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Abstract. The goal of this chapter is to survey the formalisation of a
precise and uniform integration between first-order ontologies, first-order
queries, and classical relational databases (DBoxes) We include here non-
standard variants of first-order logic, such as the one with active domain
semantics and standard name assumption, used typically in database
theory. We present a general framework for the rewriting of a domain
independent first-order query in presence of an arbitrary domain inde-
pendent first-order logic ontology over a signature extending a database
signature with additional predicates. The framework supports deciding
the existence of a logically equivalent and – given the ontology – safe-
range first-order reformulation (called exact reformulation) of a domain
independent first-order query in terms of the database signature, and if
such a reformulation exists, it provides an effective approach to construct
the reformulation based on interpolation using standard theorem proving
techniques (i.e., tableau). Since the reformulation is a safe-range formula,
it is effectively executable as an SQL query. We finally present an appli-
cation of the framework with the very expressive ALCHOI and SHOQ
description logics ontologies, by providing effective means to compute
safe-range first-order exact reformulations of queries.

1 Introduction

We address the problem of query reformulation with expressive ontologies over
databases. An ontology provides a conceptual view of the database and it is
composed by constraints on a vocabulary extending the basic vocabulary of the
data. Querying a database using the terms in such a richer ontology allows for
more flexibility than using only the basic vocabulary of the relational database
directly.

In this chapter we study and develop a query rewriting framework applicable
to knowledge representation systems where data is stored in a classical finite
relational database, in a way that in the literature has been called the locally-
closed world assumption [12], exact views [13,25,26], or DBox [16,31]. A DBox is
a set of ground atoms which semantically behaves like a database, i.e., the inter-
pretation of the database predicates in the DBox is exactly equal to the database
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relations in any model. The DBox predicates are closed, i.e., their extensions are
the same in every interpretation, whereas the other predicates in the ontology
are open, i.e., their extensions may vary among different interpretations. We
do not consider here the open interpretation for the database predicates (also
called ABox or sound views). In an ABox the interpretation of database pred-
icates contains the database relations and possibly more data coming from the
non-database predicates. This notion is less faithful in the representation of a
database semantics since it would allow for spurious interpretations of database
predicates with additional unwanted tuples not present in the original database.

In our general framework an ontology is a set of first-order formulas, and
queries are (possibly open) first-order formulas. Within this setting, the frame-
work provides precise semantic conditions to decide the existence of a safe-range
first-order equivalent reformulation of a query in terms of the database signa-
ture. It also provides an constructive approach to build the reformulation with
sufficient conditions. We are interested in safe-range reformulations of queries
because their range-restricted syntax is needed to reduce the original query
answering problem to a relational algebra evaluation (e.g., via SQL) over the
original database [1]. Our framework points out several conditions on the ontolo-
gies and the queries to guarantee the existence of a safe-range reformulation.
We show that these conditions are feasible in practice and we also provide an
implementable method to ensure their validation. Standard theorem proving
techniques can be used to compute the reformulation.

In order to be complete, our framework is applicable to ontologies and queries
expressed in any fragment of first-order logic enjoying finitely controllable deter-
minacy [26], a stronger property than the finite model property of the logic.
If the employed logic does not enjoy finitely controllable determinacy our app-
roach would become sound but incomplete, but still effectively implementable
using standard theorem proving techniques. We have explored non-trivial appli-
cations where the framework is complete; in this chapter, the application with
ALCHOI and SHOQ ontologies and concept queries is discussed. We show how
(i) to check whether the answers to a given query with an ontology are solely
determined by the extension of the DBox (database) predicates and, if so, (ii)
to find an equivalent rewriting of the query in terms of the DBox predicates to
allow the use of standard database technology (SQL) for answering the query.
This means we benefit from the low computational complexity in the size of the
data for answering queries on relational databases. In addition, it is possible to
reuse standard techniques of description logics reasoning to find rewritings, such
as in the paper by [31].

The query reformulation problem has received strong interest in classical
relational database research as well as modern knowledge representation stud-
ies. Differently from the mainstream research on query reformulation [21], which
is mostly based on perfect or maximally contained rewritings with sound views
under relatively inexpressive constraints (see, e.g., the DL-Lite approach in [2]),
we focus here on exact rewritings with exact views, since it characterises pre-
cisely the query answering problem with ontologies and databases, in the case



Effective Query Answering with Ontologies and DBoxes 303

when the exact semantics of the database must be preserved. As an example,
consider a ground negative query over a given standard relational database; by
adding an ontology on top of it, its answer is not supposed to change—since
the query uses only the signature of the database and additional constraints are
not supposed to change the meaning of the query—whereas if the database were
treated as an ABox (sound views) the answer may change in presence of an
ontology. This may be important from the application perspective: a DBox pre-
serves the behaviour of the legacy application queries over a relational database.
Moreover, by focussing on exact reformulations of definable queries (as opposed
to considering the certain answer semantics to arbitrary queries, such as in DL-
Lite), we guarantee that answers to queries can be subsequently composed in an
arbitrary way: this may be important to legacy database applications. A com-
prehensive summary comparing the ABox- and DBox-based approaches to data
representation in description logics appears in [8].

The approach to query reformulation with first-order theories based on exact
rewritings was first thoroughly analysed in [26] by Nash, Segoufin and Vianu.
They addressed the question whether a query can be answered using a set of
(exact) views by means of an exact rewriting over a database represented as
a DBox. The authors defined and investigated the notions of determinacy of a
query by a set of views and its connection to exact rewriting. Nash, Segoufin
and Vianu also studied several combinations of query and view languages try-
ing to understand the expressivity of the language required to express the exact
rewriting, and, thus, they obtained results on the completeness of rewriting lan-
guages. They investigated languages ranging from full first-order logic to con-
junctive queries. In a more practical database settings, Toman and Weddell have
long advocated the use of exact reformulations for automatic generation of plans
that implement user queries under system constraints–a process they called query
compilation [32]. The exact rewriting framework has also been applied to devise
the formal foundations of the problems of view update and of characterising
unique solutions in data exchange. In the former problem, a target view of some
source database is updatable if the source predicates have an exact reformula-
tion given the view over the target predicates [14]. In the latter problem, unique
solutions exist if the target predicates have an exact reformulation given the
data exchange mappings over the source predicates [27]. Another application of
DBoxes has been in the context of constraints representation in ontologies [29].

The chapter is organised as follows: Sect. 2 provides the necessary formal
background and definitions; Sect. 3 introduces the notion of a query determined
by a database; Sect. 4 introduces a characterisation of the query reformulation
problem; in Sects. 5 and 6 the conditions allowing for an effective reformulation
are analysed, and a sound and complete algorithm to compute the reformulation
is introduced. Finally, we present the case of ALCHOI and SHOQ ontologies
in Sect. 7 and conclude in Sect. 8. This chapter extends the work first presented
in [17,18].
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2 Preliminaries

Let FOL(C,P) be a classical function-free first-order language with equality over
a signature Σ = (C,P), where C is a set of constants and P is a set of predicates
with associated arities. The arity of a predicate P we denote by ar(P ). In the
rest we will refer to an arbitrary fragment of FOL(C,P), which will be called L.
We denote by σ(φ) the signature of the formula φ, that is all the predicates and
constants occurring in φ. We denote with P{φ1,...,φn} the set of all predicates
occurring in the formulas φ1, . . . , φn, with C{φ1,...,φn} the set of all constants
occurring in the formulas φ1, . . . , φn; for the sake of brevity, instead of P{φ}
(resp. C{φ}) we write Pφ (resp. Cφ). We denote with σ(φ1, . . . , φn) the signature
of the formulas φ1, . . . , φn, namely the union of P{φ1,...,φn} and C{φ1,...,φn}. We
denote the set of all variables appearing in φ as var(φ), and the set of the free
variables appearing in φ as free(φ); we may use for φ the notation φ(x̄), where
x̄ = free(φ) is the (possibly empty) set of free variables of the formula. The
notation φ(x̄, ȳ) means free(φ) = x̄ ∪ ȳ. A formula in FOL(C,P) is in prenex
normal form, if it is written as a string of quantifiers followed by a quantifier-free
part. Every formula is equivalent to a formula in prenex normal form and can
be converted into it in polynomial time [23].

Let X be a countable set of variables we use. We define a substitution Θ to be
a total function X �→ S assigning an element of the set S to each variable in X.
We can see substitution as a countable set of assignments of elements from S to
elements from X. That is, if X = {x1, x2, . . .}, then Θ := {x1 → s1, x2 → s2, . . .},
where s1, s2, . . . are elements from S assigned to corresponding variables from X

by Θ.
As usual, an interpretation I = 〈ΔI , ·I〉 includes a non-empty set – the

domain ΔI – and an interpretation function ·I defined over constants and
predicates of the signature. We say that interpretations I = 〈ΔI , ·I〉 and
J = 〈ΔJ , ·J 〉 are equal, written I = J , if ΔI = ΔJ and ·I = ·J . We use
standard definitions of validity, satisfiability and entailment of a formula. An
extension of φ(x̄) in interpretation I = 〈ΔI , ·I〉, denoted (φ(x̄))I , is the set of
substitutions from the variable symbols to elements of ΔI which satisfy φ in I.
That is,

(φ(x̄))I = {Θ : X �→ ΔI | I, Θ |= φ(x̄)}.

If φ is closed, then the extension depends on whether φ holds in I = 〈ΔI , ·I〉
or not. Thus, for a closed formula φ, (φ)I = {Θ | Θ : X �→ ΔI} – the set of all
possible substitutions assigning elements from the domain ΔI to variables X –
if I |= φ, and (φ)I = ∅, if I �|= φ.

Given an interpretation I = 〈ΔI , ·I〉, we denote by I|S the interpretation
restricted to a smaller signature S ⊆ P ∪ C, i.e., the interpretation with the
same domain ΔI and the same interpretation function ·I defined only for the
constants and predicates from the set S. The semantic active domain of the
signature σ′ ⊆ P ∪ C in an interpretation I, denoted adom(σ′, I), is the set
of all elements of the domain ΔI occurring in interpretations of predicates and
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constants from σ′ in I:

adom(σ′, I) :=
⋃

P∈σ′

⋃

(a1,...,an)∈P I
{a1, . . . , an} ∪

⋃

c∈σ′
{cI}.

If σ′ = σ(φ), where φ is a formula, we call adom(σ(φ), I) a semantic active
domain of the formula φ in an interpretation I.

Let X ⊆ X be a set of variables and S a set. Let us consider the restriction of
a substitution to a set of variables from X. That is, we consider a function Θ|X
assigning an element in S to each variable in X. We abuse the notation and call
such restriction simply substitution. Thus, hereafter substitution is a function
from a set of variables X ⊆ X to a set S: Θ : X �→ S, including the empty
substitution ε when X = ∅. Domain and image (range) of a substitution Θ are
written as dom(Θ) and rng(Θ) respectively.

Given a subset of the set of constants C
′ ⊆ C, we write that a formula φ(x̄)

is true in an interpretation I with its free variables substituted according to a
substitution Θ : x̄ �→ C

′ as I |= φ(x̄/Θ). Given an interpretation I = 〈ΔI , ·I〉
and a subset of its domain Δ ⊆ ΔI , we write that a formula φ(x̄) is true in
I with its free variables interpreted according to a substitution Θ : x̄ �→ Δ as
I, Θ |= φ(x̄).

A (possibly empty) finite set KB of closed formulas will be called an ontology.
As usual, an interpretation in which a closed formula is true is called a model
for the formula; the set of all models of a formula φ (respectively KB) is denoted
by M(φ) (respectively M(KB)).

2.1 DBoxes

A DBox DB is a finite set of ground atoms of the form P (c1, . . . , cn), where
P ∈ P, n-ary predicate, and ci ∈ C (1 ≤ i ≤ n). DBox can be seen as a variant
of database representation. The set of all predicates appearing in a DBox DB
is denoted by PDB, and the set of all constants appearing in DB is called the
active domain of DB, and is denoted by CDB.

An interpretation I embeds a DBox DB, if aI = a for every DBox con-
stant a ∈ CDB (the standard name assumption (SNA), customary in databases,
see [1]) and that, for any o1, . . . , on ∈ ΔI , (o1, . . . , on) ∈ P I if and only if
P (o1, . . . , on) ∈ DB. We denote the set of all interpretations embedding a DBox
DB as E(DB). A DBox DB is legal for an ontology KB if there exists a model
of KB embedding DB.

In other words, in every interpretation embedding DB the interpretation of
any DBox predicate is always the same and it is given exactly by its content
in the DBox; this is, in general, not the case for the interpretation of the non-
DBox predicates. We say that all the DBox predicates are closed, while all the
other predicates are open and may be interpreted differently in different inter-
pretations. We do not consider here the open world assumption (the ABox ) for
embedding a DBox in an interpretation. In an open world, an interpretation I
soundly embeds a DBox if it holds that (c1, . . . , cn) ∈ P I if (but not only if)
P (c1, . . . , cn) ∈ DB.
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In order to allow for an arbitrary DBox to be embedded, we generalise the
standard name assumption to all the constants in C; this implies that the domain
of any interpretation necessarily includes the set of all the constants C, which
we assume to be finite. The finiteness of C corresponds to the finite ability of
a database system to represent distinct constant symbols; C is meant to be
unknown in advance, since different database systems may have different limits.
We will see that the framework introduced here will not depend on the choice
of C.

If σ′ ⊆ PDB ∪ C, then for any interpretations I and J embedding DB we
have: adom(σ′, I) = adom(σ′,J ); so, for such a case we introduce the nota-
tion adom(σ′,DB) := adom(σ′, I), where I is any interpretation embedding the
DBox DB, and call it a semantic active domain of the signature σ′ in a DBox DB.
Intuitively, adom(σ′,DB) includes the constants from σ′ and from DB appearing
in the relations corresponding to the predicates from σ′. If σ′ = σ(φ), where φ
is a formula expressed in terms of only DBox predicates from PDB (and possi-
bly some constants), we call adom(σ(φ),DB) a semantic active domain of the
formula φ in a DBox DB.

2.2 Queries

A query is a (possibly closed) formula. Given a query Q(x̄). We define the certain
answer to Q(x̄) over a DBox DB and under an ontology KB as follows:

Definition 1 (Certain answer). The (certain) answer to a query Q(x̄) over
a DBox DB under an ontology KB is the set of substitutions with constants:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}.

Query answering is defined as an entailment problem, and as such it is going
to have the same (high) complexity as entailment.

Note that if a query Q is closed (i.e., a boolean query), then the certain
answer is {ε} if Q is true in all the models of the ontology embedding the DBox,
and ∅ otherwise. In the following, we assume that the closed formula Q(x̄/Θ)
is neither a valid fromula nor an inconsistent formula under the ontology KB –
with Θ a substitution Θ : x̄ �→ C assigning to variables distinct constants not
appearing in Q, nor in KB, nor in CDB; this assumption is needed in order to
avoid trivial reformulations.

One can see that if an ontology is inconsistent or a DBox is illegal for an
ontology, then the certain answer to any query over the DBox under the ontology
is a set of all possible substitutions. Also, if an ontology is a tautology, we
actually have a simple case of query answering over a database (DBox) without
an ontology. Thus, we can discard these cases and assume to have only consistent
non-tautological ontologies and legal DBoxes.

We now show that we can weaken the standard name assumption for the
constants by just assuming unique names, without changing the certain answers.
As we said before, an interpretation I satisfies the standard name assumption
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if cI = c for any c ∈ C. Alternatively, an interpretation I satisfies the unique
name assumption (UNA) if aI �= bI for any different a, b ∈ C. We denote the set
of all interpretations satisfying the standard name assumption as I(SNA). We
denote the set of all interpretations satisfying the unique name assumption as
I(UNA).

The following proposition allows us to freely interchange the standard name
and the unique name assumptions with interpretations embedding DBoxes. This
is of practical advantage, since we can encode the unique name assumption in
classical first-order logic reasoners, and many description logics reasoners do
support natively the unique name assumption as an extension to OWL.

Proposition 1 (SNA vs UNA). For any query Q(x̄), ontology KB and DBox
DB,

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀I ∈ I(SNA) ∩ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀I ∈ I(UNA) ∩ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}.

Since a query can be an arbitrary first-order formula, its answer may depend
on the domain, which we do not know in advance. For example, the query Q(x) =
¬Student(x) over the database (DBox) {Student(a), Student(b)}, with domain
{a, b, c} has the answer {x → c}, while with domain {a, b, c, d} has the answer
{x → c, x → d}. Therefore, the notion of domain independent queries has been
introduced in relational databases. Here we adapt the classical definitions [1,3]
to our framework: we need a more general version of domain independence,
namely domain independence w.r.t an ontology, i.e., restricted to the models of
an ontology.

Definition 2 (Domain independence). A formula Q(x̄) is domain indepen-
dent with respect to an ontology KB if and only if for every two models I and J of
KB (i.e., I = 〈ΔI , ·I〉 and J = 〈ΔJ , ·J 〉) which have the same interpretations
for all the predicates and constants, and for every substitution Θ : x̄ �→ ΔI ∪ΔJ

we have:

rng(Θ) ⊆ ΔI and I, Θ |= Q(x̄) iff

rng(Θ) ⊆ ΔJ and J , Θ |= Q(x̄).

The above definition reduces to the classical definition of domain indepen-
dence whenever the ontology is empty. A weaker version of domain independence
– which is relevant for open formulas – is the following.

Definition 3 (Ground domain independence). A formula Q(x̄) is ground
domain independent if and only if Q(x̄/Θ) is domain independent for every
substitution Θ : x̄ �→ C.

For example, the formula ¬P (x) is ground domain independent, but it is not
domain independent.

The problem of checking whether a FOL formula is domain independent
is undecidable [1]. That is why we consider a well known domain independent
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syntactic fragment of FOL introduced by Codd, namely the safe-range fragment.
We recall the formal definition [1] of a safe-range formula. First, a formula should
be transformed to a safe-range normal form, denoted by srnf. A formula φ in
FOL(C,P) can be transformed to srnf(φ) by the following steps [1]:

– Variable substitution: no distinct pair of quantifiers may employ same
variable;

– Remove universal quantifiers;
– Remove implications;
– Push negation;
– Flatten ‘and’s and ‘or’s.

Definition 4 (Range restriction of a formula). Range restriction of a for-
mula φ in a safe-range normal form, denoted rr(φ), is a subset of free(φ) or
⊥ recursively defined as follows:

– φ = R(t1, . . . , tn), where each ti is either a variable or a constant: rr(φ) is a
set of variables in t1, . . . , tn;

– φ = (x = c) or φ = (c = x), where c is a constant: rr(φ) = {x};
– φ = (x = y): rr(φ) = ∅;
– φ = φ1 ∧ φ2: rr(φ) = rr(φ1) ∪ rr(φ2);
– φ = φ1 ∨ φ2: rr(φ) = rr(φ1) ∩ rr(φ2);
– φ = φ1∧(x = y): rr(φ) = rr(φ1) if {x, y}∩rr(φ1) = ∅; rr(φ) = rr(φ1)∪{x, y}

otherwise;
– φ = ¬φ1: rr(φ) = ∅ ∩ rr(φ1);
– φ = ∃xφ1: rr(φ) = rr(φ1) \ {x} if x ∈ rr(φ1); rr(φ) = ⊥ otherwise,

where ⊥ ∪ Z = ⊥ ∩ Z = ⊥ \ Z = Z \ ⊥ = ⊥ for any range restriction of a
formula Z.

Definition 5 (Safe-range formula). A formula φ in FOL(C,P) is safe-range
if and only if rr(srnf(φ)) = free(φ).

Definition 6 (Ground safe-range formula). A formula Q(x̄) is ground safe-
range if and only if Q(x̄/Θ) is safe-range for every substitution Θ : x̄ �→ C.

It was proved in [1] that a safe-range fragment is equally expressive to a domain
independent fragment; indeed a well-known Codd’s theorem states that any safe-
range formula is domain independent, and any domain independent formula can
be easily transformed into a logically equivalent safe-range formula.

Intuitively, a formula is safe-range if and only if its variables are bounded
by positive predicates or equalities. For example, the formula ¬A(x) ∧ B(x)
is safe-range, while queries ¬A(x) and ∀x.A(x) are not. An ontology KB is
safe-range (domain independent), if every formula in KB is safe-range (domain
independent). The safe-range fragment of first-order logic with the standard
name assumption is equally expressive to the relational algebra, which is the
core of SQL [1].
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3 Determinacy

The certain answer to a query includes all the substitutions which make the query
true in all the models of the ontology embedding the DBox: so, if a substitution
would make the query true only in some model, then it would be discarded
from the certain answer. In other words, it may be the case that the answer
to the query is not necessarily the same among all the models of the ontology
embedding the DBox. In this case, the query is not fully determined by the given
source data; indeed, given the DBox, there is some answer which is possible, but
not certain. Due to the indeterminacy of the query with respect to the data,
the complexity to compute the certain answer in general increases up to the
complexity of entailment in the fragment of first-order logic used to represent
the ontology. We focus on the case when a query has the same answer over all
the models of the ontology embedding the DBox, namely, when the information
requested by the query is fully available from the source data without ambiguity.
In this way, the indeterminacy disappears, and the complexity of the process
may decrease (see Sect. 4). The determinacy of a query w.r.t. a DBox (source
database) [13,25,26] has been called implicit definability of a formula (the query)
from a set of predicates (the DBox predicates) by Beth [7].

Definition 7 (Finite Determinacy or Implicit Definability). A query
Q(x̄) is (finitely) determined by (or implicitly definable from) the DBox pred-
icates PDB under KB if and only if for any two models I and J of the ontology
KB – both with a finite interpretation to the DBox predicates PDB – when-
ever I|PDB∪C = J |PDB∪C then for every substitution Θ : x̄ �→ ΔI we have:
I, Θ |= Q(x̄) if and only if J , Θ |= Q(x̄).

Intuitively, the answer to an implicitly definable query does not depend on
the interpretation of non-DBox predicates. Once the DBox and a domain are
fixed, it is never the case that a substitution would make the query true in some
model of the ontology and false in others, since the truth value of an implic-
itly definable query depends only on the interpretation of the DBox predicates
and constants and on the domain (which are fixed). In practice, by focusing on
finite determinacy of queries we guarantee that the user can always interpret the
answers as being not only certain, but also exact – namely that whatever is not
in the answer can never be part of the answer in any possible world.

In the following we focus on ontologies and queries in those fragments of
FOL(C,P) for which determinacy under models with a finite interpretation
of DBox predicates (finite determinacy) and determinacy under models with
an unrestricted interpretation of DBox predicates (unrestricted determinacy)
coincide. We say that these fragments have finitely controllable determinacy.
Sometimes it may be the case that we consider ontology in one fragment (F1) and
query in another one (F2). Then we say that fragment F1 has finitely controllable
determinacy of queries from fragment F2 if for every query expressed in F2 and
for every ontology expressed in F1 finite determinacy of the query under the
ontology coincides with unrestricted determinacy.
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We require that whenever a query is finitely determined then it is also deter-
mined in unrestricted models (the reverse is trivially true). Indeed, the results
we obtained would fail if finite determinacy and unrestricted determinacy do
not coincide: it can be shown [20] that Theorem 3 below fails if we consider only
models with a finite interpretation of DBox predicates.

Example 1 (Example from database theory). Let P = {P,R,A}, PDB = {P,R},

KB = {∀x, y, z.R(x, y) ∧ R(x, z) → y = z,

∀x, y.R(x, y) → ∃z.R(z, x),
(∀x, y.R(x, y) → ∃z.R(y, z)) → (∀x.A(x) ↔ P (x))}.

KB is domain independent. The formula ∀x, y.R(x, y) → ∃z.R(y, z) is entailed
from the first two formulas only over finite interpretations of R. The query
Q = A(x) is domain independent and finitely determined by P (it is equivalent
to P (x) under the models with a finite interpretation of R), but it is not deter-
mined by any DBox predicate under models with an unrestricted interpretation
of R. The fragment in which KB and Q are expressed does not enjoy finitely
controllable determinacy.

The next theorem immediately follows from the example above.

Theorem 1. Domain independent fragment does not have finitely controllable
determinacy.

Let Q be any formula in FOL(C,P) and Q̃ be the formula obtained from it by
uniformly replacing every occurrence of each non-DBox predicate P with a new
predicate P̃ . We extend this renaming operator ·̃ to any set of formulas in a
natural way. One can check whether a query is implicitly definable by using the
following theorem.

Theorem 2 (Testing determinacy, [7]). A query Q(x̄) is implicitly definable
from the DBox predicates PDB under the ontology KB if and only if KB ∪K̃B |=
∀x̄.Q(x̄) ↔ Q̃(x̄).

This theorem means, that the problem of checking whether a query is implicitly
definable reduces to the problem of checking entailment in first-order logic.

The exact reformulation of a query [26] (also called explicit definition by [7])
is a formula logically equivalent to the query which makes use only of DBox
predicates and constants.

Definition 8 (Exact reformulation or explicit definability). A query
Q(x̄) is explicitly definable from the DBox predicates PDB under the ontol-
ogy KB if and only if there is some formula Q̂(x̄) in FOL(C,P), such that
KB |= ∀x̄.Q(x̄) ↔ Q̂(x̄) and σ(Q̂) ⊆ PDB. We call this formula Q̂(x̄) an exact
reformulation of Q(x̄) under KB over PDB.
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Determinacy of a query is completely characterised by the existence of an
exact reformulation of the query: it is well known that a first-order query is
determined by DBox predicates if and only if there exists a first-order exact
reformulation.

Theorem 3 (Projective Beth definability, [7]). A query Q(x̄) is implicitly
definable from the DBox predicates PDB under an ontology KB, if and only if it
is explicitly definable as a formula Q̂(x̄) in FOL(C,P) over PDB under KB.

3.1 Finite Controllability of Determinacy for GNFO

We consider a guarded negation first-order logic (GNFO) [4,5] – a fragment
of FOL in which all occurrences of negation are guarded by an atomic predi-
cate. Formally it consists of all formulas generated by the following recursive
definition:

φ ::= R(t1, . . . , tn) | t1 = t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x. φ | α ∧ ¬φ (1)

where each ti is either a variable or a constant, α in α∧¬φ is an atomic formula
(possibly an equality statement) containing all free variables of φ. This fragment
is “good” in a sense that it is decidable and has finite model property, that we
use to prove Theorem 4.

Definition 9 (Answer-guarded formula). A first-order logic formula is
answer-guarded if it has a form

Atom(x̄) ∧ ϕ(x̄),

where ϕ(x̄) is some first-order logic formula and Atom is a predicate which arity
is equal to the number of free variables of the formula.

The following theorem holds.

Theorem 4. GNFO has finitely controllable determinacy of

– answer-guarded GNFO queries;
– boolean GNFO queries;
– GNFO queries with one free variable.

This result is interesting as it is and also important for us because we consider
GNFO subfragments of DLs for application of our query reformulation frame-
work. Queries in these subfragments are either boolean or with one free variable
(concept queries) (Sect. 7).
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4 Exact Safe-Range Query Reformulation

In this section we analyse the conditions under which the original query answer-
ing problem corresponding to an entailment problem can be reduced systemat-
ically to a model checking problem of a safe-range formula over the database
(e.g., using a database system with SQL).

Given a DBox signature PDB, an ontology KB, and a query Q(x̄) expressed
in some fragment of FOL(C,P) and determined by the DBox predicates, our
goal is to find a safe-range reformulation Q̂(x̄) of Q(x̄) in FOL(C,P), that when
evaluated as a relational algebra expression over a legal DBox, gives the same
answer as the certain answer to Q(x̄) over the DBox under KB. This can be
reformulated as the following problem:

Problem 1 (Exact safe-range query reformulation). Find an exact reformulation
Q̂(x̄) of Q(x̄) under KB as a safe-range query in FOL(C,P) over PDB.

Since an exact reformulation is equivalent under the ontology to the original
query, the certain answer to the original query and to the reformulated query
are identical. More precisely, the following proposition holds.

Proposition 2. Given a DBox DB, let Q(x̄) be implicitly definable from PDB
under KB and let Q̂(x̄) be an exact reformulation of Q(x̄) under KB over PDB,
then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q̂(x̄/Θ)}.

From the above equation it is clear that in order to answer to an exactly refor-
mulated query, one may still need to consider all the models of the ontology
embedding the DBox, i.e., we still have an entailment problem to solve. The
following theorem states the condition to reduce the original query answering
problem – based on entailment – to the problem of checking the validity of the
exact reformulation over a single model: the condition is that the reformulation
should be domain independent.

Theorem 5 (Adequacy of exact safe-range query reformulation). Let
DB be a DBox which is legal for KB, and let Q(x̄) be a query. If Q̂(x̄) is an
exact domain independent (or safe-range) reformulation of Q(x̄) under KB over
PDB, then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :

I|PDB∪C |= Q̂(x̄/Θ)}.

Since, given a DBox DB, for all interpretations I = 〈C, ·I〉 embedding DB there
is only one interpretation I|PDB∪C with the signature restricted to the DBox
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predicates, this theorem reduces the entailment problem to a model checking
problem.

A safe-range reformulation is necessary to transform a first-order query to a
relational algebra query which can then be evaluated by using SQL techniques.
The theorem above shows in addition that being safe-range is also a sufficient
property for an exact reformulation to be correctly evaluated as an SQL query.

Let us now see an example in which we cannot reduce the problem of answer-
ing an exact reformulation to model checking over a DBox, if the exact reformu-
lation is not safe-range.

Example 2. Let P = {P,A}, PDB = {P}, C = {a}, DB = {P (a, a)}, KB =
{∀y. P (a, y) ∨ A(y)}, Q(x̄) = Q̂(x̄) = ∀y. P (x, y) (i.e., x̄ = {x}).

– C includes the active domain CDB (it is actually equal).
– DB is legal for KB because there is I = 〈{a}, ·I〉 such that P I = {(a, a)},

AI = ∅ and obviously, I ∈ M(KB).
– {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} = ∅

because one can take I = 〈{a, b}, ·I〉 such that P I = {(a, a)},
AI = {b}; then I ∈ M(KB) ∩ E(DB), but for the only possible substitution
{x → a} we have: I �|= ∀y P (a, y).

– However,
{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :
I|PDB∪C |= Q̂(x̄/Θ)} = {x → a}
As we have seen, answers to a query for which a reformulation exists contain

only constants from the active domain of the DBox and the query (Theorem5);
therefore, ground statements in the ontology involving non-DBox predicates and
non-active domain constants (for example, as ABox statements) will not play
any role in the final evaluation of the reformulated query over the DBox.

5 Conditions for an Exact Safe-Range Reformulation

We have just seen the importance of getting an exact safe-range query reformu-
lation. In this section we are going to study the conditions under which an exact
safe-range query reformulation exists.

First of all, we will focus on the semantic notion of safe-range, namely domain
independence. While implicit definability is – as we already know – a sufficient
condition for the existence of an exact reformulation, it does not guarantee alone
the existence of a domain independent reformulation.

Example 3. Let P = {A,B}, PDB = {B}, KB = {∀x.B(x) ↔ A(x)}, Q(x) =
¬A(x). Then Q(x) is implicitly definable from PDB under KB, and every exact
reformulation of Q(x) over PDB under KB is logically equivalent to ¬A(x) and
not domain independent.
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By looking at the example, it seems that the reason for the non domain
independent reformulation lies in the fact that the ontology, which is domain
independent, cannot guarantee existence of an exact domain independent refor-
mulation of the non domain independent query. However, let us consider the
following examples.

Example 4. Let PDB = {A, C}, KB = {¬A(a), ∀x.A(x) ↔ B(x)} and let a
query Q(x) = ∃y ¬B(y)∧C(x). It is easy to see that KB is domain independent
and Q(x) is not. Q(x) is implicitly definable from PDB under KB, and Q̂(x) =
¬A(a) ∧ C(x) is an exact domain independent reformulation of Q(x).

Example 5. Let PDB = {B}, KB = {¬A(a), ∀x.A(x) ↔ B(x)} and let a query
Q = ¬A(a). KB and Q are domain independent. Q is implicitly definable from
PDB under KB, and Q̂ = ∃y ¬B(y) is an exact reformulation of Q, which is not
domain independent.

That is, the following proposition holds.

Proposition 3. Domain independence of an ontology and an original query
does not guarantee domain independence of an exact reformulation of the query
under the ontology over any set of DBox predicates.

It is obvious that in spite of the fact that the query Q(x) form the Example 4 is
not domain independent, it is domain independent with respect to the ontology
KB. In other words, in this case the ontology guarantees the existence of an exact
domain independent reformulation. With queries that are domain independent
with respect to an ontology, the following theorem holds, giving the semantic
requirements for the existence of an exact domain independent reformulation.

Theorem 6 (Semantic characterisation). Given a set of DBox predicates
PDB, a domain independent ontology KB, and a query Q(x̄). A domain indepen-
dent exact reformulation Q̂(x̄) of Q(x̄) over PDB under KB exists if and only if
Q(x̄) is implicitly definable from PDB under KB and it is domain independent
with respect to KB.

The above theorem shows us the semantic conditions to have an exact domain
independent reformulation of a query, but it does not give us a method to com-
pute such reformulation and its equivalent safe-range form. The following theo-
rem gives us sufficient conditions for the existence of an exact safe-range refor-
mulation in any decidable fragment of FOL(C,P) where finite and unrestricted
determinacy coincide (i.e., a fragment with finitely controllability of determi-
nacy), and gives us a constructive way to compute it, if it exists.

Theorem 7 (Constructive). Given a DBox DB. If:

1. KB is a safe-range ontology (that is, KB is domain independent),
2. Q(x̄) is a safe-range query (that is, Q(x̄) is domain independent),
3. KB ∪K̃B |= ∀x̄.Q(x̄) ↔ Q̃(x̄) (that is, Q(x̄) is implicitly definable from PDB

under KB),
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then there exists an exact reformulation Q̂(x̄) of Q(x̄) as a safe-range query in
FOL(C,P) over PDB under KB that can be obtained constructively.

In order to constructively compute the exact safe-range query reformulation
we use the tableau based method to find the Craig’s interpolant [15] to compute
Q̂(x̄) from a validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄)). See
Sect. 6 for full details.

Let us now consider a fully worked out example, adapted from the paper
by [26].

Example 6. Given: P = {R, V1, V2, V3}, PDB = {V1, V2, V3},

KB = {∀x, y. V1(x, y) ↔ ∃z, v.R(z, x) ∧ R(z, v) ∧ R(v, y),
∀x, y. V2(x, y) ↔ ∃z.R(x, z) ∧ R(z, y),
∀x, y. V3(x, y) ↔ ∃z, v.R(x, z) ∧ R(z, v) ∧ R(v, y)},

Q(x, y) = ∃z, v, u.R(z, x) ∧ R(z, v) ∧ R(v, u) ∧ R(u, y).

The conditions of the theorem are satisfied: Q(x, y) is implicitly definable from
PDB under KB (since σ(Q) ⊆ PDB); Q(x, y) is safe-range; KB is safe-range.
Therefore, with the tableau method one finds the Craig’s interpolant to compute
Q̂(x, y) from a validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄))
and obtain Q̂(x, y) = ∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y)) – an exact ground
safe-range reformulation.

Since the answer to Q̂(x, y) is in the semantic active domain of the signature
σ(Q̂) ⊆ PDB ∪ C

̂Q in the DBox DB (it follows from Theorem5), all fee vari-
ables in Q̂(x, y) can be “guarded” by some DBox predicates or constants. Note
that Q(x, y) = ∃z, v, u.R(z, x) ∧ R(z, v) ∧ R(v, u) ∧ R(u, y) ≡KB ∃z, v.R(z, x) ∧
R(z, v)∧V2(v, y) ≡KB Q(x, y)∧V2(v, y) (where ‘≡KB’ means “logically equivalent
with respect to KB”). Then KB |= Q(x, y) ↔ Q̂(x, y) ∧ ∃v. V2(v, y). Therefore,
Q̂(x, y) ∧ ∃v. V2(v, y) = (∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y))) ∧ ∃v. V2(v, y) is
an exact safe-range reformulation of Q(x, y) from PDB under KB.

6 Constructing the Safe-Range Reformulation

In this section we introduce a method to compute a safe-range reformulation of
an implicitly definable query when conditions in Theorem7 are satisfied. The
method is based on the notion of interpolant introduced by [11].

Definition 10 (Interpolant). The sentence χ in FOL(C,P) is an interpolant
for the sentence φ → ψ in FOL(C,P), if all predicate and constant symbols of χ
are in the set of predicate and constant symbols of both φ and ψ, and both φ → χ
and χ → ψ are valid sentences in FOL(C,P).

Theorem 8 (Craig’s interpolation). If φ → ψ is a valid sentence in
FOL(C,P), and neither φ nor ψ are valid, then there exists an interpolant.
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Note that the Beth definability (Theorem3) and Craig’s interpolation theo-
rem do not hold for all fragments of FOL(C,P): an interpolant may not always
be expressed in the fragment itself, but obviously it is in FOL(C,P) (because
of Theorem 8).

An interpolant is used to find an exact reformulation of a given implicitly
definable query as follows.

Theorem 9 (Interpolant as definition). Let Q(x̄) be a query with n ≥ 0 free
variables implicitly definable from the DBox predicates PDB under the ontology
KB. Then, the closed formula with c1, . . . , cn distinct constant symbols in C not
appearing in KB or Q(x̄):

((
∧

KB) ∧ Q(x̄/c1, . . . , cn)) → ((
∧

K̃B) → Q̃(x̄/c1, . . . , cn)) (2)

is valid, and its interpolant Q̂(c1, . . . , cn/x̄) is an exact reformulation of Q(x̄)
under KB over PDB.

Therefore, to find an exact reformulation of an implicitly definable query in
terms of DBox predicates it is enough to find an interpolant of the implication (2)
and then to substitute all the constants c1, . . . , cn back with the free variables x̄ of
the original query. An interpolant can be constructed from a validity proof of (2)
by using automated theorem proving techniques such as tableau or resolution.
In order to guarantee the safe-range property of the reformulation, we use a
tableau method as in the book by [15].

6.1 Tableau-Based Method to Compute an Interpolant

In this section we recall in our context the tableau based method to compute an
interpolant. This method was described and its correctness was proved in [15].

Assume φ → ψ is valid, therefore φ ∧ ¬ψ is unsatisfiable. Then there is a
closed tableau corresponding to φ∧¬ψ. In order to compute an interpolant from
this tableau one needs to modify it to a biased tableau.

Definition 11 (Biased tableau). A biased tableau for formulas φ ∧ ¬ψ is a
tree T = (V,E) where:

– V is a set of nodes, each node is labelled by a set of biased formulas. A biased
formula is an expression in the form of L(ϕ) or R(ϕ) where ϕ is a formula.
For each node n, S(n) denotes the set of biased formulas labelling n.

– The root of the tree is labelled by {L(φ), R(¬ψ)}
– E is a set of edges. Given 2 nodes n1 and n2, (n1, n2) ∈ E iff there is a biased

completion rule from n1 to n2. We say there is a biased completion rule from
n1 to n2 if

• Y (μ) is the result of applying a rule to X(ϕ), where X and Y refer to L
or R (for some rules, there are two possibilities of choosing Y (μ)), and

• S(n2) = (S(n1) \ {X(ϕ)}) ∪ {Y (μ)}.
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Let C be the set of all constants in the input formulas of the tableau. Cpar

extends C with an infinite set of new constants. A constant is new if it does
not occur anywhere in the tableau. With these notations, we have the following
rules:

– Propositional rules

Negation rules α−rule β−rule
X(¬¬ϕ)

X(ϕ)

X(¬�)

X(⊥)

X(¬⊥)

X(�)

X(ϕ1 ∧ ϕ2)

X(ϕ1)
X(ϕ2)

X(¬(¬ϕ1 ∧ ¬ϕ2))

X(ϕ1) | X(ϕ2)

– First order rules

γ−rule σ−rule
X(∀x.ϕ)

X(ϕ(t))
for any t ∈ Cpar

X(∃x.ϕ)

X(ϕ(c))
for a new constant c

– Equality rules

reflexivity rule replacement rule

X(ϕ)

X(t = t)
t ∈ Cpar occurs in ϕ

X(t = u)
Y (ϕ(t))

Y (ϕ(u))

A node in the tableau is closed if it contains X(ϕ) and Y (¬ϕ). If a node
is closed, no rule is applied. In the other words, it becomes a leaf of the tree.
A branch is closed if it contains a closed node and a tableau is closed if all of
its branches are closed. Obviously, if the standard tableau for first-order logic is
closed then so is the biased tableau and vice versa.

Given a closed biased tableau, the interpolant is computed by applying inter-
polant rules. An interpolant rule is written as S

int−→ I, where I is a formula and
S = {L(φ1), L(φ2), ..., L(φn), R(ψ1), R(ψ2), ..., R(ψm)}.

– Rules for closed branches

r1. S ∪ {L(ϕ), L(¬ϕ)} int−→ ⊥ r2. S ∪ {R(ϕ), R(¬ϕ)} int−→ �
r3. S ∪ {L(⊥)} int−→ ⊥ r4. S ∪ {R(⊥)} int−→ �
r5. S ∪ {L(ϕ), R(¬ϕ)} int−→ ϕ r6. S ∪ {R(ϕ), L(¬ϕ)} int−→ ¬ϕ
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– Rules for propositional cases

p1.
S ∪ {X(ϕ)} int−→ I

S ∪ {X(¬¬ϕ)} int−→ I
p2.

S ∪ {X(�)} int−→ I

S ∪ {X(¬⊥)} int−→ I

p3.
S ∪ {X(⊥)} int−→ I

S ∪ {X(¬�)} int−→ I
p4.

S ∪ {X(ϕ1),X(ϕ2)} int−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−→ I

p5.
S ∪ {L(ϕ1)} int−→ I1 S ∪ {L(ϕ2)} int−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∨ I2

p6.
S ∪ {R(ϕ1)} int−→ I1 S ∪ {R(ϕ2)} int−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∧ I2

– Rules for first order cases:

f1.
S ∪ {X(ϕ(p))} int−→ I

S ∪ {X(∃x.ϕ(x))} int−→ I
where p is a parameter that does not occur in

S or ϕ

f2.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int→ I
if c occurs in {φ1, ..., φn}

f3.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ I
if c occurs in {ψ1, ..., ψm}

f4.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int−→ ∀x.I[c/x]
if c does not occur in {φ1, ..., φn}

f5.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ ∃x.I[c/x]
if c does not occur in {ψ1, ..., ψm}

– Rules for equality cases

e1.
S ∪ {X(ϕ(p)),X(t = t)} int−→ I

S ∪ {X(ϕ(p))} int−→ I
e2.

S ∪ {X(ϕ(u)),X(t = u)} int−→ I

S ∪ {X(ϕ(t)),X(t = u)} int−→ I

e3.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ t = u → I
if u occurs in ϕ(t), ψ1, ..., ψm

e4.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ t = u ∧ I
if u occurs in ϕ(t), ψ1, ..., ψm

e5.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm

e6.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm
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In summary, in order to compute an interpolant of φ and ψ, one first need
to generate a biased tableaux proof of unsatisfiability of φ ∧ ¬ψ using biased
completion rules and then apply interpolant rules from bottom leaves up to the
root. Let us consider an example to demonstrate how the method works.

Example 7. Let P = {S,G,U}, PDB = {S,U},

KB = {∀x(S(x) → (G(x) ∨ U(x)))
∀x(G(x) → S(x))
∀x(U(x) → S(x))
∀x(G(x) → ¬U(x))}

Q(x) = G(x)

Obviously, Q is implicitly definable from S and U , since the ontology states that
G and U partition S. Now we will follow the tableau method to find its exact
reformulation. For compactness, we use the notation SI instead of S

int−→ I.

S0 = {L(∀x(S(x) → (G(x) ∨ U(x)))),
L(∀x(G(x) → S(x))),
L(∀x(U(x) → S(x))),
L(∀x(G(x) → ¬U(x))),
L(G(c)),
R(∀x(S(x) → (G1(x) ∨ U(x)))),
R(∀x(G1(x) → S(x))),
R(∀x(U(x) → S(x))),
R(∀x(G1(x) → ¬U(x))),
R(¬G1(c))}

By applying the rule for ∀ and removing the implication, we have:

S1 = {L(¬S(c) ∨ G(c) ∨ U(c)),
L(¬G(c) ∨ S(c))),
L(¬U(c) ∨ S(c)),
L(¬G(c) ∨ ¬U(c)),
L(G(c)),
R(¬S(c) ∨ G1(c) ∨ U(c)),
R(¬G1(c) ∨ S(c)),
R(¬U(c) ∨ S(c)),
R(¬G1(c) ∨ ¬U(c)),
R(¬G1(c))};

and the interpolant of S1 can be computed as follows:
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S4 ∪ {R(¬S(c)}S(c) S4 ∪ {R(U(c))}¬U(c)

S4 = S3 ∪ {R(¬S(c) ∨ U(c))}(S(c)∧¬U(c))
∨

S3 ∪ {R(G1(c))}�

S3 = S2 ∪ {L(¬U(c))}(S(c)∧¬U(c))
B.7

S2 ∪ {L(¬G(c))}⊥

S2 = S1 ∪ {L(S(c))}(S(c)∧¬U(c))
B.5

S1 ∪ {L(¬G(c))}⊥

S
(S(c)∧¬U(c))
1

B.3

Therefore, S(c)∧¬U(c) is the interpolant and Q̂(x) = S(x)∧¬U(x) is an exact
reformulation of Q(x).

6.2 A Safe-Range Reformulation

Now we want to show that the reformulation computed by the above tableau
based method under the condition of Theorem7 generates a ground safe-range
query.

Theorem 10 (Ground safe-range reformulation). Let KB be an ontology,
and let Q(x̄) be a query which is implicitly definable from PDB under KB. If KB
and Q(x̄) are safe-range then a reformulation Q̂(x̄) obtained using the tableau
method described in Sect. 6.1 is ground safe-range.

In other words, the conditions of Theorem10 guarantee that all quantified
variables in the reformulation are range-restricted. We need to consider now
the still unsafe free variables. The theorem below will help us deal with non-
range-restricted free variables. Let us first define the active domain predicate of
a signature σ′ as the formula:

Adomσ′(x) :=
∨

P∈P∩σ′
(∃x1, . . . , xar(P )−1. P (x, x1, . . . , xar(P )−1) ∨ . . . ∨

∨P (x1, . . . , xar(P )−1, x)) ∨
∨

c∈C∩σ′
(x = c).

If σ′ = σ(φ), where φ is a formula, then instead of Adomσ(φ) we simply write
Adomφ and call it active domain predicate of the formula φ.

Theorem 11 (Range of the query). Let KB be a domain independent ontol-
ogy, and let Q(x1, . . . , xn) be a query which is domain independent with respect
to KB. Then

KB |= ∀x1, . . . , xn.Q(x1, . . . , xn) → AdomQ(x1) ∧ . . . ∧ AdomQ(xn).

Given a safe-range ontology, a safe-range and implicitly definable query is
obviously domain independent with respect to the ontology (by definition). By
Theorem 10 there exists a ground safe-range exact reformulation obtained using
the tableau method. This reformulation is also domain independent with respect
to the ontology (by definition). And then Theorem11 says that the answer to the
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reformulation can only include semantic active domain elements of the reformu-
lation. Therefore, the active domain predicate of the reformulation can be used
as a “guard” for free variables which are not bounded by any positive predicate.
In this way we obtain a new safe-range reformulation from the ground safe-range
one.

Based on Theorems 10 and 11, we propose a complete procedure to construct
a safe-range reformulation in Algorithm 1.

Algorithm 1. Safe-range reformulation
Input: a safe-range KB, a safe-range and implicitly definable query Q(x̄).

Output: an exact safe-range reformulation ̂Q(x̄).

1: Compute the interpolant ̂Q(x̄) as in Theorem 9

2: For each free variable x which is not bounded by any positive predicate in ̂Q(x̄) do
̂Q(x̄) := ̂Q(x̄) ∧ Adom

̂Q(x)

3: Return ̂Q(x̄)

Syntax Semantics
A AI ⊆ ΔI

{o} {oI} ⊆ ΔI

P P I ⊆ ΔI × ΔI

P− {(y, x)|(x, y) ∈ P I}
¬C ΔI\CI

C � D CI ∩ DI

C � D CI ∪ DI

∃R {x|{y|(x, y) ∈ RI} 	= ∅}
∃R.C {x|{y|(x, y) ∈ RI} ∩ CI 	= ∅}
∀R.C {x| if (x, y) ∈ RI then y ∈ CI}

Fig. 1. Syntax and semantics of ALCHOI concepts and roles

7 The Guarded Negation Fragment of ALCHOI and
SHOQ

ALCHOI is an extension of the description logic ALC with role hierarchies, indi-
viduals and inverse roles: it corresponds to the SHOI description logic without
transitive roles. ALCHOI without inverse roles and with qualified cardinality
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Syntax Semantics
A AI ⊆ ΔI

P P I ⊆ ΔI × ΔI

C � D CI ∩ DI

C � D CI ∪ DI

¬C ΔI\CI

{o} {o}I ⊆ ΔI

≥ nP {x|#({y|(x, y) ∈ P I}) ≥ n}
≤ nP {x|#({y|(x, y) ∈ P I}) ≤ n}

≥ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≥ n}
≤ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≤ n}

Fig. 2. Syntax and semantics of SHOQ concepts and roles

restrictions and transitive roles forms the description logic SHOQ. For more
details see, e.g., [22]. The syntax and semantics of ALCHOI and SHOQ con-
cept expressions and roles is summarised in the Figs. 1 and 2 respectively, where
A is an atomic concept, C and D are concepts, o is an individual name, P is an
atomic role, and R is either P or P−. A TBox in ALCHOI is a set of concept
inclusion axioms C � D and role inclusion axioms R � S (where C, D are con-
cepts and R, S are roles) with the usual description logics semantics. A TBox in
SHOQ is defined in the same way without a possibility to express inverse roles
and with additional possibility to express transitivity axioms Trans(P ).

In this section, we present an application of Theorem 7, by introducing
the ALCHOIGN description logic, the guarded negation syntactic fragment of
ALCHOI (Fig. 3), and SHOQGN+ , the extended guarded negation syntactic
fragment of SHOQ (Fig. 4). ALCHOIGN and SHOQGN+ restrict ALCHOI
and SHOQ respectively by just prescribing that negated concepts should be
guarded by some generalised atom – an atomic concept, a nominal, an unqualified
existential restriction (for ALCHOI) or an unqualified atleast number restric-
tion (for SHOQ), i.e., absolute negation is forbidden. ALCHOIGN is actually
at the intersection of the GNFO fragment and ALCHOI (by definition).

Each of these fragments has the very important property of coinciding (being
equally expressive to) with the domain independent and safe-range fragments of
the corresponding description logic, therefore providing an excellent candidate
language for ontologies and queries satisfying the conditions of Theorem7.

R ::= P | P−

B ::= A | {o} | ∃R
C ::= B | ∃R.C | ∃R.¬C | B � ¬C | C � D | C � D

Fig. 3. Syntax of ALCHOIGN concepts and roles
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B ::= A | {o} | ≥ nP
C ::= B | ≥ nP.C | ≥ nP.¬C | B � ¬C | C � D | C � D

Fig. 4. Syntax of SHOQGN+ concepts

Theorem 12 (Expressive power equivalence). The domain independent
(safe-range) fragment of ALCHOI and ALCHOIGN are equally expressive.

Theorem 13 (Expressive power equivalence). The domain independent
(safe-range) fragment of SHOQ and SHOQGN+ are equally expressive.

In other words the first theorem says that any domain independent (or safe-
range) TBox axiom and any domain independent (or safe-range) concept query
in ALCHOI is logically equivalent, respectively, to a TBox axiom and a concept
query in ALCHOIGN , and vice-versa. And the second theorem says that any
domain independent (or safe-range) TBox axiom and any domain independent
(or safe-range) concept query in SHOQ is logically equivalent, respectively, to
a TBox axiom and a concept query in SHOQGN+ , and vice-versa.

7.1 Applying the Constructive Theorem

We want to reformulate concept queries over an ontology with a DBox so that
the reformulated query can be evaluated as an SQL query over the database
represented by the DBox. We consider applications of the Constructive The-
orem 7 in the fragments ALCHOIGN and SHOQGN+ . In this context, the
database is a DBox, the ontology is an ALCHOIGN (SHOQGN+) TBox, and
the query is an ALCHOIGN (SHOQGN+) concept query. A concept query is
either an ALCHOIGN (SHOQGN+) concept expression denoting an open for-
mula with one free variable, or an ALCHOIGN (SHOQGN+) ABox concept
assertion denoting a boolean query.

As expected, a DBox includes ground atomic statements of the form A(a)
and P (a, b) (where A is an atomic concept and P is an atomic role). It is easy
to prove the following propositions:

Proposition 4. ALCHOIGN TBoxes, concept queries are safe-range (domain
independent).

Proposition 5. SHOQGN+ TBoxes, concept queries are safe-range (domain
independent).

We also proved the following theorems.

Theorem 14. ALCHOIGN TBoxes have finitely controllable determinacy of
concept queries.

Theorem 15. SHOQGN+ TBoxes have finitely controllable determinacy of
concept queries.
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Therefore, we satisfy the conditions of Theorem7, with a language which is like
the very expressive ALCHOI description logic, but with guarded negation. And
we also satisfy the conditions of Theorem 7, with a language which is like the
very expressive SHOQ description logic, but with extended guarded negation
(“extended” here means that cardinality restrictions and transitivity axioms
are allowed in SHOQGN+ in spite of the fact that they are not expressible in
GNFO).

We argue that non-guarded negation should not appear in a cleanly designed
ontology, and, if present, should be fixed. Indeed, the use of absolute negative
information – such as, e.g., in “a non-male is a female” (¬ male � female)
– should be discouraged by a clean design methodology, since the subsumer
would include all sorts of objects in the universe (but the ones of the subsumee
type) without any obvious control. Only guarded negative information in the
subsumee should be allowed – such as in the axiom “a non-male person is a
female” (person � ¬ male � female).

This observation suggests a fix for non-guarded negations: for every non-
guarded negation users will be asked to replace it by a guarded one, where the
guard may be an arbitrary atomic concept, or nominal, or unqualified existential
restriction (in the case of ALCHOI) or unqualified atleast number restriction (in
the case of SHOQ). Therefore, the user is asked to make explicit the type of that
concept, in a way to make it domain independent (i.e. belonging to ALCHOIGN

or SHOQGN+). Note that the type could be also a fresh new atomic concept. We
believe that the fix we are proposing for ALCHOI and SHOQ is a reasonable
one, and would make all ALCHOI and SHOQ ontologies eligible to be used
with our framework.

7.2 A Complete Procedure

ALCHOIGN and SHOQGN+ are decidable logics (as a fragments of ALCHOI
and SHOQ respectively) and they are feasible applications of our general frame-
work. Given an ALCHOIGN (SHOQGN+) ontology KB and a concept query
Q in ALCHOIGN (SHOQGN+), we can apply the procedure below to gener-
ate a safe-range reformulation over the DBox concepts and roles (based on the
constructive theorem, all the conditions of which are satisfied), if it exists.

Note that the procedure for checking determinacy and computing the refor-
mulation could be run in offline mode at compile time. Indeed, it could be run
for each atomic concept in the ontology, and store persistently the outcome for
each of them if the reformulation has been successful. This pre-computation may
be an expensive operation, since – as we have seen – it is based on entailment,
but the complexity involves only the size of the ontology and not of the data.

In order to get an idea about the size of the reformulations of concept queries,
for the ALCFI description logic there is a tableau-based algorithm computing
explicit definitions of at most double exponential size [9,10]; this algorithm is
optimal because it is also shown that the smallest explicit definition of an implic-
itly defined concept may be double exponentially long in the size of the input
TBox.
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Input: An ALCHOIGN (SHOQGN+) TBox KB, a concept query Q in ALCHOIGN

(SHOQGN+), and a DBox signature (DBox atomic concepts and roles).

Output: A safe-range reformulation ̂Q expressed over the DBox signature.

1: Check the implicit definability of the query Q by testing if KB ∪ ˜KB |= Q ≡ ˜Q
using a standard OWL2 reasoner (ALCHOIGN and SHOQGN+ are sublanguages
of OWL2). Continue if this holds.

2: Compute a safe-range reformulation ̂Q from the tableau proof generated in step 1
(see Section 6). This can be implemented as a simple extension of a standard
description logic reasoner even in the presence of the most important optimisation
techniques such as semantic branching, absorption, and backjumping as explained
by [31] and [9].

Clearly, similarly to DL-Lite reformulations, more research is needed in order
to optimise the reformulation step in order to make it practical. However, note
that the framework presented here has a clear advantage from the point of view
of conceptual modelling since implicit definitions (that is, queries) under gen-
eral TBoxes can be double exponentially more succinct than acyclic concept
definitions (that is, explicit queries over the DBox).

The case of query answering with unrestricted description logics and DBoxes,
when the rewriting may not be possible at all, has been studied thoroughly
by [24,28] regarding both data and combined complexity.

8 Conclusions and Future Work

We have introduced a framework to compute the exact reformulation of first-
order queries to a database (DBox) under constraints. We have found the exact
conditions which guarantee that a safe-range reformulation exists, and we show
that it can be evaluated as an SQL query over the DBox to give the same
answer as the original query under the constraints. Non-trivial case studies have
been presented in the field of description logics, with the ALCHOI and SHOQ
languages.

This framework is useful in data exchange-like scenarios, where the target
database (made by determined relations) should be materialised as a proper
database, over which arbitrary queries should be performed. This is not achieved
in a context with non-exact reformulations preserving the certain answers. In our
scenario with description logics ontologies reformulations of concept queries are
pre-computed offline once. We have shown that our framework works in theory
also in the case of arbitrary safe-range first-order queries.

Next, we would like to study optimisations of reformulations. From the prac-
tical perspective, since there might be many rewritten queries from one original
query, the problem of selecting an optimised query in terms of query evaluation
is very important. In fact, one has to take into account which criteria should be
used to optimise, such as: the size of the reformulations, the numbers of used
predicates, the priority of predicates, the number of relational operators, and
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clever usage of duplicates. In this context one may also want to control the
process of formula proving to make it produce an optimal reformulation. For
instance, using the tableau method, one may prefer one order of expansion rules
application to another and, hence, build another interpolant.

Concurrently, we are exploring the problem of fixing real ontologies in order
to enforce definability when it is known it should be the case [19]. This happens
when it is intuitively obvious that the answer of a query can be found from the
available data (that is, the query is definable from the database), but the mediat-
ing ontology does not entail the definability. We introduce the novel problem of
definability abduction and we solve it completely in the data exchange scenario.

There is also another interesting open problem about checking that a given
DBox is legal with respect to a given ontology. Remember that a DBox DB is
legal for an ontology KB if there exists a model of KB embedding DB. This
check involves heavy computations for which an optimised algorithm is still
unknown: as a matter of fact, the only known method today is to reduce the
problem to a satisfiability problem where the DBox is embedded in a TBox using
nominals [16]. More research is needed in order to optimise the reasoning with
nominals in this special case.

In the case of description logics, we would like to work on extending the theo-
retical framework with conjunctive queries: we need finitely controllable determi-
nacy with conjunctive queries, which for some description logics seems to follow
from the works by [6,30].
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