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Abstract

The purpose of this review is to briefly summa-
rize the roles of alcohol (ethanol) and related 
compounds in promoting cancer and  inflam-
matory injury  in many tissues. Long-term 
chronic heavy alcohol exposure is known to 
increase the chances of inflammation, oxida-
tive DNA damage, and cancer development in 
many organs. The rates of alcohol-mediated 
organ damage and cancer risks are signifi-
cantly elevated in the presence of co-morbid-
ity factors such as poor nutrition, unhealthy 
diets, smoking, infection with  bacteria 
or  viruses, and exposure to pro-carcinogens. 
Chronic ingestion of alcohol and its metabo-

lite acetaldehyde may initiate and/or promote 
the development of cancer in the liver, oral 
cavity, esophagus, stomach, gastrointestinal 
tract, pancreas, prostate, and female breast. In 
this chapter, we summarize the important 
roles of ethanol/acetaldehyde in promoting 
inflammatory injury  and  carcinogenesis in 
several tissues. We also review the updated 
roles of the ethanol-inducible cytochrome 
P450-2E1 (CYP2E1) and other cytochrome 
P450 isozymes in the metabolism of various 
potentially toxic substrates, and consequent 
toxicities, including carcinogenesis in different 
tissues. We also briefly describe the potential 
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implications of endogenous ethanol produced 
by gut bacteria, as frequently observed in the 
experimental models and patients of nonalco-
holic fatty liver disease, in promoting DNA 
mutation and cancer development in the liver 
and other tissues, including the gastrointesti-
nal tract.
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�Introduction

Long-term chronic heavy alcohol (ethanol) intake 
is known to increase the incidences of cancer in 
many tissues, including the liver, mouth, esopha-
gus, gastrointestinal tract, pancreas, prostate, and 
female breast [1–6]. The alcohol-mediated can-
cer rates are significantly increased in the pres-
ence of co-morbidity factors such as smoking, 
viral and bacterial infections, carcinogens, and 
potentially harmful diets, such as poor nutrition, 
western-style high fat diets, and soft drinks con-
taining high fructose corn syrup. We have previ-
ously reviewed that the rates of alcohol-mediated 
cancer in experimental rodent models and alco-
holic people are increased by the one or combina-
tions of the following risk factors: (1) formation 
of etheno-(or acetaldehyde)-DNA adducts; (2) 
elevated production of reactive oxygen species 
(ROS), reactive nitrogen species (RNS), lipid 
peroxides, and metabolic conversion of pro-
carcinogens to carcinogens via ethanol-inducible 
cytochrome P450-2E1 (CYP2E1); (3) accumula-
tion of iron leading to increased ROS generation, 
lipid peroxidation, mutation of p53 gene or its 
covalent modifications of its protein; (4) 
decreased cellular levels of antioxidant glutathi-
one (GSH) and S-adenosylmethionine (SAMe), 
resulting in oxidative stress and DNA hypometh-
ylation of oncogenes and epigenetics changes; 
(5) depletion of retinoic acid with consequent 

cell proliferation through activation of activator 
protein-1 (AP-1); (6) activation of an inflamma-
tory cascade via increased intestinal barrier 
dysfunction, resulting in endotoxemia, activation 
of tissue macrophages, including hepatic Kupffer 
cells via Toll-like receptor-4 (TLR-4), oxidative 
stress, the nuclear factor-KappaB (NF-kB) or 
early growth response-1 (Egr-1) activation, and 
production of inflammatory cytokines and che-
mokines; (7) reduced number and/or function of 
Natural Killer cells; (8) decreased activities of 
antioxidant enzymes and DNA repair enzymes. 
Since these areas have been covered in our previ-
ous review [1] and others [2–6], we specifically 
focus on the updated roles of CYP2E1-related 
oxidative stress, leaky gut, and metabolic activa-
tion of potentially toxic substrates in DNA adduct 
formation and cancer development in this chapter. 
The important roles of the ethanol-induced 
CYP2E1 and other cytochrome P450 isozymes in 
the metabolisms of various substrates and conse-
quent cytotoxicities, including acetaldehyde and 
other carcinogenic substances in many tissues, 
are briefly summarized. Additive and/or syner-
gistic interactions between ethanol and other risk 
factors toward increased levels of DNA adducts 
and carcinogenesis are also described. In addi-
tion, the potential roles of the endogenous etha-
nol and acetaldehyde produced by bacteria in 
certain tissues, as frequently observed in rodent 
models and patients with nonalcoholic fatty liver 
disease (NAFLD) and/or steatohepatitis (NASH), 
in promoting inflammatory tissue injury and can-
cer development are briefly discussed. Finally, 
based on the mechanistic study results, we have 
described the translational opportunities against 
alcohol-associated injury and  carcinogenesis in 
many tissues.

�Updated Mechanisms of Ethanol-
Mediated Carcinogenesis

The International Agency for Research on Cancer 
(IARC) has concluded that both ethanol and its 
oxidative metabolite acetaldehyde are human 
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carcinogens [7]. One of the major factors for the 
increased cancer development in alcoholic indi-
viduals and ethanol-exposed animal models could 
be increased oxidative and nitrative stress, through 
activation of many pro-oxidant enzymes with 
decreased contents of small molecule antioxi-
dants and suppressed antioxidant enzymes. In 
fact, chronic excessive alcohol intake is known to 
increase oxidative and nitrative stress which can 
be produced through impaired mitochondrial 
electron transport chain (i.e., mitochondrial dys-
function), elevated levels of the CYP2E1, NADPH 
oxidases, the inducible form of nitric oxide syn-
thase (iNOS), xanthine oxidase, etc. [8–17]. In 
addition, chronic alcohol ingestion is known to 
decrease the levels of many small molecule anti-
oxidants glutathione (GSH), S-adenosylmethionine 
(SAMe), folic acid, many vitamins, including 
retinol (vitamin A), thiamine (vitamin B1), ascor-
bic acid (vitamin C), vitamin D (ergocalciferol 
and cholecalciferol), α-tocopherol (vitamin E), 
menadione (vitamin K3) through insufficient 
absorption in the GI tract, suppression of biosyn-
thesis, and increased metabolic degradation [1, 8, 
18–21]. The depletion of these enzyme cofactors 
and co-enzymes can exert dramatic influences on 
major metabolic pathways and genetic/epi-
genetics changes. Moreover, the activities of anti-
oxidant enzymes such as mitochondrial low-Km 
aldehyde dehydrogenase-2 (ALDH2), glutathione 
peroxidase (Gpx), superoxide dismutase (SOD), 
methionine adenosyltransferase-1 (MAT1), and 
catalase can be significantly suppressed through 
oxidative modifications in alcohol-exposed tis-
sues [22–25]. It is likely that the decreased levels 
of antioxidants and suppressed antioxidant 
enzymes or proteins render the host more suscep-
tible to inflammatory tissue injury and carcino-
genesis [1–4].

Alcohol (ethanol) is not a strong carcinogen 
compared to its oxidative metabolite acetalde-
hyde. However, alcohol-induced carcinogenesis 
is significantly increased in the presence of a risk 
factor such as smoking, western-style high fat 
fast food, and viral infection. Elevated levels of 

highly reactive acetaldehyde and lipid aldehydes, 
through suppressed ALDH2 activity or genetic 
mutation in the ALDH2 gene, as observed in 
many people in East Asian countries [26–28] or 
in various tissues of Aldh2-null mice exposed to 
alcohol gavages [29] can increase the amounts of 
DNA adducts and cancer. Alternatively, increased 
amounts of acetaldehyde produced from acti-
vated ADH through mutation of its gene [30] can 
interact with the amine groups of deoxyguano-
sine (dG), deoxyadenosine (dA), and deoxycyto-
sine (dC) to generate N2-ethylidene-DNA and 
more stable N2-etheno-DNA adducts [31–33], 
contributing to increased mutagenesis and cancer 
development, as recently reviewed [34]. In the 
presence of reducing agents, such as polyamines, 
acetaldehyde dimer crotonaldehyde can interact 
with DNA and produce a stronger mutagenic 
propano-DNA adduct [35]. Furthermore, under 
increased oxidative stress following alcohol 
exposure, the amounts of lipid peroxides are sig-
nificantly elevated and some of the highly reac-
tive lipid aldehydes such as acrolein (ACR), 
malonaldehyde (MDA), MDA-Acetaldehyde 
(MDA-AA), and 4-hydroxynonenal (4-HNE) can 
interact with DNA, producing mutagenic DNA 
adducts, leading to increased carcinogenesis [36–
38]. Analyses of human specimens revealed that 
the levels of the lipid-aldehyde DNA adducts in 
the liver and mucosa of the esophagus and colon 
in alcoholic people appear to depend on the levels 
of CYP2E1. In contrast, these adducts in some 
patients with NASH do not correlate with the 
CYP2E1 levels and are likely derived from 
inflammation-driven oxidative stress, as reviewed 
[39]. Furthermore, the rates of carcinogenesis 
could be markedly increased when p53 and DNA 
repair enzymes, such as oxoguanine DNA glyco-
sylase (Ogg1), are inactivated in alcohol-exposed 
rodents [40, 41]. Although the molecular mecha-
nisms for the inactivation of DNA repair enzymes 
in alcohol-exposed rodents have not been studied 
in detail, it is likely that these enzymes could be 
oxidatively modified and thus inactivated under 
increased oxidative and nitrative stress.
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�Contributing Roles of CYP2E1 
and Other P450 Isoforms in Tissue 
Injury and Cancer Development

�Multiple Regulations of CYP2E1 
and Alcohol-Related Tissue Injury 
and Carcinogenesis

It is well-established that ingested ethanol is pri-
marily metabolized by alcohol dehydrogenase 
(ADH, Km for ethanol 0.8–1 mM) expressed in 
the liver, esophagus, stomach, and intestine. 
However, after chronic alcohol exposure or intake 
of large amounts of ethanol, a significant amount 
of alcohol is also metabolized by another enzyme 
system so-called the microsomal ethanol 
oxidizing system (MEOS), consisting of 
CYP2E1, CYP1A2, and CYP3A with CYP2E1 
being a major component [8, 9, 42, 43]. In fact, 
under higher blood alcohol concentration (BAC) 
up to ~100 mM, as observed in some alcoholics 
[44], ethanol-induced CYP2E1 (Km for ethanol 
8–10  mM) becomes important in the oxidative 
metabolism of ethanol, producing acetaldehyde, 
which can impair intestinal barrier function and 
produce DNA adducts, contributing to inflamma-
tory tissue injury [45] and carcinogenesis [34], 
respectively. Unlike other P450 enzymes, 
CYP2E1, a loosely bound enzyme to the ER 
membrane, exhibits NADPH oxidase activity, 
thus producing ROS during its catalytic cycle or 
even in the absence of its substrate, as reviewed 
earlier [8, 25, 42, 43]. The ROS include superox-
ide anion, hydrogen peroxide, and hydroxyethyl 
radical, depending on the local environment, 
including the presence of iron, which is known to 
be accumulated by alcohol exposure [46], and 
other preexisting conditions, contributing to 
DNA damage and carcinogenesis. In addition, 
CYP2E1 is known to produce RNS in certain 
conditions despite little induction of iNOS [47]. 
CYP2E1, present in both endoplasmic reticulum 
(ER) and mitochondria [48, 49] in the liver and 
extra-hepatic tissues such as kidney, colon, and 
brain [50], is induced and activated by acute or 
chronic exposure to alcohol and other small mol-
ecules such as acetone and isoniazid or patho-
physiological conditions such as fasting and 

diabetes through different regulatory mechanisms 
[8, 18, 51–53]. Moreover, its level and activity 
are increased in obese and/or hyperglycemic 
diabetic rodents and in humans [8, 18, 52–55]. 
Because of different induction mechanisms of 
CYP2E1 (e.g., protein stabilization by ethanol or 
acetone [50, 56–58]), increased mRNA transla-
tion by isoniazid and pyridine, and mRNA 
increase by fasting, western-style high fat diet, 
over-feeding obesity, or diabetes [52–55], the 
overall levels and activities of CYP2E1 are 
expected to be increased in an additive or syner-
gistic manner [8, 18, 59, 60]. For example, 
alcohol exposure in diabetic rodents and people 
would markedly elevate CYP2E1 activity, thus 
producing greater levels of oxidative stress and 
tissue injury [15, 18, 59]. Another example of 
additive or synergistic effect is interactions 
between alcohol drinking and other risk factors 
such as western-style high fat diet [52], nicotine 
[61], infection with hepatitis viruses [62], and 
certain chemicals or carcinogens, which are 
CYP2E1 substrates, such as dimethylnitrosamine 
(DMN) [56], diethylnitrosamine (DEN) [63], 
urethane, and benzene [64, 65], promoting acute 
toxicity or inflammatory tissue injury, as reviewed 
[15, 18, 59, 66]. Consequently, the degree of 
these interactions with cellular macromolecules, 
including DNA, is significantly increased in 
fasting or other pathological conditions with 
lower GSH levels [67], making the host more 
susceptible to oxidative DNA damage and muta-
tions, contributing to inflammatory tissue injury 
and carcinogenesis.

In addition to the oxidative  ethanol metabo-
lism, CYP2E1 is known to metabolize many 
small molecule environmental toxicants and 
potential carcinogens, some of which are the 
inducers of CYP2E1 [51, 65]. The exogenous 
CYP2E1 substrate compounds are thioacetamide 
(TAA), acetaminophen (APAP), isoniazid, cispl-
atin, halothane, isoflurane, salicylic acid, solvents 
(e.g., ethylene, carbon tetrachloride, chloroform, 
dichloromethane, benzene, pyridine, and toluene), 
various long-chain fatty acids, DMN, DEN, 
bromodichloromethane, Vitamin A derivatives (reti-
noic acid), and others [51, 63–65]. Endogenous 
substrates of CYP2E1 can be acetone, long-chain 
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fatty acids, glycerol, 4-HNE, and others, includ-
ing ethanol and acetaldehyde produced by oral or 
gut bacteria [18, 68–72]. Metabolism of these 
substrates by CYP2E1 and consequent organ 
damage appear to positively correlate with the 
levels of CYP2E1 activity, with a few exceptions 
of APAP- or carbon tetrachloride (CCL4)-
exposed models, as reviewed [14, 18, 24, 66]. For 
instance, clinically relevant doses of APAP, halo-
thane, thioacetamide, or CCL4 can cause acute 
drug-induced liver injury (DILI) or toxicity  via 
alcohol and drug interactions, especially in alco-
hol-exposed or fasted individuals or rodents with 
increased CYP2E1. The APAP- or CCL4-
mediated hepatic (and/or kidney) injury is initi-
ated through their metabolism by CYP2E1, since 
pretreatment with CYP2E1 inhibitors or Cyp2e1-
null mice was fully protected from these types of 
DILI or acute toxicity [24, 47, 73]. The decreased 
levels of retinoic acid by CYP2E1-mediated 
metabolism [74] and substrate competition with 
ethanol may also contribute to elevated hepato-
cyte proliferation and liver tumor progression in 
alcohol-exposed rodents and alcoholic individu-
als [74, 75]. By using knockout mice deficient of 
a specific pro-oxidant enzyme, Bradford and col-
leagues demonstrated that CYP2E1 but not 
NADPH oxidase is important in promoting alco-
hol-mediated DNA damage [76]. In this model, 
the levels of etheno-DNA adduct were signifi-
cantly decreased in ethanol-exposed Cyp2e1-null 
mice compared to those of the wild-type mice. In 
contrast, the elevated levels of ethanol-related 
DNA adducts were unchanged and still observed 
in the corresponding NADPH-oxidase-null mice. 
In addition, the levels of exocyclic ethanol-DNA 
adduct were significantly increased in CYP2E1-
overexpressing HepG2 cells upon ethanol expo-
sure [77] and some patients with alcoholic fatty 
liver and fibrosis [78]. The levels of these DNA 
adducts can be significantly decreased in the 
presence of chlormethiazole (CMZ), a specific 
CYP2E1 inhibitor [75, 77]. Furthermore, the ele-
vated levels of exocyclic ethanol-DNA adduct 
observed in experimental rodents were also 
observed in the biopsied esophagus specimens of 
human alcoholic patients with esophagus cancer 
[79]. The levels of etheno-DNA adduct signifi-

cantly correlated with cell proliferation, which 
was markedly increased in people who both 
drank and smoked [80]. All these results strongly 
indicate an important role of CYP2E1 in produc-
ing carcinogenic etheno-DNA lesions in the 
experimental model and alcoholic individuals 
[75–77, 81].

Chronic inflammation plays an important 
role in cancer development and progression of 
malignant states [82–84]. A recent long-term 
epidemiological study with more than 121,000 
health professional men and women revealed 
that consumption of pro-inflammatory diet is 
associated with colon cancer, underscoring the 
important role of inflammation in carcinogenesis 
[85]. Cancer-associated inflammation and 
inflammation-derived DNA lesions and malig-
nancies seem to be genetically stable [36] and 
can be affected by the extrinsic and intrinsic fac-
tors. For instance, extrinsic factors, such as 
alcohol intake, smoking, viral and bacterial 
infections, exposure to environmental toxicants 
and pro-carcinogens, and pathophysiological 
conditions, can increase inflammation and cancer 
risk. Additionally, cancer-causing mutations can 
stimulate inflammatory reactions by activating 
and recruiting inflammatory cells through vari-
ous pro-inflammatory cytokines and chemokines 
or complementary factors [82–84]. Additionally, 
it is well-established that excessive chronic alco-
hol intake can cause chronic inflammation 
through increased intestinal barrier dysfunction 
and endotoxemia [86–89]. Elevated plasma lev-
els of bacterial endotoxin lipopolysaccharide 
(LPS) can interact with TLR-4  in the Kupffer 
cells, leading to inflammatory liver injury and 
carcinogenesis [82, 90]. It is possible that plasma 
LPS, a potent inducer of iNOS and nitration of 
many cellular proteins [89, 91, 92], can further 
stimulate inflammation and injury to the GI tract 
and other tissues. Recent data suggest that binge 
alcohol can stimulate gut leakiness and inflam-
matory liver injury in a CYP2E1-dependent man-
ner [89, 93, 94]. The elevated CYP2E1 was 
responsible for increased oxidative and nitrative 
stress, causing nitration of several intestinal tight 
and adherent junction proteins [93]. Nitrated 
junctional complex proteins were degraded by 
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proteolytic degradation following ubiquitin con-
jugation. The markedly decreased amounts of the 
intestinal junctional complex proteins in binge 
ethanol-exposed rats compared to control coun-
terparts were confirmed by quantitative mass-
spectral analysis [93]. Subsequently, the levels of 
the gut junctional complex proteins were signifi-
cantly decreased and contributed to leaky gut and 
endotoxemia in ethanol-exposed rodents and 
people who died suddenly due to heavy alcohol 
intoxication compared to people who died from 
nonalcoholic causes [93]. These events of etha-
nol-mediated leaky gut and inflammatory liver 
injury were not observed in the corresponding 
Cyp2e1-null mice or were significantly attenu-
ated in the ethanol-exposed wild-type mice co-
treated with CMZ, a specific inhibitor of CYP2E1 
[93] or an antioxidant N-acetylcysteine (NAC) 
[89]. Consequently, elevated levels of serum LPS 
can upregulate TLR4  in the liver, stimulating 
inflammation and hepatic injury, including fibro-
sis, potentially leading to carcinogenesis [82, 95, 
96]. Furthermore, both extrinsic and intrinsic 
inflammation are known to modulate or suppress 
immune responses, which can provide a suitable 
environment for alcohol-induced carcinogenesis 
and tumor progression, as reviewed [83, 84].

�Distribution of CYP2E1 
and Carcinogenesis in Extra-Hepatic 
Tissues

The majority of CYP2E1 is expressed in the liver. 
However, it is also expressed in many extra-
hepatic tissues such as kidney [50, 97], brain [50, 
98, 99], lymphocytes [100], lung [101, 102], pan-
creas [103], nasal mucosa [104], esophagus 
[105], stomach [105], intestine [50, 93, 94], and 
female breast [106]. Induction of CYP2E1 (and 
other P450 isozymes) following exposure to eth-
anol, potentially environmental toxicants, or 
under pathophysiological conditions such as fast-
ing and diabetes, is likely to result in production 
of ROS and RNS which can lead to increased 
levels of DNA adducts, inflammatory tissue 
injury, and carcinogenesis [75–81, 93, 94]. 
Furthermore, CYP2E1 was shown to stimulate 
post-translational modifications followed by 

inactivation of various proteins in different 
subcellular organelles, resulting in ER stress, 
mitochondrial dysfunction, and inflammatory 
cell death of many tissues, as reviewed [14, 18, 
66, 92]. In many cases, the levels of tissue injury, 
DNA adducts, or cancer positively correlated 
with those of CYP2E1 [30–32, 61, 73–79, 93, 94, 
107–109]. In contrast, no or little correlation 
between the severity of tissue injury and the 
CYP2E1 level was observed in some other cases 
[95, 97, 110]. However, the lack of correlation 
between the levels of CYP2E1 and DNA adduct 
or tissue injury does not necessarily rule out the 
important role of CYP2E1 because of its permis-
sive role to allow other proteins or genes to 
exhibit their damaging effects, as described in 
some experimental models [95, 97, 110, 111].

�Contribution of Other P450 Isoforms 
in Alcohol-Related Tissue Injury 
and Carcinogenesis

Most of the studies on alcohol-related DNA 
mutations and carcinogenesis appear to focus on 
the correlative roles of ADH, CYP2E1, and 
ALDH2 involved in the oxidative metabolism of 
ethanol and acetaldehyde [75–81, 96, 112]. 
However, it has been demonstrated that chronic 
ethanol exposure can induce CYP2E1 as well as 
other cytochrome P-450 isoforms, such as 
CYP1A1 [104], CYP2A5 [111, 113], and CYP3A 
[114, 115]. The levels of these P450 isoforms 
induced by ethanol exposure may be small com-
pared to those of CYP2E1 induction. However, 
we also need to pay attention to their contributing 
roles in promoting DNA mutation, tissue injury, 
and caner in both liver and extra-hepatic tissues 
such as esophagus, gastrointestinal tract, nasal 
cavity, and lung in alcoholic individuals and/or 
alcohol-exposed rodents especially in the pres-
ence of another co-risk factors such as tobacco 
smoking and potentially harmful drugs, toxi-
cants, or solvents. For instance, CYP1A1 is 
known to metabolize carcinogens aryl hydrocar-
bons [AHs] or polyaromatic hydrocarbons 
(PAHs) [116], such as benzo[a]pyrene and 
3-methyl-cholanthrene, contained in charred 
foods and cigarette tars or smokes. Consequently, 

B.-J. Song et al.



79

ethanol-mediated induction of CYP1A would 
lead to increased levels of DNA adducts and car-
cinogenesis in the liver and other extra-hepatic 
tissues such as nose, esophagus, and lung. 
Similarly, ethanol-mediated inductions of CYP2A5 
can increase DNA adducts in the lung since it is 
known to metabolize a tobacco carcinogen, the 
tobacco-related nitrosamine-related carcinogen, 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK) [117]. Likewise, alcohol-mediated induc-
tion of CYP3A4 [114, 115] and CYP2A5 [118] 
may render the host with increased levels of DNA 
adducts and carcinogenesis caused by a myco-
toxin aflatoxin B1 (AFB1) [119]. In addition, 
elevated CYP3A isozymes are likely to metabo-
lize many drugs, including tamoxifen, leading to 
their activation and production of DNA adducts 
and carcinogenesis in certain endometrial tissues 
such as uterus [120]. Furthermore, elevated 
CYP3A and other P450 isoforms may accelerate 
metabolic clearance of many drugs, including 
anti-retroviral agents, leading to oxidative stress 
and cellular injury [121, 122] in HIV-1-infected 
people, who exhibit higher rates of hepatic cir-
rhosis and cancer [123]. In fact, alcohol-mediated 
elevation/activation of other P450 isoforms in the 
esophagus, GI tract, nasal cavity, and lung is 
likely involved in increased DNA mutation, 
inflammatory injury, and cancer in these tissues 
in the presence of another risk factor, like smok-
ing, and/or exposure to other potentially toxic 
substances, such as benzene and toluene [63–65], 
or western-style high fat fast foods [95].

�Increased DNA Adducts, 
Inflammatory Tissue Injury, 
and Carcinogenesis in NAFLD/NASH 
Through the Production 
of Endogenous Ethanol 
and Acetaldehyde

In the previous section, we have focused on DNA 
mutations, inflammatory tissue injury, and carci-
nogenesis in alcoholic individuals and alcohol-
exposed rodents. However, it is now known that 
people with NAFLD/NASH are more susceptible 
to DNA damage and cancer in the liver [124] and 
many extra-hepatic tissues, including the GI tract 

[125]. Some main reasons for increased DNA 
damage and cancer could be overgrowth of gut 
bacteria, increased alteration of gut microflora 
(dysbiosis), mucosal inflammation, oxidative/
nitrative stress, and leaky gut after exposure to 
western-style high fat fast foods, fructose-rich 
soft drinks, and metabolic syndromes [124–128]. 
In addition, it was shown that ethanol and acetal-
dehyde can be endogenously produced in obese 
rodents with NAFLD [70, 129] and some people, 
including children with NAFLD/NASH [71, 
129–131] without exogenous ethanol intake. 
Moreover, production of acetaldehyde was dem-
onstrated in various bacteria present in the mouth 
[68, 69, 132], lung [132, 133], and GI tract, 
including colon [70, 129, 134]. Consequently, the 
levels of etheno-DNA adduct, inflammatory 
injury, and carcinogenesis could be increased in 
these tissues in rodents and people with NAFLD/
NASH, as reviewed [124, 125]. For instance, gut 
dysbiosis with the  increased population of the 
ethanol-producing bacterial family 
Enterobacteriaceae, including Escherichia coli, 
can lead to increased production of ethanol, local 
inflammation, and leaky gut, contributing to 
endotoxemia and inflammatory tissue injury, as 
demonstrated with pediatric patients with NASH 
[129, 131]. Although not studied, it would be of 
interest to know whether gut CYP2E1 is induced 
by the endogenously produced ethanol, albeit 
small amounts compared to those of alcohol 
intake. If gut CYP2E1 is induced in people or 
rodents with NAFLD/NASH, it may cause oxida-
tive stress and oxidatively modify the intestinal 
junctional complex proteins, resulting in 
decreased amounts of the intestinal junctional 
complex proteins in alcohol-exposed rats and 
mice, as recently demonstrated [93, 94]. These 
events caused by the endogenous ethanol in 
NAFLD/NASH [135] may contribute to leaky 
gut, endotoxemia, and inflammatory tissue injury 
accompanied with DNA damage. Although the 
mechanisms for increased DNA mutation and 
carcinogenesis remain to be further studied, it is 
likely that CYP2E1 and other P450 isoforms, 
which can be induced by the endogenously pro-
duced ethanol, may be involved in the oxida-
tive  metabolisms of ethanol and acetaldehyde. 
In addition, these P450 isoforms can metabolize 
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pro-inflammatory substances n-6 long-chain fatty 
acids and/or other environmental toxicants or 
potential pro-carcinogens such as PAHs con-
tained in charred western-style fast foods, con-
tributing to elevated DNA adducts and 
carcinogenesis in the GI tract and other organs. 
Based on the damaging roles of the endoge-
nously produced ethanol and acetaldehyde with 
potentially elevated CYP2E1 and other P450 
isoforms, it is expected that people with diabe-
tes or NAFLD/NASH could be more susceptible 
to DNA damage, inflammatory tissue injury, 
and cancer especially when they drink even 
small amounts of alcohol through additive or 
synergistic interactions [136, 137].

�Translational Research 
Opportunities

Alcohol and acetaldehyde are human carcino-
gens [7]. The incidences of alcohol-related 
inflammatory tissue injury,  DNA mutation, and 
carcinogenesis are significantly increased in the 
presence of another risk factor(s). As mentioned 
earlier, these risk factors are smoking, viral and 
bacterial infections, pro-inflammatory western-
style high fat fast foods with fructose-containing 
soft drinks, poor nutrition, and preexisting patho-
physiological conditions such as fasting and dia-
betes [18, 59, 66, 92]. Simultaneous exposure to 
these risk factors is likely to decrease cellular 
antioxidants, such as GSH and SAMe, and inac-
tivate many antioxidant enzymes. Consequently, 
the rates of oxidative stress, lipid peroxidation, 
gut leakiness, endotoxemia, inflammatory tissue 
injury, DNA damage, and carcinogenesis would 
be increased [8, 18, 66, 92]. Based on these 
mechanisms, prevention or moderation of alco-
hol drinking would be the best remedy for 
alcohol-related tissue injury and carcinogenesis. 
Unfortunately, it would be difficult to decrease 
alcohol intake in many addicted alcoholic indi-
viduals. If alcohol drinking is not prevented, we 
may consider using adequately balanced diets 
with antioxidants (such as NAC) [89] or dietary 
supplements such as n-3 docosahexaenoic acid 
(DHA) [23], garlic compounds, including diallyl 
sulfide [37], resveratrol [138], walnut [139], 

indole-3-carbinol [140], ellagic acid [141], and 
pomegranate [94], many of which were shown to 
reduce or suppress the amount or activity of 
CYP2E1. As reported earlier [89, 93, 94, 140, 
142], decreased CYP2E1 would lead to preven-
tion of oxidative stress, leaky gut, and inflamma-
tory tissue injury. Administration of soy protein 
isolate was also shown to protect from alcohol-
mediated tumor promotion in DEN-exposed 
mice [143]. In addition, eubiosis by administer-
ing probiotics Lactobacillus [144] and 
Bifidobacterium strains [145] may be considered. 
In fact, a recent study showed that supplementa-
tion with Akkermansia muciniphila prevented 
alcohol-mediated intestinal barrier dysfunction 
and inflammatory liver injury through the gut–
liver axis [146]. Furthermore, treatment with 
synthetic chemical inhibitors of CYP2E1, such 
as CMZ [75, 77, 89] and YH439 [147], can be 
considered to mitigate alcohol- and acetaldehyde-
mediated inflammatory tissue injury,  DNA 
mutation, and carcinogenesis.

�Conclusion

As reviewed previously, both chronic and acute 
alcohol intake can change many different meta-
bolic pathways and immunological dysregula-
tions along with genetic and epigenetic changes. 
In the liver, alcohol drinking stimulates fatty 
liver, inflammation, fibrosis, cirrhosis, and cancer 
[148]. The development and progression of 
chronic liver disease usually depend on the 
amounts and duration of alcohol intake as well as 
the presence of another co-morbidity risk 
factor(s). Alcohol or acetaldehyde-mediated can-
cer in extra-hepatic tissues may also depend on 
the amounts of DNA adducts of the pro-
carcinogens by CYP2E1 and other P450 
isoforms-mediated metabolisms that can be 
increased by exposure to alcohol and/or another 
environmental toxicant(s). In this chapter, we 
have briefly summarized the biochemical proper-
ties of CYP2E1 and its roles in ethanol and acet-
aldehyde metabolism. We have also described its 
multiple regulations, tissue distribution, and 
causal roles in alcohol-mediated gut leakiness, 
inflammation, apoptosis, tissue injury, DNA 
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mutation, and carcinogenesis. In addition, we 
have mentioned the potential roles of other P450 
isoforms, which are also induced or activated by 
alcohol or another environmental toxicant, in 
metabolizing potentially harmful substances, 
contributing to increased carcinogenesis in the 
liver and extra-hepatic tissues. The causal roles 
of CYP2E1 and other P450 isoforms in stimulat-
ing inflammatory tissue injury,  DNA adducts, 
and carcinogenesis would be significantly 
increased in the presence of another risk factor 
such as smoking and/or western-style high fat 
fast foods. We have also briefly described the 
newly emerging roles of the gut microbiome 
changes and the endogenously produced ethanol 
in promoting DNA adduct formation and disease 
progression despite the absence of exogenous 
alcohol intake. Based on the understanding of the 
mechanisms of increased carcinogenesis, we 
have described potential methods of preclinical 
translational opportunities by preventing alcohol 
drinking or using dietary supplements, including 
various naturally occurring antioxidants and pro-
biotics, and chemical inhibitors of CYP2E1. In 
fact, many drug candidates are being evaluated 
for preventing or treating liver disease through 
targeting the gut–liver axis [144–146, 149, 150]. 
Based on the important roles of gut microbiome 
changes in promoting leaky gut, endotoxemia, 
inflammatory tissue injury, some of these drug 
candidates may become a good candidate as an 
anti-cancer agent.
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