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Abstract The effective use of modern machines with numerical control is
impossible without a stable cutting process. An unexpected tool failure leads to
high production costs. Various models are proposed to predict the wear value and
tool life of the cutting tool. In this paper, the tool life equation is understood as a set
of the law of distribution of the tool life and the parameters of the law, depending
on the cutting mode. It is assumed that the spread of the tool life is associated with
the spread of hardness and the allowance for the machining of workpieces. The case
of asymptotically normal wear distribution for a given operating time is considered.
The method of the assessment of the tool life equation parameters by the maximum
likelihood method by statistics “speed-feed-depth-operating time-wear” is offered.
The average intensity of the wear depends on the parameters of the cutting mode in
the form of an exponent from the polynomial which is not higher than the third
power of the logarithms of the noted parameters of the cutting mode. The method is
illustrated by a numerical example with the statistics “speed-feed-operating
time-wear”. It is shown that the average tool life calculated by the proposed
method differs from the mathematical expectation by an amount of 0.4–5%, so in
practical calculations, you can use a simpler formula to calculate the mathematical
expectation of the tool life.
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1 Introduction

The development and improvement of metalworking technologies is inextricably
linked with the use of numerically controlled machines. Their effective use is
impossible without ensuring a stable cutting process, which is evaluated compre-
hensively on the following criteria: the accuracy, the finished surface quality, and
the reliability of the cutting tool.

Modern machine-building enterprises are characterized by a very wide range of
used cutting tools [1]. The cutting tool is the most vulnerable link in metal-cutting
systems. An unexpected tool failure leads to high production costs due to the
increased costs of prevention and maintenance of cutting tools and the increased
costs of repairable and irrepairable reject due to the high costs of workpieces for
finishing operations, so a large number of papers in the modern literature are
devoted to the study of the wear mechanism of cutting tools, the diagnosis of their
conditions, and the prediction of their tool life.

When diagnosing the state of cutting tools, the methods which use the machine
learning methods [2] are widely used. For this purpose, various indirect parameters
of the cutting process are used: acoustic emission [3], vibration [4], temperature [5],
cutting force [6], as well as their combinations [7]. The optical control is also used
to control the condition of cutting tools [8]. However, despite scientific research, an
extensive industry experience in this area and the economic importance of the
cutting operations, the cutting process needs in-depth study, which is confirmed by
a low predictive ability of the known cutting models and their efficiency only in
relatively narrow and constant operating conditions [9].

Various models are proposed to predict the wear value and tool life of the cutting
tool. For example, De-Jun Cheng et al. propose an approach for calculating the
wear overlap (WO) geometry [10]. Anton Panda et al. use Taylor’s equation to
predict the cutting tool life [11]. Also there are known approaches using the finite
element method (FEM) [12], the partial least-squares regression (PLSR) [13] and a
general model of wear [14]. However, these models do not take into account the
stochastic nature of the cutting tools wear, which depends on a large number of
factors: cutting modes, cutting properties of the tools, type of machining, hardness
of machined parts, value of machining allowances, pre-existing mode of defor-
mation, vibration, geometric errors of machine, etc. [15–19].

Therefore, in this paper, the tool life equation is considered in a generalized form
as a set of the distribution law of the cutting tool life T and the dependence of the
parameters of this law on the cutting mode [20, 21]. When turning the mode
parameters are the cutting speed V , the feed S, and the depth of cut h. The tool life is
mean time between failures (a dulling or a breakage of the cutting blade). Here, we
consider the case when the reason for the spread of the tool life is the spread of
hardness, machining allowance, and other parameters of workpieces [20].
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2 Materials and Methods

The failure of the cutting tool is considered to have occurred if the wear of the
cutting tool Y from the moment of installation after processing a batch of T
workpieces for the first time exceeds the maximum permissible value L. If DYi is
the increment of the wear after machining of the ith workpiece, then after
machining the T workpieces the total wear of the cutting tool is Y ¼ PT

t¼1 DYt.
Because of the marked spread, the DYi wears are random variables and their sum
after machining t workpieces according to the central limit theorem has an
asymptotically normal distribution with the density of distribution

ftðyÞ � 1ffiffiffiffiffiffiffiffiffiffi
2pDt

p exp �ðy� �YtÞ2
2Dt

" #
: ð1Þ

Formula (1) with practice-relevant accuracy can be used when t[ 10.
The average wear after machining t workpieces is

�Yt ¼ u � t; ð2Þ

and the dispersion of the wear, if the increments DYi are statistically independent, is

Dt ¼ r2t; ð3Þ

where u is the average wear on one workpiece (wear rate), a r is the standard
deviation of the wear on one workpiece. If there is a correlation between the
increments, then the dependence of Dt on t is more complicated and the formula (3),
in this case, must be considered as an asymptotic formula for t.

Taking into account the formulas (2) and (3), we obtain that

ftðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2t

p exp �ðy� u � tÞ2
2r2t

" #
: ð4Þ

The probability of non-failure operation during the operating time, that is, the
probability that YðtÞ\L is

PðtÞ ¼
ZL

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2t

p exp �ðy� u � tÞ2
2r2t

" #
dy ¼ U� L� u � t

r
ffiffi
t

p
� �

� U� �u � t
r

ffiffi
t

p
� �

; ð5Þ

where U�ðxÞ ¼ R x
�1

1ffiffiffiffi
2p

p expð�x2=2Þdx is the cumulative distribution function of

the normal distribution. When t[ 10 you can use the approximation

PðtÞ � U� L�u�t
r
ffi
t

p
� �

:
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The mathematical expectation �T and the coefficient of tool life variation KT are
calculated using the following formula

�T ¼
Z1

0

PðtÞdt; KT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Z1

0

PðtÞtdt � �T2

vuuut =�T: ð6Þ

Along with the mathematical expectation of the tool life �T , the average tool life,
which is calculated by the formula (7), may be of practical interest:

T
^ ¼ L=u: ð7Þ

It should be noted that �T and T
^

are close in value, but do not coincide. When
optimizing the cutting modes in the case of tool replacement on failure, we should
use the value �T since the costs per unit in this case are directly dependent on �T .

Since the tool life T is a random variable, then to determine the tool life
equation, we must also know in addition to the distribution law T the dependence of
the parameters of this distribution on the cutting modes. In this case, you should
know the dependence of the parameters r and u on the cutting mode parameters
V ; S; h.

The coefficient of wear variation during machining one workpiece

k ¼ r=u; ð8Þ

depends on the coefficient of variation of the workpiece hardness and the coefficient
of variation of the machining allowance, but it does not depend on the cutting
modes. As for the wear rate u, it essentially depends on the cutting modes and
mainly determines the tool life equation.

3 Assessment of Tool Life Equation Parameters

To assess the parameters of the tool life equation from tests, we use the statistics
ðti;Vi; Si; hi; YiÞ; i ¼ 1; . . .;N, where ti is the number of the machined workpieces
when the cutting mode parameters are Vi; Si; hi, and Yj is the total wear during the
time of machining ti workpieces. i is the test number with the cutting mode
parameters Vi; Si; hi, N is the number of tests. For the tests adequacy, it is necessary
that at each test, the values of the cutting mode parameters are changed, for
example, as in a two-level factorial experiment.

We will look the wear rate as a function of the cutting mode parameters in the
form of power dependence, for example, of this type:
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uðV ; S; hÞ ¼ exp b0 þ b1 � lnV þ b2 � ln2 V þ b3 � ln3 V þ b4 � ln Sþ b5 � ln2 S
�

þ b6 � lnV ln Sþ b7 � ln h�;
ð9Þ

where b0; . . .; b7 are the required coefficients to be estimated using the statistics
noted above. The number of components in the formula (9) may vary depending on
the available statistics, the factors taken into account, and the required accuracy of
the dependence (9). To estimate the coefficients b0; . . .; b7, let us use the maximum
likelihood method based on the distribution (4) with taking into account (8). The
optimal values of the parameters b0; . . .b7 and k maximize the likelihood function

Prðb0; . . .; b7; kÞ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffi
2pti

p
kui

exp �ðYi � uitiÞ2
2k2u2i ti

" #
ð10Þ

It is easier to find the maximum of the likelihood function’s logarithm, that is,
the maximum

lnðPrðbo; . . .; b7; kÞÞ ¼
XN
i¼1

½� lnð
ffiffiffiffiffiffi
2p

p
Þ � lnðkÞ � lnðuiÞ � lnðtiÞ � ðYi � uitiÞ2

2k2u2i ti
�:

ð11Þ

In the formulas (10), (11), the notation is accepted ui ¼ uðVi; Si; hiÞ. The max-
imum of the function (11) in our example is searched by the differentiation method

together with the random search. From the equation @ lnðPrðb0;...;b6;kÞ
@k ¼ 0 we obtain

that

k2 ¼ 1
N

XN
i¼1

ðYi � ui � tiÞ2
u2i � ti

: ð12Þ

Taking into account (12), the expression (11) will be simplified and take the
form:

lnðPrðbo; . . .; b6; kÞÞ ¼ �N½lnð
ffiffiffiffiffiffi
2p

p
Þ � 1

2N

XN
i¼1

lnðtiÞ � lnðkÞ � 1
N

XN
i¼1

lnðuiÞ � 1
2
�:

ð13Þ

We are searching for the maximum of function (13) for b0; . . .; b7 using a ran-
dom search method. Random search is implemented as follows. The parameter
value options b0; . . .; b7 are generated by the formula

Evaluation of Tool Life Equation of Single-Point … 947



bj ¼ b0j þðb00j � b0jÞ � random; j ¼ 0; . . .; 7; ð14Þ

where b0j; b
00
j are the search boundaries, which are defined from a priori consider-

ations, random is a function generating each time a pseudorandom number uni-
formly distributed in the interval from 0 to 1.

The parameter value options b0; . . .; b7 are generated in the search cycle. For
each option, the value of lnðPrðb0; . . .; b7; kÞ is calculated by (12) and (13). The best
option parameters b0; . . .; b7; k and the maximum achieved lnðPrðb0; . . .; b7; kÞÞ will
be stored in the computer memory.

4 Illustration of the Method

Now let us consider a specific example of the calculation of the tool life equation on
statistics ðti;Vi; Si; YiÞ; i ¼ 1; . . .;N. Such statistics are shown in Table 1. The
statistics was gathered during test with material steel 1X18H9T, cut depth 0.5 mm,
tool material hard alloy T30К4, and maximum wear 0.4 mm.

The wear rate function will be searched in the form similar to (9), but with the
feature that the cut depth h during the tests did not vary, so the dependence for the
wear rate on h is not included, that is, ui ¼ uðVi; SiÞ. In addition, we will check ten
options of this function as uðV ; SÞ according to the likelihood ration test. The sim-
plest form for uðV ; SÞ is option 1, where the maximum powers at lnV and ln S are 1
and 1, which is indicated in the Table 2 as 1 1. Hereby, uðV ; SÞ ¼
expðb0 þ b1 lnV þ b4 ln SÞ. In option ten, these powers are 2 and 2 and besides there
is a member lnV � ln S, which is indicated in Table 2 as 2 2 1*1. This means that
uðV ; SÞ ¼ expðb0 þ b1 lnV þ b2 ln2 V þ b4 ln Sþ b5 ln2 Sþ b6 lnV ln SÞ. Similarly,
other dependency options uðV ; SÞ, marked in the Table 2, are defined. The option
based on uðV ; SÞ with the maximum likelihood Prðb0; . . .; b6Þ is considered
preferable. The calculation results for all ten options are summarized in Table 2.

Table 1 Experimental data: speed-feed-operating time-wear (V � S� T � Y)

V S T Y V S T Y V S T Y

37 0.1 41 0.4 170 0.15 6 0.4 110 0.3 27 0.4

70 0.1 45 0.4 210 0.15 1.8 0.4 120 0.3 25 0.4

100 0.1 62 0.4 37 0.2 45 0.4 210 0.3 1.2 0.4

150 0.1 25 0.4 70 0.2 54 0.4 45 0.4 44 0.4

200 0.1 2.5 0.4 100 0.2 37 0.4 70 0.4 65 0.4

37 0.15 55 0.4 140 0.2 14 0.4 100 0.4 60 0.4

70 0.15 75 0.4 210 0.2 1.8 0.4 110 0.4 31 0.4

100 0.15 80 0.4 45 0.3 37 0.4 155 0.4 5 0.4

135 0.15 70 0.4 70 0.3 60 0.4 210 0.4 0.9 0.4

150 0.15 13 0.4 95 0.3 27 0.4
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It follows from Table 2 that option four is preferable in terms of likelihood. In
this case, the wear rate is

uðV ; SÞ ¼ exp �3:96þ 8:54 � lnV � 4:17 � ln2 V þ 0:49 � ln3 V � 0:01 � ln S� 	
:

ð15Þ

Table 2 Results of the calculation

№ Structure
UðV ; SÞ

b0 b1 b2 b3 b4 b5 b6 k Pr

1 1 1 −9.52 1.175 0 0 0.087 0 0 5.015 0.0003

2 2 1 −0.19 −3.42 0.533 0 −0.02 0 0 5.273 0.0332

3 2 1*1 −0.19 −3.42 0.533 0 0 0 −0.02 4.77 0.0462

4 3 1 −3.96 8.54 −4.17 0.49 −0.01 0 0 2.341 1791

5 3 1*1 −3.96 8.54 −4.17 0.49 0 0 −0.01 2.323 953

6 3 2 −15.1 8.913 −2.50 0.242 0.461 −0.06 0 3.356 0.018

7 3 1 1*1 −5.62 6.243 −2.91 0.345 −0.60 0 0.08 2.731 2.143

8 3 2 1*1 −4.24 6.326 −3.11 0.405 −1.57 1.074 1.151 2.510 0.379

9 2 2 −1.747 −2.75 0.425 0 −1.47 −0.53 0 4.987 0.016

10 2 2 1*1 0.795 −3.97 0.665 0 −1.38 0.585 0.662 4.106 0.032

Fig. 1 Graphs of tool life dependence on the cutting speed at different feeds. 1—experimental
values, 2—mathematical expectations. a S ¼ 0:1 mm/rev; b S ¼ 0:2 mm/rev; c S ¼ 0:3 mm/rev;
d S ¼ 0:4 mm/rev
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As it follows from the analysis of Table 2, the agreement of the actual wear
distribution with the theoretical one can be judged by a simpler indicator calculated
by the formula (12). The graphs shown in Fig. 1 are constructed using the
dependence (15). The mathematical expectation of the tool life �T was calculated by
the formulas (5), (6).

5 Conclusion

The proposed tool life equation as a set of the distribution law of the cutting tool life
T and the dependence of the parameters of this law on the cutting mode can
accurately predict tool failure taking into account the stochastic nature of the cutting

tools wear. The average tool life T
^

, calculated by the formula (6) using the
expression for uðV ; SÞ (15), differs from the mathematical expectation of the tool

life by an amount of 0.4–5%. The difference between �T and T
^

is not big and in

practical calculations, you can use the approximation �T � T
^

and a simpler formula
(7) to calculate �T .
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