
Carsten Lutz · Uli Sattler ·
Cesare Tinelli · Anni-Yasmin Turhan ·
Frank Wolter (Eds.)

Description Logic, 
Theory Combination, 
and All That

Fe
st

sc
hr

ift
LN

CS
 1

15
60

Essays Dedicated to Franz Baader 
on the Occasion of His 60th Birthday

 123



Lecture Notes in Computer Science 11560

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Carsten Lutz • Uli Sattler •

Cesare Tinelli • Anni-Yasmin Turhan •

Frank Wolter (Eds.)

Description Logic, Theory
Combination, and All That
Essays Dedicated to Franz Baader
on the Occasion of His 60th Birthday

123



Editors
Carsten Lutz
University of Bremen
Bremen, Germany

Uli Sattler
University of Manchester
Manchester, UK

Cesare Tinelli
University of Iowa
Iowa City, IA, USA

Anni-Yasmin Turhan
TU Dresden
Dresden, Germany

Frank Wolter
University of Liverpool
Liverpool, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22101-0 ISBN 978-3-030-22102-7 (eBook)
https://doi.org/10.1007/978-3-030-22102-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Based on an idea by Anni-Yasmin Turhan, the cover illustration was specifically created
for this volume by Stefan Borgwardt.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22102-7


Franz Baader



Preface

This Festschrift has been put together on the occasion of Franz Baader’s 60th birthday
to celebrate his scientific contributions. It was initiated by Anni-Yasmin Turhan, who
brought in the other four editors. We contacted Franz’s friends and colleagues, asking
for their contributions, and the response was enthusiastic.

The result is a volume containing 30 articles from contributors all over the world,
starting with an introductory article that provides our personal accounts of Franz’s
career and achievements and covering many of the several scientific areas Franz has
worked on: description logics, unification and matching, term rewriting, and the
combination of decision procedures. Although this volume does not come close to
covering all of the work that Franz has done, we hope that the reader will gain some
insights into the remarkable breadth and depth of his research over the past 30+ years.

We thank all contributors for their great work, for delivering high-quality manu-
scripts on time, and also for serving as reviewers for submissions by others. This
volume would not have been possible without their exceptional effort.

April 2019 Carsten Lutz
Uli Sattler

Cesare Tinelli
Anni-Yasmin Turhan

Frank Wolter
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1 Introduction

This article provides an introduction to the Festschrift that has been put together
on the occasion of Franz Baader’s 60th birthday to celebrate his fundamental
and highly influential scientific contributions. We start with a brief and personal
overview of Franz’s career, listing some important collaborators, places, and
scientific milestones, and then provide first person accounts of how each one of
us came in contact with Franz and how we benefitted from his collaboration
and mentoring. Our selection is not intended to be complete and it is in fact
strongly biased by our own personal experience and preferences. Many of Franz’s
contributions that we had to leave out are discussed in later chapters of this
volume.

Franz was born in 1959 in Spalt, Germany, a small village known for its hop
growing and its interesting Bavarian/Franconian accent—which seems to man-
ifest especially after the consumption of hopped beverages. After high school
and military service he studied computer science (Informatik) in nearby Erlan-
gen. This included programming using punch cards and usage of the vi editor.
Rumour has it that Franz still enjoys using some of this technology today. He
continued with his Ph.D. on unification and rewriting, under the supervision of
Klaus Leeb, an unconventional academic who clearly strengthened Franz’s abil-
ity for independent research and critical thought. As a Ph.D. student, Franz also
worked as a teaching assistant, with unusually high levels of responsibility.

In 1989, Franz completed his Ph.D. Unifikation und Reduktionssysteme für
Halbgruppenvarietäten and moved to the German Research Center for Artificial

c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 1–14, 2019.
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Intelligence (DFKI) in Saarbrücken as a post-doctoral researcher. It is there that
he encountered description logic—then known as “terminological knowledge rep-
resentation systems” or “concept languages”—met collaborators such as Bern-
hard Nebel, Enrico Franconi, Phillip Hanschke, Bernhard Hollunder, Werner
Nutt, Jörg Siekman, and Gerd Smolka, and added another dimension to his
multi-faceted research profile.

After 4 years at DFKI, in 1993, Franz successfully applied for his first pro-
fessorship at RWTH Aachen and shortly thereafter for his first DFG project on
“Combination of special deduction procedures”, which allowed him to hire his
first externally funded Ph.D. student, Jörn Richts. Within a year of working in
Aachen, he assembled his first research group, consisting of 4 Ph.D. students: Can
Adam Albayrak, Jörn Richts, and Uli Sattler, together with Diego Calvanese vis-
iting for a year from Rome. This group continued to grow substantially over the
next decade, supported by various other DFG and EU-funded research projects
as well as a DFG research training group.

In 2002, Franz applied for the Chair of Automata Theory at TU Dresden.
Unsurprisingly, his sterling research track record made him the front runner for
this post. As a consequence, a group of impressive size moved from Aachen to
Dresden, including Franz and his family of three, Sebastian Brandt, Jan Hladik,
Carsten Lutz, Anni-Yasmin Turhan, and Uli Sattler (Fig. 1).

Fig. 1. Most of the people who moved with Franz to Dresden: from left to right:
Carsten, Anni, Franz, Uli, Sebastian; Jan took the photo, 2001.

They all settled quickly in the beautiful city on the river Elbe, to then expe-
rience a millennial flood in their first year. The bottom foot and a half of Franz’s
new family home in Dresden was flooded—but the damage was fortunately man-
ageable thanks to the house’s unusual design and their quick thinking which led
them to move all items to the house’s higher level. In the following years, Franz
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continued to grow his group even further, attracting many more students and
grants, including, most notably, the QuantLA research training group on Quan-
titative Logics and Automata which he started and has led from its beginnings
to today. He also became an ECCAI Fellow in 2004 and was Dean of the Faculty
of Computer Science at TU Dresden from 2012 to 2015.

Throughout his career, Franz has supervised 26 Ph.D. students, five of whom
successfully went on to receive their habilitation. He co-authored a textbook on
Term Rewriting and one on Description Logic, and co-edited the Description
Logic Handbook, all of which have become standard references in their respect-
ing fields. At the time of this writing, according to Google Scholar, his publica-
tions have been cited more than 29,000 times. With more than 11,000 citations,
the Description Logic Handbook [BCM+03] is his most cited work. The Term
Rewriting textbook [BN98] is second with more than 3,000 citation while his
research paper on tractable extensions of the description logic EL [BBL05] takes
an impressive 3rd place with more than 1,000 citations. All this provides an
excellent example of the high impact that Franz’s work has had across several
research areas.

2 Contributions

The following subsections provide a first person account of how each one of us
came in contact with Franz and ended up enjoying a fruitful collaboration that
has spanned many years. Nerdy as we are, we proceed in the order of earliest
joint paper with him.

2.1 Uli Sattler: Classification and Subsumption in Expressive
Description Logics

In 1993, Franz started his first professorship at RWTH Aachen University, where
I joined his young research group in 1994 as one of his first Ph.D. students. I
had never heard of description logics but relied on recommendations from former
colleagues of Franz from Erlangen who assured me that Franz was a rising star
and would make a great Ph.D. supervisor. My first task was to catch up on the
already huge body of work that various people, including Franz, had established
around description logics.

In the early 90s, Franz worked with Bernhard Hollunder in Saarbruecken
on Kris [BH91], a terminological knowledge representation system that imple-
mented classification, realisation, retrieval for extensions of ALCN (e.g., with
feature (dis-)agreement) with respect to acyclic TBoxes and ABoxes. This was a
rather brave endeavour at the time, especially after the recent (1989), surprising
results by Manfred Schmidt-Schauß that KLone was undecidable and accumu-
lating evidence (by Bernard Nebel, Klaus Schild, and others) that reasoning in
all description logics is intractable once general TBoxes are included. The more
common reaction to these insights was to severely restrict the expressive power
or to move to even more expressive, undecidable description logics. Franz and
Bernhard, however, went for a decidable yet intractable logic, where
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[...] the price one has to pay is that the worst case complexity of the algo-
rithms is worse than NP. But it is not clear whether the behaviour for
“typical” knowledge bases is also that bad. [BH91]

The reasoner implemented in Kris was based on a “completion algorithm”
developed by Schmidt-Schauß, Smolka, Nutt, Hollunder which would later be
called tableau-based. In [BHN+92], the authors introduce a first Enhanced
Traversal method: a crucial optimisation method that reduces the number of
subsumption test from n2 to n log n and has been used and further enhanced in
all tableau-based reasoners for expressive DLs. Another highly relevant optimi-
sation method first employed in Kris is lazy unfolding, which enables early clash
detection and, again, both have been successfully employed and refined in other
reasoners.

Franz has also developed significant extensions to these first tableau-based
algorithms which required the design of novel, sophisticated techniques: for
example, in [Baa91a] a tableau algorithm for ALC extended with regular expres-
sions on roles was described. This required not only a suitable cycle detection
mechanism (now known as blocking) but also the distinction between good and
bad cycles. Moreover, in this line of work, internalisation of TBoxes was first
described, a technique that can be used to reduce reasoning problems w.r.t. a
general TBox to pure concept reasoning and that turned out to be a powerful
tool to assess the computational complexity of a description logic.

Another significant extension relates to qualifying number restrictions
[HB91]: together with Bernhard Hollunder, Franz discovered the yo-yo prob-
lem and solved it by introducing explicit (in)equalities on individuals in com-
pletion system, thus avoiding non-termination. They also introduced the first
choose rule to avoid incorrectness caused by some tricky behaviour of qualifying
number restrictions.

I have mentioned these technical contributions here to illustrate the kind of
research that was going on at the time, and the many, significant contributions
Franz was involved in developing already at this early stage of his career. In addi-
tion, I also want to point out the ways in which Franz influenced the description
logic community, its methodologies, and its value system: as mentioned above,
he was an early advocate of understanding computational complexity beyond
the usual worst case. Moreover, he has always been an amazing explainer and
campaigner. He spent a lot of energy on discussions with colleagues and students
about the trio of soundness, completeness, and termination—and why it mat-
ters in description logic reasoners and related knowledge representation systems.
And he developed very clear proof techniques to show that a subsumption or
satisfiability algorithm is indeed sound, complete, and terminating. More gener-
ally, we appreciate Franz as a strong supporter of clarity (in proof, definitions,
descriptions, etc.) and as somebody who quickly recognises the murky “then a
miracle occurs” part in a proof or finds an elegant way to improve a definition.
On the occasion of his 60th birthday, I would like to say “Happy birthday, Franz,
and thank you for the fish clarity!”.
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2.2 Cesare Tinelli: Unification Theory, Term Rewriting and
Combination of Decision Procedures

It is easy to argue about the significance of Franz’s body of work and its long-
lasting impact in several areas of knowledge representation and automated rea-
soning. Given my expertise, I could comment on the importance of his work in
(term) unification theory where he has produced several results [Baa89,Baa91b,
BS92,Baa93,BS95,BN96,Baa98,BM10,BBBM16,BBM16] and written authori-
tative compendiums [BS94,BS98c,BS01] on the topic. I could talk about his
contributions to term rewriting, which include both research advances [Baa97]
and the publication of a widely used textbook on “term rewriting and all that”
[BN98]. I could say how his interest in the general problem of combining formal
systems has led him to produce a large number of results on the combination of
decision procedures or solvers for various problems [BS92,BS95,Baa97,BS98b,
BT02a,BT02b,BGT04,BG05] and create a conference focused on combination,
FroCoS [BS96], which is now at its 12-th edition beside being one of the found-
ing member conferences of IJCAR, the biennial Joint Conference on Automated
Reasoning. These topics are covered by the contributions in this volume by Peter
Baumgartner and Uwe Waldmann, Maria Paola Bonacina et al., Veena Ravis-
hankar et al., Christophe Ringeissen, Manfred Schmidt-Schauss, and Yoni Zohar
et al. So, instead, I prefer to focus on more personal anecdotes which nevertheless
illustrate why we are celebrating the man and his work with this volume.

At the start of my Ph.D. studies in the early 1990s I became interested in
constraint logic programming and automated deduction. I was attracted early
on by the problem of combining specialised decision procedures modularly and
integrating them into general-purpose proof procedures. However, I found the
foundational literature on general-purpose theorem proving and related areas
such as term rewriting somewhat unappealing for what I thought was an exces-
sive reliance on syntactical methods for proving correctness properties of the
various proof calculi and systems. This was in contrast with much of the foun-
dational work in (constrained) logic programming which was based on elegant
and more intuitive algebraic and model-theoretic arguments. I also struggled to
understand the literature on the combination decision procedures which I found
wanting in clarity and precision.

This was the background when, while searching for related work, I came
across a paper by some Franz Baader and Klaus Schulz on combining unification
procedures for disjoint equational theories [BS92]. The paper presented a new
combination method that, in contrast to previous ones, could be used to combine
both decision procedures for unification and procedures for computing complete
sets of unifiers. The method neatly extended a previous one by Manfred Schmidt-
Schauß and was the start of a series of combination results by Franz and Klaus
with increasing generality and formal elegance of the combination method [BS92,
BS95,BS98b]. This line of work was significant also for often relying on algebraic
arguments to prove the main theoretical results, for instance by exploiting the
fact that certain free models of an equational theory are canonical for unification
problems, or that computing unifiers in a combined theory can be reduced to
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solving equations in a model of the theory that is a specific amalgamation of the
free models of the component theories.

Those papers, together with their associated technical reports, which
included more details and full proofs, had a great impact on me. They showed
how one could push the state of the art in automated reasoning with new the-
oretical results based on solid mathematical foundations while keeping a keen
eye on practical implementation concerns. They were remarkable examples of
how to write extremely rigorous theoretical material that was nonetheless quite
understandable because the authors had clearly put great care in: explicitly high-
lighting the technical contribution and relating it to previous work; explaining
the intuitive functioning of the new method; formatting the description of the
method so that it was pleasing to the eye and easy to follow; explaining how the
method, described at an abstract level, could be instantiated to concrete and
efficient implementations; providing extensive proofs of the theoretical results
that clearly explained all the intermediate steps.

Based on the early example of [BS92], I set to write a modern treatment
of the well-known combination procedure by Nelson and Oppen [NO79] along
the lines of Franz’s paper while trying to achieve similar levels of quality. Once I
made enough progress, I contacted Franz by email telling him about my attempts
and asking for advice of how to address some challenges in my correctness proof.
To my surprise and delight, he promptly replied to this email by an unknown
Ph.D. student at the University of Illinois, and went on to provide his advice
over the course of a long email exchange. I wrote the paper mostly as an exercise;
as a way for me to understand the Nelson-Oppen method and explain it well
to other novices like me. When I finished it and sent it to Franz for feedback
he encouraged me to submit it to the very first edition of a new workshop on
combining systems he had started with Klaus Schulz, FroCoS 1996. Not only
was the paper accepted [TH96], it also became a widely cited reference in the
field that later came to be known as Satisfiability Modulo Theories or SMT. As
several people told me in person, the popularity of that paper is in large part
due to its clarity and precision both in the description of the method and in the
correctness proof, again something that I took from Franz’s papers.

After we met in person at FroCoS 1996, Franz proposed to work on com-
bination problems together, an opportunity I immediately accepted. That was
the start of a long-lasting collaboration on the combination of decision proce-
dures for the word problem [BT97,BT99,BT00,BT02b] and other more gen-
eral problems [BT02a,BGT06]. That collaboration gave me the opportunity to
appreciate Franz’s vast knowledge and prodigious intellect. More important, it
also gave me precious insights on how to develop abstract formal frameworks to
describe automated reasoning methods, with the goal of understanding and prov-
ing their properties. It taught me how to develop soundness, completeness and
termination arguments and turn them into reader-friendly mathematical proofs.
I learned from him how to constantly keep the reader in mind when writing a
technical paper, for instance by using consistent and intuitive notation, defining
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everything precisely while avoiding verbosity, using redundancy judiciously to
remind the reader of crucial points or notions, and so on.

While I have eventually learned a lot also from other outstanding researchers
and collaborators, my early exposure to Franz’s work and my collaboration with
him have profoundly affected the way I do research and write technical papers. I
have actively tried over the years to pass on to my students and junior collabo-
rators the principles and the deep appreciation of good, meticulous writing that
I have learned from Franz.

Thank you, Franz, for being a collaborator and a model. It has been an
honour and a pleasure. Happy 60th birthday, with many more to follow!

2.3 Carsten Lutz: Concrete Domains and the EL Family

When I was a student of computer science at the university of Hamburg, I
became interested in the topic of description logics and I decided that I would
like to do a Ph.D. in that area. At the time, I was particularly fascinated by
concrete domains, the extension of DLs with concrete qualities such as numbers
and strings as well as operations on them. As in Professor � ∃age.=60. Franz
was the definite authority on DLs, he seemed to have written at least half of
all important papers and, what was especially spectacular for me, this guy had
actually invented concrete domains (together with Hanschke [BHs91]). I was
thus very happy when I was accepted as a Ph.D. student in his group at RWTH
Aachen. Under Franz’s supervision, I continued to study concrete domains and
eventually wrote my Ph.D. thesis on the subject. I learned a lot during that
time and I feel that I have especially benefitted from Franz’s uncompromising
formal rigor and from his ability to identify interesting research problems and
to ask the right questions (even if, many times, I had no answer). Concrete
domains are a good example. He identified the integration of concrete qualities
into DLs as the important question that it is and came up with a formalization
that was completely to the point and has never been questioned since. In fact,
essentially the same setup has later been used in other areas such as XML,
constraint LTL, and data words; it would be interesting to reconsider concrete
domains today, from the perspective of the substantial developments in those
areas. Over the years, Franz has continued to make interesting contributions to
concrete domains, for example by adding aggregation (with Sattler [BS98a]) and
rather recently by bringing into the picture uncertainty in the form of probability
distributions over numerical values (with Koopmann and Turhan [BKT17]).

Another great line of research that Franz has pursued and that I had the plea-
sure to be involved in concerns lightweight DLs, in particular those of the EL
family. In the early 2000s, there was a strong trend towards identifying more and
more expressive DLs that would still be decidable. However, Franz also always
maintained an interest in DLs with limited expressive power and better complex-
ity of reasoning. The traditional family of inexpressive DLs was the FL family,
but there even very basic reasoning problems are coNP-complete. In 2003, Franz
wrote two IJCAI papers in which he considered EL, which was unusual at the
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time, showing (among other things) that subsumption can be decided in polyno-
mial time even in the presence of terminological cycles [Baa03a,Baa03b]. A bit
later, this positive result was extended to general concept inclusions (GCIs) in
joint work with Brandt and myself [Bra04,BBL05]. What followed was a success
story. In joint work with Meng Suntisrivaraporn, we implemented the first EL
reasoner called Cel which demonstrated that reasoning in EL is not only in poly-
nomial time, but also very efficient and robust in practice. Many other reasoners
have followed, the most prominent one today being Elk. We also explored the
limits of polynomial time reasoning in the EL family [BLB08] and this resulted
in a member of the EL family of DLs to be standardized as a profile of the W3C’s
OWL 2 ontology language. Nowadays, EL is one of the most standard families
of DLs, widely used in many applications and also studied in several chapters of
this volume, including the ones by Marcelo Finger, by Rafael Peñaloza, by Loris
Bozzato et al. and by Ana Ozaki et al. Already in our initial work on EL with
GCIs, we invented a particular kind of polynomial time reasoning procedure, the
one that was also implemented in Cel. This type of procedure is now known as
consequence-based reasoning and has found applications also far beyond the EL
family of DLs. In fact, a survey on 15 years of consequence-based reasoning is
presented in this volume in the chapter by David Tena Cucala, Bernardo Cuenca
Grau and Ian Horrocks. It was a tremendous pleasure and privilege to have been
involved in all this, together with you, Franz, and building on your prior work.
Happy birthday!

2.4 Frank Wolter: Modal, Temporal, and Action Logics

I first met Franz in the summer of 1997 at ESSLLI in Aix-en-Provence, where
I (jointly with Michael Zakharyaschev) organised a workshop on combining log-
ics and, I believe, Franz gave a course introducing description logics. I am not
entirely sure about the course as I very clearly recall our conversations about
description logics but not at all any description logic lectures. At that point, after
having failed to sell modal logic to mathematicians, I was looking for new ways of
applying modal logic in computing and/or AI. And there the applications were
right in front of me! As Franz quickly explained, description logic is nothing but
modal logic, but much more relevant and with many exciting new applications
and open problems. As long as one does not try to axiomatize description log-
ics, there would be a huge interest in the description logic community in using
techniques from modal logic and also in combining modal and description log-
ics. So that is what I did over the next 22 years. The most obvious way to do
description logic as a modal logician was to carefully read the papers on modal
description logics that Franz et al. had just published [BL95,BO95], ask Franz
what he regarded as interesting problems that were left open, and try to solve
as many as possible of them (fortunately, Franz has the amazing ability to pose
many more open problems than one could ever hope to solve). But Franz did not
only pose open problems! He continued to work himself on temporal description
logics with Ghilardi and Lutz [BGL12] and, more recently, with Stefan Borg-
wardt and Marcel Lippmann on combining temporal and description logics to
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design temporal query languages for monitoring purposes [BL14,BBL15], a topic
on which Franz gave an invited keynote address at the Vienna Summer of Logic
in 2014.

Other exciting collaborations developed over the years: when working
together on combining description logics (with themselves) [BLSW02], I learned
a lot from Franz’s work on combining equational theories and on combining
computational systems in general. Working together on the connection between
tableaux and automata [BHLW03] was an excellent opportunity to let Franz
explain to me what a tree automaton actually is. We only briefly worked together
on extending description logics by action formalisms [BLM+05], but later Franz,
together with Gerd Lakemeyer and many others, developed an amazing theory
combining GOLOG and description logics, details of this collaboration are given
in the article “Situation Calculus Meets Description Logics” by Jens Claßen,
Gerhard Lakemeyer, and Benjamin Zarrieß in this volume. So, Franz, many
thanks for both the problems and the solutions. It has been a great pleasure to
work with you over so many years. Happy Birthday!

2.5 Anni-Yasmin Turhan: Non-standard Inferences in Description
Logics

When I studied computer science at the University of Hamburg a project on
knowledge representation had sparked my interest in description logics. I found
the formal properties, the simplicity and elegance of these logics immediately
appealing. As I soon noticed, most of the fundamental research results on descrip-
tion logics were achieved by Franz and his collaborators and, so after completing
my studies, I was keen to join Franz’s group in Aachen to start my Ph.D. stud-
ies. There I started to work in his research project on non-standard inferences
in description logics together with Sebastian Brandt.

Non-standard inferences are a collection of various reasoning services for
description logic knowledge bases that complement the traditional reasoning
problems such as subsumption or satisfiability. The idea is that they assist
users in developing, maintaining and integrating knowledge bases. In order to
build and augment knowledge bases, inferences that generalize knowledge can be
important. Franz had, together with Ralf Küsters and Ralf Molitor, investigated
the most specific concept that can generalize knowledge about an object into a
concept description and the least common subsumer that generalizes a set of con-
cepts into a single one. Together these two inferences give rise to example-driven
learning of new concepts. Their initial results were achieved for EL concepts
without a general TBox [BKM99]. At that time it was quite a bit non-standard
to work on inexpressive, light-weight description logics as many research efforts
were dedicated to satisfiability of highly expressive logics. The overall approach
to generalization is to ensure the instance-of or the subsumption relationship of
the resulting concept by an embedding into the normalized input. This method
was explored by us in several settings [BST07]. Franz lifted this also to general
TBoxes [Baa03a,Baa03b], which had then lead to the famed polynomial time
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reasoning algorithms for EL. These are based on canonical models and simula-
tions that are widely used today and have, in turn, fueled further research on
new non-standard inferences such as conservative extensions and computation
of modules that were investigated in great detail by Carsten Lutz and Frank
Wolter.

Besides generalization, Franz also introduced and investigated other non-
standard inferences that compute “leaner” representations of concepts. One
instantiation of this idea is to compute syntactically minimal, but equivalent
rewritings of concepts and another is to compute “(upper) approximations”
of concepts written in an expressive description logic in a less expressive one
[BK06]. Franz combined his research interests and great expertise in unification
and knowledge representation in a strand of work on matching in description
logics. This inference is mainly used to detect redundancies in knowledge bases.
Here Franz achieved many contributions for sub-Boolean description logics—in
the last years predominantly in collaboration with Morawska and Borgwardt
[BM10,BBM12,BBM16]. Franz’s many contributions on versatile non-standard
inferences demonstrates that his research topics are in overwhelming majority
driven by a clear motivation that is often drawn from practical applications.
Furthermore, they often times establish connections between several sub-areas
of knowledge representation and theoretical computer science.

Once a knowledge base is built, explaining and removing unwanted conse-
quences might become necessary as well. This can be done by computing justifi-
cations, i.e. the minimal axiom sets that are “responsible” for the consequence.
This inference was and still is intensively investigated by Franz and his group—
especially in collaboration with Rafael Peñaloza. They have mapped out the
connection between computing justifications and weighted automata and are
studying gentle, i.e. more fine-grained repairs that detect responsible parts of
axioms [BKNP18]. Rafael tells the full story about it in “Explaining Axiom
Pinpointing” in this volume. Their contributions on justifications are fruitfully
applied also in other areas of knowledge representation, such as inconsistency-
tolerant reasoning or nonmonotonic reasoning. This is underlined by Gerhard
Brewka and Markus Ulbricht in their article on “Strong Explanations for Non-
monotonic Reasoning” and also by Vińıcius Bitencourt Matos et al. in their
article on “Pseudo-contractions as gentle repairs” presented in this volume.

So, what started out as non-standard inferences in description logics—I seem
to remember that Franz even coined that term—has become a well-established
part of the wider research field. This is certainly due to Franz’s ability to identify
clear motivation for research questions, his passion for clear explanations and his
relentless pursuit of excellence. It has been truly fascinating for me to see this
versatile research area grow and evolve over the many years that I have worked
with him.

Franz, I thank you for the many chances being given for example-driven
learning and the gentle explanations. Happy birthday!
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3 Final Words

Although this article and volume are by no means a complete overview, we hope
that the reader will gain some insight into the remarkable breadth and depth of
the research contributions that Franz Baader has made in the last 30+ years.
What is more, he has achieved all this while keeping up his favourite pastimes
such as skiing and cycling, while being a proud and loving father to his three
children—and without ever cutting off his pony tail, see Fig. 2.

Fig. 2. Franz in a typical pose, giving a clear explanation of a technically complex
point.

We hope that Franz will enjoy reading about our views of his research record
and our experience in working with him, as well as the many articles in this
Franzschrift. We thank him for his advice, guidance, and friendship, and wish
him—again and all together now

a very happy birthday and many happy returns!
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Abstract. Many applications of automated deduction require reasoning
in first-order logic modulo background theories, in particular some form
of integer arithmetic. A major unsolved research challenge is to design
theorem provers that are “reasonably complete” even in the presence of
free function symbols ranging into a background theory sort. The hier-
archic superposition calculus of Bachmair, Ganzinger, and Waldmann
already supports such symbols, but, as we demonstrate, not optimally.
This paper aims to rectify the situation by introducing a novel form of
clause abstraction, a core component in the hierarchic superposition cal-
culus for transforming clauses into a form needed for internal operation.
We argue for the benefits of the resulting calculus and provide two new
completeness results: one for the fragment where all background-sorted
terms are ground and another one for a special case of linear (integer or
rational) arithmetic as a background theory.

Keywords: Automated deduction · Superposition calculus ·
Combinations of theories

1 Introduction

Many applications of automated deduction require reasoning with respect to a
combination of a background theory, say integer arithmetic, and a foreground
theory that extends the background theory by new sorts such as list , new oper-
ators, such as cons : int × list → list and length : list → int , and first-order
axioms. Developing corresponding automated reasoning systems that are also
able to deal with quantified formulas has recently been an active area of research.
One major line of research is concerned with extending (SMT-based) solvers [24]
for the quantifier-free case by instantiation heuristics for quantifiers [17,18, e. g.].
Another line of research is concerned with adding black-box reasoners for spe-
cific background theories to first-order automated reasoning methods (resolu-
tion [1,5,19], sequent calculi [26], instantiation methods [8,9,16], etc). In both
cases, a major unsolved research challenge is to provide reasoning support that is
“reasonably complete” in practice, so that the systems can be used more reliably
for both proving theorems and finding counterexamples.
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In [5], Bachmair, Ganzinger, and Waldmann introduced the hierarchical
superposition calculus as a generalization of the superposition calculus for black-
box style theory reasoning. Their calculus works in a framework of hierarchic
specifications. It tries to prove the unsatisfiability of a set of clauses with respect
to interpretations that extend a background model such as the integers with lin-
ear arithmetic conservatively, that is, without identifying distinct elements of
old sorts (“confusion”) and without adding new elements to old sorts (“junk”).
While confusion can be detected by first-order theorem proving techniques, junk
can not – in fact, the set of logical consequences of a hierarchic specifications
is usually not recursively enumerable. Refutational completeness can therefore
only be guaranteed if one restricts oneself to sets of formulas where junk can
be excluded a priori. The property introduced by Bachmair, Ganzinger, and
Waldmann for this purpose is called “sufficient completeness with respect to
simple instances”. Given this property, their calculus is refutationally complete
for clause sets that are fully abstracted (i. e., where no literal contains both fore-
ground and background symbols). Unfortunately their full abstraction rule may
destroy sufficient completeness with respect to simple instances. We show that
this problem can be avoided by using a new form of clause abstraction and a suit-
ably modified hierarchical superposition calculus. Since the new calculus is still
refutationally complete and the new abstraction rule is guaranteed to preserve
sufficient completeness with respect to simple instances, the new combination is
strictly more powerful than the old one.

In practice, sufficient completeness is a rather restrictive property. While
there are application areas where one knows in advance that every input is
sufficiently complete, in most cases this does not hold. As a user of an auto-
mated theorem prover, one would like to see a best effort behavior: The prover
might for instance try to make the input sufficiently complete by adding further
theory axioms. In the calculus from [5], this does not help at all: The restric-
tion to a particular kind of instantiations (“simple instances”) renders theory
axioms essentially unusable in refutations. We show that this can be prevented
by introducing two kinds of variables of the background theory sorts, that can be
instantiated in different ways, making our calculus significantly “more complete”
in practice. We also include a definition rule in the calculus that can be used
to establish sufficient completeness by linking foreground terms to background
parameters, thus allowing the background prover to reason about these terms.

The following trivial example demonstrates the problem. Consider the clause
set N = {C} where C = f(1) < f(1). Assume that the background theory is
integer arithmetic and that f is an integer-sorted operator from the foreground
(free) signature. Intuitively, one would expect N to be unsatisfiable. However,
N is not sufficiently complete, and it admits models in which f(1) is interpreted
as some junk element /c, an element of the domain of the integer sort that is
not a numeric constant. So both the calculus in [5] and ours are excused to
not find a refutation. To fix that, one could add an instance C ′ = ¬(f(1) <
f(1)) of the irreflexivity axiom ¬(x < x). The resulting set N ′ = {C, C ′} is
(trivially) sufficiently complete as it has no models at all. However, the calculus
in [5] is not helped by adding C ′, since the abstracted version of N ′ is again
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not sufficiently complete and admits a model that interprets f(1) as /c. Our
abstraction mechanism always preserves sufficient completeness and our calculus
will find a refutation.

With this example one could think that replacing the abstraction mechanism
in [5] with ours gives all the advantages of our calculus. But this is not the case.
Let N ′′ = {C, ¬(x < x)} be obtained by adding the more realistic axiom
¬(x < x). The set N ′′ is still sufficiently complete with our approach thanks to
having two kinds of variables at disposal, but it is not sufficiently complete in
the sense of [5]. Indeed, in that calculus adding background theory axioms never
helps to gain sufficient completeness, as variables there have only one kind.

Another alternative to make N sufficiently complete is by adding a clause
that forces f(1) to be equal to some background domain element. For instance,
one can add a “definition” for f(1), that is, a clause f(1) ≈ α, where α is a fresh
symbolic constant belonging to the background signature (a “parameter”). The
set N ′′′ = {C, f(1) ≈ α} is sufficiently complete and it admits refutations with
both calculi. The definition rule in our calculus mentioned above will generate
this definition automatically. Moreover, the set N belongs to a syntactic fragment
for which we can guarantee not only sufficient completeness (by means of the
definition rule) but also refutational completeness.

We present the new calculus in detail and provide a general completeness
result, modulo compactness of the background theory, and two specific com-
pleteness results for clause sets that do not require compactness – one for the
fragment where all background-sorted terms are ground and another one for a
special case of linear (integer or rational) arithmetic as a background theory.

We also report on experiments with a prototypical implementation on the
TPTP problem library [27].

Sections 1–7, 9–10, and 12 of this paper are a substantially expanded and
revised version of [11]. A preliminary version of Sect. 11 has appeared in [10].
However, we omit from this paper some proofs that are not essential for the
understanding of the main ideas. They can be found in a slightly extended
version of this paper at http://arxiv.org/abs/1904.03776 [12].

Related Work. The relation with the predecessor calculus in [5] is discussed above
and also further below. What we say there also applies to other developments
rooted in that calculus, [1, e. g.]. The specialized version of hierarchic superpo-
sition in [22] will be discussed in Sect. 9 below. The resolution calculus in [19]
has built-in inference rules for linear (rational) arithmetic, but is complete only
under restrictions that effectively prevent quantification over rationals. Earlier
work on integrating theory reasoning into model evolution [8,9] lacks the treat-
ment of background-sorted foreground function symbols. The same applies to
the sequent calculus in [26], which treats linear arithmetic with built-in rules
for quantifier elimination. The instantiation method in [16] requires an answer-
complete solver for the background theory to enumerate concrete solutions of
background constraints, not just a decision procedure. All these approaches have
in common that they integrate specialized reasoning for background theories
into a general first-order reasoning method. A conceptually different approach
consists in using first-order theorem provers as (semi-)decision procedures for

http://arxiv.org/abs/1904.03776
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specific theories in DPLL(T)(-like) architectures [2,13,14]. Notice that in this
context the theorem provers do not need to reason modulo background theories
themselves, and indeed they don’t. The calculus and system in [14], for instance,
integrates superposition and DPLL(T). From DPLL(T) it inherits splitting of
ground non-unit clauses into their unit components, which determines a (back-
trackable) model candidate M . The superposition inference rules are applied to
elements from M and a current clause set F . The superposition component guar-
antees refutational completeness for pure first-order clause logic. Beyond that,
for clauses containing background-sorted variables, (heuristic) instantiation is
needed. Instantiation is done with ground terms that are provably equal w.r.t.
the equations in M to some ground term in M in order to advance the deriva-
tion. The limits of that method can be illustrated with an (artificial but simple)
example. Consider the unsatisfiable clause set {i ≤ j ∨ P(i + 1, x) ∨ P(j + 2, x),
i ≤ j ∨ ¬P(i + 3, x) ∨ ¬P(j + 4, x)} where i and j are integer-sorted variables
and x is a foreground-sorted variable. Neither splitting into unit clauses, super-
position calculus rules, nor instantiation applies, and so the derivation gets stuck
with an inconclusive result. By contrast, the clause set belongs to a fragment
that entails sufficient completeness (“no background-sorted foreground function
symbols”) and hence is refutable by our calculus. On the other hand, heuristic
instantiation does have a place in our calculus, but we leave that for future work.

2 Signatures, Clauses, and Interpretations

We work in the context of standard many-sorted logic with first-order signatures
comprised of sorts and operator (or function) symbols of given arities over these
sorts. A signature is a pair Σ = (Ξ,Ω), where Ξ is a set of sorts and Ω is a
set of operator symbols over Ξ. If X is a set of sorted variables with sorts in Ξ,
then the set of well-sorted terms over Σ = (Ξ,Ω) and X is denoted by TΣ(X );
TΣ is short for TΣ(∅). We require that Σ is a sensible signature, i. e., that TΣ

has no empty sorts. As usual, we write t[u] to indicate that the term u is a (not
necessarily proper) subterm of the term t. The position of u in t is left implicit.

A Σ-equation is an unordered pair (s, t), usually written s ≈ t, where s and
t are terms from TΣ(X ) of the same sort. For simplicity, we use equality as
the only predicate in our language. Other predicates can always be encoded as a
function into a set with one distinguished element, so that a non-equational atom
is turned into an equation P (t1, . . . , tn) ≈ trueP ; this is usually abbreviated by
P (t1, . . . , tn).1 A literal is an equation s ≈ t or a negated equation ¬(s ≈ t),
also written as s �≈ t. A clause is a multiset of literals, usually written as a
disjunction; the empty clause, denoted by � is a contradiction. If F is a term,
equation, literal or clause, we denote by vars(F ) the set of variables that occur
in F . We say F is ground if vars(F ) = ∅.

A substitution σ is a mapping from variables to terms that is sort respecting,
that is, maps each variable x ∈ X to a term of the same sort. Substitutions are
1 Without loss of generality we assume that there exists a distinct sort for every

predicate.
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homomorphically extended to terms as usual. We write substitution application
in postfix form. A term s is an instance of a term t if there is a substitution σ
such that tσ = s. All these notions carry over to equations, literals and clauses
in the obvious way. The composition στ of the substitutions σ and τ is the
substitution that maps every variable x to (xσ)τ .

The domain of a substitution σ is the set dom(σ) = {x | x �= xσ}. We use
only substitutions with finite domains, written as σ = [x1 	→ t1, . . . , xn 	→ tn]
where dom(σ) = {x1, . . . , xn}. A ground substitution is a substitution that maps
every variable in its domain to a ground term. A ground instance of F is obtained
by applying some ground substitution with domain (at least) vars(F ) to it.

A Σ-interpretation I consists of a Ξ-sorted family of carrier sets {Iξ}ξ∈Ξ

and of a function If : Iξ1 × · · · × Iξn → Iξ0 for every f : ξ1 . . . ξn → ξ0
in Ω. The interpretation tI of a ground term t is defined recursively by
f(t1, . . . , tn)I = If (tI1, . . . , t

I
n) for n ≥ 0. An interpretation I is called term-

generated, if every element of an Iξ is the interpretation of some ground term of
sort ξ. An interpretation I is said to satisfy a ground equation s ≈ t, if s and t
have the same interpretation in I; it is said to satisfy a negated ground equation
s �≈ t, if s and t do not have the same interpretation in I. The interpretation
I satisfies a ground clause C if at least one of the literals of C is satisfied by
I. We also say that a ground clause C is true in I, if I satisfies C; and that C
is false in I, otherwise. A term-generated interpretation I is said to satisfy a
non-ground clause C if it satisfies all ground instances Cσ; it is called a model
of a set N of clauses, if it satisfies all clauses of N .2 We abbreviate the fact that
I is a model of N by I |= N ; I |= C is short for I |= {C}. We say that N
entails N ′, and write N |= N ′, if every model of N is a model of N ′; N |= C
is short for N |= {C}. We say that N and N ′ are equivalent, if N |= N ′ and
N ′ |= N .

If J is a class of Σ-interpretations, a Σ-clause or clause set is called J -
satisfiable if at least one I ∈ J satisfies the clause or clause set; otherwise it is
called J -unsatisfiable.

A specification is a pair SP = (Σ,J ), where Σ is a signature and J is a
class of term-generated Σ-interpretations called models of the specification SP .
We assume that J is closed under isomorphisms.

We say that a class of Σ-interpretations J or a specification (Σ, J ) is com-
pact, if every infinite set of Σ-clauses that is J -unsatisfiable has a finite subset
that is also J -unsatisfiable.

3 Hierarchic Theorem Proving

In hierarchic theorem proving, we consider a scenario in which a general-purpose
foreground theorem prover and a specialized background prover cooperate to

2 This restriction to term-generated interpretations as models is possible since we
are only concerned with refutational theorem proving, i. e., with the derivation of a
contradiction.
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derive a contradiction from a set of clauses. In the sequel, we will usually abbre-
viate “foreground” and “background” by “FG” and “BG”.

The BG prover accepts as input sets of clauses over a BG signature ΣB =
(ΞB, ΩB). Elements of ΞB and ΩB are called BG sorts and BG operators, respec-
tively. We fix an infinite set XB of BG variables of sorts in ΞB. Every BG variable
has (is labeled with) a kind, which is either “abstraction” or “ordinary”. Terms
over ΣB and XB are called BG terms. A BG term is called pure, if it does not con-
tain ordinary variables; otherwise it is impure. These notions apply analogously
to equations, literals, clauses, and clause sets.

The BG prover decides the satisfiability of ΣB-clause sets with respect to a
BG specification (ΣB,B), where B is a class of term-generated ΣB-interpretations
called BG models. We assume that B is closed under isomorphisms.

In most applications of hierarchic theorem proving, the set of BG operators
ΩB contains a set of distinguished constant symbols ΩD

B ⊆ ΩB that has the
property that dI

1 �= dI
2 for any two distinct d1, d2 ∈ ΩD

B and every BG model
I ∈ B. We refer to these constant symbols as (BG) domain elements.

While we permit arbitrary classes of BG models, in practice the following
three cases are most relevant:

(1) B consists of exactly one ΣB-interpretation (up to isomorphism), say, the
integer numbers over a signature containing all integer constants as domain
elements and ≤, <,+,− with the expected arities. In this case, B is trivially
compact; in fact, a set N of ΣB-clauses is B-unsatisfiable if and only if some
clause of N is B-unsatisfiable.

(2) ΣB is extended by an infinite number of parameters, that is, additional
constant symbols. While all interpretations in B share the same carrier sets
{Iξ}ξ∈ΞB and interpretations of non-parameter symbols, parameters may be
interpreted freely by arbitrary elements of the appropriate Iξ. The class B
obtained in this way is in general not compact; for instance the infinite set
of clauses {n ≤ β | n ∈ N}, where β is a parameter, is unsatisfiable in the
integers, but every finite subset is satisfiable.

(3) ΣB is again extended by parameters, however, B is now the class of all
interpretations that satisfy some first-order theory, say, the first-order theory
of linear integer arithmetic.3 Since B corresponds to a first-order theory,
compactness is recovered. It should be noted, however, that B contains non-
standard models, so that for instance the clause set {n ≤ β | n ∈ N} is now
satisfiable (e. g., Q × Z with a lexicographic ordering is a model).

The FG theorem prover accepts as inputs clauses over a signature Σ =
(Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ΞB and the operator
symbols in ΩF = Ω \ ΩB are called FG sorts and FG operators. Again we fix an

3 To satisfy the technical requirement that all interpretations in B are term-generated,
we assume that in this case ΣB is suitably extended by an infinite set of constants
(or by one constant and one unary function symbol) that are not used in any input
formula or theory axiom.
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infinite set XF of FG variables of sorts in ΞF. All FG variables have the kind
“ordinary”. We define X = XB ∪ XF.

In examples we will use {0, 1, 2, . . . } to denote BG domain elements, {+,−, <,
≤} to denote (non-parameter) BG operators, and the possibly subscripted letters
{x, y}, {X,Y }, {α, β}, and {a, b, c, f, g} to denote ordinary variables, abstraction
variables, parameters, and FG operators, respectively. The letter ζ denotes an
ordinary variable or an abstraction variable.

We call a term in TΣ(X ) a FG term, if it is not a BG term, that is, if it
contains at least one FG operator or FG variable (and analogously for literals
or clauses). We emphasize that for a FG operator f : ξ1 . . . ξn → ξ0 in ΩF any of
the ξi may be a BG sort, and that consequently FG terms may have BG sorts.

If I is a Σ-interpretation, the restriction of I to ΣB, written I|ΣB , is the ΣB-
interpretation that is obtained from I by removing all carrier sets Iξ for ξ ∈ ΞF

and all functions If for f ∈ ΩF. Note that I|ΣB is not necessarily term-generated
even if I is term-generated. In hierarchic theorem proving, we are only interested
in Σ-interpretations that extend some model in B and neither collapse any of
its sorts nor add new elements to them, that is, in Σ-interpretations I for which
I|ΣB ∈ B. We call such a Σ-interpretation a B-interpretation.

Let N and N ′ be two sets of Σ-clauses. We say that N entails N ′ relative to
B (and write N |=B N ′), if every model of N whose restriction to ΣB is in B is
a model of N ′. Note that N |=B N ′ follows from N |= N ′. If N |=B �, we call
N B-unsatisfiable; otherwise, we call it B-satisfiable.4

Our goal in refutational hierarchic theorem proving is to check whether a
given set of Σ-clauses N is false in all B-interpretations, or equivalently, whether
N is B-unsatisfiable.

We say that a substitution σ is simple if Xσ is a pure BG term for every
abstraction variable X ∈ dom(σ). For example, [x 	→ 1 + Y + α], [X 	→ 1 +
Y + α] and [x 	→ f(1)] all are simple, whereas [X 	→ 1 + y + α] and [X 	→ f(1)]
are not. Let F be a clause or (possibly infinite) clause set. By sgi(F ) we denote
the set of simple ground instances of F , that is, the set of all ground instances
of (all clauses in) F obtained by simple ground substitutions.

For a BG specification (ΣB,B), we define GndTh(B) as the set of all ground
ΣB-formulas that are satisfied by every I ∈ B.

Definition 3.1 (Sufficient completeness). A Σ-clause set N is called suf-
ficiently complete w.r.t. simple instances if for every Σ-model J of sgi(N) ∪
GndTh(B)5 and every ground BG-sorted FG term s there is a ground BG term
t such that J |= s ≈ t.6 �

4 If Σ = ΣB, this definition coincides with the definition of satisfiability w.r.t. a class
of interpretations that was given in Sect. 2. A set N of BG clauses is B-satisfiable if
and only if some interpretation of B is a model of N .

5 In contrast to [5], we include GndTh(B) in the definition of sufficient completeness.
(This is independent of the abstraction method; it would also have been useful in [5].).

6 Note that J need not be a B-interpretation.
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For brevity, we will from now on omit the phrase “w.r.t. simple instances” and
speak only of “sufficient completeness”. It should be noted, though, that our
definition differs from the classical definition of sufficient completeness in the
literature on algebraic specifications.

4 Orderings

A hierarchic reduction ordering is a strict, well-founded ordering on terms that is
compatible with contexts, i. e., s � t implies u[s] � u[t], and stable under simple
substitutions, i. e., s � t implies sσ � tσ for every simple σ. In the rest of this
paper we assume such a hierarchic reduction ordering � that satisfies all of the
following: (i) � is total on ground terms, (ii) s � d for every domain element d
and every ground term s that is not a domain element, and (iii) s � t for every
ground FG term s and every ground BG term t. These conditions are easily
satisfied by an LPO with an operator precedence in which FG operators are
larger than BG operators and domain elements are minimal with, for example,
· · · � −2 � 2 � −1 � 1 � 0 to achieve well-foundedness.

Condition (iii) and stability under simple substitutions together justify to
always order s � X where s is a non-variable FG term and X is an abstrac-
tion variable. By contrast, s � x can only hold if x ∈ vars(s). Intuitively, the
combination of hierarchic reduction orderings and abstraction variables affords
ordering more terms.

The ordering � is extended to literals over terms by identifying a positive
literal s ≈ t with the multiset {s, t}, a negative literal s �≈ t with {s, s, t, t},
and using the multiset extension of �. Clauses are compared by the multiset
extension of �, also denoted by �.

The non-strict orderings � are defined as s � t if and only if s � t or s = t
(the latter is multiset equality in case of literals and clauses). A literal L is
maximal (strictly maximal) in a clause L ∨ C if there is no K ∈ C with K � L
(K � L).

5 Weak Abstraction

To refute an input set of Σ-clauses, hierarchic superposition calculi derive BG
clauses from them and pass the latter to a BG prover. In order to do this, some
separation of the FG and BG vocabulary in a clause is necessary. The technique
used for this separation is known as abstraction: One (repeatedly) replaces some
term q in a clause by a new variable and adds a disequations to the clause, so
that C[q] is converted into the equivalent clause ζ �≈ q ∨ C[ζ], where ζ is a new
(abstraction or ordinary) variable.

The calculus by Bachmair, Ganzinger, and Waldmann [5] works on “fully
abstracted” clauses: Background terms occurring below a FG operator or in
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an equation between a BG and a FG term or vice versa are abstracted
out until one arrives at a clause in which no literal contains both FG and
BG operators.

A problematic aspect of any kind of abstraction is that it tends to increase the
number of incomparable terms in a clause, which leads to an undesirable growth
of the search space of a theorem prover. For instance, if we abstract out the sub-
terms t and t′ in a ground clause f(t) ≈ g(t′), we get x �≈ t∨ y �≈ t′ ∨ f(x) ≈ g(y),
and the two new terms f(x) and g(y) are incomparable in any reduction ordering.
In [5] this problem is mitigated by considering only instances where BG-sorted
variables are mapped to BG terms: In the terminology of the current paper, all
BG-sorted variables in [5] have the kind “abstraction”. This means that, in the
example above, we obtain the two terms f(X) and g(Y ). If we use an LPO with
a precedence in which f is larger than g and g is larger than every BG operator,
then for every simple ground substitution τ , f(X)τ is strictly larger that g(Y )τ ,
so we can still consider f(X) as the only maximal term in the literal.

The advantage of full abstraction is that this clause structure is preserved
by all inference rules. There is a serious drawback, however: Consider the clause
set N = { 1 + c �≈ 1 + c }. Since N is ground, we have sgi(N) = N , and since
sgi(N) is unsatisfiable, N is trivially sufficiently complete. Full abstraction turns
N into N ′ = {X �≈ c ∨ 1 + X �≈ 1 + X }. In the simple ground instances of
N ′, X is mapped to all pure BG terms. However, there are Σ-interpretations of
sgi(N ′) in which c is interpreted differently from any pure BG term, so sgi(N ′) ∪
GndTh(B) does have a Σ-model and N ′ is no longer sufficiently complete. In
other words, the calculus of [5] is refutationally complete for clause sets that
are fully abstracted and sufficiently complete, but full abstraction may destroy
sufficient completeness. (In fact, the calculus is not able to refute N ′.)

The problem that we have seen is caused by the fact that full abstraction
replaces FG terms by abstraction variables, which may not be mapped to FG
terms later on. The obvious fix would be to use ordinary variables instead of
abstraction variables whenever the term to be abstracted out is not a pure BG
term, but as we have seen above, this would increase the number of incompa-
rable terms and it would therefore be detrimental to the performance of the
prover.

Full abstraction is a property that is stronger than actually necessary for the
completeness proof of [5]. In fact, it was claimed in a footnote in [5] that the
calculus could be optimized by abstracting out only non-variable BG terms that
occur below a FG operator. This is incorrect, however: Using this abstraction
rule, neither our calculus nor the calculus of [5] would be able to refute { 1 + 1 ≈
2, (1 + 1) + c �≈ 2 + c }, even though this set is unsatisfiable and trivially
sufficiently complete. We need a slightly different abstraction rule to avoid this
problem:
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Definition 5.1. A BG term q is a target term in a clause C if q is neither
a domain element nor a variable and if C has the form C[f(s1, . . . , q, . . . , sn)],
where f is a FG operator or at least one of the si is a FG or impure BG term.7

A clause is called weakly abstracted if it does not have any target terms.
The weakly abstracted version of a clause is the clause that is obtained by

exhaustively replacing C[q] by

– C[X] ∨ X �≈ q, where X is a new abstraction variable, if q is a pure target
term in C,

– C[y]∨y �≈ q, where y is a new ordinary variable, if q is an impure target term
in C.

The weakly abstracted version of a clause C is denoted by abstr(C); if N is a
set of clauses then abstr(N) = { abstr(C) | C ∈ N }. �
For example, weak abstraction of the clause g(1, α, f(1) + (α + 1), z) ≈ β yields
g(1,X, f(1) + Y, z) ≈ β ∨ X �≈ α ∨ Y �≈ α + 1. Note that the terms 1, f(1) +
(α + 1), z, and β are not abstracted out: 1 is a domain element; f(1) + (α + 1)
has a BG sort, but it is not a BG term; z is a variable; and β is not a proper
subterm of any other term. The clause write(a, 2, read(a, 1) + 1) ≈ b is already
weakly abstracted. Every pure BG clause is trivially weakly abstracted.

Nested abstraction is only necessary for certain impure BG terms. For
instance, the clause f(z + α) ≈ 1 has two target terms, namely α (since z is
an impure BG term) and z + α (since f is a FG operator). If we abstract out α,
we obtain f(z + X) ≈ 1 ∨ X �≈ α. The new term z + X is still a target term, so
one more abstraction step yields f(y) ≈ 1 ∨ X �≈ α ∨ y �≈ z + X. (Alternatively,
we can first abstract out z + α, yielding f(y) ≈ 1 ∨ y �≈ z + α, and then α. The
final result is the same.)

It is easy to see that the abstraction process described in Definition 5.1 ter-
minates by comparing the multisets of the numbers of non-variable occurrences
in the left and right-hand sides of all literals before and after an abstraction step.

Proposition 5.2. If N is a set of clauses and N ′ is obtained from N by replac-
ing one or more clauses by their weakly abstracted versions, then sgi(N) and
sgi(N ′) are equivalent and N ′ is sufficiently complete whenever N is.

Proof. Let us first consider the case of a single abstraction step applied to a single
clause. Let C[q] be a clause with a target term q and let D = C[ζ] ∨ ζ �≈ q
be the result of abstracting out q (where ζ is a new abstraction variable, if q is
pure, and a new ordinary variable, if q is impure). We will show that sgi(C) and
sgi(D) have the same models.

7 Target terms are terms that need to be abstracted out; so for efficiency reasons, it is
advantageous to keep the number of target terms as small as possible. We will show
in Sect. 7 why domain elements may be treated differently from other non-variable
terms. On the other hand, all the results in the following sections continue to hold
if the restriction that q is not a domain element is dropped (i. e., if domain elements
are abstracted out as well). We will make use of this fact in Sect. 11.
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In one direction let I be an arbitrary model of sgi(C). We have to show
that I is also a model of every simple ground instance Dτ of D. If I satisfies
the disequation ζτ �≈ qτ then this is trivial. Otherwise, ζτ and qτ have the
same interpretation in I. Since dom(τ) ⊇ vars(D) = vars(C) ∪ {ζ}, Cτ is a
simple ground instance of C, so I is a model of Cτ = Cτ [qτ ]. By congruence,
we conclude that I is also a model of Cτ [ζτ ], hence it is a model of Dτ =
Cτ [ζτ ] ∨ ζτ �≈ qτ .

In the other direction let I be an arbitrary model of sgi(D). We have to show
that I is also a model of every simple ground instance Cτ of C. Without loss
of generality assume that ζ /∈ dom(τ). If ζ is an abstraction variable, then q is
a pure BG term, and since τ is a simple substitution, qτ is a pure BG term as
well. Consequently, the substitutions [ζ 	→ qτ ] and τ ′ = τ [ζ 	→ qτ ] are again
simple substitutions and Dτ ′ is a simple ground instance of D. This implies that
I is a model of Dτ ′. The clause Dτ ′ has the form Dτ ′ = Cτ ′[ζτ ′] ∨ ζτ ′ �≈ qτ ′;
since ζτ ′ = qτ , Cτ ′ = Cτ and qτ ′ = qτ , this is equal to Cτ [qτ ] ∨ qτ �≈ qτ .
Obviously, the literal qτ �≈ qτ must be false in I, so I must be a model of
Cτ [qτ ] = C[q]τ = Cτ .

By induction over the number of abstraction steps we conclude that for any
clause C, sgi(C) and sgi(abstr(C)) are equivalent. The extension to clause sets
N and N ′ follows then from the fact that I is a model of sgi(N) if and only if
it is a model of sgi(C) for all C ∈ N . Moreover, the equivalence of sgi(N) and
sgi(N ′) implies obviously that N ′ is sufficiently complete whenever N is. �

In contrast to full abstraction, the weak abstraction rule does not require
abstraction of FG terms (which can destroy sufficient completeness if done using
abstraction variables, and which is detrimental to the performance of a prover
if done using ordinary variables). BG terms are usually abstracted out using
abstraction variables. The exception are BG terms that are impure, i. e., that con-
tain ordinary variables themselves. In this case, we cannot avoid to use ordinary
variables for abstraction, otherwise, we might again destroy sufficient complete-
ness. For example, the clause set {P(1 + y), ¬P(1 + c)} is sufficiently complete.
If we used an abstraction variable instead of an ordinary variable to abstract out
the impure subterm 1 + y, we would get {P(X) ∨ X �≈ 1 + y, ¬P(1 + c)}, which
is no longer sufficiently complete.

In input clauses (that is, before abstraction), BG-sorted variables may be
declared as “ordinary” or “abstraction”. As we have seen above, using abstrac-
tion variables can reduce the search space; on the other hand, abstraction
variables may be detrimental to sufficient completeness. Consider the follow-
ing example: The set of clauses N = {¬f(x) > g(x) ∨ h(x) ≈ 1, ¬f(x) ≤
g(x) ∨ h(x) ≈ 2, ¬h(x) > 0} is unsatisfiable w.r.t. linear integer arithmetic, but
since it is not sufficiently complete, the hierarchic superposition calculus does
not detect the unsatisfiability. Adding the clause X > Y ∨ X ≤ Y to N does
not help: Since the abstraction variables X and Y may not be mapped to the
FG terms f(x) and g(x) in a simple ground instance, the resulting set is still
not sufficiently complete. However, if we add the clause x > y ∨ x ≤ y, the
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set of clauses becomes (vacuously) sufficiently complete and its unsatisfiability
is detected.

One might wonder whether it is also possible to gain anything if the abstrac-
tion process is performed using ordinary variables instead of abstraction vari-
ables. The following proposition shows that this is not the case:

Proposition 5.3. Let N be a set of clauses, let N ′ be the result of weak abstrac-
tion of N as defined above, and let N ′′ be the result of weak abstraction of
N where all newly introduced variables are ordinary variables. Then sgi(N ′)
and sgi(N ′′) are equivalent and sgi(N ′) is sufficiently complete if and only if
sgi(N ′′) is.

Proof. By Proposition 5.2, we know already that sgi(N) and sgi(N ′) are equiv-
alent. Moreover, it is easy to check the proof of Proposition 5.2 is still valid if
we assume that the newly introduced variable ζ is always an ordinary variable.
(Note that the proof requires that abstraction variables are mapped only to pure
BG terms, but it does not require that a variable that is mapped to a pure BG
term must be an abstraction variable.) So we can conclude in the same way
that sgi(N) and sgi(N ′′) are equivalent, and hence, that sgi(N ′) and sgi(N ′′) are
equivalent. From this, we can conclude that N ′ is sufficiently complete whenever
N ′′ is. �

6 Base Inference System

An inference system I is a set of inference rules. By an I inference we mean an
instance of an inference rule from I such that all conditions are satisfied.

The base inference system HSPBase of the hierarchic superposition calcu-
lus consists of the inference rules Equality resolution, Negative superposition, Positive
superposition, Equality factoring, and Close defined below. The calculus is parame-
terized by a hierarchic reduction ordering � and by a “selection function” that
assigns to every clause a (possibly empty) subset of its negative FG literals. All
inference rules are applicable only to weakly abstracted premise clauses.

Equality resolution
s �≈ t ∨ C

abstr(Cσ)

if (i) σ is a simple mgu of s and t, (ii) sσ is not a pure BG term, and (iii) if
the premise has selected literals, then s �≈ t is selected in the premise, otherwise
(s �≈ t)σ is maximal in (s �≈ t ∨ C)σ.8

For example, Equality resolution is applicable to 1 + c �≈ 1 + x with the simple
mgu [x 	→ c], but it is not applicable to 1 + α �≈ 1 + x, since 1 + α is a pure BG
term.

8 As in [5], it is possible to strengthen the maximality condition by requiring that
there exists some simple ground substitution ψ such that (s �≈ t)σψ is maximal in
(s �≈ t ∨ C)σψ (and analogously for the other inference rules).
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Negative superposition
l ≈ r ∨ C s[u] �≈ t ∨ D

abstr((s[r] �≈ t ∨ C ∨ D)σ)

if (i) u is not a variable, (ii) σ is a simple mgu of l and u, (iii) lσ is not a pure
BG term, (iv) rσ �� lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi)
the first premise does not have selected literals, (vii) tσ �� sσ, and (viii) if the
second premise has selected literals, then s �≈ t is selected in the second premise,
otherwise (s �≈ t)σ is maximal in (s �≈ t ∨ D)σ.

Positive superposition
l ≈ r ∨ C s[u] ≈ t ∨ D

abstr((s[r] ≈ t ∨ C ∨ D)σ)

if (i) u is not a variable, (ii) σ is a simple mgu of l and u, (iii) lσ is not a pure
BG term, (iv) rσ �� lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi)
tσ �� sσ, (vii) (s �≈ t)σ is strictly maximal in (s ≈ t ∨ D)σ, and (viii) none of
the premises has selected literals.

Equality factoring
s ≈ t ∨ l ≈ r ∨ C

abstr((l ≈ r ∨ t �≈ r ∨ C)σ)

where (i) σ is a simple mgu of s and l, (ii) sσ is not a pure BG term, (iii) (s ≈ t)σ
is maximal in (s ≈ t ∨ l ≈ r ∨ C)σ, (iv) tσ �� sσ, (v) lσ �� rσ, and (vi) the
premise does not have selected literals.

Close
C1 · · · Cn

�

if C1, . . . , Cn are BG clauses and {C1, . . . , Cn} is B-unsatisfiable, i. e., no inter-
pretation in B is a ΣB-model of {C1, . . . , Cn}.

Notice that Close is not restricted to take pure BG clauses only. The reason
is that also impure BG clauses admit simple ground instances that are pure.

Theorem 6.1. The inference rules of HSPBase are sound w.r.t. |=B, i. e., for
every inference with premises in N and conclusion C, we have N |=B C.

Proof. Equality resolution, Negative superposition, Positive superposition, and Equality

factoring are clearly sound w.r.t. |=, and therefore also sound w.r.t. |=B. For Close,
soundness w.r.t. |=B follows immediately from the definition. �

All inference rules of HSPBase involve (simple) mgus. Because of the two
kinds of variables, abstraction and ordinary ones, the practical question arises if
standard unification algorithms can be used without or only little modification.
For example, the terms Z and (x + y) admit a simple mgu σ = [x 	→ X, y 	→
Y, Z 	→ X + Y ]. This prompts for the use of weakening substitutions as in
many-sorted logics with subsorts [28]. A closer inspection of the inference rules
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shows, however, that such substitutions never need to be considered: All unifiers
computed in the inference rules have the property that abstraction variables
are only mapped to abstraction variables or domain elements; apart from this
additional restriction, we can use a standard unification algorithm.

In contrast to [5], the inference rules above include an explicit weak abstrac-
tion in their conclusion. Without it, conclusions would not be weakly abstracted
in general. For example Positive superposition applied to the weakly abstracted
clauses f(X) ≈ 1 ∨ X �≈ α and P(f(1) + 1) would then yield P(1 + 1) ∨ 1 �≈ α,
whose P-literal is not weakly abstracted. Additionally, the side conditions of our
rules differ somewhat from the corresponding rules of [5], this is due on the one
hand to the presence of impure BG terms (which must sometimes be treated
like FG terms), and on the other hand to the fact that, after weak abstraction,
literals may still contain both FG and BG operators.

The inference rules are supplemented by a redundancy criterion, that is, a
mapping RCl from sets of formulae to sets of formulae and a mapping RInf from
sets of formulae to sets of inferences that are meant to specify formulae that may
be removed from N and inferences that need not be computed. (RCl(N) need
not be a subset of N and RInf(N) will usually also contain inferences whose
premises are not in N .)

Definition 6.2. A pair R = (RInf ,RCl) is called a redundancy criterion (with
respect to an inference system I and a consequence relation |=), if the following
conditions are satisfied for all sets of formulae N and N ′:

(i) N \ RCl(N) |= RCl(N).
(ii) If N ⊆ N ′, then RCl(N) ⊆ RCl(N ′) and RInf(N) ⊆ RInf(N ′).
(iii) If ι is an inference and its conclusion is in N , then ι ∈ RInf(N).
(iv) If N ′ ⊆ RCl(N), then RCl(N) ⊆ RCl(N \N ′) and RInf(N) ⊆ RInf(N \N ′).

The inferences in RInf(N) and the formulae in RCl(N) are said to be redundant
with respect to N . �

Let SSP be the ground standard superposition calculus using the inference
rules equality resolution, negative superposition, positive superposition, and
equality factoring (Bachmair and Ganzinger [3], Nieuwenhuis [23], Nieuwenhuis
and Rubio [25]). To define a redundancy criterion for HSPBase and to prove the
refutational completeness of the calculus, we use the same approach as in [5] and
relate HSPBase inferences to the corresponding SSP inferences.

For a set of ground clauses N , we define RS
Cl(N) to be the set of all clauses

C such that there exist clauses C1, . . . , Cn ∈ N that are smaller than C with
respect to � and C1, . . . , Cn |= C. We define RS

Inf(N) to be the set of all ground
SSP inferences ι such that either a premise of ι is in RS

Cl(N) or else C0 is the
conclusion of ι and there exist clauses C1, . . . , Cn ∈ N that are smaller with
respect to �c than the maximal premise of ι and C1, . . . , Cn |= C0.

The following results can be found in [3] and [23]:

Theorem 6.3. The (ground) standard superposition calculus SSP and RS =
(RS

Inf ,RS
Cl) satisfy the following properties:
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(i) RS is a redundancy criterion with respect to |=.
(ii) SSP together with RS is refutationally complete.

Let ι be an HSPBase inference with premises C1, . . . , Cn and conclusion
abstr(C), where the clauses C1, . . . , Cn have no variables in common. Let ι′

be a ground SSP inference with premises C ′
1, . . . , C

′
n and conclusion C ′. If σ is

a simple substitution such that C ′ = Cσ and C ′
i = Ciσ for all i, and if none of

the C ′
i is a BG clause, then ι′ is called a simple ground instance of ι. The set of

all simple ground instances of an inference ι is denoted by sgi(ι).

Definition 6.4. Let N be a set of weakly abstracted clauses. We define RH
Inf(N)

to be the set of all inferences ι such that either ι is not a Close inference and
sgi(ι) ⊆ RS

Inf(sgi(N) ∪ GndTh(B)), or else ι is a Close inference and � ∈ N .
We define RH

Cl(N) to be the set of all weakly abstracted clauses C such that
sgi(C) ⊆ RS

Cl(sgi(N) ∪ GndTh(B)) ∪ GndTh(B).9 �

7 Refutational Completeness

To prove that HSPBase and RH = (RH
Inf ,RH

Cl) are refutationally complete for
sets of weakly abstracted Σ-clauses and compact BG specifications (ΣB,B), we
use the same technique as in [5]:

First we show that RH is a redundancy criterion with respect to |=B, and
that a set of clauses remains sufficiently complete if new clauses are added or if
redundant clauses are deleted. The proofs are rather technical and can be found
in [12]. They are similar to the corresponding ones in [5]; the differences are
due, on the one hand, to the fact that we include GndTh(B) in the redundancy
criterion and in the definition of sufficient completeness, and, on the other hand,
to the explicit abstraction steps in our inference rules.

Lemma 7.1. If sgi(N) ∪ GndTh(B) |= sgi(C), then N |=B C.

Proof. Suppose that sgi(N) ∪ GndTh(B) |= sgi(C). Let I ′ be a Σ-model of N
whose restriction to ΣB is contained in B. Clearly, I ′ is also a model of GndTh(B).
Since I ′ does not add new elements to the sorts of I = I ′|ΣB and I is a term-
generated ΣB-interpretation, we know that for every ground Σ-term t′ of a BG
sort there is a ground BG term t such that t and t′ have the same interpretation
in I ′. Therefore, for every ground substitution σ′ there is an equivalent simple
ground substitution σ; since Cσ is valid in I ′, Cσ′ is also valid. �

We call the simple most general unifier σ that is computed during an infer-
ence ι and applied to the conclusion the pivotal substitution of ι. (For ground
inferences, the pivotal substitution is the identity mapping.) If L is the literal
[¬] s ≈ t or [¬] s[u] ≈ t of the second or only premise that is eliminated in ι, we
call Lσ the pivotal literal of ι, and we call sσ or s[u]σ the pivotal term of ι.

9 In contrast to [5], we include GndTh(B) in the redundancy criterion. (This is inde-
pendent of the abstraction method used; it would also have been useful in [5].).
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Lemma 7.2. Let ι be an HSPBase inference

C1

abstr(C0σ)
or

C2 C1

abstr(C0σ)

from weakly abstracted premises with pivotal substitution σ. Let ι′ be a simple
ground instance of ι of the form

C1τ

C0στ
or

C2τ C1τ

C0στ

Then there is a simple ground instance of abstr(C0σ) that has the form C0στ ∨
E, where E is a (possibly empty) disjunction of literals s �≈ s, and each literal
of E is smaller than the pivotal literal of ι′.

As M ⊆ M ′ implies RS
Inf(M) ⊆ RS

Inf(M
′), we obtain RS

Inf(sgi(N)\sgi(N ′)) ⊆
RS

Inf(sgi(N \N ′)). Furthermore, it is fairly easy to see that sgi(N)\(RS
Cl(sgi(N) ∪

GndTh(B)) ∪ GndTh(B)) ⊆ sgi(N \ RH
Cl(N)). Using these two results we can

prove the following lemmas:

Lemma 7.3. RH = (RH
Inf ,RH

Cl) is a redundancy criterion with respect to |=B.

Lemma 7.4. Let N , N ′ and M be sets of weakly abstracted clauses such that
N ′ ⊆ RH

Cl(N). If N is sufficiently complete, then so are N ∪ M and N \ N ′.

We now encode arbitrary term-generated ΣB-interpretation by sets of unit
ground clauses in the following way: Let I ∈ B be a term-generated ΣB-inter-
pretation. For every ΣB-ground term t let m(t) be the smallest ground term of
the congruence class of t in I. We define a rewrite system E′

I by E′
I = {t →

m(t) | t ∈ TΣ , t �= m(t)}. Obviously, E′
I is right-reduced; since all rewrite rules

are contained in �, E′
I is terminating; and since every ground term t has m(t)

as its only normal form, E′
I is also confluent. Now let EI be the set of all rules

l → r in E′
I such that l is not reducible by E′

I \ {l → r}. Clearly every term
that is reducible by EI is also reducible by E′

I ; conversely every term that is
reducible by E′

I has a minimal subterm that is reducible by E′
I and the rule in

E′
I that is used to rewrite this minimal subterm is necessarily contained in EI .

Therefore E′
I and EI define the same set of normal forms, and from this we can

conclude that EI and E′
I induce the same equality relation on ground ΣB-terms.

We identify EI with the set of clauses {t ≈ t′ | t → t′ ∈ EI}. Let DI be the set
of all clauses t �≈ t′, such that t and t′ are distinct ground ΣB-terms in normal
form with respect to EI .10

Lemma 7.5. Let I ∈ B be a term-generated ΣB-interpretation and let C be
a ground BG clause. Then C is true in I if and only if there exist clauses
C1, . . . , Cn in EI ∪ DI such that C1, . . . , Cn |= C and C � Ci for 1 ≤ i ≤ n.
10 Typically, EI contains two kinds of clauses, namely clauses that evaluate non-

constant BG terms, such as 2 + 3 ≈ 5, and clauses that map parameters to domain
elements, such as α ≈ 4.
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Proof. The “if” part follows immediately from the fact that I |= EI ∪ DI . For
the “only if” part assume that the ground BG clause C is true in I. Consequently,
there is some literal s ≈ t or s �≈ t of C that is true in I. Then this literal follows
from (i) the rewrite rules in EI that are used to normalize s to its normal form
s′, (ii) the rewrite rules in EI that are used to normalize t to its normal form
t′, and, in the case of a negated literal s �≈ t, (iii) the clause s′ �≈ t′ ∈ DI . It is
routine to show that all these clauses are smaller than or equal to s ≈ t or s �≈ t,
respectively, and hence smaller than or equal to C. �
Corollary 7.6. Let I ∈ B be a term-generated ΣB-interpretation. Then EI ∪
DI |= GndTh(B).

Proof. Since I ∈ B, we have I |= GndTh(B), hence EI ∪ DI |= GndTh(B) by
Lemma 7.5. �

Let N be a set of weakly abstracted clauses and I ∈ B be a term-generated
ΣB-interpretation, then NI denotes the set EI ∪ DI ∪ {Cσ | σ simple, reduced
with respect to EI , C ∈ N , Cσ ground }.

Lemma 7.7. If N is a set of weakly abstracted clauses, then RS
Inf(sgi(N) ∪

GndTh(B)) ⊆ RS
Inf(NI).

Proof. By part (i) of Theorem 6.3 we have obviously RS
Inf(sgi(N)) ⊆ RS

Inf(EI ∪
DI ∪ sgi(N) ∪ GndTh(B)). Let C be a clause in EI ∪ DI ∪ sgi(N) ∪ GndTh(B)
and not in NI . If C ∈ GndTh(B), then it is true in I, so by Lemma 7.5 it is
either contained in EI ∪ DI ⊆ NI or it follows from smaller clauses in EI ∪ DI

and is therefore in RS
Cl(EI ∪ DI ∪ sgi(N)). If C /∈ GndTh(B), then C = C ′σ for

some C ′ ∈ N , so it follows from C ′ρ and EI ∪ DI , where ρ is the substitution
that maps every variable ζ to the EI -normal form of ζσ. Since C follows from
smaller clauses in EI ∪ DI ∪ sgi(N), it is in RS

Cl(EI ∪ DI ∪ sgi(N)). Hence
RS

Inf(EI ∪ DI ∪ sgi(N) ∪ GndTh(B)) ⊆ RS
Inf(NI). �

A clause set N is called saturated (with respect to an inference system I and
a redundancy criterion R) if ι ∈ RInf(N) for every inference ι with premises
in N .

Theorem 7.8. Let I ∈ B be a term-generated ΣB-interpretation and let N be a
set of weakly abstracted Σ-clauses. If I satisfies all BG clauses in sgi(N) and N
is saturated with respect to HSPBase and RH, then NI is saturated with respect
to SSP and RS .

Proof. We have to show that every SSP-inference from clauses of NI is contained
in RS

Inf(NI). We demonstrate this in detail for the equality resolution and the
negative superposition rule. The analysis of the other rules is similar. Note that
by Lemma 7.5 every BG clause that is true in I and is not contained in EI ∪ DI

follows from smaller clauses in EI ∪ DI , thus it is in RS
Cl(NI); every inference

involving such a clause is in RS
Inf(NI).

The equality resolution rule is obviously not applicable to clauses from EI ∪
DI . Suppose that ι is an equality resolution inference with a premise Cσ, where
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C ∈ N and σ is a simple substitution and reduced with respect to EI . If Cσ is a
BG clause, then ι is in RS

Inf(NI). If the pivotal term of ι is a pure BG term then
the pivotal literal is pure BG as well. Because the pivotal literal is maximal in
Cσ it follows from properties of the ordering that Cσ is a BG clause. Because we
have already considered this case we can assume from now on that the pivotal
term of ι is not pure BG and that Cσ is an FG clause. It follows that ι is a simple
ground instance of a hierarchic inference ι′ from C. Since ι′ is in RH

Inf(N), ι is
in RS

Inf(sgi(N) ∪ GndTh(B)), by Lemma 7.7, this implies again ι ∈ RS
Inf(NI).

Obviously a clause from DI cannot be the first premise of a negative super-
position inference. Suppose that the first premise is a clause from EI . The second
premise cannot be a FG clause, since the maximal sides of maximal literals in a
FG clause are reduced; as it is a BG clause, the inference is redundant. Now sup-
pose that ι is a negative superposition inference with a first premise Cσ, where
C ∈ N and σ is a simple substitution and reduced with respect to EI . If Cσ is a
BG clause, then ι is in RS

Inf(NI). Otherwise, with the same arguments as for the
equality resolution case above, the pivotal term is not pure BG and Cσ is a FG
clause. Hence we can conclude that the second premise can be written as C ′σ,
where C ′ ∈ N is a FG clause (without loss of generality, C and C ′ do not have
common variables). If the overlap takes place below a variable occurrence, the
conclusion of the inference follows from Cσ and some instance C ′ρ, which are
both smaller than C ′σ. Otherwise, ι is a simple ground instance of a hierarchic
inference ι′ from C. In both cases, ι is contained in RS

Inf(NI). �
The crucial property of abstracted clauses that is needed in the proof of this

theorem is that there are no superposition inferences between clauses in EI and
FG ground instances Cσ in NI , or in other words, that all FG terms occurring
in ground instances Cσ are reduced w.r.t. EI . This motivates the definition of
target terms in Definition 5.1: Recall that two different domain elements must
always be interpreted differently in I and that a domain element is smaller in the
term ordering than any ground term that is not a domain element. Consequently,
any domain element is the smallest term in its congruence class, so it is reduced
by EI . Furthermore, by the definition of NI , ζσ is reduced by EI for every
variable ζ. So variables and domain elements never need to be abstracted out.
Other BG terms (such as parameters α or non-constant terms ζ1 + ζ2) have to
be abstracted out if they occur below a FG operator, or if one of their sibling
terms is a FG term or an impure BG term (since σ can map the latter to a FG
term). On the other hand, abstracting out FG terms as in [5] is never necessary
to ensure that FG terms are reduced w.r.t. EI .

If N is saturated with respect to HSPBase and RH and does not contain the
empty clause, then Close cannot be applicable to N . If (ΣB,B) is compact, this
implies that there is some term-generated ΣB-interpretation I ∈ B that satisfies
all BG clauses in sgi(N). Hence, by Theorem 7.8, the set of reduced simple ground
instances of N has a model that also satisfies EI ∪ DI . Sufficient completeness
allows us to show that this is in fact a model of all ground instances of clauses
in N and that I is its restriction to ΣB:
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Theorem 7.9. If the BG specification (ΣB,B) is compact, then HSPBase and
RH are statically refutationally complete for all sufficiently complete sets of
clauses, i. e., if a set of clauses N is sufficiently complete and saturated w.r.t.
HSPBase and RH, and N |=B �, then � ∈ N .

Proof. Let N be a set of weakly abstracted clauses that is sufficiently complete,
and saturated w.r.t.the hierarchic superposition calculus and RH and does not
contain �. Consequently, the Close rule is not applicable to N . By compact-
ness, this means that the set of all ΣB-clauses in sgi(N) is satisfied by some
term-generated ΣB-interpretation I ∈ B. By Theorem 7.8, NI is saturated with
respect to the standard superposition calculus. Since � /∈ NI , the refutational
completeness of standard superposition implies that there is a Σ-model I ′ of NI .
Since N is sufficiently complete, we know that for every ground term t′ of a BG
sort there exists a BG term t such that t′ ≈ t is true in I ′. Consequently, for
every ground instance of a clause in N there exists an equivalent simple ground
instance, thus I ′ is also a model of all ground instances of clauses in N . To
see that the restriction of I ′ to ΣB is isomorphic to I and thus in B, note that
I ′ satisfies EI ∪ DI , preventing confusion, and that N is sufficiently complete,
preventing junk. Since I ′ satisfies N and I ′|ΣB ∈ B, we have N �|=B � �

A theorem proving derivation D is a finite or infinite sequence of weakly
abstracted clause sets N0, N1, ..., such that Ni and Ni+1 are equisatisfiable w.r.t.
|=B and Ni \ Ni+1 ⊆ RH

Inf(Ni+1) for all indices i. The set N∞ =
⋃

i≥0

⋂
j≥i Nj

is called the limit of D; the set N∞ =
⋃

i≥0 Ni is called the union of D. It is
easy to show that every clause in N∞ is either contained in N∞ or redundant
w.r.t. N∞. The derivation D is said to be fair, if every HSPBase-inference with
(non-redundant) premises in N∞ becomes redundant at some point of the deriva-
tion. The limit of a fair derivation is saturated [4]; this is the key result that
allows us to deduce dynamic refutational completeness from static refutational
completeness:

Theorem 7.10. If the BG specification (ΣB,B) is compact, then HSPBase and
RH are dynamically refutationally complete for all sufficiently complete sets of
clauses, i. e., if N |=B �, then every fair derivation starting from abstr(N)
eventually generates �.

In the rest of the paper, we consider only theorem proving derivations where
each set Ni+1 results from from Ni by either adding the conclusions of inferences
from Ni, or by deleting clauses that are redundant w.r.t. Ni+1, or by applying
the following generic simplification rule for clause sets:

Simp
N ∪ {C}

N ∪ {D1, . . . , Dn}

if n ≥ 0 and (i) Di is weakly abstracted, for all i = 1, . . . , n, (ii) N ∪ {C} |=B Di,
and (iii) C ∈ RH

Cl(N ∪ {D1, . . . , Dn}).
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Condition (ii) is needed for soundness, and condition (iii) is needed for com-
pleteness. The Simp rule covers the usual simplification rules of the standard
superposition calculus, such as demodulation by unit clauses and deletion of
tautologies and (properly) subsumed clauses. It also covers simplification of
arithmetic terms, e. g., replacing a subterm (2 + 3) + α by 5 + α and delet-
ing an unsatisfiable BG literal 5 + α < 4 + α from a clause. Any clause of the
form C ∨ ζ �≈ d where d is domain element can be simplified to C[ζ 	→ d].
Notice, though, that impure BG terms or FG terms can in general not be sim-
plified by BG tautologies. Although, e. g., f(X) + 1 �≈ y + 1 is larger than
1 + f(X) �≈ y + 1 (with a LPO), such a “simplification” is not justified by the
redundancy criterion. Indeed, in the example it destroys sufficient completeness.

We have to point out a limitation of the calculus described above. The
standard superposition calculus SSP exists in two variants: either using the
Equality factoring rule, or using the Factoring and Merging paramodulation rules. Only
the first of these variants works together with weak abstraction. Consider the
following example. Let N = {α + β ≈ α, c �≈ β ∨ c �≈ 0, c ≈ β ∨ c ≈ 0 }. All
clauses in N are weakly abstracted. Since the first clause entails β ≈ 0 relative
to linear arithmetic, the second and the third clause are obviously contradictory.
The HSPBase calculus as defined above is able to detect this by first applying
Equality factoring to the third clause, yielding c ≈ 0 ∨ β �≈ 0, followed by two
Negative superposition steps and Close. If Equality factoring is replaced by Factoring

and Merging paramodulation, however, the refutational completeness of HSPBase is
lost. The only inference that remains possible is a Negative superposition inference
between the third and the second clause. But since the conclusion of this infer-
ence is a tautology, the inference is redundant, so the clause set is saturated.
(Note that the clause β ≈ 0 is entailed by N , but it is not explicitly present, so
there is no way to perform a Merging paramodulation inference with the smaller
side of the maximal literal of the third clause.)

8 Local Sufficient Completeness

The definition of sufficient completeness w.r.t. simple instances that was given in
Sect. 3 requires that every ground BG-sorted FG term s is equal to some ground
BG term t in every Σ-model J of sgi(N) ∪ GndTh(B). It is rather evident,
however, that this condition is sometimes stronger than needed. For instance, if
the set of input clauses N is ground, then we only have to consider the ground
BG-sorted FG terms that actually occur in N [22] (analogously to the Nelson-
Oppen combination procedure). A relaxation of sufficient completeness that is
also useful for non-ground clauses and that still ensures refutational completeness
was given by Kruglov [21]:

Definition 8.1 (Smooth ground instance). We say that a substitution σ is
smooth if for every variable ζ ∈ dom(σ) all BG-sorted (proper or non-proper)
subterms of ζσ are pure BG terms. If Fσ is a ground instance of a term or
clause F and σ is smooth, Fσ is called a smooth ground instance. (Recall that
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every ground BG term is necessarily pure.) If N is a set of clauses, smgi(N)
denotes the set of all smooth ground instances of clauses in N . �

Every smooth substitution is a simple substitution, but not vice versa. For
instance, if x is a FG-sorted variable and y is an ordinary BG-sorted variable,
then σ1 = [x 	→ cons(f(1) + 2, empty)] and σ2 = [y 	→ f(1)] are simple substitu-
tions, but neither of them is smooth, since xσ1 and yσ2 contain the BG-sorted
FG subterm f(1).

Definition 8.2 (Local sufficient completeness). Let N be a Σ-clause set.
We say that N is locally sufficiently complete w.r.t. smooth instances if for every
ΣB-interpretation I ∈ B, every Σ-model J of sgi(N) ∪ EI ∪ DI , and every BG-
sorted FG term s occurring in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI) there is a
ground BG term t such that J |= s ≈ t. (Again, we will from now on omit the
phrase “w.r.t. smooth instances” for brevity.) �
Example 8.3. The clause set N = {X �≈ α ∨ f(X) ≈ β } is locally sufficiently
complete: The smooth ground instances have the form s′ �≈ α ∨ f(s′) ≈ β,
where s′ is a pure BG term. We have to show that f(s′) equals some ground BG
term t whenever the smooth ground instance is not redundant. Let I ∈ B be a
ΣB-interpretation and J be a Σ-model of sgi(N) ∪ EI ∪ DI . If I |= s′ �≈ α,
then s′ �≈ α follows from some clauses in EI ∪ DI , so s′ �≈ α ∨ f(s′) ≈ β
is contained in RS

Cl(smgi(N) ∪ EI ∪ DI) and f(s′) need not be considered.
Otherwise I |= s′ ≈ α, then f(s′) occurs in a non-redundant smooth ground
instance of a clause in N and J |= f(s′) ≈ β, so t := β has the desired property.
On the other hand, N is clearly not sufficiently complete, since there are models
of sgi(N) ∪ GndTh(B) in which f(β) is interpreted by some junk element that
is different from the interpretation of any ground BG term.

The example demonstrates that local sufficient completeness is significantly
more powerful than sufficient completeness, but this comes at a price. For
instance, as shown by the next example, local sufficient completeness is not
preserved by abstraction:

Example 8.4. Suppose that the BG specification is linear integer arithmetic
(including parameters α, β, γ), the FG operators are f : int → int , g : int →
data, a :→ data, the term ordering is an LPO with precedence g > f > a > γ >
β > α > 3 > 2 > 1, and the clause set N is given by

γ ≈ 1 (1) f(2) ≈ 2 (4) g(f(α)) ≈ a ∨ g(f(β)) ≈ a (6)

β ≈ 2 (2) f(3) ≈ 3 (5) g(f(α)) �≈ a ∨ g(f(β)) ≈ a (7)

α ≈ 3 (3) g(f(γ)) ≈ a ∨ g(f(β)) ≈ a (8)

Since all clauses in N are ground, smgi(N) = sgi(N) = N . Clause (8) is redun-
dant w.r.t. smgi(N) ∪ EI ∪ DI (for any I): it follows from clauses (6) and
(7), and both are smaller than (8). The BG-sorted FG terms in non-redundant
clauses are f(2), f(3), f(α), and f(β), and in any Σ-model J of sgi(N) ∪ EI ∪ DI ,
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these are necessarily equal to the BG terms 2 or 3, respectively, so N is locally
sufficiently complete.

Let N ′ = abstr(N), let I be a BG-model such that EI contains α ≈ 3, β ≈ 2,
and γ ≈ 1 (among others), DI contains 1 �≈ 2, 1 �≈ 3, and 2 �≈ 3 (among others),
and let J be a Σ-model of sgi(N ′) ∪ EI ∪ DI in which f(1) is interpreted by
some junk element. The set N ′ contains the clause g(f(X)) ≈ a ∨ g(f(Y )) ≈
a ∨ γ �≈ X ∨ β �≈ Y obtained by abstraction of (8). Its smooth ground instance
C = g(f(1)) ≈ a ∨ g(f(2)) ≈ a ∨ γ �≈ 1 ∨ β �≈ 2 is not redundant: it follows
from other clauses in smgi(N ′) ∪ EI ∪ DI , namely

α ≈ 3 (3)

g(f(3)) ≈ a ∨ g(f(2)) ≈ a ∨ α �≈ 3 ∨ β �≈ 2 (6′)

g(f(3)) �≈ a ∨ g(f(2)) ≈ a ∨ α �≈ 3 ∨ β �≈ 2 (7′)

but the ground instances (6′) and (7′) that are needed here are larger than C.
Since C contains the BG-sorted FG term f(1) which is interpreted differently
from any BG term in J , N ′ is not locally sufficiently complete.

Local sufficient completeness of a clause set suffices to ensure refutational
completeness. Kruglov’s proof [21] works also if one uses weak abstraction instead
of strong abstraction and ordinary as well as abstraction variables, but it relies
on an additional restriction on the term ordering.11 We give an alternative proof
that works without this restriction.

The proof is based on a transformation on Σ-interpretations. Let J be
an arbitrary Σ-interpretation. We transform J into a term-generated Σ-
interpretation nojunk(J) without junk in two steps. In the first step, we define
a Σ-interpretation J ′ as follows:

– For every FG sort ξ, define J ′
ξ = Jξ.

– For every BG sort ξ, define J ′
ξ = { tJ | t is a ground BG term of sort ξ }.

– For every f : ξ1 . . . ξn → ξ0 the function J ′
f : J ′

ξ1
× · · · × J ′

ξn
→ J ′

ξ0
maps

(a1, . . . , an) to Jf (a1, . . . , an), if Jf (a1, . . . , an) ∈ J ′
ξ0

, and to an arbitrary
element of J ′

ξ0
otherwise.

That is, we obtain J ′ from J be deleting all junk elements from Jξ if ξ is a BG
sort, and by redefining the interpretation of f arbitrarily whenever Jf (a1, . . . , an)
is a junk element.

In the second step, we define the Σ-interpretation nojunk(J) = J ′′ as the
term-generated subinterpretation of J ′, that is,

– For every sort ξ, J ′′
ξ = { tJ

′ | t is a ground term of sort ξ },
– For every f : ξ1 . . . ξn → ξ0, the function J ′′

f : J ′′
ξ1

× · · · × J ′′
ξn

→ J ′′
ξ0

satisfies
J ′′

f (a1, . . . , an) = J ′
f (a1, . . . , an).

11 In [21], it is required that every ground term that contains a (proper or improper)
BG-sorted FG subterm must be larger than any (BG or FG) ground term that does
not contain such a subterm.
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Lemma 8.5. Let J , J ′, and nojunk(J) = J ′′ be given as above. Then the fol-
lowing properties hold:

(i) tJ
′′

= tJ
′
for every ground term t.

(ii) J ′′
ξ = J ′

ξ for every BG sort ξ.
(iii) J ′′ is a term-generated Σ-interpretation and J ′′|ΣB is a term-generated ΣB-

interpretation.
(iv) If t = f(t1, . . . , tn) is ground, tJ

′
i = tJi for all i, and tJ ∈ J ′

ξ, then tJ
′
= tJ .

(v) If t is ground and all BG-sorted subterms of t are BG terms, then tJ
′
= tJ .

(vi) If C is a ground BG clause, then J |= C if and only if J ′′ |= C if and only
if J ′′|ΣB |= C.

Proof. Properties (i)–(iv) follow directly from the definition of J ′ and J ′′. Prop-
erty (v) follows from (iv) and the definition of J ′ by induction over the term
structure. By (i) and (v), every ground BG term is interpreted in the same way
in J and J ′′, moreover it is obvious that every ground BG term is interpreted
in the same way in J ′′ and J ′′|ΣB ; this implies (vi). �
Lemma 8.6. If J is a Σ-interpretation and I = nojunk(J), then for every
ground term s there exists a ground term t such that sI = tI and all BG-sorted
(proper or non-proper) subterms of t are BG terms.

Proof. If s has a BG sort ξ, then this follows directly from the fact that sI ∈ Iξ

and that every element of Iξ equals tI for some ground BG term t of sort ξ.
If s has a FG sort, let s1, . . . , sn be the maximal BG-sorted subterms of s =
s[s1, . . . , sn]. Since for every si there is a ground BG term ti with sI

i = tIi , we
obtain sI = (s[s1, . . . , sn])I = (s[t1, . . . , tn])I . Set t := s[t1, . . . , tn]. �
Corollary 8.7. Let J be a Σ-interpretation and I = nojunk(J). Let Cσ by a
ground instance of a clause C. Then there is a smooth ground instance Cτ of C
such that (tσ)I = (tτ)I for every term occurring in C and such that I |= Cσ if
and only if I |= Cτ .

Proof. Using the previous lemma, we define τ such that for every variable ζ
occurring in C, (ζτ)I = (ζσ)I and all BG-sorted (proper or non-proper) subterms
of ζτ are BG terms. Clearly τ is smooth. The other properties follow immediately
by induction over the term or clause structure. �
Lemma 8.8. Let N be a set of Σ-clauses that is locally sufficiently complete.
Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(N) ∪ EI ∪ DI ,
and let J ′′ = nojunk(J). Let C ∈ N and let Cτ by a smooth ground instance
in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). Then (tτ)J = (tτ)J ′′
for every term t

occurring in C and J |= Cτ if and only if J ′′ |= Cτ .

Proof. Let J ′ be defined as above, then (tτ)J ′
= (tτ)J ′′

for any term t occur-
ring in C by Lemma 8.5-(i). We prove that (tτ)J = (tτ)J ′

by induction over
the term structure: If t is a variable, then by smoothness all BG-sorted sub-
terms of tτ are BG terms, hence (tτ)J ′

= (tτ)J by Lemma 8.5-(v). Otherwise let
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t = f(t1, . . . , tn). If tτ is a BG term, then again (tτ)J ′
= (tτ)J by Lemma 8.5-

(v). If tτ is a FG term of sort ξ, then t must be a FG term of sort ξ as
well. By the induction hypothesis, (tiτ)J = (tiτ)J ′

for every i. If ξ is a
FG sort, then trivially (tτ)J = Jf ((t1τ)J , . . . , (tnτ)J ) is contained in J ′

ξ, so
(tτ)J ′

= (tτ)J by Lemma 8.5-(iv). Otherwise, tτ is a BG-sorted FG term occur-
ring in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). By local sufficient completeness,
there exists a ground BG term s such that sJ = (tτ)J , hence (tτ)J ∈ J ′

ξ. Again,
Lemma 8.5-(iv) yields (tτ)J ′

= (tτ)J .
Since all left and right-hand sides of equations in Cτ are evaluated in the

same way in J ′′ and J , it follows that J |= Cτ if and only if J ′′ |= Cτ . �
Lemma 8.9. Let N be a set of Σ-clauses that is locally sufficiently complete.
Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(N) ∪ EI ∪ DI , and
let J ′′ = nojunk(J). Then J ′′ is a model of N .

Proof. The proof proceeds in three steps. In the first step we show that J ′′ is
a model of smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI): Let C ∈ N and let Cτ be a
smooth ground instance in smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI). Since every
smooth ground instance is a simple ground instance and J is a Σ-model of
sgi(N), we know that J |= Cτ . By Lemma 8.8, this implies J ′′ |= Cτ .

In the second step we show that J ′′ is a model of smgi(N). Since we already
know that J ′′ is a model of smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI), it is clearly
sufficient to show that J ′′ is a model of RS

Cl(smgi(N) ∪ EI ∪ DI): First we observe
that by Lemma 8.5 J ′′ |= EI ∪ DI . Using the result of the first step, this implies
that J ′′ is a model of (smgi(N) \ RS

Cl(smgi(N) ∪ EI ∪ DI)) ∪ EI ∪ DI , and
since this set is a superset of (smgi(N) ∪ EI ∪ DI) \ RS

Cl(smgi(N) ∪ EI ∪ DI),
J ′′ is also a model of the latter. By Definition 6.2-(i), (smgi(N) ∪ EI ∪ DI) \
RS

Cl(smgi(N) ∪ EI ∪ DI) |= RS
Cl(smgi(N) ∪ EI ∪ DI). So J ′′ is a model of

RS
Cl(smgi(N) ∪ EI ∪ DI).
We can now show the main statement: We know that J ′′ is a term-generated

Σ-interpretation, so J ′′ |= N holds if and only if J ′′ is a model of all ground
instances of clauses in N . Let Cσ be an arbitrary ground instance of C ∈ N . By
Corollary 8.7, there is a smooth ground instance Cτ such that J ′′ |= Cσ if and
only if J ′′ |= Cτ . As the latter has been shown in the second step, the result
follows. �
Theorem 8.10. If the BG specification (ΣB,B) is compact and if the clause
set N is locally sufficiently complete, then HSPBase and RH are dynamically
refutationally complete for abstr(N), i. e., if N |=B �, then every fair derivation
starting from abstr(N) eventually generates �.

Proof. Let D = (Ni)i≥0 be a fair derivation starting from N0 = abstr(N), and
let N∞ be the limit of D. By fairness, N∞ is saturated w.r.t. HSPBase and RH. If
� /∈ N∞, then the Close rule is not applicable to N∞. Since (ΣB,B) is compact,
this means that the set of all ΣB-clauses in sgi(N∞) is satisfied by some term-
generated ΣB-interpretation I ∈ B. By Theorem 7.8, (N∞)I is saturated with
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respect to the standard superposition calculus. Since � /∈ (N∞)I , the refuta-
tional completeness of standard superposition implies that there is a Σ-model J
of (N∞)I , and since EI ∪ DI ⊆ (N∞)I , J is also a Σ-model of sgi(N∞) ∪ EI ∪ DI .
Since every clause in N0 is either contained in N∞ or redundant w.r.t. N∞, every
simple ground instance of a clause in N0 is a simple ground instance of a clause
in N∞ or contained in GndTh(B) or redundant w.r.t. sgi(N∞) ∪ GndTh(B). We
conclude that J is a Σ-model of sgi(N0), and since sgi(N0) and sgi(N) are equiva-
lent, J is a Σ-model of sgi(N). Now define J ′′ = nojunk(J). By Lemma 8.5, J ′′ is
a term-generated Σ-interpretation, J ′′|ΣB is a term-generated ΣB-interpretation,
and J ′′|ΣB satisfies EI ∪ DI . Consequently, J ′′|ΣB is isomorphic to I and thus
contained in B. Finally, J ′′ is a model of N by Lemma 8.9. �
If all BG-sorted FG terms in a set N of clauses are ground, local sufficient
completeness can be established automatically by adding a “definition” of the
form t ≈ α, where t is a ground BG-sorted FG term and α is a parameter. The
following section explains this idea in a more general way.

9 Local Sufficient Completeness by Define

The HSPBase inference system will derive a contradiction if the input clause set
is inconsistent and (locally) sufficiently complete (cf. Sect. 8). In this section we
extend this functionality by adding an inference rule, Define, which can turn input
clause sets that are not sufficiently complete into locally sufficiently complete
ones. Technically, the Define rule derives “definitions” of the form t ≈ α, where
t is a ground BG-sorted FG term and α is a parameter of the proper sort. For
economy of reasoning, definitions are introduced only on a by-need basis, when t
appears in a current clause, and t ≈ α is used to simplify that clause immediately.

We need one more preliminary definition before introducing Define formally.

Definition 9.1 (Unabstracted clause). A clause is unabstracted if it does
not contain any disequation ζ �≈ t between a variable ζ and a term t unless t �= ζ
and ζ ∈ vars(t). �
Any clause can be unabstracted by repeatedly replacing C ∨ ζ �≈ t by C[ζ 	→ t]
whenever t = ζ or ζ /∈ vars(t). Let unabstr(C) denote an unabstracted version of
C obtained this way. If t = t[ζ1, . . . , ζn] is a term in C and ζi is finally instantiated
to ti, we denote its unabstracted version t[t1, . . . , tn] by unabstr(t[ζ1, . . . , ζn], C).
For a clause set N let unabstr(N) = {unabstr(C) | C ∈ N}.

The full inference system HSP of the hierarchic superposition calculus con-
sists of the inference rules of HSPBase and the following Define inference rule. As
for the other inference rules we suppose that all premises are weakly abstracted.
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Define
N ∪ {L[t[ζ1, . . . , ζn]] ∨ D}

N ∪ abstr({t[t1, . . . , tn] ≈ αt[t1,...,tn], L[αt[t1,...,tn]] ∨ D}
if

(i) t[ζ1, . . . , ζn] is a minimal BG-sorted non-variable term with a toplevel FG
operator,

(ii) t[t1, . . . , tn] = unabstr({t[ζ1, . . . , ζn], L[t[ζ1, . . . , ζn]] ∨ D}),
(iii) t[t1, . . . , tn] is ground,
(iv) αt[t1,...,tn] is a parameter, uniquely determined by t[t1, . . . , tn], and
(v) L[t[ζ1, . . . , ζn]] ∨ D ∈ RH

Cl(N ∪ abstr({t[t1, . . . , tn] ≈ αt[t1,...,tn],
L[αt[t1,...,tn]] ∨ D})).

In (i), by minimality we mean that no proper subterm of t[ζ1, . . . , ζn] is a
BG-sorted non-variable term with a toplevel FG operator. In effect, the Define

rule eliminates such terms inside-out. Conditions (iii) and (iv) are needed for
soundness. Condition (v) is needed to guarantee that Define is a simplifying
inference rule, much like the Simp rule in Sect. 7.12 In particular, it makes sure
that Define cannot be applied to definitions themselves.

Theorem 9.2. The inference rules of HSP are satisfiability-preserving w.r.t.
|=B, i. e., for every inference with premise N and conclusion N ′ we have N |=B
� if and only if N ′ |=B �. Moreover, N ′ |=B N .

Proof. For the inference rules of HSPBase, the result follows from Theorem 6.1.
For Define, we observe first that condition (ii) implies that L[t[ζ1, . . . , ζn]] ∨

D and L[t[t1, . . . , tn]] ∨ D are equivalent. If N ∪ {L[t[t1, . . . , tn]] ∨ D} is B-
satisfiable, let I be a Σ-model of all ground instances of N ∪ {L[t[t1, . . . , tn]] ∨ D}
such that I|ΣB is in B. By condition (iii), t[t1, . . . , tn] is ground. Let J be the
Σ-interpretation obtained from J by redefining the interpretation of αt[t1,...,tn]

in such a way that αJ
t[t1,...,tn]

= t[t1, . . . , tn]I , then J is a Σ-model of every
ground instance of N , t[t1, . . . , tn] ≈ αt[t1,...,tn] and L[αt[t1,...,tn]] ∨ D, and hence
also a model of the abstractions of these clauses. Conversely, every model of
t[t1, . . . , tn] ≈ αt[t1,...,tn] and L[αt[t1,...,tn]] ∨ D is a model of L[t[t1, . . . , tn]] ∨ D.
�
Example 9.3. Let C = g(f(x, y)+1, x, y) ≈ 1 ∨ x �≈ 1+β ∨ y �≈ c be the premise
of a Define inference. We get unabstr(C) = g(f(1 + β, c) + 1, 1 + β, c) ≈ 1. The
(unabstracted) conclusions are the definition f(1 + β, c) ≈ αf(1+ β,c) and the
clause g(αf(1+ β,c) + 1, x, y) ≈ 1 ∨ x �≈ 1 + β ∨ y �≈ c. Abstraction yields
f(X, c) ≈ αf(1+ β,c) ∨ X �≈ 1 + β and g(Z, x, y) ≈ 1 ∨ x �≈ 1 + β ∨ y �≈ c ∨ Z �≈
αf(1+ β,c) + 1.

One might be tempted to first unabstract the premise C before applying
Define. However, unabstraction may eliminate FG terms (c in the example) which
is not undone by abstraction. This may lead to incompleteness. �
12 Condition (i) of Simp is obviously satisfied and condition (iii) there is condition (v) of

Define. Instead of condition (ii), Define inferences are only B-satisfiability preserving,
which however does not endanger soundness.
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Example 9.4. The following clause set demonstrates the need for condition (v) in
Define. Let N = {f(c) ≈ 1} and suppose condition (v) is absent. Then we obtain
N ′ = {f(c) ≈ αf(c), αf(c) ≈ 1}. By demodulating the first clause with the second
clause we get N ′′ = {f(c) ≈ 1, αf(c) ≈ 1}. Now we can continue with N ′′ as
with N . The problem is, of course, that the new definition f(c) ≈ αf(c) is greater
w.r.t. the term ordering than the parent clause, in violation of condition (v). �
Example 9.5. Consider the weakly abstracted clauses P(0), f(x) > 0 ∨ ¬P(x),
Q(f(x)), ¬Q(x) ∨ 0 > x. Suppose ¬P(x) is maximal in the second clause. By
superposition between the first two clauses we derive f(0) > 0. With Define we
obtain f(0) ≈ αf(0) and αf(0) > 0, the latter replacing f(0) > 0. From the third
clause and f(0) ≈ αf(0) we obtain Q(αf(0)), and with the fourth clause 0 > αf(0).
Finally we apply Close to {αf(0) > 0, 0 > αf(0)}. �

It is easy to generalize Theorem 8.10 to the case that local sufficient com-
pleteness does not hold initially, but is only established with the help of Define

inferences:

Theorem 9.6. Let D = (Ni)i≥0 be a fair HSP derivation starting from N0 =
abstr(N), let k ≥ 0, such that Nk = abstr(N ′) and N ′ is locally sufficiently
complete. If the BG specification (ΣB,B) is compact, then the limit of D contains
� if and only if N is B-unsatisfiable.

Proof. Since every derivation step in an HSP derivation is satisfiability-
preserving, the “only if” part is again obvious.

For the “if” part, we assume that N∞, the limit of D, does not contain
�. By fairness, N∞ is saturated w.r.t. HSP and RH. We start by considering
the subderivation (Ni)i≥k starting with Nk = abstr(N ′). Like in the proof of
Theorem 8.10, we can show that N ′ is B-satisfiable, that is, there exists a model
J of N ′ that is a term-generated Σ-interpretation, and whose restriction J |ΣB

is contained in B. From Lemma 7.1 and Proposition 5.2 we see that N ′ |=B Nk,
and similarly N0 |=B N . Furthermore, since every clause in N0 \ Nk must be
redundant w.r.t. Nk, we have Nk |=B N0. Combining these three entailments,
we conclude that N ′ |=B N , so N is B-satisfiable and J is a model of N . �

Condition (v) of the Define rule requires that the clause that is deleted during
a Define inference must be redundant with respect to the remaining clauses.
This condition is needed to preserve refutational completeness. There are cases,
however, where condition (v) prevents us from introducing a definition for a
subterm. Consider the clause set N = {C} where C = f(c) ≈ 1 ∨ c ≈ d, the
constants c and d are FG-sorted, f is a BG-sorted FG operator, and c � d � 1.
The literal f(c) ≈ 1 is maximal in C. The clause set N = abstr(N) is not locally
sufficient complete (the BG-sorted FG-term f(c) may be interpreted differently
from all BG terms in a Σ-model). Moreover, it cannot be made locally sufficient
complete using the Define rule, since the definition f(c) ≈ αf(c) is larger w.r.t.
the clause ordering than C, in violation of condition (v) of Define.

However, at the beginning of a derivation, we may be a bit more permissive.
Let us define the reckless Define inference rule in the same way as the Define rule
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except that the applicability condition (v) is dropped. Clearly, in the example
above, the reckless Define rule allows us to derive the locally sufficiently complete
clause set N ′ = {αf(c) ≈ 1 ∨ c ≈ d, f(c) ≈ αf(c)} as desired. In fact, we can show
that this is always possible if N is a finite clause set in which all BG-sorted FG
terms are ground.

Definition 9.7 (Pre-derivation). Let N0 be a weakly abstracted clause set.
A pre-derivation (of a clause set Npre) is a derivation of the form N0, N1,
. . . , (Nk = Npre), for some k ≥ 0, with the inference rule reckless Define only,
and such that each clause C ∈ Npre either does not contain any BG-sorted FG
operator or C = abstr(C ′) and C ′ is a definition, i. e., a ground positive unit
clause of the form f(t1, . . . , tn) ≈ t where f is a BG-sorted FG operator, t1, . . . , tn
do not contain BG-sorted FG operators, and t is a background term. �
Lemma 9.8. Let N be a finite clause set in which all BG-sorted FG terms are
ground. Then there is a pre-derivation starting from N0 = abstr(N) such that
Npre is locally sufficiently complete.

Proof. Since every term headed by a BG-sorted FG operator in unabstr(N0) is
ground, we can incrementally eliminate all occurrences of terms headed by BG-
sorted FG operators from N0, except those in abstractions of definitions. Let
N0, N1, . . . , (Nk = Npre) be the sequence of sets of clauses obtained in this way.
We will show that Npre is locally sufficiently complete.

Let I ∈ B be a ΣB-interpretation, let J be a Σ-model of sgi(Npre) ∪ EI ∪ DI

and let Cθ be a smooth ground instance in smgi(N)\RS
Cl(smgi(N) ∪ EI ∪ DI).

We have to show that for every BG-sorted FG term s occurring in Cθ there is a
ground BG term t such that J |= s ≈ t.

If C does not contain any BG-sorted FG operator, then there are no BG-
sorted FG terms in Cθ, so the property is vacuously true. Otherwise C =
abstr(C ′) and C ′ is a definition f(t1, . . . , tn) ≈ t where f is a BG-sorted FG
operator, t1, . . . , tn do not contain BG-sorted FG operators, and t is a back-
ground term. In this case, C must have the form f(u1, . . . , un) ≈ u ∨ E, such
that E is a BG clause, u1, . . . , un do not contain BG-sorted FG operators, and
u is a BG term. The only BG-sorted FG term in the smooth instance Cθ is
therefore f(u1θ, . . . , unθ). If any literal of Eθ were true in J , then it would fol-
low from EI ∪ DI , therefore Cθ ∈ RS

Cl(smgi(N) ∪ EI ∪ DI), contradicting the
assumption. Hence J |= f(u1θ, . . . , unθ) ≈ uθ, and since uθ is a ground BG
term, the requirement is satisfied. �
Lemma 9.8 will be needed to prove a completeness result for the fragment defined
in the next section.

10 The Ground BG-Sorted Term Fragment

According to Theorem 8.10, the HSPBase calculus is refutationally complete pro-
vided that the clause set is locally sufficiently complete and the BG specification
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is compact. We have seen in the previous section that the (reckless) Define rule
can help to establish local sufficient completeness by introducing new parameters.
In fact, finite clause sets in which all BG-sorted FG terms are ground can always
be converted into locally sufficiently complete clause sets (cf. Lemma 9.8). On
the other hand, as noticed in Sect. 3, the introduction of parameters can destroy
the compactness of the BG specification. In this and the following section, we
will identify two cases where we can not only establish local sufficient complete-
ness, but where we can also guarantee that compactness poses no problems. The
ground BG-sorted term fragment (GBT fragment) is one such case:

Definition 10.1 (GBT fragment). A clause C is a GBT clause if all BG-
sorted terms in C are ground. A finite clause set N belongs to the GBT fragment
if all clauses in N are GBT clauses. �

Clearly, by Lemma 9.8 for every clause set N that belongs to the GBT frag-
ment there is a pre-derivation that converts abstr(N) into a locally sufficiently
complete clause set. Moreover, pre-derivations also preserve the GBT property:

Lemma 10.2. If unabstr(N) belongs to the GBT fragment and N ′ is obtained
from N by a reckless Define inference, then unabstr(N ′) also belongs to the GBT
fragment.

The proof can be found in [12].
As we have seen, Npre is locally sufficiently complete. At this stage this

suggests to exploit the completeness result for locally sufficiently complete clause
sets, Theorem 8.10. However, Theorem 8.10 requires compact BG specifications,
and the question is if we can avoid this. We can indeed get a complete calculus
under rather mild assumptions on the Simp rule:

Definition 10.3 (Suitable Simp inference). Let �fin be a strict partial term
ordering such that for every ground BG term s only finitely many ground BG
terms t with s �fin t exist.13 We say that a Simp inference with premise N ∪ {C}
and conclusion N ∪ {D} is suitable (for the GBT fragment) if

(i) for every BG term t occurring in unabstr(D) there is a BG term s ∈
unabstr(C) such that s �fin t,

(ii) every occurrence of a BG-sorted FG operator f in unabstr(D) is of the form
f(t1, . . . , tn) ≈ t where t is a ground BG term,

(iii) every BG term in D is pure, and
(iv) if every BG term in unabstr(C) is ground then every BG term in

unabstr(D) is ground.

We say the Simp inference rule is suitable if every Simp inference is. �
Expected simplification techniques like demodulation, subsumption deletion and
evaluation of BG subterms are all covered as suitable Simp inferences. Also, evalu-
ation of BG subterms is possible, because simplifications are not only decreasing
13 A KBO with appropriate weights can be used for �fin.
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w.r.t. � but additionally also decreasing w.r.t. �fin, as expressed in condition (i).
Without it, e. g., the clause P(1 + 1, 0) would admit infinitely many simplified
versions P(2, 0), P(2, 0 + 0), P(2, 0 + (0 + 0)), etc.

The HSPBase inferences do in general not preserve the shape of the clauses
in unabstr(Npre); they do preserve a somewhat weaker property – cleanness –
which is sufficient for our purposes.

Definition 10.4 (Clean clause). A weakly abstracted clause C is clean if

(i) every BG term in C is pure,
(ii) every BG term in unabstr(C) is ground, and
(iii) every occurrence of a BG-sorted FG operator f in unabstr(C) is in a positive

literal of the form f(t1, . . . , tn) ≈ t where t is a ground BG term.

For example, if c is FG-sorted, then P(f(c) + 1) is not clean, while f(x) ≈ 1 +
α ∨ P(x) is. A clause set is called clean if every clause in N is. Notice that Npre

is clean.

Lemma 10.5. Let C1, . . . , Cn be clean clauses. Assume a HSPBase inference
with premises C1, . . . , Cn and conclusion C. Then C is clean and every BG
term occurring in unabstr(C) also occurs in some clause unabstr(C1),. . . ,
unabstr(Cn).

The proof can be found in [12].
Thanks to conditions (ii)–(iv) in Definition 10.3, suitable Simp inferences pre-

serves cleanness:

Lemma 10.6. Let N ∪ {C} be a set of clean clauses. If N ∪ {D} is obtained
from N ∪ {C} by a suitable Simp inference then D is clean.

Proof. Suppose N ∪ {D} is obtained from N ∪ {C} by a suitable Simp inference.
We need to show properties (i)–(iii) of cleanness for D. That every BG term in
D is pure follows from Definition 10.3-(iii). That every BG term in unabstr(D)
is ground follows from Definition 10.3-(iv) and cleanness of C. Finally, property
(iii) follows from Definition 10.3-(ii). �

With the above lemmas we can prove our main result:

Theorem 10.7. The HSP calculus with a suitable Simp inference rule is dynam-
ically refutationally complete for the ground BG-sorted term fragment. More
precisely, let N be a finite set of GBT clauses and D = (Ni)i≥0 a fair HSP
derivation such that reckless Define is applied only in a pre-derivation (N0 =
abstr(N)), . . . , (Nk = Npre), for some k ≥ 0. Then the limit of D contains � if
and only if N is B-unsatisfiable.

Notice that Theorem 10.7 does not appeal to compactness of BG specifications.

Proof. Our goal is to apply Theorem9.6 and its proof, in a slightly modified
way. For that, we first need to know that Npre = abstr(N ′) for some clause set
N ′ that is locally sufficiently complete.
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We are given that N is a set of GBT clauses. Recall that weak abstrac-
tion (recursively) extracts BG subterms by substituting fresh variables and
adding disequations. Unabstraction reverses this process (and possibly elim-
inates additional disequations). It follows that with N being a set of GBT
clauses, so is unabstr(abstr(N)) = unabstr(N0). From Lemma 10.2 it follows
that unabstr(Npre) is also a GBT clause set.

Now chose N ′ as the clause set that is obtained from Npre by replacing every
clause C ∈ Npre such that unabstr(C) is a definition by unabstr(C). By con-
struction of definitions, unabstraction reverses weak abstraction of definitions.
It follows Npre = abstr(N ′). By definition of pre-derivations, all BG-sorted FG
terms occurring in unabstr(Npre) occur in definitions. Hence, with unabstr(Npre)
being a set of GBT clauses so is N ′. It follows easily that N ′ is locally sufficiently
complete, as desired.

We cannot apply Theorem9.6 directly now because it requires compactness
of the BG specification, which cannot be assumed. However, we can use the
following argumentation instead.

Let N∞ =
⋃

i≥0 Ni be the union of D. We next show that unabstr(N∞) con-
tains only finitely many different BG terms and each of them is ground. Recall
that unabstr(Npre) is a GBT clause set, and so every BG term in unabstr(Npre)
is ground. Because Define is disabled in D, only HSPBase and (suitable) Simp

inferences need to be analysed. Notice that Npre is clean and both the HSPBase

and Simp inferences preserve cleanness, as per Lemmas 10.5-(1) and 10.6,
respectively.

With respect to HSPBase inferences, together with Definition 10.4-(ii) it fol-
lows that every BG term t in the unabstracted version unabstr(C) of the infer-
ence conclusion C is ground. Moreover, t also occurs in the unabstracted version
of some premise clause by Lemma 10.5-(2). In other words, HSPBase inferences
do not grow the set of BG terms w.r.t. unabstracted premises and conclusions.

With respect to Simp inferences, unabstr(Npre) provide an upper bound w.r.t.
the term ordering �fin for all BG terms generated in Simp inferences. There can
be only finitely many such terms, and each of them is ground, which follows from
Definition 10.3-(i).

Because every BG term occurring in unabstr(N∞) is ground, every BG clause
in unabstr(N∞) is a multiset of literals of the form s ≈ t or s �≈ t, where s and
t are ground BG terms. With only finitely many BG terms available, there are
only finitely many BG clauses in unabstr(N∞), modulo equivalence. Because
unabstraction is an equivalence transformation, there are only finitely many BG
clauses in N∞ as well, modulo equivalence.

Let N∞ =
⋃

i≥0

⋂
j≥i Nj be the limit clause set of the derivation D, which is

saturated w.r.t. the hierarchic superposition calculus and RH. Because D is not
a refutation, it does not contain �. Consequently the Close rule is not applicable
to N∞. The set N∞, and hence also N∞ ⊆ N∞, contains only finitely many
BG clauses, modulo equivalence. This entails that the set of all ΣB-clauses in
sgi(N∞) is satisfied by some term-generated ΣB-interpretation I ∈ B. Now, the
rest of the proof is literally the same as in the proof of Theorem9.6. �
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Because unabstraction can also be applied to fully abstracted clauses, it is
possible to equip the hierarchic superposition calculus of [5] with a correspond-
ingly modified Define rule and get Theorem 10.7 in that context as well.

Kruglov and Weidenbach [22] have shown how to use hierarchic superposition
as a decision procedure for ground clause sets (and for Horn clause sets with con-
stants and variables as the only FG terms). Their method preprocesses the given
clause set by “basification”, a process that removes BG-sorted FG terms simi-
larly to our reckless Define rule. The resulting clauses then are fully abstracted
and hierarchic superposition is applied. Some modifications of the inference rules
make sure derivations always terminate. Simplification is restricted to subsump-
tion deletion. The fragment of [22] is a further restriction of the GBT frag-
ment. We expect we can get decidability results for that fragment with similar
techniques.

11 Linear Arithmetic

For the special cases of linear integer arithmetic (LIA) and linear rational arith-
metic as BG specifications, the result of the previous section can be extended
significantly: In addition to ground BG-sorted terms, we can also permit BG-
sorted variables and, in certain positions, even variables with offsets.

Recall that we have assumed that equality is the only predicate symbol in
our language, so that a non-equational atom, say s < t, is to be taken as a
shorthand for the equation (s < t) ≈ true. We refer to the terms that result
from this encoding of atoms as atom terms; other terms are called proper terms.

Theorem 11.1. Let N be a set of clauses over the signature of linear integer
arithmetic (with parameters α, β, etc.), such that every proper term in these
clauses is either (i) ground, or (ii) a variable, or (iii) a sum ζ + k of a variable
ζ and a number k ≥ 0 that occurs on the right-hand side of a positive literal
s < ζ + k. If the set of ground terms occurring in N is finite, then N is satisfiable
in LIA over Z if and only if N is satisfiable w.r.t.the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and let T be the
finite set of ground terms occurring in N . We will show that N is equivalent to
some finite set of clauses over the signature of linear integer arithmetic, which
implies that it is satisfiable in the integer numbers if and only if it is satisfiable
in the first-order theory of LIA.

In a first step, we replace every negative ordering literal ¬s < t or ¬s ≤ t by
the equivalent positive ordering literal t ≤ s or t < s. All literals of clauses in
the resulting set N0 have the form s ≈ t, s �≈ t, s < t, s ≤ t, or s < ζ + k, where
s and t are either variables or elements of T and k ∈ N. Note that the number
of variables in clauses in N0 may be unbounded.

In order to handle the various inequality literals in a more uniform way, we
introduce new binary relation symbols <k (for k ∈ N) that are defined by a <k b
if and only if a < b + k. Observe that s <k t entails s <n t whenever k ≤ n.
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Obviously, we may replace every literal s < t by s <0 t, every literal s ≤ t by
s <1 t, and every literal s < ζ + k by s <k ζ. Let N1 be the resulting clause set.

We will now transform N1 into an equivalent set N2 of ground clauses. We
start by eliminating all equality literals that contain variables by exhaustively
applying the following transformation rules:

N ∪ {C ∨ ζ �≈ ζ } → N ∪ {C }
N ∪ {C ∨ ζ �≈ t } → N ∪ {C[ζ 	→ t] } if t �= ζ

N ∪ {C ∨ ζ ≈ ζ } → N

N ∪ {C ∨ ζ ≈ t } → N ∪ {C ∨ ζ <1 t, C ∨ t <1 ζ } if t �= ζ

All variables in inequality literals are then eliminated in a Fourier-Motzkin-like
manner by exhaustively applying the transformation rule

N ∪ {C ∨ ∨

i∈I

ζ <ki
si ∨ ∨

j∈J

tj <nj
ζ } → N ∪ {C ∨ ∨

i∈I

∨

j∈J

tj <ki+nj
si }

where ζ does not occur in C and one of the index sets I and J may be empty.
The clauses in N2 are constructed over the finite set T of proper ground

terms, but the length of the clauses in N2 is potentially unbounded. In the next
step, we will transform the clauses in such a way that any pair of terms s, t from
T is related by at most one literal in any clause: We apply one of the following
transformation rules as long as two terms s and t occur in more than one literal:

N ∪ {C ∨ s <k t ∨ s ≈ t } → N ∪ {C ∨ s <k t } if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s ≈ t } → N ∪ {C ∨ s <1 t }
N ∪ {C ∨ s <k t ∨ s �≈ t } → N if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s �≈ t } → N ∪ {C ∨ s �≈ t }
N ∪ {C ∨ s <k t ∨ s <n t } → N ∪ {C ∨ s <n t } if k ≤ n

N ∪ {C ∨ s <k t ∨ t <n s } → N if k + n ≥ 1
N ∪ {C ∨ s <0 t ∨ t <0 s } → N ∪ {C ∨ s �≈ t }
N ∪ {C ∨ L ∨ L } → N ∪ {C ∨ L } for any literal L

N ∪ {C ∨ s ≈ t ∨ s �≈ t } → N

The length of the clauses in the resulting set N3 is now bounded by 1
2m(m + 1),

where m is the cardinality of T . Still, due to the indices of the relation symbols
<k, N3 may be infinite. We introduce an equivalence relation ∼ on clauses in
N3 as follows: Define C ∼ C ′ if for all s, t ∈ T (i) s ≈ t ∈ C if and only if
s ≈ t ∈ C ′, (ii) s �≈ t ∈ C if and only if s �≈ t ∈ C ′, and (iii) s <k t ∈ C for some
k if and only if s <n t ∈ C ′ for some n. This relation splits N3 into at most
(12m(m + 1))5 equivalence classes.14

We will now show that each equivalence class is logically equivalent to a finite
subset of itself. Let M be some equivalence class. Since any two clauses from
14 Any pair of terms s, t is related in all clauses of an equivalence class by either a

literal s ≈ t, or s �≈ t, or s <n t for some n, or t <n s for some n, or no literal at all,
so there are five possibilities per unordered pair of terms.
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M differ at most in the indices of their <k-literals, we can write every clause
Ci ∈ M in the form

Ci = C ∨ ∨

1≤l≤n

sl <kil
tl

where C and the sl and tl are the same for all clauses in M . As we have
mentioned above, sl <kil

tl entails sl <kjl
tl whenever kil ≤ kjl; so a clause

Ci ∈ M entails Cj ∈ M whenever the n-tuple (ki1, . . . , kin) is pointwise smaller
or equal to the n-tuple (kj1, . . . , kjn) (that is, kil ≤ kjl for all 1 ≤ l ≤ n).

Let Q be the set of n-tuples of natural numbers corresponding to the clauses
in M . By Dickson’s lemma [15], for every set of tuples in N

n the subset of
minimal tuples (w.r.t.the pointwise extension of ≤ to tuples) is finite. Let Q′ be
the subset of minimal tuples in Q, and let M ′ be the set of clauses in M that
correspond to the tuples in Q′. Since for every tuple in Q \ Q′ there is a smaller
tuple in Q′, we know that every clause in M \ M ′ is entailed by some clause in
M ′. So the equivalence class M is logically equivalent to its finite subset M ′.
Since the number of equivalence classes is also finite and all transformation rules
are sound, this proves our claim. �

In order to apply this theorem to hierarchic superposition, we must again
impose some restrictions on the calculus. Most important, we have to change
the definition of weak abstraction slightly: We drop the requirement that target
terms are not domain elements from Definition 5.1, i. e., we abstract out a non-
variable BG term q occurring in a clause C[f(s1, . . . , q, . . . , sn)], where f is a
FG operator or at least one of the si is a FG or impure BG term, even if q is a
domain element. As we mentioned, all results obtained so far hold also for the
modified definition of weak abstraction. In addition, we must again restrict to
suitable Simp inferences (Definition 10.3). With these restrictions, we can prove
our main result:

Theorem 11.2. The hierarchic superposition calculus is dynamically refuta-
tionally complete w.r.t. LIA over Z for finite sets of Σ-clauses in which every
proper BG-sorted term is either (i) ground, or (ii) a variable, or (iii) a sum
ζ + k of a variable ζ and a number k ≥ 0 that occurs on the right-hand side of
a positive literal s < ζ + k.

Proof. Let N be a finite set of Σ-clauses with the required properties. By
Lemma 9.8, a pre-derivation starting from N0 = abstr(N) yields a locally suffi-
ciently complete finite set N0 of abstracted clauses.

Now we run the hierarchic superposition calculus on N0 (with the same
restrictions on simplifications as in Sect. 10). Let N1 be the (possibly infinite)
set of BG clauses generated during the run. By unabstracting these clauses, we
obtain an equivalent set N2 of clauses that satisfy the conditions of Theorem 11.1,
so N2 is satisfiable in LIA over Z if and only if N is satisfiable w.r.t.the first-
order theory of LIA. Since the hierarchic superposition calculus is dynamically
refutationally complete w.r.t. the first-order theory of LIA, the result follows. �
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Analogous results hold for linear rational arithmetic. Let n be the least com-
mon divisor of all numerical constants in the original clause set; then we define
a <2i b by a < b + i

n and a <2i+1 b by a ≤ b + i
n for i ∈ N and express every

inequation literal in terms of <k. The Fourier-Motzkin transformation rule is
replaced by

N ∪ {C ∨ ∨

i∈I

ζ <ki
si ∨ ∨

j∈J

tj <nj
ζ } → N ∪ {C ∨ ∨

i∈I

∨

j∈J

tj <ki•nj
si }

where ζ does not occur in C, one of the index sets I and J may be empty, and
k • n is defined as k + n − 1 if both k and n are odd, and k + n otherwise. The
rest of the proof proceeds in the same way as before.

12 Experiments

We implemented the HSP calculus in the theorem prover Beagle.15 Beagle is a
testbed for rapidly trying out theoretical ideas but it is not a high-performance
prover (in particular it lacks indexing of any form). The perhaps most significant
calculus feature not yet implemented is the improvement for linear integer and
rational arithmetic of Sect. 11.

Beagle’s proof procedure and background reasoning, in particular for linear
integer arithmetic, and experimental results have been described in [7]. Here
we only provide an update on the experiments and report on complementary
aspects not discussed in [7]. More specifically, our new experiments are based on
a more recent version of the TPTP problem library [27] (by four years), and we
discuss in more detail the impact of the various calculus variants introduced in
this paper. We also compare Beagle’s performance to that of other provers.

We tested Beagle on the first-order problems from the TPTP library, version
7.2.0,16 that involve some form of arithmetic, including non-linear, rational and
real arithmetics. The problems in the TPTP are organized in categories, and the
results for some of them are quickly dealt with: none of the HWV-problems in
the TPTP library was solvable within the time limit and we ignore these below.
We ignore also the SYN category as its sole problem is merely a syntax test, and
the GEG category as all problems are zero-rated and easily solved by Beagle.

The experiments were run on a MacBook Pro with a 2.3 GHz Intel i7 pro-
cessor and 16 GB main memory. The CPU time limit was 120 s (a higher time
limit does not help much solving more problems). Tables 1 and 2 summarize
the results for the problems with a known “theorem” or “unsatisfiable” status
with non-zero rating. Beagle can also solve some satisfiable problems, but most
of them are rather easy and can be solved by the BG solver alone. Unfortu-
nately, the TPTP does not contain reasonably difficult satisfiable problems from
the GBT-fragment, which would be interesting for exploiting the completeness
result of Sect. 10.
15 Beagle is available at https://bitbucket.org/peba123/beagle. The distribution

includes the (Scala) source code and a ready-to-run Java jar-file.
16 http://tptp.org.

https://bitbucket.org/peba123/beagle
http://tptp.org
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Table 1. Number of TPTP version 7.2.0 problems solved, of all non-zero rated “the-
orem” or “unsatisfiable” problems involving any form of arithmetic. The flag settings
giving the best result are in typeset in bold. The CPU time limit was 120 s. The column
“Any” is the number of problems solved in the union of the four setting to its left. For
the “Auto” column see the description of auto-mode in the main text further below.
For auto-mode only, the CPU time limit was increased to 300 s.

Category #Problems Ordinary variables Abstraction variables Any Auto

BG simp
cautious

BG simp
aggressive

BG simp
cautious

BG simp
aggressive

ARI 444 356 357 353 355 362 355

DAT 23 9 12 6 7 13 12

MSC 3 3 3 3 3 3 3

NUM 36 30 29 34 34 34 34

PUZ 1 1 1 1 1 1 1

SEV 2 0 0 0 0 0 0

SWV 1 1 1 1 1 1 1

SWW 244 91 88 92 89 97 95

SYO 1 0 0 0 0 0 0

Total 755 419 471 490 490 511 501

Table 1 is a breakdown of Beagle’s performance by TPTP problem categories
and four flag settings. Beagle features a host of flags for controlling its search,
but in Table 1 we varied only the two most influential ones: one that controls
whether input arithmetic variables are taken as ordinary variables or as abstrac-
tion variables. (Sect. 5 discusses the trade-off between these two kinds of vari-
ables.) The other controls whether simplification of BG terms is done cautiously
or aggressively.

To explain, the cautious simplification rules comprise evaluation of arithmetic
terms, e. g. 3 · 5, 3 < 5, α + 1 < α + 1 (equal lhs and rhs terms in inequations),
and rules for TPTP-operators, e. g., to rat(5), is int(3.5). For aggressive simplifi-
cation, integer sorted subterms are brought into a polynomial-like form and are
evaluated as much as possible. For example, the term 5 ·α + f(3 + 6, α ·4)−α ·3
becomes 2 · α + f(9, 4 · α). These conversions exploit the associativity and com-
mutativity laws for + and ·. We refer the reader to [7] for additional aggres-
sive simplification rules, but we note here that aggressive simplification does
not always preserve sufficient completeness. For example, in the clause set
N = {P(1 + (2 + f(X))), ¬P(1 + (X + f(X)))} the first clause is aggres-
sively simplified, giving N ′ = {P(3 + f(X)), ¬P(1 + (X + f(X)))}. Both
N and N ′ are LIA-unsatisfiable, sgi(N) ∪ GndTh(LIA) is unsatisfiable, but
sgi(N ′) ∪ GndTh(LIA) is satisfiable. Thus, N is (trivially) sufficiently complete
while N ′ is not.

These two flag settings, in four combinations in total, span a range from
“most complete but larger search space” by using ordinary variables and cau-
tious simplification, to “most incomplete but smaller search space” by using
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abstraction variables and aggressive simplification. As the results in Table 1
show, the flag setting “abstraction variables” solves more problems than “ordi-
nary variables”, but not uniformly so. Indeed, as indicated by the “Any” col-
umn in Table 1, there are problems that are solved only with either ordinary or
abstraction variables.

Some more specific comments, by problem categories:

ARI. Of the 362 solved problems, 14 are not solved in every setting. Of these,
four problems require cautious simplification, and five problems require aggres-
sive simplification. This is independent from whether abstraction or ordinary
variables are used.

DAT. The DAT category benefits significantly from using ordinary variables.
There is only one problem, DAT075=1.p, that is not solved with ordinary vari-
ables. Two problems, DAT072=1.p and DAT086=1.p are solvable only with
ordinary variables and aggressive simplification.

Many problems in the DAT category, including DAT086=1.p, state existen-
tially quantified theorems about data structures such as arrays and lists. If they
are of an arithmetic sort, these existentially quantified variables must be taken as
ordinary variables. This way, they can be unified with BG-sorted FG terms such
as head(cons(x, y)) (which appear in the list axioms) which might be necessary
for getting a refutation at all.

A trivial example for this phenomenon is the entailment {P(f(1))} |=
∃x P(x), where f is BG-sorted, which is provable only with ordinary variables.

NUM. This category requires abstraction variables. With it, four of the
problems can be solved in the NUM category (NUM859=1.p, NUM860=1.p,
NUM861=1.p, NUM862=1.p), as the search space with ordinary variables is too
big.

SWW. By and large, cautious BG simplification fares slightly better on the
SWW problems. Of the 97 problems solved, 16 are not solved in every setting,
and the settings that do solve it do not follow an obvious pattern.

We were also interested in Beagle’s performance, on the same problems, bro-
ken down by the calculus features introduced in this paper. Table 2 summarizes
our findings for five configurations ①–⑤ obtained by progressively enabling these
features. In order to assess the usefulness of the features we filtered the results
by problem rating. The column “≥0.75”, for instance, lists the number of solved
problems, of all 80 known “theorem” or “unsatisfiable” problems with a rating
0.75 or higher and that involve some form of arithmetic.

The predecessor calculus of [5] uses an exhaustive abstraction mechanism
that turns every side of an equation into either a pure BG or pure FG term. All
BG variables are always abstraction variables. Configuration ① implements this
calculus, with the only deviation of an added splitting rule. The splitting rule [29]
breaks apart a clause into variable-disjoint parts and leads to a branching search
space for finding corresponding sub-proofs. See again [7] for more details.
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Table 2. Number of “theorem” or “unsatisfiable” problems solved, by calculus features
and problem rating, excluding the HWV-problems.

Abstraction Feature Rating, # Problems

≥0.1 ≥0.5 ≥0.75 ≥0.88

756 187 80 55

① Standard N/A 355 30 5 1

② +Define 493 38 5 1

③ Weak +Define 490 40 5 1

+Define

④ +Ordinary vars 500 44 5 1

+Define

+Ordinary vars

⑤ +BG simp aggressive 511 45 5 1

In our experiments splitting is always enabled, in particular also for configu-
ration ① for better comparability of result. Cautious BG simplification is enabled
for configuration ① and the subsequent configurations ②–④.

Configuration ② differs from configuration ① only by an additional Define

rule. (As said earlier, the Define rule can be added without problems to the
previous calculus.) By comparing the results for ① and ② it becomes obvious
that adding Define improves performance dramatically. This applies to the new
calculus as well. The Define rule stands out and should always be enabled.

Configuration ③ replaces the standard abstraction mechanism of [5] by the
new weak abstraction mechanism of Sect. 5. Weak abstraction seems more effec-
tive than standard abstraction for problems with a higher rating, but the data
set supporting this conclusion is very small.

There are five problems, all from the SWW category17 that re solved only
with configuration ②, and there is one problem, SWW607=2.p, that is solved
only by configurations ① and ②.

There are four solvable problems with rating 0.75. These are ARI595=1.p
– ARI598=1.p, which are “simple” problems involving a free predicate symbols
over the integer background theory. The problem ARI595=1.p, for instance, is
to prove the validity of the formula (∀ z :Z a ≤ z ∧ z ≤ a + 2 → p(z)) →
∃x :Z p(3 · x).18 The calculus and implementation techniques needed for solv-
ing such problems are rather different to those needed for solving combinatory
problems involving trivial arithmetics only, like, e.g., the HWV-problems.

17 SWW583=2.p, SWW594=2.p, SWW607=2.p, SWW626=2.p, SWW653=2.p and
SWW657=2.p.

18 At the time of this writing, there are only four provers (including Beagle) regis-
tered with the TPTP web infrastructure that can solve these problems. Hence the
rating 0.75.
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Configuration ④ is the same as ③ except that it includes the results for
general variables instead of abstraction variables. Similarly, configuration ⑤ is
the same as ④ except that it includes the results for aggressive BG simplification.
It is the union of all results in Table 1.

For comparison with other implemented theorem provers for first-order logic
with arithmetics, we ran Beagle on the problem set used in the 2018 edition
of the CADE ATP system competition (CASC-J9).19. The competing systems
were CVC4 [6], Princess [26], and two versions of Vampire [20].

In the competition, the systems were given 200 problems from the TPTP
problem library, 125 problems over the integers as the background theory (TFI
category), and 75 over the reals (TFE category). The system that solves the
most problems in the union of the TFI and TFE categories within a CPU time
limit of 300 s wins. We applied Beagle in an “auto” mode, which time-slices (at
most) three parameter settings. These differ mainly in their use of abstraction
variables or ordinary variables, and the addition of certain arithmetic lemmas.

Table 3. CADE ATP system competition results 2018 and Beagle’s performance on
the same problem sets.

Vampire
4.3

Vampire
4.1

CVC4
1.6pre

Princess
170717

Beagle
0.9.51

#Solved TFI (of 125) 93 98 85 62 36

#Solved TFE (of 75) 70 64 72 43 44

#Solved TFA (of 200) 163 162 157 105 70

The results are summarized in Table 3. We note that Beagle was run on
different hardware but the same timeout of 300 s. The results are thus only
indicative of Beagle’s performance, but we do not expect significantly different
result had it participated. In the TFI category, of the 36 problems solved, 5
require the use of ordinary variables. In the TFE category, 16 problems involve
the ceiling or floor function, which is currently not implemented, and hence
cannot be attempted.

In general, many problems used in the competition are rather large in size or
search space and would require a more sophisticated implementation of Beagle.

13 Conclusions

The main theoretical contribution of this paper is an improved variant of the
hierarchic superposition calculus. One improvement over its predecessor [5] is
a different form of “abstracted” clauses, the clauses the calculus works with
internally. Because of that, a modified completeness proof is required. We have

19 http://tptp.cs.miami.edu/∼tptp/CASC/J9/.

http://tptp.cs.miami.edu/~tptp/CASC/J9/
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argued informally for the benefits over the old calculus in [5]. They concern
making the calculus “more complete” in practice. It is hard to quantify that
exactly in a general way, as completeness is impossible to achieve in presence of
background-sorted foreground function symbols (e. g., “head” of integer-sorted
lists). To compensate for that to some degree, we have reported on initial exper-
iments with a prototypical implementation on the TPTP problem library. These
experiments clearly indicate the benefits of our concepts, in particular the defi-
nition rule and the use of ordinary variables. There is no problem that is solved
only by the old calculus only. Certainly more experimentation and an improved
implementation is needed to also solve bigger-sized problems with a larger com-
binatorial search space.

We have also obtained two new completeness results for certain clause logic
fragments that do not require compactness of the background specification, cf.
Sects. 10 and 11. The former is loosely related to the decidability results in [22],
as discussed in Sect. 9. It is also loosely related to results in SMT-based theo-
rem proving. For instance, the method in [18] deals with the case that variables
appear only as arguments of, in our words, foreground operators. It works by
ground-instantiating all variables in order to being able to use an SMT-solver
for the quantifier-free fragment. Under certain conditions, finite ground instan-
tiation is possible and the method is complete, otherwise it is complete only
modulo compactness of the background theory (as expected). Treating differ-
ent fragments, the theoretical results are mutually non-subsuming with ours.
Yet, on the fragment they consider we could adopt their technique of finite
ground instantiation before applying Theorem10.7 (when it applies). However,
according to Theorem 10.7 our calculus needs instantiation of background-sorted
variables only, this way keeping reasoning with foreground-sorted terms on the
first-order level, as usual with superposition.
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Abstract. Satisfiability is the problem of deciding whether a formula
has a model. Although it is not even semidecidable in first-order logic,
it is decidable in some first-order theories or fragments thereof (e.g., the
quantifier-free fragment). Satisfiability modulo a theory is the problem
of determining whether a quantifier-free formula admits a model that
is a model of a given theory. If the formula mixes theories, the consid-
ered theory is their union, and combination of theories is the problem
of combining decision procedures for the individual theories to get one
for their union. A standard solution is the equality-sharing method by
Nelson and Oppen, which requires the theories to be disjoint and sta-
bly infinite. This paper surveys selected approaches to the problem of
reasoning in the union of disjoint theories, that aim at going beyond
equality sharing, including: asymmetric extensions of equality sharing,
where some theories are unrestricted, while others must satisfy stronger
requirements than stable infiniteness; superposition-based decision proce-
dures; and current work on conflict-driven satisfiability (CDSAT).

1 Introduction

Since the early 1980s, it was understood that combination of theories is of
paramount importance for software verification [97–99,105], because program
checking requires inferences about diverse domains such as arithmetic, data
structures, and free predicate and function symbols [20,51,116]. Reasoning about
disjunction is just as basic, since the different paths that a program execution
may take are logically connected by disjunction. The problem known as satis-
fiability modulo theories (SMT) refers to the problem of determining the sat-
isfiability of an arbitrary (usually quantifier-free) formula modulo a union of
theories [12,15,115]. Several solvers for SMT have been developed in the last 20
years or so that support a combination of two or more theories. These include
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 57–89, 2019.
https://doi.org/10.1007/978-3-030-22102-7_3
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(in alphabetical order) Alt-Ergo [46], Boolector [41], CVC4 [13], MathSAT [45],
OpenSMT [42], Simplify [56], veriT [37], Yices [57], and Z3 [50]. Because of their
power and efficiency in practice, SMT solvers have been interfaced with or inte-
grated in a large number of tools including theorem provers [28,36,109], proofs
assistants [1,17], and tools for the analysis, verification, and synthesis of software
(see [52] for a survey).

Deductive problems in combination of theories can be formulated as mod-
ularity problems, or how to get a decision procedure for a problem in a union
of theories, given decision procedures for that problem in the component the-
ories. Franz Baader was a pioneer in the study of modularity problems [5–9],
propounding the importance of theory combination in automated reasoning.

For the problem of determining the satisfiability of sets of literals in a com-
bined theory, an answer to the quest for modularity is offered by the popular
equality sharing method, by Nelson and Oppen, also known as the Nelson-Oppen
scheme [99,110,119]. This method combines decision procedures for theories that
are disjoint and stably infinite. In an unsorted setting, this means that the the-
ories’ signatures share only the equality symbol and free constants and every
quantifier-free formula satisfiable in one of the theories is satisfiable in a model
with a countably infinite domain. The Nelson-Oppen scheme separates terms
that mix function or predicate symbols from different theories by allowing each
theory to view maximal alien subterms as free constants. The component deci-
sion procedures cooperate by agreeing on an arrangement of their shared free
constants, that is, a complete and consistent set of equalities and disequalities
between those constants. For SMT, an equality-sharing decision procedure for a
union T of theories is integrated with a propositional satisfiability (SAT) solver,
based on the DPLL/CDCL1 procedure [49,93,94], according to the DPLL(T )
framework and its extensions [14,36,38,85,103].

For the problem of unification modulo theories, a milestone on the road
towards modularity is the Baader-Schulz combination method [7]. Unification
modulo theories considers equational theories, which are presented by sets of uni-
versally quantified equalities. The union of two equational theories is the theory
presented by the union of the component theories’ presentations. Unification is
a satisfiability problem that restricts formulas to conjunctions of equations, and
models to Herbrand interpretations, that is, interpretations where the domain
is the universe of terms, and constant and function symbols are interpreted as
themselves. In unification modulo a theory T , the universe of terms is partitioned
into congruence classes induced by the equalities in the presentation of T .

The Baader-Schulz scheme combines decision procedures that allow the addi-
tion of free symbols and cooperate by sharing information including an identi-
fication of free constants, that is, a set of equalities telling which free constants
are equal. Both the Baader-Schulz and the Nelson-Oppen schemes require the
theories to be disjoint, and feature a separation phase; also, variable identifica-

1 DPLL stands for Davis-Putnam-Logemann-Loveland and CDCL stands for Conflict-
Driven Clause Learning. The CDCL procedure is an extension and improvement of
the DPLL procedure.
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tion is a form of arrangement. On the other hand, the Baader-Schulz method
does not deal with inequalities, and does not need stable infiniteness.

The word problem in an equational theory T asks whether a universally
quantified equality is valid in the theory, that is, satisfied in every model of T .
The Baader-Tinelli combination method establishes a modularity result for the
word problem [9].

For theories with a finite presentation, these problems can be treated also as
refutational theorem-proving problems, applying a superposition-based strategy
(e.g., [10,22,34,71–74,82]) to the union of the presentation and the negation of
the conjecture. For the word problem, a conjecture ∀x̄. s�t, where x̄ contains all
variables occurring in s�t, is negated into ∃x̄. s��t, whose Skolemization yields
a ground target inequality ŝ �� t̂, where the hat means that all variables are
replaced by Skolem constants. A refutation is reached if ŝ and t̂ get rewritten to
the same term. For the unification problem, a conjecture ∃x̄. s�t, is negated into
∀x̄. s��t, yielding a non-ground target inequality s��t with all variables implicitly
universally quantified. Superposition also applies into the target inequality (an
inference also known as narrowing), and a refutation is reached if s and t get
reduced to syntatically unifiable terms, leading to completion-based approaches
to unification modulo theories (e.g., [62,89,102]). Between the word problem
and the general validity problem lies the clausal validity problem, which queries
whether a clause ϕ, that is, a universally quantified disjunction of literals ∀x̄. l1∨
. . . ∨ lk, is valid in a theory. The conjecture ϕ is negated into ∃x̄. ¬l1 ∧ . . . ∧ ¬lk,
whose Skolemization yields a set of ground literals Q = {¬l̂1, . . . ,¬l̂k}: ϕ is valid
in the theory if and only if Q is unsatisfiable in the theory. Superposition-based
strategies terminate and therefore are decision procedures for the satisfiability
of sets of ground literals in several theories [2–4,26].

In this paper we survey selected approaches to go beyond the standard repre-
sented by equality sharing for SMT in unions of theories. We begin with methods
that generalize equality sharing to asymmetric combinations, where some theo-
ries are not stably infinite, provided the others are either shiny [122], gentle [60],
or polite [76,108], which means that they are more flexible than stably-infinite
theories cardinality-wise. Then we consider superposition, whose application to
unions of theories is also formulated as a modularity problem, namely modularity
of termination: knowing that superposition terminates on satisfiability problems
in each component theory, show that it terminates on satisfiability problems in
their union [2,3]. This modularity results also allows one to understand the rela-
tion between equality sharing and superposition [3,29]. We conclude with a brief
description of a new paradigm for SMT in unions of theories, named CDSAT,
for Conflict-Driven SATisfiability, which generalizes equality sharing in several
ways, including lifting stable infiniteness [31–33]. The interested reader may find
additional material in complementary sources (e.g., [64,66,67,92]).

The paper is organized as follows. After providing basic definitions and nota-
tions in Sect. 2, we present the equality-sharing method in Sect. 3, including
a result showing that the decidability of unions of disjoint decidable theories
depends on cardinality requirements. The next three Sects. (4, 5 and 6) are ded-
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icated to shiny, gentle, and polite theories, respectively. Section 7 surveys the
application of superposition-based strategies to SMT. Section 8 gives an overview
of CDSAT, and Sect. 9 closes the paper with a discussion.

2 Background Definitions

A first-order language, or signature, is a tuple L = 〈S,F ,P,V〉, where S is a
finite set of disjoint sorts, F is a finite set of function symbols, P is a finite set
of predicate symbols, including an equality symbol for each sort, and V is a set
that contains a denumerable amount of variables for each sort. Every variable,
predicate, and function symbol is assigned a sort in S, Sn, and Sn+1 respectively,
where n is the arity of the symbol. Propositions are nullary predicate symbols,
and constants are nullary function symbols. L is one-sorted if S is a singleton,
many-sorted otherwise. As decision procedures may extend the given language L
with a finite set C of new constant symbols, LC denotes the extended language
〈S,F ∪ C,P,V〉. Terms over L, or L-terms, are defined as usual. A compound
term contains at least an occurrence of a function symbol. A context is a term
with a hole: the notation t[l] represents a term where l appears as subterm in
context t.

An atomic formula, or atom, is a predicate symbol applied to as many terms
as its arity. A literal is either an atom or the negation of an atom. Formulas are
built as usual from atoms, connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A
sentence is a formula where all variables are quantified. A clause is a disjunction
of literals, where all variables are implicitly universally quantified. A quantifier-
free formula is in conjunctive normal form (CNF), if it is a conjunction, or a set,
of disjunctions of literals; in disjunctive normal form (DNF) if it is a disjunction
of conjunctions, or sets, of literals. Through Skolemization, every formula can
be reduced to an equisatisfiable conjunction, or set, of clauses (clausal form). A
term is ground if it does not contain variables, and the same applies to literals,
clauses, and formulas. The set of variables occurring in a term t is denoted
by Var(t). Atoms, literals, sentences, and formulas over L are called L-atoms,
L-literals, L-sentences, and L-formulas, respectively.

An interpretation M of L, or L-interpretation, defines non-empty pairwise
disjoint domains M[s] for all s ∈ S, a sort- and arity-matching total function
M[f ] for all f ∈ F , a sort- and arity-matching relation M[p] for all p ∈ P,
and an element M[x] ∈ M[s] for all x ∈ V of sort s. M designates a value in
M[s] for every term of sort s, and a truth value for every formula, with equality
interpreted as identity in each domain. An L-structure is an L-interpretation
over an empty set of variables. A model of an L-formula ϕ is an L-interpretation
where ϕ is true, written M |= ϕ, and read M satisfies ϕ. A formula is satisfiable
if it has a model, unsatisfiable otherwise. A model is finite if for all s ∈ S the
cardinality |M[s]| is finite.

In this paper we adopt the syntactic definition of a theory. Given a first-order
language L, an L-theory T is a set of L-sentences, called axioms or T -axioms.
One can write T -atom, T -literal, or T -formula in place of L-atom, L-literal, or L-
formula. Symbols that do not appear in T -axioms are called free or uninterpreted.
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An L-theory T determines the set Mod(T ) of its models, or T -models, that is,
those L-structures M such that M |= T , which means that M |= ϕ for all ϕ in
T . In turn, a set C of L-structures determines the set Th(C) of its theorems, that
is, those L-sentences that are true in all structures in C. If C = Mod(T ), one can
write Th(T ), in place of Th(C), for the set of theorems of T or T -theorems. With
respect to Mod(T ) or Th(T ), T is called axiomatization or presentation. If T is
finite, the theory is said to be finitely axiomatized. Given an L1-theory T1 and
an L2-theory T2, their union is the L1 ∪ L2-theory T1 ∪ T2. Two languages are
disjoint if their sets of non-nullary functions and predicates are pairwise disjoint,
and two theories are disjoint if their languages are.

Whenever equational reasoning is built into an inference system or algorithm,
the axioms of equality are omitted from T . If all axioms are built into the
inference system or algorithm, a finite axiomatization T may not be given, and an
L-theory, for L = 〈S,F ,P,V〉, may be characterized by a set C of L-structures.
The implicit, and usually infinite, axiomatization T of the theory is given by
T = Th(C), so that the structures in C are still called T -models and T is still
used as the name of the theory. Given another language L′ = 〈S ′,F ′,P ′,V ′〉
such that S ⊆ S ′, F ⊆ F ′, and P ⊆ P ′, an L′-structure M′ is a T -model
over L′, if the L-structure M defined by the M′-interpretation of L-symbols
is a T -model, that is, if M ∈ C, or, equivalently, M |= T . Given an L1-theory
T1 and an L2-theory T2 characterized in this style, their union T1 ∪ T2 is the
L1 ∪ L2-theory characterized by the class of L1 ∪ L2-structures M that are
simultaneously T1-models over L1 ∪ L2 and T2-models over L1 ∪ L2.

A formula ϕ is T -satisfiable if it has a T -model, T -unsatisfiable otherwise.
A formula ϕ is T -valid if it is true in all T -models, T -invalid otherwise. Since
no interpretation satisfies both ϕ and ¬ϕ, a formula ϕ is T -valid if and only if
¬ϕ is T -unsatisfiable, and ϕ is T -satisfiable if and only if ¬ϕ is T -invalid. Thus,
T -satisfiability is decidable if and only if T -validity is decidable. The T -validity
of ϕ is approached refutationally by proving that ¬ϕ is T -unsatisfiable: for this
purpose, ¬ϕ is typically reduced to clausal form. If ϕ is a clause (clausal validity
problem), the clausal form of ¬ϕ is a set of ground unit clauses or, equivalently,
ground literals. For many theories of interest only the quantifier-free fragment is
decidable (e.g., [39], Chap. 3). Let ϕ be a quantifier-free formula and x̄ the tuple
of its free variables: ϕ is T -satisfiable if and only if its existential closure ∃x̄. ϕ is
T -satisfiable; ϕ is T -valid if and only if its universal closure ∀x̄. ϕ is T -valid if and
only if ∃x̄. ¬ϕ is T -unsatisfiable. Through Skolemization, both problems reduce
to the T -satisfiability of a ground formula, which can be reduced to either CNF,
yielding a set of ground clauses, or DNF. CNF is generally preferred, especially
if the original problem is a T -validity problem, as most refutational calculi work
with clausal form. If the original problem is a T -satisfiability problem, DNF
offers the advantage that a DNF formula is satisfiable if and only if at least
one of its sets of literals is. In summary, a theory T is ∃-decidable, if the T -
satisfiability of finite sets of ground literals is decidable, and ∃∞-decidable, if
it is ∃-decidable and the satisfiability of finite sets of ground literals in infinite
T -models is also decidable.



62 M. P. Bonacina et al.

3 The Equality Sharing Method

SMT solvers are generally built around a decision procedure for quantifier-free
formulas, whose Boolean structure is handled by the underlying SAT-solver. As a
consequence, theory reasoning is only concerned with conjunctions or (finite) sets
of literals. In most SMT solvers, the theory reasoners handle a union of theories.
The equality-sharing method by Nelson and Oppen [97–99,105,110,119] is a
means to build a decision procedure for satisfiability of sets of literals in a union
of disjoint theories from decision procedures for satisfiability of sets of literals in
each theory. For example, consider the set of literals

Q = {a ≤ b, b ≤ (a + f(a)), P (h(a) − h(b)), ¬P (0), f(a) � 0}.

The first step is to identify the involved theories. Suppose a specification tells
us that ≤, +, −, and 0 are to be interpreted over the integers, while the sym-
bols P , f , h, a, and b are free. Since there is no occurrence of product, for the
integers it suffices to consider linear integer arithmetic (LIA). For the free sym-
bols, the relevant theory is the theory of (equality with) uninterpreted function
symbols (abbreviated as EUF or UF). Thus, the problem requires the union of
LIA and UF sharing the sort int of the integers. However, UF only has equality
as predicate, and therefore the problem gets rewritten in the equisatifiable form

Q = {a ≤ b, b ≤ (a + f(a)), fP (h(a) − h(b)) � •, fP (0) �� •, f(a) � 0}.

Let prop be the sort interpreted by all interpretations as the set {true, false} of
the propositional, or Boolean, values. Then, the language of UF has sorts int
and prop, function symbols f, h : int → int and fP : int → prop, and constant
symbols a and b of sort int, and • of sort prop. The language of LIA has sorts int
and prop, predicate symbol ≤ of sort int× int for the ordering, function symbols
+,− : int × int → int for addition and subtraction, and the constant 0 of sort
int. Let T1 be LIA and T2 be UF. For the separation phase of the equality-
sharing method, Q is separated into a set of T1-literals Q1 and a set of T2-literals
Q2 by introducing fresh free constants2 to produce the equisatisfiable problem
Q1 ∪ Q2:

Q1 = {a ≤ b, b ≤ (a + v1), v2 � v3 − v4, v5 � 0, v1 � 0}
Q2 = {v1 � f(a), fP (v2) � •, v3 � h(a), v4 � h(b), fP (v5) �� •}.

Q1 and Q2 only share equality between terms of sort int and the free constants
in the set C = {a, b, v1, v2, v3, v4, v5}. It is not difficult to see that Q is T1 ∪ T2-
unsatisfiable whereas Q1 is T1-satisfiable and Q2 is T2-satisfiable. This means
that, in general, it is not sufficient for T1 ∪ T2-satisfiability to let the decision
procedures for T1 and T2 examine only the satisfiability of their subproblem. The
decision procedures need to exchange information about their individual sets of
literals. A first key idea in equality sharing is that the decision procedures need
to agree on an arrangement of the shared constants.
2 Traditionally combination schemes use free variables for this role (e.g., [39]). Since

quantified formulas appear in this paper, we choose to use free constants.
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Definition 1. An arrangement α of a set of constant symbols C is a satisfiable
set of sorted equalities and inequalities between elements of C such that a � b ∈ α
or a �� b ∈ α for all a, b of the same sort in C.

A second key ingredient is that the decision procedures need to agree on
the cardinalities of the shared sorts. The following theorem states these two
requirements for completeness (cf. [60,61,120–122] for equivalent formulations).

Theorem 1. Assume T1 and T2 are theories over disjoint languages L1 and L2,
and Qi (i = 1, 2) is a set of LC

i -literals. Then Q1 ∪ Q2 is T1 ∪ T2-satisfiable if
and only if there exist an arrangement α of C and a Ti-model Mi such that
Mi |= α ∪ Qi for i = 1, 2 and |M1[s]| = |M2[s]| for all sorts s common to both
languages L1 and L2.

This theorem can be strengthened by restricting the arrangement α to the
constants of C that occur in both Q1 and Q2. The (⇒) case of the proof is
straightforward, and the (⇐) case is proved by building from the T1-model and
the T2-model a T1 ∪ T2-model (e.g., Theorem 1, [60]). This is possible thanks to
the shared arrangement, and because the T1-model and the T2-model have the
same cardinality for each common sort. Checking the existence of a model is the
task of the decision procedures for the component theories. The issue is how to
ensure that there are models that agree on the cardinalities of shared sorts.

A theory T is stably infinite if every T -satisfiable quantifier-free T -formula
has a T -model such that for all sorts other than prop the domain has cardinality
ℵ0, the cardinality of the set IN of the natural numbers. Combining only stably
infinite theories is a radical solution to the cardinality requirement of Theorem 1:
the cardinality is ℵ0 for all shared theories other than prop. Since both LIA and
UF are stably infinite, the set Q of our example is T1 ∪ T2-satisfiable if and only
if there exists an arrangement α of the free constants in C such that α ∪ Qi is
Ti-satisfiable for i=1, 2. As no such arrangement exists, Q is T1∪T2-unsatisfiable.
In order to include non-stably-infinite theories, combination schemes can rely on
the notion of spectrum [60].

Definition 2. The spectrum of a one-sorted theory T is the set of the cardi-
nalities of the T -models.3

This notion can be generalized to the many-sorted case by considering tuples
of cardinalities, one cardinality for each sort. Using this definition and Theo-
rem 1, it is possible to state completeness requirements for a combination scheme
for disjoint theories that are not necessarily stably infinite (cf. Corollary 1, [60]).

Corollary 1. Given theories T1 and T2 over disjoint languages L1 and L2, T1 ∪
T2 is ∃-decidable if, for all sets of LC

1 -literals Q1 and LC
2 -literals Q2, it is possible

to determine whether the intersection of the spectra of T1 ∪ Q1 and T2 ∪ Q2 is
non-empty for each sort common to both languages L1 and L2.
3 The spectrum of a theory is usually defined as the set of the finite cardinalities of

its models. We extend the definition slightly for convenience.
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For stably infinite theories, if T1∪Q1 and T2∪Q2 are satisfiable, the intersec-
tion of their spectra contains ℵ0 for each shared sort, and therefore the following
classic combination lemma does not need to mention cardinalities.

Combination Lemma 1 (Stably Infinite Theories). Assume two stably
infinite disjoint theories T1 and T2 over languages L1 and L2, and let Qi be
a set of LC

i -literals (i = 1, 2). Then Q1 ∪ Q2 is T1 ∪ T2-satisfiable if and only if
there exists an arrangement α of C such that α∪Qi is Ti-satisfiable for i = 1, 2.

Since the union of disjoint stably infinite theories is stably infinite, the class
of ∃-decidable stably infinite theories is closed under disjoint union.

Theorem 2. The union of disjoint, stably infinite, ∃-decidable theories is stably
infinite and ∃-decidable.

A key result is that some cardinality requirement is necessary for decidability.
This finding is a consequence of the following theorem (cf. Proposition 4.1, [29]).

Theorem 3. There exist an ∃-decidable theory that is not ∃∞-decidable.

The proof exhibits a theory TM∞ with language LTM∞ , including infinitely
many nullary predicates P(e,n) for all e ∈ IN and n ∈ IN. The meaning of P(e,n) is
that e is the index of a Turing machine, and n is an input for the Turing machine
of index e. The axioms of TM∞ involve a kind of clauses called at-most cardi-
nality constraints. An at-most cardinality constraint is a clause containing only
non-trivial (i.e., other than x � x) equalities between variables. For example,
∀x, y, z. y � x ∨ y � z is the at-most-2 cardinality constraint: a model of this
clause can have at most 2 elements since the clause says that out of 3 variables
at least 2 must be equal. In general,

∀x0, . . . , xm.
∨

0≤i�=k≤m

xi � xk

is the at-most-m cardinality constraint : a model of this clause can have at most m
elements. The axioms of TM∞ are all the formulas saying that P(e,n) implies the
at-most-m cardinality constraint, if Turing Machine e halts on input n in fewer
than m steps. The property of being an axiom of TM∞ is decidable, because
it suffices to run the Turing machine and see whether it halts in fewer than m
steps. The TM∞-satisfiability of a finite set Q of ground LC

TM∞ -literals is also
decidable: intuitively, as Q involves finitely many constants, their arrangement
dictates the minimum cardinality m of a candidate model; if Q contains both
P(e,n) and ¬P(e,n), it is unsatisfiable; otherwise, for each P(e,n) ∈ Q it suffices
to test that Turing Machine e runs on input n for at least m steps. On the
other hand, satisfiability in infinite TM∞-models is undecidable: Q = {P(e,n)}
is satisfiable in an infinite TM∞-model if and only if Turing Machine e does not
halt on input n, which is undecidable for being the complement of the Halting
Problem. While TM∞ has an infinite language, it is possible to exhibit a theory
with the same decidability properties of TM∞ and a finite language [30]. It
follows as a corollary that the union of this theory with any disjoint ∃-decidable
theory with only infinite models is not ∃-decidable (cf. Theorem 4.1, [29]).
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Theorem 4. There exist ∃-decidable disjoint theories whose union is not ∃-
decidable.

This theorem implies that if we want to lift the stable infiniteness require-
ment on one or more component theories, while maintaining decidability of the-
ory unions, we still need to impose some restrictions on the cardinality of these
theories’ models. Such restrictions must allow the theories to agree on the cardi-
nality of a joint model, so that Corollary 1 can apply. In the next three sections,
we survey combination schemes that achieve precisely such a synchronization of
the theories on models’ cardinalities without imposing stable infiniteness.

4 Shiny Theories

The theory of uninterpreted symbols (UF) is one of the most useful theories.
It is convenient to model arrays, generic functions, or other data structures
described by a custom set of axiom handled separately by the reasoner through
instantiation or other inferences (e.g., see Sect. 7). This theory is shiny [122], a
much stronger property than being stably infinite.

Definition 3 (Shiny Theory). A theory T over a one-sorted language L is
shiny if, for all sets Q of LC-literals, either the spectrum of T ∪ Q is empty
or it is the set of all cardinalities greater than or equal to a finite cardinality
mincardT (Q) computable from Q.

For UF, if Q is unsatisfiable, the spectrum is empty. If Q is satisfiable, let s
be its sort. An arrangement of the finitely many constant symbols that appear
in Q determines a finite cardinality for the domain M[s] of a model M. A model
M′ such that |M′[s]| > |M[s]| is obtained by taking a non-empty set A disjoint
from M[s], and letting M′[s] be M[s] ∪ A. M′ interprets equality as identity
on every pair of elements of A, and is otherwise identical to M. This is the
argument showing that UF is stably infinite (e.g., see Example 10.3, [39]) plus
the observation that an arrangement yields a finite cardinality.

The spectrum of a shiny theory T is upward closed from mincardT (Q) or
upward closed for short: if Q has a T -model, it has a T -model for every larger
cardinality. A theory with such a spectrum is called smooth. A shiny theory
also has the finite-model property : if a set Q of LC-literals is T -satisfiable, it is
satisfiable in a finite model of T . Consider the union of a shiny theory T1 and
an arbitrary theory T2 such that T1 and T2 are disjoint and share the one sort
s of T1. For T1 and T2 to agree on the cardinality of s it suffices that there is
a T2-model that interprets s with a domain of sufficiently large cardinality. An
at-least cardinality constraint expresses this requirement. An at-least cardinality
constraint is the negation of an at-most cardinality constraint (see Sect. 3), hence
it is a conjunction of non-trivial inequalities between variables, all existentially
quantified. Through Skolemization, the clausal form of an at-least cardinality
constraint is a set of inequalities between constants, known as an all-different
constraint.
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Definition 4. Given a positive integer m and a sort s, an all-different constraint
δs(m) for sort s is a set of literals {ci �� cj | 1≤ i �= j ≤n}, where c1, . . . , cm are
distinct fresh free constants of sort s.

For a theory T , whose language has a sort s, and a set Q of T -literals, Q has
a T -model that interprets s with a domain of cardinality at least m if and only
if the set of literals Q ∪ δs(m) is T -satisfiable. Thus, the union of a shiny theory
T1 and an arbitrary theory T2, sharing T1’s only sort s, is handled by testing in
this manner that T2 has a model M such that |M[s]| ≥ m, with m determined
by applying mincardT1 to the set of T1-literals and the arrangement.

Combination Lemma 2 (Shiny Theory). Let L1 and L2 be disjoint langua-
ges such that L1 has only one sort s shared with L2. Assume a shiny L1-theory
T1 and an arbitrary L2-theory T2, and let Qi be a set of LC

i -literals (i = 1, 2).
Then Q1 ∪ Q2 is T1 ∪ T2-satisfiable if and only if there exists an arrangement α
of C such that α ∪ Q1 is T1-satisfiable and α ∪ Q2 ∪ δs(mincardT1(α ∪ Q1)) is
T2-satisfiable.

Since one theory is shiny and the other is arbitrary, the combination scheme
is asymmetric.

Theorem 5. The union of a shiny ∃-decidable theory with an arbitrary ∃-
decidable theory that shares the single sort of the shiny theory is ∃-decidable.

The generalization of shininess to many-sorted theories leads to politeness
(see Sect. 6). Several other theories have a spectrum that is not upward closed,
but satisfies other useful properties for asymmetric combination schemes, as
captured by the concept of gentleness in the next section.

5 Gentle Theories

By weakening the requirements on the spectrum of theories, more theories can
take part in asymmetric combinations. Gentleness is weaker than shininess and
captures several other interesting ∃-decidable theories [60].

Definition 5. A theory T over a one-sorted language L is gentle if, for all sets
Q of LC-literals, the spectrum of T ∪ Q is computable and is equal to

1. Either a finite set of finite cardinalities, or
2. A co-finite set of cardinalities given by the union of a finite set of finite

cardinalities and the set of all (finite and infinite) cardinalities greater than
a computable finite cardinality.

A gentle theory T is not necessarily stably infinite, since a T -satisfiable set of
literals may have only finite models by Case (1) of Definition 5. A shiny theory
is gentle, since it satisfies Case (2) of Definition 5 with an empty set of finite car-
dinalities. Thus, UF is gentle. Conversely, the spectrum of a gentle theory is like
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the spectrum of a shiny theory with the addition of finitely many finite cardinal-
ities. Gentle theories are ∃-decidable, and theories in the Bernays-Schönfinkel-
Ramsey class (axioms of the form ∃∗∀∗ϕ, where ϕ is quantifier-free and without
occurrences of non-nullary function symbols), Löwenheim class (axioms in first-
order relational monadic logic, i.e., no non-nullary functions and only unary
predicates), and FO2 class (axioms with only two variables and no non-nullary
functions) are gentle [60].

Theorem 6. The union of disjoint gentle theories is gentle.

The proof (see [60]) rests on the observation that the intersection of the spectra
of gentle theories is a spectrum that satisfies Definition 5.

Let mincardT be the partial function from sets of T -literals to cardinal num-
bers defined by mincardT (Q)=k, if k is the smallest non-zero finite cardinality
such that the spectrum of T ∪Q is upward closed from k. If Q is T -unsatisfiable,
or the spectrum of T ∪ Q is bounded and only contains a finite number of finite
cardinalities, then mincardT (Q) is undefined. Let fincardT be the function that
maps a set Q of T -literals to a finite, possibly empty, set of finite cardinalities
of T -models of Q as follows: (i) if the spectrum of T ∪ Q is empty, fincardT (Q)
is empty; (ii) if the spectrum of T ∪ Q is finite, fincardT (Q) is the spectrum of
T ∪Q; (iii) otherwise, fincardT (Q) is the set of the cardinalities in the spectrum
of T ∪ Q that are strictly smaller than mincardT (Q).

Combination Lemma 3 (Gentle Theory). Let L1 and L2 be disjoint
languages such that L1 has only one sort s shared with L2. Assume a gentle
L1-theory T1 and an arbitrary L2-theory T2, and let Qi be a set of LC

i -literals
(i = 1, 2). Then Q1 ∪ Q2 is T1 ∪ T2-satisfiable if and only if there exists an
arrangement α of C such that α ∪ Q1 is T1-satisfiable and

1. Either mincardT1(α ∪ Q1) is defined and α ∪ Q2 ∪ δs(mincardT1(α ∪ Q1)) is
T2-satisfiable,

2. Or there exists a cardinality k ∈ fincardT1
(Q1 ∪ α) such that α ∪ Q2 is T2-

satisfiable in a T2-model M such that |M[s]| = k.

Condition (1) follows the pattern of Combination Lemma 2. For Condi-
tion (2), note that for finitely axiomatized one-sorted theories, it is decidable
whether there is a model of a given finite cardinality k. Indeed, there are finitely
many (up to isomorphism) interpretations of cardinality k for a finite language,
and it takes a finite amount of time to check whether such an interpretation
satisfies the axioms. Several widely used theories are not gentle, but they can be
combined with gentle theories [60].

Theorem 7. Given disjoint one-sorted theories T1 and T2, where T1 is gentle,
their union T1 ∪ T2 is ∃-decidable, provided that:

1. T2 also is gentle, or
2. T2 is an ∃-decidable finitely axiomatized theory, or



68 M. P. Bonacina et al.

3. T2 is an ∃-decidable theory that only admits a fixed finite (possibly empty)
known set of finite cardinalities for its models, and possibly infinite models.

The proof shows that in each case of Theorem 7, either Condition (1) or Condi-
tion (2) of Combination Lemma 3 applies, possibly after some preliminary work.
For example, if both T1 and T2 are gentle, the intersection of their spectra is
computed first. In Case (3), either the intersection of the finite sets of finite
cardinalities admitted by the two theories is non-empty, or else the Löwenheim-
Skolem theorem for first-order logic (if a theory has an infinite model, it has
models for every infinite cardinality) is invoked to imply that the spectrum of
T2 is upward closed from some infinite cardinality. For example, the theory of
arrays (e.g., [95] and Chap. 3 [39]) belongs to Case (2) of Theorem 7, while LIA
and the theory of real closed fields (RCF) fit in Case (3).

Gentleness can be extended to many-sorted theories as done for P-gentleness,
a generalization of gentleness introduced to handle unions of non-disjoint theories
sharing only unary predicates [43].

6 Polite Theories

Politeness can be considered as a many-sorted extension of shininess [76,108].
The concept of politeness is instrumental to combine data-structure theories with
an arbitrary theory of elements, as illustrated below for arrays, records, sets, and
multisets. In this section, we work directly with quantifier-free formulas, instead
of sets of literals. A theory is polite with respect to a given set S of sorts, if it is
smooth and finitely witnessable with respect to S. As seen in Sect. 4 for the one-
sorted case, smooth means that it is possible to enlarge arbitrarily the S-sorted
domains of a model to get another model with the desired cardinalities.

Definition 6 (Smooth Theory). An L-theory T is smooth with respect to a
set S = {s1, . . . , sn} of sorts of its many-sorted language L, if:

– For all ground formulas ϕ in LC ,
– For all T -models M of ϕ,
– For all cardinal numbers k1, . . . , kn such that ki ≥ |M[si]|, for i = 1, . . . , n,

there exists a T -model N of ϕ such that |N [si]| = ki for i = 1, . . . , n.

Finite witnessability complements smoothness by establishing a starting
point for the upward movement. The starting point is given by a finite T -model
obtained from formulas called finite witnesses (see Sects. 6.1 and 6.2 for exam-
ples).

Definition 7 (Finite Witness). Let S be a set of sorts of a many-sorted lan-
guage L and T an L-theory. Given a ground LC-formula ϕ, a ground LD-formula
ψ, where D ⊇ C, is a finite witness of ϕ in T with respect to S if:

1. For all T -models M over LD, M |= (ϕ ≡ ψ), and



Theory Combination 69

2. For all arrangements α of all the S-sorted constants in D, if {ψ} ∪ α is T -
satisfiable then there exists a T -model M∗ of {ψ} ∪ α such that M∗[s] =
{M∗[d] | d ∈ D, d of sort s}, for all s ∈ S.

Thanks to Property (2) in this definition, finite witnesses provide the finite
T -model M∗ that is the starting point for the upward movement made possible
by smoothness: for all s ∈ S, the domain M∗[s] comprises precisely the elements
used to interpret the constant symbols occuring in the finite witness.

Definition 8 (Finitely Witnessable Theory). An L-theory T is finitely wit-
nessable with respect to a set S of sorts of L, if there exists a computable function
witness such that, for all ground formulas ϕ in LC , witness(ϕ) is a finite witness
of ϕ in T with respect to S.

Definition 9 (Polite Theory). An L-theory T is polite with respect to a set
of sorts S of L, if it is smooth and finitely witnessable with respect to S.

In the classical Nelson-Oppen procedure for disjoint stably infinite theories,
it suffices to compute an arrangement of shared constants (see Sect. 3). Polite
theories allow us to extend the equality-sharing scheme to non-stably-infinite
theories [108], provided the procedure computes an arrangement of a larger set
of constants, that includes the new ones introduced by witnesses [76].

Combination Lemma 4 (Polite Theory). Let L1 and L2 be disjoint langua-
ges sharing a set S of sorts. Assume an L1-theory T1 polite with respect to S
and an arbitrary L2-theory T2. Let ϕi be a ground LC

i -formula (i = 1, 2), and
witness(ϕ1) be a ground formula in LD

1 , D ⊇ C, that is a finite witness of ϕ1

in T1 with respect to S. Then ϕ1 ∧ ϕ2 is T1 ∪ T2-satisfiable if and only if there
exists an arrangement α of all S-sorted constants in D such that α∧witness(ϕ1)
is T1-satisfiable and α ∧ ϕ2 is T2-satisfiable.

The (⇒) case of the proof is straightforward. For the (⇐) case the reasoning
goes as follows. First, by Property (1) of Definition 7, witness(ϕ1) is equivalent to
ϕ1 in T1. Second, by Property (2) of Definition 7, witness(ϕ1) determines finite
cardinalities for the shared sorts. Third, by smoothness of T1, it is possible to
scale up these cardinalities to meet those required by the T2-model. As there
is agreement on both shared constants, as provided by the arrangement, and
cardinalities of shared sorts, the result follows by Theorem 1. Since one theory
is polite and the other is arbitrary, the combination scheme is asymmetric.

Theorem 8. The union of two ∃-decidable disjoint theories is ∃-decidable, if
one of them is polite with respect to the set of sorts shared by the two theories.

The main difficulty in applying this theorem is to show that a given theory is
polite, and especially to show that finite witnesses can be computed for all input
formulas. All known polite theories are theories of data structures. We distinguish
two classes of polite data-structure theories. The first one comprises theories
characterized by sets of standard interpretations, and is covered in Sect. 6.1: the
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theories of arrays, records, sets, and multisets belong to this class. All these
theories feature an extensionality axiom whereby two data-structures are equal
if and only if their corresponding elements are. For all these theories, a witness
function can be built by using a common principle based on the translation of an
inequality of data structures into some constraint on their elements. The second
class includes extensions of UF with axioms such as projection, injectivity, or
acyclicity, leading to axiomatizations of recursive data structures, also known as
algebraic data types, and is covered in Sect. 6.2. For this second class of theories,
a witness function can be defined using the saturated set of clauses computed
by a superposition-based decision procedure (see Sect. 7).

6.1 Arrays, Records, Sets, and Multisets

The theory of arrays Tarray is an especially important example of polite theory.
This theory is widely studied and usually presented as an axiomatized theory
(e.g., [2–4,39,40,95]). Its language Larray has a sort elem for elements, a sort index
for indices, a sort array for arrays, and the function symbols read : array× index →
elem and write : array × index × elem → array. Semantically, an array is seen as a
function a : I → E from some set of indices to some set of elements. We use the
notation EI for the set of functions from I to E. Consider an Larray-interpretation
M with domains M[elem] = E and M[index] = I. M interprets a term of sort
array as a function a : I → E. However, arrays can be updated, and Larray employs
the function write to represent such an update. For the interpretation of write, a
function ai�→e : I → E is defined as follows: ai�→e(i) = e and ai�→e(j) = a(j), for
j �= i. Then, a standard Larray-interpretation M is an Larray-interpretation such
that: M[array] = (M[elem])M[index], M[read](a, i) = a(i) for all a ∈ M[array] and
i ∈ M[index], and M[write](a, i, e) = ai�→e for all a ∈ M[array], i ∈ M[index],
and e ∈ M[elem]. Tarray is the Larray-theory characterized by the class of all
standard array-structures. The following extensionality axiom is Tarray-valid:

∀x, y : array. (x � y) ≡ (∀z : index. read(x, z) � read(y, z)).

The clausal form of its (⇐) direction is x� y∨read(x, sk(x, y)) �� read(y, sk(x, y)),
where the Skolem term sk(x, y) represents the index where x and y differ, the
“witness” that the two arrays are different. A finite witness of a set Q of Tarray-
literals is constructed by replacing each array-sorted inequality l �� r in Q with
read(l, i) �� read(r, i), where i is a new constant symbol of sort index. This trans-
formation originated as a reduction of the satisfiability of sets of ground literals
in Tarray with extensionality to the satisfiability of sets of ground literals in Tarray

without extensionality [4]: using a Skolem constant i in place of the compound
Skolem term sk(x, y) preserves equisatisfiability. Intuitively, adding constants
to name the positions where arrays differ suffices to glean from the number of
constants occurring in the set of literals the minimum cardinalities for sorts elem
and index, leading to the following politeness result [108].

Theorem 9. Tarray is polite with respect to {elem, index}.



Theory Combination 71

Basically, Tarray inherits smoothness with respect to {elem, index} from the
shininess of UF. Once extensionality has been eliminated, the reasoning focuses
solely on equality of indices and elements. The remaining occurrences of write
can be eliminated by a case analysis with respect to the read-over-write axioms,
on whether the index-sorted argument of read is equal or different from that
of the nested write (see Sect. 9.5, [39]). Once all occurrences of write have been
eliminated, Tarray essentially reduces to UF, as a term read(l, i) can be written
as fa(l), by introducing a free function symbol fa for every array-term l (e.g.,
Chap. 9, [39]).

Records aggregate attribute-value pairs and resemble arrays if attributes are
considered as indices [2,3,108]): if there are n attributes, the set of “indices”
has cardinality n. The theory of records Trec has a language Lrec with a sort
rec for records, a sort elem for values, and a pair of read and write function
symbols for each attribute: readi : rec → elem and writei : rec × elem → rec, for
i = 1, . . . , n. A standard rec-interpretation M is an Lrec-interpretation such that:
M[rec] = (M[elem])n, M[readi](a) = a(i) for all a ∈ M[rec], for i = 1, . . . , n,
and M[write](a, i, e) = ai�→e for all a ∈ M[rec] and e ∈ M[elem], for i = 1, . . . , n.
Trec is the Lrec-theory characterized by the class of all standard rec-structures.
The Trec-valid extensionality axiom has the following form:

∀x, y : rec. (x � y) ≡ (read1(x) � read1(y) ∧ · · · ∧ readn(x) � readn(y)).

Sets also resemble arrays if a set X, X ⊆ I, is viewed as its characteristic
function X : I → {0, 1} [4]. The language Lset of the theory of sets Tset has a sort
elem for set elements, a sort set for sets, and the predicate symbol ∈ : elem ×
set → prop. A standard set-interpretation M is an Lset-interpretation such that
M[set] = 2M[elem] and M[∈](e, x) = true if and only if x(e) = 1 for all x ∈ M[set]
and e ∈ M[elem]. Tset is the Lset-theory characterized by the class of all standard
set-structures. The extensionality axiom for Tset says that two sets are equal if
and only if they contain the same elements:

∀x, y : set. (x � y) ≡ (∀e : elem. (e ∈ x) ≡ (e ∈ y)).

Similarly, a multiset X with elements in I is viewed as its multiplicity function
X : I → IN. The theory of multisets Tbag requires a language Lbag with sorts int+

for the non-negative integers, elem for multiset elements, bag for multisets, and
the function symbol count : elem × bag → int+. A standard Lbag-interpretation
M is an Lbag-interpretation such that: M[int+] = IN; M[bag] = INM[elem]; and
M[count](e, x) = x(e) for all e ∈ M[elem] and x ∈ M[bag]. Tbag is the Lbag-
theory characterized by the class of all standard bag-structures, with extension-
ality axiom

∀x, y : bag. (x � y) ≡ (∀e : elem. count(e, x) � count(e, y)).

The politeness of these three theories is a corollary [108] of Theorem 9.

Corollary 2. The theories Trec, Tset and Tbag are polite with respect to {elem}.
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In order to construct finite witnesses for sets of ground literals in these
theories, the (⇐) direction of their extensionality axiom is used to translate
every inequality between terms of the data-structure sort into some constraint
on their elements. For records, a rec-sorted inequality l �� r is replaced with
readi(l) �� readi(r) for some attribute i, 1 ≤ i ≤ n: the attribute is the “witness”
that the records differ. For sets, an inequality l �� r between terms of sort set is
translated into the literal sets {e ∈ l, e /∈ r} or {e /∈ l, e ∈ r}, where e is a new
constant symbol of sort elem denoting an element that differentiates the sets.
For multisets, a bag-sorted inequality l �� r yields count(e, l) �� count(e, r): the
new constant symbol e of sort elem denotes an element that occurs with different
multiplicities in the two multisets.

6.2 Recursive Data Structures

Theories of recursive data structures (RDS) [26,39], also known as theories of
inductive data types [16], or algebraic data types, are convenient to describe sev-
eral types of data structures commonly used in programming languages. Classical
examples are lists and trees. These theories adopt a language Lrds with a sort
struct for the data structures, and a sort elem for their elements. The set of func-
tion symbols of Lrds is the disjoint union of a set Fc of constructors and a set
Fsel of selectors. A constructor symbol c ∈ Fc has the sort c : s1, . . . , sn → struct,
for s1, . . . , sn ∈ {elem, struct}, as a constructor takes elements and structures to
build more structures. For example, in theories of lists [3,4,26,39,100,117] the
constructor cons takes an element and a list, and returns the list with the given
element as the head and the given list as the tail. For every constructor c ∈ Fc

of sort c : s1, . . . , sn → struct, Fsel contains selector symbols selci : struct → si for
i = 1, . . . , n. For example, in theories of lists the selectors associated to cons are
named car and cdr: the first one applies to a cons-term to return the head; the
second one returns the tail.

The axiomatizations of these theories may contain the following sets of
axioms, where all variables are implicitly universally quantified:

– Projection axioms: Proj={selci (c(x1, . . . , xn)) � xi | selci ∈ Fsel}, that show
how selectors operate as projection operators over selectors;

– Distinctiveness axioms: Dis={c(x1, . . . , xnc
) �� d(y1, . . . , ynd

) | c, d ∈ Fc, c �=
d}, where nc and nd are the arities of constructors c and d, respectively: these
axioms state that distinct constructors build distinct data structures, so that
a term whose root symbol is a constructor cannot be equal to a term whose
root symbol is a distinct constructor;

– Acyclicity axioms: Acyc={x �� t[x] | t is an Fc-context}, where an Fc-context
is a context made only of symbols in Fc, that is, constructors; these axioms
ensures that constructors do not build cyclic structures;

– Injectivity axioms: Inj={c(x1, . . . , xnc
) � c(y1, . . . , ync

) ⇒
∧nc

i=1 xi � yi |
c ∈ Fc}, where nc is the arity of constructor c; these axioms stipulate that
constructors are to be interpreted as injective functions.

The following general politeness theorem holds for these theories [16,118]:
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Theorem 10. For all theories T included in Inj ∪ Dis, the theories T ∪ Proj
and T ∪ Acyc ∪ Proj are polite with respect to {elem}.

For all theories mentioned in Theorem 10 a superposition-based strategy (see
Sect. 7) is a decision procedure for problems of the form T ∪ Q, where T is
the (finite) axiomatization of the theory and Q is a (finite) set of T -literals.
If T ∪ Q is satisfiable, the superposition-based strategy returns a set of clauses
that is saturated (no irredundant inference applies), and contains equalities useful
to construct a finite witness of Q. Dedicated tableaux-style decision procedures
based on a combination of congruence closure and unification steps also exist [16].

All these theories can be extended with additional axioms defining a bridging
function [118], such as the length of lists or the size of trees. Such a function
represents a bridge between two theories: for example, a length function for
lists is a bridge between a theory of lists and a theory of the integers, since the
length of a list is a non-negative integer. Theories of lists and trees with bridging
functions are polite theories [44]. These results rely on the characterization of
the theory as a set of standard structures satisfying an extensionality axiom (cf.
Sect. 6.1). For example, the theory of possibly empty lists, with constructors nil
and cons, selectors car and cdr, extensionality axiom

∀x : list. x �� nil ⇒ x � cons(car(x), cdr(x)),

and bridging function length is polite, and the bridging function helps the con-
struction of finite witnesses [44].

7 Superposition-Based Decision Procedures

From the perspective of reasoning in a theory T , theorem proving is the prob-
lem of T -validity, approached refutationally by proving T -unsatisfiability of the
negation of the conjecture. A complete theorem-proving strategy for first-order
logic is a semidecision procedure for T -validity for all finitely axiomatized first-
order theories T : termination with a proof is guaranteed for all unsatisfiable
inputs T ∪Q, where T contains the axioms of the theory in clausal form, and Q
is the clausal form of the negation of the conjecture. On the other hand, termi-
nation on satisfiable inputs is a challenge. In this section we survey termination
results that allow one to apply superposition-based theorem-proving strategies to
decide SMT problems for some theories [2,3,26,27], including most of the polite
theories described in Sect. 6. The central result covered in this section is a mod-
ularity theorem for termination of superposition [2,3], that opened the way to
understanding the relationship between superposition and equality sharing [29],
and to designing integrations of SMT-solving and theorem proving [24,28,35,36],
yielding more decision procedures.

A theorem-proving strategy is given by an inference system, which is a set of
inference rules, and a search plan, which is an algorithm that controls the appli-
cation of the inference rules. We consider a class of theorem-proving strategies
known in the literature under various names:
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– Resolution-based or superposition-based, to emphasize the main expansion
inference rules,

– Rewrite-based or simplification-based or ordering-based, to highlight the
removal of redundant clauses by contraction inference rules based on well-
founded orderings, and

– Completion-based or saturation-based, to convey the overall process of expand-
ing and contracting the existing set of clauses until either a contradiction
arises or no more irredundant inferences apply.

In this paper we adopt the name superposition-based, because the surveyed
results depend mostly on the inference system, and superposition plays the main
role, as equality is the only shared symbol among the theories.

Superposition
C ∨ l[s ] ∨ s t

(C ∨ D ∨ l[t] )σ
(i), (ii), (iii), (iv)

Reflection
C ∨ s s

Cσ
∀l ∈ C : (s s)σ lσ

Equational Factoring
C ∨ s t ∨ s t

(C ∨ t t ∨ s t )σ
(i), ∀l ∈ {s t } ∪ C : (s t)σ lσ

where stands for either or , σ is the most general unifier (mgu) of s and s , in
superposition s is not a variable, and the following abbreviations hold:

(i) is sσ tσ,
(ii) is ∀m ∈ D : (s t)σ mσ,
(iii) is l[s ]σ rσ, and
(iv) is ∀m ∈ C : (l[s ] )σ mσ.

Simplification
C[l] s t

C[tσ] s t
l = sσ, sσ tσ, C[l] (s t)σ

Strict Subsumption
C D

C
D •> C

Deletion
C ∨ t t

where D •> C if D •≥ C and C •≥ D; and D •≥ C if Cσ ⊆ D (as multisets) for some
substitution σ. Theorem provers also apply subsumption of variants (if D •≥ C and
C •≥ D, the oldest clause is retained) and tautology deletion (that removes clauses such
as C ∨ s t ∨ s t).

Fig. 1. SP: a standard superposition-based inference system.

A standard superposition-based inference system, named SP from superposi-
tion (cf. Fig. 1–2, [3], Fig. 1, [27], and Fig. 1, [36]), is reported in Fig. 1: expansion
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rules add what is below the single inference line to what is above; contraction
rules replace what is above the double inference line by what is below. SP is
parametric with respect to a complete simplification ordering (CSO) � on terms,
extended to literals and clauses by multiset extension. A simplification ordering
is stable (l � r implies lσ � rσ for all terms l and r and substitutions σ), mono-
tonic (l � r implies t[l] � t[r] for all terms l and r and contexts t), and has the
subterm property (i.e., it contains the strict subterm ordering �: l�r implies l � r
for all terms l and r). An ordering with these properties is well-founded. A CSO
is also total on ground terms. Definitions, results, and references on orderings
are accessible in several surveys (e.g., [54,55]).

The main expansion rule in SP is superposition, where l[s′] �� r (C∨ l[s′] �� r)
is the literal (clause) superposed into, and s � t (D ∨ s � t) is the literal (clause)
superposed from, where �� stands for either � or ��. Depending on whether s is
a variable, a constant, or a compound term, superposition is from a variable, a
constant, or a compound term. Reflection captures ordered resolution with the
reflexivity axiom ∀x. x � x. Equational factoring allows the inference system
to impose all four ordering-based restrictions listed for superposition [10]. The
main contraction rule in SP is simplification, that performs rewriting by an
equality. Subsumption eliminates a clause that is less general than another clause
according to the subsumption ordering •> defined in the caption of Fig. 1. Deletion
removes clauses containing trivial equalities.

Superposition dates back to the late 1960’s [82,112]; inference systems of this
kind appear in many papers (e.g., [10,34,72,113]); several general treatments or
surveys with additional references and historic background are available (e.g.,
[19,21,22,54,55,87,104,106,107]). Superposition-based strategies yield decision
procedures for several fragments of first-order logic (e.g., [59,63] and [58] for a
survey), and are implemented in many theorem-provers including, in alphabetical
order, E [114], Spass [124], Vampire [84], Waldmeister [70], and Zipperposi-
tion [48]. An SP -derivation is a series

Q0 �
SP

Q1 �
SP

. . . Qi �
SP

Qi+1 �
SP

. . . ,

where for all i, i≥0, the set of clauses Qi+1 is derived from Qi by applying an SP-
inference rule. A derivation is characterized by its limit Q∞ =

⋃
j≥0

⋂
i≥j Qi, that

is the set of persistent clauses, those that are either input or generated at some
stage, and never deleted afterwards. A derivation is a refutation if there exists
an i such that � ∈ Qi, where � is the empty clause, the contradiction in clausal
form. SP is refutationally complete: whenever the input set Q0 is unsatisfiable,
then there exist SP-refutations from Q0. Inference systems are nondeterministic:
multiple SP-derivations are possible from a given input set Q0. The pairing of SP
with a search plan yields an SP -strategy, and then the SP-derivation generated
from Q0 by a given SP-strategy is unique.

Refutational completeness of the inference system is not sufficient for the
completeness of a strategy: the complementary requirement on the search plan
is fairness. A derivation is fair if it is guaranteed to be a refutation whenever the
input set is unsatisfiable. A search plan is fair if it generates a fair derivation for
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all inputs. A strategy is fair if its search plan is. A strategy is complete if its infer-
ence system is refutationally complete and its search plan is fair. In practice, a
derivation that considers eventually all irredundant inferences is fair, and its limit
is saturated. An inference is redundant if it uses or generates redundant clauses,
and irredundant otherwise. Definitions of redundancy and sufficient conditions
for fairness can be given based on well-founded orderings on either clauses [10]
or proofs [22,34]. In the sequel SP-strategy stands for complete SP -strategy.

In order to prove that an SP-strategy is a decision procedure for a certain
class of problems, one needs to show that it is guaranteed to terminate on inputs
in that class. If one shows that SP only generates finitely many clauses from
such inputs, termination is guaranteed. We begin with ∃-decidability, that is, we
consider T -satisfiability problems T ∪ Q, where T contains the axioms of the
theory in clausal form and Q is a set of ground T -literals. SP generates finitely
many clauses from such problems in the theories of:

– Equality, for which T is empty [4,11,86],
– Non-empty possibly cyclic lists [4] and possibly empty possibly cyclic lists [3],
– Arrays with or without extensionality [2–4],
– Finite sets with or without extensionality [4],
– Records with or without extensionality [2,3],
– Integer offsets and integer offsets modulo, a theory useful to describe data

structures such as circular queues [2,3], and
– Recursive data structures with a constructor and k selectors [26], of which

integer offsets and acyclic non-empty lists are special cases for k=1 and k=2,
respectively.

Therefore, these theories are ∃-SP -decidable [27], meaning that an SP-strategy
is a decision procedure for ∃-decidability in these theories.

For each theory T the proof of termination rests on an analysis of the possi-
ble SP-inferences from an input of the form T ∪ Q, showing that there are only
finitely many. This analysis assumes that a preprocessing phase flattens all liter-
als in Q, by introducing new constant symbols and equalities, in such a way that
every positive literal contains at most one occurrence of function symbol, and
every negative literal contains no occurrence of function symbols. For example,
the literal f(a) ��f(b) yields the set of flat literals {f(a) � a′, f(b) � b′, a′ �� b′}
by introducing fresh constants a′ and b′.

The preprocessing phase may involve some other simple mechanical transfor-
mation, called T -reduction: for example, for the theories of arrays with extension-
ality [2–4] and records with extensionality [2,3], T -reduction replaces array-sorted,
and rec-sorted, inequalities, via the introduction of “witnesses,” as already
described in Sect. 6.1, so that the extensionality axiom can be removed. For
both theories, T -reduction preserves equisatisfiability also in the presence of free
function symbols, which is relevant for their union with the theory of equality,
provided the sorts array and rec do not appear in the sorts of the free function
symbols [3]. Since the presentation of recursive data structures includes infinitely
many acyclicity axioms (cf. Sect. 6.2), T -reduction in this case transforms the
problem to an equisatisfiable problem with finitely many acyclicity axioms [3,26].
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For some theories, the T -reduction is empty and preprocessing consists only of
flattening. Also, the CSO � employed by SP is required to be good, meaning
that t � c for all ground compound terms t and constants c [3,25,27].

Once termination is established, the complexity of the resulting superposi-
tion-based decision procedure may be characterized abstractly in terms of meta-
saturation [88,91]. More concretely, the superposition-based decision procedures
for the above mentioned theories are exponential, except for records without
extensionality and integer offsets modulo [3,26]. For the theory of arrays this
is unavoidable, because the already mentioned case analysis over whether two
indices are equal (see Sect. 6.1) means that Tarray-satisfiability is as hard as SAT,
and therefore has an exponential lower bound. For the theories of records with
extensionality and integer offsets the superposition-based decision procedures
were improved to be polynomial [27], showing that there is a big difference
between records and arrays complexity-wise.

The modularity problem for ∃-SP-decidability is the problem of showing that
if T1 and T2 are ∃-SP-decidable, then T = T1 ∪ T2 also is ∃-SP-decidable. Since
Ti-reduction applies separately for each theory, and flattening is harmless, the
modularity of ∃-SP-decidability reduces to that of termination. The problem is
to show that if SP is guaranteed to generate finitely many clauses from inputs
of the form Ti ∪ Qi (i = 1, 2), where Qi is a set of ground Ti-literals, then SP
is guaranteed to generate finitely many clauses from inputs of the form T ∪ Q,
where Q is a set of ground T -literals. The issue is to find sufficient conditions
for this result. Two conditions are easy: T1 and T2 should not share non-nullary
function symbols, which is implied by their being disjoint, and the CSO � should
be good for both theories. The key condition is that T1 and T2 are variable-
inactive [2,3], which prevents superposition from variables across theories.

Definition 10. A clause ϕ is variable-inactive if no �-maximal literal in ϕ is
an equality t � x where x �∈ Var(t). A set of clauses is variable-inactive if all its
clauses are.

Variable-inactivity is concerned only with equalities t � x where x �∈ Var(t),
because if x ∈ Var(t), the ordering-based restrictions on superposition suffice to
bar superposition from x, as t � x in any ordering � with the subterm property.

Definition 11. A theory T is variable-inactive, if for all T -satisfiability prob-
lems T ∪Q the limit of every fair SP-derivation from T ∪Q is variable-inactive.

The absence of shared non-nullary function symbols prevents superposition
from compound terms across theories. Thus, the only superpositions across the-
ories are superpositions from constants into constants, and because there are
finitely many constant symbols in the problem, the modularity of termination
follows (cf. Theorem 5, [2]; Theorem 4.1 and Corollary 3, [3]).

Theorem 11. If theories T1 and T2 are disjoint, variable-inactive, and ∃-SP-
decidable, then their union T1 ∪ T2 is ∃-SP-decidable.
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All the theories above satisfy the hypotheses of this theorem and therefore
their unions are ∃-SP-decidable (cf. Corollary 1, [2] and Theorem 4.6, [3]).

Superpositions from constants into constants across theories are superposi-
tions from shared constants into shared constants. Also, the proof of the modular-
ity result (see the proof of Theorem 4.1, [3]) shows that the equalities superposed
from are equalities between constants. Thus, the only equalities that are active
across variable-inactive theories in superposition are equalities between shared
constants. This suggests an analogy with equality sharing, where the decision
procedures can build an arrangement for stably infinite theories by propagating
only clauses made of equalities between shared constants (e.g., Sect. 10.3, [39]).
Theorem-proving strategies do not require stable infiniteness upfront. However,
variable-inactivity implies stable-infiniteness, a finding that reinforces the anal-
ogy between superposition and equality sharing, and the intuition that they
capture the same essential features of reasoning in a union of theories. The dis-
covery that variable-inactivity implies stable-infiniteness descends from a lemma
showing that superposition has the power of revealing the lack of infinite models
by generating at-most cardinality constraints (cf. Lemma 5.2, [29]).

Lemma 1. A finite satisfiable set of clauses Q admits no infinite models if
and only if the limit of every fair SP-derivation from Q contains an at-most
cardinality constraint.

Since an at-most cardinality constraint is not variable-inactive, the result
that variable-inactivity implies stable-infiniteness follows (cf. Theorem 4.5, [3]).

Theorem 12. If a theory T is variable-inactive, then it is stably infinite.

Indeed, if T is not stably-infinite, there is a quantifier-free T -satisfiable T -
formula ϕ with no infinite T -model. By the above lemma, the limit of every fair
SP-derivation from the clausal form of T ∪ {ϕ} contains an at-most cardinality
constraint, and T is not variable-inactive.

We consider next T -satisfiability problems T ∪ Q where T contains the
axioms of the theory in clausal form and Q is a set of ground T -clauses. If SP
is guaranteed to generate finitely many clauses from these problems, an SP-
strategy is a decision procedure for the T -satisfiability of quantifier-free formu-
las and theory T is SP -decidable. Results of this kind are obtained by replacing
variable inactivity with a stronger property named subterm inactivity: the the-
ories of equality, arrays with or without extensionality, possibly augmented with
an injectivity predicate, a swap predicate, or both, finite sets with or without
extensionality, recursive data structures, and their unions, are shown to be SP-
decidable in this manner [23,25]. Other variable-inactive theories, such as possibly
empty lists, records, and integer offsets modulo, are not subterm-inactive. By a
simpler approach [27] it is possible to show that variable-inactivity alone suffices
for SP-decidability (cf. Theorem 3.5, [27]).

Theorem 13. If a theory T is variable-inactive and ∃-SP-decidable, then it is
SP-decidable.
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Furthermore, for arrays with or without extensionality, records with or with-
out extensionality, integer offsets, and their unions, superposition can be a pre-
processor for an SMT-solver: the problem is decomposed in such a way that
superposition is applied only to the axiomatization T and ground unit T -clauses,
realizing an inference-based reduction of T to the theory of equality [24,28].

Although the results surveyed in this section were obtained for languages
where equality is the only predicate, it is simple to generalize them to languages
with more predicate symbols (see [36], Sect. 3). The discovery that variable-
inactivity implies stable infiniteness is rich in implications. Variable-inactivity
and meta-saturation [88,91] were used to test for stable infiniteness [81,90]. A
superposition-based decision procedure for a variable-inactive theory can be a
component of an equality-sharing combination: this is a theoretical underpinning
for a method named DPLL(Γ +T ) [35,36] which integrates a superposition-
based inference system Γ into the DPLL(T ) framework for SMT [14,85,103].
DPLL(Γ+T ) handles axiomatized theories by superposition and built-in theories
by DPLL(T ). Superposition offers complete reasoning about quantifiers, decision
procedures for some axiomatized theories, and it can detect the lack of infinite
models. DPLL(Γ+T ) also enriches DPLL(T ) with speculative inferences to yield
decision procedures for more theories and unions of theories.

8 CDSAT: An Overview

The philosophy of equality sharing is to combine decision procedures as black-
boxes. Clearly, black-box combination has advantages: existing procedures can
be combined without modifying them, and their communication can be min-
imized. In equality sharing, communication is limited to the propagation of
disjunctions of equalities between shared constants (e.g., Sect. 10.3, [39]). The
DPLL(T ) framework for SMT [14,85,103] extends this philosophy to the inter-
action between the conflict-driven clause learning (CDCL) procedure for SAT-
solving [49,93,94] and the equality-sharing-based T -decision procedure, where
T is a union of theories. An abstraction function maps T -atoms to propositional
atoms and its inverse performs the opposite translation. Every disjunction prop-
agated by the T -decision procedure is handled by the CDCL procedure, which
searches for a propositional model of the set of clauses. The current candidate
model is represented as an assignment, called trail:

Γ = u1 ← b1, . . . , um ← bm,

where, for all i, 1 ≤ i ≤ m, ui is a propositional atom and bi is either true or
false. The T -decision procedure contributes by signalling that a subset of these
Boolean assignments implies in T either a contradiction (T -conflict), or another
Boolean assignment to an existing T -atom, which is thus added to the trail
(T -propagation).

Some decision procedures for fragments of arithmetic are conflict-driven the-
ory procedures, in the sense that they generalize features of CDCL to theory rea-
soning [47,69,78–80,83,96,123,126]. They assign values to first-order variables,
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like CDCL assign truth values to atoms, and they explain theory conflicts by
theory inferences, like CDCL explains Boolean conflicts by resolution. A signifi-
cant difference is that propositional resolution generates resolvents made of input
atoms, whereas theory inferences may generate new (i.e., non-input) T -atoms.
If such a conflict-driven procedure for a single theory is integrated as a black-
box, the search for a T -model cannot take direct advantage of its guesses and
inferences, and the conflict-driven reasoning remains propositional. The MCSAT
method, where MCSAT stands for Model-Constructing SATisfiability, shows how
to integrate a conflict-driven procedure for one theory [53,68,75,127], or for a
specific union of theories [18,77], with CDCL, allowing them to cooperate on
a single trail that contains assignments to both Boolean and first-order vari-
ables. CDSAT, which stands for Conflict-Driven SATisfiability [31–33], gener-
alizes MCSAT to generic unions of disjoint theories, and generalizes equality
sharing to accommodate both black-box and conflict-driven theory procedures.

The idea of CDSAT is to open the boxes and let theory modules, one for each
theory in the union T , cooperate in the search for a T -model. Propositional
logic is considered as one of the theories, and the CDCL procedure is its theory
module. All theory modules access the same trail

Γ = u1 ← c1, . . . , um ← cm,

where, for all i, 1 ≤ i ≤ m, ui is a T -term and ci is a concrete value of the
appropriate sort for ui. If ui is a Boolean term, that is, a formula, ci is either
true or false. If ui is a term of sort int, for example, ci is an integer value, as in
x ← 3 or (y + 1) ← −3. The notion of theory extension is used to make sure
that values can be named with fresh constant symbols, which, however, remain
separate from the original language and do not occur in terms.

Once first-order (i.e., non-Boolean) assignments are allowed on the trail, there
is no reason for barring them from appearing in the input problem, which is also
viewed as an assignment. Therefore, CDSAT solves a generalization of SMT
dubbed SMA for satisfiability modulo assignments. An SMT problem is written
as {u1 ← true, . . . , um ← true}, where, for all i, 1≤ i≤m, ui is a quantifier-free
T -formula. An SMA problem is written as {u1 ← true, . . . , um ← true, um+1 ←
c1, . . . , um+j ← cj}, where {u1 ← true, . . . , um ← true} is an SMT problem, and,
for all i, m + 1≤ i≤m + j, ui is a first-order term, typically a variable occurring
in some of the input formulas. Either way, the trail is initialized with the input
problem, and CDSAT works to determine whether it is T -satisfiable.

Since the assignment on the trail mixes symbols and values from the different
theories, each theory has its view of the trail. Suppose that T is the union of
theories T1, . . . , Tn. The Tk-view (1 ≤ k ≤ n) includes the pairs t ← c, where c
comes from the extension of Tk, and those equalities and disequalities determined
by first-order assignments to terms of a Tk-sort. For example, if the trail contains
{x ← 3, y ← 3, z ← 2}, the theory view of every theory with sort int contains
x � y, x �� z, and y �� z. Indeed, in the presence of first-order assignments, the
truth value of an equality can be determined in two ways: either by assigning
it true or false, or by assigning the same or different values to its sides. CDSAT
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employs a notion of relevance of a term to a theory to determine which theory
uses one way or the other. A Tk-model Mk satisfies an assignment if for all
pairs t←c in the Tk-view of the assignment Mk interprets t and c as the same
element. An assignment is T -satisfiable if there is a T -model that endorses the
T -view, or global view, which contains everything. Otherwise, the assignment is
T -unsatisfiable. A T -unsatisfiable subset of the trail represents a conflict.

Since the conflict-driven search is provided centrally for all theories by
CDSAT, theory modules are theory inference systems. Thus, the reasoning in
the union of the theories is conflict-driven, and combination of theories becomes
conflict-driven combination of theory inference systems. A theory decision proce-
dure that is not conflict-driven is still incorporated as a black-box, by viewing it
as an inference system whose only inference rule invokes the procedure to detect
the Tk-unsatisfiability of the Tk-view of the trail.

CDSAT is defined as a transition system with trail rules and conflict-state
rules. The trail rules transform the trail with decisions or deductions, and detect
conflicts. A decision is a guess of a value for a term: a Tk-module is allowed
to decide a value for a term t that is relevant to Tk. CDSAT has a notion
of acceptable assignment to exclude decisions that are obviously bad, because
repetitious or causing trivial conflicts. With a deduction, a Tk-module posts
on the trail a Boolean assignment inferred from assignments on the trail. As a
deduction may bring to the trail a new term, all deduced terms must come from a
finite global basis to avoid jeopardizing termination. The inferred assignment is a
justified assignment, whose justification is the set of premises from which it was
inferred. This mechanism encompasses both Tk-propagations and explanations
of Tk-conflicts. All assignments on the trail that are not decisions are justified
assignments, including input assignments, that have empty justifications.

The conflict-state rules intervene after a conflict has been detected, so that
they work on the trail and the conflict, until either the conflict is solved, or
the input problem is recognized as T -unsatisfiable. CDSAT applies a form of
resolution to unfold the conflict, by replacing a justified assignment in the conflict
with its justification. This process continues until CDSAT identifies either a first-
order decision that needs to be undone, or a Boolean assignment that needs to
be flipped: the flipped assignment is also a justified assignment inheriting its
justification from the process of unfolding the conflict.

CDSAT is sound, terminating, and complete, under suitable hypotheses on
Tk-modules and global basis [31,33]. CDSAT requires the Tk’s to be disjoint,
but not stably infinite, provided there is a leading theory that knows all sorts in
T . For completeness, every Tk-module must be leading-theory-complete, which
ensures that when no trail rule applies to the trail, there is a Tk-model that
satisfies the Tk-view of the trail, and agrees with a model of the leading the-
ory on arrangement of shared terms and cardinalities of shared sorts. Whenever
CDSAT terminates without reporting unsatsfiability, the Tk-models can be com-
bined in a T -model satisfying the trail, hence the input assignment. CDSAT is
a nondeterministic system, as there is nondeterminism in the CDSAT transition
system and in each theory module. A CDSAT procedure is obtained by adding a
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search plan, that establishes priorities among CDSAT transition rules, theories,
and inference rules within each theory module.

9 Discussion

Reasoning in a union of theories can be approached in several ways: the
equality-sharing method and its extensions combine theory decision procedures;
theorem-proving strategies unite theory presentations and reason about them;
and CDSAT combines in a conflict-driven manner theory inference systems. With
respect to lifting stable infiniteness, extensions of equality sharing based on shiny,
gentle, or polite theories are asymmetric; the superposition-based methodology
is symmetric, as it treats all theories evenly, and it handles cardinality issues
seamlessly. CDSAT is also asymmetric, as the leading theory knows more than
the other theories, including the cardinalities of the shared sorts. Another way
to go beyond equality sharing is to admit combinations of non-disjoint theories
(e.g., [65,67,101,118,125]). Work on this direction has begun for methods based
on gentleness and politeness [43,44], as well as for superposition-based decision
procedures [111], while it is a direction of future work for CDSAT.
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Abstract. A wide range of ordinary Description Logics (DLs) have
been explored by considering collections of concept/role constructors,
and types of terminologies, yielding an array of complexity results. Rep-
resentation and reasoning with plans is a very important topic in AI, yet
there has been very little work on finding and studying DL constructors
for plan concepts.

We start to remedy this problem here by considering Plan DLs where
concept instances are sequences of action instances, and hence plan con-
cepts can be viewed as analogues of formal languages, describing sets
of strings. Inspired by the clasp system, we consider using regular-like
expressions, obtaining a rich variety of Plan DLs based on combinations
of regular-like expression constructors, including sequence (concatena-
tion), alternation (union, disjunction), looping (Kleene star), conjunc-
tion (intersection), and complement. To model the important notion of
concurrency, we also consider interleaving.

We present results from the formal language literature which have
immediate bearing on the complexity of DL-like reasoning tasks. How-
ever, we also focus on succinctness of representation, and on expressive
power, issues first studied by Franz Baader for ordinary DLs.

1 Introduction

Ordinary Description Logics (DLs) are families of knowledge representation and
reasoning formalisms based on concepts (unary predicates) and roles (binary
predicates), which allow complex concept expressions to be built using con-
cept/role constructors. These are used to build knowledge bases (KBs) consist-
ing of subsumption axioms relating concepts, called TBoxes (terminologies), and
sometimes additional axioms asserting information about individuals, including
membership in concepts, called ABoxes. Research over the past decades has
explored a wide range of DL variants by considering alternative collections of
concept and role constructors, and mapping out the decidability and complexity
of algorithms for operations such as concept consistency, subsumption checking,
and instance membership testing.1

1 See the table at http://www.cs.man.ac.uk/∼ezolin/dl/, for example.
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Brachman and Levesque [11] introduced the so-called expressiveness vs. com-
plexity trade off by showing two DLs, FL− and a more expressive extension FL,
which differ only by one inoffensive-looking role constructor, yet which have
O(n2) vs. co-NP complete subsumption problems. In turn, Nebel [31] showed
that the presence of certain kinds of TBoxes also causes the complexity of sub-
sumption to become intractable, even for a sublanguage FL0 of FL−. Finally,
pioneering work by Baader [2,3] gave the first formal definition for the notion
of “expressiveness”, and also pointed out, echoing Woods [40], that succinct-
ness/compactness is another important dimension of KR formalisms.

In modern applications, one needs to represent not just static but also
dynamic aspects of a domain. In this chapter we will concentrate on the descrip-
tion of complex plans made up of property-less atomic actions. Gil’s survey
paper [18] details the following applications of Plan DLs, esp. taxonomies: (i)
the organization of plan classes; (ii) the retrieval of plan types and instances
with description-based queries; (iii) the validation of plans based on descriptions
of valid classes of plans; and (iv) the recognition of plan executions/instances.
Weida [39] also lists many advantages for using DL formalisms for the planning
domain.

In general, we are interested in DLs that allow the representation of “control
flow” in concepts, so that one can describe that making a telephone call consists
of dialing a number, followed by some phone rings, and then either talking or
hanging up; plus the ability to reason that (i) placing a call, followed by either
talking or hanging up, is logically equivalent to (ii) placing a call followed by
talking, or placing a call followed by hanging up. A literature review, starting
with [18], shows that there have been only a few DLs with specific features for
representing plans, as opposed to describing actions in DLs, and then using a
separate kind of formalism to represent plans composed of these actions.

In this chapter we explore variations on DL-like formalisms for describing
plan concepts having as instances sequences of action instances. We will not
consider the representation of atomic actions in DLs, which have been widely
studied. Instead, following the clasp system [15], we will draw inspiration from
regular-like expressions. We provide almost no new technical results but instead
gather relevant results from the vast literature on formal languages2

As mentioned, each standard DL is characterized by its set of “concept con-
structors”, and the different kinds of axioms one is allowed to keep in TBoxes.
We continue this tradition here, and for each selection of plan concept con-
structors we consider issues such as expressiveness (adapting Baader’s defini-
tion), computational complexity of various tasks, and importantly, succinct-
ness/descriptive complexity. For the latter, we give examples of plan concepts
that can be described more succinctly.

The potentially interesting aspects (at least to this author) of this chapter
include:

2 We assume the reader is only familiar with basic properties of regular expressions
and finite automata, as taught in undergraduate CS courses.
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– A formal semantics is provided for clasp [15] (but with no action classes),
which is based on regular expressions.

– clasp also provided some features whose complexity has not been analyzed.
For example, the ability to define and use sub-plans, subplan(〈plan name〉),
may lead to exponentially shorter descriptions, and correspondingly increase
complexity. The same is true of the constructor used to describe counted loops
repeat(〈intCounter〉,〈plan concept〉), even when intCounter = 2.

– In addition to the standard regular expression (RE) constructors, we also con-
sider plan concept conjunction/intersection and complementation (so-called
regular-like expressions). This is motivated in part by the desire to extend
ordinary DLs to allow plan concepts as role restrictions. Even if there is
no explicit conjunction of plan concepts, in most DLs the implementation
requires that reasoning with ∀ f.C � ∀ f.D result in reasoning with C � D.
This is true not just for all DLs that are extensions of the basic boolean DL
ALC, but also weaker DLs such as classic [10] and E++ [4].

– Concurrent execution is a natural feature of everyday plans. The natural cor-
responding formal language construct is “interleaving/shuffle”, so we examine
the effect of adding the corresponding plan constructor.

– Throughout, we explore in detail the notion of succinctness/descriptive com-
plexity provided by different collections of concept constructors.

2 Description Logics

We assume the reader is familiar with ordinary DLs, but give a few definitions
here because we plan to give a parallel development for Plan DLs.

As an example, the following DL concept can be interpreted as describing
books authored by Canadians: Book � ∀ authoredBy.Canadian, as it consists
of the intersection of Books and objects related by authoredBy only to instances
of Canadian. We have argued [9] that although such concepts can be translated
to FOL, the distinguishing feature of most DLs is that concepts can be described
by variable free terms, as in most early implemented DLs. So, the above example
can also be written as

and(Book,all(authoredBy,Canadian))

In this chapter, the purpose of this notation will be to make sure that a certain
formalism is indeed “DL-like”.3

Terminologies provide facilities to state a variety of axioms about concepts:

1. A necessary condition for members of an atomic concept A, of the form
A � C where C is a general concept and A is an atomic name, asserts
that C subsumes A: every instance of A is an instance of C. A specialized
form of such axioms only allows atomic concept names for C, in which case
the TBox is called a taxonomy.

3 Some mathematical formalisms such as quantifiers over variables in temporal DLs
(e.g., [35]) do not appear to have an obvious representation in such a notation.
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2. A definition of a concept, A
.= C, expresses both the necessary and suffi-

cient conditions for membership in A in terms of concept C, with the usual
constraint that A can be defined at most once in a terminology.

3. Terminologies can also be distinguished based on the “directly depends on”
relationship they give rise to: in A � C and A

.= C, the identifiers in C
directly depend on A. Concepts that do not depend on any others are called
primitive/base.

– A TBox is said to be cyclic if the transitive closure of “directly depends
on” contains (B,B) for some identifier B. Otherwise the TBox is said to
be acyclic.

– A TBox is said to be unfolded if all concepts appearing on the right hand
side of definitions are primitive, and there are no necessary conditions.

2.1 Formal Semantics and Reasoning

The semantics of DL concepts is provided by an interpretation I = (ΔI ,·I),
which consists of a non-empty, potentially infinite domain ΔI , and a function
(·)I which behave as follows for the standard DL:

Name of constructor Syntax Term notation Semantics

Concept name A A A AI ⊆ ΔI

Role name r r r rI ⊆ ΔI × Dom

Individual name b b b bI (∈ ΔI)
Top-concept � Top ΔI

Bottom-concept ⊥ Bottom ∅
Conjunction C1 � C2 and(C1,C2) CI

1 ∩ CI
2

Disjunction C1 	 C2 or(C1,C2) CI
1 ∪ CI

2

Complement ¬ C not(C) ΔI− CI

Existential ∃ r some(r) {b ∈ ΔI | ∃y. (b, y) ∈ rI}
value restriction ∀ r.C all(r,C) {b ∈ ΔI | ∀y. (b, y) ∈ rI ⇒ y ∈ CI}

Based on this semantics, we can formally define the following predicates/formulas
involving concepts C,D and individual b:

Axiom type Syntax Semantic truth condition

Subsumption of C by D C � D CI ⊆ DI

Equivalence of C and D C ≡ D CI = DI

Definition of atomic A as D A
.
= D AI = DI

Inconsistency of C C ≡ ⊥ CI = ∅
Membership of b in C b : C bI ∈ CI
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In the presence of a TBox T, one can of course infer more such relationships by
considering only those interpretations I which satisfy the axioms in T. In this
case we write T |= C � D, etc. for each of the non-definitional axioms above.

The semantics of cyclic terminologies, such as Person
.= ∀ parents.

PERSON are somewhat complex. We refer the reader to [5] for a discussion, and
simply summarize the observation that there are three possible approaches nor-
mally considered: (i) descriptive semantics yields the interpretations of the FOL
translation (e.g., those of ∀x.PERSON(x) ⇔ (∀y.parents(x, y) ⇒ Person(y)));
(ii) least fixed point (lfp) and (iii) greatest fixed point (gfp) semantics are based
on the definition of a monotone function over the lattice of interpretations. In
this example, the lfp would yield PersonI= ∅, parentsI= ∅, and the gfp would
yield PersonI= ΔI , parentsI= ΔI × ΔI .

2.2 Complexity Theory Fundamentals

As usual [36], we start from the following basic complexity classes of time-
and space-bounded Turing Machine computations, parametrized by function f:
DTIME(f(n)), NTIME(f(n)), DSPACE(f(n)), NSPACE(f(n)), where prefixes D
and N stand for “deterministic” and“non-deterministic” respectively. In addi-
tion, we need NCj – the class of problems solvable in polylogarithmic time on
a parallel computer with a O(nj) number of processors.

The following are some specific classes we will encounter, with containment
relationships:

NC1 ⊆
LOGSPACE

def= DSPACE(log n) ⊆ NLOGSPACE
def= NSPACE(log n) ⊆

LogCFL(described later) ⊆ NC2 ⊆
P

def= DTIME(nO(1)) ⊆ NP
def= NTIME(nO(1)) ⊆

PSPACE
def= DSPACE(nO(1)) = NSPACE

def= NSPACE(nO(1)) ⊆
EXPTIME

def= DTIME(2nO(1)
) ⊆ NEXPTIME

def= NTIME(2nO(1)
) ⊆

EXPSPACE
def= DSPACE(n2O(1)

) = NEXPSPACE
def= NSPACE(n2O(1)

)

DLINSPACE
def= DSPACE(O(1)) ⊆ NLINSPACE

def= DSPACE(O(1))

All inclusions ⊆ above are suspected to be strict.
The above definitions require a distinction between the familiar polynomial

reductions (p-reductions) and log-space reductions; the latter are necessary to
distinguish complexity classes contained in P, and require the reduction to be
accomplished using only logarithmic space for computation. For even sharper
distinctions, one uses log-lin reductions, which can be computed in LOGSPACE
but have the additional property that the size of the output is linearly bounded
by the size of the input.
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2.3 Expressive Power, Computational Complexity, and Succinctness

Baader [3] examined the question of when adding new constructors or extending
the type of TBox axioms allowed in standard DLs leads to the ability to “say
more things”—increase the expressiveness of a language.

Clearly, the addition of a new constructor does not necessarily lead to an
increase in expressive power. For example, in the presence of concept conjunction
and complementation, adding intersection does not increase expressive power
because it can easily be simulated using de Morgan’s laws.

Baader approaches the problem of expressiveness by considering the inter-
pretations that satisfy a KB (called models) expressed in a language. Intuitively,
KR language L2 is intended to be considered to be as expressive as language L1

if for every KB Γ1 in L1 there is a KB Γ2 in L2 which has the same models.
However, the following example [3] shows that there is a need for more sub-

tlety: one can eliminate necessary conditions in a TBox T by replacing axioms
of the form A � C by definitions of the form A

.= C � A′, where A′ is a new,
primitive name. It is easy to see that the subsumptions entailed T and T′ are
identical when restricted to concepts with unprimed identifiers; but the models
of T′ are different since they also involve the new, primed identifiers. To account
for this. The formal definition of “model equality” ignores new identifiers:

Definition 1 (Baader). Let L1 and L2 be description logics. Let Γ1 and Γ2

be TBoxes expressed in L1 and L2 respectively. Also, let I1∈ Int(Γ1) and I2∈
Int(Γ2) be interpretations satisfying Γ1 and Γ2, and let f be a function mapping
names in Γ1 to names in Γ2. Then

– I1 is embedded in I2 by f (I1 ⊆f I2) if for all names Q occurring in Γ1,
QI1 = QI2 .

– We write Int(Γ1) =f Int(Γ2) if for all I1 ∈ Int(Γ1) there is I2 ∈ Int(Γ2)
such that I1 ⊆f I2, and for all I2 ∈ Int(Γ2) there is I1 ∈ Int(Γ1) such that
I1 ⊆f I2.

– L1 can be expressed by L2 through embeddings (L1 ≤e L2) if for all Γ1 ∈
L1 there exists Γ2 ∈ L2 and embedding f such that Int(Γ1) =f Int(Γ2) and
Γ1 is expressed by Γ2. Two languages have the same expressive power if they
can be expressed by each other through embeddings.

This definition allows one to prove that indeed FL0 with only definitions in
TBoxes has the same expressive power as FL0 with both necessary conditions
and definitions in TBoxes, since the sets of models are identical when ignoring
the newly introduced identifiers. Moreover the sizes of the corresponding termi-
nologies are within a constant factor of each other. So we have a situation where
expressive power, computational complexity and descriptive complexity remain
unchanged.

On the other hand, FL0 theories with acyclic definitional terminologies,
whose reasoning is co-NP complete, can be turned into FL0 theories with
unfolded terminologies, whose subsumption complexity is in P, by repeatedly
replacing each defined concept name on the right hand side by its definition.
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In this case, again, the expressive power remains the same, but the complex-
ity is different, because definitional TBoxes can provide exponentially greater
succinctness (lower descriptive complexity).

Finally, Baader shows that there is a way to efficiently reduce reasoning in
FL− to FL0, by replacing each concept expression of the form ∃ r by a new
atomic concept Ar. So the two languages have essentially the same complexity,
but not the same expressive power, because role names are not properly restricted
in the FL0 models. Moreover, over the set of concepts definable in both FL0

and FL−(i.e., without ∃ r), there is no difference in succinctness.
The above examples illustrate how expressive power, computational complex-

ity and descriptive complexity can vary, though when L1 is significantly more
succinct than L2, the former will have higher complexity since the size of the
input is smaller.

3 Plan Libraries and DL Reasoning

This chapter is concerned with representing and reasoning about plans and pro-
cesses using DL-like languages, with plan-specific concept constructors. Among
others, researchers are interested in exploiting precomputed libraries of plans,
where a plan is composed of subplans and primitive actions. As mentioned earlier,
Gil [18] surveys the following applications of reasoning about plans: organiza-
tion of plan classes; retrieval of plan types and instances with description-based
queries; validation of plans based on descriptions of valid classes of plans; and
recognition of plan executions/instances. The reader is referred to that survey
paper for considerably more details.

Among the systems reasoning with plans reviewed in [18], only one,
clasp[15], provides explicit plan-oriented concept constructors.

3.1 The clasp System

The clasp system was developed to help reason about telephonics software
projects, and as such it had to handle information such as the fact that a phone
call consists of picking up the phone, getting a dial tone, dialing, getting a
ring tone, etc. For this reason, clasp provides a language for describing plan
concepts (whose instances are called scenarios), and algorithms for computing
subsumption between these, as well as recognizing scenarios as concept instances.
The representation is built on top of atomic Strips-like actions/operators such
as Ring, with add- and delete-lists, etc. where specific states, such as phone1-
is-ringing, are instances of atomic concepts, such as PhoneRinging. All of this
information is represented in the classic DL.

We are not interested here in the process of planning itself, and hence we will
treat atomic actions as primitive objects, without the usual aspects of planning
operators such as parameters, preconditions, etc.

The key novelty of clasp is the ability to describe plan concepts, whose
EBNF syntax is given as follows, based on the analysis in [9]:
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〈plan-concept-expression〉 ::=
act( 〈action-concept-name〉 ) |
seq( 〈plan-concept-expression〉+ ) |
loop( 〈plan-concept-expression〉 ) |
or( 〈plan-concept-expression〉+ ) |
repeat( 〈integer〉 , 〈plan-concept-expression〉 ) |
subplan( 〈plan-concept-name〉 )

Using these, one might then describe the concept MakingAPhoneCall as

seq(act(Dial), loop(act(Ring)),or(act(Talk),act(HangUp)))

An instance scenario of this plan might be
[1234dials1212at6am, 1212ringsAt6am, 1212ringsAt6:01am, 1234hangsUpAt6:02am].

The implementation of plan reasoning is based on the observation that {seq,
or, loop} correspond to regular expression constructors { ◦ , ∪, ∗}, when the
set Actions of action concept names is viewed as the alphabet Σ used in reg-
ular expressions.4 For example, in order to check the subsumption P1 � P2,
Devanbu and Litman construct a product automaton from the automata for P1
and the complement of the deterministic automaton for P2 (with a potential sin-
gle exponential explosion when eliminating non-determinism), and then check it
for emptiness.

4 Formalizing Plan Concepts as Sets of Strings

As noted above, a clasp scenario is a sequence of instances of concepts in the
finite set Actions. Since in this paper we will not consider information about
individual actions other than their type, nor action taxonomies, we will not
distinguish different instances of the same action concept, and assume that each
action class a has a single instance, "a". By abuse of notation, and following
formal language tradition, we will often drop the quotes on strings, and use a to
represent both the action class and its instance.

The simplest language for describing classes of scenarios therefore starts with
a finite set, Actions, of atomic concept names for actions, a disjoint set of iden-
tifiers N for plan concepts, and plan constructors act, for single action plans,
and seq, for sequence concatenation. The semantics of plan concepts is pro-
vided by an interpretation I = (ActionsI , ·I) where ActionsI is, in our sim-
plified case, just a set isomorphic to Actions, and ·I maps plan names to sub-
sets of the set of strings/sequences over ActionsI , written here for clarity as
Sequences(ActionsI). I is then extended in the natural way to some constants
and the constructors in the manner shown in Fig. 1.

4 clasp actually does more, because it takes into account action concept taxonomies
and the structure of actions.
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name of constructor Syntax Term notation Semantics

atomic action a
a ∈ Actions

a act(a) { "a" }

plan concept name A
A ∈ N

A subplan(A) AI ⊆ Sequences(ActionsI)

no-action plan NULL NULL { λ }
empty plan ⊥P BottomPlan ∅
top-plan concept P TopPlan Sequences(ActionsI)
any one action Actions Actions ActionsI

sequence P1 ◦ P2 seq(P1, P2) { uw | u ∈ P I
1 , w ∈ P I

2 }
alternative P1 P2 or(P1,P2) P I

1 ∪ P I
2

repetition (base) P 0 repeat(0,P) ≡ NULL
repetition (ind’n) P k+1 repeat(k+1,P) ≡ P ◦ P k

loop P∗ loop(P) ≡ i≥0 P i

Fig. 1. Syntax and semantics of clasp Plan DL

Note that unlike traditional DLs, in the absence of a terminology, every plan
concept has a unique interpretation, and in fact in such situations we will drop
the act constructor, assuming that names refer to action concepts.

We will eventually also consider terminologies of plan concepts with defi-
nitions of the form 〈PlanName in N〉 .= 〈PlanExpression〉, with the standard
semantics. In clasp, TBoxes must be acyclic, and there are no ABoxes. We will
also not study ABoxes in this chapter.

We are now ready to consider a variety of Plan DLs. Not surprisingly, they
are inspired by formal language theory, which has dealt with the description of
sets of strings.5 In each case we will consider a subset of the following issues:

Expressive Power: For this purpose we adopt Baader’s notion of expressive
power, with the only difference being that interpretations now assign sets of
strings to plan concepts. This works just as desired, because in showing that
certain grammatical formalisms can simulate others, one often introduces new
non-terminals, and Definition 1 allows one to ignore their effect. As a result,
we obtain the standard notion of expressiveness for various techniques used in
formal language theory, such as grammars and automata.

Computational Complexity: We will be interested in the complexity
of the standard questions usually associated with DLs: concept inconsis-
tency/emptiness, subsumption, and membership. Concerning subsumption, for-
mal language theorists usually study two simpler variants of this: (i) non-equality
with the set of all strings (“notTopPlan”) and (ii) non-equality of languages
(“nonEqual”). The general reason to consider the “non” variants of the above
problems is that these are easily checked using non-determinism, and thus avoid

5 For succinctness, we will frequently refer to Actions and Actions∗ by their more
usual formal language symbols Σ and Σ∗.



Initial Steps Towards a Family 99

the need for co-C complexity results for complexity classes C not closed under
complement.6 We report the actual results in the literature.

In some cases, we will also give ordinary algorithms that can be implemented
on (serial) computers, which allow random access to memory locations without
the cost of traversing Turing Machine tape. We’ll call such algorithms RAM (for
Random Access Machine).

Succinctness/Descriptive Complexity: Especially in cases of Plan DLs
with equal expressive power, it will be interesting to see when one allows for
more succinct descriptions than another. For example, Non-deterministic Finite
Automata (NFAs) are well-known to be exponentially more succinct than Deter-
ministic Finite Automata (DFAs), because one can exhibit a family of languages
Ln accepted by NFAs having O(n) states, but for which every DFA requires
O(2n) states. Here, Ln is the set of strings whose n’th last digit is a 1.

5 Plan DLs Based on Regular-Like Expressions

As we saw above, clasp can be viewed as a Plan DL based on regular expressions,
so let us explore the properties of Plan DLs based on so called “regular-like
expressions”. We will use the notation RegExp({S}) to refer to the set of all
regular-like expressions (over an implicit alphabet Σ) built using constructors in
{S}. Thus, RegExp({� , ◦ ,∗ }) is just the set of ordinary standard REs, while
RegExp({� , ◦ }) defines plan concepts built using only seq and or, but no
looping. Unless otherwise stated, all formal results in this section can be found
in the survey paper by Holzer and Kutrib [20], where references to the original
papers are given.

5.1 Ordinary Regular Expressions

A variant of an earlier example

seq(Dial, loop(Ring),or(HangUp, seq(Talk,HangUp)))

has corresponding infix math notation

Dial ◦ Ring∗ ◦ (HangUp � (Talk ◦ HangUp))

The way one usually reasons about regular expressions (REs) is by converting
them to NFA. The standard approach constructs an NFA with λ-transitions,
which is of size linear in the size of the RE. Interestingly, this construction can
be done in log-space, with output size linear in the input.

Emptiness: The usual way to test for this is to search if the corresponding
NFA has a path from its start state to the end state. This is the prototypical
NLOGSPACE-complete problem. A clasp regular expression can have empty

6 Recall that many space complexity classes are known to be closed under complement.
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interpretation only if it contains BottomPlan, which is not likely to occur in
practice. However, once we consider the conjunction or complement of REs,
these may be empty even without explicit Bottom, and hence can become
inconsistent/empty in a natural way.

In addition, in clasp, the plan concept b ◦ c could be inconsistent in the case
when the post-condition of activity b was incompatible with the pre-condition of
activity c. In our current approach, such information cannot be encoded directly
since we treat actions as atomic letters. Instead we would want to know the
emptiness of the language obtained by intersecting our plan concept with com-
plements of REs of the form Actions∗ ◦ b ◦ c ◦ Actions∗ for all pairs of such
incompatible b and c. The complexity of emptiness in this case needs to take
into account the presence of top-level complement and intersection – see below.

Subsumption: The problem of deciding if the language described by RE R1 is
not equal to that of RE R2 is log space complete in NLINSPACE. In fact, the
simpler problem of deciding if the complement of an RE R is non-empty (i.e., R
does not represent Σ∗) is already NLINSPACE complete.

Membership: Membership of a string in the language of an ordinary RE (writ-
ten as Member({� , ◦ ,∗ })) is log-complete in NLOGSPACE [23].

5.2 Adding Plan Conjunction/Intersection

The syntax and semantics of plan conjunction, and, is naturally defined as
(R1 � R2)I = {w | w ∈ RI

1 , w ∈ RI
2 }.

The utility of and arises especially in situations where one uses plan concepts
as restrictions in ordinary DLs. For example, if we want to consider people who
talked at least once before hanging up, we could conjoin the restriction

∃ callsMade.(Actions∗ ◦ Talk ◦ Actions∗)

to the description of Person, which contains, among others,

∀ callsMade.(Dial ◦ Ring∗ ◦ (HangUp � (Talk ◦ HangUp)) )

Expressiveness: It is known that regular languages are closed under intersec-
tion (one can construct the deterministic product automaton to recognize it) so
this does not increase the expressive power of the plan language.
Emptiness: If we do not limit the number of intersections in extended regu-
lar expression as its size grows, then notEmpty({� , ◦ ,∗ , � }) is complete in
PSPACE [21], even when we do not nest intersections ([25], Proof of Lemma
3.2.3).

On a RAM, we can determine the emptiness of only R1 � R2, where R1 and
R2 are ordinary regular expressions, by constructing in linear time/log space the
NFA F1 and F2 recognizing R1 and R2, and then in quadratic time the cross-
product NFA recognizing R1 � R2. Now test the emptiness of the final resulting
NFA, which is a path problem solvable on a RAM in quadratic time.
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Subsumption: It is known that notTopP lan({� , ◦ ,∗ , � }) and nonEqual
({� , ◦ ,∗ , � }) are log-lin complete for EXPSPACE [16].

Membership: The recognition problem for context-free languages can be
reduced to the membership problem for RegExp({� , ◦ ,∗ , � }) [33] using a log-
lin reduction, and hence Member({� , ◦ ,∗ , � }) is log-lin complete in LOGCFL,
where the class LOGCFL consists of all those decision problems that are log-
space reducible to a context-free language.

Succinctness: When constructing a regular expression defining the intersection
of a fixed (resp. an arbitrary number of regular expressions), an exponential
(resp. a double exponential) size increase, cannot be avoided in the worst-case
[17]. The naive approach of constructing it does in fact achieve this bound.

5.3 Adding plan complement

Define ¬R over Actions∗ as having interpretation {w ∈ Actions∗, w �∈ RI}. So
not(seq(loop(Actions), Talk, loop(Actions)) denotes all plan instances where
there is no talking involved.

Expressiveness: It is known that the complement of a regular language is
regular (switch final and non-final states of the DFA for it), so this does not
increase expressive power.

Emptiness: The language emptiness problem for “star-free regular expressions”
RegExp({� , ◦ ,¬ }), which don’t even involve looping, has been shown to be
non-elementary [37], which means that there is no function constructed from
the fixed finite composition of: arithmetic operations, exponentials, logarithms,
constants, and solutions of algebraic equations that bounds its complexity.

Subsumption: The complexity of checking subsumption in the presence of com-
plementation is extremely high, even in the absence of looping. Define the tower
function tow recursively as tow(0, j) = j, tow(k +1, j) = 2tow(k,j). It was proved
in [37] that although nonEqual({� , ◦ ,∗ ,¬ }) is in NSPACE(tow(n, 0)), every
problem in NSPACE(tow(�logb(n)�, 0)) can be polynomially reduced to one in
notTopP lan({� , ◦ ,¬ }), and in addition notTopP lan({� , ◦ ,¬ }) is itself not
in NSPACE(tow(�logb(n)�, 0)).

Membership: Member({� , ◦ ,∗ ,¬ }) is log-complete in P, and RAM algo-
rithms running in time complexity O(n3) are known.

Succinctness: When constructing a regular expression defining the comple-
ment of a given regular expression, a double exponential size increase cannot be
avoided, even if the alphabet is restricted to 4 letters [17].

5.4 Adding both Intersection and Complement

The non-emptiness and equivalence problems for RegExp({� , ◦ ,∗ , � ,¬ }) are
non-elementary, and such extended regular expressions can be non-elementarily
more succinct than classical ones [38].
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5.5 Counted Iteration

As mentioned, clasp proposed a constructor repeat, which can be used as in
the following plan concept

repeat(10, DialOneDigit))

This construct bears an interesting relationship to a widely studied formal lan-
guage construct called “squaring”, where the extended RE R2 is simply a short
form for R ◦ R or repeat(2, R). This allows us to immediately provide complex-
ity lower bounds for some reasoning problems involving repeat.

Expressiveness: Clearly repeat does not extend the expressiveness of REs
since one can use seq(R, ..., R) to replace repeat(n,R). If looping is omitted,
the resulting language can only represent finite sets so it is less expressive.

Subsumption: It is known that notTopP lan({� , ◦ ,∗ ,2 }) and nonEqual
({� , ◦ ,∗ ,2 }) is log-lin complete EXPSPACE.

Succinctness: Consider the sequence of expressions E1 = a2, ..., En+1 = E2
n, ...

used to describe strings of a’s of length 2n, n=1,2,... Any NFA requires at least
2n states to recognize En, and hence no ordinary RE can describe En in less
than exponential size since the conversion from REs to NFAs is linear in size.

5.6 Omitting Looping

If we eliminate looping/star from extended regular expressions we get a variety
of ways to represent finite plan concepts, as well as some infinite ones when using
complement.

Expressiveness: Without complement, these are less expressive than regular
expressions, since they represent only finite sets. For complement, it is known
that RegExp({� , ◦ ,¬ }) cannot represent (00)∗.

Emptiness: The emptiness problem for RegExp({� , ◦ }) is in P using polyno-
mial reduction, but for RegExp({� , ◦ , � }) it is NP-complete [21].

Subsumption: The following results shed some light on the problem of deter-
mining subsumption: nonEqual({� , ◦ }) is log-complete in NP according to
[30], while nonEqual({� , ◦ , � }) is p-complete in NP according to [21]. And
nonEqual({� , ◦ ,2 }) is log-lin complete in NEXPTIME according to [30].

As noted above, even notTopP lan({� , ◦ ,¬ })/∈ NSPACE(tow(�logb n�, 0)).

Membership: It is known that Member({� , ◦ ,¬ }) is complete in P and
also Member({� , ◦ ,¬ ,2 }) is log complete in P ([20] citing [32]). In fact
Member({� , ◦ , � ,2 }) is log-lin-complete in LOGCFL [33], where LOGCFL
is the complexity class that contains all decision problems that can be reduced
in logarithmic space to a context-free language.
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5.7 Adding Concurrency

The notion of concurrency in the style of programming has been studied in the
formal language literature under the notion of interleaving/shuffle. Formally,

Definition 2. Given alphabet Σ, and symbols a, b ∈ Σ, the shuffle of two
strings, x# y, is defined recursively as follows:

a#λ = λ # a = a
(a ◦ s)# (b ◦ t) = a ◦ (s# b ◦ t) � b ◦ (a ◦ s#) for s, t ∈ Σ∗

Shuffle is extended to languages, in the natural way: L1 # L2= {u #w | u ∈
L1, w ∈ L2}. Finally, the shuffle closure L# of a language L is defined in a
manner similar to Kleene closure: L# =

⋃
L# (i), where L# (0) = {λ}, and

L# (i+1) = L#L# (i).

The shuffle constructor can be very useful in recognizing the interleaving of
the actions of different plans (e.g., making a phone call while walking).

The following results are from [29].

Expressiveness: Regular languages are closed under shuffle So # does not
increase expressive power. The same is not true of shuffle closure. For example,
if we take E1 = (abc)# and E2 = a∗b∗c∗, then the intersection of their languages
is {anbncn | n ≥ 0}, which is non-regular. Since regular languages are closed
under intersection, this means that E1 cannot represent a regular language, and
shuffle closure does increase expressive power.

Emptiness: In [8], a “concurrent finite state automaton” CFSA is defined, and
it is shown that the emptiness problem for CFSA is decidable in polynomial
time. This is relevant because in the same paper it is shown that the subclass of
“acyclic CFSA” recognize RegExp({� , ◦ ,∗ , # , ·# }), and hence the polynomial
bound applies to this class.

Subsumption: Mayer and Stockmeyer [29] have studied the com-
plexity of various extensions of regular expressions with shuffle, and
proved that notTopP lan({ ◦ , � ,∗ , # }) is complete in EXPSPACE and
nonEqual({ ◦ , � ,∗ , # }) is complete in EXPSPACE.

Even without looping, nonEqual({ ◦ , � , # }) is complete in Σp
2 . In fact this

is one of the few natural problems known to be complete for Σp
2 .

Membership: Maier and Stockmeyer also show that Member({� , ◦ ,
∗, � , # }) is NP-complete. Interestingly, the membership problem remains NP-
hard even if (1) only {� ,# } are used in expressions, (2) only {∗,# } are used,
or (3) {� , ◦ ,� ,# } are used, and # appears only once. This means that the
membership problems in all these cases is NP-complete.

The data complexity of membership with shuffle and shuffle closure has been
shown to be in one-way-NSPACE(log n), and hence in P [22].

Succinctness Gruber and Holzer [19] show that any ordinary regular expression
defining the language (a1 ◦ b1)∗ #(a2 ◦ b2)∗ # . . . #(an ◦ bn)∗ must be of size
at least double exponential in n.
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Table 1. Summary of some reasoning complexity results from literature

Problem Constructors Reduction Class [Ref.]

Regular Plan DLs

notEmpty { � , ◦ ,∗} log-lin complete NLOGSPACE [23]

notTopPlan { � , ◦ ,∗} log-lin complete NLINSPACE [30,37]

nonEqual { � , ◦ ,∗} log-lin complete NLINSPACE [38]

member { � , ◦ ,∗} log complete NLOGSPACE [23] (citing [24])

Regular Plan DLs + Conjunction

notEmpty { � , ◦ ,∗, � } complete PSPACE [33] (citing [21])

notEmpty { � , ◦ ,∗, only top � } complete PSPACE [33] (citing [25])

nonEqual { � , ◦ ,∗, � } complete EXPSPACE [16]

member { � , ◦ ,∗, � } log-lin complete LOGCFL [33]

Regular Plan DLs + Complement

notEmpty { � , ◦ , ∗, ¬ } Not bded by elementary fn [37]

nonEqual { � , ◦ , ∗, ¬ } ∈ NSPACE(tow(n, 0)) [37]

nonEqual { � , ◦ , ¬ } /∈ NSPACE(tow(logb(n), 0)) [37]

member { � , ◦ , ∗, ¬ } log complete P [20] (citing [32])

Regular Plan DLs + Conjunction, Complement

inconsistent { � , ◦ ,¬ , � ,∗} non-elementary

equivalence { � , ◦ ,¬ , � ,∗} non-elementary

Loop-less Plan DLs

notEmpty { � , ◦ , � ,¬ } p-complete NP [37]

nonEqual { � , ◦ } log complete NP [38]

nonEqual { � , ◦ ,¬ } /∈ NSPACE(tow(	logbn
), 0)) [37]

nonEqual { � , ◦ ,k-nested ¬ } hard for NSPACE(tow(k − 3, c
√

n)) [37]

member { � , ◦ , ¬ } complete P [20] (citing [32])

Effect of Adding Squaring

nonEqual { � , ◦ ,2} log-lin complete NEXPTIME [30]

nonEqual { � , ◦ , ∗, 2} log-lin complete EXPSPACE [30]

member { � , ◦ , � ,2} log-lin complete LOGCFL [33]

member { � , ◦ ,¬ ,2} log complete P [20] (citing [32])

Plan DLs with Concurrency

notEmpty { � , ◦ ,∗, # } ∈ P [8]

nonEqual { � , ◦ , # } complete Σp
2 [29]

nonEqual { � , ◦ ,∗, # } complete EXPSPACE [29]

member { � , ◦ ,∗, � , # } complete NP [29]

5.8 Regular Plan DLs with Acyclic TBoxes

The ability to give names to sub-plans (without recursion) was already in the
original clasp Plan DL, as the subplan constructor. For example, Dial itself,
in MakeAPhoneCall, could have been defined as

Dial
.
= seq(PickUpReceiver, ListenForTone, repeat(10, DialOneNumber))

Expressiveness: This does not increase the expressive power of ordinary regular
expression plans, because one can unfold the definitions by substituting the
definiens, as in the case of FL0 in Sect. 2.3.
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Emptiness: For unfolded TBoxes, given a definition N
.= R, one can determine

the emptiness of N by checking the emptiness of R.
However, in the more general case of acyclic plan TBoxes the naive compu-

tation in cases like Tn= {Ni+1
.= Ni ◦ Ni , i = n, ..., 1} could lead to an

exponential number of tests. Instead, one has to topologically sort the names in
the TBox, and then compute in reverse order, and cache, the result of emptiness
tests, resulting in a linear time RAM algorithm.

Subsumption: A formal complexity lower bound for subsumption comes from
the study of regular expressions with the squaring constructor (·)2 introduced
earlier. The point is that squaring can be replaced by TBox definitions: in an
RE, repeatedly replace in an inside-out manner every subexpression R2 by a
new name R̂, and add to the TBox the definition R̂

.= R ◦ R. Note that the
result is an acyclic TBox.

It is then known that notTopP lan({� , ◦ ,∗ ,2 }) is log-lin complete in
EXPSPACE, and nonEqual({� , ◦ ,∗ ,2 }) is log-lin complete in EXPSPACE [30].
Hence subsumption with acyclic TBoxes is EXPSPACE-hard.

Membership: We found no sub-polynomial lower bounds in the literature for
the recognition problem with squaring. A general PTIME upper bound on RAMs
is obtained by translating the regular expressions and the TBox definitions into
context free grammar (CFG) rules, and then using any of the CFG parsing
algorithms, which run in time Ω(n3).

Succinctness: The same argument used for the exponentially improved descrip-
tive complexity of squaring applies here.

Table 1 summarizes some of the computational complexity results mentioned
above concerning regular-like expressions.

5.9 Regular Plan DLs with Cyclic TBox

Cyclic definitions lead to interesting results in this case too. The extension of
the concept D in the following TBox

D
.= or(NULL, seq(a,D, b))

can be shown to consist of the language {anbn | n ≥ 0} if one takes a least-
fixed point semantics, for example. So one can express non-regular context-free
languages, and therefore adding cyclic TBoxes leads to an increase in expressive
power. We leave to a future paper the exploration of CFG-based Plan DLs.

6 Summary, Related and Future Work

Motivated by the use of DLs in planning, especially plan hierarchies and plan
recognition [18,39], we have started to explore the space of Plan Description Log-
ics, which describe sequences of action instances. In particular, inspired by the



106 A. Borgida

clasp system [15] and our earlier analysis of it [9] as part of an extensible archi-
tecture, we viewed plan concepts as ways of describing sets of valid sequences
– strings, which are therefore formal languages. We explored subsets of plan
constructors for “regular-like” expressions: {sequencing, alternation/disjunction,
squaring, looping, conjunction, complementation}. We also considered interleav-
ing as a way to model concurrent execution of plans. In each case, we sought
out results in the formal language literature which shed light on the expressive
power, DL reasoning complexity, and descriptive complexity of the resulting sub-
set. The issues of expressive power and conciseness for ordinary DLs were raised
already in 1990 by Franz Baader [2], and they extend naturally to Plan DLs.

Clearly, the next step in this research is to complete the results in Table 1 to
deal with the three reasoning tasks of interest for DLs (e.g., replace notTopPlan
results with ones about subsumption).

There are additional formalisms for describing plans and processes which we
are exploring. Some of these are based on other language formalisms, such as
finite state machines and various kinds of grammars. For most of these, descrip-
tive complexity is improved, and hence reasoning complexity increases or even
becomes undecidable, so one would have to look for restrictions.

There are two relevant strands of DL research, which could be used to rep-
resent plan concepts, and hence plan hierarchies.

First, dynamic logics deal directly with programs, which can be viewed as
plans to perform primitive actions. For example, Propositional Dynamic Logic
(PDL) allows programs to be described in a manner very similar to clasp plans,
with {′;′ ,∪,∗} corresponding to { ◦ , � , ∗}. In this regard, of relevance are the
works of Schild [34], and De Giacomo & Lenzerini [12,13], which use extended
sets of PDL program constructors as complex DL role constructors. More recent
work by De Giacomo & Vardi, starting from [14], deals with linear temporal
logic and PDL over finite traces, so is also very relevant. Future work is intended
to clarify the precise relationship between Plan DLs investigated in this chapter,
and the ones based on PDL.

Second, temporal DLs have been shown to be able to represent actions and
their relationships in plans [1], by relating state descriptions holding at differ-
ent times. By using modal variants of temporal DL [28] to capture some of the
temporal constraints without the use of variables, one could have a language
for describing plan concepts that has no variables, only term constructors. Once
again, we leave for future work establishing the relationship between such tem-
poral descriptions and our regular-expression based plan concepts.

Finally, it is fitting to end by mentioning a sizable collection of work by Franz
Baader and (former) students, concerning reasoning about actions described
using DLs [6,7,26,27]. This work considers, for example, what conditions hold
at the end of simple sequences of actions (the “projection problem”).

Acknowledgement. I am very grateful to my colleague, Eric Allender for his patient
guidance through the landscape of modern complexity theory, and various kinds of
reductions. Grant Weddell and David Toman provided useful comments and probing
questions about the goal of the entire enterprise.
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Abstract. The Contextualized Knowledge Repository (CKR) frame-
work has been proposed as a description logics-based approach for con-
textualization of knowledge, a well-known area of study in AI. The CKR
knowledge bases are structured in two layers: a global context contains
context-independent knowledge and contextual structure, while a set of
local contexts hold specific knowledge bases. In practical uses of CKR,
it is often desirable that global knowledge can be “overridden” at the
local level, that is to recognize local pieces of knowledge that do not
need to satisfy the general axiom. By targeting this need, in our recent
works we presented an extension of CKR with global defeasible axioms,
which apply local instances unless an exception for overriding exists;
such an exception, however, requires that justification is provable from
the knowledge base. In this paper we apply this framework to the basic
description logic EL⊥. We provide a formalization of EL⊥ CKRs with
global defeasible axioms and study their semantic and computational
properties. Moreover, we present a translation of CKRs to datalog pro-
grams under the answer set semantics for instance checking.

1 Introduction

The problem of reasoning over context dependent knowledge is a well-known
area of study in Knowledge Representation and Reasoning: proposals for its for-
malization date back to the works of McCarthy [28], Lenat [27], and Giunchiglia
et al. [22]. As such, the interest in representing and reasoning with contexts has
also been recognized in the field of Description Logics (DLs) and led to the pro-
posal of different approaches for introducing a notion of context in DL knowledge
bases e.g. [24,25,33].

In this regard, the Contextualized Knowledge Repository (CKR) framework
[11–13,33] is one of the most recent DL based formalisms for the representation
of contextualized knowledge. A CKR knowledge base is a two-layer structure
composed of a global context and a set of local contexts. The global context
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contains two types of knowledge: (i) properties and structure of local contexts
(meta-knowledge) and (ii) facts about the domain of discourse, visible by all
the local contexts (global object knowledge). Local contexts contain local object
knowledge that holds under specific situations (e.g. during a certain period of
time, region in space) and thus they represent different partial and perspective
views of the domain. The context independent knowledge from the global context
is propagated to the local contexts: in other words, the axioms in the global
object knowledge need to hold in the situation described by the (more specific)
local contexts. In practical uses of CKR, however, it is often desirable that
global axioms can be “overridden” at the local level: since they represent local
specializations, local instances might need to violate the general rule established
by a global axiom for some “exceptional” individual.

By targeting this need, in [10] we presented an extension of CKR by intro-
ducing a notion of justifiable exceptions: axioms in the global context may be
specified as defeasible and they apply to local instances unless an exception
for overriding exists. Such an exception, however, requires that a justification is
provable from the knowledge base: an axiom can be locally “overridden” on some
exceptional instance, if we can prove that they would cause a local contradiction.
In [10] we presented the general syntax and semantics of CKR extended with
defeasible axioms and we studied a datalog encoding for reasoning over CKRs
based on SROIQ-RL, which is a DL related to the OWL 2 RL profile of the
Web Ontology Language (OWL) standard recommended by the W3C [29]. Like
its siblings OWL 2 QL and OWL 2 EL, this profile offers tractable reasoning, but
has the peculiarity that for these tasks only individuals that occur in the knowl-
edge base matter; that is, the profile (and the underlying DL SROIQ-RL) can
not manage unnamed individuals.

The OWL 2 EL profile is rooted in the seminal work of Baader [2]. In search
for a tractable yet expressive fragment of description logic (that is, of the DL
ALC), he proposed the EL language, in which only existential restriction and
conjunction are available to form new concepts, but cyclic relationships among
concepts are allowed; as he argued, these means are sufficient for a number of
interesting use cases. In successive work [3,5], the language has been extended
while keeping tractability, and the growing family of EL DLs has become one of
the most important ones in the whole field.

In this paper, we apply the framework developed in [10] to the description
logic EL⊥, which extends EL with the ⊥ concept (in EL, exceptions are futile
as no inconsistency can arise). By adopting EL⊥ as the base logic, we need
to take unnamed individuals introduced by existential formulas into account,
and in particular for the justifications of exceptions. In case of conflict, making
different exceptions can lead to different models; as deciding satisfiability of EL⊥
knowledge bases is PTime-complete, we may expect that exceptions on top of it
would make reasoning using justified models intractable. In a benign behaviour,
the complexity would not go (much) beyond NP respectively co-NP, and ideally
stay within this bound. This in fact holds true for the version of CKR over EL⊥
that we develop here.
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The main contributions of this paper are summarized as follows:

– We instantiate the CKR framework to the DL EL⊥: while the CKR definitions
provided in [10] are mostly independent from the DL chosen as base language,
we must pay further attention to the management of the semantics, due to
the relevance of unnamed individuals for defeasible axioms.

– We investigate the effects of the adaptation to semantic properties and com-
putational complexity of major reasoning tasks. It turns out that several of
the properties carry over to this setting, and that the complexity of reasoning
tasks is similar.

– We revise the translation to datalog (with negation under answer set seman-
tics) proposed in [9,10] for reasoning over CKRs with defeasible axioms in
EL⊥. We can prove that this procedure provides a sound and complete mate-
rialization calculus [26] for instance checking over such CKRs.

The rest of the paper is organized as follows. After a brief summary of the
preliminaries in the next section, we provide in Sect. 3 the syntax and semantics
for CKRs with defeasible axioms over EL⊥. In Sect. 4 we then consider semantic
properties and complexity of reasoning, after which we adapt and extend in
Sect. 5 the datalog translation for instance checking on CKRs with defeasible
axioms in SROIQ-RL to EL⊥. Finally, in Sect. 6 we briefly discuss our results,
where we shall also address another important contribution of Franz Baader –
namely, terminological default logic [4] – and we conclude with possible directions
for future work.

2 Preliminaries

2.1 Description Logics and EL⊥ Language

In this work, we assume the common definitions of description logics [1] and the
definition of the logic EL [2]: for reference, we summarize in the following the
basic definitions used in our work.

A DL vocabulary Σ consists of the mutually disjoint countably infinite sets
NC of atomic concepts, NR of atomic roles, and NI of individual constants.
Complex concepts are then recursively defined as the smallest set containing
all concepts that can be inductively constructed using the constructors of the
considered DL language. In this paper we consider the DL EL⊥, which extends
the basic definition of EL provided in [2] with the ⊥ concept constructor. Thus,
in EL⊥ a concept C can take the form defined by the following grammar:

C := A | � | ⊥ | C1 � C2 | ∃R.C1 (1)

where A is a concept name and R is role name. An EL⊥ knowledge base K =
〈T ,A〉 consists of a TBox T containing general concept inclusion (GCI) axioms
C � D, where C,D are concepts, and an ABox A composed of assertions of the
forms C(a), R(a, b), with C a concept, R ∈ NR and a, b ∈ NI.
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A DL interpretation is a pair I = 〈ΔI , ·I〉 where ΔI is a non-empty set
called domain and ·I is the interpretation function which assigns denotations for
language elements: aI ∈ ΔI , for a ∈ NI; AI ⊆ ΔI , for A ∈ NC; RI ⊆ ΔI × ΔI ,
for R ∈ NR. The interpretation of non-atomic concepts and roles is defined by
the evaluation of their description logic operators (see [2] for EL).

An interpretation I satisfies an axiom φ, denoted I |=DL φ, if it verifies the
respective semantic condition, in particular: for φ = D(a), aI ∈ DI ; for φ =
R(a, b), 〈aI , bI〉 ∈ RI ; for φ = C � D, CI ⊆ DI . I is a model of K, denoted
I |=DL K, if it satisfies all axioms of K.

Without loss of generality, we adopt the standard name assumption (SNA)
in the DL context [17]. We consider an infinite subset NIS ⊆ NI of individual
constants, called standard names s.t. in every interpretation I we have (i) ΔI =
NIIS = {cI | c ∈ NIS}; (ii) cI �= dI , for every distinct c, d ∈ NIS . Thus, we
may assume that ΔI = NIS and cI = c for each c ∈ NIS . The unique name
assumption (UNA) can be enforced by assertions c �= d for all constants in
NI \ NIS resp. occurring in the knowledge base.

Moreover, we restrict to the case in which no axioms or defeasible axioms of
the form � � C occur: we will discuss in Sect. 6 how the presented results could
be extended to the general case.

Note that negative assertions of the kind ¬A(a) are not allowed by the syntax
of EL⊥: however, these can be easily simulated by the axioms Ca �A � ⊥, Ca(a)
(with Ca a new atomic concept for the individual a). In the following, for sim-
plicity of presentation, we can use such negative assertions in our definitions (in
particular to identify negative information relative to an individual).

2.2 Datalog Programs and Answer Sets

As in the case of [10], we express our rules in datalog with (default) negation
under answer sets semantics [18]: in particular, (default) negation not and its
interpretation under answer set semantics is needed for the representation of
defeasibility.

A signature is a tuple 〈C,P〉 of a finite set C of constants and a finite set P
of predicates. We assume a set V of variables; the elements of C ∪V are terms.
An atom is of the form p(t1, . . . , tn) where p ∈ P and t1, . . . , tn, are terms.

A (datalog) rule r is an expression of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm. (2)

where a, b1, . . . , bm are atoms and not is the negation as failure symbol
(NAF). We denote with Head(r) the head a of rule r and with Body(r) =
{b1, . . . , bk, not bk+1, . . . , not bm} the body of r, respectively. A (datalog) pro-
gram P is a finite set of rules.

An atom (rule etc.) is ground, if no variables occur in it. A ground substitution
σ for 〈C,P〉 is any function σ : V → C; the ground instance of an atom (rule,
etc.) χ from σ, denoted χσ, is obtained by replacing in χ each occurrence of
variable v ∈ V with σ(v). A fact H is a ground rule r with empty body. The
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grounding of a rule r, grnd(r), is the set of all ground instances of r, and the
grounding of a program P is grnd(P ) =

⋃
r∈P grnd(r).

Given a program P , the (Herbrand) universe UP of P is the set of all con-
stants occurring in P and the (Herbrand) base BP of P is the set of all the
ground atoms constructable from the predicates in P and the constants in UP .
An interpretation I ⊆ BP is any subset of BP . An atom l is true in I, denoted
I |= l, if l ∈ I.

Given a rule r ∈ grnd(P ), we say that Body(r) is true in I, denoted I |=
Body(r), if (i) I |= b for each atom b ∈ Body(r) and (ii) I �|= b for each atom
not b ∈ Body(r). A rule r is satisfied in I, denoted I |= r, if either I |= Head(r)
or I �|= Body(r). An interpretation I is a model of P , denoted I |= P , if I |= r
for each r ∈ grnd(P ); moreover, I is minimal, if I ′ �|= P for each subset I ′ ⊂ I.

Given an interpretation I for P , the (Gelfond-Lifschitz) reduct of P w.r.t. I,
denoted by GI(P ) [18], is the set of rules obtained from grnd(P ) by (i) removing
every rule r such that I |= l for some not l ∈ Body(r); and (ii) removing the
NAF part from the bodies of the remaining rules. Then I is an answer set of
P , if I is a minimal model of GI(P ); the minimal model is unique and exists iff
GI(P ) has some model. Moreover, if I is an answer set for P , then I is a minimal
model of P . We say that an atom a ∈ BP is a consequence of P and we write
P |= a iff for every answer set I of P we have that I |= a.

3 CKR Knowledge Bases with Defeasible Axioms on EL⊥

In this section, we review the definition for the syntax and semantics of CKR
introduced in [9,10] by considering their application to the EL⊥ logic. While the
definition of the syntax remains basically unchanged, further considerations are
needed in the revision of the semantics due to the interpretation of existential
axioms in presence of defeasible axioms.

3.1 Syntax

The CKR framework is defined as a two layered structure: the upper layer is a
DL knowledge base G representing the contextual structure (meta-knowledge)
and (possibly defeasible) globally valid axioms (global knowledge); the lower layer
contains a set of local contexts representing axioms and facts that are locally
valid. To facilitate knowledge reuse, the local knowledge is organized as a set
of knowledge modules Km, sets of DL axioms that can be associated to one or
more contexts: the associations between contexts and modules is specified in the
meta-knowledge by means of the role mod. To specify the meta-knowledge of
a CKR, we establish a DL vocabulary defining the elements of the contextual
structure:
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Definition 1 (meta-vocabulary). A meta-vocabulary is a DL vocabulary
Γ = NCΓ � NRΓ � NIΓ of mutually disjoint sets NCΓ of atomic concepts, NRΓ

of atomic roles, and NIΓ of individual constants containing the following sets of
symbols1:

1. N ⊆ NIΓ of context names; 3. C ⊆ NCΓ of context classes, including Ctx
2. M ⊆ NIΓ of module names; 4. R ⊆ NRΓ of contextual relations.

Context classes in C are used to specify properties on types of contexts, while
R contains relations that can be specified across contexts. The role mod ∈ NRΓ

defined on N × M defines associations between contexts and modules in the
meta-knowledge.

Definition 2 (meta-language). The meta-language LΓ of a CKR is a DL
language over Γ where axioms of the kind A � ∃R.C for C ∈ C are disallowed.

Note that, differently from [10], in EL⊥ we can not directly assign modules
to a context class with C = ∃mod.{m} and m ∈ M.

The knowledge in contexts of a CKR is expressed via a DL language called
object-language LΣ over an object-vocabulary Σ = NCΣ ∪NRΣ ∪NIΣ akin to Γ .
Intuitively, the expressions in LΣ are evaluated locally in a (local) interpretation
of the context of reference: we extend the language to access the interpretation
of expressions inside other contexts as follows.

Definition 3 (object language with eval). The language Le
Σ extends LΣ

with eval expressions
eval(X,C), (3)

where X is a concept or role expression of LΣ and C is a concept expression of
LΓ (with C � Ctx).

The DL language Le
Σ extends LΣ with the set of eval-expressions in LΣ .

In the global context we allow for axioms of the object language LΣ which are
intended to be valid for all local contexts. We specify the global object axioms
that are to be treated as defeasible, i.e. that allow for exceptions in the local
contexts, as follows:

Definition 4 (defeasible axiom). A defeasible axiom is any expression of the
form D(α), where α ∈ LΣ.

Definition 5 (object language with defeasible axioms). The DL language
LD

Σ extends LΣ with the set of defeasible axioms in LΣ.

Using these language definitions, we are ready to provide a definition of
contextualized repository.

Definition 6 (contextualized knowledge repository, CKR). A contextu-
alized knowledge repository (CKR) over a meta-vocabulary Γ and an object
vocabulary Σ is a structure K = 〈G, {Km}m∈M〉, where:
1 Intuitively, Ctx will be used to denote the class of all contexts.
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– G is a DL knowledge base over LΓ ∪ LD
Σ, and

– every Km is a DL knowledge base over Le
Σ, for each module name m ∈ M.

Furthermore, K is an EL⊥ CKR, if G and all Km are knowledge bases over the
extended language of EL⊥ where eval-expressions can occur only in left-concepts.

In the following, we tacitly focus on EL⊥ CKRs.

Example 1. We introduce a simple example showing the definition and interpre-
tation of a defeasible existential axiom. In the organization of a university, we
want to specify that “in general” members of a research department need also
to have at least one course which they are teaching. However, in the context
of the Computer Science department, we want to specify that PhD students,
while recognized as members of the department, are not allowed to be holder of
a course. We can represent this scenario as a CKR Kdept = 〈G, {Kcsd m}〉 where:

G :

{
D(DepartmentMember � ∃hasCourse.Course),
mod(cs dept, csd m)

}

Kcsd m :

⎧⎪⎪⎨
⎪⎪⎩

Professor � DepartmentMember ,
PhDStudent � DepartmentMember ,
PhDStudent � ∃hasCourse.Course � ⊥,
Professor(alice), PhDStudent(bob)

⎫⎪⎪⎬
⎪⎪⎭

Intuitively, at the local context cs dept, given the local definition, we want to
override the fact that there exists some course assigned to the PhD student bob.
However, for the individual alice no overriding should happen and the global
axiom can be applied. ♦

3.2 Semantics

We can now present the model-based interpretation of CKR: in particular, with
respect to [10], in the instantiation of the framework with the logic EL⊥ we
need further attention to the interpretation of exceptions to defeasible axioms.
This is due to existential axioms of the form A � ∃R.B which, intuitively, allow
one to make reference to “unnamed” elements of the domain. Thus, we need
to formulate our semantics definition in a way that it preserves the properties
from [10], where we can concentrate on exceptions only on the “named” elements
of the domain. We first provide the definition of CKR interpretations.

Definition 7 (CKR interpretation). A CKR interpretation for 〈Γ,Σ〉 is a
structure I = 〈M, I〉 where

(i) M is a DL interpretation of Γ ∪ Σ such that cM ∈ CtxM, for every c ∈ N,
and CM ⊆ CtxM, for every C ∈ C;

(ii) for every x ∈ CtxM, I(x) is a DL interpretation over Σ s.t., ΔI(x) = ΔM

and aI(x) = aM, for every a ∈ NIΣ.



Reasoning with Justifiable Exceptions in EL⊥ CKRs 117

The interpretation of ordinary DL expressions on M and I(x) in I = 〈M, I〉
is as usual; eval expressions are interpreted as follows: for every x ∈ CtxM,

eval(X,C)I(x) =
⋃

e∈CM
XI(e)

As we have shown in the case of SROIQ-RL [10], we can express EL⊥ knowledge
bases in first-order (FO) logic, where every axiom α ∈ LΣ is translated into
an equivalent FO-sentence ∀x.φα(x) where x contains all free variables of φα

depending on the type of the axiom. In particular given an existential axiom of
the kind α = A � ∃R.B, its FO-translation φα(x) is defined as:

A(x1) → R(x1, fα(x1)) ∧ B(fα(x1)) .

The cases for other axiom types can be defined analogously to the FO-translation
presented in [10]. Note that in order to treat right existential formulas we need to
introduce a Skolem function fα(x1) which provides new “existential” individuals
(depending on the existential axiom α and instance x1). Formally, for every right
existential axiom α ∈ LΣ ∪ LΓ , we define a Skolem function fα : NI �→ E where
E is a set of new individual constants not appearing in NI. In particular, for a
set of individual names N ⊆ NI, we will write sk(N) to denote the extension of
N with the set of Skolem constants for elements in N .

After this transformation, as in the case of SROIQ-RL, the resulting formu-
las φα(x) amount semantically to Horn formulas, since left-side concepts C can
be expressed by an existential positive FO-formula, and right-side concepts D by
a conjunction of Horn clauses. As in [10], axioms are contextualized by extending
the translation with a further argument xc for the context, such that the for-
mula ∀x.φα(x, xc) expresses the axiom α within context xc. Furthermore, this
translation can be extended to Le

Σ such that the Horn property is maintained
for EL⊥, due to the restrictions on the occurrence of eval expressions.

The following property from [10] is then preserved for such translation:

Lemma 1. For any DL knowledge base K over LΓ (resp. Le
Σ), its FO-

translation (resp. its contextualized FO-translation)

φK :=
∧

α∈K ∀xφα(x) (resp. φK,xc
:=

∧

α∈K
∀xφα(x, xc) ) (4)

is semantically equivalent to a conjunction of universal Horn clauses.

It is important to note that the elements of the kind fα(a) do not identify a single
named domain element (i.e. that can be uniquely mapped to an individual name
in NI in every model of the axiom), but can be interpreted differently in differ-
ent interpretations satisfying α. In the following, we may write such elements in
ABox assertions to denote these abstract (i.e. existentially quantified) individu-
als: namely, we can say that I |= ∃R.B(a) iff I |= R(a, fα(a)) and I |= B(fα(a)).
With these considerations on the definition of the FO-translation, we can now
revise our definition of axiom instantiation and clashing assumptions:
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Definition 8 (axiom instantiation). Given an axiom α ∈ LΣ with FO-
translation ∀x.φα(x), the instantiation of α with a tuple e of individuals in
NIΣ, written α(e), is the specialization of α to e, i.e., φα(e), depending on the
type of α.

Note that, since we are assuming standard names, this basically means that
we can express instantiations (and exceptions) to any element of the domain
(identified by a standard name in NIΣ). We next introduce clashing assumptions
and clashing sets.

Definition 9 (clashing assumptions and sets). A clashing assumption is a
pair 〈α, e〉 such that α(e) is an axiom instantiation for an axiom α ∈ LΣ. A
clashing set for a clashing assumption 〈α, e〉 is a satisfiable set S that consists of
ABox assertions over LΣ and negated ABox assertions of the forms ¬C(a) and
¬R(a, b), where in C no conjunction � and no qualified role restriction occurs
(i.e. R.B implies B = �), such that S ∪ {α(e)} is unsatisfiable.

A clashing assumption 〈α, e〉 represents (the assumption) that α(e) is not sat-
isfiable, while a clashing set S provides an assertional “justification” for the
assumption of local overriding of α on e. We allow for negated ABox assertions
in order to make violations of axioms such as A � B for a possible; here a clashing
set would be {A(a),¬B(a)}. The restricted form of ¬C(a) excludes disjunction,
so that we have true factual evidence of the form ¬A(a) or ¬∃R.�(a).

Then, we extend the notion of CKR interpretation with a set of clashing
assumptions for each local context:

Definition 10 (CAS-interpretation). A CAS-interpretation is a structure
ICAS = 〈M, I, χ〉 where I = 〈M, I〉 is a CKR interpretation and χ maps every
x ∈ ΔM to a set χ(x) of clashing assumptions for x.

By extending the notion of satisfaction with respect to CAS-interpretations, we
can disregard the application of defeasible axioms to the exceptional elements
in the sets of clashing assumptions. For convenience, we call two DL interpre-
tations I1 and I2 (resp. CAS-interpretations Ii

CAS = 〈Mi, Ii, χi〉, i ∈ {1, 2})
NI-congruent, if cI1 = cI2 (resp. cM1 = cM2) holds for every c ∈ NI.

Definition 11 (CAS-model). Given a CKR K = 〈G, {Km}m∈M〉, a CAS-
interpretation ICAS = 〈M, I, χ〉 is a CAS-model for K (denoted ICAS |= K),
if the following holds:

(i). for every α ∈ LΣ ∪ LΓ in G, M |= α;
(ii). for every D(α) ∈ G (where α ∈ LΣ), M |= α;
(iii). for every 〈x, y〉 ∈ modM such that y = mM, I(x) |= Km;
(iv). for every α ∈ G ∩ LΣ and x ∈ CtxM, I(x) |= α, and
(v). for every D(α) ∈ G (where α ∈ LΣ), x ∈ CtxM, and |x|-tuple d of elements

in NIΣ such that d /∈ {e | 〈α, e〉 ∈ χ(x)}, we have I(x) |= φα(d).
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We want to have only the assumptions on exceptional elements that have a
provable evidence from the contents of the initial CKR: thus, we are interested
in models in which all assumptions are justified. Formally, we say that a clashing
assumption 〈α, e〉 ∈ χ(x) is justified for a CAS model ICAS = 〈M, I, χ〉, if
some clashing set S = S〈α,e〉,x for 〈α, e〉 and context x exists such that, for every
CAS-model I′

CAS = 〈M′, I ′, χ〉 of K that is NI-congruent with ICAS , it holds
that I ′(x) |= S〈α,e〉,x. CKR models are then only the CAS-models in which all
of the clashing assumptions are justified.

Definition 12 (justified CAS model and CKR model). A CAS model
ICAS = 〈M, I, χ〉 of a CKR K is justified, if every 〈α, e〉 ∈

⋃
x∈CtxM χ(x)

is justified. An interpretation I = 〈M, I〉 is a CKR model of K (in symbols,
I |= K), if K has some justified CAS model ICAS = 〈M, I, χ〉.

Example 2. We can now show an example of CKR model satisfying the CKR
Kdept from Example 1. Considering the contents of the CKR, a model providing
the intended interpretation of defeasible axioms is ICASdept

= 〈M, I, χdept 〉,
where:

χdept(cs deptM) = {〈α, bob〉}
with α = DepartmentMember � ∃hasCourse.Course. The fact that this model
is justified is easily verifiable considering the clashing set S:

I(cs deptM) |= S for S = {DepartmentMember(bob),¬∃hasCourse.�(bob)}

On the other hand, note that a similar clashing assumption for the individual
alice is not justifiable: it is not possible from the contents of Kdept to derive a
clashing set S′ such that S′∪{α(alice)} is unsatisfiable. Indeed, by Definition 11,
this allows us to apply the defeasible axiom to this individual as expected and
thus I(cs deptM) |= ∃hasCourse.Course(alice). ♦

4 Properties

In this section, we consider some properties of the notion of justified CAS-models
as defined above, where we look at both semantic and computational properties.

4.1 Semantic Properties

As for semantic properties, we recall first properties of CAS-models and justified
CAS-models for SROIQ-RL from [10]:

P1: Irrelevance of Syntax. Suppose K = 〈G, {Km}m∈M〉 has in G a defeasible
axiom D(α). If β ∈ LΣ satisfies φα(x) ≡ φβ(x) (i.e., β is of the same genus
and logically equivalent to α), then K and K′ = 〈(G \ α) ∪ {β}, {Km}m∈M〉
have the same CKR-models.

P2: Non-Monotonicity. Suppose ICAS = 〈M, I, χ〉 is a justified CAS-model
of a CKR K′. Then ICAS is not necessarily a justified CAS-model of every
K ⊆ K′.



120 L. Bozzato et al.

P3: Context Focus. Suppose ICAS = 〈M, I, χ〉 |= K for a CAS -interpretation
of a CKR K and that χ′ coincides with χ on CtxM. Then I′

CAS = 〈M, I, χ′〉
|= K. Furthermore, if ICAS is justified, then also I′

CAS is justified.
P4: Minimality of Justification. Suppose that ICAS = 〈M, I, χ〉 and I′

CAS =
〈M′, I ′, χ′〉 are justified CAS-models of a CKR K that are NI-congruent.
Then, CtxM = CtxM′

and χ′(x) ⊆ χ(x) for every x ∈ CtxM implies χ = χ′.
P5: Intersection Property. LetIi

CAS = 〈Mi, Ii, χ〉, i ∈ {1, 2}beNI-congruent
CAS-models of a CKR K. Then ICAS = 〈M, I, χ〉 where M = M1 ∩ M2 and
I = I1 ∩ I2 is the intersection of the Mi resp. Ii, is also a CAS-model of K.
Furthermore, ICAS is justified if some Ii

CAS is justified, i ∈ {1, 2}.
P6: Least Model Property. Let a name assignment be a function ν : NI → Δ

respecting SNA. In particular, the name assignment of a CAS-interpretation
ICAS = 〈M, I, χ〉 is the one induced by NIM. We say that χ for a CKR K is
satisfiable (resp., justified) for a name assignment ν, if K has some CAS-model
(resp., justified CAS-model) ICAS on χ with name assignment ν. Then, if a
clashing assumption map χ for a CKR K is satisfiable for name assignment
ν, K has a least (unique minimal) CAS-model ÎK(χ, ν) = 〈M̂, Î, χ〉 w.r.t.
inclusion M′ ⊆ M and I ′ ⊆ I for ν. Furthermore, ÎK(χ, ν) is justified if χ is
justified.

Examining these properties, we find that P1–P4 hold for EL⊥ as well; this can
be shown with arguments similar to those in [10]. On the other hand, property
P5 does not hold since the intersection of models (where AI = AI1 ∩ AI2 ,
RI = RI1 ∩ RI2) may not yield a model due to existential axioms A � ∃R.B.
However, under skolemization, where the Skolem functions fα(·) are part of the
signature, property P5 holds if they coincide, that is fI1

α = fI2
α . Similarly P6

does not hold in general but when the Skolem functions coincide; i.e., relative to
an interpretation of the individuals and the witnesses proving existential axioms,
a least model does exist.

We next consider the restriction of models to their named part, where we use
the skolemized form. Given a set N ⊆ NI \ NIS of individual names and an DL
interpretation I, denote by Isk(N) the restriction of I to the elements of sk(N);
that is, all unnamed elements are (virtually) removed from I.

Lemma 2. Suppose I is a model of a EL⊥ knowledge base K and N ⊆ NI\NIS
includes all individuals occurring in K. Then the Skolem-restriction Isk(N) is
named w.r.t. sk(N) and a model of K.

Armed with this, we find that we can, similar as in the case of SROIQ-RL-
knowledge bases, restrict CAS-models and CKR models to their sk(N)-part.
Let NK denote the set of all individuals that occur in a CKR K, then:

Theorem 1 (Skolem named model focus). Let ICAS be a CAS-model of K
and suppose NK ⊆ N ⊆ NI \ NIS. Then, also I

sk(N)
CAS , and in particular I

sk(NK)
CAS ,

is a CAS-model for K. Furthermore, Isk(N)
CAS is justified if ICAS is justified, and

every clashing assumption 〈α, e〉 in I
sk(N)
CAS is justified by some clashing set S

formulated with terms from sk(N).
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In fact, it turns out that for justified CAS-models an even stronger version
of Theorem 1 is possible. This is because no exceptions for unnamed individuals
can be made.

Proposition 1. Suppose ICAS = 〈M, I, χ〉 is a justified CAS-model of a
CKR K. Then, for every clashing assumption 〈α, e〉 ∈ χ(c) with c ∈ CtxM,
e is named, i.e. for all elements e ∈ e, there exists an individual name a ∈ NIΣ
such that e = aI(c).

This allows us to reason only on the named part of the model when dealing with
clashing assumptions.

An interesting consequence of this property is that it is possible to define
nominals {a} by the use of defeasible axioms under the unique names assump-
tion. To this end, we can introduce a fresh concept name and make assertions
C{a}(a) and ¬C{a}(b) for every individual b different from a in the ABox; and we
add the D(C{a} � ⊥). Since no exceptions on unnamed individuals are possible,
in any justified CAS-model C{a} must amount to {a}.

4.2 Complexity

As regards the satisfiability problem, clearly a CKR K has some CAS-model
if the CKR K′ that results from dropping all defeasible axioms from K (i.e.,
make each defeasible axiom instance an exception) has some CAS model. As
satisfiability of an EL⊥ knowledge base is decidable in polynomial time (and in
fact PTime-complete), the following can be established.

Theorem 2. Given a CKR K = 〈G, {Km}m∈M〉, deciding whether K has some
CAS-model is PTime-complete.

The membership in PTime can be argued from the datalog translation that
we provide in Sect. 5, as it can be used to map K into a datalog program that is
evaluable in polynomial time.

On the other hand, satisfiability under CKR-models is more complex, as
exceptions must be justified. In case of inconsistent axioms, this leads to alter-
natives: e.g., given D(A(a)) and D(¬A(a)), we have the option to either make an
exception for A(a) or for ¬A(a). This choice mechanism results in intractability.

Theorem 3. Given a CKR K = 〈G, {Km}m∈M〉, deciding whether K has some
justified CAS-model resp. some CKR-model is NP-complete.

Proof (Sketch). As for membership in NP, if K has some CKR model, then a
justified CAS-model ICAS = 〈M, I, χ〉 of K named relative to sk(N) exists, for
N = NK ⊆ NI \ NIS . The clashing assumptions χ can be guessed (they are over
NK), along with clashing sets Sα(e) for each clashing assumption 〈α, e〉, as well
as a partial interpretation over N . One then can check whether each clashing
set Sα(e) is derivable and whether the partial interpretation can be extended
to a model of K relative to sk(N) using the chase procedure (respectively, the
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materialization calculus). Each such test is feasible in polynomial time, and there
is a polynomial number of such tests. Thus, we overall obtain membership in NP.
Notably, the datalog translation in Sect. 5 implements this membership test.

The NP-hardness part is shown by a reduction from not-all-equal 3SAT
(NAE3SAT), and in fact for a fixed set of inclusion axioms. Let E =

∧m
i=1 γi be

an instance of NAE3SAT over propositional atoms X = {x1, . . . , xn}, i.e. a CNF
where each clause contains three literals. An assignment σ to X NAE-satisfies
E, if in each clause σ evaluates some literal to true and some literal to false.

Without loss of generality, each clause γi in E is positive. We then construct
K as follows, where V, F, T,A are concepts, R is a role, and x1, . . . , xn, c1, . . . , cm

are individual constants.

– the global knowledge G contains defeasible axioms D(V � T ), D(V � F ),
D(T � ⊥), D(F � ⊥) and a module association mod(m, c);

– a single module Km that contains the following inclusion axioms:
– T � F � ⊥,
– A � ∃R.T , and A � ∃R.F .

Km contains the following assertions
– V (xi), i = 1, . . . , n,
– A(cj), ¬T (cj), ¬F (cj), for j = 1, . . . , m, and
– R(ci, xij ) for i = 1, . . . ,m and j = 1, 2, 3, such that the clause γi is of

form xi1 ∨ xi2 ∨ xi3 .

Intuitively, at context c we must make for each atom xh either an exception to
V � F (then xh is true) or to V � T (then xh is false); the respective minimal
clashing set is {V (xh),¬F (xh)} resp. {V (xh),¬T (xh)}. To justify ¬F (xh) (resp.
¬T (xh)), we can keep the axiom F � ⊥ (resp. T � ⊥) for xh. Note that we can
make an exception to both V � F or V � T ; this means that xh is unassigned.
On the other hand, since for no unnamed individual defeasible axioms can have
an exception, each unnamed individual e must belong to ¬F and ¬T .

To have a (justified) model, the axiom A � ∃R.T must be satisfied for each
ci: as T is false at all elements except for x1, . . . , xn, we have that for some j
it holds that xij belongs to T ; analogously, for A � ∃R.F we have that some
x′

ij
belongs to F , Thus, if a justified CAS-model exists, then the formula E is

NAE-satisfiable. Conversely, from an NAE-satisfying assignment of E, we can
construct a justified CAS model in the intuitive way. In conclusion, NP-hardness
under data complexity is established.

Both Theorems 2 and 3 hold also for data complexity, i.e., if the module struc-
ture in K is fixed and only the assertions in the modules Km vary; for CAS-
satisfiability, the hardness is inherited from EL⊥.

As for reasoning, we recall the entailment problem for CKR from [10].

Definition 13 (c-entailment, global entailment). Given a CKR K over
〈Γ,Σ〉, an axiom α ∈ Le

Σ is (i) is c-entailed by K for c ∈ NK (denoted K |= c : α)
if I(cM) |= α for every CKR-model I = 〈M, I〉 of K, and (ii) is (globally)
entailed by K (denoted K |= α) if K |= c : α for every c ∈ N. Furthermore, an
axiom α ∈ LΓ is entailed by K if M |= α for every CKR-model I = 〈M, I〉 of K.
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The complexity of entailment checking is dual to the one of satisfiability.

Theorem 4. Given a CKR K = 〈G, {Km}m∈M〉, a context name c and an axiom
α, deciding whether K c-entails (resp. globally entails) α is co-NP-complete.

Proof (Sketch). In order to refute K |= c : α, it follows from Theorem 1 that a
justified CAS-model ICAS = 〈M, I, χ〉 of K named relative to sk(N) exists, with
NK ⊆ N ⊆ NI \ NIS , such that I(cI) �|= α, where N includes fresh individual
names such that I(cI) violates the instance of α for some elements e over sk(N).
Similarly as for satisfiability testing, one can guess χ, clashing assumptions Sα(e)

and a partial interpretation over N , and check derivability of all Sα(e) and that
the interpretation extends to a model of K relative to sk(N) in polynomial time.
Thus, we overall obtain membership of c-entailment in co-NP.

The co-NP-hardness is immediate from Theorem 3, since K in c entails ⊥(a)
iff K has no CKR-model. For global entailment, the proof is similar. ��

As above, the co-NP-hardness holds also under data complexity and assertional
queries α. In conclusion, we obtain for EL⊥ similar complexity characteristics as
for SROIQ-RL on the above reasoning tasks. We omit here conjunctive query
answering, but also this problem is expected to have the same complexity, and
thus to be Πp

2-complete.

5 Datalog Translation

Following the line of work in [10], we present a translation of reasoning from EL⊥
CKRs with defeasible axioms to datalog. The translation provides a reasoning
method for positive instance queries under c-entailment (resp. global entailment).

As in the case of SROIQ-RL, we will limit ourselves to the fragment of EL⊥
in which D � D can not appear as a right-side concept.2 For the interpretation
of right-hand side existential axioms, we follow the original approach of [26]:
for every existential axiom of the kind α = A � ∃R.B, an auxiliary abstract
individual auxα is introduced in the translation to represent the class of all
R-successors introduced by α.

We introduce a normal form for axioms of EL⊥ CKRs, so that we can rep-
resent contents of the CKRs as datalog facts.

Definition 14. A CKR K = 〈G, {Km}m∈M〉 is in normal form, if every non-
defeasible axiom in G and Km matches a form in Table 1, and every defeasible
axiom in G is of the form D(α) where α is of the form (I) in Table 1.

As in [10], we can easily provide a set of rules to transform any EL⊥ CKR into
normal form and show that the rewritten CKR is “equivalent” to the original.

2 This restriction allows us to simplify the characterization of the datalog encoding:
this is demonstrated as an example in [10].
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Table 1. Normal form for G axioms from LΓ ∪ LΣ (I) and for Km axioms from LΣ (I)
and Le

Σ \ LΣ (II)

5.1 Translation Rules Overview

We can now present the components of our datalog translation for EL⊥ based
CKRs. The encoding builds on the translation of CKR with defeasible axioms
into datalog introduced in [9,10], which extended the encoding without defea-
sibility proposed in [13]. These translations were an adaptation to the DL
SROIQ-RL and the structure of CKR of the techniques used by Krötzsch [26] in
defining the materialization calculus Kinst for instance checking in the descrip-
tion logic SROEL(�,×).

As noted in [10], the extension of the translation to defeasible axioms is
non-trivial, as it requires us to deal with strong negation, as provable falsity
of assertions is needed for clashing sets. The extension of the materialization
calculus to conclude negative literals requires us to deal with negative disjunctive
information: however, encoding this reasoning in form of disjunctive datalog rules
it is not only undesirable, as it may generate a large number of models, but also in
general not complete, i.e. it is not sufficient to derive all negative consequences
needed to prove justifications. As a solution, we encode inference of negative
literals as individual proofs by contradiction: these “tests” on negative literals
will be indicated by presence of the atom unsat(· · · ) for the literal in the answer
set and, from its the absence in the model, we can conclude that the literal
is not derivable. In this new translation for EL⊥, as we show in the following,
this mechanism has to be adapted to the case of proofs by contradiction on the
negative information that appears in clashing sets for existential axioms.

In the following, for each component, we describe the newly introduced rules
for managing the interpretation of EL⊥ constructs.
(i). EL⊥ input translation: the set of rules in Iel translate to datalog facts the
EL⊥ axioms and signature of each context from the input CKR. The rules of
Iel are listed in Table 2. In the case of existential axioms, these are translated
with the rule A � ∃R.B �→ {supEx(A,R,B, auxα, c)}: note that this rule, in the
spirit of [26], introduces an auxiliary element auxα, which intuitively represents
the class of all new R-successors generated by the axiom α.
(ii). EL⊥ deduction rules: the set of rules in Pel provide the deduction rules
for the translated EL⊥ axioms. In the case of existential axioms, the rule (pel-
supex1) introduces a new relation to the auxiliary individual as follows:



Reasoning with Justifiable Exceptions in EL⊥ CKRs 125

Table 2. EL⊥ input and deduction rules

tripled(x, r, x′, c, t) ← supEx(y, r, z, x′, c), instd(x, y, c, t).

Namely, for a local existential axiom α = A � ∃R.B in context c (supEx(y, r,
z, x′, c), where y = A, r = R, z = B, x′ = auxα by the input translation) and a
local instance x = e with A(e) (instd(x, y, c, t)), then the rule adds R(e, auxα)
to the local context (tripled(x, r, x′, c, t)). Similarly, (pel-supex2) classifies the
new individual as member of the concept z. The rules of Pel are listed in Table 2.
(iii). Global and local translations: Input global rules in Iglob encode the inter-
pretation of the contextual and module structure. In a similar way, input and
deduction local rules in Iloc and Ploc define the translation for axioms of the local
object language, in particular for the interpretation of axioms that make use of
eval expressions. Rules for global and local translation are shown in Table 3.
(iv). Defeasible axioms input translations: the set of input rules ID (shown in
Table 4) provides the translation of defeasible axioms D(α) ∈ G: in particular,
they are used to specify that the axiom α need to be considered as defeasible.
For example, D(A � ∃R.B) is translated to def supex(A,R,B, auxα).
(v). Overriding rules: conditions for overriding of defeasible axioms are encoded
in the overriding rules in PD, shown in Table 5. These rules define when a defea-
sible axiom has to be locally overridden: intuitively, they correspond to the proof
of existence of a clashing set for an instance and axiom at hand. For example,
for axioms of the form D(A � ∃R.B), the translation introduces the rule:

ovr(supEx, x, y, r, z, w, c) ← def supex(y, r, z, w), prec(c, g),
instd(x, y, c,main),
not test fails(nex(x, r, z, w, c)).
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Table 3. Global, local and output rules

Table 4. Input rules ID(S) for defeasible axioms

Namely, this rule states that if there exists some global defeasible axiom
α = D(A � ∃R.B) (def supex(y, r, z, w), where y = A, r = R, z = B,w = auxα

by the input translation) and in a context c we can prove for x = e that A(e)
(i.e. instd(x, y, c,main)) but ¬∃R.B(e) (not test fails(nex(x, r, z, w, c))),
then there is an overriding for this axiom with respect to e in context c
(ovr(supEx, x, y, r, w, c)). As discussed above, as in [10] the derivation of the
negative part of the clashing set of the axiom (in this case ¬∃R.B(e)) is encoded
by a proof by contradiction (namely, by proving that inconsistency can be derived
by adding R(e, d), B(d), with d a new constant, to the current context).
(vi). Inheritance rules: the set of rules PD then includes the rules for the inher-
itance of (possibly defeasible) axioms from the global context. For example, the
rule (prop-supex1) propagates an existential axiom α = A � ∃R.B:

tripled(x, r, x′, c, t) ← supEx(y, r, z, x′, g), instd(x, y, c, t),
prec(c, g), not ovr(supEx, x, y, r, z, x′, c).

As in the rule (pel-supex1) above, this applies α to a local instance e = x
with A(e) and adds R(e, auxα): the rule is applied only if such instance
e is in a local context (prec(c, g)) and no overriding can be proved on e
(not ovr(supEx, x, y, r, z, x′, c)). Similarly, (prop-supex2) propagates the quali-
fication of the related element to the concept in z. If no overriding is recognized,
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Table 5. Deduction rules PD for defeasible axioms: overriding rules

Table 6. Deduction rules PD for defeasible axioms: inheritance rules

then the global axiom is applied to each of its local instances. Note that this
rule propagates also to local instances of strict axioms, since their overriding is
never verified (Table 6).
(vii). Test rules: the last set of rules in PD is the set of test rules: following
the translation in [10], these rules are used to instantiate and define the “test
environments” for the proofs by contradiction used in the overriding rules. The
rules are presented in Table 7. Notably, in the translation for EL⊥, we introduce
rules for the case of tests on “existential” negative ABox assertions (nex) with
the rule (test-supex). The rule (test-add3) and (test-add4) are used to introduce
in the test environment the positive instance of the kind R(e, d), B(d) (with d
a new element represented by auxα) of the negative literal to be verified. If
a contradiction is not proved, then the failure of the test is recognized by the
rule (test-fails3). Note that, in order to be consistent with the semantics (i.e.
we can not have exceptions on unnamed individuals), the rules (test-fails4) and
(test-fails5) are needed to exclude the possibility to instantiate tests on auxiliary
individuals.
(viii). Output rules: rules in O are used to translate (atomic) ABox assertions to
be verified to hold in a given context by the final program. The rules in O are
listed in Table 3.
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Table 7. Deduction rules PD for defeasible axioms: test rules

5.2 Translation Process

The translation process that, given a CKR K = 〈G, {Km}m∈M〉 in EL⊥ normal
form, produces a program PK(K) encoding instance checking from the CKR-
models of K is analogous to the one presented in [10]:

1. the global program for G is constructed as (where gm, gk are new context
names):

PG(G) = Pel ∪ Iglob(GΓ ) ∪ ID(GΣ) ∪ Iel(GΓ , gm) ∪ Iel(GΣ ∪ GD
Σ , gk)

where GΓ = G ∩ LΓ , GΣ = G ∩ LD
Σ and GD

Σ = {α ∈ LΣ |D(α) ∈ GΣ}.
2. Let NG be the set of contexts:

NG = {c ∈ N | PG(G) |= instd(c,Ctx, gm,main)},

and, for every c ∈ NG, let its associated knowledge base Kc be defined as:

Kc =
⋃

{Km ∈ K | PG(G) |= tripled(c,mod,m, gm,main)}.

3. For each c ∈ NG, we define the local program PC(c,K) as:

PC(c,K) := Pel ∪ Ploc ∪ PD ∪ Iloc(Kc, c) ∪ Iel(Kc, c) ∪ {prec(c, gk)};

4. The CKR program PK(K), encoding the whole input CKR, is defined as:

PK(K) = PG(G) ∪
⋃

c∈NG
PC(c,K) (5)



Reasoning with Justifiable Exceptions in EL⊥ CKRs 129

5.3 Correctness

The presented translation procedure provides a sound and complete material-
ization calculus for instance checking on EL⊥ CKRs in normal form. The proof
for this result can be verified with the same line of reasoning presented in [10] by
establishing a correspondence between minimal justified CKR-models of K and
answer sets of PK(K): indeed, the non trivial aspect of this proof in the case of
EL⊥ resides in the management of existential axioms, where there is the need
to define a correspondence between the auxiliary individuals in the translation
and the interpretation of existential axioms in the semantics. In this regard, we
basically follow the approach used by Krötzsch in [26]: in building the correspon-
dence with justified models, auxiliary constants auxα are mapped to the class
of R-successors (i.e. Skolem individuals) for existential axiom α.

As in [10], we consider UNA and named models in our translation: thus we
can show the correctness result on Herbrand models, that will be denoted Î(χ).

Let ICAS be a justified named CAS-model. We define the set of overriding
assumptions as follows:

OVR(ICAS ) = { ovr(p(e)) | 〈α, e〉 ∈ χ(c), Iel(α, c) = p }.

Given a CAS-interpretation ICAS = 〈M, I, χ〉, we can define a corresponding
Herbrand interpretation I(ICAS ) for PK(K) by including the following atoms
in it:

(1). all facts of PK(K);
(2). instd(a,A, c,main), if I(c) |= A(a);
(3). tripled(a,R, b, c,main), if I(c) |= R(a, b);
(4). tripled(a,R, auxα, c,main), instd(auxα, B, c,main), if I(c) |= ∃R.B(a);
(5). each ovr-literal from OVR(ICAS );
(6). each literal l with environment t �= main, if test(t) ∈ I(ICAS ) and l is in

the head of a rule r ∈ grnd(PK(K)) with Body(r) ⊆ I(ICAS );
(7). test(t), if test fails(t) appears in the body of an overriding rule r in

grnd(PK(K)) and the head of r is an ovr literal in OVR(ICAS );
(8). unsat(nlit(a,A, c)), if I(c)�|=Kc ∪ {A(a)};
(9). unsat(nrel(a,R, b, c)), if I(c)�|=Kc ∪ {R(a, b)};

(10). unsat(nex(a,R,B, auxα, c)), if
I(c)�|=Kc ∪ {¬∃R.B(a)} for α = A � ∃R.B;

(11). test fails(t), if unsat(t) /∈ I(ICAS ).

In the following we provide a sketch of the correctness proof by highlighting
the newly added aspects for the management of existential axioms.

The next proposition shows that the least Herbrand model of the global
context G can be represented by the answer set of the global program PG(G).
Let us consider I(MG) as the Herbrand interpretation for PG(G) defined as
I(ICAS ) above for PK(K).

Proposition 2. Let K = 〈G, {Km}m∈M〉 be a CKR in EL⊥ normal form. If G is
satisfiable, then I(MG) is the unique answer set of PG(G); otherwise, PG(G)
has no answer sets.
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Proof (Sketch). The result is shown by proving, on one side, that I(MG) is an
answer set for PG(G) if G is satisfiable: the fact that I(MG) satisfies rules of the
form of (pel-supex1) and (pel-supex2) in PG(G) is verified by the newly added
condition (4) on existential formulas in the construction of the model above.

In the other direction, we need to show that from an answer set M of PG(G),
we can build a model M = 〈ΔM, ·M〉 for G. The construction of the model is
similar to the original proof, but we need to consider auxiliary individuals in
the domain of the model, that is thus defined as: ΔM = {c | c ∈ NIΓ ∪ NIΣ} ∪
{auxα | α = A � ∃R.B ∈ G}. The result can then be proved by considering the
effect of the new local rules in Pel for existential axioms: auxiliary individuals
provide the domain elements in M needed to verify this kind of axioms. ��

Then, in the following lemma we can establish the correspondence between
the answer sets of the final program PK(K) and the least justified models of K.

Lemma 3. Let K be a CKR in EL⊥ normal form. Then:

(i). for every (named) justified clashing assumption χ, the interpretation S =
I(Î(χ)) is an answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a
(named) justified clashing assumption for K.

Proof (Sketch). We consider S = I(Î(χ)) built as above and reason over the
reduct GS(PK(K)) of PK(K) with respect S: basically, GS(PK(K)) contains all
ground rules from PK(K) that are not falsified by some NAF literal in S.

Then, item (i) can be proved by showing that given a justified χ, then S is
an answer set for GS(PK(K)) (and thus PK(K)): the proof follows the same
reasoning of the one in [10], where condition (10) in the construction of I(Î(χ))
is used to show the correctness of the corresponding overriding rule.

For item (ii), we can show that from any answer set S we can build a justified
model for K such that S = I(Î(χ)) holds. The model can be built with the
same considerations adopted for the proof of previous Proposition 2 on auxiliary
individuals. The justification of the model follows by noting that the newly added
tests for negative literals nex correctly encode the (negative part of) possible
clashing sets for existential formulas. ��

The correctness result then directly follows from Lemma 3 and properties in
Sect. 4.1.

Theorem 5. Let K be a CKR in EL⊥ normal form, and let α and c be such
that O(α, c) is defined. Then K |= c : α iff PK(K) |= O(α, c).

6 Discussion and Conclusion

6.1 Syntax Restrictions

In our development, we have excluded the use of the � concept for axioms of the
form � � C. The reason for this limitation stands in the fact that such axioms
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allow to derive properties for any (named or unnamed) individual, and thus may
make in particular defeasible axioms D(� � C) applicable to any individual.

A possible solution to include such axioms may consist in introducing a num-
ber of assertions of the kind �(ai) where each ai is a fresh individual. Then,
intuitively, ai individuals can be used as “proxy” individuals for making excep-
tions on unnamed individuals, by relating provability of a clashing set Sα(e) for
such individuals to the provability for ai.

The formulation of this solution, however, is not trivial: in general, multiple
fresh individuals are needed to represent the different unnamed individuals that
would be considered in exceptions (consider, e.g., the case of conflicting defeasi-
ble axioms of the kind D(� � A), D(A � ⊥)). The intuition is that exceptions on
unnamed elements should be proved (by using strict axioms) on proxy individ-
uals and then “injected” to unnamed elements: in the case of conflicting axioms
but also in order to consider abstract elements arising from different existen-
tial axioms, different such injections should be needed to correctly capture all
intended exceptions and axiom applications. In order to reason on such excep-
tions in the datalog translation, then, we would need to replicate this relation
by correctly associating the exceptions on the freshly added proxy individuals
and the auxα elements representing the class of unnamed individuals generated
by existential axiom α.

Thus, the formulation of this correspondence is currently not in the scope of
this paper, but its definition will be a step ahead in the direction of applying
our framework to the full expressiveness of EL⊥.

6.2 Related Work

The relation of our justified exception approach to nonmonotonic description
logics has been discussed in [10], where in particular typicality in DLs [20,21],
normality [7,8] and overriding [6] were considered in more depth; we point out
that our work is distinctive in that it aims at a basic mechanism for a formalism
with explicit hierarchical structure, which is usually not reflected in nonmono-
tonic entailment relations. For these works, EL extensions and in particular EL⊥
have been important (for typicality, we mention here [19,20]). A noticeable recent
work on a defeasible version of EL⊥ is [30,31], which aimed at overcoming issues
with the approach by [14] on quantified concepts, especially in nested expres-
sions. The approach is to extend classical canonical models in EL⊥, by adding
multiple representatives of concepts and individuals, in order to model higher
typicality; inference is then determined from a canonical model of the extended
domain. Apparently, this approach is different from ours, which works on all
models and uses factual justifications that need to be derived; canonical models
are useful for characterization and implementation. However, it would be inter-
esting to see whether ideas from [30,31] could be used to extend our approach.
Another recent work on nonmonotonic EL⊥ is [15]: the work presents a poly-
nomial time subsumption procedure that, notably, can be reduced to classical
monotonic EL⊥ reasoning.
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We would not like to close this short discussion without recalling another pio-
neering work of Franz Baader, which has predated by far the approaches to non-
monotonic default logics mentioned above. In the early 1990s, when description
logics where in their early rise, he has recognized the need for an extension of DLs
with nonmonotonic features, and in particular to allow for defaults as in Reiter’s
Default Logic [32] of the form α : β1, . . . , βn / γ, which intuitively means that if α
is derived and each βi can be consistently assumed, then γ is concluded. Specif-
ically, in terminological default logic (TDL) [4], the formulas in a default are
concept terms; so manager : ∃supervises /∃supervises would intuitively express
that by default, managers act as supervisors. In a critical analysis, Baader and
Hollunder pointed out issues of Reiter’s approach for description logics due to
skolemization, and weaknesses of proposals to overcome them; as moreover rea-
soning turned out to be undecidable, they defined a restricted semantics in which
defaults are only applicable to individuals from the ABox.

Our justified exceptions are related to TDL, as we could see a defeasible
axiom D(α) as a default � : α/α, which informally is applied whenever possible;
however, there are some differences. A minor difference is that α is an axiom and
not a concept term. More substantial is that non-applicability of the default (e.g.,
making an exception) requires in our approach a stronger condition (derivation of
a clashing set), and that inapplicability of exceptions for unnamed individuals – if
axioms � � C are excluded – is an emerging property and not by design. Finally,
our approach aims at singling out models, while TDL determines extensions
(sets of formulas) in the tradition of Default Logic. It will be interesting to see
fragments of EL⊥ which can be mapped to TDL, such that implementations of
the latter (for instance, the one in [16]) can be exploited.

6.3 Summary and Outlook

In this article, we have described a formalization of making exceptions to axioms
in EL⊥, by adapting the justified exception approach in [10]. While the resulting
formalism has acceptable complexity and basic reasoning tasks can be translated
to datalog with expressive negation, exceptions are effectively limited to individ-
uals known from the knowledge base. This will be insufficient for scenarios which
need exceptions on unnamed individuals, in particular due to cyclic axioms of
the form A � ∃R.A.

In order to allow for more exceptions, justification of clashing assumptions
may be restricted to CAS-models I′

CAS that are NI-congruent with ICAS and
coincide on the Skolem functions fα. Justified CAS-models will then have types
of elements with respect to the exceptions made on them. The number of dif-
ferent such types will be finite, yet can get exponential and thus an increase in
complexity is to be expected; to consider this semantics is an interesting issue
for future work.

Another direction for further development concerns considering other exten-
sions of EL, such as EL¬A and E++.
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26. Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I.
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Abstract. The ability to generate explanations for inferences drawn
from a knowledge base is of utmost importance for intelligent systems. A
central notion in this context are minimal subsets of the knowledge base
entailing a certain formula. Such subsets are often referred to as justifica-
tions, and their identification is called axiom pinpointing.As observed by
Franz Baader, this concept of explanations is useful for monotonic logics
in which additional information can never invalidate former conclusions.
However, for nonmonotonic logics the concept simply makes no sense.
In this paper, we introduce a different notion, called strong explanation.
Strong explanations coincide with the standard notion for monotonic
logics, but also handle the nonmonotonic case adequately.

1 Introduction

Explainable AI is a highly relevant topic of current research, see e.g. the DARPA
XAI initiative1. It aims to come up with intelligent systems able to provide rea-
sons for decisions made and actions taken. The ultimate goal is to enable human
users to understand and to appropriately trust artificially intelligent systems.

Although the generation of convincing and easy to understand explanations
is less of a problem for symbolic than for subsymbolic approaches, there are
still many issues to be solved, in particular for nonmonotonic formalisms where
additional information may lead to the withdrawal of earlier consequences. In
approaches based on monotonic logics, like classical logic, description logics, def-
inite logic programs etc., the central notion underlying the definition of explana-
tions are minimal sets of axioms A implying a certain consequence p. Such sets
are sometimes also called justifications for p, see for instance [16,17,19], where a
justification for a formula p in a description logic knowledge base K is a minimal
subset K ′ of K such that K ′ entails p. The identification of adequate subsets
K ′ of a knowledge base K is often referred to as axiom pinpointing, or simply
pinpointing (see [3,22,23] for some recent references).

Unfortunately, this notion of explanation, respectively justification2, is not
helpful at all for nonmonotonic logics. As Baader and Peñaloza put it [3]:
1 See www.darpa.mil/program/explainable-artificial-intelligence.
2 We will use both terms interchangeably in this paper.
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“In fact, for non-monotonic logics, looking at minimal sets of axioms that
have a given consequence does not make much sense.”

We could not agree more with this statement. The problem, intuitively, is
the following: a nonmonotonic knowledge base K may have a minimal subset
K ′ entailing p. However, this does not guarantee that K itself also entails p.
There may be information in K\K ′ that explicitly blocks the derivation of p.
This makes the standard notion of explanations useless in the broader context
of nonmonotonic reasoning.

In a nutshell, the observation made by Baader and Peñaloza is the starting
point of this paper. The question we try to answer is the following: given that
minimal sets of axioms entailing a specific formula do not do the job, what is the
adequate notion of explanations that works for both monotonic and nonmono-
tonic logics?

The answer we will provide is closely related to strong inconsistency, as thor-
oughly investigated in [7]. Strong inconsistency is a strengthening of the standard
notion of inconsistency which guarantees that the Reiter hitting set duality [25]
also applies to nonmonotonic logics. Recall that a hitting set of a set of sets S is
a minimal set H such that H has a nonempty intersection with all elements of S.
Reiter’s duality states that a set of formulas K ′ is a maximal consistent subset
of a knowledge base K iff K\K ′ is a hitting set of the collection of all minimal
inconsistent subsets of K. This duality is particularly relevant for diagnosis and
repair of knowledge bases: if a knowledge base needs to be repaired because it
is inconsistent, one can simply compute its minimal inconsistent subsets and
a hitting set of these sets. Now Reiter’s result guarantees that eliminating the
hitting set from the original knowledge base not only removes the inconsistency,
but also does so without unnecessarily giving up information.

As to be expected, the duality breaks down for nonmonotonic formalisms
for obvious reasons: in a nonmonotonic setting, a consistent knowledge base
may have inconsistent - and thus minimal inconsistent - subsets. Thus, applying
Reiter’s result as is to a nonmonotonic knowledge base can lead to the elimina-
tion of formulas although there is nothing to repair at all.

The solution developed in [7] is based on a stronger notion of inconsistency.
K ′ ⊆ K is strongly inconsistent relative to K iff each K ′′ such that K ′ ⊆ K ′′ ⊆ K
is inconsistent. This obviously avoids situations where the inconsistency in K ′ is
resolved by additional information in K\K ′. One of the main results in [7] states
that by replacing inconsistency with strong inconsistency, Reiter’s hitting set
theorem can indeed be generalized to arbitrary logics, including nonmonotonic
ones.

Detecting inconsistencies is a special case of pinpointing whenever there is
a formula which is entailed if and only if the knowledge base is inconsistent.
In description logics formulas like ⊥(c) or A � ¬A(c) will do, that is K is
inconsistent iff K entails ⊥(c), or equivalently A�¬A(c). Justifications for these
assertions then correspond to minimal inconsistent subsets of K. It is thus not
overly surprising that the basic ideas underlying strong inconsistency also prove
useful for generalizing explanations to the nonmonotonic case. In particular, we
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will present in this paper a notion of explanations which strengthens the standard
notion and at the same time relativizes it to a specific knowledge base: we will
define what we mean by a strong explanation relative to a knowledge base K.

The results in [7] cover arbitrary logics. The investigation thus had to be
based on a highly abstract notion of a logic. For the sake of readability, we will
not discuss arbitrary monotonic and nonmonotonic logics in this paper. Rather,
we will focus here on one quite successful nonmonotonic formalism, namely logic
programs under answer set semantics. This way it will be a lot easier to illustrate
our approach. We emphasize, though, that what we present in this paper can be
generalized to arbitrary monotonic and nonmonotonic logics.

The rest of the paper is organized as follows. We start with some background
on logic programs under answer set semantics. The need for a stronger notion
of explanations for nonmonotonic formalisms is then illustrated in Sect. 3, using
logic programs to illustrate the underlying issues. Our new notion of strong
explanations is introduced in Sect. 4. Section 5 discusses some repercussions of
our analysis to description logics. Finally, Sect. 6 concludes.

2 Background

Logic programs under the answer set semantics [13,14] are a popular non-mono-
tonic formalism for knowledge representation and reasoning which consists of
rules possibly containing default-negated literals. In this paper, we consider so-
called extended logic programs with two kinds of negation, namely strong nega-
tion “¬” and default negation “not”, under the answer set semantics [13,14].
Our focus is on propositional programs. Note that this is not a severe restriction
as programs with variables are commonly treated as compact representations of
their ground instantiations [6].

A (ground) extended logic program P over a set of literals L is a finite set of
rules r of the form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln. (1)

where l0, . . . , ln ∈ L and 0 ≤ m ≤ n. In particular, no function symbols or
variables occur in r.

For a rule r of the form (1), we write head(r) = l0, pos(r) = {l1, . . . , lm},
neg(r) = {lm+1, . . . , ln} and body(r) = {l1, . . . , lm,not lm+1, . . . ,not ln}. For
a set M of literals, let A(M) be the set of all atoms occurring in M . We let
A(r) and L(r) be the set of all atoms and literals occurring in r, respectively.
Similarly, let A(P ) and L(P ) be the set of all atoms and literals that occur in a
program P , respectively. We often write “l0.” instead of “l0 ← .” for rules with
trivial body and call such rules a fact.

We now turn to the semantics, i.e. the definition of answer sets. Intuitively
speaking, an answer set is a set of literals which is (1) closed under the rules
of the program, that is, whenever the body of a rule is satisfied, then its head
must be included in an answer set, and (2) grounded, that is, for each literal in
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an answer set there must be a valid derivation. A derivation is valid if it is non-
circular and based only on rules whose default negated literals are not contained
in the answer set. The challenge then is to deal adequately with the circularity
implicit in the second condition.

There are actually variants of the formal definition in the literature which
differ in whether inconsistent answer sets are admitted or not. We follow the orig-
inal definition in [14] which allows for a single inconsistent answer set, namely
L, in cases where a subset of rules without default negation generates an incon-
sistency.

For a set M of literals and a literal l we say M satisfies l (M |= l) iff l ∈ M .
If L is a set of literals, then M |= L iff M |= l for all l ∈ L. Now consider a
classical rule, i.e. a rule r of the form (1) with m = n. We say M satisfies r,
denoted by M |= r iff M |= l0 whenever M |= body(r). For a program P we
say M satisfies P , denoted M |= P , whenever M satisfies r for each r ∈ P .
Finally, a set M of literals is called consistent if it does not contain both a and
¬a for any atom a.

Now we are ready to define answer sets of a given program.

Definition 1. Let P be an extended logic program without default negation. A
set M of literals is the answer set of P if

1. M is consistent, M |= P and there is no M ′ � M with M ′ |= P , or
2. there is no consistent set of literals M ′ such that M ′ |= P and M = L.

For an arbitrary program P , M is an answer set of P iff M is an answer set of
PM , where PM is the reduct of P wrt. M , i.e.

PM = {head(r) ← pos(r) | r ∈ P, neg(r) ∩ M = ∅}.
Note that programs without default negation always have a unique answer set.
Programs with default negation may have an arbitrary number of answer sets,
including zero. If a program has the inconsistent answer set L, then this is its
only answer set. A program P is called consistent if it has at least one consistent
answer set (in which case all of its answer sets are consistent), otherwise it is
called inconsistent. A program P can be inconsistent because

– it has no answer set, or
– it only has the inconsistent answer set.

The first type of inconsistency is often called incoherence. Answer sets give rise
to two different notions of consequence. We say P skeptically entails a literal l
if l is contained in all answer sets of P . P credulously entails l if l is contained
in at least one answer set of P .

3 Axiom Pinpointing in Logic Programming

As pointed out in the introduction, axiom pinpointing, or simply pinpointing
(see [3,22,23] for recent references), is the identification of minimal subsets of



Strong Explanations for Nonmonotonic Reasoning 139

axioms which are responsible for a certain (unintended) conclusion. Following
[16,17,19], a justification for a formula p in a knowledge base K is a minimal
subset K ′ of K such that K ′ entails p. Although the references introduce these
notions in the context of description logics, they directly apply to logic programs
without default negation, which we call classical logic programs. The reason why
these notions are applicable, as we will see, is the monotonicity of this class of
logic programs.

Classical logic programs always have a single answer set. Credulous and skep-
tical consequence thus coincide.

Example 1. Consider the classical logic program P0:

peng ←
bird ← peng

¬flies ← peng
flies ← bird ,¬peng

P0 has the answer set {peng , bird ,¬flies}. The justification for ¬flies, that is, a
minimal subset P ′

0 of P0 entailing ¬flies, is:

peng ←
¬flies ← peng

So far, everything is fine. In the rest of this section, however, we illustrate why
the standard notion of explanation fails for nonmonotonic logic programs, that is,
logic programs with default negation. As there are two consequence relations for
such logic programs, namely skeptical and credulous consequence, justifications
come in two forms: let P be a logic program, l a literal. P ′ ⊆ P is a skeptical
(respectively credulous) justification for l iff P ′ is a minimal subset of P such
that l is a skeptical (respectively credulous) consequence of P ′.

Example 2. Consider the extended logic program P1, a straightforward formal-
ization of the famous flying birds example:

peng ←
bird ← peng

¬flies ← peng
flies ← bird ,not ¬flies

P1 has a single answer set, namely {peng , bird ,¬flies}. In case of a single answer
set credulous and skeptical consequence coincide, and obviously flies is not
among the consequences.

Note, however, that there is a “justification” for flies, that is, a minimal
subset P ′

1 of P1 entailing flies. In this case P ′
1 is:

peng ←
bird ← peng
flies ← bird ,not ¬flies



140 G. Brewka and M. Ulbricht

Like P1 the program P ′
1 has a single answer set, in this case {peng , bird ,flies}.

Apparently flies is both a skeptical and a credulous consequence of P ′
1. Moreover,

P ′
1 is a minimal subset of P1 and thus a justification for flies.

This illustrates that the standard notion of justifications may lead to justifi-
cations for formulas which are not at all consequences of the original program P .
This shows that a different notion of explanations is needed. The example already
suggests the problem that needs to be addressed: we have to exclude explanations
that cease to exist when additional information included in the original program
P is taken into account. In our example, the rule ¬flies ← peng which is missing
from the justification destroys the derivation of flies. The example also clari-
fies why the standard notion works properly for monotonic logics: if reasoning
is monotonic, then justifications can never be invalidated by taking additional
information into account. It is for nonmonotonic formalisms only that the stan-
dard notion of explanations breaks down. We show in the next section how this
can be avoided by an adequate strengthening of the notion of explanations.

4 Strong Explanations

In this section we develop a stronger notion of explanations for logic programs.
As mentioned earlier, similar notions can be developed for arbitrary nonmono-
tonic formalisms, but for the sake of clarity we restrict our discussion to logic
programming in this paper.

As discussed in the background section, there are two notions of consequence
for logic programs under answer set semantics, namely skeptical and credulous
consequence. Fortunately, these notions can be handled uniformly in a single
definition.

As pointed out at the end of the last section, the reason for the failure of the
standard notion of justifications is that it does not account for the possibility
of information which is outside the justification but still part of the program
and which blocks a derivation from a justification. To fill this gap we introduce
a new, strong type of explanations which are useful also in the nonmonotonic
case.

Definition 2. Let P be an extended logic program, l a literal. A set of rules
P ′ ⊆ P is called a strong skeptical (respectively credulous) explanation of l with
respect to P iff

1. l is a skeptical (respectively credulous) consequence of each P ′′ satisfying P ′ ⊆
P ′′ ⊆ P , and

2. there is no proper subset of P ′ satisfying condition 1.

This definition makes sure that strong explanations cannot be invalidated by
any additional information in the program P .
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Example 3. Consider again Example 2 discussed in Sect. 4. There the pro-
gram P ′

1:

peng ←
bird ← peng
flies ← bird ,not ¬flies

provided a justification for flies. It is easy to see that this program is not a
strong explanation with respect to P1 = P ′

1 ∪ {¬flies ← peng} as P1 does not
entail flies. In fact, the only strongly explainable literal besides peng and bird
is ¬flies. The strong explanation (both skeptical and credulous) for the latter
literal is P1 itself.

We next discuss an (abstract) example where strong skeptical and strong
credulous explanations differ.

Example 4. Consider the program P2

a ← not b
b ← not a
c ← a

c ← b

P2 has two answer sets, namely {a, c} and {b, c}. Literal a has the strong cred-
ulous explanation {a ← not b}. Note that a remains a credulous consequence
no matter which rules of P2 are added to the explanation. Similarly, b has the
strong credulous explanation {b ← not a}. None of these two literals possesses
a strong skeptical explanation. There are two strong skeptical explanation for c,
though, namely X1:

a ← not b
c ← a

c ← b

and also X2:

b ← not a
c ← a

c ← b

Note that both rules with head c must be included in the explanations as oth-
erwise adding b ← not a to X1\{c ← b}, respectively a ← not b to X2\{c ← a}
would destroy the skeptical derivability of c.

Let us now briefly discuss how to characterize strong explanations of a given
literal l. We focus on credulous explanations. As already mentioned a notion
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quite similar to strong explanations is strong inconsistency (see [7]). Recall that
a subprogram H of P is strongly inconsistent if H ′ is inconsistent for each
H ⊆ H ′ ⊆ P . Let SImin(P ) be the set of all minimal strongly subsets of P . In [7]
maximal consistent subsets of a program (denoted by Cmax(P )) are characterized
via hitting sets of strongly inconsistent sets, more precisely: S is a minimal hitting
set of SImin(P ) iff P\S ∈ Cmax(P ); here, S is a hitting set of a set M of sets
iff S ∩ M �= ∅ for each M ∈ M. We can give a similar result. For this, let
StrEx(P, l) be the set of strong explanations of l.

Proposition 1 (Credulous Explanations). Let P be a logic program, l a
literal. A set S is a minimal hitting set of StrEx(P, l) (with respect to credulous
reasoning) if and only if P\S is maximal such that P\S does not possess a
consistent answer set that contains l.

Proof. The duality result from [7] actually applies to arbitrary logics. We may
thus define an (artificial) logic which models logic programs such that a program
P is considered “inconsistent” if

– at least one answer set M of P is consistent and contains l.

Then, a program P is considered “consistent” if it does not possess a consistent
answer set containing l (including the case that P does not possess a consistent
answer set at all). Now, the claim is just the duality characterization from [7]
applied to this modified logic.

Let us also consider skeptical explanations.

Proposition 2 (Skeptical Explanations). Let P be a logic program, l a lit-
eral. A set S is a minimal hitting set of StrEx(P, l) (with respect to skeptical
reasoning) if and only if P\S is maximal such that P\S is either inconsistent
or possess a consistent answer set that contains l.

Proof. As before, we define an (artificial) logic which models logic programs such
that a program P is considered “inconsistent” if

– P possesses consistent answer sets and all of them contain l.

Then, a program P is considered “consistent” if

– P does not possess a consistent answer set or
– at least one consistent answer set of P does not contain l.

Again, the claim is the duality characterization from [7] applied to the modified
logic.

5 Explanation for Description Logics

Description logics are a family of knowledge representation formalisms which
are tailored towards the representation of concepts and relationships between
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them. Description logic knowledge bases are commonly split into two parts, the
so-called TBox which defines the terminology, that is, it contains the definition
of concepts and their relationships, and the ABox which uses these concepts to
describe a particular domain.

Specific description logics differ in the constructors available to define con-
cepts, and in the way relationships among concepts are defined. Typical concept
constructors are intersection (�), union (�) and complement (¬) of concepts, as
well as existential restriction and value restriction. For instance, the existential
restriction ∃r. C represents the objects standing in relation r to some C-object.
Relationships between concepts are expressed using axioms of the form C1 � C2

expressing that C1 is subsumed by C2. The symbol ⊥ usually represents the
empty, unsatisfiable concept. The semantics of description logics is standard
first order semantics. We refer the reader to [2] for further details.

In this section we give a brief overview of what has been done in terms of
explanations in the area of (monotonic) description logics.

As pointed out in the introduction, axiom pinpointing, or simply pinpointing
(see [3,22,23] for recent references), is the identification of minimal subsets of
axioms which are responsible for a certain (unintended) conclusion. Following
[16,17,19], a justification for a formula p in a description logic knowledge base
K is a minimal subset K ′ of K such that K ′ entails p.

The identification of justifications is particularly relevant for debugging
description logic knowledge bases. A typical modelling error one would like to
detect (and repair) are unsatisfiable concepts, that is, concepts which cannot
have instances and thus are subsumed by ⊥. The reasons for the unsatisfiability
of a concept C can be detected by computing the justifications for C � ⊥. Jus-
tifications for formulas of this form consisting of TBox elements only are called
MUPS (minimal unsatisfiability-preserving sub-TBox) in [26–28], justifications
for formulas of the form C1 � C2 are called MinA in [3,23]. Note that the
presence of an unsatisfiable concept C in K does not mean K is inconsistent.
However, as soon as the ABox contains an assertion of the form C(a) for some
constant a an inconsistency arises.

The importance of justifications for explaining results, detecting modelling
errors and potentially repairing description logic knowledge bases - via Reiter’s
hitting set duality - is apparent. Corresponding explanation services were first
built into the ontology editor Swoop [18] and are by now standard in modern
ontology development tools like Protégé3.

Description logics are monotonic and thus lack means to express what is typ-
ically the case and to handle exceptions. For this reason, several nonmonotonic
extensions of description logics have been proposed over the last decades, starting
from combinations of description logics with Reiter’s default logic [1], to circum-
scriptive description logics [4], autoepistemic description logics [12], description
logics with typicality [15], and preferential, respectively rational description log-
ics [8–11,24]. The latter are based on the influential KLM theory of propositional
nonmonotonic reasoning [20,21].

3 See https://protege.stanford.edu/.

https://protege.stanford.edu/
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A detailed analysis of these logics is beyond the scope of this paper. Never-
theless, we would like to illustrate that our analysis of explanations also applies
to other nonmonotonic formalisms and use nonmonotonic description logics as
an example.

Without going into any formal detail regarding how the nonmonotonic infer-
ence relation is defined, let us assume there is – in addition to the standard
subsumption relation � – a defeasible form of subsumption �∼ . Moreover, we
assume there is a single set of nonmonotonic consequences such that the dis-
tinction between skeptical and credulous consequence is obsolete. In this case a
strong explanation of a formula p with respect to a nonmonotonic description
logic knowledge base K is a minimal subset X of K such that p is entailed by all
K ′ with X ⊆ K ′ ⊆ K. For monotonic description logics justifications and strong
justifications obviously coincide. For nonmonotonic logics the latter notion is the
relevant one, as justifications may exist for formulas which are not entailed.

Example 5. Consider the description logic knowledge base4

K = {P � B,P � ¬F,B �∼ F, P (t)}.

Here �∼ represents defeasible subsumption, that is, B�∼F means Bs are normally
F s. In all nonmonotonic description logics with defeasible subsumption we are
aware of, e.g. [8–11], the assertion ¬F (t) is entailed by K, the justification being
X = {P (t), P � ¬F}. X is also a strong justification, as adding arbitrary
formulas from K to X does not invalidate this entailment. Moreover, there is no
proper subset of X entailing ¬F (t).

Now consider F (t). There is an explanation for F (t), namely {P (t), P �
B,B �∼ F}. This explanation, however, is obviously not a strong explanation as
F (t) is not a consequence of K.

This illustrates that for nonmonotonic description logics (and nonmonotonic
logics in general) strong explanation is the right notion to use for explaining
results.

6 Conclusions

In this paper we pointed out that the standard notion of justification/explanation
fails to adequately cover nonmonotonic formalisms. For illustrative purposes we
focused on extended logic programs under answer set semantics and developed a
new, stronger type of explanations for such programs. Strong explanations coin-
cide with standard explanations for monotonic logics, but provide an adequate
generalization also to the nonmonotonic case. We also illustrated some of the
repercussions of our analysis for description logics, in particular for defeasible
extensions of such logics.

4 Since Tbox and ABox elements differ syntactically, we do not explicitly distinguish
these to sets.
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Throughout the paper we repeatedly made what might be considered strong
claims about the applicability of our notions to arbitrary monotonic and non-
monotonic logics, without clarifying what we mean by such logics. Let us just
point out that an abstract notion of a logic, which slightly refines the one used
for multi-context systems in [5], was developed in [7]. The framework used there
makes little assumptions about logics, except that logics have a syntax defining
knowledge bases and a semantics which assigns - potentially multiple - sets of
explicit beliefs to each knowledge base. It was shown that strong inconsistency
applies to arbitrary logics captured by the abstract framework. Strong explana-
tions work for arbitrary logics for the same reasons strong inconsistency works
for them.
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Abstract. In this paper we present an approach to defeasible reason-
ing for the description logic ALC. The results discussed here are based
on work done by Kraus, Lehmann and Magidor (KLM) on defeasible
conditionals in the propositional case. We consider versions of a pref-
erential semantics for two forms of defeasible subsumption, and link
these semantic constructions formally to KLM-style syntactic proper-
ties via representation results. In addition to showing that the semantics
is appropriate, these results pave the way for more effective decision pro-
cedures for defeasible reasoning in description logics. With the semantics
of the defeasible version of ALC in place, we turn to the investigation
of an appropriate form of defeasible entailment for this enriched version
of ALC. This investigation includes an algorithm for the computation of
a form of defeasible entailment known as rational closure in the propo-
sitional case. Importantly, the algorithm relies completely on classical
entailment checks and shows that the computational complexity of rea-
soning over defeasible ontologies is no worse than that of the underlying
classical ALC. Before concluding, we take a brief tour of some existing
work on defeasible extensions of ALC that go beyond defeasible sub-
sumption.

Keywords: Knowledge representation and reasoning ·
Description logics · Defeasible reasoning · Preferential semantics

1 Introduction

Description logics (DLs) [1] are central to many modern AI and database appli-
cations since they provide the logical foundation of formal ontologies. Yet, as
classical formalisms, DLs do not allow for the proper representation of and
reasoning with defeasible information, as shown up in the following example,
adapted from Giordano et al. [39]: Students do not get tax invoices; employed
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 147–173, 2019.
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students do; employed students who are also parents do not. From a naïve (clas-
sical) formalisation of this scenario, one concludes that the notion of employed
student is an oxymoron, and consequently the concept of employed student is
unsatisfiable. A more nuanced view is to represent such statements as defeasible.

Endowing DLs with defeasible reasoning features is therefore a promising
endeavour from the point of view of applications of knowledge representation and
reasoning. Indeed, the past 25 years have witnessed many attempts to introduce
defeasible reasoning capabilities in a DL setting, usually drawing on a well-
established body of research on non-monotonic reasoning (NMR). These com-
prise the so-called preferential approaches [19–21,30,32,40,44,45,57,58,63] and
the circumscription-based ones [8,9,60], amongst others [7,36,46–48,53,56,62].
Not surprisingly, Franz was among those who first made a meaningful contribu-
tion in this regard [2,3].

Preferential extensions of DLs turn out to be particularly promising, mainly
because they are based on an elegant, comprehensive and well-studied frame-
work for non-monotonic reasoning in the propositional case proposed by Kraus,
Lehmann and Magidor [49,52], often referred to as the KLM approach. Such
a framework is valuable for a number of reasons. First, it provides for a thor-
ough analysis of some formal properties that any consequence relation deemed as
appropriate in a non-monotonic setting ought to satisfy. Such formal properties
play a central role in assessing how intuitive the obtained results are and enable
a more comprehensive characterisation of the introduced non-monotonic condi-
tional from a logical point of view. Second, the KLM approach allows for many
decision problems to be reduced to classical entailment checking, sometimes with-
out blowing up the computational complexity compared to the underlying classi-
cal case. Finally, it has a well-known connection with the AGM approach to belief
revision [38,59] and with frameworks for reasoning under uncertainty [6,37]. It
is therefore reasonable to expect that most, if not all, of the aforementioned
features of the KLM approach should transfer to KLM-based extensions of DLs
too.

Following the motivation laid out above, several extensions to the KLM app-
roach to description logics have been proposed recently [19,21,23,24,27,30,32,
39,40,44,45], each of them investigating particular constructions and variants of
the preferential approach. Here we provide an overview of the formal foundations
of preferential defeasible reasoning in DLs. By that we mean (i) providing a gen-
eral and intuitive semantics; (ii) showing that the corresponding representation
results (in the KLM sense of the term) hold, linking the semantic constructions
to the KLM-style set of properties, and (iii) presenting an appropriate analysis
of entailment in the context of ontologies with defeasible information with an
associated decision procedure that is implementable.

After a brief introduction to the required background on the DL we consider
here (in Sect. 2), we introduce the notion of defeasible subsumption along with a
set of KLM-inspired properties it ought to satisfy (Sect. 3). In particular, using
an intuitive semantics for the idea that “usually, an element of the class C is also
an element of the class D”, we provide a characterisation (via representation
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results) of two important classes of defeasible statements, namely preferential
and rational subsumption. In Sect. 4, we discuss two obvious candidates for the
notion of entailment in the context of defeasible DLs, namely preferential and
modular entailment. These turn out not to have all properties seen as important
in a non-monotonic DL setting, mimicking a similar feature in the propositional
case [52]. This is followed in Sect. 5 by the presentation of a version of rational
entailment satisfying all the required properties, and which can thus be seen as
a suitable candidate for defeasible entailment. In Sect. 6 we discuss aspects of
defeasible reasoning going beyond defeasible concept inclusion. We conclude in
Sect. 7 with some pointers to research following on from the work presented here,
and remarks on future related endeavours.

The overview presented in this paper relies heavily on research conducted by
the present authors, et al. [15].

2 Background

Description Logics (DLs) [1] are decidable fragments of first-order logic with
interesting properties and a variety of applications. There is a whole family of
description logics, an example of which is ALC and on which we shall focus in
the present paper. The (concept) language of ALC is built upon a finite set of
atomic concept names C, a finite set of role names R and a finite set of individual
names I such that C, R and I are pairwise disjoint. With A,B, . . . we denote
atomic concepts, with r, s, . . . role names, and with a, b, . . . individual names.
Complex concepts are denoted with C,D, . . . and are built according to the
following rule:

C ::= � | ⊥ | C | ¬C | C � C | C � C | ∀r.C | ∃r.C

With L we denote the language of all ALC concepts.
The semantics of L is the standard set theoretic Tarskian semantics. An

interpretation is a structure I =def 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ΔI , role names r to binary relations rI over ΔI , and individual
names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI × ΔI , aI ∈ ΔI .
Define rI(x) =def {y | (x, y) ∈ rI}. We extend the interpretation function ·I to
interpret complex concepts of L in the following way:

�I =def ΔI , ⊥I =def ∅, (¬C)I =def ΔI \ CI

(C � D)I =def CI ∩ DI , (C � D)I =def CI ∪ DI

(∃r.C)I =def {x ∈ ΔI | rI(x) ∩ CI �= ∅}, (∀r.C)I =def {x ∈ ΔI | rI(x) ⊆ CI}

Given C,D ∈ L, C � D is called a subsumption statement, or general concept
inclusion (GCI). C ≡ D is an abbreviation for both C � D and D � C. An
ALC TBox T is a finite set of GCIs. We denote subsumption statements with
α, β, . . .
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An interpretation I satisfies a GCI C � D (denoted I � C � D) if CI ⊆ DI .
An interpretation I is a model of a TBox TB (denoted I � T ) if I � α for every
α ∈ T . A statement α is (classically) entailed by T , denoted T |= α, if every
model of T satisfies α.

Given C ∈ L, r ∈ R and a, b ∈ I, an assertional statement (assertion, for
short) is an expression of the form a : C or (a, b) : r. An ALC ABox A is a finite
set of assertions. Given T and A, with KB =def T ∪A we denote an ALC knowl-
edge base, a.k.a. an ontology. This chapter focuses on defeasibility for description
logic TBoxes only, and does not consider the extension to defeasible knowledge
bases that include ABox statements. Various solutions for defeasible ABox rea-
soning have been proposed, that can be associated with the present approach
for TBoxes [29,30,35,45].

3 Defeasible Concept Inclusions

In a sense, class subsumption (alias concept inclusion) of the form C � D is the
main notion in DL ontologies. Given its implication-like intuition, subsumption
lends itself naturally to defeasibility: “provisionally, if an object falls under C,
then it also falls under D”, as in “usually, students are tax exempted”. In this
respect, a defeasible version of concept inclusion is the starting point for an inves-
tigation of defeasible reasoning in DL ontologies. We also address defeasibility
of the entailment relation in later sections.

Definition 1 (Defeasible Concept Inclusion). Let C,D ∈ L. A defeasible
concept inclusion axiom (DCI, for short) is a statement of the form C �∼ D.

A DCI of the form C �∼D is to be read as “usually, an instance of the class C
is also an instance of the class D”. For instance, the DCI

Stud �∼ ¬∃receives.TaxInv
formalises the example above. Paraphrasing Lehmann [50], the intuition of C�∼D
is that “if C were all the information about an object available to an agent, then D
would be a sensible conclusion to draw about such an object”. It is worth noting
that �∼ , just as �, is a ‘connective’ positioned between the concept language
(object level) and the meta-language (that of entailment) and it is meant to be
the defeasible counterpart of the classical subsumption �.

Definition 2 (Defeasible TBox). A defeasible TBox (dTBox, for short)
is a finite set of DCIs.

Given a TBox T and a dTBox D, we let KB =def T ∪ D and refer to it as a
defeasible knowledge base (alias defeasible ontology).

Example 1. The following defeasible knowledge base gives a formal specification
for our student scenario:

T = {EmpStud � Stud}, D =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭
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In the semantic construction later on, it will also be useful to be able to refer
to infinite sets of concept inclusions. Let KBinf therefore denote a defeasible
theory, defined as a defeasible knowledge base but without the restriction on T
and D to finite sets.

In order to assess the behaviour of the new connective and check it against
both the intuition and the set of properties usually considered in a non-
monotonic setting, it is convenient to look at a set of �∼ -statements as a binary
relation of the ‘antecedent-consequent’ kind.

Definition 3 (Defeasible Subsumption Relation). A defeasible sub-
sumption relation is a binary relation �∼ ⊆ L × L.

The idea is to mimic the analysis of defeasible entailment relations carried
out by Kraus et al. [49] in the propositional case, where entailment is seen as a
binary relation on the set in propositional sentences. Here we adopt the view of
subsumption as a binary relation on concepts of our description language.

Sometimes (e.g. in the structural properties below) we write (C,D) ∈ �∼
in the infix notation, i.e., as C �∼ D. The context will make clear when we will
be talking about elements of a relation or statements (DCIs) in a defeasible
knowledge base.

Definition 4 (Preferential Subsumption Relation). A defeasible subsump-
tion relation �∼ is a preferential subsumption relation if it satisfies the
following set of properties, which we refer to as (the DL versions of the) prefer-
ential KLM properties:

(Ref) C �∼ C (LLE)
C ≡ D, C �∼ E

D �∼ E
(And)

C �∼ D, C �∼ E

C �∼ D � E

(Or)
C �∼ E, D �∼ E

C � D �∼ E
(RW)

C �∼ D, D � E

C �∼ E
(CM)

C �∼ D, C �∼ E

C � E �∼ D

The properties in Definition 4 result from a translation of those for prefer-
ential consequence relations proposed by Kraus et al. [49] in the propositional
setting. They have been discussed at length in the literature for both the propo-
sitional and the DL cases [19,21,41,42,49,52] and we shall not repeat so here.

If, in addition to the preferential properties above, the relation �∼ also satisfies
rational monotonicity (RM) below, then it is said to be a rational subsumption
relation:

(RM)
C �∼ D, C ��∼ ¬E

C � E �∼ D

Rational monotonicity is often considered a desirable property to have, one
of the reasons stemming from the fact that it is a necessary condition for the
satisfaction of the principle of presumption of typicality (more on that in Sect. 4).

In what follows, we present a semantics for preferential and rational subsump-
tion by enriching standard DL interpretations I with an ordering on the elements
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of the domain ΔI . The intuition underlying this is simple and natural, and
extends similar work in the propositional case by Shoham [61], Kraus et al. [49],
Lehmann and Magidor [52] and Booth et al. [10–12] to the case for description
logics. This is not the first extension of this kind, as evidenced by the work of
Boutilier [14], Baltag and Smets [4,5], Giordano et al. [39,41–45], Britz et al. [17–
21] and Britz and Varzinczak [22–27]. The present paper presents a cohesive
semantic account of both preferential and rational subsumption, with accom-
panying representation results and computational characterisation based on the
standard semantics for description logics.

Definition 5 (Preferential Interpretation). A preferential interpreta-
tion is a tuple P =def 〈ΔP , ·P ,≺P〉, where 〈ΔP , ·P〉 is a (standard) DL inter-
pretation (which we denote by IP and refer to as the classical interpretation
associated with P), and ≺P is a strict partial order on ΔP (i.e., ≺P is irreflexive
and transitive) satisfying the smoothness condition (for every C ∈ L, if CP �= ∅,
then min≺P CP �= ∅).1

Preferential interpretations provide us with a simple and intuitive way to
give a semantics to DCIs.

Definition 6 (Satisfaction). Let P be a preferential interpretation and let
C,D ∈ L. The satisfaction relation � is defined as follows:

– P � C � D if CP ⊆ DP ;
– P � C �∼ D if min≺P CP ⊆ DP .

If P � α, then we say P satisfies α. P satisfies a defeasible knowledge base KB,
written P � KB, if P � α for every α ∈ KB, in which case we say P is a
preferential model of KB. We say C ∈ L is satisfiable w.r.t. KB if there is
a model P of KB s.t. CP �= ∅.

It is easy to see that the addition of the ≺P -component preserves the truth
of all classical subsumption statements holding in the remaining structure:

Lemma 1. Let P be a preferential interpretation. For every C,D ∈ L, P �
C � D if and only if IP � C � D.

It is worth noting that, due to the smoothness of ≺P , every (classical) sub-
sumption statement is equivalent, with respect to preferential interpretations, to
some DCI.

Lemma 2. For every preferential interpretation P, and every C,D ∈ L, P �
C � D if and only if P � C � ¬D �∼ ⊥.

An obvious question that can now be raised is: “How do we know our pref-
erential semantics provides an appropriate meaning to the notion of DCI?” The
following definition will help us in answering this question:
1 Given X ⊆ ΔP , with min≺P X we denote the set {x ∈ X | for every y ∈ X, y �≺P x}.
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Definition 7 (P-Induced Defeasible Subsumption). Let P be a preferen-
tial interpretation. Then �∼ P =def {(C,D) | P � C �∼ D} is the defeasible
subsumption relation induced by P.

The first important result we present here, which also answers the above
raised question, shows that there is a full correspondence between the class of
preferential subsumption relations and the class of defeasible subsumption rela-
tions induced by preferential interpretations. It is the DL analogue of a represen-
tation result proved by Kraus et al. for the propositional case [49, Theorem 3].

Theorem 1 (Representation Result for Preferential Subsumption). A
defeasible subsumption relation �∼ ⊆ L × L is preferential if and only if there is
a preferential interpretation P such that �∼ P = �∼ .

What is perhaps surprising about this result is that no additional proper-
ties based on the syntactic structure of the underlying DL are necessary to
characterise the defeasible subsumption relations induced by preferential inter-
pretations.

In addition to preferential interpretations, we are also interested in the study
of modular interpretations, which are preferential interpretations in which the
≺-component is a modular ordering:

Definition 8 (Modular Order). Given a set X, ≺ ⊆ X × X is modular if
it is a strict partial order, and its associated incomparability relation ∼, defined
by x ∼ y if neither x ≺ y nor y ≺ x, is transitive.

Definition 9 (Modular Interpretation). A modular interpretation is a
preferential interpretation R = 〈ΔR, ·R,≺R〉 such that ≺R is modular.

Intuitively, modular interpretations allow us to compare any two objects
w.r.t. their plausibility. Those that are incomparable are viewed as being equally
plausible. As such, modular interpretations are special cases of the preferential
ones, where plausibility can be represented by any smooth strict partial order.

The main reason to consider modular interpretations is that they provide the
semantic foundation of rational subsumption relations. This is made precise by
our second important result below, which shows that the defeasible subsumption
relations induced by modular interpretations are precisely the rational subsump-
tion relations. Again, this is the DL analogue of a representation result proved
by Lehmann and Magidor for the propositional case [52, Theorem 5].

Theorem 2 (Representation Result for Rational Subsumption). A
defeasible subsumption relation �∼ ⊆ L × L is rational if and only if there
is a modular interpretation R such that �∼ R = �∼ .

It is worth pausing for a moment to emphasise the significance of these two
results (Theorems 1 and 2). They provide exact semantic characterisations of
two important classes of defeasible subsumption relations, namely preferential
and rational subsumption, in terms of the classes of preferential and modular
interpretations, respectively. As we shall see in Sect. 4, these results form the
core of the investigation into an appropriate form of entailment for defeasible DL
ontologies.
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4 Defeasible Entailment

From the standpoint of knowledge representation and reasoning, a pivotal ques-
tion is that of deciding which statements are entailed by a knowledge base. In
the present section we lay out the formal foundations for that.

4.1 Preferential Entailment

In the exploration of a notion of entailment for defeasible ontologies, an obvious
starting point is to consider a Tarskian definition of consequence:

Definition 10 (Preferential Entailment). A statement α is preferentially
entailed by a defeasible knowledge base KB, written KB |= prefα, if every pref-
erential model of KB satisfies α.

As usual, this form of entailment is accompanied by a corresponding notion
of closure.

Definition 11 (Preferential Closure). Let KB be a defeasible knowledge
base. With KB∗

pref =def {α | KB |= prefα} we denote the preferential closure
of KB.

Intuitively, the preferential closure of a defeasible knowledge base KB cor-
responds to the ‘core’ set of statements, classical and defeasible, that should
hold given those in KB. Hence, preferential entailment and preferential closure
are two sides of the same coin, mimicking an analogous result for preferential
reasoning in both the propositional [49] and the DL [16,21] cases.

Recall (cf. the discussion following Definition 2) that a defeasible theory KBinf
is a defeasible knowledge base without the restriction to finite sets. When assess-
ing how appropriate a notion of entailment for defeasible ontologies is, the fol-
lowing definitions turn out to be useful, as will become clear in the sequel:

Definition 12 (KBinf-Induced Defeasible Subsumption). Let KBinf be a
defeasible theory. Then DKBinf =def {C �∼D | C �∼D ∈ KBinf}∪{C �¬D �∼⊥ |
C � D ∈ KBinf} is the dTBox induced by KBinf and �∼ KBinf =def {(C,D) |
C �∼ D ∈ DKBinf} is the defeasible subsumption relation induced by KBinf.

So, the dTBox induced by KBinf is the set of defeasible subsumption state-
ments contained in KBinf, together with the defeasible versions of the classical
subsumption statements in KBinf. The defeasible subsumption relation induced
by KBinf is simply the defeasible subsumption relation corresponding to DKBinf .

Definition 13. A defeasible theory KBinf is called preferential if the subsump-
tion relation induced by it satisfies the preferential properties in Definition 4.

It turns out that the defeasible subsumption relation induced by the prefer-
ential closure of a defeasible knowledge base KB is exactly the intersection of the
defeasible subsumption relations induced by the preferential defeasible theories
containing KB.
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Lemma 3. Let KB be a defeasible knowledge base. Then

�∼ KB∗
pref

=
⋂

{ �∼ KBinf | KB ⊆ KBinf and KBinf is preferential}.

It follows immediately that the preferential closure of a defeasible knowledge
base KB is preferential, and induces the smallest defeasible subsumption relation
induced by a preferential defeasible theory containing KB.

Preferential entailment is not always desirable, one of the reasons being that
it is monotonic, courtesy of the Tarskian notion of consequence it relies on (see
Definition 10). In most cases, as witnessed by the great deal of work in the non-
monotonic reasoning community, a move towards rationality is in order. Thanks
to the definitions above and the result in Theorem 2, we already know where to
start looking for it.

Definition 14 (Modular Entailment). A statement α is modularly
entailed by a defeasible knowledge base KB, written KB |= modα, if every mod-
ular model of KB satisfies α.

As is the case for preferential entailment, modular entailment is accompanied
by a corresponding notion of closure.

Definition 15 (Modular Closure). Let KB be a defeasible knowledge base.
With KB∗

mod =def {α | KB |= modα} we denote the modular closure of KB.

Definition 16. A defeasible theory KBinf is called rational if it is preferential
and �∼ KBinf is also closed under the rational monotonicity rule (RM).

For modular closure we get a result similar to Lemma3.

Lemma 4. Let KB be a defeasible knowledge base. Then

�∼ KB∗
mod

=
⋂

{ �∼ KBinf | KB ⊆ KBinf and KBinf is rational}.

That is, the modular closure of a defeasible knowledge base KB induces the
smallest defeasible subsumption relation induced by a rational defeasible theory
containing KB. However, the modular closure of KB is not necessarily rational.
That is, if one looks at the set of statements (in particular the �∼-ones) modularly
entailed by a knowledge base as a defeasible subsumption relation, then it need
not satisfy the RM property. This is so because modular entailment coincides
with preferential entailment, as the following result, adapted from a well-known
similar result in the propositional case [52, Theorem 4.2], shows.

Lemma 5. KB∗
mod = KB∗

pref .

Hence, modular entailment unfortunately falls short of providing us with
an appropriate notion of defeasible entailment. In what follows, we overcome
precisely this issue.
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4.2 Rational Entailment

We now present a definition of semantic entailment which is appropriate in
the light of the discussion above. The constructions we are going to present
are inspired by the semantic characterisation of rational closure by Booth and
Paris [13] in the propositional case.

We start by focusing our attention on a subclass of modular orders, referred
to as ranked orders:

Definition 17 (Ranked Order). Given a set X, the binary relation ≺ ⊆ X ×
X is a ranked order if there is a mapping hR : X −→ N satisfying the following
convexity property:

– for every i ∈ N, if for some x ∈ X hR(x) = i, then, for every j such that
0 ≤ j < i, there is a y ∈ X for which hR(y) = j,

and such that for every x, y ∈ X, x ≺ y iff hR(x) < hR(y).

It is easy to see that a ranked order ≺ is also modular: ≺ is a strict partial
order, and, since two objects x, y are incomparable (i.e., x ∼ y) if and only if
hR(x) = hR(y), ∼ is a transitive relation. By constraining our preference rela-
tions to the ranked orders, we can identify a subset of the modular interpretations
we refer to as the ranked interpretations.

Definition 18 (Ranked Interpretation). A ranked interpretation is a
modular interpretation R = 〈ΔR, ·R,≺R〉 s.t. ≺R is a ranked order.

We now provide two basic results about ranked interpretations. First, all
finite modular interpretations are ranked interpretations.

Lemma 6. A modular interpretation R = 〈ΔR, ·R,≺R〉 s.t. ΔR is finite is a
ranked interpretation.

Next, for every ranked interpretation, the function hR is unique.

Proposition 1. Given a ranked interpretation R = 〈ΔR, ·R,≺R〉, there is only
one function hR : ΔR −→ N satisfying the convexity property and s.t. for every
x, y ∈ ΔR, x ≺ y iff hR(x) < hR(y).

Proposition 1 allows us to use the function hR(·) to define the notions of
height and layers.

Definition 19 (Height and Layers). Let R = 〈ΔR, ·R,≺R〉 be a ranked
interpretation with characteristic ranking function hR(·). Given an object x ∈
ΔR, hR(x) is called the height of x in R. For every ranked interpretation
R = 〈ΔR, ·R,≺R〉, we can partition the domain ΔR into a sequence of layers
(L0, . . . , Ln, . . .), where, for every object x ∈ ΔR, we have x ∈ Li iff hR(x) = i.
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Intuitively, the lower the height of an object in an interpretation R, the more
typical (or normal) the object is in R. We can also think of a level of typicality
for concepts: the height of a concept C ∈ L in R is the index of the layer to which
the restriction of the concept’s extension to its ≺R-minimal elements belong, i.e.,
hR(C) = i if ∅ ⊂ min≺R CR ⊆ Li.

Given a set of ranked interpretations, we can introduce a new form of model
merging, ranked union.

Definition 20 (Ranked Union). Given a countable set of ranked interpreta-
tions R = {R1,R2, . . .}, a ranked interpretation RR =def 〈ΔR, ·R,≺R〉 is the
ranked union of R if the following holds:

– ΔR =def

∐
R∈R ΔR, i.e., the disjoint union of the domains from R, where

each R ∈ R has the elements x, y, . . . of its domain renamed as xR, yR, . . .
so that they are all distinct in ΔR;

– xR ∈ AR iff x ∈ AR;
– (xR, yR′) ∈ rR iff R = R′ and (x, y) ∈ rR;
– for every xR ∈ ΔR, hR(xR) = hR(x).

The latter condition corresponds to imposing that xR ≺R yR′ iff hR(x) < hR′(y).

The following lemma will be useful in what follows.

Lemma 7. Ranked interpretations are closed under ranked union.

Let KB be a defeasible knowledge base and let Δ be a fixed countably infinite
set. Define

ModΔ(KB) =def {R = 〈ΔR, ·R,≺R〉 | R � KB,R is ranked and ΔR = Δ}.

The following result shows that the set ModΔ(KB) suffices to characterise mod-
ular entailment:

Lemma 8. For every KB and every C,D ∈ L, KB |= modC �∼D iff R � C �∼D,
for every R ∈ ModΔ(KB).

Therefore, we can use just the set of interpretations in ModΔ(KB) to decide
the consequences of KB w.r.t. modular entailment.

We can now use the set ModΔ(KB) as a springboard to introduce what will
turn out to be a canonical modular interpretation for KB. Using ModΔ(KB) and
ranked union we can define the following relevant model.

Definition 21 (Big ranked model). Let KB be a defeasible knowledge base.
The big ranked model of KB is the ranked model O =def 〈ΔO, ·O,≺O〉 that is
the ranked union of the models in ModΔ(KB).

Since ranked interpretations are closed under ranked unions (Lemma 7), we
can state the following:

Lemma 9. O is a ranked model of KB.
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Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in the context of defeasible ontologies:

Definition 22 (Rational Entailment). A statement α is rationally
entailed by a knowledge base KB, written KB |= ratα, if O � α.

That such a notion of entailment indeed deserves its name is witnessed by
the following result, a consequence of Lemma 9 and Theorem 2:

Corollary 1. Let KB be a defeasible knowledge base and O its big ranked model.
Then {C �∼ D | O � C �∼ D} is rational.

We shall see below that this form of entailment corresponds to the DL version
of a well-known form of propositional defeasible entailment [52].

In conclusion, rational entailment is a good candidate for the appropriate
notion of consequence we have been looking for. Of course, a question that arises
is whether a notion of closure, in the spirit of preferential and modular closures,
that is equivalent to it can be defined. In the next section, we address precisely
this matter.

5 Rational Closure for Defeasible Knowledge Bases

We now turn our attention to the exploration, in a DL setting, of the well-
known notion of rational closure of a defeasible knowledge base as studied by
Lehmann and Magidor [52]. For the most part, we shall base the presentation
of the constructions on the work by Casini and Straccia [30,32], amending it
wherever necessary. An alternative semantic characterisation of rational closure
in DLs has also been proposed by Giordano et al. [44,45]; their characterisation
and the one we present here are equivalent [35, Appendix A].

As we shall see, rational closure provides a proof-theoretic characterisation
of rational entailment and the complexity of its computation is no higher than
that of computing entailment in the underlying classical DL.

5.1 Rational Closure and a Correspondence Result

Rational closure is a form of inferential closure based on modular entailment |=
mod, but it extends its inferential power. Such an extension of modular entailment
is obtained by formalising the already mentioned principle of presumption of
typicality [51, Section 3.1]. That is, under possibly incomplete information, we
always assume that we are dealing with the most typical possible situation that
is compatible with the information at our disposal. We first define what it means
for a concept to be exceptional, a notion that, as we shall see, is central to the
definition of rational closure:

Definition 23 (Exceptionality). Let KB be a defeasible knowledge base and
C ∈ L. We say C is exceptional in KB if KB |= mod� �∼ ¬C. A DCI C �∼ D is
exceptional in KB if C is exceptional in KB.
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A concept C is considered exceptional in a knowledge base KB if it is not
possible to have a modular model of KB in which there is a typical object (i.e.,
an object at least as typical as all the others) that is in the interpretation of C.
Intuitively, a DCI is exceptional if it does not concern the most typical objects,
i.e., it is about less normal (or exceptional) ones. This is an intuitive translation
of the notion of exceptionality used by Lehmann and Magidor [52] in the propo-
sitional framework, and has already been used by Casini and Straccia [30] and
Giordano et al. [45] in their investigations into defeasible reasoning for DLs.

Applying the notion of exceptionality iteratively, we associate with every
concept C a rank in KB, which we denote by rankKB(C). We extend this to
DCIs and associate with every statement C �∼D a rank, denoted rankKB(C �∼D):

1. Let rankKB(C) = 0, if C is not exceptional in KB, and let rankKB(C �∼D) = 0
for every DCI having C as antecedent, with rankKB(C) = 0. The set of DCIs
in D with rank 0 is denoted as Drank

0 .
2. Let rankKB(C) = 1, if C does not have a rank of 0 and it is not exceptional in

the knowledge base KB1 composed of T and the exceptional part of D, that
is, KB1 = 〈T ,D \ Drank

0 〉. If rankKB(C) = 1, then let rankKB(C �∼ D) = 1 for
every DCI C �∼ D. The set of DCIs in D with rank 1 is denoted Drank

1 .
3. In general, for i > 0, a concept C is assigned a rank of i if it does not have

a rank of i − 1 and it is not exceptional in KBi = 〈T ,D \
⋃i−1

j=0 Drank
j 〉. If

rankKB(C) = i, then rankKB(C �∼ D) = i, for every DCI C �∼ D. The set of
DCIs in D with rank i is denoted Drank

i .
4. By iterating the previous steps, we eventually reach a subset E ⊆ D such

that all the DCIs in E are exceptional (since D is finite, we must reach such
a point). If E �= ∅, we define the rank of the DCIs in E as ∞, and the set E is
denoted Drank

∞ .

The notion of rank can also be extended to GCIs as follows: rankKB(C � D) =
rankKB(C).

Following on the procedure above, D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉 (n ≥ 0), where Drank
∞ may possibly be empty. So, through

this procedure we can assign a rank to every DCI.
It is easy to see that for a concept C to have a rank of ∞ corresponds to not

being satisfiable in any model of KB, that is, KB |= modC � ⊥.

Lemma 10. rankKB(C) = ∞ iff KB |= modC � ⊥.

Example 2. Let KB = T ∪ D, where T and D are as in Example 1, i.e., T =
{EmpStud � Stud} and

D =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

Examining the concepts on the LHS of each DCI in KB, one can verify that
Stud is not exceptional w.r.t. KB. Therefore, rankKB(Stud) = 0. We also find
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that rankKB(EmpStud) �= 0 and rankKB(EmpStud � Parent) �= 0 because both
concepts are exceptional w.r.t. KB.

KB1 is composed of T and D \ Drank
0 , which consists of the DCIs in D except

for Stud�∼¬∃receives.TaxInv. We find that EmpStud is not exceptional w.r.t. KB1

and therefore rankKB(EmpStud) = 1. Since EmpStud � Parent is exceptional
w.r.t. KB1, rankKB(EmpStud � Parent) �= 1. Similarly, KB2 is composed of T
and {EmpStud � Parent�∼ ¬∃receives.TaxInv}. We have that EmpStud � Parent is
not exceptional w.r.t. KB2 and therefore rankKB(EmpStud � Parent) = 2.

Adapting Lehmann and Magidor’s construction for propositional logic [52],
the rational closure of a defeasible knowledge base KB is defined as follows:

Definition 24 (Rational Closure). Let KB be a defeasible knowledge base
and C,D ∈ L.

1. C �∼ D is in the rational closure of KB if

rankKB(C � D) < rankKB(C � ¬D) or rankKB(C) = ∞.

2. C � D is in the rational closure of KB if rankKB(C � ¬D) = ∞.

Informally, the definition above says that the DCI C �∼ D is in the rational
closure of KB if the modular models of KB tell us that some instances of C � D
are more plausible than all instances of C � ¬D, while the GCI C � D is in
the rational closure of KB if the instances of C � ¬D are impossible. The atten-
tive reader will note that this definition has some similarity with the epistemic
entrenchment orderings used in belief revision [38,59].

Example 2 (continued). Applying the definition above to the knowledge base in
Example 2, we can verify that Stud �∼ ¬∃receives.TaxInv is in the rational clo-
sure of KB because rankKB(Stud � ¬∃receives.TaxInv) = 0 and rankKB(Stud �
∃receives.TaxInv) > 0. The latter can be derived from the fact that Stud �
∃receives.TaxInv is exceptional w.r.t. KB.

Similarly, one can derive that both DCIs EmpStud �∼ ∃receives.TaxInv and
EmpStud � Parent �∼ ¬∃receives.TaxInv are in the rational closure of KB as well.

��
We now state the main result of the present section, which provides an answer

to the question raised at the end of Sect. 4.2.

Theorem 3. Let KB be a defeasible knowledge base having a modular model. A
statement α is in the rational closure of KB iff KB |= ratα.

An easy corollary of this result is that rational closure preserves the equiv-
alence between GCIs (of the form C � D) and their defeasible counterparts
(C � ¬D �∼ ⊥).

Corollary 2. C � D is in the rational closure of a defeasible knowledge base KB
iff C � ¬D �∼ ⊥ is the restriction of the closure of KB under rational entailment
to defeasible concept inclusions.
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Rational entailment from a knowledge base can therefore be formulated as
membership checking of the rational closure of the knowledge base. Of course,
from an application-oriented point of view, this raises the question of how to
compute membership of the rational closure of a knowledge base, and what is
the complexity thereof. This is precisely the topic of the next section.

5.2 Rational Entailment Checking

We now present an algorithm to effectively check the rational entailment of a
DCI from a defeasible knowledge base. Our algorithm is based on the one given
by Casini and Straccia [30] for defeasible ALC.

Let KB = T ∪ D be a defeasible knowledge base. The first step of the algo-
rithm is to assign a rank to each DCI in D. Central to this step is the exceptional-
ity function Exceptional(·), which computes the semantic notion of exceptionality
of Definition 23. Given a set of DCIs D′ ⊆ D, Exceptional(T ,D′) returns a sub-
set E of D′ such that E is exceptional w.r.t. T ∪ D′.

Function. Exceptional(T ,D′)
Input: T and D′ ⊆ D
Output: E ⊆ D′ such that E is exceptional w.r.t. T ∪ D′

1 E ← ∅
2 foreach C �∼ D ∈ D′ do
3 if T |=

�
D′ 
 ¬C then

4 E ← E ∪ {C �∼ D}

5 return E

The function makes use of the notion of materialisation to reduce concept
exceptionality checking to entailment checking:

Definition 25 (Materialisation). Let D be a set of DCIs. With D =def {¬C�
D | C �∼ D ∈ D} we denote the materialisation of D.

We can show that, given KB = T ∪ D and D′ ⊆ D, if T |=
�

D′ � ¬C, a
DCI C �∼ D is exceptional w.r.t. T ∪ D′, thereby justifying the use of Line 3 of
function Exceptional.

Lemma 11. For KB = T ∪ D, if T |=
�

D � ¬C then C �∼ D is exceptional
w.r.t. T ∪ D.

While the converse of Lemma 11 does not hold, it follows from Lemma13
below that this reduction to classical entailment checking, when applied itera-
tively (lines 4–14 in function ComputeRanking below), fully captures the seman-
tic notion of exceptionality of Definition 23.
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Example 2 (continued). If we feed the knowledge base in Example 2 to the func-
tion Exceptional(·), we obtain the output

E = {EmpStud �∼ ∃receives.TaxInv,EmpStud � Parent �∼ ¬∃receives.TaxInv}.

This is because both concepts on the LHS of the DCIs in D′ are exceptional
w.r.t. KB in Example 2.

We now describe the overall ranking algorithm, presented in the function
ComputeRanking(·) below. The algorithm makes a finite sequence of calls to
the function Exceptional(·), starting from the knowledge base KB = T ∪ D. The
algorithm terminates with a partitioning of the axioms in the dTBox, from which
a ranking of axioms can easily be obtained.

Function. ComputeRanking(KB)
Input: KB = T ∪ D
Output: KB∗ = T ∗ ∪ D∗ and a partitioning R = {D0, . . . , Dn} for D∗

1 T ∗ ← T
2 D∗ ← D
3 R ← ∅
4 repeat
5 i ← 0
6 E0 ← D∗

7 E1 ← Exceptional(T ∗, E0)
8 while Ei+1 �= Ei do
9 i ← i + 1

10 Ei+1 ← Exceptional(T ∗, Ei)

11 D∗
∞ ← Ei

12 T ∗ ← T ∗ ∪ {C 
 D | C �∼ D ∈ D∞}
13 D∗ ← D∗ \ D∗

∞
14 until D∗

∞ = ∅
15 for j ← 1 to i do
16 Dj−1 ← Ej−1 \ Ej

17 R ← R ∪ {Dj−1}
18 return KB∗ = T ∗ ∪ D∗, R

We initialise T ∗ to T and D∗ to D (Lines 1 and 2 of ComputeRanking). We
then repeatedly invoke the function Exceptional to obtain a sequence of sets of
DCIs E0, E1, . . ., where E0 = D∗ and each Ei+1 is the set of exceptional axioms
in Ei (Lines 4–14 of ComputeRanking(·)).

Now, let CD∗ =def {C | C �∼ D ∈ D∗}, i.e., CD∗ is the set of all antecedents
of DCIs in D∗. The exceptionality ranking of the DCIs in D∗ computed by
Exceptional(·) makes use of T ∗, D∗, and CD∗ . That is, it checks, for each concept
C ∈ CD∗ , whether T ∗ |=

�
D∗ � ¬C. In case C is exceptional, every DCI

C �∼ D ∈ D∗ is exceptional w.r.t. KB∗ = T ∗ ∪ D∗ and is added to the set E1.
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If E1 �= E0, then we call Exceptional(·) for T ∗ ∪ E1, defining the set E2, and
so on. Hence, given KB∗ = T ∗ ∪ D∗, we construct a sequence E0, E1, . . . in the
following way, for i ≥ 0:

– E0 =def D∗

– Ei+1 =def Exceptional(T ∗, Ei)

Example 2 (continued). Using the knowledge base of Example 2, we initialise T ∗

as {EmpStud � Stud} and let

D∗ =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

We then obtain the following exceptionality sequence:

E0 =

⎧
⎪⎨

⎪⎩

Stud �∼ ¬∃receives.TaxInv,
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

⎫
⎪⎬

⎪⎭

E1 =

{
EmpStud �∼ ∃receives.TaxInv,

EmpStud � Parent �∼ ¬∃receives.TaxInv

}

E2 = {EmpStud � Parent �∼ ¬∃receives.TaxInv}

Since D∗ is finite, the construction will eventually terminate with a fixed point
Efix = Exceptional(T ∗, Efix). If this fixed point is non-empty, then the axioms in
there are said to have infinite rank. We therefore set D∗

∞ as Efix (Line 11 of
ComputeRanking(·)), and the classical translations of these axioms are moved to
the TBox. Hence we redefine the knowledge base in the following way (Lines 12
and 13 of ComputeRanking(·)):

– T ∗ ← T ∗ ∪ {C � D | C �∼ D ∈ D∗
∞};

– D∗ ← D∗ \ D∗
∞.

Function ComputeRanking(·) must terminate since D is finite, and at every
iteration, D∗ becomes smaller (hence, we have at most |D| iterations). In the
end, we obtain a knowledge base KB∗ = T ∗ ∪ D∗ which is modularly equivalent
to the original knowledge base KB = T ∪ D (see Lemma 12 below), in which D∗

has no DCIs of infinite rank (all the strict knowledge ‘hidden’ in the dTBox has
been moved to the TBox). In the following, we say that such a knowledge base
is in rank normal form.

Once we have obtained the knowledge base KB∗ = T ∗ ∪ D∗ and the final
sequence E0, E1, . . . , Efix, we partition the set D∗ into the sets D0, . . . ,Dn, for
some n ≥ 0 (Lines 15–17 of ComputeRanking(·)).



164 K. Britz et al.

Example 2 (continued). For KB as in Example 2, we obtain the sequence:
D0 = {Stud �∼ ¬∃receives.TaxInv}
D1 = {EmpStud �∼ ∃receives.TaxInv}
D2 = {EmpStud � Parent �∼ ¬∃receives.TaxInv}
At this stage, we have moved all the classical information possibly ‘hidden’

inside the dTBox to the TBox, and ranked all the remaining DCIs, where the
rank of a DCI is the index of the unique partition to which it belongs, defined
as follows:

Definition 26 (Ranking). For every C,D ∈ L:

– rk(C) =def i, 0 ≤ i ≤ n, if
�

Ei is the first element in (
�

E0, . . . ,
�

En) s.t.
T ∗ �|=

�
Ei � C � ⊥;

– rk(C) =def ∞ if there is no such
�

Ei;
– rk(C �∼ D) =def rk(C).

Remark 1. For every i ≤ j ≤ n, |=
�

Ej �
�

Ei.

Remark 2. For every i < j ≤ n, Di ∩ Dj = ∅.

To summarise, we transform our initial knowledge base KB = T ∪D, obtain-
ing a modularly equivalent knowledge base KB∗ = T ∗ ∪ D∗ (see Lemma 12
below) and a ranking of DCIs in the form of a partitioning of D∗. The main
difference between ComputeRanking(·) and the analogous procedure by Casini
and Straccia [30] is the reiteration of the ranking procedure until D∗

∞ = ∅ (lines
4–14 in ComputeRanking(·)). While the two procedures behave identically in the
case where there are no DCIs C �∼ D s.t. rankKB(C �∼ D) = ∞ in D, the origi-
nal procedure [30] did not handle all the cases correctly in which there is strict
information ‘hidden’ inside the dTBox.

Given the knowledge base KB∗ = T ∗ ∪ D∗, we can now define the main
algorithm for deciding whether a DCI C �∼ D is in the rational closure of KB.
To do that, we use the same approach as in the function Exceptional(·), that is,
given KB∗ = T ∗ ∪ D∗ and our sequence of sets E0, . . . , En, we use the TBox T ∗

and the sets of conjunctions of materialisations
�

E0, . . . ,
�

En.

Definition 27 (Rational Deduction). Let KB = T ∪ D and let C,D ∈ L.
We say that C �∼ D is rationally deducible from KB, denoted KB �rat C �∼ D,
if T ∗ |=

�
Ei � C � D, where

�
Ei is the first element of the sequence�

E0, . . . ,
�

En s.t. T ∗ �|=
�

Ei � ¬C. If there is no such element, KB �rat C �∼ D
if T ∗ |= C � D.

Observe that KB �rat C � D if and only if KB �rat C � ¬D �∼ ⊥, i.e., if and
only if KB �rat C � ¬D � ⊥ (that is to say, T ∗ |= C � D).

The algorithm corresponding to the steps above is presented in the function
RationalClosure(·) below.

Example 2 (continued). Let KB be as in Example 2 and assume we want to
check whether EmpStud�∼∃receives.TaxInv is in the rational closure of KB. Then,
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Function. RationalClosure(KB, α)
Input: KB = T ∪ D, the corresponding KB∗ = T ∗ ∪ D∗, the sequence

E0, . . . , En, and a query α = C �∼ D.
Output: true if KB �rat C �∼ D, false otherwise

1 i ← 0

2 while T ∗ |=
�

Ei � C 
 ⊥ and i ≤ n do
3 i ← i + 1

4 if i ≤ n then
5 return T ∗ |=

�
Ei � C 
 D

6 else
7 return T ∗ |= C 
 D

the while-loop on Line 2 of function RationalClosure(·) terminates when i = 1.
At this stage,

�
Ei = (¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent �

¬∃receives.TaxInv). Given this, one can check that T ∗ �|=
�

Ei � C � ⊥, i.e.,
{EmpStud � Stud} �|= (¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent �
¬∃receives.TaxInv) � EmpStud � ⊥.

Finally, we can confirm that T ∗ �|=
�

Ei � C � D, i.e., {EmpStud � Stud} �|=
(¬EmpStud � ∃receives.TaxInv) � (¬EmpStud � ¬Parent � ¬∃receives.TaxInv) �
EmpStud � ∃receives.TaxInv.

Before we state the main theorem of this section, we need to establish the
correspondence between the ranking function rankKB(·) presented in Sect. 5.1 in
the construction of the rational closure of KB and linked by Theorem 3 to the
definition of rational entailment, and the ranking function rk(·) of Definition 26
used in the above algorithm. We also need to establish that the normalisation
of a knowledge base by our algorithm maintains modular equivalence.

Lemma 12. Let KB = T ∪ D and let KB∗ = T ∗ ∪ D∗ be obtained from KB
through function ComputeRanking(·). Then KB and KB∗ are modularly equiva-
lent.

Lemma 13. For every defeasible knowledge base KB = T ∪D and every C ∈ L,
rankKB(C) = rk(C).

Now we can state the main theorem, which links rational entailment to ratio-
nal deduction via Theorem 3.

Theorem 4. Let KB = T ∪ D and let C,D ∈ L. Then KB �rat C �∼ D iff
KB |= ratC �∼ D.

As an immediate consequence, we have that the function RationalClosure(·)
is correct w.r.t. the definition of rational closure in Definition 24.

Corollary 3. Checking rational entailment is exptime-complete.
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Hence entailment checking for defeasible ontologies is just as hard as classical
subsumption checking.

We conclude this section by noting that although rational closure is viewed
as an appropriate form of defeasible reasoning, it does have its limitations, the
first of which is that it does not satisfy the presumption of independence [51,
Section 3.1]. To consider a well-worn example, suppose we know that birds usu-
ally fly and usually have wings, that both penguins and robins are birds, and
that penguins usually do not fly. That is, we have the following knowledge base:
KB = {Bird�∼Flies,Bird�∼Wings,Penguin � Bird,Robin � Bird,Penguin�∼¬Flies}.
Rational closure allows us to conclude that robins usually have wings, since they
are viewed as typical birds, thereby satisfying the presumption of typicality.
But with penguins being atypical birds, rational closure does not allow us to
conclude that penguins usually have wings, thus violating the presumption of
independence which, in this context, would require the atypicality of penguins
w.r.t. flying to be independent of the typicality of penguins w.r.t. having wings.

This deficiency is well-known, and there are other forms of defeasible reason-
ing that can overcome this, most notably lexicographic closure [31], relevance
closure [33], and inheritance-based closure [32,34]. But note that the presump-
tion of independence is propositional in nature. In fact, the DL version of lexico-
graphic closure is essentially a lifting to the DL case of a propositional solution
to the problem [51].

What is perhaps of more interest is the inability of rational closure to deal
with defeasibility relating to the non-propositional aspects of descriptions logics.
For example, Pensel and Turhan [54,55] have shown that rational closure across
role expressions does not always support defeasible inheritance appropriately.

Suppose we know that bosses are workers, do not have workers as their supe-
riors, and are usually responsible. Furthermore, suppose we know that workers
usually have bosses as their superiors. We thus have the knowledge base:

KB =

⎧
⎪⎪⎨

⎪⎪⎩

Boss � Worker,
Boss � ¬∃hasSuperior.Worker,

Boss �∼ Responsible,
Worker �∼ ∃hasSuperior.Boss

⎫
⎪⎪⎬

⎪⎪⎭

Since workers usually have bosses as their superiors, and bosses are usually
responsible, one would expect to be able to conclude that workers usually have
responsible superiors. But rational closure is unable to do so. From the perspec-
tive of the algorithm for rational closure, this can be traced back to the use
of materialisation (Definition 25) when computing exceptionality, as Pensel and
Turhan [54] show. A more detailed semantic explanation for this inability is still
forthcoming, though.

6 Beyond Defeasible Concept Inclusion

Defeasible reasoning in description logics extends beyond defeasible concept
inclusion. In this section, we outline two such extensions following on from the
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work presented here, firstly to account for named individuals in defeasible knowl-
edge bases, and secondly to introduce defeasible class descriptions.

The introduction of defeasible reasoning also for ABox reasoning is a neces-
sary extension of the results we have presented in this chapter. We want to be
able to derive assertions of the kind “Presumably, the individual a falls under
the concept C”, and, in the present framework, the natural way of doing it would
be to model the presumption of typicality also w.r.t. the individuals named in
the ABox, that is, to maximise the amount of defeasible information we asso-
ciate with each individual: If all we know about Ann is that she is a student,
we want to be able to conclude that presumably Ann does not get a tax invoice.
The main technical problem in the present framework is the possibility of hav-
ing multiple distinct configurations that maximise the presumption of typicality
w.r.t. the individuals [30, Example 7]. Different solutions have been proposed
[29,30,35,45,55], but, as mentioned in Sect. 2, we are not going to introduce
here the different proposals regarding the introduction of defeasible reasoning
for the ABox.

The systems proposed by Giordano and others [39,40,44,45] introduce an
operator T (typical) associated to the concepts. This allows extra expressivity
in modelling defeasible information: an inclusion like Stud� ¬∃receives.TaxInv �
T(Stud), indicating that the students that do not receive the a tax invoice must
be considered typical students, is not expressible in a language using only defea-
sible subsumptions. However, in most of the systems they introduce, T can be
used only in expressions of the form T(C) � D, which is interpreted exactly as
an expression C �∼D. Booth and others [10] have shown that, even at the propo-
sitional level, using freely an operator like T creates the possibility of multiple
configurations satisfying the presumption of typicality, in a way that, from the
formal point of view, is analogous to the problem registered working with the
ABoxes.

Given the special status of subsumption in DLs in particular and the histor-
ical importance of argument forms and entailment in logic in general, the bulk
of the effort in non-monotonic reasoning has quite naturally been spent on the
definition of a proper account of defeasible subsumption and the characterisation
of appropriate notions of defeasible entailment.

However, given the importance of concept descriptions in DLs, an extension
of this work to also represent defeasible classes is called for. This includes the
ability to represent notions such as plausible value or existential restrictions in
complex concept descriptions [17,23,24,27]. There are several ways to accomplish
this, and we focus here on one such proposal.

We could, for example, ask whether the constraint that workers usually have
bosses as their superior is necessarily correctly captured by the defeasible sub-
sumption: Worker �∼ ∃hasSuperior.Boss. An alternative reading of the phrase is
that all workers have some superior, who is usually a boss. It is therefore the class
description ∃hasSuperior.Boss which is defeasible. rather than the subsumption
statement. This can be captured by extending the concept language of ALC as
follows:
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C ::= � | ⊥ | C | ¬C | C � C | C � C | ∀r.C | ∃r.C | ∨∼r.C | −∼−|r.C

With L̃ we denote the extended language of all (possibly defeasible) ALC con-
cepts.

Definition 28. Let P = 〈ΔP , ·P ,≺P〉 be a preferential interpretation. Let r ∈ R
and C ∈ C. The truth conditions for defeasible universal restriction

∨∼r.C and
strict existential restriction −∼−|r.C are given by:

(
∨∼r.C)P =def {x ∈ ΔP | min≺P rP(x) ⊆ CP};
(−∼−|r.C)P =def {x ∈ ΔP | min≺P rP(x) ∩ CP �= ∅}.

That −∼−|r.C captures the notion of strict existential restriction follows since,
not only does the semantics require that some r-filler be in CP , but it also
demands that some most preferred r-filler be in CP . In contrast, defeasible uni-
versal (value) restriction relaxes the condition that all r-fillers be in CP , requiring
only that all most preferred r-fillers be in CP .

Definition 28 now allows us to state that every worker has some typical supe-
rior who is a boss, i.e., Worker � −∼−|hasSuperior.Boss, or that any superior of a
worker is usually a boss, i.e., Worker � ∨∼hasSuperior.Boss.

The defeasible quantifiers of Definition 28 are based on a single order on
objects, but this generalises naturally to a parameterised ordering on either
objects or role interpretations [23,27], the details of which we omit here. The
ramifications of extending the language with defeasible quantification have also
been investigated for modal logics, where it assumes the form of defeasible modal-
ities [25,26].

7 Concluding Remarks

In this paper we have provided an overview of a specific approach to defeasible
reasoning—one that is based on work initiated by Kraus, Lehmann and Magi-
dor for the propositional case [49,52]. This approach has a number of attractive
characteristics: It has a simple and intuitive semantics for defeasible subsump-
tion in description logics that is general enough to constitute the core framework
within which to investigate defeasible extensions to DLs. It also allows for the
characterisation of two forms of defeasible subsumption relations—preferential
and rational subsumption—providing weight to the claim that the semantic con-
structions are intuitively appropriate. In addition, it provides the basis for defin-
ing an appropriate form of defeasible entailment—a description logic version of
what is known as rational closure in the propositional case. Moreover, it comes
equipped with an algorithm for computing the DL version of rational closure
with computational complexity that is no worse than the complexity of entail-
ment checking in ALC. Importantly from a practical perspective, the algorithm
can be reduced to a number of classical entailment checks, which means that it
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can be implemented on top of existing (highly optimised) description logic rea-
soners. In terms of performance, a relatively naïve version of such an algorithm
has already been shown to scale well in practice [28].

Section 6 touched on some ways in which defeasible reasoning for descrip-
tion logics has already been extended beyond defeasible concept inclusion, but
all these proposals are only preliminary investigations with much work that
still needs to be done. Further topics for future research include the study of
role-based defeasible constructors [23,24,27] and the investigation of defeasible
versions of query answering [64]. Finally, a somewhat different area for future
exploration is one that is aimed at exploiting the well-known connection between
belief revision and rational consequence in the propositional case [38]. Given this
connection on the propositional level, it seems reasonable to expect that the
results presented in this paper can form the basis of a different perspective on
belief revision for description logics.
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Abstract. In this paper we introduce a combination of Answer Set Pro-
gramming (ASP) and Description Logics (DL) (in particular, ALC) on
top of a modal temporal basis using connectives from Linear-time Tem-
poral Logic (LTL). On the one hand, for the temporal extension of ALC,
we depart from Baader et al.’s proposal ALC-LTL that restricts the use
of temporal operators to occur only in front of DL axioms. On the other
hand, for the temporal extension of ASP we use its formalization in
terms of Temporal (Quantified) Equilibrium Logic (TEL). This choice
is convenient since (non-temporal) Equilibrium Logic has been already
used to capture the semantics of hybrid theories, that is, combinations
of ASP programs with DL axioms. Our proposal, called ALC-TEL, actu-
ally interprets ALC axioms in terms of their translation into first order
sentences, so that the semantics of TEL is eventually used in the back-
ground. The resulting formalism conservatively extends TEL, hybrid the-
ories and ALC-LTL as particular cases.

1 Introduction

Due to its versatility, Answer Set Programming (ASP) [1,2] is one of the
paradigms for non-monotonic reasoning that has been more frequently extended
in the literature (if not the most). Each extension has been motivated by a given
type of reasoning problem or family of application domains. For instance, the
treatment of dynamic scenarios and transition systems was present from the very
beginning of ASP [3] and eventually led to a combination of ASP with modal
operators from Linear-time Temporal Logic (LTL) [4,5], giving birth to so-called
Temporal Equilibrium Logic (TEL) [6]. As another example, the ASP extension
of Hybrid Knowledge Bases [7] allows for combining non-monotonic logic pro-
grams with classical inference about ontologies, in terms of Description Logic
(DL) [8]. Both extensions are based on the underlying formalism of Equilibrium
Logic [9] but work in different directions: a natural question is what happens
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when we try to embrace both features, time and ontologies, in a common ASP
extension. In the monotonic case, several approaches considered the introduc-
tion of LTL operators in DL at different levels, at the cost of a high complexity,
or even undecidability for some reasoning tasks. A simple approach that avoids
these inconveniences is ALC-LTL [10], proposed by Baader, Ghilardi and Lutz,
that extends ALC [11] with LTL constructs, but restricts the use of temporal
operators to occur only in front of DL axioms.

In this paper, we consider the same temporal extension of DL in ALC-LTL
but under the answer set semantics for temporal logic programs provided by
TEL, so that temporal ALC expressions can be combined with temporal logic
programs. The resulting formalism, ALC-TEL, conservatively extends TEL,
hybrid theories and ALC-LTL as particular cases. This work is a preliminary
step to introduce the logic and informally explain its behavior using a simple
example.

The rest of the paper is organized as follows. In the next section, we recall
the basic definition of ALC and its translation to First Order Logic. In Sect. 3
we present the first order version of TEL as introduced in [12], but with a slight
modification to allow open domains and capture ALC quantification. Section 4
defines the ALC-LTL syntax whereas Sect. 5 incorporates those constructs into
TEL using their first order translation together with some additional axiomati-
zation. Finally, Sect. 6 concludes the paper.

2 Description Logic ALC
The alphabet of an ALC theory [11,13] is a triple 〈NC , NR, NI〉 of mutually disjoint
sets of names referring to concepts, roles and individuals, respectively. As an exam-
ple, consider the alphabet NC = {Disease, Treatment, Vaccine, Medication},
NR = {curedBy}, NI = {AIDS, Smallpox}.

A concept (description) C is an expression that follows the grammar:

C ::= c | ¬C | C � C | ∃r.C

where c ∈ NC is a concept name and r ∈ NR a role name. We use the following
abbreviations for concept descriptions:

C � D
def= ¬(¬C � ¬D)

� def= c � ¬c
⊥ def= ¬�

∀r.C def= ¬∃r.(¬C)

for some concept name c ∈ NC . A general concept inclusion (GCI) axiom is an
expression of the form C � D where C and D are concept descriptions. A T-Box
is a set of GCI axioms. We sometimes write C ≡ D as an element of a T-Box
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Θ to mean that the two axioms C � D and D � C are elements of Θ. As an
example, consider the T-Box:

Vaccine � Medication � Treatment (1)
∃curedBy.Treatment � Disease (2)

meaning that vaccines and medications are treatments, and that anything cured
by a treatment must be a disease. An assertion (axiom) is a construct of one of
the forms:

a : C (a, b) : r

where a, b ∈ NI are individual names, r ∈ NR is a role name and C is an
arbitrary concept description. An A-Box is a set of assertions. For instance, the
A-Box:

Smallpox : ∃curedBy.Vaccine (3)
AIDS : Disease � ¬∃curedBy.Treatment (4)

tells us that smallpox is cured1 by a vaccine whereas AIDS is a disease and has
no treatment for its cure. The fact that Smallpox is a disease can be derived
from the previous T-Box since it is cured by some vaccine, and the later is a
treatment. A knowledge base 〈Θ,Ω〉 consists of a T-Box Θ and an A-Box Ω.

In the rest of the paper, we treat ALC through its standard First Order
Logic translation (see for instance [13]). However, for the sake of completeness,
we provide next the standard definition of the ALC semantics.

Definition 1 (ALC interpretation). An ALC interpretation I is a pair
(ΔI , ·I) where ΔI is a non-empty set called the domain (containing individ-
uals) and ·I is a mapping on NC ∪NR ∪NI that assigns: an individual aI ∈ ΔI

to each individual name a ∈ NI ; a set of individuals cI ⊆ ΔI to each concept
name c ∈ NC ; and a set of pairs of individuals rI ⊆ ΔI ×ΔI to each role name
r ∈ NR. ��
Definition 2 (Interpretation of concept descriptions). Given interpre-
tation I = (ΔI , ·I) its extension to concept descriptions follows the recursive
rules:

(¬C)I def= ΔI \ CI

(C � D)I def= CI ∩ DI

(∃r.C)I def= {d ∈ ΔI | there is a d′ with (d, d′) ∈ rI such that d′ ∈ CI}
The interpretation of derived concepts can be easily deduced:

(C � D)I = CI ∪ DI

�I = ΔI

⊥I = ∅
(∀r.C)I = {d ∈ ΔI | all d′ with (d, d′) ∈ rI satisfy d′ ∈ CI}

1 Understanding here curedBy as “cured or prevented by.”.
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As expected, an interpretation I satisfies a GCI axiom C � D, written
I |= C � D, iff CI ⊆ DI . Similarly, we define satisfaction for assertions as:
I |= a : C iff aI ∈ CI ; and I |= (a, b) : r iff (aI , bI) ∈ rI . Interpretation I is a
model of a knowledge base 〈Θ,Ω〉 iff it satisfies all GCIs in the T-Box Θ and all
assertions in the A-Box Ω.

As said before, we are interested in the translation of ALC into First Order
Logic (FOL) [13]. Given an ALC alphabet NC ∪ NR ∪ NI we define the corre-
sponding First Order signature with one unary predicate c(x) per each c ∈ NC ,
binary predicate r(x, y) per each r ∈ NR and constant name a per each a ∈ NI .
The FOL translation of a concept description C with respect to a free variable
x is a formula denoted as tx(C) and recursively defined as follows:

tx(c) def= c(x) for any concept namec ∈ NC

tx(¬C) def= ¬tx(C)
tx(C � D) def= tx(C) ∧ tx(D)
tx(∃r.C) def= ∃y( r(x, y) ∧ ty(C) )

Notice that y is a variable name2 different from x and bound in ∃y. It is relatively
easy to check that the translation of derived concepts can be captured by the
following equivalent FOL formulas:

tx(C � D) ↔ tx(C) ∨ tx(D)
tx(�) ↔ �
tx(⊥) ↔ ⊥

tx(∀r.C) ↔ ∀y( r(x, y) → ty(C) )

The translation of a GCI axiom C � D is defined as

t(C � D) def= ∀x(tx(C) → tx(D))

For instance, the translation of (2) corresponds to:

∀x(∃y (curedBy(x, y) ∧ Treatment(y)) → Disease(x))

We also define the translation of assertions as:

t(a : C) def= tx(C)[x/a] t((a, b) : r) def= r(a, b)

where [x/a] stands for the substitution of variable x by the individual name a.
As an example, the translation of (3) amounts to:

∃y (curedBy(Smallpox, y) ∧ Vaccine(y))

Given a knowledge base 〈Θ,Ω〉, we define its translation as the union t(Θ)∪
t(Ω) of the sets of translations of all GCIs in Θ and assertions in Ω, respectively.

Proposition 1. There is a one-to-one correspondence between ALC models of
〈Θ,Ω〉 and FOL models of t(Θ) ∪ t(Ω).
2 In fact, we can define translation ty(C) using x as new bound variable, and the whole
translation belongs to the 2-variable fragment of FOL.
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3 Temporal Quantified Equilibrium Logic

The definition of Temporal Quantified Equilibrium logic we use in the current
paper is an extension of a previous version defined in [12] to cope with open
domains as in Quantified Equilibrium Logic from [7]. Syntactically, we consider
function-free first-order languages L = 〈C,P〉 built over a set of constant sym-
bols, C, and a set of predicate symbols, P. Additionally, each p ∈ P has an
associated arity or number of arguments. An atom is any p(t1, . . . , tn) where
p ∈ P is a predicate with arity n ≥ 0 and each ti is a term, that is, a constant or
a variable in its turn. We assume the existence of a binary equality predicate ‘=’
∈ P, written in infix notation. Using L, connectors and variables, an L-formula
ϕ is defined by following the grammar:

ϕ ::= p(t1, . . . , tn) | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 |
© ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2 | ∀x ϕ | ∃x ϕ | (ϕ)

where p(t1, . . . , tn) is an atom, x is a variable and ©, U and R respectively stand
for “next”, “until” and “release.” A theory is a finite set of formulas. We use the
following derived operators:

¬ϕ
def= ϕ → ⊥ ♦ϕ

def= � U ϕ

� def= ¬⊥ �ϕ
def= ⊥ R ϕ

ϕ ↔ ψ
def= (ϕ → ψ) ∧ (ψ → ϕ)

for any formulas ϕ,ψ. Note that ¬ϕ will be used to represent default negation.
The application of i consecutive ©’s is denoted as follows: ©iϕ

def= ©(©i−1ϕ)
for i > 0 and ©0ϕ

def= ϕ. We say that a term, atom, formula or theory is ground
if it does not contain variables. A sentence or closed-formula is a formula without
free-variables (defined as usual). A theory Γ is a set of sentences.

A universe is a pair (D, σ) where D is a non-empty set called the domain
and σ is a mapping σ : C ∪D → D satisfying σ(d) = d for every d ∈ D. We call d
an unnamed individual if there is no constant c ∈ C with σ(c) = d. Throughout
this paper, σ is subject to the unique names assumption (UNA) stating that
different individual names are mapped to different domain elements, that is,
σ(c) �= σ(c′) if c �= c′ for any c, c′ ∈ C. This is a common assumption both in
Description Logics and in Logic Programming. In fact, the latter usually makes
a stronger assumption, taking the Herbrand Universe (C, σ) where D = C, and
so, σ(c) = c for all c ∈ C. In this paper, however, we adopt an open domain as
in [7] to accommodate the use of quantification from Description Logic.

By AtD(C,P) we denote the set of ground atoms constructible from the
language L′ = 〈C ∪ D,P〉. A first-order LTL-interpretation for language L =
〈C,P〉 is a structure 〈(D, σ),T〉 where (D, σ) is a universe as above and T is
an infinite sequence of sets, T = {Ti}i≥0 with Ti ⊆ AtD(C,P). Intuitively, Ti

contains those ground atoms that are true at situation i. For any T = {Ti}i≥0

and k ≥ 0, by T[k] we denote the LTL-interpretation T = {Ti}i≥k that starts
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at the k-th position of T. Given two sequences of sets H and T we say that H
is smaller than T, written H ≤ T, when Hi ⊆ Ti for all i ≥ 0. As usual, H < T
stands for: H ≤ T and H �= T.

Definition 3. A temporal quantified here-and-there (or just TQHT) interpre-
tation is a tuple M = 〈(D, σ),H,T〉 where 〈(D, σ),H〉 and 〈(D, σ),T〉 are two
LTL-interpretations satisfying H ≤ T. ��
In the definition above, we respectively call H and T the “here” and “there” com-
ponents of M. A TQHT-interpretation of the form M = 〈(D, σ),T,T〉 is said to
be total. If M = 〈(D, σ),H,T〉 we write M[k] to stand for 〈(D, σ),H[k],T[k]〉.
The satisfaction relation for M = 〈(D, σ),H,T〉 and a formula α, written
M |= α, is recursively defined as follows:

M |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ H0.
M |= t = s iff σ(t) = σ(s)
M �|= ⊥
M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.
M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ.
M |= ϕ → ψ iff 〈(D, σ), w,T〉 �|= ϕ or 〈(D, σ), w,T〉 |= ψ

for all w ∈ {H,T}
M |= ©ϕ iff M[1] |= ϕ.
M |= ϕ U ψ iff ∃j ≥ 0, M[j] |= ψ

and (M[i] |= ϕ for all i, 0 ≤ i < j).
M |= ϕ R ψ iff ∀j ≥ 0, M[j] |= ψ

or (M[i] |= ϕ for some i, 0 ≤ i < j).
M |= ∀x ϕ(x) iff 〈(D, σ), w,T〉 |= ϕ(d)

for every d ∈ D and every w ∈ {H,T}.
M |= ∃x ϕ(x) iff M |= ϕ(d) for some d ∈ D.

where by ϕ(d) we denote the replacement by d of all free occurrences of x in
ϕ(x). An interpretation M is a model of a theory Γ , written M |= Γ , if it
satisfies all the sentences in Γ . The resulting logic is called Temporal Quan-
tified Here-and-There Logic with equality and static3 domains, and we simply
abbreviate it as TQHT. It is not difficult to see that, if we restrict ourselves to
total TQHT-interpretations, 〈(D, σ),T,T〉 |= ϕ iff 〈(D, σ),T〉 |= ϕ in first-order
LTL. Furthermore, the following properties can be easily checked by structural
induction.

Proposition 2. For any formula ϕ, and interpretation 〈(D, σ),H,T〉:
(i) if 〈(D, σ),H,T〉 |= ϕ, then 〈(D, σ),T,T〉 |= ϕ
(ii) 〈(D, σ),H,T〉 |= ¬ϕ iff 〈(D, σ),T,T〉 �|= ϕ

In general, it is clear that the other direction of (i) does not hold: any non-
total interpretation contains atoms ϕ = p(t1, . . . , tn) ∈ Ti \ Hi for some i ≥ 0.

3 The name “static” refers here to the fact that the same domain D is used both for
H and T.
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Without loss of generality, suppose i = 0 (we can always take M[i] instead).
Then, for those atoms, 〈(D, σ),T,T〉 |= ϕ but 〈(D, σ),H,T〉 �|= ϕ. Moreover, by
(ii), the former also means 〈(D, σ),H,T〉 �|= ¬ϕ, so we conclude that non-total
interpretations falsify the formula ϕ ∨ ¬ϕ, a classical tautology known as the
excluded middle axiom. This axiom is not valid either in intuitionistic logic or in
the intermediate logic of Here-and-There [14], where ‘¬’ is weaker than classical
negation. It is still possible to add this axiom for some predicates p ∈ P by
forcing the condition:

� ∀x1 . . . ∀xn (p(x1, . . . , xn) ∨ ¬p(x1, . . . , xn)) (EMp)

The following results explain the effect of including ((EMp)) among the for-
mulas of our theory.

Proposition 3. An interpretation M = 〈(D, σ),H,T〉 satisfies (EMp)for some
p ∈ P iff, for all i ≥ 0: p(t1, . . . , tn) ∈ Ti is equivalent to p(t1, . . . , tn) ∈ Hi.

Corollary 1. Given language L = 〈C,P〉, let P ′ ⊆ P be a subset of predicates
and let M |= (EMp) for all p ∈ P ′. Then, 〈(D, σ),H,T〉 |= ϕ amounts to
〈(D, σ),T,T〉 |= ϕ for any formula ϕ in the language L = 〈C,P ′〉.
Corollary 2. Given language L = 〈C,P〉, the addition of (EMp)for all p ∈ P
makes TQHT collapse into LTL.

As an illustration of TQHT satisfaction, consider the propositional formula:

¬inmune → vulnerable (5)

This formula corresponds to the ASP ground rule:

vulnerable :- not inmune.

Any model M = 〈(D, σ),H,T〉 of (5) must satisfy that 〈(D, σ), w,T〉, 0 �|=
¬inmune or 〈(D, σ), w,T〉, 0 |= vulnerable for all w ∈ {H,T}. By Proposition 2
(ii), the former is equivalent to 〈(D, σ),T,T〉, 0 |= inmune, that is, inmune ∈ T0,
whereas the latter ammounts to vulnerable ∈ H0 for w = H and vulnerable ∈
T0 for w = T. Therefore, models of (5) are such that, if inmune �∈ T0 then
vulnerable ∈ H0 ⊆ T0.

To introduce non-monotonicity, we define a set of selected total TQHT mod-
els we will call temporal equilibrium models, or just temporal stable models, if we
consider their corresponding LTL representation.

Definition 4 (Temporal Equilibrium Model). A temporal equilibrium
model of a theory Γ is a total model M = 〈(D, σ),T,T〉 of Γ such that there
is no H < T satisfying 〈(D, σ),H,T〉 |= Γ . When this happens, we further say
that the LTL-interpretation 〈(D, σ),T〉 is a temporal stable model of Γ . ��
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The logic induced by temporal equilibrium models is called Temporal Quanti-
fied Equilibrium Logic (TEL, for short). We can identify temporal logic programs
with variables as a fragment of first order temporal theories. For a detailed defini-
tion of this fragment see [12]. In the previous simple example (5), we can observe
that any total interpretation M = 〈(D, σ),T,T〉 with inmune ∈ T0 is a TQHT
model, but we can always form another interpretation M′ = 〈(D, σ),H,T〉 with
H0 = T0 \ {inmune, vulnerable} and Hi = Ti for i > 0 such that it is also a
TQHT model of (5) but H < T, so M is not in equilibrium. If, on the contrary,
inmune �∈ T0, then the satisfaction of (5) requires vulnerable ∈ H0 ⊆ T0 for any
TQHT model, and there is no way to form a smaller model by removing atoms
in T0. For the rest of situations i > 0, any Ti containing at least one atom can
always be reduced to Hi = ∅ while keeping the satisfaction of (5), since this
formula only affects to the initial situation. It is not difficult to see that the only
temporal equilibrium model of (5) corresponds to T0 = {vulnerable} and Ti = ∅
for i > 0. Let us consider next a more elaborated example.

Example 1. Take the following temporal logic program:

Person(x) ∧ Disease(y) ∧ ¬Immune(x, y) → Vulnerable(x, y) (6)
�(Immune(x, y) → ©Immune(x, y)) (7)

�(Vulnerable(x, y) ∧ ¬ © Immune(x, y) → ©Vulnerable(x, y)) (8)
�(Vaccinate(x, y) → Immune(x, y)) (9)

�Person(John) ∧ �Disease(Smallpox) (10)
©3Vaccinate(John, Smallpox) (11)

where we assume that all free variables in a formula are universally quantified.
Formula (6) asserts that, initially, any person x is vulnerable to any desease y,
unless we can prove it is immune. As we saw before, the effect of ¬ϕ in TEL
is that of default negation of ϕ, that is, ¬ϕ holds when there is no evidence
on ϕ. Formula (7) tells us that once somebody becomes immune to some dis-
ease, it remains so forever. A similar expression is (8), saying that someone
vulnerable remains so, but this time is under the default condition that there
is no evidence of becoming immune. Formulas of the form (8) are called iner-
tia rules. The expression (9) means that the effect of vaccinating x against y is
becoming immune. Finally, (10) contains some typing information saying that
John is (always) a person and Smallpox is (always) a disease, whereas (11)
asserts that John has been vaccinated at situation i = 3. Program (6)–(11)
has a temporal stable model 〈(D, σ),T〉 where D = C = {John, Smallpox}, σ
is the identity relation and the only states making Vulnerable(John, Smallpox)
true are i ∈ {0, 1, 2} whereas Immune(John, Smallpox) becomes true for all
i ≥ 3. The rest of stable models only vary in the extension of D (we can have
arbitrary unnamed individuals) and the assignment σ, provided that UNA is
respected. Suppose we are said now that John has some genetic anomaly that
made him immune to Smallpox from the very beginning. If we add the formula
Immune(John, Smallpox) to (6)–(11) then Vulnerable(John, Smallpox) is never
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derived and we obtain �Immune(John, Smallpox) as a conclusion. This last
variation illustrates the non-monotonic behavior of TEL entailment relation. ��
Without entering into further detail and just as an illustration, Fig. 1 shows an
encoding of Example 1 in the language of the temporal ASP solver telingo [15].
The correspondence of program rules with the respective formulas (6)–(11) is
pretty obvious in most cases. The only difference is that telingo uses the previ-
ous operator in rules representing transitions between two states, rather than the
next operator. Thus, for instance, ’inmune(X,Y) must be read as “previously,
inmune(X,Y) was true”. On the other hand, the next operator used on facts is
represented as >, as we can see in the last line.

#program initial.

vulnerable(X,Y) :- person(X), disease(Y), not inmune(X,Y).

#program dynamic.

inmune(X,Y) :- ’inmune(X,Y).

vulnerable(X,Y) :- ’vulnerable(X,Y), not inmune(X,Y).

#program always.

inmune(X,Y) :- vaccinate(X,Y).

person(john).

disease(smallpox).

#program initial.

&tel{ > > > vaccinate(john,smallpox) }.

Fig. 1. An encoding of Example 1 in the language of the temporal ASP solver telingo.

4 ALC-LTL

The combination of description logics with temporal patterns is an important
field of knowledge representation that has been widely studied in the literature
(see, for instance, the surveys [16–18]). In a cornerstone paper, Baader, Ghi-
lardi and Lutz [10] proposed the temporal extension ALC-LTL where temporal
operators are only introduced in front of ALC axioms, but not as concept con-
structors. This guaranteed decidability and significantly reduced the complexity
of different reasoning tasks (depending on whether rigid roles are considered or
not) while keeping enough expressiveness for solving many practical problems.
According to [10], an ALC-LTL formula ϕ is defined by the grammar:

α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U ϕ2 | ©ϕ

where α is an ALC axioms. We assume the same abbreviations for temporal
operators seen in Sect. 3. For ALC-LTL formulas, ϕ → ψ can be defined as ¬ϕ∨ψ
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and ϕ R ψ can be defined as ¬(¬ϕ U ¬ψ) (something that, in general, TEL does
not satisfy). The semantics for ALC-LTL is provided in [10] by considering an
infinite sequence {Ii}i≥0 of ALC interpretations Ii. In our case, however, we will
be more interested in the first order translation of ALC-LTL. We assume that
any ALC axiom α actually represents the first order formula t(α) as defined in
Sect. 2. Then, an ALC-LTL formula may be simply seen as an abbreviation of
first order temporal formula. To give an example, the ALC-LTL formula:

♦�(AIDS : ∃curedBy.Treatment)

expresses the wish that a definitive treatment for AIDS is eventually found and,
after applying translation t(·) becomes the first order temporal formula:

♦� ∃y(curedBy(AIDS, y) ∧ Treatment(y))

Baader et al. define rigid concepts and roles as those whose interpretation does
not vary along time (otherwise, they are called flexible instead). Using the FOL
representation, for any rigid concept c ∈ NC and rigid role r ∈ NR we have:

∀x (c(x) ↔ �c(x))
∀x∀y (r(x, y) ↔ �r(x, y))

5 ALC-TEL

Following the encoding in [7] to incorporate hybrid theories in Equilibrium Logic,
we describe now how ALC can be easily embodied in TEL. Given language
L = 〈C,P〉 we suppose that NC ⊆ P and NR ⊆ P become unary and binary
predicates, respectively, and that NI ⊆ C become constant names. The crucial
point in the encoding is the addition of the excluded middle axiom (EMp)for
every predicate p ∈ NC ∪ NR. In this way, the translation of an ALC axiom is
interpreted under classical FOL whereas the translation of any ALC-LTL for-
mula is interpreted under quantified LTL. The final result provides an expressive
formalism that allows combining temporal logic programming and terminological
knowledge. For instance, we can modify now our running example as follows.

Example 2 (Example 1 continued). We can incorporate axioms (1)–(4) assuming
that Vaccine, Medication, Treatment and Disease are rigid concepts, whereas
curedBy is flexible. We also include the rigid concept Person and the constant
John. Our logic program can be modified to include ALC expressions accordingly.
For instance, we can keep untouched the formulas (7)–(9) and (11) since they
do not refer to terminological knowledge, but we replace now (6) by4:

(x : Person) ∧ (y : Disease) ∧ ¬Immune(x, y) → Vulnerable(x, y)

4 We allow now logical variables in assertions, but their translation is straightforward,
playing the role of generic individual names.
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and (10) by the assertions:

John : Person Smallpox : Disease

that do not need temporal operators, since these concepts are rigid. ��
An important issue may occur when dealing with flexible concepts or roles. For
instance, since curedBy is flexible, the fact that smallpox is cured by a vaccine,
(3), is not guaranteed to persist throughout the temporal narrative. To do so,
we can add a rule for strict persistence like (7) as follows:

�(curedBy(x, y) → ©curedBy(x, y))

which works in this case since we can assume that a curable disease does not
cease to be so. However, if we wanted to transform this rule into a general inertia
default, it would not be directly possible, since curedBy behaves as a classical
predicate due to (EMp). An additional auxiliary predicate could still be used for
that purpose. A more ambitious solution would be removing the (EMp)axiom
and allowing concepts and roles to behave as logic programming predicates. This
would allow expressing defaults on Description Logic axioms, but would depart
from the standard interpretation of ALC.

6 Conclusions

We have defined a logical formalism ALC-TEL that, under a modal temporal
basis, combines the Description Logic ALC [11] with logic programming under
Equilibrium Logic semantics. On the one hand, if we disregard the temporal
operators, this formalism embeds hybrid theories from [7], allowing the combi-
nation of description logics (in our case, ALC) with logic programming. On the
other hand, if we add the excluded middle axiom (EMp) for all the predicates
in the language, ALC-TEL collapses into ALC-LTL as defined by Baader et al.
in [10]. Moreover, ALC is encoded in terms of its First Order translation, so
that, once ALC expressions are translated, we simply get Temporal (Quantified)
Equilibrium Logic [6,12] as underlying formalism.

The current proposal opens the exploration of many possible directions. A
first obvious line of future work is the study of syntactic fragments and the
analysis of complexity for their satisfiability problem. An obviously related line
has to do with implementation. For instance, model checking techniques have
been applied both to ALC-LTL [19] and to TEL [20,21] and their efficient com-
bination could be a interesting topic for future investigation. An adaptation of
TEL for practical problem solving in the spirit of ASP has led to a variant [15]
defined on finite traces and its corresponding ASP solver, telingo. The ALC-
TEL formalism may help us to incorporate terminological knowledge in telingo
in the form of DL knowledge bases. Besides, the use of finite traces on temporal
description logics has also been recently proposed in [22]. Another exploratory
line could be a more integrated combination of DL and logic programs where
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defaults were also introduced in DL concepts and roles. Finally, another possible
research direction is the use of ALC-TEL in application domains that involve
temporal reasoning and rich ontologies, following similar steps as [23] in the
medical domain.

Acknowledgments. We dedicate this work to Franz Baader for his inspiring work and
fundamental contributions to the field of Knowledge Representation and Reasoning.
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Abstract. The issue of cooperation, integration, and coordination
between information peers has been addressed over the years both in
the context of the Semantic Web and in several other networked envi-
ronments, including data integration, Peer-to-Peer and Grid computing,
service-oriented computing, distributed agent systems, and collaborative
data sharing. One of the main problems arising in such contexts is how
to exploit the mappings between peers in order to answer queries posed
to one peer. We address this issue for peers managing data through
ontologies and in particular focus on ontologies specified in logics of the
DL-Lite family. Our goal is to present some basic, fundamental results
on this problem. In particular, we focus on a simplified setting based
on just two interoperating peers, and we investigate how to solve the
so-called “What-To-Ask” problem: find a way to answer queries posed
to a peer by relying only on the query answering service available at
the queried peer and at the other peer. We show both a positive and a
negative result. Namely, we first prove that a solution to this problem
always exists when the ontology is specified in DL-LiteR, and we provide
an algorithm to compute it. Then, we show that for the case of DL-LiteF
the problem may have no solution. We finally illustrate that a solution to
our problem can still be found even for more general networks of peers,
and for any language of the DL-Lite family, provided that we interpret
mappings according to an epistemic semantics, rather than the usual
first-order semantics.

1 Introduction

In the era towards a data-driven society, the issue of cooperation, integration, and
coordination between data stored in different nodes of a network is of paramount
importance. Indeed, recent years have shown the need to deal with networked
data in large-scale, distributed settings, and it is not surprising that the abstrac-
tion of networked data systems appears in many disciplines, including Web Sci-
ence and Peer-to-Peer computing [3,8,26], Semantic Web [1,42], Data Manage-
ment [12,27,31,37,44], and Knowledge Representation [25,30,42,46].
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Put in an abstract way, all these systems are characterized by an architecture
constituted by various autonomous nodes (called sites, sources, agents, or, as we
call them here, peers) which hold information, and which are linked to other
nodes by means of mappings. A mapping is a statement specifying that some
relationship exists between pieces of information held by one peer and pieces of
information held by another peer. The whole knowledge of the system is fully
distributed, without any central entity holding a global view of information, or
controlling the overall operation of the system.

The basic problems arising in this architecture include the following:

– how to discover, express, and compose the mappings between peers (see, for
instance, [8,23,26,33,39]),

– how to exchange data between peers based on the specified mappings (see,
for instance, [24,31,32]),

– how to exploit the mappings in order to answer queries posed to one peer [28,
37,40].

The latter is the problem studied in this paper. Although several interesting
results have been reported in each of the above mentioned contexts, we argue
that a deep understanding of the problem of answering queries in a networked
environment is still lacking, in particular when the information in each peer is
modelled in terms of an ontology.

Our goal is to present some basic, fundamental results on this problem. Given
the fundamental nature of our investigation, we consider a simplified setting
where the whole system is constituted by only two peers, called local and remote,
respectively. Information in the remote peer is related to the information in the
local peer by means of suitable mappings (cf. Fig. 1). Interestingly, despite the
fact that this setting might look elementary, it will nevertheless allow us to
uncover various subtleties of an interoperating ontology-based peer system.

Fig. 1. Ontology-to-ontology: a simple form of interoperation among peer ontologies
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In our study, we make several assumptions, that are made explicit here:

– In contrast with most of the papers in peer-to-peer data management, we
assume that each peer does not simply store data, but holds a knowledge base.
In particular, we explore the context where each peer models its knowledge
base by means of an ontology.

– The ontology at each peer specifies both intensional knowledge (general rules)
and extensional one (individual facts). Actually, the latter may be managed
through a relational DBMS, and therefore represented by a database con-
nected to the ontology via local mappings, as shown in Fig. 1. So, if we have
data sources linked to our ontology through mappings, they are seen as inter-
nal components within a peer. In other words, each peer can be seen as an
Ontology-based data access (OBDA) system [13], and the novelty with respect
to the usual notion of OBDA is represented by the fact that mappings connect
peers, and not simply data sources to ontologies.

– We concentrate our attention to the issue of answering queries posed to the
local peer.

– We assume that each of the two peers provides the service of answering queries
expressed over its underlying ontology. Note that answering a query for a
peer requires reasoning over the ontology by means of deduction, rather than
simply evaluating the query expression over a database.

– We assume that query answering is the only basic service provided by each
peer. In other words, while processing a query posed to the local peer, the
query answering services provided by each of the two peers are the only basic
services that can be relied upon.

– In order to address the problem in the most general way, we assume that
the local peer can only collect the answers received by the remote peers, and
add them to the answers obtained by accessing its own data. In other words,
no computational power is available at the local peer to process the tuples
returned by the remote peer, except for just adding them to the result of the
whole query.

We believe that the above assumptions faithfully capture the modular struc-
ture of a peer-to-peer system, and generalize the existing investigation of peer-
to-peer architectures to the case where each peer is seen as an agent holding
complex knowledge, instead of simply data.

In this context, the basic problem we address is the following: given a query
posed to the local peer, find a way to answer the query by relying only on the
two query answering services available at the two peers. Thus, when answering
the query posed to the local peer, we have to figure out which queries to send to
the remote peer in order for the local peer to be able to return the correct and
complete set of answers to the original query. This is why we call this problem
the “What-To-Ask” problem (cf. [14]).

Example 1. Consider a music sharing system, and assume that the peer
SongUniverse stores its own information about songs, and has a mapping spec-
ifying that other songs, in particular live rock songs, can be retrieved from the
remote peer RockPlanet. Now, suppose that Carol interacts with the SongUniverse
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peer, and asks for all live songs of U.K. artists. What this peer can do in order
to answer Carol’s query at best is to: (i) directly provide her with the live songs
of U.K. artists that it stores locally, (ii) use its general knowledge about music
to deduce that also live rock songs suit Carol’s needs, (iii) use the mapping
to reformulate Carol’s request in terms of RockPlanet knowledge, in particular
asking to the remote peer the right query to retrieve all live rock songs of U.K.
artists. �

In this paper, we study the What-To-Ask problem in a setting where the
two peers hold an ontology expressed in a Description Logic of the DL-Lite
family [16]. Specifically, we present the following contributions.

1. We formalize the above mentioned two-peer architecture, we define its seman-
tics, and we give a precise characterization of the semantics of query answering
(Sect. 3).

2. We provide both the intuition and the formal definition of the “What-To-Ask”
problem, taking into account both the semantics of query answering and the
fact that, when answering a query posed to the local peer, only the query
answering services available at the two peers can be relied upon (Sect. 3).

3. We show that in the case of ontologies specified in DL-LiteR there is an
algorithm that allows us to solve any instance of “What-To-Ask”, i.e., that
allows us to compute what we should ask to the remote peer in order to
answer a query posed to the local peer. One of the basic ingredients of the
algorithm is the ability of reformulating the query on the basis of the local
peer ontology and the mappings, so as to deduce the correct queries to send
to the remote peer (Sect. 4).

4. We show that in the case of DL-LiteF , the “What-To-Ask” problem may not
admit any solution. This shows that particular attention should be devoted
to the trade-off between the expressive power of the ontology language and
the complexity/feasibility of reasoning (Sect. 5).

5. We finally discuss how to overcome the limitation above by making use of
mappings that explicitly take into account that ontologies are autonomous
agents that provide as query answering service the (independent) genera-
tion of certain answers. This calls for the usage of (auto-)epistemic operators
(Sect. 6).

To complete the description of the organization of the paper, Sect. 2 illus-
trates some preliminary notions that will be used in the technical development,
and Sect. 7 presents some concluding remarks. Finally, we note that this paper
is a revised and extended version of [14].

2 Preliminaries

We introduce now the ontology languages on which we base the technical devel-
opment in the next sections. Specifically, we rely on Description Logics (DLs) [6],
which are logic’s that represent the domain of interest in terms of concepts,
denoting sets of objects, and roles, denoting binary relations between objects.
Complex concept and role expressions are constructed by applying suitable con-
structs, starting from a set of atomic concepts and roles.
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2.1 The DL-Lite Family

We focus here on a family of lightweight DLs, called the DL-Lite family [16], and
introduce three prominent logics of this family, namely DL-Lite, DL-LiteR and
DL-LiteF . In the core language of the family, called DL-Lite, (basic) concepts C
and roles R are formed according to the following syntax:

C −→ A | ∃R R −→ P | P−

where A denotes an atomic concept, P an atomic role, P− the inverse of P , and
∃R an unqualified existential quantification. Intuitively, P− denotes the inverse
of the binary relation denoted by P , while ∃R denotes the domain of (the binary
relation denoted by) R, i.e., the projection of R on its first component.

A DL ontology O = 〈T ,A〉 encodes the knowledge about the domain of
interest in two distinct components: the TBox (for terminological box) T spec-
ifies general knowledge about the conceptual elements of the domain, while the
ABox (for assertional box) A, specifies extensional knowledge about individual
elements of the domain.

In DL-Lite, a TBox is formed by a finite set of inclusion and disjointness
assertions between concepts, respectively of the form

B1 � B2 B1 � ¬B2

where B1 and B2 are basic concepts. The first assertion expresses that every
instance of concept B1 is also an instance of concept B2, while the second asser-
tion expresses that the two sets of instances are disjoint. An ABox consists of
concept and role membership assertions, respectively of the form

A(c) P (c, c′)

where A is an atomic concept, P an atomic role, and c, c′ two constants. The first
assertion expresses that the individual denoted by c is an instance of concept A,
while the second assertion expresses that the two individuals denoted by c and
c′ are in relation P .

In DL-LiteR, a TBox may additionally contain role inclusion and disjointness
assertions, respectively of the form

R1 � R2 R1 � ¬R2

where R1 and R2 are arbitrary roles. The meaning of such assertions is analogous
to the one for concepts.

Instead, in DL-LiteF , a TBox may contain also functionality assertions of
the form

(funct R)

asserting that R is a functional role. Such a role R can relate each object to at
most one other object.

The semantics of a DL is given in terms of first-order logic interpretations,
where an interpretation I = (ΔI , ·I) consists of a non-empty interpretation
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domain ΔI and an interpretation function ·I that assigns to each concept C a
subset CI of ΔI , and to each role R a binary relation RI over ΔI , in such a way
that the following conditions hold. In particular, for the constructs of DL-Lite
we have:

AI ⊆ ΔI

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬C)I = ΔI \ CI

P I ⊆ ΔI × ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(¬R)I = ΔI × ΔI \ RI

To specify the semantics of membership assertions, we extend interpretations
to constants, by assigning to each constant c a distinct object cI ∈ ΔI . Note
that this implies that we enforce the unique name assumption on constants [6].
Then, to assign semantics to an ontology, we first define when an interpretation
I satisfies an assertion α, denoted I |= α, as follows:

– I |= E1 � E2, if EI
1 ⊆ EI

2 ;
– I |= E1 � ¬E2, if EI

1 ∩ EI
2 = ∅;

– I |= (funct R), if whenever {(o, o1), (o, o2) ⊆ RI , then o1 = o2;
– I |= A(c), if cI ∈ AI ;
– I |= P (c, c′), if (cI , c′I) ∈ P I .

An interpretation I that satisfies all assertions of an ontology O is called a model
of O, and is denoted as I |= O. An ontology that admits a model is called
satisfiable. Finally, we say that an ontology O logically implies an assertion α,
denoted O |= α, if every model of O satisfies α. Analogous definitions hold when
we replace the ontology O with a TBox T or an ABox A.

We observe that, despite the simplicity of the language, the logics of the
DL-Lite family are able to capture the main elements of conceptual modeling
formalisms used in databases and software engineering (e.g., Entity-Relationship
and UML class diagrams), cf. [13]. Furthermore, DL-Lite is one of the classes
of DLs for which conjunctive query answering is tractable in data complexity.
Other DLs showing this property are EL [4,5], and all Horn DLs [41]. Moreover,
query answering remains tractable in the DL FL0 for instance queries (whereas
answering conjunctive queries in this logic is coNP-complete), as shown in [7].

2.2 Queries over a DL Ontology

We start with a general notion of queries in first-order logic, and then we move
to the definition of queries over a DL ontology.

In general, a query is an open formula of first-order logic with equalities (FOL
in the following). We denote a (FOL) query q as follows

{x1, . . . , xn | φ(x1, . . . , xn) }

where φ(x1, . . . , xn) is a FOL formula with free variables x1, . . . , xn. We call n
the arity of the query q. Given an interpretation I, qI is the set of tuples of
domain elements that, when assigned to the free variables, make the formula φ
true in I [2].
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A query over an ontology is a FOL query as above, in which the predicates
in φ are concepts and roles of the ontology. Among the various queries, we are
interested in conjunctive queries, which provide a reasonable trade-off between
expressive power and complexity of query processing.

A conjunctive query (CQ) q of arity n over an ontology O is a FOL query of
the form

{x1, . . . , xn | ∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym)},

where x1, . . . , xn are pairwise distinct variables1, and φ(x1, . . . , xn, y1, . . . , ym)
is a conjunction of atoms whose predicates are concept and roles of O,
and whose free variables are the variables in x1, . . . , xn, y1, . . . , ym. We call
∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym) the body of q, x1, . . . , xn the distinguished
variables of q, and y1, . . . , ym the non-distinguished variables of q.

In the following we will not indicate existential variables in queries
when not explicitly needed, i.e., we will use φ(x1, . . . , xn) to indicate
∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym).

When a query is posed to an ontology, the ontology should answer the query
by returning all tuples of constants from the alphabet Γ that satisfy the query
in every interpretation that is a model of the ontology. This is formalized by the
following notion of certain answers,

Given a CQ q of arity n over an ontology O, the certain answers cert(q,O)
to q over O is the set of tuples of constants:

cert(q,O) = {〈c1, . . . , cn〉 | 〈cI
1 , . . . , cI

n〉 ∈ qI for all I such that I |= O}.

3 What-To-Ask

In this section we set up a formal framework for interoperation between ontology-
based peers, and we formally define the What-To-Ask problem.

3.1 Ontology-Based Peer Framework

As already said, the extensional level of the ontology can be virtually generated
by means of local mappings connecting the intensional level of the ontology to
a database. In this case, a peer is actually an autonomous ontology-based data
access system, or an ontology-based data integration system in the case where
the underlying database is federated [43]. For the sake of simplicity, in this paper
we consider a peer ontology of a more plain form, in which both the intensional
and the extensional knowledge are represented in a first-order logic theory, and
more precisely as a DL ontology. All the results we present in fact apply almost
straightforwardly to peers that are ontology-based data integration systems.

1 For simplicity of presentation, we have assumed here that conjunctive queries contain
neither constants nor repeated variables among x1, . . . , xn, but all our results extend
to the case where this restrictions do not apply.
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Each peer contains an ontology O = 〈T ,A〉 that it can use to make logical
inferences. Agents willing to use the peer, here called clients, can ask the peer
queries specified over the peer ontology (i.e., over its TBox).

Besides using its ontology O for answering queries, each peer can be con-
nected with other peers by means of mappings. Mappings establish the relation-
ship between the concepts represented in the peers. When answering a query,
each peer can also ask queries to the other peers based on such mappings.

In this paper we focus on a system made up by two interoperating peers.
One of them, called local peer, is the one the client interacts with by asking
queries. The other peer will be referred to as the remote peer, and the knowledge
contained in it can be exploited by the local peer through the mappings, so as
to enhance the capability of the local peer to provide answers to queries posed
by the client. We further assume that, while the local peer exploits the remote
peer through the mappings, the remote peer has no information about the local
peer, and thus it cannot use in any way the knowledge of the local peer.

Next, we move to the formalization of the framework. We assume that all
peers share the same set of constants, denoted by Γ , and we assume that Γ is
part of the alphabet of the ontology in each peer. We also assume that in every
interpretation different constants are interpreted with different domain elements,
i.e., we adopt the unique name assumption. With this assumption in place, we
turn our attention to the definition of ontology-based peers.

Definition 1. An ontology-based peer (or simply peer) is a pair P = 〈O,M〉
where:

– O = 〈T ,A〉 is the peer ontology, where T is a TBox and A an ABox;
– M is a set of mapping assertions, whose form will be illustrated below.

We also call the pair 〈T ,M〉 the specification of P , denoted by PS , and call the
ABox A the instance of P . �

Queries posed to a peer are specified over its TBox T . The queries that
we consider are conjunctive queries (cf. Sect. 2). We concentrate on systems
consisting of two peers, namely P� = 〈O�,M�〉, called local peer, which is the
peer to which the client may connect, and Pr = 〈Or, ∅〉, called remote peer. The
alphabets of O� and Or share the set of constants Γ , but contain disjoint sets
of relation names. Observe that the remote peer does not contain any mapping
assertion. We also assume that both peers may process conjunctive queries posed
over them, i.e., they are able to compute certain answers to CQs specified over
O� and Or, respectively. We say that the class of CQs is accepted by P� and Pr,
and we call the pair 〈P�, Pr〉 an ontology-to-ontology system.

The mapping M� in the local peer is constituted by a finite set of assertions
of the form

qr � {x | C(x)} or

q′
r � {x1, x2 | R(x1, x2)},

where qr is a CQ of arity 1 and q′
r a CQ of arity 2 over the remote peer, C is a

concept and R a role of the local peer, x is a variable, and x1 and x2 are distinct
variables.
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A mapping assertion qr � {x | C(x)} has an immediate interpretation as
an implication in FOL: it states that

∀x.φr(x) → C(x),

where φr is the open formula constituting the query qr. Analogously, the mapping
assertion q′

r � {x1, x2 | R(x1, x2)} is interpreted as

∀x1, x2.φr(x1, x2) → R(x1, x2).

We note that, in data integration terminology, the mappings we have consid-
ered here would correspond to a form of mappings called global-as-view (GAV),
where the local ontology corresponds to a global schema of a data integration
system, the remote ontology corresponds to a set of data sources, and each con-
cept of the global schema is defined by means of a CQ over the data sources.

3.2 The What-To-Ask Problem

A natural task to consider, given a client’s query q specified over the local peer
P�, is to return the answers that can be inferred from all the knowledge in the
system, that is, return the certain answers cert(q,O� ∪ M� ∪ Or)2. Clearly, such
a task is meaningful in the case where the axioms in O�, M�, and Or are known
and usable by the query answering algorithm.

Here, however, we consider a different setting, in which we assume that the
remote peer can only be used by invoking its query answering service, and the
local peer has minimal computational capabilities to perform post-processing of
the answers provided by the remote peer. More precisely, we assume that:

– each peer P = 〈O,M〉 is able to provide the certain answers cert(q,O) to
queries q specified over P itself, and

– each peer does not have additional computation capabilities, and is only able
to redirect its own answers and those produced by the other peer to the
output3.

Under these assumptions, computing the certain answers to a query posed to
the local peer requires to determine the set of queries to send to the remote peer
in such a way that the union of such answers with the certain answers computed
locally provides the certain answers to the query. This challenge is formalized in
what we call the What-To-Ask problem.

Definition 2. Consider a local peer P� = 〈O�,M�〉, a remote peer specifica-
tion PS

r = 〈Tr, ∅〉, and a query q specified over P�. The What-To-Ask problem,
WTA(q, P�, P

S
r ), is defined as follows: Given as input q, P� and PS

r , find a finite
set {q1r , . . . , qn

r } of queries, each specified over the remote peer Pr, such that for
every instance of the remote peer Ar:

cert(q,O� ∪ M� ∪ Or) = cert(q,O�) ∪ cert(q1r ,Or) ∪ · · · ∪ cert(qn
r ,Or).

where Or = 〈Tr,Ar〉. �

2 Whenever we refer to M� as part of an ontology, we consider its FOL formulation.
3 This formally corresponds to computing the union of the two sets of answers.
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The above definition clearly points out the specific nature of the What-To-
Ask problem, where the answers coming from the remote peer are combined
using union only. In particular, it clarifies the difference with other data inter-
operability architectures, such as data federation. Indeed, in data federation, the
mediator has to decide how to send the query to the various federated databases,
and then in principle it can use the whole power of SQL (or relational algebra)
to combine the answers returned by the data sources.

Notice that, in general, several solutions to the What-To-Ask problem may
exist. However, it is easy to see that all solutions are equivalent from a semantic
point of view, i.e., each of them allows us to obtain all certain answers that can be
inferred from the knowledge managed by the peer system. Syntactic differences
might exist between different solutions that could lead one to prefer one solution
to another, e.g., if the set of queries in the former one is contained in the set
of queries in the latter one. However, we focus here on solving the What-To-
Ask problem, i.e., finding any solution that satisfies Definition 2, in the specific
setting described in the next section, whereas the problem of characterizing when
a solution is “better” than another, or finding the “best” solutions with respect
to some criteria, is outside the scope of this paper.

In the following, for simplicity, we consider only systems of peers that are
consistent, i.e., such that their FOL formalization admits at least one model. We
will then briefly come back to the issue of (in)consistency in the conclusions.

4 What-To-Ask Problem: Positive Results

We now consider a particular instantiation of the formal framework described
in Sect. 3, i.e., we consider specific choices for both the language in which a
peer ontology is expressed, and the queries appearing in the mapping asser-
tions. We then study the What-To-Ask problem in the specialized framework.
We first present an algorithm, called computeWTA, for the What-To-Ask prob-
lem, and then we both prove its termination and correctness, and establish its
computational complexity. We also comment on the relationship between the
What-To-Ask problem and the task of computing the answers to queries posed
to the local peer.

4.1 DL-LiteR Peer Ontologies

We concentrate first on the ontology language in which to express the peer
ontology. The language we use for this purpose is DL-LiteR.

Example 2. Consider a local peer specification P� = 〈T�,M�〉 such that T� is
the following DL-LiteR TBox:

∃member � Employee
∃member− � Dept
Employee � ∃member
Manager � Employee

∃director � Manager
∃director− � Dept

Dept � ∃director−
director � member
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Manager

Employee Dept
member

(1,0)

(1,0)
director

(subset)

ManagerR

EmployeeR DeptR
memberR

bossR

(a) (b)

Fig. 2. Intensional component of the local and remote ontologies for Example 2

In this case, such TBox can be directly represented by means of a UML class
diagram [45]. Indeed, concepts and roles correspond to UML classes and binary
associations, respectively, and role typing assertions are represented in UML by
the participation of classes to associations. ISA assertions between concepts cor-
respond to sub-classing, while mandatory participation to roles can be specified
in UML by means of multiplicity constraints. Also, ISA assertions between roles
can be specified by means of association subsetting. The UML representation of
T� is shown in Fig. 2(a).

Similarly, the following set of DL-LiteR assertions, providing the representa-
tion of the TBox Tr of a remote peer Pr, corresponds to the UML class diagram
shown in Fig. 2(b)4:

∃memberR � EmployeeR
∃memberR− � DeptR

∃bossR � EmployeeR
∃bossR− � ManagerR

Possible ABoxes A� and Ar for the TBoxes given above are represented by
the DL-LiteR assertions below:

Manager(Mary)
Dept(D1)

memberR(Mary, D2)
DeptR(D3)

Finally, a possible set of assertions for the mapping M� of the local peer P�

is the following:

{x | DeptR(x)} � {x | Dept(x)}
{x | EmployeeR(x)} � {x | Employee(x)}
{x | ManagerR(x)} � {x | Manager(x)}

{x, y | ∃z.bossR(x, z) ∧ memberR(z, y)} � {x, y | director(x, y)}
{x, y | memberR(x, y)} � {x, y | member(x, y)} �

4.2 The Algorithm ComputeWTA

Consider a local peer P� = 〈O�,M�〉 and a remote peer specification Pr = 〈Tr, ∅〉,
and a client’s conjunctive query q that is specified over P�. In a nutshell, our

4 Note that, differently from classical UML semantics, we do not consider as disjoint
those classes that in the class diagram do not have a common ancestor.
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algorithm first reformulates the client’s query q into a set Q of conjunctive queries
expressed over T�, in which it compiles the knowledge of the local peer that is
relevant for answering q; then the algorithm reformulates the queries of Q into
a new set of queries specified over the remote peer Pr.

In the following, given a remote instance Ar, we assume that the theory
O� ∪ M� ∪ Or, where Or = 〈Tr,Ar〉, is consistent, i.e., there exists at least one
first-order interpretation I such that I |= O� ∪ M� ∪ Or. Notice that when the
theory is inconsistent, the certain answers to a query q of arity n over O�∪M�∪Or

are all the n-tuples constructible from constants of Γ . Therefore, computing the
certain answers to q in this situation does not lead to a meaningful result5.

Algorithm computeWTA(q, P�)
Input: CQ q, local peer P� = 〈O�,M�〉, where O� = 〈T�,A�〉 is a DL-LiteR ontology
Output: set of conjunctive queries
begin

QPref PerfectRef(q, T�);
Q Mref(QPref ,M�,O�);
return Q

end

Fig. 3. Algorithm computeWTA

In Fig. 3, we define the algorithm computeWTA. The algorithm makes use of
two main procedures: the first one, called PerfectRef, reformulates the query in
accordance with the local TBox T�, whereas the second procedure, called Mref,
is concerned with the reformulation based on the mapping.

The algorithm PerfectRef is the query rewriting algorithm for DL-LiteR
defined in [16,18,43]. Intuitively, it compiles the knowledge of the local TBox T�

needed to answer the input query q into a set of conjunctive queries over T�.

Example 3. Continuing Example 2, consider the query

q0 = {y | ∃x.Manager(x) ∧ member(x, y)}

that is specified over the local peer P�, and execute computeWTA(q0, P�). Since
the first component of the role director is typed by the concept Manager (assertion
∃director � Manager in T�), the algorithm rewrites the first atom of q0 and
produces the query q1 = {y | ∃x.director(x,− ) ∧ member(x, y)}6. Since the role
director is subsumed by the role member (assertion director � member in T�),
the algorithm rewrites the second atom of q1 and produces the query q2 = {y |
∃x.director(x,− ) ∧ director(x, y)}. It is not possible to directly rewrite the query

5 For an analysis on the inconsistency problem in the context of database and ontology
integration see, for example, [9,11,36,47].

6 We use the symbol ‘−’ to denote non-shared variables that are existentially
quantified.
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q2 by exploiting the TBox assertions. However, the two atoms in q2 unify, and
hence PerfectRef “reduces” q2, thus producing the query q3 = {y | director(−, y)}.
Actually, the reduction transforms the bound variable x of q2 in an unbound
variable in q3. Therefore, the algorithm can now rewrite q3 by means of the
assertion Dept � ∃director−, and produces the query q4 = {y | Dept(y)}. Then,
by the TBox assertion ∃member− � Dept, the algorithm produces q5 = {y |
member(−, y)}. Notice also that due to the role subsumption assertion in T�, from
the query q0, the algorithm produces also the query q6 = {y | ∃x.Manager(x) ∧
director(x, y)}. The algorithm does not generate other reformulations. �

Algorithm Mref(Q,M�,O�)
Input: set of CQs Q, mapping M�, local ontology O�

Output: set of CQs Q over Pr

begin
Qaux ; Qris∅ ∅;
for each q ∈ Q do

Qaux = Qaux ∪ unfold(q,M�)
for each q ∈ Qaux do

if q is a mixed query
then Qris Qris ∪ Rref (q,O�)
else Qris Qris ∪ q

return Qris

end

Fig. 4. Algorithm Mref

We now turn our attention to the algorithm Mref, shown in Fig. 4, which
reformulates the queries over the local TBox T� returned by PerfectRef into a
new set of queries specified over the remote peer Pr. To this aim, Mref makes use
of two operators, unfold and Rref . Informally, the former reformulates a query q
that is specified over the local TBox T� by replacing atoms of q with the queries
over the remote peer Pr associated to such atoms by the mapping M�. The latter
operator computes a set of queries specified over the remote peer for each query
that is specified over both the local and the remote TBox. Notice that queries
of this form cannot be directly evaluated in our framework. In the following, we
formally describe the two operators.

Definition 3. Let P = 〈T ,M〉 be a peer, let R(z1, z2) be an atom, and let m
be a mapping assertion qr � q� in M such that

q� = {x1, x2 | R(x1, x2)}, and
qr = {x′

1, x
′
2 | ∃y1, . . . , ym.φ(x′

1, x
′
2, y1, . . . , ym)}.

Then unfold(R(z1, z2),m) = φ(z1, z2, y1, . . . , ym). Similarly, let C(z) be an atom,
and let m be a mapping assertion qr � q� in M such that

q� = {x | C(x)}, and
qr = {x′ | ∃y1, . . . , ym.φ(x′, y1, . . . , ym)}.
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Then unfold(C(z),m) = φ(z, y1, . . . , ym).
If there is no mapping assertion qr � q� in M such that q� = {x1, x2 |

R(x1, x2)} (resp., q� = {x | C(x)}), then R(z1, z2) (resp., C(z)) is said to be non
unfoldable in M , otherwise it is said to be unfoldable in M . �

The above notion is extended below to unfolding of conjunctive queries. The
following definition generalizes the well-known concept of query unfolding [48].

Definition 4. Let P = 〈T ,M〉 be a peer, and let q = {z1, . . . , zn | φ(z1, . . . , zn)}
be a conjunctive query specified over P . The unfolding of q w.r.t. M is the set
of conjunctive queries unfold(q,M) defined as follows:

unfold(q,M) =
{

{z1, . . . , zn | unfold(g1,m1) ∧ · · · ∧ unfold(gh,mh) ∧ gh+1 ∧ · · · ∧ gk} |
m1, . . . ,mh ∈ M, {g1, . . . , gh} is a non-empty subset of the unfoldable
atoms of q, and gh+1, . . . , gk are the remaining atoms of q}. �

Note that, if no atom in a query q is unfoldable in the mapping M , then
unfold(q,M) = ∅. Therefore, the unfolding operator produces either CQs com-
pletely specified over the alphabet of Tr, and hence specified over Pr, or CQs
specified over both the alphabets of T� and Tr. Such queries are called mixed
queries (we recall that queries specified over P� are called local queries, whereas
queries specified over Pr are called remote queries). It is easy to see that mixed
queries are not queries specified over either the local or remote peer, and there-
fore there is no means in our framework for directly evaluating them. To solve
this problem, the algorithm Mref reformulates each mixed query in a set of
remote queries, in such a way that the set of answers to the reformulated queries
with respect to an instance for the remote peer Ar, computed by the remote
peer, coincides with the set of answers that we would have obtained by directly
evaluating mixed queries over O� ∪ Or, where Or = 〈Tr,Ar〉. Since each tuple
in the answer to a mixed query is partially supported by extensional assertions
provided by the local ontology, the idea at the basis of such a reformulation is
to cast into the new remote queries those constants occurring in O� that sup-
port the answers to the mixed query. Such a mechanism is realized trough the
operator Rref , formally described below.

Definition 5. Let P� = 〈O�,M�〉 be a local peer, PS
r = 〈Tr, ∅〉 a remote peer

specification, and let

q = {x1, . . . , xn, y1, . . . , ym | ∃z1, . . . , zi, w1, . . . , wj.g1� ∧ · · · ∧ gh
� ∧ g1r ∧ · · · ∧ gk

r }

be a mixed conjunctive query (i.e., it is such that h �= 0 and k �= 0), where
g1� , . . . , gh

� are local atoms, g1r , . . . , gk
r are remote atoms, x1, . . . , xn are the dis-

tinguished variables that occur in g1� , . . . , gh
� (and possibly also in g1r , . . . , gk

r ),
y1, . . . , ym are the distinguished variables that occur only in g1r , . . . , gk

r , z1, . . . , zi

are the non-distinguished variables that occur both in g1� , . . . , gh
� and in

g1r , . . . , gk
r , and w1, . . . , wj are the remaining non-distinguished variables of q.
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Then, the remote reformulation of q w.r.t. O� is the set Rref (q,O�) of conjunc-
tive queries specified over Pr defined as follows:

Rref (q,O�) = { {d1, . . . , dn, y1, . . . , ym | ∃w1, . . . , wj.σ(g1r) ∧ · · · ∧ σ(gk
r )} |

〈d1, . . . , dn, c1, . . . , ci〉 ∈
cert({x1, . . . , xn, z1, . . . , zi | ∃w1, . . . , wj.g1� ∧ · · · ∧ gh

� },O�),
and σ = {x1 → d1, . . . , xn → dn, z1 → c1, . . . , zi → ci}}.

�

Roughly speaking, Rref first computes “local answers” to the mixed query q “pro-
jected” on its local component, selecting as distinguished variables z1, . . . , zi, i.e.,
the variables that are non-distinguished in q and that also occur in the remote
component of the query. Then, for each computed tuple t, Rref constructs a new
remote query by projecting the body of q on its remote component, and sub-
stituting z1, . . . , zi and x1, . . . , xn with the corresponding constants in t (notice
that in such a way the remote peer receives through the reformulated query
those extensional information of the local ontology which is needed to answer
the mixed query). Obviously, if no local answers to the mixed query exists, the
remote reformulation of q is empty.

Example 4. We continue Example 2. The procedure Mref is executed with the
set Q = {q0, q1, q2, q3, q4, q5, q6} as input. Let’s focus on the query q0. It is
unfolded in the remote query {y | ∃x.ManagerR(x) ∧ memberR(x, y)}, and in
two mixed queries. Since there are no facts in the local peer for the predi-
cate member, the mixed mentioning this predicate can be ignored. We thus
consider the mixed query qm = {y | ∃x.Manager(x) ∧ memberR(x, y)}. Since
cert({x | Manager(x)},O�) = {Mary}, the remote reformulation of qm produced
by Rref is {y | memberR(Mary, y)}. We proceed analogously for the other queries
in Q7. The result returned by computeWTA is the following set of queries:

{y | ∃x.ManagerR(x) ∧ memberR(x, y)},
{y | memberR(Mary, y)},
{y | ∃x, z, w.bossR(x, z) ∧ memberR(z, w) ∧ memberR(x, y)},
{y | ∃x, z.bossR(x, z) ∧ memberR(z, y)},
{y | DeptR(y)},
{y | ∃x, z.ManagerR(x) ∧ bossR(x, z) ∧ memberR(z, y)},
{y | ∃z.bossR(Mary, z) ∧ memberR(z, y)},
{y | ∃x.memberR(x, y)}.

The set of certain answers returned by the remote peer is then {D3, D2}. Further-
more, the set of certain answers to q0 computed by the local peer is {D1}. It is
easy to see that the union of the above sets is exactly the set that we would have
obtained by computing cert(q0,O� ∪ M� ∪ Or), i.e., the algorithm computeWTA
returned a solution to the What-To-Ask problem for our ongoing example. �

7 We do not reformulate q2 since it is contained in q3.
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As for the correctness of our technique, it is possible to show that the algo-
rithm computeWTA provides a solution to the What-To-Ask problem in our
specialized setting, based on the following properties:

(i) From a client’s query q over the local ontology O�, the algorithm PerfectRef
is able to compute a set of CQs over O� that can be evaluated in order to
provide the certain answers to q, without taking into account the TBox of
O�.

(ii) The unfolding operator used in the algorithm Mref allows us to obtain,
from a query q specified over the local peer P�, a set of CQs over O� and
Or, which can be evaluated in order to compute the certain answers to q,
without taking into account the mapping M�.

(iii) In order to compute the certain answers to a mixed CQ q, i.e., referring
to at least one predicate of O� and one predicate of Or, we can resort to
the remote reformulation of q which produces only queries over the remote
ontology Or.

Theorem 1. Let P� = 〈O�,M�〉 be a local peer such that O� is a DL-LiteR ontol-
ogy, let PS

r = 〈Tr, ∅〉 be a remote peer specification such that Tr is a DL-LiteR
TBox, and let q be a CQ over P�. Then, computeWTA(q, P�) returns a solution
for WTA(q, P�, P

S
r ). �

Next, we turn to computational complexity of the algorithm and provide the
following result, which follows from the fact that the algorithm PerfectRef runs
in polynomial time with respect to the size of the input TBox T� [16], and from
the fact that Mref runs in polynomial time with respect to the size of O�.

Theorem 2. Let P� = 〈O�,M�〉 be a local peer such that O� is a DL-LiteR
ontology, let PS

r = 〈Tr, ∅〉 be a remote peer specification such that Tr is a
DL-LiteR TBox, and let q be a CQ over P�. Then, the computational complexity
of computeWTA(q, P�) is polynomial in the size of O� and M�. �

We point out that, in general, the size of the set of queries generated by
computeWTA may be exponential in the size of the initial query, which obviously
implies that the algorithm runs in exponential time in the query size. However,
since typically the input query size can be assumed to be small, this exponential
blow-up is not likely to be a problem in practice.

5 What-To-Ask Problem: Negative Result

In this section we consider peers equipped with ontologies specified in DL-LiteF ,
the other basic language of the DL-Lite family, which does not admit role inclu-
sions, as in DL-LiteR, but allows for functionalities on roles, without any restric-
tion (cf. Sect. 2). Interestingly, despite the fact that, as in DL-LiteR, conjunctive
query answering in DL-LiteF can be solved through query rewriting into a set
of conjunctive queries (cf. [16]), the What-To-Ask problem in this case may not
admit a solution.
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To prove this result, we first provide a complexity lower bound for the prob-
lem of instance checking in our framework when both the remote and local peer
hosts ontologies specified in DL-LiteF .

Theorem 3. The instance checking (and thus query answering) problem in an
ontology-to-ontology system 〈P�, Pr〉 where the ontologies of both P� and Pr are
expressed in DL-LiteF is NLogSpace-hard in data complexity. �

Proof. We prove this result by a reduction from reachability in directed graphs.
Let G = (N,E) be a directed graph, where N is the set of its nodes and

E is the set of its edges, i.e., pairs (ni, nj) such that ni and nj belongs to N .
We consider the problem of verifying whether a node d ∈ N is reachable from a
node s ∈ N . We define the remote peer Pr = 〈Or, ∅〉, where Or = 〈Tr,Ar〉, as
follows:

– the alphabet of the predicates of Pr contains the atomic concept A, the atomic
role P , and the atomic role P̂ , and Tr consists of the inclusion assertions

A � ∃P ∃P− � A

– the ABox Ar is the set of facts

{A(s)} ∪ {P̂ (ni, nj) | (ni, nj) ∈ E is an edge of G}

We then construct the local peer P� = 〈O�,M�〉, with O� = 〈T�,A�〉, as
follows:

– the alphabet of the predicates of P� consists of the atomic concept C and the
atomic role Q, and the TBox T� contains the assertion

(funct Q)

– the ABox A� is empty;
– the mapping M� contains the following assertions

{x, y | P (x, y)} � {x, y | Q(x, y)}
{x, y | P̂ (x, y)} � {x, y | Q(x, y)}

{x | A(x)} � {x | C(x)}

It is then easy to see that there is a path in G from s to d if and only if
d ∈ cert(q,O� ∪ M� ∪ Or), where q = {x | C(x)}. ��

From the complexity characterization given above, it follows that peer query
answering in the setting considered requires at least the power of linear recur-
sive Datalog (NLogSpace). The following result is therefore a straightforward
consequence of Theorem 3.

Theorem 4. There exists a local peer P� = 〈O�,M�〉, where O� is a DL-LiteF
ontology, a remote peer specification PS

r = 〈Tr, ∅〉, where Tr is a DL-LiteF
TBox, and a CQ q (in fact an instance query) specified over P� such that
WTA(q, P�, P

S
r ) has no solution. �
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We finally remark that for DL-LiteF peers we miss the property that a solu-
tion to the What-To-Ask problem exists even if we empower the local peer with
the ability of combining the certain answers from the remote peer through FOL
rather than simply union, since query answering in this setting requires to go
beyond a FOL processing of the data.

6 Towards a Different Semantic Interpretation of Peer
Mappings

We have seen above that the What-To-Ask problem admits solutions for two
DL-LiteR ontology-based peers where the local ontology contains mappings
towards the remote ontology, but not vice-versa. In fact, it is immediate to
extend this result to any number of remote ontologies as long as this hierarchi-
cal topology on the mapping is maintained, i.e., the remote ontologies contain
no mappings between them nor towards the local ontology. Instead, if we allow
for a network of peers with arbitrary topology of the mappings, even for ontolo-
gies with no TBox, peer query answering becomes undecidable [19,26]. On the
other hand, we have just shown above that even if we maintain a hierarchical
structure of the mapping, but include functionalities, in fact replacing DL-LiteR
with DL-LiteF , the What-To-Ask problem becomes unsolvable even if we allow
for arbitrary FOL combinations of the certain answers returned by the remote
peer.

These results together question the use of first-order mappings, i.e., mappings
whose interpretation is an implication between FOL formulas, typically adopted
in data peer frameworks [8,19,26].

A radical solution to this is adopting an (auto) epistemic view of the map-
pings, as suggested in [19]. According to this view each peer is seen as an
autonomous agent that interacts with other autonomous agents through peer
mappings, and the entire network of peers is not interpreted as a single first-
order logic theory, obtained as the disjoint union of the various peer theories, but
it is rather considered as a set of different modules, each with its own knowledge
about the world and about the other peers in the network. We formalize these
ideas below.

6.1 The Logic K

We present a logical formalization of a peer-to-peer network of peer-ontologies
based on the use of epistemic logic [10,20,22,29]. In particular, we adopt a multi-
modal epistemic logic, based on the premise that each peer in the system can be
seen as a rational agent. More precisely, the formalization we provide is based on
K, the multi-modal version of the well-known modal logic of knowledge/belief
K45 [20] (a.k.a. weak-S5 [29], see also [38]).

The language L(K) of K is obtained from first-order logic by adding a set
K1, . . . ,Kn of modal operators, for the forming rule: if φ is a (possibly open)
formula, then also Kiφ is so, for 1 ≤ i ≤ n for a fixed n. In K, each modal
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operator is used to formalize the epistemic state of a different agent. Informally,
the formula Kiφ should be read as “φ is known to hold by the agent i”. The
semantics of K is such that what is known by an agent must hold in the real
world: in other words, the agent cannot have inaccurate knowledge of what is
true, i.e., believe something to be true although in reality it is false. Moreover,
K states that the agent has complete information on what it knows, i.e., if agent
i knows φ then it knows of knowing φ, and if agent i does not know φ, then it
knows that it does not know φ. In other words, the following assertions hold for
every K formula φ:

Kiφ → φ, known as the axiom schema T
Kiφ → Ki(Kiφ), known as the axiom schema 4
¬Kiφ → Ki(¬Kiφ), known as the axiom schema 5

To define the semantics of K, we start from first-order interpretations. We
restrict our attention to first-order interpretations that share a fixed infinite
domain Δ and assume that constants of the set Γ act as standard names for Δ.

Formulas of K are interpreted over K-structures. A K-structure is a Kripke
structure E of the form (W, {R1, . . . Rn}, V ), where: W is a set whose elements
are called possible worlds; V is a function assigning to each w ∈ W a first-
order interpretation V (w); and each Ri, called the accessibility relation for the
modality Ki, is a binary relation over W , with the following constraints:

if w ∈ W then (w,w) ∈ Ri, i.e., Ri is reflexive
if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is euclidean.

An K-interpretation is a pair E,w, where E = (W, {R1, . . . Rn}, V ) is an
K-structure, and w is a world in W . We inductively define when a sentence (i.e.,
a closed formula) φ is true in an interpretation E,w (or, is true on world w ∈ W
in E), written E,w |= φ, as follows:8

E,w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w �|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constant c
E,w |= Kiφ iff E,w′ |= φ for every w′ such that (w,w′) ∈ Ri

We say that a sentence φ is satisfiable if there exists an K-model for φ, i.e.,
an K-interpretation E,w such that E,w |= φ, unsatisfiable otherwise. A model
for a set Σ of sentences is a model for every sentence in Σ. A sentence φ is
logically implied by a set Σ of sentences, written Σ |=K φ, if and only if in
every K-model E,w of Σ, we have that E,w |= φ.

Notice that, since each accessibility relation of a K-structure is reflexive,
transitive and Euclidean, all instances of axiom schemas T, 4 and 5 are satisfied
in every K-interpretation.
8 We use ψx

c to denote the formula obtained from ψ by substituting each free occur-
rence of the variable x with the constant c.
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6.2 The What-To-Ask Problem Under the Epistemic Semantics

Due to the characteristics mentioned above, see also [15], K is well-suited to for-
malize mappings between peers. We recall that an ontology-based peer ontology
Pi has the form Pi = 〈Oi,Mi〉, where Oi is an ontology, and Mi is a set of peer
mapping assertions of the form (cf. Sect. 3.1)

{x | ∃y.conj(x,y)} � {x | C(x)} or

{x1, x2 | ∃y.conj(x1, x2,y)} � {x1, x2 | R(x1, x2)},

where conj(x,y) and conj(x1, x2,y) are specified over another peer Pj .
For a peer Pi, we define the theory TK(Pi) in K as the union of the following

sentences:

– Ontology Oi of Pi: for each sentence φ in Oi, we have

Kiφ

Observe that φ is a first-order sentence expressed in the alphabet of Pi, which
is disjoint from the alphabet of all the other peers.

– peer mapping assertions Mi: for each peer mapping assertion from peer Pj to
peer Pi in M , we have

∀x.Kj(∃y.conj(x,y)) → Ki(C(x))
∀x1, x2.Kj(∃y.conj(x1, x2,y)) → Ki(R(x1, x2)).

In words, the first sentence specifies the following rule: for each object a, if
peer Pj knows the sentence ∃y.conj(a,y), then peer Pi knows the assertion
C(a). Similarly, the second sentence specifies that for each pair of objects
a, b, if peer Pj knows the sentence ∃y.conj(a, b,y), then peer Pi knows the
assertion R(a, b).

Given a network of peer-ontologies P = {P1, . . . , Pn}, we denote by TK(P)
the theory corresponding to the network of peer-ontologies P, i.e., TK(P) =⋃

i=1,...,n TK(Pi).
The semantics of a (conjunctive) query q posed to a peer Pi = 〈Oi,Mi〉 of P

is defined as the set of tuples

certK(q, Pi,P) = {t | TK(P) |=K Kiq(t)}

where q(t) denotes the sentence obtained from the open formula q(x) by replac-
ing all occurrences of the free variables in x with the corresponding constants
in t.

Let us now turn our attention to ontology-to-ontology systems of the form
defined in Sect. 3.1. It is immediate to apply the epistemic-based interpretation
given above to systems of this kind, which contain only a remote peer and a
local peer. Then, we can rephrase the What-To-ask problem under the epistemic
semantics as follows.
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Definition 6. Let P� = 〈O�,M�〉 be a local peer, PS
r = 〈Tr, ∅〉 a remote peer

specification, and q a client’s query specified over P�. The What-To-Ask problem
under the epistemic interpretation of peer mappings, WTAe(q, P�, P

S
r ), is defined

as follows: Given as input q, P�, and PS
r , find a finite set {q1r , . . . , qn

r } of queries,
each specified over the remote peer Pr, such that for every instance Ar of the
remote peer:

certK(q, P�,P) = cert(q,O�) ∪ cert(q1r ,Or) ∪ . . . ∪ cert(qn
r ,Or)

where Or = 〈Tr,Ar〉 and P = {P�, Pr}, with Pr = 〈Or, ∅〉. �

Notably, it is possible to show that under this interpretation of the sys-
tem, the What-To-Ask problem admits solutions when ontologies are specified
in DL-LiteA [43], which is the logic combining the features of both DL-LiteR,
and DL-LiteF , but where the functionality axiom can be asserted only on roles
that have no specializations.

Theorem 5. Let P� = 〈O�,M�〉 be a local peer, such that O� is a DL-LiteA
ontology, let PS

r = 〈Tr, ∅〉 be a remote peer specification, such that Tr is a
DL-LiteA TBox, and let q be a CQ specified over P�. Then, computeWTA(q, P�)
returns a solution for WTAe(q, P�, Pr). �

Finally, we point out that when the ability of the local peer of combining
certain answers returned by the remote peer goes beyond the simple union,
peer query answering can be solved also through mechanisms that are different
from the algorithm computeWTA. For example, when the local peer is able to
combine tuples coming from the remote peer with local tuples for computing
joins in mixed queries, the procedure Mref in the algorithm computeWTA might
be substituted with a more efficient procedure, based for example on the (partial)
local materialization of remote data accessible through mapping assertions [34,
35]. Some smart strategies can be adopted in this case to limit materialization
only to data relevant for answering the query at hand.

6.3 Epistemic Semantics for Networks of Peer-Ontologies

Interestingly, by virtue of the epistemic interpretation of the peer mappings,
techniques for query answering as the one discussed above can be generalized
to peer-ontologies networks of arbitrary topology, provided that each peer has
the ability of reformulating queries posed over the local ontology in queries to
be posed to the other peers in the network (e.g., via the algorithm given in [19]
where the external database system can be seen as an autonomous peer in the
network). These techniques have been studied in the relational setting in [21].

7 Conclusions

The peer-to-peer paradigm represents an abstraction that captures several types
of system studied in different disciplines, such as Multi-agent systems, Semantic
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Web, Data Management, Knowledge Representations, and others. In this paper,
we have carried out a fundamental study on data-intensive peer-to-peer sys-
tems in the case where the whole system is constituted by two peers connected
by mappings, and each peer is structured as a knowledge base expressed in a
Description Logic of the DL-Lite family. In particular, we have addressed the
so-called “What-To-Ask” problem, which, given a query q on a local peer P�,
requires to figure out which queries to send to the remote peer in order for P�

to be able to return the correct and complete set of answers to q.
The investigation discussed in this paper can be continued along several

interesting directions. In particular, it would be interesting to explore methods
for dealing with inconsistencies between peers, a problem that has been ignored
by the present paper (see, for instance, [17]). Finally, another relevant problem
is to design methods for update propagation between peers, so that all relevant
data from the remote peers can be stored in the local peer, thus avoiding asking
queries at run time.
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Abstract. Model Completeness is a classical topic in model-theoretic
algebra, and its inspiration sources are areas like algebraic geometry and
field theory. Yet, recently, there have been remarkable applications in
computer science: these applications range from combined decision pro-
cedures for satisfiability and interpolation, to connections between tem-
poral logic and monadic second order logic and to model-checking. In this
paper we mostly concentrate on the last one: we study verification over
a general model of so-called artifact-centric systems, which are used to
capture business processes by giving equal important to the control-flow
and data-related aspects. In particular, we are interested in assessing
(parameterized) safety properties irrespectively of the initial database
instance. We view such artifact systems as array-based systems, estab-
lishing a correspondence with model checking based on Satisfiability-
Modulo-Theories (SMT). Model completeness comes into the picture in
this framework by supplying quantifier elimination algorithms for suit-
able existentially closed structures. Such algorithms, whose complexity
is unexpectedly low in some cases of our interest, are exploited during
search and to represent the sets of reachable states. Our first implemen-
tation, built up on top of the mcmt model-checker, makes all our foun-
dational results fully operational and quite effective, as demonstrated by
our first experiments.

1 Introduction

In this introduction, we briefly review some results coming from joint work of
Franz Baader with the second author during the years 2004–2012: the novel
contributions of the present paper can in fact be considered as a natural con-
tinuation of such previous cooperation. In both cases, the common background
is the attempt of reinterpreting a classical model-theoretic tool (namely model-
completeness) inside the realm of computational logic and of automated reason-
ing. In former joint work the focus was related to the combination of decision
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procedures in first order theories, in the present paper the focus is tailored to
the use of decision procedures in declarative model-checking (in particular, in
model-checking oriented to the emerging area of verification of data aware pro-
cesses).

Finding solutions to equations is a challenge at the heart of both mathematics
and computer science. Model-theoretic algebra, originating with the ground-
breaking work of Robinson [55,56], cast the problem of solving equations in a
logical form, and used this setting to solve algebraic problems via model theory.
The central notion is that of an existentially closed model, which we explain now.
Call a quantifier-free formula with parameters in a model M solvable if there is
an extension M′ of M where the formula is satisfied. A model M is existentially
closed if any solvable quantifier-free formula already has a solution in M itself.
For example, the field of real numbers is not existentially closed, but the field of
complex numbers is.

Although this definition is formally clear, it has a main drawback: it is not
first-order definable in general. However, in fortunate and important cases, the
class of existentially closed models of a first-order theory T are exactly the models
of another first-order theory T ∗. In this case, the theory T ∗ can be character-
ized abstractly as the model companion of T . Model companions become model
completions (cf. Definition 2.1) in the case of universal theories with the amalga-
mation property; in such model completions, quantifier elimination holds, unlike
in the original theory T . The model companion/model completion of a theory
identifies the class of those models where all satisfiable existential statements can
be satisfied. For example, the theory of algebraically closed fields is the model
companion of the theory of fields, and dense linear orders without endpoints give
the model companion of linear orders.

1.1 Model Completeness in Combined Decision Problems

A first application of model completeness in computer science, more specifically
in automated reasoning, was related to the area of Satisfiability Modulo Theories
(SMT). The SMT-LIB project1 (started in 2003) aims at bringing together peo-
ple interested in developing powerful tools combining sophisticated techniques in
SAT-solving with dedicated decision procedures involving specific theories used
in applications (especially in software verification).

One of the main problems in the SMT area is to design algorithms for con-
straint satifiability problems modulo a given theory T : in such problems, one is
given a finite set of literals and is asked to determine whether this set is satisfiable
in a model of T . Theories of interests include linear (real and integer) arithmetics
and its fragments, as well as theories axiomatizing datatypes like lists, arrays,
etc. Very often such theories come out as combination of one or more component
theories (arrays of integers, reals, booleans are typical examples) and one would
like to obtain constraint satisfiability algorithms for combined theories in a mod-
ular way. The simplest way to implement this is to have a specific module for

1 http://smtlib.cs.uiowa.edu/.

http://smtlib.cs.uiowa.edu/
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each component theory and to leave such modules to exchange information con-
cerning the clauses expressible in the shared signature. This simple methodology
is quite attractive, but unfortunately not complete in general. A sufficient condi-
tion for completeness was identified in [37]: the exchange procedure is complete
in case the theory axiomatizing the shared signature reduct T0 has a model com-
pletion T ∗

0 and each of the component theories Ti is T0-compatible, i.e., every
model of Ti embeds into a model of T ∗

0 ∪ Ti. Intuitively, the reason why this
condition is sufficient is the fact that one can check satisfiability of constraints
in the combined signature by restricting to models whose reduct to the shared
signature is a model of T ∗

0 , so that quantifier elimination in T ∗
0 guarantees that

exchanging information over the quantifier-free fragment is sufficient. This result
from [37] generalizes to the non-disjoint signatures case the well-known Nelson-
Oppen method [51,61], because to be stably infinite in the sense of [51] means
precisely to be compatible with the pure equality theory. For the above outlined
exchange procedure to yield decidability of the combined constraint satisfiability
problem, we need (for termination) a further hypothesis, namely that the shared
theory T0 is locally finite (which means that the total amount of information that
needs to be exchanged is finite up to T0-equivalence). All the above hypotheses
apply for instance to the case of modal algebras with operators, yieldying as a
by-product the well-known fusion transfer result for decidability of the global
consequence relation in modal logic [63].

The results from [37] however do not supply a sufficient condition for decid-
ability of combined word problems. The case of combined word problems is in
a sense more challenging: we assume that the component algorithms are only
able to test (un)satifiability of a single disequation and we want to conclude
that the same property can be transferred to the combined theory via suitable
information exchange. In the disjoint signature case, combined word problems
are always decidable in case the component equational theories have a decidable
word problem [52]; however, for non-disjoint signatures, combined algorithms
were known only in case the component theories satisfy a kind of term fac-
torization property [14,36]. In [12], it was proved that T0-compatibility, joined
with a special Gaussian property, yields also here a combined decidability result;
the result has again a remarkable consequence in modal logic, as it implies the
fusion transfer result for decidability of the local consequence relation (this solves
a long-standing open question and, up to now and as far as we know, the proof
supplied in [12] via general combination methods is the only available proof of
this result).

The above methodology was further extended to cover different combination
schemata for first order theories [9–11] (again having as special case a combina-
tion schema, namely E-connections [49], introduced in the framework of modal
and description logics).

Model completeness has further application in automated reasoning: it has
been applied to design complete algorithms for constraint satisfiability in theory
extensions [59,60] and for combination transfer for quantifier-free interpolation
(both for modal logics and for software verification theories) [38,39]. Another
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different research line used model completeness in order to discover interesting
connections between monadic second order logic and its temporal logic frag-
ments [43,44].

1.2 Towards Model Completeness in Verification

In order to see the connection between model completeness and verification, the
following simple but nevertheless important observation is crucial. In declarative
approaches to model-checking, the runs of a system are identified with certain
definable paths in the models of a theory T : in case transition systems are
represented via quantifier-free formulae and system variables are modeled as first
order variables, it is easy to see that, without loss of generality and as far as safety
problems are concerned, one may restrict to paths within existentially closed
models, thus taking profit from the properties enjoyed by the model completion
T ∗ of T whenever it exists. In particular, during forward or backward search, one
can exploit quantifier elimination in order to represent sets of reachable states
via quantifier-free formulae.2

Our intended applications are however more complex, because we need to
handle transition systems whose variables are not just individual first order vari-
ables. The systems we have in mind are generically called array-based systems,
where the term “array-based systems” is an umbrella term generically refer-
ring to infinite-state transition systems implicitly specified using a declarative,
logic-based formalism comprising second order function variables. The formal-
ism captures transitions manipulating arrays via logical formulae, and its precise
definition depends on the specific application of interest. The first declarative
formalism for array-based systems was introduced in [40,41] to handle the ver-
ification of distributed systems, and afterwards was successfully employed also
to verify a wide range of infinite-state systems [4,8]. Distributed systems are
parameterized in their essence: the number N of interacting processes within a
distributed system is unbounded, and the challenge is that of supplying certi-
fications that are valid for all possible values of the parameter N . The overall
state of the system is typically described by means of arrays indexed by pro-
cess identifiers, and used to store the content of process variables like locations
and clocks. These arrays are genuine second order function variables: they map
indexes to data, in a way that changes as the system evolves.

Quantifiers are then used to represent sets of system states, however the
kind of formulae that are needed for this purpose obey specific syntactic restric-
tions. Due to these restrictions, the proof obligations generated during model
checking search (usually backward search is implemented in these systems) can

2 It is quite curious to notice that this observation (in its essence) was already present
in the paper [45], where however model completeness was not mentioned at all!
Instead of quantifier elimination in the model completion T ∗, the authors of [45]
relied on the computation of the so called ‘cover’ of an existential formula (such
cover turns out to be equivalent to the quantifier free equivalent formula modulo
T ∗).
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be discharged by techniques combining instantiation algorithms with quantifier
elimination algorithms. Typically, quantifiers ranging over indexes are handled
by instantiation and quantifiers over data are handled via quantifier elimina-
tion (whenever quantifier elimination is considered too expensive or whenever
there is the need to speed up termination, other techniques like interpolation or
abstraction may be preferred to quantifier elimination).

The above discussion makes the step we are planning to make in the follow-
ing evident: whenever quantifier elimination for data is not available, one may
resort to model completions to handle data quantifiers arising during search in
array-bases systems. This is not an abstract plan in fact, because there is an
emerging area in verification that leads precisely to this, namely the area of ver-
ification of data aware processes (see below). We just mention another crucial
fact from the implementation point of view: the cost of quantifier elimination in
the model completions relevant for the application area of data aware processes is
surprisingly low. In fact, eliminating a tuple of quantified variables from a prim-
itive formula requires only polynomial time and can be achieved for instance via
ground Knuth-Bendix completion, see [23] for more details.3

1.3 Data Aware Processes: Our Contribution

During the last two decades, a huge body of research has been dedicated to
the challenging problem of reconciling data and process management within
contemporary organizations [33,53,54]. This requires to move from a purely
control-flow understanding of business processes to a more holistic approach that
also considers how data are manipulated and evolved by the process. Striving for
this integration, new models were devised, with two prominent representatives:
object-centric processes [48], and business artifacts [29,46].

In parallel, a flourishing series of results has been dedicated to the formal-
ization of such integrated models, and to the boundaries of decidability and
complexity for their static analysis and verification [20]. Such results are quite
fragmented, since they consider a variety of different assumptions on the model
and on the static analysis tasks [20,62]. Two main trends can be identified within
this line. A recent series of results focuses on very general data-aware processes
that evolve a full-fledged, relational database (DB) with arbitrary first-order
constraints [1,15,16,21]. Actions amount to full bulk updates that may simul-
taneously operate on multiple tuples, possibly injecting fresh values taken from
an infinite data domain. Verification is studied by fixing the initial instance of
the DB, and by considering all possible evolutions induced by the process over
the initial data.

A second trend of research is instead focused on the formalization and veri-
fication of artifact-centric processes. These systems are traditionally formalized
using three components [28,31]: (i) a read-only DB that stores fixed, background

3 Again, without mentioning any specific application, this was already observed in [45],
as the specialization of the cover algorithm to signatures with unary free function
symbols.
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information, (ii) a working memory that stores the evolving state of artifacts, and
(iii) actions that update the working memory.Different variants of this model,
obtained via a careful tuning of the relative expressive power of its three com-
ponents, have been studied towards decidability of verification problems param-
eterized over the read-only DB (see, e.g., [17,28,31,32]). These are verification
problems where a property is checked for every possible configuration of the
read-only DB. For instance, for the working memory, radically different models
are obtained depending on whether only a single artifact instance is evolved, or
whether instead the co-evolution of multiple instances of possibly different arti-
facts is supported. In particular, early formal models for artifact systems merely
considered a fixed set of so-called artifact variables, altogether instantiated into
a single tuple of data. This, in turn, allows one to capture the evolution of a
single artifact instance [31]. We call an artifact system of this form Simple Arti-
fact System (SAS). Instead, more sophisticated types of artifact systems have
been studied recently in [32,50]. Here, the working memory is not only equipped
with artifact variables as in SAS, but also with so-called artifact relations, which
supports storing arbitrarily many tuples, each accounting for a different artifact
instance that can be evolved on its own. We call an artifact system of this form
Relational Artifact System (RAS).

The overarching goal of this work is to connect, for the first time, such for-
mal models and their corresponding verification problems, with the models and
techniques of model checking via array-based systems described above. This is
concretized through four technical contributions.

Our first contribution is the definition of a general framework of so-called
RASs, in which artifacts are formalized in the spirit of array-based systems. In
this setting, SASs are a particular class of RASs, where only artifact variables
are allowed. RASs employ arrays to capture a very rich working memory that
simultaneously accounts for artifact variables storing single data elements, and
for full-fledged artifact relations storing unboundedly many tuples. Each artifact
relation is captured using a collection of arrays, so that a tuple in the relation
can be retrieved by inspecting the content of the arrays with a given index.
The elements stored therein may be fresh values injected into the RAS, or data
elements extracted from the read-only DB, whose relations are subject to key and
foreign key constraints. This constitutes a big leap from the usual applications of
array-based systems, because the nature of such constraints is quite different and
requires completely new techniques for handling them (for instance, for quantifier
elimination, as mentioned above). To attack this complexity, by relying on array-
based systems, RASs encode the read-only DB using a functional, algebraic view,
where relations and constraints are captured using multiple sorts and unary
functions. The resulting model captures the essential aspects of the model in [50],
which in turn is tightly related (though incomparable) to the sophisticated formal
model for artifact-centric systems of [32].

Our second contribution is the development of algorithmic techniques for the
verification of (parameterized) safety properties over RASs. This amounts to
determining whether there exists an instance of the read-only DB that allows
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the RAS to evolve from its initial configuration to an undesired one that falsifies
a given state property. To attack this problem, we build on backward reacha-
bility search [40,41]. This is a correct, possibly non-terminating technique that
regresses the system from the undesired configuration to those configurations
that reach the undesired one. This is done by iteratively computing symbolic
pre-images, until they either intersect the initial configuration of the system
(witnessing unsafety), or they form a fixpoint that does not contain the initial
state (witnessing safety).

Adapting backward reachability to the case of RASs, by retaining sound-
ness and completeness, requires genuinely novel research so as to eliminate new
(existentially quantified) “data” variables introduced during regression. Tradi-
tionally, this is done by quantifier instantiation or elimination. However, while
quantifier instantiation can be transposed to RASs, quantifier elimination can-
not, since the data elements contained in the arrays point to the content of a
full-fledged DB with constraints. To reconstruct quantifier elimination in this
setting, which is the main technical contribution of this work, we employ the
classic model-theoretic machinery of model completions: via model completions,
we prove that the runs of a RAS can be faithfully lifted to richer contexts where
quantifier elimination is indeed available, despite the fact that it was not avail-
able in the original structures. This allows us to recast safety problems over
RASs into equivalent safety problems in this richer setting.

Our third contribution is the identification of three notable classes of RASs
for which backward reachability terminates, in turn witnessing decidability of
safety. The first class restricts the working memory to variables only, i.e., focuses
on SASs. The second class focuses on RASs operating under the restrictions
imposed in [50]: it requires acyclicity of foreign keys and ensures a sort of local-
ity principle where different artifact tuples are not compared. Consequently, it
reconstructs the decidability result exploited in [50] if one restricts the verifi-
cation logic used there to safety properties only. In addition, our second class
supports full-fledged bulk updates, which greatly increase the expressive power
of dynamic systems [57] and, in our setting, witness the incomparability of our
results and those in [50]. The third class is genuinely novel, and while it further
restricts foreign keys to form a tree-shaped structure, it does not impose any
restriction on the shape of updates, and consequently supports not only bulk
updates, but also comparisons between artifact tuples.

Our fourth contribution concerns the implementation of backward reachability
techniques for RASs. Specifically, we have extended the well-known mcmt model
checker for array-based systems [42], obtaining a fully operational counterpart to
all the foundational results presented in the paper. Even though implementation
and experimental evaluation are not central in this paper, we note that our
model checker correctly handles the examples produced to test verifas [50],
as well as additional examples that go beyond the verification capabilities of
verifas, and report some interesting cases here. The performance of mcmt to
conduct verification of these examples is very encouraging, and indeed provides
the first stepping stone towards effective, SMT-based verification techniques for
artifact-centric systems.
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This paper is essentially a survey and is meant to summarize ongoing work
(cf. [22]); results are stated without proofs or with just proof sketches (proofs
are all available in the extended version [24]). The rest of the paper is structured
as follows. We give necessary preliminaries in Sect. 2. We present our functional
view of (read-only) DBs with constraints in Sect. 3, and we introduce the RAS
formal model in Sect. 4. We study safety via backward reachability in Sect. 5, and
termination of backward reachability in Sect. 6. We report on our implementation
effort and related experiments in Sect. 7, and conclude the paper in Sect. 8.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, and so on. We use u to represent a tuple 〈u1, . . . , un〉. Our
signatures Σ are multi-sorted and include equality for every sort, which implies
that variables are sorted as well. Depending on the context, we keep the sort of
a variable implicit, or we indicate explicitly in a formula that variable x has sort
S by employing notation x : S. The notation t(x), φ(x) means that the term
t, the formula φ has free variables included in the tuple x. We are concerned
with constants and function symbols f , each of which has sources S and a target
S′, denoted as f : S −→ S′; similarly relation simbols R have sources, written
as R : S. We assume that terms and formulae are well-typed, in the sense that
the sorts of variables, constants, and function sources/targets match. A formula
is said to be universal (resp., existential) if it has the form ∀x (φ(x)) (resp.,
∃x (φ(x))), where φ is a quantifier-free formula. Formulae with no free variables
are called sentences.

From the semantic side, we use the standard notions of a Σ-structure M and
of truth of a formula in a Σ-structure under an assignment to the free variables.
A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structure M where
all sentences in T are true. We use the standard notation T |= φ to say that φ
is true in all models of T for every assignment to the free variables of φ. We say
that φ is T -satisfiable if there is a model M of T and an assignment to the free
variables of φ that make φ true in M.

A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction
of literals. The constraint satisfiability problem for T asks: given an existential
formula ∃y φ(x, y) (with φ a constraint4), are there a model M of T and an
assignment α to the free variables x such that M, α |= ∃y φ(x, y)?

A theory T has quantifier elimination iff for every formula φ(x) in the sig-
nature of T there is a quantifier-free formula φ′(x) such that T |= φ(x) ↔ φ′(x).
It is well-known (and easily seen) that quantifier elimination holds in case we
can eliminate quantifiers from primitive formulae, i.e., from formulae of the kind
∃y φ(x, y), where φ is a constraint. Since we are interested in effective com-
putability, we assume that whenever we talk about quantifier elimination, an
effective procedure for eliminating quantifiers is given.
4 For the purposes of this definition, we may equivalently take the formula to be

quantifier-free.
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Let Σ be a first-order signature. The signature obtained from Σ by adding
to it a set a of new constants (i.e., 0-ary function symbols) is denoted by Σa.
Analogously, given a Σ-structure A, the signature Σ can be expanded to a new
signature Σ|A| := Σ ∪ {ā | a ∈ |A|} by adding a set of new constants ā (the
name for a), one for each element a in A, with the convention that two distinct
elements are denoted by different “name” constants. A can be expanded to a
Σ|A|-structure A′ := (A, a)a∈|A| by just interpreting the additional constants
over the corresponding elements. From now on, when the meaning is clear from
the context, we will freely use the notation A and A′ interchangeably: in partic-
ular, given a Σ-structure A and a Σ-formula φ(x) with free variables that are
all in x, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structu-
res M and N is any mapping μ : |M| −→ |N | among the support sets |M| of M
and |N | of N satisfying the condition (M |= ϕ ⇒ N |= ϕ) for all Σ|M|-atoms
ϕ (here M is regarded as a Σ|M|-structure, by interpreting each additional con-
stant a ∈ |M| into itself, and N is regarded as a Σ|M|-structure by interpreting
each additional constant a ∈ |M| into μ(a)). In case the last condition holds
for all Σ|M|-literals, the homomorphism μ is said to be an embedding, and if it
holds for all first order formulae, the embedding μ is said to be elementary.

In the following (cf. Sect. 4), we specify transitions of an artifact-centric sys-
tem using first-order formulae. To obtain a more compact representation, we
make use there of definable extensions as a means for introducing so-called case-
defined functions. We fix a signature Σ and a Σ-theory T ; a T -partition is a finite
set κ1(x), . . . , κn(x) of quantifier-free formulae such that T |= ∀x

∨n
i=1 κi(x)

and T |= ∧
i�=j ∀x¬(κi(x) ∧ κj(x)). Given such a T -partition κ1(x), . . . , κn(x)

together with Σ-terms t1(x), . . . , tn(x) (all of the same target sort), a case-
definable extension is the Σ′-theory T ′, where Σ′ = Σ ∪ {F}, with F a “fresh”
function symbol (i.e., F �∈ Σ)5, and T ′ = T ∪⋃n

i=1{∀x (κi(x) → F (x) = ti(x))}.
Intuitively, F represents a case-defined function, which can be reformulated using
nested if-then-else expressions and can be written as F (x) := case of {κ1(x) :
t1; · · · ;κn(x) : tn}. By abuse of notation, we identify T with any of its case-
definable extensions T ′. In fact, it is easy to produce from a Σ′-formula φ′ a
Σ-formula φ equivalent to φ′ in all models of T ′: just remove (in the appropriate
order) every occurrence F (v) of the new symbol F in an atomic formula A, by
replacing A with

∨n
i=1(κi(v) ∧ A(ti(v))). We also exploit λ-abstractions (see,

e.g., formula (3) below) for a more compact (still first-order) representation of
some complex expressions, and always use them in atoms like b = λy.F (y, z) as
abbreviations of ∀y. b(y) = F (y, z) (where, typically, F is a symbol introduced
in a case-defined extension as above).

We recall a standard notion in Model Theory, namely the notion of a model
completion of a first order theory [26] (we limit the definition to universal theo-
ries, because we shall use only this case):

5 Arity and source/target sorts for F can be deduced from the context (considering
that everything is well-typed).
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Definition 2.1. Let T be a universal Σ-theory and let T � ⊇ T be a further
Σ-theory; we say that T � is a model completion of T iff: (i) every model of T
can be embedded into a model of T �; (ii) for every model M of T , we have that
T � ∪ ΔΣ(M) is a complete theory in the signature Σ|M|.

Since T is universal, condition (ii) is equivalent to the fact that T � has quan-
tifier elimination; on the other hand, a standard argument (based on diagrams
and compactness) shows that condition (i) is the same as asking that T and T �

have the same universal consequences. Thus we have an equivalent definition (to
be used in the following):

Proposition 2.2. Let T be a universal Σ-theory and let T � ⊇ T be a further Σ-
theory; T � is a model completion of T iff: (i) every Σ-constraint satisfiable in a
model of T is also satisfiable in a model of T ∗; (ii) T ∗ has quantifier elimination.

We recall also that the model completion T � of a theory T is unique, if it
exists (see [26] for these results and for examples).

3 Read-Only Database Schemas

We now provide a formal definition of (read-only) DB-schemas by relying on
an algebraic, functional characterization, and derive some key model-theoretic
properties.

Definition 3.1. A DB schema is a pair 〈Σ,T 〉, where: (i) Σ is a DB signature,
that is, a finite multi-sorted signature whose only symbols are relation symbols
(of any arity), equality, unary function symbols, and constants; (ii) T is a DB
theory, that is, a set of universal Σ-sentences.

Relation symbols are used to represent plain relations, whereas unary function
symbols are used to represent relations endowed with primary and foreign key
constraints (as will be explained in Sect. 3.1 below). We refer to a DB schema
simply through its (DB) signature Σ and (DB) theory T , and denote by Σsrt

the set of sorts, by Σrel the set of relations, and by Σfun the set of functions in
Σ. Since Σ contains only unary function symbols and equality, each atomic Σ-
formula is of the form t1(v1) = t2(v2) or R(t1(v1), . . . , tn(vn)), where t1, t2, . . . , tn
are possibly complex terms, and v1, v2, . . . , vn are variables or constants.

We associate to a DB signature Σ a characteristic graph G(Σ) capturing
the dependencies induced by functions over sorts. Specifically, G(Σ) is an edge-

labeled graph whose set of nodes is Σsrt , and with a labeled edge S
f−→ S′ for

each f : S −→ S′ in Σfun . We say that Σ is acyclic if G(Σ) is so. The leaves of Σ
are the nodes of G(Σ) without outgoing edges. These terminal sorts are divided
into two subsets, respectively representing unary relations and value sorts. Non-
value sorts (i.e., unary relations and non-leaf sorts) are called id sorts, and are
conceptually used to represent (identifiers of) different kinds of objects. Value
sorts, instead, represent datatypes such as strings, numbers, clock values, etc.
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We denote the set of id sorts in Σ by Σids , and that of value sorts by Σval , hence
Σsrt = Σids � Σval .

We now consider extensional data.

Definition 3.2. A DB instance of DB schema 〈Σ,T 〉 is a Σ-structure M that
is a model of T and such that every id sort of Σ is interpreted in M on a finite
set.

Contrast this to arbitrary models of T , where no finiteness assumption is made.
What may appear as not customary in Definition 3.2 is the fact that value sorts
can be interpreted on infinite sets. This allows us, at once, to reconstruct the
classical notion of DB instance as a finite model (since only finitely many val-
ues can be pointed from id sorts using functions), at the same time supplying a
potentially infinite set of fresh values to be dynamically introduced in the work-
ing memory during the evolution of the artifact system. More details on this will
be given in Sect. 3.1.

We respectively denote by SM, RM, fM, and cM the interpretation in M
of the sort S (this is a set), of the relation symbol R (this is a set of tuples),
of the function symbol f (this is a set-theoretic function), and of the constant c
(this is an element of the interpretation of the corresponding sort). Obviously,
fM, RM, and cM must match the sorts in Σ. E.g., if f has source S and target
U , then fM has domain SM and range UM.

Example 3.3. The human resource (HR) branch of a company stores the follow-
ing information inside a relational database: (i) users registered to the company
website, who are potential job applicants; (ii) the different, available job cate-
gories; (iii) employees belonging to HR, together with the job categories they are
competent in. To formalize these different aspects, we make use of a DB signature
Σhr consisting of:(i) four id sorts UserId, EmpId, CompInId, and JobCatId, used to
respectively identify users, employees, job categories, and the competence rela-
tionship connecting employees to job categories; (ii) one value sort String, con-
taining strings used to name users and employees, and to describe job categories;
and (iii) five function symbols, namely: userName and empName, respectively

Fig. 1. On the left: characteristic graph of the human resources DB signature from
Example 3.3. On the right: relational view of the DB signature; each cell denotes an
attribute with its type, underlined attributes denote primary keys, and directed edges
capture foreign keys.
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mapping user identifiers and employee identifiers to their corresponding names;
jobCatDescr , mapping job category identifiers to their corresponding descrip-
tions; and who and what , mapping competence identifiers to their corresponding
employees and job categories, respectively. The characteristic graph of Σhr is
shown in the left part of Fig. 1. �

We close the formalization of DB schemas by discussing DB theories, whose
role is to encode background axioms. We illustrate a typical background axiom,
required to handle the possible presence of undefined identifiers/values in the
different sorts. This axiom is essential to capture artifact systems whose working
memory is initially undefined, in the style of [32,50]. To specify an undefined
value we add to every sort S of Σ a constant undefS (written from now on, by
abuse of notation, just as undef, used also to indicate a tuple). Then, for each
function symbol f of Σ, we add the following axiom to the DB theory:

∀x (x = undef ↔ f(x) = undef) (1)

This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined.

Remark 3.4. In the artifact-centric model in the style of [32,50] that we intend
to capture, the DB theory consists of Axioms (1) only. However, our technical
results do not require this specific choice, and more general sufficient conditions
will be discussed later. These conditions apply to natural variants of Axiom (1)
(such variants might be used to model situations where we would like to have,
for instance, many undefined values, see [24]).

3.1 Relational View of DB Schemas

We now clarify how the algebraic, functional characterization of DB schemas and
instances can be actually reinterpreted in the classical, relational model. Defi-
nition 3.1 naturally corresponds to the definition of relational database schema
equipped with single-attribute primary keys and foreign keys (plus a reformu-
lation of constraint (1)). To technically explain the correspondence, we adopt
the named perspective, where each relation schema is defined by a signature
containing a relation name and a set of typed attribute names.

Let 〈Σ,T 〉 be a DB schema (only for this subsection, we assume that Σrel

is empty, for simplicity, because we want to concentrate on the most sophisti-
cated part of our formal model, the part aiming at formalizing key dependen-
cies). Each id sort S ∈ Σids corresponds to a dedicated relation RS with the
following attributes: (i) one identifier attribute idS with type S; (ii) one dedi-
cated attribute af with type S′ for every function symbol f ∈ Σfun of the form
f : S −→ S′.

The fact that RS is built starting from functions in Σ naturally induces dif-
ferent database dependencies in RS . In particular, for each non-id attribute af

of RS , we get a functional dependency from idS to af ; altogether, such depen-
dencies in turn witness that idS is the (primary) key of RS . In addition, for each
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non-id attribute af of RS whose corresponding function symbol f has id sort
S′ as image, we get an inclusion dependency from af to the id attribute idS′ of
RS′ ; this captures that af is a foreign key referencing RS′ .

Example 3.5. The diagram on the right in Fig. 1 graphically depicts the rela-
tional view corresponding to the DB signature of Example 3.3. �

Given a DB instance M of 〈Σ,T 〉, its corresponding relational instance
I is the minimal set satisfying the following property: for every id sort
S ∈ Σids , let f1, . . . , fn be all functions in Σ with domain S; then,
for every identifier o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1 : fM

1 (oM), . . . , afn
: fM

n (oM)). With this interpretation, the
active domain of I is the set

⋃

S∈Σids

(SM \ {undefM}) ∪
⎧
⎨

⎩v ∈
⋃

V ∈Σval

V M
∣∣∣∣
v �= undefM and there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v

⎫
⎬

⎭

consisting of all (proper) identifiers assigned by M to id sorts, as well as all
values obtained in M via the application of some function. Since such values
are necessarily finitely many, one may wonder why in Definition 3.2 we allow for
interpreting value sorts over infinite sets. The reason is that, in our framework, an
evolving artifact system may use such infinite provision to inject and manipulate
new values into the working memory. From the definition of active domain above,
exploiting Axioms (1) we get that the membership of a tuple (x0, . . . , xn) to a
generic n+1-ary relation RS with key dependencies (corresponding to an id sort
S) can be expressed in our setting by using just n unary function symbols and
equality:

RS(x0, . . . , xn) iff x0 �= undef ∧ x1 = f1(x0) ∧ · · · ∧ xn = fn(x0) (2)

Hence, the representation of negated atoms is the one that directly follows from
negating the formula in (2):

¬RS(x0, . . . , xn) iff x0 = undef ∨ x1 �= f1(x0) ∨ · · · ∨ xn �= fn(x0)

This relational interpretation of DB schemas exactly reconstructs the require-
ments posed by [32,50] on the schema of the read-only database: (i) each rela-
tion schema has a single-attribute primary key; (ii) attributes are typed; (iii)
attributes may be foreign keys referencing other relation schemas; (iv) the pri-
mary keys of different relation schemas are pairwise disjoint.

We stress that all such requirements are natively captured in our functional
definition of a DB signature, and do not need to be formulated as axioms in
the DB theory. The DB theory is used to express additional constraints, like
the one in Axiom (1). In the following subsection, we thoroughly discuss which
properties must be respected by signatures and theories to guarantee that our
verification machinery is well-behaved.
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One may wonder why we have not directly adopted a relational view for DB
schemas. This will become clear during the technical development. We anticipate
the main, intuitive reasons. First, our functional view allows us to reconstruct
in a single, homogeneous framework some important results on verification of
artifact systems, achieved on different models that have been unrelated so far [17,
32]. Second, our functional view makes the dependencies among different types
explicit. In fact, our notion of characteristic graph, which is readily computed
from a DB signature, exactly reconstructs the central notion of foreign key graph
used in [32] towards the main decidability results.

3.2 Formal Properties of DB Schemas

The theory T from Definition 3.1 must satisfy a few crucial requirements for our
approach to work. In this section, we define such requirements and show that
they are matched in the cases we are interested in. The following proposition is
motivated by the fact that in most cases the kind of axioms that we need for
our DB theories T are just one-variable universal axioms (like Axioms (1)).

We say that T has the finite model property (for constraint satisfiability)
iff every constraint φ that is satisfiable in a model of T is satisfiable in a DB
instance of T .6 The finite model property implies decidability of the constraint
satisfiability problem for T if T is recursively axiomatized.

Proposition 3.6. T has the finite model property and has a model completion
in case it is axiomatized by universal one-variable formulae and Σ is acyclic.

The proof of the above result in [24] supplies an algorithm for quantifier
elimination in the model completion which is far from optimal in concrete cases.
Moreover, acyclicity is not needed in general for Proposition 3.6 to hold: for
instance, when T := ∅ or when T contains only Axioms (1), the proposition holds
without acyclicity hypothesis. Such improvements are explained in [23], where
a better quantifier elimination algorithm, based on Knuth-Bendix completion is
supplied. Proposition 3.6 nevertheless motivates the following assumption:

Assumption 1. The DB theories we consider have a decidable constraint satis-
fiability problem, have the finite model property, and admit a model completion.

This assumption is matched, for instance, in the following three cases: (i) when
T is empty; (ii) when T is axiomatized by Axioms (1); (iii) when Σ is acyclic
and T is axiomatized by finitely many universal one-variable formulae (such as
Axioms (1)).

Hence, the artifact-centric model in the style of [32,50] that we intend to
capture matches Assumption 1.

6 This directly implies that φ is satisfiable also in a DB instance that interprets value
sorts into finite sets.



226 D. Calvanese et al.

4 Relational Artifact Systems

We are now in the position to define our formal model of Relational Artifact
Systems (RASs), and to study parameterized safety problems over RASs. Since
RASs are array-based systems, we start by recalling the intuition behind them.

In general terms, an array-based system is described using a multi-sorted
theory that contains two types of sorts, one accounting for the indexes of arrays,
and the other for the elements stored therein. Since the content of an array
changes over time, it is referred to by a second-order function variable, whose
interpretation in a state is that of a total function mapping indexes to elements
(so that applying the function to an index denotes the classical read operation
for arrays). The definition of an array-based system with array state variable a
always requires a formula I(a) describing the initial configuration of the array
a, and a formula τ(a, a′) describing a transition that transforms the content of
the array from a to a′. In such a setting, verifying whether the system can reach
unsafe configurations described by a formula K(a) amounts to checking whether
the formula I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ K(an) is satisfiable for some
n. Next, we make these ideas formally precise by grounding array-based systems
in the artifact-centric setting.

Following the tradition of artifact-centric systems [17,28,31,32], a RAS con-
sists of a read-only DB, a read-write working memory for artifacts, and a finite
set of actions (also called services) that inspect the relational database and the
working memory, and determine the new configuration of the working memory.
In a RAS, the working memory consists of individual and higher order variables.
These variables (usually called arrays) are supposed to model evolving relations,
so-called artifact relations in [32,50]. The idea is to treat artifact relations in a
uniform way as we did for the read-only DB: we need extra sort symbols (recall
that each sort symbol corresponds to a database relation symbol) and extra
unary function symbols, the latter being treated as second-order variables.

Given a DB schema Σ, an artifact extension of Σ is a signature Σext obtained
from Σ by adding to it some extra sort symbols7. These new sorts (usually
indicated with letters E,F, . . . ) are called artifact sorts (or artifact relations by
some abuse of terminology), while the old sorts from Σ are called basic sorts. In
a RAS, artifacts and basic sorts correspond, respectively, to the index and the
elements sorts mentioned in the literature on array-based systems. Below, given
〈Σ,T 〉 and an artifact extension Σext of Σ, when we speak of a Σext -model of
T , a DB instance of 〈Σext , T 〉, or a Σext -model of T ∗, we mean a Σext -structure
M whose reduct to Σ respectively is a model of T , a DB instance of 〈Σ,T 〉, or
a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by a finite set x of individual
variables and a finite set a of unary function variables: the latter must have an
artifact sort as source sort and a basic sort as target sort. Variables in x are
called artifact variables, and variables in a artifact components. Given a DB

7 By ‘signature’ we always mean ‘signature with equality’, so as soon as new sorts are
added, the corresponding equality predicates are added too.
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instance M of Σext , an assignment to an artifact setting (x, a) over Σext is a
map α assigning to every artifact variable xi ∈ x of sort Si an element xα

i ∈ SM
i

and to every artifact component aj : Ej −→ Uj (with aj ∈ a) a set-theoretic
function aα

j : EM
j −→ UM

j . In a RAS, artifact components and artifact variables
correspond, respectively, to arrays and constant arrays (i.e., arrays with all equal
elements) mentioned in the literature on array-based systems.

We can view an assignment to an artifact setting (x, a) as a DB instance
extending the DB instance M as follows. Let all the artifact components in (x, a)
having source E be ai1 : E −→ S1, · · · , ain : E −→ Sn. Viewed as a relation in
the artifact assignment (M, α), the artifact relation E “consists” of the set of
tuples {〈e, aα

i1
(e), . . . , aα

in
(e)〉 | e ∈ EM}. Thus each element of E is formed by

an “entry” e ∈ EM (uniquely identifying the tuple) and by “data” aα
i (e) taken

from the read-only database M. When the system evolves, the set EM of entries
remains fixed, whereas the components aα

i (e) may change: typically, we initially
have aα

i (e) = undef, but these values are changed when some defined values are
inserted into the relation modeled by E; the values are then repeatedly modified
(and possibly also reset to undef, if the tuple is removed and e is re-set to point
to undefined values)8.

In order to introduce verification problems in the symbolic setting of array-
based systems, one first has to specify which formulae are used to represent
sets of states, the system initializations, and system evolution. In such formulae,
we use notations like φ(z, a) to mean that φ is a formula whose free individual
variables are among the z and whose free unary function variables are among
the a. Let (x, a) be an artifact setting over Σext , where x = x1, . . . , xn are the
artifact variables and a = a1, . . . , am are the artifact components (their source
and target sorts are left implicit).

– An initial formula is a formula ι(x) of the form9

(
∧n

i=1 xi = ci) ∧ (
∧m

j=1 aj = λy.dj),

where ci, dj are constants from Σ (typically, ci and dj are undef).
– A state formula has the form

∃e φ(e, x, a),

where φ is quantifier-free and the e are individual variables of artifact sorts.
– A transition formula τ̂ has the form

∃e (γ(e, x, a) ∧ ∧
i x′

i = Fi(e, x, a) ∧ ∧
j a′

j = λy.Gj(y, e, x, a)) (3)

8 In accordance with mcmt conventions, we denote the application of an artifact com-
ponent a to a term (i.e., constant or variable) v also as a[v] (standard notation for
arrays), instead of a(v).

9 Recall that aj = λy.dj abbreviates ∀y aj(y) = dj .
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where the e are individual variables (of both basic and artifact sorts), γ (the
‘guard’) is quantifier-free, x′, a′ are renamed copies of x, a, and the Fi, Gj

(the ‘updates’) are case-defined functions.

Transition formulae as above can express, e.g., (i) insertion (with/without dupli-
cates) of a tuple in an artifact relation, (ii) removal of a tuple from an artifact
relation, (iii) transfer of a tuple from an artifact relation to artifact variables
(and vice-versa), and (iv) bulk removal/update of all the tuples satisfying a cer-
tain condition from an artifact relation. All the above operations can also be
constrained. Our framework is more expressive than, e.g., the one in [50], as
shown in [24].

Definition 4.1. A Relational Artifact System (RAS) is

S = 〈Σ,T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ,T 〉 is a (read-only) DB schema, (ii) Σext is an artifact extension
of Σ, (iii) (x, a) is an artifact setting over Σext , (iv) ι is an intitial formula,
and (v) τ is a disjunction of transition formulae.

Example 4.2. We present here a RAS Shr containing a multi-instance artifact
accounting for the evolution of job applications. Each job category may receive
multiple applications from registered users. Such applications are then evaluated,
finally deciding which to accept or reject. The example is inspired by the job
hiring process presented in [58] to show the intrinsic difficulties of capturing real-
life processes with many-to-many interacting business entities using conventional
process modeling notations (e.g., BPMN). An extended version of this example
is presented in [24].

As for the read-only DB, Shr works over the DB schema of Example 3.3,
extended with a further value sort Score used to score job applications. Score
contains 102 values in the range [-1, 100], where -1 denotes the non-eligibility
of the application, and a score from 0 to 100 indicates the actual one assigned
after evaluating the application. For readability, we use as syntactic sugar the
usual predicates <, >, and = to compare variables of type Score.

As for the working memory, Shr consists of two artifacts. The first single-
instance job hiring artifact employs a dedicated pState variable to capture
main phases that the running process goes through: initially, hiring is disabled
(pState = undef), and, if there is at least one registered user in the HR DB,
pState becomes enabled. The second multi-instance artifact accounts for the evo-
lution of user applications. To model applications, we take the DB signature Σhr

of the read-only HR DB, and enrich it with an artifact extension containing an
artifact sort appIndex used to index (i.e., “internally” identify) job applications.
The management of job applications is then modeled by an artifact setting with:
(i) artifact components with domain appIndex capturing the artifact relation
storing different job applications; (ii) additional individual variables as tempo-
rary memory to manipulate the artifact relation. Specifically, each application
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consists of a job category, the identifier of the applicant user and that of an
HR employee responsible for the application, the application score, and the final
result (indicating whether the application is accepted or not). These information
slots are encapsulated into dedicated artifact components, i.e., function variables
with domain appIndex that collectively realize the application artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResult : appIndex −→ String

appScore: appIndex −→ Score
appResp : appIndex −→ EmpId

We now discuss the relevant transitions for inserting and evaluating job appli-
cations. When writing transition formulae, we make the following assumption:
if an artifact variable/component is not mentioned at all, it means that it is
updated identically; otherwise, the relevant update function will specify how it
is updated.10 The insertion of an application into the system can be executed
when the hiring process is enabled, and consists of two consecutive steps. To
indicate when a step can be applied, also ensuring that the insertion of an appli-
cation is not interrupted by the insertion of another one, we manipulate a string
artifact variable aState. The first step is executable when aState is undef, and
aims at loading the application data (user ID, job category ID, and employee ID)
into dedicated artifact variables (uId , jId , eId , respectively) and evolves aState
into state received.

The second step transfers the application data into the application artifact
relation (using its corresponding function variables), and resets all application-
related artifact variables to undef (including aState, so that new applications
can be inserted). For the insertion, a “free” index (i.e., an index pointing to
an undefined applicant) is picked. The newly inserted application gets a default
score of -1 (“not eligible”), and an undef final result:

∃i:appIndex
(
pState = enabled ∧ aState = received ∧ applicant [i] = undef ∧
pState ′ = enabled ∧ aState ′ = undef ∧ cId ′ = undef ∧
appJobCat ′ = λj. (if j = i then jId else appJobCat [j]) ∧
applicant ′ = λj. (if j = i then uId else applicant [j]) ∧
appResp′ = λj. (if j = i then eId else appResp[j]) ∧
appScore ′ = λj. (if j = i then -1 else appScore[j]) ∧
appResult ′ = λj. (if j = i then undef else appResult [j]) ∧
jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef

)

Notice that such a transition does not prevent the possibility of inserting exactly
the same application twice, at different indexes. If this is not wanted, the transi-
tion can be suitably changed so as to guarantee that no two identical applications
can coexist in the same artifact relation (see [24] for an example).

10 Non-deterministic updates can be formalized using existentially quantified variables
in the transition.



230 D. Calvanese et al.

Each application currently considered as not eligible can be made eligible by
assigning a proper score to it:

∃i:appIndex, s:Score
(
pState = enabled ∧ appScore[i] = -1 ∧ s ≥ 0 ∧
pState ′ = enabled ∧ appScore ′[i] = s

)

Finally, application results are computed when the process moves to state
notified. This is handled by the bulk transition:

pState = enabled ∧ pState ′ = notified ∧
appResult ′ = λj. (if appScore[j] > 80 then winner else loser)

which declares applications with a score above 80 as winning, and the others as
losing. �

5 Parameterized Safety via Backward Reachability

A safety formula for S is a state formula υ(x) describing undesired states of S. As
usual in array-based systems, we say that S is safe with respect to υ if intuitively
the system has no finite run leading from ι to υ. Formally, there is no DB-
instance M of 〈Σext , T 〉, no k ≥ 0, and no assignment in M to the variables
x0, a0, . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true in M (here xi, ai are renamed copies of x, a). The safety problem for S
is the following: given a safety formula υ decide whether S is safe with respect
to υ.

Example 5.1. The following property expresses the undesired situation that, in
the RAS from Example 4.2, once the evaluation is notified there is an applicant
with unknown result:

∃i:appIndex
(
pState = notified ∧ applicant [i] �= undef ∧
appResult [i] �= winner ∧ appResult [i] �= loser

)

The job hiring RAS Shr turns out to be safe with respect to this property
(cf. Sect. 7). �

We shall introduce an algorithm that semi-decides safety problems for S, and
in the next section we shall examine some interesting cases where the algorithm
terminates and gives a decision procedure. Before introducing the algorithm, we
need some technical results specifying how far we can extend the T ∗-quantifier
elimination procedure and the T -satisfiability procedure for Σ-constraints to
a larger class of quantified formulae in the enriched signature of our artifact
settings.
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Algorithm 1. Schema of
the backward reachability
algorithm
Function BReach(υ)

1 φ ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is

T -satisfiable do
3 if ι ∧ φ is

T -satisfiable then
return unsafe

4 B ←− φ ∨ B;
5 φ ←− Pre(τ, φ);
6 φ ←− QE(T ∗, φ);

return (safe, B);

An integral part of the algorithm is
to compute symbolic preimages. For that
purpose, we define for any φ1(z, a, z′, a′)
and φ2(z, a), Pre(φ1, φ2) as the formula
∃z′∃a′(φ1(z, a, z′, a′)∧φ2(z′, a′)). The preim-
age of the set of states described by a state
formula φ(x, a) is the set of states described
by Pre(τ, φ) (notice that, when τ =

∨
τ̂ , we

have Pre(τ, φ) =
∨

Pre(τ̂ , φ)).
Let us call extended state formulae the

formulae of the kind ∃e φ(e, x, a), where φ is
quantifier-free and the e are individual vari-
ables of both artifact and basic sorts. The
next two lemmas are proved via syntactic
manipulations:

Lemma 5.2. The preimage of a state formula is logically equivalent to an
extended state formula.

Lemma 5.3. For every extended state formula φ there is a state formula
QE(T ∗, φ) equivalent to φ in all Σext -models of T ∗.

We underline that Lemmas 5.2 and 5.3 both give an explicit effective proce-
dure for computing equivalent (extended) state formulae: such effective proce-
dures will be an essential part of our backward reachability algorithm. Notice
that Lemma 5.3 relies on quantifier elimination in T ∗, in fact it is meant to
eliminate existentially quantified variables ranging over basic sorts. Existentially
quantified variables over artifact sorts, on the contrary, cannot be eliminated as
they occur as arguments of artifact components.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a)

where the variables e, i are variables whose sort is an artifact sort and φ is
quantifier-free. The crucial point for the following lemma to hold is that the
quantified variables in ∃∀-formulae are all of artifact sorts (the lemma is proved
by syntactic manipulations followed by suitable instantiations):

Lemma 5.4. The satisfiability of an ∃∀-formula in a Σext -model of T is decid-
able. Moreover, an ∃∀-formula is satisfiable in a Σext -model of T iff it is satis-
fiable in a DB-instance of 〈Σext , T 〉 iff it is satisfiable in a Σext -model of T ∗.

Algorithm 1 describes the backward reachability algorithm (or, backward
search) for handling the safety problem for S. It computes iterated preimages
of υ and applies to them the procedures from Lemmas 5.2 and 5.3, until a fix-
point is reached or until a set intersecting the initial states (i.e., satisfying ι) is
found. The satisfiability tests from Lines 2 and 3 can be effectively discharged by
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Lemma 5.4 (in fact, the procedure of Lemma 5.4 reduces them to T -constraint
satisfiability problems).

To sum up, we obtain the following theorem (to understand the statement of
the theorem, notice that by partial correctness we mean that, when the algorithm
terminates, it gives a correct answer, and by effectiveness we mean that all
subprocedures in the algorithm can be effectively executed):

Theorem 5.5. Backward search (cf. Algorithm1) is effective and partially cor-
rect for solving safety problems for RASs.

Theorem 5.5 shows that backward search is a semi-decision procedure: if the
system is unsafe, backward search always terminates and discovers it; if the
system is safe, the procedure can diverge (but it is still correct). Notice that the
role of quantifier elimination (Line 6 of Algorithm1) is twofold: (i) It allows to
discharge the fixpoint test of Line 2 (see Lemma 5.4); (ii) it ensures termination
in significant cases, namely those where (strongly) local formulae, introduced in
the next section, are involved.

6 Termination Results for RASs

We now present three termination results, two relating RASs to previous funda-
mental results, and one genuinely novel.

Termination for “Simple” Artifact Systems. An interesting class of RASs
is the one where the working memory consists only of artifact variables (without
artifact relations). We call systems of this type SASs (Simple Artifact Systems).
For SASs, the following termination result holds.

Theorem 6.1. Let 〈Σ,T 〉 be a DB schema with Σ acyclic. Then, for every SAS
S = 〈Σ,T, x, ι, τ〉, backward search terminates and decides safety problems for
S in Pspace in the combined size of x, ι, and τ .

It is worth noticing that the decidability part of Theorem6.1 can be easily
extended to locally finite theories T (thus, in particular to arbitrary relational
signatures) whenever T has the amalgamation property and is closed under
substructures. Thanks to these observations, Theorem 6.1 is reminiscent of an
analogous result in [17], i.e., Theorem 5, the crucial hypotheses of which are
exactly amalgamability and closure under substructures, although the setting in
that paper is different (there, key dependencies are not discussed, but there is
no limitation to elementarily definable classes of structures). Notice also that a
distinctive feature of our framework is that it remains well-behaved even in the
presence of key dependencies (a naive representation of primary key dependencies
with partially functional relations would cause amalgamability to fail). Another
important point is that we perform verification in a purely symbolic way, using
decision procedures provided by SMT-solvers.

Termination with Local Updates. Consider an acyclic signature Σ not con-
taining relation symbols, a DB theory T (satisfying our Assumption 1), and an
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artifact setting (x, a) over an artifact extension Σext of Σ. We call a state formula
local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ∧k
i=1 φi(ei, x, a)), (4)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ψ(x) ∧ ∧k
i=1 φi(ei, a)). (5)

In (4) and (5), δ is a conjunction of variable equalities and inequalities, φi, ψ are
quantifier-free, and e1, . . . , ek are individual variables ranging over artifact sorts.
The key limitation of local state formulae is that they cannot compare entries
from different tuples of artifact relations: each φi in (4) and (5) can contain only
the existentially quantified variable ei.

A transition formula τ̂ is local (resp., strongly local) if whenever a formula φ is
local (resp., strongly local), so is Pre(τ̂ , φ) (modulo the axioms of T ∗). Examples
of (strongly) local τ̂ are discussed in [24].

Theorem 6.2. If Σ is acyclic and does not contain relation symbols, backward
search (cf. Algorithm1) terminates when applied to a local safety formula in a
RAS whose τ is a disjunction of local transition formulae.

Proof (sketch). Let Σ̃ be Σext ∪{a, x}, i.e., Σext expanded with function symbols
a and constants x (a and x are treated as symbols of Σ̃, but not as variables any-
more). We call a Σ̃-structure cyclic11 if it is generated by one element belonging
to the interpretation of an artifact sort. Since Σ is acyclic, so is Σ̃, and then
one can show that there are only finitely many cyclic Σ̃-structures C1, . . . , CN

up to isomorphism. With a Σ̃-structure M we associate the tuple of numbers
k1(M), . . . , kN (M) ∈ N∪{∞} counting the numbers of elements generating (as
singletons) the cyclic substructures isomorphic to C1, . . . , CN , respectively. Then
we show that, if the tuple associated with M is componentwise bigger than the
one associated with N , then M satisfies all the local formulae satisfied by N .
Finally we apply Dikson Lemma [13]. �

Note that Theorem 6.2 can be used to reconstruct the decidability results
of [50] concerning safety problems. Specifically, one needs to show that transitions
in [50] are strongly local which, in turn, can be shown using quantifier elimination
(see [24] for more details). Interestingly, Theorem6.2 can be applied to more cases
not covered in [50]. For example, one can provide transitions enforcing updates
over unboundedly many tuples (bulk updates) that are strongly local. One can
also see that the safety problem for our running example is decidable since all
its transitions are strongly local. Another case considers coverability problems
for broadcast protocols [30,35], which can be encoded using local formulae over
the trivial one-sorted signature containing just one basic sort, finitely many
constants, and one artifact sort with one artifact component. These problems can
11 This is unrelated to cyclicity of Σ defined in Sect. 3, and comes from universal algebra

terminology.
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be decided with a non-primitive recursive lower bound [57] (whereas the problems
in [50] have an ExpSpace upper bound). Recalling that [50] handles verification
of LTL-FO, thus going beyond safety problems, this shows that the two settings
are incomparable. Notice that Theorem 6.2 implies also the decidability of the
safety problem for SASs, in case of acyclic Σ.

Termination for Tree-like Signatures. Σ is tree-like if it is acyclic, does not
contain relation symbols, and all non-leaf nodes have outdegree 1. An artifact
setting over Σ is tree-like if Σ̃ := Σext ∪ {a, x} is tree-like. In tree-like artifact
settings, artifact relations have a single “data” component, and basic relations
are unary or binary.

Theorem 6.3 Backward search (cf. Algorithm1) terminates when applied to a
safety problem in a RAS with a tree-like artifact setting.

Proof (sketch). The crux is to show, using Kruskal’s Tree Theorem [47], that the
finitely generated Σ̃-structures are a well-quasi-order w.r.t. the embeddability
partial order. �

While tree-like RAS restrict artifact relations to be unary, their transitions
are not subject to any locality restriction. This allows for expressing rich forms
of updates, including general bulk updates (which allow us to capture non-
primitive recursive verification problems) and transitions comparing at once dif-
ferent tuples in artifact relations. Notice that tree-like RASs are incomparable
with the “tree” classes of [17], since the former use artifact relations, whereas
the latter only individual variables. In [24] we show the power of such advanced
features in a flight management process example.

7 First Experiments

We implemented a prototype of the backward reachability algorithm for RASs
on top of the mcmt model checker for array-based systems. Starting from its
first version [42], mcmt was successfully applied to a variety of settings: cache
coherence and mutual exclusions protocols [41], timed [25] and fault-tolerant [5,6]
distributed systems, and imperative programs [7,8]. Interesting case studies con-
cerned waiting time bounds synthesis in parameterized timed networks [19] and
internet protocols [18]. Further related tools include safari [3], asasp [2], and
Cubicle [27]. The latter relies on a parallel architecture with further powerful
extensions. The work principle of mcmt is rather simple: the tool generates the
proof obligations arising from the safety and fixpoint tests in backward search
(Lines 2–3 of Algorithm 1) and passes them to the background SMT-solver (cur-
rently it is Yices [34]). In practice, the situation is more complicated because
SMT-solvers are quite efficient in handling satisfiability problems in combined
theories at quantifier-free level, but may encounter difficulties with quantifiers.
For this reason, mcmt implements modules for quantifier elimination and quan-
tifier instantiation. A specific module for the quantifier elimination problems
mentioned in Line 6 of Algorithm1 has been added to Version 2.8 of mcmt.
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Table 1. Experimental results. The input system size is reflected by columns #AC,
#AV, #T, indicating, resp., the number of artifact components, artifact variables,
and transitions.

We produced a benchmark consisting of eight realistic business process exam-
ples and ran it in mcmt (detailed explanations and results are given in [24]).
The examples are partially made by hand and partially obtained from those
supplied in [50]. A thorough comparison with Verifas [50] is matter of future
work, and is non-trivial for a variety of reasons. In particular, as already men-
tioned in Sect. 6, the two systems tackle incomparable verification problems: on
the one hand, we deal with safety problems, whereas Verifas handles more
general LTL-FO properties; on the other hand, we tackle features not available
in Verifas, like bulk updates and comparisons between artifact tuples. More-
over, the two verifiers implement completely different state space construction
strategies: mcmt is based on backward reachability and makes use of declara-
tive techniques that rely on decision procedures, while Verifas employs forward
search via VASS encoding.

The benchmark set is available as part of the last distribution 2.8 of mcmt.12

Table 1 shows the very encouraging results (the first row tackles Example 5.1).
While a systematic evaluation is out of scope of this paper, mcmt effectively
solves the benchmarks with a comparable performance shown in other well-
studied areas, with verification times below 1s in most cases.

8 Conclusions

We have laid the foundations of SMT-based verification for artifact systems,
focusing on safety problems and relying on array-based systems as underlying
formal model. We have exploited the model-theoretic machinery of model com-
pletion to overcome the main technical difficulty arising from this approach, i.e.,
showing how to reconstruct quantifier elimination in the rich setting of artifact
systems. On top of this framework, we have identified three classes of systems
12 http://users.mat.unimi.it/users/ghilardi/mcmt/, subdirectory /examples/dbdriven

of the distribution. The user manual contains a new section (pages 36–39) on how
to encode RASs in MCMT specifications.

http://users.mat.unimi.it/users/ghilardi/mcmt/
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for which safety is decidable, which impose different combinations of restric-
tions on the form of actions and the shape of DB constraints. The presented
techniques have been implemented on top of the well-established mcmt model
checker, making our approach fully operational.

We consider the present work as the starting point for a full line of research
dedicated to SMT-based techniques for the effective verification of data-aware
processes, addressing richer forms of verification beyond safety (such as liveness,
fairness, or full LTL-FO) and richer classes of artifact systems, (e.g., with con-
crete data types and arithmetics), while identifying novel decidable classes (e.g.,
by restricting the structure of the DB and of transition and state formulae).
Concerning implementation, we plan to further develop our tool to incorporate
in it the plethora of optimizations and sophisticated search strategies available
in infinite-state SMT-based model checking. Finally, we plan to tackle more
conventional process modeling notations, concerning in particular data-aware
extensions of the de-facto standard BPMN13.
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Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

43. Ghilardi, S., van Gool, S.J.: Monadic second order logic as the model companion
of temporal logic. In: Proceedings of the LICS, pp. 417–426. ACM (2016)

44. Ghilardi, S., van Gool, S.J.: A model-theoretic characterization of monadic second
order logic on infinite words. J. Symbolic Logic 82(1), 62–76 (2017)

45. Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78739-6 16

https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/3-540-48168-0_5
https://doi.org/10.1007/978-3-642-23737-9_2
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-540-78739-6_16


From Model Completeness to Verification of Data Aware Processes 239

46. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

47. Kruskal, J.B.: Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture.
Trans. Amer. Math. Soc. 95, 210–225 (1960)

48. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: fundamental
requirements and their support in existing approaches. Int. J. Inf. Syst. Model. Des.
2(2), 19–46 (2011)

49. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract
description systems. AIJ 156(1), 1–73 (2004)

50. Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems.
PVLDB 11(3), 283–296 (2017)

51. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
TOPLAS 1(2), 245–257 (1979)

52. Pigozzi, D.: The join of equational theories. Colloq. Math. 30, 15–25 (1974)
53. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R.,

et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 2

54. Richardson, C.: Warning: don’t assume your business processes use master data.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 11–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 3

55. Robinson, A.: On the Metamathematics of Algebra. North-Holland (1951)
56. Robinson, A.: Introduction to model theory and to the metamathematics of alge-

bra. In: Studies in Logic and the Foundations of Mathematics. North-Holland
(1963)

57. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5–24. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 2

58. Silver, B.: BPMN Method and Style. 2nd edn. Cody-Cassidy (2011)
59. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory

extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 19

60. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. Log. Methods Comput. Sci. 14(3) (2018)

61. Tinelli, C., Harandi, M.: A new correctness proof of the nelson-oppen combination
procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems.
ALS, vol. 3, pp. 103–119. Springer, Dordrecht (1996). https://doi.org/10.1007/
978-94-009-0349-4 5

62. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In:
Proceedings of the ICDT, pp. 1–13. ACM (2009)

63. Wolter, f.: Fusions of modal logics revisited. In: Advances in Modal Logic. CSLI
Lecture Notes, vol. 1, pp. 361–379 (1996)

https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1007/978-3-642-15618-2_3
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/978-94-009-0349-4_5


Situation Calculus Meets Description
Logics

Jens Claßen1(B), Gerhard Lakemeyer2, and Benjamin Zarrieß3

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
jens_classen@sfu.ca

2 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
gerhard@cs.rwth-aachen.de

3 Institute of Theoretical Computer Science, Technische Universität Dresden,
Dresden, Germany

benjamin.zarriess@tu-dresden.de

Abstract. For more than six years, the groups of Franz Baader and
Gerhard Lakemeyer have collaborated in the area of decidable verifica-
tion of Golog programs. Golog is an action programming language,
whose semantics is based on the Situation Calculus, a variant of full
first-order logic. In order to achieve decidability, the expressiveness of
the base logic had to be restricted, and using a Description Logic was
a natural choice. In this chapter, we highlight some of the main results
and insights obtained during our collaboration.
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Prologue

We begin our contribution to celebrate Franz’ 60th birthday with some per-
sonal remarks by the second author, written as a first-person account. As these
remarks are largely historical, they will also shed light on how the technical work
described later came into being and how it is intimately connected to the work
by Franz and his group in Dresden.

Franz and I first met, I believe, in 1990, when we both gave talks at AAAI
in Boston. Indeed, in those early days, we mainly met at conferences, either
at AAAI, IJCAI or KR. But apart from that, each of us was minding his own
business, Franz working on Description Logics (DLs) and me on the Situation
Calculus and the related action programming language Golog. This is not to
say that I stayed away completely from DLs. While I was still in Bonn, Franz
was nice enough to share his course notes with me so that I could teach a
DL course, which I did exactly once! In 1994, I even published a paper on an
epistemic version of CLASSIC, an early variant of modern DLs, at the German
AI conference. But I soon realized that other people, in particular Franz, were
much better at this, and I left DL to them without any intention to ever return,
or so I thought.
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In 1997, Franz and I became colleagues at RWTH Aachen University. Re-
search-wise we continued our separate ways, but at least we now met regularly
at (often boring) faculty meetings. It was only when Franz moved to Dresden
that things took a different turn. Michael Thielscher, also at TU Dresden at
the time, had the brilliant idea to gather researchers from different areas in KR
and combine work on action formalisms with work on Description Logics, plan-
ning, and nonmonotonic reasoning. In the end, a DFG-funded Research Cluster
on Logic-Based Knowledge Representation was established, initially started by
Franz, Michael, Bernhard Nebel and myself, and later joined by Gerd Brewka.
While I, together with my then Ph.D. student Jens Claßen, collaborated most
closely with Bernhard’s group during this time, the meetings and workshops of
the entire Research Cluster not only helped us to get to know each other bet-
ter personally but to also appreciate each other’s research and the connections
between the different areas much more.

At the time Hongkai Liu, a former Ph.D. student of Franz, worked on updat-
ing ABoxes, which is meant to reflect how a world changes. As the external
examiner of Hongkai’s thesis I got to know his work quite well, and I was partic-
ularly intrigued by his chapter on decidable verification of infinite sequences of
updates. At the same time, Jens had started work on the verification of nonter-
minating Golog programs. When the time came to re-apply for funding from
DFG, this time in the form of a Research Unit on “Hybrid Reasoning for Intelli-
gent Systems” [9], Franz had the idea that we should join forces and explore the
verification of Golog programs when the underlying logic is restricted to a DL
fragment with the aim of arriving at decidable forms of verification. When we
received funding for our Research Unit, Jens joined our project on the Aachen
side and Benjamin on the Dresden side. The rest, as they say, is history. We
have collaborated now for almost seven years, and it has been a lot of fun. In
the following, we highlight some of the main results obtained during this time,
but before we begin: Happy Birthday, Franz!

1 Introduction

The agent language Golog [19,33] allows one to describe an agent’s behaviour
in terms of a program containing both imperative and nondeterministic aspects.
Its basic building blocks are the primitive actions that are defined in a theory of
some action logic, typically the Situation Calculus [40,44] or its modal variant
[31], but also formalisms based on Description Logics. Among Golog’s most
promising application areas is the control of autonomous, mobile robots [11,24].

As a very simple, illustrating example, consider a robot whose task it is to
remove dirty dishes from a number of rooms in a building. A program for it
might look like this:
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loop : while (∃x.OnRobot(x)) do
πx:Dish {unload(x)} endWhile;

πy:Room { goto(y);
while (∃xDirty(x, y)) do

πx:Dish load(x, y) endWhile };
goto(kitchen)

The robot is initially in the kitchen. In each iteration of the infinite outer loop,
it first unloads all dishes it carries, selects a room in the building, moves there,
collects all dirty dishes from there, and returns to the kitchen. Here, Dirty(x, y)
means “dirty dish x is in room y”, and load(x, y) stands for “load dish x from
room y.” Constructs of the form πx:Dish moreover are to be read as “non-
deterministically choose one object from the Dish domain and do the following
with it”. We furthermore assume that at any time during operation, some new
dish x to be removed from room y may appear, which is represented through
a special, “exogenous” newdish(x, y) action. Now before deploying such a pro-
gram onto the real robot, it is often desirable to verify it against some temporal
specification, e.g. to make sure that every dish will eventually be removed.

While a large variety of temporal verification methods have been developed
in the field of Model Checking [7,12] over the last decades, the problem of ver-
ifying (typically non-terminating) Golog programs received surprisingly little
attention among Situation Calculus researchers. Note that Model Checking is
not directly applicable due to the fact that even though nowadays implicit, sym-
bolic representations of state spaces are used, their input formalisms are very
restricted in expressivity. Golog on the other hand relies on action descriptions
in terms of (first-order) logical theories that correspond to a very large, if not
infinite number of possible models. Instead of simply checking the property in
question against a single model, theorem proving within the underlying logic is
hence required.

De Giacomo, Ternovska and Reiter [21] were the first to address the verifi-
cation of non-terminating Golog programs. They express programs and their
properties using inductive definitions and fixpoint logics, thus heavily resorting
to second-order quantification. They then do manual, meta-theoretic proofs to
show that the program satisfies the desired properties. While this work was an
important first step, an automated verification would be obviously much more
preferable to a manual one since the latter tends to be tedious and error-prone.

Claßen and Lakemeyer [16] proposed such a method for properties expressed
in a temporal logic that resembles the Computational Tree Logic CTL, but
that allows for unrestricted first-order quantification. The algorithm is inspired
by the classical symbolic model checking techniques for propositional CTL in
the sense that it does a similar fixpoint computation to systematically explore
the system’s state space. The difference however is that it does not work on
a single finite model, but, as explained above, uses a logical first-order action
theory together with the Golog program (which possibly contains further first-
order quantification). The method relies on regression-based reasoning, a newly
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proposed graph-based representation of the input program, and theorem proving
for detecting convergence.

The overall verification problem for Golog is highly undecidable due to
unrestricted first-order quantification in the underlying base logic, the kind and
range of actions’ effects, and Golog being a Turing-complete programming lan-
guage. Consequently, in [16] only soundness of the method was proved, but a
termination guarantee could not be given. A natural next step is to try to iden-
tify restricted, yet non-trivial fragments of Golog where verification becomes
decidable, while a great deal of expressiveness is retained.

A natural choice for a decidable base logic with first-order expressivity is a
Description Logic. Baader, Liu and ul Mehdi [4] considered actions specified in
an action formalism based on the Description Logic ALC [5], and furthermore
abstracted from the actual execution sequences of a non-terminating program
by considering infinite sequences of actions defined by a Büchi automaton. They
expressed properties by a variant of LTL over ALC axioms [2] and could show
that under these restrictions, verification reduces to a decidable reasoning task
within the underlying DL.

Their work was an important first step in the search for a way to over-
come the above mentioned three “sources of undecidability” (i.e. undecidable
base logic, range of action effects, Turing-complete program constructs), even
though the restrictions employed were comparably harsh. In particular, their
ALC-based action formalism only allows for basic STRIPS-style addition and
deletion of literals, and the very simple over-approximation of programs through
Büchi automata loses important features such as the non-deterministic choice
of argument and test conditions. Baader and Zarrieß [6] later showed that these
results can indeed be lifted to a more expressive fragment of Golog that includes
test conditions. They obtained decidability by proving that the potentially infi-
nite transition system induced by the Golog program can always be represented
by a finite one that admits the exact same execution traces. This was the start of
a complementary line of research based on the approach of applying restrictions
that allows one to compute a finite, propositional abstraction of the infinite state
space, and then use a classical model checker to decide the query.

In this paper we want to give a brief, yet concrete impression of research
conducted on both approaches, the Golog-specific fixpoint method as well as
abstraction methods, within the aforementioned Research Unit on “Hybrid Rea-
soning for Intelligent Systems”. The following section introduces some formal
preliminaries. Sections 3 and 4 then present the Golog-specific fixpoint method
and the abstraction technique, respectively. DL-based representations, their rela-
tion to Situation Calculus formalizations, as well as computational complexities
are then discussed in Sect. 5. Section 6 gives a survey of further research we
conducted, followed by a conclusion in Sect. 7.
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2 Preliminaries

2.1 The Logic ES
We use a fragment of the first-order modal Situation Calculus variant ES [31],
and corresponding Basic Action Theories (BATs) [44].

Syntax: There are terms of sort object and action. Variables of sort object are
denoted by symbols x, y, . . ., and a denotes a variable of sort action. NO is a
countably infinite set of object constant symbols and NA a countably infinite set
of action function symbols with arguments of sort object. We denote the set of
all ground terms (also called standard names) of sort object by NO, and those
of sort action by NA.

Formulas are built using fluent predicate symbols (predicates that may vary
as the result of actions) of any arity and equality, using the usual logical connec-
tives and quantifiers. In addition we have two modalities for referring to future
situations, where �φ says that φ holds after any sequence of actions, and [t]φ
means that φ holds after executing action t.

A formula without � and [·] is called fluent formula, one without � bounded,
and one without free variables a sentence.

Semantics: Let Z := N ∗
A be the set of all finite action sequences (including

the empty sequence 〈〉) and PF the set of all primitive formulas F (n1, ..., nk),
where F is a k-ary fluent and the ni are object standard names. A world w maps
primitive formulas and situations to truth values: w : PF × Z → {0, 1}.

The set of all worlds is denoted by W.

Definition 1 (Truth of Formulas). Given a world w ∈ W and a sentence
ψ, we define w |= ψ as w, 〈〉 |= ψ, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;
4. w, z |= ¬ψ iff w, z �|= ψ;
5. w, z |= ∀x.φ iff w, z |= φx

n for all n ∈ Nx;
6. w, z |= �ψ iff w, z · z′ |= ψ for all z′ ∈ Z;
7. w, z |= [t]ψ iff w, z · t |= ψ.

Above, Nx refers to the set of all standard names of the same sort as x. We more-
over use φx

n to denote the result of simultaneously replacing all free occurrences
of x in φ by n. Note that by rule 2 above, the unique names assumption for
actions and object constants is part of our semantics. We understand ∨,∃,⊃,≡
and  and ⊥ as the usual abbreviations.

Definition 2 (Basic Action Theory). A basic action theory (BAT) D =
D0 ∪ Dpost is a set of axioms consisting of:

1. D0, the initial theory, a finite set of fluent sentences describing the initial
state of the world;
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2. Dpost a finite set of successor state axioms (SSAs), one for each fluent relevant
to the application domain, incorporating Reiter’s [43] solution to the frame
problem, for encoding action effects. They have the form1

�[a]F (x) ≡ γ+
F ∨ F (x) ∧ ¬γ−

F , (1)

where the positive (negative) effect condition γ+
F (γ−

F ) is a fluent formula
with free variables a and x.

Normally, BATs also feature action precondition axioms, which we ignore here
for simplicity.

Example 1. For the aforementioned dish robot we may have

D0 = {¬∃x, yDirty(x, y), ¬∃xOnRobot(x)}.

Also, let Dpost consist of the following SSAs (we abstract from the robot’s loca-
tion for simplicity):

�[a]Dirty(x, y) ≡ a = newdish(x, y) ∨ Dirty(x, y) ∧ a �= load(x, y)
�[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨ OnRobot(x) ∧ a �= unload(x).

2.2 Golog Programs and Verification

The primitive actions defined in the BAT can be used as basic building blocks
for Golog programs as follows.

Definition 3 (Golog Program). A program δ is built according to the fol-
lowing grammar:

δ ::= t | ψ? | δ;δ | δ|δ | δ∗ | δ||δ.

A program can thus be an action t, a test ψ? for some fluent formula ψ, or con-
structed from subprograms by means of sequence δ;δ, non-deterministic choice
δ|δ, non-deterministic iteration δ∗, and interleaving δ||δ. We treat if, while, loop
and the finitary non-deterministic choice of argument (“pick”) as abbreviations:

if φ then δ1 else δ2 endIf def
= [φ?; δ1] | [¬φ?; δ2]

while φ do δ endWhile def
= [φ?; δ]∗;¬φ?

loop δ
def
= while  do δ endWhile

πx:{c1, . . . , ck}. δ
def
= δx

c1 | · · · | δx
ck

1 Free variables are understood as universally quantified from the outside; � has lower
syntactic precedence than the logical connectives, [t] has higher precedence than the
logical connectives. So �[a]F (x) ≡ γF abbreviates ∀a,x.�(([a]F (x)) ≡ γF ).
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An example for a program was presented in the introduction. Exogenous actions
can be incorporated by having a loop that, in each cycle, executes one such
action with non-deterministically chosen arguments

δexo = loop πx:Dish πy:Room newdish(x, y)

run concurrently with the actual control program δctl, i.e. in the verification one
analyzes the behaviour of δctl || δexo.

Following [16] we define the transition semantics of programs meta-theoreti-
cally. A configuration 〈z, ρ〉 consists of an action sequence z ∈ Z (that has already
been performed) and a program ρ (that remains to be executed). Execution of a
program in a world w ∈ W yields a transition relation w−→ among configurations
that is defined inductively over program expressions:

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;
2. 〈z, δ1; δ2〉 w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉 w−→ 〈z · t, γ〉;
3. 〈z, δ1; δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 w−→ 〈z · t, δ′〉;
4. 〈z, δ1|δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉 or 〈z, δ2〉 w−→ 〈z · t, δ′〉;
5. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉;
6. 〈z, δ1||δ2〉 w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉;
7. 〈z, δ1||δ2〉 w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉 w−→ 〈z · t, δ′〉.

For the set of final configurations Fw wrt. a world w we have:

1. 〈z, 〈〉〉 ∈ Fw;
2. 〈z, ψ?〉 ∈ Fw, if w, z |= ψ;
3. 〈z, δ1; δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
4. 〈z, δ1|δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;
5. 〈z, δ∗〉 ∈ Fw;
6. 〈z, δ1‖δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw.

Definition 4 (Transition System of a Program). Let δ be a program and
w ∈ W. Execution of δ in w yields the transition system wrt. w, δ given by
Tw

δ =
(
S,→), where the set of states S = {〈z′, δ′〉 | 〈〈〉, δ〉 w−→∗〈z′, δ′〉} ∪ {e, f}

consists of configurations reachable from 〈〈〉, δ〉 plus two special “sink” states for
program termination and failure, and → is a transition relation such that s → s′

iff one of the following holds:

1. s
w−→ s′;

2. s′ = e and (s ∈ Fw or s = e);
3. s′ = f and (no s′′ with s

w−→ s′′ and s �∈ Fw or s = f).

Definition 5 (Temporal Properties of Programs). The syntax for tempo-
ral formulas is the same as for propositional CTL

∗, but in place of propositions
we allow fluent sentences ψ in Boolean combinations with the special symbols
Succ and Fail (for program termination and failure, respectively):
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Ψ ::= ψ | Succ | Fail | ¬Ψ | Ψ ∧ Ψ | EΦ (2)
Φ ::= Ψ | ¬Φ | Φ ∧ Φ | XΨ | Ψ U Ψ (3)

Formulas according to (2) are temporal state formulas, and according to (3)
temporal path formulas. We use the usual abbreviations AΦ (Φ holds on all
paths) for ¬E¬Φ, FΦ ( eventually Φ) for  U Φ and GΦ ( globally Φ) for ¬F¬Φ.

Now let Ψ be a temporal state formula, Tw
δ the transition system wrt. w, δ, and

s ∈ S. For an infinite path

π = s0 → s1 → s2 → · · ·
in Tw

δ , we denote for any j ≥ 0 the state sj by π[j] and the suffix sj → sj+1 → · · ·
by π[j..]. Paths(s,Tw

δ ) denotes the set of all paths starting in s. Truth of Ψ in
Tw

δ , s (written Tw
δ , s |= Ψ) is given by:

– Tw
δ , s |= ψ iff s = 〈z′, δ′〉 and w, z′ |= ψ;

– Tw
δ , s |= Succ iff s = e;

– Tw
δ , s |= Fail iff s = f;

– Tw
δ , s |= ¬Ψ iff Tw

δ , s �|= Ψ ;
– Tw

δ , s |= Ψ1 ∧ Ψ2 iff Tw
δ , s |= Ψ1 and Tw

δ , s |= Ψ2;
– Tw

δ , s |= EΦ iff π ∈ Paths(s,Tw
δ ) with Tw

δ , π |= Φ.

Let Φ be a temporal path formula, Tw
δ and s as above, and π ∈ Paths(s,Tw

δ ).
Truth of Φ in Tw

δ , π (written Tw
δ , π |= Φ) is given by:

– Tw
δ , π |= Ψ iff Tw

δ , π[0] |= Ψ ;
– Tw

δ , π |= ¬Φ iff Tw
δ , π �|= Φ;

– Tw
δ , π |= Φ1 ∧ Φ2 iff Tw

δ , π |= Φ1 and Tw
δ , π |= Φ2;

– Tw
δ , π |= XΦ iff Tw

δ , π[1..] |= Φ;
– Tw

δ , π |= Φ1 U Φ2 iff ∃k ≥ 0 : Tw
δ , π[k..] |= Φ2

and ∀j, 0 ≤ j < k : Tw
δ , π[j..] |= Φ1.

The sink states e, f and the corresponding special symbols Succ, Fail allow us
to treat terminating programs simply as special cases of non-terminating ones,
where once a program terminates successfully or due to failure, the program will
indefinitely loop through e or f, respectively. Furthermore, we can analyze the
termination behaviour of a program simply by verifying appropriate temporal
properties, e.g. AFSucc (the program is guaranteed to terminate) or EFFail
(the program may fail).

Example 2. Some temporal properties for the (non-terminating) dish robot are:

EFDirty(d1, room) “Is it possible that d1 ends up dirty in room?”
AG¬∃xDirty(d1, x) “Will d1 always remain cleaned?”
EG∃x, yDirty(x, y) “Will there forever be a dirty dish in some room?”
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In the following, we will use a restricted subset of temporal formulas that resem-
bles CTL without nesting of path quantifiers (but still with fluent sentences
instead of propositions):

ϕ ::= ψ | Succ | Fail | ¬ϕ | ϕ ∧ ϕ (4)
Ψ ::= ϕ | ¬Ψ | Ψ ∧ Ψ | EXϕ | EGϕ | E(ϕ U ϕ) (5)

CTL formulas according to (5) are obviously a subset of temporal state formulas.
Note that the properties from Example 2 are all part of this subset using AGϕ ≡
¬EF¬ϕ.

Definition 6 (Verification Problem). A temporal state formula Ψ is valid
in a program δ for a BAT D iff for all worlds w ∈ W with w |= D it holds that
Tw

δ , 〈〈〉, δ〉 |= Ψ .

3 Verification by Fixpoint Computation

The first approach [13,16,17] is inspired by classical symbolic model checking
[41] in the sense that a systematic exploration of the state space is made using
a fixpoint computation of preimages of state sets, however now involving first-
order reasoning about actions. For this purpose, an ES variant [31] of Reiter’s
[43] regression operator is employed, which replaces fluent atoms in the scope of
a [t] by the right-hand side of the corresponding SSA:

Definition 7 (Regression). Let ψ be a bounded formula. We define R[ψ] =
R[〈〉, ψ], where for any z ∈ Z,

1. R[〈〉, F (t)] = F (t) and R[z · t, F (t)] = (γ+
F ∨ F (x) ∧ ¬γ−

F )
x a

t t ;
2. R[z, (t1 = t2)] = (t1 = t2);
3. R[z, ψ1 ∧ ψ2] = R[z, ψ1] ∧ R[z, ψ2];
4. R[z,¬ψ] = ¬R[z, ψ];
5. R[z,∀xψ] = ∀xR[z, ψ];
6. R[z, [t]ψ] = R[z · t, ψ].

Theorem 1. If D is a BAT and ψ a bounded formula, then D |= �(ψ ≡ R[ψ]).

R[ψ] is hence equivalent to the original ψ wrt. D, but contains no [·] and only
talks about the initial (current) situation.

In addition to regression, another ingredient for the verification method are
characteristic graphs, which are used to encode the reachable subprogram con-
figurations. For any program δ, the graph Gδ = 〈V,E, v0〉 consists of a set of
vertices V , each of which corresponds to one reachable subprogram δ′, or e or f.
The initial node v0 corresponds to the overall program δ. Edges E are labelled
with tuples t/ψ, where t is an action term and ψ a fluent formula (omitted when
) denoting the condition required to take that transition. We omit the formal
definition; the interested reader is referred to [13]. As an example, Fig. 1 shows
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v0 v1

newdish(∗, room)

unload(∗)/
∃x.OnRobot(x)

newdish(∗, room)

load(∗, room)/
∃x.Dirty(x, room)

goto(room)/
¬∃x.OnRobot(x)

goto(kitchen)/
¬∃x.Dirty(x, room)

Fig. 1. Characteristic graph for the dish-cleaning robot

the graph for the control program of the dish robot as presented in the introduc-
tion, assuming that the Room domain only contains a single room. The asterisks
in edge annotations such as newdish(∗, room) indicates that there is one such
edge instance for every element in the Dish domain. (Graphs for programs where
the Room domain is larger contain one “copy” of node v1 for each room, with
similar connections to v0 and itself.) The algorithm uses a set of labels 〈v, ψ〉, one
for each node v ∈ V , where ψ is a fluent formula. Intuitively, if v = δ′, then 〈v, ψ〉
represents all combinations of worlds w and configurations 〈z, δ〉 with w, z |= ψ.
Below is the procedure for formulas of form EGφ, similar ones exist for EX and
EU [13]:

Procedure 1. CheckEG[δ, φ]
1: L′ := Label[Gδ, ⊥]; L := Label[Gδ, φ];
2: while L �≡ L′ do
3: { L′ := L; L := L′ And Pre[Gδ, L

′] };
4: return InitLabel[Gδ, L]

That is to say first the “old” labelling L′ is initialized to label every node with ⊥
and the “current” labelling L marks every vertex with φ. While L and L′ are not
equivalent (ψ ≡ ψ′ for every 〈v, ψ〉 ∈ L, 〈v, ψ′〉 ∈ L′), L is conjoined according
to

L1 And L2
def
= {〈v, ψ1 ∧ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

with its pre-image

Pre[〈V,E, v0〉, L]
def
= {〈v,Pre[v, L]〉 | v ∈ V }

where Pre[v, L] stands for
∨

{R[φ ∧ [t]ψ] | v
t/φ−−→ v′ ∈ E, 〈v′, ψ〉 ∈ L}.
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Note the use of regression to eliminate the action term t. Once the label set has
converged, the method returns InitLabel[Gδ, L], the label formula at the initial
node v0. The algorithm is sound as follows:

Theorem 2. Let D be a BAT, δ a program, and φ a fluent formula. If the
procedure terminates, then ψ := CheckEG[δ, φ] is a fluent formula and EGφ is
valid in δ for D iff D0 |= ψ.

Example 3. Suppose we want to verify whether a run of the program for the
dish robot presented in the introduction (including possible exogenous actions)
is possible where there is always some dirty dish x in some room y, i.e. whether
it satisfies property EG∃x, yDirty(x, y). We hence call Procedure 1 with δ =
δctl || δexo being the overall program and the axiom φ = ∃x, yDirty(x, y). It starts
with the following label set L:

L0 = {〈v0,∃x, yDirty(x, y)〉, 〈v1,∃x, yDirty(x, y)〉}.

For determining the pre-image for a node in the characteristic graph, each of its
outgoing edges has to be considered. Recall that we have multiple instances
of each newdish(di, room) with different dishes di. One of the disjuncts of
Pre[v0, L0] thus is

R[[newdish(d1, room)]∃x, yDirty(x, y)]

which (using unique names of actions) reduces to

∃x, y. x = d1 ∨ Dirty(x, y).

Using similar reductions for the other edges we get Pre[v0, L0] and Pre[v1, L0]
both being equivalent to

∃x, y. x = d1 ∨ x = d2 ∨ Dirty(x, y)

if there are two dishes in total. Then L1 =
(
L0 And Pre[Gδ, L0]

)
, which

reduces to

{〈v0,∃x, yDirty(x, y)〉, 〈v1,∃x, yDirty(x, y)〉}
Hence L0 ≡ L1, i.e. the algorithm terminates and returns ∃x, yDirty(x, y). Thus,
there is a run where there is always some dirty dish just in case there is some
dirty dish somewhere initially. Intuitively, this is correct because Gφ means that
φ persists to hold during the entire run, including the initial situation. Therefore,
only if a dish is dirty initially it may happen that never all of them get cleaned.
All we have to do now is to check whether D0 |= ∃x, yDirty(x, y)〉, which is not
the case according to the D0 from Example 1.

Naturally, the next interesting question is under what circumstances it can be
guaranteed that the procedure terminates as it did here, thus rendering the ver-
ification problem decidable. As first-order logic is already undecidable, the first
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step is to ensure that the basic, first-order reasoning tasks of checking the equiv-
alence of label formulas and whether the output of CheckEG[δ, φ] is entailed
by the BAT’s initial theory can be decided. We do so restricting the base logic
to FO

2, the two-variable fragment of FOL. We hence require that

– fluents have at most two arguments;
– D0, tests φ? in the program δ as well as axioms ψ in temporal properties Ψ

are formulas where x and y are the only variable symbols;
– the instantiations of γ+

F and γ−
F by any ground action from δ are formulas

where x and y are the only variable symbols.

Note that in this paper we assume all actions in a program are ground (our
definition of Golog does not include the general nondeterministic choice of
argument π, but a finitary version where each π only ranges over some finite
domain). It can be shown [51] by means of a reduction of the Halting Problem
for Turing Machines that otherwise, the Golog Verification Problem remains
undecidable, even under all other restrictions we discuss here. The BAT from
Example 1 and the properties from Example 2 all fulfill these requirements.

While there are other decidable fragments of first-order predicate calculus,
note that not all are equally suited for our purposes. In particular, decidable
quantifier prefix fragments for instance have the disadvantage that they are not
closed under regression, i.e. the regression of such a formula may not be express-
able by a formula in the same fragment. This is the case for FO

2 on the other
hand, provided that the regression operator is slightly modified to rename vari-
ables where needed [26]. Moreover, note that the FO

2 fragment subsumes many
Description Logics, so its choice paves the way for a method where representation
and reasoning is handled entirely within a DL.

Now that we restricted the base logic and the class of programs we consider,
the last restriction is on the range of action effects we allow. Again, it can be
shown that without any such restriction, verification remains undecidable [51].
A popular subclass of action theories (originally studied within the context of
progression) is that where actions only have local effects [37]:

Definition 8 (Local-Effect). An SSA is local-effect if the conditions γ+
F and

γ−
F are disjunctions of formulas ∃z[a = A(y)∧φ], where A is an action function,

y contains x, z are the remaining variables of y, and φ is a fluent formula with
free variables y. A BAT is local-effect if all its SSAs are.

Intuitively, an action A(c) is local-effect if it only changes fluents F (d) all of
whose arguments d are among the action’s parameters c, i.e. all objects affected
have to be mentioned in the action. Note that the SSAs in Example 1 are local-
effect. In [17] it was shown that under these assumptions, the verification pro-
cedure becomes complete:

Theorem 3. The procedure CheckEG[δ, φ] terminates if the BAT is local-effect
and FO

2 is used as base logic.

There are similar theorems for the other cases EX and EU.
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4 Verification by Abstraction

The second method we consider is verification by abstraction. Zarrieß and Claßen
[52] show that for a Golog program δ with a local-effect BAT D, the verifica-
tion of a temporal formula Ψ can be reduced to classical model checking by
constructing a finite, bisimilar abstraction of the original infinite transition sys-
tem induced by δ and D wrt. Ψ . This is achieved by identifying finitely many
equivalence classes for worlds, whose computation reduces to consistency checks
in the underlying decidable base logic FO

2.

4.1 Regression with Sets of Effects

The first ingredient is the observation that by unique names of actions, the
instantiation of a local-effect SSA on a ground action t = A(c) can be signifi-
cantly simplified [38], as any γ+

F

a

t or γ−
F

a

t is equivalent to

x = c1 ∧ φ1 ∨ · · · ∨ x = cn ∧ φn

where ci is a vector of names contained in c, and φi is a quantifier-free sentence.
We use the notation (ci, φi) ∈ γ+

F

a

t and (ci, φi) ∈ γ−
F

a

t to express that there is a
disjunct of the form x = ci ∧ φi in γ+

F

a

t or γ−
F

a

t , respectively. Let L be the set of
all positive and negative ground fluent literals:

L = {F (c),¬F (c) | t ∈ δ : (c, φ) ∈ γ+
F

a

t or (c, φ) ∈ γ−
F

a

t }

One can then define a variant of regression wrt. an effect set, given a consistent
set of fluent literals and a fluent sentence.

Definition 9 (Regression with Effects). If F (v) is a fluent atom where v is
a vector of variables or constants, and E ⊆ L a consistent set of fluent literals,
then the regression of F (v) through E, written as R[E,F (v)] is given by:

R[E,F (v)] =
(

F (v) ∧
∧

¬F (c)∈E

(v �= c)
)

∨
∨

F (c)∈E

(v = c)

For any fluent sentence α, R[E,α] denotes the result of replacing any occurrence
of a fluent F (v) by R[E,F (v)].

Example 4. For the dish robot, the ground actions to consider are all instances
of newdish(∗, room), unload(∗), load(∗, room), goto(room), and goto(kitchen).
For t = newdish(d1, room) we have:

γ+
Dirty

a

t
= (x = d1 ∧ y = room)

γ−
Dirty

a

t
= ⊥
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The literals that are possible effects of the ground actions hence are:

L = { (¬)Dirty(d1, room), (¬)Dirty(d2, room),
(¬)OnRobot(d1), (¬)OnRobot(d2) }

Let E = {Dirty(d1, room)}. Then for example,

R[E,¬∃x, yDirty(x, y)] = ∃x, y ¬
(
Dirty(x, y) ∨ (x = d1 ∧ y = room)

)

Clearly, the regression result R[E,α] is again a fluent sentence. We note that an
iterated application of the regression operator can be reduced to an application
of the operator for a single set of fluent literals. For a set E ⊆ L we define
¬E := {¬l | l ∈ E} (modulo double negation). For two consistent subsets E,E′

of L and a sentence α it holds that

R[E,R[E′, α]] ≡ R[(E \ ¬E′ ∪ E′), α]. (6)

The idea is that any such set of literals then represents a class of action sequences
that all bring about the same set of accumulated effects.

4.2 Finite Abstraction

To construct the abstract transition system, we identify the context C(D, δ), the
set of all relevant fluent sentences

– in the initial theory D0;
– in all tests ψ? occurring in the program δ;
– all φ with (c, φ) ∈ γ+

F

a

t or (c, φ) ∈ γ−
F

a

t for some t in δ;
– all F (c) with (c, φ) ∈ γ+

F

a

t or (c, φ) ∈ γ−
F

a

t for some t in δ;
– all axioms occurring in temporal properties.

Furthermore, C(D, δ) is assumed to be closed under negation. Intuitively, worlds
satisfying the same maximal consistent set of context formulas are considered to
be members of the same equivalence class, called a type. To incorporate actions,
also the regressions of these formulas wrt. all consistent E′ ⊆ L have to be taken
into account. States belonging to the same equivalence class can be shown to
simulate one another, i.e. they are indistinguishable through temporal properties.
This bisimulation justifies the construction of the corresponding quotient system
as an abstraction, which can be obtained as follows. Abstract states are tuples
〈v, Γ, E〉, where v is a node of the characteristic graph of δ, Γ is a consistent set
of (regressed) context formulas representing worlds, and E ⊆ L is a consistent set
of accumulated effects representing situations. There is a transition 〈v, Γ, E〉 t→
〈v′, Γ, E′〉 between abstract states in case

1. there is an edge v
t/ψ−−→ v′ in δ’s characteristic graph,

2. Γ |= R[E,ψ], and
3. E′ = (E \ ¬E∗ ∪ E∗), where E∗ = E(Γ,E, t).
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Above, E(Γ,E, t) denotes the set of effects induced by action t wrt. the type
given by Γ and E:

E(Γ,E, t) = { F (c) | (c, φ) ∈ γ+
F

a

t , Γ |= R[E, φ]} ∪
{¬F (c) | (c, φ) ∈ γ−

F

a

t , Γ |= R[E,F (c) ∧ φ]}

Example 5. In our running example, the relevant fluent sentences are

(¬)∃x, yDirty(x, y), (¬)∃xOnRobot(x), (¬)∃xDirty(x, room),
(¬)Dirty(d1, room), (¬)Dirty(d2, room),
(¬)OnRobot(d1), (¬)OnRobot(d2), (¬)∃xDirty(d1, x)

One possible type (in fact the only one consistent with the initial theory of the
BAT from Example 1) is given by

Γ0 = {¬∃x, yDirty(x, y), ¬∃xOnRobot(x)}
One abstract state is

s1 = 〈v0, Γ0, {Dirty(d1, room)}〉,
which intuitively represents any configuration where the overall program δ =
δctl || δexo remains to be executed, whose initial situation was as described by D0,
and where a sequence of actions has been performed that caused Dirty(d1, room)
to come about (e.g. a single newdish(d1, room), but also any sequence where
other dirty dishes except d1 have been removed already).

The characteristic graph depicted in Fig. 1 shows three kinds of outgo-
ing edges for v0, all of which correspond to potential transitions from s1.
newdish(di, room) edges have no transition condition. Their effects are given
by

E(Γ0, {Dirty(d1, room)},newdish(di, room)) = {Dirty(di, room)},

hence we have s1 → si for

si = 〈v0, Γ0, {Dirty(d1, room),Dirty(di, room)}〉
(i.e. for i = 1 we remain in s1). For any unload(di) edge, condition ∃xOnRobot(x)
regresses to

R[{Dirty(d1, room)},∃xOnRobot(x)] = ∃xOnRobot(x)

(adding a dirty dish has no effect on whether the robot is holding something).
Since Γ0 �|= ∃xOnRobot(x), there is no unload(di) transition from s1. Finally, for
the goto(room) edge, the transition condition similarly regresses to

R[{Dirty(d1, room)},¬∃xOnRobot(x)] = ¬∃xOnRobot(x).

As Γ0 |= ¬∃xOnRobot(x), there is a transition s1 → s′
1 with

s′
1 = 〈v1, Γ0, {Dirty(d1, room)}〉.
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Recall that in this simple encoding, goto actions do not have any effect, i.e.

E(Γ0, {Dirty(d1, room)}, goto(room)) = ∅.

There are only finitely many nodes in the characteristic graph, relevant fluent
sentences, and ground fluent literals as effects. The abstract transition system is
hence finite, and can be effectively computed due to the fact that the necessary
consistency and entailment checks in FO

2 are all decidable.
Finally, we can replace every relevant fluent sentence with a propositional

atom (both in abstract states and temporal properties) and then call a proposi-
tional CTL model checker.

The complexity of this decision procedure is mainly determined by the com-
plexity of consistency checks in FO

2, which we have to do for exponentially large
knowledge bases. Knowledge base consistency in FO

2 is NexpTime-complete
[25], so determining a single type can be done in N2ExpTime. It turns out that
co-N2ExpTime is an upper bound for the overall complexity.

Theorem 4. The verification problem is decidable for a temporal state for-
mula Ψ , a program δ over ground actions and a local-effect BAT D in co-

N2ExpTime.

5 Golog Programs over Description Logic Actions

Motivated by the idea of obtaining a decidable yet expressive fragment of the
Situation Calculus, a first DL-based action formalism was introduced by Baader
and his colleagues in [5]. Next, we briefly review some of the basic definitions
of a simple formalism that we have used in [50,54] to analyze the complexity of
the verification problem in a DL-based setting. It is a bit different from the one
in [5] but adopts its main ideas.

The expressive DL ALCQIO, which can be viewed as a fragment of the two
variable fragment of first-order logic with counting, is the underlying logic. It
is used for representing an incomplete initial situation (ABox part of the KB),
general domain knowledge (TBox) and for formulating pre-conditions and effect
conditions of primitive actions by means of action descriptions.

The signature for describing complex concepts consists of pairwise disjoint
sets of concept names NC (unary predicates), role names NR (binary predicates)
and individual names NI. Several constructors can be used to form complex con-
cepts from A ∈ NC, s ∈ NR ∪ {r− | r ∈ NR} (a role name or the inverse thereof),
a ∈ NI and n ∈ N as shown in the first two columns of Table 1. Fragments of
ALCQIO are obtained by restricting the available constructors for building con-
cepts. For example, the basic DL ALC is obtained by disallowing at-most and
at-least restrictions (the letter Q in the name of the DL indicates that those
restrictions are allowed), inverse roles (I) and nominals (O).

As usual, axioms are grouped in boxes. The TBox is a finite set of concept
inclusions and the ABox a finite set of concept and role assertions as shown in
the first two columns of Table 2.
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Table 1. Syntax and semantics of roles and concepts

Name Syntax Semantics under I = (ΔI , ·I)
Role name r rI

Inverse role r− {(e, d) | (d, e) ∈ rI}
Concept name A AI

Top concept � ΔI
Negation ¬C Δ \ CI

Conjunction C � D CI ∩ DI

Disjunction C 
 D CI ∪ DI

Existential restriction ∃s.C {d | ∃e.(d, e) ∈ sI , e ∈ CI}
Value restriction ∀s.C {d | (d, e) ∈ sI implies e ∈ CI}
At-most restriction ≤n s.C {d | �{e | (d, e) ∈ sI ∧ e ∈ CI} ≤ n}
At-least restriction ≥n s.C {d | �{e | (d, e) ∈ sI ∧ e ∈ CI} ≥ n}
Nominal {a} {aI}

Table 2. Syntax and semantics of axioms

Name Axiom � I |= �, iff

TBox T Concept inclusion C � D CI ⊆ DI

ABox A Concept assertion a : C aI ∈ CI

Role assertion (a, b) : s (a, b) ∈ sI

The semantics is defined in terms of an interpretation I = (ΔI , ·I), where
ΔI is the non-empty domain of I, and ·I a function that maps concept names
to subsets of the domain, role names to binary relations, individual names to
elements, and is extended to complex concepts as shown in Table 1. Satisfaction
of an axiom in an interpretation is defined as shown in Table 2. An interpretation
I is a model of an ABox A, a TBox T or a KB K iff all axioms in A, T or K,
respectively, are satisfied in I.

Obviously, a DL like ALCQIO is too inexpressive to formulate basic action
theories as a whole like the ones in Definition 2. An alternative approach would
be to take an axiomatization in form of a BAT and a program formulated in ES
and restrict the formulas used for domain specific knowledge in the initial theory,
the successor state axioms, and tests in the program to be ALCQIO-axioms.
However, for the DL-based formalism in [5] and its variants and successors, a
different approach was taken which we briefly review below.

The overall idea is not to axiomatise the meaning of actions using quantifica-
tion, but introduce action descriptions meta-theoretically. The syntax is similar
to planning languages like STRIPS or ADL: the domain designer explicitly pro-
vides a complete list of effects for each primitive action name. The semantics
of an action is defined in terms of a transition relation between interpretations
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such that the frame assumption is respected. First, we define the syntax of an
effect.

Definition 10 (Effect Description). Let L be a sub-DL of ALCQIO and let
A ∈ NC, r ∈ NR and a, b ∈ NI and ϕ an L-axiom (or Boolean combination of
axioms). An L-effect description (L-effect for short) has one of the following
forms

ϕ � 〈A(o)〉+, ϕ � 〈r(o, o′)〉+ (called add-effect),

ϕ � 〈A(o)〉−
, ϕ � 〈r(o, o′)〉− (called delete-effect),

where ϕ is called effect condition. In case the effect condition ϕ is a tautology
like for example  � , the effect is called unconditional and is written without
the effect condition.

For a set of effects and an interpretation, the corresponding updated inter-
pretation is defined in a straightforward way.

Definition 11 (Interpretation Update). Let I = (ΔI , ·I) be an interpreta-
tion and E a set of unconditional effects. The update of I with E is an inter-
pretation denoted by IE = (ΔIE , ·IE

) and is defined as follows:

ΔIE := ΔI ;

AIE

:= AI \ {aI | 〈A(a)〉− ∈ E} ∪ {bI | 〈A(b)〉+ ∈ E} for all A ∈ NC;

rIE

:= rI \ {(aI , bI) | 〈r(a, b)〉− ∈ E} ∪ {(aI , bI) | 〈r(a, b)〉+ ∈ E} for all r∈NR;

aIE

:= aI for all a ∈ NI.

Let E be a set of (possibly conditional) effects. The update of I with E, denoted
by IE, is given by the update

IE(I) with E(I) := {l | (ϕ � l) ∈ E, I |= ϕ}.

An action theory in this setting just consists of an initial KB and a finite set
of actions, each associated with a finite set of effects.

Definition 12. An L-action theory Σ is a tuple Σ = (K,Act,Eff), where K is
an L-KB describing the initial state, Act is a finite set of action names, and for
each α ∈ Act, the effects of α, denoted by Eff(α), is a finite set of L-effects.

We can now extend the definition of an interpretation update to sequences
of actions. Let I be an interpretation, Σ = (K,Act,Eff) an action theory, and
σ ∈ Act∗ a sequence of action names. The update of I with σ is an interpretation
Iσ defined by induction on the length of σ as follows: I〈〉 := I for the empty
sequence and Iσ′·α = Iσ′E

, where E = Eff(α)(Iσ′
).

Definition 13. The projection problem is a simple instance of the verification
problem that can now be defined as follows. Let Σ = (K,Act,Eff) be an action
theory, σ ∈ Act∗ a sequence of action names, and � an axiom. We say that � is
true after doing σ in Σ iff for all models I of K we have that � is satisfied in
Iσ.
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For the formalism in [5] it was shown that the projection problem can be
solved by a polynomial reduction to a standard KB consistency task. Thus, the
complexity is the same as for standard reasoning.

As an example consider an action theory

Σ = (K = A ∪ T ,Act = {discon(d, p), turn-on(d)},Eff)

for a domain with concept names DishWasher , PowerSupply , On and a role
name connected . The following concept assertions describe an initial situation
involving individuals d and p:

A = {d : (DishWasher � ∃connected .PowerSupply) , p : PowerSupply}. (7)

As a concept inclusion we can express that a dish washer that is powered on
must be connected to some power supply:

T = {DishWasher � On � ∃connected .PowerSupply}. (8)

We consider two actions discon(d, p) (for disconnecting d and p) and turn-on(d)
with the following conditional effects:

Eff(turn-on(d)) := {(d : (∃connected .PowerSupply)) � 〈On(d)〉+};
Eff(discon(d, p)) := { 〈connected(d, p)〉−

,

(d : (∀connected .({p} � ¬PowerSupply))) � 〈On(d)〉−}.

The action turn-on(d) only is effective if d is connected to some power supply,
and discon(d, p) in addition to disconnecting d and p makes sure that d is no
longer an instance of On in case p was the only power supply connected to d
before the disconnection. Note that the effect conditions make sure that axiom
(8) is never violated due to an action execution.

It is rather straightforward to provide a Situation Calculus semantics for
ALCQIO-action theories. That is, for an action theory Σ = (K,Act,Eff),
sequence σ ∈ Act∗, and axiom � as projection query, one can construct a corre-
sponding basic action theory DΣ such that � is true after doing σ in Σ iff the
following entailment

DΣ |=ES [σ]fol(�),

holds in ES, where fol(·) denotes the translation from DL syntax to FOL syntax.
For instance, the effect condition of the delete effect 〈On(d)〉− of discon(d, p) is
equivalent to the FOL sentence

∀x. (connected(d, x) → (x = p ∨ ¬PowerSupply(x))) .

Since actions only affect named individuals in effect descriptions, the resulting
BAT is one with only local effects. We can now describe Golog programs over
Description Logic actions as follows.
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Definition 14. The base logic L is a DL between ALC and ALCQIO, and the
initial knowledge and effects of atomic actions are described in an L-action theory
Σ = (K,Act,Eff). A program expression δ over Σ is obtained as in Definition 3
with the following restrictions for atomic actions and tests: we require t ∈ Act
and that ψ in a test ψ? is a Boolean combination of L-axioms. We call (Σ, δ)
an L-Golog program.

To describe properties of programs, CTL
∗ temporal formulas over L-axioms

are used. Validity of a CTL
∗ state formula over L-axioms in an L-Golog pro-

gram is then defined according to Definitions 5 and 6. For the verification problem
we have obtained the following tight complexity bounds:

Theorem 5. Let (Σ, δ) be an L-Golog program and Ψ a CTL
∗ temporal state

formula over L-axioms. Checking validity is

– 2ExpTime-complete if L ∈ {ALCO,ALCIO,ALCQO}, and
– co-N2ExpTime-complete if L = ALCQIO.

The upper bounds are obtained by using the abstraction technique described
in Sect. 4. For more details and for the proofs of the lower bounds we refer to
[50]. Note that in our formalism there is no direct interaction between the TBox
that is part of the initial KB K and the transition semantics of actions and
programs. It is possible that TBox axioms are violated in some program states,
which might seem not desirable because usually TBox axioms are assumed to be
global state constraints. However, the property that a global TBox is satisfied in
all program states can be expressed as a CTL

∗ formula, and the corresponding
check is an instance of the verification problem. Different approaches with a
tighter integration of TBox axioms as state constraints and action semantics
have been investigated, for instance, in [3,5,36].

6 Further Results

The results summarized in the previous sections laid the foundation for exten-
sions in various directions.

Knowledge-based programs, which are suited for more realistic scenarios where
the agent possesses only incomplete information about its surroundings and has
to use sensing in order to acquire additional knowledge at run-time, were con-
sidered in [53,54]. As opposed to classical Golog, knowledge-based programs
[15,45] contain explicit references to the agent’s knowledge, thus enabling it
to choose its course of action based on what it knows and does not know. The
work introduces a new epistemic action formalism based on the basic Description
Logic ALC, obtained by combining and extending earlier proposals for DL action
formalisms [5] and epistemic DLs [23]. It turned out that the corresponding veri-
fication problem is in general again undecidable in the presence of pick operators,
even under severe restrictions on the knowledge base and actions. Decidability
can however be obtained by syntactically limiting the domain of pick operators
to contain named objects only, yielding a 2ExpSpace upper bound.
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Actions with non-local effects were considered in [55], where two new classes of
action theories are introduced that generalize the previously discussed local-effect
ones. Instead of imposing any bound on the number of affected objects, decid-
ability of verification is obtained by restricting certain dependencies between
fluents in the successor state axioms. This allows for a much wider range of
application domains, including classical examples such as the briefcase domain
[42] and exploding a bomb [35]: When a briefcase is moved, all (unboundedly
many, unmentioned) objects that are currently in it are being moved along, and
if a bomb explodes, everything in its vicinity is destroyed.

Decision-theoretic Golog (DTGolog) extends classical Golog by decision-
theoretic aspects in the form of stochastic actions and reward functions [8,48].
Here, a stochastic action refers to an operator that can have a limited num-
ber of possible outcomes, each of which is a regular, deterministic action with
an associated probability. The program together with the action theory and
reward function thus essentially induce an infinite-state Markov Decision Pro-
cess (MDP), and the objective is to verify properties expressed in first-order
variants of probabilistic temporal logics such as PCTL [28] or PRCTL [1].
Using similar techniques and restrictions as discussed above, Claßen and Zarrieß
[18] showed that the infinite-state MDP can effectively be abstracted to a finite
one, which then can be fed into any state-of-the-art probabilistic model checker
such as PRISM [30] and STORM [22].

Probabilistic beliefs constitute a more involved notion of uncertainty. Instead of
just having stochastic actions affect the objective truth of world-state fluents
as above, an agent is now considered to have a certain probabilistic degree of
belief. For such a setting, Zarrieß [49] studied the complexity of the projection
problem, a subproblem of verification where one wants to determine whether
a formula (here: about the agent’s probabilistic beliefs) is true after execut-
ing a given sequence of (here: stochastic) actions. He proposed a formaliza-
tion where deterministic actions (the possible outcomes of stochastic ones) are
once again described similar to [5], and where initial beliefs as well as queries
refer to subjective probabilities applied to ABox facts and TBox statements
formulated in the DL ALCO, which can be seen as a member of the Prob-
ALC family of probabilistic DLs [39] and is a decidable fragment of Halpern’s
Type 2 probabilistic first-order logic [27]. It turned out that the combination of
including both stochastic actions and probabilistic beliefs increases the complex-
ity from ExpTime-complete to 2ExpTime-complete, while the problem remains
ExpTime-complete when only deterministic actions are used.

Timed Golog is a variant where instead of employing a qualitative notion of
time, the more realistic assumption is made that actions may have a certain
(discrete-time) duration. Consequently, verification is with respect to properties
expressed in a metric temporal logic such as TCTL

∗ [32]. Koopmann and Zarrieß
[29] studied the complexity of verification under these assumptions over a DL rep-
resentation of actions for various DLs in the ALC family as well as a lightweight
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DL. They were able to establish 2-ExpTime-completeness for almost all vari-
ants, except for the case of full ALCQIO (ALC with qualified number restric-
tions, inverse roles, and nominals), which yields co-N2ExpTime-completeness.
They also show that these tight complexity bounds apply for the non-metric,
untimed case (cf. Theorem 4), and the corresponding abstraction techniques are
indeed worst-case optimal.

A prototypical implementation of the methods from Sects. 3 and 4 was presented
in [14], with the motivation that most results so far on Golog verification
remained purely theoretical. In particular the very high worst-case complexities
mentioned above are widely considered intractable, and hence may appear dis-
couraging. On the other hand, experience from other areas (such as classical
planning and SAT solving) is that in practical cases, most instances are com-
paratively easy to solve, and only few exhaust the full theoretical complexity.
A prototype was hence implemented which uses a new Golog interpreter that
supports full first-order reasoning by means of an embedded theorem prover [47].
One major challenge was that regression as is used by the fixpoint method causes
a severe, exponential blow-up of formulas, and therefore – once again drawing
inspiration from symbolic propositional model checking – a representation based
on a first-order variant [46] of ordered binary decision diagrams [10] was used.
A subsequent experimental evaluation showed that the fixpoint method is often
preferable since it only explores parts of the state space that are relevant for the
query property, while constructing a complete, bisimilar abstraction (which can
be up to double-exponential in size) is often too expensive.

7 Conclusion

We presented an overview of our work on the temporal verification of Golog

programs, both from a (modal) Situation Calculus and a Description Logic per-
spective. The problem can be approached in two different ways, namely by means
of a Golog-specific fixpoint computation method based on characteristic pro-
gram graphs and regression-based reasoning, or by determining a finite abstrac-
tion and applying a classical model checker. Golog’s high expressiveness renders
the general verification problem highly undecidable, and so the main challenge
has been to identify restrictions on the input formalism that yield decidable, yet
non-trivial fragments.

Other groups of researchers have conducted work that complements ours.
To name but a few, Li and Liu [34] also present a sound, but incomplete ver-
ification method based on first-order theorem proving, however addressing the
(somewhat different) task of proving Hoare-style partial correctness of termi-
nating Golog programs. De Giacomo et al. [20] study the class of theories
that have an infinite overall domain of objects, but where fluent extensions in
each situation are bounded, which also admits finite abstractions and thus ren-
ders temporal verification decidable. Achieving decidable projection through a
Description Logic representation in the Situation Calculus is analyzed in depth
by Gu and Soutchanski [26].
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While through this work, we have gained a deeper understanding of the
problem and possible approaches to it, many avenues for future work remain.
Probably the most interesting, and also most challenging, are those that strive
to advance the current state of the art further towards realistic applications in
robotics (or cyber-physical systems in general), where representations of quan-
titative, dynamic, and probabilistic aspects are needed, and that, beyond what
was presented above, require e.g. notions of continuous change, noisy sensing,
and uncertain beliefs.

Acknowledgements. This work was supported by the German Research Founda-
tion (DFG), research unit FOR 1513 on Hybrid Reasoning for Intelligent Systems,
project A1.
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Abstract. Provenance analysis aims at understanding how the result
of a computational process with a complex input, consisting of multiple
items, depends on the various parts of this input. In database theory,
provenance analysis based on interpretations in commutative semirings
has been developed for positive database query languages, to under-
stand which combinations of the atomic facts in a database can be
used for deriving the result of a given query. In joint work with Val
Tannen, we have recently proposed a new approach for the provenance
analysis of logics with negation, such as first-order logic and fixed-point
logic. It is based on new semirings of dual-indeterminate polynomials
or dual-indeterminate formal power series, which are obtained by taking
quotients of traditional provenance semirings by congruences that are
generated by products of positive and negative provenance tokens. This
provenance approach has also been applied to fragments of first-order
logics such as modal and guarded logics. In this paper, we explore the
question whether, and to what extent, the provenance approach might
be useful in the field of description logics.

1 Introduction

This paper is intended as an account, written for the description logics com-
munity, of recent developments in semiring provenance, that make provenance
analysis applicable to logical formalisms with negation. In particular, we dis-
cuss the question whether provenance analysis could be a fruitful perspective for
description logics.

Provenance analysis is an algebraic approach to abstract from a compu-
tation with multiple input items, such as the evaluation of a database query,
mathematical information on how the result of the computation depends on
the various input data. In database theory, provenance analysis based on inter-
pretations in commutative semirings has been successfully developed for query
languages such as unions of conjunctive queries, positive relational algebra,
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nested relations, Datalog, XQuery, SQL-aggregates and several others, and it
has been implemented in software systems such as Orchestra and Propolis, see
e.g. [2,5,6,11,13,17]. In this approach, atomic facts are interpreted not just by
true or false, but by values in an appropriate semiring, where 0 is the value of
false statements, whereas any element a �= 0 of the semiring stands for some
shade of truth. These values are then propagated from the atomic facts to arbi-
trary queries in the language, which permits to answer questions such as the
minimal cost of a query evaluation, the confidence one can have that the result
is true, the number of different ways in which the result can be computed, or the
clearance level that is required for obtaining the output, under the assumption
that some facts are labelled as confidential, secret, top secret, etc. We refer to
[14] for a recent account on the semiring framework for database provenance.

We argue that provenance analysis may have a strong potential for useful
applications also in the context of description logics. We shall propose notions of
provenance semantics for ABoxes and TBoxes where concept and role assertions
take values in a commutative semiring, and concept inclusions C � D translate
into comparisons of such provenance values. The common reasoning problems in
description logics, such as subsumption, consistency, or query answering get a
new twist, generalizing Boolean reasoning to algebraic reasoning in a commuta-
tive semiring. Potential applications of this approach include cost computations
of concept assertions (by means of provenance evaluations in the tropical semir-
ing), the study of required clearance levels for accessing confidential or secret
data (using valuation in an access control semiring), or reasoning about confi-
dences achievable in ontology-mediated query evaluations. We shall discuss these
notions in more detail in Sects. 4 and 5 below.

For a long time, an essential limitation of the semiring provenance app-
roach has been its confinement to positive query languages. There have been
algebraically interesting attempts to cover difference of relations [1,7,8,12] but
they have not resulted in systematic tracking of negative information, and until
recently there has been no convincing provenance analysis for languages with
full negation. For applications to description logics, the inability to deal with
negation and absent information would certainly be a major obstacle. However,
a new approach for the provenance analysis of logics with negation, such as first-
order logic and fixed-point logic, has now been proposed in [9,10] based on the
following ingredients:

– Negation is dealt with by transformation to negation normal form. This is a
common approach in logic, but while this is often just a matter of convenience
and done for simplification, its seems indispensable for provenance semantics.
Indeed, beyond Boolean semantics, negation is not a compositional logical
operation: the provenance value of ¬ϕ is not necessarily determined by the
provenance value of ϕ.

– On the algebraic side, new provenance semirings of polynomials and formal
power series have been introduced, which take negation into account. They are
obtained by taking quotients of traditional provenance semirings by congru-
ences generated by products of positive and negative provenance tokens; they
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are called semirings of dual-indeterminate polynomials or dual-indeterminate
power series.

– Provenance analysis of logics is closely connected to provenance analysis of
games. In [10], the provenance approach to logics with negation is described
from the perspective of the associated model checking games. In fact prove-
nance analysis of games is of independent interest, and provenance values of
positions in a game provide detailed information about the number and prop-
erties of the strategies of the players, far beyond the question whether or not a
player has a winning strategy from a given position. However, in the interest of
a reasonably compact presentation, we do not use the game perspective in this
paper, but describe the approach in purely algebraic and logical terms.

In this paper we propose to study the potential of the semiring provenance
approach as a perspective for description logics. Although we ourselves are cer-
tainly not experts in description logics and their applications, we believe that
there are good reasons why this might be interesting and useful. Given that
most description logics use negation in an essential way, the new provenance
approach for dealing with negation could help to combine provenance analysis
and description logics in a fruitful way. A point in favour is that description
logics are, as it is put in the textbook [3], ‘cousins of modal logics’, and that
the new approach to provenance analysis has already been applied to modal and
guarded logics in [4]. On the other side, the application of provenance to descrip-
tion logics certainly also poses nontrivial problems. Indeed the standard scenario
of provenance analysis is formula evaluation in a fixed finite structure. In most
applications of description logics, however, a knowledge base is considered that,
logically speaking, axiomatizes a class of structures, and the main reasoning
problems are variants of satisfiability, validity, and entailment problems. Never-
theless, notions developed in [9] of provenance tracking interpretations by means
of dual-indeterminate polynomials permit to deal with multiple models, and with
reverse provenance analysis, constructing appropriate models from a given spec-
ification, at least in the case of a fixed universe. Further it also seems a quite
promising project to generalize the tableaux-based reasoning techniques that
are so popular in description logic to provenance semantics based on semirings.
Thus, while differences and difficulties exist, they do not seem unsolvable. We
thus hope that the description logic community will take an interest in these new
developments in provenance analysis, and that a fruitful collaboration between
the two fields will emerge.

This paper does not assume that the reader is already familiar with semiring
provenance. However, we do assume that the reader knows basic definitions and
results about description logics. Our notation and terminology is largely based
on [3].

2 Commutative Semirings

Definition 1. A commutative semiring is an algebraic structure (K,+, ·, 0, 1),
with 0 �= 1, such that (K,+, 0) and (K, ·, 1) are commutative monoids, · dis-
tributes over +, and 0 ·a = a ·0 = 0. A semiring is +-positive if a+ b = 0 implies
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a = 0 and b = 0. This excludes rings. A semiring is root-integral if a·a = 0 implies
a = 0. All semirings considered in this paper are commutative, +-positive and
root-integral. Further, a commutative semiring is positive if it is +-positive and
has no divisors of 0. The standard semirings considered traditionally in prove-
nance analysis are positive, but for the treatment of negation we need semirings
(of dual-indeterminate polynomials or power series) that have divisors of 0.

Notice that a semiring K is positive if, and only if, the unique function
h : K → {0, 1} with h−1(0) = {0} is a homomorphism from K into the Boolean
semiring B = ({0, 1},∨,∧, 0, 1). A semiring K is (+)-idempotent if a+a = a, for
all a ∈ K, and (+, ·)-idempotent if, in addition, a · a = a for all a. Further, K is
absorptive if a + ab = a, for all a, b ∈ K. Obviously, every absorptive semiring is
(+)-idempotent.

In provenance analysis, elements of a commutative semiring are used as truth
values for logical statements. The intuition is that + describes the alternative use
of information, as in disjunctions or existential quantifications whereas · stands
for the joint use of information, as in conjunctions or universal quantifications.
Further, 0 is the value of false statements, whereas any element a �= 0 of a
semiring K stands for a ‘nuanced’ interpretation of true.

2.1 Application Semirings

We briefly discuss some specific semirings that provide interesting information
about about a logical statement.

– The Boolean semiring B = ({0, 1},∨,∧, 0, 1) is the domain of standard logical
truth values.

– The semiring N = (N,+, ·, 0, 1) can be used for counting successful strategies
for query evaluation. It also plays an important role for bag semantics in
databases.

– T = (R∞
+ ,min,+,∞, 0) is called the tropical semiring. It has many applica-

tions for cost computations, for instance for query evaluation.
– The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is isomorphic to T via x 	→ e−x

and y 	→ − ln y. We will think of the elements of V as confidence scores and
use it to describe the confidence assigned to a logical statement.

– The access control semiring is A = ({P < C < S < T < 0},min,max, 0,P)
where P is ‘public’, C is ‘confidential’, S is ‘secret’, T is ‘top secret’, and 0
is ‘so secret that nobody can access it!’. The valuation of a statement in A

describes the minimal clearance level that is needed to establish it.
– The max-min semiring on a totally ordered set (A,≤) with least element a

and greatest element b is the semiring (A,max,min, a, b). The class of max-
min semirings includes, of course, the Boolean semiring and the access control
semiring but also infinite ones, for instance the one on the real interval [0, 1]
which is sometimes called the fuzzy semiring.
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2.2 Provenance Semirings

Beyond such application semirings, there are important universal provenance
semirings of polynomials and formal power series that are used for a general
provenance analysis. They admit to compute provenance values once in a general
semiring and then to specialise these via homomorphisms to specific application
semirings as needed.

Let X be a set of abstract provenance tokens, i.e. variables that we use
to label atomic data (such as concept or role assertions in description logics).
The commutative semiring that is freely generated by the set X is N[X] =
(N[X],+, ·, 0, 1), the semiring of multivariate polynomials in indeterminates from
X and with coefficients from N.

Computing provenance values of a statement ϕ (from some appropriate log-
ical formalism) in N[X] gives us precise information about which combinations
of the atomic facts can be used to derive ϕ. Indeed, each monomial cxe1

1 . . . xek

k

that occurs in the provenance polynomial π[[ϕ]] ∈ N[X] indicates that we have
c different evaluation strategies that make use of precisely those atomic facts
that are labelled by x1, . . . xk and use the fact labelled by xi precisely ei times.
Evaluation strategies can be understood either as ‘proof trees’ (as in [9,13]) or
as winning strategies in the model checking game associated with ϕ (as in [10]).

There are a number of other polynomial semirings that can be obtained from
N[X] by dropping coefficients, dropping exponents, or absorption laws, in which
provenance polynomials are less informative, but possibly easier to compute.
This includes the +-idempotent semiring B[X], the so-called why semiring W[X],
the absorptive semiring S[X] and the free distributive lattice PosBool(X), see
e.g. [10,13,14] for more information.

However, in none of these semirings there is an adequate treatment of nega-
tion, or tracking of missing information, because either negative atoms are not
represented at all, or an atom and its negation are labelled by two different
tokens without any algebraic connection between them. To address this issue, a
new approach has been proposed in [9], and further developed in [10].

2.3 Dual-Indeterminate Polynomials and Formal Power Series

Here is the algebraic construction to make provenance analysis available for logics
with negation. Let X, X̄ be two disjoint sets of provenance tokens, together with
a bijection X → X̄, that maps each ‘positive’ token p ∈ X to a corresponding
‘negative’ token p̄ ∈ X̄. We call p and p̄ complementary tokens. By convention,
if we annotate an atomic fact by p then p̄ can only be used to annotate its
negation, and vice versa.

Definition 2. The semiring N[X, X̄] of dual-indeterminate polynomials is the
quotient of the semiring of polynomials N[X∪X̄] by the congruence generated by
the equalities p · p̄ = 0 for all p ∈ X. This is the same as quotienting by the ideal
generated by the polynomials pp̄ for all p ∈ X. Two polynomials f, g ∈ N[X ∪X̄]
are congruent if, and only if, they become identical after deleting from each of
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them the monomials that contain complementary tokens. Hence, the congruence
classes in N[X, X̄] are in one-to-one correspondence with the polynomials in
N[X ∪ X̄] such that none of their monomials contains complementary tokens.

Note that the semirings N[X ∪ X̄] are +-positive and root-integral, but not
positive, since they obviously admit divisors of 0.

The semirings N[X, X̄] turn out to be adequate for a general provenance
analysis of full first-order logic (with negation) [9], and hence also for full rela-
tional algebra (not just its positive fragment). This extends to fragments of first
order logic such as modal and guarded logics [4] and (as we propose in this
paper) description logics. However for logics with fixed points or with mech-
anisms of unbounded iteration, polynomial semirings are not sufficient. Even
for a formalism as simple as datalog (avoiding all complications arising from
universal quantification and negation) one has to impose additional conditions
on the semirings to guarantee the existence of least fixed points [5]. Of par-
ticular importance are ω-continuous semirings. Many application semirings are
ω-continuous, but N, and the polynomial semirings N[X] and N[X, X̄] are not.
The ω-continuous completion of N is N

∞ := N∪{∞} (with a+∞ = a ·∞ = ∞),
but the completion of N[X] is N

∞[[X]] which is not a semiring of polynomials, but
of formal power series (possibly infinite sums of monomials), with coefficients in
N

∞ and indeterminates in X, with addition and multiplication defined in the
standard way. We combine this with our approach for dealing with negation by
taking quotients.

Definition 3. The semiring N
∞[[X, X̄]]] is the quotient of the semiring of power

series N
∞[[X ∪ X̄]] by the congruence generated by the equalities p · p̄ = 0 for all

p ∈ X. The congruence classes in N
∞[[X, X̄]] are in one-to-one correspondence

with the power series in N
∞[[X ∪ X̄]] such that none of their monomials contain

complementary tokens. We call these dual-indeterminate power series.

Every function f : X ∪ X̄ → K into an ω-continuous semiring K with the
property that f(p) · f(p̄) = 0 for all p ∈ X extends uniquely to an ω-continuous
semiring homomorphism h : N

∞[[X, X̄]] → K that coincides with f on X ∪ X̄.

3 Provenance for Model Checking Problems

Provenance analysis has been developed for query evaluation and, more generally,
model checking problems in logic, in particular first-order logic and its fragments.

Let τ be a vocabulary, which in the case of description logics contains only
unary predicates (concept names) and binary predicates (role names), and fix a
finite universe Δ. We denote by AtomsΔ(τ) the set of all atoms Rā with R ∈ τ
and ā ∈ Δk. Further, let NegAtomsΔ(τ) be the set of all negated atoms ¬Rā
where Rā ∈ AtomsΔ(τ), and consider the set of all τ -literals on A, LitΔ(τ) :=
AtomsΔ(τ) ∪ NegAtomsΔ(τ) ∪ {a op b : a, b ∈ A}, where op stands for = or �=.

Definition 4. Given any commutative semiring K, a K-interpretation (for τ
and Δ) is a function π : LitΔ(τ) → K that maps equalities and inequalities
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to their truth values 0 or 1. A K-interpretation is sound for negation if π[α] ·
π[¬α] = 0 for every atom α ∈ AtomsΔ(τ). In this paper, all K-interpretations
are assumed to be sound for negation.

The equality and inequality atoms are interpreted in K as 0 or 1, i.e., their
provenance is not tracked. One could give a similar treatment to other relations
with a fixed meaning, e.g., assuming a linear order on A. However, we do not
pursue this in this paper.

We have defined in [9] how a semiring interpretation extends to a full valu-
ation π : FO(τ) → K mapping any fully instantiated formula ψ(ā) to a value
π[[ψ]], by setting

π[[ψ ∨ ϕ]] := π[[ψ]] + π[[ϕ)]] π[[ψ ∧ ϕ]] := π[[ψ]] · π[[ϕ]]

π[[∃xϕ(x)]] :=
∑

a∈Δ

π[[ϕ(a)]] π[[∀xϕ(x)]] :=
∏

a∈Δ

π[[ϕ(a)]].

For negation, we set π[[¬ϕ]] := π[[nnf(¬ϕ)]] where nnf(ϕ) is the negation normal
form of ϕ.

As shown in [9], for positive semirings, and also for the interpretations
in semirings of dual indeterminate polynomials that we are interested in, the
soundness for negation extends from atoms to arbitrary first-order formulae and
implies that π[[ϕ]] ·π[[¬ϕ]] = 0 for all ϕ ∈ FO. However, since we admit semirings
with divisors of 0, soundness for negation does not necessarily imply that one of
π[[ϕ]] and π[[¬ϕ]] must be 0.

For modal and guarded logic similar definitions of provenance interpretations
have been given and analysed in [4]. It is not difficult to adapt these definitions
for description logics. Here is one for ALC. For simplicity of notation we identify
individual names with elements of the universe. Further, all concept assertions
of form a :C where C is a concept name or the negation of a concept name, and
all role assertions (a, b) : r for a role name r are viewed as literals in some set
LitΔ(τ).

Definition 5. Let π : LitΔ(τ) → K be a K-interpretation for a finite universe
Δ and a vocabulary τ of concept names and role names. Given a role name r
and an element a ∈ Δ, let r(a) := {b : π((a, b) :r) �= 0}. For shortness we define
π(rab) := π((a, b) : r). We extend π to concept assertions a : C consisting of an
ALC concept description C, assumed to be given in negation normal form, and
an element a ∈ Δ by

π[[a :⊥]] := 0 π[[a :�]] := 1
π[[a :C � D]] := π[[a :C]] + π[[a :D]] π[[a :C � D]] := π[[a :C]] · π[[a :D]]
π[[a :∃r.C]] :=

∑

b∈r(a)

(π(rab) · π[[b :C]]) π[[a :∀r.C]] :=
∏

b∈r(a)

(π(rab) · π[[b :C]]).

The close relationship between description logics and modal logics admits
to carry over the complexity results for computing provenance values of modal
formulae [4] to this setting.
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Proposition 1. Let K be an arbitrary semiring. Given a concept description
C in ALC, a K-interpretation π : LitΔ(τ) → K, and an element a ∈ Δ, the
provenance value π[[a :C]] can be computed with O(|C| · |π|) semiring operations.

Notice that for concept descriptions in full first-order logic rather than ALC,
the number of semiring operations needed to compute provenance values may be
much higher. Indeed, the straightforward approach requires an exponential num-
ber of operations with respect to the length of a first-order concept description,
and since even in the Boolean case, the model checking problem for first-order
logic is Pspace-complete, it is unlikely that polynomial bounds are possible.

Nevertheless, despite the relatively small number of semiring operations that
are needed to compute provenance values for ALC, the complexity of such com-
putations may, depending on the costs of representing elements in the given
semiring and the costs of addition and multiplication, still be rather high, in
fact doubly exponential in the length of the concept description. See [4] for a
detailed complexity analysis for the case of modal and guarded logic.

4 Provenance Semantics for ABoxes and TBoxes

We have described basic observations about the definition and computation of
provenance values for concept assertions in ALC. However the important rea-
soning tasks associated with description logics are not so much the evaluation
of a concept assertion in a given interpretation. Description logics are used as
knowledge representation languages. A knowledge base typically consists of a
TBox T which is a finite set of general concept inclusions C � D, describing
conceptual knowledge about the domain of application, and an ABox A, which
is a finite set of concept assertions a :C and role assertions (a, b) : r, describing
specific data. Relevant questions, given an ALC knowledge base (A, T ), concern
for instance the subsumption and equivalence of two given concepts in all mod-
els of T , the consistency of the knowledge base, or the question whether a given
concept assertion a :C is entailed by the knowledge base.

Can semiring provenance provide any additional insights for knowledge rep-
resentation by description logics? To discuss such questions, we first discuss what
provenance semantics might mean for ABoxes and TBoxes.

Provenance Semantics for an ABox. Since an ABox defines a set of state-
ments that are asserted to be true, a natural possibility to define its provenance
semantics could be to assign to every assertion in the ABox a non-zero value in
the semiring, defining its precise ‘shade of truth’. However, we propose a defini-
tion that is a little more general, which gives us also the possibility to declare
that a :C just has some shade of truth ≥ k or > k without a commitment to a
precise value.

Definition 6. A K-valued ABox is a finite set of statements of form π[[α]] op k
where α is a concept assertion or role assertion, k is an element of the semiring
K, and op is =,≥, or >.
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In DL one sometimes restricts attention to simple ABoxes admitting only
concept assertions a :C where C is a concept name, and simple K-valued ABoxes
are defined analogously. This comes with no loss of expressive power since one
can replace each assertion a :C by a :AC , where AC is a new concept name, and
then add an equivalence AC ≡ C to the TBox.

Provenance Semantics for a TBox. For a given TBox T , let τ be a vocab-
ulary containing all concept names and role names appearing in T , let Δ be
a finite universe and K a commutative semiring. We want to discuss what it
means that a K-interpretation π : LitΔ(τ) → A is consistent with T .

There are two main possibilities. For the stronger one we assume, without
loss of generality, that T is given as a finite set of concept inclusions C � D.

Definition 7. A K-interpretation π : LitΔ(τ) → K is strongly consistent with
T , if for every concept inclusion C � D in T and every a ∈ Δ, we have that
π[[a :C]] ≤ π[[a :D]].

Recall that the natural order in a semiring K is defined by x ≤ y :⇐⇒
∃z(x + z = y). The requirement that our semirings are naturally ordered means
that ≤ is antisymmetric (i.e. x ≤ y ∧ y ≤ x only for x = y). Hence, if T contains
both C � D and D � C, and thus imposes an equivalence C ≡ D, strong
consistency means that π[[a :C]] = π[[a :D]] for all a.

This strong notion of consistency is rather restrictive. In many applications
it may not be adequate to require that a subsumption between two concepts
translates in this precise way into an ordering between their truth values. A less
restrictive possibility is to view a concept inclusion C � D as a requirement that
whenever a : C has a positive ‘shade of truth’ then so has a : D. On the other
side, this does not seem right in the case of concept definitions A ≡ C, where A
is a concept name; in this case we should, of course, require that all provenance
values of A and C are the same.

For the weaker notion of consistency that we have in mind we therefore
rewrite a TBox as a disjoint union T = T0 ∪ T1 where T0 is an acyclic TBox,
consisting of concept definitions A ≡ C, without cyclic dependencies among
them, and T1 is written as a finite set of equations C �D = ⊥. Notice that in the
Boolean case, this is just an equivalent rewriting because any concept inclusion
C � D is equivalent to C � ¬D = ⊥.

Definition 8. A K-interpretation π : LitΔ(τ) → K is weakly consistent with a
TBox T0 ∪ T1, if

(1) for every concept definition A ≡ C in T0 and every a ∈ Δ, we have that
π[[a :A]] = π[[a :C]], and

(2) for every equation C � D = ⊥ in T1 we have that
∑

a∈Δ

π[[a :C]] · π[[a :D]] = 0.
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As a sanity check for these definitions, we prove

Proposition 2. If π is strongly consistent with a TBox T = T0 ∪ T1, then it is
also weakly consistent with T .

Proof. We just have to show that, for every equation C �D = ⊥ in T1 and every
a ∈ Δ, we have that π[[a : C]] ≤ π[[a : ¬D]] implies π[[a : C]] · π[[a : D]] = 0. But
π[[a :C]] ≤ π[[a :¬D]] implies that also π[[a :C]]·π[[a :D]] ≤ π[[a :¬D]]·π[[a :D]] = 0 by
distributivity and soundness for negation. Further, since the semiring is assumed
to be +-positive, it follows that π[[a :C]] · π[[a :D]] = 0. ��

Definition 9. A provenance knowledge base consists of a K-valued ABox A
and a TBox T . We say that a K-interpretation π : LitΔ(τ) → K is strongly (or
weakly) consistent with (A, T ) if τ contains all role names and concept names
occuring in A and T and T , if Δ contains all individual names occurring in A
and

(1) π satisfies all assertions occurring in A,
(2) π is strongly (or weakly) consistent with T .

Such a K-interpretation is also called a K-model (or a weak K-model) of (A, T ).

5 Reasoning Problems for Provenance Knowledge Bases

The distinction between strong and weak consistency corresponds with a distinc-
tion between strong and weak subsumption between two concept descriptions.
We say that C is strongly subsumed by D, in a K-interpretation π, in symbols
C �π D, if π[[a : C]] ≤ π[[a : D]] for all elements a of π. Similarly C is weakly
subsumed by D in π, in symbols C �w

π D if π[[a :C]] ·π[[a :¬D]] = 0 for all a. This
also implies two notions of strong and weak equivalence between two concept
descriptions, denoted C ≡π D, and C ≡w

π D. Further, we write C �T D and
C �(A,T ) D to denote that such a subsumption holds in all models of a TBox
T or in all models of a provenance knowledge base (A, T ), and analogously for
the other subsumption and equivalence properties.

In analogy to and generalisation of the standard reasoning problems in DL we
propose the following problems, for a given provenance knowledge base (A, T ).

Subsumption. What kind of subsumption and equivalence properties hold
between concept descriptions in K-models of T ? In particular, describe the
subsumption hierarchy and the weak subsumption hierarchy entailed by T .

Consistency. Do there exist K-interpretations that are (strongly or weakly)
consistent with (A, T )?

Provenance values. Given a concept assertion a : C, what are the possible
provenance values π[[a :C]] in (weak) models of (A, T )? In particular is there
a possible provenance value π[[a :C]] �= 0 in some such model; this generalizes
the satisfiability problem.
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Query answering. Given a (Boolean) query q, formulated in some appropriate
query language, what are the possible provenance values π[[q]] in models of
(A, T )? In particular, is π[[q]] �= 0 in all such models?

Depending on the choice of the semiring, this permits to answer questions
about issues such as cost, confidences, or required clearance levels for statements
that we derive from the knowledge base. Here are a few examples:

(1) Consider a provenance knowledge base (A, T ) with interpretations in the
tropical semiring T = (R∞

+ ,min,+,∞, 0). We view π[[a : A]] as the cost of
using the assertion a :A. If (A, T ) entails a strong subsumption C � D then
this means that for all a, it is less expensive to establish the assertion a :C
than a :D. If (A, T ) entail such a subsumption only in the weak sense, then
this means that whenever a : D can be established for free (with cost 0),
then this is also the case for a :C.

(2) Given a TBox T and an A-valued ABox A (i.e. with valuations in the access
control semiring), the consistency of the provenance knowledge base (A, T )
means that the clearance levels required by the A are compatible with the
hierarchy of access restrictions as imposed by the TBox. For instance, (A, T )
would be inconsistent if the TBox imposes a subsumption C � D, but A
declares a :C to be top secret and a :D only confidential.

(3) Given a provenance knowledge base (A, T ) with interpretations in the
Viterbi semiring of confidence scores, the maximal provenance value π[[q]]
of a Boolean query q in models π of (A, T ) describes the confidence we can
have that q holds in some model of (A, T ).

The question arises to what extent, with what algorithmic and complex-
ity theoretic consequences, the common reasoning techniques, such as tableaux,
automata based methods, query rewriting, and so on extend to the semiring
provenance setting.

6 Tableaux Rules for Provenance Knowledge Bases

A standard approach in description logics for checking the consistency of a knowl-
edge base or an ABox is based on tableaux. A tableaux algorithm uses a system
of rules to extend a given ABox by more and more assertions; for instance if an
ABox A contains the assertion a :C � D, but not both a :C and a :D, then one
extends A to A′ = A ∪ {a : C, a : D}. This process of adding new assertions is
iterated until one can either read off a model from the incremented ABox, or it
contains a clash of the form a :C and a :¬C, so that that one can conclude that
the original ABox is inconsistent. See for instance [3] for a full description of a
tableaux algorithm for ALC.

The question arises whether the tableaux approach also works for provenance
knowledge bases. We show that this is indeed the case if we restrict ourselves to
the class of absorptive semirings for which the natural order is a linear order.
For this class, we can present a tableaux algorithm which correctly determines
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whether the given provenance knowledge base is consistent, provided the ABox
does not contain equality statements. Moreover, for the subclass of max-min-
semirings our tablaux rules do not only check consistency but also produce
more detailed descriptions of the K-models. Additionally for max-min semirings
we can allow equality statements in the ABox.

We call a K-valued ABox A normalized if each assertion in A is in negation
normal form and for each α = a :C or α = (a, b) :r there is at most one statement
about the K-value of α in A. Additionally we disallow trivial statements π[[α]] ≥
0. We can normalize any K-valued ABox A by simply deleting all assertions
π[[α]] ≥ k and π[[α]] > k for which k is not maximal and by deleting π[[α]] ≥ k if
π[[α]] > j ∈ A for some j ≥ k or if k = 0.

Tableaux Rules for K-valued ABox Consistency. For simplicity we will not
define rules for assertions of the form π[[α]] > k because they are easy adaptations
of the rules for assertions of the form π[[α]] ≥ k. However we have to exclude
assertions of the form π[[α]] = k, because for most semirings we cannot guarantee
to satisfy for instance p ·q = k by requirements on p and q that do not depend on
the value of the respective other factor. Though this is a significant restriction,
it is fair to assume that in many cases it suffices to require that a concept or role
assertion has ‘at least truth value k’ instead of requiring the provenance value
to be an exact k ∈ K.

So let A be a K-valued ABox consisting of assertions of the form π[[a :C]] ≥ k
or π[[(a, b) : r]] ≥ k, where C is not necessarily atomic and k is a value from a
provenance semiring K, which we assume to be absorptive and totally ordered
by its natural order. In particular this implies that addition in K is max and that
multiplication in K is deflationary in both arguments with respect to the natural
order, i.e. a ·c = c ·a ≤ a for any a, c ∈ K. The reason for this requirement is that
we would like to be able to deduce form π[[a :C�D]] ≥ k that one of the assertions
π[[a :C]] ≥ k and π[[a :D]] ≥ k also has to hold, and from π[[a :C � D]] ≥ k that
both of them are true. In a general semiring, this is not necessarily the case and
in fact we might not get any useful information about π[[a :C]] and π[[a :D]] from
π[[a :C � (�)D]] ≥ k. With these restrictions we are able to define tableaux rules
for consistency checking of K-valued ABoxes:

�-rule: if
1. π[[a :C � D]] ≥ k ∈ A, and
2. {π[[a :C]] ≥ i, π[[a :D]] ≥ j} � A for all i, j ≥ k

then A −→ A ∪ {π[[a :C]] ≥ k, π[[a :D]] ≥ k}
�-rule: if

1. π[[a :C � D]] ≥ k ∈ A, and
2. {π[[a :C]] ≥ j, π[[a :D]] ≥ j} ∩ A = ∅ for all j ≥ k

then A −→ A ∪ {π[[a :X]] ≥ k} for some X ∈ {C,D}
∃-rule: if

1. π[[a :∃r.C]] ≥ k ∈ A, and
2. there is no b and no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A

then A −→ A ∪ {π[[(a, d) :r]] ≥ k, π[[d :C]] ≥ k}, where d is new in A
∀-rule: if
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1. {π[[a :∀r.C]] ≥ k, π[[(a, b) :r]] ≥ 	} ⊆ A for some 	 ∈ K, 	 > 0, and
2. there are no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A

then A −→ A ∪ {π[[(a, b) :r]] ≥ k, π[[b :C]] ≥ k}

The tableaux rules are then applied in an algorithm which works as follows. It
receives a normalized K-valued ABox as input and chooses one applicable rule.
Then it applies that rule, creating an extended ABox which is then transformed
into a normalized one. This continues until either a clash occurs, i.e. A contains
assertions π[[a :C]] ≥ j and π[[a :¬C]] ≥ k for j, k > 0, or no more tableaux rules
are applicable. If the algorithm registers a clash, it returns ‘inconsistent’, and
if it does not and no more rules are applicable, it returns ‘consistent’ and the
ABox that has been constructed.

Similarily to the algorithm for a classical (non-provenance) ABox described
in [3] this algorithm is non-deterministic in two ways. Firstly, it does not specify
in which order the rules are applied. This is not a problem, since these choices do
not affect the outcome of the algorithm, nor the ABox that is returned. The other
form of non-determinism lies in choosing the concept X in the �-rule. This is a
relevant choice but one can determinize the algorithm by simultaneously tracking
all ABoxes one could construct at once and checking that not all of them contain
a clash.

The tableaux rules are based on the implications that in K if p · q ≥ k, then
p ≥ k and q ≥ k and if p + q ≥ k, then p ≥ k or q ≥ k, which hold in absorptive
semirings with linear natural order. Thus it is easy to check that if the algorithm
observes a clash, then the original ABox was already inconsistent. However the
implication for multiplication is not an equivalence. As a consequence, not every
K-model of the set of atomic assertions in the final ABox A will be a K-model of
the original ABox. Still we can construct a K-model from these atomic assertions
by setting π[[α]] = 1 and π[[α]] = 0 if π[[α]] ≥ k ∈ A for some k. Here, α
describes the complementary statement (in negation normal form) to α, for
instance a :¬C = a : C. If there is no k such that either π[[α]] ≥ k ∈ A or
π[[α]] ≥ k ∈ A, we assign 0 to non-negated statements α and 1 to negated ones.
It is important to note that in an absorptive semiring, 1 is always the maximal
element with respect to the natural order. And since 1 + 1 = 1 and 1 · 1 = 1
in these semirings, all nonatomic β which occur in assertions in A will also
have K-value 1 and thus satisfy their respective assertions. Thus the tableaux
algorithm is sound and complete and it terminates because each step simplifies
the formulae which can only be done a finite number of times.

Notice that if the algorithm returns ‘consistent’, we also return A. This is
because while not every K-model of the atomic assertions in A is a K-model
of the ABox, they still are necessary conditions for satisfying the ABox. Thus
the new K-valued ABox gives us some information about the K-models of the
original one. This is of course not new information as the new ABox has exactly
the same K-models as the old one, but it gives us some requirements for the
K-values of the atomic statements.

In max-min-semirings this information on the atomic statements is even more
useful. In these semirings p · q ≥ k is equivalent to (p ≥ k and q ≥ k) and
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p+q ≥ k is equivalent to (p ≥ k or q ≥ k). Hence we do not lose any information
by applying the tableaux rules and discarding the initial assertion while keeping
the added ones. It follows that if our tableaux algorithm returns ‘consistent’, any
K-model of the atomic assertions in the newly constructed ABox that sets all
K-values of positive statements not in the ABox to 0 and negative statements
to 1 will also be a K-model of the assertions from the original ABox. Thus we
do not only get the one model where every relevant fact is set to 1, but possibly
many more K-models. Additionally for max-min semirings we can define rules
for assertions of the form π[[α]] = k by introducing assertions using ≤ k for which
we can in turn define rules. This is because any addition and multiplication will
always take the value of one of its summands or factors. For example p+q = k is
equivalent to (p = k and q ≤ k) or (q = k and p ≤ k). We will not write down the
resulting rules here, but they can be easily constructed from such equivalences.

Tableaux Rules for Provenance Knowledge Base Consistency. A more
general problem than K-valued ABox consistency, is the consistency of a given
provenance knowledge base (A, T ). For an acyclic TBox T we can do this by
adding a rule for �. This rule depends on wether we require weak or strong
consistency with T with respect to �. For strong consistency this looks as follows.
Again we require A to be normalized and K to be absorptive and to have a linear
natural order.

strong �-rule: if
1. π[[a :C]] ≥ k ∈ A, C � D ∈ T , and
2. π[[a :D]] ≥ j /∈ A for all j ≥ k

then A −→ A ∪ {π[[a :D]] ≥ k}

If we now adjust the tableaux algorithm to check a provenance knowledge
base instead of an ABox and add the strong �-rule to the tableaux rules, we get
an algorithm that checks consistency for acyclic knowledge bases.

If we consider weak consistency, we first need an equivalence rule.

≡-rule: if
1. π[[a :C]] ≥ k ∈ A, {C ≡ D,D ≡ C} ∩ T �= ∅, and
2. π[[a :D]] ≥ j /∈ A for all j ≥ k

then A −→ A ∪ {π[[a :D]] ≥ k}

For the weak �-rule we encounter a small issue, which has to do with the
fact that we restricted ourselves to assertions of the form π[[α]] ≥ k instead of
also allowing > k. As mentioned, this restriction is not necessary and it is easy
to define the corresponding rules for > for all tableaux rules defined so far. So
if we allow assertions π[[α]] > k, the �-rule for weak consistency looks like this:

weak �-rule: if
1. {π[[a :C]] ≥ k, π[[a :C]] > k} ∩ A �= ∅, C � D = ⊥ ∈ T , and
2. {π[[a :¬D]] op j, π[[a :¬D]] > 0 | op ∈ {≥, >}} ∩ A = ∅ for all j ∈ K

then A −→ A ∪ {π[[a :D]] > 0}
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The problem with defining this rule with only ≥ is that we cannot express
that some value is non-zero. While using ≥ might seem more intuitive at first
glance, this is a reasonable argument for using > if one wants to restrict to only
one kind of comparison. It is still possible to define a weak �-rule using only ≥
but this adds some additional non-determinism. This time, it does not lie in the
choice of the concept, as in the �-rule, but in the choice of semiring value.

weak �-rule, ≥-version: if
1. π[[a :C]] ≥ k ∈ A, C � D = ⊥ ∈ T , and
2. π[[a :¬D]] ≥ ε /∈ A for all ε ∈ K

then A −→ A ∪ {π[[a :D]] ≥ ε} for some ε ∈ K

With one of the weak �-rules added to the algorithm in place of the strong
�-rule we again get a consistency checking algorithm for acyclic provenance
knowledge bases. This time it checks weak consistency within the TBox. If we use
the ≥-version of the rule however, this algorithm is not only non-deterministic
but it can in general not be determinised in the same way as the algorithm
containing only the �-rule. The reason is that unlike for the �-rule we might
have infinitely many choices for ε in the weak �-rule which we cannot track all
at once. With the weak �-rule allowing > we do not run into this issue.

Lastly, we can consider general TBoxes, which are not necessarily acyclic.
Here we encounter the same challenge as in the Boolean case that we have
to guarantee termination. Consider for instance strong TBox consistency and
assume we use the rules as they are defined right now. If T contains C � ∃r.C
and π[[a :C]] ≥ k ∈ A then we will add π[[a :∃r.C]] ≥ k to A. After that we will
apply their ∃-rule and add π[[(a, d) : r]] ≥ k, π[[d : C]] ≥ k for a new symbol d
and then we will repeat the same process with d. This will repeat over and over
again and never terminate.

In order to avoid this issue, we need to introduce an additional termination
condition for the ∃-rule. In the Boolean case this is done by the concept of a
blocked individual name (see for instance [3]). We call a an ancestor of b if there
is a sequence of relations r1, . . . , rl and of individual names c1, . . . , cl−1 such that
(a, c1) : r1 ∈ A, (c1, c2) : r2 ∈ A, . . . , (cl−1, b) : rl ∈ A. An individual name b is
called blocked by a if a is an ancestor of b and {C | b :C ∈ A} ⊆ {C | a :C ∈ A}.
To put it less technically this means that b can be reached from a via some
relation assertions in A and a has to satisfy any concept assertion that b has to
satisfy. If we think of constructing a model, this means that if we reach such a
point with the Boolean tableaux rules, we can set b = a and form a loop at that
point. A detailed explanation on why this is possible can be found in [3].

Now we need to adapt this termination condition to the provenance setting.
We call a a K-ancestor of b if there is a sequence of relations r1, . . . , rl and of
individual names c1, . . . , cl−1 such that π[[(a, c1) : r1]] ≥ k1 ∈ A, π[[(c1, c2) : r2]] ≥
k2 ∈ A, . . . , π[[(cl−1, b) : rl]] ≥ kl ∈ A for some k1, . . . , kl > 0. We define an
individual name b to be K-blocked by a if a is a K-ancestor of b and for each
C such that π[[b : C]] ≥ k ∈ A we have π[[a : C]] ≥ j ∈ A for some j ≥ k. Again
the intuition is that a has to satisfy all constraints on b, also taking into account
the lower bound on the K-value. We say that b is K-blocked if b is K-blocked by
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some a. Again if b is blocked by a this makes it possible to form a loop. Hence
we can define the new ∃-rule as follows.

∃-rule: if
1. π[[a :∃r.C]] ≥ k ∈ A, and
2. there is no b and no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A,

and
3. a is not K-blocked

then A −→ A ∪ {π[[(a, d) :r]] ≥ k, π[[d :C]] ≥ k}, where d is new in A

In order to ensure termination with the help of this rule, we need to check that
none of the rules will again and again increase the lower bounds that occur in A.
This would avoid the blocking condition as it would further and further restrict
the conditions on the individual names that are introduced. But almost all rules
do not introduce a bound which is larger than the bound of the original assertion.
Only the weak �-rule in the ≥-version has to be adapted slightly. Intuitively the
ε which can be chosen as lower bound in that rule should be as small as possible
but theoretically it may be set to a value larger than k. We can simply fix this
issue by requiring that ε ≤ k since the only information we want to reflect is
that the value is larger than 0. In this new version, the algorithm is guaranteed
to terminate both for strong and weak consistency because as in the Boolean
case, there will be only finitely many assertions about non-blocked names if the
values from the semiring, which are introduced, do not grow. Soundness and
completeness can also be proved similarly to the Boolean case for which a proof
can be found in [3].

7 Provenance-Tracking Interpretations

Also for classical reasoning problems in DL, for purely Boolean knowledge bases
K = (A, T ) a provenance approach might be helpful, at least over a fixed uni-
verse. Provenance interpretations in polynomial semirings can track precisely
which combinations of atomic facts are responsible for the truth and falsity of
a statement, and thus may help to ‘repair’ an interpretation that is inconsistent
with some requirement.

Definition 10. An N[X, X̄]-interpretation is provenance-tracking if it is
induced by a mapping π : LitΔ(τ) → X ∪ X̄ ∪ {0, 1} such that π(AtomsΔ(τ)) ⊆
X ∪ {0, 1} and π(NegAtomsΔ(τ)) ⊆ X̄ ∪ {0, 1}. Further, π maps equalities and
inequalities to their truth values 0 or 1.

The idea is that if π annotates a positive or negative atom with a token, then
we wish to track that literal through the model-checking computation. On the
other hand annotating with 0 or 1 is done when we do not track the literal, yet
we need to recall whether it holds or not in the model. See [9] for more details
and potential applications of provenance-tracking interpretations.

Consider now a simple ABox A and some fixed, but sufficiently large, uni-
verse Δ that in particular contains all individual constants appearing in A. Any
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concept or role assertion in A is identified with an atom α ∈ AtomsΔ(τ) for an
appropriate vocabulary τ . Further, let X be the set of provenance tokens pα, for
α ∈ AtomsΔ(τ), and let X̄ be the corresponding set of negative tokens p̄α. We
say that a knowledge base K = (A, T ) is consistent over Δ if it has a model with
universe Δ.

We define the provenance tracking interpretation πA : LitΔ(τ) → N[X, X̄]
by

πA(α) :=

{
1 if α ∈ A
pα otherwise

πA(¬α) :=

{
0 if α ∈ A
p̄α otherwise

Notice that for each assertion a : C the provenance value πA[[a : C]] is a
polynomial in N[X, X̄] with indeterminates pα and p̄α for α �∈ A. An equation
system in N[X, X̄] is a set E of equations of form f = 0 with f ∈ N[X, X̄].
A solution of E in a semiring K is a function h : X ∪ X̄ → K, making all
equations in E true, such that for each token p ∈ X we have that h(p) = 0
if, and only if, h(p̄) �= 0. In particular, such a solution is a model-defining K-
interpretation [9], defining the unique structure over Δ making precisely those
atoms α ∈ AtomsΔ(τ) true for which h(pα) �= 0.

Definition 11. We associate with every knowledge base K = (A, T ) and every
universe Δ the equation system EΔ

K consisting of the equations

πA[[a :C]] · πA[[a :¬D]] = 0

for all concept inclusions C � D ∈ T and all a ∈ Δ.

Proposition 3. A knowledge base K = (A, T ) is consistent over Δ if, and only
if, the equation system EΔ

K has a solution (in any semiring K).

Due to the assumption that our semirings are +-positive, we can expand the
equation system EΔ

K into a single polynomial

fΔ
K (X, X̄) :=

∑

C�D∈T

∑

a∈Δ

πA[[a :C]] · πA[[a :¬D]]

and we have that the solutions of the equation fΔ
K (X, X̄) = 0 are in correspon-

dence with the models of the knowledge base K on the universe Δ. Notice that
for just finding the zeros of fΔ

K (X, X̄), it makes no difference whether we write it
as a polynomial in N[X, X̄], or in a simpler semiring such as B[X, X̄], W[X, X̄],
S[X, X̄], or even the semiring of positive Boolean functions. Notice further, that
the problem whether such zeros exist is NP-complete.

However, provenance polynomials allow us to do more. We can compare
solutions, and we can use this approach to find solutions that describe models
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that are close to a given interpretation. Assume for instance that we have an
interpretation I that is a model of a given knowledge base, but then, after adding
further facts to the to ABox and/or making changes to the TBox, it happens
that I is no longer consistent with (A, T ). We may want to get back a model by
a set of changes that has minimal costs in some sense. This approach is related
to work in [15] on missing query answers and integrity repairs for databases.

By dualizing fΔ
K (X, X̄), we obtain the polynomial

gΔ
K (X, X̄) :=

∏

C�D∈T

∏

a∈Δ

(πA[[a :¬C]] + πA[[a :D]])

and we have that gΔ
K (X, X̄) = 0 (as a polynomial in N[X, X̄]) if, and only if, K is

inconsistent on Δ. More interestingly, if this is not the case, then by writing out
gΔ

K (X, X̄) as a sum of monomials pe1
1 . . . pek

k , we see that, for each such monomial,
every interpretation that makes all those literals true that are associated with
the tokens p1, . . . pk is a model of K. In general, such a monomial does not define
a specific model, but a whole class of models, because those literals α for which
neither pα nor p̄α occur in the monomial can be interpreted in any way. Choices
between different classes of models can then be made on the basis of any (partial)
order between monomials in N[X, X̄], and this can then be refined on the basis of
selection criteria between different interpretations that make the same monomial
true.

Coming back to the example of defining a model that is close to a given
interpretation I (that itself is not anymore consistent with K) we may for
instance define a cost interpretation ρ : LitΔ(τ) → T into the tropical semir-
ing T = (R∞

+ ,min,+,∞, 0) that associates with the addition of a fact to I a
cost c ∈ R, and with the deletion of a fact a cost d ∈ R. More precisely, for each
atom α ∈ AtomsΔ(τ), we would put ρ(α) = 0 and ρ(¬α) = d if I |= α, and
ρ(α) = c and ρ(¬α) = 0 if I |= ¬α. By setting ρ̂(pα) := ρ(α) and ρ̂(p̄α) := ρ(¬α),
we obtain a semiring homomorphism ρ̂ : N[X, X̄] → T. We would then select
the monomial m in gΔ

K (X, X̄) with minimal value ρ̂[[m]]; notice that this coin-
cides with the provenance value ρ̂[[gΔ

K (X, X̄)]]. Given the original interpretation
I and the monomial m, we can then define a new interpretation I(m) with
I(m) |= α whenever pα occurs in m, I(m) |= ¬α whenever p̄α occurs in m, and
I(m) |= α ⇐⇒ I |= α for all other atoms α ∈ AtomsΔ(τ).

We can view I(m) as a model of (A, T ) which, among all interpretations
with universe Δ, is obtained from I by a set of additions and deletions of facts
that leads to minimal costs for establishing the consistency with (A, T ). Notice
in this context, that in case K = (A, T ) is inconsistent, and hence gΔ

K (X, X̄) is
the zero polynomial, then ρ̂[[gΔ

K (X, X̄)]] = ∞.
Instead of such a cost based choice, by means of an interpretation in the

tropical semiring, the semiring framework permits also choices by other crite-
ria, for instance by maximizing consistency scores, using an interpretation into
the Viterbi semiring V, or by minimizing the required clearance level, by an
interpretation into the access control semiring A.
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Notice that all this is algorithmically nontrivial. First of all it assumes that
we have determined a universe Δ on which we evaluate the provenance polyno-
mials. This is a separate, nontrivial, problem, but for most description logics, we
can determine bounds on the size of minimal models without too much effort,
so this seems not infeasible. Second, neither the problem of finding zeros, nor
the computation of a provenance polynomial in standard form, as a sum of
monomials, are computationally easy, in general. However, it is a fact, that at
least for reasonably expressive description logics, the common reasoning prob-
lems do have a rather high complexity anyway. It is thus not at all the case that
provenance analysis makes easy problems complicated. To the contrary, we hope
that it actually may help to provide a more principled approach to a number of
interesting questions.

8 Conclusion and Outlook

We have reported on an algebraic framework for the provenance analysis of logics
with negation that we believe to be suitable and interesting also for applications
in description logics. As a first step, we have seen that provenance values of con-
cept assertions from ALC on a fixed interpretation can be computed with a mod-
erate number of semiring operations. We have then discussed which variations
of the traditional reasoning problems for description logics may be interesting
when we evaluate concept and role assertions in a commutative semiring, and
what kind of new questions might be investigated with such an approach. We
have further discussed the issue of extending the familiar tableaux based algo-
rithmic methods to provenance knowledge basis, and we have illustrated this
for certain specific cases. Finally we have investigated how provenance tracking
interpretations in semirings of dual-indeterminate polynomials may also help to
give a new approach to traditional (purely Boolean) reasoning problems such as
the consistency of a knowledge base, by means of provenance polynomials that
describe multiple models, and allow us to repair inconsistencies and to make
choices between different models on a principled basis. Of course, this work so
far is rather preliminary, and proposes more definitions and questions than that
it provides answers.

An interesting area that we have left largely untouched so far is query rewrit-
ing. This is the problem of rewriting a (say, conjunctive or first-order) query q for
a given TBox T as a new query qT that evaluated on any given ABox A should
provide the same answers as the (certain) answers of the original query q on
(models of) the knowledge base (A, T ). First-order rewritings are only possible
for rather inexpressive description logics, but for certain somewhat more expres-
sive ones, rewritings in Datalog are possible (see [3, Chap. 7]). A provenance
approach to this problem has recently been explored in [16], but it is rather
different from our methods and does not make use of dual-indeterminate poly-
nomials. It should be interesting to combine these methods with ours, taking also
into account the semirings of dual-indeterminate formal power series that pro-
vide the algebraic framework for a provenance analysis of languages that include
both recursion and negation.
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Abstract. One of the main reasons to employ a description logic such as
EL ++ is the fact that it has efficient, polynomial-time algorithmic prop-
erties such as deciding consistency and inferring subsumption. However,
simply by adding negation of concepts to it, we obtain the expressiv-
ity of description logics whose decision procedure is ExpTime-complete.
Similar complexity explosion occurs if we add probability assignments
on concepts. To lower the resulting complexity, we instead concentrate
on assigning probabilities to Axioms/GCIs. We show that the consis-
tency detection problem for such a probabilistic description logic is NP-
complete, and present a linear algebraic deterministic algorithm to solve
it, using the column generation technique. We also examine and pro-
vide algorithms for the probabilistic extension problem, which consists
of inferring the minimum and maximum probabilities for a new axiom,
given a consistent probabilistic knowledge base.

1 Introduction

The logic EL ++ is one of the most expressive description logics in which the
complexity of inferential reasoning is tractable (Baader et al. 2005a). A direct
consequence of this expressivity is that, by adding extra features to this language,
its complexity easily grows exponentially. By inferential complexity we mean the
complexity of decision problems such as consistency detection, finding a model
that satisfies a set of constraints, or Axiom subsumption. All such problems are
tractable in EL ++.

In this work we are interested in adding probabilistic reasoning capabilities
to EL ++; however, depending on how those reasoning capabilities are added to
the language, the inferential complexity can explode beyond exponential time.
As shown in Sect. 3.1, by extending EL ++ with probabilistic constraints over
concepts, inferential reasoning becomes ExpTime-hard. Such an approach was
employed in many times in the literature, either by enhancing expressive descrip-
tion logics such as ALC (Heinsohn 1994; Lukasiewicz 2008; Gutiérrez-Basulto
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et al. 2011; Jung et al. 2011), or by adding probabilistic capabilities to the family
of EL -like logics (Lutz and Schröder 2010; Gutiérrez-Basulto et al. 2017).

In this work, we study a different way of extending description logics with
probabilistic reasoning capabilities, namely by applying probabilities to GCI
Axioms. One of our goals is to reduce the complexity of probabilistic reasoning
in description logics. Another goal is to deal with the modelling situation in
which a GCI Axiom is not always true, but one can assign (subjectively) a
probability to its validity. Consider the following example describing one such
situation.

Example 1. Consider the following medical situation, in which a patient may
have symptoms which are caused buy a disease. However, some diseases cause
only very nonspecific symptoms, such as high fever, skin rash and joint pain,
which may also be caused by several other diseases. Dengue is one such desease
with mostly nonspecific symptoms. Dengue is a mosquito-borne viral disease and
more than half of the world population lives at risk of contracting it. Among
its symptoms are high fever, joint pains and skin eruptions (rash). These symp-
toms are common but not all patients present all symptoms. Such an uncertain
situation allows for probabilistic modelling.

In a certain hospital, joint pains are caused by dengue in 20% of the cases; in
the remaining 80% of the cases, there is a patient whose symptoms include joint
pains whose cause is not attributable to dengue. Also, a patient having high
fever has some probability having dengue, which increases 5% if the patient also
has a rash. If those probabilistic constraints are satisfiable, one can also ask the
minimum and maximum probability that a given patient is a suspect of suffering
from dengue.

By adding probability constraints to axioms, we hope to model such a sit-
uation. Furthermore we will show that the inferential complexity in this case
remains “only” NP-complete. In fact, our approach extends some previous results
which considered adding probabilistic capabilities only to ABox statements
(Finger et al. 2011). By using EL ++ as the underlying formalism, ABox state-
ments can be formulated as a particular case of GCI Axioms, so the approach
here has that of (Finger et al. 2011) as a particular case, but with inferential
reasoning remaining in the same complexity class.

The rest of the paper proceeds as follows. Section 2 presents the formal
EL ++-framework and Sect. 3 introduces probabilities over axioms, and define
the probabilistic satisfiability and probabilistic extension problems. Section 4
presents an algorithm for probabilistic satisfiability that combines EL ++-
solving with linear algebraic methods, such as column generation. Finally, Sect. 5
presents an algorithm for the probabilistic extension problem, and then we
present our conclusions in Sect. 6.

2 Preliminaries

We concentrate on the description language EL ++ but without concrete
domains (Baader et al. 2005a). We start with a signature consisting of a triple of
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countable sets N = 〈NC,NR,NI〉 where NC is a set of concept names, NR is a set
of role names and NI is a set of individual names. The basic concept description
are recursively defined as follows:

– �, ⊥ and concept names in NC are (simple) concept descriptions;
– if C,D are concept descriptions, C � D is a (conjunctive) concept description;
– if C is a concept description and r ∈ NR, ∃r.C is an (existential) concept

description;
– if a ∈ NI, {a} is a (nominal) concept description;

If C,D are concept descriptions an axiom, also called a general concept inclu-
sion (GCI), is an expression of the form C 	 D. If r, r1, . . . , rk ∈ NR then
r1 ◦ · · · ◦ rk 	 r is a role inclusion (RI). A finite set of axioms is called a TBox
and a finite set of axioms and RIs is called a constraint box (CBox).

A concept assertion is an expression of the form C(a), where a ∈ NI and
C is a concept description; a role assertion is an expression of the form r(a, b),
where a, b ∈ NI and r ∈ NR. A finite set of concept and role assertions forms an
assertion box (ABox ).

Semantically, we consider an interpretation I = 〈ΔI , ·I〉. The domain ΔI

is a non-empty set of individuals and the interpretation function ·I maps each
concept name A ∈ NC to a subset AI ⊆ ΔI , each role name r ∈ NR to a
binary relation rI ⊆ ΔI × ΔI and each individual name a ∈ NI to an individual
aI ∈ ΔI . The extension of ·I to arbitrary concept descriptions is inductively
defined as follows.

– �I = ΔI , ⊥I = ∅;
– (C � D)I = CI ∩ DI ;
– (∃r.C)I = {x ∈ ΔI |∃y ∈ CI , 〈x, y〉 ∈ rI};
– ({a})I = {aI}.

The interpretation I satisfies an axiom C 	 D if CI ⊆ DI (represented
as I |= C 	 D); the RI r1 ◦ · · · ◦ rk 	 r is satisfied by I (represented as
I |= r1 ◦ · · · ◦ rk 	 r) if rI

1 ◦ · · · ◦ rI
k ⊆ rI . A model I satisfies the assertion

C(a) (represented as I |= C(a)) if aI ∈ CI and satisfies the assertion r(a, b)
(represented as I |= r(a, b)) if 〈aI , bI〉 ∈ rI . Given a CBox C, we write I |= C if
I |= C 	 D for every axiom C 	 D ∈ C and I |= r1 ◦ · · · ◦ rk 	 r for every role
inclusion in C. Similarly, given an ABox A, we write I |= A if I satisfies all its
assertions.

Given a CBox C, we say that it logically entails an axiom C 	 D, represented
as C |= C 	 D, if for every interpretation I |= C we have that I |= C 	 D.

Note that in EL ++ there is no need for an explicit ABox, for we have that
I |= C(a) iff I |= {a} 	 C; and I |= r(a, b) iff I |= {a} 	 ∃r.{b}.

Given a CBox, one of the important problems for EL ++ is to determine its
consistency, namely the existence of a common model which jointly validates all
expressions in the CBox. There is a polynomial algorithm which decides EL ++-
consistency (Baader et al. 2005b).
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This decision process can be used to provide a PTIME classification of an
EL CBox. Given a CBox C, the set BCC of basic concepts descriptions for C is
given by

BCC = {�,⊥} ∪
{

C ∈ NC|C used in C
}

∪
{

{ai}|ai ∈ NI used in C
}

.

Example 2. Consider a CBox representing the situation described in Example 1;
this modelling is adapted from (Finger et al. 2011).

The following TBox T0 describes
basic knowledge on deseases:
High-fever � Symptom
Joint-pain � Symptom
Rash � Symptom
Dengue � Disease
Symptom � ∃hasCause.Disease
Patient � ∃suspectOf.Disease
Patient � ∃hasSymptom.Symptom
∃hasSymptom.(∃hasCause.Dengue)�

∃suspectOf.Dengue

And the following ABox presents John’s
symptoms.

Patient(john) [≡ {john} � Patient ]
High-fever(s1) [≡ {s1} � High-fever ]
hasSymptom(john, s1) [≡ {john} � ∃hasSymptom.{s1}]
Joint-pain(s2) [≡ {s2} � Joint-pain ]
hasSymptom(john, s2) [≡ {john} � ∃hasSymptom.{s2}]

Note that the uncertain information on dengue and its symptoms is not repre-
sented by the CBox above.

3 Extending EL ++ with Probabilistic Constraints

One of the main reasons to employ a description logic such as EL ++ is the
fact that it has polynomial-time algorithmic properties such as deciding and
inferring subsumption. However, it is well known that simply by adding negation
of concepts to EL ++, we obtain the expressivity of description logic ALC whose
decision procedure is ExpTime-complete (Baader et al. 2017). This complexity
blow up can also be expected when adding probabilistic constraints.

3.1 Why Not Assign Probability to Concepts?

When we are dealing with probabilistic constraints on description logic, one of
the first ideas is to apply conditional or unconditional probability constraints
to concepts. In fact, such an approach was employed in several enhancements
of description logics with probabilistic reasoning capabilities, e.g. as (Heinsohn
1994; Lukasiewicz 2008; Lutz and Schröder 2010; Gutiérrez-Basulto et al. 2017).

However, one can see how such an approach would lead to problems if applied
to EL ++. For each concept C one can define an associated concept C̄ subject
to the following constraints:

P (C) + P (C̄) = 1
P (C � C̄) = 0

Without going into the (non-trivial) semantic details of concept probabilities,
it is intuitively clear that those statements force C̄ to be the negation of C.
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In fact, the first statement expresses that C and C̄ are complementary and
the second statement expresses that they are disjoint; together they mean that
interpretation of C and C̄ form a partition of the domain, and thus C̄ is the
negation of C. As a consequence, the expressivity provided by probabilities over
concepts adds to EL ++ the expressivity of ALC , and as a consequence the
complexity of deciding axiom subsumption becomes ExpTime-hard. Detailed
complexity analysis can be found in (Gutiérrez-Basulto et al. 2017).

To lower the resulting complexity, we refrain from assigning probabilities to
concepts and instead concentrate on assigning probabilities to axioms.

3.2 Probability Constraints over Axioms

Assume there is a finite number of interpretations, I1, . . . , Im; let P be a mapping
that attributes to each Ii a positive value P (Ii) ≥ 0 such that

∑m
i=1 P (Ii) = 1.

Then given an axiom C 	 D, its probability is given by:

P (C 	 D) =
∑

Ii|=C�D

P (Ii). (1)

Note that this definition contemplates the probability of ABox elements; for
example the probability P (C(a)) = P ({a} 	 C).

Given axioms C1 	 D1, . . . , C� 	 D� and rational numbers b1, . . . , b�; q, a
probabilistic constraint consist of the linear combination:

b1 · P (C1 	 D1) + · · · b� · P (C� 	 D�) �� q, (2)

where �� ∈ {≤,≥,=}. A PBox is a set of probabilistic constraints. A probabilistic
knowledge base is a pair 〈C,P〉, where C is a CBox and P a PBox. Note that the
axioms occurring in the PBox need not occur in the CBox, and in general they
do not occur in it.

The intuition behind the probability of a GCI can perhaps be better under-
stood if seen by its complement. So the probability of an axiom C 	 D is p if
the probability of its failure is 1−p, that is, the probability of finding a model I
in which there exists an individual a that is in concept C but not in concept D,
I |= C(a) and I �|= D(a). Under this point of view, P (C 	 D) = p if there is a
probability p of finding a model in which either no individual instantiates concept
C or all individual instances of concept C are also individual instances of concept
D. This has as a consequence the following, somewhat unintuitive behavior: if C
is a “rare” concept in the sense that most models have no instances of C, then
the probability P (C 	 D) tends to be quite high for any D, for it has as lower
bound the probability of a model not having any instances of C.

Note that this intuitive view also covers ABox statements, which can be
expressed as axioms of the form {a} 	 C and {a} 	 ∃r.{b}. But in these cases,
all models always satisfy the nominal {a}, so e.g. P ({a} 	 C) = p simply means
that the probability of finding a model in which individual a is an instance of
concept C is p.



Extending EL ++ with Linear Constraints on the Probability of Axioms 291

3.3 Probabilistic Satisfaction and Extension Problems

A probabilistic knowledge base 〈C,P〉 is satisfied by interpretations I1, . . . , Im

if there exists a probability distribution P over the interpretations such that

– if P (Ii) > 0 then Ii |= C;
– all probabilistic constraints in P hold.

This means that an interpretation can have a positive probability mass only if
it satisfies CBox C, and the composition of all those interpretations must verify
the probability of constraints in P. A knowledge base is satisfiable if there exists
a set of interpretations and a probability distribution over them that satisfy it.

Definition 1. The probabilistic satisfiability problem for the logic EL ++ con-
sists of, given a probabilistic knowledge base 〈C,P〉, decide if it is satisfiable.

Definition 2. The probabilistic extension problem for the logic EL ++ consists
of, given a satisfiable probabilistic knowledge base 〈C,P〉 and an axiom C 	 D,
find the minimum and maximum values of P (C 	 D) that are satisfiable with
〈C,P〉.

Example 3. We create a probabilistic knowledge base by extending the CBox
presented in Example 2 with the uncertain information described in Example 1.

Dengue symptoms are nonspecific, so in some cases the high fever is actually
caused by dengue, represented by Ax1 := High-fever 	 ∃hasCause.Dengue, and in
some other cases we may have a combination of high fever and rash being caused
by dengue, represented by Ax2 := High-fever � Rash 	 ∃hasCause.Dengue. And
the fact that joint pains are caused by dengue is represented by Ax3 := Joint-pain
	 ∃hasCause.Dengue. None of the axioms Ax1, Ax2 or Ax3 is always the case, but
there is a probability that dengue is, in fact, the cause. The following probabilistic
statements represents uncertain knowledge on the relationship between dengue
and its symptoms, as observed in a hospital.

P (Ax2) − P (Ax1) = 0.05 The probability of dengue being the cause is 5% higher when both
high fever and rash are symptoms, over just having high fever;

P (Ax3) = 0.2 20% of cases of joint pain are caused by dengue.

We want to know if this probabilistic database is consistent and, in case it is, we
want to find upper and lower bounds for the probability that John is a suspect
of having dengue, plb ≤ P (∃suspectOf.Dengue(john)) ≤ pub.

In order to provide algorithms that tackle both the decision and the extension
problems, we provide a linear algebra formulation of those problems.

3.4 A Linear Algebraic View of Probabilistic Satisfaction and
Extension Problems

Initially, let us consider only restricted probabilistic constraints of the form
P (Ci 	 Di) = pi. Consider a restricted probabilistic knowledge base 〈C,P〉
in which the number of probabilistic constraints is |P| = k. Let p be a vector of
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size k of probabilistic constraint values. Consider a finite number of interpreta-
tions, I1, . . . , Im, and let us build a k × m matrix A of {0, 1} elements aij such
that

aij = 1 iff Ij |= Ci 	 Di

Note that column Aj contains the evaluations by interpretation Ij of the
axioms submitted to probabilistic constraints. Given a CBox C and sequence
of n axioms C1 	 D1, . . . , Cn 	 Dn, a {0, 1}-vector u of size n represents a
C-satisfiable interpretation I if I |= C, and ci = 1 iff I |= Ci 	 Di for 1 ≤ i ≤ n.
The idea is to assign positive probability mass pij > 0 only if Aj represents a
C-satisfiable interpretation.

Let π be a vector of size m representing a probability distribution. Consider
the following set of constraints associated to 〈C,P〉, expressing the fact that π
is a probability distribution that respects the constraints given by matrix A:

A · π = p
m∑

j=1

πj = 1 (3)

π ≥ 0

The fact that constraints (3) actually represent satisfiability is given by the
following.

Lemma 1. A probabilistic knowledge base 〈C,P〉 with restricted probabilistic
constraints is satisfiable iff there is a vector π that satisfies its associated con-
straints (3).

When the probabilistic knowledge base is satisfiable, the number m of inter-
pretations associated to the columns of matrix A may be exponentially large
with respect to the number k of constraints in P. However, Carathéodory’s The-
orem (Eckhoff 1993) guarantees that if there is a solution to (3) then there is
also a small solution, namely one with at most k + 1 positive values.

Lemma 2. If constraints (3) have a solution then there exists a solution π with
at most k + 1 values such that πj > 0.

Now instead of considering only a restricted form of probability constraints,
let us consider constraints of the form (2) as defined in Sect. 3, namely

bi1 · P (C1 	 D1) + · · · + bi� · P (C� 	 D�) �� qi,

where bij , qi ∈ Q, �� ∈ {≤,≥,=} and i = 1, . . . k.
We assume there are at most � axioms mentioned in P, such that bi,j = 0

if P (Cj 	 Dj) does not occur at constraint i. Consider a matrix Bk×� and a
vector x of size �. We now have the following set of associated constraints to the
probabilistic knowledge base 〈C,P〉, extending (3):
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B · x = q

A · π = x (4)
m∑

j=1

πj = 1

x, π ≥ 0

As before, A’s columnns are {0, 1}-representations of the validity of the
axioms occurring in P under the interpretation Ij . Constraints (4) are solvable if
there are vectors x and π that verify all conditions. Analogously, the solvability
of constraints (4) characterize the satisfiability of probabilistic knowledge bases
with unrestricted constraints.

Lemma 3. A probabilistic knowledge base 〈C,P〉 is satisfiable if and only if its
associated set of constraints (4) are solvable.

Example 4. Consider four interpretations for the knowledge base described in
Example 3. Interpretation I1 satisfies CBox C of Example 2 and also axioms
Ax1, Ax2, Ax3. Interpretation I2 satisfies C and axioms Ax2, Ax3 but not Ax1.
Interpretation I3 satisfies C and only axiom Ax3. Interpretation I4 satisfies only
C but none of the axioms. We then consider a probability distribution π, such
that π(I1) = 5%, π(I2) = 5%, π(I3) = 10%, π(I4) = 80%. The following shows
that all probabilistic restrictions are satisfied.

Ax1
Ax2
Ax3
1

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0.05
0.05
0.10
0.80

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.05
0.10
0.20
1.00

⎤
⎥⎥⎦

So P (Ax2) − P (Ax1) = 0.05 and P (Ax3) = 0.2.

When constraints (4) are solvable, vector x has size � = O(k), but vector π
can be exponentially large in k. By a simple linear algebraic trick, constraints of
the form (4) can he presented in the following form:

C · πx = d

πx ≥ 0 (5)

In fact, it suffices to make:

C =

⎡
⎣

0 B
A −I�

1 0

⎤
⎦ ; d =

⎡
⎣

q
0
1

⎤
⎦ ; πx =

[
π
x

]

where I� is the identity matrix, and 1 is a row of |π| 1’s. When we say that the
column Cj represents a C-satisfiable interpretation, we actually mean that the
part of Cj that corresponds to some column Aj that represents a C-satisfiable
interpretation, its k-initial positions are 0 and its last element is 1. Note that C
has k+�+1 rows and |π|+� columns. Again, Carathéodory’s Theorem guarantees
small solutions.
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Lemma 4. If constraints (4) have a solution then there exists a solution πx

with at most k + � + 1 values such that πx
j > 0.

We now show that probabilistic satisfiability is NP-hard.

Lemma 5. The satisfiability problem for probabilistic knowledge bases is NP-
hard.

Proof. We reduce SAT to probabilistic satisfiability over EL ++; unlike PSAT1,
it does not suffice to set all probabilities to 1, as EL ++ is decidable in polynomial
time. Instead, we show how to represent 3-SAT clauses (i.e. disjunction of three
literals) as a set of probabilistic axioms, basically probabilistic ABox statements.
For that, consider a set of propositional variables x1, . . . , xn upon which the set Γ
of clauses of the SAT problem are built. On the probabilistic knowledge base side,
consider a single individual a and 2n basic concepts X1, . . . , Xn and X1, . . . ,Xn,
subject to the following 2n restrictions:

P (a 	 Xi) + P (a 	 Xi) = 1 (6)

P (a 	 Xi � Xi) = 0

The idea is to represent the propositional atomic information xi by the axiom
a 	 Xi, its negation by a 	 Xi, and the fact that a clause yi ∨ . . . ∨ ym holds is
represented by the probabilistic statement

P (a 	 Y i � . . . � Y m) = 0. (7)

Given Γ , we build a probabilistic knowledge base 〈∅,P〉 by the representa-
tion (7) of the clauses in Γ plus 2n assertions of the form (6). We claim that Γ
is satisfiable iff 〈∅,P〉 is. In fact, suppose Γ is satisfiable by valuation v, make
a EL ++ model I such that I |= a 	 Xi iff v(xi) = 1 and assign probability
1 to I; clearly 〈∅,P〉 is satisfiable. Now suppose 〈∅,P〉 is satisfiable, so there
exists an EL ++ model I which is assigned probability strictly bigger than 0.
Construct a valuation v such that v(xi) = 1 iff I |= a 	 Xi. Clearly v(Γ ) = 1,
otherwise there is a clause yi ∨ . . . ∨ ym in Γ such that v(yi ∨ . . . ∨ ym) = 0 and
thus I |= a 	 Y i for i = 1, . . . ,m; then P (a 	 Y i � . . . � Y m) ≥ P (I) > 0,
contradicting (7).

Theorem 1. The satisfiability problem for probabilistic knowledge bases is NP-
complete.

Proof. Lemma 4 provides a small witness for every problem, such that by guess-
ing that witness we can show in polynomial time that the constraints are solvable;
so the problem is in NP. Lemma 5 provides NP-hardness.

1 PSAT, or Probabilistic SATisfiability, consists of determining the satisfiability of a
set of probabilistic assertions on classical propositional formulas (Finger and Bona
2011; Finger and De Bona 2015; Bona et al. 2014).
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4 Column Generation Algorithm for Probabilistic
Knowledge Base Satisfiability

An algorithm for deciding probabilistic knowledge base satisfiability has to pro-
vide a means to find a solution for restrictions (4) if one exists; otherwise deter-
mine no solution is possible. Furthermore, we will assume that the constraints
are presented in format (3).

We now provide a method similar to PSAT-solving to decide the satisfiability
of probabilistic knowledge base 〈C,P〉. We construct a vector c of costs whose
size is the same as size of πx such that cj ∈ {0, 1}, cj = 1 if column Cj satisfies
the following condition: either the first k positions are not 0, or the next � cells
representing Aj correspond to an interpretation that does not satisfy the CBox
C, or the last position of Cj is not 1; if Cj is one of the last � columns, or its first
k elements are 0 and the next � elements are a representation of an interpretation
Aj that is C-satisfiable and its last element is 1, then cj = 0. Then we generate
the following optimization problem associated to (3).

min c′ · πx

subject to C · πx = d
πx ≥ 0

(8)

Lemma 6. Given a probabilistic knowledge base 〈C,P〉 and its associated lin-
ear algebraic restrictions (4), 〈C,P〉 is satisfiable if, and only if, minimization
problem (8) has a minimum such that c′π = 0.

Condition c′π = 0 means that only the columns of Aj corresponding to
C-satisfiable interpretations can be attributed probability πj > 0, which imme-
diately leads to solution of (8). Minimization problem (8) can be solved by an
adaptation of the simplex method with column generation such that the columns
of C corresponding to columns of A are generated on the fly. The simplex method
is a stepwise method which at each step considers a basis consisting of k + � + 1
columns of matrix C and computes its associated cost (Bertsimas and Tsitsiklis
1997). The processing proceeds by finding a column of C outside the basis, creat-
ing a new basis by substituting one of the basis columns by this new column such
that the associated cost never increases. To guarantee the cost never increases,
the new column Cj to be inserted in the basis has to obey a restriction called
reduced cost given by c̃j = cj − cBa

Ba
−1Cj ≤ 0, where cj is the cost of column

Cj , Ba is the basis and cBa
is the cost associated to the basis. Note that in our

case, we are only inserting columns that represent C-satisfiable interpretations,
so that we only insert columns of matrix C and their associated cost cj = 0.
Therefore, every new column Cj to be inserted in the basis has to obey the
inequality

cBa
Ba

−1Cj ≥ 0. (9)

Note that the first k positions in Cj are 0 and the last one is always 1.
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A column Cj representing a C-satisfying interpretation may or may not sat-
isfy condition (9). We call an interpretation that does satisfy (9) as cost reducing
interpretation. Our strategy for column generation is given by finding cost reduc-
ing interpretations for a given basis.

Lemma 7. There exists an algorithm that decides the existence of cost reducing
interpretations whose complexity is in NP.

Proof. Since we are dealing with a CBox in EL ++, the existence of satisfying
interpretations is polynomial-time and thus in NP, we can guess one such equi-
librium and in polynomial time both verify it is a C-satisfying interpretation and
that is satisfies (9). ��

We can actually build a deterministic algorithm for Lemma 7 by reducing
it to a SAT problem. In fact, computing EL ++ satisfiability can be encoded in
a 3-SAT formula ϕ; the condition (9) can also be encoded by a 3-SAT formula
ψ in linear time, e.g. by Warners algorithm (Warners 1998), such that the SAT
problem consisting of deciding ϕ ∪ ψ is satisfiable if, and only if, there exists
a cost reducing interpretation. Furthermore its valuation provides the desired
column Cj , after prefixing it with k 0’s and appending a 1 at its end. This SAT-
based algorithm we call the EL ++-Column Generation Method. In practice,
column generation tries first to output one of the last � columns in C; if the
insertion of one such column causes det(Ba) = 0 or πx �≥ 0, or if all the last
� C-columns are in the basis, the properEL ++-Column Generation Method is
invoked.

Algorithm 4.1. PKBSAT-CG: a probabilistic knowledge base solver via Column
Generation
Input: A probabilistic knowledge base 〈C, P〉 and its associated set of restrictions in
format (3).
Output: No, if 〈C, P〉 is unsatisfiable. Or a solution 〈Ba, πx〉 that minimizes (8).

1: B
(0)
a := Ik+�+1;

2: s := 0, πx(s) = (B
(0)
a )−1 · d and c(s) = [1 · · · 1]′;

3: while c(s)′ · πx(s) �= 0 do
4: y(s) = GenerateColumn(B

(s)
a , C, c(s));

5: if Column generation failed then
6: return No; {probabilistic knowledge base is unsatisfiable}
7: else
8: B

(s+1)
a = merge(B

(s)
a , y(s));

9: s++, recompute πx(s) := (B
(s−1)
a )−1 · d; c(s) the costs of B

(s)
a columns;

10: end if
11: end while
12: return 〈B(s)

a , πx(s)〉; {probabilistic knowledge base is satisfiable}

Algorithm 4.1 presents the top level probabilistic knowledge base decision
procedure. Lines 1–2 present the initialization of the algorithm. We assume the
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vector p is in descending order. At the initial step we make B(0) = UK+1, this
forces π

(0)
K+1 = pK+1 ≥ 0, π

(0)
j = pj − pj+1 ≥ 0, 1 ≤ j ≤ K; and c(0) =

[c1 · · · cK+1]′, where cj = 0 if column j in B(0) is an interpretation; otherwise
cj = 1. Thus the initial state s = 0 is a feasible solution.

Algorithm 4.1 main loop covers lines 3–11 which contains the column gener-
ation strategy at beginning of the loop (line 4). If column generation fails the
process ends with failure in line 6; the correctness of unsatisfiability by failure
is guaranteed by Lemma 6. Otherwise a column is removed and the generated
column is inserted in a process we called merge at line 8. The loop ends success-
fully when the objective function (total cost) c(s)′ · πx(s) reaches zero and the
algorithm outputs a probability distribution πx and the set of interpretations
columns in Ba, at line 12.

Column generation first tries to insert a cost decreasing column from the last
� columns in C; if no such column is found, EL ++-Column Generation Method
described above is invoked.

The procedure merge is part of the simplex method which guarantees that
given a column y and a feasible solution 〈Ba, πx〉 there always exists a column
j in Ba such that if Ba[j := y] is obtained from Ba by replacing column j with
y, then there is π̃x ≥ 0 such that 〈Ba[j := y], π̃x〉 is a feasible solution. We have
thus proved the following result.

Example 5. Suppose at some point for the execution of Algorithm 4.1, we have
the following situation.

Ba =

⎡
⎢⎢⎢⎣

0 1 0 1 −1
1 1 0 0 0
0 1 0 0 −1
1 0 0 −1 0
1 1 1 0 0

⎤
⎥⎥⎥⎦ π =

⎡
⎢⎢⎢⎣

0.05
0.15
0.80
0.05
0.15

⎤
⎥⎥⎥⎦ d =

⎡
⎢⎢⎢⎣

0.05
0.20
0
0

1.00

⎤
⎥⎥⎥⎦

P (Ax2) − P (Ax1)
P (Ax3)
P (Ax1)
P (Ax2)
1

c =

⎡
⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎦

Ba’s last two columns are C’s last two columns. Columns 1 and 3 represent C-
satisfiable models. Column 2 has a non-zero initial position, and thus c2 = 1 is the
only non-zero element of cost vector c; total cost is 0.15. Thus, cBa

Ba
−1Cj ≥

0 leads to Ax3 + Ax1 − Ax2 ≥ 0. A model that satisfies all 3 axioms is C-
satisfiable and verifies the inequality; the corresponding column returned by
column generation is [0 1 1 1 1]′. The merge procedure will insert it in the
second column of the basis, with cost 0, which leads to a new value of π =
[0.05 0.15 0.80 0.20 0.15]′; the total cost is 0, the minimum of (8) os achieved,
the first 3 positions of π are a probability distribution over Ba’s first 3 columns,
the last ones are P (Ax2) and P (Ax1) in such a probabilistic model.

Theorem 2. Algorithm 4.1 decides probabilistic knowledge base satisfiability
using column generation.

5 Algorithm for the Probabilistic Extension Problem

We now analyse the problem of probabilistic knowledge base extension. Given
a satisfiable knowledge base, our aim is to find the maximum and minimum
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probabilistic constraints for some axiom C 	 D maintaining satisfiability. Given
a precision ε = 2−k, the algorithm works by making a binary search through the
binary representation of the possible constraints to C 	 D, solving a probabilistic
knowledge base satisfiability problem in each step.

Algorithm 5.1 presents a procedure to solve the maximum extension problem.
We invoke PKBSAT − CG(〈C,P〉) several times in the process. Obtaining the
minimum extension is easily adaptable from Algorithm 5.1.

Algorithm 5.1. PKBEx-BS: a solver for probabilistic knowledge base extension
via Binary Search
Input: A satisfiable probabilistic knowledge base 〈C, P〉, an axiom C � D, and a
precision ε > 0.
Output: Maximum P (C � D) value with precision ε.

1: k := �| log ε|�;
2: j := 1, vmin := 0, vmax := 1;
3: if PKBSAT-CG(C, P ∪ {P (C � D) = 1}) = Yes then
4: vmin := 1;
5: else
6: while j ≤ k do
7: vmax = vmin + 1

2j
;

8: if PKBSAT-CG(C, P ∪ {P (C � D) ≥ vmax}) = Yes then
9: vmin := vmax;

10: end if
11: j++;
12: end while
13: end if
14: return vmin;

Suppose the goal is to find the maximum possible value for constraining
C 	 D. Iteration 1 solves PKBSAT for P (C 	 D) = 1; if it is satisfiable,
P (C 	 D) = 1, else P (C 	 D) = 0 with precision 20=1, and it can be refined
by solving PKBSAT for P (C 	 D) = 0.5; if it is satisfiable, P (C 	 D) = 0.5, else
P (C 	 D) = 0, both cases with precision 2−1 = 0.5. One more iteration gives
precision 2−2 = 0.25, and it consists of solving PKBSAT for P (C 	 D) = 0.75
in case the former iteration was satisfiable, otherwise P (C 	 D) = 0.25. The
proceeds until the desired precision is reached, which takes | log 2−k|+1 = k +1
iterations.

Theorem 3. Given a precision ε > 0, probabilistic knowledge base extension can
be obtained with O(| log ε|) iterations of probabilistic knowledge base satisfiability.

Example 6. If we continue he previous examples, by applying Algorithm 5.1, we
obtain that

0.20 ≤ P (∃suspectOf.Dengue(john)) ≤ 0.95.
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that is, the probability of John having Dengue lies between twenty percent and
ninety five percent. Such a high spread means that knowing lower and upper
bounds for probability is not really informative.

6 Conclusions and Further Work

In this paper we have extended the logic EL ++ with probabilistic reasoning
capabilities over GCI axioms, without causing an exponentially-hard complexity
blow up in reasoning tasks. We have provided deterministic algorithms based
on logic and linear algebra for the problems of probabilistic satisfiability and
probabilistic extension, and we have demonstrated that the decision problems
are NP-complete.

In the future, we plan to explore more informative probabilistic measures,
such as probabilities under minimum entropy distributions and the dealing of
conditional probabilities, instead of only focusing on probabilities of 	-axioms,
as was done here. We also plan to study fragments of the logics presented here
in the search for tractable fragments of probabilistic description logics.
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tic EL. In: Rosati et al. (2011)



300 M. Finger

Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6), 852–
883 (2008)
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Abstract. The goal of this chapter is to survey the formalisation of a
precise and uniform integration between first-order ontologies, first-order
queries, and classical relational databases (DBoxes) We include here non-
standard variants of first-order logic, such as the one with active domain
semantics and standard name assumption, used typically in database
theory. We present a general framework for the rewriting of a domain
independent first-order query in presence of an arbitrary domain inde-
pendent first-order logic ontology over a signature extending a database
signature with additional predicates. The framework supports deciding
the existence of a logically equivalent and – given the ontology – safe-
range first-order reformulation (called exact reformulation) of a domain
independent first-order query in terms of the database signature, and if
such a reformulation exists, it provides an effective approach to construct
the reformulation based on interpolation using standard theorem proving
techniques (i.e., tableau). Since the reformulation is a safe-range formula,
it is effectively executable as an SQL query. We finally present an appli-
cation of the framework with the very expressive ALCHOI and SHOQ
description logics ontologies, by providing effective means to compute
safe-range first-order exact reformulations of queries.

1 Introduction

We address the problem of query reformulation with expressive ontologies over
databases. An ontology provides a conceptual view of the database and it is
composed by constraints on a vocabulary extending the basic vocabulary of the
data. Querying a database using the terms in such a richer ontology allows for
more flexibility than using only the basic vocabulary of the relational database
directly.

In this chapter we study and develop a query rewriting framework applicable
to knowledge representation systems where data is stored in a classical finite
relational database, in a way that in the literature has been called the locally-
closed world assumption [12], exact views [13,25,26], or DBox [16,31]. A DBox is
a set of ground atoms which semantically behaves like a database, i.e., the inter-
pretation of the database predicates in the DBox is exactly equal to the database
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 301–328, 2019.
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relations in any model. The DBox predicates are closed, i.e., their extensions are
the same in every interpretation, whereas the other predicates in the ontology
are open, i.e., their extensions may vary among different interpretations. We
do not consider here the open interpretation for the database predicates (also
called ABox or sound views). In an ABox the interpretation of database pred-
icates contains the database relations and possibly more data coming from the
non-database predicates. This notion is less faithful in the representation of a
database semantics since it would allow for spurious interpretations of database
predicates with additional unwanted tuples not present in the original database.

In our general framework an ontology is a set of first-order formulas, and
queries are (possibly open) first-order formulas. Within this setting, the frame-
work provides precise semantic conditions to decide the existence of a safe-range
first-order equivalent reformulation of a query in terms of the database signa-
ture. It also provides an constructive approach to build the reformulation with
sufficient conditions. We are interested in safe-range reformulations of queries
because their range-restricted syntax is needed to reduce the original query
answering problem to a relational algebra evaluation (e.g., via SQL) over the
original database [1]. Our framework points out several conditions on the ontolo-
gies and the queries to guarantee the existence of a safe-range reformulation.
We show that these conditions are feasible in practice and we also provide an
implementable method to ensure their validation. Standard theorem proving
techniques can be used to compute the reformulation.

In order to be complete, our framework is applicable to ontologies and queries
expressed in any fragment of first-order logic enjoying finitely controllable deter-
minacy [26], a stronger property than the finite model property of the logic.
If the employed logic does not enjoy finitely controllable determinacy our app-
roach would become sound but incomplete, but still effectively implementable
using standard theorem proving techniques. We have explored non-trivial appli-
cations where the framework is complete; in this chapter, the application with
ALCHOI and SHOQ ontologies and concept queries is discussed. We show how
(i) to check whether the answers to a given query with an ontology are solely
determined by the extension of the DBox (database) predicates and, if so, (ii)
to find an equivalent rewriting of the query in terms of the DBox predicates to
allow the use of standard database technology (SQL) for answering the query.
This means we benefit from the low computational complexity in the size of the
data for answering queries on relational databases. In addition, it is possible to
reuse standard techniques of description logics reasoning to find rewritings, such
as in the paper by [31].

The query reformulation problem has received strong interest in classical
relational database research as well as modern knowledge representation stud-
ies. Differently from the mainstream research on query reformulation [21], which
is mostly based on perfect or maximally contained rewritings with sound views
under relatively inexpressive constraints (see, e.g., the DL-Lite approach in [2]),
we focus here on exact rewritings with exact views, since it characterises pre-
cisely the query answering problem with ontologies and databases, in the case
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when the exact semantics of the database must be preserved. As an example,
consider a ground negative query over a given standard relational database; by
adding an ontology on top of it, its answer is not supposed to change—since
the query uses only the signature of the database and additional constraints are
not supposed to change the meaning of the query—whereas if the database were
treated as an ABox (sound views) the answer may change in presence of an
ontology. This may be important from the application perspective: a DBox pre-
serves the behaviour of the legacy application queries over a relational database.
Moreover, by focussing on exact reformulations of definable queries (as opposed
to considering the certain answer semantics to arbitrary queries, such as in DL-
Lite), we guarantee that answers to queries can be subsequently composed in an
arbitrary way: this may be important to legacy database applications. A com-
prehensive summary comparing the ABox- and DBox-based approaches to data
representation in description logics appears in [8].

The approach to query reformulation with first-order theories based on exact
rewritings was first thoroughly analysed in [26] by Nash, Segoufin and Vianu.
They addressed the question whether a query can be answered using a set of
(exact) views by means of an exact rewriting over a database represented as
a DBox. The authors defined and investigated the notions of determinacy of a
query by a set of views and its connection to exact rewriting. Nash, Segoufin
and Vianu also studied several combinations of query and view languages try-
ing to understand the expressivity of the language required to express the exact
rewriting, and, thus, they obtained results on the completeness of rewriting lan-
guages. They investigated languages ranging from full first-order logic to con-
junctive queries. In a more practical database settings, Toman and Weddell have
long advocated the use of exact reformulations for automatic generation of plans
that implement user queries under system constraints–a process they called query
compilation [32]. The exact rewriting framework has also been applied to devise
the formal foundations of the problems of view update and of characterising
unique solutions in data exchange. In the former problem, a target view of some
source database is updatable if the source predicates have an exact reformula-
tion given the view over the target predicates [14]. In the latter problem, unique
solutions exist if the target predicates have an exact reformulation given the
data exchange mappings over the source predicates [27]. Another application of
DBoxes has been in the context of constraints representation in ontologies [29].

The chapter is organised as follows: Sect. 2 provides the necessary formal
background and definitions; Sect. 3 introduces the notion of a query determined
by a database; Sect. 4 introduces a characterisation of the query reformulation
problem; in Sects. 5 and 6 the conditions allowing for an effective reformulation
are analysed, and a sound and complete algorithm to compute the reformulation
is introduced. Finally, we present the case of ALCHOI and SHOQ ontologies
in Sect. 7 and conclude in Sect. 8. This chapter extends the work first presented
in [17,18].
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2 Preliminaries

Let FOL(C,P) be a classical function-free first-order language with equality over
a signature Σ = (C,P), where C is a set of constants and P is a set of predicates
with associated arities. The arity of a predicate P we denote by ar(P ). In the
rest we will refer to an arbitrary fragment of FOL(C,P), which will be called L.
We denote by σ(φ) the signature of the formula φ, that is all the predicates and
constants occurring in φ. We denote with P{φ1,...,φn} the set of all predicates
occurring in the formulas φ1, . . . , φn, with C{φ1,...,φn} the set of all constants
occurring in the formulas φ1, . . . , φn; for the sake of brevity, instead of P{φ}
(resp. C{φ}) we write Pφ (resp. Cφ). We denote with σ(φ1, . . . , φn) the signature
of the formulas φ1, . . . , φn, namely the union of P{φ1,...,φn} and C{φ1,...,φn}. We
denote the set of all variables appearing in φ as var(φ), and the set of the free
variables appearing in φ as free(φ); we may use for φ the notation φ(x̄), where
x̄ = free(φ) is the (possibly empty) set of free variables of the formula. The
notation φ(x̄, ȳ) means free(φ) = x̄ ∪ ȳ. A formula in FOL(C,P) is in prenex
normal form, if it is written as a string of quantifiers followed by a quantifier-free
part. Every formula is equivalent to a formula in prenex normal form and can
be converted into it in polynomial time [23].

Let X be a countable set of variables we use. We define a substitution Θ to be
a total function X �→ S assigning an element of the set S to each variable in X.
We can see substitution as a countable set of assignments of elements from S to
elements from X. That is, if X = {x1, x2, . . .}, then Θ := {x1 → s1, x2 → s2, . . .},
where s1, s2, . . . are elements from S assigned to corresponding variables from X

by Θ.
As usual, an interpretation I = 〈ΔI , ·I〉 includes a non-empty set – the

domain ΔI – and an interpretation function ·I defined over constants and
predicates of the signature. We say that interpretations I = 〈ΔI , ·I〉 and
J = 〈ΔJ , ·J 〉 are equal, written I = J , if ΔI = ΔJ and ·I = ·J . We use
standard definitions of validity, satisfiability and entailment of a formula. An
extension of φ(x̄) in interpretation I = 〈ΔI , ·I〉, denoted (φ(x̄))I , is the set of
substitutions from the variable symbols to elements of ΔI which satisfy φ in I.
That is,

(φ(x̄))I = {Θ : X �→ ΔI | I, Θ |= φ(x̄)}.

If φ is closed, then the extension depends on whether φ holds in I = 〈ΔI , ·I〉
or not. Thus, for a closed formula φ, (φ)I = {Θ | Θ : X �→ ΔI} – the set of all
possible substitutions assigning elements from the domain ΔI to variables X –
if I |= φ, and (φ)I = ∅, if I �|= φ.

Given an interpretation I = 〈ΔI , ·I〉, we denote by I|S the interpretation
restricted to a smaller signature S ⊆ P ∪ C, i.e., the interpretation with the
same domain ΔI and the same interpretation function ·I defined only for the
constants and predicates from the set S. The semantic active domain of the
signature σ′ ⊆ P ∪ C in an interpretation I, denoted adom(σ′, I), is the set
of all elements of the domain ΔI occurring in interpretations of predicates and
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constants from σ′ in I:

adom(σ′, I) :=
⋃

P∈σ′

⋃

(a1,...,an)∈P I
{a1, . . . , an} ∪

⋃

c∈σ′
{cI}.

If σ′ = σ(φ), where φ is a formula, we call adom(σ(φ), I) a semantic active
domain of the formula φ in an interpretation I.

Let X ⊆ X be a set of variables and S a set. Let us consider the restriction of
a substitution to a set of variables from X. That is, we consider a function Θ|X
assigning an element in S to each variable in X. We abuse the notation and call
such restriction simply substitution. Thus, hereafter substitution is a function
from a set of variables X ⊆ X to a set S: Θ : X �→ S, including the empty
substitution ε when X = ∅. Domain and image (range) of a substitution Θ are
written as dom(Θ) and rng(Θ) respectively.

Given a subset of the set of constants C
′ ⊆ C, we write that a formula φ(x̄)

is true in an interpretation I with its free variables substituted according to a
substitution Θ : x̄ �→ C

′ as I |= φ(x̄/Θ). Given an interpretation I = 〈ΔI , ·I〉
and a subset of its domain Δ ⊆ ΔI , we write that a formula φ(x̄) is true in
I with its free variables interpreted according to a substitution Θ : x̄ �→ Δ as
I, Θ |= φ(x̄).

A (possibly empty) finite set KB of closed formulas will be called an ontology.
As usual, an interpretation in which a closed formula is true is called a model
for the formula; the set of all models of a formula φ (respectively KB) is denoted
by M(φ) (respectively M(KB)).

2.1 DBoxes

A DBox DB is a finite set of ground atoms of the form P (c1, . . . , cn), where
P ∈ P, n-ary predicate, and ci ∈ C (1 ≤ i ≤ n). DBox can be seen as a variant
of database representation. The set of all predicates appearing in a DBox DB
is denoted by PDB, and the set of all constants appearing in DB is called the
active domain of DB, and is denoted by CDB.

An interpretation I embeds a DBox DB, if aI = a for every DBox con-
stant a ∈ CDB (the standard name assumption (SNA), customary in databases,
see [1]) and that, for any o1, . . . , on ∈ ΔI , (o1, . . . , on) ∈ P I if and only if
P (o1, . . . , on) ∈ DB. We denote the set of all interpretations embedding a DBox
DB as E(DB). A DBox DB is legal for an ontology KB if there exists a model
of KB embedding DB.

In other words, in every interpretation embedding DB the interpretation of
any DBox predicate is always the same and it is given exactly by its content
in the DBox; this is, in general, not the case for the interpretation of the non-
DBox predicates. We say that all the DBox predicates are closed, while all the
other predicates are open and may be interpreted differently in different inter-
pretations. We do not consider here the open world assumption (the ABox ) for
embedding a DBox in an interpretation. In an open world, an interpretation I
soundly embeds a DBox if it holds that (c1, . . . , cn) ∈ P I if (but not only if)
P (c1, . . . , cn) ∈ DB.
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In order to allow for an arbitrary DBox to be embedded, we generalise the
standard name assumption to all the constants in C; this implies that the domain
of any interpretation necessarily includes the set of all the constants C, which
we assume to be finite. The finiteness of C corresponds to the finite ability of
a database system to represent distinct constant symbols; C is meant to be
unknown in advance, since different database systems may have different limits.
We will see that the framework introduced here will not depend on the choice
of C.

If σ′ ⊆ PDB ∪ C, then for any interpretations I and J embedding DB we
have: adom(σ′, I) = adom(σ′,J ); so, for such a case we introduce the nota-
tion adom(σ′,DB) := adom(σ′, I), where I is any interpretation embedding the
DBox DB, and call it a semantic active domain of the signature σ′ in a DBox DB.
Intuitively, adom(σ′,DB) includes the constants from σ′ and from DB appearing
in the relations corresponding to the predicates from σ′. If σ′ = σ(φ), where φ
is a formula expressed in terms of only DBox predicates from PDB (and possi-
bly some constants), we call adom(σ(φ),DB) a semantic active domain of the
formula φ in a DBox DB.

2.2 Queries

A query is a (possibly closed) formula. Given a query Q(x̄). We define the certain
answer to Q(x̄) over a DBox DB and under an ontology KB as follows:

Definition 1 (Certain answer). The (certain) answer to a query Q(x̄) over
a DBox DB under an ontology KB is the set of substitutions with constants:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}.

Query answering is defined as an entailment problem, and as such it is going
to have the same (high) complexity as entailment.

Note that if a query Q is closed (i.e., a boolean query), then the certain
answer is {ε} if Q is true in all the models of the ontology embedding the DBox,
and ∅ otherwise. In the following, we assume that the closed formula Q(x̄/Θ)
is neither a valid fromula nor an inconsistent formula under the ontology KB –
with Θ a substitution Θ : x̄ �→ C assigning to variables distinct constants not
appearing in Q, nor in KB, nor in CDB; this assumption is needed in order to
avoid trivial reformulations.

One can see that if an ontology is inconsistent or a DBox is illegal for an
ontology, then the certain answer to any query over the DBox under the ontology
is a set of all possible substitutions. Also, if an ontology is a tautology, we
actually have a simple case of query answering over a database (DBox) without
an ontology. Thus, we can discard these cases and assume to have only consistent
non-tautological ontologies and legal DBoxes.

We now show that we can weaken the standard name assumption for the
constants by just assuming unique names, without changing the certain answers.
As we said before, an interpretation I satisfies the standard name assumption
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if cI = c for any c ∈ C. Alternatively, an interpretation I satisfies the unique
name assumption (UNA) if aI �= bI for any different a, b ∈ C. We denote the set
of all interpretations satisfying the standard name assumption as I(SNA). We
denote the set of all interpretations satisfying the unique name assumption as
I(UNA).

The following proposition allows us to freely interchange the standard name
and the unique name assumptions with interpretations embedding DBoxes. This
is of practical advantage, since we can encode the unique name assumption in
classical first-order logic reasoners, and many description logics reasoners do
support natively the unique name assumption as an extension to OWL.

Proposition 1 (SNA vs UNA). For any query Q(x̄), ontology KB and DBox
DB,

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀I ∈ I(SNA) ∩ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀I ∈ I(UNA) ∩ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}.

Since a query can be an arbitrary first-order formula, its answer may depend
on the domain, which we do not know in advance. For example, the query Q(x) =
¬Student(x) over the database (DBox) {Student(a), Student(b)}, with domain
{a, b, c} has the answer {x → c}, while with domain {a, b, c, d} has the answer
{x → c, x → d}. Therefore, the notion of domain independent queries has been
introduced in relational databases. Here we adapt the classical definitions [1,3]
to our framework: we need a more general version of domain independence,
namely domain independence w.r.t an ontology, i.e., restricted to the models of
an ontology.

Definition 2 (Domain independence). A formula Q(x̄) is domain indepen-
dent with respect to an ontology KB if and only if for every two models I and J of
KB (i.e., I = 〈ΔI , ·I〉 and J = 〈ΔJ , ·J 〉) which have the same interpretations
for all the predicates and constants, and for every substitution Θ : x̄ �→ ΔI ∪ΔJ

we have:

rng(Θ) ⊆ ΔI and I, Θ |= Q(x̄) iff

rng(Θ) ⊆ ΔJ and J , Θ |= Q(x̄).

The above definition reduces to the classical definition of domain indepen-
dence whenever the ontology is empty. A weaker version of domain independence
– which is relevant for open formulas – is the following.

Definition 3 (Ground domain independence). A formula Q(x̄) is ground
domain independent if and only if Q(x̄/Θ) is domain independent for every
substitution Θ : x̄ �→ C.

For example, the formula ¬P (x) is ground domain independent, but it is not
domain independent.

The problem of checking whether a FOL formula is domain independent
is undecidable [1]. That is why we consider a well known domain independent
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syntactic fragment of FOL introduced by Codd, namely the safe-range fragment.
We recall the formal definition [1] of a safe-range formula. First, a formula should
be transformed to a safe-range normal form, denoted by srnf. A formula φ in
FOL(C,P) can be transformed to srnf(φ) by the following steps [1]:

– Variable substitution: no distinct pair of quantifiers may employ same
variable;

– Remove universal quantifiers;
– Remove implications;
– Push negation;
– Flatten ‘and’s and ‘or’s.

Definition 4 (Range restriction of a formula). Range restriction of a for-
mula φ in a safe-range normal form, denoted rr(φ), is a subset of free(φ) or
⊥ recursively defined as follows:

– φ = R(t1, . . . , tn), where each ti is either a variable or a constant: rr(φ) is a
set of variables in t1, . . . , tn;

– φ = (x = c) or φ = (c = x), where c is a constant: rr(φ) = {x};
– φ = (x = y): rr(φ) = ∅;
– φ = φ1 ∧ φ2: rr(φ) = rr(φ1) ∪ rr(φ2);
– φ = φ1 ∨ φ2: rr(φ) = rr(φ1) ∩ rr(φ2);
– φ = φ1∧(x = y): rr(φ) = rr(φ1) if {x, y}∩rr(φ1) = ∅; rr(φ) = rr(φ1)∪{x, y}

otherwise;
– φ = ¬φ1: rr(φ) = ∅ ∩ rr(φ1);
– φ = ∃xφ1: rr(φ) = rr(φ1) \ {x} if x ∈ rr(φ1); rr(φ) = ⊥ otherwise,

where ⊥ ∪ Z = ⊥ ∩ Z = ⊥ \ Z = Z \ ⊥ = ⊥ for any range restriction of a
formula Z.

Definition 5 (Safe-range formula). A formula φ in FOL(C,P) is safe-range
if and only if rr(srnf(φ)) = free(φ).

Definition 6 (Ground safe-range formula). A formula Q(x̄) is ground safe-
range if and only if Q(x̄/Θ) is safe-range for every substitution Θ : x̄ �→ C.

It was proved in [1] that a safe-range fragment is equally expressive to a domain
independent fragment; indeed a well-known Codd’s theorem states that any safe-
range formula is domain independent, and any domain independent formula can
be easily transformed into a logically equivalent safe-range formula.

Intuitively, a formula is safe-range if and only if its variables are bounded
by positive predicates or equalities. For example, the formula ¬A(x) ∧ B(x)
is safe-range, while queries ¬A(x) and ∀x.A(x) are not. An ontology KB is
safe-range (domain independent), if every formula in KB is safe-range (domain
independent). The safe-range fragment of first-order logic with the standard
name assumption is equally expressive to the relational algebra, which is the
core of SQL [1].
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3 Determinacy

The certain answer to a query includes all the substitutions which make the query
true in all the models of the ontology embedding the DBox: so, if a substitution
would make the query true only in some model, then it would be discarded
from the certain answer. In other words, it may be the case that the answer
to the query is not necessarily the same among all the models of the ontology
embedding the DBox. In this case, the query is not fully determined by the given
source data; indeed, given the DBox, there is some answer which is possible, but
not certain. Due to the indeterminacy of the query with respect to the data,
the complexity to compute the certain answer in general increases up to the
complexity of entailment in the fragment of first-order logic used to represent
the ontology. We focus on the case when a query has the same answer over all
the models of the ontology embedding the DBox, namely, when the information
requested by the query is fully available from the source data without ambiguity.
In this way, the indeterminacy disappears, and the complexity of the process
may decrease (see Sect. 4). The determinacy of a query w.r.t. a DBox (source
database) [13,25,26] has been called implicit definability of a formula (the query)
from a set of predicates (the DBox predicates) by Beth [7].

Definition 7 (Finite Determinacy or Implicit Definability). A query
Q(x̄) is (finitely) determined by (or implicitly definable from) the DBox pred-
icates PDB under KB if and only if for any two models I and J of the ontology
KB – both with a finite interpretation to the DBox predicates PDB – when-
ever I|PDB∪C = J |PDB∪C then for every substitution Θ : x̄ �→ ΔI we have:
I, Θ |= Q(x̄) if and only if J , Θ |= Q(x̄).

Intuitively, the answer to an implicitly definable query does not depend on
the interpretation of non-DBox predicates. Once the DBox and a domain are
fixed, it is never the case that a substitution would make the query true in some
model of the ontology and false in others, since the truth value of an implic-
itly definable query depends only on the interpretation of the DBox predicates
and constants and on the domain (which are fixed). In practice, by focusing on
finite determinacy of queries we guarantee that the user can always interpret the
answers as being not only certain, but also exact – namely that whatever is not
in the answer can never be part of the answer in any possible world.

In the following we focus on ontologies and queries in those fragments of
FOL(C,P) for which determinacy under models with a finite interpretation
of DBox predicates (finite determinacy) and determinacy under models with
an unrestricted interpretation of DBox predicates (unrestricted determinacy)
coincide. We say that these fragments have finitely controllable determinacy.
Sometimes it may be the case that we consider ontology in one fragment (F1) and
query in another one (F2). Then we say that fragment F1 has finitely controllable
determinacy of queries from fragment F2 if for every query expressed in F2 and
for every ontology expressed in F1 finite determinacy of the query under the
ontology coincides with unrestricted determinacy.
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We require that whenever a query is finitely determined then it is also deter-
mined in unrestricted models (the reverse is trivially true). Indeed, the results
we obtained would fail if finite determinacy and unrestricted determinacy do
not coincide: it can be shown [20] that Theorem 3 below fails if we consider only
models with a finite interpretation of DBox predicates.

Example 1 (Example from database theory). Let P = {P,R,A}, PDB = {P,R},

KB = {∀x, y, z.R(x, y) ∧ R(x, z) → y = z,

∀x, y.R(x, y) → ∃z.R(z, x),
(∀x, y.R(x, y) → ∃z.R(y, z)) → (∀x.A(x) ↔ P (x))}.

KB is domain independent. The formula ∀x, y.R(x, y) → ∃z.R(y, z) is entailed
from the first two formulas only over finite interpretations of R. The query
Q = A(x) is domain independent and finitely determined by P (it is equivalent
to P (x) under the models with a finite interpretation of R), but it is not deter-
mined by any DBox predicate under models with an unrestricted interpretation
of R. The fragment in which KB and Q are expressed does not enjoy finitely
controllable determinacy.

The next theorem immediately follows from the example above.

Theorem 1. Domain independent fragment does not have finitely controllable
determinacy.

Let Q be any formula in FOL(C,P) and Q̃ be the formula obtained from it by
uniformly replacing every occurrence of each non-DBox predicate P with a new
predicate P̃ . We extend this renaming operator ·̃ to any set of formulas in a
natural way. One can check whether a query is implicitly definable by using the
following theorem.

Theorem 2 (Testing determinacy, [7]). A query Q(x̄) is implicitly definable
from the DBox predicates PDB under the ontology KB if and only if KB ∪K̃B |=
∀x̄.Q(x̄) ↔ Q̃(x̄).

This theorem means, that the problem of checking whether a query is implicitly
definable reduces to the problem of checking entailment in first-order logic.

The exact reformulation of a query [26] (also called explicit definition by [7])
is a formula logically equivalent to the query which makes use only of DBox
predicates and constants.

Definition 8 (Exact reformulation or explicit definability). A query
Q(x̄) is explicitly definable from the DBox predicates PDB under the ontol-
ogy KB if and only if there is some formula Q̂(x̄) in FOL(C,P), such that
KB |= ∀x̄.Q(x̄) ↔ Q̂(x̄) and σ(Q̂) ⊆ PDB. We call this formula Q̂(x̄) an exact
reformulation of Q(x̄) under KB over PDB.
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Determinacy of a query is completely characterised by the existence of an
exact reformulation of the query: it is well known that a first-order query is
determined by DBox predicates if and only if there exists a first-order exact
reformulation.

Theorem 3 (Projective Beth definability, [7]). A query Q(x̄) is implicitly
definable from the DBox predicates PDB under an ontology KB, if and only if it
is explicitly definable as a formula Q̂(x̄) in FOL(C,P) over PDB under KB.

3.1 Finite Controllability of Determinacy for GNFO

We consider a guarded negation first-order logic (GNFO) [4,5] – a fragment
of FOL in which all occurrences of negation are guarded by an atomic predi-
cate. Formally it consists of all formulas generated by the following recursive
definition:

φ ::= R(t1, . . . , tn) | t1 = t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x. φ | α ∧ ¬φ (1)

where each ti is either a variable or a constant, α in α∧¬φ is an atomic formula
(possibly an equality statement) containing all free variables of φ. This fragment
is “good” in a sense that it is decidable and has finite model property, that we
use to prove Theorem 4.

Definition 9 (Answer-guarded formula). A first-order logic formula is
answer-guarded if it has a form

Atom(x̄) ∧ ϕ(x̄),

where ϕ(x̄) is some first-order logic formula and Atom is a predicate which arity
is equal to the number of free variables of the formula.

The following theorem holds.

Theorem 4. GNFO has finitely controllable determinacy of

– answer-guarded GNFO queries;
– boolean GNFO queries;
– GNFO queries with one free variable.

This result is interesting as it is and also important for us because we consider
GNFO subfragments of DLs for application of our query reformulation frame-
work. Queries in these subfragments are either boolean or with one free variable
(concept queries) (Sect. 7).
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4 Exact Safe-Range Query Reformulation

In this section we analyse the conditions under which the original query answer-
ing problem corresponding to an entailment problem can be reduced systemat-
ically to a model checking problem of a safe-range formula over the database
(e.g., using a database system with SQL).

Given a DBox signature PDB, an ontology KB, and a query Q(x̄) expressed
in some fragment of FOL(C,P) and determined by the DBox predicates, our
goal is to find a safe-range reformulation Q̂(x̄) of Q(x̄) in FOL(C,P), that when
evaluated as a relational algebra expression over a legal DBox, gives the same
answer as the certain answer to Q(x̄) over the DBox under KB. This can be
reformulated as the following problem:

Problem 1 (Exact safe-range query reformulation). Find an exact reformulation
Q̂(x̄) of Q(x̄) under KB as a safe-range query in FOL(C,P) over PDB.

Since an exact reformulation is equivalent under the ontology to the original
query, the certain answer to the original query and to the reformulated query
are identical. More precisely, the following proposition holds.

Proposition 2. Given a DBox DB, let Q(x̄) be implicitly definable from PDB
under KB and let Q̂(x̄) be an exact reformulation of Q(x̄) under KB over PDB,
then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q̂(x̄/Θ)}.

From the above equation it is clear that in order to answer to an exactly refor-
mulated query, one may still need to consider all the models of the ontology
embedding the DBox, i.e., we still have an entailment problem to solve. The
following theorem states the condition to reduce the original query answering
problem – based on entailment – to the problem of checking the validity of the
exact reformulation over a single model: the condition is that the reformulation
should be domain independent.

Theorem 5 (Adequacy of exact safe-range query reformulation). Let
DB be a DBox which is legal for KB, and let Q(x̄) be a query. If Q̂(x̄) is an
exact domain independent (or safe-range) reformulation of Q(x̄) under KB over
PDB, then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :

I|PDB∪C |= Q̂(x̄/Θ)}.

Since, given a DBox DB, for all interpretations I = 〈C, ·I〉 embedding DB there
is only one interpretation I|PDB∪C with the signature restricted to the DBox
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predicates, this theorem reduces the entailment problem to a model checking
problem.

A safe-range reformulation is necessary to transform a first-order query to a
relational algebra query which can then be evaluated by using SQL techniques.
The theorem above shows in addition that being safe-range is also a sufficient
property for an exact reformulation to be correctly evaluated as an SQL query.

Let us now see an example in which we cannot reduce the problem of answer-
ing an exact reformulation to model checking over a DBox, if the exact reformu-
lation is not safe-range.

Example 2. Let P = {P,A}, PDB = {P}, C = {a}, DB = {P (a, a)}, KB =
{∀y. P (a, y) ∨ A(y)}, Q(x̄) = Q̂(x̄) = ∀y. P (x, y) (i.e., x̄ = {x}).

– C includes the active domain CDB (it is actually equal).
– DB is legal for KB because there is I = 〈{a}, ·I〉 such that P I = {(a, a)},

AI = ∅ and obviously, I ∈ M(KB).
– {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} = ∅

because one can take I = 〈{a, b}, ·I〉 such that P I = {(a, a)},
AI = {b}; then I ∈ M(KB) ∩ E(DB), but for the only possible substitution
{x → a} we have: I �|= ∀y P (a, y).

– However,
{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :
I|PDB∪C |= Q̂(x̄/Θ)} = {x → a}
As we have seen, answers to a query for which a reformulation exists contain

only constants from the active domain of the DBox and the query (Theorem5);
therefore, ground statements in the ontology involving non-DBox predicates and
non-active domain constants (for example, as ABox statements) will not play
any role in the final evaluation of the reformulated query over the DBox.

5 Conditions for an Exact Safe-Range Reformulation

We have just seen the importance of getting an exact safe-range query reformu-
lation. In this section we are going to study the conditions under which an exact
safe-range query reformulation exists.

First of all, we will focus on the semantic notion of safe-range, namely domain
independence. While implicit definability is – as we already know – a sufficient
condition for the existence of an exact reformulation, it does not guarantee alone
the existence of a domain independent reformulation.

Example 3. Let P = {A,B}, PDB = {B}, KB = {∀x.B(x) ↔ A(x)}, Q(x) =
¬A(x). Then Q(x) is implicitly definable from PDB under KB, and every exact
reformulation of Q(x) over PDB under KB is logically equivalent to ¬A(x) and
not domain independent.
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By looking at the example, it seems that the reason for the non domain
independent reformulation lies in the fact that the ontology, which is domain
independent, cannot guarantee existence of an exact domain independent refor-
mulation of the non domain independent query. However, let us consider the
following examples.

Example 4. Let PDB = {A, C}, KB = {¬A(a), ∀x.A(x) ↔ B(x)} and let a
query Q(x) = ∃y ¬B(y)∧C(x). It is easy to see that KB is domain independent
and Q(x) is not. Q(x) is implicitly definable from PDB under KB, and Q̂(x) =
¬A(a) ∧ C(x) is an exact domain independent reformulation of Q(x).

Example 5. Let PDB = {B}, KB = {¬A(a), ∀x.A(x) ↔ B(x)} and let a query
Q = ¬A(a). KB and Q are domain independent. Q is implicitly definable from
PDB under KB, and Q̂ = ∃y ¬B(y) is an exact reformulation of Q, which is not
domain independent.

That is, the following proposition holds.

Proposition 3. Domain independence of an ontology and an original query
does not guarantee domain independence of an exact reformulation of the query
under the ontology over any set of DBox predicates.

It is obvious that in spite of the fact that the query Q(x) form the Example 4 is
not domain independent, it is domain independent with respect to the ontology
KB. In other words, in this case the ontology guarantees the existence of an exact
domain independent reformulation. With queries that are domain independent
with respect to an ontology, the following theorem holds, giving the semantic
requirements for the existence of an exact domain independent reformulation.

Theorem 6 (Semantic characterisation). Given a set of DBox predicates
PDB, a domain independent ontology KB, and a query Q(x̄). A domain indepen-
dent exact reformulation Q̂(x̄) of Q(x̄) over PDB under KB exists if and only if
Q(x̄) is implicitly definable from PDB under KB and it is domain independent
with respect to KB.

The above theorem shows us the semantic conditions to have an exact domain
independent reformulation of a query, but it does not give us a method to com-
pute such reformulation and its equivalent safe-range form. The following theo-
rem gives us sufficient conditions for the existence of an exact safe-range refor-
mulation in any decidable fragment of FOL(C,P) where finite and unrestricted
determinacy coincide (i.e., a fragment with finitely controllability of determi-
nacy), and gives us a constructive way to compute it, if it exists.

Theorem 7 (Constructive). Given a DBox DB. If:

1. KB is a safe-range ontology (that is, KB is domain independent),
2. Q(x̄) is a safe-range query (that is, Q(x̄) is domain independent),
3. KB ∪K̃B |= ∀x̄.Q(x̄) ↔ Q̃(x̄) (that is, Q(x̄) is implicitly definable from PDB

under KB),
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then there exists an exact reformulation Q̂(x̄) of Q(x̄) as a safe-range query in
FOL(C,P) over PDB under KB that can be obtained constructively.

In order to constructively compute the exact safe-range query reformulation
we use the tableau based method to find the Craig’s interpolant [15] to compute
Q̂(x̄) from a validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄)). See
Sect. 6 for full details.

Let us now consider a fully worked out example, adapted from the paper
by [26].

Example 6. Given: P = {R, V1, V2, V3}, PDB = {V1, V2, V3},

KB = {∀x, y. V1(x, y) ↔ ∃z, v.R(z, x) ∧ R(z, v) ∧ R(v, y),
∀x, y. V2(x, y) ↔ ∃z.R(x, z) ∧ R(z, y),
∀x, y. V3(x, y) ↔ ∃z, v.R(x, z) ∧ R(z, v) ∧ R(v, y)},

Q(x, y) = ∃z, v, u.R(z, x) ∧ R(z, v) ∧ R(v, u) ∧ R(u, y).

The conditions of the theorem are satisfied: Q(x, y) is implicitly definable from
PDB under KB (since σ(Q) ⊆ PDB); Q(x, y) is safe-range; KB is safe-range.
Therefore, with the tableau method one finds the Craig’s interpolant to compute
Q̂(x, y) from a validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄))
and obtain Q̂(x, y) = ∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y)) – an exact ground
safe-range reformulation.

Since the answer to Q̂(x, y) is in the semantic active domain of the signature
σ(Q̂) ⊆ PDB ∪ C

̂Q in the DBox DB (it follows from Theorem5), all fee vari-
ables in Q̂(x, y) can be “guarded” by some DBox predicates or constants. Note
that Q(x, y) = ∃z, v, u.R(z, x) ∧ R(z, v) ∧ R(v, u) ∧ R(u, y) ≡KB ∃z, v.R(z, x) ∧
R(z, v)∧V2(v, y) ≡KB Q(x, y)∧V2(v, y) (where ‘≡KB’ means “logically equivalent
with respect to KB”). Then KB |= Q(x, y) ↔ Q̂(x, y) ∧ ∃v. V2(v, y). Therefore,
Q̂(x, y) ∧ ∃v. V2(v, y) = (∃z. V1(x, z) ∧ ∀v. (V2(v, z) → V3(v, y))) ∧ ∃v. V2(v, y) is
an exact safe-range reformulation of Q(x, y) from PDB under KB.

6 Constructing the Safe-Range Reformulation

In this section we introduce a method to compute a safe-range reformulation of
an implicitly definable query when conditions in Theorem7 are satisfied. The
method is based on the notion of interpolant introduced by [11].

Definition 10 (Interpolant). The sentence χ in FOL(C,P) is an interpolant
for the sentence φ → ψ in FOL(C,P), if all predicate and constant symbols of χ
are in the set of predicate and constant symbols of both φ and ψ, and both φ → χ
and χ → ψ are valid sentences in FOL(C,P).

Theorem 8 (Craig’s interpolation). If φ → ψ is a valid sentence in
FOL(C,P), and neither φ nor ψ are valid, then there exists an interpolant.
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Note that the Beth definability (Theorem3) and Craig’s interpolation theo-
rem do not hold for all fragments of FOL(C,P): an interpolant may not always
be expressed in the fragment itself, but obviously it is in FOL(C,P) (because
of Theorem 8).

An interpolant is used to find an exact reformulation of a given implicitly
definable query as follows.

Theorem 9 (Interpolant as definition). Let Q(x̄) be a query with n ≥ 0 free
variables implicitly definable from the DBox predicates PDB under the ontology
KB. Then, the closed formula with c1, . . . , cn distinct constant symbols in C not
appearing in KB or Q(x̄):

((
∧

KB) ∧ Q(x̄/c1, . . . , cn)) → ((
∧

K̃B) → Q̃(x̄/c1, . . . , cn)) (2)

is valid, and its interpolant Q̂(c1, . . . , cn/x̄) is an exact reformulation of Q(x̄)
under KB over PDB.

Therefore, to find an exact reformulation of an implicitly definable query in
terms of DBox predicates it is enough to find an interpolant of the implication (2)
and then to substitute all the constants c1, . . . , cn back with the free variables x̄ of
the original query. An interpolant can be constructed from a validity proof of (2)
by using automated theorem proving techniques such as tableau or resolution.
In order to guarantee the safe-range property of the reformulation, we use a
tableau method as in the book by [15].

6.1 Tableau-Based Method to Compute an Interpolant

In this section we recall in our context the tableau based method to compute an
interpolant. This method was described and its correctness was proved in [15].

Assume φ → ψ is valid, therefore φ ∧ ¬ψ is unsatisfiable. Then there is a
closed tableau corresponding to φ∧¬ψ. In order to compute an interpolant from
this tableau one needs to modify it to a biased tableau.

Definition 11 (Biased tableau). A biased tableau for formulas φ ∧ ¬ψ is a
tree T = (V,E) where:

– V is a set of nodes, each node is labelled by a set of biased formulas. A biased
formula is an expression in the form of L(ϕ) or R(ϕ) where ϕ is a formula.
For each node n, S(n) denotes the set of biased formulas labelling n.

– The root of the tree is labelled by {L(φ), R(¬ψ)}
– E is a set of edges. Given 2 nodes n1 and n2, (n1, n2) ∈ E iff there is a biased

completion rule from n1 to n2. We say there is a biased completion rule from
n1 to n2 if

• Y (μ) is the result of applying a rule to X(ϕ), where X and Y refer to L
or R (for some rules, there are two possibilities of choosing Y (μ)), and

• S(n2) = (S(n1) \ {X(ϕ)}) ∪ {Y (μ)}.
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Let C be the set of all constants in the input formulas of the tableau. Cpar

extends C with an infinite set of new constants. A constant is new if it does
not occur anywhere in the tableau. With these notations, we have the following
rules:

– Propositional rules

Negation rules α−rule β−rule
X(¬¬ϕ)

X(ϕ)

X(¬�)

X(⊥)

X(¬⊥)

X(�)

X(ϕ1 ∧ ϕ2)

X(ϕ1)
X(ϕ2)

X(¬(¬ϕ1 ∧ ¬ϕ2))

X(ϕ1) | X(ϕ2)

– First order rules

γ−rule σ−rule
X(∀x.ϕ)

X(ϕ(t))
for any t ∈ Cpar

X(∃x.ϕ)

X(ϕ(c))
for a new constant c

– Equality rules

reflexivity rule replacement rule

X(ϕ)

X(t = t)
t ∈ Cpar occurs in ϕ

X(t = u)
Y (ϕ(t))

Y (ϕ(u))

A node in the tableau is closed if it contains X(ϕ) and Y (¬ϕ). If a node
is closed, no rule is applied. In the other words, it becomes a leaf of the tree.
A branch is closed if it contains a closed node and a tableau is closed if all of
its branches are closed. Obviously, if the standard tableau for first-order logic is
closed then so is the biased tableau and vice versa.

Given a closed biased tableau, the interpolant is computed by applying inter-
polant rules. An interpolant rule is written as S

int−→ I, where I is a formula and
S = {L(φ1), L(φ2), ..., L(φn), R(ψ1), R(ψ2), ..., R(ψm)}.

– Rules for closed branches

r1. S ∪ {L(ϕ), L(¬ϕ)} int−→ ⊥ r2. S ∪ {R(ϕ), R(¬ϕ)} int−→ �
r3. S ∪ {L(⊥)} int−→ ⊥ r4. S ∪ {R(⊥)} int−→ �
r5. S ∪ {L(ϕ), R(¬ϕ)} int−→ ϕ r6. S ∪ {R(ϕ), L(¬ϕ)} int−→ ¬ϕ
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– Rules for propositional cases

p1.
S ∪ {X(ϕ)} int−→ I

S ∪ {X(¬¬ϕ)} int−→ I
p2.

S ∪ {X(�)} int−→ I

S ∪ {X(¬⊥)} int−→ I

p3.
S ∪ {X(⊥)} int−→ I

S ∪ {X(¬�)} int−→ I
p4.

S ∪ {X(ϕ1),X(ϕ2)} int−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−→ I

p5.
S ∪ {L(ϕ1)} int−→ I1 S ∪ {L(ϕ2)} int−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∨ I2

p6.
S ∪ {R(ϕ1)} int−→ I1 S ∪ {R(ϕ2)} int−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∧ I2

– Rules for first order cases:

f1.
S ∪ {X(ϕ(p))} int−→ I

S ∪ {X(∃x.ϕ(x))} int−→ I
where p is a parameter that does not occur in

S or ϕ

f2.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int→ I
if c occurs in {φ1, ..., φn}

f3.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ I
if c occurs in {ψ1, ..., ψm}

f4.
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int−→ ∀x.I[c/x]
if c does not occur in {φ1, ..., φn}

f5.
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ ∃x.I[c/x]
if c does not occur in {ψ1, ..., ψm}

– Rules for equality cases

e1.
S ∪ {X(ϕ(p)),X(t = t)} int−→ I

S ∪ {X(ϕ(p))} int−→ I
e2.

S ∪ {X(ϕ(u)),X(t = u)} int−→ I

S ∪ {X(ϕ(t)),X(t = u)} int−→ I

e3.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ t = u → I
if u occurs in ϕ(t), ψ1, ..., ψm

e4.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ t = u ∧ I
if u occurs in ϕ(t), ψ1, ..., ψm

e5.
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm

e6.
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ I[u/t]
if u does not occur in ϕ(t), ψ1, ..., ψm
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In summary, in order to compute an interpolant of φ and ψ, one first need
to generate a biased tableaux proof of unsatisfiability of φ ∧ ¬ψ using biased
completion rules and then apply interpolant rules from bottom leaves up to the
root. Let us consider an example to demonstrate how the method works.

Example 7. Let P = {S,G,U}, PDB = {S,U},

KB = {∀x(S(x) → (G(x) ∨ U(x)))
∀x(G(x) → S(x))
∀x(U(x) → S(x))
∀x(G(x) → ¬U(x))}

Q(x) = G(x)

Obviously, Q is implicitly definable from S and U , since the ontology states that
G and U partition S. Now we will follow the tableau method to find its exact
reformulation. For compactness, we use the notation SI instead of S

int−→ I.

S0 = {L(∀x(S(x) → (G(x) ∨ U(x)))),
L(∀x(G(x) → S(x))),
L(∀x(U(x) → S(x))),
L(∀x(G(x) → ¬U(x))),
L(G(c)),
R(∀x(S(x) → (G1(x) ∨ U(x)))),
R(∀x(G1(x) → S(x))),
R(∀x(U(x) → S(x))),
R(∀x(G1(x) → ¬U(x))),
R(¬G1(c))}

By applying the rule for ∀ and removing the implication, we have:

S1 = {L(¬S(c) ∨ G(c) ∨ U(c)),
L(¬G(c) ∨ S(c))),
L(¬U(c) ∨ S(c)),
L(¬G(c) ∨ ¬U(c)),
L(G(c)),
R(¬S(c) ∨ G1(c) ∨ U(c)),
R(¬G1(c) ∨ S(c)),
R(¬U(c) ∨ S(c)),
R(¬G1(c) ∨ ¬U(c)),
R(¬G1(c))};

and the interpolant of S1 can be computed as follows:
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S4 ∪ {R(¬S(c)}S(c) S4 ∪ {R(U(c))}¬U(c)

S4 = S3 ∪ {R(¬S(c) ∨ U(c))}(S(c)∧¬U(c))
∨

S3 ∪ {R(G1(c))}�

S3 = S2 ∪ {L(¬U(c))}(S(c)∧¬U(c))
B.7

S2 ∪ {L(¬G(c))}⊥

S2 = S1 ∪ {L(S(c))}(S(c)∧¬U(c))
B.5

S1 ∪ {L(¬G(c))}⊥

S
(S(c)∧¬U(c))
1

B.3

Therefore, S(c)∧¬U(c) is the interpolant and Q̂(x) = S(x)∧¬U(x) is an exact
reformulation of Q(x).

6.2 A Safe-Range Reformulation

Now we want to show that the reformulation computed by the above tableau
based method under the condition of Theorem7 generates a ground safe-range
query.

Theorem 10 (Ground safe-range reformulation). Let KB be an ontology,
and let Q(x̄) be a query which is implicitly definable from PDB under KB. If KB
and Q(x̄) are safe-range then a reformulation Q̂(x̄) obtained using the tableau
method described in Sect. 6.1 is ground safe-range.

In other words, the conditions of Theorem10 guarantee that all quantified
variables in the reformulation are range-restricted. We need to consider now
the still unsafe free variables. The theorem below will help us deal with non-
range-restricted free variables. Let us first define the active domain predicate of
a signature σ′ as the formula:

Adomσ′(x) :=
∨

P∈P∩σ′
(∃x1, . . . , xar(P )−1. P (x, x1, . . . , xar(P )−1) ∨ . . . ∨

∨P (x1, . . . , xar(P )−1, x)) ∨
∨

c∈C∩σ′
(x = c).

If σ′ = σ(φ), where φ is a formula, then instead of Adomσ(φ) we simply write
Adomφ and call it active domain predicate of the formula φ.

Theorem 11 (Range of the query). Let KB be a domain independent ontol-
ogy, and let Q(x1, . . . , xn) be a query which is domain independent with respect
to KB. Then

KB |= ∀x1, . . . , xn.Q(x1, . . . , xn) → AdomQ(x1) ∧ . . . ∧ AdomQ(xn).

Given a safe-range ontology, a safe-range and implicitly definable query is
obviously domain independent with respect to the ontology (by definition). By
Theorem 10 there exists a ground safe-range exact reformulation obtained using
the tableau method. This reformulation is also domain independent with respect
to the ontology (by definition). And then Theorem11 says that the answer to the
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reformulation can only include semantic active domain elements of the reformu-
lation. Therefore, the active domain predicate of the reformulation can be used
as a “guard” for free variables which are not bounded by any positive predicate.
In this way we obtain a new safe-range reformulation from the ground safe-range
one.

Based on Theorems 10 and 11, we propose a complete procedure to construct
a safe-range reformulation in Algorithm 1.

Algorithm 1. Safe-range reformulation
Input: a safe-range KB, a safe-range and implicitly definable query Q(x̄).

Output: an exact safe-range reformulation ̂Q(x̄).

1: Compute the interpolant ̂Q(x̄) as in Theorem 9

2: For each free variable x which is not bounded by any positive predicate in ̂Q(x̄) do
̂Q(x̄) := ̂Q(x̄) ∧ Adom

̂Q(x)

3: Return ̂Q(x̄)

Syntax Semantics
A AI ⊆ ΔI

{o} {oI} ⊆ ΔI

P P I ⊆ ΔI × ΔI

P− {(y, x)|(x, y) ∈ P I}
¬C ΔI\CI

C � D CI ∩ DI

C � D CI ∪ DI

∃R {x|{y|(x, y) ∈ RI} 	= ∅}
∃R.C {x|{y|(x, y) ∈ RI} ∩ CI 	= ∅}
∀R.C {x| if (x, y) ∈ RI then y ∈ CI}

Fig. 1. Syntax and semantics of ALCHOI concepts and roles

7 The Guarded Negation Fragment of ALCHOI and
SHOQ

ALCHOI is an extension of the description logic ALC with role hierarchies, indi-
viduals and inverse roles: it corresponds to the SHOI description logic without
transitive roles. ALCHOI without inverse roles and with qualified cardinality
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Syntax Semantics
A AI ⊆ ΔI

P P I ⊆ ΔI × ΔI

C � D CI ∩ DI

C � D CI ∪ DI

¬C ΔI\CI

{o} {o}I ⊆ ΔI

≥ nP {x|#({y|(x, y) ∈ P I}) ≥ n}
≤ nP {x|#({y|(x, y) ∈ P I}) ≤ n}

≥ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≥ n}
≤ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≤ n}

Fig. 2. Syntax and semantics of SHOQ concepts and roles

restrictions and transitive roles forms the description logic SHOQ. For more
details see, e.g., [22]. The syntax and semantics of ALCHOI and SHOQ con-
cept expressions and roles is summarised in the Figs. 1 and 2 respectively, where
A is an atomic concept, C and D are concepts, o is an individual name, P is an
atomic role, and R is either P or P−. A TBox in ALCHOI is a set of concept
inclusion axioms C � D and role inclusion axioms R � S (where C, D are con-
cepts and R, S are roles) with the usual description logics semantics. A TBox in
SHOQ is defined in the same way without a possibility to express inverse roles
and with additional possibility to express transitivity axioms Trans(P ).

In this section, we present an application of Theorem 7, by introducing
the ALCHOIGN description logic, the guarded negation syntactic fragment of
ALCHOI (Fig. 3), and SHOQGN+ , the extended guarded negation syntactic
fragment of SHOQ (Fig. 4). ALCHOIGN and SHOQGN+ restrict ALCHOI
and SHOQ respectively by just prescribing that negated concepts should be
guarded by some generalised atom – an atomic concept, a nominal, an unqualified
existential restriction (for ALCHOI) or an unqualified atleast number restric-
tion (for SHOQ), i.e., absolute negation is forbidden. ALCHOIGN is actually
at the intersection of the GNFO fragment and ALCHOI (by definition).

Each of these fragments has the very important property of coinciding (being
equally expressive to) with the domain independent and safe-range fragments of
the corresponding description logic, therefore providing an excellent candidate
language for ontologies and queries satisfying the conditions of Theorem7.

R ::= P | P−

B ::= A | {o} | ∃R
C ::= B | ∃R.C | ∃R.¬C | B � ¬C | C � D | C � D

Fig. 3. Syntax of ALCHOIGN concepts and roles
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B ::= A | {o} | ≥ nP
C ::= B | ≥ nP.C | ≥ nP.¬C | B � ¬C | C � D | C � D

Fig. 4. Syntax of SHOQGN+ concepts

Theorem 12 (Expressive power equivalence). The domain independent
(safe-range) fragment of ALCHOI and ALCHOIGN are equally expressive.

Theorem 13 (Expressive power equivalence). The domain independent
(safe-range) fragment of SHOQ and SHOQGN+ are equally expressive.

In other words the first theorem says that any domain independent (or safe-
range) TBox axiom and any domain independent (or safe-range) concept query
in ALCHOI is logically equivalent, respectively, to a TBox axiom and a concept
query in ALCHOIGN , and vice-versa. And the second theorem says that any
domain independent (or safe-range) TBox axiom and any domain independent
(or safe-range) concept query in SHOQ is logically equivalent, respectively, to
a TBox axiom and a concept query in SHOQGN+ , and vice-versa.

7.1 Applying the Constructive Theorem

We want to reformulate concept queries over an ontology with a DBox so that
the reformulated query can be evaluated as an SQL query over the database
represented by the DBox. We consider applications of the Constructive The-
orem 7 in the fragments ALCHOIGN and SHOQGN+ . In this context, the
database is a DBox, the ontology is an ALCHOIGN (SHOQGN+) TBox, and
the query is an ALCHOIGN (SHOQGN+) concept query. A concept query is
either an ALCHOIGN (SHOQGN+) concept expression denoting an open for-
mula with one free variable, or an ALCHOIGN (SHOQGN+) ABox concept
assertion denoting a boolean query.

As expected, a DBox includes ground atomic statements of the form A(a)
and P (a, b) (where A is an atomic concept and P is an atomic role). It is easy
to prove the following propositions:

Proposition 4. ALCHOIGN TBoxes, concept queries are safe-range (domain
independent).

Proposition 5. SHOQGN+ TBoxes, concept queries are safe-range (domain
independent).

We also proved the following theorems.

Theorem 14. ALCHOIGN TBoxes have finitely controllable determinacy of
concept queries.

Theorem 15. SHOQGN+ TBoxes have finitely controllable determinacy of
concept queries.
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Therefore, we satisfy the conditions of Theorem7, with a language which is like
the very expressive ALCHOI description logic, but with guarded negation. And
we also satisfy the conditions of Theorem 7, with a language which is like the
very expressive SHOQ description logic, but with extended guarded negation
(“extended” here means that cardinality restrictions and transitivity axioms
are allowed in SHOQGN+ in spite of the fact that they are not expressible in
GNFO).

We argue that non-guarded negation should not appear in a cleanly designed
ontology, and, if present, should be fixed. Indeed, the use of absolute negative
information – such as, e.g., in “a non-male is a female” (¬ male � female)
– should be discouraged by a clean design methodology, since the subsumer
would include all sorts of objects in the universe (but the ones of the subsumee
type) without any obvious control. Only guarded negative information in the
subsumee should be allowed – such as in the axiom “a non-male person is a
female” (person � ¬ male � female).

This observation suggests a fix for non-guarded negations: for every non-
guarded negation users will be asked to replace it by a guarded one, where the
guard may be an arbitrary atomic concept, or nominal, or unqualified existential
restriction (in the case of ALCHOI) or unqualified atleast number restriction (in
the case of SHOQ). Therefore, the user is asked to make explicit the type of that
concept, in a way to make it domain independent (i.e. belonging to ALCHOIGN

or SHOQGN+). Note that the type could be also a fresh new atomic concept. We
believe that the fix we are proposing for ALCHOI and SHOQ is a reasonable
one, and would make all ALCHOI and SHOQ ontologies eligible to be used
with our framework.

7.2 A Complete Procedure

ALCHOIGN and SHOQGN+ are decidable logics (as a fragments of ALCHOI
and SHOQ respectively) and they are feasible applications of our general frame-
work. Given an ALCHOIGN (SHOQGN+) ontology KB and a concept query
Q in ALCHOIGN (SHOQGN+), we can apply the procedure below to gener-
ate a safe-range reformulation over the DBox concepts and roles (based on the
constructive theorem, all the conditions of which are satisfied), if it exists.

Note that the procedure for checking determinacy and computing the refor-
mulation could be run in offline mode at compile time. Indeed, it could be run
for each atomic concept in the ontology, and store persistently the outcome for
each of them if the reformulation has been successful. This pre-computation may
be an expensive operation, since – as we have seen – it is based on entailment,
but the complexity involves only the size of the ontology and not of the data.

In order to get an idea about the size of the reformulations of concept queries,
for the ALCFI description logic there is a tableau-based algorithm computing
explicit definitions of at most double exponential size [9,10]; this algorithm is
optimal because it is also shown that the smallest explicit definition of an implic-
itly defined concept may be double exponentially long in the size of the input
TBox.
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Input: An ALCHOIGN (SHOQGN+) TBox KB, a concept query Q in ALCHOIGN

(SHOQGN+), and a DBox signature (DBox atomic concepts and roles).

Output: A safe-range reformulation ̂Q expressed over the DBox signature.

1: Check the implicit definability of the query Q by testing if KB ∪ ˜KB |= Q ≡ ˜Q
using a standard OWL2 reasoner (ALCHOIGN and SHOQGN+ are sublanguages
of OWL2). Continue if this holds.

2: Compute a safe-range reformulation ̂Q from the tableau proof generated in step 1
(see Section 6). This can be implemented as a simple extension of a standard
description logic reasoner even in the presence of the most important optimisation
techniques such as semantic branching, absorption, and backjumping as explained
by [31] and [9].

Clearly, similarly to DL-Lite reformulations, more research is needed in order
to optimise the reformulation step in order to make it practical. However, note
that the framework presented here has a clear advantage from the point of view
of conceptual modelling since implicit definitions (that is, queries) under gen-
eral TBoxes can be double exponentially more succinct than acyclic concept
definitions (that is, explicit queries over the DBox).

The case of query answering with unrestricted description logics and DBoxes,
when the rewriting may not be possible at all, has been studied thoroughly
by [24,28] regarding both data and combined complexity.

8 Conclusions and Future Work

We have introduced a framework to compute the exact reformulation of first-
order queries to a database (DBox) under constraints. We have found the exact
conditions which guarantee that a safe-range reformulation exists, and we show
that it can be evaluated as an SQL query over the DBox to give the same
answer as the original query under the constraints. Non-trivial case studies have
been presented in the field of description logics, with the ALCHOI and SHOQ
languages.

This framework is useful in data exchange-like scenarios, where the target
database (made by determined relations) should be materialised as a proper
database, over which arbitrary queries should be performed. This is not achieved
in a context with non-exact reformulations preserving the certain answers. In our
scenario with description logics ontologies reformulations of concept queries are
pre-computed offline once. We have shown that our framework works in theory
also in the case of arbitrary safe-range first-order queries.

Next, we would like to study optimisations of reformulations. From the prac-
tical perspective, since there might be many rewritten queries from one original
query, the problem of selecting an optimised query in terms of query evaluation
is very important. In fact, one has to take into account which criteria should be
used to optimise, such as: the size of the reformulations, the numbers of used
predicates, the priority of predicates, the number of relational operators, and
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clever usage of duplicates. In this context one may also want to control the
process of formula proving to make it produce an optimal reformulation. For
instance, using the tableau method, one may prefer one order of expansion rules
application to another and, hence, build another interpolant.

Concurrently, we are exploring the problem of fixing real ontologies in order
to enforce definability when it is known it should be the case [19]. This happens
when it is intuitively obvious that the answer of a query can be found from the
available data (that is, the query is definable from the database), but the mediat-
ing ontology does not entail the definability. We introduce the novel problem of
definability abduction and we solve it completely in the data exchange scenario.

There is also another interesting open problem about checking that a given
DBox is legal with respect to a given ontology. Remember that a DBox DB is
legal for an ontology KB if there exists a model of KB embedding DB. This
check involves heavy computations for which an optimised algorithm is still
unknown: as a matter of fact, the only known method today is to reduce the
problem to a satisfiability problem where the DBox is embedded in a TBox using
nominals [16]. More research is needed in order to optimise the reasoning with
nominals in this special case.

In the case of description logics, we would like to work on extending the theo-
retical framework with conjunctive queries: we need finitely controllable determi-
nacy with conjunctive queries, which for some description logics seems to follow
from the works by [6,30].
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Abstract. It has recently been shown that first-order- and datalog-
rewritability of ontology-mediated queries (OMQs) with expressive
ontologies can be checked in NExpTime using a reduction to CSPs.
In this paper, we present a case study for OMQs with Boolean conjunc-
tive queries and a fixed ontology consisting of a single covering axiom
A � F � T , possibly supplemented with a disjointness axiom for T and
F . The ultimate aim is to classify such OMQs according to their data
complexity: AC0, L, NL, P or coNP. We report on our experience with
trying to distinguish between OMQs in P and coNP using the reduction
to CSPs and the Polyanna software for finding polymorphisms.

1 Introduction

Description logics (DLs) [4] have been tailored—by carefully picking and restrict-
ing various constructs that are relevant to intended applications—to make sure
that reasoning with all ontologies in a given DL can uniformly be done in a
given complexity class. For example, concept subsumption can be checked in
ExpTime for all ALC-ontologies, in P for all EL-ontologies, and in NL for all
DL-Lite-ontologies.

In ontology-mediated query (OMQ) answering, a typical reasoning problem
is to check whether a Boolean query q holds in every model of an ontology T
and a data instance D. In the context of ontology-based data access (OBDA)
and management [28,35], this problem is solved by reducing answering the OMQ
Q = (T , q) over D to standard database query evaluation over D. If the target
database query language is first-order logic, then such a reduction is possible for
Q just in case answering it can be done in AC0 for data complexity. If a reduction
to first-order queries with (deterministic) transitive closure is acceptable, then
answering Q should be done in NL (respectively, L) for data complexity. In
terms of the data complexity measure, OMQ answering with conjunctive queries
(CQs) can uniformly be done in coNP for all ALC-ontologies, in P for all EL-
ontologies, and in AC0 for all DL-Lite-ontologies.
c© Springer Nature Switzerland AG 2019
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In OBDA practice, an ontology T is designed by a domain expert to capture
the natural vocabulary of the intended end-users, who formulate their queries
in terms of that vocabulary and execute them using an OBDA system such as
Mastro [10] or Ontop [11,30]. Thus, from the user’s point of view, the ontology
T is fixed. Moreover, the class of queries the user is interested in could also be
limited. For example, the NPD FactPages ontology1, used for testing OBDA in
industry [20,22], contains covering axioms of the form A � B1 � · · · � Bn, which
are not allowed in DL-Lite as there exist coNP-hard OMQs with such axioms.
However, all of the practically important OMQs with the NPD FactPages ontol-
ogy we know of can be answered in AC0. Also answering CQs mediated by
covering axioms can model some attacks in the setting of sensitive information
disclosure [7].

These observations have lead to the following non-uniform problems: (i)
What is the worst-case data complexity of answering OMQs with a fixed ontol-
ogy and arbitrary CQs? (ii) What is the data complexity of answering a given
single OMQ?

A systematic investigation of these problems was launched in [8,24,25]. In
particular, [8] discovered a remarkable connection between OMQs and con-
straint satisfaction problems (CSPs) and used it to show that deciding FO-
rewritability and datalog-rewritability of OMQs with SHIU ontologies is NEx-
pTime-complete.

In this article, we are concerned with a very special case of the non-uniform
problem (ii) above: classify the OMQs with the fixed ontology CovA = {A � F �
T} and arbitrary CQs according to their data complexity. We also consider three
variants of CovA, namely, Cov� = {� � F �T}, Cov⊥

� = {� � F �T, F �T � ⊥}
and Cov⊥

A = {A � F � T, F � T � ⊥} with top � and bottom ⊥ concepts. It
turns out that a single covering axiom, possibly supplemented with a disjointness
axiom, gives rise to a surprisingly non-trivial and diverse class of OMQs. To
illustrate, we show and discuss a few simple examples.

Appetisers

Suppose we are interested in querying digraphs of social network users, in which
only some of the users have specified their gender. Let F mean ‘female’, T ‘male’
and R the ‘follows’ relation.

Example 1. Our first OMQ Q = (Cov�, q) with q = ∃y, z (T (y)∧R(y, z)∧F (z))
is supposed to check whether one can claim with certainty that, in given a data
instance, there is always a man who follows a woman. We draw the CQ q as the
labelled digraph

T

y

F

zR

1 http://sws.ifi.uio.no/project/npd-v2/.

http://sws.ifi.uio.no/project/npd-v2/
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Now, consider the data instance D = {T (u0), R(u0, u1), R(u1, u2), F (u2)}, which
can be depicted as the labelled digraph

T

u0 u1 u2

F

R R

In every model of Cov� extending D, we must have T (u1) or F (u1). In the
former case, q is satisfied by the assignment y 	→ u1, z 	→ u2, in the latter one
by y 	→ u0, z 	→ u1. It follows that the certain answer to Q over D is yes.

More generally, it is readily seen that the certain answer to Q over any given
D is yes iff D contains an R-path from a T -vertex to an F -vertex. As known
from the basic computational complexity theory [3], the reachability problem in
digraphs is NL-complete (NL stands for Nondeterministic Logarithmic-space),
and so answering Q is NL-complete for data complexity.

Example 2. Consider next the OMQ Q = (Cov�, q) with q given by the digraph

F T

R

R

which checks if one can claim with certainty that there are a man and a woman
who follow each other. In this case, answering Q is L-complete (L stands for
deterministic Logarithmic-space) for data complexity, that is, as complex as
reachability in undirected graphs. Indeed, to show that Q can be answered in L,
with each data instance D we associate the undirected graph G with the same
vertices as D connecting u and v by an edge iff R(u, v) and R(v, u) are both in
D. Then the answer to Q over D is yes iff G contains a path from a T -vertex to
an F -vertex. To prove L-hardness, with any undirected graph G and a pair s, t
of its vertices we associate a data instance D obtained by replacing each edge
(u, v) in G by R(u, v) and R(v, u) and adding atoms T (s) and F (t). It is readily
seen that the certain answer to Q over D is yes iff t is reachable from s in G.

Example 3. Now suppose Q = (Cov�, q) and q looks as in the picture below

T

x

T

y z

F

S R

where S is another binary relation between the users. Consider the following
data instance D:

u1

T

T

u2

T

T

z

F

S

R

S

R

R

S
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The certain answer to Q over D is yes. Indeed, in any model of Cov� based on
D, we have either T (ui) or F (ui), i = 1, 2. If F (u1) holds, then q maps onto the
left vertical section of the model. Similarly, if F (u2) holds, then q maps onto
the right vertical section. Otherwise, we have T (u1) and T (u2), in which case q
maps onto the horizontal section.

In general, for any data instance D, the certain answer to Q over D is yes iff
the following monadic datalog query with goal G, encoding our argument above,
returns the answer yes over D:

P (x) ← T (x)
P (z) ← P (x) ∧ S(x, y) ∧ P (y) ∧ R(y, z)

G ← P (x) ∧ S(x, y) ∧ P (y) ∧ R(y, z) ∧ F (z)

It follows that answering Q can be done in P (Polynomial time). It is not hard
to show that this OMQ is P-hard. The proof is by reduction of the monotone
circuit evaluation problem, which is known to be P-complete [27]. Without any
loss of generality we assume that AND-nodes have two inputs and that the circuit
consists of alternating layers of OR- and AND-nodes with an AND node at the
top; an example of such a circuit is shown in the picture below. Now, given such
a circuit C and an input α for it, we define a data instance Dα

C as the set of the
following atoms:

– R(g, h), if a gate g is an input of a gate h;
– S(g, h), if g and h are distinct inputs of some AND-gate;
– S(g, g), if g is an input gate or a non-output AND-gate;
– T (g), if g is an input gate with 1 under α;
– F (g), for the only output gate g;
– A(g), for those g that are neither inputs nor the output.

To illustrate, the picture below shows a monotone circuit C, an input α for it,
and the data instance Dα

C , where the solid arrows represent R and the dashed
ones S:

1 0 1 0 0 0

or or or or

and and and

or or

and

T T

A
A

A A

A A A

A A

F

The reader can check that C(α) = 1 iff the answer to Q over Dα
C is yes. Indeed,

the datalog program above computes the value of the circuit by placing P on
those nodes which are evaluated into 1.

Example 4. Curiously enough, the OMQ Q = (Cov�, q′) with q′ obtained from
q in the previous example by changing S to R
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T

x

T

y z

F

R R

is NL-complete for data complexity, showing which is an instructive exercise.
(Hint: prove that a data instance validates Q iff it has a path that starts with
T , which is followed by T , and ends with F ).

Example 5. It has been known since Schaerf’s paper [32] that answering the
OMQ Q = (Cov�, q) with q below is coNP-complete for data complexity.

T T

F F

P1 P2

N1 N2R

Schaerf showed coNP-hardness by encoding the satisfiability problem for 2+2-
CNFs that consist of clauses of the form P1 ∨ P2 ∨ ¬N1 ∨ ¬N2. The reader may
find entertaining the task of showing that the OMQ (CovA, q) with q below is
also coNP-complete.

T T F F

R R R

One possible solution will be given in Sect. 6 below.

The remainder of this article is organised as follows. In the next section, we
provide definitions of the basic notions we require later on. Then, in Sect. 3,
we give a brief survey of related work. In Sect. 4, we explain by means of a
simple example how detecting tractability of an path-OMQ can be reduced to
checking tractability of a CSP. Then, in Sect. 5, we discuss how the program
Polyanna [13], which was designed to check tractability of CSPs, can be used
in the context of our case study for detecting whether answering a given OMQ
with a 4-variable path CQ can be done in P or is coNP-hard. In Sect. 6, we
sketch direct proofs of coNP-hardness using a reduction of 3SAT. In Sect. 7, we
show how Polyanna can be used for constructing monadic datalog rewritings of
tractable OMQs. Finally, in the appendix, we summarise what we know about
the data complexity of answering the OMQs in the framework of our case study.

2 Preliminaries

In this paper, a Boolean conjunctive query (CQ) is any first-order (FO) sentence
of the form q = ∃xϕ(x), where ϕ is a conjunction of unary or binary atoms
whose variables are all among x. We often regard CQs as sets of their atoms,
depict them as labelled digraphs, and assume that all of our CQs are connected
as graphs. By a solitary occurrence of F in a CQ q we mean any occurrence of
F (x) in q, for some variable x, such that T (x) /∈ q; likewise, a solitary occurrence
of T in q is any occurrence T (x) ∈ q such that F (x) /∈ q. We say that q is a
path CQ if all the variables x0, . . . , xn in q are ordered so that

– the binary atoms in q form a chain R1(x0, x1), . . . , Rn(xn−1, xn);
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– the unary atoms in q are of the form T (xi) and F (xj), for some i and j with
0 ≤ i, j ≤ n.

By answering an ontology-mediated query (OMQ) Q = (T , q), where T is one
of the following ontologies (or TBoxes)

CovA = {A � F � T}, Cov⊥
A = {A � F � T, F � T � ⊥},

Cov� = {� � F � T}, Cov⊥
� = {� � F � T, F � T � ⊥},

we understand the problem of checking, given a data instance (or ABox) A,
whether q holds in every model of T ∪ A, in which case we write T ,A |= q.
For every Q, this problem is clearly in coNP for data complexity. It is in the
complexity class AC0 if there is an FO-sentence q′, called an FO-rewriting of
Q, such that T ,A |= q iff A |= q′, for any ABox A.

A datalog program, Π, is a finite set of rules ∀x (γ0 ← γ1 ∧ · · · ∧ γm), where
each γi is an atom P (y) with y ⊆ x. (As usual, we omit ∀x.) The atom γ0 is
the head of the rule, and γ1, . . . , γm its body. All the variables in the head must
occur in the body. The predicates in the head of rules are IDB predicates, the
rest EDB predicates [1].

A datalog query is a pair (Π, G), where Π is a datalog program and G an
0-ary atom, the goal. The answer to (Π, G) over an ABox A is ‘yes’ if G holds
in the FO-structure obtained by closing A under Π, in which case we write
Π,A |= G. A datalog query (Π, G) is a datalog rewriting of an OMQ Q = (T , q)
in case T ,A |= q iff Π,A |= G, for any ABox A. The answering problem for
(Π, G)—i.e., checking, given an ABox A, whether Π,A |= G—is clearly in P.
Answering a datalog query with a linear program, whose rules have at most one
IDB predicate in the body, can be done in NL. A datalog query is monadic if
all of its IDB predicates are of arity at most 1.

3 Related Work

We begin by putting our case study problem into the context of more general
investigations of (i) boundedness (i.e., equivalence to an FO-query) and linearis-
ability of datalog programs and (ii) the data complexity of answering OMQs
with expressive ontologies.

The decision problem whether a given datalog program is bounded (equiva-
lent to an FO-query) has been a hot research topic in database theory since the
late 1980s. Thus, it was shown that boundedness is undecidable already for linear
datalog programs with binary IDB predicates [34] and single rule programs (aka
sirups) [26]. On the other hand, deciding boundedness is 2ExpTime-complete
for monadic datalog programs [6,12] and PSpace-complete for linear monadic
programs [12]; for linear sirups, it is even NP-complete [34].

The last two results are relevant to deciding FO-rewritability of OMQs
(CovA, q), where q has a single solitary F (see Sect. 2) and is called a 1-CQ.
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Indeed, suppose that F (x) and T (y1), . . . , T (yn) are all the solitary occurrences
of F and T in q. Let Πq be a monadic datalog program with three rules

G ← F (x), q′, P (y1), . . . , P (yn), (1)
P (x) ← T (x), (2)
P (x) ← A(x), q′, P (y1), . . . , P (yn), (3)

where q′ = q \ {F (x), T (y1), . . . , T (yn)} and P is a fresh predicate symbol that
never occurs in our ABoxes. Then, for any ABox A, we have CovA,A |= q iff
Πq ,A |= G. Thus, FO-rewritability of (CovA, q) is clearly related to bounded-
ness of the sirup (3).

The problem of linearising datalog programs, that is, transforming them into
equivalent linear datalog programs, which are known to be in NL for data com-
plexity, has also attracted much attention [2,29,31,36] after the Ullman and van
Gelder pioneering paper [33]. Here, Example 4 is very instructive: it is easy to
construct Πq automatically (either directly or by using the markability technique
from [19] for disjunctive datalog), but clearly some additional artificial intelli-
gence is required to notice the Hint and use it to produce a linear program. In
Sect. 7, we show a datalog program for a similar query, which is produced auto-
matically from an arc consistency procedure; again, this program is not linear
but linearisable.

By establishing a remarkable connection to CSPs, it was shown in [8] that
deciding FO- and datalog-rewritability of OMQs with a SHIU ontology is NEx-
pTime-complete. This result is obviously applicable to our case study, and we
shall discuss it in detail in the next section.

An AC0/NL/P trichotomy for the data complexity of answering OMQs with
an EL ontology and atomic query, which can be checked in ExpTime, was estab-
lished in [23]. This result is applicable to OMQs (CovA, q), in which q is an F -tree
having a single solitary F (x) such that the binary atoms in q form a ditree with
root x. Indeed, denote by TQ the EL TBox with concept inclusions F �Cq � G′,
T � P and A � Cq � P , where Cq is an EL-concept representing q \ {F (x)}
with P for T (so for q of the form

F

x

FT

y1 y2

T

y3
R1 R2 R3

Cq = ∃R1.(F � P � ∃R2.∃R3.P )). Then, for any ABox A that does not contain
G′, we have ΠQ ,A |= G iff TQ ,A |= ∃xG′(x).

Yet, despite all of these efforts and results (implying, in view of the recent
positive solution to the Feder-Vardi conjecture [9,37], that there is a P/coNP
dichotomy for OMQs with SHIU ontologies, which is decidable in NExpTime),
we are still lacking simple and transparent, in particular syntactic, conditions
guaranteeing this or that data complexity or type of rewritability. Some results
in this direction were obtained in [17,19]. That a transparent classification of
monadic sirups according to their data complexity has not been found so far
and the close connection to CSPs indicate that this problem is extremely hard
in general.
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In the next section, we illustrate how OMQs of the form (Cov⊥
�, q) with a

path CQ q can be reduced to CSPs.

4 Converting Path OMQs to CSPs

In the context of our case study, we are interested in non-uniform CSPs. Let B
be a fixed relational structure which in this setting is called a template. Each
template B gives rise to the decision problem CSP(B) which is to decide, given
an ABox A, whether there is a homomorphism from A to B, in which case we
write A → B. We show, following [8], how given an OMQ Q = (Cov⊥

�, q) with
a path CQ q, one can construct a template Bq such that, for any data instance
A, we have A → Bq iff Cov⊥

�,A �|= q. We illustrate the construction of Bq using
the CQ q below:

T T F F

R R R

The construction generalises to arbitrary path CQs in the obvious way and can
be further extended to OMQs with tree-shaped CQs.

First, we assign labels A, B and C to the first three vertices of q in the
following way:

C

T

B

T

A

F F

R R R

Then we construct the following disjunctive datalog program Π such that, for
any A, we have Cov⊥

�,A |= q iff A,Π |= ∃xC(x):

A(x) ← F (x), R(x, y), F (y) (4)
B(x) ← T (x), R(x, y), F (y), A(y) (5)
C(x) ← T (x), R(x, y), T (y), B(y) (6)

T (x) ∨ F (x) ← (7)
⊥ ← T (x), F (x) (8)

(Informally, the labels A, B and C are used in Π to detect the query pattern in
a data instance step-by-step.)

We now construct the CSP template Bq using unary types for Π, which are
sets t of unary predicates in Π such that t contains either T or F , but not
both of them, and C /∈ t. Thus in this example the types are 8 specific subsets
of {A,B,C, T, F} that are used as vertex labels in Fig. 1 (talking about types,
we often omit curly brackets and commas, so, for example, FAB stands for
{F,A,B}). In general, for a path CQ with n variables there are 2n−1 types. Two
types t1 and t2 are called R-compatible if the data instance

{R(t1, t2)} ∪ {X(t1) | X ∈ t1} ∪ {Y (t2) | Y ∈ t2}

is a model of Π. The domain of the template Bq consists of the types for Π,
unary relations are interpreted in the natural way by TBq = {t | T ∈ t},
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FBq = {t | F ∈ t}, and the binary relation is specified by RBq = {(t1, t2) |
t1 and t2 are R-compatible}.

For the q above we obtain the template Bq shown on the left-hand side
of Fig. 1, where the vertices are labelled by the corresponding types. For
example, there are no edges between F and FB since the data instances
{F (x), R(x, y), F (y), B(y)} and {F (x), B(x), R(x, y), F (y)} do not satisfy the
rule A(x) ← F (x), R(x, y), F (y), but there is an edge from FA to F since the
data instance {F (x), A(x), R(x, y), F (y)} is a model of Π. One can see that
A,Π �|= ∃xC(x) iff A → Bq , and so Bq is as required.

T

BT

AT

ABT

F

FB

FA

FAB

T

BT

F

FA

Fig. 1. CSP template Bq (left) and its core (right).

5 Enter Polyanna

To check whether CSP(Bq ) is in P or coNP-hard, one can use the program
Polyanna [13]. Polyanna proceeds in two stages. First, it finds a core of the tem-
plate Bq . We remind the reader that a relational structure D′ is a core of a
relational structure D if D′ is a minimal substructure of D that is homomor-
phically equivalent to D (in the sense that D′ → D and D → D′). The process
of constructing such a core by Polyanna is called ‘squashing’. For example, it
squashes the 8-vertex template Bq in Fig. 1 into the core template with 4 vertices
shown on the right-hand side of the figure.

Then Polyanna decides tractability or coNP-hardness of CSP(Bq ) by check-
ing whether the core template has polymorphisms of certain types by construct-
ing and solving the corresponding ‘indicator problems’ [18]. While doing this,
Polyanna uses different decomposition techniques to reduce computation in the
case when the indicator problem has symmetries. The indicator problem for
polymorphisms of arity k and cores with d vertices, for a signature Γ, has k · dk

variables and ΣR∈Γ|R|k constraints. Given a core template of size d, Polyanna
considers polymorphisms of arity up to max(3, d). In practice, for our use case,



338 O. Gerasimova et al.

this implies that it can handle cores of size up to 4, but runs out of memory for
some cores of size ≥ 5.

It has recently been shown that tractability of CSP can be determined by con-
sidering special polymorphisms of arity 4 that satisfy the identity f(y, x, y, z) =
f(x, y, z, x); they are called Siggers polymorphisms in [5]. However, we could
not find any publicly available implementations for these polymorphisms, and
so Polyanna can be considered as top-edge technology even if it is more than 15
years old. We conjecture that the range of its applicability can be significantly
extended by enhancing it with the ability to search for Siggers polymorphisms.

We used Polyanna to classify the data complexity of OMQs Q = (Cov⊥
�, q)

with path CQs q of length up to 4 (that is, with at most 4 variables).2
She correctly determined that all of them but four OMQs with two T -nodes

and two F -nodes are in P. For example, the OMQ with the CQ
T T F T

and the core CSP template B shown below was classified as tractable.

T

F

TB

FA

In Sect. 7, we illustrate how Polyanna’s output can be used to construct a
monadic datalog-rewritings of OMQs.

Polyanna also managed to determine that the CQs q1 and q2 below give
coNP-hard OMQs:

q1

T T F F

q2

T F T F

q3

T F F T

In fact, the CSP templates for q1 and q2 have a 4-vertex core, while CSP(Bq3
)

has the following core with five vertices:

TF

FB

FA

FAB

which turned out to be too hard for Polyanna.

2 Path CQs of length 5 produce templates of size 16, and it takes over an hour to
detect its core.
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In the next section, we sketch direct proofs of coNP-hardness of answering
the three OMQs Qi = (Cov⊥

�, qi), for i = 1, 2, 3, by reduction of 3SAT. The
conaisseurs might find it instructive to compare the gadgets used in those proofs
with the general machinery of pp-interpretations coming from universal algebra.

6 Three coNP-hard OMQs

Consider first the OMQ Q1 = (Cov⊥
�, q1). For every propositional variable p in

a given 3CNF ψ, we construct a ‘gadget’ shown in the picture below, where the
number of vertices above each of the circles matches the number of clauses in ψ;
we refer to these vertices as p-contacts and, respectively, ¬p-contacts:

F F

T T

T

F T

F T

F T

F

... ...

p-contacts ¬p-contacts

p ¬p

Observe that, for any model I of Cov⊥
� based on the constructed gadget for p, if

I �|= q1 then either (i) the p-contacts are all in F I and the ¬p-contacts are all
in T I , or (ii) the p-contacts are all in T I and the ¬p-contacts are all in F I .

Now, for every clause c = (l1 ∨ l2 ∨ l3) in ψ with literals li, we add to the
constructed gadgets the atoms T (c), R(c, ac

¬l1
), R(ac

¬l1
, ac

l2
), R(ac

l2
, ac

l3
), where

c is a new individual, ac
¬l1

a fresh ¬l1-contact, ac
l2

a fresh l2-contact, and ac
l3

a fresh l3-contact. For example, for the clause c = (p ∨ q ∨ r), we obtain the
fragment below:

T ac
¬p ac

q ac
r

T

F T

F T

F T

F T

F T

F

¬p q r

The resulting ABox is denoted by Aψ. The reader can check that ψ is satisfiable
iff Cov⊥

�,Aψ �|= q1. It follows that answering Q1 is coNP-hard.
Next, consider the OMQ Q2 = (Cov⊥

�, q2). Similarly to the previous case, for
every variable p occurring in ψ, we take the following p-gadget, where n is the
number of clauses in ψ:
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a1 . . . an

F

T

cn
. . .c1

F

T

T

F

T

F

T

F

T

F

T

F

F

T

F

T

F

T

F

T

F

T

b1 . . . bn

T

F

dn
. . .

d1

T

F

T

F

T

F

T

F

T

F

T

F

F

T

F

T

F

T

F

T

F

T

F

T

p ¬p

The key property of the p-gadget is that, for any model I of Cov⊥
� based on this

gadget, if I �|= q2 then either the vertices without labels on left-hand side of the
gadget are all in T I and the vertices without labels on the right-hand side are all
in F I , or the other way round. We refer to the ai and bi as p↑- and ¬p↑-contacts,
and to the ci and di as p↓- and ¬p↓-contacts, respectively.

Now, for every clause c = (l1∨ l2∨ l3) in ψ, we add to the constructed gadgets
for the variables in ψ the atoms R(uc

¬l1
, vc

l2
), R(vc

l2
, c), T (c), R(c, wc

l3
), where c is

a new individual, uc
¬l1

a fresh ¬l↑1-contact, vc
l2

a fresh l↓2-contact, and wc
l3

a fresh
l↓3-contact. For example, for the clause c = (p ∨ q ∨ ¬r), we obtain the fragment
below:

bi
cj

T

c dk

¬p q ¬r

The resulting ABox Aψ is such that ψ is satisfiable iff Cov⊥
�,Aψ �|= q2.

Finally, for the OMQ Q3 = (Cov⊥
�, q3), we use the following p-gadget:

a1 . . . an

F

T

cn
. . .c1

F

T F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

b1 . . . bn

F

T

dn
. . .

d1

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F F

p ¬p
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and a similar encoding of clauses. The only difference occurs at the individual c
in the clause gadget where we place an F -atom instead of a T -atom.

7 Monadic Datalog Rewritings Based on Arc Consistency

For tractable OMQs, Polyanna outputs semilattice functions, which guarantee
that the classical arc-consistency check gives correct answers to these OMQs;
see [21] for a survey of different arc-consistency routines. The classical arc-
consistency procedure can be interpreted as a monadic datalog program, which
gives a monadic datalog-rewriting of the OMQ in question. It may be instructive
to have a look at the monadic datalog program for the CQ

T

x

F

y z

F

R R

which is dual to the one in Example 4. Below is a 3-vertex core of the template
for this query:

T

AF

F

The idea of arc-consistency is to introduce an IDB predicate P for each subset
of vertices in the template, with the intuitive meaning that P should hold of a
constant c in a given data instance iff it follows that c must be mapped by a
homomorphism within the set corresponding to P . Using semilattice function,
one can prove that the CSP does not have a solution iff we can deduce the
predicate that corresponds to the empty set.

To make our monadic datalog program more readable, we associate predicate
names P,Q, T ′, F ′, F0 etc. to sets of types according to the table below. The table
also shows the R-image of any set X (the set of all vertices that are R-accessible
from X) and its R-pre-image (the set of all vertices from which X is R-accessible)
encoded as predicate names:

predicate subset of vertices R-image R-pre-image
P {T, F} P 1
T ′ {T} P 1
F ′ {AF,F} 1 Q
Q {T,AF} 1 1
F0 {F} T Q
F1 {AF} 1 F1

1 {AF,A, T} 1 1

Then we have the following program for arc-consistency. The first two rules say
that T and F should be preserved. The next rules say ‘if X is the R-pre-image
of Y , then we should have the rule X(x) ← R(x, y), Y (y)’ (second group), ‘if
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Z is the R-image of Y , then we should have the rule X(z) ← Y (y), R(y, z)
(third group). We also have rules for Boolean reasoning: if X ⊆ Y , then we add
Y (z) ← X(z); and if Z = X ∩ Y , we have the rule Z(z) ← X(z), Y (z). Finally,
we have rules with the goal predicate in the head for disjoint X and Y . Here
goes the program:

T ′(x) ← T (x) (9)
F ′(x) ← F (x) (10)

P (y) ← T ′(x), R(x, y) (11)
Q(x) ← R(x, y), F0(y) (12)
F1(x) ← R(x, y), F1(y) (13)
P (y) ← P (x), R(x, y) (14)
Q(x) ← R(x, y), F ′(y) (15)

F ′(x) ← F1(x) (16)
F ′(x) ← F0(x) (17)
Q(x) ← F1(x) (18)
P (x) ← F0(x) (19)
Q(x) ← T ′(x) (20)
P (x) ← T ′(x) (21)

T ′(x) ← Q(x), P (x) (22)
F0(x) ← P (x), F ′(x) (23)
F1(x) ← Q(x), F ′(x) (24)

G ← F1(x), P (x) (25)
G ← T ′(x), F ′(x) (26)
G ← Q(x), F0(x) (27)

To illustrate, consider the following data instance
T

x0 x1

F

x2

F

x3

Then rule (9) produces T ′(x0), rule (11) produces P (x1), and rule (14) produces
P (x2) and P (x3). On the other hand, rule (10) produces F ′(x3) and F ′(x2), and
so rule (23) produces F0(x2) and F0(x3). Now rule (12) produces Q(x2), which
gives us G by rule (27).

However, the program returns ‘no’ on the following data instance (it still
produces P (x3) and Q(x2), but now instead of G it produces T ′(x2)):

T

x0

F

x1 x2

F

x3
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8 Appendix

We conclude this article with a brief appendix that summarises what is known
about the data complexity of answering the OMQs in the framework of our case
study. For more details and proofs the reader is referred to [14–16].

We classify the OMQs according to the number of occurrences of solitary F
in their CQs (the case of solitary T is symmetric).

8.1 0-CQs

By a 0-CQ we mean any CQ that does not contain a solitary F . A twin in a
CQ q is any pair F (x), T (x) ∈ q. Here is an encouraging syntactic criterion of
FO-rewritability for OMQs of the form (Cov⊥

A, q):

Theorem 1. (i) If q is a 0-CQ, then answering both (Cov⊥
A, q) and (CovA, q)

is in AC0, with q being an FO-rewriting of these OMQs.
(ii) If q is not a 0-CQ and does not contain twins, then answering both

(Cov⊥
�, q) and (Cov�, q) is L-hard.

Corollary 1. An OMQ (Cov⊥
A, q) is in AC0 iff q is a 0-CQ, which can be

decided in linear time.

Theorem 1 (i) generalises to OMQs with ontologies Covn = {A � B1 � · · · �
Bn}, for n ≥ 2:

Theorem 2. Suppose q is any CQ that does not contain an occurrence of Bi,
for some i (1 ≤ i ≤ n). Then answering the OMQ Q = (Covn, q) is in AC0.

Thus, only those CQs can ‘feel’ Covn as far as FO-rewritability is concerned
that contain all the Bn (which makes them quite complex in practice).

If twins can occur in CQs (that is, F and T are not necessarily disjoint), the
picture becomes more complex. On the one hand, we have the following criterion
for OMQs (CovA, q) with a path CQ q whose variables x0, . . . , xn in q are ordered
so that the binary atoms in q form a chain R1(x0, x1), . . . , Rn(xn−1, xn).

Theorem 3. An OMQ (CovA, q) with a path CQ q is in AC0 iff q is a 0-CQ.
If q contains both solitary F and T , then (CovA, q) is NL-hard.

On the other hand, this AC0/NL criterion collapses for path CQs with loops:

Proposition 1. The OMQ (CovA, q), where q is shown below, is in AC0.

FT

R

T F FT

SR R S S

Note that the CQ q above is minimal (not equivalent to any of its proper
sub-CQs). Note also that, if a minimal 1-CQ q contains both a solitary F and
a solitary T , then FO-rewritability of (CovA, q) implies that q contains at least
one twin (FT ) and at least one y with T (y) /∈ q and F (y) /∈ q (which can be
shown using Theorem 7 (i)).
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8.2 1-CQs

1-CQs have exactly one solitary F . We now complement the sufficient condi-
tions of L- and NL-hardness from Sect. 8.1 with sufficient conditions of OMQ
answering in L- and NL.

A 1-CQ q′(x, y) is symmetric if the CQs q′(x, y) and q′(y, x) are equivalent
in the sense that q′(a, b) holds in A iff q′(b, a) holds in A, for any ABox A and
a, b ∈ ind(A).

Theorem 4. Let Q = (CovA, q) be any OMQ such that

q = ∃x, y (F (x) ∧ q′
1(x) ∧ q′(x, y) ∧ q′

2(y) ∧ T (y)),

for some connected CQs q′(x, y), q′
1(x) and q′

2(y) that do not contain solitary T
and F , and q′(x, y) is symmetric. Then answering Q can be done in L.

If we do not require q′(x, y) to be symmetric, the complexity upper bound
increases to NL:

Theorem 5. Let Q = (CovA, q) be any OMQ such that

q = ∃x, y (F (x) ∧ T (y) ∧ q′(x, y)),

for some connected CQ q′(x, y) without solitary occurrences of F and T . Then
answering Q can be done in NL.

By an F -tree CQ we mean a CQ q having a single solitary F (x) such that
the binary atoms in q form a ditree with root x.

Theorem 6. (i) Answering any OMQ (CovA, q) with a 1-CQ q can be done in
P.

(ii) Answering any OMQ (CovA, q) with an F -tree q is either in AC0 or
NL-complete or P-complete. The trichotomy can be decided in ExpTime.

Theorem 6 (ii) was proved by a reduction to the AC0/NL/P-trichotomy
of [23]. It is to be noted, however, that applying the algorithm from [23] in our
case is tricky because the input ontology must first be converted to a normal
form. As a result, we do not obtain transparent syntactic criteria on the shape
of q that would guarantee that the OMQ (CovA, q) belongs to the desired com-
plexity class.

We now give a semantic sufficient condition for an OMQ with a 1-CQ to lie in
NL. This condition uses ideas and constructions from [12,23]. Let Q = (CovA, q)
be an OMQ with a 1-CQ q having a solitary F (x). Define by induction a class
KQ of ABoxes that will be called cactuses for Q. We start by setting KQ := {q},
regarding q as an ABox, and then recursively apply to KQ the following two
rules:

(bud) if T (y) ∈ A ∈ KQ with solitary T (y), then we add to KQ the ABox
obtained by replacing T (y) in A with (q \ F (x)) ∪ {A(x)}, in which x is
renamed to y and all of the other variables are given fresh names;
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(prune) if CovA,A′ |= Q, where A′ = A \ {T (y)} and T (y) is solitary, we add
to KQ the ABox obtained by removing T (y) from A ∈ KQ .

It is readily seen that, for any ABox A′, we have CovA,A′ |= Q iff there exist
A ∈ KQ and a homomorphism h : A → A′. Denote by K†

Q the set of minimal
cactuses in KQ (that have no proper sub-cactuses in KQ ).

For a cactus C ∈ KQ , we refer to the copies of (maximal subsets of) q that
comprise C as segments. The skeleton Cs of C is the ditree whose nodes are the
segments s of C and edges (s, s′) mean that s′ was attached to s by budding.
The atoms T (y) ∈ s are called the buds of s. The rank r(s) of s is defined by
induction: if s is a leaf, then r(s) = 0; for non-leaf s, we compute the maximal
rank m of its children and then set

r(s) =

{
m + 1, if s has ≥ 2 children of rank m;
m, otherwise.

The width of C and Cs is the rank of the root in Cs. We say that K†
Q is of width

k if it contains a cactus of width k but no cactus of greater width. The depth of
C and Cs is the number of edges in the longest branch in Cs.

We illustrate the definition by an example. Denote by qTnT , for n ≥ 0, the
1-CQ shown below, where all the binary predicates are R and the n variables
without labels do not occur in F - or T -atoms:

F T T

n

. . .

Example 6. Let Q = (Cov�, qT1T ). In the picture below, we show a cactus C
obtained by applying (bud) twice to qT1T (with A = � omitted):

F T

z

T

T T

One can check that Cov�, C \{T (z)} |= qT1T , and so an application of (prune)
will remove T (z) from C. Using this observation, one can show that K†

Q is of
width 1. On the other hand, if Q = (CovA, qT1T ) then K†

Q is of unbounded
width as follows from Theorem 9 below.

Theorem 7. Let Q = (CovA, q) be an OMQ with a 1-CQ q. Then
(i) Q is in AC0 iff for every C ∈ K†

Q , there is a homomorphism h : q → C;
(ii) Q is rewritable in linear datalog, and so is in NL, if K†

Q is of bounded
width.
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It is worth noting that, for Q = (Cov�, q) with q from Proposition 1, K†
Q

consists of q and the cactus of depth 1, in which the only solitary T is removed
by (prune). Clearly, there is a homomorphism from q into this cactus, and so Q
is FO-rewritable. However, for the 1-CQ q in the picture below (where all edges
are bidirectional), (Cov�, q) is not FO-rewritable, but there is a homomorphism
from q to both cactuses of depth 1. We do not know whether, in general, there
is an upper bound Nq such that the existence of homomorphisms h : q → C,
for all C ∈ KQ of depth Nq , would ensure FO-rewritability of (CovA, q). For
1-CQs q with a single solitary T , one can take Nq = |q| + 1. Neither do we
know the exact complexity of deciding FO-rewritability of OMQs with 1-CQs.
As mentioned in Sect. 3, this problem is reducible to the boundedness problem
for monadic datalog programs, which is known to be in 2ExpTime.

T
FT FT

T
FT FT

F

S S S R Q R

Q

S R, Q R, Q

S S R Q R Q

R

S R, Q R, Q

S

Theorem 7 (ii) allows us to obtain a sufficient condition for linear-datalog
rewritability of OMQs (CovA, q) with an F -path CQ q, that is, a path CQ with
a single solitary F at its root. We represent such a q as shown in the picture
below, which indicates all the solitary occurrences of F and T :

q =
F

x

T

y1

T

yi

T

ym ym+1

. . . . . . . . . . . .

We require the following sub-CQs of q:

– qi is the suffix of q that starts at yi, but without T (yi), for 1 ≤ i ≤ m;
– q∗

i is the prefix of q that ends at yi, but without F (x) and T (yi), for 1 ≤ i ≤ m;
– q∗

m+1 is q without F (x),

and write fi : qi � q if fi is a homomorphism from qi into q with fi(yi) = x.

Theorem 8. If for each 1 ≤ i ≤ m there exist fi : qi � q, then (CovA, q) is
rewritable into a linear datalog program, and so is NL-complete.

For F -path CQs q without twins, we extend Theorem 8 to a NL/P dichotomy
(provided that NL �= P). Given such a CQ q, we denote by Nq the set of
the numbers indicating the length of the path from x to each of the yi, i =
1, . . . ,m + 1.

Theorem 9. Let Q = (CovA, q) be an OMQ where q is an F -path CQ with-
out twins having a single binary relation. The following are equivalent unless
NL = P:
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(i) Q is NL-complete;
(ii) {0} ∪ Nq is an arithmetic progression;
(iii) there exist fi : qi � q for every i = 1, . . . ,m.

If these conditions do not hold, then Q is P-complete.

Note that the proof of P-hardness in Theorem 9 does not go through for
A = �. Thus, for (Cov�, qT1T ), we are in the framework of Example 6 and,
by Theorem 7 (ii), this OMQ is in NL. In fact, we have the following NL/P
dichotomy for the OMQs of the form Q = (Cov�, qTnT ):

– either n is equal to 1, and answering Q is in NL,
– or n ≥ 2, and answering Q is P -hard.

Proposition 2. Answering the OMQ (Cov�, qT1T ) is NL-complete.

Theorem 10. The OMQs (Cov�, qTnT ) (and (CovA, qTnT )), for n ≥ 2, are
P-complete.

On the other hand we have:

Proposition 3. Answering the OMQ (CovA, qT1T ) is P-complete.

We now apply Theorem 7 (ii) to the class of TF -path CQs of the form

qTF =
T

y0

F

x

T

y1

T

ym ym+1

. . . . . . . . . . . .

where the T (yi) and F (x) are all the solitary occurrences of T and F in qTF .
We represent this CQ as

qTF = {T (y0)} ∪ q0 ∪ q,

where q0 is the sub-CQ of qTF between y0 and x with T (y0) removed and q is
the same as in Theorem 8 (and q∗

m+1 is q without F (x)).

Theorem 11. If q satisfies the condition of Theorem8 and there is a homo-
morphism h : q∗

m+1 → q0 such that h(x) = y0, then answering (CovA, qTF ) is
NL-complete.

For example, the OMQ (CovA, q) with q shown below is NL-complete:
T FT F T

On the other hand, we have the following:

Proposition 4. Answering the OMQs (CovA, q) and (Cov�, q) is P-complete
for q of the forms

T F T

R R

T T F

S R
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8.3 2-CQs

A 2-CQ has at least two solitary F and at least two solitary T . We have the fol-
lowing generalisations of the coNP-hardness results from Sect. 6 for the OMQs
Qj = (Cov⊥

�, qj), for j ∈ {1, 2, 3}:
Consider the 2-2-CQs, which are path 2-CQs where all the F are located

after all the T , and every occurrence of T or F is solitary. We represent any
given 2-2-CQ q as shown below

T

x

T

y

F

z

F

wp r s u v

where p, r, u and v do not contain F and T , while s may contain solitary
occurrences of both T and F (in other words, the T shown in the picture are the
first two occurrences of T in q and the F are the last two occurrences of F in q).
Denote by qr the suffix of q that starts from x but without T (x); similarly, qu

is the suffix of q starting from z but without F (z). Denote by q−
r the prefix of q

that ends at y but without T (y); similarly, q−
u is the prefix of q ending at w but

without F (w). Using the construction from [15], one can show the following:

Theorem 12. Any OMQ (CovA, q) with a 2-2-CQ q is coNP-complete pro-
vided the following conditions are satisfied: (i) there is no homomorphism
h1 : qu → qr with h1(z) = x, and (ii) there is no homomorphism h2 : q−

r → q−
u

with h2(y) = w.

We do not know yet whether this theorem holds for Cov� in place of CovA.
In Theorems 13 and 14, we assume that p and v do not contain F and T ,

while r and u may only contain solitary occurrences of T (F �∈ r,u), and s only
solitary occurrences of F (T �∈ s).

Theorem 13. Any OMQ (CovA, q) with q of the form
T

x

F

y

F

z

T

wp r s u v

is coNP-complete provided the following conditions are satisfied: (i) there is no
homomorphism h1 : rt → u with h1(y) = w, and (ii) there is no homomorphism
h2 : ut → r with h2(z) = x, where r is the sub-CQ of q between x and y without
T (x), F (y), and similarly for u, rt is r with T (x) and ut is u with T (w).

In Theorem 14, we use rext = r(x, y) ∧ T (y) ∧ s1(y, y1) ∧ F (y1), where s1 is
the part of s such that s(y, z) = s1(y, y1) ∧ F (y1) ∧ s2(y1, z) and s1(y, y1) does
not contain any occurrences of F . In other words, the variable y1 corresponds
to the first appearance of F in s, where s is the sub-CQ of q between y and z
without F (y), T (z).

Theorem 14. Any OMQ (CovA, q) with q of the form
T

x

F

y

T

z

F

wp r s u v

is coNP-complete provided the following conditions hold: (i) there is no homo-
morphism g1 : rt → u with g1(y) = w, and (ii) there is no homomorphism
g2 : u → rext with g2(z) = x and g2(w) = y1.
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Abstract. Cognition does not only depend on bottom-up sensor fea-
ture abstraction, but also relies on contextual information being passed
top-down. Context is higher level information that helps to predict belief
states at lower levels. The main contribution of this paper is to provide
a formalisation of perceptual context and its integration into a new pro-
cess model for cognitive hierarchies. Several simple instantiations of a
cognitive hierarchy are used to illustrate the role of context. Notably, we
demonstrate the use context in a novel approach to visually track the
pose of rigid objects with just a 2D camera.

1 Introduction

There is strong evidence that intelligence necessarily involves hierarchical struc-
tures [1–4,6,9–11,15,17,18,20,22,24,25,27]. We recently addressed the formal-
isation of cognitive hierarchies that allow for the integration of disparate rep-
resentations, including symbolic and sub-symbolic representations, in a general
framework for cognitive robotics [8]. Sensory information processing is upward-
feeding, progressively abstracting more complex state features, while behaviours
are downward-feeding progressively becoming more concrete, ultimately control-
ling robot actuators.

However, neuroscience suggests that the brain is subject to top-down cogni-
tive influences for attention, expectation and perception [12]. Higher level signals
carry important information to facilitate scene interpretation. For example, the
recognition of the Dalmatian, and the disambiguation of the symbol /−\ in Fig. 1
intuitively show that higher level context is necessary to correctly interpret these
images1. Furthermore, the human brain is able to make sense of dynamic 3D
scenes from light falling on our 2D retina in varying lighting conditions. Repli-
cating this ability is still a challenge in artificial intelligence and computer vision,
particularly when objects move relative to each other, can occlude each other,
and are without texture. Prior, more abstract contextual knowledge is important
to help segment images into objects or to confirm the presence of an object from
faint or partial edges in an image.
1 Both of these examples appear in [16] but are also well-known in the cognitive

psychology literature.
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Fig. 1. The image on the left would probably be indiscernible without prior knowledge
of Dalmations. The ambiguous symbol /−\ on the right can be interpreted as either an
“H” or an“A” depending on the word context.

In this paper we extend the existing cognitive hierarchy formalisation [8] by
introducing the notion of perceptual context, which modifies the beliefs of a child
node given the beliefs of its parent nodes. It is worth emphasising that defining
the role of context as a top-down predictive influence on a node’s belief state and
the corresponding process model that defines how the cognitive hierarchy evolves
over time is non-trivial. Our formalisation captures the dual influences of context
and behaviour as a predictive update of a node’s belief state. Consequently, the
main contribution of this paper is the inclusion and formalisation of contextual
influences as a predictive update within a cognitive hierarchy.

As a meta-framework, the cognitive hierarchy requires instantiation. We pro-
vide two simple instantiation examples to help illustrate the formalisation of
context. The first is a running example using a small belief network. The second
example involves visual servoing to track a moving object. This second exam-
ple quantifies the benefit of context and demonstrates the role of context in a
complete cognitive hierarchy including behaviour generation.

As a third, realistic and challenging example that highlights the importance
of context we consider the tracking of the 6◦ of freedom pose of multiple, possibly
occluded, marker-less objects with a 2D camera. We provide a novel instantiation
of a cognitive hierarchy for a real robot using the context of a spatial cognitive
node modelled using a 3D physics simulator. Note, this formalisation is provided
in outline only due to space restrictions.

2 The Architectural Framework

For the sake of brevity the following presentation both summarises and extends
the formalisation of cognitive hierarchies as introduced in [8]. We shall, however,
highlight how our contribution differs from their work. The essence of this frame-
work is to adopt a meta-theoretic approach, formalising the interaction between
abstract cognitive nodes, while making no commitments about the representa-
tion and reasoning mechanism within individual nodes.
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2.1 Motivating Example

As an explanatory aid to formalising the use of context in a hierarchy we will use
the disambiguation of the symbol /−\ in Fig. 1 as a simple running example. This
system can be modelled as a two layer causal tree updated according to Pearl’s
Bayesian belief propagation rules [26]. The lower-level layer disambiguates indi-
vidual letters while the higher-level layer disambiguates complete words (Fig. 2).
We assume that there are only two words that are expected to be seen, with
equal probability: “THE” and “CAT”.

Fig. 2. Disambiguating the symbol /−\ requires context from the word recognition layer.

There are three independent letter sensors with the middle sensor being
unable to disambiguate the observed symbol /−\ represented by the conditional
probabilities p(/−\|H) = 0.5 and p(/−\|A) = 0.5. These sensors feed into the
lower-level nodes (or processors in Pearl’s terminology), which we label as N1,
N2, N3. The results of the lower level nodes are combined at N4 to disambiguate
the observed word.

Each node maintains two state variables; the diagnostic and causal supports
(displayed as the pairs of values in Fig. 2). Intuitively, the diagnostic support
represents the knowledge gathered through sensing while the causal support
represents the contextual bias. A node’s overall belief is calculated by the com-
bination of these two state variables.

While sensing data propagates up the causal tree, the example highlights
how node N2 is only able to resolve the symbol /−\ in the presence of contextual
feedback from N4.

2.2 Nodes

A cognitive hierarchy consists of a set of nodes. Nodes are tasked to achieve a goal
or maximise future value. They have two primary functions: world-modelling and
behaviour-generation. World-modelling involves maintaining a belief state, while
behaviour-generation is achieved through policies, where a policy maps states to
sets of actions. A node’s belief state is modified by sensing or by the combination
of actions and higher-level context. We refer to this latter as prediction update to
highlight how it sets an expectation about what the node is expecting to observe
in the future.
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Definition 1. A cognitive language is a tuple L = (S,A, T ,O, C), where S is
a set of belief states, A is a set of actions, T is a set of task parameters, O is a
set of observations, and C is a set of contextual elements. A cognitive node is a
tuple N = (L,Π, λ, τ , γ, s0, π0) s.t:

– L is the cognitive language for N , with initial belief state s0 ∈ S.
– Π a set of policies such that for all π ∈ Π, π : S → 2A, with initial policy

π0 ∈ Π.
– A policy selection function λ : 2T → Π, s.t. λ({}) = π0.
– An observation update operator τ : 2O × S → S.
– A prediction update operator γ : 2C × 2A × S → S.

Definition 1 differs from [8] in two ways: the introduction of a set of con-
text elements in the cognitive language, and the modification of the prediction
update operator, previously called the action update operator, to include context
elements when updating the belief state.

This definition can now be applied to the motivating example to instantiate
the nodes in the Bayesian causal tree. We highlight only the salient features for
this instantiation.

Example. Let E = {〈x, y〉 | 0 ≤ x, y ≤ 1.0} be the set of probability pairs,
representing the recognition between two distinct features. For node N2, say (cf.
Fig. 2), these features are the letters “H” and“A” and for N4 these are the words
“THE” and“CAT”. The set of belief states for N2 is S2 = {〈〈d〉, c〉 | d, c ∈ E},
where d is the diagnostic support and c is the causal support. Note, the vector-
in-vector format allows for structural uniformity across nodes. Assuming equal
probability over letters, the initial belief state is 〈〈〈0.5, 0.5〉〉, 〈0.5, 0.5〉〉. For N4

the set of belief states is S4 = 〈〈d1, d2, d3〉, c〉 | d1, d2, d3, c ∈ E}, where di is the
contribution of node N i to the diagnostic support of N4.

For N2 the context is the causal supports from above, C2 = E, while the
observations capture the influence of the “H”-“A” sensor, O2 = {〈d〉 | d ∈ E}.
In contrast the observations for N4 need to capture the influence of the different
child diagnostic supports, so O4 = {〈d1, d2, d3〉 | d1, d2, d3 ∈ E}.

The observation update operators need to replace the diagnostic supports of
the current belief with the observation, which is more complicated for N4 due
to its multiple children, τ2({d1,d2,d3}, 〈d, c〉) = 〈Σ3

i=1di , c〉. Ignoring the influ-
ence of actions, the prediction update operator simply replaces the causal support
of the current belief with the context from above, so γ2({c′}, ∅, 〈〈d〉, c〉) = 〈〈d〉, c′〉.

2.3 Cognitive Hierarchy

Nodes are interlinked in a hierarchy, where sensing data is passed up the abstrac-
tion hierarchy, while actions and context are sent down the hierarchy (Fig. 3).

Definition 2. A cognitive hierarchy is a tuple H = (N , N0, F ) s.t:

– N is a set of cognitive nodes and N0 ∈ N is a distinguished node correspond-
ing to the external world.



356 B. Hengst et al.

Fig. 3. A cognitive hierarchy, highlighting internal interactions as well as the sensing,
action, and context graphs.

– F is a set of function triples 〈φi,j , ψj,i, 
j,i〉 ∈ F that connect nodes N i, N j ∈
N where:

• φi,j : Si → 2Oj is a sensing function, and
• ψj,i : 2Aj → 2T i is a task parameter function.
• 
j,i : Sj → 2Ci is a context enrichment function.

– Sensing graph: each φi,j represents an edge from node N i to N j and forms a
directed acyclic graph (DAG) with N0 as the unique source node of the graph.

– Prediction graph: the set of task parameter functions (equivalently, the context
enrichment functions) forms a converse to the sensing graph such that N0 is
the unique sink node of the graph.

Definition 2 differs from the original with the introduction of the context
enrichment functions and the naming of the prediction graph (originally the
action graph). The connection between nodes consists of triples of sensing, task
parameter and context functions. The sensing function extracts observations
from a lower-level node in order to update a higher level node, while the context
enrichment function performs the converse. The task parameter function trans-
lates a higher-level node’s actions into a set of task parameters, which is then
used to select the active policy for a node.

Finally, the external world is modelled as a distinguished node, N0. Sensing
functions allow other nodes to observe properties of the external world, and
task parameter functions allow actuator values to be modified, but N0 doesn’t
“sense” properties of other nodes, nor does it generate task parameters for those
nodes. Similarly, context enrichment functions connected to N0 would simply
return the empty set, unless one wanted to model unusual properties akin to the
quantum effects of observations on the external world. Beyond this, the internal
behaviour of N0 is considered to be opaque.

The running example can now be encoded formally as a cognitive hierarchy,
again with the following showing only the salient features of the encoding.
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Example. We construct a hierarchy H = (N , N0, F ), consisting of five nodes
N = {N0, N1, . . . , N4}. The function triples in F will include φ0,2 for the visual
sensing of the middle letter, and φ2,4 and 
4,2 for the sensing and context between
N2 and N4.

The function φ0,2 returns the probability of the input being the characters
“H” and“A”. Here φ0,2(/−\) = {〈0.5, 0.5〉}.

Defining φ2,4 and 
4,2 requires a conditional probability matrix M =
[
1 0
0 1

]

to capture how the letters “H” and “A” contribute to the recognition of “THE”
and“CAT”.

For sensing from N2 we use zeroed vectors to prevent influence from the
diagnostic support components from N1 and N2. Hence φ2,4(〈〈d〉, c〉)= {〈〈0, 0〉,η·
M · dT , 〈0, 0〉〉}, where dT is the transpose of vector d, and η is a normalisation
constant.

For context we capture how N4’s causal support and its diagnostic support
components from N1 and N2 influences the causal support of N2. Note that
this also prevents any feedback from N2’s own diagnostic support to its causal
support. So, 
4,2(〈〈d1, d2, d3〉, c〉)={η · (d1 · d3 · c) · M}.

2.4 Active Cognitive Hierarchy

The above definitions capture the static aspects of a system but require addi-
tional details to model its operational behaviour. Note, the following definitions
are unmodified from the original formalism and are presented here because they
are necessary to the developments of later sections.

Definition 3. An active cognitive node is a tuple Q = (N, s, π, a) where: (1) N
is a cognitive node with S, Π, and A being its set of belief states, set of policies,
and set of actions respectively, (2) s ∈ S is the current belief state, π ∈ Π is the
current policy, and a ∈ 2A is the current set of actions.

Essentially an active cognitive node couples a (static) cognitive node with
some dynamic information; in particular the current belief state, policy and set
of actions.

Definition 4. An active cognitive hierarchy is a tuple X = (H,Q) where H is a
cognitive hierarchy with set of cognitive nodes N such that for each N ∈ N there
is a corresponding active cognitive node Q = (N, s, π, a) ∈ Q and vice-versa.

The active cognitive hierarchy captures the dynamic state of the system at
a particular instance in time. Finally, an initial active cognitive hierarchy is an
active hierarchy where each node is initialised with the initial belief state and
policy of the corresponding cognitive node, as well as an empty set of actions.



358 B. Hengst et al.

2.5 Cognitive Process Model

The process model defines how an active cognitive hierarchy evolves over time
and consists of two steps. Firstly, sensing observations are passed up the hier-
archy, progressively updating the belief state of each node. Next, task parame-
ters and context are passed down the hierarchy updating the active policy, the
actions, and the belief state of the nodes.

We do not present all definitions here, in particular we omit the definition of
the sensing update operator as this remains unchanged in our extension. Instead
we define a prediction update operator, replacing the original action update, with
the new operator incorporating both context and task parameters in its update.
First, we characterise the updating of the beliefs and actions for a single active
cognitive node.

Definition 5. Consider an active cognitive hierarchy X = (H,Q) where H =
(N , N0, F ). The prediction update of X with respect to an active cognitive
node Qi = (N i, si, πi, ai) ∈ Q, written PredUpdate′(X , Qi), is an active
cognitive hierarchy X ′ = (H,Q′) where Q′ = Q \ {Qi} ∪ {Q′

i} and Q′
i =

(Qi, γi(C, a′
i, si), π

′
i, a

′
i) s.t:

– if there is no node Nx where 〈φi,x, ψx,i, 
x,i〉 ∈ F then: π′
i = πi, a′

i = πi(si)
and C = ∅,

– else:
π′
i = λi (T ) and a′

i = π′
i(si)

T =
⋃

{ψx,i(ax) | 〈φi,x, ψx,i, 
x,i〉 ∈ F where Qx = (Nx, sx, πx, ax) ∈ Q}
C =

⋃
{
x,i(sx) | 〈φi,x, ψx,i, 
x,i〉 ∈ F where Qx = (Nx, sx, πx, ax) ∈ Q}

The intuition for Definition 5 is straightforward. Given a cognitive hierarchy
and a node to be updated, the update process returns an identical hierarchy
except for the updated node. This node is updated by first selecting a new active
policy based on the task parameters of all the connected higher-level nodes. The
new active policy is applied to the existing belief state to generate a new set
of actions. Both these actions and the context from the connected higher-level
nodes are then used to update the node’s belief state.

Using the single node update, updating the entire hierarchy simply involves
successively updating all its nodes.

Definition 6. Consider an active cognitive hierarchy X = (H,Q) where H =
(N , N0, F ), and let Ψ be the prediction graph induced by the task parameter
functions in F . The action process update of X , written PredUpdate(X ), is
an active cognitive model:

X ′ = PredUpdate′(. . .PredUpdate′(X , Qn), . . . Q0)

where the sequence [Qn, . . . , Q0] consists of all active cognitive nodes of the set
Q such that the sequence satisfies the partial ordering induced by the prediction
graph Ψ .
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Importantly, the update ordering in Definition 6 satisfies the partial ordering
induced by the prediction graph, thus guaranteeing that the prediction update
is well-defined.

Lemma 1. For any active cognitive hierarchy X the prediction process update
of X is well-defined.

Proof. Follows from the DAG structure.

The final part of the process model, which we omit here, is the combined
operator, Update, that first performs a sensing update followed by a prediction
update. This operation follows exactly the original, and similarly the theorem
that the process model is well-defined also follows.

We can now apply the update process (sensing then prediction) to show how
it operates on the running example.

Example. When N2 senses the symbol /−\, φ0,2 returns that “A” and “H” are
equally likely, so τ2 updates the diagnostic support of N2 to 〈〈0.5, 0.5〉〉. On the
other hand N1 and N2 unambiguously sense “C” and “T” respectively, so N4’s
observation update operator, τ4, will update its diagnostic support components to
〈〈0, 1〉, 〈0.5, 0.5〉, 〈0, 1〉〉. The nodes overall belief, 〈0, 1〉, is the normalised product
of the diagnostic support components and the causal support, indicating here the
unambiguous recognition of “CAT”.

Next, during prediction update, context from N4 is passed back down to N2,
through φ4,2 and γ2, updating the causal support of N2 to 〈0, 1〉. Hence, N2 is
left with the belief state 〈〈〈0.5, 0.5〉〉, 〈0, 1〉〉, which when combined, indicates that
the symbol /−\ should be interpreted as an “A”.

We next appeal to another simple example to illustrate the use of context
to improve world modelling and in turn behaviour generation in a cognitive
hierarchy.

3 A Simple Visual Servoing Example

Consider a mobile camera tasked to track an object sliding down a frictionless
inclined plane. The controller is constructed as a three-node cognitive hierarchy.
Figure 4 depicts the cognitive hierarchy and the scene.

The performance of the controller will be determined by how well the camera
keeps the object in the centre of its field-of-view, specifically the average error
in the tracking distance over a time period of 3 s.

The details of the instantiation of the cognitive hierarchy controller fol-
low. The cognitive hierarchy is H = (N , N0, F ) with N = {N0, N1, N2}. N0

is the unique opaque node representing the environment. The cognitive lan-
guage for N1 is a tuple L1 = (S1,A1, T 1,O1, C1), and for N2 it is L2 =
(S2,A2, T 2,O2, C2). The cognitive nodes are N1 = (L1,Π1, λ1, τ1, γ1, s

0
1, π

0
1)

and N2 = (L2,Π2, λ2, τ2, γ2, s
0
2, π

0
2). For brevity we only describe the material

functions.
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Fig. 4. A three-node cognitive hierarchy controller tasked to visually follow an object.
Context flow is shown in red. (Color figure online)

The belief state of N1 is the position of the object: S1 = {x | x ∈ R}.
The belief state of N2 is both the position and velocity of the object: S2 =
{〈x, v〉 | x, v ∈ R}. The object starts at rest on the inclined plane at the origin:
s01 = 0.0 and s02 = 〈0.0, 0.0〉.

N1 receives object position observations from the environment: O1 = {x | x ∈
R}. These measurements are simulated from the physical properties of the scene
and include a noise component to represent errors in the sensor measurements:
φ0,1(·) = {0.5kt2 + ν}, with constant acceleration k = 8.49 m/s2, t the elapsed
time and ν zero mean Gaussian random noise with a standard deviation of 0.1.
The acceleration assumes an inclined plane of 60◦ in a 9.8 m/s2 gravitational
field. The N1 observation update operator implements a Kalman filter with a
fixed gain of 0.25: τ1(〈{x}, y〉) = (1.0 − 0.25)y + 0.25x.

N2 receives observations O2 = {x | x ∈ R} from N1: φ1,2(x) =
{x}. In turn it updates its position estimate accepting the value from N1:
τ2(〈{x}, 〈y, v〉〉) = 〈x, v〉. The prediction update operator uses a physics model
to estimate the new position and velocity of the object after time-step δt = 0.05 s:
γ2(〈{}, {}, 〈x, v〉〉) = 〈x+vδt+0.5kδt2, v+kδt〉 with known acceleration k = 8.49.

Both N1 and N2 have one policy function each. The N2 policy selects the
N1 policy. The effect of the N1 policy: π1(x) = {x}, is to move the camera to
the estimated position of the object via the task parameter function connecting
the environment: ψ1,0({x}) = {x}.

We consider two versions of the N1 prediction update operator. Without
context the next state is the commanded policy action: γ1(〈{x}, {y}, z〉) = y.
With context the context enrichment function passes the N2 estimate of the
position of the object to N1: 
2,1(〈x, v〉) = {x}, where C1 = {x | x ∈ R}. The
update operator becomes: γ1(〈{x}, {y}, z〉) = x.

When we simulate the dynamics and the repeated update of the cogni-
tive hierarchy at 1/δt Hertz for 3 s, we find that without context the average
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tracking error is 2.004 ± 0.009. Using context the average tracking error reduces
to 0.125 ± 0.015—a 94% error reduction.2

4 Using Context to Track Objects Visually

Object tracking has applications in augmented reality, visual servoing, and
human-machine interfaces. We consider the problem of on-line monocular model-
based tracking of multiple objects without markers or texture, using the 2D RGB
camera built into the hand of a Baxter robot. The use of natural object features
makes this a challenging problem.

Current practice for tackling this problem is to use 3D knowledge in the
form of a CAD model, from which to generate a set of edge points (control
points) for the object [21]. The idea is to track the corresponding 2D camera
image points of the visible 3D control points as the object moves relatively to
the camera. The new pose of the object relative to the camera is found by
minimising the perspective re-projection error between the control points and
their corresponding 2D image.

However, when multiple objects are tracked, independent CAD models fail
to handle object occlusion. In place of the CAD models we use the machinery
provided by a 3D physics simulator. The object-scene and virtual cameras from a
simulator are ideal to model the higher level context for vision. We now describe
how this approach is instantiated as a cognitive hierarchy with contextual feed-
back. It is important to note that the use of the physics simulator is not to
replace the real-world, but is used as mental imagery to efficiently represent the
spatial belief state of the robot.

4.1 Cognitive Hierarchy for Visual Tracking

We focus on world-modelling in a two-node cognitive hierarchy (Fig. 5). The
external world node that includes the Baxter robot, streams the camera pose
and RGB images as sensory input to the arm node. The arm node belief state
is s = {pa} ∪ {〈pia, ci〉|object i}, where pa is the arm pose, and for all recognised
objects i in the field of view of the arm camera, pia is the object pose relative
to the arm camera, and ci is the set of object edge lines and their depth. The
objects in this case include scattered cubes on a table. Information from the arm
node is sent to the spatial node that employs a Gazebo physics simulator [19] as
mental imagery to model the objects.

A novel feature of the spatial node is that it simulates the robot’s arm camera
as an object aware depth camera. No such camera exists in reality, but the
Gazebo spatial belief state of the robot is able to not only provide a depth image,
but one that segments the depth image by object. This object aware depth image
provides the context to the arm node to generate the required control points.
2 It is of course intuitive in this simple example that as N2 has the benefit of the

knowledge of the transition dynamics of the object it can better estimate its position
and provide this context to direct the camera.
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Fig. 5. Cognitive hierarchy comprising an arm node and a spatial node. Context from
the spatial node is in the form of an object segmented depth image from a simulated
special camera that shadows the real camera.

4.2 Update Functions and Process Update

We now describe the update functions and a single cycle of the process update
for this cognitive hierarchy.

The real monocular RGB arm camera is simulated in Gazebo with an object
aware depth camera with identical characteristics (i.e. the same intrinsic camera
matrix). The simulated camera then produces depth and an object segmentation
images from the simulated objects that corresponds to the actual camera image.
This vital contextual information is then used for correcting the pose of the
visible objects.

The process update starts with the sensing function φN0,Arm that takes the
raw camera image and observes all edges in the image, represented as a set of
line segments, l.

φN0,Arm({rawImage}) = {l}
The observation update operator τArm takes the expected edge lines ci for

each object i and transforms the lines to best match the image edge lines l [21].
The update function uses the OpenCV function solvePnP to find a corrected
pose pia for each object i relative to the arm-camera a3.

τArm({l, ci|object i}) = {pia|object i}

The sensing function from the arm to spatial node takes the corrected pose
pia for each object i, relative to the camera frame a, and transforms it into
the Gazebo reference frame via the Baxter’s reference frame given the camera
pose pa.

φArm,Spatial({pa, 〈pia, ci〉|object i}) = {gia|object i}
3 The pose of a rigid object in 3D space has 6◦ of freedom, three describing its trans-

lated position, and three the rotation or orientation, relative to a reference pose.
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The spatial node observation update τSpatial, updates the pose of all viewed
objects gia in the Gazebo physics simulator. Note {gia|object i} ⊂ gazebo state.

τSpatial({gia|object i}) = gazebo.move(i, gia) ∀i

The update cycle now proceeds down the hierarchy with prediction updates.
The prediction update for the spatial node γSpatial consists of predicting the
interaction of objects in the simulator under gravity. Noise introduced during the
observation update may result in objects separating due to detected collisions
or settling under gravity.

γSpatial(gazebo state) = gazebo.simulate(gazebo state))

We now turn to the context enrichment function 
Spatial,Arm that extracts
predicted camera image edge lines and depth data for each object in view of the
simulator.


Spatial,Arm(gazebo state) = {ci|object i}

Fig. 6. The process update showing stages of the context enrichment function and the
matching of contextual information to the real camera to correct the arm and spatial
node belief state.

The stages of the context enrichment function 
Spatial,Arm are shown in
Fig. 6. The simulated depth camera extracts an object image that identifies the
object seen at every pixel location. It also extracts a depth image that gives the
depth from the camera of every pixel. The object image is used to mask out each
object in turn. Applying a Laplacian function to the part of the depth image
masked out by the object yields all visible edges of the object. A Hough line
transform identifies line end points in the Laplacian image and finds the depth
of their endpoints from the depth image, producing ci.

Figure 7 shows the cognitive hierarchy tracking several different cube config-
urations. This is only possible given the context from the spatial belief state.
Keeping track of the pose of objects allows behaviours to be generated that for
example pick up a cube with appropriately oriented grippers.
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Fig. 7. Tracking several cube configurations. Top row: Gazebo GUI showing spatial
node state. 2nd row: matching real image edges in green to simulated image edges in
red. Bottom row: camera image overlaid with edges in green. (Color figure online)

5 Related Support and Conclusion

There is considerable evidence supporting the existence and usefulness of top-
down contextual information. Reliability [5] and speed [7] of scene analysis pro-
vide early evidence.

These observations are further supported by neuroscience, suggesting that
feedback pathways from higher more abstract processing areas of the brain down
to areas closer to the sensors are greater than those transmitting information
upwards [13]. The authors summarise the process—“what is actually happen-
ing flows up, and what you expect to happen flows down”. It has been argued
that the traditional idea that the processing of visual information consists of
a sequence of feedforward operations needs to be supplemented by top-down
contextual influences [12].

In the field of robotics, recent work in online interactive perception shows the
benefit of predicted measurements from one level being passed to the next-lower
level as state predictions [23].

This paper has included and formalised the essential element of context in
the meta framework of cognitive hierarchies. The process model of an active
cognitive hierarchy has been revised to include context updates satisfying the
partial order induced by the prediction graph. We have illustrated the role of
context with two simple examples and a novel way to track the pose of texture-
less objects with a single 2D camera. Our motivating example highlighted the
use of context in a cognitive hierarchy inspired by belief propagation in causal
trees. In fact, as a general result it can be proved [14] that any Bayesian causal
tree can be encoded as a cognitive hierarchy, testifying to the representation
versatility of our framework.
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Abstract. The Weak Completion Semantics is a novel, integrated and
computational cognitive theory. Recently, it has been applied to ethical
decision making. To this end, it was extended by equational theories
as needed by the fluent calculus. To compute least models equational
matching problems have to be solved. Do humans consider equational
matching in reasoning episodes?
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1 The Weak Completion Semantics

The Weak Completion Semantics is a novel cognitive theory. It is based on ideas
initially presented by Stenning and van Lambalgen [37,38], but is mathematically
sound [19]. Under the Weak Completion Semantics scenarios are modeled by:

1 reasoning towards a (logic) program,
2 weakly completing the program,
3 computing its least model under �Lukasiewicz logic,
4 reasoning with respect to the least model,
5 if necessary, applying skeptical abduction.

Steps 1–5 have been applied to different human reasoning tasks like suppression
[7] and the abstract as well as the social version of the selection task [15,42].
In human syllogistic reasoning, the Weak Completion Semantics [31] has out-
performed the twelve cognitive theories compared in [24] (see e.g. [11] for an
overview).

Recently, the Weak Completion Semantics has been applied to ethical deci-
sion making [17]. In particular, so-called trolley problems [14] were modelled.
This line of research was inspired by Pereira and Saptawijaya. In their book
[33], they have implemented various ethical problems as logic programs and
have queried them for moral permissibility. However, their approach does not
provide a general method to model ethical dilemmas and is not integrated into
a cognitive theory about human reasoning, nor it intends to do so.

In order to model ethical decision problems within the Weak Completion
Semantics we had to select a method for reasoning about actions and causality.
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C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 367–384, 2019.
https://doi.org/10.1007/978-3-030-22102-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-22102-7_17


368 S. Hölldobler

We opted for the fluent calculus because we liked the ease with which coun-
terfactuals could be modelled in it although the situation calculus [35] or the
event calculus [25] might have been used as well. The original idea underlying
the fluent calculus was published together with Schneeberger in [20]. The name
fluent calculus was coined later by Thielscher in [40].

The fluent calculus is based on equational reasoning. Thus, we had to extend
the Weak Completion Semantics by equational theories in much the same way
as Jaffar, Lassez and Maher extended the theory of definite logic programs [22].
Luckily, as shown together with Dietz Saldanha, Schwarz and Stefanus in [13],
the main features of the Weak Completion Semantics prevail in the presence
of an equational theory: each weakly completed program still has a least model
under �Lukasiewicz logic [27] which is the least fixed point of an appropriately
specified semantic operator.

The application of this operator requires to solve an E-matching problem
[4]. The focus of this paper is on this particular problem, how it arises in eth-
ical decision making, how an existing matching algorithm can be adapted, and
whether it is reasonable to assume that humans actually make use of such an
E-matching algorithm.

2 Basics

We assume the reader to be familiar with logic programs and their semantics
[1,26], equational reasoning [34] and unification theory [4] and will mention only
some basics in this section.

Let 1 be a constant symbol, ◦ a binary function symbol written infix, and
X, Y, Z variables. Then, the (universally closed) equations

X ◦ 1 ≈ X, (1)
X ◦ Y ≈ Y ◦ X, (2)

(X ◦ Y ) ◦ Z ≈ X ◦ (Y ◦ Z) (3)

state that 1 is a unit with respect to ◦ and that ◦ is commutative as well as
associative. In other words, Eqs. (1)–(3) specify an AC1-theory. A set of equations
E together with the axioms of equality define a finest congruence relation =E
on the set of ground terms. Let [t] denote the congruence class containing the
ground term t. Let [p(t1, . . . , tn)] be an abbreviation for p([t1], . . . , [tn]), where p
is an n-ary relation symbol and ti, 1 ≤ i ≤ n, are ground terms. [p(s1, . . . , sm)] =
[q(t1, . . . , tn)] iff p = q, n = m, and for all 1 ≤ i ≤ n we find [si] = [ti].

A term which is not a variable and does not contain the symbols 1 and ◦ is
called a fluent. The set of fluent terms is the smallest set such that 1 and each
fluent is a fluent term, and if s and t are fluent terms, then so is s ◦ t. There
is a one-to-one correspondence between fluent terms and multisets of fluents. A
fluent term t1 ◦ . . . ◦ tn ◦ 1 corresponds to the multiset {̇t1, . . . , tn}̇. In fact, all
fluent terms which are in the congruence class represented by t1 ◦ . . . ◦ tn ◦ 1
and defined by the AC1-theory correspond to {̇t1, . . . , tn}̇. One should also note
that 1 corresponds to the empty multiset.
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A (normal logic) program P is a finite or countably infinite set of (universally
closed) clauses of the form A ← Body, where the head A is an atom and Body
is either a non-empty, finite conjunction of literals, or �, or ⊥. We assume that
programs do not contain equations. Clauses of the form A ← � and A ← ⊥ are
called (positive) facts and (negative) assumptions, respectively. All other clauses
are called rules.

Let P be a ground program. Let A be a ground atom. A is defined in P iff P
contains a clause of the form A ← Body; otherwise A is said to be undefined.
The set of all atoms that are defined in P is denoted by def P.1 ¬A is assumed
in P iff P contains an assumption A ← ⊥ and P does neither contain a fact nor
a rule with head A. Consider the following transformation for a given ground
program P:

1. For all A ∈ def P, replace all clauses of the form A ← Body1, A ← Body2, . . .
occurring in P by A ← Body1 ∨ Body2 ∨ . . . .

2. Replace all occurrences of ← by ↔.

The resulting set of equivalences is called the weak completion of P. The weak
completion of a program differs from the completion of a program as defined by
Clark in [8] in that undefined atoms are not mapped to false.

Let P be a program, gP the set of ground instances of clauses occurring
in P, and E an equational theory. As shown in [13], the weak completion of P
has a least Herbrand E-model under �Lukasiewicz three-valued logic which can
be computed as the least fixed point of the following semantic operator. Let I
be an interpretation represented by 〈I�, I⊥〉, where I� is the set of all ground
atoms mapped to true and I⊥ is the set of all ground atoms mapped to false.
We define ΦP(I) = 〈J�, J⊥〉, where

J� = {[A] | there exists A ← Body ∈ gP and I(Body) = �},
J⊥ = {[A] | there exists A ← Body ∈ gP

and for all A′ ← Body ∈ gP with [A] = [A′] we find I(Body) = ⊥}.
Furthermore, let ΦP ↑ 0 = 〈∅, ∅〉 and ΦP ↑ (i + 1) = ΦP(ΦP ↑ i) for all i ≥ 0.

3 Ethical Decision Problems

3.1 The Bystander Case

A trolley whose conductor has fainted is headed towards two people walking on
the main track.2 The banks of the track are so steep that these two people will
not be able to get off the track in time. Hank is standing next to a switch which
can turn the trolley onto a side track, thereby preventing it from killing the two
people. However, there is a man standing on the side track. Hank can change
the switch, killing him. Or he can refrain from doing so, letting the two die. Is
it morally permissible for Hank to change the switch?
1 We omit parentheses if a relation symbol is unitary and is applied only to constant

symbols or variables.
2 Note that in the original trolley problem, five people are on the main track. For the

sake of simplicity, we assume that only two people are on the main track.
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Fig. 1. The bystander case (initial state) and its ramifications if Hank decides to do
nothing, where ↓ denotes that no further action is applicable.

The case is illustrated in Fig. 1 (initial state). The tracks are divided into
segments 0, 1, and 2, the arrow represents that the trolley t is moving forward
and that the track is clear (c), the switch is in position m (main) but can be
changed into position s (side), and a bullet above a track segment represents a
human (h) on this track. Let t, c, and h be indexed to denote the track to which
they apply. In addition, we need a fluent d denoting a dead human.

We choose to represent a state by a pair of multisets consisting of the casu-
alties in its second element and all other fluents in its first element. Thus, the
initial state in Fig. 1 is

({̇t0, c0,m, h1, h1, h2}̇, ∅̇)

which is represented by the pair of fluent terms

(t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1) (4)

in the fluent calculus.
There are two kinds of actions: the ones which can be performed by Hank

(the direct actions donothing and change), and the actions which are performed
by the trolley (the indirect actions downhill and kill). We will represent the
actions by the trolley explicitly with the help of a five-place relation symbol
action specifying the preconditions in the first two positions, the name in the
third position, and the immediate effects of an action in the forth and fifth
position. As a state is represented by two multisets, the preconditions and the
immediate effects have also two parts:
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action(t0 ◦ c0 ◦ m, 1, downhill , t1 ◦ c0 ◦ m, 1) ← �, (5)
action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1) ← �, (6)

action(t1 ◦ h1, 1, kill , t1, d) ← �, (7)
action(t2 ◦ h2, 1, kill , t2, d) ← �. (8)

If the trolley is on track 0, this track is clear, and the switch is in position m,
then it will run downhill onto track 1 whereas track 0 remains clear and the
switch will remain in position m; if, however, the switch is in position s, the
trolley will run downhill onto track 2. If the trolley is on either track 1 or 2 and
there is a human on this track, it will kill the human leading to a casualty.

In the original version of the fluent calculus, causality is expressed by the
ternary predicate plan or causes stating that the execution of a plan transfers
an initial state into a goal state. Its base case is of the form causes(X, [ ],X), i.e.,
an empty plan does not change any state X. Generating models bottom up using
a semantic operator one has to consider all ground instances of this atom. This
set is usually too large to consider as a base case for modeling human reasoning
episodes. The solution presented herein overcomes this problem in that we only
have a small number of base cases depending on the number of options an agent
like Hank may consider.

In fact, we are not going to solve planning problems like whether there exists
a plan such that its execution transforms the initial state (4) into a goal state
meeting certain constraints. Rather we want to compare the outcomes, i.e., the
indirect effects, of the actions Hank can possibly perform. In other words, we
want to compare the ramifications of either doing nothing or throwing the switch
in the bystander scenario.

To this end, we will use a ternary relation symbol ramify whose first argument
is the name of an action and whose second and third argument are the state
obtained when executing the action. The possible actions of Hank are the base
cases in the definition of ramify :

ramify(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1) ← �, (9)
ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ h2, 1) ← �. (10)

Further actions can be applied to the second and third argument of ramify given
the actions specified in (5)–(8):

ramify(A,E1 ◦ Z1, E2 ◦ Z2) ← action(P1, P2, A
′, E1, E2) ∧ (11)

ramify(A,P1 ◦ Z1, P2 ◦ Z2) ∧
¬abramify A′.

It checks whether an action A′ is applicable in a given state (P1◦Z1, P2◦Z2). This
is the case if the preconditions (P1, P2) are contained in the given state. If this
holds, then the action is executed leading to the successor state (E1◦Z1, E2◦Z2),
where (E1, E2) are the direct effects of the action A′. In other words, if an
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action is applied, then its preconditions are consumed and its direct effects are
produced. Such an action application is considered to be a ramification [41]
with respect to the initial, direct action performed by Hank. Hence, the first
argument A of ramify is not changed.

The execution of an action is also conditioned by ¬abramify A′, where abramify

is an abnormality predicate. Such abnormalities were introduced by Stenning
and van Lambalgen in [37,38] to represent conditionals as licenses for inference.
In this example, there is nothing abnormal known with respect to the actions
downhill and kill and, consequently, the assumptions

abramify downhill ← ⊥, (12)
abramify kill ← ⊥ (13)

are added. But we can imagine situations where the trolley will only cross the
switch if the switch is not broken. If the switch is broken, the trolley may derail.
If such an abnormality becomes known, then the assumption (12) may be over-
ridden.

Let
P0 = {(5), (6), (7), (8), (11), (12), (13)}

and consider the AC1-equational theory (1)–(3). Hank has the choice to do
nothing or to change the switch. The indirect effects of Hank’s decision are
computed as ramifications in the fluent calculus [41].

If Hank does nothing, then let

P1 = P0 ∪ {(9)}.

The least model of the weak completion of P1 – which is equal to the least fixed
point of ΦP1 – is computed by iterating ΦP1 starting with the empty interpre-
tation 〈∅, ∅〉. The following equivalence classes will be mapped to true in the
subsequent steps of this iteration:

[ramify(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)], (14)
[ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)], (15)

[ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h2, d)], (16)
[ramify(donothing , t1 ◦ c0 ◦ m ◦ h2, d ◦ d)]. (17)

They correspond precisely to the four states shown in Fig. 1. No further action
is applicable to the final state (t1 ◦ c0 ◦m◦h2, d◦d). The two people on the main
track will be killed.

But one problem remains: The least fixed point of the ΦP1 operator contains
(14)–(17), and we would like to identify the instance of the ramify predicate to
which no further action is applicable. Only this instance will be compared to the
corresponding instance if Hank is changing the switch. The other instances are
only intermediate states. To this end we specify

aa(A,P1 ◦ Z1, P2 ◦ Z2) ← action(P1, P2, A
′, E1, E2) ∧ (18)

ramify(A,P1 ◦ Z1, P2 ◦ Z2) ∧
¬abramify A′.
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Table 1. The computation of the least model of wcP ′
1, i.e., the program obtained if

Hank is doing nothing. In each step, only the atoms are listed which are newly added.

ΦP′
1

I� I⊥

1 [ramify(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)] [abramify downhill ]

[action(t0 ◦ c0 ◦ m, 1, downhill , t1 ◦ c0 ◦ m, 1)] [abramify kill ]

[action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1)]

[action(t1 ◦ h1, 1, kill , t1, d)]

[action(t2 ◦ h2, 1, kill , t2, d)]

2 [ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)]

[aa(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)]

3 [ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h2, d)]

[aa(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)]

4 [ramify(donothing , t1 ◦ c0 ◦ m ◦ h2, d ◦ d)]

[aa(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h2, d)]

Informally, aa(A,X1,X2) is true if there is an action A′ which is applicable in the
state (X1,X2). Comparing (18) and (11) we find that the bodies of these rules
are identical. Thus, whenever a truth value is assigned to the head of (11), the
same truth value will be assigned to the corresponding head of (18). Formally,
let

P ′
1 = P1 ∪ {(18)}.

The computation of the least fixed point of ΦP′
1

is shown in Table 1.
Let us return to Hank’s choices. If Hank is changing the switch, then let

P ′
2 = P0 ∪ {(10), (18)}.

The least fixed point of ΦP′
2

contains

[ramify(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d)] (19)

and there is no further action applicable to the state (t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d). The
two people on the main track will be saved but the person on the side track will
be killed. This case is illustrated in Fig. 2.

The two cases (17) and (19) can be compared by means of a prefer rule:

prefer(A1, A2) ← ramify(A1, Z1,D1) ∧ (20)
¬ctxtaa(A1, Z1,D1) ∧
ramify(A2, Z2,D1 ◦ d ◦ D2) ∧
¬ctxtaa(A2, Z2,D1 ◦ d ◦ D2) ∧
¬abprefer A1,

abprefer change ← ⊥, (21)
abprefer donothing ← ⊥. (22)
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Fig. 2. The bystander case (initial state) and its ramifications if Hank decides to change
the switch. One should observe that now the switch points to the side track.

prefer compares only states to which no further action is applicable. In the
bystander case these are the states

(t1 ◦ c0 ◦ m ◦ h2, d ◦ d)

and
(t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d)

They can be identified in the least fixed points of ΦP′
1

and ΦP′
2

because there is
no corresponding tuple of the aa relation. Thus,

aa(donothing , t1 ◦ c0 ◦ m ◦ h2, d ◦ d)

and
aa(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d)

are mapped to unknown by the least fixed points of ΦP′
1

and ΦP′
2
. The ctxt oper-

ator [12] will map these unknowabilities to false (see Table 2) and the negations
thereof will be mapped to true. Comparing D1 and D1 ◦ d ◦ D2, action A2 leads
to at least one more dead person than action A1. Hence, A1 is preferred over A2

if nothing abnormal is known about A1.
Under an utilitarian point of view [6], the change action is preferable to

the donothing action as it will kill fewer humans. On the other hand, a purely
utilitarian view is morally questionable in case of human casualties. Hank may
ask himself: Would I still save the humans on the main track if there were no
human on the side track and I changed the switch? This is a counterfactual
because its antecedent is false in the given scenario. But we can easily deal with
it by starting a new computation with the additional fact

ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ← �. (23)
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Table 2. The truth table of the ctxt operator, where F is a formula.

F ctxtF

� �
⊥ ⊥
U ⊥

Comparing (23) and (10), h2 has been replaced by c2. There is no human on
track 2 anymore and, hence, this track is clear. This is a minimal change nec-
essary to satisfy the precondition of the counterfactual. In this case, the least
model of the extended program will contain

[ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1)]

and no further action is applicable in state (t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1). This case
is illustrated in Fig. 3. Using

perm double change ← prefer(change, donothing) ∧ (24)
ramify(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ∧
¬ctxtaa(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ∧
¬abperm double change,

abperm double change ← ⊥ (25)

allows Hank to conclude that changing the switch is permissible according to
the Doctrine of Double Effect [2]. This principles states that sometimes it is
permissible to cause a harm as a side effect (or “double effect”) of bringing
about a good result even though it would not be permissible to cause such a
harm as a means to bringing about the same good end [28].

3.2 The Footbridge Case

The case is similar to the bystander case except that instead of the switch a
footbridge lies accross the main track. Ian is standing on the footbridge next to a
heavy human, whom he can throw on the track in the path of the trolley to stop
it. Is it morally permissible for Ian to throw the human down?

This case is illustrated in Fig. 4. The track is again segmented. We use b1 to
denote that there is a heavy human on the footbridge crossing segment 1 of the
track. Ian has two possibilities: donothing and throw . They are represented as
the base cases in the definition of ramify :

ramify(donothing , t0 ◦ c0 ◦ c1 ◦ b1 ◦ h2 ◦ h2, 1) ← �, (26)
ramify(throw , t0 ◦ c0 ◦ h2 ◦ h2, d) ← �. (27)

One should observe that in the case of donothing track 1 is clear (c1), whereas
this does not hold if Ian has decided to throw down the heavy human. In the
latter case, a dead body is blocking track 1.
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Fig. 3. The bystander case (initial state) and its ramifications if Hank is considering
the counterfactual.

Fig. 4. The footbridge case.

As in the bystander case, one is tempted to reason that the throw action is
preferable to the donothing action as it will kill fewer humans. But throwing
down a heavy human involves an intentional direct kill, and intentional kills are
not allowed under the Doctrine of Double Effect. This can be modeled with the
help of the abnormality predicate abprefer by the clauses:

abprefer throw ← ⊥, (28)
abprefer throw ← intent direct kill throw , (29)

intent direct kill throw ← ramify(donothing , t2 ◦ c0 ◦ c1 ◦ b1, d ◦ d) ∧
¬ctxtaa(donothing , t2 ◦ c0 ◦ c1 ◦ b1, d ◦ d). (30)

Hence, throwing down the heavy human is not preferred and, thus, not permis-
sible. The example demonstrates again the way abnormalities are used in the
Weak Completion Semantics. If nothing is known, then a negative assumption
about the abnormality is made by (28). This assumption can be overridden once
additional knowledge becomes available. In this case we learn that an intentional
direct kill overrides the negative assumption, which is expressed in (29). More-
over, from the specification of the throw action we can derive that the killing of
the heavy human is a direct effect of this action. We may further derive that the
intention to kill the heavy human was to save the humans on the main track by
asking the counterfactual: Would Ian still save the humans on the main track if
he does not throw down the heavy human? This counterfactual can be answered
by considering the donothing action. As doing nothing will lead to two dead
bodies on the main track, throwing down the heavy human was an intentional
direct kill (see (30)).
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3.3 The Loop Case

The case is similar to the bystander case. Ned is standing next to a switch which
he can throw which will temporarily turn the trolley onto a loop side track. There
is a heavy human on the side track. If the trolley hits the heavy human then this
will slow down the trolley, giving the two people on the main track sufficient time
to escape. But it will kill the heavy human. Is it morally permissible for Ned to
change the switch?

This case is illustrated in Fig. 5. Ned can reason that if he does nothing, then
the humans on the main track will be killed. Likewise, if he changes the switch,
then the humans on the main track will be saved whereas the human on the side
track will be killed. But the counterfactual if there were no human on the side
track and he changes the switch, then he would still save the humans on the main
track will be false. Hence, according to the Doctrine of Double Effect changing
the switch is impermissible. However, the Doctrine of Triple Effect [23] allows
to distinguish between an action in order that an effect occurs and an action
because that effect will occur. Whereas the former is classified as impermissible,
the latter is permissible. In the loop case, changing the switch will save the
humans on the main track because the killing of the heavy man on the side track
will slow down the trolley. It is an indirect intentional kill. The change action is
permissible under the Doctrine of Triple Effect. In the footbridge case, throwing
down and killing the heavy man was in order to slow down the trolley. It is a
direct intentional kill. The throw action is impermissible under the Doctrine of
Triple Effect.

This example can also be modeled under the Weak Completion Semantics.
Because killing a human is not a direct effect of the change action we may add:

abprefer change ← intent direct kill change, (31)
intent direct kill change ← ⊥. (32)

Consequently, the change action will be preferred over the donothing action.
A properly revised definition for permissibility will allow Ned to conclude that
changing the switch is permissible under the Doctrine of Triple Effect :

perm triple change ← prefer(change, donothing) ∧ (33)
¬ intent direct kill change
¬ abperm triple change,

abperm triple change ← ⊥. (34)

3.4 Summary

Dominic Deckert discusses additional trolley problems in [9]:

– The loop-push case is a variant of the loop case: besides changing the switch,
a heavy human has to be pushed on the looping side track in order to save the
humans on the main track. Thus, a direct intentional kill is needed to stop
the trolley and, consequently, neither the Doctrine of Double Effect nor the
Doctrine of Triple Effect permit the change action.
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Fig. 5. The loop case.

– Another variant of the loop-case is the man-in-front case: a heavy object is
blocking the sidetrack behind the heavy human such that if the trolley hits the
heavy object, it will stop. Hence, the killing of the heavy human is no longer
intended in order to save the humans on the main track and the change action
is permissible under the Doctrines of Double and Triple Effect.

– The collapse-bridge case is a variant of the footbridge case: instead of throwing
the heavy human from the bridge, the bridge is collapsed in its entirety. This
places the heavy human and the debris of he bridge on the track, effectively
stopping the trolley. Hence, the killing of the heavy human is not intentional
and the collapse of the bridge becomes permissible under the Doctrines of
Double and Triple Effect.

In all cases counterfactuals are necessary to determine whether the death of
a human was intented in order to save the humans on the main track. Within the
Weak Completion Semantics all these problems can be modelled as well. Table 3
summarizes the results.

4 Fluent Matching Problems

Let us discuss the computation of the least fixed point of the semantic operator
ΦP′

1
shown in Table 1 in more detail.

ΦP′
1
(〈∅, ∅〉) = ΦP′

1
↑ 1 = 〈I�

1 , I⊥
1 〉,

where
I�
1 = { [ramify(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)],

[action(t0 ◦ c0 ◦ m, 1, downhill , t1 ◦ c0 ◦ m, 1)],
[action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1)],
[action(t1 ◦ h1, 1, kill , t1, d)],
[action(t2 ◦ h2, 1, kill , t2, d)] },

I⊥
1 = { [abramify downhill ],

[abramify kill ] }.

Table 3. The six cases and the permissible actions according to the different views.

Bystander Loop Footbridge Loop-Push Man-in-Front Collapse

Double effect change - - - change collapse

Triple effect change change - - change collapse

Utilitarianism change change throw change throw change collapse
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Considering the body of (11) we find that both possible ground instances of
abramify A′, viz. abramify downhill and abramify kill , are false under ΦP′

1
↑ 1 and

their negations are true under ΦP′
1

↑ 1. The only ground instance of

ramify(A,P1 ◦ Z1, P2 ◦ Z2) (35)

being true under ΦP′
1

↑ 1 is

ramify(donothing , t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1). (36)

Hence, we are searching for a ground instance of

action(P1, P2, A
′, E1, E2)

being true under ΦP′
1

↑ 1 such that

– the ground instance of P1 is contained in t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2 and
– the ground instance of P2 is contained in 1.

There are four candidates in ΦP′
1

↑ 1. The only possible ground instance of an
action meeting the conditions is

action(t0 ◦ c0 ◦ m, 1, downhill , t1 ◦ c0 ◦ m, 1). (37)

Comparing the second arguments of (35) and (36) with the first argument of
(37) we find that

P1 = t0 ◦ c0 ◦ m and Z1 = h1 ◦ h1 ◦ h2.

Likewise, comparing the third arguments of (35) and (36) with the second argu-
ment of (37) we find that

P2 = 1 and Z2 = 1.

Combining Z1 with the fourth argument of (37) and, likewise, combining Z2

with the fifth argument of (37) we learn that

ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2, 1)

must be true under ΦP′
1

↑ 2.
Likewise, we can compute that

[ramify(donothing , t1 ◦ c0 ◦ m ◦ h1 ◦ h2, d)]

must be true under ΦP′
1

↑ 3 and

[ramify(donothing , t1 ◦ c0 ◦ m ◦ h2, d ◦ d)]

must be true under ΦP′
1

↑ 4.
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Hence, in order to compute the semantic operator we have to solve AC1-
matching problems of the form

t0 ◦ c0 ◦ m ◦ Z1 =AC1 t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2 and 1 ◦ Z2 =AC1 1

or of the form

t0 ◦ c0 ◦ s ◦ Z1 =AC1 t0 ◦ c0 ◦ m ◦ h1 ◦ h1 ◦ h2 and 1 ◦ Z2 =AC1 1.

Whereas the latter has no solution, the former does. In general, we need to solve
so-called fluent matching problems of the form

s ◦ Z =AC1 t (38)

where s and t are ground fluent terms and Z is a variable.
Such problems have been considered in [21,39], where s was a fluent term. It

was shown that fluent matching is decidable, finitary, and there always exists a
minimal and complete set of matchers. The fluent matching algorithm presented
in [21,39] can be easily adapted to the fact that s is ground:

(i) If s =AC1 1 then return {Z �→ t}.
(ii) Don’t care non-deterministically select a fluent u occurring in s and remove

u from s.
(iii) If u occurs in t, then delete u from t and goto (i), else stop with failure.

Hence, with s being a ground fluent term, fluent matching becomes unitary.
Using the correspondence between fluent terms and multisets, let S and T

be the multisets corresponding to the fluent terms s and t. Then, the fluent
matching problem (38) has a solution iff

S ⊆̇ T .

If (38) has a solution, then Z is mapped onto the fluent term corresponding to

T \̇ S.

5 On the Adequateness of the Approach

Do humans reason with AC1-matchers in the limited form described in the
previous section? Obviously, the multisets should not be large as there is com-
pelling evidence that humans cannot deal with many different objects at the
same time [29]. In the trolley problems discussed in this paper the maximal
number of fluents was six. Even if we increase the number of humans on the
main track to five as in the original version of the bystander case [14], the size
of the multisets becomes only nine. Moreover, the actions did not increase the
number of fluents in that the number of immediate effects was always equal to
the number of preconditions.
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In Germany, small children in Kindergarden are asked to solve puzzles of
the following form: given several fruits like, for example, four apples and three
peas, they are asked how many pieces are left after they would give some, say,
two apples and one pea, away. The puzzles are presented in pictures. In most
cases, the children are crossing out the pieces given away and, afterwards, are
counting the remaining ones. In other words, they seem to solve exactly the
AC1-matching problems discussed in the previous section. But to the best of
my knowledge, there are almost no experimental data on how humans deal with
multisets (see e.g. [16,32]). Hence, we hypothesize that humans can solve such
matching problems although we must be careful as the ethical decision problems
considered herein are more abstract than the puzzles solved by the children
and it is well-known that humans solve less abstract problems differently than
abstract ones (see e.g. [15,30,42]). Thus, the hypothesis must be experimentally
tested.

6 Future Work

In the specification of the prefer relation in Subsect. 3.1, the ctxt operator was
used. Having been introduced in [12] it was shown that the ctxt operator destroys
the monotonicity property of the semantic operator. Consequently, the semantic
operator may not have fixed points anymore. If, however, the program is acyclic,
then the semantic operator has been shown to be a contraction [12,18] and
Banach’s contraction mapping theorem [5] can be applied to obtain the fixed
point. The programs considered in this paper are acyclic. The trolley is either
moving forward on finite tracks or a human gets killed. The prefer relation as well
as the permissibility relations are acyclic. But a small gap remains in the chain
of argumentation: We need to show that the semantic operator is a contraction
in the presence of equational theories.

We would like to apply ethical decision making to much larger classes of
problems, as presented in [3] for example. Although the problems discussed in [3]
are similar to the ones presented in this paper, the data gathered in the moral
machine experiment contains the cultural background of the actors and per-
missibility of actions depends also on the cultural background. In addition, the
counterfactuals needed to determine the permissibility of actions were encoded
by the author. We need a theory to automatically generate and test counterfac-
tuals. This includes a specification of minimal change.

The Weak Completion Semantics has been implemented as a connectionist
network [10]. However, the connectionist solution to the AC1-matching problems
discussed in this paper needs to be added to the implementation. We envision a
solution where a finite multiset of fluents is encoded by a finite array of units,
which are activated using a dynamic binding mechanism like temporal synchrony
[36]. In an AC1-matching problem, two arrays of units are compared. If a unit
in the first array is activated in the same phase as a unit in the second array
then both units shall be deactivated.

Last but not least, we need experiments to test our hypothesis that humans
reason with AC1-matchers.
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Abstract. Updating a knowledge base to remove an unwanted conse-
quence is a challenging task. Some of the original sentences must be either
deleted or weakened in such a way that the sentence to be removed is
no longer entailed by the resulting set. On the other hand, it is desirable
that the existing knowledge be preserved as much as possible, minimis-
ing the loss of information. Several approaches to this problem can be
found in the literature. In particular, when the knowledge is represented
by an ontology, two different families of frameworks have been devel-
oped in the literature in the past decades with numerous ideas in com-
mon but with little interaction between the communities: applications of
AGM-like Belief Change and justification-based Ontology Repair. In this
paper, we investigate the relationship between pseudo-contraction oper-
ations and gentle repairs. Both aim to avoid the complete deletion of sen-
tences when replacing them with weaker versions is enough to prevent
the entailment of the unwanted formula. We show the correspondence
between concepts on both sides and investigate under which conditions
they are equivalent. Furthermore, we propose a unified notation for the
two approaches, which might contribute to the integration of the two
areas.

Keywords: Belief change · Pseudo-contraction · Justification ·
Ontology repair · Knowledge representation

1 Introduction

In computer science, ontologies are shareable representations of a domain’s
knowledge. Ontology development and maintenance tasks involve ontology engi-
neers, domain specialists and other professionals. In this collaborative process,
one complicating aspect is that even a small modification may impact consider-
ably what the ontology entails. To facilitate the execution of those tasks, tech-
niques to aid in repairing and evolving ontologies were created. Two fields, in
particular, provide such methods: Ontology Repair and Belief Change.

While there are many distinct definitions of ontology in the literature, as
well as many ways to represent them, we will focus on ontologies represented
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in Description Logics (or DLs, for short), decidable fragments of First-Order
Logic. For an overview, please refer to the introductory texts [3,4]. In this paper,
ontologies are finite sets of formulas (or axioms) in some Description Logic.
This logical background allows users to obtain extended information from the
explicit representation using reasoners. We employ the usual notation for DL
formulas [3].

The area of Ontology Repair groups together a set of formal definitions and
tools devised to help ontology maintainers in the task of debugging and getting
rid of unwanted inferences. Different approaches have been proposed, depending
on whether one is interested in repairing only the ABox [7,20], i.e., the part of
the ontology dealing with instances, while leaving the terminological part (TBox)
fixed, or considering the ontology as a whole [15,16,18].

Belief Change is a research area that aims at solving problems related to
changing knowledge bases/logical theories, especially in the face of new, possi-
bly conflicting, information. The work of Alchourrón, Gärdenfors and Makinson
[1] is widely recognized as the initial hallmark of this area of research, and gave
rise to what is known as the AGM paradigm. Initially developed having propo-
sitional logic in mind, in the last decade the AGM theory has been adapted to
several other formalisms, including Description Logics [9,23,29]. Therefore, we
can model problems in ontology maintenance using this framework (with a few
modifications).

In this work, we show that Belief Change and Ontology Repair are closely
related. Both have different notations for similar, and sometimes the same, con-
cepts. Moreover, they share similar techniques to solve the same problem. We
also show how both fields proposed similar solutions to obtain repairs that are
fine-grained, that is, repairs that avoid removing whole formulas. Most of the
results are quite straightforward, nonetheless, we found that both communities
could benefit from them.1

2 Background

In this section, we briefly introduce the notation and the concepts used in the
areas of Belief Change and Ontology Repair. We will denote a language by L, and
we will use Cn to refer explicitly to a consequence operator. In this way, Cn(X)
denotes the logical consequences of Cn over X, where X is a set of formulas in
L. As we will be dealing with a family of logics, the DLs, we will assume that
in each case Cn is associated to the smallest DL that can represent the set of
formulas given as argument. Moreover we assume it to be:

– monotonic: if X ⊆ Y , then Cn(X) ⊆ Cn(Y );
– compact: for any X if α ∈ Cn(X), there is a finite X ′ ⊆ X such that

α ∈ Cn(X ′);
– idempotent: Cn(X) = Cn(Cn(X)).
1 Actually, the idea to put together the main definitions used in Ontology Repair and

Belief Revision for DLs appeared in many discussions with Franz during the last
decade, so we deemed the paper as an appropriate Birthday present.
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2.1 Ontology Repair

Ontology Repair consists in transforming an ontology so that it does not imply
a certain formula. In what follows, we define the main concepts based on the
presentation given by Baader et al. [5]. Consider that O = 〈Os,Or〉 is an ontology
consisting of a static and a refutable part (Os and Or, respectively), which are
assumed to be disjoint.2 The static part contains those axioms which we want
to preserve when we repair the ontology, while the refutable part contains those
which we are willing to give up if needed. We assume that the separation into
a static and refutable part is given as part of the input, be it a decision of an
ontology engineer or obtained via some (semi-)automatic process.

Definition 1 (Repair). Let O = 〈Os,Or〉 be an ontology and let α be a sen-
tence entailed by O but not by Os. An ontology O′ is a repair of O with respect
to α if Cn(Os ∪ O′) ⊆ Cn(O) \ {α}.

Classically, a repair consists of a subset of the refutable part of the ontology:

Definition 2 (Classical repair). A repair O′ of the ontology O with respect
to the sentence α is a classical repair if it is contained in Or.

And usually, we try to preserve as much knowledge as possible, looking for
an optimal repair:

Definition 3 (Optimal repair). A repair O′ of the ontology O with respect to
the sentence α is an optimal repair if no other repair O′′ (of O w.r.t. α) is such
that Cn(Os ∪ O′) ⊂ Cn(Os ∪ O′′).

An optimal classical repair is a classical repair which is optimal in the sense
that there is no classical repair which contains it.

In order to find classical repairs, a construction based on the ideas of justi-
fications and hitting sets can be used. Justifications are minimal subsets of an
ontology that imply the unwanted sentence:

Definition 4 (Justification [18]). Let O = 〈Os,Or〉 be an ontology and α a
sentence entailed by O but not by Os. A justification for α in O is an inclusion-
minimal subset J of Or such that α ∈ Cn(Os ∪ J). We will denote the set of all
justifications for α in O as Just(O, α).

Schlobach [26] has proposed an algorithm to debug incoherent ontologies
inspired by Reiter’s hitting set tree [22]. Other authors, such as Kalyanpur
et al. [18,19] and Horridge [15], extended and generalised this algorithm to find
all justifications for any given entailment.

Definition 5 (Hitting set [22]). Given a set J of justifications for a sentence
in an ontology, a hitting set of J is a set H of sentences contained in

⋃
J such

that H ∩ J 	= ∅ for every J ∈ J .
2 The notation 〈Os,Or〉 is meant to represent the set Os ∪Or in such a way that it is

possible to tell whether a sentence is in the static part or in the refutable part.
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Regarding the actual repair, done by removing at least one formula from
each justification, a simple description is presented in Algorithm 1 from Baader
et al. [5]. We assume the existence of a function Justifications(O, α) that
computes Just(O, α) and a function MinimalHittingSet(J ) that computes an
inclusion-minimal hitting set of J .

Algorithm 1. Classical repair algorithm
Input: An ontology O = 〈Os,Or〉 and a formula α
Output: A classical repair O′ of O w.r.t. α

1 Function ClassicalRepair(O, α)
2 J ← Justifications (O, α)
3 H ← MinimalHittingSet(J )
4 O′ ← Or

5 for β ∈ H do
6 O′ ← O′ \ {β}
7 return O′

A special case of Ontology Repair is ABox Repair, where the TBox is fixed,
i.e., the TBox is contained in Os:

Definition 6 (ABox Repair [20]). Let O be an ontology, with TBox T and
ABox A. An ABox Repair of O is an inclusion-maximal subset A′ of A such
that the ontology O′ consisting of T ∪ A′ is consistent.

It is easy to see that when T = Os and A = Or, an ABox repair is an optimal
repair according to Definition 3.

2.2 Belief Change

In the classical AGM paradigm [1], an agent’s knowledge is represented by a
theory or belief set — a set closed under a consequence operator. In this paper,
we consider an alternative representation, belief bases [10], dropping the closure
requirement. Three change operations on the agent’s knowledge B with respect
to a sentence α are considered:

– Expansion (B + α): the sentence α is incorporated to B possibly leading to
an inconsistency.

– Revision (B ∗ α): the sentence α is incorporated to B in a way that the
resulting set is consistent.

– Contraction (B − α): the sentence α is removed from B and must not be
entailed by the contracted set.

In [1], a construction for a contraction operation known as partial meet con-
traction was proposed, based on the idea of selecting maximal subsets of the
agent’s knowledge.
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Definition 7 (Remainder and remainder set [1]). Let B ⊆ L and α ∈ L.
The remainder set of B with respect to α, denoted by B ⊥ α, is the set of all
X ⊆ B such that α /∈ Cn(X) and there is no Y such that X ⊂ Y ⊆ B and
α /∈ Cn(Y ). Each such X is an α-remainder of B.

In order to compute the contraction, at least one of the α-remainders is
selected, according to some preference criteria, encoded as a function:

Definition 8 (Selection function [1]). Let B ⊆ L. A function γ is a selection
function for B if, for every α ∈ L, it is the case that ∅ 	= γ(B ⊥ α) ⊆ B ⊥ α if
B ⊥ α is nonempty, or γ(B ⊥ α) = {B} otherwise.

The selected α-remainders are then joined to form the resulting contracted
set:

Definition 9 (Partial meet contraction [1]). Let B ⊆ L, and let γ be a
selection function for B. The partial meet contraction of B by a sentence α,
denoted by B −γ α, is defined as

⋂
γ(B ⊥ α).

Hansson has characterised the operation of partial meet base contraction by
means of the following rationality postulates, where α and α′ are sentences and
B is a belief base [12]:

– inclusion: B − α ⊆ B;
– relevance: if α′ ∈ B\(B−α), then there is some B′ such that B−α ⊆ B′ ⊆ B

and α ∈ Cn(B′ ∪ {α′}) \ Cn(B′);
– success: α /∈ B − α unless α ∈ Cn(∅);
– uniformity: if α and α′ are such that, for every B′ ⊆ B, it is the case that

α ∈ Cn(B′) if and only if α′ ∈ Cn(B′), then B − α = B − α′.

Theorem 1 [12]. An operation ´ is a partial meet contraction for a belief base
B if and only if ´ satisfies inclusion, relevance, success and uniformity.

Another construction for contraction was proposed in [13], which relies on
minimal sets implying the undesirable sentence:

Definition 10 (Kernel and kernel set [13]). Let B ⊆ L and α ∈ L. The
kernel set of B with respect to α, denoted by B ⊥⊥ α, is such that a set X is in
B ⊥⊥ α if and only if X ⊆ B, α ∈ Cn(X), and there is no Y ⊂ X such that
α ∈ Cn(Y ). Each such X is an α-kernel.

In order to contract α from B, at least one element of each α-kernel must be
removed:

Definition 11 (Incision function [13]). Let B ⊆ L. A function σ is an
incision function for B if, for every α ∈ L, it is the case that σ(B ⊥⊥ α) ⊆⋃

(B ⊥⊥ α) and σ(B ⊥⊥ α) ∩ X 	= ∅ for every X ∈ B ⊥⊥ α.
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Definition 12 (Kernel contraction [13]). Let B ⊆ L, and let σ be an incision
function for B. The kernel contraction of B by a sentence α, denoted by B−σ α,
is defined as B \ σ(B ⊥⊥ α).

Kernel contraction can also be characterised by a set of rationality postulates:

Theorem 2 [13]. An operation ´ is a kernel contraction for a belief base B if
and only if ´ satisfies inclusion, success, uniformity and:

(core-retainment) if α′ ∈ B \ (B − α), then there is some B′ such that
B′ ⊆ B and α ∈ Cn(B′ ∪ {α′}) \ Cn(B′).

From this theorem, as core-retainment is slightly more general than rele-
vance, we see that all partial meet contractions can be constructed as a kernel
contraction, but the opposite does not hold, i.e., kernel contractions are more
general than partial meet contractions. This will be further explored in Sect. 4.

An algorithm for computing kernel contraction based on the idea of hitting
sets was proposed in [28]. Note that the same idea underlies the computation of
repairs, presented above. Although the theory of Belief Change is mostly used for
propositional logic, the constructions and characterisation results were extended
in [14] to any compact and monotonic logic.

3 Correspondence Between Belief Change and Repairs in
Description Logics

In this section, we will analyse the close relationship between the concepts and
constructions presented for Ontology Repair and Belief Change. Also, we propose
a unified notation for Belief Change and Ontology Repair operations.

Definition 13 (Maximal Non-Implying Subsets). Let B be a knowledge
base, α a sentence, and Φ a set of static sentences (i.e. which should be preserved
in any operation). The set of maximal α-non-implying subsets of B with respect
to Φ, denoted by MaxNon(B,α, Φ), is such that X ∈ MaxNon(B,α, Φ) if and
only if X ⊆ B, α /∈ Cn(Φ ∪ X), and there is no Y such that X ⊂ Y ⊆ B and
α /∈ Cn(Φ ∪ Y ).

For brevity, we shall omit the last argument whenever it is empty:
MaxNon(B,α) = MaxNon(B,α, ∅).

Remark 1. If Φ ⊆ B, then the maximal α-non-implying subsets of B with respect
to Φ contain all of the elements of Φ, i.e., X ⊇ Φ for every X ∈ MaxNon(B,α, Φ).

Proof. If there is some X ∈ MaxNon(B,α, Φ) such that X 	⊇ Φ, then the set
Y = X ∪ Φ is such that X ⊂ Y ⊆ B, and since Φ ∪ Y = Φ ∪ X, we have that
α /∈ Cn(Φ ∪ Y ) = Cn(Φ ∪ X), violating the definition of MaxNon. ��

Definition 13 corresponds to Definition 7 if Φ = ∅, i.e., MaxNon(B,α) =
B ⊥ α.
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Definition 14 (Minimal Implying Subsets). Let B be a knowledge base,
α a sentence, and Φ a set of static sentences. The set of minimal α-implying
subsets of B with respect to Φ, denoted by MinImp(B,α, Φ), is such that X ∈
MinImp(B,α, Φ) if and only if X ⊆ B, α ∈ Cn(Φ ∪ X), and there is no Y ⊂ X
such that α ∈ Cn(Φ ∪ Y ).

As in the previous definition, the last argument will be omitted if empty:
MinImp(B,α) = MinImp(B,α, ∅).

Remark 2. The minimal α-implying subsets of B with respect to Φ do not con-
tain elements of Φ, i.e., X ∩ Φ = ∅ for every X ∈ MinImp(B,α, Φ).

Proof. If there is some X ∈ MinImp(B,α, Φ) such that X ∩ Φ 	= ∅, then the
set Y = X \ Φ is such that Y ⊂ X, and since Φ ∪ Y = Φ ∪ X, we have that
α ∈ Cn(Φ ∪ Y ) = Cn(Φ ∪ X), which contradicts the definition of MinImp. ��

If Φ = ∅, Definition 14 corresponds to Definition 10, i.e., MinImp(B,α) =
B ⊥⊥ α. Definition 14 is also closely related to Definition 4: MinImp(B, α, Φ) =
Just(〈Φ,B \ Φ〉 , α), or conversely, Just(〈Os,Or〉 , α) = MinImp(Os ∪Or, α,Os).
Our definitions of MaxNon and MinImp also correspond, respectively, to the sets
of MaNAs (maximal non-axiom sets) and MinAs (minimal axiom sets) in the
literature [6].

Since we usually represent sentences by lowercase Greek letters, we propose
to replace γ and σ by g and f , respectively, to represent selection and incision
functions (Definitions 8 and 11).

The usual notations for partial meet contraction and kernel contraction over-
lap, making it impossible to distinguish between the two without the context (i.e.
B−δα could be either construction depending on what δ is). We propose a clearer
notation for these constructions: PMCg(B,α) for partial meet contraction and
KCf (B,α) for kernel contraction. Similarly, a generic contraction operation will
be represented by C(B,α).

Let B ⊆ L and α ∈ L. The following two properties follow straightly from
Definitions 4 and 10.

Proposition 1 (Kernel ∼ Justification). If α ∈ Cn(B), then a set X is an
α-kernel of B with respect to α if and only if X is a justification for α in 〈∅, B〉.

In our notation, the set of all such sets X is denoted by MinImp(B,α), which
unifies the concepts of the following proposition:

Proposition 2 (Kernel set ∼ Set of all justifications). If α ∈ Cn(B), then
B ⊥⊥ α = Just(〈∅, B〉 , α).

A classical repair (Definition 2) can be seen as a contraction operation that
satisfies two of Hansson’s postulates for base contraction.
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Proposition 3 (Classical Repair =⇒ Postulates for base contraction).
Let Rep be an operation that yields a classical repair. Define the operation CRep

as

CRep(B,α) =

{
Rep(〈∅, B〉 , α), if B |= α;
B, otherwise.

Then, CRep satisfies success and inclusion.

In Sect. 4 we show a special case of classical repair that satisfies the other
two postulates needed for characterising base contraction, namely uniformity and
relevance, and also discuss a result similar to Proposition 3 for optimal classical
repairs.

The following proposition, which is an immediate consequence of the Upper
Bound Property [2], will be useful to show the connection between partial meet
base contraction and classical repairs.

Proposition 4 (Existence of α-remainder preserving Os). Let O =
〈Os,Or〉 be an ontology and α be a sentence entailed by O but not by Os. Then,
there is at least one α-remainder X of Os ∪ Or such that Os ⊆ X.

Now we can show that partial meet base contractions that include the static
part of the ontology yield classical repairs.

Proposition 5 (Partial meet base contraction =⇒ Classical repair).
Under the conditions of Proposition 4, if the selection function g is such that
Os ⊆ X for every X ∈ g(O ⊥ α), then the operation Repg defined as

Repg(O, α) = PMCg(O, α) \ Os

yields a classical repair.

Proof. Let O′ = Repg(O, α). Since g only selects α-remainders including Os, we
have that Os ⊆ PMCg(O, α), which implies that Os∪O′ = PMCg(O, α). Hence,
from the inclusion postulate, we have that Os∪O′ ⊆ O, and monotonicity of Cn
gives Cn(Os ∪ O′) ⊆ Cn(O). This is sufficient to show that the result of Repg

is a repair. From the inclusion postulate, we have that PMCg(O, α) ⊆ O, which
proves that O′ = PMCg(O, α) \ Os ⊆ Or. Therefore, Repg yields a classical
repair. ��

To conclude this section, we summarise the relationships between essential
concepts in both Belief Change and Ontology Repair using the diagram in Fig. 1.
In the diagram, we represent each concept with an ellipse and the areas by solid
rectangles. Moreover, in the Belief Change area, we separate the concepts that
constitute the partial meet approach from those that are part of the kernel
approach as discussed in Sect. 2. We can note how most of the concepts have
direct connections; the only exceptions are MIPS (set of Minimal Incoherence-
Preserving Sub-TBoxes) and MUPS (set of Minimal Unsatisfiability-Preserving
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Sub-TBoxes) [27], which are variants of the usual justifications, and as such
cannot be mapped directly to our definition of MinImp. More specifically, if T is
a TBox and A a concept name, then the set of MUPSes of A in T is equivalent
to MinImp(T , A � ⊥); and the set of all MIPSes in T is given by MIPS(T ) =

min
⊆

{
⋃

A∈NC(T )

MinImp(T , A � ⊥)

}

, where NC(T ) is the set of concept names

in T .

Fig. 1. Relationship between concepts in Belief Change and Ontology Repair

With these results we can see that repairs in general already satisfy some
of the postulates for base contraction. In the next section we also show that
whenever a classical repair is optimal in the sense of Definition 3, it also satisfies
other two postulates: uniformity and relevance.

4 Minimal Change in Classical Repair and Contractions

Most approaches in Ontology Repair and Debugging rely on minimal implying
sets for both definition and implementation. As examples, we have the work of
Schlobach and Cornet [27], Kalyanpur [18] and Qi et al. [21]. The desire to remove
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formulas only when strictly necessary is also common in these approaches [17,
18,21,26], and in terms of Belief Change, in particular of kernel revision, this
desideratum can be expressed using the notion of minimal incision functions
(Definition 15). In this section, we consider that the whole ontology is refutable as
this will allow us to cover approaches in Ontology Repair which do not consider
a static part and use the classical theory of Belief (Base) Change which also
assumes that all axioms are retractable.

Definition 15 (Minimal Incision Function [8]). Let f be an incision func-
tion for the ontology O. We say that f is minimal if no other incision function
f ′ over MinImp(O, α) is such that f ′(MinImp(O, α)) ⊂ f(MinImp(O, α)).

This requirement of preserving as many axioms as possible can also be
expressed using the partial meet construction, more specifically with maxichoice
contraction functions (Definition 16). This coincidence between the two methods
occurs in this case because kernel base contraction functions are equivalent to
maxichoice base contraction functions, in DLs, whenever the incision function is
minimal.

Definition 16 (Maxichoice Contraction Function [1]). We say that
a partial meet contraction function PMCg over MaxNon(O, α) is a maxi-
choice contraction function if it is based on a selection function g such that
|g(MaxNon(O, α))| = 1.

Note that the Maxichoice Contraction Functions give as result an optimal
classical repair as in Definition 3 (elements of MaxNon(O, α)), whenever a repair
exists, because DLs are monotonic.

Lemma 1. An incision function f is minimal if and only if O \
f(MinImp(O, α)) is an element of MaxNon(O, α).

Lemma 1 is directly adapted from Falappa et al. [8], where it was stated for
propositional logic. The proof, however, can be transported without issues to
Description Logics.

Given a kernel contraction KCf , it can be constructed as a partial meet
construction if and only if it satisfies the relevance postulate. This postulate
constrains which formulas a contraction is allowed to remove, hence it expresses
a “minimal change” requirement on the outcome.

We can straightforwardly extend this mapping to DL belief bases. According
to Hansson and Wassermann [14], the only property that distinguishes partial
meet from kernel base contraction is relevance, as kernel operations only guar-
antee its more general counterpart called core-retainment. In other words, the
class of kernel base contraction functions contain that of partial meet contraction
functions.

Fallappa et al. [8] also showed that whenever a kernel contraction satisfies the
relevance postulate, it is equivalent to some partial meet function. The impor-
tance of this postulate is to rule out contraction functions that would remove
axioms that are not responsible for the undesired entailment, expressing a “min-
imal change” requirement on the outcome. This point is clarified in Example 1:
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Example 1. Consider the following DL ontology, with only the refutable part:

Orel = {c : A, c : B, A � B � D}.

Suppose that we want to remove the entailment c : D. We can do this by
computing MinImp(Orel, c : D) and removing elements using an incision function.

MinImp(Orel, c : D) = {{c : A, A � B � D}, {c : B, A � B � D}}.

Now, we consider an incision function f such that f(Orel, c : D) =
{c : A, A � B � D}. The kernel contraction based on this function does not satisfy
relevance, as there is no O′ with {c : B} ⊆ O′ ⊆ Orel such that O′

� c : D but
O′ ∪ {c : A} � c : D.

This essentially means that removing c : A represents a redundancy, since
it always depends on other members of f(Orel, c : D) to produce the unde-
sired entailment. In other words, it only occurs in minimal implying sets where
A � B � D already occurs.

If we consider an incision function f ′ with f ′(Orel, c : D) = {A � B � D}, then
we can take O′ = {c : A, c : B} and the conditions of the relevance postulate will
be satisfied (in this particular case, f ′ is also minimal, which is sufficient but not
necessary to obtain relevance).

What we show here is a way to generate relevance-complying kernel base
contractions. Before proceeding to the actual construction, we need an auxiliary
result regarding the union of incision functions:

Proposition 6. If {fi}i∈I⊂N is a set of incision functions over O, then
f(O, α) :=

⋃

i∈I

fi(O, α) is an incision function.

Proof. Let {fi}i∈I⊂N and f be as in the proposition statement. Then, for all α:

1. Since fi(O, α) ⊆
⋃

MinImp(O, α) for all i, we have that f(O, α) ⊆⋃
MinImp(O, α);

2. If ∅ 	= X ∈ MinImp(O, α), then for all fi: X ∩ fi(O, α) 	= ∅. And this is
sufficient to ensure that f satisfies the same condition.

Therefore, f is also an incision function. ��

Now, we can use Proposition 6 to define a particular class of incision
functions:

Definition 17 (Regular Incision Function). We say that an incision func-
tion f is regular if it can be equivalently expressed as the union of minimal inci-
sion functions, in symbols: f(O, α) =

⋃

i∈I⊆N

fi(O, α), where each fi is a minimal

incision function. Incision functions that are not regular will be called irregular.
We say that a kernel base contraction function is (ir)regular if it is based on
a(n) (ir)regular incision function.
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Finally, we show that regularity is equivalent to relevance for kernel base
contraction functions. To simplify the proof we use the intermediate result stated
in Lemma 2.

Lemma 2. If a contraction C(O, α) satisfies relevance, then for each β ∈ O \
C(O, α) there is at least one set O′ ∈ MaxNon(O, α) such that β 	∈ O′ and
C(O, α) ⊆ O′.

Proof. Let O be a DL ontology, α a DL formula and C a contraction function
satisfying relevance. The relevance postulate states that for each β ∈ O\C(O, α)
there is a set O′ with C(O, α) ⊆ O′ ⊆ O such that O � α, but O ∪ {β} � α.
Note that for every O′ ∈ MaxNon(O, α) we already have that C(O, α) ⊆ O′.
Therefore, we just need to show that for each β ∈ O \ C(O, α) there is at least
one set O′ ∈ MaxNon(O, α) such that β 	∈ O′.

Let us assume that for some β ∈ O\C(O, α) there is no O′ ∈ MaxNon(O, α)
such that β 	∈ O′, i.e., β ∈

⋂
MaxNon(O, α). Due to monotonicity, this means

that for any O′′ ⊆ O such that O′′
� α we have that O′′ ∪ {β} � α, as O′′ ∪

{β} ⊆ O′ for some O′ ∈ MaxNon(O, α). However, this contradicts the relevance
assumption. Hence, there must be at least one set O′ ∈ MaxNon(O, α) such that
β 	∈ O′. ��

Corollary 1. The class of kernel contraction functions that satisfy relevance
and that of regular kernel base contraction functions are the same.

Proof. Let KCf be a regular kernel base contraction function. As f is regular we
can write f(O, α) =

⋃

i∈I⊆N

fi(O, α), where each fi is a minimal incision function.

For each β ∈ O \ KCf (O, α) we have that there is at least one fiβ
with iβ ∈ I

such that β ∈ fiβ
(O, α). Finally, note that for each β we have at least one set

O\fiβ
(O, α) such that KCf (O, α) ⊆ O\fiβ

(O, α) ⊂ O. Moreover, O\fiβ
(O, α) ∈

MaxNon(O, α), hence it does not imply α, but it does if we add β. Therefore,
the regular contraction function satisfies relevance.

To prove the other direction, consider a kernel base contraction function KCf

that satisfies relevance. From Lemma 2, we know that for each β ∈ f(O, α) there
is a Oβ ∈ MaxNon(O, α) such that β 	∈ Oβ . Also from Lemma 2, we know that
for each Oβ we have KCf (O, α) ⊆ Oβ , and as such KCf (O, α) ⊆

⋂

β∈f(O,α)

Oβ .

Then, using Lemma 1 we can write KCf (O, α) ⊆
⋂

β∈f(O,α)

(O \ fβ(O, α)) = O \
⋃

β∈fβ(O,α)

fβ(O, α), where each fβ is a minimal incision function defined as fβ =

(O \ Oβ).
Now we show that KCf (O, α) ⊇ O \

⋃

β∈fβ(O,α)

fβ(O, α), where each fβ is

defined as in the previous paragraph. Suppose for a contradiction that there is
a δ ∈ O \

⋃

β∈fβ(O,α)

fβ(O, α), but δ 	∈ KCf (O, α). We have that δ ∈ f(O, α)
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and hence, due to Lemma 2 there must be an Oδ ∈ MaxNon(O, α) such that
δ 	∈ Oδ. But as we proved earlier, δ 	∈ KCf (O, α) ⊆ Oδ. However, we assumed
δ ∈ O \

⋃

β∈fβ(O,α)

fβ(O, α) =
⋂

β∈f(O,α)

(O \ fβ(O, α)) ⊆ Oδ what implies δ ∈ Oδ.

As the contradiction shows, such δ cannot exist, and hence KCf (O, α) ⊇ O \⋃

β∈fβ(O,α)

fβ(O, α).

Finally, KCf (O, α) = O \
⋃

β∈fβ(O,α)

f(O, α), concluding the proof. ��

In this section, we highlighted a mapping between the algorithms that obtain
classical repairs by finding minimal hitting sets for justifications and the kernel
base contraction functions based on minimal incisions (e.g. with Lemma1). Fur-
thermore, we also showed how to build kernel base contraction functions (and
thus, justification-based repairs) that also satisfy relevance.

5 Generalisations of Classical Operations

Both in classical repairs and in contraction operations, sentences will either be
kept or be removed altogether, as shown in the following example:

Example 2. [24,25] Consider the following DL knowledge base, which states that
Cleopatra has a son and a daughter:

– Concepts: Person, Man and Woman.
– Role: hasChild.
– Individuals (assumed different): cleopatra, c1 and c2.
– TBox axioms: Man � Person, Woman � Person.
– ABox axioms: c1 : Man, c2 : Woman, cleopatra : Woman, (cleopatra, c1) :
hasChild, (cleopatra, c2) : hasChild.

If we want to contract by cleopatra : ∃hasChild.Man (i.e. if we do not want
“Cleopatra has a son” to be entailed by our ontology), then both a classical
repair and a base contraction would necessarily remove either our belief that c1
is a man or our belief that c1 is Cleopatra’s child (or both). In the first case, the
resulting ontology has no information left about the classes that the individual
c1 belongs to, which means that the fact that c1 is a person is no longer known.
In contrast, if we apply a pseudo-contraction or a gentle repair, it is possible
to replace the sentence c1 : Man with the weaker sentence c1 : Person, which is
enough to prevent the entailment of cleopatra : ∃hasChild.Man.

In Belief Change, a pseudo-contraction is a generalisation of contraction that
satisfies the following postulate instead of inclusion:

– logical inclusion: Cn(B − α) ⊆ Cn(B)

Logical inclusion lifts the requirement that a sentence must be either kept or
removed when contracting a belief base and leaves room for adding new sentences
as long as they already followed from the original base.
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Partial meet and kernel pseudo-contractions will be denoted, respectively,
by PMPCg(B,α) and KPCf (B,α), and a generic pseudo-contraction will be
represented by PC(B,α).

Definition 18 (Pseudo-contraction [11]). A pseudo-contraction is an oper-
ation PC that satisfies success and logical inclusion.

Recently, a very similar idea was introduced by Baader et al. [5] in Ontology
Repair, that of weakening axioms instead of deleting them completely.

Definition 19 (Weakening [5]). A sentence α1 is weaker than a sentence α2

if Cn({α1}) ⊂ Cn({α2}).

In a gentle repair, one can either remove an axiom or substitute it with a
weaker version, retaining part of the information.

Definition 20 (Gentle Repair).3 Let O = 〈Os,Or〉 be an ontology and let α
be a sentence entailed by O but not by Os. An ontology O′ is a gentle repair of
O with respect to α if Cn(Os ∪O′) ⊆ Cn(O) \ {α} and, for every ϕ ∈ O′, either
ϕ ∈ Or or ϕ is weaker than ψ for some ψ ∈ Or \ O′.

Algorithm 2 is very similar to Algorithm 1, but for every sentence in the
hitting set H, a weaker sentence is used to replace it.

Algorithm 2. Gentle repair algorithm
Input: An ontology O = 〈Os,Or〉 and a formula α
Output: A gentle repair O′ of O w.r.t. α

1 Function GentleRepair(O, α)
2 O′ ← Or

3 while α ∈ Cn(Os ∪ O′) do
4 J ← Justifications(〈Os,O′〉, α)
5 H ← MinimalHittingSet(J )
6 for β ∈ H do
7 β′ ← GetWeakerSentence(Os, J , α, β)
8 O′ ← (O′ \ {β}) ∪ {β′}

9 return O′

A modified version of Algorithm 2 was proposed by Baader et al. [5] where
instead of weakening each element of the minimal hitting set, only a single for-
mula in each justification needs to be changed:

3 In [5], the concept of gentle repair has not been formally defined, only explained in
intuitive terms. This is the definition which will be used here.
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Algorithm 3. Modified gentle repair algorithm
Input: An ontology O = 〈Os,Or〉 and a formula α
Output: A gentle repair O′ of O w.r.t. α

1 Function ModifiedGentleRepair(O, α)
2 O′ ← Or

3 while α ∈ Cn(Os ∪ O′) do
4 J ← OneJustification(〈Os,O′〉, α)
5 β′ ← GetWeakerSentence(Os, {J}, α, β)
6 O′ ← (O′ \ {β}) ∪ {β′}
7 return O′

Baader et al. [5] remark that as the unmodified version requires the compu-
tation of minimal hitting sets, which is expensive, the modified version has an
important advantage, even though both are prone to consume exponential time
on |Or|.

Algorithms 2 and 3 require a function GetWeakerSentence which, given Os,
J , α and β, returns a sentence β′ weaker than β such that α /∈ Cn

(
Os ∪ (J \

{β}) ∪ {β′}
)

for every J ∈ J such that β ∈ J . Such a β′ always exists: a
tautology satisfies the requirements. However, replacing a sentence with a tau-
tology is logically equivalent to removing it, which means that a classical repair
is obtained if this function only returns tautologies. Algorithm3 needs a function
OneJustification(O, α) that computes an element J of Just(O, α).

Theorem 3 [5]. Algorithms 2 and 3 always stop after a finite number of itera-
tions (of lines 3–8 and 3–6, respectively), which is at most exponential in |Or|,
regardless of the DL of O = 〈Os,Or〉.

We can now proceed to analyse the relation between gentle repairs and
pseudo-contractions.

Proposition 7 (Gentle Repair =⇒ Pseudo-contraction). Let GRep be
an operation that yields a gentle repair. Define the operation PCGRep as

PCGRep(B,α) =

{
GRep(〈∅, B〉 , α), if B |= α;
B, otherwise.

Then, PCGRep is a pseudo-contraction operation.

The result above is similar to Proposition 3 and follows from Definition 20, which
guarantees that PCGRep satisfies success and logical inclusion.

For the other direction (pseudo-contractions as gentle repairs), we will intro-
duce the notion of two-place pseudo-contractions. Regular pseudo-contractions
allow the result to contain some weakened versions of formulas that were origi-
nally in the belief base. This can be achieved by applying a partial meet operation
on a “weak closure” of the belief base (the original set plus some of its classi-
cal consequences) [25]. However, as this weak closure does not depend on the
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sentence that is being contracted, we are not able to add only weakenings of
formulas that would be removed. Two-place pseudo-contractions employ a con-
sequence operator that depends on both the set of beliefs and the input sentence.
Before defining it, we need the following concept:

Definition 21 (Extension of a selection function [24]). Let g be a selection
function for B, and let B ⊆ B∗. We say that g′ is an extension of g to B∗ if g′

is such that for every X ∈ g(MaxNon(B,α)) there is a Y ∈ g′(MaxNon(B∗, α))
such that X ⊆ Y .

Now we can define the two-place pseudo-contraction:

Definition 22 (Two-place pseudo-contraction [24,25]). Let α ∈ L, Cn’
be a consequence relation, g be a selection function for B ⊆ L, Cn*(B,α) =
Cn’(B \

⋂
g(MaxNon(B,α))) ∪ B and g′ be an extension of g to Cn*(B,α).

The two-place pseudo-contraction of B by α, denoted by TPPC(B,α), is the set⋂
g′(MaxNon(Cn*(B,α), α)).

Notice that B ⊆ Cn*(B,α) for all α, and so g′ can be an extension of g.
The construction above was proposed by Ribeiro and Wassermann [24] (and
generalised by Santos et al. [25]) as a way to weaken sentences in belief base
pseudo-contractions, instead of removing them.

Consider one more property for selection functions:

Definition 23. We say that a selection function g for B satisfies A-inclusion,
with A ⊆ B if, for all α, if α /∈ Cn(A) and X ∈ g(MaxNon(B,α)), then A ⊆ X.

In the following, take B = Os ∪ Or (we might abuse notation and say that
B = O).

Lemma 3. Consider a two-place contraction as in Definition 22. Then, for all
ϕ ∈ B \

⋂
g(MaxNon(B,α)), there is an X ∈ g′(MaxNon(Cn*(B,α), α)) such

that ϕ /∈ X.

Proof. Assume ϕ ∈ B \
⋂

g(MaxNon(B,α)). We need to show that there
is some X ∈ g′(MaxNon(Cn*(B,α), α)) such that ϕ /∈ X. Since ϕ /∈⋂

g(MaxNon(B,α)), there is a Y ∈ g(MaxNon(B,α)) such that ϕ /∈ Y . So
Y ⊆ B, α /∈ Cn(Y ) and for any Y ′ ⊆ B such that Y ⊂ Y ′, α ∈ Cn(Y ′). So, since
g′ is an extension of g to Cn*(B,α), there is an X ∈ g′(MaxNon(Cn*(B,α), α))
such that Y ⊆ X. And since ϕ /∈ Y , ϕ ∈ B and for any Y ′ ⊆ B such that Y ⊂ Y ′

we have α ∈ Cn(Y ′), we conclude that ϕ /∈ X. ��

Now we can show under which conditions a TPPC yields a gentle repair.

Definition 24. We say a consequence operator Con is strictly weakening if
ϕ ∈ Con(B) iff ϕ ∈ B or Con({ϕ}) ⊂ Con({ψ}), for some ψ ∈ B.
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Proposition 8 (Two-place Pseudo-Contraction =⇒ Gentle Repair).
Let TPPC(B,α) and Cn* be as in Definition 22, Cn* based on a consequence
relation Cn’ that satisfies subclassicality (that is, Cn’(X) ⊆ Cn(X), where Cn is
defined as in Sect. 2), g satisfy Os-inclusion, and Cn’ be monotonic and strictly
weakening. If α /∈ Cn(Os), then O′ = TPPC(B,α) \ Os is a gentle repair of O
w.r.t. α.

Proof. First we show that Cn(Os ∪ O′) ⊆ Cn(O). By subclassicality of Cn’, it
follows that TPPC(B,α) ⊆ Cn(B) (and we abuse notation with O = Os ∪Or =
B), so we have TPPC(B,α) ⊆ Cn(O), and by monotonicity and idempotence of
Cn we get Cn(TPPC(B,α)) ⊆ Cn(O). Now by Os-inclusion of g, we will have
that Os ⊆ TPPC(B,α), and therefore Os ∪ O′ = Os ∪ (TPPC(B,α) \ Os) =
TPPC(B,α), so Cn(Os ∪ O′) ⊆ Cn(O).

Now we show that α /∈ Cn(Os ∪ O′). We already found that Os ∪ O′ =
TPPC(B,α). By success of TPPC, it follows that α /∈ Cn(TPPC(B,α)).

Now we have to show that for all ϕ ∈ O′, either ϕ ∈ Or or Cn({ϕ}) ⊂
Cn({ψ}), for some ψ ∈ Or\O′. Take some ϕ ∈ O′. If ϕ ∈ Or we are done, so let us
assume that ϕ /∈ Or. So ϕ ∈ TPPC(B,α), but TPPC(B,α) ⊆ Cn*(B,α) = Cn’
(B \

⋂
g(MaxNon(B,α)))∪B. But ϕ /∈ B, so ϕ ∈ Cn’(B \

⋂
g(MaxNon(B,α))).

Since Cn’ is strictly weakening, either ϕ ∈ B \
⋂

g(MaxNon(B,α)) or there
is a ψ ∈ B \

⋂
g(MaxNon(B,α)) such that Cn({ϕ}) ⊂ Cn({ψ}). Since g has

Os-inclusion, Os ⊆
⋂

g(MaxNon(B,α)), so B \
⋂

g(MaxNon(B,α)) ⊆ Or, and
therefore ψ ∈ Or. Now it is left to show that ψ /∈ O′, i.e., ψ /∈ TPPC(B,α) or
ψ ∈ Os. Since ψ ∈ Or and Os and Or are assumed to be disjoint, ψ /∈ Os. So
we have to show that ψ /∈ TPPC(B,α). But ψ ∈ B \

⋂
g(MaxNon(B,α)), which

together with Lemma 3 gives us ψ /∈ TPPC(B,α). ��

6 Conclusions and Future Work

In this work, we illustrate the relationship between Ontology Repair and Belief
Change in general, as well as between particular constructions. Not only do we
exhibit a conceptual mapping between definitions in both fields, but we also
show under which conditions both approaches are equivalent.

In order to support collaboration between Belief Change and Ontology Repair
specialists, we present a new notation. The main objectives are the elimination of
traditional but cumbersome symbols (such as ⊥⊥ for MinImp and ⊥ for MaxNon)
and avoid hiding certain parameters, problems that hinder the comprehension
of texts in Belief Change.

Moreover, we proved that maxichoice base contraction (Definition 16) is
equivalent to Ontology Repair approaches that produce optimal classical repairs.
Additionally, we also gave a construction using the kernel based approach that
yields relevance-compliant contraction functions.

We also studied two solutions to repair ontologies while avoiding remov-
ing whole sentences: gentle repairs from the Ontology Repair area and pseudo-
contractions from the Belief Change area. Our results show that their similarities
go beyond their motivation: pseudo-contraction and gentle repairs are two sides
of the same coin.
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As future work, we include the identification of mapping between Ontology
Evolution approaches and the base revision operation. Furthermore, devising
different forms of weakening is essential for both pseudo-contraction and gentle
repair.
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Abstract. Feature-based description logics replace the notion of roles,
interpreted as binary relations, with features, interpreted as unary func-
tions. Another notable feature of these logics is their use of path func-
tional dependencies that allow for complex identification constraints to
be formulated. The use of features and path functional dependencies
makes the logics particularly well suited for capturing and integrating
data sources conforming to an underlying object-relational schema that
include a variety of common integrity constraints. We first survey expres-
sive variants of feature logics, including the boundaries of decidability.
We then survey a restricted tractable family of feature logics suited to
query answering, and study the limits of tractability of reasoning.

1 Introduction

We survey the work we have done on developing FunDL, a family of description
logics that can be used to address a number of problems in querying structured
data sources, with a particular focus on data sources that have an underlying
object-relational schema. All member dialects of this family have two properties
in common. First, each is feature based : the usual notion of roles in description
logic that are interpreted as binary relations is replaced with the notion of fea-
tures that are interpreted as unary functions. We have found features to be a
better fit with object-relational schema, e.g., for capturing the ubiquitous notion
of attributes. And second, each dialect includes a concept constructor for cap-
turing a variety of equality generating dependencies: so-called path functional
dependencies (PFDs) that generalize the notions of primary keys, uniqueness
constraints and functional dependencies that are again ubiquitous in object-
relational schema. PFDs also ensure member dialects do not forgo the ability to
capture roles or indeed n-ary relations in general. This can be accomplished by
the simple expedient of reification via features, and then by employing PFDs to
ensure a set semantics for reified relations. Indeed, the dialect DLFD, introduced
in the first part of our survey, can capture very expressive role-based dialects of
description logics, including dialects with so-called qualified number restrictions,
inverse roles, role hierarchies, and so on [29].
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Our survey consists of three general parts, with the first two parts focusing
on the problem of logical implication for FunDL dialects with EXPTIME and
PTIME complexity, respectively, and in which the dialects assume features are
interpreted as total functions. In the third part of our survey, we begin with
a review of more recent work on how such dialects may be adapted to support
features that are instead partial functions. We then consider how role hierarchies
can be captured as concept hierarchies in which the concepts are introduced
as reifications of roles. Part three concludes with a review of other reasoning
problems, in particular, on knowledge base consistency for FunDL dialects, and
on query answering for dialects surveyed in part two.

We begin in the next section with a general introduction to FunDL: what
features are, what the various concept constructors are, basic notational conven-
tions, the grammar protocol we follow to define the various dialects, and so on.
Our survey concludes with a brief overview of related work.

2 Background and Definitions

Here, we define a nameless all inclusive member dialect of the FunDL family
for the purpose of introducing a space of concept constructors that we then use
for defining all remaining dialects in our survey. We also say how a theory is
defined by a so-called terminology (or TBox) consisting of a finite set of sen-
tences expressing inclusion dependencies, and introduce the problem of logical
implication of an inclusion dependency by a TBox. Indeed, we focus exclusively
on the problem of logical implication throughout the first two parts of our survey.

Definition 1 (Feature-Based DLs). Let F and PC be sets of feature names
and primitive concept names, respectively. A path expression is defined by the
grammar Pf :: = f.Pf | id , for f ∈ F. We define derived concept descriptions by
the grammar on the left-hand-side of Fig. 1.

An inclusion dependency C is an expression of the form C1 � C2. A terminol-
ogy (TBox) T consists of a finite set of inclusion dependencies. A posed question
Q is a single inclusion dependency.

The semantics of expressions is defined with respect to a structure I =
(�, ·I), where � is a domain of objects or entities and (·)I an interpretation
function that fixes the interpretations of primitive concept names A to be subsets
of � and feature names f to be total functions (f)I : � → �. The interpretation
is extended to path expressions, (id)I = λx.x, (f.Pf)I = (Pf)I◦(f)I and derived
concept descriptions C as defined in the centre column of Fig. 1.

An interpretation I satisfies an inclusion dependency C1 � C2 if (C1)I ⊆
(C2)I and is a model of T (I |= T ) if it satisfies all inclusion dependencies in
T . The logical implication problem asks if T |= Q holds, that is, if Q is satisfied
in all models of T . �

We shall see that the logical implication problem for this logic is undecidable for
a variety of reasons. For example, the value restriction, top and same-as concept
constructors are all that are needed to encode the uniform word problem [24].
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Fig. 1. Concept constructors in feature-based description logics.

Thus, each dialect of the FunDL family in our survey will correspond to some
fragment of this logic. Grammars defining a dialect use the non-terminals C
and D to characterize concept constructors permitted on left-hand-sides and
right-hand-sides of inclusion dependencies occurring in a TBox, respectively,
and the non-terminal E to characterize concept constructors permitted in posed
questions. We also assume, when an explicit definition of non-terminal D (resp.
E) is missing, that D concept descriptions align with C concept descriptions
(resp. E concept descriptions align with D concept descriptions).

To see how FunDL dialects are useful in capturing structured data sources,
consider a visualization of a hypothetical object-relational university schema in
Fig. 2. Here, nodes are classes, labelled directed edges are attributes, thick edges
denote inheritance, and underlined attributes denote primary keys. Introduc-
ing a primitive concept and a feature for each class and attribute then enables
attribute typing, inheritance, primary keys and a variety of other data depen-
dencies to be captured as inclusion dependencies in a university TBox:

1. (disjoint classes) PERSON � ¬DEPT,
2. (attribute typing) PERSON � ∀name.STRING,
3. (unary primary key) PERSON � PERSON : name → id ,
4. (disjoint attribute values) PERSON � DEPT : name → id ,
5. (inheritance) PROF � PERSON,
6. (views) ∀reports.CHAIR � PROF,
7. (mandatory participation) ∃head−1 � CHAIR,
8. (binary primary key) CLASS � CLASS : dept,num → id , and
9. (cover) PERSON � (STUDENT 
 PROF).

Allowing path expressions to occur in PFD concepts turns out to be quite useful
in capturing additional varieties of equality generating dependencies, as in the
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Fig. 2. An object-relational schema.

following:

TAKES � TAKES : student, class.room, class.time → class.

This inclusion dependency expresses a constraint induced by the interaction of
time and space, that no student can take two different classes in the same room
at the same time or, to paraphrase, that no pair of classes with at least one
student taking them can be in the same room at the same time. The second
reading illustrates how so-called identification constraints in DL-Lite dialects
can also be captured [11].

In the third part of our survey, we review work on how features may be inter-
preted as partial functions. This leads to the addition of the concept constructor
∃f for capturing domain elements for which feature f is defined. Consequently,
it becomes possible to say, e.g., that a DEPT does not have a gpa by adding the
inclusion dependency

DEPT � ¬∃gpa

to the university TBox.
Note that any logical implication problem for the university TBox defined

thus far can be solved by appeal to one of the expressive FunDL dialects, and,
notwithstanding cover constraints, can be solved by one of the tractable dialects
in PTIME. An ability to do this has many applications in information systems
technology. For example, early work on FunDL has shown how to reduce the
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problem of determining when a SQL query can be reformulated without men-
tioning the DISTINCT keyword to a logical consequence problem [20]. More
recent applications allow one to resolve fundamental issues in reasoning about
identity in conceptual modelling and SQL programming [6], and in ontology-
based data access [7,26].

2.1 Ackerman Decision Problems

Our complexity reductions are tied to the classical Ackermann case of the deci-
sion problem [1].

Definition 2 (Monadic Ackerman Formulae). Let Pi be monadic predicate
symbols and x, yi, zi variables. A monadic first-order formula in the Ackermann
class is a formula of the form ∃z1 . . . ∃zk∀x∃y1 . . . ∃yl.ϕ where ϕ is a quantifier-
free formula over the symbols Pi. �

Every formula with the Ackermann prefix can be converted to Skolem normal
form by replacing variables zi by Skolem constants and yi by unary Skolem
functions not appearing in the original formula. This, together with standard
Boolean equivalences, yields a finite set of universally-quantified clauses con-
taining at most one variable (x).

Proposition 3 ([16]). The Ackermann decision problem is complete for EXP-
TIME.

The lower bound holds even for the Horn fragment of the decision problem called
DatalognS [15]. A DatalognS program is a finite set of definite Horn DatalognS

clauses. A recognition problem for a DatalognS program Π and a ground atom Q
is to determine if Q is true in all models of Π (i.e., if Π ∪{¬Q} is unsatisfiable).

3 Expressive FunDL Dialects

In this first part of our survey, we consider the logical implication problem for an
expressive Boolean complete dialect with value restrictions on features. We begin
by presenting a lower bound for a fragment of this dialect and then follow with
upper bounds. We subsequently consider extensions to the dialect that admit
additional concept constructors, namely PFDs and inverse features.

3.1 Logical Implication in DLF
The dialect DLF0 of FunDL is defined by the following grammar (and recall our
protocol whereby right-hand-sides of inclusion dependencies and posed questions
are also defined by non-terminal C):

C :: = A | C1 � C2 | ∀f.C

Observe that DLF0 is a Horn fragment that only allows primitive concepts,
conjunctions and value restrictions. We show that every DatalognS recognition
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problem can be simulated by a DLF0 implication problem [29]. For this reduc-
tion, each monadic predicate symbol is assumed to also qualify as a primitive
concept name in DLF0. Given an instance of a DatalognS recognition problem
in the form of a DatalognS program Π and a ground goal atom G = P (Pf(0)),
we construct an implication problem for DLF0 as follows: in Π,

TΠ = {∀Pf ′1 .Q′
1 � . . . � ∀Pf ′k .Q′

k � ∀Pf ′ .P ′ :
P ′(Pf

′
(x)) ← Q′

1(Pf
′
1(x)), . . . , Q′

k(Pf
′
k(x)) ∈ Π},

QΠ,G = ∀Pf1 .Q1 � · · · � ∀Pfk .Qk � ∀Pf .P,

where the Pf(x) terms in DatalognS naturally correspond to path functions Pf
in DLF0, and where the posed question QΠ,G is formed from ground facts
Qi(Pfi(0)) ∈ Π, and the ground goal atom G = P (Pf(0)).

Theorem 4 ([30]). Let Π be a DatalognS program and G a ground atom. Then

Π |= G ⇐⇒ TΠ |= QΠ,G.

For the reduction to work, one needs two features. (Unlike the case with ALC
style logics, the problem becomes PSPACE-complete with one feature.) This
result was later used to show EXPTIME-hardness for FL0 [3].

We now show a matching upper bound for the Boolean complete dialect with
value restrictions, as defined by the following:

C :: = A | C1 � C2 | C1 
 C2 | ∀f.C | ¬C

We first show how the semantics of DLF constructors can be captured by Ack-
ermann formulae: let C, C1, and C2 range over concept descriptions and f over
attribute names. We introduce a unary predicate subscripted by a description
that simulates that description in our reduction:

∀x.(PC(x) ∨ P¬C(x)),∀x.¬(PC(x) ∧ P¬C(x))
∀x.PC1�C2(x) ↔ (PC1(x) ∧ PC2(x))
∀x.PC1�C2(x) ↔ (PC1(x) ∨ PC2(x))
∀x.P∀f.C(x) ↔ PC(f(x))

(∗)

To complete the translation of a DLF implication problem T |= Q, for Q of the
form C � D, what remains is the translation of the inclusion dependencies in
T ∪ {Q}:

– ΦDLF =
∧

ϕ∈Semantics(T ,Q) ϕ,
– ΦT =

∧
C′�D′∈T ∀x.PC′(x) → PD′(x), and

– ΦC = PC(0) ∧ P¬D(0) (a Skolemized negation of the posed question Q),

where Semantics(T ,Q) is the set of all formulae (∗) whose subscripts range over
concepts and subconcepts that appear in T ∪ {Q}.

Theorem 5 ([30]). Let T and Q = C � D be a terminology and inclusion
dependency in DLF , respectively. Then T |= C iff ΦDLF ∧ ΦT ∧ ΦQ is not
satisfiable.

Theorems 4 and 5 establish a tight EXPTIME complexity bound for the DLF
logical implication problem.
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3.2 Adding Path Functional Dependencies to DLF
Allowing unrestricted use of the PFD concept constructor leads to undecidable
implication problems, as in the case of a description logic defined by the following
grammar:

C :: = A | C1 � C2 | C1 
 C2 | ∀f.C | ¬C | C : Pf1, ...,Pfk → Pf

This remains true even for very simple varieties of PFD concept constructors.
The undecidability results are based on a reduction of the unrestricted tiling

problem [4,5] to the logical implication problem. The crux of the reduction is the
use of the PFD constructor under negation or, equivalently, on the left-hand-side
of inclusion dependencies. For example, the dependency

A � ¬(B : f, g → id)

states that, for some A object, there must be a distinct B object that agrees
with this A object on features f and g, i.e., there must be a square in a model
of the above inclusion dependency. Such squares can then be connected into a
grid using additional PFDs and the Boolean structure of the logic in a way that
enables tiling to be simulated.

This idea can be sharpened to the following three borderline cases, where
simple, unary and key refer, respectively, to conditions in which path expressions
correspond to individual features or to id , in which left-hand-sides of PFDs
consist of a single path expression, and in which the right-hand-side is id [35]:

1. PFDs are simple and key, and therefore resemble

C : f1, . . . , fk → id

(i.e., the standard notion of relational keys);
2. PFDs are simple and non-key, and therefore resemble

C : f1, . . . , fk → f

(i.e., the standard notion of relational functional dependencies); and
3. PFDs are simple and unary, and therefore resemble either of the following:

C : f → g or C : f → id .

Observe that the three cases are exhaustive: the only possibility not covered
happens when all PFDs have the form C : Pf → id , i.e., are unary and key.
However, it is a straightforward exercise in this case to map logical implication
problems to alternative formulations in decidable DL dialects with inverses and
functional restrictions. Notably, the reductions make no use of attribute value
restrictions in the first two of these cases; they rely solely on PFDs and the
standard Boolean constructors.
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On Regaining Decidability. It turns out that undecidability is indeed a con-
sequence of allowing PFDs to occur within the scope of negation (and, as a conse-
quence, all FunDL dialects disallow this possibility). Among the first expressive
and decidable dialects is DLFD, the description logic defined by the following
grammar rules:

C :: = A | C1 � C2 | C1 
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1 
 D2 | ∀f.D | C : Pf1, ...,Pfk → Pf

Observe that PFDs must now occur on right hand sides of inclusion dependencies
at either the top level or within the scope of monotone concept constructors.
(Allowing PFDs on left hand sides is equivalent to allowing PFDs in the scope
of negation: D1 � ¬(D2 : f → g) is equivalent to D1 � (D2 : f → g) � ⊥.)

To establish the complexity lower bound, we first study the problem for a
subset of DLFD in which all inclusion dependencies are of the form

� � � : Pf1, . . . ,Pfk → Pf .

An implication problem in this subset is called a PFD membership problem.
It will simplify matters to assume that each monadic predicate symbol P in
DatalognS maps to a distinct feature p in DLFD, and that each such p differs
from the attributes corresponding to unary function symbols in DatalognS .

We proceed similarly to the DLF case: Let Π be an arbitrary DatalognS

program and G = P (Pf(0)) a ground atom. We construct an implication problem
for DLFD as follows:

TΠ = {� � � : Pf′1 .p′
1, . . . ,Pf

′
k .p′

k → Pf′ .p′ :
P ′(Pf

′
(x)) ← P ′

1(Pf
′
1(x)), . . . , P ′

k(Pf
′
k(x)) ∈ Π},

CΠ,G = � � � : Pf1 .p1, . . . ,Pfk .pk → Pf .p,

where P1(Pf1(0)), . . . , Pk(Pfk(0)) are the ground facts in Π.

Theorem 6 ([30]). Let Π be an arbitrary DatalognS program and G =
P (Pf(0)) a ground atom. Then Π |= G ⇐⇒ TΠ |= CΠ,G.

The reduction establishes another source of EXPTIME-hardness for our DLFD
fragment that originates from the PFDs only.

To establish the upper bound, we reduce logical implication in DLFD to
logical implication in DLF . The reduction is based on the following observations:

1. If the posed question does not contain the PFD concept constructor then the
implication problem reduces to the implication problem in DLF since, due
to the tree model property of the logic, the PFD inclusion dependencies in
the TBox are satisfied vacuously;

2. Otherwise the posed question contains a PFD, e.g., has the form

A � B : Pf !, . . . ,Pfk → Pf .
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To falsify the posed question in this case, we need to construct a model
consisting of two trees respectively rooted by A and B that obey the TBox
inclusion dependencies, that agree on paths Pf1, . . . ,Pfk originating from the
respective roots, and that disagree on Pf. Since the two trees are identical
up to node labels and the agreements always equate corresponding nodes in
the two trees, the model can be simulated in DLF by doubling the prim-
itive concepts (one for simulating concept membership in each of the two
trees) and by introducing an auxiliary primitive concept to simulate path
agreements. This two trees idea can then be generalized to account for posed
questions having (possibly multiple) PFDs nested in other monotone concept
constructors.

The above assumes that PFDs are not nested in other constructors in a TBox;
this can be achieved by a simple conservative extension of the given TBox and
appropriate reformulation of the posed question [35].

Theorem 7 ([30]). The implication problem for DLFD can be reduced to an
implication problem for DLF with only a linear increase in size.

Theorems 6 and 7 establish a tight EXPTIME complexity bound for the DLFD
implication problem.

3.3 Adding Inverse Features

Allowing right-hand-sides of inclusion dependencies to now employ inverse fea-
tures together with PFDs, as in DLFDI, a FunDL dialect defined by the fol-
lowing grammar:

C :: = A | C1 � C2 | C1 
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1 
 D2 | ∀f.D | ∃f−1.C | C : Pf1, ...,Pfk → Pf

leads immediately to undecidability, similarly to [14]. Again, the reduction is
from the unrestricted tiling problem in which an initial square is generated by
the constraints

A � ∃f−1.B � ∃f−1.C, B � C � ⊥, and B � C : f → g,

and further inclusion dependencies then extend it to a properly tiled grid.

Theorem 8 ([31]) Logical implication for DLFDI is undecidable.

On Regaining Decidability with Inverses. We review two approaches to
restricting either the PFD constructor or the way inverses are allowed to be
qualified to regain decidability of the logical implication problem.



FunDL: a Family of Feature-Based Description Logics 413

Prefix-restricted PFDs. The first approach syntactically restricts the PFD con-
structor as follows:

Definition 9 [Prefix Restricted Terminologies]. Let D : Pf .Pf1, . . . ,
Pf .Pfk → Pf′ be an arbitrary PFD where Pf is the maximal common prefix
of the path expressions {Pf .Pf1, . . . ,Pf .Pfk}. The PFD is prefix-restricted if
either Pf ′ is a prefix of Pf or Pf is a prefix of Pf′. �

This condition applies to the argument PFDs occurring in a terminology and
strengthens the results in [14]. Note that, because of accidental common prefixes,
it is not sufficient to simply require that unary PFDs resemble keys since, for
example, a k-ary PFD A1 � A2 : f.a1, . . . , f.ak → h has a logical consequence
A1 � A2 : f → h, thus yielding the ability to construct tiling similar to the one
outlined above.

Theorem 10 ([31]). Let T be DLFDI terminology with prefix-restricted
PFDs. Then the implication problem T |= Q is decidable and EXPTIME-
complete.

Coherent Terminologies. The second of our conditions for recovering decidabil-
ity is to impose a coherency condition on terminologies themselves. The main
advantage of this approach is that we thereby regain the ability for unrestricted
use of PFDs in terminologies. The disadvantage is roughly that there is a single
use restriction on using feature inversions in terminologies.

Definition 11 (Coherent Terminologies). A terminology T is coherent if

T |= (∃f−1.D) � (∃f−1.E) � ∃f−1(D � E)

for all descriptions D,E that appear as subconcepts of concepts that appear in
T , or their negations. �

Note that we can syntactically guarantee that T is coherent by adding inclusion
dependencies of the form (∃f−1D) � (∃f−1E) � ∃f−1(D � E) to T for all con-
cept descriptions D,E appearing in T . This restriction allows us to construct
interpretations of non-PFD descriptions in which objects do not have more than
one f predecessor (for all f ∈ F) and thus satisfy all PFDs vacuously.

By restricting logical implication problems for DLFDI to cases in which ter-
minologies are coherent, it becomes possible to apply reductions to satisfiability
problems for Ackerman formulae.

Theorem 12 ([31]). Let T be a coherent DLFDI terminology. Then the impli-
cation problem T |= C is decidable and EXPTIME-complete.

Note that unqualified inverse features of the form ∃f−1 immediately imply
coherency. Moreover, one can qualify an f predecessor by concept C by asserting

A � ∃f−1, ∀f.A � C.

Thus, the restriction to unqualified inverses does not rule out cases in which
qualified inverses might be useful, and avoids the problem of allowing multiple
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f predecessors (that could then interact with the PFD constructs). Hence, for
the remainder of the survey, we assume unqualified inverse features in FunDL
dialects.

3.4 Equational Constraints

As pointed out in our introductory comments, allowing equational (same-as) con-
cepts in TBoxes leads immediately to undecidability via a reduction from the
uniform word problem [24]. Conversely, allowing equational concepts in posed
questions extends the capabilities of the logics, in particular allowing for captur-
ing factual assertions (called an ABox, see Sect. 5.3). To this end we introduce
the FunDL dialect DLFDE defined as follows:

C :: = A | C1 � C2 | C1 
 C2 | ∀f.C | ¬C | �
D :: = C | D1 � D2 | D1 
 D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | E1 � E2 | ⊥ | ¬E | ∀f.E | (Pf1 = Pf2)

Undecidability. It is easy to see that the following two restricted cases have
decidable decision problems:

– allowing arbitrary PFDs in terminologies, and
– allowing equational concepts in the posed question.

Unfortunately, the combination of the two cases leads again to undecidability.
One can use the equational concept to create a seed square for a tiling problem
(although a triangle is actually sufficient in this case, as in A � (f.g = g)�∀f.B
[35]) that can then be extended into an infinite grid using PFDs in a TBox (e.g.,
A � (B : g → f.h) � (B : g → k.g) for the triable seed case), and ultimately to
an instance of a tiling problem. Hence:

Theorem 13 ([35]). Let T be a DLFD terminology and E an equational con-
cept. Then the problem T |= E � ⊥ is undecidable.

Decidability and a Boundary Condition. To regain decidability, we restrict
the PFD constructor to adhere to a boundary condition, in particular, to have
either of the following two forms:

– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f , for some primitive feature f .

We call the resulting fragment DLFDE−. The condition distinguishes, e.g., the
PFDs f → id and f → g from the PFD f → g.f . Intuitively, a simple saturation
procedure that fires PFDs on a hypothetical database is now guaranteed to
terminate as a consequence.

Notice that the boundary condition still admits PFDs that express arbitrary
keys or functional dependencies in the sense of the relational model, including
those occurring in all our examples. Thus, restricting PFDs in this manner does
not sacrifice any ability to capture database schema for legacy data sources.
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Theorem 14 ([21]). Let T and T ′ be respective DLF and DLFD terminologies
in which the latter contains only PFD inclusion dependencies, and let E be an
equational concept. Then there is a concept E′ such that

T ∪ T ′ |= E � ⊥ iff T |= (E � E′) � ⊥.

Moreover, E′ can be constructed from T ′ and E effectively and in time polyno-
mial in |T ′|.

The boundary condition on PFDs is essential for the above theorem to hold. If
unrestricted PFDs are combined with either equations or an ABox, there is no
limit on the length of paths participating in path agreements when measured
from an initial object o ∈ E � E′ in the associated satisfiability problem. More-
over, any minimal relaxation of this condition, i.e., allowing only non-key PFDs
of the form C : f → g.h, already leads to undecidability [32,35]:

Theorem 15 ([21]). DLFDE− logical implication and the problem of ABox
consistency defined in Sect. 5.3 are decidable and complete for EXPTIME.

The construction essentially generates a pattern (part of a model) that satisfies
E (which already contains the effects of all PFDs due to the boundary condition)
and then tests if this pattern can be extended to a full model using the decision
procedure for DLF . Note also that posed questions containing PFDs can be
rewritten to equivalent posed questions replacing the PFDs with their semantic
definitions via path agreements and disagreements.

Inverses. Finally, we conjecture that adding unqualified inverse constructor to
DLFDE under the restrictions outlined in Sect. 4.4 preserves all the results.

4 Tractable FunDL Dialects

In this second part of our survey, we consider the logical implication problem
for FunDL dialects for which the logical implication problem can be solved in
PTIME. We begin by reviewing CFD, chronologically, the first member of the
FunDL family and, so far as we are aware, the first DL dialect to introduce a
type constructor, PFDs, for capturing equality generating dependencies [8,20].

Ensuring tractability requires that we somehow evade Theorems 4 and 6.
This is generally achieved by requiring a TBox to satisfy the following additional
conditions:

1. Interaction between value restrictions and conjunctions on the left-hand-sides
of inclusion dependencies must somehow be controlled,

2. Inclusion dependencies must be Horn (which effectively disallows the use of
disjunction)1, and

1 Allowing the use of conjunction at the top level on the right-hand-side is a simple
syntactic sugar.
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3. PFDs must satisfy an additional syntactic boundary condition in addition to
being disallowed on the left-hand-side of inclusion dependencies.

We shall see that violating any of these conditions leads to intractability of
logical implication.

4.1 Horn Inclusion Dependencies

The first way of limiting the interactions between value restrictions and conjunc-
tions on the left-hand-sides of inclusion dependencies is by simply disallowing
value restrictions entirely, and by no longer permitting posed questions to men-
tion either negations or disjunctions. This approach underlies the FunDL dialect
called CFD given by the following grammar:

C :: = A | C1 � C2

D :: = C | D1 � D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | ⊥ | E1 � E2 | ∀f.E | (Pf1 = Pf2)

The main idea behind decidability and complexity of the logical implication
problem is similar to the idea in Theorem15. However, we no longer need to use
the DLF decision procedure to verify that the partial model can be completed to
a full model since, in CFD, one can always employ complete F-trees whose nodes
belong to all primitive concepts (without having to check for their existence
[20,36]). Hence, the complexity reduces to the construction of the initial part of
the model. This, with the help of the restrictions on E concepts, can be done in
PTIME.

Theorem 16 ([36]). The logical implication problem for CFD is complete for
PTIME.

The hardness follows from the fact that the PFDs alone can simulate HornSAT.

Extensions Versus Tractability. Unfortunately, extending this fragment while
maintaining tractability is essentially infeasible. The following table summarizes
the effects of allowing additional concept constructors in the TBox on the right-
hand-side of inclusion dependencies, reading down, and in the posed question,
reading across [36]:

T /Q CFD or CFD �=,(¬) CFD �=,� or CFD¬

CFD P-c / in P P-c / coNP-c

CFD� coNP-c / coNP-c coNP-c / coNP-c

CFD⊥ PSPACE-c / in P PSPACE-c / coNP-c

CFD�,⊥ EXPTIME-c / coNP-c EXPTIME-c / coNP-c

The complexities listed in the table are with respect to the size of the TBox
and the size of the posed question. Note in particular that concept disjointness,
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in which ⊥ is allowed on right-hand-sides of inclusion dependencies, leads to
PSPACE-completeness. This is due to the need for checking whether a partial
model can be completed, which in turn requires testing for reachability in an
implicit but exponentially-sized graph.

4.2 Value Restrictions Instead of Conjunctions

An alternative that allows us to evade the ramifications of Theorem4 is disallow-
ing conjunctions on the left-hand-sides of inclusion dependencies, yielding the
dialect CFDnc [37] given by the following:

C :: = A | ∀f.C
D :: = C | ¬C | D1 � D2 | ∀f.D | C : Pf1, ...,Pfk → Pf
E :: = C | ⊥ | E1 � E2 | ∀f.E | (Pf1 = Pf2)

The main idea behind tractability of CFDnc relies on the fact that left-hand-
sides of inclusion dependencies can only observe object membership in a single
atomic concept (as opposed to a conjunction of concepts). Hence, while mod-
els of this logic require exponentially many objects labelled by conjunctions of
primitive concepts in general, they can be abstracted in a polynomial way. The
construction of the actual model is then similar to the standard NFA to DFA
construction followed by unfolding of the resulting DFA.

Theorem 17 ([37]). The logical implication problem for CFDnc is complete for
PTIME.

As with the dialect CFD, hardness follows from reducing HornSAT to reasoning
with PFDs.

4.3 Value Restrictions and Limited Conjunctions

The above has shown that allowing an arbitrary use of concept conjunction on
the left-hand-sides of inclusion dependences in a CFDnc TBox immediately leads
to hardness for EXPTIME (a consequence of Theorem 4). The complexity can
be traced to the need for exponentially many objects labelled by different sets
of primitive concepts to be generated. The following definition provides a way
of controlling this need for all such objects:

Definition 18 (Restricted Conjunction). Let k > 0 be a constant. We say
that TBox T is a CFDkc TBox if, whenever T |= (A1 � · · · � An) � B for
some set of primitive concepts {A1, . . . , An} ∪ {B}, with n > k, then T |=
(Ai1 � · · · � Aik) � B for some k-sized subset {Ai1 , . . . , Aik} of the primitive
concepts {A1, . . . , An}. �

A saturation-style procedure based on this definition can be implemented to
generate all implied inclusion dependencies with at most k primitive concepts
(value restrictions) on left-hand-sides of inclusion dependencies [26]. The decision
procedure essentially follows the procedure for CFDnc but is exponential in k due
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to the need to consider sets of concepts up to size k (essentially by determining all
implied inclusion dependencies that are not a trivial weakening of other inclusion
dependencies) and leads to the following:

Theorem 19 ([26]). The logical implication problem for CFDkc is complete for
PTIME for a fixed value of k; the decision procedure is exponential in k.

In addition, the procedure enables an incremental means of determining the
minimum k for which a given TBox is a CFDkc TBox, that is, allows for testing
if a given parameter k suffices:

Theorem 20 (Testing for k [26]). A TBox T is not a CFDkc TBox if and only
if there is an additional single-step inference that infers a non-trivial inclusion
dependency (i.e., one that is not a weakening of an already discovered depen-
dency) with k + 1 conjuncts on the left hand side.

An algorithm based on iterative deepening allows one to determine the value
of k for a given TBox in a pay as you go way. Hence the decision procedure
also runs within the optimal time bound, exponential in k and polynomial in
|T | + |Q|, even when k is not part of the input.

4.4 Adding Inverse Features

Recall from Sect. 3.3 that we consider only the (unqualified) inverse feature con-
structor, ∃f−1, to be added to the D grammar rules of CFDnc and CFDkc,
yielding the respective logics CFDInc and CFDIkc. However, additional restric-
tions are still required to guarantee tractability of logical consequence [38]. We
introduce the restrictions by examples:

1. Inverses and Value Restrictions. Interactions between these two concept con-
structors can be illustrated by the following inference:

{A � ∃f−1,∀f.A′ � ∀f.B} |= A � A′ � B.

This cannot be allowed since unrestricted use of this construction yields hard-
ness for EXPTIME (see Theorem 4). CFDInc syntactically restricts TBoxes
to avoid the above situation by requiring additional inclusion dependencies
of the form A � A′, A′ � A, or A�A′ � ⊥ to be present in a TBox whenever
the above pattern appears. Note that CFDIkc does not require this restric-
tion since the testing for k procedure we have outlined will detect the above
situation (thus determining the price).

2. Inverses and PFDs. The second interaction that hinders tractability is
between inverses and PFDs. In particular, a logical consequence problem of
the form

{A � ∃f−1,∀f.A � A, . . .} |= (∀h1.A) � (∀h2.A) � (h1.f = h2.f) � h1 = h2

will force two infinite f anti-chains starting from two A objects created by
the left-hand-side of the posed question. We have shown how to use these
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anti-chains and additional PFDs in the TBox to reduce linearly bounded DTM
acceptance [19] to logical implication in this case, yielding PSPACE-hardness,
and how to repair this by further limiting the syntax of PFDs in a way that
disables this kind of interaction with inverse features [38]. In particular, PFDs
in a TBox must now have one of the following two forms:

– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .g, . . . ,Pfk → Pf .f , for some primitive features f and g.

Inverses obeying these two restrictions can then be added to both the FunDL
dialects CFDInc and CFDIkc while maintaining tractability:

Theorem 21 ([38]). The logical implication problems for CFDInc and CFDIkc

are complete for PTIME, in the latter case for a fixed value of k.

5 Partial Features, Roles, ABoxes and Query Answering

The third part of our survey considers how partial features and role hierarchies
can be accommodated in FunDL dialects, and how to check for knowledge base
consistency and to evaluate queries over FunDL knowledge bases consisting of a
so-called ABox in addition to a TBox.

5.1 Partial Features

We first consider the impact of changing the semantics of features in the FunDL
family to partial features [25,26,40,41]. The changes can be summarized as fol-
lows:

1. Features f ∈ F are now interpreted as partial functions on � (i.e., the result
can be undefined for some elements of �);

2. A path function Pf now denotes a partial function resulting from the compo-
sition of partial functions;

3. The syntax of C in feature-based DLs is extended with an additional concept
constructor, ∃f , called an existential restriction that can now appear on both
sides of inclusion dependencies;

4. The ∃f concept constructor is interpreted as {x | ∃y ∈ �.(f)I(x) = y}.
5. We adopt a strict interpretation of set membership and equality. This means

that set membership holds only when the value exists; and equality holds
only when both sides are defined and denote the same object.

In the light of these changes, we need to consider their impact on concept con-
structors that involve features or feature paths:

Value Restrictions. Our definition of value restriction ∀f.C (see Definition 1)
assumes features are total. For partial features, there is now a choice:

1. keeping the original semantics, i.e., objects in the interpretation of ∀f.C must
have a feature f defined and leading to a C object, or
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2. altering the semantics to match ALC-style semantics, i.e., the f value of
objects in the interpretation of such a value restriction must be a C object,
if such a value exists; we denote this variant ∀̃f.C.

While not equivalent, it is easy to see that many inclusion dependencies can be
expressed using either variant of the value restriction, for example

A � ∀̃f.B can be expressed as A � ∀f.� � ∀f.B.

Note that when the original semantics is used, the existential restriction ∃f
is simply a synonym for ∀f.�. Also, since features are still functional, the so-
called qualified existential restrictions of the form ∃f.C, with semantics given by
(∃f.C)I = {x | ∃y ∈ �.(f)I(x) = y ∧ y ∈ (C)I}, can be simulated by expansion
to ∃f � ∀f.C. Indeed, hereon we write ∃Pf as shorthand for ∃f1 � ∀f1.(∃f2 �
∀f2.(. . . (∃fk) . . .)).

PFDs. Our PFDs agree with the definition of identity constraints in [11], where
Pf0 = id, which also require path values to exist. To further clarify the impact
of this observation, note that a PFD inclusion dependency of the form C1 �
C2 : Pf1, . . . ,Pfk → Pf0 is violated when (a) all path functions Pf0, . . . ,Pfk are
defined for a C1 object e1 and a C2 object e2, and (b) (Pfi)I(e1) = (Pfi)I(e2)
holds only for 1 ≤ i ≤ k. Formally, and more explicitly, this leads to the following
interpretation of PFDs in the presence of partial features:

((C : Pf1, . . . ,Pfk → Pf0))I =
{x | ∀y.y ∈ (C)I ∧ x ∈ ((∃Pf0))I ∧ y ∈ ((∃Pf0))I ∧

∧k
i=1(x ∈ ((∃Pfi))I ∧ y ∈ ((∃Pfi))I ∧ (Pfi)I(x) = (Pfi)I(y))

→ (Pf0)I(x) = (Pf0)I(y) }.

Equational Concepts. Similarly to PFDs, we assume the strict interpretation of
equalities, i.e., an object belongs to (Pf1 = Pf2) if and only if both Pf1 and Pf2
are defined for the object and agree.

Partiality in Expressive FunDL. In expressive FunDL dialects, partiality can
be simulated by introducing an auxiliary primitive concept G that will stand for
the domain of existing objects. Depending on our choice of semantics for value
restrictions we get a mapping of a TBox under the partial semantics to a TBox
under the total semantics. We first define a way to modify concept descriptions
to capture the desired semantics of partiality:

1. PtoT(C) = C[∀f.C �→ ¬G
∀f.(C �G) for f ∈ F ], for the original semantics,
2. PtoT(C) = C[∃f �→ ¬G 
 ∀f.G, for f ∈ F ] for the ALC-style semantics.

Now we can define a partial to total TBox mapping

Ttotal = {G � PtoT(C) | � � C ∈ Tpartial} ∪ {∀f.G � G | f ∈ F},

and show:
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Theorem 22 ([41]). Let Tpartial be a partial-DLFI TBox in which all inclusion
dependencies are of the form � � C with C in negation normal form. Then

Tpartial |= � � C ⇐⇒ Ttotal |= G � PtoT(C),

for G a fresh primitive concept.

To extend this construction to the full partial-DLFDI logic, it is sufficient to
encode the path function existence preconditions of PFDs in terms of the auxil-
iary concept G as follows: if A � B : Pf1, . . . ,Pfk → Pf0 ∈ Tpartial then

A � (
k�

i=0

∀Pfi .G) � B � (
k�

i=0

∀Pfi .G) : Pf1, . . . ,Pfk → Pf0 (1)

is added to Ttotal. Here, we are assuming w.l.o.g. that A and B are primitive
concept names (DLFD allows one to give such names to complex concepts).

Theorem 23 ([41]). Let Tpartial be a partial-DLFDI TBox in which all inclu-
sion dependencies are of the form � � C or A � B : Pf1, . . . ,Pfk → Pf0. Then

Tpartial |= � � C ⇐⇒ Ttotal |= G � PtoT(C), and
Tpartial |= A � B : Pf1, . . . ,Pfk → Pf ⇐⇒ Ttotal |= (1),

for G a fresh primitive concept.

This result can also be extended to the logic DLFDE− by appropriately trans-
forming the posed question with respect to the strict interpretation of equational
constraints.

Partiality in Tractable FunDL. A similar construction can be used to accom-
modate partial features in tractable FunDL dialects. However, there is a need to
accommodate the various restrictions in these logics that guarantee tractability.
Hence, we assume that we will be given a partial-CFDIkc TBox Tpartial in a
normal form, and that the semantics of value restrictions is the same in both
the partial and the total logic. We then derive a CFDI(k+1)c TBox Ttotal by
applying the following rules:

1. A � ⊥ �→ A � G � ⊥
2. A � B �→ A � G � B
3. A � B � C �→ A � B � G � C
4. A � ∀f.B �→ A � G � ∀f.B � ∀f.G
5. ∀f.A � B �→ ∀f.A � ∀f.G � B
6. A � ∃f �→ A � G � ∀f.G
7. ∃f � A �→ ∀f.G � A

and by adding the inclusion dependency ∀f.G � G to Ttotal for each feature.
Conversly, value restrictions in more traditional role-based description log-

ics, such as ALC, also cover the vacuous cases, containing objects for which f is
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undefined (in addition to the above). This definition unfortunately leads to com-
putational difficulties: the disjunctive nature of such a value restriction, when
used on left-hand-sides of inclusion dependencies, destroys the canonical model
property of the logic. This leads to intractability of query answering as shown
by Calvanese et al. [12]. To regain tractability, it becomes necessary to restrict
the use of value restrictions on the left-hand-side of inclusion dependencies. In a
normal form, the C grammar for left-hand-side concepts must replace ∀f.A with
∀f.A � ∃f . This leads to alternative rules when simulating the partial-feature
logic in the total-feature counterpart, i.e.,

4′. A � ∀f.B �→ A � G � ∀f.B
5′. (∀f.A � ∃f) � B �→ (∀f.A � ∀f.G) � B

The technique for treating posed questions [40] extends to partial-CFDIkc and
yields the following:

Theorem 24 ([40]). Let Tpartial be a partial-CFDIkc TBox, Qpartial a posed
question, and Ttotal be defined as above. Then Ttotal is a CFDI(k+1)c TBox and

Tpartial |= Qpartial ⇐⇒ Ttotal |= Qtotal,

where Qtotal is effectively constructed from Qpartial by adding appropriate con-
junctions with G concepts.

Since |Qpartial| is linear in |Qtotal|, this provides a tractable decision proce-
dure for logical implication in partial-CFDIkc. An analogous result involving
partial-CFDIkc knowledge base reasoning was studied in [26].

5.2 Simulating Roles and Role Constructors

It is well known that unrestricted use of role functionality with role hierarchies,
e.g., DL-LiteHF

core, leads to intractability [2,10]. Conversely, the ability to reify
roles would seem to enable capturing a limited variety of role hierarchies.2

Consider roles R and S and the corresponding primitive concepts CR and
CS , respectively, and assume that the domains and ranges of the reified roles
are captured by the features dom and ran common to both the reified roles.
Subsumption and disjointness of these roles can then be captured as follows:

R � S �→ CR � CS , CR � CS : dom, ran → id and
R � S � ⊥ �→ CR � ¬CS , CR � CS : dom, ran → id ,

assuming that the reified role R (and analogously S) also satisfies the key con-
straint CR � CR : dom, ran → id . Such a reduction does not lend itself to
capturing role hierarchies between roles and inverses of roles (due to fixing the
names of the features dom and ran).

2 Unlike DL-Lite
(HF)
core , that restricts the applicability of functional constraints in the

presence of role hierarchies, we review what forms of role hierarchies can be captured
while retaining the ability to specify arbitrary keys and functional dependencies.
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Moreover, for tractable fragments of FunDL, a condition introduced earlier,
governing the interactions between inverse features and value restrictions, intro-
duces additional interactions that interfere with (simulating) role hierarchies, in
particular in cases when mandatory participation constraints are present. Con-
sider again roles R1 and R2 and the corresponding primitive concepts CR1 and
CR2 , respectively, and associated constraints that declare typing for the roles,

CR1 � ∀dom.A1, CR1 � ∀ran.B1, CR1 � CR1 : dom, ran → id
CR2 � ∀dom.A2, CR2 � ∀ran.B2, CR2 � CR2 : dom, ran → id

originating, e.g., from an ER diagram postulating that entity sets Ai and Bi

participate in a relationship Ri (for i = 1, 2). Now consider a situation where
the participation of Ai in Ri is mandatory (expressed, e.g., as Ai � ∃Ri in
DL-Lite). This leads to the following constraints:

A1 � ∃dom−1,∀dom.A1 � CR1 and A2 � ∃dom−1,∀dom.A2 � CR2 .

The earlier condition governing the use of inverse roles then requires that one
of

A1 � A2, A2 � A1, or A1 � ¬A2

are present in the TBox. The first (and second) conditions imply that CR1 � CR2

(CR2 � CR1 , respectively). The third condition states that the domains of (the
reified versions of) R1 and R2 are disjoint, hence the roles themselves must also
be disjoint. Hence, in the presence of CR1 � CR2 : dom, ran → id , the concepts
CR1 and CR2 must also be disjoint.

All this shows that some form of role hierarchies can be accommodated in
FunDL dialects. However:

1. only primitive roles can be captured (i.e., capturing inverse roles will not be
possible), and

2. when tractability is required, only role forests can be captured, that is, for
each pair of roles participating in the same role hierarchy, one must be a
super-role of the other or their domain and range features must be distinct.

The first restriction originates in the way (binary) roles are reified—by assigning
canonically-named features. This prevents modelling constraints such as R � R−

(which would seem to require simple equational constraints for feature renam-
ing). The second condition is essential to maintaining tractability of reasoning
[38]. Note, however, that no such restriction is needed for roles that do not par-
ticipate in the same role hierarchy; this is achieved by appropriate choice of
names for the features dom and ran.

Last, our approach to role hierarchies can easily be extended to handling
hierarchies of higher-arity non-homogeneous relationships (again, via reification
and appropriate naming of features) that originate, e.g., from relating the aggre-
gation constructs via inheritance in the EER model [27,28]. The reification based
approach differs from approaches to modelling higher arity relationships directly
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in the underlying description logic, such as DLR [13,14] in which only homoge-
neous relationships can be related in hierarchies. This is due to the positional
nature of referring to components of such relationship in lieu of using arguably
more flexible keywords (realized by features in FunDL).

5.3 ABoxes, Knowledge Bases, and Consistency

First we consider the issue of knowledge bases, combinations of terminological
knowledge (TBoxes) with factual assertions about particular objects (ABoxes).

Definition 25 (ABoxes and Knowledge Bases). A knowledge base K is
defined by a TBox T and an ABox A consisting of a finite set of facts in form
of concept assertions A(a), basic function assertions f(a) = b and path function
assertions Pf1(a) = Pf2(b). A is called a primitive ABox if it consists only of
concept and basic function assertions. Semantics is extended to interpret indi-
viduals a to be elements of �. An interpretation I satisfies a concept assertion
A(a) if (a)I ∈ (A)I , a basic function assertion f(a) = b if (f)I((a)I) = (b)I

and a path function assertion Pf1(a) = Pf2(b) if (Pf1)I((a)I) = (Pf2)I((b)I). I
satisfies a knowledge base K if it satisfies each inclusion dependency and asser-
tion in K, and also satisfies UNA if, for any individuals a and b occurring in K,
(a)I �= (b)I . �

A standard reasoning problem for knowledge bases is the consistency problem,
the question whether a knowledge base has a model. We relate this problem
to the logical implication problems for FunDL dialects that admit equational
constructs in the posed questions. It turns out that either capacity alone is
sufficient: each is able to effectively simulate the other [21].

ABoxes vs. Equalities in Posed Questions. Intuitively, path equations can
enforce that an arbitrary finite graph (with feature-labeled edges and concept
description-labeled nodes) is a part of any model that satisfies the equations.
Such a graph can equivalently be enforced by an ABox. Hence we have:

Theorem 26 ([21]). Let T be a DLFD terminology and A an ABox. Then
there is a concept E such that T ∪A is not consistent if and only if T |= E � ⊥.

Conversely, it is also possible to show that ABox reasoning can be used for
reasoning about equational constraints in the posed questions. However, as the
equational concepts are closed under Boolean constructors, a single equational
problem may need to map to several ABox consistency problems.

Theorem 27 ([21]). Let T be a DLFD terminology and E an equational con-
cept. Then there is a finite set of ABoxes {Ai : 0 < i ≤ k} such that

T |= E � ⊥ iff T ∪ Ai is not consistent for all 0 < i ≤ k.
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Theorems 26 and 27 hold even when the terminology T is a DLF TBox (i.e.,
does not contain any occurrences of the PFD concept constructor) or to the
tractable FunDL dialects CFD and CFDIkc. Here, posed question E concepts
must be limited to retain a PTIME upper bound in the size of the posed question
(Sect. 4 has the details).

5.4 Query Answering

Conjunctive queries (CQ) are, as usual, formed from atomic queries (or atoms)
of the form C(x) and x.Pf1 = y.Pf2, where x and y are variables, using conjunc-
tion and existential quantification. To simplify notation, we conflate conjunctive
queries with the set of its constituent atoms and a set of answer variables. Given
a knowledge base (KB) consisting of a TBox and ABox expressed in terms of a
tractable FunDL dialect, our goal is to compute the so called certain answers:

Definition 28 (Certain Answer). Let K be a KB over a tractable FunDL
dialect and Q = {x̄ | ϕ} a CQ. A certain answer to Q over K is a substitution
of constant symbols ā, [x̄ �→ ā], such that K |= Q[x̄ �→ ā]. �

Computing certain answers in this case requires a combination of perfect rewrit-
ing [10] and of the combined approach [22,36]. The latter is necessary because
tractable FunDL dialects are complete for PTIME and first-order rewriting alone
followed by evaluating the rewritten query over the ABox will not suffice. The
former is necessary to avoid the need for exponentially many anonymous objects
in an ABox completion (unlike EL logics in which there is a need for only poly-
nomially many such objects).

This approach was introduced for CFDInc in [17,18] and the two steps are
realized by two procedures:

1. CompletionT (A): this procedure applies consequences of the TBox T to the
ABox A. In particular, concept membership is fully determined for all all
ABox individuals. For example, if {A(a), f(a) = b, f(b) = c, . . .} ⊆ A and
T |= A � ∀f.A, we require {A(b), A(c), . . .} ⊆ CompletionT (A). (Indeed,
propagating concepts along paths that exists in an ABox is the reason why
perfect rewriting alone will not suffice in tractable FunDL dialects.)

2. FoldT (Q): this procedure rewrites an input CQ to an union of CQs that
account for the constraints in T that postulate existence of anonymous objects
in all models of the knowledge base. A (slight simplification of a) typical rule
applied during such a rewriting looks as follows:

If {y.f = x,A(y)} ⊆ ψ and y does not appear elsewhere in ψ nor is
an answer variable, then Fold(Q) := Fold(Q) ∪ {{ȳ | ψi}} for all ψi =
ψ − {y.f = x,A(y)} ∪ {Bi(x)}, where Bi are all maximal primitive
concepts w.r.t. � satisfying the logical implication conditions T |=
Bi � ∃f−1 and T |= ∀f.Bi � A}.

The rule states that whenever the variable y is connected to the rest of the
query via a single feature f , it may be mapped to an anonymous individual.
This is accommodated by the query ψi that no longer uses the variable y,
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but implies ψ since the existence of the necessary individual is implied by the
TBox T and the Bi(x) atom in ψi.

Note that query rewriting requires a completed ABox. Thus, the rewriting pro-
duces fewer disjuncts since only maximal concepts need to be retained.

Theorem 29 ([40]). Let K = (T ,A) be a CFDInc knowledge base and Q a
conjunctive query. Then

K |= Q[x̄ �→ ā] ⇐⇒ (∅,CompletionT (A)) |= FoldT (Q)[x̄ �→ ā].

Note that (∅,CompletionT (A)) |= FoldT (Q)[x̄ �→ ā] reduces to evaluating the
query FoldT (Q) over a finite relational structure CompletionT (A). Tractability
(in |K|) then follows from |CompletionT (A)| being polynomial in |A| and the
fact that reasoning in K is in PTIME. This approach was later extended to
other tractable dialects of FunDL including logics with partial features up to
and including partial-CFDIkc [26].

6 Related Work

Recall that CFDInc is a tractable FunDL dialect in which left-hand-sides of
inclusion dependencies exclude the use of negation as well as conjunction. The
possibility of the Krom extension of this dialect, that readmits negation, has also
been explored [39]. Tractability is still possible, but requires TBoxes to be free
of non-key PFDs, requires ABoxes to be primitive, and requires the adoption of
UNA. (Relaxing any of these conditions leads to intractability.)

We have also considered how concepts in FunDL dialects can replace con-
stants in an ABox as a way of referring to entities or objects. Indeed, the judi-
cious adoption of features instead of roles in these dialects makes it easy for an
ABox to be a window on factual data in backend object-relational data sources.
Coupled with the notion of referring expression types, this overall development
pays off nicely in ontology-based data access and in relating conceptual and
object-relational database design in information systems [6,7].

A short review of ways in which PFDs themselves have been generalized
completes our survey.

Path Order Dependencies. PFDs can be viewed as a variety of tuple generat-

ing dependencies in which equality is the only predicate occurring on the right-
hand-side. The possibility that any comparison operator can be used instead has
also been investigated. In particular, so-called guarded order dependencies can be
added to the expressive FunDL dialect DLF without impacting the complexity
of logical implication [29]. For our introductory university TBox, a correlation
between gpa and mark can be expressed by such a dependency:

TAKES � TAKES : class=,mark< → student.gpa≤

The dependency asserts that the grade point average of a student is never greater
than that of another student when there is some class they have both taken in
which the latter student obtained a better grade.
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Regular Path Functional Dependencies. Left and right-hand-sides of PFDs
can be viewed as instances of finite regular languages. The possibility of allow-
ing these languages to be defined by regular expressions admitting the Kleene
closure operator has also been investigated. In particular, regular path func-
tional dependencies were introduced in [30], and more general regular path order
dependencies in [33], and, in both cases, were shown to not impact the com-
plexity of logical implication when added to DLF . This remains the case when
value restrictions are also generalized by allowing component path expressions
to be given by regular expressions. For example, to ensure that every professor
eventually reports to a dean, one can now add the inclusion dependencies

DEAN � CHAIR and PROF � ¬∀reports ∗ .¬DEAN

to the university TBox.

Temporal Path Functional Dependencies. Finally, adding both a temporal
variety of PFDs and a global model operator (�) to DLF is also possible without
impact on the complexity of logical implication [34]. This enables adding the
inclusion dependency

PERSON � (�foreverPERSON) � (PERSON : id →forever name)

to the university TBox to ensure that a person is always a person and that the
name of a person never changes. Adding the inclusion dependency

DEPT � (DEPT : id →term head) � (DEPT : head →term id)

would ensure that a professor is the unique head of a department for a fixed term.
However, it not possible to add any form of eventuality together with temporal
PFDs to DLF (e.g., by also adding regular PFDs) and at the same time retain
EXPTIME complexity of logical implication for DLF iteself [34].
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Abstract. While the notion of implicit coordination helps to design
frameworks in which agents can cooperatively act with only minimal
communication, it so far lacks exploiting observations made while exe-
cuting a plan. In this note, we have a look at what can be done in order
to overcome this shortcoming, at least in a specialized setting.

1 Introduction

In implicitly coordinated multi-agent path finding under destination uncertainty
(MAPF/DU) [5] (and more generally in epistemic planning [2,3]), we have so far
concentrated on generating plans in a way such that each agent tries to generate
situations from which the other agents can provably find a plan that guarantees
success. This means in particular that we do not make use of observations made
during the execution of a plan in order to learn something about the destinations
(or gain other information), something similar to what is called forward induction
[1] in game theory or plan recognition [6,8] in the area of automated planning.

Not making use of observations implies that agents cannot use their actions
in order to signal their intention. For these reasons, plans might be longer than
necessary or an instance might not be solvable, although by making inferences
about the intentions of the other players, the instance could be solvable. In this
paper, we will analyze, in which situations one can make use of observations and
how this can be integrated into the planning process.

In order to so, we will introduce the basic notation and terminology in the
next section. In Sect. 3, we will then analyze how to modify our notion of a
solution concept for MAPF/DU.

2 Background

The multi-agent path finding problem in its simplest form could be stated as
follows. The environment is modelled as an undirected, simple graph G = (V,E).
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A configuration of agents A on the graph G is an injective function α : A → V .
For i ∈ A and v ∈ V , by α[i/v] we refer to the function that has the same values
for all j �= i as α, but for i it has the value v: α[i/v](i) = v.

Given a movement action of agent i from v to v′ and a configuration
α, a successor configuration α′ = α[i/v′] is generated, provided α(i) = v,
(α(i), α′(i)) ∈ E, and there exists no j with α(j) = v′. The MAPF problem
is then to generate for a given MAPF instance M = 〈A,G, α0, α∗〉 with a given
set of agents A, a given graph G, the initial configuration α0, and the goal con-
figuration α∗, a sequence of movements from α0 to α∗. We always assume that
such movement plans are cycle-free, i.e., that during the execution of such a plan
no configuration is reached twice. We call a plan successful for a MAPF instance
if it transforms α0 into α∗. Since in the following we only consider successful
movement plans, we just call them plans. If there exists such a plan for a given
instance, we call the instance solvable.

For this basic version of the MAPF problem, most interesting questions con-
cerning computational properties have been answered already in a paper by
Kornhauser et al. in 1984 [4]. It is known that solvability can be decided in
cubic time and the plan length and the time to find a plan is also bounded
cubicly. Finally, solving the bounded planning problem (corresponding to the
optimization problem) is NP-complete [7].

2.1 Generalized MAPF

Plans are usually generated in a centralized manner and the agents then follow
the plan. In our generalized setting, we assume all agents plan by themselves
and the goals of the agents are not common knowledge any longer. Instead only
the agent itself knows its own destination. Common knowledge are the possible
destinations for each agent, formalized by a destination function β : A → 2V ,
with the constraint that for all i ∈ A either the real destination is among the
possible ones, i.e., α∗(i) ∈ β(i), or β(i) = ∅, because agent i already arrived (and
is not allowed to move anymore). We require further that all combinations of
possible destinations are consistent, i.e., β(i) ∩ β(j) = ∅ for all i �= j ∈ A.

In the original MAPF problem, the state space for the planning process is
simply the space of all configurations α of the agents in the graph. For the
MAPF problem with destination uncertainty we also have to take into account
the possible belief states of all the agents. For this reason, we have to make the
possible destination function part of the state space as well, i.e., an objective
state is now the tuple s = (α, β), which captures the common knowledge of all
agents. Since the precise destinations are not common knowledge any longer,
it is necessary to have some form of signal so that an agent can tell the other
agents that it does not want to move any more—meaning it has reached its final
destination. Only with such a success announcement the agents will in the end
know that everyone has reached its destination.

An instance of the problem is now given by the tuple MDU = 〈A,G, s0, α∗〉,
with the set of agents A, the graph G = (V,E), the initial objective state
s0 = (α0, β0), and the goal configuration α∗. Movement actions change the
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configuration α, while success announcements change the destination function
β. If an agent i makes a success announcement while being in location v, we
change the destination function to β[i/∅], signaling that the agent has reached
its destination and is not allowed to move anymore. The goal state is reached if
for all agents i, α(i) = α∗(i) (the destination has been reached) and β(i) = ∅
(success has been announced).

2.2 Branching Plans

When an agent i is starting to generate a plan, the agent knows, of course,
its true destination α∗(i). The subjective view of the world is captured by the
tuple (α, β, i, α∗(i)), which we call subjective state of agent i. Given a subjective
state (α, β, i, α∗(i)), we call (α, β) the corresponding objective state. Using its
subjective state, agent i can plan to make movements that eventually will lead
to a goal state. Most probably, it will be necessary to plan for other agents to
move out of the way or to move to their destination. So, the planning agent has
to put itself into the shoes of another agent j: i must make a perspective shift
taking j’s view. Since i does not know the true destination of j, i must take all
possibilities into account and plan for all of them. In other words, i must plan
for j using all possible subjective states of j: sjv = (α, β, j, v) for v ∈ β(j). When
planning for each possible destination of j, the planning agent i must pretend
not to know the true destination of itself because it plans with the knowledge of
agent j, which is uncertain about i’s destinations.

All in all, a plan in the context of MAPF with destination uncertainty is no
longer a linear sequence, but a branching plan. Furthermore, it is not enough
to reach the true goal state, but the plan has to be successful for all possible
destinations of all the agents (except for the starting agent i, who knows its own
destination).

Such a branching plan corresponds roughly to what has been termed policy
in the more general context of implicitly coordinated epistemic planing [2,3]. In
order to illustrate the concept of a branching plan, let us consider the example
in Fig. 1. Here square agent S knows that its destination is v3 (the solid square)
and the circle agent C knows that its destination is v4 (the solid circle). However
both are unsure about the destinations of the other agent. So S knows that v1
and v4 are possible destinations for C. C in turns knows that v2 and v3 are
possible destinations for S.

v1 v2

v3v4

Fig. 1. Small example with square agent (S) and circle agent (C)
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(S, v1, v4)

C:

(C, v2, v1) (C, v2, v1)

S:

?v1 ?v4

(C,S) (S, v4, v3)

?v2

(S, v4, v3)

?v3

(S,S)

C:

(C, v1, v4)

?v4
(C,S)
?v1

(C,S)

S:

(S, v4, v3) (S, v4, v3)

?v2 ?v3

(S, v3, v2) (S,S)

(S,S)

(S, v3, v2)

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

(C,S)
?v1

Fig. 2. Branching plan

Let us now assume that square agent S moves first to v4. Now S puts itself
into the shoes of circle agent C and reasons about what C would do, if v1 is C’s
destination, and how C would continue if v4 is C’s destination. In the former
case, C moves to v1 and announces that it has reached its destination. In the
other case, it will also move to v1, offering S the possibility to move to its
destination, whether it is v2 or v3. After that, C could move to its destination.
All in all, a branching plan could look as depicted in Fig. 2. In this plan, each
perspective shift to another agent is followed by branching according to the
possible destinations of the agent. In general, we do not always require such
branching because the agent might decide to move independently of its own
destinations. One of the main results is then that all successful branching plans
need to branch only on so-called stepping stone situations [5, Theorem 5]. These
are configurations in which one agent has unblocked ways to all its possible
destinations, and for those destinations, there are successful subplans after that
agent has reached it. For example, in Fig. 2, after S’s initial movement from v1
to v4, there is neither a stepping stone situation for C not for S. However, after
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C had then moved from v2 to v1, C had created a stepping stone situation for S.
S can move now uninterrupted to v2, announce success and there is a successful
plan afterwards for C. In case v3 is the real destination, S can move there and
again there is a successful plan afterwards for C. From the fact that a plan needs
only to branch on stepping stones, it follows that these branching plans need to
have only polynomial depth.

2.3 Joint Execution Model

After all agents have planned, we have a family of plans (πi)i∈A. Joint execution
of this family of plans is then performed in an asynchronous, interleaved fashion.
From all the agents i that have as their first action one of their own moves, one
agent is chosen and its movement is executed. This is very similar to what
happens in real-time board games, such as Magic Maze. The player who acts
fastest carries out the action. For all the other agents the following happens:
Either the movement was anticipated and then the movement is removed from
the plan or the agent has to replan from the new situation. The interesting
question is, whether such an asynchronous, distributed execution is guaranteed
to eventually lead to the desired goal configuration and how many steps it takes
to reach the common goal.

3 Exploiting Observations While Executing

As has been shown, under some reasonable conditions it is possible to guarantee
success, provided that there is at least one agent which is able to come up with
a plan initially [5]. However, there are also situations which look easily solvable,
but it turns out that our notion of implicit coordination does not capture this.
One such example is shown in Fig. 3. The square agent wants to go v4 and knows
that the circle agent wants to go either to v2 or to v5. Similarly, the circle agent
wants to go to v2 and knows that the square agent wants to go either to v1 or
to v4.

If the square agent tries to solve the instance, it will try to create a stepping
stone situation [5, Sect. 3.2] for the other agent. The only possible way to do
that appears to be to move to v6. Now the circle agent can move to both possi-
ble destinations. Unfortunately, after moving to v2, the circle agent cannot any

v1 v2 v3 v4 v5

v6

Fig. 3. MAPF/DU instance that is only solvable using inferences about observations
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longer guarantee that the square agent can reach both of its possible destina-
tions. Specifically, the square agent is blocked from reaching v1. So, the move of
the square agent to v6 does not create a stepping stone for the circle agent. As
is easy to see, all other movements of the square agents do not create a stepping
stone either. Since the situation is completely symmetric, also the circle agent is
unable to create a stepping stone.

If we try to explain movements by assuming that the other agents act ratio-
nally, we may assume that they always try to come up with shortest possible
plans. Therefore, if the circle agents observes the square agent moving to v6, the
circle agent may rightly conclude that v1 cannot be the actual destination of the
square agent. Because if it were, then the square agent would have moved there
directly announcing success, which would have led to an overall shorter plan.
So, for the remaining part of the plan both agents can assume that v1 is not
the actual destination of the square agent. This implies that the circle agent can
safely move to either v2 or v5 and afterwards the square agent can move to the
only possible destination, namely v4, which then solves the previously unsolvable
instance.

Below we will discuss how to generalize this kind of reasoning.

3.1 Safe Abduction

Abduction is the inference to the best explanation, given an observation and
a background theory. This is apparently what we are using when drawing the
above conclusion that v1 is not the destination of the square agent. In general,
abduction is an “unsafe” inference in that the best explanation is not necessarily
the correct one. For instance, often the best explanation for the malfunctioning
of a device is based on a single-failure assumption, which might nevertheless not
be the right explanation.

In our context, incorrect explanations could easily lead to situations, where
destinations are no longer accessible, turning a solvable instance into an unsolv-
able one. In order to avoid that we will only accept explanations that are safe in
the sense that they do not exclude a destination that is still be possible. Using
the criterion of aiming for shortest plans, it may, however, still be possible to
infer meaningful information.

3.2 Observations and Explanations

So what should count as an observation that needs an explanation? As in the
example above, a meaningful observation is a sequence of movements by one
agent i starting at a node v ending at node v′ without interruptions by other
agents. In the example, this would be the movements of the square agent from
v2 over v3 to v6. In this example, one might also could consider the movement
from v2 to v3 as one observation.

In order to explain an observation, we take all possible destinations of the
moving agent i into account and generate shortest plans for each of these desti-
nations v∗

i,1, . . . , v
∗
i,k, starting with movements of agent i at node v not using the
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prefix from v to v′. Call these plans πi,j . In creating these plans one has to take
into account that the other agents do not know the destinations of that agent.
Similarly, create shortest plans that include the prefix from v to v′ and call these
plans π′

i,j . Note that all these sub-plans may also use safe abduction!
Assuming that |π| denotes the execution cost of plan π, we now compare

the plans for all destinations vi,j . If |πi,j | < |π′
i,,j |,1 we conclude that agent i

cannot rationally try to reach destination v∗
i,j moving from v to v′. In fact, all

agents observing this behavior can conclude this and agent i (and everybody
else) is aware that everybody else knows that. In other words, after agent i
moved from v to v′, it is common knowledge that agent i is trying to reach
one of the destinations vi,j such that |π′

i,j | ≤ |πi,,j |. Note that we included all
destinations v∗

i,j with |π′
i,j | = |πi,,j |, since there is no reason do dismiss v∗

i,j after
having reached v′.

One important prerequisite for this kind of inference to be correct is, however,
that agents indeed always generate a shortest plan. And this does not only con-
cern the overall plan, where we measure the length as the longest trace through
the branching plan. Instead, this should be true also for each sub-plan at each
point, where a perspective shift happens. This is something we currently do not
require from our plans when giving success guarantees. Furthermore, we explic-
itly do not require to branch at each point where a perspective shift happens.
However, it is, of course, possible to make that a requirement.

The most interesting feature of using this kind of inference is that it also can
make instances solvable that were unsolvable before. For the example in Fig. 3, we
showed that no stepping stone exists, so that it cannot be solved by an implicitly
coordinated branching plan. However, using the notion of safe abduction, C can
come up with the plan of moving to v6. Now this is definitely not a prefix of an
optimal plan for solving this instance when v5 is C’s destination. On the other
hand, there exists no plan at all to solve the instance when v2 is the destination,
i.e., plan length is infinite. In other words, everybody can safely assume that C
does not have v5 as a destination. Using this assumption, the instance can then
be easily solved.

However, it turns out that sometimes the agent might not have the right
option to act in order to signal that a possible destination can be excluded. Let
us reconsider the example from above but place C initially into cell v6. Now
the problem is that the only way to signal that v5 is not C’s destination is to
do nothing. However, doing nothing cannot be observed in our asynchronous
execution model. The way out here could be to introduce an observable wait
action, which induces also execution costs. Then no successful shortest sub-plan
for a particular destination could contain this action. On the other hand, if
there does not exist a plan for a possible destination where the agent moves
first, a wait action does not matter, because plan length is infinite in any case.
In our modified example, where C is initially in cell v6, there exists a plan for
C’s destination v5 with C moving first, hence a wait action could not be part
of a shortest plan. For C’s destination v2 on the other hand, there does not

1 If no plan can be found, then we assume infinitely large execution costs.
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exist any plan with C moving first. So, a wait action is appropriate here. So, a
wait action can signal that only those destinations remain for which there exists
no plan initially; in our example, this would mean that v2 must be the actual
destination.

Actually, an alternative to a wait action might be to make one move and then
return to the original location. This would also signal that only those destinations
are possible for which there is no initial plan where the agent moves first.

In any case, regardless of whether we use a wait action or a back and forth
movement, we seem to violate the requirement set out earlier, namely that plans
should by cycle-free, which in the case of branching plans translates into the
requirement that no objective state should be visited twice on a possible exe-
cution trace. However, the movement is made in order to change the common
knowledge (see below) and in so far, no cycle is created.

3.3 Forward Induction

During the MAPF/DU planning process, common knowledge over all possible
destinations is maintained using the possible destination function β, i.e., β(i)
is the commonly known set of all possible destinations for agent i. This set is
reduced to the empty set whenever agent i makes a success announcement. If
we use safe abduction as described above, we can reduce the set of possible
destinations β(i) to all those that are still possible according to the definition
in the previous subsection. Interestingly, since this is common knowledge, this
reduction can be propagated to the entire sub-plan following i’s movement (or
inaction).

In order to illustrate that this can even proceed over more than one stage, let
us consider a more complex example, where we add a third agent T , the triangle
agent (Fig. 4).

Here, T could start by moving to v4, signalling that v10 is not its destination.
The only way for C would be to move to v10 (in order to help T later on), in
order to allow T to move to its possible destination. Not that at this point
we are not entitled to make the inference that v7 is not the destination of C,
because C could not have moved there announcing success with the guarantee

v1 v2 v3 v4 v5 v6 v7 v8

v9

v10

Fig. 4. More complex example
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that the remaining problem could be solved. If T ’s goal were v8, it could move
there and the rest would be easy for C and S. However, instead it moves to v9
signalling that v8 is not its destination. Now it is common knowledge that v1 is
T ’s destination. However C and S do not have knowledge about their respective
destinations. S would unblock the way for T by moving to v6, and T could move
to v1, announcing success. C cannot make any meaningful move, so S has to
move, either to v2 or v3, in order to allow for C either to move to its destination
v7, or to signal that this not C’s destination. Now C could execute a wait action
in order to signal that v7 is not C’s destination. So, S could happily move to v6
and announce success, after which C could easily finish.

3.4 Computational Complexity

From a computational complexity point, most probably nothing changes. The
construction in the proof of Theorem 11 of the original paper [5] still works. In
particular, forward induction is of no help and not a hindrance in deciding the
constructed MAPF/DU instance. For proving PSPACE membership, one has to
prove a generalized stepping stone theorem. A generalized stepping stone is now
a state such that either the agent can reach all possible destinations, announce
success and the solvability of the simplified problem can be guaranteed (as usual),
or the movements of the agent end in a state such that we can safely abduct and
can at least eliminate one possible destination. With that, polynomial depth of
the branching plan follows and then one could easily guess and check all traces
iteratively. One has to guess also the depth of plans (which subsequently have
to be verified) in order to allow for the verification of safe abductions.

4 Outlook

Although the complexity probably does not change, algorithmically things
become more involved. In fact, one might want to consider only special cases
of safe abduction inferences in order to reduce computational overhead. For
example, one might only consider situations when success announcements are
possible and ignored, as in the above examples. Otherwise the computational
burden might be too high. In particular, it remains unclear whether we could
reduce the worst case execution costs, which are what we are interested in when
proving success guarantees.

An interesting question then comes up related to the omniscience problem. If
an agent does something that another agent can take as a signal, then the other
agent actually has to recognize that as a signal, otherwise the plan of the acting
agent might not work out. In other words, all agents have to use the same level
of reasoning.

All in all, the ideas spelled out here might hopefully serve as a starting point
for defining a notion of implicit coordination that also takes into account the
observation about actions of the other agents. Hopefully, this might also lead to
generalizing these ideas to more general settings such as epistemic planning with
monotonic uncertainty reduction or even general epistemic planning.
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Abstract. Knowledge graphs are based on graph models enriched with
(sets of) attribute-value pairs, called annotations, attached to vertices
and edges. Many application scenarios of knowledge graphs crucially
rely on the frequent use of annotations related to time. Building upon
attributed logics, we design description logics enriched with temporal
annotations whose values are interpreted over discrete time. Investigat-
ing the complexity of reasoning in this new formalism, it turns out that
reasoning in our temporally attributed description logic ALCHT

@ is highly
undecidable; thus we establish restrictions where it becomes decidable,
and even tractable.

1 Introduction

Graph-based data formats play an essential role in modern information manage-
ment, since they offer schematic flexibility, ease information re-use, and simplify
data integration. Ontological knowledge representation has been shown to offer
many benefits to such data-intensive applications, e.g., by supporting integra-
tion, querying, error detection, or repair. However, practical knowledge graphs,
such as Wikidata [38] or YAGO2 [21], are based on enriched graphs where edges
are augmented with additional annotations.

Example 1. Figure 1 shows an excerpt of the information that Wikidata pro-
vides about Franz Baader. Binary relations, such as memberOf(FranzBaader,
AcademiaEuropaea), are the main modelling primitive for encoding knowledge.
They correspond to labelled directed edges in the graph. However, many of these
edges are annotated with additional information, specifying validity times, refer-
ences (collapsed in the figure), auxiliary details, and other pieces of information
that pertain to this binary relationship.

A similar approach to knowledge modelling is followed in the popular Prop-
erty Graph data model [34], and supported by modern graph stores such as Ama-
zon Azure, BlazeGraph, and Neo4j. Other data models allowing attribute-value
pairs to be associated with relations are UML, entity-relation and object-role
modelling (see, e.g., [2,10,37] for works drawing the connection between these
data models and DLs). Predicate logic does not have a corresponding notion
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Fig. 1. Excerpt of the Wikidata page of Franz Baader; https://wikidata.org/wiki/
Q92729

of enriched relationships, and established ontology languages that are based on
traditional logic are therefore not readily applicable to enriched graphs [22]. To
provide better modelling support, attributed logics have been proposed as a way
of integrating annotations with logical reasoning [32]. This approach has been
applied to description logics (DLs) [7] to obtain attributed DLs [12,23,24].

Annotations in practical knowledge graphs have many purposes, such as
recording provenance, specifying context, or encoding n-ary relations. One of
their most important uses, however, is to encode temporal validity of statements.
In Wikidata, e.g., start/end time and point in time are among the most frequent
annotations, used in 6.7 million statements overall.1 YAGO2 introduced the

1 As of March 2019, the only more common annotations are reference (provenance)
and determination method (context); see https://tools.wmflabs.org/sqid/#/browse?
type=properties&sortpropertyqualifiers=fa-sort-desc.

https://wikidata.org/wiki/Q92729
https://wikidata.org/wiki/Q92729
https://tools.wmflabs.org/sqid/#/browse?type=properties&sortpropertyqualifiers=fa-sort-desc
https://tools.wmflabs.org/sqid/#/browse?type=properties&sortpropertyqualifiers=fa-sort-desc
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SPOTL data format that enriches subject-property-object triples (known from
RDF) with information on time and location [21].

Reasoning with time clearly requires an adequate semantics, and many
approaches were proposed. Validity time points and intervals are a classical topic
in data management [17,18], and similar models of time have also been stud-
ied in ontologies [4,26]. However, researchers in ontologies have most commonly
focussed on abstract models of time as used in temporal logics [8,31,39]. Tempo-
ral reasoning in ALC with concrete domains was proposed by Lutz et al. [29]. It
is known that satisfiability of ALC with a concrete domain consisting of a dense
domain and containing the predicates = and < is ExpTime-complete [28]. In
the same setting but for discrete time, the complexity of the satisfiability prob-
lem is open, a criterion which only guarantees decidability has been proposed
by Carapelle and Turhan [15]. None of these approaches has been considered for
attributed logics yet, and indeed support for temporal reasoning for knowledge
graphs, such as Wikidata and YAGO2, is still missing today. In this paper, we
address this shortcoming by endowing attributed description logics with a tem-
poral semantics for annotations. Indeed, annotations are already well-suited for
representing time-related data.

Example 2. We introduce temporally attributed DLs that use special temporal
annotation attributes, which can refer to individual time points or to intervals of
time. For example, information about Franz Baader’s current employment can
be expressed by an annotated DL fact as follows:

employer(FranzBaader,TUD)@��since: 2002, position: fullProfessor�� (1)

Here, the special temporal attribute since is used alongside the regular attribute
position. Likewise, we can express intervals, as in the following axiom2

educatedAt(FranzBaader,FAU)@��during : [1985, 1989], degree: doctorate�� (2)

Some facts might also be associated with a specific time rather than with a
duration. For example, we could encode some of the knowledge in Wikidata
with the fact:

bornIn(FranzBaader,Spalt)@��time: 1959�� (3)

Not all people are as thoroughly documented on Wikidata, but attributed DLs
also provide ways of leaving some information unspecified, as in the following
fact about one of Baader’s former doctoral students:

(∃bornIn@�� between : [1950, 2000] ��.� )
(Carsten), (4)

which merely states that Carsten Lutz was born somewhere within the second
half of the 20th century.

2 FAU is the official abbreviation for the Friedrich-Alexander University in Erlan-
gen/Nuremberg.
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Fig. 2. Examples for axioms in attributed description logics

To deal with such temporally annotated data in a semantically adequate
way and to specify temporal background knowledge, we propose the temporally
attributed description logic ALCHT

@ that enables reasoning and querying with
such information. In addition to the basic support for representing information
with attributes, our logic includes a special semantics for temporal attributes,
and the support for (safe) variables in DL axioms. Beyond defining syntax and
semantics of ALCHT

@, our contributions are the following:

– We show that the full formalism is highly undecidable using an encoding of
a recurring tiling problem.

– We present three ways (of increasing reasoning complexity) for regaining
decidability: disallowing variables altogether (ExpTime), disallowing the use
of variables only for temporal attributes (2ExpTime), or disallowing the use
of temporal attributes referencing time points in the future (3ExpTime).

– Finally we single out a lightweight case based on the description logic EL
which features PTime reasoning.

2 Temporally Attributed DLs

We first present the syntax and underlying intuition of temporally attributed
description logics. In DL, a true fact corresponds to the membership of an ele-
ment in a class, or of a pair of elements in a binary relation. Attributed DLs
further allow each true fact to carry a finite set of annotations [23], given as
attribute-value pairs. As suggested in Example 2, the same relationship may be
true with several different annotation sets, e.g., to capture that Baader has been
educated at FAU Erlangen-Nuremberg during two intervals: once for his PhD
and once for his Diplom (not shown in Fig. 1).

Example 3. To guide the reader in following the formal definitions, we first illus-
trate the main features of attributed DL by means of some example axioms,
shown in Fig. 2. We already use time as an example annotation, but do not yet
rely on any specific semantic interpretation for this attribute.
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Fig. 3. Examples for axioms in temporally attributed description logics

The (non-temporal) attributed DL axiom (5) states that people employed as
full professors are professors. The open specifier �position: fullProfessor� requires
that the given attribute is among the annotations, but allows other annotations
to be there as well (denoted by the half-open brackets). Axiom (6) is equivalent
to (5), but assigns the annotation set to a set variable X.

If the employer relation specifies a validity time, the same time would apply
to Professor. This is accomplished by axiom (7), which uses the expression
time: X.time to declare that all (zero or more) time values of X should be copied.
The closed brackets in the conclusion specify that no further attribute-value pairs
may occur in the annotation of the conclusion.

A subtly different meaning is captured by (8), which uses an object variable
x as a placeholder for a single attribute value. In contrast to (8), axiom (7) (i)
requires that at least one time annotation is present (rather than allowing zero
or more), (ii) requires that the annotation set in the premise has exactly two
attribute-value pairs (rather than being open for more), and (iii) infers distinct
Professor assertions for each time x (rather than one assertion that copies all time
points). Item (iii) deserves some reflection. As argued above, it is meaningful that
the same fact holds true with different annotation sets, and this does not imply
that it is also true with the union of these annotations. However, in the case of
time, our intuition is that something is true at several times individually exactly
if it is true at all of these times together. Our formal semantics will ensure that
this equivalence holds.

We define our description logic ALCHT

@ as a multi-sorted version of the
attributed DL ALCH@, thereby introducing datatypes for time points and inter-
vals. Elements of the different types are represented by members of mutu-
ally disjoint sets of (abstract) individual names NI, time points NT, and time
intervals N2

T. We represent time points by natural numbers, and assume that
elements of NT (N2

T) are (pairs of) numbers in binary encoding. We write
[k, �] for a pair of numbers k, � in N2

T. Moreover, we require that there
are the following seven special individual names, called temporal attributes:
time, before, after, until, since, during, between ∈ NI.

The intuitive meaning of temporal attributes is as one might expect: time
describes individual times at which a statement is true, while the others describe
(half-open) intervals. The meaning of before, after, and between is existential in
that they require the statement to hold only at some time in the interval, while
until, since, and during are universal and require something to be true throughout
an interval.
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Example 4. The examples in Fig. 3 illustrate the special semantics of temporal
attributes. Axiom (9) states that nobody can be educated before being born.
Axiom (10) is equivalent. In particular, our semantics ensures that temporal
attributes like time, before, and after will be inferred even when not stated explic-
itly. For example, (11) is a tautology. Longer intervals of during can be inferred
for any span of consecutive time points (our time model is discrete). Finally, we
also allow using object variables in time intervals, as illustrated in (12), which
is actually equivalent to (9) as well.

With these examples in mind, we continue to define the syntax of our tempo-
ral DLs formally. Axioms of ALCHT

@ are further based on sets of concept names
NC, and role names NR. Attributes are represented by individual names, and we
associate a value type valtype(a) with each individual a ∈ NI for this purpose:
during and between have value type N2

T, all other temporal attributes have value
type NT, and all other individuals have value type NI. An attribute-value pair
is an expression a: v where a ∈ NI and v ∈ valtype(a). Now concept and role
assertions of ALCHT

@ have the following form, respectively:

C(a)@��a1 : v1, . . . , an : vn�� (13)

r(a, b)@��a1 : v1, . . . , an : vn�� (14)

where C ∈ NC, r ∈ NR, a, b ∈ NI, and ai : vi are attribute-value pairs. Note that
(4) in Example 2 is not a concept assertion in the sense of (13), since it uses
a complex concept expression. As usual in DLs, our language will allow us to
encode such complex assertions by giving them a new name in a terminological
axiom.

Role and concept inclusion axioms of ALCHT

@ introduce additional expressive
power to refer to partially specified and variable annotation sets. Attribute values
may now also contain object variables taken from pairwise disjoint sets Var(NI),
Var(NT), and Var(N2

T). Moreover, whole annotation sets might be represented by
set variables from a set NV.

Definition 1. An (annotation set) specifier can be a set variable X ∈ NV, a
closed specifier of the form ��a1 : v1, . . . , an : vn��, or an open specifier of the form
�a1 : v1, . . . , an : vn�, where n ≥ 0, ai ∈ NI and each vi is an expression that is
compatible with the value type of its attribute in the sense that it has one of the
following forms:

– vi ∈ valtype(ai) ∪ Var(valtype(ai)), or
– vi = [v, w] with valtype(ai) = N2

T and v, w in NT ∪ Var(NT), or
– vi = X.b with X ∈ NV, b ∈ NI, and valtype(ai) = valtype(b).

The set of all specifiers is denoted S. A specifier is ground if it does not contain
variables.
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Intuitively, closed specifiers define specific annotation sets whereas open spec-
ifiers provide lower bounds [23]. Object variables are used to copy values from
one attribute to another, as long as the attributes have the same value type (in
the same annotation set or in a new one); the expression X.b is used to copy all
of the zero or more b-values of annotation set X. We also allow specifiers to be
empty. That is, we allow �� (meaning “any annotation set”) and ���� (meaning
“the empty annotation set”). To simplify notation, we may omit @�� and @����
in role or concept expressions (and @���� in assertions).

Definition 2. ALCHT

@ role expressions have the form r@S with r ∈ NR and
S ∈ S. ALCHT

@ concept expressions C,D are defined recursively:

C,D ::= � | A@S | ¬C | (C � D) | ∃R.C (15)

with A ∈ NC, S ∈ S and R an ALCHT

@ role expression.

We use abbreviations (C � D), ⊥, and ∀R.C for ¬(¬C � ¬D), ¬�, and
¬(∃R.¬C), respectively. ALCHT

@ axioms are essentially just (role/concept) inclu-
sions between ALCHT

@ role and concept expressions, which may, however, share
variables.

Example 5. Object variables can be used to create new intervals of time using
the temporal information present on the annotations. In the following example,
we illustrate a concept inclusion that allows for inferring the (minimum) period
in which a person typically is a PhD student:

∃obtainedMSc@�between : [x, x′]�.� � ∃obtainedPhD@�between : [y, y′]�.�
� PhDStudent@�during : [x′, y]� (16)

It is sometimes useful to represent annotations by variables while also specify-
ing some further constraints on their possible values. This can be accommodated
by adding such constraints as (optional) prefixes to axioms.

Definition 3. An ALCHT

@ concept inclusion is an expression of the form

X1 :S1, . . . , Xn :Sn (C � D), (17)

where C,D are ALCHT

@ concept expressions, S1, . . . , Sn ∈ S are closed or
open specifiers, and X1, . . . , Xn ∈ NV are set variables occurring in C,D or
in S1, . . . , Sn. We require that all variables are safe in the following sense:

(1) every set variable in the axiom also occurs in the left concept C,3 and
(2) every object variable in the axiom also occurs either in the left concept C or

in a specifier Si in a prefix Xi :Si.
3 This is a simplification from previous works [24] where set variables were allowed

to occur in the specifier prefix only under some circumstances. It is not hard to see
that our simplification does not relinquish relevant expressivity if we permit some
normalisation.
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ALCHT

@ role inclusions are defined analogously, but with role expressions instead
of the concept expressions. An ALCHT

@ ontology is a set of ALCHT

@ assertions,
and role and concept inclusions.

Note that any ALCH axiom is also an ALCHT

@ axiom in the sense that the
absence of explicit annotations can be considered to mean “@��.”

3 Semantics of Temporally Attributed DLs

We first recall the general semantics of attributed DLs without temporal
attributes. The semantics of ALCHT

@ can then be obtained as a multi-sorted
extension that imposes additional restrictions on the interpretation of time.

An interpretation I = (ΔI , ·I) of attributed logic consists of a non-empty
domain ΔI and a function ·I . Individual names a ∈ NI are interpreted as ele-
ments aI ∈ ΔI . To interpret annotation sets, we use the set ΦI of all finite
binary relations over ΔI . Each concept name C ∈ NC is interpreted as a set
CI ⊆ ΔI × ΦI of elements with annotations, and each role name r ∈ NR is
interpreted as a set rI ⊆ ΔI × ΔI × ΦI of pairs of elements with annotations.
Each element (pair of elements) may appear with multiple annotations [23].

Note that attributes are represented by domain elements in this semantics.
This has no actual impact on reasoning in the context of this paper, and could
be changed to use a separate sort for attributes or to consider them as a kind
of predicate that is part of a fixed schema. While this detail is immaterial to
our proofs, it is worth noting that attributes are also treated as special kinds of
domain objects in important practical knowledge graphs. Both RDF-based mod-
els and Wikidata use (technically different) notions of property that are part of
the domain and can therefore be described by facts. This ability is frequently
used in practice to store annotations, to declare constraints, or to establish map-
pings to external vocabularies. We believe that in particular constraint informa-
tion and mappings in datasets should be accessible to ontological reasoning. In
contrast, the Property Graph data model represents attributes as property keys
(plain strings) that cannot be used as objects (vertices) in the graph [33]. How-
ever, in this model, attribute values (property values) cannot refer to objects in
the graph either. We do not consider it desirable to impose those restrictions,
since our more general model can capture more real-world graphs, and is useful
for expressing many natural statements (e.g., values like full professor in Fig. 1
refer to domain objects, which Property Graph would not allow).

3.1 Time-Sorted Interpretations

To deal with time, we define interpretation that include temporal sorts in addi-
tion to the usual abstract domain.

Definition 4. A time-sorted interpretation I = (ΔI , ·I) is an interpretation
with a domain ΔI that is a disjoint union of ΔI

I ∪ ΔI
T ∪ ΔI

2T , where ΔI
I is the
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abstract domain, ΔI
T is a finite or infinite interval,4 called temporal domain,

and ΔI
2T = ΔI

T × ΔI
T .

We interpret individual names a ∈ NI as elements aI ∈ ΔI
I ; time points

t ∈ NT as tI ∈ ΔI
T ; and intervals [t, t′] ∈ N2

T as [t, t′]I = (tI , t′I) ∈ ΔI
2T . A pair

(δ, ε) ∈ ΔI
I × ΔI is well-typed, if one of the following holds:

(a) δ = aI for an attribute a of value type NT and ε ∈ ΔI
T ; or

(b) δ = aI for an attribute a of value type N2
T and ε ∈ ΔI

2T ; or
(c) δ = aI for an attribute a of value type NI and ε ∈ ΔI

I .

Let ΦI be the set of all finite sets of well-typed pairs. The function ·I maps
concept names C ∈ NC to CI ⊆ ΔI × ΦI and role names r ∈ NR to rI ⊆
ΔI × ΔI × ΦI .

Note that ΔI
T can be finite if NT and N2

T are (which is always admissible,
since any ontology mentions only finitely many time points). I satisfies a con-
cept assertion C(a)@��a1 : v1, . . . , an : vn�� if (aI , {(aI

1 , vI
1 ), . . . , (aI

n, vI
n)}) ∈ CI ,

and likewise for role assertions. For interpreting expressions with (object or set)
variables, we need a notion of variable assignment.

Definition 5 (semantics of terms). A variable assignment for a time-sorted
interpretation I is a function Z that maps set variables X ∈ NV to finite binary
relations Z(X) ∈ ΦI , and object variables x ∈ Var(NI) ∪ Var(NT) ∪ Var(N2

T) to
elements Z(x) ∈ ΔI

I ∪ ΔI
T ∪ ΔI

2T (respecting their types). For (set or object)
variables x, let xI,Z := Z(x), and for abstract individuals, time points, or time
intervals a, let aI,Z := aI .

Intuitively, each specifiers defines a set of annotation sets. For closed speci-
fiers, there is just one such set (corresponding exactly to the specified attribute-
value pairs), whereas for open specifiers, we obtain many sets (namely all super-
sets of the set that was specified). The following definition is making this formal,
and also defines the semantics for all types of expressions that may occur in the
value position of attributes within specifiers.

Definition 6 (semantics of specifiers). A specifier S ∈ S is interpreted as
a set SI,Z ⊆ ΦI of matching annotation sets. We set XI,Z := {Z(X)} for
variables X ∈ NV. The semantics of closed specifiers is defined as follows:

(i) ��a: v��I,Z := {{(aI , vI,Z)}}, with v ∈ valtype(a) ∪ Var(valtype(a));
(ii) ��a: [v, w]��I,Z := {{(aI , (vI,Z , wI,Z))}}, with valtype(a) = N2

T, and v, w ∈
NT ∪ Var(NT);

(iii) ��a: X.b��I,Z := {{(aI , δ) | (bI , δ) ∈ Z(X)}};
(iv) ��a1 : v1, . . . , an : vn��I,Z := {⋃n

i=1 Fi} with {Fi} = ��ai : vi��I,Z for all i ∈
{1, . . . , n}.

4 As usual for the natural numbers, a finite interval [k, �] is {n ∈ N | k ≤ n ≤ �} and
an infinite interval [k, ∞) is {n ∈ N | k ≤ n}.
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SI,Z therefore is a singleton set for variables and closed specifiers. For open
specifiers, however, we define �a1 : v1, . . . , an : vn�I,Z to be the set

{F ∈ ΦI | F ⊇ G for {G} = ��a1 : v1, . . . , an : vn��I,Z}.

With the above definitions in place, we can now define the semantics of
concepts and roles in the expected way, simply adding the appropriate condition
for the additional annotation sets.

Definition 7 (semantics of concepts and roles). For A ∈ NC, r ∈ NR, and
S ∈ S, let:

(A@S)I,Z := {δ | (δ, F ) ∈ AI for some F ∈ SI,Z}, (18)

(r@S)I,Z := {(δ, ε) | (δ, ε, F ) ∈ rI for some F ∈ SI,Z}. (19)

The semantics of further concept expressions is defined as usual: �I,Z = ΔI ,
¬CI,Z = ΔI \ CI,Z , (C � D)I,Z = CI,Z ∩ DI,Z , and (∃R.C)I,Z = {δ |
there is (δ, ε) ∈ RI,Z with ε ∈ CI,Z}.

I satisfies a concept inclusion of the form (17) if, for all variable assignments
Z that satisfy Z(Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n, we have CI,Z ⊆ DI,Z . Satisfaction
of role inclusions is defined analogously. I satisfies an ontology if it satisfies all
of its axioms. As usual, |= denotes both satisfaction and the induced logical
entailment relation.

3.2 Semantics of Time

Time-sorted interpretations can be used to interpret ALCHT

@ ontologies, but
they do not take the intended semantics of time into account yet. For example,
we might find that A(c)@��after: 1993�� holds whereas A(c)@��time: t�� does not
hold for any time t ∈ NT with tI > 1993. To ensure consistency, we would
like to view an interpretation with temporal domain ΔI

T as a sequence (Ii)i∈ΔI
T

of regular (unsorted) interpretations that define the state of the world at each
point in time. Such a sequence represents a local view of time as a sequence of
events, whereas the time-sorted interpretation represents a global view that can
explicitly refer to time points. Axioms of ALCHT

@ refer to this global view, but
it should be based on an actual sequence of events. To simplify the relationship
between local and global views, we assume that the underlying abstract domain
ΔI

I and interpretation of constants remains the same over time.

Definition 8. Consider a temporal domain ΔI
T and an abstract domain ΔI

I ,
and let (Ii)i∈ΔI

T
be a sequence of (unsorted) interpretations with domain ΔI

I ,
such that, for all a ∈ NI, we have aIi = aIj for all i, j ∈ ΔI

T .
We define a global interpretation for (Ii)i∈ΔI

T
as a multi-sorted interpreta-

tion I = (ΔI , ·I) as follows. Let aI = aIi for all a ∈ NI. For any finite set
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F ∈ ΦI , let FI := F ∩ (ΔI
I × ΔI

I ) denote its abstract part without any temporal
attributes. For any A ∈ NC, δ ∈ ΔI , and F ∈ ΦI with F \ FI �= ∅, we have
(δ, F ) ∈ AI if and only if5 (δ, FI) ∈ AIi for some i ∈ ΔI

T , and the following
conditions hold for all (aI , x) ∈ F :

– if a = time, then (δ, FI) ∈ AIx ,
– if a = before, then (δ, FI) ∈ AIj for some j < x,
– if a = after, then (δ, FI) ∈ AIj for some j > x,
– if a = until, then (δ, FI) ∈ AIj for all j ≤ x,
– if a = since, then (δ, FI) ∈ AIj for all j ≥ x,
– if a = between, then (δ, FI) ∈ AIj for some j ∈ [x],
– if a = during, then (δ, FI) ∈ AIj for all j ∈ [x],

where [x] for an element x ∈ ΔI
2T denotes the finite interval represented by the

pair of numbers x, and j ∈ ΔI
T . For roles r ∈ NR, we define (δ, ε, F ) ∈ rI

analogously.

In words: in a global interpretation all tuples are consistent with the given
sequence of local interpretations. One can see a global interpretation as a snap-
shot of a local interpretation, with timestamps encoding the information of
the temporal sequence. If a global interpretation does not contain temporal
attributes the characterization of Definition 8 holds vacuously for any temporal
sequence, meaning that without temporal attributes the semantics is essentially
the same as for ALCH@.

Definition 9. An interpretation of ALCHT

@ is a time-sorted interpretation I
that is a global interpretation of an interpretation sequence (Ii)i∈ΔI

T
as in Defi-

nition 8.
A model of an ALCHT

@ ontology O is an ALCHT

@ interpretation that satisfies
O, and O entails an axiom α, written O |= α, if α is satisfied by all models of O.

By virtue of the syntax and semantics of ALCHT

@ we can express back-
ground knowledge that helps to maintain integrity of the annotated knowledge
and allows us to derive new information from it.

Example 6. Recall the imprecise assertion (4). Even without investigating fur-
ther into the life of Carsten Lutz, we do know that he has published papers as
early as 1997 [30], hence we can assume that he was educated before that:

(∃educatedAt@�before: 1997�.� )
(Carsten) (20)

where we again simplify presentation by allowing a complex concept expression
in an assertion. Now together with axiom (9) (or, equivalently, (10) or (12)), we
can infer

(∃bornIn@�between : [1950, 1996]�.� )
(Carsten) (21)

which, though hardly more precise, serves to illustrate entailments in ALCHT

@.6

5 ‘for some i ∈ ΔI
T ’ is useful for attributes which universally quantify time points (e.g.,

until).
6 Readers who long for greater precision may consult the literature [27].
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Some temporal attributes are closely related. Clearly, time can be captured
by using during or between with singleton intervals. Conversely, during can be
expressed by specifying all time points in the respective interval explicitly using
time, but this incurs an exponential blow-up over the binary encoding of time
intervals. Similarly, between could be expressed as a disjunction of statements
with specific times. Since time can be infinite, since and after cannot be captured
using finite intervals. It may seem as if until and before correspond to during and
between using intervals starting at 0. However, it is not certain that 0 is the
first element in the temporal domain of an interpretation, and the next example
shows that this cannot be assumed in general.

Example 7. The ontology with the two axioms C(a)@��until: 10�� and
C@��before: 5�� � ⊥ is satisfiable in ALCHT

@, but it does not have models that
have times before 5. Replacing until: 10 with during: [0, 10] would therefore lead
to an inconsistent ontology.

4 Reasoning in

In our investigations, we focus on the decidability and complexity of the satisfi-
ability problem as the central reasoning task. As usual, entailment of assertions
is reducible to satisfiability. Also, our definition of assertions could be easily
extended to complex concept expressions, since such assertions can be encoded
using concept inclusions. Thus, all of our decidability and complexity results hold
for the problem of answering instance queries, defined as the class of the asser-
tions allowing complex concept expressions, such as that of Example 2 (Eq. 4).

In this section, we study the expressivity and decidability in ALCHT

@. Our
first result, Theorem 1, shows that reasoning is on the first level of the analytical
hierarchy and therefore highly undecidable.

Theorem 1. Satisfiability of ALCHT

@ ontologies is Σ1
1-hard, and thus not recur-

sively enumerable. Moreover, the problem is Σ1
1-hard even with at most one set

variable per inclusion and with only the temporal attributes time and after.

Proof. We reduce from the following tiling problem, known to be Σ1
1-hard [20]:

given a finite set of tile types T with horizontal and vertical compatibility rela-
tions H and V , respectively, and t0 ∈ T , decide whether one can tile N×N with t0
appearing infinitely often in the first row. We define an ALCHT

@ ontology OT,t0

that expresses this property. In our encoding, we use the following symbols:

– a concept name A, to mark individuals representing a grid position with a
time point;

– a concept name P to keep time points associated with previous columns in
the grid;

– concept names At, for each t ∈ T , to mark individuals with tile types;
– an individual name a, to be connected with the first row of the grid;
– an auxiliary concept name I, to mark the individual a, and a concept name

B, used to create the vertical axis;
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– role names r, s, to connect horizontally and vertically the elements of the grid,
respectively.

We define OT,t0 as the set of the following ALCHT

@ assertion and concept inclu-
sions. We start encoding the first row of the grid with an assertion I(a) and the
concept inclusions:

I � ∃r.A@�time: 0� and ∃r.A@X � ∃r.A@�after: X.time�.
Every element in A must be marked in at most one time point (in fact, exactly
one):

A@X � ¬A@�after: X.time� (22)

Every element representing a grid position can be associated with exactly one
tile type at the same time point:

A@X �
⊔

t∈T

At@�time: X.time�,

∃r.At@X � ¬∃r.At′@�time: X.time�, for t �= t′ ∈ T.

We also have:

At@X � A@�time: X.time�, for each t ∈ T

to ensure that elements are in At and A at the same time point (exactly one,
see Eq. 22). The condition that t0 appears infinitely often in the first row is
expressed with:

I � ∃r.(At0@�time: 0� � At0@�after: 0�),
I � ∃r.At0@X � ∃r.At0@�after: X.time�.

To vertically connect subsequent rows of the grid, we have:

I � B and B � ∃s.B.

We add, for each t ∈ T , the following inclusion to ensure compatibility between
vertically adjacent tile types:

∃r.At@X � ∀s.∃r.(
⊔

(t,t′)∈V

At′@�time: X.time�)

We also have:

∃s.∃r.A@X � ∃r.A@�time: X.time�
to ensure that the set of time points in each row is the same. We now encode
compatibility between horizontally adjacent tile types. We first state that, given
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a node associated with a time point p, for every sibling node d, if d is associated
with a time point after p then we mark d with P and p:

∃r.A@X � ∀r.(¬A@�after: X.time� � P@�time: X.time�).

For each node, P keeps the time points associated with previous columns in the
grid (finitely many). We also have:

∃r.P@X � ∃r.A@�time: X.time� and P@X � A@�after: X.time�

to ensure that P keeps only those previous time points. Finally, for each t ∈ T ,
we add to OT,t0 the inclusion:

∃r.At@X � ∀r.(¬A@�after: X.time��
P@�after: X.time� �

⊔

(t,t′)∈H

At′).

Intuitively, as P keeps the time points associated with previous columns in the
grid, only the node representing the horizontally adjacent grid position of a node
associated with a time point p will not be marked with P after p. ��

Theorem 2 shows that even if after is only allowed in assertions reasoning is
undecidable, though, in the arithmetical hierarchy [35]. For this statement, recall
that Σ0

1 is the class of recursively enumerable problems.

Theorem 2. Satisfiability of ALCHT

@ ontologies with the temporal attributes
time, after and before but after only in assertions is Σ0

1-complete. The problem is
Σ0

1-hard even with at most one set variable per inclusion.

The detailed proof of this result can be found in the appendix.

5 Decidable Temporally Attributed DLs

To recover decidability, we need to restrict ALCHT

@ in some way. In this section,
we do so by restricting the use of variables or of temporal attributes, leading to
a range of different reasoning complexities.

A straightforward approach for recovering decidability is to restrict to ground
ALCHT

@, where we disallow set and object variables altogether. It is clear from
the known complexity of ALCH that reasoning is still ExpTime-hard. We estab-
lish a matching membership result by providing a satisfiability-preserving poly-
nomial time translation to ALCH extended with role conjunctions and disjunc-
tions (denoted ALCHb), where satisfiability is known to be in ExpTime [36].

Theorem 3. Satisfiability of ground ALCHT

@ ontologies is ExpTime-complete.
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Proof. Consider a ground ALCHT

@ ontology O, and let k0 < . . . < kn be the
ascending sequence of all numbers mentioned (in binary encoding) in time points
or in time intervals in O. We define NO := {ki | 0 ≤ i ≤ n}∪{ki +1 | 0 ≤ i < n},
and let kmin := min(NO) and kmax = max(NO), where we assume kmin = kmax = 0
if NO = ∅. For a finite interval v ⊆ N, let N

v
O be the set of all finite, non-empty

intervals u ⊆ v with end points in NO. The number of intervals in N
v
O then is

polynomial in the size of O.
We translate O into an ALCHb ontology O† as follows. First, O† contains

every axiom from O, with each annotated concept name A@S and each anno-
tated role name r@S replaced by a fresh concept name AS and a fresh role name
rS , respectively.

Second, given a ground specifier S, we denote by S(a: b) the result of removing
all temporal attributes from S and adding the pair a: b. Moreover, let ST be the
set of temporal attribute-value pairs in S. Then, for each AS and rS with ST �= ∅,
O† contains the equivalences (as usual, ≡ refers to bidirectional � here):

AS ≡
�

(a:b)∈ST

(AS(a:b))� and rS ≡
�

(a:b)∈ST

(rS(a:b))� (23)

where the concept/role expressions (HS(a:b))� for H ∈ {A, r} are defined as
follows:

– (HS(during:v))� =
�

u∈Nv
O

HS(during:u)

– (HS(between:v))� =
⊔

k∈(v∩NO) HS(during:[k,k])

– (HS(time:k))� = (HS(during:[k,k]))�

– (HS(since:k))� = (HS(during:[k,kmax]))
� � HS(since:kmax)

– (HS(until:k))� = (HS(during:[kmin,k]))� � HS(until:kmin)

– (HS(after:k))� = (HS(between:[k+1,kmax]))
� � HS(after:kmax)

– (HS(before:k))� = (HS(between:[kmin,k−1]))� � HS(before:kmin)

where k �= kmin and k �= kmax. If k ∈ {kmin, kmax} then we set (HS(a:k))� = HS(a:k).
Only polynomially many inclusions in the size of O are introduced by (23) in
O†.

Finally, given attribute-value pairs a: b and c: d for temporal attributes a and
b, we say that a: b implies c: d if A(e)@��a: b�� |= A(e)@��c: d�� for some arbitrary
A ∈ NC and e ∈ NI. Based on a given NI, this implication relationship is com-
putable in polynomial time. We then extend O† with all inclusions AS � AT and
rS � rT , where AS , AT and rS , rT are concept and role names occurring in O†,
including those introduced in (23), such that for each temporal attribute-value
pair c: d in T there is a temporal attribute-value pair a: b in S such that a: b
implies c: d and:

– T is an open specifier and the set of non-temporal attribute-value pairs in S
is a superset of the set of non-temporal attribute-value pairs in T ; or

– S, T are closed specifiers and the set of non-temporal attribute-value pairs in
S is equal to the set of non-temporal attribute-value pairs in T .
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This finishes the construction of O†. As shown in the appendix, O is satisfiable
iff O† is satisfiable. ��

While ground ALCHT

@ can already be used for some interesting conclusions,
it is still rather limited. However, satisfiability of (non-ground) ALCH@ ontolo-
gies is also decidable [23], and indeed we can regain decidability in ALCHT

@

by restricting the use of variables to non-temporal attributes. Using a similar
reasoning as in the case of ALCH@, we obtain a 2ExpTime upper bound by
constructing an equisatisfiable (exponentially larger) ground ALCHT

@ ontology.
The details of this proof are given in the appendix.

Theorem 4. Satisfiability in ALCHT

@ is 2ExpTime-complete for ontologies
without expressions of the form X.a; a: x with x in Var(NT); and a: [t, t′] with
one of t, t′ in Var(NT), where a is a temporal attribute.

Another way for regaining decidability is by limiting the temporal attributes
that make reference to time points in the future:

Theorem 5. Satisfiability of ALCHT

@ ontologies with only the temporal
attributes during, time, before and until is in 3ExpTime.

The proof of this result is found in the appendix. It is based on translating
the ALCHT

@ ontology into a ground ALCHT

@ ontology, which, however, is double-
exponential in size if we assume that time points in the temporal domain have
been encoded in binary. The claimed 3ExpTime upper bound then follows from
Theorem 3.

Our result in our next Theorem6 below is that this upper bound is tight.
The proof is by reduction from the word problem for double-exponentially space-
bounded alternating Turing machines (ATMs) [16] to the entailment problem
for ALCHT

@ ontologies. The main challenge in this reduction is that we need a
mechanism that allows us to transfer the information of a double-exponentially
space bounded tape, so that each configuration following a given configuration
is actually a successor configuration (i.e., tape cells are changed according to the
transition relation). We encode our tape using time: we can have exponentially
many time points in an interval with end points encoded in binary. So considering
each time point as a bit position, we construct a counter with exponentially many
bits, encoding the position of double-exponentially many tape cells.

Theorem 6. Satisfiability of ALCHT

@ ontologies with only time and before is
3ExpTime-hard.

Our main theorem of this section completes and summarises our results
regarding decidability and complexity for different combinations of temporal
attributes:

Theorem 7. In ALCHT

@, any combination of temporal attributes contain-
ing {time, after} is undecidable. Moreover, the combination {time, before} is
3ExpTime-complete, and the combination {time, during, since, until} and every
subset of it are 2ExpTime-complete.
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The cases of undecidability and 3ExpTime-completeness follow from (the
proofs of) Theorems 1, 5, and 6. Hardness for 2ExpTime is inherited from
ALCH@ [23], so our proof in the appendix mainly needs to establish the mem-
bership for this case.

Certain combinations referring to time points in the future, e.g., time and
since, are harmless while others are highly undecidable, e.g., time and after (by
Theorem 1). Essentially, what causes undecidability in ALCHT

@ is a combination
with the ability to refer to arbitrarily many intervals of time points in the future.

6 Lightweight Temporal Attributed DLs

The complexities of the previous section are still rather high, whereas modern
description logics research has often aimed at identifying tractable DLs [9]. In
this section, we therefore seek to obtain a tractable temporally attributed DL
that is based on the popular EL-family of DLs [6]. We investigate ELHT

@, the
fragment of ALCHT

@ which uses only ∃, �, � and ⊥ in concept expressions. It is
clear that variables lead to intractable reasoning complexities, but it turns out
that ground ELHT

@ still remains intractable:

Theorem 8. Satisfiability of ground ELHT

@ ontologies is ExpTime-complete.

Proof. The upper bound follows from Theorem3. For the lower bound, we show
how one can encode disjunctions (i.e., inclusions of the form � � B � C), which
allow us to reduce satisfiability of ground ALCHT

@ to satisfiability of ground
ELHT

@ ontologies. In fact, several combinations of the temporal attributes time,
between, before and after suffice to encode � � B � C. For example, see the
inclusions using the temporal attributes time and between: � � A@�between :
[1, 2]�, A@�time : 1� � B, A@�time : 2� � C.

��
It is known that the entailment problem for EL ontologies with concept and

role names annotated with time intervals over finite models is in PTime [26].
Indeed, our temporal attribute during can be seen as a syntactic variant of
the time intervals in the mentioned work and, if we restrict to the temporal
attributes time, during, since and until, the complexity of the satisfiability prob-
lem for ground ELHT

@ ontologies is in PTime. Our proof here (for ground ELHT

@

over N or over a finite interval in N) is based on a polynomial translation to ELH
extended with role conjunction, where satisfiability is PTime-complete [36].

Theorem 9. Satisfiability of ground ELHT

@ ontologies without the temporal
attributes between, before and after is PTime-complete.

Proof. Hardness follows from the PTime-hardness of EL [6]. For membership,
note that the translation in Theorem3 for the temporal attributes during, since
and until does not introduce disjunctions or negations. So the result of translating
a ground ELHT

@ ontology belongs to ELH extended with role conjunction. ��
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7 Related Work

In this section, we discuss the main differences and similarities between our
logic and other related formalisms. Potentially related works include classical
first-order and second-order logic, temporal extensions of description logics, and
temporal extensions of other logics. When setting out to compare our approach
to other logics, it is important to understand that there is no immediate formal
basis for doing so. Our approach differs both in syntax (structure of formulae)
and in semantics (model theory) from existing logics, so that an immediate
comparison is not possible. There are three distinct perspectives one might take
for discussing comparisons:

(1) Translate models of temporally attributed logics to models of another logic,
and investigate which classes of models can be characterised by theories of
either type.

(2) Look for polynomial reductions of common inference tasks, i.e., for syntactic
translations between formulae that preserve the answer to some decision
problem.

(3) Compare intuitive modelling capabilities on an informal level, looking at
intended usage and application scenarios.

Approach (1) can lead to the closest relationships between two distinct logi-
cal formalisms. Unfortunately, it is not obvious how to relate our temporalised
model theory to classical logical formalisms. It is clear that one could capture the
semantic conditions of temporally attributed DLs in second-order logic, which
would lead to models that explicitly define (axiomatically) the temporal domain
and that associate temporal validity with every tuple. This is close in spirit to the
way in which weak second-order logic was related to (non-temporal) attributed
logics by Marx et al. [32], although their work did in fact show a mere reduc-
tion of satisfiability in the sense of (2). Our undecidability results of Theorem1
imply that, for any faithful translation of temporally attributed models into clas-
sical relational structures, ALCHT

@ can capture classes of models that are not
expressible in first-order logic.

Besides the translation to models of classical logic, it might also be promis-
ing to seek direct translations to model theories of temporal logics, especially
to metric temporal logics (MTL) [5,19]. So far, the combination of MTL with
DLs has only been investigated considering discrete time domains. Recent works
on DatalogMTL consider dense (real or rational) time domains [13,14], into
which our integer time could be embedded. Note that the containment of inte-
gers in rationals and reals does not mean that there is any corresponding rela-
tionship between the expressivity of the logics (indeed, decision procedures for
DatalogMTL are also based on restricting attention to a suitably defined set
of discrete, non-dense time points). However, choosing a discrete domain does
not mean that the complexity of the satisfiability problem is lower, neither it
means that the technical results are simpler (as we have already pointed out in
the introduction, the complexity of satisfiability of ALC with a concrete discrete
domain using the predicates = and < is open). A detailed semantic comparison
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requires a thorough investigation of the semantic assumptions in either logic,
which has to be left to future research.

Approach (2), the syntactic reduction of inference tasks, is the heart of our
complexity results. Our upper complexity bounds are obtained by either ground-
ing the ontology and then translating it to an ontology in a classical DL; or
directly translating it into a classical DL. Most DLs, including ALC and EL,
are syntactic variants of fragments of first-order logic [7], and thus our decidable
fragments can be translated into first-order logic. The difference in the com-
plexity results for ALC is due to the ability of expressing certain statements
in a more succinct way. For EL, we have shown that some temporal attributes
increase expressivity, allowing disjunctions (and negations) to be encoded in the
logic. A similar interplay between temporal logic and EL has also been observed
in other studies on temporal DLs [3]. Nevertheless the resulting logic is still
expressible in ALC and, thus also in first-order logic.

Approach (3), the comparison of intuitive semantics and modelling applica-
tions, brings many further logics into the scope of investigation (not surpris-
ingly, the motivation of modelling time has inspired many technically diverse
formalisms). Some of the statements used in our examples can also be naturally
expressed in temporal DLs. For instance, axiom (10) in Fig. 3 is expressible in
ALC extended with Linear Temporal Logic [31,39] with:

∃educatedAt.� � ¬♦∃bornIn.�.

Other authors have also considered extending ALC with Metric Temporal Logic
(MTL) [5,19], where axiom (4) of Example 2 can be expressed with:

♦[1950,2000]∃bornIn.� (Carsten).

However, axiom (16) from Example 5 cannot be naturally expressed by temporal
DLs. The complexity results can also be very different, for instance, the complex-
ity of propositional MTL is already undecidable over the reals and ExpSpace-
complete over the naturals [1], whereas in Theorem 3 of this paper we show that
we can enhance ALC with many types of time related annotations with time
points encoded in binary while keeping the same ExpTime complexity of ALC.
Regarding temporal EL, it is known that, if temporal operators are allowed in
concept expressions then satisfiability is not easier than satisfiability for tem-
poral ALC [3]; and it decreases to PSpace if temporal operators can only be
applied over the axioms [11]. Our lightweight fragment based on EL features
PTime complexity but allows only ground specifiers using particular types of
temporal attributes. Syntactic restrictions on the specifiers, similar to those used
for attributed EL [23,24], could also be applied to have a more interesting PTime
fragment of temporally attributed EL.

8 Conclusion

We investigated decidability and complexities of attributed description logics
enriched with special attributes whose values are interpreted over a temporal
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dimension. We discussed several ways of restricting the general, undecidable
setting in order to regain decidability. Our complexity results range from PTime
to 3ExpTime.

As future work, we plan to study forms of generalising our logic to capture
the semantics of other standard types of annotations in knowledge graphs, such
as provenance [12] and spatial information. Another direction is to study our
logic over other temporal domains such as the real numbers (see [13,14] for a
combination of Datalog with MTL over the reals). It would also be interesting
to investigate query answering.

Acknowledgements. This work is partly supported by the German Research Foun-
dation (DFG) in CRC 248 (Perspicuous Systems), CRC 912 (HAEC), and Emmy
Noether grant KR 4381/1-1; and by the European Research Council (ERC) Consol-
idator Grant 771779 (DeciGUT).

A Proofs for Section 4

Theorem 2. Satisfiability of ALCHT

@ ontologies with the temporal attributes
time, after and before but after only in assertions is Σ0

1-complete. The problem is
Σ0

1-hard even with at most one set variable per inclusion.

Proof. We first show hardness. We reduce the word problem for deterministic
Turing machines (DTM) to satisfiability of ALCHT

@ ontologies with the temporal
attribute after occurring only in assertions. A DTM is a tuple (Q,Σ,Θ, q0, qf),
where:

– Q is a finite set of states,
– Σ is a finite alphabet containing the blank symbol ,
– {q0, qf} ⊆ Q are the initial and the final states, resp., and
– Θ : Q × Σ → Q × Σ × {l, r} is the transition function.

A configuration of M is a word wqw′ with w,w′ ∈ Σ∗ and q in Q. The
meaning is that the (one-sided infinite) tape contains the word ww′ with only
blanks behind it, the machine is in state q and the head is on the left-most
symbol of w′. The notion of a successive configuration is defined in the usual
way, in terms of the transition relation Θ. A computation of M on a word w is
a sequence of successive configurations α0, α1, . . ., where α0 = q0w is the initial
configuration for the input w. Let M be a DTM and w = σ1σ2 · · · σn an input
word. Assume w.l.o.g. that M never attempts to move to the left when its head
is in the left-most tape position and that q0 occurs only in the domain of Θ (but
not in the range).

We construct an ALCHT

@ ontology OM,w with after occurring only in asser-
tions that is satisfiable iff M accepts w. Models of OM,w have a similar structure
as in the proof of Theorem 1. We create a vertical chain with:

I(a), I � B and B � ∃s.B

https://www.perspicuous-computing.science/
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and ensure that horizontally the set of time points is the same:

∃r.A@X � ∀s.∃r.A@�time: X.time�, (24)

∃s.∃r.A@X � ∃r.A@�time: X.time�. (25)

Every element representing a tape cell is marked with A in at most one time
point (in fact, it will be exactly one):

A@X � ¬A@�before: X.time�
The main difference is that horizontally we do not have infinitely many
sibling nodes. That is, over the naturals, adding the inclusion ∃r.A@X �
∃r.A@�before: X.time� would make OM,w unsatisfiable and here we cannot use
after in inclusions. Instead, for each q �= qf in Q, we add to OM,w the inclusions:

Sq � A@X � Sq@�time:X.time�, (26)

∃r.Sq@X � ∃r.A@�before: X.time� (27)

where Sq is a concept name representing a state. Intuitively, each vertically
aligned set of elements (w.r.t. time) represents a configuration and a sequence
of configurations going backwards in time represents a computation of M with
input w. The goal is to ensure that OM,w is satisfiable iff we reach the final
state, that is, w is accepted by M.

We now add to OM,w assertions to trigger the inclusions in Eqs. 24, 25, 26
and 27:

r(a, b), Sq0(b), A(b)@��after: 0��.
We also use in our encoding concepts Cσ for each symbol σ ∈ Σ. To encode the
input word w = σ1σ2 · · · σn, we add:

Cσ � A@X � Cσ@�time: X.time� for each σ ∈ Σ,

Cσ1(b), ∃r.Sq0@X � ∀si.∃r.Cσi+1@�time: X.time�
for 1 ≤ i < n. It is straightforward to add inclusions encoding that (i) the rest
of the tape in the initial configuration is filled with the blank symbol, (ii) each
node representing a tape cell in a configuration is associated with only one Cσ

with σ ∈ Σ and (iii) at most one Sq with q ∈ Q (exactly the node representing
the head position). Also, for each element, the time point associated with A is
the same for the concepts of the form Cσ and Sq (if true in the node).

To access the ‘next’ configuration, we use an auxiliary concept F that keeps
time points in the future. Recall that since a computation here goes backwards
in time, these time points are associated with previous configurations:

∃r.A@X�∀r.(¬A@�before: X.time��F@�time: X.time�).



462 A. Ozaki et al.

We now ensure that tape contents are transferred to the ‘next’ configuration,
except for the tape cell at the head position:

∃r.(Cσ@X � Sq) � ∀r.(F@�before: X.time� � ¬A@�before: X.time� � Cσ)

for each σ ∈ Σ, where Sq is a shorthand for ¬⊔
q∈Q Sq. Finally we encode the

transition function. We explain for Θ(q, σ) = (q′, τ,D) with D = r (the case
with D = l can be handled analogously). We encode that the ‘next’ state is q′:

∃r.(Sq@X � Cσ) � ∀s.∀r.(F@�before: X.time� � ¬A@�before: X.time� � Sq′)
(28)

and change to τ the tape cell at the (previous) head position:

∃r.(Sq@X � Cσ) � ∀r.(F@�before: X.time� � ¬A@�before: X.time� � Cτ ).

Equation 28 also increments the head position.
This finishes our reduction.
For the upper bound, we point out that if an ALCHT

@ ontology O with
after only in assertions is satisfiable then there is a satisfiable ontology O′ that
is the result of replacing each occurrence of after : k in O by some time : l
with k < l ∈ N. By Theorem 5, one can decide satisfiability of O′ (that is,
satisfiability of ontologies with only the temporal attributes time and before).
As the replacements of after : k by time : l in assertions can be enumerated, it
follows that satisfiability of ALCHT

@ ontologies is in Σ0
1. ��

B Proofs for Section 5

Theorem 3. Satisfiability of ground ALCHT

@ ontologies is ExpTime-complete.

Proof. The construction of an ontology O† was already given in the main text.
It remains to show that O is satisfiable iff O† is satisfiable. Given a model I
of O, we directly obtain an ALCHb interpretation J over ΔI by undoing the
renaming and applying I, i.e., by mapping AS ∈ NC to A@SI , rS ∈ NR to r@SI ,
and a ∈ NI to aI . By the semantics of ALCHT

@, J |= O†. Conversely, given an
ALCHb model J of O†, we construct an interpretation I = (ΔI , ·I) of ALCHT

@

with ΔI
T = [max(0, kmin − 2), kmax + 2] and ΔI

I = ΔJ ∪ {�} ∪ T, where T is the
set of temporal attributes and � is a fresh individual name. We define aI := aJ

for all a ∈ NI ∪ NT ∪ N2
T.

For a ground closed specifier S with a1 : b1, . . . , an : bn as non-temporal
attributes, we define:

FS := {(aI
1 , bI

1 ), . . . , (aI
n, bI

n)}.

Similarly, for a ground open specifier S with a1 : b1, . . . , an : bn as non-temporal
attribute-value pairs, we define:

FS := {(aI
1 , bI

1 ), . . . , (aI
n, bI

n), (�, �)}.

To simplify the presentation, we write a: b ∈ S if a: b occurs in S. Furthermore,
let AIi be the set of all tuples (δ, FS) such that one of the following holds:
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– δ ∈ AJ
S , during: v ∈ S and i ∈ v;

– δ ∈ AJ
S , after: kmax ∈ S and i = kmax + 1;

– δ ∈ AJ
S , since: kmax ∈ S and kmax + 1 ≤ i ≤ kmax + 2;

– δ ∈ AJ
S , before: kmin ∈ S, i = kmin − 1 and kmin > 0;

– δ ∈ AJ
S , until: kmin ∈ S,max(kmin − 2, 0) ≤ i ≤ kmin − 1 and kmin > 0.

We define rIi analogously. Given the definitions of AIi and rIi , for all i ∈ N,
A ∈ NC and r ∈ NR, we define ·I as in Definition 8.

Claim. For all AS , rS occurring in O†: (1) AJ
S = A@SI and (2) rJ

S = r@SI .

Proof of the Claim. If no temporal attribute occurs in S then by definition of I
(in particular, FS), we clearly have that δ ∈ AJ

S iff δ ∈ A@SI . Also, by seman-
tics of ALCHT

@, for a ground specifier S with a non-empty set ST of temporal
attributes the following holds for any I and concept A@S:

A@SI =
⋂

a: b∈ST

A@S(a: b)I

So we can consider A@S with S containing only one temporal attribute. We
argue for during and between (one can give a similar argument for the other
temporal attributes):

– if the temporal attribute-value pair during: v is in S then, by definition of I
(and FS), δ ∈ AJ

S iff δ ∈ A@SI ;
– if the temporal attribute-value pair between: v is in S then, by Eq. 23, δ ∈

AJ
S iff δ ∈ ⋃

k∈v∩NO AJ
S(during : [k,k]). By definition of I, δ ∈ AJ

S(during : [k,k]) iff
δ ∈ A@S(during: [k, k])I , for k ∈ v ∩ NO. Then,

δ ∈ AJ
S iff δ ∈

⋃

k∈v∩NO

A@S(during: [k, k])I ;

so δ ∈ A@SI .

In the definition of NO, we add ki + 1 for each ki occurring in O, to ensure that
axioms such as � � A@�between: [k, l]� � ¬A@�time: k� � ¬A@�time: l� with
l − k ≥ 2 remain satisfiable. Also, in the definition of I we use the interval
ΔI

T = [max(0, kmin − 2), kmax + 2], and so, we give a margin of two ‘additional’
points in each side of the interval [kmin, kmax] used in the translation. This is
to ensure that axioms such as � � A@�before: kmin� � ¬A@�until: kmin� with
kmin ≥ 2 remain satisfiable. Point (2) can be proven with an easy adaptation of
Point (1).

The Claim directly implies that I |= O. Note that � ensures that axioms
such as � � A@�a: b� � ¬A@��a: b�� remain satisfiable. ��
Theorem 4. Satisfiability in ALCHT

@ is 2ExpTime-complete for ontologies
without expressions of the form X.a; a: x with x in Var(NT); and a: [t, t′] with
one of t, t′ in Var(NT), where a is a temporal attribute.
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Proof. The 2ExpTime lower bound follows from the fact that satisfiability
of ALCH@ (so without temporal attributes) is already 2ExpTime-hard [23].
Our proof strategy for the upper bound consists on defining an ontology with
grounded versions of inclusion axioms. Let O be an ALCHT

@ ontology and
let N := NO

I ∪ NO
T ∪ N2O

T be the union of the sets of individual names, time
points, and intervals, occurring in O, respectively. Let I be an interpretation of
ALCHT

@ over the domain ΔI = N ∪ {x}, where x is a fresh individual name,
satisfying aI = a for all a ∈ N. Let Z : NV → ΦI

O be a variable assign-
ment, where ΦI

O := Pfin

(
ΔI × ΔI)

. Consider a concept inclusion α of the form
X1 :S1, . . . , Xn :Sn (C � D). We say that Z is compatible with α if Z(Xi) ∈ SI,Z

i

for all 1 ≤ i ≤ n. In this case, the Z-instance αZ of α is the concept inclusion
C ′ � D′ obtained by

– replacing each Xi by ��a: b | (a, b) ∈ Z(Xi)��;
– replacing every a: Xi.b occurring in some specifier (with a, b non-temporal

attributes) by all a: c such that (b, c) ∈ Z(Xi); and
– replacing each object variable x by Z(x).

Then, the grounding Og of O contains all Z-instances αZ for all concept inclu-
sions α in O and all compatible variable assignments Z; and analogous axioms
for role inclusions.

There may be (at most) exponentially many different instances for each ter-
minological axiom in O, thus Og is of exponential size. We show that O is
satisfiable iff Og is satisfiable. By construction, we have O |= Og, i.e., any model
of O is also a model of Og. Conversely, let I = (ΔI , ·I) be a model of Og.
W.l.o.g., assume that there is x ∈ ΔI such that x �= aI for all a ∈ NO

I \ {x}. For
an annotation set F ∈ Pfin

(
ΔI × ΔI)

, we define repx(F ) to be the annotation
set obtained from F by replacing any individual δ �∈ I(NO

I ) in F by x.
Let ∼ be the equivalence relation induced by repx(F ) = repx(G) and define

an interpretation J of ALCHT

@ over the domain ΔJ := ΔI , where AJ := {(δ, F )|
(δ,G) ∈ AI and F ∼ G} for all A ∈ NC, rJ := {(δ, ε, F ) | (δ, ε,G) ∈ rI and F ∼
G} for all r ∈ NR, and aJ := aI for all a ∈ NI ∪ NT ∪ N2

T. It remains to show
that J is indeed a model of O. Suppose for a contradiction that there is a
concept inclusion α in O that is not satisfied by J (the case for role inclusions is
analogous). Then we have some compatible variable assignment Z that leaves α
unsatisfied. Let Zx be the variable assignment X �→ repx(Z(X)) for all X ∈ NV.
Clearly, as expressions of the form a: Xi.b, a: x, and a: [t, t′] with at least one of
t, t′ an object variable, are not allowed for a, b being temporal attributes, Zx is
also compatible with α. But now we have CJ ,Z = CI,Zx for all ALCHT

@ concepts
C, yielding the contradiction I �|= αZx

. Thus, O is satisfiable iff Og is satisfiable.
The result then follows from Theorem 3. ��
Theorem 5. Satisfiability of ALCHT

@ ontologies with only the temporal
attributes during, time, before and until is in 3ExpTime.

Proof. The difference w.r.t. the proof of Theorem 4 is that here expressions of the
form a: Xi.b, a: x, and a: [t, t′] with at least one of t, t′ an object variable, may
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occur in front of the temporal attributes during, before, time and until and the
other temporal attributes are not allowed (not even in assertions). Let v be the
internal [0, k], where k is the largest number occurring in O (or 0 if no number
occurs). To define our ground translation, we consider variable assignments Z :
NV → ΦI

O,v, where ΦI
O,v := Pfin

(
ΔI × ΔI)

and ΔI is the set of all individual
names in O plus a fresh individual name x, all time points in v and all intervals
contained in v. This gives us a ground ontology Og with size double-exponential
in the size of O. Clearly, O is satisfiable iff Og is satisfiable. ��
Theorem 6. Satisfiability of ALCHT

@ ontologies with only time and before is
3ExpTime-hard.

Proof. We reduce the word problem for double-exponentially space-bounded
alternating Turing machines (ATMs) to the entailment problem for ALCHT

@

ontologies. We consider w.l.o.g. ATMs with only finite computations on any
input. As usual, an ATM is a tuple M = (Q,Σ,Θ, q0), where:

– Q = Q∃ � Q∀ is a finite set of states, partitioned into existential states Q∃
and universal states Q∀,

– Σ is a finite alphabet containing the blank symbol ,
– q0 ∈ Q is the initial state, and
– Θ ⊆ Q × Σ × Q × Σ × {l, r} is the transition relation.

We use the same notions of configuration, computation and initial configu-
ration given in the proof of Theorem2. We recall the acceptance condition of an
ATM. A configuration α = wqw′ is accepting iff

– α is a universal configuration and all its successor configurations are accept-
ing, or

– α is an existential configuration and at least one of its successor configurations
is accepting.

Note that, by the definition above, universal configurations without any succes-
sors are accepting. We assume w.l.o.g. that all configurations wqw of a com-
putation of M satisfy |ww′| ≤ 22n

. M accepts a word in (Σ \ { })∗ (in space
double-exponential in the size of the input) iff the initial configuration is accept-
ing.

There exists a double-exponentially space bounded ATM M = (Q,Σ, q0,Θ)
whose word problem is 3ExpTime-hard [16]. Let M be such a double-
exponentially space bounded ATM and w = σ1σ2 · · · σn an input word. W.l.o.g.,
we assume that M never attempts to move to the left (right) when the head is
on the left-most (right-most) tape cell.

We construct an ALCHT

@ ontology OM,w that entails A(a) iff M accepts
w. We represent configurations using individuals in OM,w, which are connected
to the corresponding successor configurations by roles encoding the transition.
W.l.o.g., we assume that these individuals form a tree, which we call the con-
figuration tree. Furthermore, each node of this tree, i.e., each configuration, is
connected to 22n

individuals representing the tape cells. The main ingredients
of our construction are:
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– an individual a denoting the root of the configuration tree;
– an attribute bit, with values in {0, 1}, used to encode double-exponentially

many tape positions;
– an attribute flip which has value 1 at a (unique) time point where bit has

value 0 and bit has value 1 in all subsequent time points;
– a concept A marking accepting configurations;
– a concept H marking the head position;
– a concept T marking tape cells;
– a concept I marking the initial configuration;
– concepts Sq for each state q ∈ Q;
– concepts Cσ for each symbol σ ∈ Σ;
– roles rθ for all transitions θ ∈ Θ;
– a role tape connecting configurations to tape cells; and
– attributes a0, . . . , an to encode the binary representation of time values.

To encode the binary representation of time values we first state that for
time: 2n − 1 we have all ai set to 1:

T � T@�time: 2n − 1, an : 1, . . . , a0 : 1�.
We now use the following intuition: if the ai attributes represent a pattern s·1000,
where s is a binary sequence and · means concatenation, then s·0111 should occur
before that pattern in the time line. To ensure this, we add concept inclusions
of the form, for all 0 ≤ i ≤ n:

X :S (T@X � T@�before: X.time, PX
ai

�)

where S is �ai : 1, ai−1 : 0, . . . , a0 : 0� and PX
ai

abbreviates

an : X.an, . . . , ai+1 : X.ai+1, ai : 0, ai−1 : 1, . . . , a0 : 1.

By further adding a concept inclusion encoding that ai can only be one of 1, 0
at the same time point we have that, in any model, the ai attributes encode

Fig. 4. A model of OM,w encoding the computation tree of an ATM; blue edges (poten-
tially grey) represent the tape role (we omit for brevity T in nodes representing tape
cells) (Color figure online)
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the binary representation of the corresponding time value, for time points in
[0, 2n − 1]. This means that, for time points in [0, 2n − 1], we can simulate the
temporal attribute after by using variables and specifiers of the form X : �ai : 1�
and �an : X.an, . . . , ai−1 : X.ai−1ai : 0�, for all 0 ≤ i ≤ n.

Remark 1. To simplify the presentation, in the following, we use the temporal
attributes after and during (the latter is used to encode the initial configuration).
Given the construction above it is straightforward to replace the inclusions using
after and during with inclusions using the attributes ai.

We encode the meaning of the attribute flip (i.e., it has value 1 at the time
point from which bits should be flipped to increment a tape position) with the
following concept inclusions:

T@�bit: 0� � T@�flip: 1� (29)

X : �flip: 1�(T@X � ¬T@�bit: 0, after: X.time�) (30)

X : �flip: 1�(T@X � T@�bit: 0, time: X.time�) (31)

Intuitively, in Eq. 29 we say that if there is a time point where we have bit with
value 0 then there is a time point where we should flip some bit to increment
the tape position, i.e., where flip is 1. In Eq. 30 we state that there is no bit with
value 0 after a time point marked with flip set to 1. Finally, in Eq. 31, we state
that bit has value 0 where flip has value 1. Thus, Eqs. 30 and 31 ensure that
there is at most one time point where flip has value 1.

Let Ω be a sequence with the following variables Xj
i , with 1 ≤ i ≤ n and

1 ≤ j ≤ 5, and their respective specifiers:

– X1
i : �flip: 1�, we look at our auxiliary attribute that indicates from which time

point we should flip our bits to obtain the next tape position (this will be a
time point with bit value 0);

– we also define X2
i : �before: X1

i .time, bit: 0� and X3
i : �before: X1

i .time, bit: 1�,
to filter time points with bit values 0 and 1, respectively, before the time
point with flip : 1, related to X1

i ;
– we use X4

i : �bit : 0� and X5
i : �bit : 1� to filter time points bit values 0 and 1,

respectively.

Basically, the first three variables are related to specifiers that filter the informa-
tion needed to increment the tape position encoded with the bit attribute. The
last two variables Xj

i are related to specifiers that filter the information needed
to copy the tape position. We now define specifiers Sj

i , Si, for 1 ≤ i ≤ n and
1 ≤ j ≤ 5. Intuitively, the next four specifiers are used to increment the tape
position, using the information given by the Xj

i variables. The last two specifiers
copy the tape position, again using the information given by the Xj

i variables:
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– the negation of a concept expression associated with Si = �after :
X1

i .time, bit : 1� ensures that we have bit : 0 in all time points after the
time point marked with flip : 1 in the previous position;

– we use S1
i = �time : X1

i .time, bit : 1� to flip to 1 the bit marked with flip : 1
in the previous position;

– in addition, we define S2
i = �time : X2

i .time, bit : 0� and S3
i = �time :

X3
i .time, bit : 1� to transfer to the next tape position bit values which should

not be flipped (i.e., those that are before the time point with flip : 1);
– finally, we define S4

i = �time : X4
i .time, bit : 0� and S5

i = �time : X5
i .time, bit :

1�, to receive a copy of the bit values.

To simplify the presentation, we define the abbreviations Pi, P
+
i , P=

i for the
following concepts, respectively, to be used in concept inclusions with Ω:

–
�

1≤j≤5 T@Xj
i , we filter the bits encoding a tape position and the information

of which bits should be flipped in order to increment it;
–

�
1≤j≤3 T@Sj

i � ¬T@Si, we increment the tape position,
–

�
4≤j≤5 T@Sj

i , we copy the tape position.

We may also write P, P+, P= if i = 1.

Encoding the Initial Configuration. We add assertions to OM,w that encode the
initial configuration of M. We mark the root of the configuration tree with the
initial state by adding Sq0(a) and initialise the tape cells with the input word
by adding I(a) and the concept inclusions:

Ω
(
I � ∃tape.(H � Cσ1 � T@�during : [0, 2n − 1], bit: 0�))

Ω
(
I � ∃tape.Pi � ∃tape.(Cσi+1 � P+

i )
)

for 1 ≤ i < n

Ω
(
I � ∃tape.Pn � ∃tape.(C � P+

n )
)

The intuition is as follows. In the first inclusion, we place the head, represented
by the concept H, in the first position of the tape and fill the tape cell with the
first symbol of the input word, represented by the concept Cσ1 . We then add the
remaining symbols of the input word in their corresponding tape positions. In
the last inclusion we add a blank symbol after the input word. We now add the
following concept inclusion fill the remaining tape cells with blank in the initial
configuration marked with the concept I:

Ω
(
I � ∃tape.(C � P ) � ∃tape.(C � P+)

)

Synchronising Configurations. For each transition θ ∈ Θ, we make sure that
tape contents are transferred to successor configurations, except for the tape cell
at the head position:

Ω (∃tape.(P � ¬H � Cσ) � ∀rθ.∃tape.(P= � Cσ))
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We now encode our transitions θ = (q, σ, q′, τ,D) ∈ Θ with concept inclusions
of the form (we explain for D = r, the case D = l is analogous):

Ω
(
Sq � ∃tape.(H � P � Cσ

) � ∃tape.(P+ � Cυ

) �

∃rθ.(Sq′ � ∃tape.(H � P+ � Cυ

) � ∃tape.(P= � Cτ ))
)

Essentially, if the head is at position P then, to move it to the right, we increment
the head position using P+ in the successor configuration. We use the specifiers
in Ω to modify the tape cell with Cσ in the head position to Cτ in the successor
configuration.

Acceptance Condition. Finally, we add concept inclusions that propagate accep-
tance from the leaf nodes of the configuration tree backwards to the root of
the tree. For existential configurations, we add Sq � ∃rθ.A � A for each q ∈ Q∃,
whereas to handle universal configurations, we add, for each q ∈ Q∀, the concept
inclusion

Sq � ∃tape.(Cσ � H
) �

�

θ∈Θ
θ=(q,σ,q′,τ,D)

∃rθ.A � A

where the conjunction may be empty if there are no suitable θ ∈ Θ.
With an inductive argument along the recursive definition of acceptance, we

show that OM,w |= A(a) iff M accepts w.
Given a natural number i < 22n

, we write ib[j] for the value of the j-th bit
of the binary representation of i using 2n bits, where ib[0] is the value the most
significant bit. In the following, we write Bi as a shorthand for the concept:

�

0≤y<2n

T@�bit : ib[y], time : y�.

Following the terminology provided in [25], given an interpretation I of ALCHT

@,
we say that an element δ ∈ ΔI

I represents a configuration τ1 . . . τi−1qτi . . . τm if
(δ, F ) ∈ SI

q , for some F ∈ ΦI , δ ∈ (∃tape.(Bi�H))I and δ ∈ (∃tape.(Bj �Cτj ))
I ,

for all 0 ≤ j < 22n

. We are now ready to show Claims 1 and 2.

Claim 1. If δ ∈ ΔI
I represents a configuration α and some transition θ ∈ Θ is

applicable to α then δ has an rθ-successor that represents the result of applying
θ to α.

Proof of the Claim 1. Let δ ∈ ΔI
I be an element representing a configuration α

and assume θ ∈ Θ is applicable to α. To synchronise configurations, we added
to OM,w concept inclusions that (1) ensure that tape contents other than the
content at the head position are copied to all rθ-successors of δ; and (2) create
an rθ-successor that represents the correct state, position of the head and cor-
responding symbols at the previous and current position of the head. Then our
concept inclusions ensure that δ has an rθ-successor that represents the result
of applying θ to α.
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Claim 2. w is accepted by M iff OM,w |= A(a).

Proof of the Claim 2. Consider an arbitrary interpretation I of ALCHT

@ that
satisfies OM,w. First we show that if any element δ ∈ ΔI

I represents an accepting
configuration then (δ, F ) ∈ AI , for some F ∈ ΦI . We make a case distinction.

– If α is a universal configuration, then all successor configurations of α must
be accepting. By Claim 1, for any θ-successor configuration α′ of α there is
a corresponding rθ-successor δ′ of δ. By induction hypothesis for α′, (δ′, F ′)
is in AI , for some F ′ ∈ ΦI . Since this holds for all θ-successor configurations
of α, our concept inclusion encoding acceptance of universal configurations
implies that (δ, F ) ∈ AI , for some F ∈ ΦI , as required. This argument covers
the base case where α has no successors.

– If α is an existential configuration, then there is some accepting θ-successor
configuration α′ of α. By Claim 1, there is an rθ-successor δ′ of δ that rep-
resents α′ and, by induction hypothesis, (δ′, F ′) ∈ AI , for some F ′ ∈ ΦI .
Then, our concept inclusion encoding acceptance of existential configurations
applies and so, we conclude that (δ, F ) ∈ AI , for some F ∈ ΦI .

Since elements in II represent the initial configuration of M, this shows that
II ⊆ AI when the initial configuration is accepting. As I(a) is an assertion in
OM,w, we have that (aI , G) ∈ AI , for some G ∈ ΦI .

We now show that if the initial configuration is not accepting, then there is
some interpretation I of ALCHT

@ such that II �⊆ AI , in particular, (aI , G) �∈ AI ,
for all G ∈ ΦI . To show this we construct a canonical interpretation J of OM,w

as follows. Let ConM := {wqw′ | |ww′| ≤ 22n

, q ∈ Q, {w,w′} ⊆ Σ∗} be the set
of all possible M configurations with size bounded by 22n

. Also, we define a set
TpM := {α · ci

σ | α ∈ ConM, 0 ≤ i < 22n

, σ ∈ Σ}, containing individuals that
represent tape cells, related to each possible configuration of a computation of
M. The domain ΔJ is a disjoint union of ΔJ

I ∪ ΔJ
T ∪ ΔJ

2T , where:

– ΔJ
I = ConM ∪ TpM ∪ T, where T ⊆ NI is either time or before;

– ΔJ
T = {0J , . . . , (2n − 1)J }; and ΔJ

2T = ΔJ
T × ΔJ

T .

The extension of the concepts Cσ, H and Bj in the interpretation is defined
as expected so that every element α · ci

σ ∈ TpM is in Cσ and Bi and no other
Cτ or Bj , with τ �= σ or i �= j. Also, α · ci

σ is in H iff α is of the form wqw′ and
|w| = i − 1. We connect α to α · ci

σ using the role tape iff α has σ at position
i. Moreover, α is in Sq iff α is of the form wqw′. We then have that every
configuration α ∈ ConM represents itself and no other configuration. IJ is the
singleton set containing the initial configuration aJ . Given two configurations α
and α′ and a transition θ ∈ Θ, we connect α to α′ using the role rθ iff there is a
transition θ from α to α′. Finally, AJ is defined to be the set of tuples (α, F ),
for some F ∈ ΦJ , where α is an accepting configuration.

Now, if the initial configuration aJ is not accepting then, by construction,
(a,G) �∈ AJ , for all G ∈ ΦJ . By checking the concept inclusions in OM,w, we
can see that J satisfies OM,w. Then, J is a counterexample for OM,w |= A(a),
and so OM,w �|= A(a). ��



Temporally Attributed Description Logics 471

Theorem 7. In ALCHT

@, any combination of temporal attributes contain-
ing {time, after} is undecidable. Moreover, the combination {time, before} is
3ExpTime-complete, and the combination {time, during, since, until} and every
subset of it are 2ExpTime-complete.

Proof. The proof of Theorem 1 uses only the temporal attributes time and
after. Thus, any combination containing these attributes is Σ1

1-hard. By The-
orems 5 and 6 the combination {time, before} is 3ExpTime-complete. It remains
to show that the combination {time, during, since, until} is in 2ExpTime (since
2ExpTime-hardness is already known for ALCH@ [23]).

Our proof strategy consists in showing that, given an ALCHT

@ interpreta-
tion and an ALCHT

@ ontology that contains only the temporal attributes in
{time, during, since, until}, one can always transform this interpretation so that
only time points explicitly mentioned in the ontology are relevant to determine
if the interpretation is a model of the ontology. Then one can check satisfiability
by grounding the ontology using only those time points explicitly mentioned.
We start by providing some notation.

Given an ALCHT

@ ontology O, we define a set NO as in Theorem 3, except
that we do not need ki + 1 here. To this end, let k0 < . . . < kn be the ascending
sequence of all numbers mentioned in time points or in time intervals (as end-
points) in O. We define NO as {ki | 0 ≤ i ≤ n}, and let kmin := min(NO) and
kmax = max(NO), where we assume kmin = kmax = 0 if NO = ∅.

Let I = (ΔI , ·I) be an ALCHT

@ interpretation. By Definition 8, I is a global
interpretation of a sequence (Ii)i∈ΔI

T
of ALCH@ interpretations with domain

ΔI
I . We now define a sequence (Ji)i∈ΔJ

T
of ALCH@ interpretations as follows.

Let ΔJ
I = ΔI

I and let ΔJ
T = {kJ

min, . . . , k
J
max}. For all A ∈ NC, all F ∈ ΦI with

F \ FI �= ∅ and k ∈ [kmin, kmax]:

(δ, FI) ∈ AJk iff (δ, FI) ∈ AIk

and either:

(1) k ∈ NO; or
(2) there is ki < k such that ki ∈ NO and (δ, FI) ∈ AIj for all ki ≤ j ≤ kmax; or
(3) there is ki > k such that ki ∈ NO and (δ, FI) ∈ AIj for all kmin ≤ j ≤ ki.

We analogously apply the definition above for all role names r ∈ NR. We
define IO as a global interpretation of the sequence (Ji)i∈ΔJ

T
and set (δ, F ) ∈

AIO iff (δ, F ) ∈ AI for all A ∈ NC with F = FI , and similarly for all role names
r ∈ NR. Let Og be the result of grounding O in the same way as in the proof of
Theorem 4 using time points in NO (here O may have expressions of the form
X.a, a: x, or a: [t, t′], with a ∈ {time, during, since, until}, and t, t′ ∈ NT∪Var(NT)).

Claim. For all A@S, r@S occurring in Og: A@SIO = A@SI and r@SIO =
r@SI .
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Proof of the Claim. This claim follows by definition of (Ji)i∈ΔJ
T

and the fact
that only the temporal attributes {time, during, since, until} are allowed. Correct-
ness for the temporal attributes time and during follows from item (1), whereas
correctness for the temporal attributes since and until follows from items (2) and
(3), respectively.

By definition of Og, we know that O |= Og. So if O is satisfiable then Og

is satisfiable. Conversely, by the Claim, one can show with an inductive argu-
ment that CIO = CI for all ALCHT

@ concepts C occurring in Og. So, if an
ALCHT

@ interpretation I satisfies Og then IO satisfies O. Since Og is at most
exponentially larger than O, it follows that satisfiability in this fragment is in
2ExpTime. ��
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22. Krötzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B.,
Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Descrip-
tion Logics (DL 2017). CEUR Workshop Proceedings, vol. 1879, CEUR-WS.org
(2017)
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Abstract. Axiom pinpointing refers to the task of highlighting (or pin-
pointing) the axioms in an ontology that are responsible for a given
consequence to follow. This is a fundamental task for understanding and
debugging very large ontologies. Although the name axiom pinpointing
was only coined in 2003, the problem itself has a much older history,
even if considering only description logic ontologies. In this work, we try
to explain axiom pinpointing: what it is; how it works; how it is solved;
and what it is useful for. To answer this questions, we take a historic
look at the field, focusing mainly on description logics, and the specific
contributions stemming from one researcher, who started it all in more
than one sense.

1 Introduction

One important aspect behind any (artificially) intelligent application is the
availability of knowledge about the domain, which can be accessed and used
effectively. In logic-based knowledge representation, this domain knowledge is
expressed through a collection of logical constraints (or axioms) that limit how
the different terms under consideration are interpreted, and related to each other.
To abstract from the specific logical language used to express these constraints,
we call any such representation an ontology.

Description logics (DLs) are a family of knowledge representation formalisms
that have been successfully applied to represent the knowledge of several appli-
cation domains. The family contains several different logical languages that are
distinguished by their expressivity and the computational complexity of rea-
soning over them. They range from the extremely inexpressive DL-Lite [24] at
the basis of ontology-based data access [72], to the expressive SROIQ(D) [36]
underlying the standard ontology language for the semantic web OWL2 [50]. In
between these two, many other DLs exist. Another prominent example is the
light-weight DL EL [1], which allows for polynomial time reasoning [11], and is
used for many ontologies within the bio-medical domain. In particular, we can
mention Snomed CT, an ontology providing a unified nomenclature for clinical
terms in medicine composed of approximately half a million axioms [59].

It is hardly surprising that ontology engineering—the task of building an
ontology—is a costly and error-prone task. As the size of an ontology increases,
it becomes harder to have a global perspective of its constraints and their rela-
tionships. For this reason, it becomes more likely to be surprised by some of
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 475–496, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_22&domain=pdf
http://orcid.org/0000-0001-9236-9873
https://doi.org/10.1007/978-3-030-22102-7_22


476 R. Peñaloza

the consequences that can be derived from them. A classical example arose
with Snomed, from which at some point it was possible to derive that every
amputation of a finger was in fact an amputation of a hand. Finding the six
axioms—out of approximately 500,000—that cause this error without the help
of an automated method would have been almost impossible.

Here is where axiom pinpointing comes into play. Essentially, axiom pinpoint-
ing refers to the task of highlighting (or pinpointing) the specific axioms that
are responsible for a consequence to follow from an ontology. Considering that
the underlying ontology language is monotonic, this task corresponds to finding
classes of minimal subontologies still entailing the consequence. The term itself
was coined by Schlobach and Cornet in 2003, in a work that triggered several
follow-up approaches dealing with logics of varying expressivity. However, the
underlying method was proposed almost a decade earlier by Baader and Hollun-
der in the context of default reasoning.1

By 2006, the field of axiom pinpointing was starting to mature to a point
that begged for general solutions, beyond the specific attempts known at the
time. With the advice of Franz, I embarked then on a trip to produce these
general solutions. That trip was supposed to end in 2009 with the defense of my
dissertation, and search for new research topics. However, the repercussions of
the work continue today.

In this paper, we attempt to present a historical perspective on axiom pin-
pointing, explaining the existing methods, its applications, and newer extensions
that have been developed throughout the years. We note that although axiom
pinpointing has been studied—with different names—for other knowledge repre-
sentation formalisms, and by several people, our focus here is constrained to DLs
and specifically to the contributions that Franz made to the field either directly,
or indirectly through the people working in his group. This work is intended
as a basic, non-technical introduction to the field, but relevant references are
provided for the reader interested in a deeper understanding.

2 Description Logics in a Nutshell

We briefly introduce the notions on description logics (DLs) [2,6] that will be
useful for understanding the rest of this work. Although there exist more complex
and expressive DLs, here we will focus on the basic ALC [65], which is the
smallest propositionally-closed DL, and the light-weight EL [1].

DLs are knowledge representation formalisms that are specially targeted
to encode the terminological knowledge of an application domain. Their main
ingredients are individuals, concepts (that is, classes of individuals), and roles
providing relationships between individuals. Formally, they are nullary, unary,
and binary predicates from first-order logic, respectively. The knowledge of the

1 I am an informal (some will say impolite) Mexican, who insists on using the term
Franz when referring to Franz Baader. I will do this often from now on. Please bear
with me.
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domain is represented via a set of axioms that restrict the way in which those
ingredients can be interpreted.

Let NI , NC , and NR be three mutually disjoint sets of individual, concept,
and role names, respectively. ALC concepts are built following the syntactic
rule C ::= A | ¬C | C � C | ∃r.C, where A ∈ NC and r ∈ NR. A general concept
inclusion (GCI) is an expression of the form C � D, where C and D are concepts.
An assertion is an expression of the form C(a) (called a concept assertion) or
r(a, b) (role assertion), where a, b ∈ NI , C is a concept, and r ∈ NR. Historically,
DLs separate the knowledge in terminological and assertional knowledge. The
former describes general relations between the terms, encoded via a TBox, which
is a finite set of GCIs. The latter refers to the knowledge about the individuals,
which is encoded in a finite set of assertions called an ABox. Here, we use the
general term axiom to refer to both GCIs and assertions. An ontology is a finite
set of axioms; that is, the union of an ABox and a TBox.

The semantics of ALC is defined in terms of interpretations. These are tuples
of the form I = (ΔI , ·I), where ΔI is a non-empty set called the domain, and
·I is the interpretation function that maps every individual name a ∈ NI to an
element aI ∈ ΔI , every concept name A ∈ NC to a set A ⊆ ΔI , and every role
name r ∈ NR to a binary relation rI ⊆ ΔI ×ΔI . This interpretation function is
extended to arbitrary concepts in the usual manner; that is, (¬C)I := ΔI \ CI ,
(C � D)I := CI ∩ DI , and (∃r.C)I := {x ∈ ΔI | ∃y ∈ CI .(x, y) ∈ rI}. The
interpretation I satisfies the GCI C � D iff CI ⊆ DI ; the assertion C(a) iff
aI ∈ CI ; and the assertion r(a, b) iff (aI , bI) ∈ rI . I is a model of the ontology
O, denoted by I |= O, iff it satisfies all the axioms in O.

It is often useful to consider abbreviations of complex concepts. We define
⊥ := A � ¬A for an arbitary A ∈ NC ; 	 := ¬⊥; C 
 D := ¬(¬C � ¬D); and
∀r.C := ¬∃r.¬C. In particular, in Sect. 4.1 dealing with these abbreviations is
fundamental for the algorithm.

Once that the knowledge of a domain has been encoded in an ontology, we are
interested in reasoning ; that is, making inferences about this knowledge, which
are implicit in the ontology. The most basic reasoning task is to decide consis-
tency ; i.e., whether a given ontology has at least one model. Other important
reasoning problems are: subsumption (does CI ⊆ DI hold in every model I of
O?); instance checking (does aI ∈ AI hold in every model I of O?); and classifi-
cation (finding all the subsumption relations between concept names appearing
in O). It has been shown that consistency, subsumption, and instance checking
w.r.t. ALC ontologies is ExpTime-complete [31,63]. Since the number of con-
cept names appearing in O is bounded by the size of O, it also follows that the
ontology can be classified in exponential time.

The light-weight DL EL is the sublogic of ALC that disallows the negation
constructor ¬, but includes the special concept 	 that specifies a tautology;
that is 	I := ΔI for all interpretations I (compare to the abbreviation defined
before). All other definitions are analogous as for ALC. Interestingly, every
EL ontology is consistent, and hence the consistency problem becomes trivial;
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moreover, subsumption and instance checking are decidable in polynomial time
via a so-called completion algorithm that in fact classifies the whole ontology.

3 What Is Axiom Pinpointing?

Although the term “Axiom Pinpointing” was originally coined in the context
of description logics, and the main focus in this work is on its development
in DLs as well, closely related problems have been also studied—with different
names—in other areas such as databases [47], propositional satisfiability [44],
or constraint satisfaction problems [48]. Most of the basic ideas can, in fact, be
traced to Raymond Reiter [61]. For that reason, we introduce the problem in the
most general terms possible, trying to preserve readability.

We consider an abstract ontology language, which is composed of a class A
of (well-formed) axioms, and a consequence relation |=: 2A → A.2 An ontology
is a finite set O ⊆ A of axioms. If O |= c, where c ∈ A, we say that O entails
c, or that c is a consequence of O. For reasons that will become clear later, we
focus solely on monotone ontology languages, which are such that if O ⊆ O′ and
O |= c, then also O′ |= c.

Notice that these definitions follow the typical terminology from description
logics as seen in the previous section, but they are not restricted exclusively
to DLs. For example, the set of propositional clauses

∨n
i=1 �i, where each �i,

1 ≤ i ≤ n is a literal, forms an ontology language under the standard entailment
relation between formulas. In this case, an ontology is a formula in conjunctive
normal form (CNF), and one common entailment of interest is whether such an
ontology entails the empty clause ⊥ :=

∨
�∈∅ �; that is, whether a formula is

unsatisfiable. Clearly, this ontology language is monotone as well.
Historically, most of the work on ontology languages focuses on reasoning ;

that is, on studying and solving the problem of deciding whether O |= c holds;
e.g. deciding subsumption or instance checking in ALC. For the most prominent
ontology languages, such as DLs, the computational complexity of this problem
is perfectly understood, and efficient methods have been already developed and
implemented. The number of available tools for solving these reasoning tasks is
too large to enumerate them. However, knowing that a consequence follows from
an ontology is only part of the story. Once that this fact has been established,
we are left with the issue of answering why the consequence holds.

Why do we want to answer why? Well, mainly because the consequence
relation is often far from trivial, specially when it depends on the inter-relation
of several potentially complex axioms. Hence, it might not be obvious that a
given axiom follows from an ontology. In particular, when the ontology is large,
surprising or erroneous consequences are bound to appear. Explaining them is
important to confirm their correctness or, alternatively, understand the causes of
error when they are incorrect. Other applications that are based on this general
setting are described in Sect. 7.

2 We use the infix notation for the consequence relation.
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In axiom pinpointing, we explain consequences by computing so-called jus-
tifications.3 Formally, a justification for the entailment O |= c, where O is an
ontology and c is an axioms, is a minimal (w.r.t. set inclusion) subontology
M ⊆ O that still entails the consequence; more precisely, M |= c and for every
M′ ⊂ M, M′ �|= c. We emphasise that the minimality is considered here w.r.t.
set inclusion. Notice that justifications are not unique. In fact, a single conse-
quence relation O |= c may allow for exponentially many justifications, measured
on the number of axioms in O [16]. Depending on the situation at hand, one
may want to compute one, several, or all these justifications. Axiom pinpoint-
ing approaches can be broadly grouped into three categories: black-box methods
that use unmodified reasoners as an oracle, glass-box methods that adapt the
reasoning procedure to trace the axioms used, and gray-box approaches, which
combine the benefits of the other two.

As mentioned already, the basic idea behind the glass-box approach is to
modify the reasoning algorithm to keep track of the axioms used throughout
the reasoning process, in order to identify the elements of the justification. As
we will see later, this process is effective for computing all justifications, but
incurs an additional cost, either in terms of complexity, or in the need of a post-
processing step. Alternatively, if one is only interested in one justification, the
cost of tracing is essentially insignificant, but the result is only an approximation
of a justification: it may contain superfluous axioms. Thus, it is often combined
with a black-box minimisation step that guarantees that the resulting set is
indeed a justification. In the following sections we describe these approaches in
greater detail.

4 Finding All Justifications

The black-box method for finding all justifications was introduced and studied
in detail by the groups in Maryland and Manchester [37,39,54]. Very briefly,
this method uses a sub-procedure that can compute one justification at a time
(we will see how to achieve this in the following section) and systematically
removes and restores axioms from the ontology, following Reiter’s Hitting Set
enumeration method, to find new justifications.

4.1 Tableaux-Based Axiom Pinpointing

The history of glass-box methods for axiom pinpointing in DLs started more than
20 years ago, when Baader and Hollunder [5] extended the standard tableau-
based algorithm for testing the consistency of an ALC ABox by a labelling
technique that traced the application of the tableau rules, and ultimately the
axioms responsible.

3 I rather prefer the name MinA coined by Franz Baader as we started our work on
this topic. However, despite my best efforts, justification has become the de facto
standard name in DLs. Even I must admit that it is catchier.
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In a nutshell, the standard tableaux-based algorithm for deciding consistency
tries to build a forest-shaped model of the input ABox, where each node rep-
resents an individual of the domain, by decomposing the complex concepts to
which each individual is required to belong to smaller pieces, until either an obvi-
ous contradiction is observed, or a model is obtained. For instance, the algorithm
will decompose the assertion Tall�LongHaired(franz) into the two simpler asser-
tions Tall(franz) and LongHaired(franz). Similarly, existential restrictions are
solved by introducing new individuals in a tree-like fashion; that is, for decom-
posing the assertion ∃hasStudent.¬LongHaired(franz), the algorithm introduces
a new (anonymous) individual x and the assertions hasStudent(franz, x) and
¬LongHaired(x). To keep all the decomposition steps positive, the algorithm
transforms the concepts to negation normal form (NNF), where negations can
only occur in front of concept names. Thus, the algorithm needs to handle explicit
disjunctions as well. To decompose an assertion like Serious
Angry(franz), where
we do not know whether Franz is serious or angry, the ABox is duplicated, and
one of the alternatives is added to each of the copies to analyse.

Since every ABox has a finite forest-shaped model, it can be shown that
this process terminates after finitely many decomposition steps. Ultimately, the
tableaux algorithm produces a set of ABoxes A that represent the possible alter-
natives for building a model of the input ABox A. An obvious contradiction
(called a clash) is observed if the decomposed ABox contains two assertions
A(a),¬A(a). It follows that A is consistent iff there is an ABox in A without
any clash; in fact, such clash-free ABox is a representation of a model of A.

The tracing extension proposed in [5] labels each assertion obtained through
the decomposition process with a value (formally a propositional variable) that
represents the original axioms responsible for it. For example, suppose that
the input ABox A contains the assertion ∃hasStudent.¬LongHaired(franz). The
algorithm first provides a unique name for this assertions, say a1. Then, when
the decomposition process generates the two assertions hasStudent(franz, x) and
¬LongHaired(x), it marks both of them with the label a1 to express that they
were caused by that original assertion. If an assertion is caused by more than
one original axiom, its label is modified to be the disjunction of the variables
associated with those axioms. A clash is caused by two contradictory assertions,
each of which is labelled by a disjunction of variables. The conjunction of these
labels describes the combinations of axioms required to produce this clash. Each
ABox in A may have more than one clash, but only one of them is required for
inconsistency. Hence, one can define the pinpointing formula4

ϕA :=
∧

B∈A

∨

A(a),¬A(a)∈B
lab(A(a)) ∧ lab(¬A(a)).

This formula expresses all the combinations of axioms that lead to inconsistency,
in the following way. If V is a valuation that satisfies φA, then the set of axioms
4 In the original paper [5], this was called a clash formula, since it explains the clashes

obtained by the algorithm. The name was later changed to pinpointing formula to
reflect its more general purpose.
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{α ∈ A | lab(α) ∈ V} is an inconsistent sub-ABox of A. In particular, min-
imal valuations satisfying φA define minimal inconsistent sub-ABoxes. Hence,
the pinpointing formula can be seen as a (compact) representation of all the
justifications for ABox inconsistency.

This original approach considered only ABoxes, but did not use any termi-
nological knowledge in the form of GCIs. Later on, Schlobach and Cornet [64]
extended the tracing method to explain inconsistency and concept unsatisfia-
bility with respect to so-called unfoldable ALC terminologies, which allow for
only a limited use of GCIs as concept definitions. This extension required adapt-
ing an additional tableau rule, necessary for handling the concept definitions,
but followed the main steps from [5], based on the finite tree model prop-
erty. This paper, which coined the term axiom pinpointing, started a series of
extensions including additional constructors or different kinds of axioms [39,49].
The correctness of these extensions was shown on an individual basis at each
paper, despite all of them being based on the same principles: take the original
tableau-based algorithm for the logic under consideration, and include a tracing
mechanism—based on the execution of the tableau rules—that associates each
newly derived assertion with the sets of axioms responsible for its occurrence.
It was only when the notion of blocking was considered for handling arbitrary
GCIs [41] that new ideas had to be developed to avoid stopping the process
too early. As we will see, observing that the classical notion of blocking did not
suffice for axiom pinpointing was the first hint of the problems that would later
arise for this glass-box idea.

So, what do you do when you observe several instances of a process, and
understand the principles behind it? You generalise them, of course! It was at
that time that we started our attempts to develop a general notion of pinpointing
extensions of tableau algorithms. This required two steps: giving a precise defi-
nition of what an abstract tableau algorithm (what we called a general tableau
at the time) is, and describing how to implement the tracing mechanism on
top of it, while guaranteeing correctness from an axiom pinpointing perspective.
Fortunately, we could build on previous work by Franz for both steps. Indeed,
a general notion of tableau had been defined a few years earlier to study the
connections between tableau and automata reasoning methods [3]. Moreover, as
mentioned before, the tracing mechanism and its correctness for axiom pinpoint-
ing was originally presented in [5]. Putting together both ingredients, after some
necessary modifications, serious considerations on the notion and effect of block-
ing, and extension of the correctness proofs, led to the first general glass-box
approach for axiom pinpointing in DLs and other logics [12].

An obvious drawback of these pinpointing extensions, which was almost
immediately observed, is that the tracing mechanism requires the main opti-
misations of the tableau method to be disallowed. More precisely, to ensure
efficiency, tableau algorithms stop exploring an ABox in the set of alternatives
once a clash has been found. While this is correct for deciding a consequence
(e.g., consistency), stopping at this point is bound to ignore some of the poten-
tial causes of the consequence, leading to an incomplete pinpointing method.
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In reality, this inefficiency hid a larger problem that took some time to be under-
stood and solved effectively.

After Baader and Hollunder proved the correctness of their approach in full
detail, the following work took a rather abstract and simplified view on termina-
tion of the pinpointing extensions. In essence, most of the work starting from [64]
argued that termination of the pinpointing method was a direct consequence of
termination of the original tableau algorithm. This argument was convincing
enough to make us believe that it should hold in general, but we needed a for-
mal proof of this fact. After struggling for a long time, we ended up finding
out that it is not true: there are terminating tableaux whose pinpointing exten-
sion does not terminate [12].5 Fortunately for all the work coming before this
counterexample was discovered, we were later able to identify a class of tableau
methods where termination is guaranteed [15]. This class strictly contained all
the previously studied algorithms in DL. Hence, for them we were still able to
guarantee termination.

For the light-weight DL EL, polynomial-time reasoning is achieved through
a completion algorithm, which is an instance of what later became known
as consequence-based methods [66,67]. As tableau methods, consequence-based
approaches apply extension rules to try to prove an entailment from an ontology.
The difference is that, while tableau algorithms attempt to construct a model of
a special kind, consequence-based methods try to enumerate the consequences
of the ontology that are relevant for the reasoning problem considered. Despite
these differences, some consequence-based algorithms—including the completion
method for EL—can be seen as simple tableau approaches that are guaranteed
to terminate. Thus, we can obtain a pinpointing formula for explaining conse-
quences of EL ontologies [16,17]. This instance is a perfect example of the cost of
adding the tracing mechanism to a tableau algorithm: while the original comple-
tion algorithm is guaranteed to terminate in polynomial time [10], its pinpointing
extension may require exponentially many rule applications, and hence can only
terminate in exponential time.

4.2 Automata-Based Axiom Pinpointing

In addition to tableau-based (and consequence-based) algorithms, automata-
based techniques are often used to reason in DLs. Automata-based algorithms are
mostly considered in theoretical settings to prove complexity results, but to the
best of our knowledge, only one experimental automata-based reasoner exists [23]
(and stopped being developed long ago). The main reason for this is that, even
though automata’s worst-case behaviour is often better than for tableau-based
algorithms, their best-case behaviour matches the worst case, and for practical
ontologies tableau algorithms tend to be more efficient due to their goal-directed
nature. However, as mentioned several times already, the tracing mechanism

5 I still remember when I managed to construct the first counterexample just before
the deadline for submitting the paper. Imagine a scared first-year PhD student inter-
rupting his supervisor’s holidays to tell him the bad news.
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implemented for pinpointing reduces the efficiency of tableau methods. It is
hence worth analysing the possibility of modifying automata-based algorithms
to compute a pinpointing formula as well.

Automata-based reasoning methods for DLs exploit the fact that these logics
often allow for well-structured models. For example, as we have seen before, every
ALC satisfiable concept has a tree-shaped model. In this case, we can build an
automaton that accepts the tree-shaped models of a given concept C w.r.t. an
ontology. It then follows that C is unsatisfiable iff the language accepted by
this automaton is empty. At a very high level, the automata-based algorithm
for ALC tries to build a tree-shaped model by labelling the nodes of an infinite
tree (which will form the domain of the interpretation) with a set of concepts to
which they most belong. These sets of concepts, which form a type, correspond
to the states of the automaton. The automaton should label the root node with a
set containing the input concept C; the children of each node are then labelled in
a way that satisfies the existential and value restrictions appearing in the parent
node. Moreover, each type should be consistent with the constraints specified in
the TBox. More precisely, if the TBox contains an axiom C � D, then every type
that contains C must also contain D. The automaton accepts the infinite tree iff
such a labelling is possible. Importantly, deciding whether such a labelling exists
is polynomial on the number of states of the automaton [29]. It is also important
to notice that the automaton accepts infinite trees; hence, it does not require
any special blocking technique to search for periodicity of a model.

To transform this reasoning algorithm into a pinpointing method, we modify
the underlying automata model into a weighted automaton [33]. Very briefly,
weighted automata generalise the classical notion of automata to provide an
initial weight to each state (as a generalisation of the set of initial states), and a
weight to each transition generalising the transition relation. Weighted automata
require an algebraic structure called a semiring that has a domain S and two
binary relations ⊕ (addition) and ⊗ (product), where ⊗ distributes over ⊕ and
a few additional properties hold. Rather than dividing runs into successful and
unsuccessful, weighted automata give a weight to every run, which is computed
as the product of the weights of all the transitions used, and the weight of the
initial state. The behaviour of the automaton is a function that maps every input
tree T into a semiring value computed as the addition of the weights of all the
runs this automaton over T .

For axiom pinpointing, we realise that the class of all propositional formulas
over a finite alphabet of variables with the logical disjunction ∨ and conjunc-
tion ∧ forms a distributive lattice, which is a specific kind of semiring. Thus,
automata-based axiom pinpointing uses formulas as weights, and the two logi-
cal operators mentioned, to construct the pinpointing formula of a consequence.
Recall that the states of the automaton used to decide concept satisfiability
enforce that all the GCIs in the TBox are satisfied. Instead, we now allow these
types to violate some of these constraints (e.g., even if the TBox contains the
axiom C � D, we allow a state that contains C but not D). The weights are
used to keep track of exactly which axioms are being violated while labelling the
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input tree. Thus, the behaviour of this automaton tells us which axioms need
to be violated to obtain a model; i.e., a pinpointing formula for unsatisfiability.
This was precisely the approach we followed in [13,14].

At this point, we only need to find out how to compute the behaviour of
a weighted automaton. Interestingly, despite extensive work made on different
weighted automata models, by the time we were considering this issue there
was no behaviour computation algorithm, and the computational complexity of
this problem was not very well understood. So we had to develop our own tech-
niques.6 In the end, we developed a technique that extended the ideas behind
the emptiness test for unweighted automata [4,71] to track the weights; an alter-
native approach was independently developed around the same time [32]. Our
approach, which only works on distributed lattices [42], runs in polynomial time
on the size of the automaton, which matches the complexity of deciding empti-
ness of unweighted automata.

Thus, we showed that automata-based methods can also provide tight com-
plexity bounds for axiom pinpointing, without worrying about issues like termi-
nation. There is, however, a small caveat. In order to guarantee a polynomial-
time behaviour computation, the algorithm does not really compute the pin-
pointing formula, but a compact representation of it built through structure
sharing. If the automaton is exponential on the size of the ontology, as is the
case for ALC, this representation could be expanded into a formula without any
cost in terms of computational complexity. However, for less expressive logics
such as EL, this expansion may yield an exponential blow-up. Still, this blow-up
may in fact be unavoidable in some of these logics. For example, it has been
shown that there exist EL ontologies and consequences whose smallest pinpoint-
ing formula is of super-polynomial length [55]. In particular, this pinpointing
formula cannot be generated in polynomial time.

For axiom pinpointing, the advantage of using automata-based methods over
the tableau-based approach is that the problem with termination does not show
up. Moreover, given that the computational resources needed to compute the
behaviour are polynomially bounded on the size of the automaton, automata
yield tight complexity bounds for this problem as well. However, it preserves the
disadvantage observed for classical reasoning; namely, that its best-case complex-
ity matches the worst-case one. Indeed, the first step of this approach corresponds
to the construction of the automaton from the input ontology.

Overall, we have seen two methods for computing a pinpointing formula, and
by extension all justifications, for a consequence from an ontology. In both cases,
the methods present some issues that make them impractical. In fact, this is not
very surprising given the now known complexity results for problems related to
axiom pinpointing. As mentioned already, a single consequence may have expo-
nentially many justifications, and hence it is impossible to enumerate them all

6 As a historical remark, an important reason why I ended up working with Franz
was because I fell in love with automata theory while I was doing my masters in
Dresden. Being the Chair for Automata Theory, it only made sense to ask him for
a topic. Little did I know at the time where this would take me.
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in polynomial time. What is more interesting, though, is that even if a conse-
quence has polynomially many justifications, there is no guarantee that they can
be all found in polynomial time. In particular, any enumeration algorithm will
necessarily lead to a longer waiting time between any two successive solutions,
and even counting the number of justifications is a hard counting problem [57].
Given these hardness results, it makes sense to focus on the issue of computing
only one justification. This is the topic of the next section.

5 Finding One Justification

The black-box approach for finding one justification relies on a straight-forward
deletion procedure. The idea is to remove superfluous axioms from the ontology
one at a time through a sequence of entailment tests. Starting from the full
input ontology O, the method iteratively removes one axiom at a time and
checks whether the consequence c follows from the remaining ontology. If it
does, the axiom is permanently removed; otherwise, the axiom is re-inserted in
the ontology and the process continues. At the end of this process, when every
axiom has been tested for deletion, the remaining ontology is guaranteed to be
a justification for c [17,38]. Clearly, this process incurs in a linear overhead over
reasoning: a standard reasoner is called as many times as there are axioms in the
ontology. In terms of complexity, this means that as long as reasoning is at least
polynomial, finding one justification is not noticeably harder than just deciding
a consequence.

In practice, it has been observed empirically that justifications tend to be
small, containing only a few axioms. If the original ontology is large, as in the case
of Snomed CT, the linear overhead may actually make the process unfeasible.
Indeed, even if reasoning takes only a millisecond, repeating the process half a
million times would require well over 5 min. Thus different optimisations have
been proposed to try to prune several axioms at a time [37].

Trying to obtain a glass-box approach for computing one justification, one
can adapt the tracing technique extending tableau-based algorithms to focus
on one cause of derivation only. Recall that the idea behind the tracing tech-
nique is to keep track of the axioms used when deriving any new information
throughout the execution of the tableau algorithm. To find only a justification,
it thus makes sense to apply the same tracing technique, but ignore alternative
derivations of the same fact. In other words, rather than preserving a (mono-
tone) Boolean formula describing all the derivation of a given assertion, one just
stores a conjunction of propositional variables obtained by the first derivation
of this assertion. The method hence preserves one derivation of each assertion.
When a clash is found, we can immediately find out the axioms known to cause
this clash by conjoining the labels of the two assertions forming it. Likewise,
to explain the presence of a clash in all the ABoxes generated by the execu-
tion of the algorithm, we simply conjoin the labels the clashes of each of them.
Overall, this conjunction yields a set of axioms that is guaranteed to entail the
consequence under consideration; e.g., inconsistency of the input ABox.
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Interestingly, the problems surrounding the glass-box approach for comput-
ing all justifications do not play a role in this case. Indeed, the execution of the
original tableau-based algorithm does not need to be modified, but only some
additional memory is required to preserve the conjunction of labels at each gen-
erated assertion. In particular, the fundamental optimisations of the classical
tableau methods are preserved: the expansion of an ABox may be stopped once
a clash is found in it, without the need to find other possible clashes. Hence, this
method runs within the same resource bounds as the original tableau method.
Moreover, termination of the method is not affected by this tracing technique,
and there is no need to adapt any blocking procedure used, since standard block-
ing remains correct for this setting. Unfortunately, as was almost immediately
noted, the set of axioms generated by this modified algorithm is not necessar-
ily a justification, since it might not be minimal [17]. In fact, it is not difficult
to build an example where this approach produces a result with superfluous
axioms, potentially caused by the order of rule applications or other dependen-
cies between the assertions generated.

To obtain a justification, this glass-box approach can be combined with the
black-box method described before. After finding an approximate justification
through the glass-box approach, it can be minimised by deleting the superflu-
ous axioms via the black-box method. Empirical evaluations of this gray-box
approach show that it behaves well in practice, even for very large ontologies
like Snomed. Indeed, an intensive analysis started by Boontawee Suntisrivara-
porn7 [68] and concluded by Kazakov and Skocovskỳ [40] shows that conse-
quences in this ontology tend to have very small justifications, mostly containing
10 axioms or less. Moreover, the average number of axioms that appear in at
least one justification is less than 40 [56]. More interestingly, although the trac-
ing algorithm has no guarantee of finding a justification, it very often does; and
even when it does not, it usually gives only one or two superfluous axioms [68].
Thus, the minimisation step might not be needed in some applications.

To date, there is no automata-based method targeted to compute only one
justification. Although it is possible to imagine a way to adapt the idea used
in tableaux (i.e., rather than preserving formulas, weights are associated with
conjunctions of propositional variables), this would require larger changes in
terms of the chosen semiring and the use of the operations, and would not yield
any real benefit in terms of complexity. Indeed, the automaton would be of the
same size, and computing the behaviour requires the same resources, while still
not guaranteeing minimality of the set of axioms computed. Hence, automata-
based methods are not really meaningful in the context of computing only one
justification, and we will not cover them further.

6 Extensions

The original question of axiom pinpointing, as described at the beginning of
this chapter, deals exclusively with whole axioms. This is a reasonable approach
7 Also known, and herewith referred as Meng.
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when trying to debug errors in a hand-written ontology, as one can assume that
ontology engineers follow modelling guidelines, which limit the variability in the
expression of specific piece of knowledge. However, this also makes the results
dependent on the representation chosen. For example, {Tall � Professor(franz)}
is logically equivalent to {Tall(franz),Professor(franz)}, but in axiom pinpoint-
ing both ontologies are treated differently: the first contains only one axiom, and
is thus the only possible justification, while the second has a more fine-grained
view where each of the individual axioms (or both together) may serve as a
justification. We notice that the choice of the shape of the axioms is not banal.
It may affect the underlying modelling language—and by extension the reason-
ing method chosen—among other things. Consider, for example, the difference
between the ALC GCI 	 � ¬LongHaired 
 Professor and the logically equiva-
lent EL GCI LongHaired � Professor. More importantly, it may also affect the
complexity of axiom pinpointing itself. As shown in [57], allowing conjunctions
as in the axiom Tall � Professor(franz) can increase the complexity of axiom
pinpointing related tasks, like counting or enumerating justifications.

Depending on the application, the domain, the user, and the shape of the
ontology, it may be desirable to produce a finer or a coarser view to a justifi-
cation. For instance, if the goal is to repair an error in an ontology, it makes
sense to try to view the ontology in as much detail as possible. Indeed, know-
ing that a long and (syntactically) complicated axiom is causing an error is
less helpful for correcting it than observing more precise pieces, which high-
light where the errors occur. As a simple example, knowing that the axiom
Tall � Professor � ¬LongHaired(franz) causes an error is less informative than
knowing that ¬LongHaired(franz) is causing it. On the other hand, if the goal
is to understand why a consequence follows from an ontology, then a coarser
view, where some of the irrelevant details are hidden from the user, may be
more informative.

Variations of axiom pinpointing targeting finer or coarser justifications have
been proposed throughout the years. Specifically for description logics, coarser
justifications—called lemmata—were proposed in [35]. The idea in this case is
to combine several axioms within a justification into one (simpler) axiom that
follows from them and explains their relationship to the remaining ones in the
justification. A simple example of this approach is a chain of atomic subsump-
tions A0 � A1, A1 � A2, . . . An−1 � An summarised into the lemma A0 � An.
If a user is interested in observing the details of the lemma, then it can be
expanded to its original form. Of course, the challenge is to summarise more
complex combinations of axioms going beyond simple sequences of implications.
To understand how this is done, it is worth looking at the original work in detail.

The approach for providing finer justifications originally took the form of
so-called precise and laconic justifications [34]. In a nutshell, the idea of these
justifications is to cut axioms into smaller, but still meaningful, pieces in a way
that only the relevant pieces are presented to the user. In our previous exam-
ple, instead of the (original) axiom Tall � Professor � ¬LongHaired(franz), the
piece ¬LongHaired(franz) could be used as a laconic justification. Note that in
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practice, the pieces of axioms derived for these laconic justifications are gener-
alisations of the original axioms, with the additional property that they tend to
be shorter and easier to read. One can think of taking this idea a step further,
and trying to explain a consequence through the most general variants of the
axioms possible. We will explore a closely related task in the next section.

Another important extension of the original approach to axiom pinpointing
refers to the way axioms are related to each other. Recall that a justification is
a minimal set of axioms (from the original ontology) that entails a given con-
sequence. From this point of view, all axioms are independent in the sense that
their presence or absence in the ontology does not depend on the existence of any
other axiom. However, it is not difficult to find cases where this independence is
not necessary. Without going far, we can consider the completion algorithm for
EL, which requires that the input ontology is written in a special normal form.
Before calling the algorithm proper, the axioms in the ontology are transformed
to this form; for example, an axiom A � B � C is replaced by the two axioms
A � B, A � C. Note that this transformation does not affect the logical prop-
erties of the ontology, but as mentioned before, it may have an effect on axiom
pinpointing. In this case, one should notice that, as the two latter axioms origi-
nate from the same input axiom, they are also bound to appear together. That
is, whenever a justification from the normalised ontology contains A � B, then
it must also contain A � C, and vice-versa. Another example is when the axioms
are available to some users only, through an access control mechanism [7,8]. In
this case, all axioms at the same access level should be available simultaneously,
along with those at more public levels.

One way to deal with this dependency between axioms is by means of con-
texts. From a very simplistic point of view, a context is merely a sub-ontology
containing inter-related axioms. Technically, this inter-relation is expressed by
a label associated with each axiom. In a nutshell, axioms that share the same
label should always appear together. More complex relationships can then be
expressed by a variation of the labelling language; e.g., by using propositional
formulas, one can say that an axiom is available when another one is not.

In this context-based scenario, axiom pinpointing corresponds to finding the
contexts from which a consequence can be derived, rather than just finding the
specific axioms within those contexts. Since several axioms may belong to the
same context, this provides a coarser explanation of the causes of the entailment.
Interestingly, all the methods described in Sects. 4 and 5 can be adapted to this
variant of context-based reasoning, by using context labels—rather than the
representation of an axiom—within the tracing process, and by including or
removing whole contexts together in the black-box approach.

7 Applications

Now that we know what is axiom pinpointing, some of its variants, and how to
solve these issues, we will see what they are useful for. Of course, we have already
hinted to various applications, which have motivated the previous descriptions,
but now we try to cover them in larger detail.
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The first obvious application is about correcting errors in an ontology. An
early motivation for axiom pinpointing—definitely one that caught the inter-
est of Franz—arose from working on the very large ontology Snomed CT.
At some point, it was observed that this ontology entailed the consequence
AmputationOfFinger � AmputationOfHand; i.e., according to Snomed, every
amputation of a finger was also an amputation of a hand (and indeed, also of
an arm, suggesting that there was something wrong with part-whole represen-
tations). This is a clearly erroneous conclusion that may have extreme conse-
quences if the ontology is used to reason about real-world events.8 So it was
important to find the cause of the error, and correct it adequately. Using the
gray-box approach for finding one justification, combined with the hitting-set
tree method for finding successive ones, Franz and Meng managed to identify
the six specific axioms that caused this error [18]. Perhaps more interestingly,
they showed that there was a systematic error in the modelling approach used
for the construction of the ontology, which was leading to these erroneous conse-
quences. Hence, they proposed to use a slightly more expressive logic than EL, in
order to provide a more direct and intuitive mechanism for modelling relations
between parts [69]. Since then, this error was erradicated from the ontology.

Staying in the context of correcting the errors in an ontology, recent efforts
consider the approach that originated with laconic justifications, but rather than
trying to find a justification over generalised axioms from the ontology, they gen-
eralise one further step to automatically remove the consequence. This line of
research started from the idea of finding a consensus between mutually incon-
sistent ontologies by different agents [58]. It has then been continued by the
research group in Bolzano [70] and, through a different motivation based on
privacy, by Franz and his group [9].

Understanding and correcting the causes for an unwanted consequence to
follow is a hard and time-consuming task that often requires the involvement of
experts to decide which of the potentially exponentially many options to choose.
In addition, updates to ontologies are often planned according to a stable calen-
dar; for example, new versions of Snomed are published twice per year. Hence,
one should expect to wait some time before a known error is corrected in an
ontology. In the meantime, one should still be able to use the ontology deriv-
ing meaningful consequences that avoid the potentially erroneous parts. This
is the basic idea underlying inconsistency tolerant [19,43], and more generally
error tolerant reasoning [45]. Essentially, suppose that one knows that an ontol-
ogy entails an erroneous consequence; the goal is to derive other consequences
that would still hold in the absence of this error, and hence would still make
sense after the ontology is repaired. To this end, three main semantics have been

8 Imagine someone making an insurance claim after having a finger amputated. If the
insurer makes this kind of error, they might end of paying a larger lump for an
amputated arm.
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defined, based on the notion of a repair [43]:9 brave semantics consider conse-
quences that follow from at least one repair; cautious semantics require that the
conclusion is entailed by all repairs; and the intersection semantics, originally
proposed for efficiency reasons, uses as a correct ontology the intersection of all
the repairs [20]. In DLs, this aspect was originally motivated by the analogous
notion in databases. From a similar motivation, currently the idea of tracing the
provenance of a consequence in an ontology is gaining interest in the DL world.
The difference with axiom pinpointing is that for provenance, the minimality
assumption is relaxed; in fact, one is rather interested in finding all the possible
ways in which a consequence can be derived [52].

Other important applications use axiom pinpointing as a background step for
doing other complex inferences that depend on the combinations of axioms that
entail some consequence. These applications are usually, although not always,
based on the context-based generalisation described in the previous section. The
first one, which we have already mentioned, is about access control. In this sce-
nario, axioms have an access degree that limits the class of users that are able
to retrieve them. These access degrees are extended also to the implicit conse-
quences of the ontology in the obvious way: a user can observe a consequence
iff they have access to a set of axioms that entail this consequence. Hence, for
a given consequence, the problem is now to identify the access levels that can
observe it, so that it remains hidden from all others. This becomes a problem
of axiom pinpointing at the context level, where each access degree defines one
context, and one is not interested in the specific axioms entailing the conse-
quence, but rather their contexts. In [8] this problem is solved through a purely
black-box approach using expressive DLs as underlying ontology language.

In order to handle uncertainty about the knowledge in an ontology, proba-
bilistic extensions of DLs have been proposed [46]. A relevant example for this
chapter are the DLs with so-called distribution semantics originally proposed
for probabilistic logic programming [60,62]. In this semantics, every axiom is
associated with a probability of being true, and all axioms are assumed to be
probabilistically independent. Then, the probability of a consequence is derived
from the probabilities of all the combinations of axioms that entail the conse-
quence. The most recent implementation of a reasoner for these logics uses the
tableau-based glass-box method to compute a pinpointing formula, which is later
fed to a propositional probabilistic reasoner [73]. While this approach seems to
work well in empirical evaluations, the assumption of probabilistic independence
is too strong to model realistic situations. For that reason, a more general for-
malism based on contexts was proposed. The idea of these newer probabilistic
logics is to model certain knowledge that holds in uncertain contexts. That is,
axioms are interrelated via context labels as described before, but the contexts
are associated with a probability distribution, which in this case is expressed via
a Bayesian network. Hence, these logics are often known as Bayesian logics. The

9 Formally, a repair is a maximal subontology that does not entail the consequence.
This is the dual notion of a justification, which is also studied in variations of axiom
pinpointing in different fields.
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first Bayesian DL was studied, as a variant of another probabilistic extension
of DL-Lite [30], as an extension of EL [26], but it was immediately clear that
the underlying ideas could be extended to other ontology languages as well [28].
The reasoning methods proposed for Bayesian EL included a black-box app-
roach, and reductions to pure Bayesian networks [27] and to probabilistic logic
programming with distribution semantics [25]. Later on, a glass-box approach
based on a modification of the tracing algorithm for ALC was considered in
[21,22].

To conclude this section, and without going into excessive detail, we note
that axiom pinpointing is also an effective sub-procedure for dealing with other
extensions of logical reasoning. Examples of this are reasoning about preferences,
possibilistic reasoning, and belief revision. More generally, whenever a reasoning
problem can be expressed as a sum of products of weights from a semiring,
where weights are associated with axioms, the weights of axioms in an ontology
entailing a consequence are multiplied, and the results of different derivations
are added, axiom pinpointing is a perfect companion to any reasoning method.

8 Conclusions

We have attempted to explain what is axiom pinpointing in the context of
Description Logics, as studied by Franz Baader, and his academic successors. As
mentioned throughout this work, the idea of axiom pinpointing is not restricted
to the DL community, and pops out whenever people study some kind of mono-
tonic entailment relation in detail. Unfortunately, each area chose a different
name for this task, thus causing confusions and hindering communication about
techniques, successes, and failures.

After finishing my dissertation, I have been trying to collect names and exam-
ples of axiom pinpointing in the wild, and keep on finding them in many different
places. I guess it is true that when all you have is a hammer, then everything
looks like a nail. But this work is not about me, but about Franz, who not only
proposed this topic to me as I started working with him, but was also the first
to propose a solution to a special case, well before the name axiom pinpointing
was coined by Schlobach and Cornet. Since Franz has a vested interest in DLs,
and my work together with him has mainly focused on this area as well, this
chapter does not go in much detail about other logical languages. Still, it would
be wrong to leave anyone with the impression that the work presented here is
exclusive for DLs. Many of the ideas are applicable to, and have often been inde-
pendently developed for, other ontology languages as well. Famous examples are
databases, propositional satisfiability, and constraint satisfaction problems; but
there are many more. Even some that I have not yet encountered.

Perhaps more importantly, axiom pinpointing is not dead. Throughout the
years, I have tried to leave aside the topic a couple of times, thinking that there
cannot possibly exist much more to explore. And each time it came knocking
back to my door, under different disguises. It is a fortune to us all that Franz
continues exploring these topics as well. I am looking forward to the next years
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of axiom pinpointing-related research, in DLs and in other fields. And to the
results that Franz, and those of us that grew under him, will still be able to
contribute.
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13. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
226–241. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-
7 19

http://content.iospress.com/articles/fundamenta-informaticae/fi57-2-4-08
http://content.iospress.com/articles/fundamenta-informaticae/fi57-2-4-08
https://doi.org/10.1016/j.ic.2008.03.006
https://doi.org/10.1016/j.ic.2008.03.006
https://doi.org/10.1007/BF00883932
https://doi.org/10.1007/BF00883932
https://doi.org/10.1007/978-3-642-04930-9_4
https://doi.org/10.1016/j.websem.2011.11.006
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1007/11814771_25
https://doi.org/10.1007/11814771_25
http://ceur-ws.org/Vol-189/submission_8.pdf
https://doi.org/10.1007/978-3-540-73099-6_4
https://doi.org/10.1007/978-3-540-71070-7_19
https://doi.org/10.1007/978-3-540-71070-7_19


Explaining Axiom Pinpointing 493
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22. Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic BALC. In:
Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS, vol. 11468, pp.
339–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0 22

23. Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique for
reasoning in expressive description logics. In: Walsh, T. (ed.) Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp.
798–804. AAAI Press/IJCAI (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-140

24. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)
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29. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

30. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian
description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI),
vol. 5291, pp. 146–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87993-0 13

31. Donini, F.M., Massacci, F.: Exptime tableaux for ALC. Artif. Intell. 124(1), 87–
138 (2000). https://doi.org/10.1016/S0004-3702(00)00070-9

32. Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics overwords and trees.
Fundamenta Informaticae 84(3–4), 305–327 (2008). http://content.iospress.com/
articles/fundamenta-informaticae/fi84-3-4-02

33. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

34. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1 21

35. Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: Grau,
B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd Interna-
tional Workshop on Description Logics (DL 2009). CEUR Workshop Proceedings,
vol. 477. CEUR-WS.org (2009). http://ceur-ws.org/Vol-477/paper 24.pdf

36. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2006), pp.
57–67. AAAI Press (2006)

37. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, University
of Maryland College Park, USA (2006)

38. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable
concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006). https://doi.org/10.
1007/11762256 15

39. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Semant. 3(4), 268–293 (2005). https://doi.org/10.1016/
j.websem.2005.09.005
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Abstract. We compare two kinds of unification problems: Asymmetric
Unification and Disunification, which are variants of Equational Unifica-
tion. Asymmetric Unification is a type of Equational Unification where
the instances of the right-hand sides of the equations are in normal form
with respect to the given term rewriting system. In Disunification we
solve equations and disequations with respect to an equational theory
for the case with free constants. We contrast the time complexities of
both and show that the two problems are incomparable: there are the-
ories where one can be solved in polynomial time while the other is
NP-hard. This goes both ways. The time complexity also varies based
on the termination ordering used in the term rewriting system.

Keywords: Asymmetric unification · Disunification ·
Time complexity analysis

1 Introduction and Motivation

We survey two variants of unification, namely asymmetric unification [16] and
disunification [6,14]. Asymmetric unification is a new paradigm comparatively,
which requires one side of the equation to be irreducible. Asymmetric unification
was introduced by Catherine Meadows [16] for symbolic cryptographic protocol
analysis as a state space reduction technique. These reduction techniques are
crucial in cryptographic protocol analysis tools such as Maude-NPA to help
narrow the exponential search space by identifying infeasible states [16,26]. Dis-
unification [14] like equational unification deals with solving equations, however
it also allows disequations. Disequations enable us to use additional constraints
such as a variable is not equivalent to a term by our equational theory E (e.g.,
x �≈E a). Disunification has applications in Logic Programming and Artificial
Intelligence [12].

The main contribution of this paper is to contrast asymmetric and disunifi-
cation in terms of their time complexities for different equational theories in the
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case where terms in the input can also have free constant symbols. Complex-
ity analysis has been performed separately on asymmetric unification [10,17]
and disunification by Baader and Schulz [6,12], but not much work has been
done on contrasting the two paradigms1. Initially, it was thought that the two
are reducible to one another [17], but our results indicate that they are not,
at least where polynomial-time reducibility is concerned2. These two variants
were thought to be reducible due to an example disunification problem that the
authors in [16] were able to simulate using asymmetric unification. They posed
the connection between these problems as an open problem. The rewrite rule
that the authors added to the term rewriting system R is f(x, x) → g(x). If
the rewrite system R can be extended by adding such a rule, then, in the new
system R1, disunification can be reduced to asymmetric unification. They sim-
ulated the disequation s �= t, for terms s and t, by the following asymmetric
unification problem, where the downward arrow means irreducible on one side
of the equation:

{s ≈?
↓ u, t ≈?

↓ v, w ≈?
↓ f(u, v)}

In Sect. 8 we show that the time complexity of asymmetric unification varies
depending on the symbol ordering chosen for the theory. Lastly we conclude and
outline our future work.

2 Notations and Preliminaries: Term Rewriting Systems,
Equational Unification

We assume the reader is accustomed with the terminologies of term rewriting
systems (TRS) [4], equational rewriting [4,8], equational unification [7], and
disunification [6,14].

Term Rewriting Systems: A term rewriting system (TRS) [4] is a set of
rewrite rules, where a rewrite rule is an identity l ≈ r such that l is not a
variable and Var(l) ⊇ Var(r). It is often written or denoted as l → r.

A term is reducible by a term rewriting system if and only if a subterm of it
is an instance of the left-hand side of a rule. In other words, a term t is reducible
modulo R if and only if there is a rule l → r in R, a subterm t′ at position p
of t , and a substitution σ such that σ(l) = t′. The term t[σ(r)]p is the result
of reducing t by l → r at p. The reduction relation →R associated with a term
rewriting system R is defined as follows: s →R t if and only if there exist p in
Pos(s) and l → r in R such that t is the result of reducing s by l → r at p, i.e.,
t = s[σ(r)]p.

A term is in normal form with respect to a term rewriting system if and only
if no rule can be applied to it. A term rewriting system is terminating if and

1 Symmetric and asymmetric unification were contrasted in [16].
2 For the theory ACUN that we consider in Sect. 6, disunification can be reduced to

asymmetric unification.
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only if there are no infinite rewrite chains. We write s →!
R t if s →∗

R t and t is
in normal form.

Two terms s and t are said to be joinable modulo a term rewriting system
R if and only if there exists a term u such that s →∗

R u and t →∗
R u, denoted

as s ↓ t.
The equational theory E (R) associated with a term rewriting system R is

the set of equations obtained from R by treating every rule as a (bidirectional)
equation. Thus the equational congruence ≈E (R) is the congruence (→R∪←R)∗.

A term rewriting system R is said to be confluent if and only if the following
(“diamond”) property holds:

∀t∀u∀v
[
(t →∗

R u ∧ t →∗
R v) ⇒ ∃w(u →∗

R w ∧ v →∗
R w)

]

R is convergent if and only if it is terminating and confluent. In other words,
R is convergent if and only if it is terminating and, besides, every term has a
unique normal form.

An equational theory ≈E is said to be subterm-collapsing if and only if there
exist terms s, t such that s ≈E t and t is a proper subterm of s. If the theory has
a convergent term rewriting system R, then it is subterm-collapsing if and only
if s →+

R s|p for some term s and p ∈ Pos(s). An equational theory is said to be
non-subterm-collapsing or simple [13] if and only if it is not subterm-collapsing.

An equational term rewriting system consists of a set of identities E (which
often contains identities such as commutativity and associativity) and a set of
rewrite rules R. Two notion of rewriting are defined in the literature: Class
rewriting, →R/E , is defined as ≈E◦ →R ◦≈E , and Extended rewriting modulo E,
−→R,E , is defined as

s −→R,E t ⇐⇒ ∃p ∈ Pos(s) such that s|p ≈E σ(l) and t = s[σ(r)]p

for some rule l → r and substitution σ.

Example 1. Let E = {(x + y) + z ≈ x + (y + z), x + y ≈ y + x} and R =
{0 + x → x}. Then

(a + 0) + b −→R,E a + b

since a + 0 matches with 0 + x modulo E.

Definition 2.1. We call (Σ, E, R) a decomposition of an equational theory Δ
over a signature Σ if Δ = R � E and R and E satisfy the following conditions:

1. E is variable preserving, i.e., for each s ≈ t in E we have Var(s) = Var(t).
2. E has a finitary and complete unification algorithm, i.e., an algorithm that

produces a finite complete set of unifiers.
3. For each l → r ∈ R we have Var(r) ⊆ Var(l).
4. R is confluent and terminating modulo E, i.e., the relation →R/E is confluent

and terminating.
5. →R,E is E-coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2 and t1≈Et3 then ∃ t4, t5

such that t2 →∗
R,E t4, t3 →+

R,E t5, and t4≈Et5.
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A set of equations is said to be in dag-solved form (or d-solved form) if and only
if they can be arranged as a list

X1 ≈? t1, . . . , Xn ≈? tn

where (a) each left-hand side Xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n:
Xi does not occur in tj .

Equational Unification: Two terms s and t are unifiable modulo an equational
theory E iff there exists a substitution θ such that θ(s) ≈E θ(t). The unification
problem modulo equational theory E is the problem of solving a set of equa-
tions S = {s1 ≈?

E t1, . . . , sn ≈?
E tn}, whether there exists σ such that σ(s1)≈E

σ(t1), · · · , σ(sn)≈E σ(tn). This is also referred to as semantic unification where
equational equivalence [7] or congruence is considered among the terms being
unified, rather than syntactic identity. Some of the standard equational theories
used are associativity and commutativity.

A unifier δ is more general than another unifer ρ over a set of variables X
iff a substitution equivalent to the latter can be obtained from the former by
suitably composing it with a third substitution:

δ �X
E ρ iff ∃σ : δ ◦ σ(x) ≈E ρ(x) for all x ∈ X.

A substitution θ is a normalized substitution with respect to a term rewrite
system R if and only for every x, θ(x) is in R-normal form. In other words,
terms in the range of θ are in normal form. (These are also sometimes referred
to as as irreducible substitutions.) When R is convergent, one can assume that
all unifiers modulo R are normalized substitutions.

3 Asymmetric Unification

Definition 1. Given a decomposition (Σ,E,R) of an equational theory, a sub-
stitution σ is an asymmetric R,E-unifier of a set Γ of asymmetric equations
{s1 ≈?

↓ t1, . . . , sn ≈?
↓ tn} iff for each asymmetric equation si ≈?

↓ ti, σ is an
(E ∪ R)-unifier of the equation si ≈? ti, and σ(ti) is in R,E-normal form. In
other words, σ(si) →!

R,E σ(ti).

Note that symmetric unification can be reduced to asymmetric unification: the
unification problem {s ≈?

R t} is solvable if and only if the asymmetric problem
{s ≈?

↓ X, t ≈?
↓ X}, where X is a new variable, is solvable. Thus we could also

include symmetric equations in a problem instance.

Example 2. Let R = {x + a → x} be a rewrite system. An asymmetric unifier
θ for {u + v ≈?

↓ v + w} modulo this system is θ = {u �→ v, w �→ v}. However,
another unifier ρ = {u �→ a, v �→ a, w �→ a} is not an asymmetric unifier. But
note that θ �E ρ over {u, v, w}: i.e., ρ is an instance of θ, or, alternatively, θ is
more general than ρ. This shows that instances of asymmetric unifiers need not
be asymmetric unifiers.
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The ground asymmetric unification problem is a restricted version of the
asymmetric unification problem where the solutions have to be ground substitu-
tions over the signature Σ and a finite set of constants that includes the constants
appearing in the problem instance. Following Baader and Schulz [6] we denote
ground asymmetric unification problems in the form (Γ,C) where Γ is a set of
asymmetric equations and C is a set of constants that includes the constants that
appear in Γ . In other words, the terms that appear in Γ are from T (Σ ∪ C, V )
and VRan(σ), for any solution σ, must be a subset of T (Σ ∪ C).

4 Disunification

Disunification deals with solving a set of equations and disequations with respect
to a given equational theory.

Definition 2. For an equational theory E, a disunification problem is a set of
equations and disequations L = {s1 ≈?

E t1, . . . , sn ≈?
E tn} ⋃ {sn+1 �≈?

E

tn+1, . . . , sn+m �≈?
E tn+m}.

A solution to this problem is a substitution σ such that:

σ(si) ≈E σ(ti) (i = 1, . . . , n)

and
σ(sn+j) �≈E σ(tn+j) (j = 1, . . . ,m).

Example 3. Given E = {x + a ≈ x}, a disunifier θ for {u + v �≈E v + u} is
θ = {u �→ a, v �→ b}.

If a + x ≈ x is added to the identities E, then θ = {u �→ a, v �→ b} is clearly
no longer a disunifier modulo this equational theory.

The ground disunification problem [6] for an equational theory Δ, denoted
as (Γ,C) consists of a set of constants C and a set Γ of equations and disequations
over terms from T (Sig(Γ ) ∪ C, V ). For any solution σ, VRan(σ) ⊂ T (Σ ∪ C).

5 A Theory for Which Asymmetric Unification Is in P
Whereas Disunification Is NP-Hard

Let R1 be the following term rewriting system:

h(a) → f(a, c)
h(b) → f(b, c)

We show that asymmetric unifiability modulo this theory can be solved in poly-
nomial time.
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Note that reversing the directions of the rules also produces a convergent system,
i.e.,

f(a, c) → h(a)
f(b, c) → h(b)

is also terminating and confluent. We assume that the input equations are in
standard form, i.e., of one of four kinds: X ≈? Y , X ≈? h(Y ), X ≈? f(Y,Z) and
X ≈? d where X,Y,Z are variables and d is any constant. Asymmetric equations
will have the extra downarrow, e.g., X ≈?

↓ h(Z).
Our algorithm transforms an asymmetric unification problem to a set of

equations in dag-solved form along with clausal constraints, where each atom is
of the form (〈variable〉 = 〈constant〉). We use the notation EQ ‖ Γ , where
EQ is set of equations in standard form as mentioned above, and Γ is a set of
clausal constraints. Initially Γ is empty.

Lemma 5.1. (Removing asymmetry) If s is an irreducible term, then h(s) is
(also) irreducible iff s �= a and s �= b.

Proof. If s = a or s = b, then clearly h(s) is reducible. Conversely, if s is
irreducible and h(s) is reducible, then s has to be either a (for the first rule to
apply) or b (for the second rule).

Hence we first apply the following inference rule (until finished) that gets rid
of asymmetry:

EQ � {X ≈?
↓ h(Y )} ‖ Γ

EQ � {X ≈? h(Y )} ‖ Γ ∪ {¬(Y = a)} ∪ {¬(Y = b)}
Lemma 5.2. (Cancellativity) h(s) ↓R1 h(t) iff s ↓R1 t. Similarly, f(s1, s2) ↓R1

f(t1, t2) iff s1 ↓R1 t1 and s2 ↓R1 t2.

Proof. The if part is straightforward. If s and t are joinable, this implies h(s)
and h(t) are joinable modulo R1.

Only if part: Suppose h(s) is joinable with h(t). Without loss of generality
assume s and t are in normal form. If s = t then we are done. Otherwise, if s �= t,
since we assumed s and t are in normal forms, h(s) or h(t) must be reducible.
If h(s) is reducible, then s has to be either a or b, which reduces h(s) to f(s, c).
Then h(t) must also be reducible and joinable with f(s, c). Hence s and t will
be equivalent.

The proof of the second part is straightforward. ��
Lemma 5.3. (Root Conflict)

s →! a, t1 →! a, t2 →! c

or

s →! b, t1 →! b, t2 →! c.
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Proof. The if part is straightforward. If s and t1 reduce to a (resp., b) and t2
reduces to c, then h(a) reduces to f(a, c) (resp., f(b, c)).

Only if part: Suppose h(s) is joinable with f(t1, t2) modulo R1. We can
assume wlog that s, t1, t2 are in normal forms. Then h(s) must be reducible,
i.e., s = a or s = b. If s = a, then t1 = a and t2 = c; else if s = b, then t1 = b
and t2 = c (from our rules). ��

Now for E-unification, we have the inference rules

(a)
{X ≈? V } � EQ ‖ Γ

{X ≈? V } ∪ [V/X](EQ) ‖ [V/X](Γ )
if X occurs in EQ or Γ

(b)
EQ � {X ≈? h(Y ), X ≈? h(T )} ‖ Γ

EQ ∪ {X ≈? h(Y ), T ≈? Y } ‖ Γ

(c)
EQ � {X ≈? f(V, Y ), X ≈? f(W,T )} ‖ Γ

EQ ∪ {X ≈? f(V, Y ), W ≈? V, T ≈? Y } ‖ Γ

(d)
EQ � {X ≈? h(Y ), X ≈? f(U, V )} ‖ Γ

EQ ∪ {U ≈? Y, V ≈? c, X ≈? f(Y, V )} ‖ Γ ∪ {(Y = a) ∨ (Y = b)}

The above inference rules are applied with rule (a) having the highest priority
and rule (d) the lowest.

The following are the failure rules, which, of course, have the highest priority.

(F1) EQ � {X ≈? d, X ≈? f(U, V )} ‖ Γ

FAIL
d ∈ {a, b, c}

(F2) EQ � {X ≈? d, X ≈? h(V )} ‖ Γ

FAIL
d ∈ {a, b, c}

(F3) EQ � {X ≈? c, X ≈? d} ‖ Γ

FAIL
d ∈ {a, b}

(F4) EQ � {X ≈? b, X ≈? a} ‖ Γ

FAIL

Lemma 5.4. R1 is non-subterm-collapsing, i.e., no term is equivalent to a
proper subterm of it.
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Proof. Since the rules in R1 are size increasing, no term can be reduced to a
proper subterm of it. ��
Because of the above lemma, we can have an extended occur-check or cycle
check [21] as another failure rule.

(F5) {X0 ≈? s1[X1], . . . , Xn ≈? sn[X0]} � EQ ‖ Γ

FAIL
where the Xi’s are variables and sj ’s are non-variable terms.

Once these inference rules have been exhaustively applied, we are left with a
set of equations in dag-solved form along with clausal constraints. Thus the set
of equations is of the form

{
X1 =? t1, . . . , Xm =? tm

}

where the variables on the left-hand sides are all distinct (i.e., Xi �= Xj for i �= j).

Steps for polynomial time solvability of equations and clauses:

1. Add to the list of clauses Γ more clauses derived from the solved form, to
generate Γ ′ :
(a) If X ≈? t is an equation where t is not a variable or equal to a or b, then

we add unit clauses X �= a and X �= b.
(b) If X ≈? a is an equation, then we add unit clauses X = a and X �= b.

(Vice versa for X ≈? b.)
2. Check for satisfiability of Γ ′.

Soundness of this algorithm follows from the Lemmas 5.1 through 5.4.
As for termination, we first observe that none of the inference rules intro-

duce a new variable, i.e., the number of variables never increases. With the
first inference rule which removes asymmetry, asymmetric equations are elimi-
nated from EQ, i.e., the number of asymmetric equations goes down. For the
E-unification rules, we can see that in each case either the overall size of equa-
tions decreases or some function symbols are lost. In rule (a), we replace X by
V and are left with an isolated X, hence the number of unsolved variables goes
down [4]. In rules (b) and (d) the number of occurrences of h goes down and in
rule (c) the number of occurrences of f goes down.

Note that getting the dag-solved form can be achieved in polynomial time.
The clausal constraints are either negative unit clauses of the form ¬(Y = a)
or ¬(Y = b) or positive two-literal clauses of the form (Y = a) ∨ (Y = b). The
solvability of such a system of equations and clauses can be checked in polynomial
time because treating each equational atom Y = a as a propositional variable—
and similarly with Y = b—will result in a 2SAT problem (well-known to be
solvable in polynomial time [1]).

However, disunification modulo R1 is NP-hard. The proof is by a polynomial-
time reduction from the three-satisfiability (3SAT) problem.

Let U = {x1, x2, . . . , xn} be the set of variables, and B = {C1, C2, . . . , Cm}
be the set of clauses. Each clause Ck, where 1 ≤ k ≤ m, has 3 literals.
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We construct an instance of a disunification problem from 3SAT. There are
8 different combinations of T and F assignments to the variables in a clause in
3SAT, out of which there is exactly one truth-assignment to the variables in the
clause that makes the clause evaluate to false. For the 7 other combinations of
T and F assignments to the literals, the clause is rendered true. We represent T
by a and F by b. Hence for each clause Ci we create a disequation DEQi of the
form

f(xp, f(xq, xr)) �≈R1
f(d1, f(d2, d3))

where xp, xq, xr are variables, d1, d2, d3 ∈ {a, b}, and (d1, d2, d3) corresponds to
the falsifying truth assignment. For example, given a clause Ck = xp ∨ xq ∨
xr, we create the corresponding disequation DEQk = f(xp, f(xq, xr)) �≈R1

f(b, f(a, b)).
We also create the equation h(xj) ≈R1

f(xj , c) for each variable xj . These
make sure that each xj is mapped to either a or b.

Thus for B, the instance of disunification constructed is
S = h(x1) ≈ f(x1, c), h(x2) ≈ f(x2, c), . . . , h(xn) ≈ f(xn, c)}

∪
{DEQ1,DEQ2, . . . , DEQm}

Example 4. Given U = {x1, x2, x3} and B = {x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}, the
constructed instance of disunification is

{
h(x1) ≈ f(x1, c), h(x2) ≈ f(x2, c), h(x3) ≈ f(x3, c),

f(x1, f(x2, x3)) �≈ f(b, f(a, b)),
f(x1, f(x2, x3)) �≈ f(a, f(a, b))

}

We expect that membership in NP would not be hard to show since R1 is
saturated by paramodulation [27]. We have not worked out the details though.

6 A Theory for Which Disunification Is in P Whereas
Asymmetric Unification Is NP-Hard

The theory we consider consists of the following term rewriting system R2:

x + x → 0
x + 0 → x

x + (y + x) → y

and the equational theory AC:

(x + y) + z ≈ x + (y + z)
x + y ≈ y + x

This theory is called ACUN because it consists of associativity, commutativ-
ity, unit and nilpotence. This is the theory of the boolean XOR operator. An
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algorithm for general ACUN unification is provided by Liu [26] in his Ph.D. dis-
sertation. (See also [16, Sect. 4].)

Disunification modulo this theory can be solved in polynomial time by what
is essentially Gaussian Elimination3 over Z2. Suppose we have m variables
x1, x2, . . . , xm, and n constant symbols c1, c2, . . . , cn, and q such equations and
disequations to be unified. We can assume an ordering on the variables and con-
stants x1 > x2 > . . . > xm > c1 > c2 > . . . > cn. We first pick an equation with
leading variable x1 and eliminate x1 from all other equations and disequations.
We continue this process with the next equation consisting of leading variable x2,
followed by an equation containing leading variable x3 and so on, until no more
variables can be eliminated. The problem has a solution if and only if (i) there
are no equations that contain only constants, such as c3 + c4 ≈ c5, and (ii) there
are no disequations of the form 0 �≈ 0. This way we can solve the disunification
problem in polynomial time using Gaussian Elimination over Z2.

Example 5. Suppose we have two equations x1 + x2 + x3 + c1 + c2 ≈?
R2,AC 0

and x1 + x3 + c2 + c3 ≈?
R2,AC 0, and a disequation x2 �≈?

R2,AC 0.
Eliminating x1 from the second equation, results in the equation x2 + c1 +

c3 ≈R2,AC 0. We can now eliminate x2 from the first equation, resulting
in x1 + x3 + c2 + c3 ≈R2,AC 0. x2 can also be eliminated from the disequa-
tion x2 �≈R2,AC 0, which gives us c1+c3 �≈R2,AC 0. Thus the procedure terminates
with

x1 + x3 + c2 + c3 ≈R2,AC 0
x2 + c1 + c3 ≈R2,AC 0

c1 + c3 �≈R2,AC 0

Thus we get

x2 ≈R2,AC c1 + c3

x1 + x3 ≈R2,AC c2 + c3

and the following substitution is clearly a solution:
{
x1 �→ c2, x2 �→ c1 + c3, x3 �→ c3

}

Example 6. Suppose we have two disequations x+a �≈R2,AC 0 and x �≈R2,AC 0.
There is no variable that can be eliminated by the Gaussian elimination tech-

nique. The identity substitution is a solution for this problem, but no ground
solution exists if a is the only free constant.

However, asymmetric unification is NP-hard. The proof is by a polynomial-
time reduction from the graph 3-colorability problem. Let G = (V,E) be a
graph where V = {v1, v2, v3, . . . , vn} are the vertices, E = {e1, e2, e3, . . . , em}
3 Gaussian elimination over Z2, or GF(2), is discussed in several papers [9,25].
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the edges and C = {c1, c2, c3} the color set with n ≥ 3. G is 3-colorable if none
of the adjacent vertices {vi, vj} ∈ E have the same color assigned from C. We
construct an instance of asymmetric unification as follows. We create variables
for vertices and edges in G: for each vertex vi we assign a variable yi and for
each edge ek we assign a variable zk. Now for every edge ek = {vi, vj} we create
an equation EQk = c1 + c2 + c3 ≈?

↓ yi + yj + zk. Note that each zk appears in
only one equation.

Thus for E, the instance of asymmetric unification problem constructed is

S =
{
EQ1, EQ2, . . . , EQm

}

If G is 3-colorable, then there is a color assignment θ : V → C such that
θvi �= θvj if ek = {vi, vj} ∈ E. This can be converted into an asymmetric
unifier α for S as follows: We assign the color of vi, θ(vi) to yi, θ(vj) to yj , and
the remaining color to zk. Thus α(vi + vj + zk) ≈AC c1 + c2 + c3 and therefore
α is an asymmetric unifier of S. Note that the term c1 + c2 + c3 is clearly in
normal form modulo the rewrite relation −→R2,AC .

Suppose S has an asymmetric unifier β. Note that β cannot map yi, yj
or zk to 0 or to a term of the form u + v since β(yi + yj + zk) has to be
in normal form or irreducible. Hence for each equation EQk, it must be that
β(yi), β(yj), β(zk) ∈ {c1, c2, c3} and β(yi) �= β(yj) �= β(zk). Thus β is a 3-
coloring of G.

Example 7. Given G = (V,E), V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4}, where
e1 = {v1, v3}, e2 = {v1, v2}, e3 = {v2, v3}, e4 = {v3, v4} and C = {c1, c2, c3},

the constructed instance of asymmetric unification is

EQ1 = c1 + c2 + c3 ≈?
↓ y1 + y3 + z1

EQ2 = c1 + c2 + c3 ≈?
↓ y1 + y2 + z2

EQ3 = c1 + c2 + c3 ≈?
↓ y2 + y3 + z3

EQ4 = c1 + c2 + c3 ≈?
↓ y3 + y4 + z4.

Now suppose the vertices in the graph G are given this color assignment:
θ = {v1 �→ c1, v2 �→ c2, v3 �→ c3, v4 �→ c1}. We can create an asymmetric unifier
based on this θ by mapping each vi to θ(vi) and, for each edge ej, mapping zj
to the remaining color from {c1, c2, c3} after both its vertices are assigned. For
instance, for e1 = {v1, v3}, since y1 is mapped to c1 and y3 is mapped to c2, we
have to map z1 to c3. Similarly for e2 = {v1, v2}, we map z2 to c2 since y1 is
mapped to c1 and y2 is mapped to c3. Thus the asymmetric unifier is

{
y1 �→ c1, y2 �→ c3, y3 �→ c2, z1 �→ c3, z2 �→ c2, z3 �→ c1, z4 �→ c3

}

We have not yet looked into whether the problem is in NP, but we expect it to
be so.



508 V. Ravishankar et al.

7 A Theory for Which Ground Disunifiability Is in P
Whereas Ground Asymmetric Unification Is NP-Hard

This theory is the same as the one mentioned in previous section, ACUN, but
with a homomorphism added. It has an AC-convergent term rewriting system,
which we call R3:

x + x → 0
x + 0 → x

x + (y + x) → y

h(x + y) → h(x) + h(y)
h(0) → 0

7.1 Ground Disunification

Ground disunifiability [6] problem refers to checking for ground solutions for a
set of disequations and equations. The restriction is that only the set of con-
stants provided in the input, i.e., the equational theory and the equations and
disequations, can be used; no new constants can be introduced.

We show that ground disunifiability modulo this theory can be solved in
polynomial time, by reducing the problem to that of solving systems of linear
equations. This involves finding the Smith Normal Form [19,28,30] which can
be done in polynomial time [22,23]. This gives us a general solution to all the
variables or unknowns.

Suppose we have m equations in our ground disunifiability problem. We can
assume without loss of generality that the disequations are of the form z �= 0.
For example, if we have disequations of the form e1 �= e2, we introduce a new
variable z and set z = e1 + e2 and z �= 0. Let n be the number of variables or
unknowns for which we have to find a solution.

For each constant in our ground disunifiability problem, we follow the app-
roach similar to [20], of forming a set of linear equations and solving them to find
ground solutions. (This approach was pioneered by Baader [2,3] and Nutt [5,29]
for commutative/monoidal theories, of which ACUNh is one.)

We use hkx to represent the term h(h(. . . h(x) . . .)) and Hk = hk1x+hk2x+
· · · + hknx is a polynomial over Z2[h].

Let {s1 ≈?
E t1, . . . , sm ≈?

E tm} be the set of equations in a disunifiability prob-
lem. Without loss of generality we can assume that each si and ti are of the
following forms:

si = Hi1x1 + Hi2x2 + . . . + Himxn, Hij ∈ Z2[h]

ti = H
′
i1c1 + H

′
i2c2 + . . . + H

′
imcl, H

′
ij ∈ Z2[h]
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where {c1, . . . cl} is the set of constants and {x1, . . . xn} is the set of variables.
For each constant ci, 1 ≤ i ≤ l, and each variable x, we create a variable xci .

We then generate, for each constant ci, a set of linear equations Sci of the form
AX =? B with coefficients from the polynomial ring Z2[h].

The solutions are found by computing the Smith Normal Form of A. We now
outline that procedure4:

Note that the dimension of matrix A is m × n where m is the number of
equations and n is the number of unknowns. The dimension of of matrix B is
m × 1. Every matrix A, of rank r, is equivalent to a diagonal matrix D, given
by

D = diag(d11, d22, . . . drr, 0, . . . , 0)

Each entry dkk is different from 0 and the entries form a divisibility sequence.
The diagonal matrix D, of size m × n, is the Smith Normal Form (SNF) of

matrix A. There exist invertible matrices P , of size m × m, and Q, of size n × n
such that

D = PAQ (1)

and let

D = diag(d11, d22, . . . , drr)

be the submatrix consisting of the first r rows and the first r columns of D.
Suppose AX = B. We have, from (1),

PAX = PB

Since Q is invertible we can write

PAQ(Q−1X) = PB

Let C = PB and

Y = (Q−1X) =
[

Y
Z

]

with Y being first r rows of the n × 1 matrix Y , and Z the remaining (n − r)
rows of Y .

C can be written as
[

C
U

]

with C the first r rows of C, and U a matrix of zeros.

4 We follow the notation and procedure similar to Greenwell and Kertzner [19].
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Then DY = PB = C translates into
[

D 0
0 0

] [
Y
Z

]
=

[
C
U

]

We solve for Y in DY = C, by first solving D Y = C:

⎡

⎢
⎣

d11
. . .

drr

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
y3
...
yr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
c3
...
cr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

A solution exists if and only if each dii divides ci. If this is the case let ŷi = ci/dii.
Now to find a general solution plug in values of Y in X = QY :

r n − r
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

Q1 Q2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ1
ŷ2
...
ŷr

zr+1

...
zn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

First r columns of Q are referred to as Q1 and remaining n − r columns
are referred to as Q2. To find a particular solution, for any xj , we take the dot
product of the jth row of Q1 and (ŷ1, . . . , ŷr).

Similarly, to find a general solution, we take the dot product of ith row of
Q1 with (ŷ1, . . . , ŷr), plus the dot product of the ith row of Q2, with a vector
(zr+1, . . . , zn) consisting of distinct variables.

If we have a disequation of the form xi �= 0, to check for solvability for xi, we
first check whether the particular solution is 0. If it is not, then we are done.
Otherwise, check whether all the values in ith row of Q2 are identically 0. If it
is not, then we have a solution since zr+1, . . . , zn can take any arbitrary values.
This procedure has to be repeated for all constants.

Example 8. Consider the disunification problem
{
h(X1) + h(h(X2)) + X2 ≈ h(h(a)) + h(a) + a, X1 �≈ X2

}

This is transformed into a system of two equations

hx1 + (h2 + 1)x2 = h2 + h + 1 (2)
x+x2 + z = 0 (3)
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along with the disequation Z �= 0. Thus the matrices are

A =
[
h h2 + 1 0
1 1 1

]
and B =

[
h2 + h + 1

0

]

Computing the Smith normal form, we get

P =
[
0 1
1 h

]
, Q =

⎡

⎣
1 h h2 + 1
0 1 h
0 h + 1 h2 + h + 1

⎤

⎦ , and D =
[
1 0 0
0 1 0

]

C = PB =
[

0
h2 + h + 1

]

Since DY = C, we get y1 = 0, y2 = h2 + h + 1, i.e,

Y =

⎡

⎣
0

h2 + h + 1
z3

⎤

⎦

Now

QY =

⎡

⎣
1 h h2 + 1
0 1 h
0 h + 1 h2 + h + 1

⎤

⎦

⎡

⎣
0

h2 + h + 1
z3

⎤

⎦ ,

i.e.,

Q1 =

⎡

⎣
1 h
0 1
0 h + 1

⎤

⎦ and Q2 =

⎡

⎣
h2 + 1

h
h2 + h + 1

⎤

⎦

The particular solution in this case is

x1 = h3 + h2 + h, x2 = h2 + h + 1

which gives us a unifier
{
X1 �→ h(h(h(a))) + h(h(a)) + h(a), X2 �→ h(h(a)) + h(a) + a

}

7.2 Ground Asymmetric Unification

However, asymmetric unification modulo R3 is NP-hard. Decidability can be
shown by automata-theoretic methods as for Weak Second Order Theory of One
successor (WS1S) [11,15]. In WS1S we consider quantification over finite sets of
natural numbers, along with one successor function. All equations or formulas are
transformed into finite-state automata which accepts the strings that correspond
to a model of the formula [24,31].

This automata-based approach is key to showing decidability of WS1S,
since the satisfiability of WS1S formulas reduces to the automata intersection-
emptiness problem. We follow the same approach here.
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For ease of exposition, let us consider the case where there is only one con-
stant a. Thus every ground term can be represented as a set of natural numbers.
The homomorphism h is treated as a successor function. Just as in WS1S, the
input to the automata are column vectors of bits. The length of each column
vector is the number of variables in the problem.

Σ =

{( 0
0
...
0

)

, . . . ,

( 1
1
...
1

)}

The deterministic finite automata (DFA) are illustrated here The + operator
behaves like the symmetric set difference operator.

We illustrate how automata are constructed for each equation in standard
form. In order to avoid cluttering up the diagrams the dead state has been
included only for the first automaton. The missing transitions lead to the dead
state by default for the others. Recall that we are considering the case of one
constant a. The homomorphism h is treated as successor function.

7.3 P = Q + R

Figure 1: Let Pi,Qi and Ri denote the ith bits of P,Q and R respectively. Pi has
a value 1, when either Qi or Ri has a value 1. We need 3-bit alphabet symbols for
this equation. For example, if R2 = 0, Q2 = 1, then P2 = 1. The corresponding

alphabet symbol is
(

P2
Q2
R2

)
=

(
1
0
1

)
. Hence, only strings with the alphabet symbols

from
{(

0
0
0

)
,
(

0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)}
are accepted by this automaton. Rest of the input

symbols
(

0
0
1

)
,
(

1
1
1

)
,
(

0
1
0

)
,
(

1
0
0

)
lead to the dead state D as they violate the XOR

property.
Note that the string

(
1
0
1

)(
1
1
0

)
is accepted by automaton. This corresponds

to P = a + h(a). Q = h(a) and R = a.

7.4 P≈↓Q + R

Figure 2: To preserve asymmetry on the right-hand side of this equation, Q + R
should be irreducible. If either Q or R is empty, or if they have any term in
common, then a reduction will occur. For example, if Q = h(a) and R = h(a) + a,
there is a reduction, whereas if R = h(a) and Q = a, irreducibility is preserved,
since there is no common term and neither one is empty. Since neither Q nor R

can be empty, any accepted string should have one occurrence of
(

1
0
1

)
and one

occurrence of
(

1
1
0

)
.
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Fig. 1. Automaton for P = Q + R

7.5 X = h(Y)

Figure 3: We need 2-bit vectors as alphabet symbols since we have two unknowns
X and Y. Note again that h acts like the successor function. q0 is the only
accepting state. A state transition occurs with bit vectors ( 1

0 ), ( 0
1 ). If Y= 1 in

current state, then X= 1 in the next state, hence a transition occurs from q0 to
q1, and vice versa. The ordering of variables is ( Y

X ).

7.6 X≈↓h(Y )

Figure 4: In this equation, h(Y) should be in normal form. So Y cannot be either
0 or of the form u + v. Thus Y has to be a string of the form 0i10j and X then
has to be 0i+110j−1. Therefore the bit vector ( 1

0 ) has to be succeeded by ( 0
1 ).

7.7 An Example

Let
{
U≈↓V + Y , W = h(V ), Y ≈↓h(W )

}
be an asymmetric unification prob-

lem. We need 4-bit vectors and 3 automata since we have 4 unknowns in 3

equations, with bit-vectors represented in this ordering of set variables:
(

V
W
Y
U

)
.

We include the × (“don’t-care”) symbol in state transitions to indicate that
the values can be either 0 or 1. This is essentially to avoid cluttering the diagrams.
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Fig. 2. Automaton for P≈↓Q + R

Fig. 3. Automaton for X = h(Y)

Note that here this × symbol is a placeholder for the variable W which does
not have any significance in this automaton. The automata constructed for this
example are indicated in Figs. 5, 6 and 7.

NOTE: As before, the symbol × in the vectors means that the bit value can be
either 0 or 1.

The string
(

1
0
0
1

)(
0
1
0
0

)(
0
0
1
1

)(
0
0
0
0

)
is accepted by all the three automata. The

corresponding asymmetric unifier is
{
V �→ a, W �→ h(a), Y �→ h2(a), U �→ (h2(a) + a)

}
.
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Fig. 4. Automaton for X≈↓h(Y)

Once we have automata constructed for all the formulas, we take the inter-
section and check if there exists a string accepted by corresponding automata. If
the intersection is not empty, then we have a solution or an asymmetric unifier
for set of formulas.

This technique can be extended to the case where we have more than one con-
stant. Suppose we have k constants, say c1, . . . , ck. We express each variable X
in terms of the constants as follows:

X = Xc1 + . . . + Xck

effectively grouping subterms that contain each constant under a new variable.
Thus if X = h2(c1) + c1 + h(c3), then Xc1 = h2(c1) + c1, Xc2 = 0, and Xc3 =
h(c3). If the variables are X1, . . . , Xm, then we set

X1 = Xc1
1 + . . . + Xck

1

X2 = Xc1
2 + . . . + Xck

2

...
Xm = Xc1

m + . . . + Xck
m

For example, if Y and Z are set variables and a, b, c are constants, then we
can write Y = Ya + Yb + Yc and Z = Za + Zb + Zc as our terms with constants.
For each original variable, say Z, we refer to Zc1 etc. as its components for ease
of exposition.

If the equation to be solved is: X = h(Y), with a, b, c as constants, then we
create the equations

Xa = h(Ya),Xb = h(Yb),Xc = h(Yc).
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Fig. 5. Automaton for Y≈↓h(W)

However, if the equation is asymmetric, i.e., X≈↓h(Y), then Y has to be a
term of the form hi(d) where d is either a, b, or c. All components except one have
to be 0 and we form the equation Xd≈↓h(Y

d) since Y �= 0. The other components
for X and Y have to be 0.

Similarly, if the equation to be solved is X = W + Z, with a, b, c as constants,
we form the equations

Xa = Wa + Za,Xb = Wb + Zb and Xc = Wc + Zc

and solve the equations. If we have an asymmetric equation X≈↓W + Z, then
clearly one of the components of each original variable has to be non-zero; e.g., in

W = Wa + Wb + Wc,

all the components cannot be 0 simultaneously. It is ok for Wa and Za to be 0
simultaneously, provided either one of Wb or Wc is non-zero and one of Zb or Zc,
is non-zero. For example, W = Wb and Z = Zc is fine, i.e, W can be equal to its
b-component and Z can be equal to its c-component, respectively, as in the
solution

{
W �→ h2(b) + h(b), Z �→ h(c) + c, X �→ h2(b) + h(b) + h(c) + c

}
.

If Wa and Za are non-zero, they cannot have anything in common, or other-
wise there will be a reduction. In other words, Xa, Wa and Za must be solutions
of the asymmetric equation Xa≈↓W

a + Za.
Our approach is to design a nondeterministic algorithm. We guess which

constant component in each variable has to be 0, i.e., for each variable X and
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Fig. 6. Automaton for U≈↓V + Y

each constant a, we “flip a coin” as to whether Xa will be set equal to 0 by the
target solution. Now for the case X≈↓W + Z, we do the following:

for all constants a do:
if Xa = Wa = Za = 0 then skip
else if Wa = 0 then set Xa = Za

if Za = 0 then set Xa = Wa

if both Wa and Za are non-zero then set Xa≈↓Wa + Za

In the asymmetric case X≈↓h(Y), if more than one of the components of Y
happens to be non-zero, it is clearly an error. (“The guess didn’t work.”). Other-
wise, i.e., if exactly one of the components is non-zero, we form the asymmetric
equation as described above.

Nondeterministic Algorithm when we have more than one constant

1. If there are m variables and k constants, then represent each variable in terms
of its k constant components.

2. Guess which constant components have to be 0.
3. Form symmetric and asymmetric equations for each constant.
4. Solve each set of equations by the Deterministic Finite Automata (DFA)

construction.

The exact complexity of this problem is open.
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Fig. 7. Automaton for W = h(V)

8 A Theory for Which Time Complexity of Asymmetric
Unification Varies Based on Ordering of Function
Symbols

Let E4 be the following equational theory:

g(a) ≈ f(a, a, a)
g(b) ≈ f(b, b, b)

Let R4 denote

f(a, a, a) → g(a)
f(b, b, b) → g(b)

This is clearly terminating, as can be easily shown by the lexicographic path
ordering (lpo) [4] using the symbol ordering f > g > a > b. We show that
asymmetric unification modulo the rewriting system R4 is NP-hard. The proof
is by a polynomial-time reduction from the Not-All-Equal Three-Satisfiability
(NAE-3SAT) problem [18].

Let U = {x1, x2, . . . , xn} be the set of variables, and C = {C1, C2, . . . , Cm}
be the set of clauses. Each clause Ck, has to have at least one true literal and at
least one false literal.

We create an instance of asymmetric unification as follows. We represent T
by a and F by b. For each variable xi we create the equation

f(xi, xi, xi) ≈R?
4

g(xi)

These make sure that each xi is mapped to either a or b. For each clause Cj =
xp ∨ xq ∨ xr, we introduce a new variable zj and create an asymmetric equation
EQj :

zj ≈?
↓ f(xp, xq, xr)
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Thus for any C, the instance of asymmetric unification problem constructed is

S =
{
f(x1, x1, x1) ≈ g(x1), . . . , f(xn, xn, xn) ≈ g(xn)

}
∪

{
EQ1, EQ2, . . . , EQm

}

If S has an asymmetric unifier γ, then, xp, xq and xr cannot map to all a’s
or all b’s since these will cause a reduction. Hence for EQj , γ(xp), γ(xq) and
γ(xr) should take at least one a and at least one b. Thus γ is also a solution for
NAE-3SAT.

Suppose C has a satisfying assignment. Then {xp, xq, xr} cannot all be T
or all F, i.e., {xp, xq, xr} needs to have at least one true literal and at least
one false literal. Thus if σ is a satisfying assignment, we can convert σ into
an asymmetric unifier θ as follows: θ(xp) := σ(xp), the value of σ(xp), a or
b, is assigned to θ(xp). Similarly θ(xq) := σ(xq) and θ(xr) := σ(xr). Recall
that we also introduce a unique variable zj for each clause Cj in C. Thus if
Cj = {xp, xq, xr} we can map zj to θ(f(xp, xq, xr)). Thus θ is an asymmetric
unifier of S and zj ≈?

↓ f(xp, xq, xr). Note that f(xp, xq, xr) is clearly in normal
form modulo the rewrite relation −→R4

, since xp, xq, xr can’t all be same.

Example 9. Given U = {x1, x2, x3, x4} and C = {x1∨x2∨x3, x1∨x2∨x4, x1∨
x3 ∨ x4, x2 ∨ x3 ∨ x4} the constructed instance of asymmetric unification S is

{
f(x1, x1, x1) ≈ g(x1), f(x2, x2, x2) ≈ g(x2), f(x3, x3, x3) ≈ g(x3),

f(x4, x4, x4) ≈ g(x4),
z1 ≈?

↓ f(x1, x2, x3),

z2 ≈?
↓ f(x1, x2, x4),

z3 ≈?
↓ f(x1, x3, x4),

z4 ≈?
↓ f(x2, x3, x4)

}

As in the case of R1, we believe membership in NP can be shown using the
fact that R4 is saturated by paramodulation [27].

However, if we orient the rules the other way, i.e., when g > f > a > b,
we can show that asymmetric unifiability modulo this theory can be solved in
polynomial time, i.e., when the term rewriting system is

g(a) → f(a, a, a)
g(b) → f(b, b, b)

Let R5 denote the above term rewriting system. We assume that the input
equations are in standard form, i.e., of one of four kinds: X ≈? Y , X ≈? g(Y ),
X ≈? f(U, V,W ) and X ≈? d where X,Y,U, V,W are variables and d is any
constant. Asymmetric equations will have the extra downarrow, e.g., X ≈?

↓ g(Y ).
As in Sect. 5, our algorithm transforms an asymmetric unification problem to

a set of equations in dag-solved form along with clausal constraints, where each
atom is of the form (〈variable〉 = 〈constant〉). We use the notation EQ ‖ Γ ,
where EQ is set of equations in standard form as mentioned above, and Γ is a
set of clausal constraints. Initially Γ is empty.
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We first apply the following inference rule (until finished) that gets rid of
asymmetry:

EQ � {X ≈?
↓ g(Y )} ‖ Γ

EQ � {X ≈? g(Y )} ‖ Γ ∪ {¬(Y = a)} ∪ {¬(Y = b)}

Now for E-unification, we have the inference rules

(a)
{X ≈? V } � EQ ‖ Γ

{X ≈? V } ∪ [V/X](EQ) ‖ [V/X](Γ )
if X occurs in EQ

(b)
EQ � {X ≈? g(Y ), X ≈? g(T )} ‖ Γ

EQ ∪ {X ≈? g(Y ), T ≈? Y } ‖ Γ

(c)
EQ � {X ≈? f(U1, V1, W1), X ≈? f(U2, V2, W2)} ‖ Γ

EQ ∪ {X ≈? f(U1, V1, W1), U1 ≈? U2, V1 ≈? V2, W1 ≈? W2} ‖ Γ

(d)
EQ � {X ≈? g(Y ), X ≈? f(U, V, W )} ‖ Γ

EQ ∪ {U ≈? Y, V ≈? Y, W ≈? Y, X ≈? f(Y, Y, Y )} ‖ Γ ∪ {(Y = a) ∨ (Y = b)}

The inference rules are applied in the descending order of priority from (a),
the highest, to (d) the lowest. Occurrence of equations of the form X ≈? a and
X ≈? f(U, V,W ) will make the equations unsolvable. Hence we have failure rules
as in Sect. 5. Since the equational theory is non-subterm-collapsing, we have an
extended occur-check or cycle check rule here as well:

(Cycle-check) {X0 ≈? s1[X1], . . . , Xn ≈? sn[X0]} � EQ ‖ Γ

FAIL

where the Xi’s are variables and sj ’s are non-variable terms.
The rest of the algorithm is along the same lines as the one in Sect. 5 for

the system R1. Soundness, termination and polynomial-time complexity can be
shown in the same way.

9 Conclusions and Future Work

We have compared and contrasted asymmetric unification and disunification to
prove that they are not reducible to each other in terms of time complexity, or,
more precisely, the problems are not polynomial-time reducible to one another in
general. There is still the issue of designing asymmetric unification algorithms for
specific theories that come up in protocol analysis. For instance, one such theory
is ACUNh which was discussed in Sect. 7 with AC as the background theory.
We are working on developing an asymmetric unification algorithm for ACUNh,
with ACh as background theory (as identities E).

We are also working on comparing asymmetric unification and disunification
in terms of decidability, i.e., whether there are theories where asymmetric uni-
fication is decidable and disunification is undecidable, and vice versa. Another
topic that has not been explored is the unification type(s) of asymmetric unifi-
cation problems: for instance are there theories for which unification is finitary
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and asymmetric unification is infinitary (or even nullary)? There are some hur-
dles to be crossed here since, as has already been pointed out, an instance of an
asymmetric unifier need not be an asymmetric unifier.
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Abstract. The concept of matching is ubiquitous in declarative pro-
gramming and in automated reasoning. For instance, it is a key mech-
anism to run rule-based programs and to simplify clauses generated by
theorem provers. A matching problem can be seen as a particular con-
junction of equations where each equation has a ground side. We give an
overview of techniques that can be applied to build and combine match-
ing algorithms. First, we survey mutation-based techniques as a way to
build a generic matching algorithm for a large class of equational theories.
Second, combination techniques are introduced to get combined match-
ing algorithms for disjoint unions of theories. Then we show how these
combination algorithms can be extended to handle non-disjoint unions
of theories sharing only constructors. These extensions are possible if an
appropriate notion of normal form is computable.

Keywords: Matching · Unification · Combination of theories ·
Syntactic theories

1 Introduction

Both unification and matching procedures play a central role in automated
reasoning and in various declarative programming paradigms such as func-
tional programming or (constraint) logic programming. In particular, unifica-
tion is an essential engine in the execution of logic programs. In functional
programming, functions are defined by pattern matching. In rule-based pro-
gramming [18,20,39], matching is needed to apply a rule and so to perform
a computation. In automated theorem proving [4,5,14,15,17,41], unification is
applied to deduce new facts via expansion inferences, while matching is useful to
simplify existing facts via contraction inferences. For the verification of security
protocols, dedicated provers [16,28,37] handle protocols specified in a symbolic
way. In these reasoning tools, the capabilities of an intruder are modeled using
equational theories [1], and the reasoning is supported by decision procedures
and solvers modulo equational theories, including equational unification and
equational matching.

Unification and matching procedures aim at solving equations in term-gene-
rated structures [12,30]. A unification problem is a set of arbitrary equations
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between terms. A matching problem is a unification problem where each equa-
tion has a ground side, that is, a ground term possibly built over free constants.
Thus, a matching problem is a particular unification problem with free constants.
In practice, syntactic unification, as well as syntactic matching, are particularly
popular. In that singular case, the underlying equational theory is simply the
empty theory and the well-known syntactic unification algorithm computes a
most general solution when the input is solvable. More generally, we may con-
sider equational unification and equational matching, where the problems are
defined modulo an arbitrary equational theory, such as, for instance, one that
defines a function symbol to be associative (A), commutative (C) or associa-
tive and commutative (AC). Equational unification and equational matching
are undecidable in general. However, specialized techniques have been devel-
oped to solve both problems for particular classes of equational theories, many
of high practical interest, including for example AC. The successful applica-
tion of equational rewriting in rule-based programming languages [18,20,39] has
demonstrated the interest of developing dedicated equational matching algo-
rithms. Compared to unification, matching can be considered as a simpler prob-
lem. Hence A-matching is finitary, that is, the set of solutions of an A-matching
problem is finite, whereas A-unification is infinitary. The decision problems for
AC-matching and AC-unification are both NP-complete [32] even if for AC-
matching the number of solutions is bounded by a single-exponential while a
double-exponential [33] is needed to get a bound for AC-unification.

In this paper, we focus on the matching problem. We mainly consider the
case of regular theories, that is, theories axiomatized by equalities such that
both sides have the same set of variables. Matching in regular theories has a
remarkable property: any solution of any matching problem is necessarily ground.
This property eases the construction of matching algorithms. We survey two
general techniques that allow us to design matching algorithms for a large class
of (regular) theories.

First, we focus on mutation techniques that generalize the classical decom-
position rule known from the syntactic case [30]. Using a more general mutation
rule, it is possible to get a complete unification procedure for theories having
the property of being syntactic [34,43]. Unfortunately, the resulting unification
procedure only terminates for some particular classes of theories, such as shallow
theories [21] or theories saturated by paramodulation [36]. However this unifi-
cation procedure can be adapted to construct a matching procedure, which is
actually terminating for the whole class of finite syntactic theories, as pointed out
by Nipkow in the early 1990s [43]. Many permutative theories of practical interest
for equational rewriting belong to that class, including A, C and AC [34,43]. For
the class of finite syntactic theories, we present a rule-based matching algorithm
along the lines of the classical rule-based syntactic unification algorithm.

Second, when a theory is defined as a union of theories, it is quite natu-
ral to consider methods that combine the matching algorithms available in the
individual theories. In the early 1990s, a first combination method has been
proposed by Nipkow for the matching problem in the union of disjoint regular
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theories [42]. Then the Baader-Schulz combination method has been a semi-
nal contribution for the unification problem in the union of disjoint arbitrary
theories [11]. Compared to other combination methods previously developed by
Schmidt-Schauss [49] and Boudet [19], the Baader-Schulz method permits us to
solve both the unification problem and its related decision problem. Based on an
approach à la Baader-Schulz, it is possible to develop new combination methods
for the matching problem and its related decision problem, as shown in [46]. In
this paper, we survey the existing combined matching methods, by showing how
to reconstruct them thanks to the Baader-Schulz combination method and the
underlying combination techniques. We also discuss their possible extensions to
non-disjoint unions of theories, more precisely, theories sharing free constructors.
We show that an approach à la Baader-Schulz can be applied to both the match-
ing problem and the word problem in these non-disjoint unions. For the word
problem, this leads to a method very similar to the one proposed by Baader and
Tinelli [13] using an approach à la Nelson-Oppen [40].

The paper is organized as follows. Section 2 introduces the main technical
concepts and notations. In Sect. 3, we present a mutation-based matching algo-
rithm for a large class of syntactic theories. The combined unification problem
is briefly discussed in Sect. 4, where we focus on the Baader-Schulz combination
method. The combined word problem is detailed in Sect. 5 while Sect. 6 revisits
the combined matching problem. In Sect. 7, we discuss the combined matching
problem in the union of non-disjoint theories sharing free constructors. Eventu-
ally, Sect. 8 concludes with some final remarks about ongoing and future works.

2 Preliminaries

We use the standard notation of equational unification [12] and term rewriting
systems [10]. A signature Σ is a set of function symbols with fixed arity. Given
a signature Σ and a (countable) set of variables V , the set of Σ-terms over
variables V is denoted by T (Σ,V ). The set of variables in a term t is denoted by
Var(t). A term is linear if all its variables occur only once. For any position p
in a term t (including the root position ε), t(p) is the symbol at position p,
t|p is the subterm of t at position p, and t[u]p is the term t in which t|p is
replaced by u. A substitution is an endomorphism of T (Σ,V ) with only finitely
many variables not mapped to themselves. A substitution is denoted by σ =
{x1 �→ t1, . . . , xm �→ tm}, where the domain of σ is Dom(σ) = {x1, . . . , xm}.
Application of a substitution σ to t is written tσ.

A term t is ground if Var(t) = ∅. The set of ground Σ-terms is denoted by
T (Σ). When C denotes a finite set of constants not occurring in Σ, Σ ∪ C is
a signature defined as the union of Σ and C, and T (Σ ∪ C) denotes the set of
ground (Σ ∪ C)-terms.

2.1 Equational Theories and Rewrite Systems

A Σ-axiom is a pair of Σ-terms, denoted by l = r. Variables in an axiom are
implicitly universally quantified. Given a set E of Σ-axioms, the equational
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theory =E presented by E is the closure of E under the laws of reflexivity, sym-
metry, transitivity, substitutivity and congruence (by a slight abuse of terminol-
ogy, E is often called an equational theory). Equivalently, =E can be defined as
the reflexive transitive closure ↔∗

E of an equational step ↔E defined as fol-
lows: s ↔E t if there exist a position p of s, l = r (or r = l) in E, and
substitution σ such that s|p = lσ and t = s[rσ]p. An axiom l = r is regular
if Var(l) = Var(r). An axiom l = r is permutative if l and r have the same
multiset of symbols (including function symbols and variables). An axiom l = r
is linear (resp., collapse-free) if l and r are linear (resp. non-variable terms).
An equational theory is regular (resp., permutative/linear/collapse-free) if all
its axioms are regular (resp., permutative/linear/collapse-free). An equational
theory E is finite if for each term t, there are only finitely many terms s such
that t =E s. One can remark that a permutative theory is finite and a finite
theory is regular and collapse-free. Well-known theories such as the associativity
A = {x + (y + z) = (x + y) + z}, the commutativity C = {x + y = y + x},
and the associativity-commutativity AC = A ∪ C are permutative. Unification
in permutative theories is undecidable in general [50].

A theory E is syntactic if it has a finite resolvent presentation S, defined as
a finite set of axioms S such that each equality t =E u has an equational proof
t ↔∗

S u with at most one step ↔S applied at the root position. The theories A,
C and AC are syntactic [43]. For C and AC, syntacticness can be shown as a
consequence of the fact that any collapse-free theory is syntactic if it admits a
unification algorithm [34].

A term rewrite system (TRS) is given by a set R of oriented Σ-axioms called
rewrite rules and of the form l → r such that l, r are Σ-terms, l is not a variable
and Var(r) ⊆ Var(l). A term s rewrites to a term t w.r.t R, denoted by s →R t,
if there exist a position p of s, l → r ∈ R, and substitution σ such that s|p = lσ
and t = s[rσ]p. Given an equational theory E, ←→R∪E denotes the symmetric
relation ←R ∪ →R ∪ =E . A TRS R is Church-Rosser modulo E if ←→∗

R∪E is
included in →∗

R ◦ =E ◦ ←∗
R. A reduction ordering > is a well-founded ordering

on terms closed under context and substitution. A reduction ordering > is said
to be E-compatible if s > t implies s′ > t′ for any terms s, t, s′, t′ such that
s′ =E s and t′ =E t. If →R is included in an E-compatible reduction ordering,
then there is no infinite sequence w.r.t =E ◦ →R ◦ =E and according to [31] the
following properties are equivalent:

1. R is Church-Rosser modulo E,
2. for any terms t, t′, t ←→∗

R∪E t′ if and only if t ↓R =E t′ ↓R, where t ↓R

(resp., t′ ↓R) denotes any normal form of t (resp., t′) w.r.t →R.

A substitution σ is R-normalized if, for every variable x in the domain of σ, xσ
is a normal form w.r.t →R.

2.2 Unification and Matching

From now on, we assume a signature Σ and a Σ-theory E such that Σ may
include finitely many function symbols not occurring in the axioms of E. These
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additional function symbols are said to be free in E. A Σ-equation is a pair of
Σ-terms denoted by s =? t. Variables in an equation are implicitly existentially
quantified. When t is ground, an equation s =? t is called a match-equation, also
denoted by s ≤? t. An E-unification problem is a set of Σ-equations, Γ = {s1 =?

t1, . . . , sn =? tn}, or equivalently a conjunction of Σ-equations. We distinguish
the following classes of E-unification problems Γ :

– if there is no free function symbol in Γ , then Γ is an elementary E-unification
problem;

– if some free constants (resp., free symbols) occur in Γ , then Γ is an E-
unification problem with free constants (resp., a general E-unification prob-
lem);

– if Γ is an E-unification problem with free constants (resp., a general E-
unification problem) including only ground equations, Γ is an E-word prob-
lem (resp., a general E-word problem);

– if Γ is an E-unification problem with free constants (resp., a general E-
unification problem) including only match-equations, Γ is an E-matching
problem (resp., a general E-matching problem);

– If Γ = {x1 =? t1, . . . , xn =? tn} such that x1, . . . , xn are variables occurring
only once in Γ , then Γ is called a solved form.

Consider any E-unification problem Γ . The set of variables in Γ is denoted
by Var(Γ ). A solution to Γ , called an E-unifier , is a substitution σ such that
siσ =E tiσ for all 1 ≤ i ≤ n. A substitution σ is more general modulo E than
θ on a set of variables V , denoted as σ ≤V

E θ, if there is a substitution τ such
that xστ =E xθ for all x ∈ V . A Complete Set of E-Unifiers of Γ , denoted by
CSUE (Γ ), is a set of substitutions such that each σ ∈ CSUE (Γ ) is an E-unifier of
Γ , and for each E-unifier θ of Γ there exists σ ∈ CSUE (Γ ) such that σ ≤Var(Γ )

E θ.
A class of E-unification problems is said to be finitary (resp., unitary) if any Γ in
that class admits a CSUE (Γ ) whose cardinality is finite (resp., at most 1). When
E is an empty set of Σ-axioms, E is the empty Σ-theory denoted by ∅ where
∅-unification is unitary: a syntactic unification algorithm computes a CSU∅(Γ )
whose cardinality is at most 1 for any unification problem Γ .

Two signatures are disjoint if their respective sets of function symbols are dis-
joint. Two theories are disjoint if their respective signatures are disjoint. Given
two disjoint signatures Σ1 and Σ2 and any i = 1, 2, Σi-terms (including the vari-
ables) and Σi-equations (including the equations between variables) are called
i-pure. A term t is said to be Σi-rooted if its root symbol is in Σi. An alien
subterm of a Σi-rooted term t is a Σj-rooted subterm s (i = j) such that all
superterms of s are Σi-rooted. The position of an alien subterm of t is called an
alien position of t. The set of alien positions of t is denoted by APos(t). A term
with at least one alien subterm is said to be impure.

3 Matching in Syntactic Theories

The interest of syntactic theories is to admit a mutation-based unification pro-
cedure that bears similarities with the rule-based unification algorithm known
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for the empty theory [30]. In addition to the classical decomposition rule, addi-
tional mutation rules are needed, one for each equational axiom in a resolvent
presentation of a syntactic theory. Unfortunately, this mutation-based unifica-
tion procedure is not terminating for the class of syntactic theories. However,
some important subclasses of syntactic theories actually admit a terminating
mutation-based unification procedures, such as shallow theories [21], forward-
closed convergent theories [24], and equational theories saturated by paramod-
ulation [36]. When restricting to the matching problem, it is possible to get
termination for a large class of theories of practical interest. Actually, Nipkow
has shown that the class of finite syntactic theories admits a mutation-based
matching algorithm presented as a Prolog-like program in [43]. We give in Fig. 1
a rule-based presentation of this mutation-based matching algorithm. An imple-
mentation for the AC case of this rule-based algorithm has been studied in the
UNIFAC system developed in Nancy in the early 1990s [2,3]. As shown in [35],
this AC-matching algorithm can be easily prototyped using a rule-based pro-
gramming environment.

Theorem 1. Consider the MFS inference system given in Fig. 1 where Mutate is
assumed to be applied in a non-deterministic way in addition to Dec. The MFS
inference system provides a mutation-based matching algorithm for any finite
syntactic theory admitting a resolvent presentation S.

Alternatively, there exists a brute force method to get a matching algorithm
for finite theories via a reduction to syntactic matching: the finite set of sub-
stitutions {σ ∈ CSU∅(s =? t′) | t′ =E t} is a CSUE (s ≤? t). Compared to this
brute force method, the interest of MFS is to show that a slight adaptation of
the classical syntactic matching algorithm, i.e., the addition of a single rule, is
sufficient to get a matching algorithm for the class of finite syntactic theories.
One can notice that MFS can be turned into a decision procedure for the word
problem. Moreover, the class of finite syntactic theories being closed by disjoint
union [43], MFS can be applied for any union of disjoint finite syntactic the-
ories. To consider more general unions of disjoint theories, we need to rely on
combination methods discussed in the rest of the paper.

4 Unification in Unions of Disjoint Theories

There exist several combination methods for the unification problem, in which
we find different forms of unification: elementary unification, unification with
free constants and unification with free function symbols (also called general
unification). Each of these combination methods corresponds to a given class of
theories: regular collapse-free theories, regular theories and arbitrary theories.
We briefly recall the modularity results that can be derived from these combi-
nation methods.

Theorem 2. The following modularity results are consequences of existing com-
bination methods:
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Fig. 1. MFS matching algorithm for finite syntactic theories

1. The class of regular collapse-free theories admitting an elementary
unification algorithm is closed under disjoint union [51,53].

2. The class of regular theories admitting a unification algorithm with
free constants is closed under disjoint union.

3. The class of equational theories admitting a general unification algo-
rithm is closed under disjoint union [11,49].

4. The class of equational theories admitting a general unification deci-
sion procedure is closed under disjoint union [11].

We briefly outline the principles of a combination method for the unification
problem in a union of two disjoint theories. First, the input problem is separated
into two pure problems. Then, solutions of the pure problems must be carefully
combined in order to construct solutions for the input problem. Two cases may
appear.

Conflict of theories: The same variable can be instantiated simultaneously in
both theories. To solve this conflict, the solution is to select the theory in
which the variable is instantiated, meaning that it will be considered as a



530 C. Ringeissen

free constant in the other theory. This transformation of variables into free
constants requires an identification of variables to take care of the fact that
two variables equally instantiated in one theory must be considered as the
same free constant in the other theory. Then, applying unification algorithms
with free constants is sufficient to avoid all these conflicts of theories.

Compound cycle: the conjunction of two pure solved forms can be a compound
cycle such as x1 = t1[x2] ∧ x2 = t2[x1] where ti is i-pure for i = 1, 2.

To tackle both the conflicts of theories and the compound cycles, the Baader-
Schulz combination method [11] considers a general form of unification called
unification with linear constant restriction. It has been shown in [11] that unifi-
cation with linear constant restriction and general unification are two equivalent
notions, leading to the modularity result of the general unification problem given
in Theorem 2. In the combination method proposed by Schmidt-Schauss [49],
each pure problem is solved in its theory thanks to a unification algorithm with
free constants together with a constant elimination algorithm. Actually, con-
stant elimination is useful to break compound cycles [19]. The Schmidt-Schauss
method combines unification algorithms while the Baader-Schulz method is also
able to combine unification decision procedures. A major application of the
Baader-Schulz combination method is to provide a way to show the decidabil-
ity of general A-unification. The combination techniques developed by Baader
and Schulz allow us to reconstruct the combination methods known for regular
collapse-free theories and for regular theories:

– for collapse-free theories, a conflict of theories has no solutions,
– for regular theories, a compound cycle has no solutions.

Hence, for regular collapse-free theories, both the conflicts of theories and
the compound cycles have no solutions. In the following, we show how to apply
the Baader-Schulz combination method and the underlying techniques to build
combination methods for two particular unification problems with free constants:
the word problem and the matching problem.

5 The Word Problem in Unions of Disjoint Theories

In this section we consider unification problems with free constants where all
equations are ground. In other words, we are interested in checking the equal-
ity of terms modulo an equational theory, that is, deciding the word problem.
The development of a disjoint combination method for the word problem has
been considered in [42,49,51] as a first step before investigating more general
combination problems. Actually, it was already successfully addressed in [45].

The Baader-Schulz combination method can be applied to reconstruct a com-
bination method dedicated to the word problem, where the word problem is
viewed as a particular unification problem with (free) constants for which the
theory selection can be simplified and no linear constant restriction is needed.
To get a deterministic theory selection, it is useful to normalize the layers related
to theories occurring in an impure term.
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Definition 1. An impure term t is in layer-reduced form if its alien subterms
are in layer-reduced form and if t is not equal to one of its alien subterms. A
pure term is in layer-reduced form if it is not equal to one of its variables or free
constants.

Example 1. Let E1 = {x + 0 = x, 0 + x = x} and E2 = {g(x, x) = x}. The term
g(a, g(a+0, 0+a)) is not in layer-reduced form but g(a, g(a+0, 0+a)) =E1∪E2 a
where a is in layer-reduced form. The term g(a, b) + g(a, a + 0) is not in layer-
reduced form but g(a, b) + g(a, a + 0) =E1∪E2 g(a, b) + a where g(a, b) + a is in
layer-reduced form.

Fig. 2. Abstract algorithm

Lemma 1. Let s and t be two terms in layer-reduced form. If s and t are free
constants, s =E1∪E2 t iff s = t. If s is Σi-rooted and t is not Σi-rooted, then
s =E1∪E2 t. If s and t are both Σi-rooted, the Abstract algorithm (cf. Fig. 2)
applied to s =? t returns a set of equations including only one i-pure equation
si =? ti between Σi-rooted terms such that s =E1∪E2 t iff si =Ei

ti.

Lemma 1 provides a recursive combination method for the word problem. A
non-recursive version would purify all the alien subterms and would be followed
by a variable identification phase to identify variables denoting pure terms that
are equal in the related component theory.

Lemma 1 assumes that the input terms are in layer-reduced form. If we have
decision procedures for the word problem in the individual theories of the con-
sidered union, then the computation of an equivalent term in layer-reduced form
is effective by using a bottom-up process which consists in repeatedly check-
ing whether a pure term is equal to one of its variable or free constant. Let us
call LRF the algorithm obtained from Abstract (cf. Fig. 2) by adding the steps
depicted in Fig. 3 after Identify.
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Fig. 3. Collapsing for the layer-reduced form computation

Lemma 2. Let t be any Σi-rooted term. Assume all the aliens subterms of t are
in layer-reduced form. Given a variable x not occurring in t, the LRF algorithm
applied to x =? t returns an equation x =? u such that u =E1∪E2 t and u is in
layer-reduced form.

By Lemmas 1 and 2 we get the following modularity result:

Theorem 3. The class of equational theories admitting a decision proce-
dure for the word problem is closed by disjoint union.

6 Matching in Unions of Disjoint Theories

We now study the design of (disjoint) combination methods for the matching
problem. To get a dedicated combination method, it is not sufficient to plug
matching algorithms into a combination method initially designed for the uni-
fication problem. Indeed, the purification phase does not preserve the property
of being a matching problem, and so we would have to solve pure equational
problems that are not just matching problems. We focus on two simple cases
where it is possible to generate equational problems that can be solved thanks
to matching algorithms.

6.1 Regular Collapse-Free Theories

In the particular case of regular collapse-free theories, the purification phase
can be adapted to introduce only match-equations instead of solved equations.
Consider an E1 ∪E2-matching problem {s ≤? t} where s is impure. Suppose σ is
a substitution such that sσ =E1∪E2 t. When E1 and E2 are regular collapse-free,
sσ and t are rooted in the same theory and any alien subterm of sσ is E1 ∪ E2-
equal to some alien subterm of t which is necessarily ground. Thus, any alien
subterm of s can be unified with some ground alien subterm of t. This leads to a
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Fig. 4. Purification for regular collapse-free theories

particular purification phase (cf. Fig. 4) producing left-pure matching problems
that can be handled by the Baader-Schulz combination method. Consequently,
it is sufficient to use matching decision procedures.

Theorem 4 ([46]). The class of regular collapse-free theories admitting a
matching decision procedure is closed under disjoint union.

6.2 Regular Theories

Following the approach initiated by Nipkow [42], we present a deterministic
combination method described by the inference system given in Fig. 5. Here, we
do not care about introducing a pending equation x =? s. In regular theories,
this variable x occurring elsewhere in a match-equation will be eventually unified
with a ground term. Indeed, solving a match-equation including x generates a
conjunction of solved match-equations, in particular a match-equation of the
form x ≤? t. Thus, the pending equation x =? s can be turned into the match-
equation s ≤? t.

Theorem 5 ([42]). The class of regular theories admitting a matching
algorithm is closed under disjoint union.

6.3 Arbitrary Theories

The combination of regular theories with linear ones is problematic as shown in
the following example borrowed from [42].

Example 2. Consider the two theories E1 = {f(f(x)) = a} and E2 = {g(x, x) =
x} ∪ DA where

DA =

⎧
⎨

⎩

x + (y + z) = (x + y) + z
x ∗ (y + z) = x ∗ y + x ∗ z
(x + y) ∗ z = x ∗ z + y ∗ z

The theory E1 is a linear theory where the unification with free constants is
decidable. The theory E2 is a union of two disjoint regular theories, each of
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Fig. 5. Matching for the union of regular theories

them admitting a matching algorithm. Thus, the combined method presented
in Sect. 6.2 can be applied to get an E2-matching algorithm. However E1 ∪ E2-
matching is undecidable since for any terms s and t built over the signature
of DA, the E1 ∪ E2-matching problem {f(g(f(s), f(t))) ≤? a} has a solution
iff the DA-unification problem {s =? t} has a solution. Since DA-unification
is undecidable, E1 ∪ E2-matching is undecidable while E1-matching and E2-
matching are both decidable.

In [46], we give a combination method à la Baader-Schulz for the matching
problem and its related decision problem. This method is complete for a large
class of problems, like matching problems in partially linear theories, which are
an extension of linear theories including regular collapse-free theories. In the
class of partially linear theories, applying matching algorithms is sufficient, the
linear constant restriction being superfluous even for the combination of match-
ing decision procedures.

6.4 Matching Versus General Matching

The combination method for the matching problem in regular theories E can
be applied to construct a general E-matching algorithm from an E-matching
algorithm. This leads to a natural question: is there an equational theory for
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which matching is decidable while general matching is not? A positive answer
to this question is given in [47], by considering a (many-sorted) theory that
includes DA (cf. Example 2). This result shows that a combination method for
the matching problem cannot exist for arbitrary theories. In the same vein,
a similar question arises when comparing unification with free constants and
general unification: is there an equational theory for which unification with free
constants is decidable while general unification is not? A positive answer to this
question is given in [44].

7 Matching in Unions of Non-disjoint Theories

We discuss the problem of designing combination methods for unions of theories
sharing constructors [23], by focusing on the word problem and the matching
problem. To formalize the notion of constructor, it is convenient to rely on a
rewrite system, where a constructor is simply a function symbol not occurring
in root positions of left-hand sides. However, not every equational theory can
be equivalently presented by a rewrite system. Fortunately, it is always possible
to rely on a rewrite system that could be obtained by unfailing completion [11].
Alternatively, this rewrite system and the related constructors can be defined
with respect to a reduction ordering over a combined signature used to orient
combined ground instances of pure valid equalities. We consider below equational
rewrite systems to cope with constructors modulo an equational theory E0. In
the case of absolutely free constructors considered in [23], the theory E0 is empty.

Definition 2. Let Ei be a Σi-theory for i = 0, 1, 2 and Σ = Σ1∪Σ2. The theory
E1 ∪ E2 is said to be a combination of theories sharing constructors modulo
E0 if Σ0 = Σ1 ∩ Σ2 and for any arbitrary finite set of variables V viewed as
free constants, there exists an E0-compatible reduction ordering > on the set of
ground (Σ ∪ V )-terms T (Σ ∪ V ) satisfying the following two properties for the
set Ri (i = 1, 2) of rewrite rules lψ → rψ such that lψ > rψ; l, r are Σi-terms,
l =Ei

r, l is (Σi \ Σ0)-rooted; lψ and rψ are ground (Σ ∪ V )-terms thanks to a
(grounding) substitution ψ:

1. ←→∗
Ri∪E0

coincides with =Ei
on T (Σ ∪ V ),

2. Ri is Church-Rosser modulo E0 on T (Σ ∪ V ).

Example 3. To satisfy Definition 2, it is sufficient to consider a Σ0-theory E0

plus two finite TRSs R1 and R2 over respectively Σ1 and Σ2 such that

– there is no Σ0-symbol occurring at the root position of any left-hand side of
R1 ∪ R2,

– R1 ∪ R2 is included in an E0-compatible reduction ordering,
– R1 and R2 are both Church-Rosser modulo E0.

Then E0, E1 = R1 ∪ E0 and E2 = R2 ∪ E0 fulfill Definition 2 using the ordering
> provided by the transitive closure of =E0 ◦ →R1 ∪ R2 ◦ =E0 .



536 C. Ringeissen

From now on, we assume that Σ = Σ1∪Σ2 and E = E1∪E2 is a combination
of theories sharing constructors modulo E0, where R1 and R2 denote the TRSs
introduced in Definition 2. According to this definition, for any f ∈ Σ0, and any
terms t1, . . . , tm in T (Σ ∪ V ), f(t1, . . . , tm) ↓Ri

=E0 f(t1 ↓Ri
, . . . , tm ↓Ri

).
The combined TRS defined by R = R1 ∪ R2 satisfies the following properties:
the rewrite relation (=E0 ◦ →R ◦ =E0) is terminating, (←→R ∪ =E0)

∗ coincides
with =E on T (Σ ∪ V ) and R is Church-Rosser modulo E0 on T (Σ ∪ V ). Thus,
for any terms s, t ∈ T (Σ ∪ V ), s =E t iff s ↓R=E0 t ↓R, and for any f ∈ Σ0, and
any terms t1, . . . , tm in T (Σ ∪ V ), f(t1, . . . , tm) ↓R =E0 f(t1 ↓R, . . . , tm ↓R).
R-normal forms are useful to define the notion of variable abstraction in a way
similar to [11].

Definition 3 (Variable Abstraction). Let W be a set of variables such that
V and W are disjoint. Let π : {t ↓R | t ∈ T (Σ ∪V ), t ↓R /∈ V } −→ W be a bijec-
tion called a variable abstraction with range W. For i = 1, 2, the i-abstraction
of t is denoted by tπi and defined as follows:

– If t ∈ V , then tπi = t.
– If t is a Σi-rooted term f(t1, . . . , tn), then tπi = f(tπi

1 , . . . , tπi
n ).

– Otherwise, if t ↓R /∈ V then tπi = π(t ↓R) else tπi = t ↓R.

The notion of variable abstraction is instrumental to state technical lemmas
showing that unification and matching procedures known in component theories
can be reused without loss of completeness in the combination of theories sharing
constructors modulo E0.

Lemma 3 (Unification). Consider any i = 1, 2, any i-pure terms s and t, and
any R-normalized substitution σ. We have that sσ =E tσ iff sσπi =Ei

tσπi .

In general, R is infinite and so it may be difficult to assume the computability
of R-normal forms. In practice, we can rely on a notion of layer-reduced form,
just like in the disjoint case. In this non-disjoint setting, a term t is said to be
in layer-reduced normal form if tπi =Ei

(t ↓R)πi for any i = 1, 2. Let us assume
that for any term, it is possible to compute an E-equal term in layer-reduced
form.

Lemma 4 (Word problem). Consider any i = 1, 2 and any terms s and t in
layer-reduced form. We have that s =E t iff sπi =Ei

tπi .

Notice that Abstract (cf. Fig. 2) applied to s =? t computes an i-pure equation
which is a renaming of sπi =? tπi when s and t are Σi-rooted terms in layer-
reduced form.

Lemma 5 (Matching). Consider any i = 1, 2, any i-pure term s, any term t
in layer-reduced form and any R-normalized substitution σ. We have that sσ =E

t iff sσπi =Ei
tπi .

By Lemma 5 and assuming the computability of layer-reduced forms, the
combination methods developed for the matching problem in the union of disjoint
theories (cf. Sects. 6.1 and 6.2) can be reused to obtain:
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– a combination method for matching decision procedures, deciding in a mod-
ular way the matching problem in the combination of regular collapse-free
theories sharing constructors (modulo E0);

– a combination method for matching algorithms, solving in a modular way the
matching problem in the combination of regular theories sharing constructors
(modulo E0).

The results presented in this section rely on the use of R-normal forms.
The word problem in unions of theories sharing non-absolutely free constructors
has been successfully studied in [13], by introducing a computable notion of
G-normal forms where G is a particular set of generators called Σ0-base. In
the above setting, a Σ0-base G corresponds to the set of R-normalized terms
that are not Σ0-rooted. We have not discussed how to compute layer-reduced
forms. A possibility is to build them by using normal forms that can computed in
component theories, like in [13] for the computation of G-normal forms. The case
of absolutely free constructors has been initiated in [23], with some preliminary
results for the word problem and the matching problem. Then, a particular form
of non-absolutely free constructors has been investigated for a class of theories
sharing “inner” constructors, by focusing on the matching problem [48].

More recently, a form of hierarchical combination has been considered in [26].
In that case, the combined theory is given by a term rewrite system R1 together
with an equational Σ2-theory E2 such that Σ2-symbols can occur only below the
root positions of right-hand sides of R1. Thus, under appropriate assumptions on
R1 and E2, it is possible to design a combination method leading to a R1 ∪ E2-
matching algorithm [26]. This procedure uses the combination rules of Fig. 5,
the decomposition rules of Fig. 1 for R1, and applies an E2-matching algorithm.

8 Conclusion

In this paper, we survey general techniques to build equational matching algo-
rithms for a large class of (combined) theories of practical interest, e.g., in rule-
based programming [18,20,39]. Furthermore, we show that the non-disjoint com-
bination of matching procedures can be envisioned when the combined theory
admits a computable notion of normal form. The non-disjoint combination of uni-
fication procedures remains a challenging problem. There are preliminary results
for particular classes of theories such as shallow theories [26] and forward-closed
theories [24]. For these particular classes of theories, a mutation-based app-
roach [21] or a variant-based approach [22,29,38] can be successfully applied to
solve the (combined) unification problem, but we believe it is always interesting
to point out a combination-based alternative when the background theory is a
union of “separable” theories. As shown here with the matching problem, some
particular decision problems can admit non-disjoint combination methods. In
that direction, non-disjoint combination methods have been developed in [27]
for two decision problems related to (context) unification and of practical inter-
est in the analysis of security protocols, namely the deduction problem and the
indistinguishability problem [1].
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1 Introduction: Toward Quantitative Description Logics

Enriching knowledge representation formalisms with features for counting and basic
arithmetic regarding domain individuals is a worthwhile endeavor. So far, mainstream
description logics provide only very limited support in this respect: (qualified) number
restrictions allow for enforcing concrete upper and lower bounds on the number of an
individual’s role neighbors. These limited capabilities fall short of some basic practical
knowledge representation requirements, such as expressing statistical information [21].
As an example, assume that on the occasion of a distinguished scientist’s 60th birthday,
fellow researchers group together to produce a festschrift consisting of distinct con-
tributed papers. The publisher requires the festschrift to have not less than 140 and not
more than 800 pages. This could intuitively be expressed by a statement like

140 ≤ |Page| ≤ 800,

assuming Page denotes the class of all the festschrift’s pages. Let’s say, the editors
manage to recruit a total of 73 authors:

|Author| = 73.

They assume that the average number of contributors per paper is between 2 and 3:

2 · |Paper| ≤ |Author| ≤ 3 · |Paper|.

They impose the condition that each paper must have at least 10 and at most 40 pages:

Paper � �10 OnPage.� � �40 OnPage.�.

They also notice that just one author (the “outlier”) contributes to two papers, whereas
the others contribute to one.

Author�¬{outlier} � =1 Contributes.� {outlier} � =2 Contributes.�

Some background knowledge for our domain needs to be specified: roughly speaking,
authors are precisely contributors, papers are precisely “contributees” and they are pre-
cisely the things occurring on pages and on nothing but pages.

Author ≡ ∃Contributes.� Paper ≡ ∃Contributes−.�
Paper ≡ ∃OnPage.� Page ≡ ∃OnPage−.�

As an important last ingredient, it needs to be specified that no two distinct papers can
occur on the same page (i.e., OnPage is inverse functional):

� � �1 OnPage−.�.

If a reasoner supporting all the modeling features in this specification existed, the editors
could now find out by a satisfiability check if the planned festschrift can be published
under the given assumptions (which is the case). Also, by removing the first statement
and checking for its entailment instead, they could find out if the publisher’s space
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constraints are guaranteed to be met in view of the given information (which is not
the case). Alas, currently, axioms alike the first three statements are not supported by
mainstream description logics.
In a line of recent work, Franz and others have addressed the shortcomings in descrip-
tion logics on the quantitative side. For instance, extending results from [12], Franz
proposed ALCSCC [1], an extension of the basic description logic ALC by constraints
expressed in the quantifier-free fragment of Boolean Algebra with Presburger Arith-
metic (QFBAPA) [19] over role successors. The described constraints are local, as they
always refer to an individual under consideration, as opposed to global constraints,
which range over the full domain and compare cardinalities of concepts. The latter
were introduced in [5], giving rise to the notions of ALC extended cardinality boxes
(ECboxes) and – striving for more favorable complexity results – their “light version”
ALC restricted cardinality boxes (RCboxes). As a natural next step, [2] introduced and
investigated ALCSCC ECboxes and RCboxes, enabling both local and global cardi-
nality constraints in a joint formalism. Pushing the envelope further, [3] showed that
local and global constraints can be tightly integrated leading to the starkly more expres-
sive logic ALCSCC++, for which ECbox consistency checking is still NEXPTIME-
complete. On the downside, conjunctive query entailment becomes undecidable in this
logic. Moreover, as an (albeit massively calculation-enhanced) version of plain ALC,
ALCSCC++ is lacking basic modeling features that are normally taken for granted in
description logics. Most notably, it does not feature role inverses, which are crucial to
draw level with popular logics from other families, such as two-variable logics.
Decidability and complexity results for the logics discussed above were established via
the solution of large systems of (in)equalities as well as elaborate constructions and
transformations of models. We show that, if we limit our attention to global cardinal-
ity constraints, we can use an alternative, reduction-based approach, and expand the
existing results simultaneously in three directions:

• Incorporation of role inverses. As stated earlier, the existing results are for descrip-
tion logics without the feature of role inverses. In fact, it is notoriously difficult to
incorporate this feature into the (in)equality-system-based machinery hitherto used.
Interestingly, the method proposed in this paper not only allows for incorporating
role inverses, it actually does require their presence in the logic.

• Relaxation of restrictions on RCboxes. As mentioned above, RCboxes were intro-
duced as a light version of ECboxes in order to obtain more favorable complexity
results. We show that some of the restrictions made can be relaxed without endanger-
ing this complexity gain. This actually motivates us to introduce extended restricted
cardinality boxes (ERCboxes) as low-complexity, high-expressivity middle-ground
between ECboxes and RCboxes.

• Reasoning over finite and arbitrary models. Previous results confine themselves to a
finite-model setting, which is arguably the right choice for practical modeling tasks
in concrete scenarios where arithmetic is applied. However, the traditional semantics
of description logics allows for infinite models. Hence we extend the scope of our
investigations to also include the case of arbitrary models. Next to an appropriate
extension of the underlying arithmetic (as described in the beginning of Section 2)
this raises some deeper model-theoretic concerns, which we address in Section 5.
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2 Ostinato: Preliminaries

Numbers. We recall that N denotes the set of natural numbers (including 0). Through-
out this paper, whenever natural numbers occur in some expression, we assume binary
encoding. We let N∞ = N ∪ {∞}. Basic arithmetic and comparison operations are
extended from N to N

∞ in the straightforward way, in particular adding anything to
∞ yields ∞, 0 · ∞ = 0, and n · ∞ = ∞ for every n ≥ 1. For n ∈ N

∞, we let
[n] = {i | i < n}, in particular [∞] = N. For some set S, we let |S| denote the number
of elements of S if it is finite and ∞ otherwise.

Description Logics. We give the definition of the extremely expressive description
logicSROIQB which is obtained from the well-known description logicSROIQ [16]
by allowing arbitrary Boolean constructors on simple roles. We assume that the reader
is familiar with description logics [4,6,26].
The description logics considered in this paper are based on four disjoint sets of individ-
ual namesNI, concept namesNC, simple role namesN s

R, and non-simple role names
N n

R (containing the universal role � ∈ NR). Furthermore, we let NR := N s
R ∪N n

R.

Definition 1 (syntax of SROIQB). A SROIQB Rbox for NR is based on a set R
of atomic roles defined as R := NR ∪ {R− | R ∈ NR}, where we set Inv(R) := R−

and Inv(R−) := R to simplify notation. In turn, we distinguish simple atomic roles
Rs := N s

R ∪ Inv(N s
R) and non-simple roles Rn := N n

R ∪ Inv(N n
R).

The set of simple roles B is defined as follows:

B ::= N s
R | ¬B | B ∩B | B ∪B | B \B.

Moreover, a simple role will be called safe, if it does not contain ¬.
A generalized role inclusion axiom (RIA) is a statement of the form S � R with simple
roles S and R, or of the form

S1 ◦ . . . ◦ Sn � R

where each Si is a (simple or non-simple) role, and whereR is a non-simple atomic role,
none of them being �. A set of such RIAs will be called a generalized role hierarchy. A
role hierarchy is regular if there is a strict partial order ≺ on the non-simple roles Rn

such that

• S ≺ R iff Inv(S) ≺ R, and

• every RIA is of one of the forms

R◦R � R R− � R S1◦. . .◦Sn � R R◦S1◦. . .◦Sn � R S1◦. . .◦Sn◦R � R

such that R ∈ NR is a (non-inverse) role name, and Si ≺ R for i = 1, . . . , n
whenever Si is non-simple.

A SROIQB Rbox is a regular role hierarchy.2

2 The original definition of SROIQ Rboxes also features explicit axioms expressing role
reflexivity, asymmetry, and role disjointness. However, in the presence of (safe) Boolean role
constructors, these can be expressed, so we omit them here.
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Table 1. Semantics of SROIQB role and concept constructors for interpretation I = (ΔI , ·I).

Name Syntax Semantics
inverse role R− {(x, y) ∈ ΔI × ΔI | (y, x) ∈ RI}
universal role � ΔI × ΔI

role negation ¬S {(x, y) ∈ ΔI × ΔI | (x, y) �∈ RI}
role conjunction S ∩ R SI ∩ RI

role disjunction S ∪ R SI ∪ RI

role difference S \ R SI \ RI

top � ΔI

bottom ⊥ ∅
negation ¬C ΔI \ CI

conjunction C 	 D CI ∩ DI

disjunction C 
 D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C

{
x ∈ ΔI | (x, y) ∈ RI implies y ∈ CI}

exist. restriction ∃R.C
{
x ∈ ΔI | for some y ∈ ΔI , (x, y) ∈ RI and y ∈ CI}

Self concept ∃S.Self
{
x ∈ ΔI | (x, x) ∈ SI}

qualified number �n S.C
{
x ∈ ΔI | ∣

∣{y ∈ ΔI | (x, y) ∈ SI and y ∈ CI}∣∣ ≤ n
}

restriction �n S.C
{
x ∈ ΔI | ∣

∣{y ∈ ΔI | (x, y) ∈ SI and y ∈ CI}∣∣ ≥ n
}

Given a SROIQB Rbox R, the set of concept expressions (short: concepts) C is
inductively defined as follows:

• NC ⊆ C, � ∈ C, ⊥ ∈ C,

• for C,D ∈ C concepts, R ∈ B∪Rn a (simple or non-simple) role, S ∈ B a simple
role, a ∈ NI, and n ∈ N a non-negative integer, the expressions ¬C, C �D, C �D,
{a}, ∀R.C, ∃R.C, ∃S.Self, �nS.C, and �nS.C are also concepts.

Throughout this paper, the symbols C, D will be used to denote concepts. A SROIQB
Tbox is a set of general concept inclusion axioms (GCIs) of the form C � D. We use
C ≡ D as a shorthand for C � D, D � C.
An individual assertion can have any of the following forms: C(a), R(a, b), ¬S(a, b),
a ≈ b, a �≈ b, with a, b ∈ NI individual names, C ∈ C a concept, and R,S ∈ B∪Rn

roles with S simple. A SROIQB Abox is a set of individual assertions.
A SROIQB knowledge base K is a triple (A, T ,R) whereR is a regular Rbox while
A and T are an Abox and a Tbox for R, respectively. We use the term axiom to uni-
formly refer to any single statement contained in A, T , or R.

We further provide the semantics of SROIQB knowledge bases.

Definition 2 (semantics of SROIQB). An interpretation I = (ΔI , ·I) consists of a
set ΔI called domain together with a function ·I mapping individual names to elements
of ΔI , concept names to subsets of ΔI , and role names to subsets of ΔI × ΔI .
The function ·I is inductively extended to roles and concepts as shown in Table 1. An
interpretation I satisfies an axiom ϕ (written: I |= ϕ) if the respective condition is
satisfied:
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• I |= S � R if SI ⊆ RI ,

• I |= S1 ◦ . . . ◦ Sn � R if SI
1 ◦ . . . ◦ SI

n � RI (◦ being overloaded to denote the
standard composition of binary relations here),

• I |= C � D if CI ⊆ DI ,

• I |= C(a) if aI ∈ CI ,

• I |= R(a, b) if (aI , bI) ∈ RI ,

• I |= ¬S(a, b) if (aI , bI) �∈ SI ,

• I |= a ≈ b if aI = bI ,

• I |= a �≈ b if aI �= bI .

An interpretation I satisfies a knowledge base K (we then also say that I is a model
of K and write I |= K) if it satisfies all axioms of K. A knowledge base K is (finitely)
satisfiable if it has a (finite) model. Two knowledge bases are equivalent if they have
exactly the same models. They are (finitely) equisatisfiable if either both are (finitely)
unsatisfiable or both are (finitely) satisfiable.

The description logic SHOIQB is obtained from SROIQB by discarding the univer-
sal role � as well as the Self concept and allowing only RIAs of the form R � S or
R ◦R � R. If we also disallow R ◦R � R, we obtain ALCHOIQB. For any of these
three logics, replacing B in the name by b disallows role negation (but preserves role
difference) while removing B entirely also disallows role conjunction, disjunction and
difference. Dropping O from any description logic’s name disables nominal concepts
{o}, while dropping I disables role inverses ·−, and dropping H disables RIAs of the
form R � S. For any description logic L that does not feature the Self concept (the
universal role �), we denote by LSelf (by L�) the logic with this feature added.

Queries. In queries, we use variables from a countably infinite set V. A Boolean
positive two-way regular path query (P2RPQ) is a formula ∃x.ϕ, where ϕ is a positive
Boolean expression (i.e., one using only ∧ and ∨) over atoms of the form C(t) or
T (s, t), where s and t are elements of x ∪NI, C is a concept, and T is a regular role
expression from T, defined by

T ::= R | T ∪T | T ◦T | T∗ | id(C).

If q does not use disjunction and all T are simple roles, it is called a conjunctive query
(CQ). A variable assignment π for I is a mapping V → ΔI . For x ∈ V, we set
xI,π := π(x); for c ∈ NI, we set cI,π := cI . T (s, t) evaluates to true under π and
I if (sI,π, tI,π) ∈ T I , with T I obtained as detailed in Table 2. C(t) evaluates to true
under π and I if tI,π ∈ CI . A P2RPQ q = ∃x.ϕ is satisfied by I (written: I |= q) if
there is a variable assignment π (called match) such that ϕ evaluates to true under I and
π. A P2RPQ q is (finitely) entailed from a KB K if every (finite) model of K satisfies q.

3 Subject: Extending Knowledge Bases by Presburger-Style
Concept Cardinality Constraints

In this section, we introduce extended cardinality boxes (and several restricted versions
thereof) as means for expressing quantitative global knowledge.
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Table 2. Semantics of regular role expressions for interpretation I = (ΔI , ·I).

Name Syntax Semantics

union T1 ∪ T2 TI
1 ∪ TI

2

concatenation T1 ◦ T2 TI
1 ◦ TI

2

Kleene star T ∗ ⋃
i≥0(T

I)i

concept test id(C)
{
(x, x) | x ∈ CI}

Definition 3 (concept cardinality constraint, ECbox, RCbox, ERCbox). A concept
cardinality constraint (short: constraint) c is an expression of the form

n0 + n1|A1|+ . . . + nk|Ak| ≤ m0 + m1|B1|+ . . . + m�|B�|, (1)

where A1, . . . , Ak, B1, . . . , B� are concept names and all ni andmi are natural numbers.
A concept cardinality constraint is restricted if n0 = m0 = 0 and semi-restricted if
m0 = 0. An extended cardinality box (ECbox) is a positive Boolean combination of
concept cardinality constraints. A restricted cardinality box (RCbox) is a conjunction
of restricted cardinality constraints. An extended restricted cardinality box (ERCbox) is
a positive Boolean combination of semi-restricted cardinality constraints.
Satisfaction of a concept cardinality constraint c by an interpretation I (written as
I |= c) is verified as follows: every expression |A| is mapped to |AI |. The constraint is
evaluated in the straightforward way over N∞. Satisfaction of constraints is then lifted
to satisfaction of ECboxes in the obvious manner.

Definition 4 (EKB,ERKB,RKB). For somedescription logicL, an extendedL knowl-
edge base (L EKB) is a quadruple (A, T ,R, E) where (A, T ,R) is an L knowledge
base and E is an ECbox. An EKB is a restricted knowledge base (RKB) if E is an RCbox.
It is an extended restricted knowledge base (ERKB) if E is an ERCbox.

Obviously, RKBs (RCboxes) are properly subsumed by ERKBs (ERCboxes) which
in turn are properly subsumed by EKBs (ECboxes). One general insight of this pa-
per is that upper complexity bounds persist when generalizing the previously defined
RCboxes to the newly defined, more expressive ERCboxes.
Our syntactic formulation of ECboxes is somewhat more restrictive than that in prior
work [5], but we will show that the differences are immaterial. Using our more restricted
form allows for a more uniform presentation of our results.
First, the original work allows expressions |C| for arbitrary concept descriptions C.
We note that our definition does not restrict expressivity since general Tboxes allow
for axioms A ≡ C, so complex concept expressions in cardinality constraints can be
replaced by fresh concept names and defined in the Tbox. Resorting to plain concept
names in constraints allows us to consider cardinality boxes uniformly independently
from the used description logic.
Second, instead of positive weighted sums of concept cardinalities as left and right
hand sides, the original work allows for arbitrary functions built from integers z and
expressions of the form |A| using functions + (binary) and z· (unary). It is, however,
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easy to see that each comparison on such more liberal expressions can be polynomially
translated into an equivalent comparison of positive weighted sums.
Third, the original work allows for extended cardinality constraints using other modes
of comparison than just “≤”: α = β, α < β, or n dvd α. However, all these constraints
can be rewritten into (combinations of) constraints only using “≤” as follows: α = β is
replaced by (α ≤ β) ∧ (β ≤ α), α < β by α+1 ≤ β,3 and n dvd α can be rewritten
into (n|A| ≤ α) ∧ (α ≤ n|A|) for some fresh concept name A.
Fourth, the original work defined ECboxes as arbitrary (not just positive) Boolean com-
binations of constraints. However, this work only considered finite models. We note that
under this assumption, negated constraints can be rewritten into negation-free (com-
binations of) constraints in the following way: replace ¬(α ≤ β) by β+1 ≤ α,
¬(α < β) by β ≤ α, ¬(α = β) by (α+1 ≤ β) ∨ (β+1 ≤ α), and ¬(n dvd α)
by (n|A| + |B| ≤ α) ∧ (α ≤ n|A| + |B|) ∧ (1 ≤ |B|) ∧ (|B| + 1 ≤ n) for fresh concept
names A and B. Note again, that this rewriting is not equivalent for infinite models.4

As observed before, ECboxes allow to express nominal concepts by enforcing that a
concept must have cardinality exactly one. However, this is not possible with RCboxes
nor ERCboxes.

4 Exposition: Statement of Results

With the notion of ECboxes, RCboxes and ERCboxes in place, we can now formally
state results that can be derived from prior work before giving an outlook on the re-
sults established in this paper. We first note some results that can be obtained as easy
consequences of previous publications.

• Finite satisfiability of Abox-free SHQb RKBs is in EXPTIME. For ALCHQb, this
is an immediate consequence of earlier work on ALCSCC RCboxes [2]. Adding
transitivity is possible since it can be handled via the classical “box pushing” ap-
proach [33, 29].

• Finite satisfiability of SHOQB EKBs is in NEXPTIME. This follows from [3] to-
gether with the observation that the logic ALCSCC++ considered there allows to
express qualified number restrictions, nominals (hence also Aboxes), and arbitrary
Boolean role expressions. Again, transitivity can be dealt with via “box pushing”.

• Finite CQ entailment over Abox-free ALCHQb RKBs is in 2EXPTIME, as immedi-
ate consequence of the corresponding result for ALCSCC RCboxes in [3].

At the core of our method is the insight that expressive description logics in and of
themselves hold enough expressive means to simulate ECboxes without noteworthy
blow-up. We will show that:

3 For this, we have to postulate ∞ < ∞, which is debatable, but could be justified by the fact
that there is an injective, non-surjective mapping between any two countably infinite sets.

4 In fact, the constraint expression (1 + |A| = |A|) ∧ ¬(|A| = |B|) would enforce finiteness of
the extension of B, which is not axiomatizable in first order logic, neither finitely nor infinitely.
For good reasons (see Section 5) we define ECboxes in a way that a first-order axiomatization
is still possible.
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(A) ERCboxes can be succinctly simulated in any description logic that can express
ALCIQ� GCIs and

(B) ECboxes can be succinctly simulated in any description logic that can express
ALCOIQ GCIs.

This “simulation”, made formally precise in Section 6, is sufficiently authentic for both
satisfiability checking and query entailment. Consequently, we are able to significantly
strengthen the aforementioned results as follows (further detailed in Section 7):

• Satisfiability and finite satisfiability of SHIQbSelf� ERKBs is EXPTIME-complete.

• Satisfiability and finite satisfiability of SHOIQBSelf EKBs is NEXPTIME-complete.

• Entailment of P2RPQs as well as finite entailment of CQs from ALCHIQbSelf�
ERKBs are 2EXPTIME-complete.

• Entailment of unions of conjunctive queries from ALCHOIQb EKBs is decidable
and coN2EXPTIME-hard.

Yet, before going into the details of our translation, we have to take care of a nuisance,
arising from counting in the presence of infinity.

5 Interlude: Countability

Dealing with infinity can be tricky [7,9,10,27]. In the general case, allowing for infinite
models might require us to account for the presence of several distinct infinite cardinal-
ities. In the realms of first-order logic, the Löwenheim-Skolem Theorem [31] ensures
that it suffices to consider models of countable cardinality, in which only one type of
infinity can occur.
In our setting, however, expressibility in first-order logic cannot be easily taken for
granted. In fact, even the very simple RCbox (|A| ≤ |B|) ∧ (|B| ≤ |A|), stating that A
and B contain the same number of individuals, cannot be expressed using a first-order
sentence (as can be shown by an easy argument using Ehrenfeucht-Fraïssé games).
We manage to resolve the issue by showing that ECboxes can be expressed by countable
(but possibly infinite) first-order theories, noting that Löwenheim-Skolem still applies
in this case.

Lemma 1. Let E be an ECbox. Then there exists a countable first-order theory ΦE log-
ically equivalent to E .

Proof. We construct ΦE from E . For convenience, we introduce some notation: Given a
concept name A and a number n ∈ N, we let (|A| ≥ n) denote the first-order sentence

∃x1, . . . xn.
∧

1≤i≤n

A(xi) ∧
∧

1≤i<j≤n

xi �= xj ,

and we let (|A| ≤ n) denote the first-order sentence

∀x0, x1, . . . xn.
( ∧

0≤i≤n

A(xi)
)
→

∨

0≤i<j≤n

xi = xj .
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Note that the first-order sentences have precisely the intended meaning. Now, consider-
ing some cardinality constraint c of the form

n0 + n1|A1|+ . . . + nk|Ak| ≤ m0 + m1|B1|+ . . . + m�|B�|,

we let Badc denote the (most likely infinite) set of first-order sentences
{ ∧

1≤i≤k

(|Ai| ≥ ai) ∧
∧

1≤i≤�

(|Bi| ≤ bi)
∣∣∣ n0 +

∑

1≤i≤k

niai > m0 +
∑

1≤i≤�

mibi

}
,

and note that I |= c if and only if I �|= ϕ holds for all ϕ ∈ Badc. Next, let C denote the
set of all constraints occurring in E . We let Bad consist of all sets D ⊆ C for which the
Boolean expression obtained from E by replacing all c ∈ D with false and all c ∈ C\D
with true evaluates to false. Finally, we let ΦE consist of all sentences ¬(ϕ1∧ . . .∧ϕm)
for which there is some {c1, . . . , cm} ∈ Bad such that ϕi ∈ Badci for 1 ≤ i ≤ m.

As planned, we can now use this insight to make sure that even in the presence of
ECboxes, we can restrict our attention to countable models, as long as the rest of the
knowledge base is expressible in first-order logic.

Theorem 2. Let L be a description logic such that any L knowledge base (A, T ,R) is
equivalent to a countable first-order logic theory Ψ(A,T ,R).

1. Every satisfiable L EKB has a countable model.
2. An L EKB K entails a P2RPQ q iff q is satisfied by all countable models of K.

Proof. 1. This is actually a special case of the case below: pick q = ∃x.⊥(x).
2. The “only if” direction is trivial. For the “if” direction, first observe that any Boolean

P2RPQ q can be expressed as a possibly infinite disjunction
∨

q′∈Qq
q′ of (finite)

Boolean CQs. Let K = (A, T ,R, E). Toward a contradiction, suppose K �|= q,
i.e., there is a model I (of arbitrary cardinality) such that I |= K but I �|= q.
Then, by Lemma 1, we know that I is a model of the countable first-order theory
Ψ(A,T ,R) ∪ ΦE ∪ {¬q′ | q′ ∈ Qq}. Now we can apply the Löwenheim-Skolem
Theorem downward and obtain that there must be a countable model J of this the-
ory as well. By construction, J is a countable model of K but does not satisfy q, a
contradiction.

6 Development: Eliminating Cardinality Boxes

The basic underlying idea of our method is to model satisfaction of cardinality con-
straints by performing the necessary calculations and comparisons “physically” inside
the model, using the domain elements for tallying. However, in the case of finite inter-
pretations, it might happen that evaluating the cardinality constraints produces numbers
that are greater than the number of domain elements (note that this danger is material,
since expressive description logics allow for enforcing restricted domain sizes). Hence,
we somehow have to make sure that our models are allowed to contain enough domain
elements.
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6.1 Shift: Making Space through Relativization

To this end, we employ a folklore technique called relativization, through which a (pos-
sibly domain-restricting) knowledge base K is transformed into a knowledge base K
that allows for models with arbitrary domain sizes (by means of admitting “silent”
or “non-active” domain elements, which do not participate in any relation), but every
model of K “contains” a model of K in a formally defined way, so K is an authentic
replacement of K when it comes to satisfiability testing or querying. In the context of
description logics, similar techniques have been applied in [15,18].

Definition 5 (relativization). We let �new be a fresh concept name. The function ·
mapping concepts to concepts is recursively defined as follows:

A = A
� = �new
⊥ = ⊥

(¬C) = �new � ¬C
(C1 � C2) = C1 � C2

(C1 � C2) = C1 � C2

{a} = {a}
(∀R.C) = �new � ∀R.(¬�new � C )
(∃R.C) = ∃R.C

(�nS.C) = �nS.C
(�nS.C) = �nS.C
(∃S.Self) = ∃S.Self

Given a P2RPQ q, we let q denote the query obtained by replacing each concept C
in q by C . Moreover, we extend · to EKBs K = (A, T ,R, E) by letting K =
(A′, T ′,R, E), where A′ contains

• �new(a) for every a ∈ NI occurring in K,

• for every assertion C(a) from A the assertion C (a), and
• all assertions of the form a ≈ b, a �≈ b, ¬S(a, b), and R(a, b) from A,

while T ′ contains

• A � �new for every A ∈ NC occurring in K,

• ∃P.� � �new and � � ∀P.�new for every P ∈ NR \ {�} occurring in K, as well as

• for every GCI C1 � C2 from T the GCI C1 � C2 .

It is now not too hard to establish the following lemma, explicating the formerly claimed
very close connection between the models of K and K .

Lemma 3 (relativization: model synchronicity). Let K = (A, T ,R, E) be an EKB
and let J = (ΔJ , ·J ) be in interpretation with �J

new �= ∅. Then J is a (finite) model
of K if and only if there exists a (finite) set Δ and a (finite) model I = (ΔI , ·I) of K
such that ΔJ = ΔI ∪ Δ and ·J = ·I ∪ {�new �→ ΔI}.

Proof. (Sketch.) The not immediate cases are a direct consequence of the correspon-
dence CI = C J which is proven by induction over the structure of C.
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Fig. 1. Illustration of construction enforcing constraints.

6.2 Episode: Illustrative Example

We now know how to ensure that a model can contain enough elements for counting
and hence are able to avoid “out of memory errors” in the course of our model-internal
computation. Next, we describe in detail how to express concept cardinality constraints
and consequently ECboxes polynomially with in-house means of expressive description
logics, requiring just some extra vocabulary.
We first describe the core idea behind our modeling by means of an easy example.
Assume, we would like to implement the constraint

1 + 4 · |Female| ≤ 2 + 3 · |Male|

on the set of this volume’s editors, which, of course, can be simplified by subtracting one
on both sides, but we will not do so for the sake of the example. Assume that, by means
of relativization, we have already ensured that as many as needed “silent elements” can
be present in a model. In order to ensure that the constraint is satisfied, we proceed as
follows (aiming at a setting as displayed in Fig. 1, where the silent elements are in the
top line while the “proper elements” can be found in the bottom line): we introduce
several types of left-hand-side roles (denoted LHS..., depicted by solid arrows in the fig-
ure) and right-hand-side roles (denoted RHS..., depicted by dashed arrows in the figure)
and we make sure that every individual in Female has (at least) four outgoing (single-
line) left-hand-side roles, while every individual in Male has (at most) three outgoing
(single-line) right-hand-side roles and any individual not in Male has no such outgoing
roles whatsoever. Also, to account for the left- and right-hand-side constant terms, we
pick one volunteering domain element, say Anni, as the source of one (double-line)
left-hand-side role and of two (double-line) right-hand side roles. Then, we make sure
that every domain element may receive at most one left-hand-side role. Under these
circumstances, the “≤” condition can be enforced by requiring that any element receiv-
ing a left-hand-side role must also be receiving a right-hand-side role. This (somewhat
simplified) example will hopefully elucidate the modeling presented in the following.
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6.3 Modulation: General Construction and Proof

After explaining the underlying ideas of our construction, we now provide the general
definition of the technique of eliminating ECboxes from EKBs yielding plain KBs.
We introduce the applied transformation and formally show that it has the announced
properties.

Definition 6 (knowledge base transformation,K ). Let c be the following cardinality
constraint:

n0 + n1|A1|+ . . . + nk|Ak| ≤ m0 + m1|B1|+ . . . + m�|B�|.

Then the Tbox Tc contains the following axioms (with fresh role names AUX, RHSi
c, LHS

i
c

and – if needed – a fresh individual name o):

� � ∃AUX.
(
�new � �n0LHS

0
c .�

)
(2)

Ai � �niLHS
i
c.� for 1 ≤ i ≤ k (3)

∃LHSi
c

−
.� � ∃LHSj

c

−
.� � ⊥ for 0 ≤ i < j ≤ k (4)

� � �1.LHSi
c

−
.� for 0 ≤ i ≤ k (5)

∃RHS0c .� � ⊥ in case m0 = 0 (6)

∃RHS0c .� � {o} in case m0 > 0 (7)

∃RHSi
c.� � Bi for 1 ≤ i ≤ 	 (8)

� � �mi.RHS
i
c for 0 ≤ i ≤ 	 (9)

Cstrtc �
⊔

0≤i≤k

∃LHSi
c

−
.� �

⊔

0≤i≤�

∃RHSi
c

−
.� (10)

Given an ECbox E , let CE be the concept expression obtained from E by replacing
every c in E by Cstrtc, every ∧ by �, and every ∨ by �. Let Sync(Cstrtc) denote
{∃�.Cstrtc � Cstrtc} if the underlying description logic supports the universal role
� and {� � ∃AUX−.{o}, ∃AUX.Cstrtc � ∀AUX.Cstrtc} otherwise.
Then, we let

TE = {� � CE} ∪
⋃

c from E
Tc ∪ Sync(Cstrtc). (11)

Finally, for an EKB K = (A, T ,R, E) with K = (A′, T ′,R, E) let K = (A′, T ′ ∪
TE ,R, ∅) be the corresponding transformed KB.

The following observations are immediate from the construction of K .

Lemma 4 (syntactic properties of K ). For any EKB K in some description logic L:

1. K can be computed from K in polynomial time.
2. If L subsumes ALCIQ� and K is an ERKB, then K is a (plain) L KB.
3. If L subsumes ALCOIQ, then K is a (plain) L KB.

Next we prove a rather close relationship between the models of K and K .
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Lemma 5 (semantic properties of K ). For an EKB K in some description logic L,
the following hold:

1. For every (finite) model J = (ΔJ , ·J ) of K , the interpretation I = (ΔI , ·I) with
ΔI = �J

new and ·I the appropriate restriction of ·J is a (finite) model of K.
2. For every (finite) countable model I = (ΔI , ·I) of K there is a (finite) countable

model J = (ΔJ , ·J ) of K such that with ΔI = �J
new and ·I is the appropriate

restriction of ·J .

Proof. Let K = (A, T ,R, E). We show the two parts consecutively.

1. To show the first part, assume a (finite) model J = (ΔJ , ·J ) of K . We now show
that I = (ΔI , ·I) is a model of K. For all Abox, Tbox, and Rbox axioms, satisfac-
tion follows from Lemma 3. Now consider E . We pick an arbitrary δ ∈ ΔJ and let
C = {c | δ ∈ CstrtJc }. Due to the axiom � � CE , we know that C is such that
simultaneous satisfaction of all c ∈ C implies satisfaction of E . Hence we proceed
to prove that this is indeed the case. First note that the axioms Sync(Cstrtc) ensure
CstrtJc = ΔJ for every c ∈ C. Furthermore, for any c ∈ C of the form

n0 + n1|A1|+ . . . + nk|Ak| ≤ m0 + m1|B1|+ . . . + m�|B�|,
satisfaction of the c by J follows from the following three inequalities:

n0 + n1|AJ1 |+ . . . + nk|AJk | ≤
k∑

i=0

|{δ | (δ′, δ) ∈ LHSi
c

J }|, ( )

k∑

i=0

|{δ | (δ′, δ) ∈ LHSi
c

J }| ≤
�∑

i=0

|{δ | (δ′, δ) ∈ RHSi
c

J }|, ( )

�∑

i=0

|{δ | (δ′, δ) ∈ RHSi
c

J }| ≤ m0 + m1|BJ1 |+ . . . + m�|BJ� |. ( )

We will now consecutively show each of these statements.

( ) On one hand, the axioms � � �1.LHSi
c
−

.� make sure that

|{δ | (δ′, δ) ∈ LHSi
c

J }| = |LHSi
c

J |.
On the other hand, whenever 1 ≤ i ≤ k, the axiom Ai � �niLHSi

c.� ensures

|AJi | · ni ≤ |LHSi
c

J |,
while for i = 0, the axiom � � ∃AUX.�n0LHS0c .� enforces that there must be
some δ ∈ (�n0LHS0c .�)J and consequently

n0 ≤ |LHS0c
J |.

Putting everything together, we obtain

n0 +
k∑

i=1

ni|AJi | ≤
k∑

i=0

|LHSi
c

J | =
k∑

i=0

|{δ | (δ′, δ) ∈ LHSi
c

J }|

as claimed.
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( ) First note that the axioms of the form ∃LHSi
c
−

.� � ∃LHSj
c
−

.� � ⊥ ensure

|{δ | (δ′, δ) ∈ LHSi
c

J
, 0 ≤ i ≤ k}| =

k∑

i=0

|{δ | (δ′, δ) ∈ LHSi
c

J }|.

Also, the axiom Cstrtc �
⊔

0≤i≤k ∃LHSi
c
−

.� �
⊔

0≤i≤� ∃RHSi
c
−

.� enforces

{δ | (δ′, δ) ∈ LHSi
c

J
, 0 ≤ i ≤ k} ⊆ {δ | (δ′, δ) ∈ RHSi

c

J
, 0 ≤ i ≤ 	}

(remembering that CstrtJc = ΔJ ) and consequently

|{δ | (δ′, δ) ∈ LHSi
c

J
, 0 ≤ i ≤ k}| ≤ |{δ | (δ′, δ) ∈ RHSi

c

J
, 0 ≤ i ≤ 	}|.

It remains to note that

|{δ | (δ′, δ) ∈ RHSi
c

J
, 0 ≤ i ≤ 	}| ≤

�∑

i=0

|{δ | (δ′, δ) ∈ RHSi
c

J }|

holds unconditionally, so putting the established correspondences together shows
our claim.
( ) First note that, the axiom ∃RHS0c .� � {o} (or, alternatively, ∃RHS0c .� � ⊥ in

case m0 = 0) ensures δ = oJ whenever we find (δ, δ′) ∈ RHS0c
J

. But therefrom,
using the axiom � � �m0.RHS0c , we can derive

|RHS0c
J | ≤ m0.

Likewise, for 1 ≤ i ≤ 	, we obtain δ′ ∈ BJi for each (δ′, δ) ∈ RHSi
c
J

due to the
axiom ∃RHSi

c.� � Bi. Yet, for every such δ′, at most mi distinct corresponding δ
can exist due to the axiom � � �mi.RHSi

c and hence

|RHSi
c

J | ≤ |BJi | · mi.

Moreover, as projecting will never increase the size of a set, we obtain

|{δ | (δ′, δ) ∈ RHSi
c

J }| ≤ |RHSi
c

J |.

Yet then, combining these statements yields

�∑

i=0

|{δ | (δ′, δ) ∈ RHSi
c

J }| ≤
�∑

i=0

|RHSi
c

J | ≤ m0 +
�∑

i=1

mi|BJi |

as claimed.
2. Let I = (ΔI , ·I) be a (finite) countable model of K. We first give a construction

for J = (ΔJ , ·J ) and then show modelhood for K . Let nmax ∈ N
∞ be the

largest value obtained when evaluating all the left and right hand sides of all the
constraints in E . Then let ΔJ = ΔI ∪ [nmax]. Note that ΔJ is finite, whenever ΔI

is. We let ·J coincide with ·I for all individual names, concept names and role
names from K. It remains to define the fresh auxiliary vocabulary of K . To this
end, let C be the set of cardinality constraints occurring in E which are satisfied
in I. Now, pick one δ′ from ΔI and let



Presburger Concept Cardinality Constraints in Very Expressive Description Logics 557

• oJ = δ′,
• AUXJ = ΔJ × {δ′},
• �J

new = ΔI ,
• CstrtIc = ΔJ whenever c ∈ C and CstrtIc = ∅ otherwise,
• For any c of the form n0+n1|A1|+ . . .+nk|Ak| ≤ m0+m1|B1|+ . . .+m�|B�|,

let

Lc = {0}×[n0] ∪ {1}×[n1]×AJ1 ∪ . . . ∪ {k}×[nk]×AJk and

Rc = {0}×[m0] ∪ {1}×[m1]×BJ1 ∪ . . . ∪ {	}×[m�]×BJ� .

Then we let ·c� : Lc →
[
|Lc|

]
and ·c� : Rc →

[
|Rc|

]
be bijective enumeration

functions for Lc and Rc. Now we let
– LHS0c

J = {(δ′, (0, j)c�) | j ∈ [n0]},

– LHSi
c
J = {(δ, (i, j, δ)c�) | δ ∈ AJi , j ∈ [ni]}, for 1 ≤ i ≤ k,

– RHS0c
J = {(δ′, (0, j)c�) | j ∈ [m0]}, and

– RHSi
c
J = {(δ, (i, j, δ)c�) | δ ∈ BJi , j ∈ [mi]}, for 1 ≤ i ≤ 	.

It is now straightforward to check that by construction, J satisfies all axioms from
TE . As far as the relativized Abox and Tbox axioms and the unchanged Rbox ax-
ioms from K are concerned, their satisfaction follows from Lemma 3.

With these model correspondences in place, we can now establish the results regarding
preservation of satisfiability and query entailment as well as their complexities.

Theorem 6 (eliminability of ECboxes). Let K be an EKB in some (finitely or at least
countably) first-order expressible description logic L. Then the following hold:

1. K and K are (finitely) equisatisfiable.
2. Given a P2RPQ q, K (finitely) entails q exactly if K (finitely) entails q .
3. If L subsumes ALCIQ�, then the complexities of (finite) satisfiability and (finite)

CQ or P2RPQ entailment for L ERKBs coincide with those of plain L KBs.
4. If L subsumes ALCOIQ, then the complexities of (finite) satisfiability and (finite)

CQ or P2RPQ entailment for L EKBs coincide with those of plain L KBs.

Proof. 1. On one hand, given a (finite) model of K, Theorem 2 makes sure that we
can assume it is countable and thus, Item 2 of Lemma 5 provides us with a (finite)
model of K . On the other hand, given a (finite) model of K , we can invoke Item 1
of Lemma 5 to obtain a (finite) model of K.

2. We show the equivalent statement that K does not (finitely) entail q exactly if K
does not (finitely) entail q . Consider a (finite) I with I |= K but I �|= q. Theorem 2
allows us to assume that I is countable. Then Item 2 of Lemma 5 ensures that there
is a model of K which by construction does not satisfy q . Vice versa, consider a
(finite) J with J |= K but J �|= q . Then Item 1 of Lemma 5 provides us with a
(finite) model of K not satisfying q by construction.

3. This follows from the two previous items and Lemma 4, Items 1 and 2.
4. This follows from the two previous items and Lemma 4, Items 1 and 3.
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We note that this theorem does not only hold for CQs and P2RPQs, but it easily extends
to all query formalisms where non-satisfaction can be expressed via countable first-
order theories. Among others, this includes all Datalog queries [28].

7 Recapitulation: Results

Theorem 6 can now be put to use by harvesting a number of findings from known
results. We will go through the results announced in Section 4 and discuss their prove-
nance and possible further ramifications.

• Satisfiability and finite satisfiability of SHIQbSelf� ERKBs is EXPTIME-complete.
Noting that transitivity can be equisatisfiably removed via box-pushing (along the
lines of [33, 29]), yielding ALCHIQbSelf� , EXPTIME-completeness for the latter can
be obtained via minor extensions of [33] for arbitrary models and [20] for finite mod-
els. Both also follow from the corresponding result for GC2, the guarded two-variable
fragment as defined by Pratt-Hartmann [23]. Using these results, the application of
standard techniques [11,17,29] allow to establish 2EXPTIME-completeness for finite
and arbitrary satisfiability of SRIQb ERKBs.

• Satisfiability and finite satisfiability of SHOIQBSelf EKBs is NEXPTIME-complete.
Again, as laid out in [29], transitivity can be removed preserving satisfiability (yield-
ing ALCHOIQBSelf ), which is just a syntatic variant of C2, the two-variable frag-
ment of first-order logic, for which the respective complexity results were estab-
lished by Pratt-Hartmann [22]. Based on these findings, N2EXPTIME-completeness
of finite and arbitrary satisfiability of SROIQB EKBs is a rather direct conse-
quence [17,29].

• P2RPQ entailment as well as finite CQ entailment from ALCHIQbSelf� ERKBs are
2EXPTIME-complete. Note that ALCHIQbSelf� is a syntactic variant of GC2, there-
fore 2EXPTIME-completeness of finite entailment of CQs follows from [24], while
P2RPQ entailment is a consequence of [8].

• Entailment of unions of CQs from ALCHOIQb EKBs is decidable and coN2EXP-
TIME-hard. This is a consequence of the respective results for plain ALCHOIQb
KBs [27, 14].

8 Coda: Conclusion

Inspired by previous work on quantitative extensions ofALC driven by Franz [1, 5, 2, 3],
we investigated the possibility of extending the expressivity of the underlying logic in
the presence of global cardinality constraints. Using a novel idea of simulating the car-
dinality information via modeling features readily available in mainstream description
logics, we were able to show that significant complexity-neutral extensions are possi-
ble. Moreover, we laid the formal foundations for adequately dealing with models of
infinite domain size.
There are plenty of avenues for future work. We reiterate, that the logics considered here
are tailored toward “global counting”, whereas “local counting” (that is Presburger con-
straints over individuals’ role successors) is not supported. For example, ALCSCC [1]
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would allow us to express that some course is gender-balanced if and only if it has as
many female participants as it has male ones. While this is beyond the capabilities of
any of the logics considered here, the presence of inverses and nominals allows us to
at least enforce that a concrete given course tcs is indeed gender-balanced, using the
following Tbox and ERCbox statements:

MalInC ≡ Male � ∃hasParticipant−.{tcs} (12)

FemInC ≡ Female � ∃hasParticipant−.{tcs} (13)

(|MalInC| ≤ |FemInC|) ∧ (|FemInC| ≤ |MalInC|) (14)

In fact, we can even go one step further and express that tcs is gender-balenced exactly
if GendBal(tcs) holds as follows:

MalInC ≡ Male � ∃hasParticipant−.{tcs} (15)

FemInC ≡ Female � ∃hasParticipant−.{tcs} (16)

BalTCS ≡ GendBal � {tcs} (17)
(
|BalC|≤0 ∧ (|MalInC|+1≤|FemInC| ∨ |FemInC|+1≤|MalInC|)

)

∨
(
1≤|BalC|) ∧ (|MalInC|≤|FemInC| ∧ |FemInC|≤|MalInC|)

)
(18)

A more thorough investigation about which local counting features can be realized by
global ones using advanced description logic modeling features is clearly an interesting
starting point for future work.
On another note, in the case of reasoning with arbitrary models, it would be very handy
from a modeler’s perspective to have a way of expressing that a concept may have only
finitely many elements. As mentioned before, with such statements, we leave the realms
of first-order logic for good. However, for instance, an inspection of Pratt-Hartmann’s
work on the two-variable fragment of first-order logic with counting strongly suggests
that such “finiteness constraints” can be accommodated at no additional complexity
cost [22,25].
Finally, the reduction presented in this paper could potentially turn out to be of prac-
tical value, since it allows to express elaborate quantitative information by means of
standardized ontology languages, which are supported by existing, highly optimized
reasoning engines [13,30,32]. This having said, this proposal would only work for rea-
soning under the classical (i.e., arbitrary-model) semantics and, admittedly, it is also
rather questionable if existing reasoners would cope well with large values in qualified
number restrictions. Yet, conversely, this work might motivate developers of reason-
ing engines to come up with better implementations as to support statistical and other
quantitative modeling.
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Abstract. Various forms of subsumption preorders are used in the litera-
ture for comparing unifiers and general solutions of a unification problem
for generality and for defining the unification type. This note presents
some of them and discusses their pros and cons. In particular arguments
against the exist-substitution-based subsumption preorder (ess) are dis-
cussed. A proposal for a further partition of unification type nullary is
made. Also some historical notes are included.

Keywords: Unification · Subsumption preorder ·
Most general unifiers · Unification type

1 Introduction

Algorithms for solving equations are of widespread use in Computer Science
and Mathematics. An important issue which accompanies the computation of
solutions of equations is the quest for general solutions or most general solutions.
The design choice should support efficient use of the solutions. As a first example,
consider an equation over the integers: x2 .= 1, which has two solutions: x �→ 1,
and x �→ −1. The solutions are necessary and non-redundant. As next example,
consider the first-order equation x

.= y, which has several solutions: σ1 = {x �→
y}, σ2 = {y �→ x}, σ3 = {y �→ z, x �→ z}, σ4 = {y �→ 0, x �→ 0}, σ5 =
{y �→ z, x �→ z, w �→ 0}, Here the intuition is that σ4 is too special, and that
the others look like variations of a single general solution, perhaps with some
redundant information. The subsumption preorder in use nowadays will tell us
that σ1, σ2, σ3, σ5 are most general unifiers of the equation and that subsume
each other. The exist-substitution-based subsumption preorder (ess) will only
accept σ1, σ2 as most general. This will be detailed below in Sect. 2.
The subsumption preorder is also essential to define for problem classes (and
unification problems) in equational theories their unification type, i.e., whether
at most one most general unifier (unitary), at most finitely many (finitary),
sometimes infinitely many (infinitary) or sometimes no set of minimal unifiers
exist (type nullary).
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1.1 Some Notes on the (Short) History of Subsumption Preorders

When I was undertaking research for my doctoral thesis in the field of deduc-
tion and unification, around 1986, I had trouble with exactly the problem of an
acceptable definition of subsumption of unifiers, in particular in a sorted logic.
The problem was that the available papers and people all employed the proposal
of the ess-subsumption preorder that only accepts σ1, σ2, but not the others.
There were several problems: the variant of ess subsumption preorder was not
transitive, and it did not deal properly with sorted unifiers, for example one like
σ3, and the number of most general unifiers was too high. I had a proposal for
a subsumption preorder of unifiers, which has all the necessary nice properties,
but depends on the set of variables in the unification problem. Around this time,
I also managed to produce a proof that shows that there is a natural equational
theory (idempotent semigroups) that has unification type zero (nullary). Coinci-
dentally, Jörg Siekmann, my doctoral-supervisor at this time, got a submission
of a paper that shows exactly the same result, by an unknown student of Mathe-
matics, Franz Baader. I looked at the paper, and checked whether it was correct:
yes, it was correct. But more surprising for me was that Franz used also exactly
the same subsumption preorder that I preferred as a definition. As a side remark,
Franz detected an error in my paper, which I could correct later (see [1,15]).

The type zero result (later called nullary) was assessed as important at this
time, and the subsumption preorder discussion as minor, however, in retrospect,
the latter turns out to have more influence.

The interest of Franz in unification theory, unification type and related prop-
erties was always active. He was coauthor of two often cited overviews on uni-
fication [8,9]. He undertook deep analyses of the unification properties of com-
mutative theories [2]. A more recent investigation into unification types was
presented in the unification workshop 2016 in Warsaw [5], where we exchanged
ideas on unification and subsumption preorders. He also put unification to work
in description logics, which is still a hot topic, in particular see [4,6].

1.2 Practical Advice

This is another motivation to write down these notes: Submitted papers deal-
ing with unification in a substantial percentage claim that they use the ess-
subsumption preorder, however, at other places in their papers the authors
implicitly use another subsumption preorder. Fortunately, in most cases there are
no effects on the technical correctness of such papers, since the definition is not
used in a technical sense. So the opportunity of contributing to the Festschrift
is a motivation for me to add this apparently not deep, but as I hope, helpful
remarks.

2 Subsumption Preorders and Unification Type

In this section we recall four subsumption preorders. The plan is to discuss pros
and cons and summarize some known results.
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2.1 The Unification Problem and Several Subsumption Preorders

First we describe a frame for unification problems, where the intention is to cover
most forms of unification, but not all variants.
A general one would be to consider existential formula in some logic. Here is our
working description:
There is a term-language L[X] with an infinite set X of variables, a ground
language L ⊆ L[X] and an equivalence relation ≡ on L[X]. There is also a notion
of an occurrence of a variable x in a term s. We assume that functions φ : X →
L[X] define a unique mapping (also called substitution) φ : L[X] → L[X], like a
replacement of variables by terms. We can compute the domain, codomain, and
the set VRan(.) of variables occurring in the codomain of a substitution. There
is also an equivalence relation ≡ on substitutions: The following consistencies
must hold:

1. s ≡ t implies sρ ≡ tρ for all substitutions ρ.
2. σ1 ≡ σ2 implies sσ1 ≡ sσ2 for all terms s.
3. xσ1 ≡ xσ2 for all x ∈ Var(s) implies sσ1 ≡ sσ2 for terms s.

As a generic notion we also consider constrained substitutions (C[X], σ),
where C[X] is a constraint (from a fixed language). The semantics of (C[X], σ)
is the set of ground instances that satisfy C; a bit more formally: the set
{σ ◦ ρ | C[X]ρ is valid}. This deviates from the substitution view, and there
might be some obscure selection of instances. However, it makes sense in many
applications, where C is usually of restricted expressiveness.

– A unification problem is given by a set Γ of equations to be solved: Γ = {s1
.=

t1, . . . , sn
.= tn}.

– A ground unifier (ground solution) of Γ is a substitution σ : X → L, such
that s1σ ≡ t1σ, . . . , snσ ≡ tnσ holds in L.

– A general unifier (solution) of Γ is a substitution φ : X → L[X], such that
s1φ ≡ t1φ, . . . , snφ ≡ tnφ holds in L[X].

In the constrained expression case a general unifier is a substitution where only
instances are permitted that satisfy C. Insofar it can be seen as a partially
defined instantiation function.

Of course, from an application point of view, a single general unifier covering
all solutions/unifiers is preferable over larger sets of general unifiers, or even
a large (infinite) set of solutions. The constrained expression method was for
example successfully applied to have small general sets in a form of higher-order
unification [17].

The following are variants of subsumption preorders on two general solutions
φ1, φ2 of a unification problem Γ .

– ess-subsumption: (exists substitution subsumption) φ1 ≤ess φ2 (φ1 is ess-
more general than φ2): There exists a substitution ρ : L[X] → L[X], such
that φ1 ◦ ρ ≡ φ2.
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– vrs-subsumption: (variable-restricted subsumption) φ1 ≤vrs φ2 (φ1 is vrs-
more general than φ2): There exists a substitution ρ : L[X] → L[X], such
that (x)φ1 ◦ ρ ≡ (x)φ2 for all variables x occurring in Γ

– lrs-subsumption (language-restricted subsumption) (also called exactness pre-
order [5]): φ1 ≤lrs φ2 (φ1 is lrs-more general than φ2): for all expressions
s, t in the language such that Var(s) ⊆ Var(Γ ) and Var(t) ⊆ Var(Γ ):
sφ1 ≡ tφ1 =⇒ sφ2 ≡ tφ2. [10,11].

– sem-subsumption: (semantical subsumption) φ1 ≤sem φ2 (φ1 is sem-more
general than φ2): S2 ⊆ S1 holds, where Si is the set of all ground solutions
represented by φi for = 1, 2, and the comparison is modulo ≡, extended from
expressions to substitutions. This means Si = {σ | dom(σ) ⊆ Var(Γ ), σ :
L[X] → L is a ground solution of Γ , and there is some ρ : L[X] → L such
that for all x ∈ Var(Γ ): (x)σ ≡ (x)(φi ◦ ρ) }.

Remark 2.1.

1. The vrs-subsumption preorder is defined w.r.t. Var(Γ ). It could also be gen-
eralized to supersets of Var(Γ ) in order to match other applications of uni-
fication like Knuth-Bendix completion. For the purposes of this paper, the
unification problem is always implicitly given, hence it is sufficient to restrict
vrs-subsumption to Var(Γ ).

2. The semantical subsumption preorder in the equational theory with defining
axiom f(x, 0) = x and where only the symbols f, 0 and variables are permitted
implies that the identity substitution and the substitution σ1 = {x �→ 0}
subsume each other, since the ground terms consist only of the single element
0 modulo the equation. This is sometimes called the elementary case. If further
constants are permitted, then these semantical subsumption relations do not
longer hold, since the set of ground terms is richer.
We encode this distinction (with/without constants) in the language L[X],
which also fixes the available signature, symbols and terms.

A first insight into the subsumption preorders is their relative strength.

Proposition 2.2. The subsumption preorders are ordered by subset-relations as
follows:

≤ess ⊆ ≤vrs ⊆ ≤lrs ⊆ ≤sem .

Proof. The first subset-relation holds, since in the first case the comparison is on
all variables, whereas in the second on less variables. The second subset-relation
holds, since if a subsumed substitution solves a problem then also the subsumer.
The third subset-relation is again valid since the set in the sem-subsumptions is
restricted to ground terms. 
�
Definition 2.3. Let Γ be a unification problem, M be a set of unifiers of Γ ,
X = Var(Γ ), and let ≤s be a subsumption preorder. A set Mc of unifiers is
≤s-complete for M , if for every σ ∈ M , there is some τ ∈ Mc, such that τ ≤s σ.
We also say the set Mc is minimal, if no subset of Mc is complete for M .
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The unification type of a problem class is the number of minimal (w.r.t.
the subsumption preorder ≤s) general unifiers (constrained unifiers) that are
necessary to represent sets of unifiers in a given class of unification problems.

– If at most one most general unifier is required for every set of unifiers of every
Γ : the problem class is unitary.

– If finitely many general unifiers are always sufficient, but the problem class is
not unitary: the problem class is finitary.

– If in every case there is a minimal infinite set that is complete, and sometimes
a minimal infinite complete set of unifiers is necessary: the problem class is
infinitary.

– If sometimes there is no minimal complete set of unifiers for a unification
problem: the problem class is nullary.

In order to have a more systematic picture and nicer relationships between
the various subsumption preorders, and since it is known that the subsumption
type of a problem class may change if the subsumption preorder changes, we will
partition the problem class nullary further. A motivation is that we can show a
theorem (see Theorem 2.4) on the possible changes of unification type triggered
by switching the subsumption preorder. It turns out that using the unitary, fini-
tary, infinitary, and nullary classification, the prediction of the changes of the
unification type is rather weak.

Therefore we generalize the notion of a complete set as follows. We represent
a set of unifiers M by a set M ′ that may contain: single unifiers from M , and
countably infinite linear strictly descending (w.r.t. the subsumption preorder)
chains of unifiers (which must be in M). I.e. the set M ′ may contain single
unifiers and sets of unifiers.
The set M ′ must cover all unifiers in M w.r.t. the chosen subsumption preorder
≤s as follows: For every unifier σ ∈ M , either there exists a single unifier σ′ ∈ M ′

such that σ′ ≤s σ, or there exists a chain {σ1 > σ2 > . . .} in M ′, and an i, such
that σi ≤ σ. In this case we say that M ′ is complete for M .
The further partitioning of nullary is as follows:

– 1-nullary: The problem class is nullary and for all unification problems, the
complete set M ′ of M can always be chosen to be of cardinality 1.

– n-nullary: The problem class is nullary and for all unification problems, the
complete set M ′ of M can be chosen as a finite set, and the problem class is
not 1-nullary.

– ∞-nullary: The problem class is nullary, but not n-nullary and not 1-unary:
This means there is at least one Γ1, such that the set of unifiers M1 needs
a complete set M ′

1 with at least one descending chain; and there is at least
one Γ2 (perhaps different from Γ1) such that its set of unifiers M2 needs an
infinite complete set M ′

2 of M2.

Currently, there are no investigations that show that there are equational
theories of one of these unification types. However, it is known that there are
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nullary equational theories, hence at least one of the classes 1-nullary, n-nullary,
and ∞-nullary is not trivial. To determine the exact type of nullary theories
within this classification schema is future work.

We define the following transfer-relation → between these unification types,
where we will later use the reflexive transitive closure ∗−−→. Intuitively, the
transfer relation shows the possible outcomes of the operation of adding ≤-
relationships between unifiers.

∞-nullary �� ��

��

infinitary

��
n-nullary ��

��

finitary

��
1-nullary �� unitary

The picture suggests that the worst unification types are ∞-nullary and infini-
tary, and that n-nullary, finitary are the moderate cases, and 1-nullary and uni-
tary are the good ones.

The relation of the unification type to the subsumption preorders is as follows:
if the subsumption preorder increases, then the unification type may decrease
along ∗−→:

Theorem 2.4. If we vary for a problem class the subsumption preorder spo,
then we obtain the following relation to the unification type:
If spo1 ≤ spo2, then type1

∗−−→ type2.

Proof. The argument is simply that if spo1 ≤ spo2, then in a set of unifiers, w.r.t.
spo2, there may be more ≤-relations between unifiers in a set, and the picture
above shows the possible modifications in the structure of a set of unifiers.

This theorem may lead to a more systematic investigations of the changes of
unification type of theories triggered by the change of the subsumption preorder.

3 Varying the Subsumption Preorder: Examples

3.1 First-Order Unification

The Ess-Subsumption Preorder in First-Order Unification. Assume
that L[X] consists of the first order terms with set of variables X and that
unification is first-order unification [7]. The solutions (i.e., the unifiers) of uni-
fication problems Γ are substitutions, which are (free) mappings from terms to
terms, with a finite domain, usually written as {x1 �→ t1, . . . , xn �→ tn}. The
domain of a substitution σ is the set {x | σ(x) = x}; the codomain is the set
{σ(x) | x ∈ dom(σ)}, and the set of variables of the codomain is VRan(σ).
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Definition 3.1 (The ess-subsumption preorder in first-order unifica-
tion). Two unifiers σ, σ′ of a first-order unification problem Γ are in the ess-
subsumption preorder (σ is more general than σ′), denoted as σ ≤ess σ′, iff there
is another substitution ρ, such that σ ◦ ρ = σ′, where equality means equality of
functions.

This ess-subsumption was studied for example in [13].
We reconsider the example above, and also add some consequences:

Example 3.2. Let the equation be x
.= y. Some unifiers are

σ1 = {x �→ y}
σ2 = {y �→ x}
σ3 = {y �→ z, x �→ z}
σ4 = {y �→ 0, x �→ 0}
σ5 = {y �→ z, x �→ z, w �→ 0}

The substitution σ1 is a most general unifier. Using the ess-subsumption
preorder, we get

σ2 = σ1 ◦ σ2

σ3 = σ1 ◦ σ3

σ4 = σ1 ◦ σ4

σ5 = σ1 ◦ σ5

which is nice, and gives some confidence into this formalism. Also σ2 is a
most general unifier.

However, the ess-subsumption preorder is not very flexible: For example σ3 is
like a renamed most general unifier, but according to the subsumption preorder,
it is not most general: There is no substitution ρ such that σ1 = σ3 ◦ ρ. The
reason is that ρ(z) must be x or y, however, then z �→ x or z �→ y would be a
component of σ1, which prevents σ3 from being most general.
As a general observation we have:

Lemma 3.3. Let Γ be a first-order unification problem. If the ess-subsumption
preorder is used, then for every most general unifier σ the relations dom(σ) ⊆
Var(Γ ) and VRan(σ) ⊆ Var(Γ ) hold.

The Vrs-Subsumption Preorder in First-Order Unification is defined as
follows.

Definition 3.4 (The vrs-subsumption preorder). Two unifiers σ, σ′ of a
unification problem Γ are in the vrs-subsumption relation, σ ≤ σ′, iff there is
another substitution ρ, such that (x)σ ◦ ρ = (x)σ′ for all x ∈ Var(Γ ).

Using this preorder, we see that besides σ1, σ2, also σ3 and σ5 are most gen-
eral unifiers of x

.= y:
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Any unifier σ = {x �→ s, y �→ s, . . .} is covered by σ3 as follows:

(x)σ3 ◦ {z �→ s} = σ(x)
(y)σ3 ◦ {z �→ s} = σ(y)

This renaming possibility is an (obvious) feature of most general unifiers
w.r.t. the vrs-subsumption preorder.

Summary for First-Order Unification The most general unifier property
and the unification type for first-order terms is independent of the choice of the
subsumption preorder of substitutions.

However, using the ess-subsumption preorder, one has to be aware that most
general unifiers can only use (in domain and codomain) variables from the prob-
lem Γ . Note that this must also hold for the respective unification algorithms if
these are claimed to be correct w.r.t. the ess-subsumption preorder.

3.2 Unification of Terms Modulo Equational Theories

We consider unification of term-equations w.r.t. equational theories.
The basics are that there is a congruence =E , on the set of terms, where =E

is also called equational theory. The task is to solve equations modulo =E and in
case there is a unifier, also to compute a most general unifier or a complete set of
unifiers. The general case is that more than one unifier is required to represent
all unifiers of a problem. Usually, the vrs-subsumption preorder is employed.
However, if the ess-subsumption preorder is chosen, then the situation gets
confusing.

Lemma 3.5. If for some Γ , there is an ess-minimal unifier σ with dom(σ) ⊆
Var(Γ ), and where Var(σ(Var(Γ ))) ⊆ Var(Γ ), then there is an infinite number
of incomparable minimal unifiers.

Proof. The reason is that renamed variants of σ are minimal, but incompa-
rable using the ess-subsumption preorder: Let Var(σ(Var(Γ ))) \ Var(Γ ) =
{z1, . . . , zn}. The intuition is as follows: Another unifier is σ′, where {z1, . . . , zn}
is replaced by {z′

1, . . . , z
′
n} respectively. Again there is no ρ with σ ◦ ρ = σ′ and

vice versa: The substitution ρ would introduce components into the substitution
that modify z1, which is not a part of σ′.

Now we exhibit a concrete example of an equational theory for the effect
mentioned in the previous lemma.

Proposition 3.6. There is an equational theory E0 and a set of equations Γ
with |Var(Γ )| = 2, and a minimal unifier σ of Γ such that |VRan(σ)| = 3 > 2 =
|Var(Γ )|. The unification type of Γ w.r.t. ess-subsumption is infinitary, whereas
the unification type of Γ w.r.t. vrs-subsumption is unitary.
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Proof. Let the single axiom of theory E0 be {f1(g(x, y, z)) = f2(a), and let
Γ = {f1(x) .= f2(y)}. Then σ = {x �→ g(x1, y1, z1)), y �→ a} is a unifier. Usual
reasoning shows that this is a minimal unifier. Since the names of variables are
irrelevant, the same holds for σ′ = {x �→ g(x2, y2, z2)), y �→ a}. The question is
whether these unifiers are independent from each other.

Using ess-subsumption, an ess-subsumption of σ by σ′ requires a substitution
ρ with σ′ ◦ ρ =E σ. A potential candidate for ρ is ρ = {x2 �→ x1, y2 �→ y1, z2 �→
z1}. Computing the result of σ′ ◦ ρ results in {x �→ g(x1, y1, z1)), y �→ a, x2 �→
x1, y2 �→ y1, z2 �→ z1}, which is different from σ, since there are components map-
ping x1, y2, z1 to expressions different x1, y2, z1, respectively. Obviously, these
components cannot be eliminated, and since the situation is symmetric, the
result is that the two unifiers σ, σ′ are independent from each other. Hence there
is an infinite number of independent minimal unifiers. Indeed Γ requires an
infinite number of minimal unifiers.

Now let us use the vrs-subsumption preorder: Then the comparison is only
on the variables Var(Γ ) = {x, y}. Then the vrs-subsumption relation between σ
and σ′ holds. 
�

Another example due to Franz is the theory ACUI (i.e. the equational theory
of a binary function symbol that is associative, commutative, idempotent and
there is a unit) [3] which is of ess-unification type nullary or infinitary, and which
is of unification type unitary for the vrs-subsumption preorder.

3.3 Known Results on the Unification Type W.r.t. the Various
Subsumption Preorders

Interesting examples for unification types of equational theories are the commu-
tative theories [2]. These are of unification type unitary or nullary for the vrs-
subsumption preorder as well as for the lrs-subsumption preorder. Also the the-
ory ACUIh is of type nullary for vrs-subsumption preorder and lrs-subsumption
preorder [5]. Theories where the unification type improves by using the lrs-
subsumption preorder are exhibited in [10]: The theories of idempotent semi-
groups and distributive lattices are both nullary w.r.t. the vrs-subsumption pre-
order, and are finitary or unitary, respectively, for the lrs-subsumption preorder.

Here, I can even put a question to Franz: is the theory of commutative
monoids either of type unitary or 1-nullary (w.r.t elementary unification) and
w.r.t. vrs-subsumption preorder?

3.4 Unification Using Sorts or Types

Consider the following unification example: The equation is x : S1
.= y : S2 w.r.t.

a first-orderterm algebra of three sorts: S1, S2 and a common subsort S3. The
restriction for substitutions is that the instantiation for every variable x must
have the same sort, or lower it. Then a most general unifier of x : S1

.= y : S2 must
look like σ = {x �→ z : S3, y �→ z : S3}. The ess-subsumption preorder will result
in infinitely many minimal unifiers in the set of all unifiers, hence the unification
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type of first-order sorted unification would be infinitary. However, if we apply
the vrs-subsumption preorder, then one most general unifier is sufficient, and we
get that first-order sorted unification is unitary, provided the sort structure is a
lower semi-lattice. The unification behavior is then as expected.

3.5 Nominal Unification

I will add some notes on unification that results in singleton sets of minimal
unifiers together with constraints, which could be called unitary.. I know that
Franz is not fond of this, since it permits cheating. For example, you simply can
say the set of equations itself is the constraint representing the solutions, and
hence it is unitary. He is right that the unification type for constrainted repre-
sentations cannot be compared to the unification type if unifiers are explicitly
computed substitutions.

Nevertheless, practical need is to opt for small sets of general unifiers (with
constraints) which eases further processing. Constraints are a chance to lazily
compute unifiers or solutions and already use the partial results in applications.

An interesting example is nominal unification, which can be roughly
described as unification of expressions in higher-order languages modulo permit-
ted name changes (i.e. modulo α-equivalence). A nice result is a polynomial-time
unification algorithm computing a unique unifier together with a constraint (see
[17] for the first algorithm) and [12,14] for quadratic algorithms. Also, there are
generalizations of nominal unification that keep the property of being unitary
[16].

Acknowledgements. I thank the editors, the anonymous reviewers for their help in
making this paper possible, I thank the members of the orthopedics department of the
hospital in Heppenheim, and my wife Marlies, for curing me and supporting me during
writing.

References

1. Baader, F.: The theory of idempotent semigroups is of unification type zero. J.
Autom. Reasoning 2(3), 283–286 (1986)

2. Baader, F.: Unification in commutative theories. J. Symb. Comput. 8(5), 479–497
(1989)

3. Baader, F.: Remarks on ACUI, personal communication (2016)
4. Franz, B., Borgwardt, S., Morawska, B.: Extending unification in EL to disunifica-

tion: the case of dismatching and local disunification. Log. Methods Comput. Sci.
12(4) (2016)

5. Baader, F., Ludmann, P.: The exact unification type of commutative theories. In:
Ghilardi, S., Schmidt-Schauß, M. (eds.) Informal Proceedings of the 30th Interna-
tional Workshop on Unification (UNIF 2016) (2016)

6. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen,
R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02348-4 25

https://doi.org/10.1007/978-3-642-02348-4_25


572 M. Schmidt-Schauß

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

8. Baader, F., Siekmann, J.H.: Unification theory. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A., Siekmann, J.H. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, Deduction Methodologies, vol. 2, pp. 41–126. Oxford
University Press (1994)

9. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 445–532. Elsevier and MIT Press
(2001)

10. Cabrer, L.M., Metcalfe, G.: From admissibility to a new hierarchy of unification
types. In: Kutsia, T., Ringeissen, C. (eds.) Proceedings of the 28th International
Workshop on Unification (UNIF 2014) (2014)

11. Cabrer, L.M., Metcalfe, G.: Exact unification and admissibility. Log. Methods Com-
put. Sci. 11(3) (2015)

12. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403(2–3), 285–306 (2008)

13. Eder, E.: Properties of Substitutions and unifications. In: Neumann, B. (ed.) GWAI-
83. Informatik-Fachberichte, vol. 76, pp. 197–206. Springer, Heidelberg (1983).
https://doi.org/10.1007/978-3-642-69391-5 18

14. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Lynch, C. (ed.)
Proceedings of the 21st RTA, volume 6 of LIPIcs, pp. 209–226. Schloss Dagstuhl
(2010)

15. Schmidt-Schauß, M.: Unification under associativity and idempotence is of type
nullary. J. Autom. Reasoning 2(3), 277–281 (1986)

16. Schmidt-Schauß, M., Sabel, D., Kutz, Y.D.K.: Nominal unification with atom-
variables. J. Symb. Comput. 90, 42–64 (2019)

17. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. In: Baaz, M., Makowsky,
J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 513–527. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45220-1 41

https://doi.org/10.1007/978-3-642-69391-5_18
https://doi.org/10.1007/978-3-540-45220-1_41


15 Years of Consequence-Based Reasoning

David Tena Cucala(B), Bernardo Cuenca Grau, and Ian Horrocks

University of Oxford, Oxford OX1 3QD, UK
{david.tena.cucala,bernardo.cuenca.grau,ian.horrocks}@cs.ox.ac.uk

Abstract. Description logics (DLs) are a family of formal languages
for knowledge representation with numerous applications. Consequence-
based reasoning is a promising approach to DL reasoning which can be
traced back to the work of Franz Baader and his group on efficient sub-
sumption algorithms for the EL family of DLs circa 2004. Consequence-
based reasoning combines ideas from hypertableaux and resolution in a
way that has proved very effective in practice, and it still remains an
active field of research. In this paper, we review the evolution of the field
in the last 15 years and discuss the various consequence-based calculi
that have been developed for different DLs, from the lightweight EL to
the expressive SROIQ. We thus provide a comprehensive and up-to-
date analysis that highlights the common characteristics of these calculi
and discusses their implementation.

Keywords: Description Logics · Automated reasoning · Ontologies ·
Knowledge representation

1 Introduction

Description logics (DLs) are a prominent family of languages for knowledge
representation and reasoning with well-understood formal properties [3]. Interest
in DLs has been spurred by their applications to the representation of ontologies:
for instance, the DL SROIQ provides the formal underpinning for the Web
Ontology Language OWL 2 [46].

A central component of most DL applications is a scalable reasoner, which can
be used to discover logical inconsistencies, classify the concepts of an ontology
in a subsumption hierarchy, or answer database-style queries over an ontology
and a dataset. Two traditional approaches to concept classification (and to DL
reasoning more broadly) are tableaux [4] and resolution [9].

Tableau and hyper-tableau calculi underpin many of the existing DL rea-
soners [17,18,40,41,44]. To check whether a concept subsumption relationship
holds, (hyper-)tableau calculi attempt to construct a finite representation of an
ontology model disproving the given subsumption. The constructed models can,
however, be large—a source of performance issues; this problem is exacerbated
in classification tasks due to the large number of subsumptions to be tested.

Another major category of DL reasoning calculi comprises methods based on
first-order logic resolution [9]. A common approach to ensure both termination
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 573–587, 2019.
https://doi.org/10.1007/978-3-030-22102-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-22102-7_27


574 D. Tena Cucala et al.

and worst-case optimal running time is to parametrise resolution to ensure that
the calculus only derives a bounded number of clauses [15,21,22,28,34,37]. This
technique has been implemented, for instance, in the KAON2 reasoner [32] for
SHIQ. Resolution can also be used to simulate model-building (hyper)tableau
techniques [20], including blocking methods which ensure termination [16].

Consequence-based (CB) calculi emerged as a promising approach to DL rea-
soning combining features of (hyper)tableau and resolution [2,10,24,26]. On the
one hand, similarly to resolution, they derive formulae entailed by the ontology
(thus avoiding the explicit construction of large models), and they are typi-
cally worst-case optimal. On the other hand, clauses are organised into contexts
arranged as a graph structure reminiscent of that used for model construction in
(hyper)tableau; this prevents CB calculi from drawing many unnecessary infer-
ences and yields a nice goal-oriented behaviour. Furthermore, in contrast to both
resolution and (hyper)tableau, CB calculi can verify a large number of subsump-
tions in a single execution, allowing for one-pass classification. Finally, CB calculi
are very effective in practice, and systems based on them have shown outstand-
ing performance. Leading reasoners for lightweight DLs such as ELK [27] or
Snorocket [31] are based on consequence-based calculi. Furthermore, prototypi-
cal implementations of consequence-based calculi for more expressive languages,
such as Sequoia [11] or Avalanche [45], show promising results.

The first CB calculi were proposed by Franz Baader, Sebastian Brandt, and
Carsten Lutz for the EL family of DLs [2,12]. They were later extended to more
expressive logics like Horn-SHIQ [24], Horn-SROIQ [35], and ALCH [38]. A
unifying framework for CB reasoning was developed in [39] for ALCHI, introduc-
ing the notion of contexts as a mechanism for constraining resolution inferences
and making them goal-directed. The framework has been extended to the DLs
ALCHIQ, which supports number restrictions and inverse roles [10]; ALCHOI,
which supports inverse roles and nominals [42]; ALCHOQ, supporting nominals
and number restrictions [23], and finally to ALCHOIQ, which supports all of
the aforementioned constructs [43].

This paper reviews the development of the consequence-based approach to
DL reasoning since its first appearance fifteen years ago. In Sect. 2 we intro-
duce the core ideas behind consequence-based reasoning, using a simplified ver-
sion of the original CB calculus in [12]. In Sect. 3 we discuss the evolution of
consequence-based calculi in the first decade after the introduction of the orig-
inal calculus, which focused mostly in lightweight or Horn DLs. In Sect. 4 we
discuss the introduction in [39] of a unifying framework for consequence-based
reasoning. This piece of work describes an abstract structure which more explic-
itly captures the defining features of consequence-based calculi. By varying the
parameters in this structure, it becomes possible to simulate many previously
existing calculi. Finally, in Sect. 5 we discuss recent progress in consequence-
based reasoning, including the design of calculi for more expressive DLs, and the
introduction of hybrid methods that combine the consequence-based approach
with other well-known reasoning techniques such as tableaux or integer linear
programming.
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We assume familiarity with the basics of Description Logics, and refer the
reader to [6] for a comprehensive introduction to DLs.

2 Consequence-Based Reasoning

This section introduces the consequence-based approach to DL reasoning. We
start by describing one of the simplest and best known consequence-based calculi:
the classification algorithm for EL. We next give a summary of the common
features of consequence-based calculi, and use the EL calculus as an illustrative
example of these characteristics.

2.1 The EL Consequence-Based Calculus

The calculus presented in this section is a restricted form of the classification
procedure given in [12]. The original presentation used a notation different from
the terminology used in this section, which is due to [24] and has been used in
many of the subsequent consequence-based calculi, as well as in a recent textbook
on Description Logics [6].

Consider an arbitrary EL ontology O in normal form, which is defined as
a set of axioms of the form A � B, A1 � A2 � B, A � ∃R.B, or ∃R.A � B,
with A,B atomic concepts, and R an atomic role. It is well-known that any EL
ontology can be normalised to this form in polynomial time. The calculus builds
a set S containing inclusions entailed by O, which are called consequences of O.
Set S is initialised by using rules IR1 and IR2 from Fig. 1. Next, the algorithm
repeatedly applies rules CR1-CR4 to saturate S. These rules use the existing
consequences in S and the axioms of O to derive further consequences; e.g., rule
CR1 uses consequence A � B and the fact that B � C is an axiom of O to
conclude that A � C is also a consequence.

Fig. 1. Inference rules for the simplified EL calculus

The calculus in Fig. 1 ensures that any subsumption of the form A � B that
is logically entailed by the ontology O will be contained in S after saturation;
hence, the classification of O can be read directly from S. The resulting algorithm
works in worst-case polynomial time in the size of the input ontology O.
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2.2 The Defining Characteristics of Consequence-Based Reasoning

Although consequence-based calculi described in the literature may appear
rather different from each other at first glance, they all share several defining
characteristics. We discuss these common features using the EL calculus as an
example.

Materialisation of Derived Consequences. Similarly to resolution-based
approaches, consequence-based calculi proceed by deriving formulae entailed by
the input ontology. This approach can have significant practical advantages over
(hyper-)tableau calculi, since these construct (a representation of) a model of
the input ontology, and such (representations of) models may be very large. We
illustrate this with an example: suppose we would like to check whether the
subsumption B0 � C is entailed by the following EL ontology:

{Bi � ∃R.Bi+1 | 0 ≤ i ≤ n − 1} Bn � C ∃R.C � C

{Bi � ∃S.Bi+1 | 0 ≤ i ≤ n − 1} ∃S.C � C

If we use a tableau algorithm for this task, the size of the generated model will
depend on the order in which inference rules are applied. In particular, building
the tableau in a breadth-first manner will lead to an exponentially large model
(Fig. 2).

Fig. 2. Model built by a tableau-like procedure. All node labels are derived from the
root downwards, except for C, which is derived first at the leaves and then propagated
upwards, and ⊥.

In contrast, the subsumption can be proved using the algorithm of Sect. 2.1
in a linear number of steps. Indeed, initialisation would produce Bi � � and
Bi � Bi for each 0 ≤ i ≤ n, together with C � � and C � C. Rule CR1
would then produce Bn � C; afterwards, rule CR3 would produce at least one
of Bi � ∃R.Bi+1 and Bi � ∃S.Bi+1 for each 0 ≤ i ≤ n. Finally, CR4 would
generate all inferences of the form Bi � C, including our target subsumption.
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Locality of Consequences. Another key characteristic of consequence-based
calculi is their emphasis on computing “local” consequences only. Unlike methods
based on resolution, where many other kinds of entailments can be derived,
CB calculi derive only clauses of a very restricted form which constrain only
a “central” domain element t and (possibly) domain elements that are directly
connected to t via roles (binary predicates). This can be easily seen in the EL
calculus above, where consequences have the same form as ontology axioms, and
these are equivalent to first-order clauses universally quantified over a single
variable x, which may also introduce an existentially quantified variable y in
clauses with a role atom of the form R(x, y) acting as a guard.

Focus on Contexts. The search for local consequences in consequence-based
calculi is driven by contexts [39], which group similar types of local consequences
together. For instance, in the EL calculus, inference rules always use a premise of
the form A � Δ, where A is an atomic concept, and Δ is a concept. Hence, we can
define one context per atomic concept A and group together in the same context
all consequences having A in the left-hand-side. This is an advantage with respect
to resolution-based methods, for it prevents the derivation of irrelevant clauses.
For example, a DL-clause B1 � B2 � B3, where B1, B2, B3 are atomic concepts,
is only used in the EL calculus if we have derived consequences A � B1 and
A � B2. In contrast, a resolution method could resolve the same axiom with
consequences of the form A1 � B1 and A2 � B2 even if A1 and A2 never appear
together in the same context, which suggests that the derived consequence would
not be relevant for the taxonomy.

Other Features. The main characteristics described above enable other fea-
tures that are often regarded as distinctive traits of consequence-based reasoning.

– Goal-oriented behaviour. It is often possible to focus only on contexts that are
relevant for the given query, as well as contexts that are found to be relevant
during the saturation phase. For instance, if we use the EL calculus to check a
single subsumption of the form A � B, we can initialise the algorithm simply
with A � A and A � �, and then restrict the application of rules IR1 and
IR2 only to those atomic concepts that are generated in S during saturation.

– Reusability of consequences and one-pass classification. Since consequences
derived while answering a query are entailments of the input ontology, they
can be re-used in reasoning for any further queries. For instance, in the pre-
vious example, any consequences generated while checking whether Bi � C
for some 0 < i < n can be reused to determine whether B0 � C. Therefore,
if we initialise the calculus by applying rules IR1 and IR2 to every atomic
concept, all subsumptions that follow from an EL ontology are computed in a
single run of the algorithm. Consequences can also be reused when the input
ontology O is extended with new axioms.

– Parallelisation. Emphasis on locality makes consequence-based calculi very
amenable to parallel implementations, since many inferences in each context
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can be done independently of other contexts. Furthermore, if one can predict
which contexts will interact little or not at all with each other, the workload
can be better divided in order to increase the progress that can be made in
parallel.

3 The Early Years: 2004–2013

This section gives a historical perspective of the first 10 years of consequence-
based reasoning, which mostly focused on lightweight or Horn DLs.

3.1 The First Consequence-Based Calculus

The first consequence-based calculi were introduced by Franz Baader and col-
leagues around the year 2004. A first version was presented in [12] for the DL
ELH, and this was extended shortly afterwards to handle additional constructs
such as the constant for unsatisfiable concepts (⊥), concrete domains, and role
chains [2]. The EL family of DLs was starting to receive significant attention at
the time: on the one hand, EL reasoning had been proven to be tractable; on the
other hand, the logics in the EL family had been shown to be expressive enough
to capture real-world ontologies. The logic EL++ eventually became the basis
for one of the standardised profiles [33] of the ontology language OWL 2.

The first analysis of fragments of EL used structural subsumption algorithms
[5,7], but the new technique introduced in [12] and [2] was radically different.
This technique starts by normalising the ontology, following a procedure analo-
gous to that devised in [30], and then it applies a series of inference rules until
saturation is reached. The calculus in Sect. 2.1 represents an example of this
approach. Although these calculi were not referred to as “consequence-based” at
the time, they already displayed the defining features that have been discussed
in Sect. 2.2.

The calculus in [2] was implemented in the reasoner CEL [8]; experiments
with this system on life-science ontologies showed that efficient reasoning was
feasible even for very large ontologies. The elegance and simplicity of this tech-
nique was quickly recognised, and it inspired similar methods for more expressive
DLs, which we discuss in the following sections.

At the same time, interest was sparked into developing more efficient imple-
mentations of consequence-based calculi for the EL family of DLs. Research in
this area has covered topics such as alternative consequence-based calculi for EL
and its variants, efficient strategies for saturation based on tailored data struc-
tures and indices, or incremental reasoning. Reasoners such as ELK [27] and
Snorocket [31] draw upon this work in order to provide highly efficient, robust,
and scalable implementations for lightweight extensions of EL.

3.2 Going Beyond EL: Horn-SHIQ
In 2009, a new consequence-based calculus was introduced in [24] for the DL
Horn-SHIQ, which includes expressive constructs not supported in any variant
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of EL, such as universal restrictions (∀R.A), inverse roles, and number restric-
tions. The addition of these constructs led to new challenges for the development
of consequence-based calculi. In particular, it becomes necessary to allow for
the derivation of additional types of consequences in order to ensure complete-
ness. For instance, a consequence like A � ∃R.B combined with an axiom like
A � ∀R.C entails consequence A � ∃R.(B � C), which then becomes relevant
for deriving additional atomic subsumptions. The calculus in [24] allows for con-
sequences of the forms

�n
i=1 Ai � B and

�n
i=1 Ai � ∃R.(

�m
j=1 Bj), where Ai, Bj

are atomic concepts, and R is an atomic role. These inferences may lead to con-
junctions that can be as long as the number of atomic concepts in the ontology.
This syntax is also useful to represent consequences of axioms involving number
restrictions, as seen in the following inference rule from the calculus in [24]:

R5

M � ∃R1.N1 N1 � B R1 � S ∈ O
M � ∃R2.N2 N2 � B R2 � S ∈ O M � ≤ 1S.B

M � ∃R1.(N1 � N2)

In this inference rule, M , N1, and N2 are conjunctions of atomic concepts, B
is an atomic concept, and R1,R2, and S are atomic roles. The calculus shares
many desirable properties with the ELH procedure: it is worst-case optimal (it
works in exponential time for a logic that is ExpTime-complete) and it allows for
one-pass classification. Furthermore, it displays a pay-as-you-go behaviour, as it
becomes analogous to the ELH procedure on an ELH ontology. Such behaviour
is very convenient in applications, because the calculus can deal very effectively
with ontologies that are “mostly” ELH. This was proved in practice when the
calculus was implemented in a reasoner called CB [24], which classified for the
first time the full version of the GALEN ontology.

3.3 Reasoning with Nominals: Horn-SROIQ and ELHO
Although the calculus in [2] for EL++ included nominals, it was later found
to be incomplete for handling them [26]. Complete consequence-based calculi
for logics involving nominals were later developed for Horn-SROIQ [35] and
ELHO [26]. In order to ensure completeness, the calculus in [26] had to keep
track of “conditional” consequences, which only hold in models where some
atomic concepts are non-empty. To see why this may be necessary, observe that
an axiom of the form C � {o} in an ontology splits the models of the ontology
into two kinds: those in which C is interpreted as the empty set and those where
C is interpreted as a singleton; this obviously affects also the subconcepts of C.

Both of the aforementioned calculi introduced additional syntax to keep track
of this kind of consequences. The Horn-SROIQ calculus in [35] introduces a
predicate rel which identifies non-empty concepts and inference rules to prop-
agate this predicate when necessary. Similarly, the ELHO calculus from [26]
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introduces a new type of consequences which can be written as G : C � D.
This represents that inclusion C � D holds whenever concept G is not empty.
Furthermore, the calculus also uses the dependency G � H to represent that
concept H is non-empty whenever concept G is non-empty. Notice that such
consequences are not always “local” in the sense described in Sect. 2.2; indeed,
the restriction to local consequences is difficult to marry with the presence of
nominals in ontologies. It is often possible, however, to carefully constrain the
syntax of consequences so that, in the absence of nominals, local forms are
recovered.

Another interesting aspect of the Horn-SROIQ method is the introduction
of a predicate equal to represent equality between individuals, together with
inference rules that ensure such relations are congruences. Later calculi for DLs
with number restrictions and/or nominals also require the use of equalities, as we
show in Sect. 5.1, but instead of axiomatising equality, they use paramodulation-
based inference rules [47]. The Horn-SROIQ calculus introduces also a rule to
deal with the “terrible trifecta,” a simultaneous interaction between nominals,
inverse roles, and functional restrictions. The rule ensures that any two concepts
or types related by a role R to the same nominal, and such that the inverse of R
is functionally restricted, are satisfied by a single, unique domain element. This is
recorded with the help of a special predicate same, which ensures that such a pair
behaves, for the purposes of the calculus, like a nominal. Similar strategies have
been used for other consequence-based calculi or in other approaches to reasoning
for SHOIQ, such as the resolution-based calculus in [28] or the tableau calculus
in [19].

Both calculi are worst-case optimal, and the ELHO algorithm is also pay-as-
you-go in the sense that it reduces to the standard ELH calculus in the absence
of nominals.

3.4 Embracing Disjunction: ALCH
The consequence-based calculus presented in [38] for ALCH was the first to
support concept disjunction. The introduction of disjunction leads to difficulties:
while previous calculi are such that a canonical model can be built from the
saturated set of consequences to disprove any subsumption A � B absent from
this set, such a model may not exist for ontologies with disjunction. The calculus
proposed in [38] used an explicit representation of disjunctions which was similar
to that used in resolution calculi for fragments of first-order logic. The calculus
also introduced ordering, which dramatically reduces the number of inferences to
consider [36] and helps to single out a model as “canonical,” in case one exists.
Some of the more recent calculi have also adopted this approach for dealing with
disjunction [10,39].

This calculus, like those for Horn DLs, transforms the input ontology into a
normal form, which now allows for conjunctions of concepts of the form A, ∃R.A
and ∀R.A, and negation in front of atomic concepts. The presence of disjunction
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increases the complexity of the representation of consequences, which may now
be of the form:

n�

i=1

Li �
m⊔

i=1

Ai 
 ∃R.

(
k�

i=n+1

Li

)
,

where each expression of the form Li is an atomic concept or its negation, and
each Ai is an atomic concept. Once again, the calculus is worst-case optimal
and pay-as-you-go, as it simulates the Horn-ALCH and the ELH approaches for
ontologies of the corresponding expressivity. One-pass classification is retained.

4 Interlude: A Unifying Framework for CB Reasoning

In 2014, Simanč́ık and colleagues [39] extended the calculus in [38] to ALCHI
while ensuring worst-case optimality, pay-as-you-go behaviour, and one-pass
classification. As part of this work, they introduced a unifying framework
for consequence-based reasoning that explicitly captures many of the aspects
described in Sect. 2.2. This framework describes a graph-based context struc-
ture, where each node represents a context and the presence of an edge between
contexts indicates that information can be transferred between those contexts.
The set S of consequences derived by the calculus is split into sets S(v) associ-
ated to each context v. Furthermore, each context is associated to a particular
set of concepts, called the core of the context; consequences in S(v) are relevant
for all elements of a model that satisfy the core. Inference rules are applied to
individual contexts, or to pairs of contexts that share an edge. Edges between
contexts v and w are defined in cases where each element satisfying the core of
v may have an R-filler that satisfies the core of w for some role R; each edge
is labelled by the existential concept generating this connection. Figure 3 shows
how the example of Sect. 2.2 could look like in this framework.

Fig. 3. Context structure for the example in Sect. 2.2. Cores of contexts are written
inside their respective nodes, and below each node all the consequences derived for that
context are listed. The first three inclusions in each of these sets are derived first and
left-to-right; the inclusions involving C are derived afterwards and right-to-left.

Contexts in the example have only atomic concepts as cores; however, con-
junctions of concepts are also allowed to represent cores. This may be relevant
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whenever consequences of the form � � ∃R.A and � � ∀R.B appear in the
same context; in that case, one may wish to draw an edge to a context with core
A�B. However, the calculus also makes it possible to draw an edge to a context
with core A. Furthermore, if the context with the chosen core does not exist, the
calculus may create it fresh. The policy for deciding how to draw edges between
contexts and whether to introduce new contexts or re-use those already in the
context structure is a parameter of the calculus called the expansion strategy.
By suitably choosing this parameter, the framework can be used to simulate
some of the calculi from previous sections. For instance, by allowing only cores
with atomic concepts, the calculus described in Sect. 2.1 can be simulated; in
contrast, to simulate the Horn-SHIQ calculus in [24], we need a strategy such
that, for every relevant conjunction of atomic concepts M , a new context vM is
introduced with core M .

The calculus for ALCHI discussed in this section does not support nominals,
and therefore it cannot simulate the calculi described in Sect. 3.3. However, one
can find correspondences between constructs introduced in Sect. 3.3 to deal with
nominals, and properties of a context structure created according to a suitable
expansion strategy. For instance, assume an expansion strategy that uses a suc-
cessor context vA with core A whenever � � ∃R.A appears in a context w (and
otherwise it re-uses a context v⊥ with empty core); then, the existence of a path
from a context u to a context v implies that coreu � corev, where � is the reach-
ability relation in the ELHO calculus in Sect. 3.3. Similarly, any context clause
Γ � Δ in a context v reachable from context u can be seen as a conditional
consequence coreu: Γ � Δ from the ELHO calculus. These correspondences are
exploited by some of the calculi for DLs with nominals discussed in Sect. 5.1.

5 Recent Developments: 2014–2019

This section discusses recent developments in consequence-based reasoning,
including the extension of calculi to expressive DLs and the hybridisation of
this approach with other well-known reasoning techniques.

5.1 Calculi for Expressive DLs

The framework described in Sect. 4 has been recently modified and extended to
the DLs SRIQ [10] and SROIQ [43]. One of the most noteworthy aspects of
these calculi is their use of first-order logic syntax with equality to represent both
ontology axioms and derived consequences. This choice is motivated by the need
of representing consequences stemming from the interactions between number
restrictions, inverse roles, and/or nominals. Equalities participate in inferences
that implement well-known paramodulation rules for equality reasoning [47].

These calculi are still pay-as-you-go and retain the one-pass classification
property. In addition, the SRIQ calculus is also worst-case optimal, while the
SROIQ calculus terminates within worst-case optimal bounds except when
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ontologies feature a simultaneous interaction of disjunction with nominals,
inverse roles, and “at-most” quantifiers. In practice, these occurrences are very
rare.

The SRIQ calculus has been implemented in the reasoner Sequoia [11],
which has proved to be competitive with state-of-the-art reasoners despite being
an early prototype. The main outstanding practical issues in systems such as
Sequoia are the following:

– The application of inference rules in the system can lead to the generation of
clauses involving a large number of disjuncts. Resolution of such clauses with
others can lead to combinatorial explosions due to repetitive inferences. For
instance, suppose a clause of the form � → A1(x) ∨ · · · ∨ An(x) is generated
in a context, and suppose the ontology contains clause Ai(x) → Bi(x)∨Ci(x)
for each 1 ≤ i ≤ n. If the ordering between literals in the context makes
atoms of the form Bi(x) and Cj(x) smaller than atoms of the form Ak(x),
the calculus will derive 2n clauses in the context. Most of these clauses are
typically irrelevant since they do not participate in the derivation of target
subsumptions.

– The system performs poorly in the presence of number restrictions involving
elements of the model with many different successors by a particular role. For
instance, if clauses {� → R(x, fi(x)) | 1 ≤ i ≤ n} are derived in a context,
and the ontology contains a number restriction enforcing that no element
may have more than m successors by R, then the calculus will derive

(
n

m+1

)

different clauses. Furthermore, each of these clauses will have no less than(
m+1
2

)
disjuncts in the head; these long disjunctions may, in turn, exacerbate

the issue discussed above.

5.2 Hybrid Methods

The consequence-based approach has been successfully combined with other well-
known reasoning methods that can help overcome some of the aforementioned
practical limitations. It has been suggested that the problem of generating long
disjunctions may be addressed by means of an algebraic reasoner [28]. There
currently exist consequence-based calculi that follow this strategy. The calculus
in [45] for the DL ELQ incorporates calls to an external Integer Linear Program-
ming component that is able to find solutions to algebraic constraint satisfaction
problems based on the numeric restrictions appearing in derived consequences.
This approach has been extended to the DL SHOQ in [23]. From a theoretical
perspective, it remains unclear whether these calculi are worst-case optimal or
whether they show pay-as-you-go behaviour. However, these systems have been
implemented into the reasoner Avalanche [45], which shows promising results in
ontologies with large number restrictions.

A different kind of hybridisation is proposed in [41], which describes the rea-
soner Konclude. This system works very efficiently in a wide range of expressive
DLs. In contrast to all consequence-based calculi discussed so far, Konclude is
based on a tableau calculus, and therefore it attempts to answer queries by build-
ing a model. However, Konclude uses an incomplete version of a consequence-
based calculus in order to generate as many (sound) consequences of the ontology
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as possible. These consequences are then used to aid in the construction of the
tableau, and the result is a system that is highly competitive even in lightweight
description logics such as EL.

Another method for building a hybrid of tableau and consequence-based cal-
culus is presented in [25] for the description logic ALCHI. This calculus is once
again based in deriving ontology entailments. However, it deals with disjunction
in a way that is very different from the method described in Sect. 3.4. Instead of
freely using resolution-like inference rules to generate long disjunctions, this algo-
rithm makes non-deterministic choices during the saturation procedure which
are reminiscent of those used by tableau-based algorithms. This calculus can
explore alternative branches and backtrack when necessary, unlike previously
discussed consequence-based calculi, which are purely deterministic. This pre-
vents the problem of generating long disjunctions. The calculus is also worst-case
optimal and enjoys pay-as-you-go behaviour. A prototype of this calculus has
been implemented, and the evaluation shows promising results.

The reasoner MORe [1] provides yet another way of combining consequence-
based reasoning with other techniques. The algorithm presented in [1] addresses
the problem of ontology classification by decomposing an input ontology into
modules, and then classifying each module using a reasoner most suited for
the language used in that module. MORe has shown it can effectively classify
ontologies using a consequence-based reasoner on ELH modules, and a reasoner
such as HermiT [17], which is based on a tableau calculus, on the remaining
modules. This approach is particularly useful for ontologies which have most
axioms in a lightweight DL and a few axioms in an expressive logic.

6 Conclusion and Future Directions

Consequence-based reasoning has been a very active area of research for the
last 15 years, and progress on this field shows no signs of slowing down. There
is still no consequence-based calculi covering all expressive features of OWL 2
DL, as there is yet little progress in the area of consequence-based reasoning
in expressive DLs with concrete domains. Further research is also needed in
the area of optimisations and implementation techniques for consequence-based
reasoning, especially for those calculi for the more expressive DLs. Furthermore,
it is yet unclear whether hybrid approaches with algebraic reasoning and non-
determinism can be effectively implemented for the whole of SROIQ.

The application of consequence-based calculi to problems other than sub-
sumption or classification (such as conjunctive query answering) remains also
a fairly unexplored topic. A solid basis for this line of research is provided by
“combined” approaches [13,14,29] to query answering that start with a mate-
rialisation phase similar to saturation in consequence-based reasoning, which is
then followed by query-rewriting techniques.

For all these reasons, we think that consequence-based reasoning will continue
being a dynamic area of research, one which holds promise for delivering the next
generation of robust, efficient, and scalable reasoners for Description Logics.
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Abstract. The probabilistic Description Logic ALCME extends the clas-
sical Description Logic ALC with probabilistic conditionals of the form
(D|C)[p] stating that “D follows from C with probability p.” Condi-
tionals are interpreted based on the aggregating semantics where prob-
abilities are understood as degrees of belief. For reasoning with proba-
bilistic conditional knowledge bases in ALCME, the principle of maximum
entropy provides a valuable methodology following the idea of completing
missing information in a most cautious way. In this paper, we give a guid-
ance on calculating approximations of the maximum entropy distribution
for ALCME-knowledge bases. For this, we discuss the benefits of solving
the dual maximum entropy optimization problem instead of the primal
problem. In particular, we show how representations of approximations of
the maximum entropy distribution can be derived from the dual problem
in time polynomial in the size of the underlying domain. The domain is
the crucial quantity in practical applications. For a compact representa-
tion of the objective function of the dual maximum entropy optimization
problem, we apply the principle of typed model counting.

Keywords: Probabilistic Description Logics · Aggregating semantics ·
Principle of maximum entropy · Polynomial-time optimization ·
Typed model counting

1 Introduction

Description Logics (DLs) [1] constitute a well-investigated family of logic-based
knowledge representation languages. In Description Logics it is possible to rep-
resent terminological (i.e., conceptual) knowledge which can then be used to
state factual knowledge about single individuals and objects. In many appli-
cation domains, however, knowledge is not always certain which motivates the
development of extensions of Description Logics that deal with uncertainty.

One of the most powerful frameworks for uncertain reasoning is probability
theory, as it combines qualitative as well as quantitative aspects of uncertainty.
However, reasoning based on probabilities is problematic if the available infor-
mation is incomplete what is usually the case. For example, the popular Bayesian
network approach [6,18] does not work in such cases. Here, we focus on the prin-
ciple of maximum entropy [15] which yields a unique probability distribution
c© Springer Nature Switzerland AG 2019
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that satisfies prescribed conditional probabilities and enriches the incomplete
information in a most cautious way [9,22]. Therewith, it constitutes a most
appropriate form of commonsense probabilistic reasoning [16].

In this paper, we investigate maximum entropy calculations for the proba-
bilistic Description Logic ALCME [25]. The logic ALCME extends the prototypical
Description Logic ALC with the possibility of representing probabilistic condi-
tional statements of the form “if C holds, then D follows with probability p” with
probabilities understood as degrees of belief based on the aggregating seman-
tics [11]. The aggregating semantics generalizes the statistical interpretation of
conditional probabilities by combining it with subjective probabilities based on
probability distributions over possible worlds. Therewith, it mimics statistical
probabilities from a subjective point of view. The core idea of the aggregating
semantics for Description Logics is to define the probability of a concept C by the
sum of the probabilities of all possible worlds, here classical DL-interpretations,
weighted by the number of individuals that satisfy the concept in the respective
possible world, i.e., P(C) =

∑
I |CI | · P(I). This interpretation is in contrast to

other approaches for probabilistic Description Logics which handle either subjec-
tive [12] or statistical probabilities [19], or are essentially classical terminologies
over probabilistic databases [2].

The models of ALCME-knowledge bases are probability distributions over
a set of DL-interpretations that serve as possible worlds. We assume that all
these DL-interpretations are defined with respect to the same fixed finite domain
Δ in order to ensure that they have the same scope and that the counts of
individuals considered in the aggregating semantics are well-defined. In many
application domains, the size k of the domain Δ is large. At the same time,
it crucially influences the costs of maximum entropy calculations, as the size
of the sample space, i.e. the number of possible worlds, is exponential in k.
In [25] we have shown that drawing inferences in ALCME (without assertions) is
possible in time polynomial in k once an approximation of the maximum entropy
distribution is given. Approximations are necessary since there is no closed form
of the maximum entropy distribution in general. The complexity results in [25]
are based on sophisticated strategies on consolidating and counting possible
worlds based on the notions of conditional structures of possible worlds [10] and
of types in Description Logics [20,21].

The main contributions of the current paper are the following: We extend
the probabilistic Description Logic ALCME with assertions in an ABox, which
have been left out in [25]. We discuss typed model counting [24] as a superor-
dinated framework for the counting strategies presented in [25]. The benefit of
typed model counting is that it can deal with assertional knowledge which is not
directly possible with the typed-based approach in [25]. And, mainly, we investi-
gate polynomial time algorithms for calculating approximations of the maximum
entropy distribution. Therewith, we close the gap of calculating the maximum
entropy distribution when drawing inferences in ALCME which has been left for
future work in [25].
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Table 1. Compounded concepts and their semantics.

Concept Syntax Semantics

Top concept � ΔI

Bottom concept ⊥ ∅
Negation ¬C ΔI\CI

Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Existential restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}
Universal restriction ∀r.C {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ rI ⇒ y ∈ CI}

The rest of the paper is organized as follows: In Sect. 2, we recall the syntax
and the semantics of the Description Logic ALCME and extend it with assertions.
After that, we discuss polynomial time algorithms for calculating approxima-
tions of the maximum entropy distribution for ALCME-knowledge bases (Sect. 3).
Finally, we elaborate on typed model counting for ALCME and highlight its
importance for the aforementioned maximum entropy calculations in Sect. 4
before we conclude.

2 The Description Logic ALCME

Let NI , NC , and NR be disjoint sets of individual, concept and role names,
respectively. A concept is either a concept name or of the form

�, ⊥, ¬C, C � D, C � D, ∃r.C, ∀r.C,

where C and D are concepts and r is a role name. An interpretation I = (ΔI , ·I)
is a tuple of a non-empty set ΔI called domain and an interpretation function ·I
that maps every individual name a ∈ NI to an element aI ∈ ΔI , every concept
name C ∈ NC to a subset CI ⊆ ΔI , and every role name r ∈ NR to a binary
relation rI ⊆ ΔI ×ΔI . The interpretation of compounded concepts is recursively
defined as shown in Table 1.

A general concept inclusion is a statement of the form (C 
 D) where C and
D are concepts. An interpretation I satisfies a general concept inclusion (C 

D), written I |= (C 
 D), iff CI ⊆ DI . Therewith, general concept inclusions
allow one to express terminological knowledge like “every individual that has
property C also has property D.” On the contrary, assertional knowledge is
represented in ALCME by statements of the form A(a) or r(a, b) where a and
b are individual names, A is a constant name, and r is a role name. While
A(a) states that “a has property A,” r(a, b) stands for“a is related to b via r.”
Formally, an assertion A(a) holds in an interpretation I, written I |= A(a), iff
aI ∈ AI . Analogously, I |= r(a, b) iff (aI , bI) ∈ rI . General concept inclusions
and assertions express strict knowledge that is certainly true.
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In many application domains like medicine, however, it is necessary to for-
malize uncertain knowledge. For example, the heart of most humans is located
on the left-hand side of their thorax. However, there are a few people with
their heart on the right-hand side. In order to deal with this kind of uncertain
knowledge, we equip the language ALCME with (probabilistic) conditionals. A
conditional (D|C)[p], where C and D are concepts and p ∈ (0, 1) is a probabil-
ity, is a statement of the form “if C holds, then D follows with probability p.”
Here, the probability p is understood as a reasoner’s belief in D in the presence
of C rather than a statistical probability. Accordingly, the conditional

(HasHeartOnTheirLeft|Patient)[0.98]

could mean that a doctor believes that her patients typically have their heart
on the left-hand side, here with probability 0.98.

The semantics of conditionals is formally given by the so-called aggregating
semantics [23]. Before we discuss the aggregating semantics in detail, we define
knowledge bases and make some remarks.

Definition 1 (Knowledge Base). Let T ,A, and C be finite sets of general
concept inclusions, assertions, and of conditionals, respectively. Then, the tuple
R = (T ,A, C) is called a knowledge base.

Remarks

– Disallowing probabilities p = 0 and p = 1 in conditionals does not limit the
expressivity of the language as it turns out that a conditional of the form
(D|C)[p] is semantically equivalent to the general concept inclusion (C 
 D)
iff p = 1 and to (C 
 ¬D) iff p = 0 (cf. Definition 2). Hence, the restriction p ∈
(0, 1) just means a clear separation of strict terminological knowledge in form
of general concept inclusions and of uncertain beliefs in form of conditionals.

– Without loss of generality, we assume that concepts C in existential restric-
tions (∃r.C) and in universal restrictions (∀r.C) are concept names. If not,
introduce a fresh concept name A, replace C by A and add the general concept
inclusions (A 
 C) and (C 
 A) to the knowledge base.

– When investigating computability, we assume that input probabilities, i.e.
probabilities in a knowledge base R = (T ,A, C), are rational numbers. We
refer to the conditionals in C with (Di|Ci)[si/ti] for i = 1, . . . , n where n = |C|
and si, ti are natural numbers satisfying 0 < si < ti.

– The language ALCME as defined in this paper does not allow for uncertain
assertions. This is a design decision following the idea that assertional knowl-
edge is (usually) unambiguously true or false and can be verified or falsified
by observation. This design decision makes formal arguments a bit simpler
but it is not a necessary precondition for our further analysis.

The formal semantics of conditionals and of knowledge bases is based on prob-
ability distributions over possible worlds. A possible world is a formal descrip-
tion of the possible state of the real world according to the reasoner’s knowledge.
Here, classical DL-interpretations serve as possible worlds. We make the follow-
ing prerequisites:
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(A1) NI , NC , and NR are finite sets.
(A2) ΔI = NI =: Δ and aI = a for all a ∈ NI and for all interpretations I.

The second assumption (A2) is known as the unique name assumption. Both
assumptions (A1) and (A2) together imply a fixed finite domain Δ for all inter-
pretations I, which ensures that there are only finitely many interpretations all
of which have the same scope. Therewith, all interpretations are comparable and
entail a well-defined probability space. We call the set I consisting of all inter-
pretations that satisfy the assumptions (A1) and (A2) the set of possible worlds.
A probability distribution P on the set of possible worlds can then be seen as a
reasoner’s epistemic state, and the probability of a single interpretation I is the
degree of the reasoner’s belief in the fact that I describes the real world prop-
erly. In this context, a knowledge base is a set of constraints on the probability
distributions that may serve as the reasoner’s epistemic state:

Definition 2 (Aggregating Semantics). Let R = (T ,A, C) be a knowledge
base, and let I be the set of possible worlds. A probability distribution P : I→ [0, 1]
is a model of R iff both

1. P(I) = 0 for every I ∈ I with I �|= f for any f ∈ T ∪ A,
2. P |= (D|C)[p] for every conditional (D|C)[p] ∈ C, i.e.

∑
I∈I |CI ∩ DI | · P(I)
∑

I∈I |CI | · P(I)
= p. (1)

The first condition (1.) of Definition 2 states that all the facts in R, either
general concept inclusions or assertions, have to be true in interpretations with
non-zero probability. Conversely, the probabilities of the interpretations that
satisfy all general concept inclusions and all assertions have to sum up to 1,
hence ∑

I∈I
I|=T ,I|=A

P(I) = 1.

We denote the set of the interpretations that satisfy all general concept inclusions
and all assertions in R by IR, i.e.

IR = {I ∈ I | I |= T and I |= A}.

Equation (1), which is the aggregating semantics for probabilistic condition-
als, captures the definition of conditional probabilities by weighting probabili-
ties P(I) with the number of individuals for which the conditional (D|C)[p] is
applicable (|CI |) respectively verified (|CI ∩ DI |) in I. Hence, the aggregating
semantics mimics statistical probabilities from a subjective point of view, and
probabilities can be understood as degrees of belief in accordance with type 2
probabilities in the classification of Halpern [8]. If P is the Dirac distribution
which is the probability distribution that assigns the probability 1 to a single
interpretation I and which again means that the reasoner is certain that I is the



Maximum Entropy Calculations 593

real world, then the aggregating semantics means counting relative frequencies
within I. To the contrary, if P is the uniform distribution on IR which means
that the agent is maximally unconfident with her beliefs, then the aggregating
semantics means counting relative frequencies spread over all interpretations.
Finally, if |Δ| = 1, the aggregating semantics boils down to computing con-
ditional probabilities. Note that Eq. (1) implicitly states that the conditional
(D|C)[p] has to be applicable in at least one interpretation in IR.

A knowledge base with at least one model is called consistent. Note that
consistency depends on the size of the underlying domain Δ. Consistent knowl-
edge bases typically have infinitely many models (even if the domain and hence
the sample space is finite). For reasoning tasks it is gainful to select a cer-
tain one among them, as reasoning based on the whole set of models leads to
monotonic and often uninformative inferences. Any selected model P yields the
non-monotonic inference relation

R |=P (D|C)[p] iff P |= (D|C)[p] (2)

for conditionals (D|C)[p]. For factual knowledge f , whether f = (C 
 D) is a
general concept inclusion or an assertion f = C(a) or f = r(a, b), respectively,
one has R |=P f iff

∑
I|=f P(I) = 1. Obviously, all general concept inclusions,

assertions, and conditionals in R can be inferred from R w.r.t. the relation |=P .
From a commonsense point of view, the maximum entropy distribution PME

R
is the model of R which fits best to the model selection task. The maximum
entropy distribution is the unique distribution among all the models of R which
has maximum entropy. From an information theoretical point of view, it adds as
less information as possible to R. Hence, the benefit of the maximum entropy
distribution is that it assigns a concrete probability p to a query conditional
(D|C) (and not a whole interval of conceivable probabilities) while being as
cautious as possible. The distinct probability p can then be seen as a most
expected value of observing D under the presence of C.

Definition 3 (Maximum Entropy Distribution). Let R be a consistent
knowledge base, and let P be the set of all probability distributions over I. The
probability distribution

PME
R = arg max

P∈P
P|=R

−
∑

I∈I

P(I) · log P(I) (3)

is called the maximum entropy distribution of R. In Eq. (3), the convention
0 · log 0 = 0 applies.

Since the maximum entropy distribution PME
R is the solution of a nonlinear

optimization problem, there is no closed form of PME
R in general. Hence, PME

R has
to be calculated approximatively. We will investigate this approximation process
in the next section.
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3 Calculating the Maximum Entropy Distribution PME
R

Let Δ be a fixed finite domain and let R = (T ,A, C) be a consistent knowledge
base. Computing the maximum entropy distribution PME

R efficiently is a non-
trivial but considerable problem. Here, the domain size k := |Δ| is the crucial
quantity, since it is typically large in application domains, and the size of PME

R ,
more precisely the underlying sample space, depends exponentially on k. There-
fore, we are interested in algorithms that approximate PME

R in time polynomial
in k.

Recall our convention C = {(D1|C1)[s1/t1], . . . , (Dn|Cn)[sn/tn]}. Since it
holds that PME

R (I) = 0 for all I ∈ I\IR due to Definition 2, it is sufficient
to maximize the entropy w.r.t. the interpretations in IR when calculating PME

R .
More precisely, let P∗ be the solution of the optimization problem (cf. Eq. (3))

maximize −
∑

I∈IR

P(I) · log P(I) (MER)

subject to
∑

I∈IR

P(I) = 1

∑

I∈IR

(
ti · |CI

i ∩ DI
i | − si · |CI

i |
)

· P(I) = 0 i = 1, . . . , n

P(I) ∈ R≥0 ∀I ∈ IR.

Then,

PME
R (I) =

{
P∗(I), I ∈ IR

0, otherwise
. (4)

For the rest of the paper, we assume that (MER) has a feasible point in its
relative interior, i.e., we assume that there is a positive probability distribution P
which satisfies the constraints of (MER). In the most general sense, this condition
is known as Slater’s condition (cf. [3]). If Slater’s condition holds, the solution
of (MER) lies in the relative interior of (MER), too. Again, this is a well-known
result that is called Paris’ open-mindedness principle in the field of knowledge
representation and reasoning [17]. As a consequence of this principle, it holds
that 0 < PME

R (I) < 1 for all I ∈ IR.
Actually, the adherence of Slater’s condition is a restriction for the knowledge

base R and means that strict knowledge has to be formalized by general concept
inclusions or assertions and must not be the implicit outcome of conditionals.
We illustrate this by means of an example.

Example 1. Let A and B be concept names, and let R1 = (T1,A1, C1) be a
knowledge base with T1 = ∅, A1 = ∅, and

C1 = {(A � B|�)[1/3], (A � ¬B|�)[1/3], (¬A � B|�)[1/3]}.

Obviously, the conditional (¬A � ¬B|�)[0] can be inferred from R1. Hence,
PME

R1
(I) = 0 for all interpretations I with (¬A � ¬B)I �= ∅. Since I ∈ IR1
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for these interpretations I, Slater’s condition does not hold. To overcome this
problem, one can make the implicit knowledge (¬A � ¬B|�)[0] explicit and add
the general concept inclusion (� 
 A � B) to T1 such that one obtains the
knowledge base R′

1 = (T ′
1 ,A1, C1) with T ′

1 = {� 
 A�B} which is semantically
equivalent to R1. Now, I ∈ I\IR′

1
for interpretations I with (¬A � ¬B)I �= ∅.

As required, PME
R′

1
(I) = 0 holds for these interpretations due to Condition (1.) of

Definition 2, but the interpretations are excluded from the optimization problem
(MER′

1
). As a consequence, Slater’s condition is recovered for R′

1. �

Knowledge bases that entail the adherence of Slater’s condition are called p-
consistent [7]. As shown in Example 1, Slater’s condition can be established by
prescient knowledge engineering (or, mathematically, by linear programming).
For p-consistent knowledge bases, we may reduce the domain of (MER) to the
positive reals:

maximize −
∑

I∈IF

P(I) · log P(I) (ME+
R)

subject to
∑

I∈IF

P(I) = 1

∑

I∈IF

(
ti · |CI

i ∩ DI
i | − si · |CI

i |
)

· P(I) = 0 i = 1, . . . , n

P(I) ∈ R>0 ∀I ∈ IR.

According to [3], the optimization problem (ME+
R) is convex and can be

transformed into an equivalent self-concordant optimization problem in standard
form. Basically, one has to make the domain constraints P(I) ∈ R>0 explicit
by adding the constraints P(I) > 0 to the optimization problem. We do not
discuss the theory of self-concordant problems here but note that optimization
problems of that form can be solved up to any fixed precision in polynomial
time by so-called interior point methods [14]. However, there are two reasons
why solving (ME+

R) in this way is problematic:

– The number of constraints in (ME+
R) is exponential in k since |IR| is expo-

nential in k, and hence, solving (ME+
R) is exponential in k, too, even for the

efficient interior point methods.
– The complexity results for the interior point methods hold modulo an oracle

which returns the values of the objective function of the problem, which is
−

∑
I∈IR P(I) · log P(I) in this case, and the gradient thereof, at any feasible

point [14]. However, the exact evaluation of the objective function of (ME+
R)

is possible in real number arithmetic only, and hence, the complexity results
hold only over the reals, too.
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A better idea is to investigate the unconstrained optimization problem dual
to (ME+

R) which is, following the method of Lagrange multipliers (cf. [3]),

maximize − log
( ∑

I∈IR

exp(−
n∑

i=1

gi(I) · νi)
)

(MEd
R)

ν ∈ R
n,

in which we abbreviated

gi(I) = ti · |CI
i ∩ DI

i | − si · |CI
i |

for all I ∈ IR and i = 1, . . . , n. The optimization problem (MEd
R) is convex,

and, due to the strong duality between (ME+
R) and (MEd

R), has a unique solution
ν∗ ∈ R

n from which the solution of the primal problem (MER) can be derived
by

P∗(I) =
exp(−

∑n
i=1 gi(I) · ν∗

i )
∑

I′∈IR exp(−
∑n

i=1 gi(I ′) · ν∗
i )

, I ∈ IR.

The benefit of (MEd
R) is that the length of the solution vector is indepen-

dent of the domain size. Unfortunately, the objective function of (MEd
R) is also

evaluable exactly only over the reals. To overcome this obstacle, we substitute

αi = exp(−νi), i = 1, . . . , n, (5)

and observe the unconstrained optimization problem

minimize
∑

I∈IR

n∏

i=1

α
gi(I)
i (MEα

R)

α ∈ R
n
>0.

equivalent to (MEd
R). The optimization problem (MEα

R) eventually combines
a vast number of beneficial properties:

– Since (5) is a bijection between R and R>0, the problem (MEα
R) has a unique

solution α∗ ∈ R
n
>0 which satisfies

PME
R (I) =

∏n
i=1(α

∗
i )

gi(I)

∑
I′∈IR

∏n
i=1(α

∗
i )gi(I′) , I ∈ IR. (6)

– The length of the solution vector of (MEα
R) is independent of the domain

size k and, therewith, a very compact representation of PME
R .

– The objective function φR(α) =
∑

I∈IR

∏n
i=1 α

gi(I)
i can be computed exactly

at any rational point α ∈ Q
n
>0. Furthermore, the techniques used in [25]

guarantee that these computations can be performed in time polynomial in
k for ALCME-knowledge bases without assertions. In Sect. 4 we will discuss a
method with which it is possible to handle assertions, too.
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– Once a (rational) approximation β ∈ Q
n
>0 of α∗ is computed, an approxima-

tion Pβ
R of the maximum entropy distribution PME

R can be computed exactly
via (cf. Eqs. (4) and (6))

Pβ
R(I) =

⎧
⎪⎨

⎪⎩

∏n
i=1 β

gi(I)
i

∑
I′∈IR

∏n
i=1 β

gi(I′)
i

, I ∈ IR

0, otherwise

.

The drawback of the Substitution (5) is that (MEα
R) is no longer convex

in general. Hence, complexity results for convex optimization problems do not
apply in contrast to (MEd

R). However, provided that upper and lower bounds for
the optimal solution α∗ are known, the following theorem applies.

Theorem 1 (cf. [13]). Let f, g : Rn → R be Lipschitz continuous functions,
i.e., there is K ∈ R>0 with ‖f(x) − f(y)‖ ≤ K · ‖x − y‖ for all x,y ∈ R

n (the
same for g), and let λ ∈ R. If the optimization problem

minimize f(x) (OptLip)
subject to g(x) ≤ 0

|xi| ≤ λ i = 1, . . . , n

x ∈ R
n

has a solution, then (OptLip) has an additive polynomial time approximation
scheme (PTAS) modulo an oracle which returns function evaluations of f and g.

For a proof and for technical details of Theorem1, especially for precise
complexity bounds, please see [13]. In order to apply Theorem1 to our dual
maximum entropy optimization problem (MEα

R), we set

f(x) =
∑

I∈IR

n∏

i=1

x
gi(I)
i , g(x) = l − xi, λ = u,

where 0 < l < u are real numbers. If l ≤ α∗
i ≤ u for all i = 1, . . . , n, then f

is obviously Lipschitz continuous on [l, u]n due to the compactness of [l, u]n, g
is Lipschitz continuous in any case, and (MEα

R) is of the form (OptLip). Hence,
there is a PTAS modulo oracle for (MEα

R) provided that the bounds l and u
are known. Unfortunately, calculating l and u in general is a non-trivial task.
However, we show how these bounds can be calculated in a concrete example.

Example 2. Let A, B, and C be concept names, and let k = |Δ| be the size
of an arbitrary finite domain Δ with k > 0. We consider the knowledge base
R2 = (T2,A2, C2) with T2 = ∅, A2 = ∅, and

C2 = {(C|A)[s1/t1], (C|B)[s2/t2]}.

Even for this simple knowledge base, the solution α∗ = (α∗
1, α

∗
2) ∈ R

2
>0 of the

optimization problem (MEα
R2

) has no closed form expression. Actually, this holds
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for any domain size k and has already been noticed for the case k = 1 in [10]. The
knowledge base R2 is of interest because it is part of the antecedent conjunction
problem:

For which probability q ∈ [0, 1] does R2 |=PME
R2

(C|A � B)[q] hold?

An answer to that question would reveal clearly how maximum entropy inference
combines evidences.

Here, we calculate lower and upper bounds for the solution α: The objective
function φR2(α) of (MEα

R2
) is

(
αt1−s1

1 αt2−s2
2 +α−s1

1 α−s2
2 +αt1−s1

1 +αt2−s2
2 +α−s1

1 +α−s2
2 +2

)k

=: f(α∗)k. (7)

We will give an explanation for this representation of φ(α) in the next section
(cf. Example (3)). It holds that the gradient of φ(α) vanishes in the minimum
α∗. Hence,

0 =
∂

∂α1
φ(α∗) =

∂

∂α1
f(α∗)k

=
(
(t1 − s1) · (α∗

1)
t1−s1−1 · (α∗

2)
t2−s2 + (−s1) · (α∗

1)
−s1−1 · (α∗

2)
−s2

+ (t1 − s1) · (α∗
1)

t1−s1−1 + (−s1) · (α∗
1)

−s1−1
)

· k · f(α∗)k−1

Since α∗
1, α

∗
2 > 0, the second factor k ·f(α∗)k−1 of the right-hand side cannot be

zero, and the first factor must be zero. We multiply both sides with (α∗
1)s1+1·(α∗

2)s2

k·f(α∗)k−1

and get

0 = (t1 − s1) · (α∗
1)

t1 · (α∗
2)

t2 − s1 + (t1 − s1) · (α∗
1)

t1 · (α∗
2)

s2 − s1 · (α∗
2)

s2 .

Analogously, we have

0 = (t2 − s2) · (α∗
2)

t2 · (α∗
1)

t1 − s2 + (t2 − s2) · (α∗
2)

t2 · (α∗
1)

s1 − s2 · (α∗
1)

s1 .

The first of these two equations can be solved for α∗
1 and the resulting expression

can be plugged into the second (and vice versa). We get (analogously for the case
the other way around)

0 = (t2 − s2)·
( s1 · (1 + (α∗

2)
s2)

(t1 − s1)·((α∗
2)t2 + (α∗

2)s2)
+

( s1 · (1 + (α∗
2)

s2)
(t1 − s1)·((α∗

2)t2 + (α∗
2)s2)

)s1/t1)

· (α∗
2)

t2 − s2 ·
(
1 +

( s1 · (1 + (α∗
2)

s2

(t1 − s1) · ((α∗
2)t2 + (α∗

2)s2)

)s1/t1)
.

In case of α∗
2 < 1, we estimate

0 ≤ (t2 − s2) ·
( s1

t1 − s1
+

( s1

t1 − s1

)s1/t1)
· 1 + (α∗

2)
s2

(α∗
2)t2 + (α∗

2)s2
· (α∗

2)
t2

− s2 ·
(
1 +

( s1

t1 − s1

)s1/t1)
.
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With
1 + (α∗

2)
s2

(α∗
2)t2 + (α∗

2)s2
· (α∗

2)
t2 =

(α∗
2)

−s2 + 1
(α∗

2)t2−s2 + 1
· (α∗

2)
t2 ≤ 2 · (α∗

2)
t2−s2 ,

it further follows that

l2 :=

⎛

⎜
⎝

s2 ·
(
1 +

(
s1

t1−s1

)s1/t1)

2 · (t2 − s2) ·
(

s1
t1−s1

+
(

s1
t1−s1

)s1/t1)

⎞

⎟
⎠

1/t2−s2

≤ α∗
2.

Otherwise, in case of α∗
2 ≥ 1, we estimate

0 ≥ (t2 − s2) ·
( s1

t1 − s1
+

( s1

t1 − s1

)s1/t1)
· 1 + (α∗

2)
s2

(α∗
2)t2 + (α∗

2)s2
· (α∗

2)
t2

− s2 ·
(
1 +

( s1

t1 − s1

)s1/t1)
.

With
1 + (α∗

2)
s2

(α∗
2)t2 + (α∗

2)s2
· (α∗

2)
t2 =

(α∗
2)

−s2 + 1
(α∗

2)t2−s2 + 1
· (α∗

2)
t2 ≥ 1

2
· (α∗

2)
s2 ,

it follows that

u2 :=

⎛

⎜
⎝

2 · s2 ·
(
1 +

(
s1

t1−s1

)s1/t1)

(t2 − s2) ·
(

s1
t1−s1

+
(

s1
t1−s1

)s1/t1)

⎞

⎟
⎠

1/s2

≥ α∗
2.

Putting both estimations together, we have

min{1, l2} ≤ α∗
2 ≤ max{1, u2},

where l2 and u2 depend on the input probabilities only. Analogously, it holds
that

min{1, l1} ≤ α∗
1 ≤ max{1, u1},

where

l1 :=

⎛

⎜
⎝

s1 ·
(
1 +

(
s2

t2−s2

)s2/t2)

2 · (t1 − s1) ·
(

s2
t2−s2

+
(

s2
t2−s2

)s2/t2)

⎞

⎟
⎠

1/t1−s1

,

u1 :=

⎛

⎜
⎝

2 · s1 ·
(
1 +

(
s2

t2−s2

)s2/t2)

(t1 − s1) ·
(

s2
t2−s2

+
(

s2
t2−s2

)s2/t2)

⎞

⎟
⎠

1/s1

.

For example, if s1
t1

= 3
4 and s2

t2
= 2

5 , one has 1 ≤ α∗
1 ≤ 1, 96 and 0, 59 ≤ α∗

2 ≤ 1.
These estimations can now be used as the starting points for solving (MEα

R)
according to Theorem 1. �

In the next section we focus on the oracle that is needed for Theorem 1. For
this, we make use of the principle of typed model counting [24].
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4 Typed Model Counting for ALCME

Algorithms that solve the optimization problem (MEα
R) in time polynomial in k

require the evaluation of the objective function

φR(α) =
∑

I∈IR

n∏

i=1

α
gi(I)
i

in time polynomial in k. It is not obvious that this is possible since φ(α) is a
sum over all interpretations in IR and |IR| is exponential in k. Hence, a more
compressed, i.e. factorized representation of φ(α) is needed. In particular, it is
not efficient to set up the sum by calculating gi(I), i = 1, . . . , n, for the single
interpretations independently. Instead, we take an individual based perspective:
We characterize individuals by the concepts and role memberships they satisfy,
and we determine which combinations of individuals can occur in an interpreta-
tion in IR. By exploiting combinatorial arguments in order to determine these
combinations, it is possible to simplify computations. As interpretations are con-
sidered jointly in this approach, the number of interpretations becomes simply
a parameter in many expressions.

Formally, setting up φ(α) is a weighted model counting problem where the
interpretations in IR are the models and

∏n
i=1 α

gi(I)
i for I ∈ IR are the weights.

Let R = (T ,A, C) be a p-consistent knowledge base, let I ∈ IR be a fixed
interpretation, and let a ∈ NI be an individual. While a general concept inclusion
(C 
 D) can be satisfied (a ∈ CI ∩DI) or not by the individual a, a conditional
c = (D|C)[p] leads to a three-valued interpretation w.r.t. a:

– The individual a verifies c iff a ∈ CI ∩ DI ,
– a falsifies c iff a ∈ CI\DI ,
– and c does not apply to a iff a /∈ CI .

In order to set up φR(α), more precisely, in order to set up gi(I) for i = 1, . . . , n
and I ∈ IR, it is necessary to record these evaluations of the conditionals in C
for all individuals in NI . Hence, determining the weights of the weighted model
counting problem of setting up φR(α) requires a fine-grained evaluation of the
interpretations in IR. In the following, we carry out this evaluation for all inter-
pretations in one step. For this, we make use of typed model counting [24] which
allows us to determine the weights and to perform weighted model counting
simultaneously. The basic idea of typed model counting is to include algebraic
elements symbolizing verification (vi), falsification (fi), and non-applicability (1)
directly into formulas. When counting the models of the formulas, the algebraic
elements are collected and constitute the weight of the respective model.
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Table 2. Canonical mapping π from Description Logic to first-order logic.

πx(A) = A(x) A is a concept name

πx(�) = � top concept

πx(⊥) = ⊥ bottom concept

πx(¬C) = ¬πx(C) negation

πx(C � D) = πx(C) ∧ πx(D) conjunction

πx(C � D) = πx(C) ∨ πx(D) disjunction

πx(∃r.C) =
∨

y∈Δ(R(x, y) ∧ πy(C)) existential restriction

πx(∀r.C) =
∧

y∈Δ(R(x, y) ⇒ πy(C)) universal restriction

π(C � D) = ∀x∈Δ(πx(C) ⇒ πx(D)) general concept inclusion

π(A(a)) = A(a) assertions

π(r(a, b)) = r(a, b)

The procedure of applying typed model counting in order to determine φ(α)
is as follows: First, one converts every assertion and every general concept inclu-
sion in R into a first-order sentence (i.e., a first-order formula without free vari-
ables). This is canonically done by the mapping π(= π(R)) (cf. Table 2). Note
that every such mapping π induces a first-order signature Σπ that consists of
exactly those predicates that are introduced by π. Further, the set of constants
shall be Δ. Therewith, the first-order interpretations w.r.t. Σπ are also fixed
(by their evaluation of the ground atoms built upon Σπ), and they are in a
one-to-one correspondence to the DL-interpretations.

The sentences π(f) for all f ∈ T ∪A build a theory Π(R) and the models of
this theory correspond to the interpretations in IR. So far, counting the models
of Π(R) means calculating |IR|.

Further, the conditionals (Di|Ci)[si/ti], i = 1, . . . , n, are translated into
structured formulas, more precisely into structured sentences, by

π((Di|Ci)[si/ti]) =
∧

x∈Δ

(
vi ◦πx(Ci �Di)∨ fi ◦πx(Ci �¬Di)∨1◦πx(¬Ci)

)
, (8)

where vi, fi, and 1 are the algebraic elements mentioned above. The idea behind
(8) is as follows: Consider a fixed interpretation I. If an individual (i.e., a con-
stant) a verifies the conditional (Di|Ci)[si/ti], then πa(Ci � Di) is true (and
πa(Ci�¬Di) as well as πa(¬Ci) are false), and the algebraic element vi is stored.
Otherwise, if a falsifies or does not apply to the conditional, then πa(Ci � ¬Di)
or πa(¬Ci) are true, respectively, and fi or 1 are stored. By the outer conjunc-
tion in (8) this is done for all individuals in the domain. As a result, one gets
a factor vi for every individual that verifies the conditional, and a factor fi for
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every individual that falsifies the conditional. If one does this for all conditionals
in C and commutatively concatenates the algebraic elements thus obtained, one
gets the so-called conditional structure of I (cf. [10]):

σR(I) =
n∏

i=1

vi
|CI

i ∩DI
i | fi|C

I
i \DI

i |.

Hence, the conditional structure σR(I) is a compact representation of how
often the conditionals in C are verified and falsified in I. Formally, conditional
structures are elements of a free Abelian group with identity element 1. We
extend this group to a commutative semiring S by allowing to add conditional
structures and by introducing the zero element 0. Elements in S are called
structural element as they are used to structure formulas here.

Obviously, the objective function φR(α) highly relates to conditional struc-
tures: Let ρR(X) be the mapping which substitutes every occurrence of vi in X
with αti−si

i , every occurrence of fi with α−si
i , and every occurence of 1 with 1.

Then,
φR(α) =

∑

I|=Π(R)

ρR(σR(I)).

The formal semantics of structured sentences is defined as follows: Let I be
a classical first-order interpretation which maps every first order sentence to 0
or 1. Then, I is extended to structured sentences by

– I(A ∧ B) = I(A) · I(B),

– I(A ∨ B) =

⎧
⎪⎨

⎪⎩

I(A), I(B) = 0
I(B), I(A) = 0
I(A) · I(B) otherwise

,

– I(s ◦ A) = s · I(A),
– I(

∨
x∈D A) = I(

∨
a∈D A[x/a]),

– I(
∧

x∈D A) = I(
∧

a∈D A[x/a]),

where A and B are structured sentences, s is a structural element, D ⊆ Δ, and
[x/a] is the substitution of variable x by constant a. This definition of structured
interpretations coincides with first-order interpretations in the sense that they
evaluate classical first-order sentences in the same way. Note that we do not
consider structured sentences with negation in the scope of algebraic elements,
as this is not well-defined.

With the help of structured sentences and structured interpretations, we can
now formally define setting up φ(α) as a weighted model counting problem. Let
IS

R be the set of all structured interpretations w.r.t. Σπ. Then, counting the
typed models of R means calculating

TMC(π(R)) =
∑

I∈IS
R

I(π(R)),
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where
π(R) =

∧

f∈T ∪A
π(f) ∧

∧

c∈C
π(c).

Theorem 2 (cf. [24]). Let R = (T ,A, C) be a p-consistent knowledge base.
Then,

φR(α) = ρR(TMC(R)).

Before we illustrate typed model counting by means of examples, we dis-
cuss some basic compilation strategies that allow one to perform typed model
counting more efficiently. These strategies were adopted from first-order model
counting (cf., e.g., [4]) and are discussed in [24] in more depth.

1. Literal Conditioning: Let A〈a/�〉 be the structured sentence A in which
every occurrence of the constant a is substituted by �, and let A〈a/⊥〉 be
defined analogously. Then,

A ≡ a ∧ A〈a/�〉 ∨ ¬a ∧ A〈a/⊥〉, (9)

where ≡ is the logical equivalence between structured sentences, i.e., A ≡ B
iff I(A) = I(B) for all structured interpretations I.

2. Decomposable Conjunction: Let A and B be structured sentences such
that A and B do not share any ground atoms. Then,

TMC(A ∧ B) = TMC(A) · TMC(B).

For example, the conjunctions in (9) are decomposable.
3. Smooth Deterministic Disjunction: Let A and B be structured sentences

that mention the same ground atoms. If A and B are mutually exclusive, i.e.,
I(A) · I(B) = 0 for all structured interpretations I, then

TMC(A ∨ B) = TMC(A) + TMC(B).

For example, the disjunction in (9) is smooth deterministic.

Corollary 1. Let A be a structured sentence, and let a be a constant. Then,

TMC(A) = TMC(A〈a/�〉) + TMC(A〈a/⊥〉).

Proof. This corollary is a direct consequence of the fact that the disjunction in
(9) is smooth deterministic. Obviously, at most one of the disjuncts in (9) can
be satisfied by a given interpretation since either a or ¬a is true. �

We now discuss some examples. For all the example knowledge bases R, the
objective function φ(R) can be evaluated in time polynomial in k.
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Example 3. Recall R2 from Example 2. Then,

π(R2) ≡
( ∧

x∈Δ

v1 ◦ πx(A � C) ∨ f1 ◦ πx(A � ¬C) ∨ 1 ◦ πx(¬A)
)

∧
( ∧

x∈Δ

v2 ◦ πx(B � C) ∨ f2 ◦ πx(B � ¬C) ∨ 1 ◦ πx(¬B)
)

≡
( ∧

x∈Δ

v1 ◦ A(x) ∧ C(x) ∨ f1 ◦ A(x) ∧ ¬C(x) ∨ 1 ◦ ¬A(x)
)

∧
( ∧

x∈Δ

v2 ◦ B(x) ∧ C(x) ∨ f2 ◦ B(x) ∧ ¬C(x) ∨ 1 ◦ ¬B(x)
)

≡
∧

x∈Δ

((
v1 ◦ A(x) ∧ C(x) ∨ f1 ◦ A(x) ∧ ¬C(x) ∨ 1 ◦ ¬A(x)

)

∧
(
v2 ◦ B(x) ∧ C(x) ∨ f2 ◦ B(x) ∧ ¬C(x) ∨ 1 ◦ ¬B(x)

))

≡
∧

x∈Δ

(
C(x) ∧

(
v1 ◦ A(x) ∨ 1 ◦ ¬A(x)

)
∧

(
v2 ◦ B(x) ∨ 1 ◦ ¬B(x)

))

∨
(
¬C(x) ∧

(
f1 ◦ A(x) ∨ 1 ◦ ¬A(x)

)
∧

(
f2 ◦ B(x) ∨ 1 ◦ ¬B(x)

))

All conjunctions in the last expression are decomposable and all disjunctions are
smooth deterministic. Hence,

TMC(R2) =
∑

x∈Δ

TMC(
(
C(x) ∧

(
v1 ◦ A(x) ∨ 1 ◦ ¬A(x)

)

∧
(
v2 ◦ B(x) ∨ 1 ◦ ¬B(x)

))

∨
(
¬C(x) ∧

(
f1 ◦ A(x) ∨ 1 ◦ ¬A(x)

)
∧

(
f2 ◦ B(x) ∨ 1 ◦ ¬B(x)

))
)

=
∑

x∈Δ

(
1 · (v1 + 1) · (v2 + 1) + 1 · (f1 + 1) · (f2 + 1)

)

=
∑

x∈Δ

(
v1v2 + f1f2 + v1 + v2 + f1 + f2 + 2

)

=
(
v1v2 + f1f2 + v1 + v2 + f1 + f2 + 2

)k

If one applies ρR2 to the last expression, one obtains the objective function
φR2(α) (cf. Eq. (7)). In φR2(α), the domain size k occurs only as a parameter. �
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Compiling structured sentences into sentences that mention decomposable
disjunctions and smooth deterministic conjunctions only is a powerful tool when
counting typed models. In the absence of existential/universal restrictions and of
assertions, the objective function φR(α) of any p-consistent knowledge base R
can be calculated similar to Example 3. The basic idea is to exploit interchange-
ability of constants. It remains to show how assertions and existential/universal
restrictions can be handled.

If assertions occur, one first applies literal conditioning w.r.t. those ground
atoms that mention the named individuals. Doing so, the resulting formula is
symmetric in the remaining constants and one can proceed as before.

Example 4. Let A and B be constant names, let a be a individual name, and let
R3 = (T3,A3, C3) be a p-consistent knowledge base with T3 = ∅,A3 = {A(a)},
and

C3 = {(B|A)[s1/t1]},

where s1, t1 ∈ N with s1 < t1. Then,

π(R3) ≡ π(A(a)) ∧
∧

x∈Δ

(
v1 ◦ πx(A � B) ∨ f1 ◦ πx(A � ¬B) ∨ 1 ◦ πx(¬A)

)

≡ A(a) ∧
∧

x∈Δ

(
v1 ◦ A(x) ∧ B(x) ∨ f1 ◦ A(x) ∧ ¬B(x) ∨ 1 ◦ ¬A(x)

)

≡ A(a) ∧ (v1 ◦ B(x) ∨ f1 ◦ ¬B(x))∧
∧

x∈Δ\a

(
v1 ◦ A(x) ∧ B(x) ∨ f1 ◦ A(x) ∧ ¬B(x) ∨ 1 ◦ ¬A(x)

)

≡ A(a) ∧
(
v1 ◦ B(x) ∨ f1 ◦ ¬B(x)

)
∧

∧

x∈Δ\a

(
A(x)∧

(
v1 ◦ B(x)∨f1 ◦ ¬B(x)

)
∨ ¬A(x) ∧

(
B(x) ∨ ¬B(x)

))

Hence,

TMC(R3) = (v1 + f1) ·
(
v1 + f1 + 2

)k−1

.

�

Since the number of named individuals is independent of k, evaluating φR(α)
for knowledge bases R that contain assertions is still polynomial in k.
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In order to deal with existential and universal restrictions we make use of
the principle of skolemization (in analogy to [5]).

Example 5. Let A and B be a concept names, let r be a role name, and let
R4 = (T4,A4, C4) be a p-consistent knowledge base with T4 = ∅,A4 = ∅, and

C4 = {(∀r.B|A)[s1/t1]}.

Then,

π(R4) ≡
∧

x∈Δ

(
v1 ◦ πx(A � ∀r.B) ∨ f1 ◦ πx(A � ¬∀r.B) ∨ 1 ◦ πx(¬A)

)
.

The difficulty when counting the models of π(R4) is the concealed existential
restriction ¬∀r.B, which holds w.r.t. a fixed constant a in all models except
for those in which aI ∈ (∀r.B)I . The idea of skolemization in weighted model
counting is to count all models and to subtract the models in which aI ∈ (∀r.B)I

holds by assigning them a negative weight. Here, we write the negative weight
directly into the formula in form of the structural element −1. For this, we
introduce two fresh predicates S/1 and Z/1, replace πx(¬∀r.B) by Z(x) and,
analogously, replace πx(∀r.B) by ¬Z(x). In order to fix the model counts, we
finally have to add

∧

x∈Δ

(
Z(x) ∧

(
S(x) ∨ −1 ◦ ¬S(x) ∧ πx(∀r.B)

)
∨ ¬Z(x) ∧ S(x) ∧ πx(∀r.B)

)

to π(R4). We get

π(R4) ≡
∧

x∈Δ

(
v1 ◦ A(x) ∧ ¬Z(x) ∨ f1 ◦ A(x) ∧ Z(x) ∨ 1 ◦ ¬A(x)

)
∧

∧

x∈Δ

(
Z(x) ∧

(
S(x) ∨ −1 ◦ ¬S(x) ∧

∧

y∈Δ

(¬r(x, y) ∨ B(y))
)

∨ ¬Z(x) ∧ S(x) ∧
∧

y∈Δ

(¬r(x, y) ∨ B(y))
)

Now we split the domain Δ into two parts: B and Bc = Δ\B. B shall contain
those individuals that satisfy the concept B, and Bc shall contain those that do
not. Obviously B depends implicitly on an interpretation I.
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It is,

φ(R4) ≡
∨

B⊆Δ

( ∧

x∈B
B(x) ∧

∧

x∈Bc

¬B(x)∧

∧

x∈Δ

(
v1 ◦ A(x) ∧ ¬Z(x) ∨ f1 ◦ A(x) ∧ Z(x) ∨ 1 ◦ ¬A(x)

)
∧

(
Z(x) ∧

(
S(x) ∨ −1 ◦ ¬S(x) ∧

∧

y∈Bc

¬r(x, y)
)

∨ ¬Z(x) ∧ S(x) ∧
∧

y∈Bc

¬r(x, y)
))

≡
∨

B⊆Δ

( ∧

x∈B
B(x) ∧

∧

x∈Bc

¬B(x)∧

∧

x∈Δ

(
Z(x) ∧ (f1 ◦ A(x) ∨ 1 ◦ ¬A(x))

∧ (S(x) ∨ −1 ◦ ¬S(x) ∧
∧

y∈Bc

¬r(x, y))

∨ ¬Z(x) ∧ (v1 ◦ A(x) ∨ 1 ◦ ¬A(x)) ∧ S(x) ∧
∧

y∈Bc

¬r(x, y)
))

≡
∨

B⊆Δ

( ∧

x∈B
B(x) ∧

∧

x∈Bc

¬B(x) ∧
∧

x∈Δ

∧
∧

y∈B
(¬r(x, y) ∨ r(x, y))∧

(
Z(x) ∧ (f1 ◦ A(x) ∨ 1 ◦ ¬A(x)) ∧ (S(x) ∧

∧

y∈Bc

(¬r(x, y) ∨ r(x, y))

∨ −1 ◦ ¬S(x) ∧
∧

y∈Bc

¬r(x, y))

∨ ¬Z(x) ∧ (v1 ◦ A(x) ∨ 1 ◦ ¬A(x)) ∧ S(x) ∧
∧

y∈Bc

¬r(x, y)
))

In the last expression all conjunctions are decomposable and all disjunctions
are smooth deterministic. In order to count the typed models of π(R4), it is
necessary to compute the numbers of possible subsets B ⊆ Δ. Obviously, |B| can
vary from 0 to k, and there are

(
k
m

)
-many subsets of Δ of size m. Hence,

TMC(R4) =
k∑

m=0

(
k

m

)(
2m · (f1 + 1) · (2k−m − 1 + (v1 + 1)

)k

.

Here, the domain size k is not simply a parameter, but evaluating the expres-
sion φ(R4) = ρR(TMC(R4)) is still possible in time polynomial in k. If there
are more than one existential/universal restriction in R one gets nested sums,
but evaluation is still possible in time polynomial in k. Only the degree of the
polynomial increases. �
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5 Conclusion and Future Work

The Description Logic ALCME is a probabilistic extension of the well-known
Description Logic ALC which allows for probabilistic conditional statements
of the form “if concept C holds, then concept D follows with probability p.”
Probabilities are understood as degrees of beliefs and a reasoner’s belief state
is established by the principle of maximum entropy based on the aggregating
semantics. In [25] we showed that drawing inferences in ALCME (without asser-
tions) is possible in time polynomial in the size k of the domain of discourse,
provided that (an approximation of) the maximum entropy distribution is given.

In this paper, we proved that approximations of the maximum entropy dis-
tribution can be calculated in time polynomial in k, too, with only little restric-
tions. Further, we discussed typed model counting as a helpful framework for
maximum entropy calculations based on ALCME-knowledge bases, even in the
presence of assertional knowledge.

In future work, we want to apply our methods to more expressive Description
Logics, and we want to investigate how robust maximum entropy calculations
are against changes in the domain size k.

Acknowledgements. This work was supported by the German Research Foundation
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Abstract. The vision of automated support for the investigation of log-
ics, proposed decades ago, has been implemented in many forms, pro-
ducing numerous tools that analyze various logical properties (e.g., cut-
elimination, semantics, and more). However, full ‘automation of auto-
mated reasoning’ in the sense of automatic generation of efficient provers
has remained a ‘holy grail’ of the field. Creating a generic prover which
can efficiently reason in a given logic is challenging, as each logic may
be based on a different language, and involve different inference rules,
that require different implementation considerations to achieve efficiency,
or even tractability. Two recently introduced generic automated provers
apply different approaches to tackle this challenge. MetTeL, based on
the formalism of tableaux, automatically generates a prover for a given
tableau calculus, by implementing generic proof-search procedures with
optimizations applicable to many tableau calculi. Gen2sat, based on the
formalism of sequent calculi, shifts the burden of search to the realm of
off-the-shelf SAT solvers by applying a uniform reduction of derivabil-
ity in sequent calculi to SAT. This paper examines these two generic
provers, focusing in particular on criteria relevant for comparing their
performance and usability. To this end, we evaluate the performance of
the tools, and describe the results of a preliminary empirical study where
user experiences of expert logicians using the two tools are compared.

1 Introduction

The idea of automated support for the investigation of logics has been envisioned
more than twenty years ago by Ohlbach [49], who wrote: ‘not every designer of
an application program, which needs logic in some of its components, is a logician
and can develop the optimal logic for his purposes, neither can he hire a trained
logician to do this for him. In this situation we could either resign and live with
non-optimal solutions, or we could try to give more or less automated support
and guidance for developing new logics’. Ohlbach’s vision has been successfully
applied to the paradigm of ‘logic engineering’, a term coined by Areces [3] to
refer to approaches that systematically investigate and construct new logical for-
malisms with specific desired properties (such as decidability, expressive power,
c© Springer Nature Switzerland AG 2019
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and effective reasoning methods), for a particular need or application. Many
tools that implement automated approaches for the investigation of large families
of proof systems have been introduced, including the linear logic-based frame-
work for specifying and reasoning about proof systems of [44,47,48], the refor-
mulation of paraconsistent and substructural logics in terms of analytic calculi
in [13,14], and the automatic production of sequent calculi for many-valued log-
ics [8]. Generic tools for correspondence theory include [16,20,50], that compute
frame conditions for modal axioms, from which it is then possible to obtain cor-
responding tableau rules using the tableau synthesis method of [54,60]. Related
forgetting tools [39,66] compute uniform interpolants and give users the ability
to decompose logical theories and ontologies.

While the mentioned tools offer useful automated support for studying logics
and building logic-based systems, they are not prover generators. Unlike clas-
sical logic, which has efficient provers that make use of state-of-the-art SAT
technologies, there has been insufficient work to create provers for the wide vari-
ety of non-classical logics investigated in the literature that can enable their
easy integration in applications. This calls for generic provers, as well as tools
for automated generation of such provers.

The naive approach for generation of a prover for a given logic is associating
a basic proof-search algorithm for a given calculus, without considerations for
reducing the search space for this particular logic. This, however, yields imprac-
tical, non-efficient provers. Implementing an efficient prover from scratch is a
significant investment of time, and requires relevant expertise and experience of
the developer. Thus, realization of efficient provers has long remained the ‘holy
grail’ of automated support in line with Ohlbach [49].

There are many tools that approach this problem by focusing on a specific
family of logics, that have a shared syntax and structure of inference rules. Exam-
ples of such tools include the Logic WorkBench [30], the Tableau Workbench [1],
LoTREC [23], focusing on modal-like logics, and COOL [27], focusing on modal
and hybrid logics.

Two recently developed provers take different approaches to achieve consider-
able genericity. The first approach is implemented in MetTeL [61–63] (available
at [35]). MetTeL is a powerful platform for automatically generating provers
from the definition of tableau calculi of very general forms. It achieves efficiency
by using strong, general heuristics and optimizations that are broad enough to
apply to a wide variety of inference rules on the one hand, and are efficient
and non-trivial on the other hand. Such generic techniques, when identified, can
enhance any generated proof search algorithm, making it less naive and more
practical. MetTeL differs from the above mentioned tools mainly by being com-
pletely logic and language independent, and the language and inference rules are
completely defined by the user.

The second approach is implemented in Gen2sat [68] (available in [67]).
Gen2sat is a platform which provides a method for deciding the derivability
of a sequent in a given sequent calculus, via a uniform polynomial reduction
to the classical satisfiability problem. Looking for specific heuristics for a given
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calculus is bypassed in Gen2sat, by shifting the actual search to the realm of off-
the-shelf SAT solvers. Using (classical) SAT-solving for non-classical logics was
also employed, e.g., in [11,26,33,40] for various modal (and description) logics,
where the non-modal part was fixed to be classical.

While there are several papers discussing the theoretical aspects and imple-
mentation details of MetTeL and Gen2sat (developed by the second and first
authors) [41,54,62,68], this paper is concerned with comparing these two tools
with respect to criteria relating to their performance and usability.

To this end we carry out a performance analysis of the tools, as well as a
preliminary empirical study of usability, with five expert logicians providing user
feedback on both tools. While the former form of evaluation is rather standard
in the automated reasoning community, empirical studies with real users are
scarce. We discuss the insights received from our study participants which will
be instrumental for improving the tools.

The paper is structured as follows. Sections 2 and 3 describe the approaches
taken in the development of MetTeL and Gen2sat and provide a short overview
of each. Section 4 provides a comparison of the performance of the tools on a
collection of benchmarks. Section 5 discusses the tools from the users’ perspec-
tive, and presents the results of a preliminary empirical study on their usability.
Section 6 concludes with a summary and a discussion of several directions for
further research.

2 Generic Automated Reasoning with Tableau

In this section we describe the prover generator MetTeL, aimed at supporting
researchers and practitioners who use tableau calculi for the specification of log-
ics. MetTeL automatically generates and compiles Java code of a tableau prover
from specifications of the syntax of a logic and a set of tableau rules for the logic.
The specification language of MetTeL is designed to be as simple as possible for
the user on the one hand, and as expressive as the traditional notation used in
logic and automated reasoning textbooks, on the other hand.

2.1 Tableau Synthesis

Of all the different forms of tableau calculi, semantic tableau calculi [7,21,58] are
widely used and widely taught in logic and computer science courses, because
the rules of inference are easily explained and understood, and deductions are
carried out in a completely goal-directed way. In explicit semantic tableau
approaches the application of the inference rules is order independent (because
these approaches are proof confluent), which avoids the overhead and compli-
cation associated with handling don’t know non-determinism of non-invertible
rules in direct methods [1] (see also the discussion in [32]). Because semantic
tableau approaches construct and return (counter-)models, they are suitable
for error finding, which is useful for ontology development, theory creation and
applications such as multi-agent systems.
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MetTeL is an outcome of research on the systematic development of explicit
semantic tableau systems and automated generation of tableau provers [54,60–
63]. In line with the aims of logic engineering, the vision of this research is to
allow the steps of developing a tableau calculus and prover to be automated as
much as possible. The idea is that from the semantic definition of a logic a sound,
complete and often terminating calculus is generated that can then be input into
MetTeL, which will produce a prover for the logic. In the endeavour of finding
systematic general ways of generating elegant, natural tableau systems, a lot of
research went into finding ways to ensure the systems produce smaller proofs
and have smaller search space, both for the theoretical tableau synthesis frame-
work and the provers generated by MetTeL. The research involved generalising
clever backtracking techniques such as backjumping and dynamic backtracking
to the tableau synthesis framework so that they can be combined naturally with
new systems. The research also involved finding new, more powerful ways to
do blocking in order to ensure termination of tableau derivations for decidable
logics. Refinement techniques were developed to devise more effective deduction
calculi and improve the way that deductions are performed in tableau systems.

Having devised a calculus for a logic, the next step is the implementation
of a prover for it. To avoid the burden of developing a prover from scratch,
or extend and adapt an existing prover, the MetTeL system was developed to
automatically generate code of fully-functioning stand-alone provers specialised
for the user’s application. MetTeL takes as input a high-level specification of a
logic, or a theory, together with a set of deduction rules and then generates a
prover for this logic and calculus. Together with the tableau synthesis framework,
this provides a systematic and nearly fully automated methodology for obtaining
tableau provers for a logic.

The rule specification language of MetTeL is based on a powerful many-
sorted first-order language designed to be as general as possible. The language
extends the meta-language of the tableau synthesis framework which enables
calculi obtained in the tableau synthesis framework to be implemented with
little effort in MetTeL. Concrete case studies undertaken with MetTeL include:

– Labelled, semantic tableau calculi for standard modal logics K, KT, S4 [60].
– Labelled, semantic tableau calculi for propositional intuitionistic logic [54].
– Tableau calculi for hybrid modal logic with counting quantifiers [37,65].
– Internalized tableau calculi for hybrid logics and description logics such as

SO, ALCO and SHOI [36,54]. Various specialisations of the blocking mech-
anism were defined and evaluated, and simulation of the standard blocking
techniques was shown. This work has evaluated the use of flexibly gener-
ated refined rules for ontology TBox axioms to reduce the search space and
improve performance.

– A terminating tableau calculus for the description logic ALBOid allowing
compound role expressions which gives it the same expressive power as the
two-variable fragment of first-order logic [55]. MetTeL was used to implement
a tableau decision procedure for this logic.

– Linear temporal logic with Boolean constraints [19]. A method of dealing with
fixpoints in the linear time temporal logic was developed and tested.
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– Interrogative-epistemic logics for reasoning about questions and queries of
multiple agents [45].

– Logics and algebras of hypergraphs with relevance to image processing [53,59].
MetTeL played an important role in the introduction and investigation of a
novel bi-intuitionistic modal logic, called BISKT, and a related modal tense
logic and the development of tableau decision procedures for these.

– The extension Km(¬) of the basic multi-modal logic Km with relational nega-
tion, the modal logic of ‘some’, ‘all’ and ‘only’ [31], is used to illustrate the
atomic rule refinement techniques investigated [60].

– Unlabelled deduction calculi for Boolean logic and three-valued �Lukasiewicz
logic (which we consider in Sect. 4), and a calculus for simple equational
reasoning about lists (given in Fig. 1) [62].

These applications have shown it is easy to generate provers for a wide variety
of logics, including new logics. They have also shown the approach is especially
useful for systematic comparisons of different sets of tableaux rules for a specific
logic, different strategies, and techniques. This is useful for research purposes
but also in teaching and learning environments.

At present, MetTeL does not accommodate languages with first-order quan-
tifiers directly, although the syntax specification language of MetTeL has enough
expressive power to represent languages of first-order theories with a finite num-
ber of logical operators, predicate symbols and functional symbols.

2.2 MetTeL Features and Usage

First, an input file containing a definition of the syntax used in the tableau
rules and the definition of the tableau rules themselves needs to be prepared.
Figure 1 shows the contents of an input file defining a simple ‘non-logical’ exam-
ple of a syntax and tableau calculus for describing and comparing lists. The line
specification lists defines lists to be the name of the user-defined logical
language. The syntax lists block consists of the declaration of the sorts and
definitions of logical operators. Here, three sorts are declared: formula, element
and list. For the sort element, no operators are defined, which means that
all element formulas are atomic. There are two operators for the sort list: a
nullary operator empty (to be used for the empty list) and a binary operator
composite (used to inductively define non-empty lists). The next two lines are
the formation rules for formulas of sort formula, namely inequalities between
elements and lists.

The tableau lists block defines the tableau rules of the calculus. In the
tableau rule specification language of MetTeL, the premises and conclusions of
a rule are separated by / and each rule is terminated by $;. Branching rules
can have two or more sets of conclusions which are separated by $|. Premises
and conclusions are formulas in the user-defined logical language specified in
the previous block. As is illustrated, the rules can be annotated with priority
values, that determine the order by which the rules are applied. The default
priority value of any rule with unspecified priority is 0. The tableau lists
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Fig. 1. Input to MetTeL: A specification of syntax and tableau rules.

Fig. 2. An unsatisfiable instance Fig. 3. A satisfiable instance

block includes two closure rules in which the right hand sides of / are empty,
reflecting that inequality is irreflexive, as well as additional rules for handling
inequalities.

Having prepared an input file named lists.s (say) MetTeL can be
run from the command line using: java -jar mettel2.jar -i lists.s. The
generated prover lists.jar can be run from the command line using:
java -jar lists.jar.

The generated provers return the answers Satisfiable or Unsatisfiable.
If the answer is Unsatisfiable and the prover is able to extract the input for-
mulas needed for deriving the contradiction, they are printed. If the answer is
Satisfiable then all the formulas within the completed open branch are out-
put as a model. For efficiency reasons MetTeL does not output proofs. Although
proofs are useful for the user, the overhead of outputting proofs is high because
tableau proofs for unsatisfiable problems may be very big. Additionally, the
backtracking techniques and the destructive nature of the rewriting for equal-
ity reasoning and blocking (described below), make the problem of generating
a human-readable proof harder. For some instances, however, MetTeL is able
to output the assumptions that are used to show unsatisfiability, and so some
information about such proofs is recovered.

Figures 2 and 3 present satisfiable and unsatisfiable runs of the generated
prover for the lists example. The list [a,b,L] is identical to itself, and thus the
inequality in Fig. 2 cannot be satisfied. On the other hand, the lists [a,b,L0] and
[a,b,L1] differ from one another, and so the inequality in Fig. 3 is satisfiable.
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Fig. 4. Architecture of MetTeL and MetTeL generated provers

The online-version [35] of MetTeL consist of several screens and includes pre-
defined specifications for several tableau calculi, some of which are mentioned in
Sect. 2.1.

2.3 Under the MetTeL Hood and Features of the Generated
Provers

Along with easy use and efficiency of the generated provers, the goals and objec-
tives of the implementation of MetTeL included modularity of generated code
and a hierarchy of public JAVA classes and interfaces that can be extended and
integrated with other systems.

A top-level view of the architecture of MetTeL and MetTeL generated provers
is given in Fig. 4. The user-defined syntax for formulas is parsed using the
ANTLR parser generator, and is internally represented as an abstract syntax tree
(AST). All generated Java classes for formula representation implement the basic
MettelExpression interface. At runtime, the creation of formula objects is done
according to the factory design pattern, via the interface MettelObjectFactory.
The two most important methods that formula classes implement are: (i) a
method that returns a substitution that matches the current object with the for-
mula object supplied as a parameter; and (ii) a method that returns an instance
of the current formula with respect to a given substitution.
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Every tableau rule is applied within a tableau state. A sequence of formulas
from the set of active formulas associated with the tableau state is selected and
the formulas in the sequence are matched with the premises of the chosen rule.
All selected formulas are deleted from the set of active formulas associated with
the rule. If the selected formulas in the sequence match the premises of the rule,
the resulting substitution object is passed to the conclusions of the rule. The
final result of a rule application is a set of branches, which are sets of formulas
obtained by applying the substitution to the conclusions of the rule.

Important concerns in the creation of MetTeL were efficiency of the gener-
ated provers and providing decision procedures via generic blocking. MetTeL
includes two particular built-in optimizations for reducing the search space in
tableau derivations. The first is dynamic backtracking [25], that avoids repeating
the same rule applications in parallel branches. The second is conflict directed
backjumping [22,51], that derives conflict sets of formulas from a derivation, thus
causing branches with the same conflict sets to be discarded. Usually, these opti-
mizations are designed for a particular tableau procedure with a fixed syntax,
while in MetTeL, they are both implemented in a logic-independent way.

To achieve termination for semantic tableau approaches some form of block-
ing is usually necessary. Because of its generality and independence from the logic
or the tableau calculus, blocking in MetTeL generated provers use an equality-
based approach from the tableau synthesis framework [55]. The forms of blocking
available include unrestricted blocking, which is the strongest form of block-
ing, and predecessor blocking. They can be incorporated through inference rules
added to the calculus. In a semantic tables calculus for hybrid modal logic the
shape of unrestricted blocking is

@s P @t Q / [s=t] $| (not([s=t])) priority 9 $;

and predecessor blocking may look like this:

R(s,t) / [s=t] $| (not([s=t])) priority 9 $;

These rules use in-built equality to merge terms s and t in the right branch
which is selected first. This either leads to a model, or it does not, in which
case s and t cannot be equal. While in the second case the rule is only applied
if s is a predecessor of t in the R relation, in the first case the premises are
not really constraining, meaning the rule is potentially applied for all terms in
a derivation, for P and Q are matched with any modal formulas. We should note
that R is also matched with any relational formula, but here we are assuming
relational formulas can only be atomic as would be specified in the input file.
Unrestricted blocking rule can be used to achieve termination for logics with the
finite model property and finitely satisfiable formulas [54,55].

To realise blocking, the generated provers support equational rewriting of
terms with respect to congruence relations defined in the language specification.
In particular, if the definition of a rule involves equality as above then (ordered)
rewriting is triggered. Rewriting allows derivations to be simplified on the fly
and the search space to be reduced: for example when [f(i,P)=i] exhaustive
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rewriting reduces the term f(f(f(i,P),P),P) to i. Refinements of equality
reasoning and equality-based blocking in semantic tableau-like approaches have
been studied in [9,36,53,56].

The default search strategy in the derivation process of the core
tableau engine of MetTeL is depth-first left-to-right search, which is
implemented as a MettelSimpleLIFOBranchSelectionStrategy request to
the MettelSimpleTableauManager. Breadth-first search is implemented
as a MettelSimpleFIFOBranchSelectionStrategy request and can be
used by introducing a small modification in the generated Java code.
Users can also implement their own search strategy and pass it to
MettelSimpleTableauManager.

The rule selection strategy can be controlled by specifying priority values
for the rules in the tableau calculus specification. The rule selection algorithm
checks the applicability of rules and returns a rule that can be applied to for-
mulas on the current branch according to the rule priority values. First, the
algorithm selects a group of rules with the same priority value. Selection within
a group with higher priority value is made only if no rules with smaller priority
values are applicable. Second, rules with the same priority values are checked
for applicability sequentially. To ensure fair treatment of rules within the same
priority group all rules within the group are checked for applicability an equal
number of times.

3 Generic Automated Reasoning with Sequent Calculi

In this section we describe Gen2sat, which, like MetTeL is a generic tool writ-
ten in Java. In contrast to MetTeL, Gen2sat aims to support researchers and
practitioners who use sequent calculi for the specification of logics. Sequent cal-
culi, introduced in [24], are a prominent proof-theoretic framework, suitable for a
wide variety of different logics (see, e.g., [6,64]). Unlike the usual method of proof
search that is common in decision procedures for sequent calculi [18], Gen2sat
employs a uniform reduction to SAT [41]. Shifting the intricacies of implemen-
tation and heuristic considerations to the realm of off-the-shelf SAT solvers, the
tool is lightweight and focuses solely on the transformation of derivability to
a SAT instance. As such, it also has the potential to serve as a tool that can
enhance learning and research of concepts related to proof theory and semantics
of non-classical logics, in particular those of sequent calculi.

3.1 Analytic Pure Sequent Calculi

We start by precisely defining the family of calculi for which Gen2sat is appli-
cable. An inference rule is called pure if it does not enforce any limitations on
the context formulas (following [5], the adjective pure stands for this require-
ment). For example, the right introduction rule of implication in classical logic
Γ,ϕ⇒ψ,Δ

Γ⇒ϕ⊃ψ,Δ is pure, as it can be applied with any Γ and Δ. However, in intuition-
istic logic, the corresponding rule is Γ,ϕ⇒ψ

Γ⇒ϕ⊃ψ (in other words, Δ must be empty).
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Thus the latter rule is impure. A sequent calculus is called pure if it includes all
the standard structural rules:1 weakening, identity and cut; and all its inference
rules are pure.

For a finite set � of unary connectives, we say that a formula ϕ is a �-
subformula of a formula ψ if either ϕ is a subformula of ψ, or ϕ = ◦ψ′ for some
◦ ∈ � and proper subformula ψ′ of ψ. A pure calculus is �-analytic if whenever a
sequent s is derivable in it, s can be derived using only formulas from sub�(s), the
set of �-subformulas of s. We call a calculus analytic if it is �-analytic for some
set �. Note that ∅-analyticity amounts to the usual subformula property. Many
well-known logics can be represented by analytic pure sequent calculi, including
three and four-valued logics, various paraconsistent logics, and extensions of
primal infon logic ([41] presents several examples).

Gen2sat is capable of handling impure rules of the form (∗i)
Γ ⇒ Δ

∗Γ ⇒ ∗Δ
for Next-

operators. (∗i) is the usual rule for Next in LTL (see, e.g., [34]). It is also used
as � (and ♦) in the modal logic KD! of functional Kripke frames (also known
as KF and KDalt1). In primal infon logic [17] Next operators play the role of
quotations.

3.2 Gen2sat Features and Usage

From the command line, Gen2sat is called by: java -jar gen2sat.jar <path>,
where path points to a property file with the following fields:

Connectives. A comma separated list of connectives, each specified by its sym-
bol and arity, separated by a colon.

Next operators. A comma separated list of the symbols for the next operators.
Rules. Each rule is specified in a separate line that starts with rule:. The

rule itself has two parts separated by /: the premises, which is a semicolon
separated list of sequents, and the conclusion, which is a sequent.

Analyticity. For the usual subformula property this field is left empty. For other
forms of analyticity, it contains a comma separated list of unary connectives.

Input sequent. The sequent whose derivability should be decided.

If the sequent is unprovable, Gen2sat outputs a countermodel. If it is prov-
able, a full proof is unobtainable, due to the semantic approach Gen2sat under-
takes. However, in case the sequent is provable, Gen2sat is able to recover a
sub-calculus in which the sequent is already provable, that is, a subset of rules
that suffice to prove the sequent.

Figures 5 and 6 present examples for the usage of Gen2sat. In Fig. 5, the
input contains a sequent calculus for the Dolev-Yao intruder model [15]. The
connectives E and P correspond to encryption and pairing. The sequent is prov-
able, meaning that given two messages m1 and m2 that are paired and encrypted
twice with k, the intruder can discover m1 if it knows k. In Fig. 6, the input file

1 Here sequents are taken to be pairs of sets of formulas, and therefore exchange and
contraction are built in.
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Fig. 5. A provable instance Fig. 6. An unprovable instance

contains a sequent calculus for primal infon logic, where the implication con-
nective is not reflexive, and hence the input sequent is unprovable. Note that
the rules for the next operators are fixed, and therefore they are not included
in the input file. Both calculi are ∅-analytic, and hence the analyticity field is
left empty. In general, whenever the calculus is �-analytic, this field lists the
elements of �.

Gen2sat also includes an online version, in which the user fills a form that
corresponds to the input file of the command line version. When all the informa-
tion is filled, the user clicks the ‘submit’ button, and gets both an abbreviated
result and a detailed result. The web-based version includes predefined forms for
some propositional logics (e.g. classical logic, primal infon logic and more). In
addition, it allows the user to import sequent calculi from Paralyzer.2

3.3 Under the Gen2sat Hood

The core of Gen2sat is a reduction to SAT, thus it leaves the ‘hard work’ and
heuristic considerations of optimizations to state of the art SAT solvers, allowing
the user to focus solely on the logical considerations.

The theoretical background on which Gen2sat is based can be found in [41].
Below are the relevant results from that paper.

In order to decide derivability in sequent calculi, Gen2sat adopts a semantic
view of them. Thus, two-valued valuations functions (bivaluations), normally
defined over formulas, are extended to sequents in the following, natural way:
v(Γ ⇒ Δ) = 1 if v(ϕ) = 0 for some ϕ ∈ Γ or v(ψ) = 1 for some ψ ∈ Δ. This
extended semantics gives way for a semantic interpretation of pure rules:

2 Paralyzer is a tool that transforms Hilbert calculi of a certain general form into
equivalent analytic sequent calculi. It was described in [12] and can be found at
http://www.logic.at/people/lara/paralyzer.html.

http://www.logic.at/people/lara/paralyzer.html
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Fig. 7. A partial class diagram of Gen2sat

Definition 1. Let G be a pure sequent calculus. A G-legal bivaluation is a
function v from some set of formulas to {0, 1} that respects each rule of G, that
is, for every instance of a rule, if v assigns 1 to all premises, it also assigns 1 to
the conclusion.

Example 1. If G is taken to be the Dolev-Yao calculus from Fig. 5, then one of
the conditions for being G-legal is that if v(⇒ a) = 1 and v(⇒ b) = 1, then also
v(⇒ aEb) = 1.

Theorem 1 [41]. Let � be a set of unary connectives, G a �-analytic pure
sequent calculus, and s a sequent. s is provable in G if and only if there is no
G-legal bivaluation v with domain sub�(s) such that v(s) = 0.

Thus, given a �-analytic calculus G and a sequent s as its input, Gen2sat
does not search for a proof. Instead, it searches for a countermodel of the sequent,
by encoding in a SAT instance the following properties of the countermodel: (i)
assigning 0 to s; and (ii) being G-legal with domain sub�(s). The addition
of Next-operators requires some adaptations of the above reduction, that are
described in [41].

Gen2sat is implemented in Java and uses sat4j [42] as its underlying SAT
solver. Since this approach is based on a ‘one-shot’ reduction to SAT, no changes
are needed in the SAT solver itself. In particular, sat4j can be easily replaced by
other available solvers. Figure 7 includes a partial class diagram of Gen2sat, that
shows the main modules of the tool. The two main modules of sat4j that are
used are specs, which provides the solver itself, and xplain, which searches for
an unsatisfiable core. The main class of Gen2sat is DecisionProcedure, that is
instantiated with a specific SequentCalculus. Its main method decide checks
whether the input sequent is provable. Given a Sequent s, decide generates a
SatInstance stating that s has a countermodel, by applying the rules of the
calculus on the relevant formulas, as described above. SatInstance is the only
class that uses sat4j directly, and thus it is the only class that will change if
another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assign-
ment, which is directly translated to a countermodel in the form of a
PartialBivaluation. For unsatisfiable instances, the xplain module generates
a subset of clauses that is itself unsatisfiable. Tracking back to the rules that
induced these clauses, it is possible to recover a smaller sequent calculus in which
s is already provable. For this purpose, a multi-map is maintained, that saves
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for each clause of the SAT instance the set of sequent rules that induced it. Note
however, that the smaller calculus need not be analytic, and then the correct-
ness, that relies on Theorem 1 might fail. Nevertheless, correctness is preserved
in this case, as the ‘if’ part of Theorem 1 holds even for non-analytic calculi.
Thus, although Gen2sat does not provide a proof of the sequent, it does provide
useful information about the rules that were used in it.

4 Performance Evaluation

We describe an evaluation performed on Gen2sat and MetTeL. The goal of this
evaluation is two-fold: first, it shows that both tools are usable in practice.
Second, it sheds some light on the effect that the internal differences between
the tools and their underlying approaches (described in earlier sections) have on
actual benchmarks.

As a case study, we consider �Lukasiewicz three-valued logic, denoted
by �L3 [43]. This logic employs three truth values: t, f , and i, representing ‘true’,
‘false’, and ‘undetermined’, respectively, and is defined using the following three-
valued truth tables:

∧ t f i

t t f i
f f f f
i i f i

⊃ t f i

t t f i
f t t t
i t i t

∨ t f i

t t t t
f t f i
i t i i

p ¬p

t f
f t
i i

Valid formulas in �L3 are the formulas that are always assigned the value t.
Its implication-free fragment is identical to Kleene’s three-valued logic [38]. As
a consequence, it does not have implication-free valid formulas. �L3 is decidable,
like every propositional logic that is defined using a finite-valued logical matrix.

We start by describing the different implementations of this logic in both
tools. This is followed by a description of the problems (formulas) that were
tested. Then, we provide the actual results of this case study, and discuss the
various differences between the tools.

4.1 Calculi

The paper [29] presents a tableau calculus for �L3 (henceforth denoted T ), which
is available in the online version of MetTeL. The paper [6] presents a sequent
calculus for this logic (henceforth denoted S). As it is {¬}-analytic and pure,
it can be implemented easily in Gen2sat. The most straightforward comparison
would be between MetTeL’s implementation of the first calculus and Gen2sat’s
implementation of the second calculus. Since our goal is to compare the underly-
ing automated reasoning approaches rather than specific calculi, and in order to
avoid the comparison be obscured by differences in the calculi, it is important to
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specification Lukasiewicz;
syntax Lukasiewicz{

sort valuation;
sort formula;
valuation true = ’T’ formula;
valuation unknown = ’U’ formula;
valuation false = ’F’ formula;
formula true = ’true’;
formula false = ’false’;
formula negation = ’~’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;

}
tableau Lukasiewicz{

T P F P / priority 0 $;
T P U P / priority 0 $;
U P F P / priority 0 $;
U P F P / priority 0 $;
T ~P / F P priority 1 $;
U ~P / U P priority 1 $;
F ~P / T P priority 1 $;
T (P & Q) / T P T Q priority 1 $;
F (P & Q) / F P $| F Q priority 2 $;
U (P & Q) / T P U Q $| U P T Q $| U P U Q priority 3 $;
T (P | Q) / T P $| T Q priority 2 $;
F (P | Q) / F P F Q priority 1 $;
U (P | Q) / F P U Q $| U P F Q $| U P U Q priority 3 $;
F (P -> Q) / T P F Q priority 1 $;
U (P -> Q) / U P F Q $| T P U Q priority 2 $;
T (P -> Q) / T Q $| F P $| U P U Q priority 3 $;
T false / priority 0 $;
U false / priority 0 $;
U true / priority 0 $;
F true / priority 0 $;

}

Fig. 8. Definition of T in MetTeL

evaluate both frameworks on the same calculus. For this purpose, we have trans-
lated the sequent calculus S to a tableau calculus (henceforth denoted ST ).3 To
summarize, we have considered three implementations of �L3:

T the tableau calculus from [29], implemented in MetTeL, specified in Fig. 8.
S the sequent calculus from [6], implemented in Gen2sat, specified in Fig. 9.
ST a translation of S as a tableau calculus, implemented in MetTeL, specified

in Fig. 10.

The calculus T is three-valued (corresponding to the three values of �L3).
This means that in order to check the validity of a given formula ϕ, one needs to
apply T both on F : ϕ and on U : ϕ. Only if both turn out to be unsatisfiable,
then the formula is valid. Obviously, once one of them is found satisfiable, there
is no need to check the second. In contrast, the calculus S is two-valued, and
thus checking the validity of a formula ϕ amounts to applying the calculus once
on the sequent ⇒ ϕ.
3 Note that a translation of T to a sequent calculus is less obvious, as this is a three-

sided calculus, where Gen2sat employs ordinary two-sided sequents.
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name: S
displayName: L3
connectives: &:2,|:2,->:2,!:1
rule: =>p1; =>p2 / => p1 & p2
rule: p1,p2=> / p1 & p2 =>
rule: =>p1,p2 / => p1 | p2
rule: p1=>; p2=> / p1 | p2 =>
rule: a=> / !! a=>
rule: =>a / => !! a
rule: !A, !B=> / !(A | B)=>
rule: =>!A; =>!B / => !(A | B)
rule: !A=>; !B=> / !(A & B)=>
rule: =>!A, !B / => !(A & B)
rule: /! A, A=>
rule: ! A => ; B =>; => A,! B / A -> B=>
rule: A=>B; ! B=>! A / => A -> B
rule: A, ! B=> / ! (A -> B)=>
rule: =>A; =>!B / => ! (A -> B)
analyticity: !
details: false

Fig. 9. Definition of S in Gen2sat

In Gen2sat, the ability to provide a sub-calculus in which a given sequent is
provable is expensive, as it relies on finding unsatisfiable cores. Thus, for this
evaluation we have compiled a non-verbose version of the tool, that does not
provide this information.

Overall, the five implementations we consider are:

Sm the implementation of S in the non-verbose version of Gen2sat.
S the implementation of S in the usual (slower) version of Gen2sat.
ST the implementation of ST in MetTeL.
T -F the implementation of T in MetTeL, applied on inputs of the form F : ϕ.
T -U the implementation of T in MetTeL, applied on inputs of the form U : ϕ.

These implementations allow two interesting types of comparisons: the first is
comparing different implementations in the same tool: the first two for Gen2sat,
and the last three for MetTeL. The second is to compare the two tools, which is
best achieved by comparing either S or Sm against ST .

4.2 Benchmarks

As benchmark problems we used the four problem classes from [52]:

(1) (An ∨ Bn) ⊃ (A ∨ B)n (2) (A ∨ B)n ⊃ (An ∨ Bn)
(3) (n · (A ∧ B)) ⊃ ((n · A) ∧ (n · B)) (4) ((n · A) ∧ (n · B)) ⊃ (n · (A ∧ B))

where A0 = 
, An+1 = A � An, 0 · A = ⊥, (n + 1) · A = A ⊕ (n · A), A �
B = ¬(¬A ⊕ ¬B) and A ⊕ B = ¬A ⊃ B. We only considered the language
{∧,∨,⊃,¬}, and so we defined 
 as p ⊃ p and ⊥ as ¬
. We produced formulas
for 0 ≤ n ≤ 300 of intervals of 5.
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specification ST;
syntax ST{

sort valuation;
sort formula;
valuation true = ’T’ formula;
valuation false = ’F’ formula;
formula negation = ’!’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;

}
tableau ST{

T P F P / priority 0 $;
T (P & Q) / T P T Q priority 1 $;
F (P & Q) / F P $| F Q priority 2 $;
T (P | Q) / T P $| T Q priority 2 $;
F (P | Q) / F P F Q priority 1 $;
F (!(!(P))) / F P priority 1 $;
T (!(!(P))) / T P priority 1 $;
F !(P) / T P priority 1 $;
T (!(P | Q)) / T !P T !Q priority 1 $;
F (!(P | Q)) / F !P $| F !Q priority 2 $;
T (!(P & Q)) / T !P $| T !Q priority 2 $;
F (!(P & Q)) / F !P F !Q priority 1 $;
T (P->Q) / F P F !Q $| F P T !P $| T Q F !Q $| T Q T !P priority 3 $;
F (P->Q) / T P F Q F !P $| T !Q F Q F !P priority 2 $;
T !(P->Q) / T P T !Q priority 1 $;
F !(P->Q) / F P $| F !Q priority 2 $;

}

Fig. 10. Definition of ST in MetTeL

These problems were designed to test provers for infinite-valued �Lukasiewicz
logic, and are all valid in it, as well as in �L3. Non-valid formulas were obtained
by adding a negation. In [52], problems of the first and third class are considered
easy, while problems of the second and forth class are considered hard. There
are several explanations to this classification in [52] (e.g., hard problems require
cuts and branching proofs), that are backed by experimental results of several
implementations of calculi for infinite-valued �Lukasiewicz logic.

4.3 Results

The experiments were made on a dedicated Linux machine with four dual-core
2.53 Ghz AMD Opteron 285 processors and 8 GB RAM. The Java heap limit was
4 GB. Figure 11 exhibits the main results. A timeout of 10000 ms was imposed
on all problems, and anything higher appears in these figures as ‘11000’. The
benchmarks themselves are available online.4

Figure 11 presents running times. In every problem class, both Gen2sat imple-
mentations of S performed better than the MetTeL implementations of ST
and T .

Notably, there was a big difference between the performances of the ver-
bose and non-verbose versions of Gen2sat (S and Sm, respectively), but only on
provable instances. The reason is that on such instances, the largest amount of
4 https://github.com/yoni206/gen2satvsmettel.

https://github.com/yoni206/gen2satvsmettel
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Fig. 11. Running times on provable and unprovable instances of classes 1–4 from
Rothenberg’s problems. N is the size of the Rothenberg problem. See top left graph
for the legend.
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computation time is spent on calls to the xplain module of sat4j, which is used
only for S in order to produce unsatisfiable cores. On unprovable problems, for
which this module was never called, the difference between the two versions of
Gen2sat was negligible.

Comparing the different implementations of MetTeL between themselves, we
did not get consistent results. Focusing on T however, we did see that problems of
the form U : ϕ are processed slower than problems of the form F : ϕ, whenever ϕ
was not valid. In all these formulas, it was possible to assign F to the Rothenberg
formula, but not U . This is not surprising, as the rules for U in T involve three-
way branching, that significantly increases the search space for MetTeL. When ϕ
was valid, however, F -problems and U -problems either performed similarly, or
U -problems were processed faster. Thus, when using the prover generated by
MetTeL for T , it is better to first use it with an F -label and only if it was not
satisfiable, run it again with U .

On the other hand, almost all the rules in ST have one premise, which
explains the better performance of this calculus over T . Moreover, few fine
grained priority values improved the performance for this calculus. For example,
raising the priority value of T (P->Q) from 3 to 4, and that of F (P->Q) from 2
to 3 resulted in some improvement in running times.

Both MetTeL and Gen2sat performed better on unprovable problems than
on provable ones. An exception is the non-verbose implementation Sm, whose
performance was the same on provable and unprovable problems.

Figure 12 shows that Rothenberg’s original classification [52] of hard vs.
easy problems does not hold for the provers MetTeL and Gen2sat generated
for �Lukasiewicz three-valued logic. In S, Sm and T -U, we have that classes 3
and 4 were easier than classes 1 and 2. In ST , the exact opposite was observed.
Only in T -F, the Rothenberg classification survived, and classes 1 and 3 were
easier than classes 2 and 4.

The fact that the original classification did not survive the transition from
infinite-valued �Lukasiewicz logic to the three-valued one, is not surprising. First,
these are two different logics, and second, the calculi for them are much simpler
than the calculi for the infinite-valued version. For example, the sequent calculus
that we consider here is cut-free, while only hyper-sequent calculi that are cut-
free are known for the infinite case.

In the three-valued case, we however uncovered a different classification,
according to which classes 1 and 2 are harder than classes 3 and 4 (this was
the case for four out of five implementations of the calculi for �L3). This is con-
sistent with the fact that the problems of classes 3 and 4 are less complex than
those of 1 and 2. At least in Gen2sat, where the complexity of the input has a
big effect on the parsing stage, this is to be expected.

5 Usability Evaluation

In this section we complement the performance evaluation of Gen2sat and
MetTeL with an evaluation of another important aspect of provers: usabil-
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Fig. 12. Running times of provable instances of all classes from Rothenberg’s problems.
N is the size of the Rothenberg problem.

ity. Usability of software systems [46] is measured by evaluation of their user-
interfaces. Standard approaches for evaluating usability require some form of
user involvement: user testing, focus groups and other types of feedback col-
lection from users. Studies of usability in the field of automated reasoning are
scarce, and have mainly been carried out in the context of interactive theorem
proving (see, e.g., [2,4,10]).
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According to [28], understanding who the users are and what are their tasks
is key in designing for usability. Some design and usability-related decisions obvi-
ously had to be made while developing Gen2sat and MetTeL. For example, using
the online version of MetTeL, the user can download a standalone prover and
then use it locally, and also edit its source code. When using the online ver-
sion of Gen2sat, in contrast, the sequent calculus in question can be changed
throughout the working session of the user. Obviously, different users have dif-
ferent preferences regarding such issues, that are reflected in the data presented
below. While it is probably impossible to cater for every taste of users, prover
developers need to be very clear about their intended audience.

In what follows we describe a preliminary usability study we carried out,
aiming to better understand the impact of the different approaches taken in
Gen2sat and MetTeL on their usability. Our participants were five expert logi-
cians, carefully selected according to the following criteria: (i) published research
in the fields of proof theory and/or automated reasoning, and (ii) familiar with
both sequent and tableau formalisms. The participants received detailed instruc-
tions introducing the tools and asking them to perform various tasks using them
(the instructions are given in Fig. 13). They then answered several questions
concerning their experiences using the tools. Below we provide a summary and
some quotes from their answers to open-ended questions, as well as some further
discussion on these results.

5.1 Results

Both tools received good reception from the users, that found them potentially
useful and convenient to use. Remarkably, even in our very focused group of
logicians working in proof theory and automated reasoning, we got a range of
different responses to the features of the tools, that can be used in future devel-
opments of the tools considered here, and also of new tools being developed.

The average satisfaction score (on a scale of 1–5) for MetTeL was 3.8, while
for Gen2sat it was 3.6. MetTeL was indeed pointed out as a more user-friendly
tool:

– It was easy to understand how to define the calculus looking at the predefined
systems.

– MetTeL is user-friendly when it comes to specifying the calculus, and the fact
that we can download a prover for the system is a big plus.

– I find the GUI of MetTeL more well-polished.

The main issues with Gen2sat were related to lack of documentation and cus-
tomizability:

– The system worked perfectly after I realized how to specify the proof system in
a suitable way. I think that some instruction about the format of rules would
be very helpful.

– At first appearance, the system seems a bit less customizable by the practi-
tioner.
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Fig. 13. User questionnaire
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– Specifying the system is a bit tricky, not having contexts for sequent calculi
seem strange.

– Some features were not fine-tuned for best user experience.

The preferences of the participants with respect to the two tools were mixed:

– Gen2Sat would be more helpful to me. Since I am more familiar with sequent
calculus, I would prefer it over MetTeL.

– I would prefer MetTeL if the family of logics were more naturally defined by
the models of the logics, but I would prefer Gen2Sat in case the class were
more naturally defined as a class of axiomatic systems.

– It depends on the (language of the) logic, I guess. If there is no need to play
around with fancy syntaxes, or if a sufficiently similar example is already
available to be modified, I would guess that Gen2Sat is a bit easier to work
with, at first. I think both are equally good to investigate a family of logics
(sharing syntax).

Most participants found the tools potentially useful for tasks performed by logi-
cian users:

– My work could definitely profit from the use of the provers. It is often useful
to have a way to find out whether a formula is a theorem, for example to find
examples or counterexample easily.

– I think that having a prover that is easy to use and available online can surely
help in playing with a new logic system, in order to get a feeling of what is
and what is not provable by it.

– I think they could be utilized if I was tweaking around with known logics, like
LK or LJ, and trying to understand what happens if this or that connective is
changed. . . playing around with them to figure out provable and non-provable
sequents may turn out to be useful.

– It is often helpful to check derivability of some statements, and doing it by
hand is tedious.

Two participants explicitly referred to the fact that the tools do not provide full
proofs:

– If the tool could actually give the proof (in some form) so that the user (or
another tool) can check it, it would be great.

– Having proofs exhibited in some form would be helpful.

Three participants pointed out that the tools are limited in their ability to reason
about meta-logical properties:

– As I am usually most interested in meta-results concerning such systems,
though, these tools would probably not be extremely useful.

– I am usually doing this to investigate the meta-properties of a calculus, which
is something both tools lack.

– I think both tools could be extended to check the consistency of the rules input
by the user.
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Other interesting comments included:

– It is not obvious how the steps done in specifying a proof system in prover A
maps into a step in prover B.

– The use of ‘priority’ in MetTeL’s third step would seem to allow one to easily
define a proof strategy, which might be advantageous in some situations.

5.2 Discussion

The participants acknowledged the potential both tools have in logical research.
Indeed, it is useful to have an automated tool to mechanically check the validity
of certain formulas. Also, when studying the effect each inference rule in a given
system has, both tools can be of great help, as they allow for an easy specification
of calculi.

Two participants, however, noted that despite their usefulness in testing for-
mulas in a given logic, both Gen2sat and MetTeL lack the ability to reason on
the meta-logical level, and assist in proving properties about the investigated
proof systems. We note that some of these abilities can be recovered using the
tools, perhaps with the aid of other related tools. For example, in order to check
whether a sequent calculus is consistent, it often suffices to check for derivabil-
ity of the empty sequent. This can be done in Gen2sat. Moreover, many logics
include in their language a formula from which all formulas follow (e.g., ⊥).
Checking for derivability of this formula can be done in both tools.

Some participants noted that presenting the actual proofs of provable formu-
las would be very helpful, while neither of the tools provides this information.
This issue can be attributed in part for the genericity of the tools, as well as
efficiency considerations. In Gen2sat, the proofs are inherently unobtainable, as
they are lost in the translation to a SAT-instance, that goes through a semantic
representation of the sequent calculus. The correctness of this translation was
shown in [41] by usual non-constructive completeness arguments, from which one
cannot extract proofs. In MetTeL, sophisticated algorithms and heuristics are
employed in the search process, that sacrifice the possibility to output a tableau
proof for the sake of efficiency.

It is interesting to note that three participants scored satisfaction from
Gen2sat higher due to their personal preference of sequent calculi over tableaux
(while one participant noted these are equivalent due to their duality). This raises
the question of how generic provers should address user preferences of represen-
tations, and whether customization and personalization can be increased. Due
to the bias towards sequent calculi, we plan to address this issue in a follow-up
study by recruiting participants who have a preference towards tableaux.

The user interface and documentation of Gen2sat should be improved accord-
ing to the feedback above. For example, several participants found it odd that
they are not expected (and actually, are expected not) to provide the tool with
any structural rules, as Gen2sat automatically enforces their inclusion in the
background. Such hidden assumptions should be clearly stated.
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General usability remarks on both tools, such as the ability to download
a prover with MetTeL, versus the ability to change the calculus instantly in
Gen2sat, can be easily addressed in each tool. One has to take into deeper
consideration, however, the identity of the users for each tool, in order to decide
which of these changes should be made.

6 Conclusion and Future Work

In this paper we compared two generic provers, MetTeL and Gen2sat with
respect to their performance and usability. Both tools aim at providing auto-
mated support to researchers and practical users of non-classical logics, but take
completely different approaches to achieve this goal. In this paper we scrutinized
the impact the chosen approaches have on the performance and usability of the
respective tools.

Our performance evaluation was performed on several implementations of
�Lukasiewicz three-valued logic in both tools. The results are encouraging: both
tools performed well, despite the fact that this particular logic has not been
investigated with either tools before. A future research direction in this respect
is to make the performance comparison between the tools wider, to include
more logics and more problems. Such comparisons may shed some light on the
strengths and weaknesses of each tool, and possibly yield a classification of logic
problems according to the tools that are best for each.

Some insights worth further exploring arise from considering the usability
of the two tools. While MetTeL got a better usability score mainly due to its
higher level of customizability, a polished user-interface and well-developed doc-
umentation, a preference towards Gen2sat was expressed mainly due to its sim-
plicity and also its use of the sequent formalism, which some participants found
more intuitive and familiar. This indicates a need to take user preference into
consideration when developing generic automated reasoning tools, and perhaps
considering providing the possibility to work with the formalism of the users’
choice when applicable.

While performance analysis is a standard approach for evaluating provers
and other automated reasoning tools, few empirical usability studies have been
undertaken in this domain (to the best of our knowledge, none of them were
in the realm of non-classical logics). We have found the feedback received from
our participants helpful in improving the user interface and documentation in
both tools and intend to expand the usability studies of the tools to a wider
range of participants. We also hope that this paper has further demonstrated
the potential of such studies in the field of automated reasoning in general, and
for generic provers in particular. The wide variety of feedback that we got from
our small sample of users stresses the significant value systematic user studies
may have for the development of new provers. It is our hope that this paper
will start a discourse towards a more user-centric development of automated
reasoning tools.

A desired capability that is currently missing in both tools is proof produc-
tion. The size of tableau-style proofs that are searched for in MetTeL makes it
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difficult to store and produce them in an efficient manner. The issue is more fun-
damental in Gen2sat, whose first step is to translate the derivability problem to a
semantic variant, which is in turn translated into a SAT-instance. An avenue for
future work for both tools is overcoming these difficulties. Techniques for min-
imizing and concisely storing tableau proofs could be considered for MetTeL,
while for Gen2sat, unsatisfiability proofs from SAT-solvers could be utilized in
order to certify solution for the translated semantic variant of the original proof-
theoretical problem.

Finally, a further research task that seems beneficial both from a perfor-
mance and usability point of view is to consider a combination between the
tools. For example, both provers can run in parallel for a given problem, thus
providing the faster performance between the two for each problem separately.
Also, exchanging information between the provers in runtime can be useful, both
for performance, and for providing the user with additional meaningful output.
Combining the tools into one suite could also help logicians and logic students
to use their preferred formalism for defining logic on the one hand, and get a
better understanding on the connection between these formalisms on the other
hand.
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Abstract. Various research groups of the description logic commu-
nity, in particular the group of Franz Baader, have been involved in
recent efforts on temporalizing or streamifying ontology-mediated query
answering (OMQA). As a result, various temporal and streamified exten-
sions of query languages for description logics with different expressivity
were investigated. For practically useful implementations of OMQA sys-
tems over temporal and streaming data, efficient algorithms for answer-
ing continuous queries are indispensable. But, depending on the expres-
sivity of the query and ontology language, finding an efficient algorithm
may not always be possible. Hence, the aim should be to provide crite-
ria for easily checking whether an efficient algorithm exists at all and,
possibly, to describe such an algorithm for a given query. In particu-
lar, for stream data it is important to find simple criteria that help
deciding whether a given OMQA query can be answered with sub-linear
space w.r.t. the length of a growing stream prefix. An important special
case dealt with under the term “bounded memory” is that of testing
for constant space. This paper discusses known syntactical criteria for
bounded-memory processing of SQL queries over relational data streams
and describes how these criteria from the database community can be
lifted to criteria of bounded-memory query answering in the streami-
fied OMQA setting. For illustration purposes, a syntactic criterion for
bounded-memory processing of queries formulated in a fragment of the
stream-temporal query language STARQL is given.

Keywords: Streams · Bounded memory ·
Ontology-mediated query answering · Ontology-based data access

1 Introduction

Ontology-mediated query answering (OMQA) [8] is a paradigm for accessing
data via declarative queries whose intended sets of answers is constrained by an
ontology. Usually, the ontology is represented in a formal logic such as a descrip-
tion logic (DL). Though OMQA has been of interest both for researchers as
well as users from industry, a real benefit for the latter heavily depends on the
possibility to handle temporal and streaming data. So, various research groups of
the DL community, in particular the group of Franz Baader (see, e.g., [6,10,27]),
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have been involved in recent efforts on temporalizing or streamifying classical
OMQA. As a result, various temporal and streamified extensions of query lan-
guages for description logics with different expressivity were investigated.

For practically useful implementations of OMQA systems over temporal
and streaming data, efficient algorithms for answering continuous queries are
indispensable. But, depending on the expressivity of the query and ontology
languages, finding an efficient algorithm may not always be possible. Hence,
the aim should be to provide criteria for easily checking whether an efficient
algorithm exists at all and, possibly, to describe such an algorithm for a given
query. For those queries that are provably bounded-memory computable, one
knows that there exists an algorithm using only constant space [3]. That means,
if one had a (preferably simple) criterion for testing whether a given query is
bounded-memory computable and, moreover, if one had a constructive procedure
to generate a memory-bounded algorithm producing exactly the answers of the
original query (over all streams), then one would make a considerably big step
towards performant stream processing.

A special sub-scenario for performant query answering over streams is to
provide simple criteria that help deciding whether a given OMQA query can be
answered with sub-linear space w.r.t. the length of the growing stream prefix.
An even more special (but important) case dealt with under the term “bounded
memory” [13] is that of testing for computability in constant space. We note
that, in particular in research on low-level data stream processing for sensor
networks [1], there is an equal interest in considering other sub-linear space
constraints such as (poly)logarithmic space. In this paper, we focus on constant
space requirements, however.

Usually, when considering bounded-memory computability one is interested
in what we call here bounded-memory computability w.r.t. the input : It denotes
the constraint that at most constant space (in the length of the input) is required
to store the relevant information of the ever growing input stream(s). Following
the approach of [3] we are also going to consider what we call bounded-memory
computability w.r.t. the output : This notion denotes the constraint of constant
space required to memorize the required information of the output produced
so far in order to compute new output correctly. This kind of constraint is
required in particular for a processing model where the output in each time
point consists only of the delta w.r.t. the output written in earlier time points.
Such an output model is implemented, e.g., with the so-called IStream operator
(“I” for“inserted”) in the relational stream query language CQL [4].

As bounded-memory computability is motivated by implementability and
performance, it has a flavour of a low-level issue that should be handled when
considering the implementation of an OMQA system. However, it would be an
asset to have criteria for bounded-memory computability at the ontology level,
i.e., to have criteria deciding whether a given query w.r.t. a stream of abox
assertions, an ontology and, possibly, integrity constraints can be computed in
constant space w.r.t. the length of the stream of abox axioms. The reason is that
ontology axioms or integrity constraints may have effects on bounded-memory
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computability, either positively or negatively. For example, if the ontology allows
to formulate rigidity assumptions, then bounded-memory computability may not
hold anymore [12]. On the other hand, functional integrity constraints over the
whole stream may lead to a bound on an otherwise unbounded set of possible
values, thereby ensuring bounded-memory computability.

Of course, if one considers ontology-mediated query answering in the strict
sense, namely so-called ontology-based data access (OBDA), there is an obvious
alternative approach for testing bounded-memory computability. In OBDA, a
query is rewritten w.r.t. the tbox and then unfolded w.r.t. some mappings into an
SQL query, so that answers to the original query can be calculated by answering
a streamified SQL query over a backend data stream management system. For
streamified OBDA this means that one can reduce the bounded-memory test
of a query on the ontology level to a bounded-memory test of the transformed
query over the backend data stream and then use the known bounded-memory
criteria for queries on relational data streams. In this paper, we do not deal
with the aspects of mapping and unfolding. Instead we consider how to lift the
known criteria [3] for relational stream queries to ontological queries. For this we
consider the case of lightweight description logics as representation languages for
ontologies so that perfect rewriting of queries according to the OBDA paradigm
is possible.

Quite a common scenario of stream processing (in particular for model check-
ing of infinite words [7]) is that the queries on a stream have to be answered
over the whole growing prefixes of a stream. Using the window metaphor, this
corresponds to applying a window whose right end slides whereas its left end
is set to a constant, i.e., to a fixed time point. Of course, the question arises
whether the problem of ensuring bounded-memory computability is not solved
by using a finite sliding window over the data stream. If one considers only row-
based windows, i.e., windows where the width-parameter denotes the number of
elements that make up its content (see [4]), then bounded-memory computabil-
ity is always guaranteed by definition of the semantics of row-based windows.
But sometimes one cannot easily decide on the appropriate width of the window
that is required to capture relevant information on the prefixes of the streams.
And even if it would be possible, the necessary size of the window could still be
too big so that in optimizing algorithms one could benefit from the use of less
memory.

For example, a naively implemented query that requires a quadratic number
of comparisons such as a query asking for the monotonic increase of tempera-
ture value sensors, may be implementable more efficiently with a data structure
storing a state with relevant data that are updated during stream processing. In
general, any optimized algorithm would have to rely on some appropriate state
data structure. The data structure for states we are going to consider stores
values in registers and allows manipulating them with basic arithmetical opera-
tors. In low-level stream processing scenarios, where the queries (such as top-k)
are required to be answered only approximately, the state data structures are
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called sketches, summaries or synopses, as these data structures really give some
approximate summary of the stream prefixes [1,14].

In this paper we discuss known syntactical criteria for bounded-memory pro-
cessing of SQL queries over relational data streams [3] and describe how and
to what extent these criteria from the database community can be lifted to cri-
teria of bounded-memory query answering in the streamified OMQA setting.
For illustration purposes we consider a syntactic criterion of bounded-memory
computability applied to a fragment of STARQL [18,19,21,23,24] which was
developed as a general query framework for accessing temporal and streaming
data in the OMQA paradigm.

2 The STARQL Framework

STARQL is a stream query language framework for OMQA scenarios with tem-
poral and streaming data. As such, it is part of recent efforts of streamifying
and temporalizing OMQA [5,6,9–11,15,23,26,28] with, amongst others, contri-
butions by Franz Baader and members of his group. We are referring to STARQL
as a framework, because it describes a whole class of query languages which dif-
fer regarding the expressivity of the DL used for the tbox and regarding the
embedded query languages used to query the individual intra-window aboxes
constructed in the sequencing operation (see below).

2.1 Example

The following example for an information need in an agent scenario illustrates
the main constructors of STARQL. A rational agent has different sensors, in
particular different temperatures attached to different components. The agent
receives both, high-level messages and low-level measurement messages, from
a single input stream Sin. The agent has stored in a tbox some background
knowledge on the sensors. In particular, the tbox contains an axiom stating
that all temperature sensors are sensors and that all type-X temperature sen-
sors are temperature sensors. Factual knowledge on the sensors is stored in a
(static) abox. For example, the abox may contain assertions type-X-temperature-
Sensor(tcc125), attachedTo(tcc125,c1), locatedAt(c1,rear) stating that there is a
temperature sensor of type X named tcc125 that is attached to some component
c1 at the rear. There is no explicit statement that tcc125 is a temperature sensor,
this can be derived only with the axioms of the tbox.

The agent has to recognize whether the sensed temperature is critical. Due
to some heuristics, a critical state is identified with the following pattern: In
the last 5 min there was a monotonic increase on some interval followed by an
alert message. As we assume that temperature values have been pre-processed
via a smoothing operation, monotonic increase is not prevented from appearing
quite often. The agent is expected to output every 10 s all temperature sensors
showing this pattern and to mark them as critical. A STARQL formalization of
the information need the agent is going to satisfy is given in the listing of Fig. 1.
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1 CREATE STREAM Sout AS

2 CONSTRUCT GRAPH NOW { ?s a :inCriticalState }

3 FROM Sin[NOW -5min , NOW]->10s

4 <http :// www.ifis.uni -luebeck.de/abox >

5 <http :// www.ifis.uni -luebeck.de/tbox >

6 USING PULSE AS START = 0s, FREQUENCY = 10s

7 WHERE { ?s a :TempSens }

8 SEQUENCE BY StdSeq

9 HAVING

10 EXISTS i1 , i2 , i3:

11 0 < i1 AND i2 < MAX AND plus(i2 ,1,i3) AND i1 < i2

12 GRAPH i3 { ?s :message ?m . ?m a :AlertMessage } AND

13 FORALL i, j, ?x,?y:

14 IF i1 <= i AND i < j AND j <= i2 AND

15 GRAPH i { ?s :val ?x } AND GRAPH j { ?s :val ?y }

16 THEN ?x <= ?y

Fig. 1. Example STARQL query

The CONSTRUCT operator (line 2) fixes the format of the output stream. Here,
as well as in the HAVING clause (see below), STARQL uses the named-graph nota-
tion of the W3C recommended RDF1 query language SPARQL2 for specifying a
basic graph pattern (BGP) and attaching a time expression. The output stream
contains expressions of the form

GRAPH NOW { ?s a :inCriticalState }
where NOW is instantiated by time points and ?s by constants fulfilling the
required conditions as specified in the following lines of the query. The evolve-
ment of the time NOW is specified in the pulse declaration (line 6).

The resources to which the query refers are specified using the keyword FROM
(line 3–5). Following this keyword one can refer to one or more streams (by
names or further stream expressions) and to URIs to a tbox and an abox, which
are understood as static knowledge bases. In this example, only one stream is
referenced, the stream named Sin. In this case, the stream consists, first, of
timestamped triples matching the BGPs of the form

GRAPH t1 { ?s :val ?y }
stating that ?s has value ?y at time t1. In logical notation, these subgraphs
would be written as timestamped abox assertions of the form val(?s,?y)〈t1〉.
Secondly, the input stream may contain timestamped triples matching BGPs of
the form

1 https://www.w3.org/RDF/.
2 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
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GRAPH t2 { ?m a :AlertMessage }
stating that at time point t2 an alert message arrived. In DL-notation this would
be expressed as: AlertMessage(?m)〈t2〉. The window operator attached to the
input stream, [NOW-5 min, NOW]->10 s, is meant to give snapshots of the stream
with the slide of 10 s (update frequency) and range of 5 min (all stream elements
within last 5 min).

For both types of BGPs the number of possible triples in a stream are
unbounded: in the first case this is due to the attribute val with its range being
real numbers, an infinite (even dense and continuous) domain to represent pos-
sible measurement values. In the second case, this is due to the possibly infinite
number of messages that are generated. We think of messages being produced
by a controller that generates message IDs from a (discrete but still) infinite
domain.

The WHERE clause (line 7) specifies the sensors ?s that are relevant for the
information need, namely temperature sensors. Already here it becomes clear
that the agent has to incorporate his background knowledge from the tbox: in
order to get all temperature sensors ?s it also has to find all type-X sensors. The
WHERE clause is evaluated only against the static abox. The stream-temporal
conditions are specified in HAVING clause.

For every binding of ?s, the query evaluates conditions that are specified in
the HAVING clause (lines 9–16). A sequencing method (here StdSeq) maps an
input stream to a sequence of aboxes, annotated by states3 i, j, according to a
grouping criterion. Note that the index variables for states i1, i2 are not prefixed
by a question mark, as is done for the other variables. This is to indicate the dif-
ferent types of variables. Index variables need to be bound by a quantifier, they
are not allowed as answer variables. The built-in sequencing method StdSeq is
called standard sequencing. It puts all stream elements with the same timestamp
into the same mini abox. Note that abox sequencing gives the user the flexibility
of defining its own abox sequence—whereas most of the other approaches of tem-
poralized and streamified OMQA, such as [6] already presuppose a sequence of
aboxes. This flexibility, on the other hand, means a burden for classical OBDA
where queries have to be transformed to queries over the backend. But fortu-
nately for simple sequencing strategies (and possibly for others) such as standard
sequencing one can get rid of the additional sequencing layer by reducing the
state indexes to the timestamps of the triples in the stream (see [24]).

Testing for conditions at a state is done with the SPARQL sub-graph mech-
anism. So, e.g.,

GRAPH i3 {?s :message ?m . ?m a :AlertMessage} (line 12)

asks whether ?s showed an alert message at a state annotated by the variable
i3. State i3 is further determined as the successor of the end state i2 in the

3 Note that we prefer to use the term “state” instead of the temporally connotated
“stage”, because we allow in principle sequencing methods that are not temporal,
e.g., sequencing by clustering.
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Fig. 2. Syntax for STARQL(OL, ECL ) template.

interval [i1, i2] (line 11). Over the interval [i1, i2] the usual monotonicity
condition (FORALL condition, lines 13–15) is expressed using a first-order logic
pattern. Note that a naive implementation of this condition would store all values
received so and make a quadratic number of comparisons over them.

As in the case of the WHERE clause, also for the evaluation of the HAVING clause
the background knowledge (static tbox and static abox) must be incorporated in
order to guarantee a complete set of answers. For example, the tbox may contain
a taxonomy of different types of messages, in particular different sub-types of
alert messages. If only instances of these subtypes are mentioned in the abox,
then their super-types have to be inferred by the agent.

2.2 Syntax

The example in the previous subsection illustrated the syntax and the intended
semantics of STARQL. For the sake of completeness we recapitulate here the
grammar that captures the syntax of STARQL. This grammar leads to a sub-
fragment of the original STARQL language [22]. In particular, the HAVING clauses
are less expressive than the original ones. Further we leave out aggregation con-
structors and macro definitions. For a full description see [22,23]. For the full
STARQL language, the bounded-memory results of this paper may not hold
anymore.

The grammar (Fig. 2) is denoted STARQL (OL, ECL) and it contains param-
eters that have to be specified in its instantiations: the ontology language OL
and the embedded condition language ECL. OL constrains the languages of the
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aboxes and the tboxes that are referred to in the grammar (underlined in Fig. 2).
ECL is a query language referring to the signature of the ontology language.
STARQL uses ECL conditions in its WHERE and HAVING clauses. The adequate
instantiation of STARQL(OL, ECL) may vary depending on the requirements
of the use case.

We are not going to discuss the whole grammar but only make some com-
ments on the most interesting part, which is the set of rules for the specifica-
tion of HAVING clauses (abbreviated hCl in the grammar). In the full STARQL
grammar (see [23]) HAVING clauses are allowed to use arbitrary first-order logic
constructors, in particular all boolean connectors, and also exists- as well as
forall-quantifiers. As STARQL allows infinite domains (such as the real numbers
in order to specify, say, temperature values) queries using FOL constructors have
to be used with care in order to give safe queries, i.e., queries that output only
finite sets of bindings. A query such as φ(y) = ¬val(tcc125, y) for example is not
safe as it would require outputting all of the infinitely many ys not being values
of tcc125.

This problem is known since the beginning of classical DB theory and it has
been handled by describing syntactical rules guaranteeing safeness. A similar
approach for handling safeness, but relying on adornments, is described in [23].
The grammar presented here has no adornments but still reflects safety con-
ditions. For example, the boolean connector for disjunction (or) is allowed to
be applied only for disjunctions with the same set of open variables. Further-
more, the existential and the forall quantifiers are allowed to quantify only over
variables which are guarded. Hence, an exists quantifier over x is allowed only
if x is bounded by a safe hCL clause appearing as conjunction in the scope of
the exists quantifier. And universally bounded variables are allowed only if they
are guarded in with the antecedent of an implication in the scope of the for-all
quantifier.

We further note that the grammar allows also unbounded windows, that is,
windows of the form [constant , NOW] where the left interval point is fixed, so
that the window content is going to contain the whole prefixes beginning with
the start time point of the query (set to constant).

2.3 Semantics

The explication of the semantics for STARQL queries rests on the semantics
of the instantiations of the parameter values OL and ECL. The only presump-
tion we make is that the OL and ECL have to fulfill the following condition:
There must be a notion of a certain answer of an ECL w.r.t. an ontology. The
motivation for such a layered—or as we call it here: separated—definition of
the semantics is a strict separation of the semantics provided by the embedded
condition languages ECL and the semantics for the stream query language on
top of it. Hence the separated semantics has a plug-in-flavor, allowing users to
embed any preferred ECL without repeatedly redefining the semantics of the
whole query language.
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For ease of exposition we assume that the query specifies only one output
sub-graph pattern and that there is exactly one static abox Ast and one tbox
T . Similar to the approach of [9], the tbox is assumed to be non-temporal in
the sense that there are no special temporal or stream constructors. We give a
denotational specification �Sout� of Sout recursively by defining the denotations
of the components. We will refer to the notion of a temporal abox within this
denotation semantics and also later on. A temporal abox or intra-window abox is
a finite set of timestamped abox axioms ax〈t〉, with t ∈ T . We call structures of
the form 〈(Ai)i∈[n], T 〉 consisting of a finite sequence of aboxes and a pure tbox
a sequenced ontology (SO). The index i of the abox Ai is called its state index.

So assume that the following query template is given.

Sout = CONSTRUCT GRAPH timeExpCons Θ(x,y)
FROM S1 winExp1 , . . . , Sm winExpm ,Ast, T
WHERE ψ(x) SEQUENCE BY seqMeth HAVING φ(x,y)

Windowing. Let �Si� for i ∈ [m] be the streams of timestamped abox
assertions. The denotation of the windowed stream wsi = Si [timeExpi

1 ,
timeExpi

2]->sli is defined by specifying a function FwinExpi s.t.: �wsi� =
FwinExpi(�Si�).

�wsi� is a stream with timestamps from the set T ′ ⊆ T , where T ′ = (tj)j∈N is
fixed by the pulse declaration with t0 being the starting time point of the pulse.
The domain of the resulting stream consists of temporal aboxes.

Assume that λt.gi
1(t) = �timeExpi

1� and λt.gi
2(t) = �timeExpi

2� are the unary
functions of time denoted by the time expressions in the window. For exam-
ple, if timeExpi

2 is NOW - 5, then the function gi
2 is just the function λt.(t − 5).

We assume that for all t �timeExpi
1�(t) ≤ �timeExpi

w�(t), as otherwise the win-
dow would not denote a proper interval. We have to define for every tj the
temporal abox Ãi

tj ∈ �wsi�. If tj < sl − 1, then Ãi
tj = ∅. Otherwise set first

tistart = �tj/sl	 × sl and tiend = max{tstart − (gi
2(tj) − gi

1(ti)), 0}, and define
on that basis Ãi

tj = {ax〈t〉 | ax〈t〉 ∈ �S� and tiend ≤ t ≤ tistart}. Now, the
denotations of all windowed streams are joined w.r.t. the timestamps in T ′:
js(�ws1�, . . . , �wsm�) := {

( ⋃
i∈[m] Ãi

t

)
〈t〉 | t ∈ T ′ and Ãi

t〈t〉 ∈ �wsi�}.

Sequencing. The stream js(�ws1�, . . . , �wsm�) is processed according to the
sequencing method specified in the query. The output stream has timestamps
from T ′. The stream domain now consists of finite sequences of pure aboxes.

The sequencing methods used in STARQL refer to an equivalence relation
∼ to specify which assertions go into the same intra-window abox. The relation
∼ is required to respect the time ordering, i.e., it has to be a congruence over
T . The equivalence classes are referred to as states and are denoted by variables
i, j etc.

Let Ãt〈t〉 be the temporal abox of js(�ws1�, . . . , �wsm�) at t. Let T ′′ =
{t1, . . . , tl} be the time points occurring in Ãt and let k′ be the number of
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equivalence classes generated by the time points in T ′′. Then define the sequence
at t as (A0, . . . ,Ak′) where for every i ∈ [k′] the abox Ai is Ai = {ax〈t′〉 |
ax〈t′〉 ∈ Ãt and t′ in ith equiv. class}. The standard sequencing method StdSeq
is just the one using the identity = as equivalence relation. Let F seqMeth be the
function realizing the sequencing.

WHERE Clause. In the WHERE clause only Ast and T are relevant for
the answers. So, purely static conditions (e.g. asking for sensor types as in
the example above) are evaluated only on Ast ∪ T . The result are bindings
awh ∈ cert(ψ(x), 〈Ast, T 〉). This set of bindings is applied to the HAVING clause
φ(x,y).

HAVING Clause. STARQL’s semantics for the HAVING clauses relies on the
certain-answer semantics of the embedded ECL conditions.

The semantics of φ(awh,y), i.e., the set of certain answers containing bindings
for y, is defined for every binding awh from the evaluation of the WHERE clause.
The semantics depends on t. Assume that the sequence of aboxes at t is seq =
(A0, . . . ,Ak). We define the set of separation-based certain answers, denoted:
certsep(φ(awh,y), 〈Ai ∪ Ast, T 〉).

If for any i the pure ontology 〈Ai ∪ Ast, T 〉 is inconsistent, then we set
certsep = NIL, where NIL is a new constant not contained in the signature.
In the other case, the bindings are defined as follows. For t one constructs a
sorted first-order logic structure It: the domain of It consists of the index set
{0, . . . , k} as well as the set of all individual constants of the signature. For every
state atom stateAt GRAPH i ECL(z) in φ(awh,y) with free variables z having
length l, say, introduce an (l + 1)-ary symbol R and replace GRAPH i ECL(z)
by R(z, i). The denotation of R in It is then defined as the set of certain answers
of the embedded condition ECL(z) w.r.t. the ith abox Ai: RIt = {(b, i) | b ∈
cert(ECL(z), 〈Ai ∪ Ast, T 〉)}. Constants denote themselves in It. This fixes a
structure It with finite denotations of its relation symbols. The evaluation of
the HAVING clause is then nothing more than evaluating the FOL formula (after
substitutions) on the structure It.

Let Fφ(awh,y) be the function that maps a stream of abox sequences to the
set of bindings (b, t) where b is the binding for y in φ(awh,y) at time point t.

Summing up, the following denotational decomposition results:

�Sout� = {GRAPH �timeExpCons� Θ(awh , b) | awh ∈ cert(ψ(x),Ast ∪ T ) and
(b, t) ∈ Fφ(aw h ,y)

(
F seqMeth(js(FwinExp1(�S1�), . . . , FwinExpm(�Sm�)))

}

Regarding the following considerations on bounded-memory processing we
note two points: First, the output is controlled by the pulse. At each evolving
time point the whole set of elements with timestamps falling into the current
time interval of the window is considered for the calculation of the output. This
means that there may be more than one RDF tuple to be processed at each time
point. We assume that at each time point the set of RDF tuples to be processed is
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bounded by a constant, otherwise the stream system could eventually fall behind
the pulse. (Of course, it may also fall behind the pulse without the assumption
on boundedness by a constant.) But even under this restrictive assumption,
bounded-memory computability is an issue due to the non-bounded number of
triples in the ever growing prefixes of the input streams. Hence a systematic
consideration is in order.

Further we note that the semantics is defined such that at every time point
the whole set of bindings that make the WHERE clause and the HAVING clause
true is returned, and not the delta of new bindings. That is, the semantics of
STARQL follows the idea of the RStream operator of the relational stream query
language CQL [4] and not that of the IStream operator.

2.4 Properties of STARQL

Non-reified Approach. A relevant question from the representational point of
view is how to represent events and, in particular, time in the query language. For
STARQL, the decision was to use a non-reified approach, where time is handled
as an annotation for sentences whose evaluation depends on the associated time.
As illustrated by the agent example above, the abox assertions (RDF triples in
SPARQL speak) are tagged with timestamps. This method is similar to adding
an extra time argument for concept and roles as in [5]. The non-reified approach
allows for representing time-dependent facts such as the fact that some sensor
showed some value at a given time point. This time point is relevant for the
window semantics in STARQL.

As the reified approach is more conservative and does not require to change
the semantics (the time attribute is treated as an ordinary attribute), a natural
question is why STARQL follows the non-reified strategy. The main reason is
that time requires a special treatment as it has specific constraints for reason-
ing. For example, in the measurement scenario one would like to express the
constraint that, at every time point, a sensor shows at most one value. This can
be done with a classical DL-Lite axiom by stating (func val) ∈ T . Note that
under such a constraint it is necessary that the window semantics preserves the
timestamps, as is indeed the case for the STARQL window semantics. Other-
wise two timestamped stream elements of the form val(tcc125, 92◦)〈3 s〉 and of
the form val(tcc125, 95◦)〈5 s〉 would lead to an inconsistency.

On the other hand, if one follows the reified approach such a time-dependent
constraint is not expressible in a DL: One would have to formulate that there are
no two measurements with the same associated sensor and same timestamp but
different values. As DLs are concept oriented, they are not suited to expressing
non-tree-shaped constraints with tbox axioms.

Homogeneous Interface. For the syntax and the semantics of STARQL
queries the exact resource of the input stream is not relevant: It may be a stream
of elements arriving in real-time via a TCP port, but equally it can be a simu-
lated stream of data produced by reading out a text file or a temporal database.
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In the former case, one can speak of (genuine) stream querying, whereas in the
latter case we use the term history querying. So STARQL offers the same inter-
face to real-time queries (as required, for example, in monitoring scenarios) and
history queries (as required, e.g., for reactive diagnostics). And, indeed such a
homogenous interface to two different modes of querying has proved useful for
real industrial use cases, in particular, for the turbine-diagnostics use case of
SIEMENS in the context of the OPTIQUE project [17,19,20].

Separation Between Static and Temporal Conditions. As illustrated in
the example above, STARQL allows to separate the conditions expressed in
an information need into conditions that concern only the static part of the
background knowledge (tbox T and static abox Ast) and into conditions which
require both, the static part and the streams. The former can be queried in
the WHERE clause, the latter in the HAVING clause. For the semantics of HAVING
clauses we also incorporated the tbox and the static abox (which is always added
to each abox in the sliding window). And indeed, this reference, at first sight,
is not eliminable. The reference to the tbox can be eliminated by just rewriting
the HAVING clause into a new HAVING clause using the standard perfect rewriting
technique. Still, the theoretical question remains whether it is possible to push
all references to the static abox (all occurrences of concept and role symbols that
appear in the static abox) into the WHERE clause, so that the HAVING clause can
be evaluated only on the streams and the bindings resulting from the evaluation
of the WHERE clause. In other terms, is the HAVING clause separable in a pure
static part and a part containing only role and concept symbols not part of the
static abox? This is an open problem.

Even if separability in the sense above holds, in terms of feasible implemen-
tation, the reference to a large static abox remains a challenging problem. As
far as we know, this problem has not been solved satisfactorily by any of the
current temporal and streamified OMQA systems.

OBDA Rewritability. STARQL queries with standard sequencing can be
rewritten into queries over backend data stream management system. This is
possible because the two layers in STARQL, the semantics of the outer temporal
FOL template and the semantics of the embedded ECL queries, are separated.
This is similar to the temporal conjunctive queries (TCQs) of [9]. For the details
of rewritability and a comparison of STARQL with the query languages of TCQ
we refer the reader to [24].

An Alternative Operational Semantics. The window semantics defined
above is denotational and mimics the window operator definitions for CQL [4],
which is one of the first relational data stream query languages. From the imple-
mentation point of view, an operational semantics is more helpful—at least it
gives a different perspective on the intended semantics of windows. Furthermore,
the operational view also sheds light on why the window definition was chosen
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exactly the way as stated above. For the details of the operational semantics we
refer the reader to [18].

3 A Criterion for Bounded-Memory Computability for
SQL Queries over Streams

We have seen that in STARQL, queries can refer to streams that may contain
infinitely many different RDF triples. Moreover, we saw that naive implemen-
tations of queries such as the linear-space, quadratic-time implementation of
monotonicity may lead to non-efficient query processing. Hence, finding good
criteria for bounded-memory processing of STARQL queries is a real issue. In
order to find such criteria, in the following, we consider criteria known to hold
for SQL queries over relational data streams.

The early work of Arasu and colleagues [3] gives syntactic criteria for bounded
memory computability of queries in the SPJ (select-project-join fragment) of
SQL and also for an extension of SPJ with aggregation operators. In each
case they consider both natural set semantics and multi-set (alias: bag) seman-
tics. Moreover they describe an algorithm that in case of bounded-memory
computability constructs a corresponding bounded-memory stream algorithm.
Though SQL, per se, does not provide stream specific operators as in specific
stream query languages (such as CQL [4]), the results are still fundamental
enough in order to be adaptable to genuine stream query languages.

The underlying computation model for the bounded-memory results is
described only informally in [4]. It is a register machine model extended to han-
dle infinite input streams. Such a computation model can be formally described
by streaming abstract state machines [16].

3.1 Query Language and the Query Model

We assume that the user is familiar with the SPJ-Fragment of SQL. We just
restate some SPJ queries from [3] in order to illustrate the memory-boundedness
criterion.

Assume that you have two homogeneous data streams, one containing tuples
of the form S(A,B,C) with a ternary relation S and a stream containing tuples of
the form T (D,E). All attributes (here A,B,C,D,E) are assumed to range over
the integers. The queries are constructed using a projection operator Π ∈ {π, π̇},
where π is the duplicate eliminating projection operator and π̇ is the duplicate-
preserving operator. The selection operator σ is restricted to conjunctions of
atoms of the form X = Y and X > Y , where X,Y are either attributes or
integer constants. The join is a full join with the cartesian product ×. An example
query which is evaluated with multi-set semantics, i.e., Duplicate Preserving, is
the following query:

QDP
3 = π̇A(σ(A=D∧A>10∧D<20)(S × T ))
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The query asks for all values A (with duplicates) with 20 > A > 10 such that
there are tuples of the form S(A, ·, ·) and T (A, ·). In logical notation, this is the
conjunctive query

∃B,C,D,E.S(A,B,C) ∧ T (D,E) ∧ A = D ∧ A > 10 ∧ D < 20

What is the process model for evaluating this query, when S and T do not stand
for static tables but streams?

The query is answered over one inhomogeneous big stream of tuples. The
stream is inhomogeneous in the sense that tuples belonging to different rela-
tions may arrive (in case of the above query: tuples from S and tuples from
T .) This is usually the case in the area of complex event processing (see, e.g.,
[2]). The idea is that the big stream is the result of merging—or interleaving
as Arasu and colleagues call merging—many homogeneous streams (i.e. streams
where every tuple belongs to exactly to one relation, here: the two homoge-
neous streams associated with S and T ). Interleaving means that an arbitrary
sequence of tuples is fixed which consists of tuples from the referenced homo-
geneous stream.4 For example, if S = 〈S(1, 1, 1), S(2, 2, 2), S(3, 3, 3), . . . 〉 and
T = 〈T (1, 1), T (2, 2), T (3, 3), . . . 〉, the following big stream is a possible inter-
leaving

BS1 = 〈S(1, 1, 1), S(2, 2, 2), S(3, 3, 3), T (1, 1), T (2, 2), T (3, 3), . . . 〉

Another is

BS2 = 〈S(1, 1, 1), T (1, 1), S(2, 2, 2), T (2, 2), S(3, 3, 3), T (2, 2), . . . 〉

and so on. In many modern stream query languages following a pipeline archi-
tecture, these kinds of interleavings are not completely outsourced to a system
but are controlled with the query language using cascading of stream queries.
Such a control is given also in STARQL. The criteria of memory-boundedness
mentioned below are to be understood to hold for all (!) possible interleavings.

Now, how is a query such as QDP
3 evaluated? Every time t a new tuple in

the big stream BS arrives it is stored in an ordinary SQL DB containing all
tuples arrived so far. The query is evaluated on the accumulated DB with the
last tuple. So, one has a notion of an output of a query Q at time t over the
big input stream BS, ans(Q, t,BS), which is defined as QDB(BS≤t) that is the
answer of the query Q on the accumulated DB from the t-prefix of the stream
BS. The output at every time t is a set (or multi-set). This definition of the
output stream corresponds to the IStream semantics of CQL [4].

Now one could associate with a query and a big stream BS the stream of
answers (ans(Q, t,BS)t∈N). But actually, the authors of [3] associate an output
stream with a query over the input big stream in a different way as they want to
have a stream of tuples again. So they consider a stream of elements produced
so far and consider the multi-set-union over this prefix as the intended answer of

4 We note that there is no fairness assumption for the interleavings in [3].
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the query. As the authors consider only monotonic queries they assume that the
answer stream can be given by reference to the answers produced so far multi-
unioned with the answer produced at the current time stamp. To formalize this,
let us assume that a query Q maps an input stream BSin into an output stream
Q(BSin) = BSout. Then, one demands that for every arrival time point t one has
ans(Q,BS≤t

in ) = �BS≤t
out, where � is defined for a sequence of elements (si)i≤t

as the multi-set of elements by multi-union of all the {si}.

3.2 Criterion for SPJ Queries

The following table gives some example queries and states which of them are
bounded-memory computable. Duplicate preserving queries have a DP super-
script, duplicate eliminating ones have a DE superscript. As before, we assume
two homogenous streams, with elements of the form S(A,B,C) and the other
with elements of the form T (D,E).

Acronym Query Memory-Bounded?
QDP

1 = π̇A(σ(A>10)(S)) yes
QDE

1 = πA(σ(A>10)(S)) no
QDP

3 = π̇A(σ(A=D∧A>10∧D<20)(S × T )) yes
QDE

3 = πA(σ(A=D∧A>10∧D<20)(S × T )) yes
QDP

4 = π̇A(σ(B<D∧A=10)(S × T )) no
QDE

4 = πA(σ(B<D∧A=10)(S × T )) yes

The first query QDP
1 is memory bounded as it acts as a simple filter: there is

no join condition and the query answering system does not have to eliminate
duplicates. This is different for the query QDE

1 which is the same as the first
except for using duplicate elimination: As A is not bounded from above, the
system would have to store any A > 10 arrived in S so far in order not to output
them a second time.

Both queries QDP
3 , QDE

3 are memory-bounded. The algorithm in the
duplicate-preserving case has synopses for S and T , resp. Both synopses con-
sist of registers for all integer values v in the range [11, 19]. A register for value
v in the S-synopsis stores the number of S-tuples having A = v. Similarly the
register for value v in the T -synopsis counts all T -tuples arrived so far with value
D = v. Now, assume for example that the next element in the big stream is an
S-tuple with A = v. If v is not in the interval [11, 19], it is ignored. Otherwise
one considers the number of T -tuples in the v-register of the T -synopsis. This
number of v tuples is put onto the output stream. The duplicate-eliminating case
is similar but one stores just boolean values in the registers instead of number
counts.

In case of the pair of queries QDP
4 , QDE

4 the duplicate-preserving one is
not bounded-memory computable, whereas the duplicate eliminating query is.
Regarding the latter one constructs a synopsis for S where the minimum value of
attribute B among all tuples of S with A = 10 having arrived so far are stored,
and one has a T -synopsis, in which the maximum value of attribute D among
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all tuples of T so far is stored. For the duplicate-preserving query QDP
4 it is not

enough to know whether a stream joins with a past stream but one has to count
the number—and these numbers are not bounded.

We state the syntactic criterion for the duplicate-eliminating case only as
we are going to consider the set-semantics for STARQL only. The syntactic
criterion is formulated for SPJ-queries that have a special form. These queries
are called locally totally ordered queries, for short, LTO queries. As every query
is equivalent to a union of LTO queries, a query is memory-bounded iff all its
LTOs are (Theorem 5.3 in [3]). An LTO query Q is a query in which for every
stream S referenced in Q the union of attributes in S and all constants occurring
in Q are totally ordered.

Let P be a selection predicate, i.e., a conjunction of atoms of the form X >
Y, orX = Y . Let P+ denote the set of all atoms entailed by P that contain only
symbols of P .

An attribute A is called lower-bounded (resp. upper-bounded) if there exists
an atom A > k ∈ P+ (resp. A < k ∈ P+), or an atom A = k ∈ P+ for some
constant k. A is bounded if it is both upper-bounded and lower-bounded. Two
elements e and d (variables or constants) are called equivalent w.r.t. a set of
predicates iff e = d ∈ P+. Then | E |eq denotes the number of equivalence
classes into which a set of elements E is partitioned according to the equivalence
relation above.

Now consider a stream Si referenced in a query Q. MaxRef(Si) is defined as
the set of all lower bounded but not upper-bounded attributes A of Si such that
A appears in a non-redundant inequality join (Sj .B < Si.A), i �= j, in P+. The
definition of MinRef(Si) is the dual of the definition of MaxRef(Si). With this
definition the following characterization can be proved.

Theorem 1. ([3] , Theorem5.10). Let Q = πL(σP (S1 ×· · ·×Sn)) be an LTO
query. Q is bounded-memory computable iff:

C1: Every attribute in the list L of projected attributes is bounded.
C2: For every equality join predicate (Si.A = Sj .B), i �= j, Si.A and Sj .B are

bounded.
C3: | MaxRef(Si) |eq + | MinRef(Si) |eq≤ 1 for i ∈ {1, . . . , n}.

4 Lifting the Criteria of Bounded-Memory Criteria
Bounded-Memory Computability to OMQA

As STARQL can be used with unbounded windows, in STARQL, we face prob-
lems similar to the ones for the model of SQL stream processing described in the
previous section. Even if one were to consider finite windows, considerations on
bounded-memory stream processing could give insights into optimization means.
In the previous section the relational tuples were defined over the integers, a dis-
crete, infinite domain. If one considers also dense domains, then one has a similar
if not a more difficult problem of ensuring bounded-memory computability. But
even here one can sometimes guarantee bounded-memory computability as the
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following monotonicity example (a variant of the example from the beginning)
suggests.

Consider the simple monotonicity query in Fig. 3, asking every second
whether the temperature in sensor s0 increased monotonically up to the cur-
rent time point.

Fig. 3. Simple monotonicity query

A straight-forward implementation of this query is to construct from scratch
sequences of [0, NOW]-windows and test on these the monotonicity condition
by iterating trough all possible state-pairs (i, j). But this results in a test of
quadratic order (w.r.t. time). It is not hard to see that first one can find a
complete and correct algorithm that is not quadratic in time and uses constant
space only (w.r.t. the uniform cost measure in register machines): it just stores
the maximal temperature value for the last time point and compares it with the
values arriving at the current time point. Of course, this optimization is possible
only if it can be guaranteed that the input streams are not out of sync, i.e., if
tuples with earlier time stamps than the current time point are excluded. In such
an asynchronous case one would have to store all possible measurement values.

The results of [3] can be adapted to formulate criteria for bounded-memory
computability on STARQL queries. For this we consider the following variant
of STARQL, which, syntactically, is a simple fragment, called CQ-fragment of
STARQL and denoted STARQLCQ, but which, semantically, differs in applying
the IStream semantics and not the RStream semantics.

Definition 1. Syntactically STARQLCQ is defined as that fragment of STARQL
adhering to the following constraints:

1. The FROM clause refers only to streams that are streams of abox axioms (or
RDF tuples).

2. All sliding windows are unbounded windows (with the same slide which is
identical to the pulse).

3. The WHERE clause is allowed to be any reasonable query language allowing a
certain answer semantics.

4. The sequencing strategy is that of standard sequencing.
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5. The HAVING fragment is restricted to consist of conjunctive queries of the
form

EXISTS y1, y2, . . . , ynA(x1, . . . , xm, y1, . . . , yn)

where the xi are non-state variables which may occur as free variables in the
WHERE clause or the xi are state variables, and the yi are state variables or
non-state variables bounded by the EXISTS quantifier. The expression after the
quantifiers A(x1, . . . , xm, y1, . . . , yn) is a conjunction of atoms in which only
variables x1, . . . , xn, y1, . . . , yn may occur and which have one of the following
forms.
– GRAPH i r(x, y) where

r is a role symbol, x is a constant or a variable in {x1, . . . , xm, y1, . . . , yn}
– GRAPH i C(x) where

C is an atomic concept symbol, x is a constant or a variable in the set
{x1, . . . , xm, y1, . . . , yn}

– x op y where
op ∈ {<,>,=} and x is a constant or variable in {x1, . . . , xm, y1, . . . , yn}

Semantically, STARQLCQ uses the IStream semantics.

Please note that in the first item of the definition we exclude the reference to
streams that are constructed with other STARQL queries. Otherwise we would
have to consider criteria for composed queries. We do not exclude that this is
possible, but the adaptation would be rather awkward.

Now we get the following adapted version of the syntactic criterion.

Proposition 1. Let Q be an LTO query in the STARQLCQ fragment. We make
the following assumptions

1. The streams are interleaved in a synchronized way, i.e., the time points of
tuples adheres to the arrival ordering.

2. At every time point only a finite number of elements bounded by some constant
can arrive.

3. The tbox is empty. (But see Corollary 1 where this assumption is dropped.)

Then, Q is memory-bounded iff it fulfills the following constraints.

C1: Every variable appearing in the HAVING clause is either bounded by EXISTS

or is a-bounded or occurs free in the WHERE clause.
C2: For every non-state variable that occurs in two atoms or in an identity
atom: if it is not a state-variable, then it is bounded or occurs free in the WHERE

clause.
C3: | MaxRef(Si) |eq + | MinRef(Si) |eq≤ 1 for i ∈ {1, . . . , n}.

Please note that we have the following differences w.r.t. the criterion of [3]:
First of all, there is a WHERE clause. Evaluating the variables occurring in a
WHERE clause does not pose a problem regarding bounded-memory computability
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as these variables refer to the static database (which is finite). So all variables
bounded by the WHERE clause can be considered to be bounded in the sense of
Arasu.

The STARQL query language allows composing queries, i.e., a STARQL
query may refer to streams produced by other STARQL queries. This compo-
sition leads to constraints regarding interleaving which are not captured by the
criteria of Arasu (hence we considered only non-cascaded queries).

In the case of STARQL and STARQLCQ the time flow is not restricted to
a discrete domain. In the case of non-discrete time domains it is important to
know that the streams are synchronized. Otherwise, as we mentioned above in
the monotonicity example, one would have to store measurement values for all
time points of tuples having arrived so far as one cannot exclude the case that
values for time points in between may arrive.

As the proposition shows, the impossibility of bounded-memory processing
may also be due to non-bounded memory computability w.r.t. the output. This
was one reason why, in the original definition of STARQL, we decided to use the
RStream semantics for STARQL. The other reason was that for non-monotonic
queries and aggregation queries one cannot rely on IStream semantics. On the
other hand, the use of an RStream semantics means that due to the possibility
of unbounded sets of answers at every time point, the system may fall behind
the pulse requirements. So, we have here a classical opposition of time and space
constraints.

In the proposition we assume that the tbox is empty. In the STARQL frame-
work the tbox is assumed to be atemporal. But even then one cannot exclude that
a tbox axiom may lead to the loss of bounded-memory computability, although
the query w.r.t. the empty tbox is bounded-memory computable. For example, a
simple role inclusion axiom may lead to a self join in the query, which is handled
via other syntactic criteria. It is an interesting open question to find criteria
on the tbox that preserve the correctness and completeness of the syntactical
criteria for bounded-memory computability.

On the other hand, if we consider OBDA, which allows for perfect rewriting
of queries, then we can apply the criterion of Proposition 1 to each completion
of each conjunctive query in the rewritten query (which is a union of CQs, for
short a UCQ).

Corollary 1. Let Q be a query in the STARQLCQ fragment w.r.t. some DL
allowing for perfect rewritability. Let Qrew be the rewritten UCQ. We assume
that each prefix of the abox stream is consistent with the ontology.

If each of the LTO queries to each CQ in Qrew fulfills the conditions men-
tioned in Proposition 1, then and only then, Q is bounded-memory computable.

Note that we assume consistency of the abox-stream prefixes with the tbox.
Otherwise one would have to test for inconsistency. This test can be reduced
to first-order logic queries but the resulting queries are not bounded-memory
computable. Consider, e.g., a negative inclusion A � ¬B which would lead to
an unbounded query ∃A(x) ∧ B(x). Similar considerations follow for functional
constraints.
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On the other hand, when considering such axioms to hold only on the exten-
sional part of the ontology, i.e., if we consider integrity constraints on the abox
streams, then it is possible to gain bounded-memory computability. In the mono-
tonicity example above, we already discussed a similar form of integrity con-
straint, though it was not formulated as a DL axiom. A systematic study of the
consequences of integrity constraints for bounded memory computability is left
for future work.

5 Conclusion

The study of bounded-memory computability of OMQA queries can profit
from corresponding results on bounded-memory processing over relational data
streams. The adaptations are not trivial in the presence of tboxes—for languages
in which the tbox cannot be compiled away. We presented a syntactical crite-
rion for the information processing paradigm of OBDA in which the test of
bounded-memory processing w.r.t. a non-empty tbox could be reduced to a test
with an empty tbox. The question of how the syntactical criterion of [3] can be
adapted to the general OMQA case, in particular for tboxes in which temporal
constructors are allowed [5], is an open problem. We guess that due to the syn-
tacticality of the criterion, the adaptation is not going to be obvious. Hence, as
a further future research topic we think of an equivalent semantic criterion for
bounded-memory processing using the framework of dynamic complexity [25].
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7. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 4

https://doi.org/10.1007/978-0-387-47534-9
https://doi.org/10.1007/978-0-387-47534-9
http://dl.acm.org/citation.cfm?id=2540128.2540232
https://doi.org/10.1007/978-3-642-38574-2_23
https://doi.org/10.1007/978-3-642-40787-1_4


On Bounded-Memory Stream Data Processing 659

8. Bienvenu, M.: Ontology-mediated query answering: harnessing knowledge to get
more from data. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9–15 July 2016, pp. 4058–4061. IJCAI/AAAI Press (2016). http://www.ijcai.
org/Abstract/16/600

9. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the descrip-
tion logic DL-Lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS
2013. LNCS (LNAI), vol. 8152, pp. 165–180. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40885-4 11

10. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query lan-
guages over knowledge bases. J. Web Semant. 33, 50–70 (2015). https://doi.org/
10.1016/j.websem.2014.11.007. http://www.sciencedirect.com/science/article/pii/
S157082681400119X

11. Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies
for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012).
https://doi.org/10.4018/jswis.2012010103

12. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

13. Chomicki, J., Toman, D.: Temporal databases. In: Handbook of Temporal Reason-
ing in Artificial Intelligence, vol. 1, pp. 429–467. Elsevier (2005)

14. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1),
5–14 (2013)

15. Della Valle, E., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A first step towards
stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) Future Internet
- FIS 2008. Lecture Notes in Computer Science, vol. 5468, pp. 72–81. Springer,
Heidelberg (2009)

16. Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In:
Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 153–168.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75987-4 11

17. Kharlamov, E., et al.: Towards analytics aware ontology based access to static
and streaming data. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp.
344–362. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0 31

18. Kharlamov, E., et al.: An ontology-mediated analytics-aware approach to support
monitoring and diagnostics of static and streaming data. J. Web Seman. (2018, in
print)

19. Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens.
Web Semant.: Sci. Serv. Agents World Wide Web 44, 54–74 (2017). https://doi.
org/10.1016/j.websem.2017.02.001

20. Kharlamov, E., et al.: How semantic technologies can enhance data access at
siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 38
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22. Özçep, Ö.L., Möller, R., Neuenstadt, C., Zheleznyakov, D., Kharlamov, E.: Deliv-
erable D5.1 - a semantics for temporal and stream-based query answering in an
OBDA context. Deliverable FP7-318338, EU, October 2013
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