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Abstract. In this paper we present an approach to defeasible reason-
ing for the description logic ALC. The results discussed here are based
on work done by Kraus, Lehmann and Magidor (KLM) on defeasible
conditionals in the propositional case. We consider versions of a pref-
erential semantics for two forms of defeasible subsumption, and link
these semantic constructions formally to KLM-style syntactic proper-
ties via representation results. In addition to showing that the semantics
is appropriate, these results pave the way for more effective decision pro-
cedures for defeasible reasoning in description logics. With the semantics
of the defeasible version of ALC in place, we turn to the investigation
of an appropriate form of defeasible entailment for this enriched version
of ALC. This investigation includes an algorithm for the computation of
a form of defeasible entailment known as rational closure in the propo-
sitional case. Importantly, the algorithm relies completely on classical
entailment checks and shows that the computational complexity of rea-
soning over defeasible ontologies is no worse than that of the underlying
classical ALC. Before concluding, we take a brief tour of some existing
work on defeasible extensions of ALC that go beyond defeasible sub-
sumption.
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1 Introduction

Description logics (DLs) [1] are central to many modern AI and database appli-
cations since they provide the logical foundation of formal ontologies. Yet, as
classical formalisms, DLs do not allow for the proper representation of and
reasoning with defeasible information, as shown up in the following example,
adapted from Giordano et al. [39]: Students do not get tax invoices; employed
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 147–173, 2019.
https://doi.org/10.1007/978-3-030-22102-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-22102-7_7


148 K. Britz et al.

students do; employed students who are also parents do not. From a naïve (clas-
sical) formalisation of this scenario, one concludes that the notion of employed
student is an oxymoron, and consequently the concept of employed student is
unsatisfiable. A more nuanced view is to represent such statements as defeasible.

Endowing DLs with defeasible reasoning features is therefore a promising
endeavour from the point of view of applications of knowledge representation and
reasoning. Indeed, the past 25 years have witnessed many attempts to introduce
defeasible reasoning capabilities in a DL setting, usually drawing on a well-
established body of research on non-monotonic reasoning (NMR). These com-
prise the so-called preferential approaches [19–21,30,32,40,44,45,57,58,63] and
the circumscription-based ones [8,9,60], amongst others [7,36,46–48,53,56,62].
Not surprisingly, Franz was among those who first made a meaningful contribu-
tion in this regard [2,3].

Preferential extensions of DLs turn out to be particularly promising, mainly
because they are based on an elegant, comprehensive and well-studied frame-
work for non-monotonic reasoning in the propositional case proposed by Kraus,
Lehmann and Magidor [49,52], often referred to as the KLM approach. Such
a framework is valuable for a number of reasons. First, it provides for a thor-
ough analysis of some formal properties that any consequence relation deemed as
appropriate in a non-monotonic setting ought to satisfy. Such formal properties
play a central role in assessing how intuitive the obtained results are and enable
a more comprehensive characterisation of the introduced non-monotonic condi-
tional from a logical point of view. Second, the KLM approach allows for many
decision problems to be reduced to classical entailment checking, sometimes with-
out blowing up the computational complexity compared to the underlying classi-
cal case. Finally, it has a well-known connection with the AGM approach to belief
revision [38,59] and with frameworks for reasoning under uncertainty [6,37]. It
is therefore reasonable to expect that most, if not all, of the aforementioned
features of the KLM approach should transfer to KLM-based extensions of DLs
too.

Following the motivation laid out above, several extensions to the KLM app-
roach to description logics have been proposed recently [19,21,23,24,27,30,32,
39,40,44,45], each of them investigating particular constructions and variants of
the preferential approach. Here we provide an overview of the formal foundations
of preferential defeasible reasoning in DLs. By that we mean (i) providing a gen-
eral and intuitive semantics; (ii) showing that the corresponding representation
results (in the KLM sense of the term) hold, linking the semantic constructions
to the KLM-style set of properties, and (iii) presenting an appropriate analysis
of entailment in the context of ontologies with defeasible information with an
associated decision procedure that is implementable.

After a brief introduction to the required background on the DL we consider
here (in Sect. 2), we introduce the notion of defeasible subsumption along with a
set of KLM-inspired properties it ought to satisfy (Sect. 3). In particular, using
an intuitive semantics for the idea that “usually, an element of the class C is also
an element of the class D”, we provide a characterisation (via representation
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results) of two important classes of defeasible statements, namely preferential
and rational subsumption. In Sect. 4, we discuss two obvious candidates for the
notion of entailment in the context of defeasible DLs, namely preferential and
modular entailment. These turn out not to have all properties seen as important
in a non-monotonic DL setting, mimicking a similar feature in the propositional
case [52]. This is followed in Sect. 5 by the presentation of a version of rational
entailment satisfying all the required properties, and which can thus be seen as
a suitable candidate for defeasible entailment. In Sect. 6 we discuss aspects of
defeasible reasoning going beyond defeasible concept inclusion. We conclude in
Sect. 7 with some pointers to research following on from the work presented here,
and remarks on future related endeavours.

The overview presented in this paper relies heavily on research conducted by
the present authors, et al. [15].

2 Background

Description Logics (DLs) [1] are decidable fragments of first-order logic with
interesting properties and a variety of applications. There is a whole family of
description logics, an example of which is ALC and on which we shall focus in
the present paper. The (concept) language of ALC is built upon a finite set of
atomic concept names C, a finite set of role names R and a finite set of individual
names I such that C, R and I are pairwise disjoint. With A,B, . . . we denote
atomic concepts, with r, s, . . . role names, and with a, b, . . . individual names.
Complex concepts are denoted with C,D, . . . and are built according to the
following rule:

C ::= � | ⊥ | C | ¬C | C � C | C � C | ∀r.C | ∃r.C

With L we denote the language of all ALC concepts.
The semantics of L is the standard set theoretic Tarskian semantics. An

interpretation is a structure I =def 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ΔI , role names r to binary relations rI over ΔI , and individual
names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI × ΔI , aI ∈ ΔI .
Define rI(x) =def {y | (x, y) ∈ rI}. We extend the interpretation function ·I to
interpret complex concepts of L in the following way:

�I =def ΔI , ⊥I =def ∅, (¬C)I =def ΔI \ CI

(C � D)I =def CI ∩ DI , (C � D)I =def CI ∪ DI

(∃r.C)I =def {x ∈ ΔI | rI(x) ∩ CI �= ∅}, (∀r.C)I =def {x ∈ ΔI | rI(x) ⊆ CI}

Given C,D ∈ L, C � D is called a subsumption statement, or general concept
inclusion (GCI). C ≡ D is an abbreviation for both C � D and D � C. An
ALC TBox T is a finite set of GCIs. We denote subsumption statements with
α, β, . . .



150 K. Britz et al.

An interpretation I satisfies a GCI C � D (denoted I � C � D) if CI ⊆ DI .
An interpretation I is a model of a TBox TB (denoted I � T ) if I � α for every
α ∈ T . A statement α is (classically) entailed by T , denoted T |= α, if every
model of T satisfies α.

Given C ∈ L, r ∈ R and a, b ∈ I, an assertional statement (assertion, for
short) is an expression of the form a : C or (a, b) : r. An ALC ABox A is a finite
set of assertions. Given T and A, with KB =def T ∪A we denote an ALC knowl-
edge base, a.k.a. an ontology. This chapter focuses on defeasibility for description
logic TBoxes only, and does not consider the extension to defeasible knowledge
bases that include ABox statements. Various solutions for defeasible ABox rea-
soning have been proposed, that can be associated with the present approach
for TBoxes [29,30,35,45].

3 Defeasible Concept Inclusions

In a sense, class subsumption (alias concept inclusion) of the form C � D is the
main notion in DL ontologies. Given its implication-like intuition, subsumption
lends itself naturally to defeasibility: “provisionally, if an object falls under C,
then it also falls under D”, as in “usually, students are tax exempted”. In this
respect, a defeasible version of concept inclusion is the starting point for an inves-
tigation of defeasible reasoning in DL ontologies. We also address defeasibility
of the entailment relation in later sections.

Definition 1 (Defeasible Concept Inclusion). Let C,D ∈ L. A defeasible
concept inclusion axiom (DCI, for short) is a statement of the form C �∼ D.

A DCI of the form C �∼D is to be read as “usually, an instance of the class C
is also an instance of the class D”. For instance, the DCI

Stud �∼ ¬∃receives.TaxInv
formalises the example above. Paraphrasing Lehmann [50], the intuition of C�∼D
is that “if C were all the information about an object available to an agent, then D
would be a sensible conclusion to draw about such an object”. It is worth noting
that �∼ , just as �, is a ‘connective’ positioned between the concept language
(object level) and the meta-language (that of entailment) and it is meant to be
the defeasible counterpart of the classical subsumption �.

Definition 2 (Defeasible TBox). A defeasible TBox (dTBox, for short)
is a finite set of DCIs.

Given a TBox T and a dTBox D, we let KB =def T ∪ D and refer to it as a
defeasible knowledge base (alias defeasible ontology).

Example 1. The following defeasible knowledge base gives a formal specification
for our student scenario:

T = {EmpStud � Stud}, D =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭
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In the semantic construction later on, it will also be useful to be able to refer
to infinite sets of concept inclusions. Let KBinf therefore denote a defeasible
theory, defined as a defeasible knowledge base but without the restriction on T
and D to finite sets.

In order to assess the behaviour of the new connective and check it against
both the intuition and the set of properties usually considered in a non-
monotonic setting, it is convenient to look at a set of �∼ -statements as a binary
relation of the ‘antecedent-consequent’ kind.

Definition 3 (Defeasible Subsumption Relation). A defeasible sub-
sumption relation is a binary relation �∼ ⊆ L × L.

The idea is to mimic the analysis of defeasible entailment relations carried
out by Kraus et al. [49] in the propositional case, where entailment is seen as a
binary relation on the set in propositional sentences. Here we adopt the view of
subsumption as a binary relation on concepts of our description language.

Sometimes (e.g. in the structural properties below) we write (C,D) ∈ �∼
in the infix notation, i.e., as C �∼ D. The context will make clear when we will
be talking about elements of a relation or statements (DCIs) in a defeasible
knowledge base.

Definition 4 (Preferential Subsumption Relation). A defeasible subsump-
tion relation �∼ is a preferential subsumption relation if it satisfies the
following set of properties, which we refer to as (the DL versions of the) prefer-
ential KLM properties:

(Ref) C �∼ C (LLE)
C ≡ D, C �∼ E

D �∼ E
(And)

C �∼ D, C �∼ E

C �∼ D � E

(Or)
C �∼ E, D �∼ E

C � D �∼ E
(RW)

C �∼ D, D � E

C �∼ E
(CM)

C �∼ D, C �∼ E

C � E �∼ D

The properties in Definition 4 result from a translation of those for prefer-
ential consequence relations proposed by Kraus et al. [49] in the propositional
setting. They have been discussed at length in the literature for both the propo-
sitional and the DL cases [19,21,41,42,49,52] and we shall not repeat so here.

If, in addition to the preferential properties above, the relation �∼ also satisfies
rational monotonicity (RM) below, then it is said to be a rational subsumption
relation:

(RM)
C �∼ D, C ��∼ ¬E

C � E �∼ D

Rational monotonicity is often considered a desirable property to have, one
of the reasons stemming from the fact that it is a necessary condition for the
satisfaction of the principle of presumption of typicality (more on that in Sect. 4).

In what follows, we present a semantics for preferential and rational subsump-
tion by enriching standard DL interpretations I with an ordering on the elements
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of the domain ΔI . The intuition underlying this is simple and natural, and
extends similar work in the propositional case by Shoham [61], Kraus et al. [49],
Lehmann and Magidor [52] and Booth et al. [10–12] to the case for description
logics. This is not the first extension of this kind, as evidenced by the work of
Boutilier [14], Baltag and Smets [4,5], Giordano et al. [39,41–45], Britz et al. [17–
21] and Britz and Varzinczak [22–27]. The present paper presents a cohesive
semantic account of both preferential and rational subsumption, with accom-
panying representation results and computational characterisation based on the
standard semantics for description logics.

Definition 5 (Preferential Interpretation). A preferential interpreta-
tion is a tuple P =def 〈ΔP , ·P ,≺P〉, where 〈ΔP , ·P〉 is a (standard) DL inter-
pretation (which we denote by IP and refer to as the classical interpretation
associated with P), and ≺P is a strict partial order on ΔP (i.e., ≺P is irreflexive
and transitive) satisfying the smoothness condition (for every C ∈ L, if CP �= ∅,
then min≺P CP �= ∅).1

Preferential interpretations provide us with a simple and intuitive way to
give a semantics to DCIs.

Definition 6 (Satisfaction). Let P be a preferential interpretation and let
C,D ∈ L. The satisfaction relation � is defined as follows:

– P � C � D if CP ⊆ DP ;
– P � C �∼ D if min≺P CP ⊆ DP .

If P � α, then we say P satisfies α. P satisfies a defeasible knowledge base KB,
written P � KB, if P � α for every α ∈ KB, in which case we say P is a
preferential model of KB. We say C ∈ L is satisfiable w.r.t. KB if there is
a model P of KB s.t. CP �= ∅.

It is easy to see that the addition of the ≺P -component preserves the truth
of all classical subsumption statements holding in the remaining structure:

Lemma 1. Let P be a preferential interpretation. For every C,D ∈ L, P �
C � D if and only if IP � C � D.

It is worth noting that, due to the smoothness of ≺P , every (classical) sub-
sumption statement is equivalent, with respect to preferential interpretations, to
some DCI.

Lemma 2. For every preferential interpretation P, and every C,D ∈ L, P �
C � D if and only if P � C � ¬D �∼ ⊥.

An obvious question that can now be raised is: “How do we know our pref-
erential semantics provides an appropriate meaning to the notion of DCI?” The
following definition will help us in answering this question:
1 Given X ⊆ ΔP , with min≺P X we denote the set {x ∈ X | for every y ∈ X, y �≺P x}.
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Definition 7 (P-Induced Defeasible Subsumption). Let P be a preferen-
tial interpretation. Then �∼ P =def {(C,D) | P � C �∼ D} is the defeasible
subsumption relation induced by P.

The first important result we present here, which also answers the above
raised question, shows that there is a full correspondence between the class of
preferential subsumption relations and the class of defeasible subsumption rela-
tions induced by preferential interpretations. It is the DL analogue of a represen-
tation result proved by Kraus et al. for the propositional case [49, Theorem 3].

Theorem 1 (Representation Result for Preferential Subsumption). A
defeasible subsumption relation �∼ ⊆ L × L is preferential if and only if there is
a preferential interpretation P such that �∼ P = �∼ .

What is perhaps surprising about this result is that no additional proper-
ties based on the syntactic structure of the underlying DL are necessary to
characterise the defeasible subsumption relations induced by preferential inter-
pretations.

In addition to preferential interpretations, we are also interested in the study
of modular interpretations, which are preferential interpretations in which the
≺-component is a modular ordering:

Definition 8 (Modular Order). Given a set X, ≺ ⊆ X × X is modular if
it is a strict partial order, and its associated incomparability relation ∼, defined
by x ∼ y if neither x ≺ y nor y ≺ x, is transitive.

Definition 9 (Modular Interpretation). A modular interpretation is a
preferential interpretation R = 〈ΔR, ·R,≺R〉 such that ≺R is modular.

Intuitively, modular interpretations allow us to compare any two objects
w.r.t. their plausibility. Those that are incomparable are viewed as being equally
plausible. As such, modular interpretations are special cases of the preferential
ones, where plausibility can be represented by any smooth strict partial order.

The main reason to consider modular interpretations is that they provide the
semantic foundation of rational subsumption relations. This is made precise by
our second important result below, which shows that the defeasible subsumption
relations induced by modular interpretations are precisely the rational subsump-
tion relations. Again, this is the DL analogue of a representation result proved
by Lehmann and Magidor for the propositional case [52, Theorem 5].

Theorem 2 (Representation Result for Rational Subsumption). A
defeasible subsumption relation �∼ ⊆ L × L is rational if and only if there
is a modular interpretation R such that �∼ R = �∼ .

It is worth pausing for a moment to emphasise the significance of these two
results (Theorems 1 and 2). They provide exact semantic characterisations of
two important classes of defeasible subsumption relations, namely preferential
and rational subsumption, in terms of the classes of preferential and modular
interpretations, respectively. As we shall see in Sect. 4, these results form the
core of the investigation into an appropriate form of entailment for defeasible DL
ontologies.
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4 Defeasible Entailment

From the standpoint of knowledge representation and reasoning, a pivotal ques-
tion is that of deciding which statements are entailed by a knowledge base. In
the present section we lay out the formal foundations for that.

4.1 Preferential Entailment

In the exploration of a notion of entailment for defeasible ontologies, an obvious
starting point is to consider a Tarskian definition of consequence:

Definition 10 (Preferential Entailment). A statement α is preferentially
entailed by a defeasible knowledge base KB, written KB |= prefα, if every pref-
erential model of KB satisfies α.

As usual, this form of entailment is accompanied by a corresponding notion
of closure.

Definition 11 (Preferential Closure). Let KB be a defeasible knowledge
base. With KB∗

pref =def {α | KB |= prefα} we denote the preferential closure
of KB.

Intuitively, the preferential closure of a defeasible knowledge base KB cor-
responds to the ‘core’ set of statements, classical and defeasible, that should
hold given those in KB. Hence, preferential entailment and preferential closure
are two sides of the same coin, mimicking an analogous result for preferential
reasoning in both the propositional [49] and the DL [16,21] cases.

Recall (cf. the discussion following Definition 2) that a defeasible theory KBinf
is a defeasible knowledge base without the restriction to finite sets. When assess-
ing how appropriate a notion of entailment for defeasible ontologies is, the fol-
lowing definitions turn out to be useful, as will become clear in the sequel:

Definition 12 (KBinf-Induced Defeasible Subsumption). Let KBinf be a
defeasible theory. Then DKBinf =def {C �∼D | C �∼D ∈ KBinf}∪{C �¬D �∼⊥ |
C � D ∈ KBinf} is the dTBox induced by KBinf and �∼ KBinf =def {(C,D) |
C �∼ D ∈ DKBinf} is the defeasible subsumption relation induced by KBinf.

So, the dTBox induced by KBinf is the set of defeasible subsumption state-
ments contained in KBinf, together with the defeasible versions of the classical
subsumption statements in KBinf. The defeasible subsumption relation induced
by KBinf is simply the defeasible subsumption relation corresponding to DKBinf .

Definition 13. A defeasible theory KBinf is called preferential if the subsump-
tion relation induced by it satisfies the preferential properties in Definition 4.

It turns out that the defeasible subsumption relation induced by the prefer-
ential closure of a defeasible knowledge base KB is exactly the intersection of the
defeasible subsumption relations induced by the preferential defeasible theories
containing KB.
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Lemma 3. Let KB be a defeasible knowledge base. Then

�∼ KB∗
pref

=
⋂

{ �∼ KBinf | KB ⊆ KBinf and KBinf is preferential}.

It follows immediately that the preferential closure of a defeasible knowledge
base KB is preferential, and induces the smallest defeasible subsumption relation
induced by a preferential defeasible theory containing KB.

Preferential entailment is not always desirable, one of the reasons being that
it is monotonic, courtesy of the Tarskian notion of consequence it relies on (see
Definition 10). In most cases, as witnessed by the great deal of work in the non-
monotonic reasoning community, a move towards rationality is in order. Thanks
to the definitions above and the result in Theorem 2, we already know where to
start looking for it.

Definition 14 (Modular Entailment). A statement α is modularly
entailed by a defeasible knowledge base KB, written KB |= modα, if every mod-
ular model of KB satisfies α.

As is the case for preferential entailment, modular entailment is accompanied
by a corresponding notion of closure.

Definition 15 (Modular Closure). Let KB be a defeasible knowledge base.
With KB∗

mod =def {α | KB |= modα} we denote the modular closure of KB.

Definition 16. A defeasible theory KBinf is called rational if it is preferential
and �∼ KBinf is also closed under the rational monotonicity rule (RM).

For modular closure we get a result similar to Lemma3.

Lemma 4. Let KB be a defeasible knowledge base. Then

�∼ KB∗
mod

=
⋂

{ �∼ KBinf | KB ⊆ KBinf and KBinf is rational}.

That is, the modular closure of a defeasible knowledge base KB induces the
smallest defeasible subsumption relation induced by a rational defeasible theory
containing KB. However, the modular closure of KB is not necessarily rational.
That is, if one looks at the set of statements (in particular the �∼-ones) modularly
entailed by a knowledge base as a defeasible subsumption relation, then it need
not satisfy the RM property. This is so because modular entailment coincides
with preferential entailment, as the following result, adapted from a well-known
similar result in the propositional case [52, Theorem 4.2], shows.

Lemma 5. KB∗
mod = KB∗

pref .

Hence, modular entailment unfortunately falls short of providing us with
an appropriate notion of defeasible entailment. In what follows, we overcome
precisely this issue.
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4.2 Rational Entailment

We now present a definition of semantic entailment which is appropriate in
the light of the discussion above. The constructions we are going to present
are inspired by the semantic characterisation of rational closure by Booth and
Paris [13] in the propositional case.

We start by focusing our attention on a subclass of modular orders, referred
to as ranked orders:

Definition 17 (Ranked Order). Given a set X, the binary relation ≺ ⊆ X ×
X is a ranked order if there is a mapping hR : X −→ N satisfying the following
convexity property:

– for every i ∈ N, if for some x ∈ X hR(x) = i, then, for every j such that
0 ≤ j < i, there is a y ∈ X for which hR(y) = j,

and such that for every x, y ∈ X, x ≺ y iff hR(x) < hR(y).

It is easy to see that a ranked order ≺ is also modular: ≺ is a strict partial
order, and, since two objects x, y are incomparable (i.e., x ∼ y) if and only if
hR(x) = hR(y), ∼ is a transitive relation. By constraining our preference rela-
tions to the ranked orders, we can identify a subset of the modular interpretations
we refer to as the ranked interpretations.

Definition 18 (Ranked Interpretation). A ranked interpretation is a
modular interpretation R = 〈ΔR, ·R,≺R〉 s.t. ≺R is a ranked order.

We now provide two basic results about ranked interpretations. First, all
finite modular interpretations are ranked interpretations.

Lemma 6. A modular interpretation R = 〈ΔR, ·R,≺R〉 s.t. ΔR is finite is a
ranked interpretation.

Next, for every ranked interpretation, the function hR is unique.

Proposition 1. Given a ranked interpretation R = 〈ΔR, ·R,≺R〉, there is only
one function hR : ΔR −→ N satisfying the convexity property and s.t. for every
x, y ∈ ΔR, x ≺ y iff hR(x) < hR(y).

Proposition 1 allows us to use the function hR(·) to define the notions of
height and layers.

Definition 19 (Height and Layers). Let R = 〈ΔR, ·R,≺R〉 be a ranked
interpretation with characteristic ranking function hR(·). Given an object x ∈
ΔR, hR(x) is called the height of x in R. For every ranked interpretation
R = 〈ΔR, ·R,≺R〉, we can partition the domain ΔR into a sequence of layers
(L0, . . . , Ln, . . .), where, for every object x ∈ ΔR, we have x ∈ Li iff hR(x) = i.
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Intuitively, the lower the height of an object in an interpretation R, the more
typical (or normal) the object is in R. We can also think of a level of typicality
for concepts: the height of a concept C ∈ L in R is the index of the layer to which
the restriction of the concept’s extension to its ≺R-minimal elements belong, i.e.,
hR(C) = i if ∅ ⊂ min≺R CR ⊆ Li.

Given a set of ranked interpretations, we can introduce a new form of model
merging, ranked union.

Definition 20 (Ranked Union). Given a countable set of ranked interpreta-
tions R = {R1,R2, . . .}, a ranked interpretation RR =def 〈ΔR, ·R,≺R〉 is the
ranked union of R if the following holds:

– ΔR =def

∐
R∈R ΔR, i.e., the disjoint union of the domains from R, where

each R ∈ R has the elements x, y, . . . of its domain renamed as xR, yR, . . .
so that they are all distinct in ΔR;

– xR ∈ AR iff x ∈ AR;
– (xR, yR′) ∈ rR iff R = R′ and (x, y) ∈ rR;
– for every xR ∈ ΔR, hR(xR) = hR(x).

The latter condition corresponds to imposing that xR ≺R yR′ iff hR(x) < hR′(y).

The following lemma will be useful in what follows.

Lemma 7. Ranked interpretations are closed under ranked union.

Let KB be a defeasible knowledge base and let Δ be a fixed countably infinite
set. Define

ModΔ(KB) =def {R = 〈ΔR, ·R,≺R〉 | R � KB,R is ranked and ΔR = Δ}.

The following result shows that the set ModΔ(KB) suffices to characterise mod-
ular entailment:

Lemma 8. For every KB and every C,D ∈ L, KB |= modC �∼D iff R � C �∼D,
for every R ∈ ModΔ(KB).

Therefore, we can use just the set of interpretations in ModΔ(KB) to decide
the consequences of KB w.r.t. modular entailment.

We can now use the set ModΔ(KB) as a springboard to introduce what will
turn out to be a canonical modular interpretation for KB. Using ModΔ(KB) and
ranked union we can define the following relevant model.

Definition 21 (Big ranked model). Let KB be a defeasible knowledge base.
The big ranked model of KB is the ranked model O =def 〈ΔO, ·O,≺O〉 that is
the ranked union of the models in ModΔ(KB).

Since ranked interpretations are closed under ranked unions (Lemma 7), we
can state the following:

Lemma 9. O is a ranked model of KB.
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Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in the context of defeasible ontologies:

Definition 22 (Rational Entailment). A statement α is rationally
entailed by a knowledge base KB, written KB |= ratα, if O � α.

That such a notion of entailment indeed deserves its name is witnessed by
the following result, a consequence of Lemma 9 and Theorem 2:

Corollary 1. Let KB be a defeasible knowledge base and O its big ranked model.
Then {C �∼ D | O � C �∼ D} is rational.

We shall see below that this form of entailment corresponds to the DL version
of a well-known form of propositional defeasible entailment [52].

In conclusion, rational entailment is a good candidate for the appropriate
notion of consequence we have been looking for. Of course, a question that arises
is whether a notion of closure, in the spirit of preferential and modular closures,
that is equivalent to it can be defined. In the next section, we address precisely
this matter.

5 Rational Closure for Defeasible Knowledge Bases

We now turn our attention to the exploration, in a DL setting, of the well-
known notion of rational closure of a defeasible knowledge base as studied by
Lehmann and Magidor [52]. For the most part, we shall base the presentation
of the constructions on the work by Casini and Straccia [30,32], amending it
wherever necessary. An alternative semantic characterisation of rational closure
in DLs has also been proposed by Giordano et al. [44,45]; their characterisation
and the one we present here are equivalent [35, Appendix A].

As we shall see, rational closure provides a proof-theoretic characterisation
of rational entailment and the complexity of its computation is no higher than
that of computing entailment in the underlying classical DL.

5.1 Rational Closure and a Correspondence Result

Rational closure is a form of inferential closure based on modular entailment |=
mod, but it extends its inferential power. Such an extension of modular entailment
is obtained by formalising the already mentioned principle of presumption of
typicality [51, Section 3.1]. That is, under possibly incomplete information, we
always assume that we are dealing with the most typical possible situation that
is compatible with the information at our disposal. We first define what it means
for a concept to be exceptional, a notion that, as we shall see, is central to the
definition of rational closure:

Definition 23 (Exceptionality). Let KB be a defeasible knowledge base and
C ∈ L. We say C is exceptional in KB if KB |= mod� �∼ ¬C. A DCI C �∼ D is
exceptional in KB if C is exceptional in KB.
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A concept C is considered exceptional in a knowledge base KB if it is not
possible to have a modular model of KB in which there is a typical object (i.e.,
an object at least as typical as all the others) that is in the interpretation of C.
Intuitively, a DCI is exceptional if it does not concern the most typical objects,
i.e., it is about less normal (or exceptional) ones. This is an intuitive translation
of the notion of exceptionality used by Lehmann and Magidor [52] in the propo-
sitional framework, and has already been used by Casini and Straccia [30] and
Giordano et al. [45] in their investigations into defeasible reasoning for DLs.

Applying the notion of exceptionality iteratively, we associate with every
concept C a rank in KB, which we denote by rankKB(C). We extend this to
DCIs and associate with every statement C �∼D a rank, denoted rankKB(C �∼D):

1. Let rankKB(C) = 0, if C is not exceptional in KB, and let rankKB(C �∼D) = 0
for every DCI having C as antecedent, with rankKB(C) = 0. The set of DCIs
in D with rank 0 is denoted as Drank

0 .
2. Let rankKB(C) = 1, if C does not have a rank of 0 and it is not exceptional in

the knowledge base KB1 composed of T and the exceptional part of D, that
is, KB1 = 〈T ,D \ Drank

0 〉. If rankKB(C) = 1, then let rankKB(C �∼ D) = 1 for
every DCI C �∼ D. The set of DCIs in D with rank 1 is denoted Drank

1 .
3. In general, for i > 0, a concept C is assigned a rank of i if it does not have

a rank of i − 1 and it is not exceptional in KBi = 〈T ,D \
⋃i−1

j=0 Drank
j 〉. If

rankKB(C) = i, then rankKB(C �∼ D) = i, for every DCI C �∼ D. The set of
DCIs in D with rank i is denoted Drank

i .
4. By iterating the previous steps, we eventually reach a subset E ⊆ D such

that all the DCIs in E are exceptional (since D is finite, we must reach such
a point). If E �= ∅, we define the rank of the DCIs in E as ∞, and the set E is
denoted Drank

∞ .

The notion of rank can also be extended to GCIs as follows: rankKB(C � D) =
rankKB(C).

Following on the procedure above, D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉 (n ≥ 0), where Drank
∞ may possibly be empty. So, through

this procedure we can assign a rank to every DCI.
It is easy to see that for a concept C to have a rank of ∞ corresponds to not

being satisfiable in any model of KB, that is, KB |= modC � ⊥.

Lemma 10. rankKB(C) = ∞ iff KB |= modC � ⊥.

Example 2. Let KB = T ∪ D, where T and D are as in Example 1, i.e., T =
{EmpStud � Stud} and

D =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

Examining the concepts on the LHS of each DCI in KB, one can verify that
Stud is not exceptional w.r.t. KB. Therefore, rankKB(Stud) = 0. We also find
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that rankKB(EmpStud) �= 0 and rankKB(EmpStud � Parent) �= 0 because both
concepts are exceptional w.r.t. KB.

KB1 is composed of T and D \ Drank
0 , which consists of the DCIs in D except

for Stud�∼¬∃receives.TaxInv. We find that EmpStud is not exceptional w.r.t. KB1

and therefore rankKB(EmpStud) = 1. Since EmpStud � Parent is exceptional
w.r.t. KB1, rankKB(EmpStud � Parent) �= 1. Similarly, KB2 is composed of T
and {EmpStud � Parent�∼ ¬∃receives.TaxInv}. We have that EmpStud � Parent is
not exceptional w.r.t. KB2 and therefore rankKB(EmpStud � Parent) = 2.

Adapting Lehmann and Magidor’s construction for propositional logic [52],
the rational closure of a defeasible knowledge base KB is defined as follows:

Definition 24 (Rational Closure). Let KB be a defeasible knowledge base
and C,D ∈ L.

1. C �∼ D is in the rational closure of KB if

rankKB(C � D) < rankKB(C � ¬D) or rankKB(C) = ∞.

2. C � D is in the rational closure of KB if rankKB(C � ¬D) = ∞.

Informally, the definition above says that the DCI C �∼ D is in the rational
closure of KB if the modular models of KB tell us that some instances of C � D
are more plausible than all instances of C � ¬D, while the GCI C � D is in
the rational closure of KB if the instances of C � ¬D are impossible. The atten-
tive reader will note that this definition has some similarity with the epistemic
entrenchment orderings used in belief revision [38,59].

Example 2 (continued). Applying the definition above to the knowledge base in
Example 2, we can verify that Stud �∼ ¬∃receives.TaxInv is in the rational clo-
sure of KB because rankKB(Stud � ¬∃receives.TaxInv) = 0 and rankKB(Stud �
∃receives.TaxInv) > 0. The latter can be derived from the fact that Stud �
∃receives.TaxInv is exceptional w.r.t. KB.

Similarly, one can derive that both DCIs EmpStud �∼ ∃receives.TaxInv and
EmpStud � Parent �∼ ¬∃receives.TaxInv are in the rational closure of KB as well.

��
We now state the main result of the present section, which provides an answer

to the question raised at the end of Sect. 4.2.

Theorem 3. Let KB be a defeasible knowledge base having a modular model. A
statement α is in the rational closure of KB iff KB |= ratα.

An easy corollary of this result is that rational closure preserves the equiv-
alence between GCIs (of the form C � D) and their defeasible counterparts
(C � ¬D �∼ ⊥).

Corollary 2. C � D is in the rational closure of a defeasible knowledge base KB
iff C � ¬D �∼ ⊥ is the restriction of the closure of KB under rational entailment
to defeasible concept inclusions.
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Rational entailment from a knowledge base can therefore be formulated as
membership checking of the rational closure of the knowledge base. Of course,
from an application-oriented point of view, this raises the question of how to
compute membership of the rational closure of a knowledge base, and what is
the complexity thereof. This is precisely the topic of the next section.

5.2 Rational Entailment Checking

We now present an algorithm to effectively check the rational entailment of a
DCI from a defeasible knowledge base. Our algorithm is based on the one given
by Casini and Straccia [30] for defeasible ALC.

Let KB = T ∪ D be a defeasible knowledge base. The first step of the algo-
rithm is to assign a rank to each DCI in D. Central to this step is the exceptional-
ity function Exceptional(·), which computes the semantic notion of exceptionality
of Definition 23. Given a set of DCIs D′ ⊆ D, Exceptional(T ,D′) returns a sub-
set E of D′ such that E is exceptional w.r.t. T ∪ D′.

Function. Exceptional(T ,D′)
Input: T and D′ ⊆ D
Output: E ⊆ D′ such that E is exceptional w.r.t. T ∪ D′

1 E ← ∅
2 foreach C �∼ D ∈ D′ do
3 if T |=

�
D′ 
 ¬C then

4 E ← E ∪ {C �∼ D}

5 return E

The function makes use of the notion of materialisation to reduce concept
exceptionality checking to entailment checking:

Definition 25 (Materialisation). Let D be a set of DCIs. With D =def {¬C�
D | C �∼ D ∈ D} we denote the materialisation of D.

We can show that, given KB = T ∪ D and D′ ⊆ D, if T |=
�

D′ � ¬C, a
DCI C �∼ D is exceptional w.r.t. T ∪ D′, thereby justifying the use of Line 3 of
function Exceptional.

Lemma 11. For KB = T ∪ D, if T |=
�

D � ¬C then C �∼ D is exceptional
w.r.t. T ∪ D.

While the converse of Lemma 11 does not hold, it follows from Lemma13
below that this reduction to classical entailment checking, when applied itera-
tively (lines 4–14 in function ComputeRanking below), fully captures the seman-
tic notion of exceptionality of Definition 23.
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Example 2 (continued). If we feed the knowledge base in Example 2 to the func-
tion Exceptional(·), we obtain the output

E = {EmpStud �∼ ∃receives.TaxInv,EmpStud � Parent �∼ ¬∃receives.TaxInv}.

This is because both concepts on the LHS of the DCIs in D′ are exceptional
w.r.t. KB in Example 2.

We now describe the overall ranking algorithm, presented in the function
ComputeRanking(·) below. The algorithm makes a finite sequence of calls to
the function Exceptional(·), starting from the knowledge base KB = T ∪ D. The
algorithm terminates with a partitioning of the axioms in the dTBox, from which
a ranking of axioms can easily be obtained.

Function. ComputeRanking(KB)
Input: KB = T ∪ D
Output: KB∗ = T ∗ ∪ D∗ and a partitioning R = {D0, . . . , Dn} for D∗

1 T ∗ ← T
2 D∗ ← D
3 R ← ∅
4 repeat
5 i ← 0
6 E0 ← D∗

7 E1 ← Exceptional(T ∗, E0)
8 while Ei+1 �= Ei do
9 i ← i + 1

10 Ei+1 ← Exceptional(T ∗, Ei)

11 D∗
∞ ← Ei

12 T ∗ ← T ∗ ∪ {C 
 D | C �∼ D ∈ D∞}
13 D∗ ← D∗ \ D∗

∞
14 until D∗

∞ = ∅
15 for j ← 1 to i do
16 Dj−1 ← Ej−1 \ Ej

17 R ← R ∪ {Dj−1}
18 return KB∗ = T ∗ ∪ D∗, R

We initialise T ∗ to T and D∗ to D (Lines 1 and 2 of ComputeRanking). We
then repeatedly invoke the function Exceptional to obtain a sequence of sets of
DCIs E0, E1, . . ., where E0 = D∗ and each Ei+1 is the set of exceptional axioms
in Ei (Lines 4–14 of ComputeRanking(·)).

Now, let CD∗ =def {C | C �∼ D ∈ D∗}, i.e., CD∗ is the set of all antecedents
of DCIs in D∗. The exceptionality ranking of the DCIs in D∗ computed by
Exceptional(·) makes use of T ∗, D∗, and CD∗ . That is, it checks, for each concept
C ∈ CD∗ , whether T ∗ |=

�
D∗ � ¬C. In case C is exceptional, every DCI

C �∼ D ∈ D∗ is exceptional w.r.t. KB∗ = T ∗ ∪ D∗ and is added to the set E1.
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If E1 �= E0, then we call Exceptional(·) for T ∗ ∪ E1, defining the set E2, and
so on. Hence, given KB∗ = T ∗ ∪ D∗, we construct a sequence E0, E1, . . . in the
following way, for i ≥ 0:

– E0 =def D∗

– Ei+1 =def Exceptional(T ∗, Ei)

Example 2 (continued). Using the knowledge base of Example 2, we initialise T ∗

as {EmpStud � Stud} and let

D∗ =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

We then obtain the following exceptionality sequence:

E0 =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

E1 =

{
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

}

E2 = {EmpStud � Parent �∼ ¬∃receives.TaxInv}

Since D∗ is finite, the construction will eventually terminate with a fixed point
Efix = Exceptional(T ∗, Efix). If this fixed point is non-empty, then the axioms in
there are said to have infinite rank. We therefore set D∗

∞ as Efix (Line 11 of
ComputeRanking(·)), and the classical translations of these axioms are moved to
the TBox. Hence we redefine the knowledge base in the following way (Lines 12
and 13 of ComputeRanking(·)):

– T ∗ ← T ∗ ∪ {C � D | C �∼ D ∈ D∗
∞};

– D∗ ← D∗ \ D∗
∞.

Function ComputeRanking(·) must terminate since D is finite, and at every
iteration, D∗ becomes smaller (hence, we have at most |D| iterations). In the
end, we obtain a knowledge base KB∗ = T ∗ ∪ D∗ which is modularly equivalent
to the original knowledge base KB = T ∪ D (see Lemma 12 below), in which D∗

has no DCIs of infinite rank (all the strict knowledge ‘hidden’ in the dTBox has
been moved to the TBox). In the following, we say that such a knowledge base
is in rank normal form.

Once we have obtained the knowledge base KB∗ = T ∗ ∪ D∗ and the final
sequence E0, E1, . . . , Efix, we partition the set D∗ into the sets D0, . . . ,Dn, for
some n ≥ 0 (Lines 15–17 of ComputeRanking(·)).
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Example 2 (continued). For KB as in Example 2, we obtain the sequence:
D0 = {Stud �∼ ¬∃receives.TaxInv}
D1 = {EmpStud �∼ ∃receives.TaxInv}
D2 = {EmpStud � Parent �∼ ¬∃receives.TaxInv}
At this stage, we have moved all the classical information possibly ‘hidden’

inside the dTBox to the TBox, and ranked all the remaining DCIs, where the
rank of a DCI is the index of the unique partition to which it belongs, defined
as follows:

Definition 26 (Ranking). For every C,D ∈ L:

– rk(C) =def i, 0 ≤ i ≤ n, if
�

Ei is the first element in (
�

E0, . . . ,
�

En) s.t.
T ∗ �|=

�
Ei � C � ⊥;

– rk(C) =def ∞ if there is no such
�

Ei;
– rk(C �∼ D) =def rk(C).

Remark 1. For every i ≤ j ≤ n, |=
�

Ej �
�

Ei.

Remark 2. For every i < j ≤ n, Di ∩ Dj = ∅.

To summarise, we transform our initial knowledge base KB = T ∪D, obtain-
ing a modularly equivalent knowledge base KB∗ = T ∗ ∪ D∗ (see Lemma 12
below) and a ranking of DCIs in the form of a partitioning of D∗. The main
difference between ComputeRanking(·) and the analogous procedure by Casini
and Straccia [30] is the reiteration of the ranking procedure until D∗

∞ = ∅ (lines
4–14 in ComputeRanking(·)). While the two procedures behave identically in the
case where there are no DCIs C �∼ D s.t. rankKB(C �∼ D) = ∞ in D, the origi-
nal procedure [30] did not handle all the cases correctly in which there is strict
information ‘hidden’ inside the dTBox.

Given the knowledge base KB∗ = T ∗ ∪ D∗, we can now define the main
algorithm for deciding whether a DCI C �∼ D is in the rational closure of KB.
To do that, we use the same approach as in the function Exceptional(·), that is,
given KB∗ = T ∗ ∪ D∗ and our sequence of sets E0, . . . , En, we use the TBox T ∗

and the sets of conjunctions of materialisations
�

E0, . . . ,
�

En.

Definition 27 (Rational Deduction). Let KB = T ∪ D and let C,D ∈ L.
We say that C �∼ D is rationally deducible from KB, denoted KB �rat C �∼ D,
if T ∗ |=

�
Ei � C � D, where

�
Ei is the first element of the sequence�

E0, . . . ,
�

En s.t. T ∗ �|=
�

Ei � ¬C. If there is no such element, KB �rat C �∼ D
if T ∗ |= C � D.

Observe that KB �rat C � D if and only if KB �rat C � ¬D �∼ ⊥, i.e., if and
only if KB �rat C � ¬D � ⊥ (that is to say, T ∗ |= C � D).

The algorithm corresponding to the steps above is presented in the function
RationalClosure(·) below.

Example 2 (continued). Let KB be as in Example 2 and assume we want to
check whether EmpStud�∼∃receives.TaxInv is in the rational closure of KB. Then,
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Function. RationalClosure(KB, α)
Input: KB = T ∪ D, the corresponding KB∗ = T ∗ ∪ D∗, the sequence

E0, . . . , En, and a query α = C �∼ D.
Output: true if KB �rat C �∼ D, false otherwise

1 i ← 0

2 while T ∗ |=
�

Ei � C 
 ⊥ and i ≤ n do
3 i ← i + 1

4 if i ≤ n then
5 return T ∗ |=

�
Ei � C 
 D

6 else
7 return T ∗ |= C 
 D

the while-loop on Line 2 of function RationalClosure(·) terminates when i = 1.
At this stage,

�
Ei = (¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent �

¬∃receives.TaxInv). Given this, one can check that T ∗ �|=
�

Ei � C � ⊥, i.e.,
{EmpStud � Stud} �|= (¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent �
¬∃receives.TaxInv) � EmpStud � ⊥.

Finally, we can confirm that T ∗ �|=
�

Ei � C � D, i.e., {EmpStud � Stud} �|=
(¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent � ¬∃receives.TaxInv) �
EmpStud � ∃receives.TaxInv.

Before we state the main theorem of this section, we need to establish the
correspondence between the ranking function rankKB(·) presented in Sect. 5.1 in
the construction of the rational closure of KB and linked by Theorem 3 to the
definition of rational entailment, and the ranking function rk(·) of Definition 26
used in the above algorithm. We also need to establish that the normalisation
of a knowledge base by our algorithm maintains modular equivalence.

Lemma 12. Let KB = T ∪ D and let KB∗ = T ∗ ∪ D∗ be obtained from KB
through function ComputeRanking(·). Then KB and KB∗ are modularly equiva-
lent.

Lemma 13. For every defeasible knowledge base KB = T ∪D and every C ∈ L,
rankKB(C) = rk(C).

Now we can state the main theorem, which links rational entailment to ratio-
nal deduction via Theorem 3.

Theorem 4. Let KB = T ∪ D and let C,D ∈ L. Then KB �rat C �∼ D iff
KB |= ratC �∼ D.

As an immediate consequence, we have that the function RationalClosure(·)
is correct w.r.t. the definition of rational closure in Definition 24.

Corollary 3. Checking rational entailment is exptime-complete.
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Hence entailment checking for defeasible ontologies is just as hard as classical
subsumption checking.

We conclude this section by noting that although rational closure is viewed
as an appropriate form of defeasible reasoning, it does have its limitations, the
first of which is that it does not satisfy the presumption of independence [51,
Section 3.1]. To consider a well-worn example, suppose we know that birds usu-
ally fly and usually have wings, that both penguins and robins are birds, and
that penguins usually do not fly. That is, we have the following knowledge base:
KB = {Bird�∼Flies,Bird�∼Wings,Penguin � Bird,Robin � Bird,Penguin�∼¬Flies}.
Rational closure allows us to conclude that robins usually have wings, since they
are viewed as typical birds, thereby satisfying the presumption of typicality.
But with penguins being atypical birds, rational closure does not allow us to
conclude that penguins usually have wings, thus violating the presumption of
independence which, in this context, would require the atypicality of penguins
w.r.t. flying to be independent of the typicality of penguins w.r.t. having wings.

This deficiency is well-known, and there are other forms of defeasible reason-
ing that can overcome this, most notably lexicographic closure [31], relevance
closure [33], and inheritance-based closure [32,34]. But note that the presump-
tion of independence is propositional in nature. In fact, the DL version of lexico-
graphic closure is essentially a lifting to the DL case of a propositional solution
to the problem [51].

What is perhaps of more interest is the inability of rational closure to deal
with defeasibility relating to the non-propositional aspects of descriptions logics.
For example, Pensel and Turhan [54,55] have shown that rational closure across
role expressions does not always support defeasible inheritance appropriately.

Suppose we know that bosses are workers, do not have workers as their supe-
riors, and are usually responsible. Furthermore, suppose we know that workers
usually have bosses as their superiors. We thus have the knowledge base:

KB =

⎧
⎪⎪⎨

⎪⎪⎩

Boss � Worker,
Boss � ¬∃hasSuperior.Worker,

Boss �∼ Responsible,
Worker �∼ ∃hasSuperior.Boss

⎫
⎪⎪⎬

⎪⎪⎭

Since workers usually have bosses as their superiors, and bosses are usually
responsible, one would expect to be able to conclude that workers usually have
responsible superiors. But rational closure is unable to do so. From the perspec-
tive of the algorithm for rational closure, this can be traced back to the use
of materialisation (Definition 25) when computing exceptionality, as Pensel and
Turhan [54] show. A more detailed semantic explanation for this inability is still
forthcoming, though.

6 Beyond Defeasible Concept Inclusion

Defeasible reasoning in description logics extends beyond defeasible concept
inclusion. In this section, we outline two such extensions following on from the
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work presented here, firstly to account for named individuals in defeasible knowl-
edge bases, and secondly to introduce defeasible class descriptions.

The introduction of defeasible reasoning also for ABox reasoning is a neces-
sary extension of the results we have presented in this chapter. We want to be
able to derive assertions of the kind “Presumably, the individual a falls under
the concept C”, and, in the present framework, the natural way of doing it would
be to model the presumption of typicality also w.r.t. the individuals named in
the ABox, that is, to maximise the amount of defeasible information we asso-
ciate with each individual: If all we know about Ann is that she is a student,
we want to be able to conclude that presumably Ann does not get a tax invoice.
The main technical problem in the present framework is the possibility of hav-
ing multiple distinct configurations that maximise the presumption of typicality
w.r.t. the individuals [30, Example 7]. Different solutions have been proposed
[29,30,35,45,55], but, as mentioned in Sect. 2, we are not going to introduce
here the different proposals regarding the introduction of defeasible reasoning
for the ABox.

The systems proposed by Giordano and others [39,40,44,45] introduce an
operator T (typical) associated to the concepts. This allows extra expressivity
in modelling defeasible information: an inclusion like Stud� ¬∃receives.TaxInv �
T(Stud), indicating that the students that do not receive the a tax invoice must
be considered typical students, is not expressible in a language using only defea-
sible subsumptions. However, in most of the systems they introduce, T can be
used only in expressions of the form T(C) � D, which is interpreted exactly as
an expression C �∼D. Booth and others [10] have shown that, even at the propo-
sitional level, using freely an operator like T creates the possibility of multiple
configurations satisfying the presumption of typicality, in a way that, from the
formal point of view, is analogous to the problem registered working with the
ABoxes.

Given the special status of subsumption in DLs in particular and the histor-
ical importance of argument forms and entailment in logic in general, the bulk
of the effort in non-monotonic reasoning has quite naturally been spent on the
definition of a proper account of defeasible subsumption and the characterisation
of appropriate notions of defeasible entailment.

However, given the importance of concept descriptions in DLs, an extension
of this work to also represent defeasible classes is called for. This includes the
ability to represent notions such as plausible value or existential restrictions in
complex concept descriptions [17,23,24,27]. There are several ways to accomplish
this, and we focus here on one such proposal.

We could, for example, ask whether the constraint that workers usually have
bosses as their superior is necessarily correctly captured by the defeasible sub-
sumption: Worker �∼ ∃hasSuperior.Boss. An alternative reading of the phrase is
that all workers have some superior, who is usually a boss. It is therefore the class
description ∃hasSuperior.Boss which is defeasible. rather than the subsumption
statement. This can be captured by extending the concept language of ALC as
follows:
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C ::= � | ⊥ | C | ¬C | C � C | C � C | ∀r.C | ∃r.C | ∨∼r.C | −∼−|r.C

With L̃ we denote the extended language of all (possibly defeasible) ALC con-
cepts.

Definition 28. Let P = 〈ΔP , ·P ,≺P〉 be a preferential interpretation. Let r ∈ R
and C ∈ C. The truth conditions for defeasible universal restriction

∨∼r.C and
strict existential restriction −∼−|r.C are given by:

(
∨∼r.C)P =def {x ∈ ΔP | min≺P rP(x) ⊆ CP};
(−∼−|r.C)P =def {x ∈ ΔP | min≺P rP(x) ∩ CP �= ∅}.

That −∼−|r.C captures the notion of strict existential restriction follows since,
not only does the semantics require that some r-filler be in CP , but it also
demands that some most preferred r-filler be in CP . In contrast, defeasible uni-
versal (value) restriction relaxes the condition that all r-fillers be in CP , requiring
only that all most preferred r-fillers be in CP .

Definition 28 now allows us to state that every worker has some typical supe-
rior who is a boss, i.e., Worker � −∼−|hasSuperior.Boss, or that any superior of a
worker is usually a boss, i.e., Worker � ∨∼hasSuperior.Boss.

The defeasible quantifiers of Definition 28 are based on a single order on
objects, but this generalises naturally to a parameterised ordering on either
objects or role interpretations [23,27], the details of which we omit here. The
ramifications of extending the language with defeasible quantification have also
been investigated for modal logics, where it assumes the form of defeasible modal-
ities [25,26].

7 Concluding Remarks

In this paper we have provided an overview of a specific approach to defeasible
reasoning—one that is based on work initiated by Kraus, Lehmann and Magi-
dor for the propositional case [49,52]. This approach has a number of attractive
characteristics: It has a simple and intuitive semantics for defeasible subsump-
tion in description logics that is general enough to constitute the core framework
within which to investigate defeasible extensions to DLs. It also allows for the
characterisation of two forms of defeasible subsumption relations—preferential
and rational subsumption—providing weight to the claim that the semantic con-
structions are intuitively appropriate. In addition, it provides the basis for defin-
ing an appropriate form of defeasible entailment—a description logic version of
what is known as rational closure in the propositional case. Moreover, it comes
equipped with an algorithm for computing the DL version of rational closure
with computational complexity that is no worse than the complexity of entail-
ment checking in ALC. Importantly from a practical perspective, the algorithm
can be reduced to a number of classical entailment checks, which means that it
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can be implemented on top of existing (highly optimised) description logic rea-
soners. In terms of performance, a relatively naïve version of such an algorithm
has already been shown to scale well in practice [28].

Section 6 touched on some ways in which defeasible reasoning for descrip-
tion logics has already been extended beyond defeasible concept inclusion, but
all these proposals are only preliminary investigations with much work that
still needs to be done. Further topics for future research include the study of
role-based defeasible constructors [23,24,27] and the investigation of defeasible
versions of query answering [64]. Finally, a somewhat different area for future
exploration is one that is aimed at exploiting the well-known connection between
belief revision and rational consequence in the propositional case [38]. Given this
connection on the propositional level, it seems reasonable to expect that the
results presented in this paper can form the basis of a different perspective on
belief revision for description logics.
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