal of King Saud University-Computer
and Information Sciences, 29(3), 365–377.

2. Zhang, H., et al. (2015). Towards privacy preserving publishing of set-valued data on hybrid
cloud. Cloud Computing, IEEE Transactions on, 99, 1–1.

3. Wagle, D. M. (2014). Comparative study of privacy preservation and access control of cloud
data. International Journal of Engineering Research & Technology (IJERT), 3(11), 165–174.

4. Nabeel, M., & Bertino, E. (2014). Privacy preserving delegated access control in public clouds.
Knowledge and Data Engineering, IEEE Transactions on, 26(9), 2268–2280.

5. AlSudiari, M. A., & Vasista, T. (2012). Cloud computing and privacy regulations: An
exploratory study on issues and implications. Advanced Computing, 3(2), 159.

6. Seddon, J. J., & Currie, W. L. (2013). Cloud computing and trans-border health data:
Unpacking US and EU healthcare regulation and compliance. Health Policy and Technology,
2(4), 229–241.

7. Dong, X., et al. (2014). Achieving an effective, scalable and privacy-preserving data sharing
service in cloud computing. Computers & Security, 42, 151–164.

8. Joseph, N. M., Daniel, E., & Vasanthi, N. (2013). Survey on privacy-preserving methods for
storage in cloud computing. In: Amrita International Conference of Women in Computing.

9. Jogade, S., Sharma, R., & Kadam, R. (2014). Partitioning data and domain integrity checking
for storage-improving cloud storage security using data partitioning technique. International
Journal of Emerging Research in Management & Technology, 3(3), 133–137.

10. Chen, F., & Liu, A. X. (2014). Privacy and integrity preserving multi-dimensional range queries
for cloud computing. In Networking Conference, 2014 IFIP. IEEE.

11. Ku, W.-S., et al. (2013). A query integrity assurance scheme for accessing outsourced spatial
databases. GeoInformatica, 17(1), 97–124.

2 An Investigation Study of Privacy Preserving in Cloud Computing Environment 61

12. Hu, L., et al. (2013). Spatial query integrity with Voronoi neighbors. Knowledge and Data
Engineering, IEEE Transactions on, 25(4), 863–876.

13. Naruchitparames, J., & Güneş, M. H. (2011). Enhancing data privacy and integrity in the cloud.
In High Performance Computing and Simulation (HPCS), 2011 International Conference on.
IEEE.

14. Song, D. X., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted
data. In Security and Privacy, 2000. S&P 2000. Proceedings 2000 IEEE Symposium on. IEEE.

15. Goh, E.-J. (2003). Secure indexes for efficient searching on encrypted compressed data
(Technical report 2003/216, Cryptology ePrint archive, 2003). http://eprint.iacr.org/2003/216

16. Chang, Y.-C., & Mitzenmacher, M. (2005). Privacy preserving keyword searches on remote
encrypted data. In Applied cryptography and network security. Berlin: Springer.

17. Curtmola, R., et al. (2006) Searchable symmetric encryption: Improved definitions and efficient
constructions. In Proceedings of the 13th ACM Conference on Computer and Communications
Security. ACM.

18. Chase, M., & Kamara, S. (2010). Structured encryption and controlled disclosure. In Advances
in cryptology-ASIACRYPT 2010 (pp. 577–594). Berlin: Springer.

19. van Liesdonk, P., et al. (2010). Computationally efficient searchable symmetric encryption. In
Secure data management (pp. 87–100). Berlin: Springer.

20. Kurosawa, K., & Ohtaki, Y. (2012). UC-secure searchable symmetric encryption. In Financial
cryptography and data security (pp. 285–298). Berlin: Springer.

21. Canetti, R. (2001). Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium
on. IEEE.

22. Kamara, S., Papamanthou, C., & Roeder, T. (2012). Dynamic searchable symmetric encryp-
tion. In Proceedings of the 2012 ACM Conference on Computer and Communications Security.
ACM.

23. Kamara, S., & Papamanthou, C. (2013). Parallel and dynamic searchable symmetric encryp-
tion. In Financial cryptography and data security (pp. 258–274). Berlin: Springer.

24. Li, J., et al. (2010). Fuzzy keyword search over encrypted data in cloud computing. In
INFOCOM, 2010 Proceedings IEEE. IEEE.

25. Adjedj, M., et al. (2009). Biometric identification over encrypted data made feasible. In
Information systems security (pp. 86–100). Berlin: Springer.

26. Kuzu, M., Islam, M. S., & Kantarcioglu, M. (2012). Efficient similarity search over encrypted
data. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on. IEEE.

27. Wang, J., et al. (2012). A new efficient verifiable fuzzy keyword search scheme. JoWUA, 3(4),
61–71.

28. Lu, Y. (2012). Privacy-preserving logarithmic-time search on encrypted data in cloud. In
NDSS.

29. Boneh, D., et al. (2004). Public key encryption with keyword search. In Advances in
cryptology-Eurocrypt 2004. Berlin: Springer.

30. Bellare, M., Boldyreva, A., & O’Neill, A. (2007). Deterministic and efficiently searchable
encryption. In Advances in cryptology-CRYPTO 2007 (pp. 535–552). Berlin: Springer.

31. Shi, E., et al. (2007). Multi-dimensional range query over encrypted data. In SP’07, IEEE
Symposium on. IEEE.

32. Liu, Q., Wang, G., & Wu, J. (2009). An efficient privacy preserving keyword search scheme
in cloud computing. In Computational Science and Engineering, 2009. CSE’09. International
Conference on. IEEE.

33. Liu, Q., Wang, G., & Wu, J. (2012). Secure and privacy preserving keyword searching for
cloud storage services. Journal of Network and Computer Applications, 35(3), 927–933.

34. Katz, J., Sahai, A., & Waters, B. (2008). Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Advances in cryptology–EUROCRYPT 2008 (pp.
146–162). Berlin: Springer.

35. Attrapadung, N., & Libert, B. (2010). Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In Public key
cryptography–PKC 2010 (pp. 384–402). Berlin: Springer.

http://eprint.iacr.org/2003/216

	2 An Investigation Study of Privacy Preserving in Cloud Computing Environment
	1 Introduction
	2 Privacy-Preserving Methods
	3 Searchable Encryption-Based Techniques
	3.1 Symmetric-Key Based Techniques
	3.2 Fuzzy-Searchable Encryption
	3.3 Public-Key Encryption

	4 Conclusion and Future Work
	References

