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Abstract. In this paper we introduce a combination of Answer Set Pro-
gramming (ASP) and Description Logics (DL) (in particular, ALC) on
top of a modal temporal basis using connectives from Linear-time Tem-
poral Logic (LTL). On the one hand, for the temporal extension of ALC,
we depart from Baader et al.’s proposal ALC-LTL that restricts the use
of temporal operators to occur only in front of DL axioms. On the other
hand, for the temporal extension of ASP we use its formalization in
terms of Temporal (Quantified) Equilibrium Logic (TEL). This choice
is convenient since (non-temporal) Equilibrium Logic has been already
used to capture the semantics of hybrid theories, that is, combinations
of ASP programs with DL axioms. Our proposal, called ALC-TEL, actu-
ally interprets ALC axioms in terms of their translation into first order
sentences, so that the semantics of TEL is eventually used in the back-
ground. The resulting formalism conservatively extends TEL, hybrid the-
ories and ALC-LTL as particular cases.

1 Introduction

Due to its versatility, Answer Set Programming (ASP) [1,2] is one of the
paradigms for non-monotonic reasoning that has been more frequently extended
in the literature (if not the most). Each extension has been motivated by a given
type of reasoning problem or family of application domains. For instance, the
treatment of dynamic scenarios and transition systems was present from the very
beginning of ASP [3] and eventually led to a combination of ASP with modal
operators from Linear-time Temporal Logic (LTL) [4,5], giving birth to so-called
Temporal Equilibrium Logic (TEL) [6]. As another example, the ASP extension
of Hybrid Knowledge Bases [7] allows for combining non-monotonic logic pro-
grams with classical inference about ontologies, in terms of Description Logic
(DL) [8]. Both extensions are based on the underlying formalism of Equilibrium
Logic 9] but work in different directions: a natural question is what happens
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when we try to embrace both features, time and ontologies, in a common ASP
extension. In the monotonic case, several approaches considered the introduc-
tion of LTL operators in DL at different levels, at the cost of a high complexity,
or even undecidability for some reasoning tasks. A simple approach that avoids
these inconveniences is ALC-LTL [10], proposed by Baader, Ghilardi and Lutz,
that extends ALC [11] with LTL constructs, but restricts the use of temporal
operators to occur only in front of DL axioms.

In this paper, we consider the same temporal extension of DL in ALC-LTL
but under the answer set semantics for temporal logic programs provided by
TEL, so that temporal ALC expressions can be combined with temporal logic
programs. The resulting formalism, ALC-TEL, conservatively extends TEL,
hybrid theories and ALC-LTL as particular cases. This work is a preliminary
step to introduce the logic and informally explain its behavior using a simple
example.

The rest of the paper is organized as follows. In the next section, we recall
the basic definition of ALC and its translation to First Order Logic. In Sect. 3
we present the first order version of TEL as introduced in [12], but with a slight
modification to allow open domains and capture ALC quantification. Section 4
defines the ALC-LTL syntax whereas Sect. 5 incorporates those constructs into
TEL using their first order translation together with some additional axiomati-
zation. Finally, Sect. 6 concludes the paper.

2 Description Logic ALC

The alphabet of an ALC theory [11,13]is a triple (N¢, Ng, N;) of mutually disjoint
sets of names referring to concepts, roles and individuals, respectively. As an exam-
ple, consider the alphabet No = {Disease, Treatment, Vaccine, Medication},
Npr = {curedBy}, N; = {AIDS, Smallpox}.

A concept (description) C is an expression that follows the grammar:

C:=c|-C|CnC|3c.C

where ¢ € N¢ is a concept name and r € Ny a role name. We use the following
abbreviations for concept descriptions:
CuD Y ~(~cn-D)

def
T= cU-c

1T

def

Vr.C' = —-3r.(-C)

for some concept name ¢ € No. A general concept inclusion (GCI) axiom is an
expression of the form C' © D where C and D are concept descriptions. A T-Boz
is a set of GCI axioms. We sometimes write C = D as an element of a T-Box
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© to mean that the two axioms C T D and D C C are elements of ©. As an
example, consider the T-Box:

Vaccine LI Medication C Treatment (1)

JcuredBy.Treatment C Disease (2)

meaning that vaccines and medications are treatments, and that anything cured
by a treatment must be a disease. An assertion (axiom) is a construct of one of
the forms:

a:C (a,b):r
where a,b € Nj are individual names, r € Npg is a role name and C is an

arbitrary concept description. An A-Boz is a set of assertions. For instance, the
A-Box:

Smallpox : JdcuredBy.Vaccine (3)

AIDS : Disease N —JcuredBy.Treatment (4)

tells us that smallpox is cured! by a vaccine whereas AIDS is a disease and has

no treatment for its cure. The fact that Smallpox is a disease can be derived

from the previous T-Box since it is cured by some vaccine, and the later is a
treatment. A knowledge base (O, £2) consists of a T-Box © and an A-Box (2.

In the rest of the paper, we treat ALC through its standard First Order

Logic translation (see for instance [13]). However, for the sake of completeness,
we provide next the standard definition of the ALC semantics.

Definition 1 (ALC interpretation). An ALC interpretation T is a pair
(AT, 1) where AT is a non-empty set called the domain (containing individ-
uals) and Tisa mapping on No U Nr U Ny that assigns: an individual al e AT
to each individual name a € Np; a set of individuals ct C AT to each concept
name ¢ € N¢; and a set of pairs of individuals ¥ C AT x AT to each role name
r € Np. O

Definition 2 (Interpretation of concept descriptions). Given interpre-
tation T = (AZ,T) its extension to concept descriptions follows the recursive
rules:

(-0 = At
(cnD)X ¥ cTnpt
Fr.C)F < {de AT | there is a d' with (d,d') € ¥ such that d' € CT}
The interpretation of derived concepts can be easily deduced:
(CcubD)f =c*uD?
TI _ AT
1r=0
(vr.C)F = {d € AT | all & with (d,d) € r” satisfy d’ € C*}

! Understanding here curedBy as “cured or prevented by.”.
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As expected, an interpretation Z satisfies a GCI axiom C' T D, written
T = C C D,iff C* C DT, Similarly, we define satisfaction for assertions as:
T Ea:Ciffal € C%; and T |= (a,b) : r iff (aZ,b?) € rZ. Interpretation 7 is a
model of a knowledge base (O, £2) iff it satisfies all GCIs in the T-Box © and all
assertions in the A-Box (2.

As said before, we are interested in the translation of ALC into First Order
Logic (FOL) [13]. Given an ALC alphabet No U Ngr U N; we define the corre-
sponding First Order signature with one unary predicate c(x) per each c € N¢,
binary predicate r(z,y) per each r € Ni and constant name a per each a € Nj.
The FOL translation of a concept description C' with respect to a free variable
x is a formula denoted as t,(C) and recursively defined as follows:

to(c) ¥ c(z)  for any concept namec € Ne
t,(~C) € ~t,(C)
t(C'T1 D) = £,(C) A t(D)
ta(3r.C) E Jy( x(z,y) At (C) )

Notice that y is a variable name? different from 2 and bound in Jy. It is relatively
easy to check that the translation of derived concepts can be captured by the
following equivalent FOL formulas:

t,(C'U D) < t,(C) V t,(D)
te(T) = T
ta(L) & L
to(Vr.C) < Vy( r(z,y) — t,(C) )

The translation of a GCI axiom C T D is defined as
dcf

HC C D) = Va(t,(C) — t.(D))
For instance, the translation of (2) corresponds to:
Vz(Jy (curedBy(z,y) A Treatment(y)) — Disease(x))
We also define the translation of assertions as:
ta:C) € 1.(C)le/a]  H(ab): 1) “ r(ab)

where [z /a] stands for the substitution of variable x by the individual name a.
As an example, the translation of (3) amounts to:

Jy (curedBy(Smallpox,y) A Vaccine(y))

Given a knowledge base (O, {2), we define its translation as the union ¢(©)U
t(£2) of the sets of translations of all GCIs in @ and assertions in {2, respectively.

Proposition 1. There is a one-to-one correspondence between ALC models of
(6, 2) and FOL models of t(©) Ut(S2).

2 In fact, we can define translation ¢, (C) using x as new bound variable, and the whole
translation belongs to the 2-variable fragment of FOL.
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3 Temporal Quantified Equilibrium Logic

The definition of Temporal Quantified Equilibrium logic we use in the current
paper is an extension of a previous version defined in [12] to cope with open
domains as in Quantified Equilibrium Logic from [7]. Syntactically, we consider
function-free first-order languages £ = (C,P) built over a set of constant sym-
bols, C, and a set of predicate symbols, P. Additionally, each p € P has an
associated arity or number of arguments. An atom is any p(ti,...,t,) where
p € P is a predicate with arity n > 0 and each ¢; is a term, that is, a constant or
a variable in its turn. We assume the existence of a binary equality predicate ‘=’
€ P, written in infix notation. Using £, connectors and variables, an L-formula
 is defined by following the grammar:

@u=p(ty, .., ta) [ L1 Apa | @1 Ve | o1 — 2|
Oelei Upa|ei Roa |V |3z @] (p)

where p(t1,...,t,) is an atom, x is a variable and O, U and R respectively stand
for “next”, “until” and “release.” A theory is a finite set of formulas. We use the
following derived operators:

def

o o1 Op=TUgp
def

T Op 1R
def
b= (p—=P)A (W — p)

for any formulas ¢, 1. Note that = will be used to represent default negation.
The application of i consecutive ()’s is denoted as follows: )’y def OO 1)

for i > 0 and O% et . We say that a term, atom, formula or theory is ground
if it does not contain variables. A sentence or closed-formula is a formula without
free-variables (defined as usual). A theory I is a set of sentences.

A wuniverse is a pair (D,o) where D is a non-empty set called the domain
and o is a mapping o: CUD — D satistying o(d) = d for every d € D. We call d
an unnamed individual if there is no constant ¢ € C with o(c) = d. Throughout
this paper, o is subject to the unique names assumption (UNA) stating that
different individual names are mapped to different domain elements, that is,
o(c) # o(c) if ¢ # ¢ for any ¢,¢ € C. This is a common assumption both in
Description Logics and in Logic Programming. In fact, the latter usually makes
a stronger assumption, taking the Herbrand Universe (C,o) where D = C, and
so, o(c) = ¢ for all ¢ € C. In this paper, however, we adopt an open domain as
in [7] to accommodate the use of quantification from Description Logic.

By Atp(C,P) we denote the set of ground atoms constructible from the
language £’ = (C UD,P). A first-order LTL-interpretation for language £ =
(C,P) is a structure ((D,o),T) where (D, o) is a universe as above and T is
an infinite sequence of sets, T = {T};};>¢ with T; C Atp(C,P). Intuitively, T;
contains those ground atoms that are true at situation i. For any T = {7} }i>0
and k > 0, by T[k] we denote the LTL-interpretation T = {T;},>; that starts
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at the k-th position of T. Given two sequences of sets H and T we say that H
is smaller than T, written H < T, when H; C T; for all > 0. As usual, H < T
stands for: H< T and H # T.

Definition 3. A temporal quantified here-and-there (or just TQHT) interpre-
tation is a tuple M = ((D,o),H,T) where ((D,0),H) and ((D,0),T) are two
LTL-interpretations satisfying H < T. a

In the definition above, we respectively call H and T the “here” and “there” com-
ponents of M. A TQHT-interpretation of the form M = ((D, o), T, T) is said to
be total. If M = ((D,0),H,T) we write M[k] to stand for ((D, o), H[k], T[k]).
The satisfaction relation for M = ((D,0),H,T) and a formula «, written
M = a, is recursively defined as follows:

MEp(ty, ... tn) iff p(o(ty),...,o(ts,)) € Hp.

MEt=s iff o(t) =o(s)

ML

MEQeAY iff M ¢ and M = 4.
MEpVy if MEgor M.

ME @ i (D.o)w,T) i g or (Do) w.T) |-
for all w € {H, T}
ME Oy iff M[1] = ¢.
MEGUy  iff 3720, Mj]E v
and (M[i] E ¢ for all 4, 0 < i < j).
MEpRY iff Vj >0, M[jlEv
or (M[i] = ¢ for some i, 0 < i < j).
MEVE (@) it {(D,0),w,T) E old)
for every d € D and every w € {H, T}.
M E Tz p(z) if M E ¢(d) for some d € D.

where by ¢(d) we denote the replacement by d of all free occurrences of x in
(). An interpretation M is a model of a theory I', written M = I, if it
satisfies all the sentences in I'. The resulting logic is called Temporal Quan-
tified Here-and-There Logic with equality and static® domains, and we simply
abbreviate it as TQHT. It is not difficult to see that, if we restrict ourselves to
total TQHT-interpretations, ((D,0), T, T) E ¢ iff (D,0),T) | ¢ in first-order
LTL. Furthermore, the following properties can be easily checked by structural
induction.

Proposition 2. For any formula ¢, and interpretation {(D,o0),H, T):

(i) if <(D’U>7H’T> |: o, then <(D70)7T7T> ': ¥
(i) ((D,0),H,T) |= =9 iff (D,0), T, T) = ¢

In general, it is clear that the other direction of (i) does not hold: any non-
total interpretation contains atoms ¢ = p(t1,...,t,) € T; \ H; for some i > 0.

3 The name “static” refers here to the fact that the same domain D is used both for
Hand T.
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Without loss of generality, suppose i = 0 (we can always take M([i] instead).
Then, for those atoms, ((D, o), T, T) = ¢ but (D, o), H, T) |~ ¢. Moreover, by
(ii), the former also means ((D,o),H, T) [~ —p, so we conclude that non-total
interpretations falsify the formula ¢ V —p, a classical tautology known as the
ezcluded middle aziom. This axiom is not valid either in intuitionistic logic or in
the intermediate logic of Here-and-There [14], where ‘=’ is weaker than classical
negation. It is still possible to add this axiom for some predicates p € P by
forcing the condition:

OVzy... Vo, (p(x1,...,20) Vop(xe, ..., 20)) (EM,)

The following results explain the effect of including ((EM,)) among the for-
mulas of our theory.

Proposition 3. An interpretation M = ((D,0),H, T) satisfies (EM,)for some
p € P iff, for alli > 0: p(t1,...,tn) € T; is equivalent to p(t1,...,tn) € H;.

Corollary 1. Given language L = (C,P), let P’ C P be a subset of predicates
and let M = (EM,) for all p € P'. Then, {(D,0),H,T) = ¢ amounts to
((D,0), T, T) = ¢ for any formula ¢ in the language L = (C, P’).

Corollary 2. Given language L = (C,P), the addition of (EM,)for all p € P
makes TQHT collapse into LTL.

As an illustration of TQHT satisfaction, consider the propositional formula:

—inmune — vulnerable (5)

This formula corresponds to the ASP ground rule:

vulnerable :- not inmune.

Any model M = ((D,0),H, T) of (5) must satisfy that ((D, o), w,T),0 }
—inmune or ((D,o0),w, T),0 = vulnerable for all w € {H, T}. By Proposition 2
(ii), the former is equivalent to ((D, o), T, T),0 |= inmune, that is, inmune € Tp,
whereas the latter ammounts to vulnerable € Hy for w = H and vulnerable €
Ty for w = T. Therefore, models of (5) are such that, if inmune ¢ Ty then
vulnerable € Hy C Tj.

To introduce non-monotonicity, we define a set of selected total TQHT mod-
els we will call temporal equilibrium models, or just temporal stable models, if we
consider their corresponding LTL representation.

Definition 4 (Temporal Equilibrium Model). A temporal equilibrium
model of a theory I' is a total model M = ((D, o), T, T) of I' such that there
is no H < T satisfying {(D,c),H,T) = I'. When this happens, we further say
that the LTL-interpretation ((D,o),T) is a temporal stable model of I'. O
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The logic induced by temporal equilibrium models is called Temporal Quanti-
fied Equilibrium Logic (TEL, for short). We can identify temporal logic programs
with variables as a fragment of first order temporal theories. For a detailed defini-
tion of this fragment see [12]. In the previous simple example (5), we can observe
that any total interpretation M = ((D,0), T, T) with inmune € Ty is a TQHT
model, but we can always form another interpretation M’ = ((D, o), H, T) with
Hy = Ty \ {inmune, vulnerable} and H; = T; for ¢ > 0 such that it is also a
TQHT model of (5) but H < T, so M is not in equilibrium. If, on the contrary,
inmune & Ty, then the satisfaction of (5) requires vulnerable € Hy C Tj for any
TQHT model, and there is no way to form a smaller model by removing atoms
in Ty. For the rest of situations ¢ > 0, any 7T; containing at least one atom can
always be reduced to H; = () while keeping the satisfaction of (5), since this
formula only affects to the initial situation. It is not difficult to see that the only
temporal equilibrium model of (5) corresponds to Ty = {vulnerable} and T; =
for ¢ > 0. Let us consider next a more elaborated example.

Example 1. Take the following temporal logic program:

Vulnerable(x, y) (

OImmune(x,y)) (7
(
(

Person(z) A Disease(y) A —~Immune(x,

O( Vulnerable(x,y) A = O Immune(z, O Vulnerable(z,y))

(z,y) —
O(Immune(z,y) —
() —
y) — Immune(z,y))
)
)

O( Vaccinate(x, 9
OPerson(John) A ODisease(Smallpox (10
O? Vaccinate(John, Smallpox (11

where we assume that all free variables in a formula are universally quantified.
Formula (6) asserts that, initially, any person « is vulnerable to any desease v,
unless we can prove it is immune. As we saw before, the effect of = in TEL
is that of default negation of p, that is, —¢ holds when there is no evidence
on ¢. Formula (7) tells us that once somebody becomes immune to some dis-
ease, it remains so forever. A similar expression is (8), saying that someone
vulnerable remains so, but this time is under the default condition that there
is no evidence of becoming immune. Formulas of the form (8) are called iner-
tia rules. The expression (9) means that the effect of vaccinating x against y is
becoming immune. Finally, (10) contains some typing information saying that
John is (always) a person and Smallpox is (always) a disease, whereas (11)
asserts that John has been vaccinated at situation ¢ = 3. Program (6)—(11)
has a temporal stable model ((D,o), T) where D = C = {John, Smallpox}, ¢
is the identity relation and the only states making Vulnerable(John, Smallpox)
true are 7 € {0,1,2} whereas Immune(John,Smallpox) becomes true for all
i > 3. The rest of stable models only vary in the extension of D (we can have
arbitrary unnamed individuals) and the assignment o, provided that UNA is
respected. Suppose we are said now that John has some genetic anomaly that
made him immune to Smallpox from the very beginning. If we add the formula
Immune(John, Smallpox) to (6)—(11) then Vulnerable(John,Smallpox) is never
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derived and we obtain OImmune(John, Smallpox) as a conclusion. This last
variation illustrates the non-monotonic behavior of TEL entailment relation. O

Without entering into further detail and just as an illustration, Fig. 1 shows an
encoding of Example 1 in the language of the temporal ASP solver telingo [15].
The correspondence of program rules with the respective formulas (6)—(11) is
pretty obvious in most cases. The only difference is that telingo uses the previ-
ous operator in rules representing transitions between two states, rather than the
next operator. Thus, for instance, >inmune (X,Y) must be read as “previously,
inmune (X,Y) was true”. On the other hand, the next operator used on facts is
represented as >, as we can see in the last line.

#program initial.
vulnerable(X,Y) :- person(X), disease(Y), not inmune(X,Y).

#program dynamic.
inmune (X,Y) :- ’inmune(X,Y).
vulnerable(X,Y) :- ’vulnerable(X,Y), not inmune(X,Y).

#program always.

inmune (X,Y) :- vaccinate(X,Y).
person(john) .
disease(smallpox) .

#program initial.
&tel{ > > > vaccinate(john,smallpox) }.

Fig. 1. An encoding of Example 1 in the language of the temporal ASP solver telingo.

4 ALC-LTL

The combination of description logics with temporal patterns is an important
field of knowledge representation that has been widely studied in the literature
(see, for instance, the surveys [16-18]). In a cornerstone paper, Baader, Ghi-
lardi and Lutz [10] proposed the temporal extension ALC-LTL where temporal
operators are only introduced in front of ALC axioms, but not as concept con-
structors. This guaranteed decidability and significantly reduced the complexity
of different reasoning tasks (depending on whether rigid roles are considered or
not) while keeping enough expressiveness for solving many practical problems.
According to [10], an ALC-LTL formula ¢ is defined by the grammar:

alpr N2 o1 Voa|—pler Ups| Op

where « is an ALC axioms. We assume the same abbreviations for temporal
operators seen in Sect. 3. For ALC-LTL formulas, ¢ — 1 can be defined as = V1)
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and ¢ R can be defined as —(—p U =) (something that, in general, TEL does
not satisfy). The semantics for ALC-LTL is provided in [10] by considering an
infinite sequence {Z; };>¢ of ALC interpretations Z;. In our case, however, we will
be more interested in the first order translation of ALC-LTL. We assume that
any ALC axiom « actually represents the first order formula t(«) as defined in
Sect. 2. Then, an ALC-LTL formula may be simply seen as an abbreviation of
first order temporal formula. To give an example, the ALC-LTL formula:

QO(AIDS : JcuredBy.Treatment)

expresses the wish that a definitive treatment for AIDS is eventually found and,
after applying translation #(-) becomes the first order temporal formula:

OO Jy(curedBy(AIDS, y) A Treatment(y))

Baader et al. define rigid concepts and roles as those whose interpretation does
not vary along time (otherwise, they are called flexible instead). Using the FOL
representation, for any rigid concept ¢ € N¢ and rigid role r € N we have:

vz (c(z) < Oc(x))
Vavy (r(z,y) < Or(z,y))

5 ALC-TEL

Following the encoding in [7] to incorporate hybrid theories in Equilibrium Logic,
we describe now how ALC can be easily embodied in TEL. Given language
L = (C,P) we suppose that No C P and Ng C P become unary and binary
predicates, respectively, and that N; C C become constant names. The crucial
point in the encoding is the addition of the excluded middle axiom (EM,)for
every predicate p € No U Ng. In this way, the translation of an ALC axiom is
interpreted under classical FOL whereas the translation of any ALC-LTL for-
mula is interpreted under quantified LTL. The final result provides an expressive
formalism that allows combining temporal logic programming and terminological
knowledge. For instance, we can modify now our running example as follows.

Ezample 2 (Examplel continued). We can incorporate axioms (1)—(4) assuming
that Vaccine, Medication, Treatment and Disease are rigid concepts, whereas
curedBy is flexible. We also include the rigid concept Person and the constant
John. Our logic program can be modified to include ALC expressions accordingly.
For instance, we can keep untouched the formulas (7)-(9) and (11) since they
do not refer to terminological knowledge, but we replace now (6) by?:

(z : Person) A (y : Disease) A ~Immune(z,y) — Vulnerable(x,y)

4 We allow now logical variables in assertions, but their translation is straightforward,
playing the role of generic individual names.
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and (10) by the assertions:
John : Person Smallpox : Disease
that do not need temporal operators, since these concepts are rigid. a

An important issue may occur when dealing with flexible concepts or roles. For
instance, since curedBy is flexible, the fact that smallpox is cured by a vaccine,
(3), is not guaranteed to persist throughout the temporal narrative. To do so,
we can add a rule for strict persistence like (7) as follows:

O(curedBy(z,y) — OcuredBy(z,y))

which works in this case since we can assume that a curable disease does not
cease to be so. However, if we wanted to transform this rule into a general inertia
default, it would not be directly possible, since curedBy behaves as a classical
predicate due to (EM,,). An additional auxiliary predicate could still be used for
that purpose. A more ambitious solution would be removing the (EM,,)axiom
and allowing concepts and roles to behave as logic programming predicates. This
would allow expressing defaults on Description Logic axioms, but would depart
from the standard interpretation of ALC.

6 Conclusions

We have defined a logical formalism ALC-TEL that, under a modal temporal
basis, combines the Description Logic ALC [11] with logic programming under
Equilibrium Logic semantics. On the one hand, if we disregard the temporal
operators, this formalism embeds hybrid theories from [7], allowing the combi-
nation of description logics (in our case, ALC) with logic programming. On the
other hand, if we add the excluded middle axiom (EM,) for all the predicates
in the language, ALC-TEL collapses into ALC-LTL as defined by Baader et al.
in [10]. Moreover, ALC is encoded in terms of its First Order translation, so
that, once ALC expressions are translated, we simply get Temporal (Quantified)
Equilibrium Logic [6,12] as underlying formalism.

The current proposal opens the exploration of many possible directions. A
first obvious line of future work is the study of syntactic fragments and the
analysis of complexity for their satisfiability problem. An obviously related line
has to do with implementation. For instance, model checking techniques have
been applied both to ALC-LTL [19] and to TEL [20,21] and their efficient com-
bination could be a interesting topic for future investigation. An adaptation of
TEL for practical problem solving in the spirit of ASP has led to a variant [15]
defined on finite traces and its corresponding ASP solver, telingo. The ALC-
TEL formalism may help us to incorporate terminological knowledge in telingo
in the form of DL knowledge bases. Besides, the use of finite traces on temporal
description logics has also been recently proposed in [22]. Another exploratory
line could be a more integrated combination of DL and logic programs where
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defaults were also introduced in DL concepts and roles. Finally, another possible
research direction is the use of ALC-TEL in application domains that involve
temporal reasoning and rich ontologies, following similar steps as [23] in the
medical domain.
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