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Abstract. Many applications of automated deduction require reasoning
in first-order logic modulo background theories, in particular some form
of integer arithmetic. A major unsolved research challenge is to design
theorem provers that are “reasonably complete” even in the presence of
free function symbols ranging into a background theory sort. The hier-
archic superposition calculus of Bachmair, Ganzinger, and Waldmann
already supports such symbols, but, as we demonstrate, not optimally.
This paper aims to rectify the situation by introducing a novel form of
clause abstraction, a core component in the hierarchic superposition cal-
culus for transforming clauses into a form needed for internal operation.
We argue for the benefits of the resulting calculus and provide two new
completeness results: one for the fragment where all background-sorted
terms are ground and another one for a special case of linear (integer or
rational) arithmetic as a background theory.

Keywords: Automated deduction · Superposition calculus ·
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1 Introduction

Many applications of automated deduction require reasoning with respect to a
combination of a background theory, say integer arithmetic, and a foreground
theory that extends the background theory by new sorts such as list , new oper-
ators, such as cons : int × list → list and length : list → int , and first-order
axioms. Developing corresponding automated reasoning systems that are also
able to deal with quantified formulas has recently been an active area of research.
One major line of research is concerned with extending (SMT-based) solvers [24]
for the quantifier-free case by instantiation heuristics for quantifiers [17,18, e. g.].
Another line of research is concerned with adding black-box reasoners for spe-
cific background theories to first-order automated reasoning methods (resolu-
tion [1,5,19], sequent calculi [26], instantiation methods [8,9,16], etc). In both
cases, a major unsolved research challenge is to provide reasoning support that is
“reasonably complete” in practice, so that the systems can be used more reliably
for both proving theorems and finding counterexamples.
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In [5], Bachmair, Ganzinger, and Waldmann introduced the hierarchical
superposition calculus as a generalization of the superposition calculus for black-
box style theory reasoning. Their calculus works in a framework of hierarchic
specifications. It tries to prove the unsatisfiability of a set of clauses with respect
to interpretations that extend a background model such as the integers with lin-
ear arithmetic conservatively, that is, without identifying distinct elements of
old sorts (“confusion”) and without adding new elements to old sorts (“junk”).
While confusion can be detected by first-order theorem proving techniques, junk
can not – in fact, the set of logical consequences of a hierarchic specifications
is usually not recursively enumerable. Refutational completeness can therefore
only be guaranteed if one restricts oneself to sets of formulas where junk can
be excluded a priori. The property introduced by Bachmair, Ganzinger, and
Waldmann for this purpose is called “sufficient completeness with respect to
simple instances”. Given this property, their calculus is refutationally complete
for clause sets that are fully abstracted (i. e., where no literal contains both fore-
ground and background symbols). Unfortunately their full abstraction rule may
destroy sufficient completeness with respect to simple instances. We show that
this problem can be avoided by using a new form of clause abstraction and a suit-
ably modified hierarchical superposition calculus. Since the new calculus is still
refutationally complete and the new abstraction rule is guaranteed to preserve
sufficient completeness with respect to simple instances, the new combination is
strictly more powerful than the old one.

In practice, sufficient completeness is a rather restrictive property. While
there are application areas where one knows in advance that every input is
sufficiently complete, in most cases this does not hold. As a user of an auto-
mated theorem prover, one would like to see a best effort behavior: The prover
might for instance try to make the input sufficiently complete by adding further
theory axioms. In the calculus from [5], this does not help at all: The restric-
tion to a particular kind of instantiations (“simple instances”) renders theory
axioms essentially unusable in refutations. We show that this can be prevented
by introducing two kinds of variables of the background theory sorts, that can be
instantiated in different ways, making our calculus significantly “more complete”
in practice. We also include a definition rule in the calculus that can be used
to establish sufficient completeness by linking foreground terms to background
parameters, thus allowing the background prover to reason about these terms.

The following trivial example demonstrates the problem. Consider the clause
set N = {C} where C = f(1) < f(1). Assume that the background theory is
integer arithmetic and that f is an integer-sorted operator from the foreground
(free) signature. Intuitively, one would expect N to be unsatisfiable. However,
N is not sufficiently complete, and it admits models in which f(1) is interpreted
as some junk element /c, an element of the domain of the integer sort that is
not a numeric constant. So both the calculus in [5] and ours are excused to
not find a refutation. To fix that, one could add an instance C ′ = ¬(f(1) <
f(1)) of the irreflexivity axiom ¬(x < x). The resulting set N ′ = {C, C ′} is
(trivially) sufficiently complete as it has no models at all. However, the calculus
in [5] is not helped by adding C ′, since the abstracted version of N ′ is again
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not sufficiently complete and admits a model that interprets f(1) as /c. Our
abstraction mechanism always preserves sufficient completeness and our calculus
will find a refutation.

With this example one could think that replacing the abstraction mechanism
in [5] with ours gives all the advantages of our calculus. But this is not the case.
Let N ′′ = {C, ¬(x < x)} be obtained by adding the more realistic axiom
¬(x < x). The set N ′′ is still sufficiently complete with our approach thanks to
having two kinds of variables at disposal, but it is not sufficiently complete in
the sense of [5]. Indeed, in that calculus adding background theory axioms never
helps to gain sufficient completeness, as variables there have only one kind.

Another alternative to make N sufficiently complete is by adding a clause
that forces f(1) to be equal to some background domain element. For instance,
one can add a “definition” for f(1), that is, a clause f(1) ≈ α, where α is a fresh
symbolic constant belonging to the background signature (a “parameter”). The
set N ′′′ = {C, f(1) ≈ α} is sufficiently complete and it admits refutations with
both calculi. The definition rule in our calculus mentioned above will generate
this definition automatically. Moreover, the set N belongs to a syntactic fragment
for which we can guarantee not only sufficient completeness (by means of the
definition rule) but also refutational completeness.

We present the new calculus in detail and provide a general completeness
result, modulo compactness of the background theory, and two specific com-
pleteness results for clause sets that do not require compactness – one for the
fragment where all background-sorted terms are ground and another one for a
special case of linear (integer or rational) arithmetic as a background theory.

We also report on experiments with a prototypical implementation on the
TPTP problem library [27].

Sections 1–7, 9–10, and 12 of this paper are a substantially expanded and
revised version of [11]. A preliminary version of Sect. 11 has appeared in [10].
However, we omit from this paper some proofs that are not essential for the
understanding of the main ideas. They can be found in a slightly extended
version of this paper at http://arxiv.org/abs/1904.03776 [12].

Related Work. The relation with the predecessor calculus in [5] is discussed above
and also further below. What we say there also applies to other developments
rooted in that calculus, [1, e. g.]. The specialized version of hierarchic superpo-
sition in [22] will be discussed in Sect. 9 below. The resolution calculus in [19]
has built-in inference rules for linear (rational) arithmetic, but is complete only
under restrictions that effectively prevent quantification over rationals. Earlier
work on integrating theory reasoning into model evolution [8,9] lacks the treat-
ment of background-sorted foreground function symbols. The same applies to
the sequent calculus in [26], which treats linear arithmetic with built-in rules
for quantifier elimination. The instantiation method in [16] requires an answer-
complete solver for the background theory to enumerate concrete solutions of
background constraints, not just a decision procedure. All these approaches have
in common that they integrate specialized reasoning for background theories
into a general first-order reasoning method. A conceptually different approach
consists in using first-order theorem provers as (semi-)decision procedures for

http://arxiv.org/abs/1904.03776
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specific theories in DPLL(T)(-like) architectures [2,13,14]. Notice that in this
context the theorem provers do not need to reason modulo background theories
themselves, and indeed they don’t. The calculus and system in [14], for instance,
integrates superposition and DPLL(T). From DPLL(T) it inherits splitting of
ground non-unit clauses into their unit components, which determines a (back-
trackable) model candidate M . The superposition inference rules are applied to
elements from M and a current clause set F . The superposition component guar-
antees refutational completeness for pure first-order clause logic. Beyond that,
for clauses containing background-sorted variables, (heuristic) instantiation is
needed. Instantiation is done with ground terms that are provably equal w.r.t.
the equations in M to some ground term in M in order to advance the deriva-
tion. The limits of that method can be illustrated with an (artificial but simple)
example. Consider the unsatisfiable clause set {i ≤ j ∨ P(i + 1, x) ∨ P(j + 2, x),
i ≤ j ∨ ¬P(i + 3, x) ∨ ¬P(j + 4, x)} where i and j are integer-sorted variables
and x is a foreground-sorted variable. Neither splitting into unit clauses, super-
position calculus rules, nor instantiation applies, and so the derivation gets stuck
with an inconclusive result. By contrast, the clause set belongs to a fragment
that entails sufficient completeness (“no background-sorted foreground function
symbols”) and hence is refutable by our calculus. On the other hand, heuristic
instantiation does have a place in our calculus, but we leave that for future work.

2 Signatures, Clauses, and Interpretations

We work in the context of standard many-sorted logic with first-order signatures
comprised of sorts and operator (or function) symbols of given arities over these
sorts. A signature is a pair Σ = (Ξ,Ω), where Ξ is a set of sorts and Ω is a
set of operator symbols over Ξ. If X is a set of sorted variables with sorts in Ξ,
then the set of well-sorted terms over Σ = (Ξ,Ω) and X is denoted by TΣ(X );
TΣ is short for TΣ(∅). We require that Σ is a sensible signature, i. e., that TΣ

has no empty sorts. As usual, we write t[u] to indicate that the term u is a (not
necessarily proper) subterm of the term t. The position of u in t is left implicit.

A Σ-equation is an unordered pair (s, t), usually written s ≈ t, where s and
t are terms from TΣ(X ) of the same sort. For simplicity, we use equality as
the only predicate in our language. Other predicates can always be encoded as a
function into a set with one distinguished element, so that a non-equational atom
is turned into an equation P (t1, . . . , tn) ≈ trueP ; this is usually abbreviated by
P (t1, . . . , tn).1 A literal is an equation s ≈ t or a negated equation ¬(s ≈ t),
also written as s �≈ t. A clause is a multiset of literals, usually written as a
disjunction; the empty clause, denoted by � is a contradiction. If F is a term,
equation, literal or clause, we denote by vars(F ) the set of variables that occur
in F . We say F is ground if vars(F ) = ∅.

A substitution σ is a mapping from variables to terms that is sort respecting,
that is, maps each variable x ∈ X to a term of the same sort. Substitutions are
1 Without loss of generality we assume that there exists a distinct sort for every

predicate.
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homomorphically extended to terms as usual. We write substitution application
in postfix form. A term s is an instance of a term t if there is a substitution σ
such that tσ = s. All these notions carry over to equations, literals and clauses
in the obvious way. The composition στ of the substitutions σ and τ is the
substitution that maps every variable x to (xσ)τ .

The domain of a substitution σ is the set dom(σ) = {x | x �= xσ}. We use
only substitutions with finite domains, written as σ = [x1 	→ t1, . . . , xn 	→ tn]
where dom(σ) = {x1, . . . , xn}. A ground substitution is a substitution that maps
every variable in its domain to a ground term. A ground instance of F is obtained
by applying some ground substitution with domain (at least) vars(F ) to it.

A Σ-interpretation I consists of a Ξ-sorted family of carrier sets {Iξ}ξ∈Ξ

and of a function If : Iξ1 × · · · × Iξn → Iξ0 for every f : ξ1 . . . ξn → ξ0
in Ω. The interpretation tI of a ground term t is defined recursively by
f(t1, . . . , tn)I = If (tI1, . . . , t

I
n) for n ≥ 0. An interpretation I is called term-

generated, if every element of an Iξ is the interpretation of some ground term of
sort ξ. An interpretation I is said to satisfy a ground equation s ≈ t, if s and t
have the same interpretation in I; it is said to satisfy a negated ground equation
s �≈ t, if s and t do not have the same interpretation in I. The interpretation
I satisfies a ground clause C if at least one of the literals of C is satisfied by
I. We also say that a ground clause C is true in I, if I satisfies C; and that C
is false in I, otherwise. A term-generated interpretation I is said to satisfy a
non-ground clause C if it satisfies all ground instances Cσ; it is called a model
of a set N of clauses, if it satisfies all clauses of N .2 We abbreviate the fact that
I is a model of N by I |= N ; I |= C is short for I |= {C}. We say that N
entails N ′, and write N |= N ′, if every model of N is a model of N ′; N |= C
is short for N |= {C}. We say that N and N ′ are equivalent, if N |= N ′ and
N ′ |= N .

If J is a class of Σ-interpretations, a Σ-clause or clause set is called J -
satisfiable if at least one I ∈ J satisfies the clause or clause set; otherwise it is
called J -unsatisfiable.

A specification is a pair SP = (Σ,J ), where Σ is a signature and J is a
class of term-generated Σ-interpretations called models of the specification SP .
We assume that J is closed under isomorphisms.

We say that a class of Σ-interpretations J or a specification (Σ, J ) is com-
pact, if every infinite set of Σ-clauses that is J -unsatisfiable has a finite subset
that is also J -unsatisfiable.

3 Hierarchic Theorem Proving

In hierarchic theorem proving, we consider a scenario in which a general-purpose
foreground theorem prover and a specialized background prover cooperate to

2 This restriction to term-generated interpretations as models is possible since we
are only concerned with refutational theorem proving, i. e., with the derivation of a
contradiction.
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derive a contradiction from a set of clauses. In the sequel, we will usually abbre-
viate “foreground” and “background” by “FG” and “BG”.

The BG prover accepts as input sets of clauses over a BG signature ΣB =
(ΞB, ΩB). Elements of ΞB and ΩB are called BG sorts and BG operators, respec-
tively. We fix an infinite set XB of BG variables of sorts in ΞB. Every BG variable
has (is labeled with) a kind, which is either “abstraction” or “ordinary”. Terms
over ΣB and XB are called BG terms. A BG term is called pure, if it does not con-
tain ordinary variables; otherwise it is impure. These notions apply analogously
to equations, literals, clauses, and clause sets.

The BG prover decides the satisfiability of ΣB-clause sets with respect to a
BG specification (ΣB,B), where B is a class of term-generated ΣB-interpretations
called BG models. We assume that B is closed under isomorphisms.

In most applications of hierarchic theorem proving, the set of BG operators
ΩB contains a set of distinguished constant symbols ΩD

B ⊆ ΩB that has the
property that dI

1 �= dI
2 for any two distinct d1, d2 ∈ ΩD

B and every BG model
I ∈ B. We refer to these constant symbols as (BG) domain elements.

While we permit arbitrary classes of BG models, in practice the following
three cases are most relevant:

(1) B consists of exactly one ΣB-interpretation (up to isomorphism), say, the
integer numbers over a signature containing all integer constants as domain
elements and ≤, <,+,− with the expected arities. In this case, B is trivially
compact; in fact, a set N of ΣB-clauses is B-unsatisfiable if and only if some
clause of N is B-unsatisfiable.

(2) ΣB is extended by an infinite number of parameters, that is, additional
constant symbols. While all interpretations in B share the same carrier sets
{Iξ}ξ∈ΞB and interpretations of non-parameter symbols, parameters may be
interpreted freely by arbitrary elements of the appropriate Iξ. The class B
obtained in this way is in general not compact; for instance the infinite set
of clauses {n ≤ β | n ∈ N}, where β is a parameter, is unsatisfiable in the
integers, but every finite subset is satisfiable.

(3) ΣB is again extended by parameters, however, B is now the class of all
interpretations that satisfy some first-order theory, say, the first-order theory
of linear integer arithmetic.3 Since B corresponds to a first-order theory,
compactness is recovered. It should be noted, however, that B contains non-
standard models, so that for instance the clause set {n ≤ β | n ∈ N} is now
satisfiable (e. g., Q × Z with a lexicographic ordering is a model).

The FG theorem prover accepts as inputs clauses over a signature Σ =
(Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ΞB and the operator
symbols in ΩF = Ω \ ΩB are called FG sorts and FG operators. Again we fix an

3 To satisfy the technical requirement that all interpretations in B are term-generated,
we assume that in this case ΣB is suitably extended by an infinite set of constants
(or by one constant and one unary function symbol) that are not used in any input
formula or theory axiom.
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infinite set XF of FG variables of sorts in ΞF. All FG variables have the kind
“ordinary”. We define X = XB ∪ XF.

In examples we will use {0, 1, 2, . . . } to denote BG domain elements, {+,−, <,
≤} to denote (non-parameter) BG operators, and the possibly subscripted letters
{x, y}, {X,Y }, {α, β}, and {a, b, c, f, g} to denote ordinary variables, abstraction
variables, parameters, and FG operators, respectively. The letter ζ denotes an
ordinary variable or an abstraction variable.

We call a term in TΣ(X ) a FG term, if it is not a BG term, that is, if it
contains at least one FG operator or FG variable (and analogously for literals
or clauses). We emphasize that for a FG operator f : ξ1 . . . ξn → ξ0 in ΩF any of
the ξi may be a BG sort, and that consequently FG terms may have BG sorts.

If I is a Σ-interpretation, the restriction of I to ΣB, written I|ΣB , is the ΣB-
interpretation that is obtained from I by removing all carrier sets Iξ for ξ ∈ ΞF

and all functions If for f ∈ ΩF. Note that I|ΣB is not necessarily term-generated
even if I is term-generated. In hierarchic theorem proving, we are only interested
in Σ-interpretations that extend some model in B and neither collapse any of
its sorts nor add new elements to them, that is, in Σ-interpretations I for which
I|ΣB ∈ B. We call such a Σ-interpretation a B-interpretation.

Let N and N ′ be two sets of Σ-clauses. We say that N entails N ′ relative to
B (and write N |=B N ′), if every model of N whose restriction to ΣB is in B is
a model of N ′. Note that N |=B N ′ follows from N |= N ′. If N |=B �, we call
N B-unsatisfiable; otherwise, we call it B-satisfiable.4

Our goal in refutational hierarchic theorem proving is to check whether a
given set of Σ-clauses N is false in all B-interpretations, or equivalently, whether
N is B-unsatisfiable.

We say that a substitution σ is simple if Xσ is a pure BG term for every
abstraction variable X ∈ dom(σ). For example, [x 	→ 1 + Y + α], [X 	→ 1 +
Y + α] and [x 	→ f(1)] all are simple, whereas [X 	→ 1 + y + α] and [X 	→ f(1)]
are not. Let F be a clause or (possibly infinite) clause set. By sgi(F ) we denote
the set of simple ground instances of F , that is, the set of all ground instances
of (all clauses in) F obtained by simple ground substitutions.

For a BG specification (ΣB,B), we define GndTh(B) as the set of all ground
ΣB-formulas that are satisfied by every I ∈ B.

Definition 3.1 (Sufficient completeness). A Σ-clause set N is called suf-
ficiently complete w.r.t. simple instances if for every Σ-model J of sgi(N) ∪
GndTh(B)5 and every ground BG-sorted FG term s there is a ground BG term
t such that J |= s ≈ t.6 
�

4 If Σ = ΣB, this definition coincides with the definition of satisfiability w.r.t. a class
of interpretations that was given in Sect. 2. A set N of BG clauses is B-satisfiable if
and only if some interpretation of B is a model of N .

5 In contrast to [5], we include GndTh(B) in the definition of sufficient completeness.
(This is independent of the abstraction method; it would also have been useful in [5].).

6 Note that J need not be a B-interpretation.
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For brevity, we will from now on omit the phrase “w.r.t. simple instances” and
speak only of “sufficient completeness”. It should be noted, though, that our
definition differs from the classical definition of sufficient completeness in the
literature on algebraic specifications.

4 Orderings

A hierarchic reduction ordering is a strict, well-founded ordering on terms that is
compatible with contexts, i. e., s � t implies u[s] � u[t], and stable under simple
substitutions, i. e., s � t implies sσ � tσ for every simple σ. In the rest of this
paper we assume such a hierarchic reduction ordering � that satisfies all of the
following: (i) � is total on ground terms, (ii) s � d for every domain element d
and every ground term s that is not a domain element, and (iii) s � t for every
ground FG term s and every ground BG term t. These conditions are easily
satisfied by an LPO with an operator precedence in which FG operators are
larger than BG operators and domain elements are minimal with, for example,
· · · � −2 � 2 � −1 � 1 � 0 to achieve well-foundedness.

Condition (iii) and stability under simple substitutions together justify to
always order s � X where s is a non-variable FG term and X is an abstrac-
tion variable. By contrast, s � x can only hold if x ∈ vars(s). Intuitively, the
combination of hierarchic reduction orderings and abstraction variables affords
ordering more terms.

The ordering � is extended to literals over terms by identifying a positive
literal s ≈ t with the multiset {s, t}, a negative literal s �≈ t with {s, s, t, t},
and using the multiset extension of �. Clauses are compared by the multiset
extension of �, also denoted by �.

The non-strict orderings � are defined as s � t if and only if s � t or s = t
(the latter is multiset equality in case of literals and clauses). A literal L is
maximal (strictly maximal) in a clause L ∨ C if there is no K ∈ C with K � L
(K � L).

5 Weak Abstraction

To refute an input set of Σ-clauses, hierarchic superposition calculi derive BG
clauses from them and pass the latter to a BG prover. In order to do this, some
separation of the FG and BG vocabulary in a clause is necessary. The technique
used for this separation is known as abstraction: One (repeatedly) replaces some
term q in a clause by a new variable and adds a disequations to the clause, so
that C[q] is converted into the equivalent clause ζ �≈ q ∨ C[ζ], where ζ is a new
(abstraction or ordinary) variable.

The calculus by Bachmair, Ganzinger, and Waldmann [5] works on “fully
abstracted” clauses: Background terms occurring below a FG operator or in
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an equation between a BG and a FG term or vice versa are abstracted
out until one arrives at a clause in which no literal contains both FG and
BG operators.

A problematic aspect of any kind of abstraction is that it tends to increase the
number of incomparable terms in a clause, which leads to an undesirable growth
of the search space of a theorem prover. For instance, if we abstract out the sub-
terms t and t′ in a ground clause f(t) ≈ g(t′), we get x �≈ t∨ y �≈ t′ ∨ f(x) ≈ g(y),
and the two new terms f(x) and g(y) are incomparable in any reduction ordering.
In [5] this problem is mitigated by considering only instances where BG-sorted
variables are mapped to BG terms: In the terminology of the current paper, all
BG-sorted variables in [5] have the kind “abstraction”. This means that, in the
example above, we obtain the two terms f(X) and g(Y ). If we use an LPO with
a precedence in which f is larger than g and g is larger than every BG operator,
then for every simple ground substitution τ , f(X)τ is strictly larger that g(Y )τ ,
so we can still consider f(X) as the only maximal term in the literal.

The advantage of full abstraction is that this clause structure is preserved
by all inference rules. There is a serious drawback, however: Consider the clause
set N = { 1 + c �≈ 1 + c }. Since N is ground, we have sgi(N) = N , and since
sgi(N) is unsatisfiable, N is trivially sufficiently complete. Full abstraction turns
N into N ′ = {X �≈ c ∨ 1 + X �≈ 1 + X }. In the simple ground instances of
N ′, X is mapped to all pure BG terms. However, there are Σ-interpretations of
sgi(N ′) in which c is interpreted differently from any pure BG term, so sgi(N ′) ∪
GndTh(B) does have a Σ-model and N ′ is no longer sufficiently complete. In
other words, the calculus of [5] is refutationally complete for clause sets that
are fully abstracted and sufficiently complete, but full abstraction may destroy
sufficient completeness. (In fact, the calculus is not able to refute N ′.)

The problem that we have seen is caused by the fact that full abstraction
replaces FG terms by abstraction variables, which may not be mapped to FG
terms later on. The obvious fix would be to use ordinary variables instead of
abstraction variables whenever the term to be abstracted out is not a pure BG
term, but as we have seen above, this would increase the number of incompa-
rable terms and it would therefore be detrimental to the performance of the
prover.

Full abstraction is a property that is stronger than actually necessary for the
completeness proof of [5]. In fact, it was claimed in a footnote in [5] that the
calculus could be optimized by abstracting out only non-variable BG terms that
occur below a FG operator. This is incorrect, however: Using this abstraction
rule, neither our calculus nor the calculus of [5] would be able to refute { 1 + 1 ≈
2, (1 + 1) + c �≈ 2 + c }, even though this set is unsatisfiable and trivially
sufficiently complete. We need a slightly different abstraction rule to avoid this
problem:
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Definition 5.1. A BG term q is a target term in a clause C if q is neither
a domain element nor a variable and if C has the form C[f(s1, . . . , q, . . . , sn)],
where f is a FG operator or at least one of the si is a FG or impure BG term.7

A clause is called weakly abstracted if it does not have any target terms.
The weakly abstracted version of a clause is the clause that is obtained by

exhaustively replacing C[q] by

– C[X] ∨ X �≈ q, where X is a new abstraction variable, if q is a pure target
term in C,

– C[y]∨y �≈ q, where y is a new ordinary variable, if q is an impure target term
in C.

The weakly abstracted version of a clause C is denoted by abstr(C); if N is a
set of clauses then abstr(N) = { abstr(C) | C ∈ N }. 
�
For example, weak abstraction of the clause g(1, α, f(1) + (α + 1), z) ≈ β yields
g(1,X, f(1) + Y, z) ≈ β ∨ X �≈ α ∨ Y �≈ α + 1. Note that the terms 1, f(1) +
(α + 1), z, and β are not abstracted out: 1 is a domain element; f(1) + (α + 1)
has a BG sort, but it is not a BG term; z is a variable; and β is not a proper
subterm of any other term. The clause write(a, 2, read(a, 1) + 1) ≈ b is already
weakly abstracted. Every pure BG clause is trivially weakly abstracted.

Nested abstraction is only necessary for certain impure BG terms. For
instance, the clause f(z + α) ≈ 1 has two target terms, namely α (since z is
an impure BG term) and z + α (since f is a FG operator). If we abstract out α,
we obtain f(z + X) ≈ 1 ∨ X �≈ α. The new term z + X is still a target term, so
one more abstraction step yields f(y) ≈ 1 ∨ X �≈ α ∨ y �≈ z + X. (Alternatively,
we can first abstract out z + α, yielding f(y) ≈ 1 ∨ y �≈ z + α, and then α. The
final result is the same.)

It is easy to see that the abstraction process described in Definition 5.1 ter-
minates by comparing the multisets of the numbers of non-variable occurrences
in the left and right-hand sides of all literals before and after an abstraction step.

Proposition 5.2. If N is a set of clauses and N ′ is obtained from N by replac-
ing one or more clauses by their weakly abstracted versions, then sgi(N) and
sgi(N ′) are equivalent and N ′ is sufficiently complete whenever N is.

Proof. Let us first consider the case of a single abstraction step applied to a single
clause. Let C[q] be a clause with a target term q and let D = C[ζ] ∨ ζ �≈ q
be the result of abstracting out q (where ζ is a new abstraction variable, if q is
pure, and a new ordinary variable, if q is impure). We will show that sgi(C) and
sgi(D) have the same models.

7 Target terms are terms that need to be abstracted out; so for efficiency reasons, it is
advantageous to keep the number of target terms as small as possible. We will show
in Sect. 7 why domain elements may be treated differently from other non-variable
terms. On the other hand, all the results in the following sections continue to hold
if the restriction that q is not a domain element is dropped (i. e., if domain elements
are abstracted out as well). We will make use of this fact in Sect. 11.
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In one direction let I be an arbitrary model of sgi(C). We have to show
that I is also a model of every simple ground instance Dτ of D. If I satisfies
the disequation ζτ �≈ qτ then this is trivial. Otherwise, ζτ and qτ have the
same interpretation in I. Since dom(τ) ⊇ vars(D) = vars(C) ∪ {ζ}, Cτ is a
simple ground instance of C, so I is a model of Cτ = Cτ [qτ ]. By congruence,
we conclude that I is also a model of Cτ [ζτ ], hence it is a model of Dτ =
Cτ [ζτ ] ∨ ζτ �≈ qτ .

In the other direction let I be an arbitrary model of sgi(D). We have to show
that I is also a model of every simple ground instance Cτ of C. Without loss
of generality assume that ζ /∈ dom(τ). If ζ is an abstraction variable, then q is
a pure BG term, and since τ is a simple substitution, qτ is a pure BG term as
well. Consequently, the substitutions [ζ 	→ qτ ] and τ ′ = τ [ζ 	→ qτ ] are again
simple substitutions and Dτ ′ is a simple ground instance of D. This implies that
I is a model of Dτ ′. The clause Dτ ′ has the form Dτ ′ = Cτ ′[ζτ ′] ∨ ζτ ′ �≈ qτ ′;
since ζτ ′ = qτ , Cτ ′ = Cτ and qτ ′ = qτ , this is equal to Cτ [qτ ] ∨ qτ �≈ qτ .
Obviously, the literal qτ �≈ qτ must be false in I, so I must be a model of
Cτ [qτ ] = C[q]τ = Cτ .

By induction over the number of abstraction steps we conclude that for any
clause C, sgi(C) and sgi(abstr(C)) are equivalent. The extension to clause sets
N and N ′ follows then from the fact that I is a model of sgi(N) if and only if
it is a model of sgi(C) for all C ∈ N . Moreover, the equivalence of sgi(N) and
sgi(N ′) implies obviously that N ′ is sufficiently complete whenever N is. 
�

In contrast to full abstraction, the weak abstraction rule does not require
abstraction of FG terms (which can destroy sufficient completeness if done using
abstraction variables, and which is detrimental to the performance of a prover
if done using ordinary variables). BG terms are usually abstracted out using
abstraction variables. The exception are BG terms that are impure, i. e., that con-
tain ordinary variables themselves. In this case, we cannot avoid to use ordinary
variables for abstraction, otherwise, we might again destroy sufficient complete-
ness. For example, the clause set {P(1 + y), ¬P(1 + c)} is sufficiently complete.
If we used an abstraction variable instead of an ordinary variable to abstract out
the impure subterm 1 + y, we would get {P(X) ∨ X �≈ 1 + y, ¬P(1 + c)}, which
is no longer sufficiently complete.

In input clauses (that is, before abstraction), BG-sorted variables may be
declared as “ordinary” or “abstraction”. As we have seen above, using abstrac-
tion variables can reduce the search space; on the other hand, abstraction
variables may be detrimental to sufficient completeness. Consider the follow-
ing example: The set of clauses N = {¬f(x) > g(x) ∨ h(x) ≈ 1, ¬f(x) ≤
g(x) ∨ h(x) ≈ 2, ¬h(x) > 0} is unsatisfiable w.r.t. linear integer arithmetic, but
since it is not sufficiently complete, the hierarchic superposition calculus does
not detect the unsatisfiability. Adding the clause X > Y ∨ X ≤ Y to N does
not help: Since the abstraction variables X and Y may not be mapped to the
FG terms f(x) and g(x) in a simple ground instance, the resulting set is still
not sufficiently complete. However, if we add the clause x > y ∨ x ≤ y, the



26 P. Baumgartner and U. Waldmann

set of clauses becomes (vacuously) sufficiently complete and its unsatisfiability
is detected.

One might wonder whether it is also possible to gain anything if the abstrac-
tion process is performed using ordinary variables instead of abstraction vari-
ables. The following proposition shows that this is not the case:

Proposition 5.3. Let N be a set of clauses, let N ′ be the result of weak abstrac-
tion of N as defined above, and let N ′′ be the result of weak abstraction of
N where all newly introduced variables are ordinary variables. Then sgi(N ′)
and sgi(N ′′) are equivalent and sgi(N ′) is sufficiently complete if and only if
sgi(N ′′) is.

Proof. By Proposition 5.2, we know already that sgi(N) and sgi(N ′) are equiv-
alent. Moreover, it is easy to check the proof of Proposition 5.2 is still valid if
we assume that the newly introduced variable ζ is always an ordinary variable.
(Note that the proof requires that abstraction variables are mapped only to pure
BG terms, but it does not require that a variable that is mapped to a pure BG
term must be an abstraction variable.) So we can conclude in the same way
that sgi(N) and sgi(N ′′) are equivalent, and hence, that sgi(N ′) and sgi(N ′′) are
equivalent. From this, we can conclude that N ′ is sufficiently complete whenever
N ′′ is. 
�

6 Base Inference System

An inference system I is a set of inference rules. By an I inference we mean an
instance of an inference rule from I such that all conditions are satisfied.

The base inference system HSPBase of the hierarchic superposition calcu-
lus consists of the inference rules Equality resolution, Negative superposition, Positive
superposition, Equality factoring, and Close defined below. The calculus is parame-
terized by a hierarchic reduction ordering � and by a “selection function” that
assigns to every clause a (possibly empty) subset of its negative FG literals. All
inference rules are applicable only to weakly abstracted premise clauses.

Equality resolution
s �≈ t ∨ C

abstr(Cσ)

if (i) σ is a simple mgu of s and t, (ii) sσ is not a pure BG term, and (iii) if
the premise has selected literals, then s �≈ t is selected in the premise, otherwise
(s �≈ t)σ is maximal in (s �≈ t ∨ C)σ.8

For example, Equality resolution is applicable to 1 + c �≈ 1 + x with the simple
mgu [x 	→ c], but it is not applicable to 1 + α �≈ 1 + x, since 1 + α is a pure BG
term.

8 As in [5], it is possible to strengthen the maximality condition by requiring that
there exists some simple ground substitution ψ such that (s �≈ t)σψ is maximal in
(s �≈ t ∨ C)σψ (and analogously for the other inference rules).
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Negative superposition
l ≈ r ∨ C s[u] �≈ t ∨ D

abstr((s[r] �≈ t ∨ C ∨ D)σ)

if (i) u is not a variable, (ii) σ is a simple mgu of l and u, (iii) lσ is not a pure
BG term, (iv) rσ �� lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi)
the first premise does not have selected literals, (vii) tσ �� sσ, and (viii) if the
second premise has selected literals, then s �≈ t is selected in the second premise,
otherwise (s �≈ t)σ is maximal in (s �≈ t ∨ D)σ.

Positive superposition
l ≈ r ∨ C s[u] ≈ t ∨ D

abstr((s[r] ≈ t ∨ C ∨ D)σ)

if (i) u is not a variable, (ii) σ is a simple mgu of l and u, (iii) lσ is not a pure
BG term, (iv) rσ �� lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi)
tσ �� sσ, (vii) (s �≈ t)σ is strictly maximal in (s ≈ t ∨ D)σ, and (viii) none of
the premises has selected literals.

Equality factoring
s ≈ t ∨ l ≈ r ∨ C

abstr((l ≈ r ∨ t �≈ r ∨ C)σ)

where (i) σ is a simple mgu of s and l, (ii) sσ is not a pure BG term, (iii) (s ≈ t)σ
is maximal in (s ≈ t ∨ l ≈ r ∨ C)σ, (iv) tσ �� sσ, (v) lσ �� rσ, and (vi) the
premise does not have selected literals.

Close
C1 · · · Cn

�

if C1, . . . , Cn are BG clauses and {C1, . . . , Cn} is B-unsatisfiable, i. e., no inter-
pretation in B is a ΣB-model of {C1, . . . , Cn}.

Notice that Close is not restricted to take pure BG clauses only. The reason
is that also impure BG clauses admit simple ground instances that are pure.

Theorem 6.1. The inference rules of HSPBase are sound w.r.t. |=B, i. e., for
every inference with premises in N and conclusion C, we have N |=B C.

Proof. Equality resolution, Negative superposition, Positive superposition, and Equality

factoring are clearly sound w.r.t. |=, and therefore also sound w.r.t. |=B. For Close,
soundness w.r.t. |=B follows immediately from the definition. 
�

All inference rules of HSPBase involve (simple) mgus. Because of the two
kinds of variables, abstraction and ordinary ones, the practical question arises if
standard unification algorithms can be used without or only little modification.
For example, the terms Z and (x + y) admit a simple mgu σ = [x 	→ X, y 	→
Y, Z 	→ X + Y ]. This prompts for the use of weakening substitutions as in
many-sorted logics with subsorts [28]. A closer inspection of the inference rules
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shows, however, that such substitutions never need to be considered: All unifiers
computed in the inference rules have the property that abstraction variables
are only mapped to abstraction variables or domain elements; apart from this
additional restriction, we can use a standard unification algorithm.

In contrast to [5], the inference rules above include an explicit weak abstrac-
tion in their conclusion. Without it, conclusions would not be weakly abstracted
in general. For example Positive superposition applied to the weakly abstracted
clauses f(X) ≈ 1 ∨ X �≈ α and P(f(1) + 1) would then yield P(1 + 1) ∨ 1 �≈ α,
whose P-literal is not weakly abstracted. Additionally, the side conditions of our
rules differ somewhat from the corresponding rules of [5], this is due on the one
hand to the presence of impure BG terms (which must sometimes be treated
like FG terms), and on the other hand to the fact that, after weak abstraction,
literals may still contain both FG and BG operators.

The inference rules are supplemented by a redundancy criterion, that is, a
mapping RCl from sets of formulae to sets of formulae and a mapping RInf from
sets of formulae to sets of inferences that are meant to specify formulae that may
be removed from N and inferences that need not be computed. (RCl(N) need
not be a subset of N and RInf(N) will usually also contain inferences whose
premises are not in N .)

Definition 6.2. A pair R = (RInf ,RCl) is called a redundancy criterion (with
respect to an inference system I and a consequence relation |=), if the following
conditions are satisfied for all sets of formulae N and N ′:

(i) N \ RCl(N) |= RCl(N).
(ii) If N ⊆ N ′, then RCl(N) ⊆ RCl(N ′) and RInf(N) ⊆ RInf(N ′).
(iii) If ι is an inference and its conclusion is in N , then ι ∈ RInf(N).
(iv) If N ′ ⊆ RCl(N), then RCl(N) ⊆ RCl(N \N ′) and RInf(N) ⊆ RInf(N \N ′).

The inferences in RInf(N) and the formulae in RCl(N) are said to be redundant
with respect to N . 
�

Let SSP be the ground standard superposition calculus using the inference
rules equality resolution, negative superposition, positive superposition, and
equality factoring (Bachmair and Ganzinger [3], Nieuwenhuis [23], Nieuwenhuis
and Rubio [25]). To define a redundancy criterion for HSPBase and to prove the
refutational completeness of the calculus, we use the same approach as in [5] and
relate HSPBase inferences to the corresponding SSP inferences.

For a set of ground clauses N , we define RS
Cl(N) to be the set of all clauses

C such that there exist clauses C1, . . . , Cn ∈ N that are smaller than C with
respect to � and C1, . . . , Cn |= C. We define RS

Inf(N) to be the set of all ground
SSP inferences ι such that either a premise of ι is in RS

Cl(N) or else C0 is the
conclusion of ι and there exist clauses C1, . . . , Cn ∈ N that are smaller with
respect to �c than the maximal premise of ι and C1, . . . , Cn |= C0.

The following results can be found in [3] and [23]:

Theorem 6.3. The (ground) standard superposition calculus SSP and RS =
(RS

Inf ,RS
Cl) satisfy the following properties:
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(i) RS is a redundancy criterion with respect to |=.
(ii) SSP together with RS is refutationally complete.

Let ι be an HSPBase inference with premises C1, . . . , Cn and conclusion
abstr(C), where the clauses C1, . . . , Cn have no variables in common. Let ι′

be a ground SSP inference with premises C ′
1, . . . , C

′
n and conclusion C ′. If σ is

a simple substitution such that C ′ = Cσ and C ′
i = Ciσ for all i, and if none of

the C ′
i is a BG clause, then ι′ is called a simple ground instance of ι. The set of

all simple ground instances of an inference ι is denoted by sgi(ι).

Definition 6.4. Let N be a set of weakly abstracted clauses. We define RH
Inf(N)

to be the set of all inferences ι such that either ι is not a Close inference and
sgi(ι) ⊆ RS

Inf(sgi(N) ∪ GndTh(B)), or else ι is a Close inference and � ∈ N .
We define RH

Cl(N) to be the set of all weakly abstracted clauses C such that
sgi(C) ⊆ RS

Cl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B).9 
�

7 Refutational Completeness

To prove that HSPBase and RH = (RH
Inf ,RH

Cl) are refutationally complete for
sets of weakly abstracted Σ-clauses and compact BG specifications (ΣB,B), we
use the same technique as in [5]:

First we show that RH is a redundancy criterion with respect to |=B, and
that a set of clauses remains sufficiently complete if new clauses are added or if
redundant clauses are deleted. The proofs are rather technical and can be found
in [12]. They are similar to the corresponding ones in [5]; the differences are
due, on the one hand, to the fact that we include GndTh(B) in the redundancy
criterion and in the definition of sufficient completeness, and, on the other hand,
to the explicit abstraction steps in our inference rules.

Lemma 7.1. If sgi(N) ∪ GndTh(B) |= sgi(C), then N |=B C.

Proof. Suppose that sgi(N) ∪ GndTh(B) |= sgi(C). Let I ′ be a Σ-model of N
whose restriction to ΣB is contained in B. Clearly, I ′ is also a model of GndTh(B).
Since I ′ does not add new elements to the sorts of I = I ′|ΣB and I is a term-
generated ΣB-interpretation, we know that for every ground Σ-term t′ of a BG
sort there is a ground BG term t such that t and t′ have the same interpretation
in I ′. Therefore, for every ground substitution σ′ there is an equivalent simple
ground substitution σ; since Cσ is valid in I ′, Cσ′ is also valid. 
�

We call the simple most general unifier σ that is computed during an infer-
ence ι and applied to the conclusion the pivotal substitution of ι. (For ground
inferences, the pivotal substitution is the identity mapping.) If L is the literal
[¬] s ≈ t or [¬] s[u] ≈ t of the second or only premise that is eliminated in ι, we
call Lσ the pivotal literal of ι, and we call sσ or s[u]σ the pivotal term of ι.

9 In contrast to [5], we include GndTh(B) in the redundancy criterion. (This is inde-
pendent of the abstraction method used; it would also have been useful in [5].).
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Lemma 7.2. Let ι be an HSPBase inference

C1

abstr(C0σ)
or

C2 C1

abstr(C0σ)

from weakly abstracted premises with pivotal substitution σ. Let ι′ be a simple
ground instance of ι of the form

C1τ

C0στ
or

C2τ C1τ

C0στ

Then there is a simple ground instance of abstr(C0σ) that has the form C0στ ∨
E, where E is a (possibly empty) disjunction of literals s �≈ s, and each literal
of E is smaller than the pivotal literal of ι′.

As M ⊆ M ′ implies RS
Inf(M) ⊆ RS

Inf(M
′), we obtain RS

Inf(sgi(N)\sgi(N ′)) ⊆
RS

Inf(sgi(N \N ′)). Furthermore, it is fairly easy to see that sgi(N)\(RS
Cl(sgi(N) ∪

GndTh(B)) ∪ GndTh(B)) ⊆ sgi(N \ RH
Cl(N)). Using these two results we can

prove the following lemmas:

Lemma 7.3. RH = (RH
Inf ,RH

Cl) is a redundancy criterion with respect to |=B.

Lemma 7.4. Let N , N ′ and M be sets of weakly abstracted clauses such that
N ′ ⊆ RH

Cl(N). If N is sufficiently complete, then so are N ∪ M and N \ N ′.

We now encode arbitrary term-generated ΣB-interpretation by sets of unit
ground clauses in the following way: Let I ∈ B be a term-generated ΣB-inter-
pretation. For every ΣB-ground term t let m(t) be the smallest ground term of
the congruence class of t in I. We define a rewrite system E′

I by E′
I = {t →

m(t) | t ∈ TΣ , t �= m(t)}. Obviously, E′
I is right-reduced; since all rewrite rules

are contained in �, E′
I is terminating; and since every ground term t has m(t)

as its only normal form, E′
I is also confluent. Now let EI be the set of all rules

l → r in E′
I such that l is not reducible by E′

I \ {l → r}. Clearly every term
that is reducible by EI is also reducible by E′

I ; conversely every term that is
reducible by E′

I has a minimal subterm that is reducible by E′
I and the rule in

E′
I that is used to rewrite this minimal subterm is necessarily contained in EI .

Therefore E′
I and EI define the same set of normal forms, and from this we can

conclude that EI and E′
I induce the same equality relation on ground ΣB-terms.

We identify EI with the set of clauses {t ≈ t′ | t → t′ ∈ EI}. Let DI be the set
of all clauses t �≈ t′, such that t and t′ are distinct ground ΣB-terms in normal
form with respect to EI .10

Lemma 7.5. Let I ∈ B be a term-generated ΣB-interpretation and let C be
a ground BG clause. Then C is true in I if and only if there exist clauses
C1, . . . , Cn in EI ∪ DI such that C1, . . . , Cn |= C and C � Ci for 1 ≤ i ≤ n.
10 Typically, EI contains two kinds of clauses, namely clauses that evaluate non-

constant BG terms, such as 2 + 3 ≈ 5, and clauses that map parameters to domain
elements, such as α ≈ 4.
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Proof. The “if” part follows immediately from the fact that I |= EI ∪ DI . For
the “only if” part assume that the ground BG clause C is true in I. Consequently,
there is some literal s ≈ t or s �≈ t of C that is true in I. Then this literal follows
from (i) the rewrite rules in EI that are used to normalize s to its normal form
s′, (ii) the rewrite rules in EI that are used to normalize t to its normal form
t′, and, in the case of a negated literal s �≈ t, (iii) the clause s′ �≈ t′ ∈ DI . It is
routine to show that all these clauses are smaller than or equal to s ≈ t or s �≈ t,
respectively, and hence smaller than or equal to C. 
�
Corollary 7.6. Let I ∈ B be a term-generated ΣB-interpretation. Then EI ∪
DI |= GndTh(B).

Proof. Since I ∈ B, we have I |= GndTh(B), hence EI ∪ DI |= GndTh(B) by
Lemma 7.5. 
�

Let N be a set of weakly abstracted clauses and I ∈ B be a term-generated
ΣB-interpretation, then NI denotes the set EI ∪ DI ∪ {Cσ | σ simple, reduced
with respect to EI , C ∈ N , Cσ ground }.

Lemma 7.7. If N is a set of weakly abstracted clauses, then RS
Inf(sgi(N) ∪

GndTh(B)) ⊆ RS
Inf(NI).

Proof. By part (i) of Theorem 6.3 we have obviously RS
Inf(sgi(N)) ⊆ RS

Inf(EI ∪
DI ∪ sgi(N) ∪ GndTh(B)). Let C be a clause in EI ∪ DI ∪ sgi(N) ∪ GndTh(B)
and not in NI . If C ∈ GndTh(B), then it is true in I, so by Lemma 7.5 it is
either contained in EI ∪ DI ⊆ NI or it follows from smaller clauses in EI ∪ DI

and is therefore in RS
Cl(EI ∪ DI ∪ sgi(N)). If C /∈ GndTh(B), then C = C ′σ for

some C ′ ∈ N , so it follows from C ′ρ and EI ∪ DI , where ρ is the substitution
that maps every variable ζ to the EI -normal form of ζσ. Since C follows from
smaller clauses in EI ∪ DI ∪ sgi(N), it is in RS

Cl(EI ∪ DI ∪ sgi(N)). Hence
RS

Inf(EI ∪ DI ∪ sgi(N) ∪ GndTh(B)) ⊆ RS
Inf(NI). 
�

A clause set N is called saturated (with respect to an inference system I and
a redundancy criterion R) if ι ∈ RInf(N) for every inference ι with premises
in N .

Theorem 7.8. Let I ∈ B be a term-generated ΣB-interpretation and let N be a
set of weakly abstracted Σ-clauses. If I satisfies all BG clauses in sgi(N) and N
is saturated with respect to HSPBase and RH, then NI is saturated with respect
to SSP and RS .

Proof. We have to show that every SSP-inference from clauses of NI is contained
in RS

Inf(NI). We demonstrate this in detail for the equality resolution and the
negative superposition rule. The analysis of the other rules is similar. Note that
by Lemma 7.5 every BG clause that is true in I and is not contained in EI ∪ DI

follows from smaller clauses in EI ∪ DI , thus it is in RS
Cl(NI); every inference

involving such a clause is in RS
Inf(NI).

The equality resolution rule is obviously not applicable to clauses from EI ∪
DI . Suppose that ι is an equality resolution inference with a premise Cσ, where
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C ∈ N and σ is a simple substitution and reduced with respect to EI . If Cσ is a
BG clause, then ι is in RS

Inf(NI). If the pivotal term of ι is a pure BG term then
the pivotal literal is pure BG as well. Because the pivotal literal is maximal in
Cσ it follows from properties of the ordering that Cσ is a BG clause. Because we
have already considered this case we can assume from now on that the pivotal
term of ι is not pure BG and that Cσ is an FG clause. It follows that ι is a simple
ground instance of a hierarchic inference ι′ from C. Since ι′ is in RH

Inf(N), ι is
in RS

Inf(sgi(N) ∪ GndTh(B)), by Lemma 7.7, this implies again ι ∈ RS
Inf(NI).

Obviously a clause from DI cannot be the first premise of a negative super-
position inference. Suppose that the first premise is a clause from EI . The second
premise cannot be a FG clause, since the maximal sides of maximal literals in a
FG clause are reduced; as it is a BG clause, the inference is redundant. Now sup-
pose that ι is a negative superposition inference with a first premise Cσ, where
C ∈ N and σ is a simple substitution and reduced with respect to EI . If Cσ is a
BG clause, then ι is in RS

Inf(NI). Otherwise, with the same arguments as for the
equality resolution case above, the pivotal term is not pure BG and Cσ is a FG
clause. Hence we can conclude that the second premise can be written as C ′σ,
where C ′ ∈ N is a FG clause (without loss of generality, C and C ′ do not have
common variables). If the overlap takes place below a variable occurrence, the
conclusion of the inference follows from Cσ and some instance C ′ρ, which are
both smaller than C ′σ. Otherwise, ι is a simple ground instance of a hierarchic
inference ι′ from C. In both cases, ι is contained in RS

Inf(NI). 
�
The crucial property of abstracted clauses that is needed in the proof of this

theorem is that there are no superposition inferences between clauses in EI and
FG ground instances Cσ in NI , or in other words, that all FG terms occurring
in ground instances Cσ are reduced w.r.t. EI . This motivates the definition of
target terms in Definition 5.1: Recall that two different domain elements must
always be interpreted differently in I and that a domain element is smaller in the
term ordering than any ground term that is not a domain element. Consequently,
any domain element is the smallest term in its congruence class, so it is reduced
by EI . Furthermore, by the definition of NI , ζσ is reduced by EI for every
variable ζ. So variables and domain elements never need to be abstracted out.
Other BG terms (such as parameters α or non-constant terms ζ1 + ζ2) have to
be abstracted out if they occur below a FG operator, or if one of their sibling
terms is a FG term or an impure BG term (since σ can map the latter to a FG
term). On the other hand, abstracting out FG terms as in [5] is never necessary
to ensure that FG terms are reduced w.r.t. EI .

If N is saturated with respect to HSPBase and RH and does not contain the
empty clause, then Close cannot be applicable to N . If (ΣB,B) is compact, this
implies that there is some term-generated ΣB-interpretation I ∈ B that satisfies
all BG clauses in sgi(N). Hence, by Theorem 7.8, the set of reduced simple ground
instances of N has a model that also satisfies EI ∪ DI . Sufficient completeness
allows us to show that this is in fact a model of all ground instances of clauses
in N and that I is its restriction to ΣB:
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Theorem 7.9. If the BG specification (ΣB,B) is compact, then HSPBase and
RH are statically refutationally complete for all sufficiently complete sets of
clauses, i. e., if a set of clauses N is sufficiently complete and saturated w.r.t.
HSPBase and RH, and N |=B �, then � ∈ N .

Proof. Let N be a set of weakly abstracted clauses that is sufficiently complete,
and saturated w.r.t.the hierarchic superposition calculus and RH and does not
contain �. Consequently, the Close rule is not applicable to N . By compact-
ness, this means that the set of all ΣB-clauses in sgi(N) is satisfied by some
term-generated ΣB-interpretation I ∈ B. By Theorem 7.8, NI is saturated with
respect to the standard superposition calculus. Since � /∈ NI , the refutational
completeness of standard superposition implies that there is a Σ-model I ′ of NI .
Since N is sufficiently complete, we know that for every ground term t′ of a BG
sort there exists a BG term t such that t′ ≈ t is true in I ′. Consequently, for
every ground instance of a clause in N there exists an equivalent simple ground
instance, thus I ′ is also a model of all ground instances of clauses in N . To
see that the restriction of I ′ to ΣB is isomorphic to I and thus in B, note that
I ′ satisfies EI ∪ DI , preventing confusion, and that N is sufficiently complete,
preventing junk. Since I ′ satisfies N and I ′|ΣB ∈ B, we have N �|=B � 
�

A theorem proving derivation D is a finite or infinite sequence of weakly
abstracted clause sets N0, N1, ..., such that Ni and Ni+1 are equisatisfiable w.r.t.
|=B and Ni \ Ni+1 ⊆ RH

Inf(Ni+1) for all indices i. The set N∞ =
⋃

i≥0

⋂
j≥i Nj

is called the limit of D; the set N∞ =
⋃

i≥0 Ni is called the union of D. It is
easy to show that every clause in N∞ is either contained in N∞ or redundant
w.r.t. N∞. The derivation D is said to be fair, if every HSPBase-inference with
(non-redundant) premises in N∞ becomes redundant at some point of the deriva-
tion. The limit of a fair derivation is saturated [4]; this is the key result that
allows us to deduce dynamic refutational completeness from static refutational
completeness:

Theorem 7.10. If the BG specification (ΣB,B) is compact, then HSPBase and
RH are dynamically refutationally complete for all sufficiently complete sets of
clauses, i. e., if N |=B �, then every fair derivation starting from abstr(N)
eventually generates �.

In the rest of the paper, we consider only theorem proving derivations where
each set Ni+1 results from from Ni by either adding the conclusions of inferences
from Ni, or by deleting clauses that are redundant w.r.t. Ni+1, or by applying
the following generic simplification rule for clause sets:

Simp
N ∪ {C}

N ∪ {D1, . . . , Dn}

if n ≥ 0 and (i) Di is weakly abstracted, for all i = 1, . . . , n, (ii) N ∪ {C} |=B Di,
and (iii) C ∈ RH

Cl(N ∪ {D1, . . . , Dn}).
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Condition (ii) is needed for soundness, and condition (iii) is needed for com-
pleteness. The Simp rule covers the usual simplification rules of the standard
superposition calculus, such as demodulation by unit clauses and deletion of
tautologies and (properly) subsumed clauses. It also covers simplification of
arithmetic terms, e. g., replacing a subterm (2 + 3) + α by 5 + α and delet-
ing an unsatisfiable BG literal 5 + α < 4 + α from a clause. Any clause of the
form C ∨ ζ �≈ d where d is domain element can be simplified to C[ζ 	→ d].
Notice, though, that impure BG terms or FG terms can in general not be sim-
plified by BG tautologies. Although, e. g., f(X) + 1 �≈ y + 1 is larger than
1 + f(X) �≈ y + 1 (with a LPO), such a “simplification” is not justified by the
redundancy criterion. Indeed, in the example it destroys sufficient completeness.

We have to point out a limitation of the calculus described above. The
standard superposition calculus SSP exists in two variants: either using the
Equality factoring rule, or using the Factoring and Merging paramodulation rules. Only
the first of these variants works together with weak abstraction. Consider the
following example. Let N = {α + β ≈ α, c �≈ β ∨ c �≈ 0, c ≈ β ∨ c ≈ 0 }. All
clauses in N are weakly abstracted. Since the first clause entails β ≈ 0 relative
to linear arithmetic, the second and the third clause are obviously contradictory.
The HSPBase calculus as defined above is able to detect this by first applying
Equality factoring to the third clause, yielding c ≈ 0 ∨ β �≈ 0, followed by two
Negative superposition steps and Close. If Equality factoring is replaced by Factoring

and Merging paramodulation, however, the refutational completeness of HSPBase is
lost. The only inference that remains possible is a Negative superposition inference
between the third and the second clause. But since the conclusion of this infer-
ence is a tautology, the inference is redundant, so the clause set is saturated.
(Note that the clause β ≈ 0 is entailed by N , but it is not explicitly present, so
there is no way to perform a Merging paramodulation inference with the smaller
side of the maximal literal of the third clause.)

8 Local Sufficient Completeness

The definition of sufficient completeness w.r.t. simple instances that was given in
Sect. 3 requires that every ground BG-sorted FG term s is equal to some ground
BG term t in every Σ-model J of sgi(N) ∪ GndTh(B). It is rather evident,
however, that this condition is sometimes stronger than needed. For instance, if
the set of input clauses N is ground, then we only have to consider the ground
BG-sorted FG terms that actually occur in N [22] (analogously to the Nelson-
Oppen combination procedure). A relaxation of sufficient completeness that is
also useful for non-ground clauses and that still ensures refutational completeness
was given by Kruglov [21]:

Definition 8.1 (Smooth ground instance). We say that a substitution σ is
smooth if for every variable ζ ∈ dom(σ) all BG-sorted (proper or non-proper)
subterms of ζσ are pure BG terms. If Fσ is a ground instance of a term or
clause F and σ is smooth, Fσ is called a smooth ground instance. (Recall that
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every ground BG term is necessarily pure.) If N is a set of clauses, smgi(N)
denotes the set of all smooth ground instances of clauses in N . 
�

Every smooth substitution is a simple substitution, but not vice versa. For
instance, if x is a FG-sorted variable and y is an ordinary BG-sorted variable,
then σ1 = [x 	→ cons(f(1) + 2, empty)] and σ2 = [y 	→ f(1)] are simple substitu-
tions, but neither of them is smooth, since xσ1 and yσ2 contain the BG-sorted
FG subterm f(1).

Definition 8.2 (Local sufficient completeness). Let N be a Σ-clause set.
We say that N is locally sufficiently complete w.r.t. smooth instances if for every
ΣB-interpretation I ∈ B, every Σ-model J of sgi(N) ∪ EI ∪ DI , and every BG-
sorted FG term s occurring in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI) there is a
ground BG term t such that J |= s ≈ t. (Again, we will from now on omit the
phrase “w.r.t. smooth instances” for brevity.) 
�
Example 8.3. The clause set N = {X �≈ α ∨ f(X) ≈ β } is locally sufficiently
complete: The smooth ground instances have the form s′ �≈ α ∨ f(s′) ≈ β,
where s′ is a pure BG term. We have to show that f(s′) equals some ground BG
term t whenever the smooth ground instance is not redundant. Let I ∈ B be a
ΣB-interpretation and J be a Σ-model of sgi(N) ∪ EI ∪ DI . If I |= s′ �≈ α,
then s′ �≈ α follows from some clauses in EI ∪ DI , so s′ �≈ α ∨ f(s′) ≈ β
is contained in RS

Cl(smgi(N) ∪ EI ∪ DI) and f(s′) need not be considered.
Otherwise I |= s′ ≈ α, then f(s′) occurs in a non-redundant smooth ground
instance of a clause in N and J |= f(s′) ≈ β, so t := β has the desired property.
On the other hand, N is clearly not sufficiently complete, since there are models
of sgi(N) ∪ GndTh(B) in which f(β) is interpreted by some junk element that
is different from the interpretation of any ground BG term.

The example demonstrates that local sufficient completeness is significantly
more powerful than sufficient completeness, but this comes at a price. For
instance, as shown by the next example, local sufficient completeness is not
preserved by abstraction:

Example 8.4. Suppose that the BG specification is linear integer arithmetic
(including parameters α, β, γ), the FG operators are f : int → int , g : int →
data, a :→ data, the term ordering is an LPO with precedence g > f > a > γ >
β > α > 3 > 2 > 1, and the clause set N is given by

γ ≈ 1 (1) f(2) ≈ 2 (4) g(f(α)) ≈ a ∨ g(f(β)) ≈ a (6)

β ≈ 2 (2) f(3) ≈ 3 (5) g(f(α)) �≈ a ∨ g(f(β)) ≈ a (7)

α ≈ 3 (3) g(f(γ)) ≈ a ∨ g(f(β)) ≈ a (8)

Since all clauses in N are ground, smgi(N) = sgi(N) = N . Clause (8) is redun-
dant w.r.t. smgi(N) ∪ EI ∪ DI (for any I): it follows from clauses (6) and
(7), and both are smaller than (8). The BG-sorted FG terms in non-redundant
clauses are f(2), f(3), f(α), and f(β), and in any Σ-model J of sgi(N) ∪ EI ∪ DI ,
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these are necessarily equal to the BG terms 2 or 3, respectively, so N is locally
sufficiently complete.

Let N ′ = abstr(N), let I be a BG-model such that EI contains α ≈ 3, β ≈ 2,
and γ ≈ 1 (among others), DI contains 1 �≈ 2, 1 �≈ 3, and 2 �≈ 3 (among others),
and let J be a Σ-model of sgi(N ′) ∪ EI ∪ DI in which f(1) is interpreted by
some junk element. The set N ′ contains the clause g(f(X)) ≈ a ∨ g(f(Y )) ≈
a ∨ γ �≈ X ∨ β �≈ Y obtained by abstraction of (8). Its smooth ground instance
C = g(f(1)) ≈ a ∨ g(f(2)) ≈ a ∨ γ �≈ 1 ∨ β �≈ 2 is not redundant: it follows
from other clauses in smgi(N ′) ∪ EI ∪ DI , namely

α ≈ 3 (3)

g(f(3)) ≈ a ∨ g(f(2)) ≈ a ∨ α �≈ 3 ∨ β �≈ 2 (6′)

g(f(3)) �≈ a ∨ g(f(2)) ≈ a ∨ α �≈ 3 ∨ β �≈ 2 (7′)

but the ground instances (6′) and (7′) that are needed here are larger than C.
Since C contains the BG-sorted FG term f(1) which is interpreted differently
from any BG term in J , N ′ is not locally sufficiently complete.

Local sufficient completeness of a clause set suffices to ensure refutational
completeness. Kruglov’s proof [21] works also if one uses weak abstraction instead
of strong abstraction and ordinary as well as abstraction variables, but it relies
on an additional restriction on the term ordering.11 We give an alternative proof
that works without this restriction.

The proof is based on a transformation on Σ-interpretations. Let J be
an arbitrary Σ-interpretation. We transform J into a term-generated Σ-
interpretation nojunk(J) without junk in two steps. In the first step, we define
a Σ-interpretation J ′ as follows:

– For every FG sort ξ, define J ′
ξ = Jξ.

– For every BG sort ξ, define J ′
ξ = { tJ | t is a ground BG term of sort ξ }.

– For every f : ξ1 . . . ξn → ξ0 the function J ′
f : J ′

ξ1
× · · · × J ′

ξn
→ J ′

ξ0
maps

(a1, . . . , an) to Jf (a1, . . . , an), if Jf (a1, . . . , an) ∈ J ′
ξ0

, and to an arbitrary
element of J ′

ξ0
otherwise.

That is, we obtain J ′ from J be deleting all junk elements from Jξ if ξ is a BG
sort, and by redefining the interpretation of f arbitrarily whenever Jf (a1, . . . , an)
is a junk element.

In the second step, we define the Σ-interpretation nojunk(J) = J ′′ as the
term-generated subinterpretation of J ′, that is,

– For every sort ξ, J ′′
ξ = { tJ

′ | t is a ground term of sort ξ },
– For every f : ξ1 . . . ξn → ξ0, the function J ′′

f : J ′′
ξ1

× · · · × J ′′
ξn

→ J ′′
ξ0

satisfies
J ′′

f (a1, . . . , an) = J ′
f (a1, . . . , an).

11 In [21], it is required that every ground term that contains a (proper or improper)
BG-sorted FG subterm must be larger than any (BG or FG) ground term that does
not contain such a subterm.
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Lemma 8.5. Let J , J ′, and nojunk(J) = J ′′ be given as above. Then the fol-
lowing properties hold:

(i) tJ
′′

= tJ
′
for every ground term t.

(ii) J ′′
ξ = J ′

ξ for every BG sort ξ.
(iii) J ′′ is a term-generated Σ-interpretation and J ′′|ΣB is a term-generated ΣB-

interpretation.
(iv) If t = f(t1, . . . , tn) is ground, tJ

′
i = tJi for all i, and tJ ∈ J ′

ξ, then tJ
′
= tJ .

(v) If t is ground and all BG-sorted subterms of t are BG terms, then tJ
′
= tJ .

(vi) If C is a ground BG clause, then J |= C if and only if J ′′ |= C if and only
if J ′′|ΣB |= C.

Proof. Properties (i)–(iv) follow directly from the definition of J ′ and J ′′. Prop-
erty (v) follows from (iv) and the definition of J ′ by induction over the term
structure. By (i) and (v), every ground BG term is interpreted in the same way
in J and J ′′, moreover it is obvious that every ground BG term is interpreted
in the same way in J ′′ and J ′′|ΣB ; this implies (vi). 
�
Lemma 8.6. If J is a Σ-interpretation and I = nojunk(J), then for every
ground term s there exists a ground term t such that sI = tI and all BG-sorted
(proper or non-proper) subterms of t are BG terms.

Proof. If s has a BG sort ξ, then this follows directly from the fact that sI ∈ Iξ

and that every element of Iξ equals tI for some ground BG term t of sort ξ.
If s has a FG sort, let s1, . . . , sn be the maximal BG-sorted subterms of s =
s[s1, . . . , sn]. Since for every si there is a ground BG term ti with sI

i = tIi , we
obtain sI = (s[s1, . . . , sn])I = (s[t1, . . . , tn])I . Set t := s[t1, . . . , tn]. 
�
Corollary 8.7. Let J be a Σ-interpretation and I = nojunk(J). Let Cσ by a
ground instance of a clause C. Then there is a smooth ground instance Cτ of C
such that (tσ)I = (tτ)I for every term occurring in C and such that I |= Cσ if
and only if I |= Cτ .

Proof. Using the previous lemma, we define τ such that for every variable ζ
occurring in C, (ζτ)I = (ζσ)I and all BG-sorted (proper or non-proper) subterms
of ζτ are BG terms. Clearly τ is smooth. The other properties follow immediately
by induction over the term or clause structure. 
�
Lemma 8.8. Let N be a set of Σ-clauses that is locally sufficiently complete.
Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(N) ∪ EI ∪ DI ,
and let J ′′ = nojunk(J). Let C ∈ N and let Cτ by a smooth ground instance
in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). Then (tτ)J = (tτ)J ′′
for every term t

occurring in C and J |= Cτ if and only if J ′′ |= Cτ .

Proof. Let J ′ be defined as above, then (tτ)J ′
= (tτ)J ′′

for any term t occur-
ring in C by Lemma 8.5-(i). We prove that (tτ)J = (tτ)J ′

by induction over
the term structure: If t is a variable, then by smoothness all BG-sorted sub-
terms of tτ are BG terms, hence (tτ)J ′

= (tτ)J by Lemma 8.5-(v). Otherwise let



38 P. Baumgartner and U. Waldmann

t = f(t1, . . . , tn). If tτ is a BG term, then again (tτ)J ′
= (tτ)J by Lemma 8.5-

(v). If tτ is a FG term of sort ξ, then t must be a FG term of sort ξ as
well. By the induction hypothesis, (tiτ)J = (tiτ)J ′

for every i. If ξ is a
FG sort, then trivially (tτ)J = Jf ((t1τ)J , . . . , (tnτ)J ) is contained in J ′

ξ, so
(tτ)J ′

= (tτ)J by Lemma 8.5-(iv). Otherwise, tτ is a BG-sorted FG term occur-
ring in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). By local sufficient completeness,
there exists a ground BG term s such that sJ = (tτ)J , hence (tτ)J ∈ J ′

ξ. Again,
Lemma 8.5-(iv) yields (tτ)J ′

= (tτ)J .
Since all left and right-hand sides of equations in Cτ are evaluated in the

same way in J ′′ and J , it follows that J |= Cτ if and only if J ′′ |= Cτ . 
�
Lemma 8.9. Let N be a set of Σ-clauses that is locally sufficiently complete.
Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(N) ∪ EI ∪ DI , and
let J ′′ = nojunk(J). Then J ′′ is a model of N .

Proof. The proof proceeds in three steps. In the first step we show that J ′′ is
a model of smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI): Let C ∈ N and let Cτ be a
smooth ground instance in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). Since every
smooth ground instance is a simple ground instance and J is a Σ-model of
sgi(N), we know that J |= Cτ . By Lemma 8.8, this implies J ′′ |= Cτ .

In the second step we show that J ′′ is a model of smgi(N). Since we already
know that J ′′ is a model of smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI), it is clearly
sufficient to show that J ′′ is a model of RS

Cl(smgi(N) ∪ EI ∪ DI): First we observe
that by Lemma 8.5 J ′′ |= EI ∪ DI . Using the result of the first step, this implies
that J ′′ is a model of (smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI)) ∪ EI ∪ DI , and
since this set is a superset of (smgi(N) ∪ EI ∪ DI) \ RS

Cl(smgi(N) ∪ EI ∪ DI),
J ′′ is also a model of the latter. By Definition 6.2-(i), (smgi(N) ∪ EI ∪ DI) \
RS

Cl(smgi(N) ∪ EI ∪ DI) |= RS
Cl(smgi(N) ∪ EI ∪ DI). So J ′′ is a model of

RS
Cl(smgi(N) ∪ EI ∪ DI).
We can now show the main statement: We know that J ′′ is a term-generated

Σ-interpretation, so J ′′ |= N holds if and only if J ′′ is a model of all ground
instances of clauses in N . Let Cσ be an arbitrary ground instance of C ∈ N . By
Corollary 8.7, there is a smooth ground instance Cτ such that J ′′ |= Cσ if and
only if J ′′ |= Cτ . As the latter has been shown in the second step, the result
follows. 
�
Theorem 8.10. If the BG specification (ΣB,B) is compact and if the clause
set N is locally sufficiently complete, then HSPBase and RH are dynamically
refutationally complete for abstr(N), i. e., if N |=B �, then every fair derivation
starting from abstr(N) eventually generates �.

Proof. Let D = (Ni)i≥0 be a fair derivation starting from N0 = abstr(N), and
let N∞ be the limit of D. By fairness, N∞ is saturated w.r.t. HSPBase and RH. If
� /∈ N∞, then the Close rule is not applicable to N∞. Since (ΣB,B) is compact,
this means that the set of all ΣB-clauses in sgi(N∞) is satisfied by some term-
generated ΣB-interpretation I ∈ B. By Theorem 7.8, (N∞)I is saturated with
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respect to the standard superposition calculus. Since � /∈ (N∞)I , the refuta-
tional completeness of standard superposition implies that there is a Σ-model J
of (N∞)I , and since EI ∪ DI ⊆ (N∞)I , J is also a Σ-model of sgi(N∞) ∪ EI ∪ DI .
Since every clause in N0 is either contained in N∞ or redundant w.r.t. N∞, every
simple ground instance of a clause in N0 is a simple ground instance of a clause
in N∞ or contained in GndTh(B) or redundant w.r.t. sgi(N∞) ∪ GndTh(B). We
conclude that J is a Σ-model of sgi(N0), and since sgi(N0) and sgi(N) are equiva-
lent, J is a Σ-model of sgi(N). Now define J ′′ = nojunk(J). By Lemma 8.5, J ′′ is
a term-generated Σ-interpretation, J ′′|ΣB is a term-generated ΣB-interpretation,
and J ′′|ΣB satisfies EI ∪ DI . Consequently, J ′′|ΣB is isomorphic to I and thus
contained in B. Finally, J ′′ is a model of N by Lemma 8.9. 
�
If all BG-sorted FG terms in a set N of clauses are ground, local sufficient
completeness can be established automatically by adding a “definition” of the
form t ≈ α, where t is a ground BG-sorted FG term and α is a parameter. The
following section explains this idea in a more general way.

9 Local Sufficient Completeness by Define

The HSPBase inference system will derive a contradiction if the input clause set
is inconsistent and (locally) sufficiently complete (cf. Sect. 8). In this section we
extend this functionality by adding an inference rule, Define, which can turn input
clause sets that are not sufficiently complete into locally sufficiently complete
ones. Technically, the Define rule derives “definitions” of the form t ≈ α, where
t is a ground BG-sorted FG term and α is a parameter of the proper sort. For
economy of reasoning, definitions are introduced only on a by-need basis, when t
appears in a current clause, and t ≈ α is used to simplify that clause immediately.

We need one more preliminary definition before introducing Define formally.

Definition 9.1 (Unabstracted clause). A clause is unabstracted if it does
not contain any disequation ζ �≈ t between a variable ζ and a term t unless t �= ζ
and ζ ∈ vars(t). 
�
Any clause can be unabstracted by repeatedly replacing C ∨ ζ �≈ t by C[ζ 	→ t]
whenever t = ζ or ζ /∈ vars(t). Let unabstr(C) denote an unabstracted version of
C obtained this way. If t = t[ζ1, . . . , ζn] is a term in C and ζi is finally instantiated
to ti, we denote its unabstracted version t[t1, . . . , tn] by unabstr(t[ζ1, . . . , ζn], C).
For a clause set N let unabstr(N) = {unabstr(C) | C ∈ N}.

The full inference system HSP of the hierarchic superposition calculus con-
sists of the inference rules of HSPBase and the following Define inference rule. As
for the other inference rules we suppose that all premises are weakly abstracted.



40 P. Baumgartner and U. Waldmann

Define
N ∪ {L[t[ζ1, . . . , ζn]] ∨ D}

N ∪ abstr({t[t1, . . . , tn] ≈ αt[t1,...,tn], L[αt[t1,...,tn]] ∨ D}
if

(i) t[ζ1, . . . , ζn] is a minimal BG-sorted non-variable term with a toplevel FG
operator,

(ii) t[t1, . . . , tn] = unabstr({t[ζ1, . . . , ζn], L[t[ζ1, . . . , ζn]] ∨ D}),
(iii) t[t1, . . . , tn] is ground,
(iv) αt[t1,...,tn] is a parameter, uniquely determined by t[t1, . . . , tn], and
(v) L[t[ζ1, . . . , ζn]] ∨ D ∈ RH

Cl(N ∪ abstr({t[t1, . . . , tn] ≈ αt[t1,...,tn],
L[αt[t1,...,tn]] ∨ D})).

In (i), by minimality we mean that no proper subterm of t[ζ1, . . . , ζn] is a
BG-sorted non-variable term with a toplevel FG operator. In effect, the Define

rule eliminates such terms inside-out. Conditions (iii) and (iv) are needed for
soundness. Condition (v) is needed to guarantee that Define is a simplifying
inference rule, much like the Simp rule in Sect. 7.12 In particular, it makes sure
that Define cannot be applied to definitions themselves.

Theorem 9.2. The inference rules of HSP are satisfiability-preserving w.r.t.
|=B, i. e., for every inference with premise N and conclusion N ′ we have N |=B
� if and only if N ′ |=B �. Moreover, N ′ |=B N .

Proof. For the inference rules of HSPBase, the result follows from Theorem 6.1.
For Define, we observe first that condition (ii) implies that L[t[ζ1, . . . , ζn]] ∨

D and L[t[t1, . . . , tn]] ∨ D are equivalent. If N ∪ {L[t[t1, . . . , tn]] ∨ D} is B-
satisfiable, let I be a Σ-model of all ground instances of N ∪ {L[t[t1, . . . , tn]] ∨ D}
such that I|ΣB is in B. By condition (iii), t[t1, . . . , tn] is ground. Let J be the
Σ-interpretation obtained from J by redefining the interpretation of αt[t1,...,tn]

in such a way that αJ
t[t1,...,tn]

= t[t1, . . . , tn]I , then J is a Σ-model of every
ground instance of N , t[t1, . . . , tn] ≈ αt[t1,...,tn] and L[αt[t1,...,tn]] ∨ D, and hence
also a model of the abstractions of these clauses. Conversely, every model of
t[t1, . . . , tn] ≈ αt[t1,...,tn] and L[αt[t1,...,tn]] ∨ D is a model of L[t[t1, . . . , tn]] ∨ D.

�
Example 9.3. Let C = g(f(x, y)+1, x, y) ≈ 1 ∨ x �≈ 1+β ∨ y �≈ c be the premise
of a Define inference. We get unabstr(C) = g(f(1 + β, c) + 1, 1 + β, c) ≈ 1. The
(unabstracted) conclusions are the definition f(1 + β, c) ≈ αf(1+ β,c) and the
clause g(αf(1+ β,c) + 1, x, y) ≈ 1 ∨ x �≈ 1 + β ∨ y �≈ c. Abstraction yields
f(X, c) ≈ αf(1+ β,c) ∨ X �≈ 1 + β and g(Z, x, y) ≈ 1 ∨ x �≈ 1 + β ∨ y �≈ c ∨ Z �≈
αf(1+ β,c) + 1.

One might be tempted to first unabstract the premise C before applying
Define. However, unabstraction may eliminate FG terms (c in the example) which
is not undone by abstraction. This may lead to incompleteness. 
�
12 Condition (i) of Simp is obviously satisfied and condition (iii) there is condition (v) of

Define. Instead of condition (ii), Define inferences are only B-satisfiability preserving,
which however does not endanger soundness.
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Example 9.4. The following clause set demonstrates the need for condition (v) in
Define. Let N = {f(c) ≈ 1} and suppose condition (v) is absent. Then we obtain
N ′ = {f(c) ≈ αf(c), αf(c) ≈ 1}. By demodulating the first clause with the second
clause we get N ′′ = {f(c) ≈ 1, αf(c) ≈ 1}. Now we can continue with N ′′ as
with N . The problem is, of course, that the new definition f(c) ≈ αf(c) is greater
w.r.t. the term ordering than the parent clause, in violation of condition (v). 
�
Example 9.5. Consider the weakly abstracted clauses P(0), f(x) > 0 ∨ ¬P(x),
Q(f(x)), ¬Q(x) ∨ 0 > x. Suppose ¬P(x) is maximal in the second clause. By
superposition between the first two clauses we derive f(0) > 0. With Define we
obtain f(0) ≈ αf(0) and αf(0) > 0, the latter replacing f(0) > 0. From the third
clause and f(0) ≈ αf(0) we obtain Q(αf(0)), and with the fourth clause 0 > αf(0).
Finally we apply Close to {αf(0) > 0, 0 > αf(0)}. 
�

It is easy to generalize Theorem 8.10 to the case that local sufficient com-
pleteness does not hold initially, but is only established with the help of Define

inferences:

Theorem 9.6. Let D = (Ni)i≥0 be a fair HSP derivation starting from N0 =
abstr(N), let k ≥ 0, such that Nk = abstr(N ′) and N ′ is locally sufficiently
complete. If the BG specification (ΣB,B) is compact, then the limit of D contains
� if and only if N is B-unsatisfiable.

Proof. Since every derivation step in an HSP derivation is satisfiability-
preserving, the “only if” part is again obvious.

For the “if” part, we assume that N∞, the limit of D, does not contain
�. By fairness, N∞ is saturated w.r.t. HSP and RH. We start by considering
the subderivation (Ni)i≥k starting with Nk = abstr(N ′). Like in the proof of
Theorem 8.10, we can show that N ′ is B-satisfiable, that is, there exists a model
J of N ′ that is a term-generated Σ-interpretation, and whose restriction J |ΣB

is contained in B. From Lemma 7.1 and Proposition 5.2 we see that N ′ |=B Nk,
and similarly N0 |=B N . Furthermore, since every clause in N0 \ Nk must be
redundant w.r.t. Nk, we have Nk |=B N0. Combining these three entailments,
we conclude that N ′ |=B N , so N is B-satisfiable and J is a model of N . 
�

Condition (v) of the Define rule requires that the clause that is deleted during
a Define inference must be redundant with respect to the remaining clauses.
This condition is needed to preserve refutational completeness. There are cases,
however, where condition (v) prevents us from introducing a definition for a
subterm. Consider the clause set N = {C} where C = f(c) ≈ 1 ∨ c ≈ d, the
constants c and d are FG-sorted, f is a BG-sorted FG operator, and c � d � 1.
The literal f(c) ≈ 1 is maximal in C. The clause set N = abstr(N) is not locally
sufficient complete (the BG-sorted FG-term f(c) may be interpreted differently
from all BG terms in a Σ-model). Moreover, it cannot be made locally sufficient
complete using the Define rule, since the definition f(c) ≈ αf(c) is larger w.r.t.
the clause ordering than C, in violation of condition (v) of Define.

However, at the beginning of a derivation, we may be a bit more permissive.
Let us define the reckless Define inference rule in the same way as the Define rule
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except that the applicability condition (v) is dropped. Clearly, in the example
above, the reckless Define rule allows us to derive the locally sufficiently complete
clause set N ′ = {αf(c) ≈ 1 ∨ c ≈ d, f(c) ≈ αf(c)} as desired. In fact, we can show
that this is always possible if N is a finite clause set in which all BG-sorted FG
terms are ground.

Definition 9.7 (Pre-derivation). Let N0 be a weakly abstracted clause set.
A pre-derivation (of a clause set Npre) is a derivation of the form N0, N1,
. . . , (Nk = Npre), for some k ≥ 0, with the inference rule reckless Define only,
and such that each clause C ∈ Npre either does not contain any BG-sorted FG
operator or C = abstr(C ′) and C ′ is a definition, i. e., a ground positive unit
clause of the form f(t1, . . . , tn) ≈ t where f is a BG-sorted FG operator, t1, . . . , tn
do not contain BG-sorted FG operators, and t is a background term. 
�
Lemma 9.8. Let N be a finite clause set in which all BG-sorted FG terms are
ground. Then there is a pre-derivation starting from N0 = abstr(N) such that
Npre is locally sufficiently complete.

Proof. Since every term headed by a BG-sorted FG operator in unabstr(N0) is
ground, we can incrementally eliminate all occurrences of terms headed by BG-
sorted FG operators from N0, except those in abstractions of definitions. Let
N0, N1, . . . , (Nk = Npre) be the sequence of sets of clauses obtained in this way.
We will show that Npre is locally sufficiently complete.

Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(Npre) ∪ EI ∪ DI

and let Cθ be a smooth ground instance in smgi(N)\RS
Cl(smgi(N) ∪ EI ∪ DI).

We have to show that for every BG-sorted FG term s occurring in Cθ there is a
ground BG term t such that J |= s ≈ t.

If C does not contain any BG-sorted FG operator, then there are no BG-
sorted FG terms in Cθ, so the property is vacuously true. Otherwise C =
abstr(C ′) and C ′ is a definition f(t1, . . . , tn) ≈ t where f is a BG-sorted FG
operator, t1, . . . , tn do not contain BG-sorted FG operators, and t is a back-
ground term. In this case, C must have the form f(u1, . . . , un) ≈ u ∨ E, such
that E is a BG clause, u1, . . . , un do not contain BG-sorted FG operators, and
u is a BG term. The only BG-sorted FG term in the smooth instance Cθ is
therefore f(u1θ, . . . , unθ). If any literal of Eθ were true in J , then it would fol-
low from EI ∪ DI , therefore Cθ ∈ RS

Cl(smgi(N) ∪ EI ∪ DI), contradicting the
assumption. Hence J |= f(u1θ, . . . , unθ) ≈ uθ, and since uθ is a ground BG
term, the requirement is satisfied. 
�
Lemma 9.8 will be needed to prove a completeness result for the fragment defined
in the next section.

10 The Ground BG-Sorted Term Fragment

According to Theorem 8.10, the HSPBase calculus is refutationally complete pro-
vided that the clause set is locally sufficiently complete and the BG specification
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is compact. We have seen in the previous section that the (reckless) Define rule
can help to establish local sufficient completeness by introducing new parameters.
In fact, finite clause sets in which all BG-sorted FG terms are ground can always
be converted into locally sufficiently complete clause sets (cf. Lemma 9.8). On
the other hand, as noticed in Sect. 3, the introduction of parameters can destroy
the compactness of the BG specification. In this and the following section, we
will identify two cases where we can not only establish local sufficient complete-
ness, but where we can also guarantee that compactness poses no problems. The
ground BG-sorted term fragment (GBT fragment) is one such case:

Definition 10.1 (GBT fragment). A clause C is a GBT clause if all BG-
sorted terms in C are ground. A finite clause set N belongs to the GBT fragment
if all clauses in N are GBT clauses. 
�

Clearly, by Lemma 9.8 for every clause set N that belongs to the GBT frag-
ment there is a pre-derivation that converts abstr(N) into a locally sufficiently
complete clause set. Moreover, pre-derivations also preserve the GBT property:

Lemma 10.2. If unabstr(N) belongs to the GBT fragment and N ′ is obtained
from N by a reckless Define inference, then unabstr(N ′) also belongs to the GBT
fragment.

The proof can be found in [12].
As we have seen, Npre is locally sufficiently complete. At this stage this

suggests to exploit the completeness result for locally sufficiently complete clause
sets, Theorem 8.10. However, Theorem 8.10 requires compact BG specifications,
and the question is if we can avoid this. We can indeed get a complete calculus
under rather mild assumptions on the Simp rule:

Definition 10.3 (Suitable Simp inference). Let �fin be a strict partial term
ordering such that for every ground BG term s only finitely many ground BG
terms t with s �fin t exist.13 We say that a Simp inference with premise N ∪ {C}
and conclusion N ∪ {D} is suitable (for the GBT fragment) if

(i) for every BG term t occurring in unabstr(D) there is a BG term s ∈
unabstr(C) such that s �fin t,

(ii) every occurrence of a BG-sorted FG operator f in unabstr(D) is of the form
f(t1, . . . , tn) ≈ t where t is a ground BG term,

(iii) every BG term in D is pure, and
(iv) if every BG term in unabstr(C) is ground then every BG term in

unabstr(D) is ground.

We say the Simp inference rule is suitable if every Simp inference is. 
�
Expected simplification techniques like demodulation, subsumption deletion and
evaluation of BG subterms are all covered as suitable Simp inferences. Also, evalu-
ation of BG subterms is possible, because simplifications are not only decreasing
13 A KBO with appropriate weights can be used for �fin.
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w.r.t. � but additionally also decreasing w.r.t. �fin, as expressed in condition (i).
Without it, e. g., the clause P(1 + 1, 0) would admit infinitely many simplified
versions P(2, 0), P(2, 0 + 0), P(2, 0 + (0 + 0)), etc.

The HSPBase inferences do in general not preserve the shape of the clauses
in unabstr(Npre); they do preserve a somewhat weaker property – cleanness –
which is sufficient for our purposes.

Definition 10.4 (Clean clause). A weakly abstracted clause C is clean if

(i) every BG term in C is pure,
(ii) every BG term in unabstr(C) is ground, and
(iii) every occurrence of a BG-sorted FG operator f in unabstr(C) is in a positive

literal of the form f(t1, . . . , tn) ≈ t where t is a ground BG term.

For example, if c is FG-sorted, then P(f(c) + 1) is not clean, while f(x) ≈ 1 +
α ∨ P(x) is. A clause set is called clean if every clause in N is. Notice that Npre

is clean.

Lemma 10.5. Let C1, . . . , Cn be clean clauses. Assume a HSPBase inference
with premises C1, . . . , Cn and conclusion C. Then C is clean and every BG
term occurring in unabstr(C) also occurs in some clause unabstr(C1),. . . ,
unabstr(Cn).

The proof can be found in [12].
Thanks to conditions (ii)–(iv) in Definition 10.3, suitable Simp inferences pre-

serves cleanness:

Lemma 10.6. Let N ∪ {C} be a set of clean clauses. If N ∪ {D} is obtained
from N ∪ {C} by a suitable Simp inference then D is clean.

Proof. Suppose N ∪ {D} is obtained from N ∪ {C} by a suitable Simp inference.
We need to show properties (i)–(iii) of cleanness for D. That every BG term in
D is pure follows from Definition 10.3-(iii). That every BG term in unabstr(D)
is ground follows from Definition 10.3-(iv) and cleanness of C. Finally, property
(iii) follows from Definition 10.3-(ii). 
�

With the above lemmas we can prove our main result:

Theorem 10.7. The HSP calculus with a suitable Simp inference rule is dynam-
ically refutationally complete for the ground BG-sorted term fragment. More
precisely, let N be a finite set of GBT clauses and D = (Ni)i≥0 a fair HSP
derivation such that reckless Define is applied only in a pre-derivation (N0 =
abstr(N)), . . . , (Nk = Npre), for some k ≥ 0. Then the limit of D contains � if
and only if N is B-unsatisfiable.

Notice that Theorem 10.7 does not appeal to compactness of BG specifications.

Proof. Our goal is to apply Theorem9.6 and its proof, in a slightly modified
way. For that, we first need to know that Npre = abstr(N ′) for some clause set
N ′ that is locally sufficiently complete.
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We are given that N is a set of GBT clauses. Recall that weak abstrac-
tion (recursively) extracts BG subterms by substituting fresh variables and
adding disequations. Unabstraction reverses this process (and possibly elim-
inates additional disequations). It follows that with N being a set of GBT
clauses, so is unabstr(abstr(N)) = unabstr(N0). From Lemma 10.2 it follows
that unabstr(Npre) is also a GBT clause set.

Now chose N ′ as the clause set that is obtained from Npre by replacing every
clause C ∈ Npre such that unabstr(C) is a definition by unabstr(C). By con-
struction of definitions, unabstraction reverses weak abstraction of definitions.
It follows Npre = abstr(N ′). By definition of pre-derivations, all BG-sorted FG
terms occurring in unabstr(Npre) occur in definitions. Hence, with unabstr(Npre)
being a set of GBT clauses so is N ′. It follows easily that N ′ is locally sufficiently
complete, as desired.

We cannot apply Theorem9.6 directly now because it requires compactness
of the BG specification, which cannot be assumed. However, we can use the
following argumentation instead.

Let N∞ =
⋃

i≥0 Ni be the union of D. We next show that unabstr(N∞) con-
tains only finitely many different BG terms and each of them is ground. Recall
that unabstr(Npre) is a GBT clause set, and so every BG term in unabstr(Npre)
is ground. Because Define is disabled in D, only HSPBase and (suitable) Simp

inferences need to be analysed. Notice that Npre is clean and both the HSPBase

and Simp inferences preserve cleanness, as per Lemmas 10.5-(1) and 10.6,
respectively.

With respect to HSPBase inferences, together with Definition 10.4-(ii) it fol-
lows that every BG term t in the unabstracted version unabstr(C) of the infer-
ence conclusion C is ground. Moreover, t also occurs in the unabstracted version
of some premise clause by Lemma 10.5-(2). In other words, HSPBase inferences
do not grow the set of BG terms w.r.t. unabstracted premises and conclusions.

With respect to Simp inferences, unabstr(Npre) provide an upper bound w.r.t.
the term ordering �fin for all BG terms generated in Simp inferences. There can
be only finitely many such terms, and each of them is ground, which follows from
Definition 10.3-(i).

Because every BG term occurring in unabstr(N∞) is ground, every BG clause
in unabstr(N∞) is a multiset of literals of the form s ≈ t or s �≈ t, where s and
t are ground BG terms. With only finitely many BG terms available, there are
only finitely many BG clauses in unabstr(N∞), modulo equivalence. Because
unabstraction is an equivalence transformation, there are only finitely many BG
clauses in N∞ as well, modulo equivalence.

Let N∞ =
⋃

i≥0

⋂
j≥i Nj be the limit clause set of the derivation D, which is

saturated w.r.t. the hierarchic superposition calculus and RH. Because D is not
a refutation, it does not contain �. Consequently the Close rule is not applicable
to N∞. The set N∞, and hence also N∞ ⊆ N∞, contains only finitely many
BG clauses, modulo equivalence. This entails that the set of all ΣB-clauses in
sgi(N∞) is satisfied by some term-generated ΣB-interpretation I ∈ B. Now, the
rest of the proof is literally the same as in the proof of Theorem9.6. 
�
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Because unabstraction can also be applied to fully abstracted clauses, it is
possible to equip the hierarchic superposition calculus of [5] with a correspond-
ingly modified Define rule and get Theorem 10.7 in that context as well.

Kruglov and Weidenbach [22] have shown how to use hierarchic superposition
as a decision procedure for ground clause sets (and for Horn clause sets with con-
stants and variables as the only FG terms). Their method preprocesses the given
clause set by “basification”, a process that removes BG-sorted FG terms simi-
larly to our reckless Define rule. The resulting clauses then are fully abstracted
and hierarchic superposition is applied. Some modifications of the inference rules
make sure derivations always terminate. Simplification is restricted to subsump-
tion deletion. The fragment of [22] is a further restriction of the GBT frag-
ment. We expect we can get decidability results for that fragment with similar
techniques.

11 Linear Arithmetic

For the special cases of linear integer arithmetic (LIA) and linear rational arith-
metic as BG specifications, the result of the previous section can be extended
significantly: In addition to ground BG-sorted terms, we can also permit BG-
sorted variables and, in certain positions, even variables with offsets.

Recall that we have assumed that equality is the only predicate symbol in
our language, so that a non-equational atom, say s < t, is to be taken as a
shorthand for the equation (s < t) ≈ true. We refer to the terms that result
from this encoding of atoms as atom terms; other terms are called proper terms.

Theorem 11.1. Let N be a set of clauses over the signature of linear integer
arithmetic (with parameters α, β, etc.), such that every proper term in these
clauses is either (i) ground, or (ii) a variable, or (iii) a sum ζ + k of a variable
ζ and a number k ≥ 0 that occurs on the right-hand side of a positive literal
s < ζ + k. If the set of ground terms occurring in N is finite, then N is satisfiable
in LIA over Z if and only if N is satisfiable w.r.t.the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and let T be the
finite set of ground terms occurring in N . We will show that N is equivalent to
some finite set of clauses over the signature of linear integer arithmetic, which
implies that it is satisfiable in the integer numbers if and only if it is satisfiable
in the first-order theory of LIA.

In a first step, we replace every negative ordering literal ¬s < t or ¬s ≤ t by
the equivalent positive ordering literal t ≤ s or t < s. All literals of clauses in
the resulting set N0 have the form s ≈ t, s �≈ t, s < t, s ≤ t, or s < ζ + k, where
s and t are either variables or elements of T and k ∈ N. Note that the number
of variables in clauses in N0 may be unbounded.

In order to handle the various inequality literals in a more uniform way, we
introduce new binary relation symbols <k (for k ∈ N) that are defined by a <k b
if and only if a < b + k. Observe that s <k t entails s <n t whenever k ≤ n.
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Obviously, we may replace every literal s < t by s <0 t, every literal s ≤ t by
s <1 t, and every literal s < ζ + k by s <k ζ. Let N1 be the resulting clause set.

We will now transform N1 into an equivalent set N2 of ground clauses. We
start by eliminating all equality literals that contain variables by exhaustively
applying the following transformation rules:

N ∪ {C ∨ ζ �≈ ζ } → N ∪ {C }
N ∪ {C ∨ ζ �≈ t } → N ∪ {C[ζ 	→ t] } if t �= ζ

N ∪ {C ∨ ζ ≈ ζ } → N

N ∪ {C ∨ ζ ≈ t } → N ∪ {C ∨ ζ <1 t, C ∨ t <1 ζ } if t �= ζ

All variables in inequality literals are then eliminated in a Fourier-Motzkin-like
manner by exhaustively applying the transformation rule

N ∪ {C ∨ ∨

i∈I

ζ <ki
si ∨ ∨

j∈J

tj <nj
ζ } → N ∪ {C ∨ ∨

i∈I

∨

j∈J

tj <ki+nj
si }

where ζ does not occur in C and one of the index sets I and J may be empty.
The clauses in N2 are constructed over the finite set T of proper ground

terms, but the length of the clauses in N2 is potentially unbounded. In the next
step, we will transform the clauses in such a way that any pair of terms s, t from
T is related by at most one literal in any clause: We apply one of the following
transformation rules as long as two terms s and t occur in more than one literal:

N ∪ {C ∨ s <k t ∨ s ≈ t } → N ∪ {C ∨ s <k t } if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s ≈ t } → N ∪ {C ∨ s <1 t }
N ∪ {C ∨ s <k t ∨ s �≈ t } → N if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s �≈ t } → N ∪ {C ∨ s �≈ t }
N ∪ {C ∨ s <k t ∨ s <n t } → N ∪ {C ∨ s <n t } if k ≤ n

N ∪ {C ∨ s <k t ∨ t <n s } → N if k + n ≥ 1
N ∪ {C ∨ s <0 t ∨ t <0 s } → N ∪ {C ∨ s �≈ t }
N ∪ {C ∨ L ∨ L } → N ∪ {C ∨ L } for any literal L

N ∪ {C ∨ s ≈ t ∨ s �≈ t } → N

The length of the clauses in the resulting set N3 is now bounded by 1
2m(m + 1),

where m is the cardinality of T . Still, due to the indices of the relation symbols
<k, N3 may be infinite. We introduce an equivalence relation ∼ on clauses in
N3 as follows: Define C ∼ C ′ if for all s, t ∈ T (i) s ≈ t ∈ C if and only if
s ≈ t ∈ C ′, (ii) s �≈ t ∈ C if and only if s �≈ t ∈ C ′, and (iii) s <k t ∈ C for some
k if and only if s <n t ∈ C ′ for some n. This relation splits N3 into at most
(12m(m + 1))5 equivalence classes.14

We will now show that each equivalence class is logically equivalent to a finite
subset of itself. Let M be some equivalence class. Since any two clauses from
14 Any pair of terms s, t is related in all clauses of an equivalence class by either a

literal s ≈ t, or s �≈ t, or s <n t for some n, or t <n s for some n, or no literal at all,
so there are five possibilities per unordered pair of terms.
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M differ at most in the indices of their <k-literals, we can write every clause
Ci ∈ M in the form

Ci = C ∨ ∨

1≤l≤n

sl <kil
tl

where C and the sl and tl are the same for all clauses in M . As we have
mentioned above, sl <kil

tl entails sl <kjl
tl whenever kil ≤ kjl; so a clause

Ci ∈ M entails Cj ∈ M whenever the n-tuple (ki1, . . . , kin) is pointwise smaller
or equal to the n-tuple (kj1, . . . , kjn) (that is, kil ≤ kjl for all 1 ≤ l ≤ n).

Let Q be the set of n-tuples of natural numbers corresponding to the clauses
in M . By Dickson’s lemma [15], for every set of tuples in N

n the subset of
minimal tuples (w.r.t.the pointwise extension of ≤ to tuples) is finite. Let Q′ be
the subset of minimal tuples in Q, and let M ′ be the set of clauses in M that
correspond to the tuples in Q′. Since for every tuple in Q \ Q′ there is a smaller
tuple in Q′, we know that every clause in M \ M ′ is entailed by some clause in
M ′. So the equivalence class M is logically equivalent to its finite subset M ′.
Since the number of equivalence classes is also finite and all transformation rules
are sound, this proves our claim. 
�

In order to apply this theorem to hierarchic superposition, we must again
impose some restrictions on the calculus. Most important, we have to change
the definition of weak abstraction slightly: We drop the requirement that target
terms are not domain elements from Definition 5.1, i. e., we abstract out a non-
variable BG term q occurring in a clause C[f(s1, . . . , q, . . . , sn)], where f is a
FG operator or at least one of the si is a FG or impure BG term, even if q is a
domain element. As we mentioned, all results obtained so far hold also for the
modified definition of weak abstraction. In addition, we must again restrict to
suitable Simp inferences (Definition 10.3). With these restrictions, we can prove
our main result:

Theorem 11.2. The hierarchic superposition calculus is dynamically refuta-
tionally complete w.r.t. LIA over Z for finite sets of Σ-clauses in which every
proper BG-sorted term is either (i) ground, or (ii) a variable, or (iii) a sum
ζ + k of a variable ζ and a number k ≥ 0 that occurs on the right-hand side of
a positive literal s < ζ + k.

Proof. Let N be a finite set of Σ-clauses with the required properties. By
Lemma 9.8, a pre-derivation starting from N0 = abstr(N) yields a locally suffi-
ciently complete finite set N0 of abstracted clauses.

Now we run the hierarchic superposition calculus on N0 (with the same
restrictions on simplifications as in Sect. 10). Let N1 be the (possibly infinite)
set of BG clauses generated during the run. By unabstracting these clauses, we
obtain an equivalent set N2 of clauses that satisfy the conditions of Theorem 11.1,
so N2 is satisfiable in LIA over Z if and only if N is satisfiable w.r.t.the first-
order theory of LIA. Since the hierarchic superposition calculus is dynamically
refutationally complete w.r.t. the first-order theory of LIA, the result follows. 
�
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Analogous results hold for linear rational arithmetic. Let n be the least com-
mon divisor of all numerical constants in the original clause set; then we define
a <2i b by a < b + i

n and a <2i+1 b by a ≤ b + i
n for i ∈ N and express every

inequation literal in terms of <k. The Fourier-Motzkin transformation rule is
replaced by

N ∪ {C ∨ ∨

i∈I

ζ <ki
si ∨ ∨

j∈J

tj <nj
ζ } → N ∪ {C ∨ ∨

i∈I

∨

j∈J

tj <ki•nj
si }

where ζ does not occur in C, one of the index sets I and J may be empty, and
k • n is defined as k + n − 1 if both k and n are odd, and k + n otherwise. The
rest of the proof proceeds in the same way as before.

12 Experiments

We implemented the HSP calculus in the theorem prover Beagle.15 Beagle is a
testbed for rapidly trying out theoretical ideas but it is not a high-performance
prover (in particular it lacks indexing of any form). The perhaps most significant
calculus feature not yet implemented is the improvement for linear integer and
rational arithmetic of Sect. 11.

Beagle’s proof procedure and background reasoning, in particular for linear
integer arithmetic, and experimental results have been described in [7]. Here
we only provide an update on the experiments and report on complementary
aspects not discussed in [7]. More specifically, our new experiments are based on
a more recent version of the TPTP problem library [27] (by four years), and we
discuss in more detail the impact of the various calculus variants introduced in
this paper. We also compare Beagle’s performance to that of other provers.

We tested Beagle on the first-order problems from the TPTP library, version
7.2.0,16 that involve some form of arithmetic, including non-linear, rational and
real arithmetics. The problems in the TPTP are organized in categories, and the
results for some of them are quickly dealt with: none of the HWV-problems in
the TPTP library was solvable within the time limit and we ignore these below.
We ignore also the SYN category as its sole problem is merely a syntax test, and
the GEG category as all problems are zero-rated and easily solved by Beagle.

The experiments were run on a MacBook Pro with a 2.3 GHz Intel i7 pro-
cessor and 16 GB main memory. The CPU time limit was 120 s (a higher time
limit does not help much solving more problems). Tables 1 and 2 summarize
the results for the problems with a known “theorem” or “unsatisfiable” status
with non-zero rating. Beagle can also solve some satisfiable problems, but most
of them are rather easy and can be solved by the BG solver alone. Unfortu-
nately, the TPTP does not contain reasonably difficult satisfiable problems from
the GBT-fragment, which would be interesting for exploiting the completeness
result of Sect. 10.
15 Beagle is available at https://bitbucket.org/peba123/beagle. The distribution

includes the (Scala) source code and a ready-to-run Java jar-file.
16 http://tptp.org.

https://bitbucket.org/peba123/beagle
http://tptp.org
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Table 1. Number of TPTP version 7.2.0 problems solved, of all non-zero rated “the-
orem” or “unsatisfiable” problems involving any form of arithmetic. The flag settings
giving the best result are in typeset in bold. The CPU time limit was 120 s. The column
“Any” is the number of problems solved in the union of the four setting to its left. For
the “Auto” column see the description of auto-mode in the main text further below.
For auto-mode only, the CPU time limit was increased to 300 s.

Category #Problems Ordinary variables Abstraction variables Any Auto

BG simp
cautious

BG simp
aggressive

BG simp
cautious

BG simp
aggressive

ARI 444 356 357 353 355 362 355

DAT 23 9 12 6 7 13 12

MSC 3 3 3 3 3 3 3

NUM 36 30 29 34 34 34 34

PUZ 1 1 1 1 1 1 1

SEV 2 0 0 0 0 0 0

SWV 1 1 1 1 1 1 1

SWW 244 91 88 92 89 97 95

SYO 1 0 0 0 0 0 0

Total 755 419 471 490 490 511 501

Table 1 is a breakdown of Beagle’s performance by TPTP problem categories
and four flag settings. Beagle features a host of flags for controlling its search,
but in Table 1 we varied only the two most influential ones: one that controls
whether input arithmetic variables are taken as ordinary variables or as abstrac-
tion variables. (Sect. 5 discusses the trade-off between these two kinds of vari-
ables.) The other controls whether simplification of BG terms is done cautiously
or aggressively.

To explain, the cautious simplification rules comprise evaluation of arithmetic
terms, e. g. 3 · 5, 3 < 5, α + 1 < α + 1 (equal lhs and rhs terms in inequations),
and rules for TPTP-operators, e. g., to rat(5), is int(3.5). For aggressive simplifi-
cation, integer sorted subterms are brought into a polynomial-like form and are
evaluated as much as possible. For example, the term 5 ·α + f(3 + 6, α ·4)−α ·3
becomes 2 · α + f(9, 4 · α). These conversions exploit the associativity and com-
mutativity laws for + and ·. We refer the reader to [7] for additional aggres-
sive simplification rules, but we note here that aggressive simplification does
not always preserve sufficient completeness. For example, in the clause set
N = {P(1 + (2 + f(X))), ¬P(1 + (X + f(X)))} the first clause is aggres-
sively simplified, giving N ′ = {P(3 + f(X)), ¬P(1 + (X + f(X)))}. Both
N and N ′ are LIA-unsatisfiable, sgi(N) ∪ GndTh(LIA) is unsatisfiable, but
sgi(N ′) ∪ GndTh(LIA) is satisfiable. Thus, N is (trivially) sufficiently complete
while N ′ is not.

These two flag settings, in four combinations in total, span a range from
“most complete but larger search space” by using ordinary variables and cau-
tious simplification, to “most incomplete but smaller search space” by using
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abstraction variables and aggressive simplification. As the results in Table 1
show, the flag setting “abstraction variables” solves more problems than “ordi-
nary variables”, but not uniformly so. Indeed, as indicated by the “Any” col-
umn in Table 1, there are problems that are solved only with either ordinary or
abstraction variables.

Some more specific comments, by problem categories:

ARI. Of the 362 solved problems, 14 are not solved in every setting. Of these,
four problems require cautious simplification, and five problems require aggres-
sive simplification. This is independent from whether abstraction or ordinary
variables are used.

DAT. The DAT category benefits significantly from using ordinary variables.
There is only one problem, DAT075=1.p, that is not solved with ordinary vari-
ables. Two problems, DAT072=1.p and DAT086=1.p are solvable only with
ordinary variables and aggressive simplification.

Many problems in the DAT category, including DAT086=1.p, state existen-
tially quantified theorems about data structures such as arrays and lists. If they
are of an arithmetic sort, these existentially quantified variables must be taken as
ordinary variables. This way, they can be unified with BG-sorted FG terms such
as head(cons(x, y)) (which appear in the list axioms) which might be necessary
for getting a refutation at all.

A trivial example for this phenomenon is the entailment {P(f(1))} |=
∃x P(x), where f is BG-sorted, which is provable only with ordinary variables.

NUM. This category requires abstraction variables. With it, four of the
problems can be solved in the NUM category (NUM859=1.p, NUM860=1.p,
NUM861=1.p, NUM862=1.p), as the search space with ordinary variables is too
big.

SWW. By and large, cautious BG simplification fares slightly better on the
SWW problems. Of the 97 problems solved, 16 are not solved in every setting,
and the settings that do solve it do not follow an obvious pattern.

We were also interested in Beagle’s performance, on the same problems, bro-
ken down by the calculus features introduced in this paper. Table 2 summarizes
our findings for five configurations ①–⑤ obtained by progressively enabling these
features. In order to assess the usefulness of the features we filtered the results
by problem rating. The column “≥0.75”, for instance, lists the number of solved
problems, of all 80 known “theorem” or “unsatisfiable” problems with a rating
0.75 or higher and that involve some form of arithmetic.

The predecessor calculus of [5] uses an exhaustive abstraction mechanism
that turns every side of an equation into either a pure BG or pure FG term. All
BG variables are always abstraction variables. Configuration ① implements this
calculus, with the only deviation of an added splitting rule. The splitting rule [29]
breaks apart a clause into variable-disjoint parts and leads to a branching search
space for finding corresponding sub-proofs. See again [7] for more details.
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Table 2. Number of “theorem” or “unsatisfiable” problems solved, by calculus features
and problem rating, excluding the HWV-problems.

Abstraction Feature Rating, # Problems

≥0.1 ≥0.5 ≥0.75 ≥0.88

756 187 80 55

① Standard N/A 355 30 5 1

② +Define 493 38 5 1

③ Weak +Define 490 40 5 1

+Define

④ +Ordinary vars 500 44 5 1

+Define

+Ordinary vars

⑤ +BG simp aggressive 511 45 5 1

In our experiments splitting is always enabled, in particular also for configu-
ration ① for better comparability of result. Cautious BG simplification is enabled
for configuration ① and the subsequent configurations ②–④.

Configuration ② differs from configuration ① only by an additional Define

rule. (As said earlier, the Define rule can be added without problems to the
previous calculus.) By comparing the results for ① and ② it becomes obvious
that adding Define improves performance dramatically. This applies to the new
calculus as well. The Define rule stands out and should always be enabled.

Configuration ③ replaces the standard abstraction mechanism of [5] by the
new weak abstraction mechanism of Sect. 5. Weak abstraction seems more effec-
tive than standard abstraction for problems with a higher rating, but the data
set supporting this conclusion is very small.

There are five problems, all from the SWW category17 that re solved only
with configuration ②, and there is one problem, SWW607=2.p, that is solved
only by configurations ① and ②.

There are four solvable problems with rating 0.75. These are ARI595=1.p
– ARI598=1.p, which are “simple” problems involving a free predicate symbols
over the integer background theory. The problem ARI595=1.p, for instance, is
to prove the validity of the formula (∀ z :Z a ≤ z ∧ z ≤ a + 2 → p(z)) →
∃x :Z p(3 · x).18 The calculus and implementation techniques needed for solv-
ing such problems are rather different to those needed for solving combinatory
problems involving trivial arithmetics only, like, e.g., the HWV-problems.

17 SWW583=2.p, SWW594=2.p, SWW607=2.p, SWW626=2.p, SWW653=2.p and
SWW657=2.p.

18 At the time of this writing, there are only four provers (including Beagle) regis-
tered with the TPTP web infrastructure that can solve these problems. Hence the
rating 0.75.
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Configuration ④ is the same as ③ except that it includes the results for
general variables instead of abstraction variables. Similarly, configuration ⑤ is
the same as ④ except that it includes the results for aggressive BG simplification.
It is the union of all results in Table 1.

For comparison with other implemented theorem provers for first-order logic
with arithmetics, we ran Beagle on the problem set used in the 2018 edition
of the CADE ATP system competition (CASC-J9).19. The competing systems
were CVC4 [6], Princess [26], and two versions of Vampire [20].

In the competition, the systems were given 200 problems from the TPTP
problem library, 125 problems over the integers as the background theory (TFI
category), and 75 over the reals (TFE category). The system that solves the
most problems in the union of the TFI and TFE categories within a CPU time
limit of 300 s wins. We applied Beagle in an “auto” mode, which time-slices (at
most) three parameter settings. These differ mainly in their use of abstraction
variables or ordinary variables, and the addition of certain arithmetic lemmas.

Table 3. CADE ATP system competition results 2018 and Beagle’s performance on
the same problem sets.

Vampire
4.3

Vampire
4.1

CVC4
1.6pre

Princess
170717

Beagle
0.9.51

#Solved TFI (of 125) 93 98 85 62 36

#Solved TFE (of 75) 70 64 72 43 44

#Solved TFA (of 200) 163 162 157 105 70

The results are summarized in Table 3. We note that Beagle was run on
different hardware but the same timeout of 300 s. The results are thus only
indicative of Beagle’s performance, but we do not expect significantly different
result had it participated. In the TFI category, of the 36 problems solved, 5
require the use of ordinary variables. In the TFE category, 16 problems involve
the ceiling or floor function, which is currently not implemented, and hence
cannot be attempted.

In general, many problems used in the competition are rather large in size or
search space and would require a more sophisticated implementation of Beagle.

13 Conclusions

The main theoretical contribution of this paper is an improved variant of the
hierarchic superposition calculus. One improvement over its predecessor [5] is
a different form of “abstracted” clauses, the clauses the calculus works with
internally. Because of that, a modified completeness proof is required. We have

19 http://tptp.cs.miami.edu/∼tptp/CASC/J9/.

http://tptp.cs.miami.edu/~tptp/CASC/J9/
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argued informally for the benefits over the old calculus in [5]. They concern
making the calculus “more complete” in practice. It is hard to quantify that
exactly in a general way, as completeness is impossible to achieve in presence of
background-sorted foreground function symbols (e. g., “head” of integer-sorted
lists). To compensate for that to some degree, we have reported on initial exper-
iments with a prototypical implementation on the TPTP problem library. These
experiments clearly indicate the benefits of our concepts, in particular the defi-
nition rule and the use of ordinary variables. There is no problem that is solved
only by the old calculus only. Certainly more experimentation and an improved
implementation is needed to also solve bigger-sized problems with a larger com-
binatorial search space.

We have also obtained two new completeness results for certain clause logic
fragments that do not require compactness of the background specification, cf.
Sects. 10 and 11. The former is loosely related to the decidability results in [22],
as discussed in Sect. 9. It is also loosely related to results in SMT-based theo-
rem proving. For instance, the method in [18] deals with the case that variables
appear only as arguments of, in our words, foreground operators. It works by
ground-instantiating all variables in order to being able to use an SMT-solver
for the quantifier-free fragment. Under certain conditions, finite ground instan-
tiation is possible and the method is complete, otherwise it is complete only
modulo compactness of the background theory (as expected). Treating differ-
ent fragments, the theoretical results are mutually non-subsuming with ours.
Yet, on the fragment they consider we could adopt their technique of finite
ground instantiation before applying Theorem10.7 (when it applies). However,
according to Theorem 10.7 our calculus needs instantiation of background-sorted
variables only, this way keeping reasoning with foreground-sorted terms on the
first-order level, as usual with superposition.
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