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Abstract. MASON is a widely-used open-source agent-based simula-
tion toolkit that has been in constant development since 2002. MASON’s
architecture was cutting-edge for its time, but advances in computer tech-
nology now offer new opportunities for the ABM community to scale
models and apply new modeling techniques. We are extending MASON
to provide these opportunities in response to community feedback. In this
paper we discuss MASON, its history and design, and how we plan to
improve and extend it over the next several years. Based on user feedback
will add distributed simulation, distributed GIS, optimization and sen-
sitivity analysis tools, external language and development environment
support, statistics facilities, collaborative archives, and educational tools.
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1 Introduction

MASON is an open source single-process simulation core and visualization
toolkit in Java, designed to be used for a wide range of models, but with a special
emphasis on agent-based models involving up to millions of agents. MASON has
support for geographical information systems (GIS) and social networks, among
other areas. Agent-based models (or ABMs) have taken hold not just in the
sciences [10,17,18], but also in engineering areas such as distributed systems,
swarm robotics, multiagent learning, and artificial life: for example, swarms of
drones, driverless cars, air traffic control, and factory floor robots [11,16,19].
MASON was designed to serve both of these worlds.

Swarm-style multiagent simulation toolkits have developed along two lines.
The first line to emerge were libraries geared for easy development of simple
models. These toolkits usually were single-threaded, generally tied the model to
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Fig. 1. Model of impact of climate
change on Canadian communities [14].

Fig. 2. MASON running on-board col-
laborative real time soccer robots [22].

its visualization and other facilities, and often deemphasized efficiency. Examples
include SWARM [9], NetLogo [5], and perhaps early versions of Repast [7].

The second line consisted of tools meant for large, complex simulations that
might be run many times. These toolkits emphasized efficiency and extensibility
more heavily, but were still generally single-process. MASON was among the first
toolkits in this second line, and introduced many (for ABMs) unique features,
including multithreaded models, separation of model and visualization, fully self-
contained models, model serialization and migration, 3D visualization, and an
orthogonal, consistent, and small design emphasizing efficiency. Other toolkits
(for example Repast) have also advanced in many of these areas since then.

As computational cost decreases and models become more complex, we think
that a new trend is emerging in ABM models: a third generation of simulation
tools which give multiagent systems researchers access to high performance dis-
tributed simulation and the capabilities made possible by it: such as distributed
GIS models and automated model validation and optimization. Some high-profile
tools have made strides in some of these directions (such as FLAME [4] and
Repast HPC [8], among others). At the same time, these third-generation toolk-
its must be clean, easily customized, and provide significant coding support. It
would be desirable, though challenging, to marry these features with the tradi-
tional ease of use and accessibility afforded by some earlier systems.

Following the recommendations of a 2013 MASON community workshop [20],
we are extending MASON to a full-featured third-generation toolkit. In this
paper we discuss MASON’s history, its architecture, where we think it needs
improvement, and our plans for enhancing MASON over the next few years.

2 Development History

Though it has found use in the social science and computational biology ABM
fields, MASON was originally meant for multirobotics and multiagent learning,
and to evaluate evolved swarm behaviors produced by the ECJ evolutionary com-
putation toolkit [3]. However after discussion with the GMU Center for Social
Complexity, MASON’s team realized that the modeling overlap between swarm
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Fig. 3. Modeling the spread of cholera in the
Dadaab refugee camp complex in Kenya [15].
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Fig. 4. Box-pulling model
with 625 swarm robots [21].

robotics, AI, and ABMs in the social sciences was unusually high, and so decided
to create a general-purpose library to serve the ABM community writ large.

MASON had several design goals from the very beginning. First, MASON
was designed to have a small, high-performance, self-contained simulation core
so that many models could be run in parallel, or could involve up to millions of
agents. Second, MASON was designed to produce guaranteed identical results
regardless of architecture when possible. Third, MASON was created with a
Model-View-Controller (MVC) architecture with complete separation between
the model and the visualization, and with model serialization. Fourth, as it came
from the robotics community, MASON was meant to support a wide range of
visualization facilities, including both 2D and 3D support. Fifth, MASON was
designed to be very easily modified and extended.

These goals are hardly unusual in the general simulation community. How-
ever to our knowledge, among the major ABM toolkits at the time (such as
SWARM, Repast, NetLogo and Ascape [1]) MASON’s combination of design
goals was original. MASON was released at Agent 2003, and we think it has
had a significant impact on both the design and implementation of ABM tools
since then.

Because of its emphasis on customization, efficiency, and generality, MASON
has been used in a wide range of models, from small to very large, and in fields
from robotics to the social sciences. As illustration, Figs. 1, 2, 3 and 4 show
four uses drawn from our own experience. For example, we have used MASON
to build a 10-million agent model of permafrost thawing and its consequences
on Canadian communities [14] (Fig. 1); and we have also used MASON running
on-board cooperative soccer-playing robots during RoboCup [22] (Fig. 2).

3 MASON’s Design

As a roughly MVC architecture, MASON is broken into two pieces, as shown in
Fig. 5. The first part is the model (the simulation proper) and the second part is
the visualization. Unless one chooses to have model objects display themselves,
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Fig. 5. Illustration of MASON’s top-level architecture

the model and visualization are entirely separated, enabling model serialization
and the removal or reinstatement of the visualization mid-run.

Model and Visualization. A MASON simulation is encapsulated in a top-level
model object which contains a simple real-valued time schedule on which are
registered one or more agents to be called at some time in the future. Addition-
ally, the model may hold one or more fields to represent space. MASON provides
many fields, such as square or hex grids of objects or values, continuous space,
and graphs or multigraphs. Many fields can be 2D or 3D; bounded, toroidal, or
unbounded; and sparse or dense; and you can create your own as you see fit. Last
but not least, MASON provides utilities for multithreading and a high-quality
random number generator. Models can be fully serializable, self-contained, and
capable of running side-by-side in multiple threads or in the same thread.

MASON provides 2D and 3D visualization tools, plus plug-in visualization
facilities such as for GIS. Model visualization is encapsulated in a special top-
level object. This contains a controller whose job is to start, stop, and otherwise
manipulate the schedule. The most common controller is a window called a
console. The controller also manages some number of windows called displays
that handle 2D or 3D visualization. A display helps the user manipulate and
visualize various fields by stacking together one or more field portrayals. A field
portrayal often portrays individual objects or values in fields by calling forth
a custom simple portrayal designed to visualize that particular object or value.
Objects may choose to portray themselves as well. If the user selects portrayed
objects with the mouse, a simple portrayal may create inspectors to provide
object details, trace the objects through charts and graphs, and so on.
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Utilities and Extensions. MASON has many utilities to support model design.
These include random number distributions, Java Bean Properties inspectors,
GUI widgets, movie and picture generation, and chart creation. Several of
MASON’s utility objects have since found their way into other ABM toolkits
(like NetLogo).

Finally, MASON is often extended to serve special functions. Foremost is
GeoMASON, which adds high-quality GIS capabilities to MASON, including
first-in-class raster and vector data model integration, standardized data and
file formats, query algorithms, visualization, and integration with external GIS
tools. GeoMASON sits atop the Java Topology Suite (JTS).

MASON is also integrated with ECJ [3], a popular, massively distributed
evolutionary computation toolkit with which MASON was intended to dovetail.
ECJ can be used to optimize ABM models in parallel, which are then assessed
on-the-fly in MASON. MASON also has extension libraries for social networks
and for 2D rigid body kinematics, among other tools.

Finally but critically, D-MASON [13] extends MASON into a distributed
model toolkit intended to run over a large number of machines. When develop-
ing D-MASON, the University of Salerno chose MASON as its target platform
largely because of its emphasis on ease of extensibility.

Coding Style. MASON was written in Java because ECJ was in Java. This is not
a controversial decision: Ascape, Repast, and NetLogo also target the Java Vir-
tual Machine. Java has enabled MASON to be portable, provide replicable code,
and be efficient. But MASON lacks certain hallmarks of modern Java, such as
generics, annotations, and lambdas. Some of this is cargo-cult programming, but
much of it is due to efficiency considerations. For example, MASON has a spe-
cial replacement for java.util.ArrayList, because until recently ArrayList’s
get(), set(), and add() methods had flaws which prevented them from being
inlined. HotSpot has since worked around these errors, and so going forward we
may adopt ArrayList, along with similar workarounds obviated by recent Java
improvements.

4 Where Is MASON Going?

Taking a critical look at MASON, there are many opportunities for improvement.
It is now over 15 years old, and was originally developed for Java 1.3, and
so has warts and misfeatures stemming from its age. While reasonably high
performance, it is also still fundamentally a non-distributed toolkit. And it is
missing important functionality, such as good statistics tools, a testing facility,
and so on. Going forward, we will be making many improvements to the system.

In 2013 we organized an NSF-sponsored workshop [20] that proposed nine
community recommendations for how MASON could be enhanced to assist in
cutting edge research in the future:

1. Give MASON better external language support and plugins for integrated
development environments (IDEs).
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2. Add advanced output and statistics architectures.
3. Add parallel and distributed facilities.
4. Upgrade MASON to reflect recent Java language changes.
5. Add a testing regimen.
6. Identify facilities to make MASON more useful to the science and technology

education community.
7. Add collaborative archives for the MASON community to share models.
8. Add automated validation and parameter sweeping.
9. Improve MASON’s GIS support and integrate it with distributed capabilities.

After the workshop, we applied for and received a three-year NSF grant
(1727303) to improve MASON along these lines, and are now in its second year.
Following the recommendations above, our plans to improve MASON fall into
four areas. First, we are making MASON more robust. Second, we are building a
distributed version of the software (including distributed GIS support) that runs
over MPI on cloud computing platforms. Third, we are adding a variety of tools
to make MASON more friendly to coders. Fourth, we intend to make MASON
more friendly to the ABM community at large. We discuss these goals below.

4.1 Making MASON More Robust

Like much open source research software, MASON was built with few tests or
automated quality control checks. Fortunately MASON has exhibited few serious
bugs over the years, but it badly needs a testing harness. This is an interesting
challenge for stochastic models because of the semi-random nature of the results
generated. When results differ from expected results, is this because of a bug (or
bug-fix) or is it due to the vagaries of the random number generator?

We are constructing a test harness that will run MASON through a bat-
tery of parameters and compare them with expected outputs. This will take
advantage of MASON’s replicability such that, given a fixed set of parameters
and random number generator seeds, the outputs should be identical. We are
building unit tests for MASON, and are devising stochastic distribution-based
tests using common MASON models. These tests will be run many times over a
large number of random number generator seeds. If changes cause distributions
(mean, variance, etc.) to deviate significantly, this will raise a flag.

4.2 Making MASON Distributed

This task will consume the majority of our efforts over the next few years, and
entails an integrated distributed model facility, distributed and improved GIS,
and both large- and small-scale model optimization and validation. To support
massively scaled agent-based models, we want MASON to take advantage of
many compute cores by distributing agents and allowing them to run in parallel.
The potentially high degree of coupling (due to arbitrary and dense agent-agent
interaction) in ABM scenarios like social networks poses a challenge to dis-
tributed simulation as the interprocess communication can overwhelm the work
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done on individual cores. However many ABM models are distributed spatially,
which can be straightforwardly distributed. We will target distributed spatial
scenarios but aim to make it possible to distribute social networks, etc. when
feasible.

We also recognize that distributing simulations presents a brittle abstraction
to the model developer: to achieve increasing speedups, he generally must cater
more and more to the specifics of the underlying distribution system. Many
modelers will not wish to do this. Our goal will be to provide multiple API layers,
whereby a modeler can choose to make his model distributed with few changes
to the original, or (if he wishes) delve deeper into the details of distributed
simulation in order to achieve higher performance.

Approach. Our work builds on D-MASON, which partitions the simulation space
into regions, and assigns to agents in each region a worker to manage their
scheduling, migration, and regional synchronization. A multicast channel (or
topic) is assigned to each region, and workers subscribe to topics associated with
the regions that overlap with their interest areas in order to receive relevant
messages. Although D-MASON is an important first step towards a distributed
MASON, it uses a simple space partitioning approach that is efficient for local
communication, but inefficient for global communication.

The new distributed version of MASON maintains much of the publish-
subscribe approach of D-MASON. Our current efforts are based on Parallel Dis-
crete Event Simulation (PDES), a robust and scalable approach for distributed
situation [12]. A PDES simulation consists of a distributed set of logical processes
(LPs) executing in parallel. LPs generate events that often need to be processed
by other LPs. The LP abstraction provides a clean and modular method for
achieving scalable performance.

Two major components in MASON’s distributed architecture are data
sharing between LPs and load balancing. In terms of data sharing, in dis-
tributed MASON, the simulation field is partitioned into several axis-aligned
(hyper)rectangular regions. Each LP holds one region and processes all the agents
that are located in that region. The basic idea is to assign, when possible, each
LP its own CPU core. For performance reasons we use peer-to-peer message
passing via MPI.

We recognize that highly connected graphs, such as may be found in social
networks, impose a strong coupling between distributed nodes, resulting in heavy
use of network resources. As a result we have chosen to focus on the more
easily distributed case: spatially distributed models. Distribute MASON will
also support networks, but not necessarily with efficiency guarantees.

In most spatially distributed models MASON agents often need to access
nearby data, known as their area of interest (AOI). To support quick access of
data within the AOI, each LP not only stores the data in its own region, but also
maintains a cache of some data from its neighbors, called the halo area. Part of
the LP’s own data is cached by its neighbor LPs. This cache is called the shared
area. The sizes of these two areas are defined by AOI. After each simulation
step, each LP will pull the data from its neighbors into its halo area and at
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the same time send the data in the shared area to its corresponding neighbors,
in a process called halo exchange. Access of data outside an agent’s AOI is
supported via remote procedure calls (RPCs) between LPs. Data is provided in
a synchronous fashion, meaning the caller will get the value once the RPC call
returns.

Load balancing among active processors, where each LP tries to balance
the workload among its immediate members, is critical for performance. This is
done as follows. Each node measures its runtime every step, and when a node
performs load-balancing, it collects the runtimes from its neighbors. Based on
the runtimes, it chooses a neighbor and expands or shrinks its region such that
the variance of runtimes among the node and its neighbors is minimized. For
speed in making load-balancing decisions, we assume the runtime is linear in the
size of the region.

Each partition adjustment can only shift the border by at most its own AOI
to avoid additional data exchange between nodes, since each node already has
part of its neighbors’ data in its halo area. This restriction might seem to slow
down the load balancing, but we think that this is preferable because by lim-
iting the adjustment and avoiding additional data exchange, the overhead is
minimized and therefore the local load balancing can be done more frequently,
better adapting to the change in workload. Another optimization is to avoid
expensive coordination and synchronization activities by not allowing two neigh-
boring LPs to perform load-balancing at the same time. To enforce this, we have
implemented a graph coloring algorithm in the system so that at each step only
the LPs with a designated color may balance their loads with neighbors.

Purely local load balancing runs the risk of getting caught in a local optimum.
For this reason we plan to implement a hybrid local-global load balancing policy,
using a hierarchy of LPs in a tree-structure, such as a K-D tree or a Quad Tree.

Distributed GIS Support. As part of making MASON distributed, it is crucial
to also make GeoMASON distributed. However GIS presents unique and diffi-
cult challenges. Geospatial data generally comes in raster (grid) or vector form.
GeoMASON raster data maps straightforwardly to MASON grid data struc-
tures and so is easy to apply in a distributed fashion. But vector data can span
large areas: for example, assuming we are distributing spatially, a river or a
road might span our entire network of machines. We tackle this by breaking the
vector data into three kinds. Point data can be easily distributed using stan-
dard MASON data structures. Most non-point data is static and immutable
(roads, rivers): we can simply give copies of it to every single processor. Finally,
mutable non-point data is typically static and ideally less common, so we may
distribute it with the non-point data but embed each such object with a pointer
to a secondary object located on a specific (distributed) machine where mutable
information is held.

Distributed Optimization, Automated Model Validation, and Parameter Sweep-
ing. A major challenge faced by multiagent simulation is the complexity of
validating models. MAS involves many heterogeneous variables, agents, agent
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behaviors, and interactions, and the model developer only knows the proper set-
tings for some of these. To validate the model, one must optimize the remaining
variables so as to match known ground truth, a laborious task. Model validation
is often an optimization problem: the researcher hunts for parameter settings
resulting in a model with low output error, and which is insensitive to certain
parameters.

As a massively parallel stochastic optimization tool, ECJ is designed for
exactly this task: the researcher defines known parameters and their values,
then optimizes the remaining variables by running many models in parallel on
back-end machines. MASON was designed from the ground-up to work with ECJ
in this regard, but at present the two can be integrated only with considerable
knowledge of both. We are working to make using MASON + ECJ for validation
as simple as writing some code to assign a fitness to a simulation result, and
then pressing a button on the MASON GUI. This is possible because MASON
models are entirely self-contained and serializable. When a model is started, it
is presented with a vector of parameters to use, and when it is done, it returns
an assessment of the resulting run. ECJ will do the rest of the work.

Another common modeling task is sensitivity analysis. To address this, we
will soon be releasing a parameter-sweep facility in MASON in which you can
specify independent and dependent variables, then do parameter sweeps through
the independent variables while logging dependent variable results. This is avail-
able in other tools (such as NetLogo): our goal is to initially permit parallelism
and ultimately cloud distribution of the simulations during the sweep.

4.3 Making MASON More Coder-Friendly

IDE Support. We are building MASON tools for Eclipse, and potentially Net-
Beans. First, we are adding code templates that allow users to generate code
skeletons for common MASON patterns. The goal is to reduce the drudgery in
dealing with MASON’s high degree of boilerplate. Second, we are adding several
wizards that walk the user through the process of creating a model, where he can
choose from common model scenarios, parameters, and visualization options, and
finally generate easily modifiable model code. We currently have this working
in-house.

External Language Support. A common request has been to provide some degree
of external language support for MASON, particularly for languages which target
the Java virtual machine (such as Jython, Scala, Clojure, and so on). This is
not difficult given that these languages have Java function call support. But the
primary difficulty is that many of these languages are slow in accessing Java
data directly, as they would need to do when working with MASON. We can at
least provide API support for the languages as a first step, then consider how we
might encapsulate common ABM coding patterns in MASON utility functions
so as to spend as much of the application runtime on the pure-Java side, where
it is often much more efficient. We have proof-of-concept support for several
languages.
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Output and Statistics. MASON can make charts and graphs and track variables
in the GUI, but does not have library support to output statistics. We are
remedying this. We think the best way for an experimenter to do this is to have
MASON dump statistics into files designed to be directly entered into a tool
such as R [6]. But we will also consider integrating well-vetted implementations
of basic statistical analyses, such as descriptive statistics, difference tests, and
confidence intervals, perhaps from a library such as Apache Commons Math [2].

4.4 Making MASON More Community-Friendly

Collaborative Archives and Facilities. One major goal in MASON is to allow
people to easily distribute and collaborate on public models. We presently offer
several ways to do this, including a contributions section in the MASON repos-
itory. However, we want to go further. We hope to develop a special online
repository to enable researchers to distribute models as jar files. We are explor-
ing how to enhance MASON to advertise available models from this repository
and enable users to download and run them (taking a cue from similar facilities
such as in NetBeans). This would enable researchers to distribute models more
easily, and also give educators and new users immediate access to a large and
useful collection of educational demos and tutorials.

Education Aids and Examples. Building on the collaborative archive and
improved external language support, we hope to make MASON friendlier to sci-
ence and engineering education by extending MASON’s GUI to be more friendly
to beginning users, creating a “simple” restricted Java API to MASON for stu-
dents to use in lieu of the full API (for building simple models), and adding a
significant number of new educational examples drawn from several disciplines.

4.5 Development Plan

Our three-year development plan is as follows. In all three years we will develop
distributed MASON and distributed GIS facilities. In the first year we have also
focused on automated model validation and GUI facilities. In the second year
we will work on the test harness and unit and integration tests, as well as the
collaborative archive. In the final year we will work on statistics utilities, external
language support, and educational aids.

5 Conclusion

Since its introduction in 2003 MASON has proven to be a successful open-source
agent-based modeling toolkit, with a particular emphasis on high performance,
flexibility, and ease of customization. But MASON can be improved in many
areas, including making it fully distributed, adding optimization and sensitiv-
ity analysis, and making the tool more friendly to newcomers. These plans are
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ambitious but achievable, and we hope that they will serve to make MASON a
strong foundation for ABM development over the next decade.

A critical part of this project is ABM community involvement. We are form-
ing a group of MASON power-users and critics to help us revise our approach,
and we invite interested modelers and developers to participate in the effort.
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