
FunDL
A Family of Feature-Based Description Logics,

with Applications in Querying Structured Data Sources

Stephanie McIntyre, David Toman(B), and Grant Weddell

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{srmcinty,david,gweddell}@uwaterloo.ca

Abstract. Feature-based description logics replace the notion of roles,
interpreted as binary relations, with features, interpreted as unary func-
tions. Another notable feature of these logics is their use of path func-
tional dependencies that allow for complex identification constraints to
be formulated. The use of features and path functional dependencies
makes the logics particularly well suited for capturing and integrating
data sources conforming to an underlying object-relational schema that
include a variety of common integrity constraints. We first survey expres-
sive variants of feature logics, including the boundaries of decidability.
We then survey a restricted tractable family of feature logics suited to
query answering, and study the limits of tractability of reasoning.

1 Introduction

We survey the work we have done on developing FunDL, a family of description
logics that can be used to address a number of problems in querying structured
data sources, with a particular focus on data sources that have an underlying
object-relational schema. All member dialects of this family have two properties
in common. First, each is feature based : the usual notion of roles in description
logic that are interpreted as binary relations is replaced with the notion of fea-
tures that are interpreted as unary functions. We have found features to be a
better fit with object-relational schema, e.g., for capturing the ubiquitous notion
of attributes. And second, each dialect includes a concept constructor for cap-
turing a variety of equality generating dependencies: so-called path functional
dependencies (PFDs) that generalize the notions of primary keys, uniqueness
constraints and functional dependencies that are again ubiquitous in object-
relational schema. PFDs also ensure member dialects do not forgo the ability to
capture roles or indeed n-ary relations in general. This can be accomplished by
the simple expedient of reification via features, and then by employing PFDs to
ensure a set semantics for reified relations. Indeed, the dialect DLFD, introduced
in the first part of our survey, can capture very expressive role-based dialects of
description logics, including dialects with so-called qualified number restrictions,
inverse roles, role hierarchies, and so on [29].

c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 404–430, 2019.
https://doi.org/10.1007/978-3-030-22102-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-22102-7_19

FunDL: a Family of Feature-Based Description Logics 405

Our survey consists of three general parts, with the first two parts focusing
on the problem of logical implication for FunDL dialects with EXPTIME and
PTIME complexity, respectively, and in which the dialects assume features are
interpreted as total functions. In the third part of our survey, we begin with
a review of more recent work on how such dialects may be adapted to support
features that are instead partial functions. We then consider how role hierarchies
can be captured as concept hierarchies in which the concepts are introduced
as reifications of roles. Part three concludes with a review of other reasoning
problems, in particular, on knowledge base consistency for FunDL dialects, and
on query answering for dialects surveyed in part two.

We begin in the next section with a general introduction to FunDL: what
features are, what the various concept constructors are, basic notational conven-
tions, the grammar protocol we follow to define the various dialects, and so on.
Our survey concludes with a brief overview of related work.

2 Background and Definitions

Here, we define a nameless all inclusive member dialect of the FunDL family
for the purpose of introducing a space of concept constructors that we then use
for defining all remaining dialects in our survey. We also say how a theory is
defined by a so-called terminology (or TBox) consisting of a finite set of sen-
tences expressing inclusion dependencies, and introduce the problem of logical
implication of an inclusion dependency by a TBox. Indeed, we focus exclusively
on the problem of logical implication throughout the first two parts of our survey.

Definition 1 (Feature-Based DLs). Let F and PC be sets of feature names
and primitive concept names, respectively. A path expression is defined by the
grammar Pf :: = f.Pf | id , for f ∈ F. We define derived concept descriptions by
the grammar on the left-hand-side of Fig. 1.

An inclusion dependency C is an expression of the form C1 � C2. A terminol-
ogy (TBox) T consists of a finite set of inclusion dependencies. A posed question
Q is a single inclusion dependency.

The semantics of expressions is defined with respect to a structure I =
(�, ·I), where � is a domain of objects or entities and (·)I an interpretation
function that fixes the interpretations of primitive concept names A to be subsets
of � and feature names f to be total functions (f)I : � → �. The interpretation
is extended to path expressions, (id)I = λx.x, (f.Pf)I = (Pf)I◦(f)I and derived
concept descriptions C as defined in the centre column of Fig. 1.

An interpretation I satisfies an inclusion dependency C1 � C2 if (C1)I ⊆
(C2)I and is a model of T (I |= T) if it satisfies all inclusion dependencies in
T . The logical implication problem asks if T |= Q holds, that is, if Q is satisfied
in all models of T . �

We shall see that the logical implication problem for this logic is undecidable for
a variety of reasons. For example, the value restriction, top and same-as concept
constructors are all that are needed to encode the uniform word problem [24].

406 S. McIntyre et al.

Fig. 1. Concept constructors in feature-based description logics.

Thus, each dialect of the FunDL family in our survey will correspond to some
fragment of this logic. Grammars defining a dialect use the non-terminals C
and D to characterize concept constructors permitted on left-hand-sides and
right-hand-sides of inclusion dependencies occurring in a TBox, respectively,
and the non-terminal E to characterize concept constructors permitted in posed
questions. We also assume, when an explicit definition of non-terminal D (resp.
E) is missing, that D concept descriptions align with C concept descriptions
(resp. E concept descriptions align with D concept descriptions).

To see how FunDL dialects are useful in capturing structured data sources,
consider a visualization of a hypothetical object-relational university schema in
Fig. 2. Here, nodes are classes, labelled directed edges are attributes, thick edges
denote inheritance, and underlined attributes denote primary keys. Introduc-
ing a primitive concept and a feature for each class and attribute then enables
attribute typing, inheritance, primary keys and a variety of other data depen-
dencies to be captured as inclusion dependencies in a university TBox:

1. (disjoint classes) PERSON � ¬DEPT,
2. (attribute typing) PERSON � ∀name.STRING,
3. (unary primary key) PERSON � PERSON : name → id ,
4. (disjoint attribute values) PERSON � DEPT : name → id ,
5. (inheritance) PROF � PERSON,
6. (views) ∀reports.CHAIR � PROF,
7. (mandatory participation) ∃head−1 � CHAIR,
8. (binary primary key) CLASS � CLASS : dept,num → id , and
9. (cover) PERSON � (STUDENT
 PROF).

Allowing path expressions to occur in PFD concepts turns out to be quite useful
in capturing additional varieties of equality generating dependencies, as in the

FunDL: a Family of Feature-Based Description Logics 407

Fig. 2. An object-relational schema.

following:

TAKES � TAKES : student, class.room, class.time → class.

This inclusion dependency expresses a constraint induced by the interaction of
time and space, that no student can take two different classes in the same room
at the same time or, to paraphrase, that no pair of classes with at least one
student taking them can be in the same room at the same time. The second
reading illustrates how so-called identification constraints in DL-Lite dialects
can also be captured [11].

In the third part of our survey, we review work on how features may be inter-
preted as partial functions. This leads to the addition of the concept constructor
∃f for capturing domain elements for which feature f is defined. Consequently,
it becomes possible to say, e.g., that a DEPT does not have a gpa by adding the
inclusion dependency

DEPT � ¬∃gpa

to the university TBox.
Note that any logical implication problem for the university TBox defined

thus far can be solved by appeal to one of the expressive FunDL dialects, and,
notwithstanding cover constraints, can be solved by one of the tractable dialects
in PTIME. An ability to do this has many applications in information systems
technology. For example, early work on FunDL has shown how to reduce the

408 S. McIntyre et al.

problem of determining when a SQL query can be reformulated without men-
tioning the DISTINCT keyword to a logical consequence problem [20]. More
recent applications allow one to resolve fundamental issues in reasoning about
identity in conceptual modelling and SQL programming [6], and in ontology-
based data access [7,26].

2.1 Ackerman Decision Problems

Our complexity reductions are tied to the classical Ackermann case of the deci-
sion problem [1].

Definition 2 (Monadic Ackerman Formulae). Let Pi be monadic predicate
symbols and x, yi, zi variables. A monadic first-order formula in the Ackermann
class is a formula of the form ∃z1 . . . ∃zk∀x∃y1 . . . ∃yl.ϕ where ϕ is a quantifier-
free formula over the symbols Pi. �

Every formula with the Ackermann prefix can be converted to Skolem normal
form by replacing variables zi by Skolem constants and yi by unary Skolem
functions not appearing in the original formula. This, together with standard
Boolean equivalences, yields a finite set of universally-quantified clauses con-
taining at most one variable (x).

Proposition 3 ([16]). The Ackermann decision problem is complete for EXP-
TIME.

The lower bound holds even for the Horn fragment of the decision problem called
DatalognS [15]. A DatalognS program is a finite set of definite Horn DatalognS

clauses. A recognition problem for a DatalognS program Π and a ground atom Q
is to determine if Q is true in all models of Π (i.e., if Π ∪{¬Q} is unsatisfiable).

3 Expressive FunDL Dialects

In this first part of our survey, we consider the logical implication problem for an
expressive Boolean complete dialect with value restrictions on features. We begin
by presenting a lower bound for a fragment of this dialect and then follow with
upper bounds. We subsequently consider extensions to the dialect that admit
additional concept constructors, namely PFDs and inverse features.

3.1 Logical Implication in DLF
The dialect DLF0 of FunDL is defined by the following grammar (and recall our
protocol whereby right-hand-sides of inclusion dependencies and posed questions
are also defined by non-terminal C):

C :: = A | C1 � C2 | ∀f.C

Observe that DLF0 is a Horn fragment that only allows primitive concepts,
conjunctions and value restrictions. We show that every DatalognS recognition

FunDL: a Family of Feature-Based Description Logics 409

problem can be simulated by a DLF0 implication problem [29]. For this reduc-
tion, each monadic predicate symbol is assumed to also qualify as a primitive
concept name in DLF0. Given an instance of a DatalognS recognition problem
in the form of a DatalognS program Π and a ground goal atom G = P (Pf(0)),
we construct an implication problem for DLF0 as follows: in Π,

TΠ = {∀Pf ′1 .Q′
1 � . . . � ∀Pf ′k .Q′

k � ∀Pf ′ .P ′ :
P ′(Pf

′
(x)) ← Q′

1(Pf
′
1(x)), . . . , Q′

k(Pf
′
k(x)) ∈ Π},

QΠ,G = ∀Pf1 .Q1 � · · · � ∀Pfk .Qk � ∀Pf .P,

where the Pf(x) terms in DatalognS naturally correspond to path functions Pf
in DLF0, and where the posed question QΠ,G is formed from ground facts
Qi(Pfi(0)) ∈ Π, and the ground goal atom G = P (Pf(0)).

Theorem 4 ([30]). Let Π be a DatalognS program and G a ground atom. Then

Π |= G ⇐⇒ TΠ |= QΠ,G.

For the reduction to work, one needs two features. (Unlike the case with ALC
style logics, the problem becomes PSPACE-complete with one feature.) This
result was later used to show EXPTIME-hardness for FL0 [3].

We now show a matching upper bound for the Boolean complete dialect with
value restrictions, as defined by the following:

C :: = A | C1 � C2 | C1
 C2 | ∀f.C | ¬C

We first show how the semantics of DLF constructors can be captured by Ack-
ermann formulae: let C, C1, and C2 range over concept descriptions and f over
attribute names. We introduce a unary predicate subscripted by a description
that simulates that description in our reduction:

∀x.(PC(x) ∨ P¬C(x)),∀x.¬(PC(x) ∧ P¬C(x))
∀x.PC1�C2(x) ↔ (PC1(x) ∧ PC2(x))
∀x.PC1�C2(x) ↔ (PC1(x) ∨ PC2(x))
∀x.P∀f.C(x) ↔ PC(f(x))

(∗)

To complete the translation of a DLF implication problem T |= Q, for Q of the
form C � D, what remains is the translation of the inclusion dependencies in
T ∪ {Q}:

– ΦDLF =
∧

ϕ∈Semantics(T ,Q) ϕ,
– ΦT =

∧
C′�D′∈T ∀x.PC′(x) → PD′(x), and

– ΦC = PC(0) ∧ P¬D(0) (a Skolemized negation of the posed question Q),

where Semantics(T ,Q) is the set of all formulae (∗) whose subscripts range over
concepts and subconcepts that appear in T ∪ {Q}.

Theorem 5 ([30]). Let T and Q = C � D be a terminology and inclusion
dependency in DLF , respectively. Then T |= C iff ΦDLF ∧ ΦT ∧ ΦQ is not
satisfiable.

Theorems 4 and 5 establish a tight EXPTIME complexity bound for the DLF
logical implication problem.

410 S. McIntyre et al.

3.2 Adding Path Functional Dependencies to DLF
Allowing unrestricted use of the PFD concept constructor leads to undecidable
implication problems, as in the case of a description logic defined by the following
grammar:

C :: = A | C1 � C2 | C1
 C2 | ∀f.C | ¬C | C : Pf1, ...,Pfk → Pf

This remains true even for very simple varieties of PFD concept constructors.
The undecidability results are based on a reduction of the unrestricted tiling

problem [4,5] to the logical implication problem. The crux of the reduction is the
use of the PFD constructor under negation or, equivalently, on the left-hand-side
of inclusion dependencies. For example, the dependency

A � ¬(B : f, g → id)

states that, for some A object, there must be a distinct B object that agrees
with this A object on features f and g, i.e., there must be a square in a model
of the above inclusion dependency. Such squares can then be connected into a
grid using additional PFDs and the Boolean structure of the logic in a way that
enables tiling to be simulated.

This idea can be sharpened to the following three borderline cases, where
simple, unary and key refer, respectively, to conditions in which path expressions
correspond to individual features or to id , in which left-hand-sides of PFDs
consist of a single path expression, and in which the right-hand-side is id [35]:

1. PFDs are simple and key, and therefore resemble

C : f1, . . . , fk → id

(i.e., the standard notion of relational keys);
2. PFDs are simple and non-key, and therefore resemble

C : f1, . . . , fk → f

(i.e., the standard notion of relational functional dependencies); and
3. PFDs are simple and unary, and therefore resemble either of the following:

C : f → g or C : f → id .

Observe that the three cases are exhaustive: the only possibility not covered
happens when all PFDs have the form C : Pf → id , i.e., are unary and key.
However, it is a straightforward exercise in this case to map logical implication
problems to alternative formulations in decidable DL dialects with inverses and
functional restrictions. Notably, the reductions make no use of attribute value
restrictions in the first two of these cases; they rely solely on PFDs and the
standard Boolean constructors.

FunDL: a Family of Feature-Based Description Logics 411

On Regaining Decidability. It turns out that undecidability is indeed a con-
sequence of allowing PFDs to occur within the scope of negation (and, as a conse-
quence, all FunDL dialects disallow this possibility). Among the first expressive
and decidable dialects is DLFD, the description logic defined by the following
grammar rules:

C :: = A | C1 � C2 | C1
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1
 D2 | ∀f.D | C : Pf1, ...,Pfk → Pf

Observe that PFDs must now occur on right hand sides of inclusion dependencies
at either the top level or within the scope of monotone concept constructors.
(Allowing PFDs on left hand sides is equivalent to allowing PFDs in the scope
of negation: D1 � ¬(D2 : f → g) is equivalent to D1 � (D2 : f → g) � ⊥.)

To establish the complexity lower bound, we first study the problem for a
subset of DLFD in which all inclusion dependencies are of the form

� � � : Pf1, . . . ,Pfk → Pf .

An implication problem in this subset is called a PFD membership problem.
It will simplify matters to assume that each monadic predicate symbol P in
DatalognS maps to a distinct feature p in DLFD, and that each such p differs
from the attributes corresponding to unary function symbols in DatalognS .

We proceed similarly to the DLF case: Let Π be an arbitrary DatalognS

program and G = P (Pf(0)) a ground atom. We construct an implication problem
for DLFD as follows:

TΠ = {� � � : Pf′1 .p′
1, . . . ,Pf

′
k .p′

k → Pf′ .p′ :
P ′(Pf

′
(x)) ← P ′

1(Pf
′
1(x)), . . . , P ′

k(Pf
′
k(x)) ∈ Π},

CΠ,G = � � � : Pf1 .p1, . . . ,Pfk .pk → Pf .p,

where P1(Pf1(0)), . . . , Pk(Pfk(0)) are the ground facts in Π.

Theorem 6 ([30]). Let Π be an arbitrary DatalognS program and G =
P (Pf(0)) a ground atom. Then Π |= G ⇐⇒ TΠ |= CΠ,G.

The reduction establishes another source of EXPTIME-hardness for our DLFD
fragment that originates from the PFDs only.

To establish the upper bound, we reduce logical implication in DLFD to
logical implication in DLF . The reduction is based on the following observations:

1. If the posed question does not contain the PFD concept constructor then the
implication problem reduces to the implication problem in DLF since, due
to the tree model property of the logic, the PFD inclusion dependencies in
the TBox are satisfied vacuously;

2. Otherwise the posed question contains a PFD, e.g., has the form

A � B : Pf !, . . . ,Pfk → Pf .

412 S. McIntyre et al.

To falsify the posed question in this case, we need to construct a model
consisting of two trees respectively rooted by A and B that obey the TBox
inclusion dependencies, that agree on paths Pf1, . . . ,Pfk originating from the
respective roots, and that disagree on Pf. Since the two trees are identical
up to node labels and the agreements always equate corresponding nodes in
the two trees, the model can be simulated in DLF by doubling the prim-
itive concepts (one for simulating concept membership in each of the two
trees) and by introducing an auxiliary primitive concept to simulate path
agreements. This two trees idea can then be generalized to account for posed
questions having (possibly multiple) PFDs nested in other monotone concept
constructors.

The above assumes that PFDs are not nested in other constructors in a TBox;
this can be achieved by a simple conservative extension of the given TBox and
appropriate reformulation of the posed question [35].

Theorem 7 ([30]). The implication problem for DLFD can be reduced to an
implication problem for DLF with only a linear increase in size.

Theorems 6 and 7 establish a tight EXPTIME complexity bound for the DLFD
implication problem.

3.3 Adding Inverse Features

Allowing right-hand-sides of inclusion dependencies to now employ inverse fea-
tures together with PFDs, as in DLFDI, a FunDL dialect defined by the fol-
lowing grammar:

C :: = A | C1 � C2 | C1
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1
 D2 | ∀f.D | ∃f−1.C | C : Pf1, ...,Pfk → Pf

leads immediately to undecidability, similarly to [14]. Again, the reduction is
from the unrestricted tiling problem in which an initial square is generated by
the constraints

A � ∃f−1.B � ∃f−1.C, B � C � ⊥, and B � C : f → g,

and further inclusion dependencies then extend it to a properly tiled grid.

Theorem 8 ([31]) Logical implication for DLFDI is undecidable.

On Regaining Decidability with Inverses. We review two approaches to
restricting either the PFD constructor or the way inverses are allowed to be
qualified to regain decidability of the logical implication problem.

FunDL: a Family of Feature-Based Description Logics 413

Prefix-restricted PFDs. The first approach syntactically restricts the PFD con-
structor as follows:

Definition 9 [Prefix Restricted Terminologies]. Let D : Pf .Pf1, . . . ,
Pf .Pfk → Pf′ be an arbitrary PFD where Pf is the maximal common prefix
of the path expressions {Pf .Pf1, . . . ,Pf .Pfk}. The PFD is prefix-restricted if
either Pf ′ is a prefix of Pf or Pf is a prefix of Pf′. �

This condition applies to the argument PFDs occurring in a terminology and
strengthens the results in [14]. Note that, because of accidental common prefixes,
it is not sufficient to simply require that unary PFDs resemble keys since, for
example, a k-ary PFD A1 � A2 : f.a1, . . . , f.ak → h has a logical consequence
A1 � A2 : f → h, thus yielding the ability to construct tiling similar to the one
outlined above.

Theorem 10 ([31]). Let T be DLFDI terminology with prefix-restricted
PFDs. Then the implication problem T |= Q is decidable and EXPTIME-
complete.

Coherent Terminologies. The second of our conditions for recovering decidabil-
ity is to impose a coherency condition on terminologies themselves. The main
advantage of this approach is that we thereby regain the ability for unrestricted
use of PFDs in terminologies. The disadvantage is roughly that there is a single
use restriction on using feature inversions in terminologies.

Definition 11 (Coherent Terminologies). A terminology T is coherent if

T |= (∃f−1.D) � (∃f−1.E) � ∃f−1(D � E)

for all descriptions D,E that appear as subconcepts of concepts that appear in
T , or their negations. �

Note that we can syntactically guarantee that T is coherent by adding inclusion
dependencies of the form (∃f−1D) � (∃f−1E) � ∃f−1(D � E) to T for all con-
cept descriptions D,E appearing in T . This restriction allows us to construct
interpretations of non-PFD descriptions in which objects do not have more than
one f predecessor (for all f ∈ F) and thus satisfy all PFDs vacuously.

By restricting logical implication problems for DLFDI to cases in which ter-
minologies are coherent, it becomes possible to apply reductions to satisfiability
problems for Ackerman formulae.

Theorem 12 ([31]). Let T be a coherent DLFDI terminology. Then the impli-
cation problem T |= C is decidable and EXPTIME-complete.

Note that unqualified inverse features of the form ∃f−1 immediately imply
coherency. Moreover, one can qualify an f predecessor by concept C by asserting

A � ∃f−1, ∀f.A � C.

Thus, the restriction to unqualified inverses does not rule out cases in which
qualified inverses might be useful, and avoids the problem of allowing multiple

414 S. McIntyre et al.

f predecessors (that could then interact with the PFD constructs). Hence, for
the remainder of the survey, we assume unqualified inverse features in FunDL
dialects.

3.4 Equational Constraints

As pointed out in our introductory comments, allowing equational (same-as) con-
cepts in TBoxes leads immediately to undecidability via a reduction from the
uniform word problem [24]. Conversely, allowing equational concepts in posed
questions extends the capabilities of the logics, in particular allowing for captur-
ing factual assertions (called an ABox, see Sect. 5.3). To this end we introduce
the FunDL dialect DLFDE defined as follows:

C :: = A | C1 � C2 | C1
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1
 D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | E1 � E2 | ⊥ | ¬E | ∀f.E | (Pf1 = Pf2)

Undecidability. It is easy to see that the following two restricted cases have
decidable decision problems:

– allowing arbitrary PFDs in terminologies, and
– allowing equational concepts in the posed question.

Unfortunately, the combination of the two cases leads again to undecidability.
One can use the equational concept to create a seed square for a tiling problem
(although a triangle is actually sufficient in this case, as in A � (f.g = g)�∀f.B
[35]) that can then be extended into an infinite grid using PFDs in a TBox (e.g.,
A � (B : g → f.h) � (B : g → k.g) for the triable seed case), and ultimately to
an instance of a tiling problem. Hence:

Theorem 13 ([35]). Let T be a DLFD terminology and E an equational con-
cept. Then the problem T |= E � ⊥ is undecidable.

Decidability and a Boundary Condition. To regain decidability, we restrict
the PFD constructor to adhere to a boundary condition, in particular, to have
either of the following two forms:

– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f , for some primitive feature f .

We call the resulting fragment DLFDE−. The condition distinguishes, e.g., the
PFDs f → id and f → g from the PFD f → g.f . Intuitively, a simple saturation
procedure that fires PFDs on a hypothetical database is now guaranteed to
terminate as a consequence.

Notice that the boundary condition still admits PFDs that express arbitrary
keys or functional dependencies in the sense of the relational model, including
those occurring in all our examples. Thus, restricting PFDs in this manner does
not sacrifice any ability to capture database schema for legacy data sources.

FunDL: a Family of Feature-Based Description Logics 415

Theorem 14 ([21]). Let T and T ′ be respective DLF and DLFD terminologies
in which the latter contains only PFD inclusion dependencies, and let E be an
equational concept. Then there is a concept E′ such that

T ∪ T ′ |= E � ⊥ iff T |= (E � E′) � ⊥.

Moreover, E′ can be constructed from T ′ and E effectively and in time polyno-
mial in |T ′|.

The boundary condition on PFDs is essential for the above theorem to hold. If
unrestricted PFDs are combined with either equations or an ABox, there is no
limit on the length of paths participating in path agreements when measured
from an initial object o ∈ E � E′ in the associated satisfiability problem. More-
over, any minimal relaxation of this condition, i.e., allowing only non-key PFDs
of the form C : f → g.h, already leads to undecidability [32,35]:

Theorem 15 ([21]). DLFDE− logical implication and the problem of ABox
consistency defined in Sect. 5.3 are decidable and complete for EXPTIME.

The construction essentially generates a pattern (part of a model) that satisfies
E (which already contains the effects of all PFDs due to the boundary condition)
and then tests if this pattern can be extended to a full model using the decision
procedure for DLF . Note also that posed questions containing PFDs can be
rewritten to equivalent posed questions replacing the PFDs with their semantic
definitions via path agreements and disagreements.

Inverses. Finally, we conjecture that adding unqualified inverse constructor to
DLFDE under the restrictions outlined in Sect. 4.4 preserves all the results.

4 Tractable FunDL Dialects

In this second part of our survey, we consider the logical implication problem
for FunDL dialects for which the logical implication problem can be solved in
PTIME. We begin by reviewing CFD, chronologically, the first member of the
FunDL family and, so far as we are aware, the first DL dialect to introduce a
type constructor, PFDs, for capturing equality generating dependencies [8,20].

Ensuring tractability requires that we somehow evade Theorems 4 and 6.
This is generally achieved by requiring a TBox to satisfy the following additional
conditions:

1. Interaction between value restrictions and conjunctions on the left-hand-sides
of inclusion dependencies must somehow be controlled,

2. Inclusion dependencies must be Horn (which effectively disallows the use of
disjunction)1, and

1 Allowing the use of conjunction at the top level on the right-hand-side is a simple
syntactic sugar.

416 S. McIntyre et al.

3. PFDs must satisfy an additional syntactic boundary condition in addition to
being disallowed on the left-hand-side of inclusion dependencies.

We shall see that violating any of these conditions leads to intractability of
logical implication.

4.1 Horn Inclusion Dependencies

The first way of limiting the interactions between value restrictions and conjunc-
tions on the left-hand-sides of inclusion dependencies is by simply disallowing
value restrictions entirely, and by no longer permitting posed questions to men-
tion either negations or disjunctions. This approach underlies the FunDL dialect
called CFD given by the following grammar:

C :: = A | C1 � C2

D :: = C | D1 � D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | ⊥ | E1 � E2 | ∀f.E | (Pf1 = Pf2)

The main idea behind decidability and complexity of the logical implication
problem is similar to the idea in Theorem15. However, we no longer need to use
the DLF decision procedure to verify that the partial model can be completed to
a full model since, in CFD, one can always employ complete F-trees whose nodes
belong to all primitive concepts (without having to check for their existence
[20,36]). Hence, the complexity reduces to the construction of the initial part of
the model. This, with the help of the restrictions on E concepts, can be done in
PTIME.

Theorem 16 ([36]). The logical implication problem for CFD is complete for
PTIME.

The hardness follows from the fact that the PFDs alone can simulate HornSAT.

Extensions Versus Tractability. Unfortunately, extending this fragment while
maintaining tractability is essentially infeasible. The following table summarizes
the effects of allowing additional concept constructors in the TBox on the right-
hand-side of inclusion dependencies, reading down, and in the posed question,
reading across [36]:

T /Q CFD or CFD �=,(¬) CFD �=,� or CFD¬

CFD P-c / in P P-c / coNP-c

CFD� coNP-c / coNP-c coNP-c / coNP-c

CFD⊥ PSPACE-c / in P PSPACE-c / coNP-c

CFD�,⊥ EXPTIME-c / coNP-c EXPTIME-c / coNP-c

The complexities listed in the table are with respect to the size of the TBox
and the size of the posed question. Note in particular that concept disjointness,

FunDL: a Family of Feature-Based Description Logics 417

in which ⊥ is allowed on right-hand-sides of inclusion dependencies, leads to
PSPACE-completeness. This is due to the need for checking whether a partial
model can be completed, which in turn requires testing for reachability in an
implicit but exponentially-sized graph.

4.2 Value Restrictions Instead of Conjunctions

An alternative that allows us to evade the ramifications of Theorem4 is disallow-
ing conjunctions on the left-hand-sides of inclusion dependencies, yielding the
dialect CFDnc [37] given by the following:

C :: = A | ∀f.C
D :: = C | ¬C | D1 � D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | ⊥ | E1 � E2 | ∀f.E | (Pf1 = Pf2)

The main idea behind tractability of CFDnc relies on the fact that left-hand-
sides of inclusion dependencies can only observe object membership in a single
atomic concept (as opposed to a conjunction of concepts). Hence, while mod-
els of this logic require exponentially many objects labelled by conjunctions of
primitive concepts in general, they can be abstracted in a polynomial way. The
construction of the actual model is then similar to the standard NFA to DFA
construction followed by unfolding of the resulting DFA.

Theorem 17 ([37]). The logical implication problem for CFDnc is complete for
PTIME.

As with the dialect CFD, hardness follows from reducing HornSAT to reasoning
with PFDs.

4.3 Value Restrictions and Limited Conjunctions

The above has shown that allowing an arbitrary use of concept conjunction on
the left-hand-sides of inclusion dependences in a CFDnc TBox immediately leads
to hardness for EXPTIME (a consequence of Theorem 4). The complexity can
be traced to the need for exponentially many objects labelled by different sets
of primitive concepts to be generated. The following definition provides a way
of controlling this need for all such objects:

Definition 18 (Restricted Conjunction). Let k > 0 be a constant. We say
that TBox T is a CFDkc TBox if, whenever T |= (A1 � · · · � An) � B for
some set of primitive concepts {A1, . . . , An} ∪ {B}, with n > k, then T |=
(Ai1 � · · · � Aik) � B for some k-sized subset {Ai1 , . . . , Aik} of the primitive
concepts {A1, . . . , An}. �

A saturation-style procedure based on this definition can be implemented to
generate all implied inclusion dependencies with at most k primitive concepts
(value restrictions) on left-hand-sides of inclusion dependencies [26]. The decision
procedure essentially follows the procedure for CFDnc but is exponential in k due

418 S. McIntyre et al.

to the need to consider sets of concepts up to size k (essentially by determining all
implied inclusion dependencies that are not a trivial weakening of other inclusion
dependencies) and leads to the following:

Theorem 19 ([26]). The logical implication problem for CFDkc is complete for
PTIME for a fixed value of k; the decision procedure is exponential in k.

In addition, the procedure enables an incremental means of determining the
minimum k for which a given TBox is a CFDkc TBox, that is, allows for testing
if a given parameter k suffices:

Theorem 20 (Testing for k [26]). A TBox T is not a CFDkc TBox if and only
if there is an additional single-step inference that infers a non-trivial inclusion
dependency (i.e., one that is not a weakening of an already discovered depen-
dency) with k + 1 conjuncts on the left hand side.

An algorithm based on iterative deepening allows one to determine the value
of k for a given TBox in a pay as you go way. Hence the decision procedure
also runs within the optimal time bound, exponential in k and polynomial in
|T | + |Q|, even when k is not part of the input.

4.4 Adding Inverse Features

Recall from Sect. 3.3 that we consider only the (unqualified) inverse feature con-
structor, ∃f−1, to be added to the D grammar rules of CFDnc and CFDkc,
yielding the respective logics CFDInc and CFDIkc. However, additional restric-
tions are still required to guarantee tractability of logical consequence [38]. We
introduce the restrictions by examples:

1. Inverses and Value Restrictions. Interactions between these two concept con-
structors can be illustrated by the following inference:

{A � ∃f−1,∀f.A′ � ∀f.B} |= A � A′ � B.

This cannot be allowed since unrestricted use of this construction yields hard-
ness for EXPTIME (see Theorem 4). CFDInc syntactically restricts TBoxes
to avoid the above situation by requiring additional inclusion dependencies
of the form A � A′, A′ � A, or A�A′ � ⊥ to be present in a TBox whenever
the above pattern appears. Note that CFDIkc does not require this restric-
tion since the testing for k procedure we have outlined will detect the above
situation (thus determining the price).

2. Inverses and PFDs. The second interaction that hinders tractability is
between inverses and PFDs. In particular, a logical consequence problem of
the form

{A � ∃f−1,∀f.A � A, . . .} |= (∀h1.A) � (∀h2.A) � (h1.f = h2.f) � h1 = h2

will force two infinite f anti-chains starting from two A objects created by
the left-hand-side of the posed question. We have shown how to use these

FunDL: a Family of Feature-Based Description Logics 419

anti-chains and additional PFDs in the TBox to reduce linearly bounded DTM
acceptance [19] to logical implication in this case, yielding PSPACE-hardness,
and how to repair this by further limiting the syntax of PFDs in a way that
disables this kind of interaction with inverse features [38]. In particular, PFDs
in a TBox must now have one of the following two forms:

– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .g, . . . ,Pfk → Pf .f , for some primitive features f and g.

Inverses obeying these two restrictions can then be added to both the FunDL
dialects CFDInc and CFDIkc while maintaining tractability:

Theorem 21 ([38]). The logical implication problems for CFDInc and CFDIkc

are complete for PTIME, in the latter case for a fixed value of k.

5 Partial Features, Roles, ABoxes and Query Answering

The third part of our survey considers how partial features and role hierarchies
can be accommodated in FunDL dialects, and how to check for knowledge base
consistency and to evaluate queries over FunDL knowledge bases consisting of a
so-called ABox in addition to a TBox.

5.1 Partial Features

We first consider the impact of changing the semantics of features in the FunDL
family to partial features [25,26,40,41]. The changes can be summarized as fol-
lows:

1. Features f ∈ F are now interpreted as partial functions on � (i.e., the result
can be undefined for some elements of �);

2. A path function Pf now denotes a partial function resulting from the compo-
sition of partial functions;

3. The syntax of C in feature-based DLs is extended with an additional concept
constructor, ∃f , called an existential restriction that can now appear on both
sides of inclusion dependencies;

4. The ∃f concept constructor is interpreted as {x | ∃y ∈ �.(f)I(x) = y}.
5. We adopt a strict interpretation of set membership and equality. This means

that set membership holds only when the value exists; and equality holds
only when both sides are defined and denote the same object.

In the light of these changes, we need to consider their impact on concept con-
structors that involve features or feature paths:

Value Restrictions. Our definition of value restriction ∀f.C (see Definition 1)
assumes features are total. For partial features, there is now a choice:

1. keeping the original semantics, i.e., objects in the interpretation of ∀f.C must
have a feature f defined and leading to a C object, or

420 S. McIntyre et al.

2. altering the semantics to match ALC-style semantics, i.e., the f value of
objects in the interpretation of such a value restriction must be a C object,
if such a value exists; we denote this variant ∀̃f.C.

While not equivalent, it is easy to see that many inclusion dependencies can be
expressed using either variant of the value restriction, for example

A � ∀̃f.B can be expressed as A � ∀f.� � ∀f.B.

Note that when the original semantics is used, the existential restriction ∃f
is simply a synonym for ∀f.�. Also, since features are still functional, the so-
called qualified existential restrictions of the form ∃f.C, with semantics given by
(∃f.C)I = {x | ∃y ∈ �.(f)I(x) = y ∧ y ∈ (C)I}, can be simulated by expansion
to ∃f � ∀f.C. Indeed, hereon we write ∃Pf as shorthand for ∃f1 � ∀f1.(∃f2 �
∀f2.(. . . (∃fk) . . .)).

PFDs. Our PFDs agree with the definition of identity constraints in [11], where
Pf0 = id, which also require path values to exist. To further clarify the impact
of this observation, note that a PFD inclusion dependency of the form C1 �
C2 : Pf1, . . . ,Pfk → Pf0 is violated when (a) all path functions Pf0, . . . ,Pfk are
defined for a C1 object e1 and a C2 object e2, and (b) (Pfi)I(e1) = (Pfi)I(e2)
holds only for 1 ≤ i ≤ k. Formally, and more explicitly, this leads to the following
interpretation of PFDs in the presence of partial features:

((C : Pf1, . . . ,Pfk → Pf0))I =
{x | ∀y.y ∈ (C)I ∧ x ∈ ((∃Pf0))I ∧ y ∈ ((∃Pf0))I ∧

∧k
i=1(x ∈ ((∃Pfi))I ∧ y ∈ ((∃Pfi))I ∧ (Pfi)I(x) = (Pfi)I(y))

→ (Pf0)I(x) = (Pf0)I(y) }.

Equational Concepts. Similarly to PFDs, we assume the strict interpretation of
equalities, i.e., an object belongs to (Pf1 = Pf2) if and only if both Pf1 and Pf2
are defined for the object and agree.

Partiality in Expressive FunDL. In expressive FunDL dialects, partiality can
be simulated by introducing an auxiliary primitive concept G that will stand for
the domain of existing objects. Depending on our choice of semantics for value
restrictions we get a mapping of a TBox under the partial semantics to a TBox
under the total semantics. We first define a way to modify concept descriptions
to capture the desired semantics of partiality:

1. PtoT(C) = C[∀f.C �→ ¬G
∀f.(C �G) for f ∈ F], for the original semantics,
2. PtoT(C) = C[∃f �→ ¬G
 ∀f.G, for f ∈ F] for the ALC-style semantics.

Now we can define a partial to total TBox mapping

Ttotal = {G � PtoT(C) | � � C ∈ Tpartial} ∪ {∀f.G � G | f ∈ F},

and show:

FunDL: a Family of Feature-Based Description Logics 421

Theorem 22 ([41]). Let Tpartial be a partial-DLFI TBox in which all inclusion
dependencies are of the form � � C with C in negation normal form. Then

Tpartial |= � � C ⇐⇒ Ttotal |= G � PtoT(C),

for G a fresh primitive concept.

To extend this construction to the full partial-DLFDI logic, it is sufficient to
encode the path function existence preconditions of PFDs in terms of the auxil-
iary concept G as follows: if A � B : Pf1, . . . ,Pfk → Pf0 ∈ Tpartial then

A � (
k�

i=0

∀Pfi .G) � B � (
k�

i=0

∀Pfi .G) : Pf1, . . . ,Pfk → Pf0 (1)

is added to Ttotal. Here, we are assuming w.l.o.g. that A and B are primitive
concept names (DLFD allows one to give such names to complex concepts).

Theorem 23 ([41]). Let Tpartial be a partial-DLFDI TBox in which all inclu-
sion dependencies are of the form � � C or A � B : Pf1, . . . ,Pfk → Pf0. Then

Tpartial |= � � C ⇐⇒ Ttotal |= G � PtoT(C), and
Tpartial |= A � B : Pf1, . . . ,Pfk → Pf ⇐⇒ Ttotal |= (1),

for G a fresh primitive concept.

This result can also be extended to the logic DLFDE− by appropriately trans-
forming the posed question with respect to the strict interpretation of equational
constraints.

Partiality in Tractable FunDL. A similar construction can be used to accom-
modate partial features in tractable FunDL dialects. However, there is a need to
accommodate the various restrictions in these logics that guarantee tractability.
Hence, we assume that we will be given a partial-CFDIkc TBox Tpartial in a
normal form, and that the semantics of value restrictions is the same in both
the partial and the total logic. We then derive a CFDI(k+1)c TBox Ttotal by
applying the following rules:

1. A � ⊥ �→ A � G � ⊥
2. A � B �→ A � G � B
3. A � B � C �→ A � B � G � C
4. A � ∀f.B �→ A � G � ∀f.B � ∀f.G
5. ∀f.A � B �→ ∀f.A � ∀f.G � B
6. A � ∃f �→ A � G � ∀f.G
7. ∃f � A �→ ∀f.G � A

and by adding the inclusion dependency ∀f.G � G to Ttotal for each feature.
Conversly, value restrictions in more traditional role-based description log-

ics, such as ALC, also cover the vacuous cases, containing objects for which f is

422 S. McIntyre et al.

undefined (in addition to the above). This definition unfortunately leads to com-
putational difficulties: the disjunctive nature of such a value restriction, when
used on left-hand-sides of inclusion dependencies, destroys the canonical model
property of the logic. This leads to intractability of query answering as shown
by Calvanese et al. [12]. To regain tractability, it becomes necessary to restrict
the use of value restrictions on the left-hand-side of inclusion dependencies. In a
normal form, the C grammar for left-hand-side concepts must replace ∀f.A with
∀f.A � ∃f . This leads to alternative rules when simulating the partial-feature
logic in the total-feature counterpart, i.e.,

4′. A � ∀f.B �→ A � G � ∀f.B
5′. (∀f.A � ∃f) � B �→ (∀f.A � ∀f.G) � B

The technique for treating posed questions [40] extends to partial-CFDIkc and
yields the following:

Theorem 24 ([40]). Let Tpartial be a partial-CFDIkc TBox, Qpartial a posed
question, and Ttotal be defined as above. Then Ttotal is a CFDI(k+1)c TBox and

Tpartial |= Qpartial ⇐⇒ Ttotal |= Qtotal,

where Qtotal is effectively constructed from Qpartial by adding appropriate con-
junctions with G concepts.

Since |Qpartial| is linear in |Qtotal|, this provides a tractable decision proce-
dure for logical implication in partial-CFDIkc. An analogous result involving
partial-CFDIkc knowledge base reasoning was studied in [26].

5.2 Simulating Roles and Role Constructors

It is well known that unrestricted use of role functionality with role hierarchies,
e.g., DL-LiteHF

core, leads to intractability [2,10]. Conversely, the ability to reify
roles would seem to enable capturing a limited variety of role hierarchies.2

Consider roles R and S and the corresponding primitive concepts CR and
CS , respectively, and assume that the domains and ranges of the reified roles
are captured by the features dom and ran common to both the reified roles.
Subsumption and disjointness of these roles can then be captured as follows:

R � S �→ CR � CS , CR � CS : dom, ran → id and
R � S � ⊥ �→ CR � ¬CS , CR � CS : dom, ran → id ,

assuming that the reified role R (and analogously S) also satisfies the key con-
straint CR � CR : dom, ran → id . Such a reduction does not lend itself to
capturing role hierarchies between roles and inverses of roles (due to fixing the
names of the features dom and ran).

2 Unlike DL-Lite
(HF)
core , that restricts the applicability of functional constraints in the

presence of role hierarchies, we review what forms of role hierarchies can be captured
while retaining the ability to specify arbitrary keys and functional dependencies.

FunDL: a Family of Feature-Based Description Logics 423

Moreover, for tractable fragments of FunDL, a condition introduced earlier,
governing the interactions between inverse features and value restrictions, intro-
duces additional interactions that interfere with (simulating) role hierarchies, in
particular in cases when mandatory participation constraints are present. Con-
sider again roles R1 and R2 and the corresponding primitive concepts CR1 and
CR2 , respectively, and associated constraints that declare typing for the roles,

CR1 � ∀dom.A1, CR1 � ∀ran.B1, CR1 � CR1 : dom, ran → id
CR2 � ∀dom.A2, CR2 � ∀ran.B2, CR2 � CR2 : dom, ran → id

originating, e.g., from an ER diagram postulating that entity sets Ai and Bi

participate in a relationship Ri (for i = 1, 2). Now consider a situation where
the participation of Ai in Ri is mandatory (expressed, e.g., as Ai � ∃Ri in
DL-Lite). This leads to the following constraints:

A1 � ∃dom−1,∀dom.A1 � CR1 and A2 � ∃dom−1,∀dom.A2 � CR2 .

The earlier condition governing the use of inverse roles then requires that one
of

A1 � A2, A2 � A1, or A1 � ¬A2

are present in the TBox. The first (and second) conditions imply that CR1 � CR2

(CR2 � CR1 , respectively). The third condition states that the domains of (the
reified versions of) R1 and R2 are disjoint, hence the roles themselves must also
be disjoint. Hence, in the presence of CR1 � CR2 : dom, ran → id , the concepts
CR1 and CR2 must also be disjoint.

All this shows that some form of role hierarchies can be accommodated in
FunDL dialects. However:

1. only primitive roles can be captured (i.e., capturing inverse roles will not be
possible), and

2. when tractability is required, only role forests can be captured, that is, for
each pair of roles participating in the same role hierarchy, one must be a
super-role of the other or their domain and range features must be distinct.

The first restriction originates in the way (binary) roles are reified—by assigning
canonically-named features. This prevents modelling constraints such as R � R−

(which would seem to require simple equational constraints for feature renam-
ing). The second condition is essential to maintaining tractability of reasoning
[38]. Note, however, that no such restriction is needed for roles that do not par-
ticipate in the same role hierarchy; this is achieved by appropriate choice of
names for the features dom and ran.

Last, our approach to role hierarchies can easily be extended to handling
hierarchies of higher-arity non-homogeneous relationships (again, via reification
and appropriate naming of features) that originate, e.g., from relating the aggre-
gation constructs via inheritance in the EER model [27,28]. The reification based
approach differs from approaches to modelling higher arity relationships directly

424 S. McIntyre et al.

in the underlying description logic, such as DLR [13,14] in which only homoge-
neous relationships can be related in hierarchies. This is due to the positional
nature of referring to components of such relationship in lieu of using arguably
more flexible keywords (realized by features in FunDL).

5.3 ABoxes, Knowledge Bases, and Consistency

First we consider the issue of knowledge bases, combinations of terminological
knowledge (TBoxes) with factual assertions about particular objects (ABoxes).

Definition 25 (ABoxes and Knowledge Bases). A knowledge base K is
defined by a TBox T and an ABox A consisting of a finite set of facts in form
of concept assertions A(a), basic function assertions f(a) = b and path function
assertions Pf1(a) = Pf2(b). A is called a primitive ABox if it consists only of
concept and basic function assertions. Semantics is extended to interpret indi-
viduals a to be elements of �. An interpretation I satisfies a concept assertion
A(a) if (a)I ∈ (A)I , a basic function assertion f(a) = b if (f)I((a)I) = (b)I

and a path function assertion Pf1(a) = Pf2(b) if (Pf1)I((a)I) = (Pf2)I((b)I). I
satisfies a knowledge base K if it satisfies each inclusion dependency and asser-
tion in K, and also satisfies UNA if, for any individuals a and b occurring in K,
(a)I �= (b)I . �

A standard reasoning problem for knowledge bases is the consistency problem,
the question whether a knowledge base has a model. We relate this problem
to the logical implication problems for FunDL dialects that admit equational
constructs in the posed questions. It turns out that either capacity alone is
sufficient: each is able to effectively simulate the other [21].

ABoxes vs. Equalities in Posed Questions. Intuitively, path equations can
enforce that an arbitrary finite graph (with feature-labeled edges and concept
description-labeled nodes) is a part of any model that satisfies the equations.
Such a graph can equivalently be enforced by an ABox. Hence we have:

Theorem 26 ([21]). Let T be a DLFD terminology and A an ABox. Then
there is a concept E such that T ∪A is not consistent if and only if T |= E � ⊥.

Conversely, it is also possible to show that ABox reasoning can be used for
reasoning about equational constraints in the posed questions. However, as the
equational concepts are closed under Boolean constructors, a single equational
problem may need to map to several ABox consistency problems.

Theorem 27 ([21]). Let T be a DLFD terminology and E an equational con-
cept. Then there is a finite set of ABoxes {Ai : 0 < i ≤ k} such that

T |= E � ⊥ iff T ∪ Ai is not consistent for all 0 < i ≤ k.

FunDL: a Family of Feature-Based Description Logics 425

Theorems 26 and 27 hold even when the terminology T is a DLF TBox (i.e.,
does not contain any occurrences of the PFD concept constructor) or to the
tractable FunDL dialects CFD and CFDIkc. Here, posed question E concepts
must be limited to retain a PTIME upper bound in the size of the posed question
(Sect. 4 has the details).

5.4 Query Answering

Conjunctive queries (CQ) are, as usual, formed from atomic queries (or atoms)
of the form C(x) and x.Pf1 = y.Pf2, where x and y are variables, using conjunc-
tion and existential quantification. To simplify notation, we conflate conjunctive
queries with the set of its constituent atoms and a set of answer variables. Given
a knowledge base (KB) consisting of a TBox and ABox expressed in terms of a
tractable FunDL dialect, our goal is to compute the so called certain answers:

Definition 28 (Certain Answer). Let K be a KB over a tractable FunDL
dialect and Q = {x̄ | ϕ} a CQ. A certain answer to Q over K is a substitution
of constant symbols ā, [x̄ �→ ā], such that K |= Q[x̄ �→ ā]. �

Computing certain answers in this case requires a combination of perfect rewrit-
ing [10] and of the combined approach [22,36]. The latter is necessary because
tractable FunDL dialects are complete for PTIME and first-order rewriting alone
followed by evaluating the rewritten query over the ABox will not suffice. The
former is necessary to avoid the need for exponentially many anonymous objects
in an ABox completion (unlike EL logics in which there is a need for only poly-
nomially many such objects).

This approach was introduced for CFDInc in [17,18] and the two steps are
realized by two procedures:

1. CompletionT (A): this procedure applies consequences of the TBox T to the
ABox A. In particular, concept membership is fully determined for all all
ABox individuals. For example, if {A(a), f(a) = b, f(b) = c, . . .} ⊆ A and
T |= A � ∀f.A, we require {A(b), A(c), . . .} ⊆ CompletionT (A). (Indeed,
propagating concepts along paths that exists in an ABox is the reason why
perfect rewriting alone will not suffice in tractable FunDL dialects.)

2. FoldT (Q): this procedure rewrites an input CQ to an union of CQs that
account for the constraints in T that postulate existence of anonymous objects
in all models of the knowledge base. A (slight simplification of a) typical rule
applied during such a rewriting looks as follows:

If {y.f = x,A(y)} ⊆ ψ and y does not appear elsewhere in ψ nor is
an answer variable, then Fold(Q) := Fold(Q) ∪ {{ȳ | ψi}} for all ψi =
ψ − {y.f = x,A(y)} ∪ {Bi(x)}, where Bi are all maximal primitive
concepts w.r.t. � satisfying the logical implication conditions T |=
Bi � ∃f−1 and T |= ∀f.Bi � A}.

The rule states that whenever the variable y is connected to the rest of the
query via a single feature f , it may be mapped to an anonymous individual.
This is accommodated by the query ψi that no longer uses the variable y,

426 S. McIntyre et al.

but implies ψ since the existence of the necessary individual is implied by the
TBox T and the Bi(x) atom in ψi.

Note that query rewriting requires a completed ABox. Thus, the rewriting pro-
duces fewer disjuncts since only maximal concepts need to be retained.

Theorem 29 ([40]). Let K = (T ,A) be a CFDInc knowledge base and Q a
conjunctive query. Then

K |= Q[x̄ �→ ā] ⇐⇒ (∅,CompletionT (A)) |= FoldT (Q)[x̄ �→ ā].

Note that (∅,CompletionT (A)) |= FoldT (Q)[x̄ �→ ā] reduces to evaluating the
query FoldT (Q) over a finite relational structure CompletionT (A). Tractability
(in |K|) then follows from |CompletionT (A)| being polynomial in |A| and the
fact that reasoning in K is in PTIME. This approach was later extended to
other tractable dialects of FunDL including logics with partial features up to
and including partial-CFDIkc [26].

6 Related Work

Recall that CFDInc is a tractable FunDL dialect in which left-hand-sides of
inclusion dependencies exclude the use of negation as well as conjunction. The
possibility of the Krom extension of this dialect, that readmits negation, has also
been explored [39]. Tractability is still possible, but requires TBoxes to be free
of non-key PFDs, requires ABoxes to be primitive, and requires the adoption of
UNA. (Relaxing any of these conditions leads to intractability.)

We have also considered how concepts in FunDL dialects can replace con-
stants in an ABox as a way of referring to entities or objects. Indeed, the judi-
cious adoption of features instead of roles in these dialects makes it easy for an
ABox to be a window on factual data in backend object-relational data sources.
Coupled with the notion of referring expression types, this overall development
pays off nicely in ontology-based data access and in relating conceptual and
object-relational database design in information systems [6,7].

A short review of ways in which PFDs themselves have been generalized
completes our survey.

Path Order Dependencies. PFDs can be viewed as a variety of tuple generat-

ing dependencies in which equality is the only predicate occurring on the right-
hand-side. The possibility that any comparison operator can be used instead has
also been investigated. In particular, so-called guarded order dependencies can be
added to the expressive FunDL dialect DLF without impacting the complexity
of logical implication [29]. For our introductory university TBox, a correlation
between gpa and mark can be expressed by such a dependency:

TAKES � TAKES : class=,mark< → student.gpa≤

The dependency asserts that the grade point average of a student is never greater
than that of another student when there is some class they have both taken in
which the latter student obtained a better grade.

FunDL: a Family of Feature-Based Description Logics 427

Regular Path Functional Dependencies. Left and right-hand-sides of PFDs
can be viewed as instances of finite regular languages. The possibility of allow-
ing these languages to be defined by regular expressions admitting the Kleene
closure operator has also been investigated. In particular, regular path func-
tional dependencies were introduced in [30], and more general regular path order
dependencies in [33], and, in both cases, were shown to not impact the com-
plexity of logical implication when added to DLF . This remains the case when
value restrictions are also generalized by allowing component path expressions
to be given by regular expressions. For example, to ensure that every professor
eventually reports to a dean, one can now add the inclusion dependencies

DEAN � CHAIR and PROF � ¬∀reports ∗ .¬DEAN

to the university TBox.

Temporal Path Functional Dependencies. Finally, adding both a temporal
variety of PFDs and a global model operator (�) to DLF is also possible without
impact on the complexity of logical implication [34]. This enables adding the
inclusion dependency

PERSON � (�foreverPERSON) � (PERSON : id →forever name)

to the university TBox to ensure that a person is always a person and that the
name of a person never changes. Adding the inclusion dependency

DEPT � (DEPT : id →term head) � (DEPT : head →term id)

would ensure that a professor is the unique head of a department for a fixed term.
However, it not possible to add any form of eventuality together with temporal
PFDs to DLF (e.g., by also adding regular PFDs) and at the same time retain
EXPTIME complexity of logical implication for DLF iteself [34].

References

1. Ackermann, W.: Uber die Erfullbarkeit gewisser Zahlausdrucke. Math. Ann. 100,
638–649 (1928)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009). https://doi.org/10.1613/jair.
282

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, UK, 30 July–5 August
2005, pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/
05/Papers/0372.pdf

4. Berger, R.: The undecidability of the dominoe problem. Mem. Amer. Math. Soc.
66, 1–72 (1966)

5. van Emde Boas, P.: The convenience of tilings. In: Complexity, Logic, and Recur-
sion Theory. pp. 331–363. Marcel Dekker Inc. (1997)

https://doi.org/10.1613/jair.282
https://doi.org/10.1613/jair.282
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf

428 S. McIntyre et al.

6. Borgida, A., Toman, D., Weddell, G.: On referring expressions in information sys-
tems derived from conceptual modelling. In: Comyn-Wattiau, I., Tanaka, K., Song,
I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 183–197.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1 14

7. Borgida, A., Toman, D., Weddell, G.E.: On referring expressions in query answering
over first order knowledge bases. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.)
Proceedings of the Fifteenth International Conference, Principles of Knowledge
Representation and Reasoning KR 2016, Cape Town, South Africa, 25–29 April
2016, pp. 319–328. AAAI Press (2016). http://www.aaai.org/ocs/index.php/KR/
KR16/paper/view/12860

8. Borgida, A., Weddell, G.: Adding uniqueness constraints to description logics.
In: Bry, F., Ramakrishnan, R., Ramamohanarao, K. (eds.) DOOD 1997. LNCS,
vol. 1341, pp. 85–102. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63792-3 10

9. Brewka, G., Lang, J. (eds.): Principles of knowledge representation and reason-
ing. In: Proceedings of the Eleventh International Conference, KR 2008, Sydney,
Australia, 16–19 September 2008. AAAI Press (2008)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007). https://doi.org/10.1007/s10817-007-
9078-x

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-based
identification constraints in description logics. In: Brewka and Lang [9], pp. 231–
241. http://www.aaai.org/Library/KR/2008/kr08-023.php

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013).
https://doi.org/10.1016/j.artint.2012.10.003

13. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Mendelzon, A.O., Paredaens, J. (eds.) Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1–3 June 1998, Seattle, Washington, USA. pp. 149–158. ACM
Press (1998). https://doi.org/10.1145/275487.275504

14. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Nebel, B. (ed.) Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, Washington, USA, 4–10 August 2001. pp. 155–160. Morgan Kaufmann
(2001). http://ijcai.org/proceedings/2001-1

15. Chomicki, J., Imielinski, T.: Finite representation of infinite query answers. ACM
Trans. Database Syst. 18(2), 181–223 (1993). https://doi.org/10.1145/151634.
151635

16. Fürer, M.: Alternation and the ackermann case of the decision problem.
L’Enseignement Math. 27, 137–162 (1981)

17. Jacques, J.S., Toman, D., Weddell, G.E.: Object-relational queries over cfdinc
knowledge bases: OBDA for the SQL-Literate. In: Kambhampati, S. (ed.) Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1258–1264. IJCAI/AAAI
Press (2016). http://www.ijcai.org/Abstract/16/182

https://doi.org/10.1007/978-3-319-46397-1_14
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12860
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12860
https://doi.org/10.1007/3-540-63792-3_10
https://doi.org/10.1007/3-540-63792-3_10
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
http://www.aaai.org/Library/KR/2008/kr08-023.php
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1145/275487.275504
http://ijcai.org/proceedings/2001-1
https://doi.org/10.1145/151634.151635
https://doi.org/10.1145/151634.151635
http://www.ijcai.org/Abstract/16/182

FunDL: a Family of Feature-Based Description Logics 429

18. Jacques, J.S., Toman, D., Weddell, G.E.: Object-relational queries over cfdi nc
knowledge bases: OBDA for the SQL-Literate (extended abstract). In: Lenzerini,
M., Peñaloza, R. (eds.) Proceedings of the 29th International Workshop on Descrip-
tion Logics, Cape Town, South Africa, 22–25 April 2016. CEUR Workshop Pro-
ceedings, vol. 1577. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1577/paper 10.
pdf

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

20. Khizder, V.L., Toman, D., Weddell, G.: Reasoning about duplicate elimination
with description logic. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol.
1861, pp. 1017–1032. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44957-4 68

21. Khizder, V.L., Toman, D., Weddell, G.E.: Adding aboxes to a description logic
with uniqueness constraints via path agreements. In: Calvanese, D., et al. (eds.)
Proceedings of the 2007 International Workshop on Description Logics (DL2007),
Brixen-Bressanone, near Bozen-Bolzano, Italy, 8–10 June 2007. CEUR Workshop
Proceedings, vol. 250. CEUR-WS.org (2007). http://ceur-ws.org/Vol-250/paper
69.pdf

22. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Lin, F., Sattler, U., Truszczyn-
ski, M. (eds.) Proceedings of the Twelfth International Conference Principles of
Knowledge Representation and Reasoning, KR 2010, Toronto, Ontario, Canada,
9–13 May 2010. AAAI Press (2010). http://aaai.org/ocs/index.php/KR/KR2010/
paper/view/1282

23. Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer, US (2009).
https://doi.org/10.1007/978-0-387-39940-9

24. Machtey, M., Young, P.: An Introduction to the General Theory of Algorithms.
North-Holland, Amsterdam (1978)

25. McIntyre, S., Borgida, A., Toman, D., Weddell, G.E.: On limited conjunctions in
polynomial feature logics, with applications in OBDA. In: Thielscher, M., Toni,
F., Wolter, F. (eds.) Proceedings of the Sixteenth International Conference Prin-
ciples of Knowledge Representation and Reasoning, KR 2018, Tempe, Arizona, 30
October–2 November 2018, pp. 655–656. AAAI Press (2018). https://aaai.org/ocs/
index.php/KR/KR18/paper/view/18016

26. McIntyre, S., Borgida, A., Toman, D., Weddell, G.E.: On limited conjunctions
and partial features in parameter tractable feature logics. In: Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence, 27 January–1 February
2019, Honolulu, Hawaii, U.S.A. (2019, in press)

27. Song, I., Chen, P.P.: Entity relationship model. In: Liu and Özsu [23], pp. 1003–
1009. https://doi.org/10.1007/978-0-387-39940-9 148

28. Thalheim, B.: Extended entity-relationship model. In: Liu and Özsu [23], pp. 1083–
1091. https://doi.org/10.1007/978-0-387-39940-9 157

29. Toman, D., Weddell, G.E.: On attributes, roles, and dependencies in description
logics and the ackermann case of the decision problem. In: Goble, C.A., McGuin-
ness, D.L., Möller, R., Patel-Schneider, P.F. (eds.) Proceedings of the Working
Notes of the 2001 International Description Logics Workshop (DL-2001), Stanford,
CA, USA, 1–3 August 2001. CEUR Workshop Proceedings, vol. 49. CEUR-WS.org
(2001). http://ceur-ws.org/Vol-49/TomanWeddell-76start.ps

http://ceur-ws.org/Vol-1577/paper_10.pdf
http://ceur-ws.org/Vol-1577/paper_10.pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/3-540-44957-4_68
https://doi.org/10.1007/3-540-44957-4_68
http://ceur-ws.org/Vol-250/paper_69.pdf
http://ceur-ws.org/Vol-250/paper_69.pdf
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
https://doi.org/10.1007/978-0-387-39940-9
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18016
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18016
https://doi.org/10.1007/978-0-387-39940-9_148
https://doi.org/10.1007/978-0-387-39940-9_157
http://ceur-ws.org/Vol-49/TomanWeddell-76start.ps

430 S. McIntyre et al.

30. Toman, D., Weddell, G.E.: On reasoning about structural equality in XML: a
description logic approach. Theor. Comput. Sci. 336(1), 181–203 (2005). https://
doi.org/10.1016/j.tcs.2004.10.036

31. Toman, D., Weddell, G.E.: On the interaction between inverse features and path-
functional dependencies in description logics. In: Kaelbling, L.P., Saffiotti, A. (eds.)
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, IJCAI 2005, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 603–
608. Professional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/
1421.pdf

32. Toman, D., Weddell, G.: On keys and functional dependencies as first-class citi-
zens in description logics. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 647–661. Springer, Heidelberg (2006). https://doi.org/10.
1007/11814771 52

33. Toman, D., Weddell, G.: On order dependencies for the semantic web. In: Parent,
C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp.
293–306. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75563-
0 21

34. Toman, D., Weddell, G.E.: Identifying objects over time with description logics. In:
Brewka and Lang [9], pp. 724–732. http://www.aaai.org/Library/KR/2008/kr08-
071.php

35. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citi-
zens in description logics. J. Autom. Reasoning 40(2–3), 117–132 (2008). https://
doi.org/10.1007/s10817-007-9092-z

36. Toman, D., Weddell, G.E.: Applications and extensions of PTIME description log-
ics with functional constraints. In: Boutilier, C. (ed.) Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena, Cali-
fornia, USA, 11–17 July 2009, pp. 948–954 (2009). http://ijcai.org/Proceedings/
09/Papers/161.pdf

37. Toman, D., Weddell, G.: Conjunctive query answering in CFDnc: a PTIME descrip-
tion logic with functional constraints and disjointness. In: Cranefield, S., Nayak,
A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 350–361. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03680-9 36

38. Toman, D., Weddell, G.: On adding inverse features to the description logic CFD∀
nc.

In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp.
587–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1 47

39. Toman, D., Weddell, G.: On the krom extension of CFDI∀−
nc . In: Pfahringer, B.,

Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 559–571. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26350-2 50

40. Toman, D., Weddell, G.: On partial features in the DLF Family of Description Log-
ics. In: Booth, R., Zhang, M.-L. (eds.) PRICAI 2016. LNCS (LNAI), vol. 9810, pp.
529–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42911-3 44

41. Toman, D., Weddell, G.E.: On partial features in the DLF dialects of description
logic with inverse features. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Pro-
ceedings of the 30th International Workshop on Description Logics, Montpellier,
France, 18–21 July 2017. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org
(2017). http://ceur-ws.org/Vol-1879/paper44.pdf

https://doi.org/10.1016/j.tcs.2004.10.036
https://doi.org/10.1016/j.tcs.2004.10.036
http://ijcai.org/Proceedings/05/Papers/1421.pdf
http://ijcai.org/Proceedings/05/Papers/1421.pdf
https://doi.org/10.1007/11814771_52
https://doi.org/10.1007/11814771_52
https://doi.org/10.1007/978-3-540-75563-0_21
https://doi.org/10.1007/978-3-540-75563-0_21
http://www.aaai.org/Library/KR/2008/kr08-071.php
http://www.aaai.org/Library/KR/2008/kr08-071.php
https://doi.org/10.1007/s10817-007-9092-z
https://doi.org/10.1007/s10817-007-9092-z
http://ijcai.org/Proceedings/09/Papers/161.pdf
http://ijcai.org/Proceedings/09/Papers/161.pdf
https://doi.org/10.1007/978-3-319-03680-9_36
https://doi.org/10.1007/978-3-319-13560-1_47
https://doi.org/10.1007/978-3-319-26350-2_50
https://doi.org/10.1007/978-3-319-42911-3_44
http://ceur-ws.org/Vol-1879/paper44.pdf

	FunDL
	1 Introduction
	2 Background and Definitions
	2.1 Ackerman Decision Problems

	3 Expressive FunDL Dialects
	3.1 Logical Implication in DLF
	3.2 Adding Path Functional Dependencies to DLF
	3.3 Adding Inverse Features
	3.4 Equational Constraints

	4 Tractable FunDL Dialects
	4.1 Horn Inclusion Dependencies
	4.2 Value Restrictions Instead of Conjunctions
	4.3 Value Restrictions and Limited Conjunctions
	4.4 Adding Inverse Features

	5 Partial Features, Roles, ABoxes and Query Answering
	5.1 Partial Features
	5.2 Simulating Roles and Role Constructors
	5.3 ABoxes, Knowledge Bases, and Consistency
	5.4 Query Answering

	6 Related Work
	References

