
Chapter 7
Multistability in Ecosystems: Concerns
and Opportunities for Ecosystem
Function in Variable Environments

Ehud Meron, Yair Mau, and Yuval R. Zelnik

Abstract Ecosystems are highly nonlinear dissipative systems characterized by
multiplicity of stable and unstable states. Two major concerns are associated with
multistable ecosystems in variable environments. The first is related to the increased
likelihood of extreme climate events at regional scales, such as droughts, floods, and
heat waves, that may result in abrupt transitions to malfunctioning ecosystem states.
The second concern is related to the dominant role played by humans in shaping
and transforming the ecology of the Earth, and to the detrimental effects that such
transformations often have. Using mathematical models of dryland ecosystems as
a case study, we discuss recent advances that shed new light on these concerns.
We first argue that state transitions can be gradual or incomplete rather than
abrupt, providing opportunities for prevention and recovery. We further argue that
analyzing the unstable states that exist along with the stable ones, identifying their
existence ranges and their stable and unstable manifolds, can help to devise human
intervention forms that direct ecosystems towards desired functional ecosystem
states, without impairing ecosystem function. We conclude by presenting open
problems and delineating further research directions.
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7.1 Introduction

Ecosystems are highly nonlinear dissipative systems involving various positive
feedbacks between biotic and abiotic factors [52, 60, 81]. The stabilizing effects
that these feedbacks have on ecosystem states result in multiplicity of stable
states in wide ranges of environmental conditions [62]. These states often include
spatially periodic patterns and localized structures, in addition to spatially uniform
states [59, 60]. Ecosystems, however, seldom have the time span to converge to
stable asymptotic states [35]; rather, their dynamics are interrupted by natural
drivers, such as droughts, fires, floods, or forest pest outbreaks, and by human
intervention motivated by various functional needs, including ecosystem services,
land-use changes, and restoration of degraded ecosystems.

The varying conditions that ecosystems are subjected to, natural and human
driven, can induce transitions to malfunctioning states by driving ecosystems across
basin boundaries, or across thresholds where stable functioning states are destabi-
lized or disappear. These state transitions, or “regime shifts,” can be abrupt [71, 72],
but are not necessarily so—they can also proceed gradually through the propagation
of degradation fronts as model studies predict [3, 76, 92, 93]. Abrupt transitions
involving large decline in ecosystem function are of high concern because of
the projections for increased climate variability at regional scales [21, 51]. This
concern is reflected by an intensive current effort to devise early-warning signals for
impending abrupt transitions [41, 70]. The conditions under which state transitions
are expected to be gradual rather than abrupt, and thereby provide opportunities for
prevention or recovery, are far less understood.

Varying conditions can also affect the multiple unstable states that exist along
with the stable states, changing their stable and unstable manifolds or their
very existence. Understanding these states, whether they are spatially uniform,
periodic, or localized, is essential for studying transient ecosystem dynamics in
general [35], and transient dynamics induced by human intervention in particular.
Unlike natural drivers of ecosystem change, which are erratic and unpredictable,
human intervention is generally planned and controlled, and yet is often detrimental
to the ecosystem in question [15, 16, 66]. Studying unstable states holds much
promise for devising human intervention forms that direct ecosystem dynamics
towards desired self-organized functional states. This can be achieved by identifying
the growing eigenmodes associated with unstable states and studying the dynamics
in the phase space they span. This approach, which puts ecosystems on tracks of
self-organization towards desired ecosystem states from the start, has hardly been
pursued.

Out of all contexts of ecological multistability, dryland ecosystems stand out
as an excellent case study for closing the knowledge gaps mentioned above. In
addition to the variety of research problems that drylands pose, related to the
escalating concerns about desertification and biodiversity loss [1, 17], they show
striking phenomena of vegetation pattern formation (Fig. 7.1) [14, 22, 23, 86], and
they are describable by mathematical models that capture remarkably well a wide
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Fig. 7.1 Areal photographs of nearly periodic vegetation patterns in nature: (a) a spot pattern in
Zambia [4], (b) a stripe pattern in Niger [86], (c) a gap (“fairy circle”) pattern in Namibia (courtesy
of S. Getzin). From [59]

+

+

Fig. 7.2 Schematic illustration of the general positive feedback that drives vegetation pattern
formation in water-limited systems. While accelerating vegetation growth in existing patches,
these processes inhibit the growth in the patch surroundings, thereby favoring vegetation pattern
formation. From [59]

range of observed phenomena [4, 59, 60], including multistability of uniform states,
periodic patterns, and localized structures [23, 79, 92, 93].

The formation of large-scale vegetation patterns in drylands has been attributed
to small-scale positive feedbacks between local vegetation growth and water
transport towards the growth location, as Fig. 7.2 illustrates. Depending on the
water transport mechanism, different feedbacks have been distinguished [59, 60]:
(1) overland water flow induced by increased infiltration of surface water into the
soil in areas of denser vegetation (infiltration feedback); (2) water conduction by
laterally extended roots, the size of which increases with above-ground biomass
(root-augmentation feedback); and (3) soil-water diffusion induced by strong local
uptake at the vegetation-growth location and the soil-water gradients it forms (soil-
water diffusion feedback). The infiltration feedback is strong in landscapes where
bare soil tends to form physical or biological crusts that significantly reduce the
infiltration rate relative to areas covered by vegetation [18, 23, 68]. The root-
augmentation feedback is strong for plant species with high root-to-shoot ratios
and laterally spread root systems [2, 24, 26]. The soil-water diffusion feedback is
strong for plants with high root-to-shoot ratios and confined root systems, and for
sandy soils with high hydraulic conductivities [9, 42, 93]. While these feedbacks
promote local vegetation growth by drawing water from the adjacent areas of sparser
vegetation, they inhibit the growth of the sparser vegetation [49, 58, 67]. This favors
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nonuniform vegetation growth, or the growth of spatially periodic modes, which
leads to vegetation patterns. Another pattern-forming feedback is associated with
water advection, such as overland water flow on a slope [73, 75, 78] or fog advection
by wind [5]. The interception of advected water by vegetation patches produces a
shadowing effect on water transport in the slope or wind directions that leads to
banded vegetation.

Several mathematical models have been proposed to describe vegetation pattern
formation in drylands [24, 43, 48, 68, 77, 89]. These models represent a continuum
modeling approach [systems of partial differential equations (PDEs)] in which
the lowest level of description refers to small-scale processes rather than to
individual plants, as in individual-based models [12, 13, 29]. The advantage of the
continuum approach in the present context is that it lends itself to the powerful
methods of pattern-formation theory. Indeed, considerable progress has been made
in understanding the variety of uniform, periodic, and localized ecosystem states
along the rainfall gradient, using pattern formation tools such as linear stability
analysis of uniform states [26, 42, 73] and of patterned states [78, 79], derivation
of amplitude (normal-form) equations [28, 87], and computation of bifurcation
diagrams using numerical continuation methods [11, 76, 92, 93].

Despite the progress that has been made so far using PDE models of dryland
ecosystems, many ecologically significant questions that are addressable with
such models are still open or unstudied. In this paper we present and discuss
open questions related to the two concerns described earlier: state transitions to
malfunctioning ecosystem states and detrimental effects of human intervention.

Outline of the Chapter In Sect. 7.2, we discuss two dryland ecosystems—
grasslands in western Namibia and northwestern Australia—which show striking
pattern-formation phenomena and provide excellent opportunities to confront model
predictions with empirical data. Since the two ecosystems feature different pattern-
forming feedbacks, they are also described by different PDE models. We then use
these models to address problems related to state transitions in Sect. 7.3 and to the
effects of human intervention in Sect. 7.4, and describe some of the progress that has
been made. We conclude by delineating directions for future research in Sect. 7.5.

7.2 The Namibian and Australian Grassland Ecosystems

Empirical testing of vegetation pattern-formation phenomena in controlled labo-
ratory experiments is generally impractical because of the long time scales of
plant growth. Remote-sensing observations provide a good alternative in fairly
homogeneous and undisturbed areas, especially when the spatial scales involved
are large enough to be detectable by satellite images. The availability of satellite
images that go backward in time along with long-term future observations provide
probes for pattern dynamics too. While vegetation pattern formation has been
observed worldwide [14], two grassland ecosystems stand out in meeting the
conditions of spatial homogeneity, lack of disturbances, and large spatial scales.
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These are the so-called fairy circles of western Namibia [22, 40] and the recently
discovered fairy circles of northwestern Australia [23]. Fairy circles are circular
gaps of barren soil in grasslands that show large-scale order as Fig. 7.1c shows. The
average gap diameters, 6 m in Namibia and 4 m in Australia, are large enough to be
easily detectable in satellite images. The fairy circles of Namibia and of Australia
show similar biomass patterns, but differ in their soil properties. In the Namibian
ecosystem the soil is sandy and thus characterized by high infiltration rates of
rainfall into the soil and by high hydraulic conductivities. In contrast, the top-
soil layer in the Australian ecosystem is a hardly permeable claypan that generates
overland water flow (runoff). As a consequence, different pattern-forming feedbacks
are expected to generate the fairy-circle patterns in the two ecosystems: the soil-
water diffusion feedback in Namibia and the infiltration feedback in Australia [23].
Since the plant species in both ecosystems have confined root systems, the root-
augmentation feedback appears to be less significant.

In what follows, we consider the vegetation model introduced by Gilad et
al. [24, 26, 60], which, unlike other models, captures all three feedbacks. The model
consists of integral-partial differential equations for the areal densities of above-
ground biomass B(r, t), soil water W(r, t), and overland water H(r, t), all in units
of [kg/m2], where r = (x, y) [m] represents the spatial coordinates in the plane,
and t [y] represents time. Depending on the dominant feedback at work, different
model simplifications can be made [60]. The confined roots in both ecosystems
can be used to simplify the integral terms in the general model to algebraic terms,
assuming highly localized, delta-function root kernels [42]. The resulting system
of three partial differential equations (PDEs) can be further simplified in studying
the Namibian ecosystem, because of the high infiltration rate of sandy soil, which
prevents runoff. In that case, the system of three PDEs can be reduced to a pair
of PDEs for the biomass and soil-water variables [93]. The PDEs that describe the
Australian and Namibian ecosystems, in dimensional forms, are as follows:

Australian Ecosystem

∂tB = GBB (1 − B/K) − MB + DB∇2B ,

∂tW = IH − LWW − GWW + DW∇2W ,

∂tH = P − IH − LH H − ∇ · J ,

(7.2.1)

where J = −2DH H∇(H + Z) is the overland water flux, which depends on the
ground topography function, Z = Z(x, y), assumed to be independent of time (no
erosion or deposition processes).

Namibian Ecosystem

∂tB = GBB (1 − B/K) − MB + DB∇2B ,

∂tW = P − LWW − GWW + DW∇2W .
(7.2.2)
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In Eqs. (7.2.1) and (7.2.2), ∇2 = ∂2
x + ∂2

y is the Laplacian in the plane, and

LW = NW

1 + RWB/K
, LH = NH

1 + RH B/K
, I = A

B + Qf

B + Q
, (7.2.3)

GB = ΛW(1 + EB)2 , GW = Γ B(1 + EB)2 , (7.2.4)

are, respectively, the rates of soil-water evaporation, overland water evaporation,
infiltration, biomass growth, and water uptake. The quantity P [mm/y] represents
the precipitation rate, K [kg/m2] represents late-growth species-specific biomass
constraints, such as stem strength for woody vegetation or maximal attainable
biomass in the life cycle of annuals, and E [m2/kg] represents the root-to-shoot
ratio. In obtaining Eq. (7.2.2) we assumed a flat or mildly sloped terrains that
do not induce overland water flow. We note that the specific biomass dependence
of GB and GW in Eq. (7.2.4) follows from a root architecture described by a
Gaussian root kernel in the original model [60]. Other choices of root distributions
can lead to different forms for GB and GW . Information about the remainder of
the parameters and about non-dimensional forms of the model equations can be
found in Refs. [23, 59, 60]. Although we refer here to two particular ecosystems
involving herbaceous vegetation, the models are more general and applicable to
woody vegetation as well.

Out of the three pattern-forming feedbacks, the Namibian ecosystem model
captures only the soil-water diffusion feedback. The strength of this feedback
is controlled by the root-to-shoot ratio E and by the soil-water diffusivity DW ;
increasing any of these parameters strengthens the feedback, as it acts to increase
soil-water diffusion towards vegetation patches. The Australian ecosystem model
captures in addition the infiltration feedback; a strong feedback is obtained with
sharp infiltration contrast f � 1 (see I in Eq. (7.2.3)) and large runoff transport
coefficient DH , as both act to speed up overland water flow. The two feedbacks
suggest different spatial distributions of soil-water with respect to biomass: anti-
phase distributions (maxima of biomass coincide with minima of soil water) in
the case of the soil-water diffusion feedback, and in-phase distributions in the case
of the infiltration feedback. A linear stability analysis of the uniform vegetation
state indeed confirms these expectations [42]. In the Namibian ecosystem, where
the soil-water diffusion feedback appears to be the dominant one, the distributions
are expected to be anti-phase. A recent empirical study indeed supports this
expectation [8]. An additional support for the soil-water diffusion feedback comes
from another recent study according to which lateral water transport in the soil
occurs over distances as large as 7.5 m, which is consistent with the typical length
scale associated with the fairy circles [9]. In the Australian ecosystem the infiltration
feedback is the dominant one, because of the claypan top layer that forms a hardly
permeable soil crust. As overland water infiltrates mostly in vegetation patches, the
biomass and soil-water distributions are likely to be in-phase [23]. An additional
biomass-water feedback captured by the model equations for both ecosystems is
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associated with reduced evaporation in vegetation patches, hereafter the “shading
feedback.” This is a positive but non-pattern-forming feedback because it does not
involve water transport. Yet, it plays an important role in inducing multiple stable
states as we discuss below.

It should be noted that an alternative explanation of the fairy-circle phenomenon
has been proposed, according to which the circles represent foraging areas of termite
nests [40, 83]. The termite hypothesis, however, does not explain the fairy circles of
Australia, where termite nests were found to be uncorrelated to the circles [23]. The
correlations that have been found between rainfall patterns and fairy-circle dynamics
in Namibia [22, 93], the occurrence of Namibian fairy circles within a narrow
rainfall range between the 70 and 120 mm/y isohyets [22], and observations of fairy
circles with no termite colonies also in Namibia [65], pose additional challenges to
the termite hypothesis.

The general Gilad et al. model [26] and its two simplified versions (7.2.1)
and (7.2.2) show a universal sequence of basic vegetation states along the rainfall
gradient as Fig. 7.3 illustrates [28, 50, 59, 68, 89]: bare soil, hexagonal spot pattern,
stripe pattern, hexagonal gap pattern, and uniform vegetation. The emergence of
gap patterns from uniform vegetation and the morphology changes that these
patterns go through as rainfall decreases, first to stripe patterns and then to spot
patterns, represent a population-level mechanism to cope with water stress. By self-
organizing in spatial patterns the vegetation benefits not only from direct rainfall,
but also from water transport towards vegetation patches from the surrounding
bare-soil patches. In the Namibian ecosystem water is transported mainly by soil-
water diffusion [9, 65, 93], whereas in the Australian ecosystem the transport
is mainly through overland water flow [23]. With further rainfall decrease the
water-contributing bare-soil areas should increase in size to compensate for the
lower rainfall, which drives the two morphological changes mentioned above.
Both the Namibian and Australian ecosystems show strikingly regular gap patterns
(Fig. 7.1c). Statistical analyses of these patterns, including the calculation of pair-
correlation functions, show a dominating hexagonal order, where each gap is
surrounded on average by six equidistant gaps, as the models predict [22, 23].

bare soil spot pattern stripe pattern gap pattern uniform veg.

precipitation

Fig. 7.3 The five basic vegetation states along the rainfall gradient as obtained by model
simulations; uniform vegetation, hexagonal gap pattern, stripe pattern, hexagonal spot pattern, and
bare soil. From [59]
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Fig. 7.4 Bifurcation diagram showing different types of bistability ranges along the rainfall
gradient. The diagram shows four solutions of the Namibian ecosystem model (7.2.2) in 1d,
representing bare soil, uniform vegetation, periodic vegetation pattern, and a single vegetation
patch (pulse). The vertical axis is the L2 norm of the biomass variable, while the horizontal axis
represents the precipitation rate. Solid (dashed) lines represent stable (unstable) solutions. The
thresholds P4, P3, P2, P1 denote, respectively, the uniform instability of bare soil, the appearance
of periodic patterns in a saddle-node bifurcation, the nonuniform instability of uniform vegetation,
and the disappearance of isolated vegetation patches, represented by a pulse solution, in a saddle-
node bifurcation. The horizontal double arrows represent three types of bistability ranges: (1) bare
soil and uniform vegetation, BS-UV (P2 < P < P4), (2) uniform vegetation and periodic patterns,
UV-PP (P2 < P < P3), and (3) bare soil and periodic patterns, BS-PP (P1 < P < P3). The latter
range includes periodic patterns made of weakly interacting pulses. Note that the UV-PP bistability
range is, in fact, a tristability range as the bare-soil solution is also stable

The model Eqs. (7.2.1) and (7.2.2) also predict several forms of multiple stable
states along the precipitation axis, associated with the positive biomass-water
feedbacks that the equations capture. Figure 7.4 shows a bifurcation diagram that
illustrates three types of bistability ranges. The simplest form is bistability of bare
soil and (spatially) uniform vegetation (BS-UV in Fig. 7.4), which results from a
uniform (zero wavenumber) imperfect pitchfork bifurcation [59, 82] of bare soil to
uniform vegetation (P = P4 in Fig. 7.4). Note that the negative-biomass solution
is discarded as it does not represent a physical state. This bistability range can
be realized with high evaporation rates in bare soil, which stabilize the bare-soil
solution up to precipitation values where uniform vegetation is also a stable solution.
In the Namibian ecosystem model these conditions can be realized when the soil-
water evaporation is fast relative to water uptake and vegetation growth. In the model
for the Australian ecosystem the condition for bare-soil stabilization can be realized
with a high evaporation rate of overland water relative to the infiltration rate [23].
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Such a high evaporation rate is consistent with observed surface temperatures in
bare soil, which can be as high as 75 ◦C [23].

Besides bistability of uniform states, two main bistability forms that involve
uniform and patterned states, are possible: bistability of uniform vegetation and
periodic patterns—hexagonal gap patterns in two spatial dimensions (2d) (UV-
PP in Fig. 7.4), and bistability of bare soil and periodic patterns—hexagonal spot
patterns in 2d (BS-PP in Fig. 7.4). These bistability forms are obtainable with strong
pattern-forming feedbacks that lead to subcritical nonuniform (finite-wavenumber)
instabilities of uniform vegetation [59], and act to stabilize the patterned states once
they are formed. In the Australian ecosystem model (7.2.1) this is the infiltration
feedback (small f ), while in the Namibian ecosystem model (7.2.2) it is the soil-
water diffusion feedback (large E and DW/DB ). A third bistability form involving
uniform and patterned states is possible under conditions of weak shading feedback
(small RW and RH in Eq. (7.2.3)) in addition to a strong pattern-forming feedback.
In that case, the instability of bare soil to uniform vegetation is supercritical,
resulting in a stability range of uniform low-biomass vegetation as Fig. 7.10 shows.

Conditions that give rise to both bistability of bare soil and uniform vegetation
and bistability of uniform vegetation and periodic patterns result in a tristability
range of uniform vegetation, periodic patterns, and bare soil (see Fig. 7.4). Indeed,
aerial images of fairy circles in Australia reveal mixtures of nearly periodic gap pat-
terns and large bare-soil areas, suggesting the possible stability of both states [23].
In the next section we discuss possible implications of these multistability forms to
state transitions.

7.3 Abrupt vs. Gradual State Transitions

Underlying the view of regime shifts as abrupt state transitions is the presumption
that these transitions are global, encompassing the whole system. This view does not
take into account the spatial confinement of most disturbances, such as clear-cutting,
grazing, fires, or infestation, which often induce local state transitions, rather than
global transitions. The dynamics that follow local state transitions crucially depend
on the transition zones that separate the two alternative stable states. These zones
are fronts whose structures and dynamics have thoroughly been studied in various
pattern formation contexts [10, 32, 36, 59, 63]. Depending on the dynamics of a
single front, on the interactions between adjacent fronts, and on instabilities that
fronts may go through, different asymptotic states can result.

We begin by discussing the simpler case of bistability of uniform states. In the
context of dryland ecosystems, bistability of two uniform states can be realized
in precipitation ranges where both uniform vegetation and bare soil are stable
states (see Fig. 7.4). In this case fronts generically propagate. A particular control-
parameter value may exist for which the front is stationary, often called the Maxwell
point, but any deviation from this value results in front motion [59]. A simple
example can illustrate these general results. Consider the equation



186 E. Meron et al.

∂tu = λu + αu2 − u3 + ∂2
xu . (7.3.1)

For α > 0 the zero solution goes through a subcritical pitchfork bifurcation at λ = 0
that results in bistability range, −α2/4 < λ < 0, of the zero solution and the
nonzero solution, u+ = α/2 + √

(α/2)2 + λ > 0. Within this range propagating
front solutions that are biasymptotic to the two states exist, e.g., u → 0 as x → −∞
and u → u+ as x → ∞. The front speed, c, of a propagating front is uniquely
determined by the parameters λ and α [59] and can be calculated by considering
constant-speed fronts. Inserting u(x, t) = u(x − ct) into Eq. (7.3.1) we obtain

d2u

dz2 + c
du

dz
− dV

du
= 0 , (7.3.2)

where z = x − ct and

V = −λ

2
u2 − α

3
u3 + 1

4
u4 + V0 (7.3.3)

is a double-well potential with minima V0 = V (0) and V+ = V (u+) at the zero and
nonzero solutions. Multiplying Eq. (7.3.2) by du/dz and integrating we find

c ∝
∫ ∞

−∞
dV

du

du

dz
dz =

∫ u+

0

dV

du
du = V+ − V0 . (7.3.4)

The Maxwell point corresponds to the value λ = λM = −2α2/9 at which V+ = V0,
i.e., to a stationary front. Clearly, any deviation from the Maxwell point results in
wells of different depth and, consequently, in front motion.

A consequence of the generic property of front propagation is that domains of one
stable state embedded in the second stable state either shrink or expand. In the course
of time the fronts that bound these domains approach one another, their tails begin
to overlap and the fronts interact [36]. When these interactions are attractive, as in
the particular example given by Eq. (7.3.1), expanding domains coalesce into bigger
ones by front annihilation. In that case, a disturbance that results in an expanding
domain of a given state will eventually lead to a global transition to this state, but in
a gradual manner—by front propagation. Note that such a transition can take place
anywhere from the Maxwell point to the edge of the bistability range or the tipping
point where an abrupt global transition occurs [3]. Global transitions of this kind
are also possible with weak repulsive front interactions, but when the interactions
are strong enough the fronts may come to a stop rather than annihilate [27, 32]. In
the case of Eq. (7.2.2), repulsive front interactions can prevent a global transition
from uniform vegetation to bare soil, as Fig. 7.5 illustrates. Repulsive interactions
result from reduced competition for water in diminishing vegetation domains. When
these interactions are strong enough the asymptotic state is not uniform, but rather
a spatial pattern. That pattern consists of large bare-soil domains separated by
vegetation stripes, and reflects a partial regime shift [59, 91].
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Fig. 7.5 Global vs. partial gradual regime shifts. Shown are the dynamics of a locally disturbed
uniform vegetation state, obtained by solving Eq. (7.2.2) numerically in 2d at two precipitation
values that are sufficiently below the Maxwell point, where small bare-soil domains expand into the
surrounding vegetation areas. Top row: P = 165 [mm/y], far below the Maxwell point, where fast
expansion of initially small bare-soil domains eventually leads to a global shift to uniform bare soil.
Bottom row: P = 170 [mm/y], closer to the Maxwell point, where bare-soil domains expand more
slowly and repulsive front interactions result in a partial regime shift to large bare-soil domains
separated by narrow vegetation stripes. See Ref. [91] for additional information. From [91]

Fronts in bistable systems may go through two general types of instabilities,
transverse and longitudinal, as Fig. 7.6 illustrates for an activator-inhibitor type
system [59]. Transverse instabilities involve front-structure changes along the front
line [27, 30], such as curvature modulations (Fig. 7.6a). By contrast, longitudinal
instabilities involve changes normal to the front, e.g., a change in the position of
an inhibitor front relative to an activator front. A good example is the so-called
Nonequilibrium Ising-Bloch (NIB) bifurcation [7, 32]. In a bistable system with an
inversion symmetry, this is a pitchfork front bifurcation in which a stationary (Ising)
front is destabilized to a pair of counter-propagating (Bloch) fronts [7, 31, 32, 39, 61]
(Fig. 7.6b). Although front instabilities are local processes, occurring in the confined
front zone, their influence usually extends to the entire system. A transverse
instability results in the growth of fingers that split at their tips into new fingers,
which grow and tip-split again until the entire system is filled up with a stationary
labyrinthine pattern (Fig. 7.6a) [27, 30]. Note that this process requires repulsive
front interactions to prevent the coalescence of adjacent fingers into larger domains.
A longitudinal instability, such as the NIB bifurcation, can result in counter-
propagating front segments that develop in the course of time into space-filling spiral
waves [31, 33, 53]. In both types of front instability the asymptotic state is a spatial
pattern, either stationary or time dependent, rather than an alternative uniform state.
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Fig. 7.6 Local front instabilities can lead to global patterns. Shown are snapshots of numerical
simulations of a FitzHugh–Nagumo model (time proceeds from left to right) that illustrate
transverse (a) and longitudinal (b) front instabilities, and the asymptotic patterns they lead to—
labyrinthine pattern and spiral wave, respectively. Further details in Ref. [30]. From [59]

Front instabilities may well be found in models of dryland vegetation as these
are also activator-inhibitor systems showing bistability of uniform states (UV and
BS), where biomass is the activator and lack of soil-water—the inhibitor [44]. Front
dynamics in bistability of uniform vegetation and bare soil have received little
attention so far [20, 76]. Further studies are needed to test the relevance of incom-
plete regime shifts, driven by repulsive front interactions and front instabilities, to
real ecosystems, such as the Namibian and the Australian ecosystems discussed in
Sect. 7.2.

More attention has been devoted to the two bistability forms of uniform and
patterned states: uniform vegetation and periodic gap patterns, and periodic spot
patterns and bare soil [6, 11, 74, 79, 80, 92–95]. According to pattern-formation
theory, and in contrast to bistability of uniform states, when one of the alternative
states is a periodic pattern, fronts can be stationary or pinned in a range of the
control parameter [64]. In this range alternative-state domains can remain fixed in
size, neither expanding nor retracting, forming a multitude of stable hybrid states.
The latter can be spatially localized, representing single alternative-state domains
of different sizes, or spatially extended, corresponding to various combinations of
localized domains. In a bifurcation diagram, such as that shown in Fig. 7.7 for the
Namibian ecosystem model, localized hybrid states appear as solution branches that
snake back and forth as the sizes of the domains they represent change, a behavior
that has been termed “homoclinic snaking” [45, 46]. The snaking solution branches
occupy a subrange of the bistability range—the snaking range. Thus, three front
types can be distinguished in a bistability range of uniform and patterned states: a
stationary pinned front within the snaking range and two fronts moving in opposite
directions on either side of this range. Local disturbances within a snaking range
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Fig. 7.7 Bifurcation diagram for the Namibian ecosystem model (7.2.2) in 1d. The vertical axis is
the L2 norm of the biomass variable. Solid (dashed) lines represent stable (unstable) solutions. The
diagram shows a precipitation (P ) range where both uniform vegetation and periodic vegetation
pattern are stable. Within this range there exists a subrange of hybrid states. The insets show spatial
profiles of a 1d periodic gap pattern (a) and of a hybrid state consisting of a periodic gap pattern
with a missing gap, i.e., with the smallest domain of the alternative uniform vegetation state (b).
From [59]

should have little effect as the fronts are stationary and initial alternative-state
domains quickly converge to nearby hybrid states. Local disturbances outside the
snaking range, but still inside the bistability range, result in gradual shifts. Gradual
shifts may also occur within the snaking range when the system is subjected to
environmental fluctuations. Such fluctuations, if strong enough, can kick the system
temporarily outside the snaking range, where fronts do propagate, and thereby
induce hybrid-state transitions that gradually shift the system towards the alternative
stable state [3, 93]. The wider the snaking range the more resilient the system is to
environmental fluctuations and local disturbances. Identifying the biotic and abiotic
parameters that control the width of the snaking range relative to the bistability range
is therefore a highly significant unstudied problem.

Hybrid states are likely to exist in the Namibian ecosystem, as the satellite images
in Fig. 7.8 suggest [93]. Finding empirical evidence for hybrid-state transitions and
gradual regime shifts is more intricate. The closest evidence comes from studies of
fairy-circle “birth” and “death” events [85], which have been interpreted recently
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as hybrid-state transitions induced by rainfall variability [93]. Figure 7.9a shows
satellite images that span a period of 10 years and demonstrate the birth of a
fairy circle after a severe drought in 2007. Figure 7.9b shows a simulation of the
Namibian ecosystem model, using the first satellite image in 2004 as an initial
condition with a precipitation value within the snaking range, and mimicking the
2007 drought by a precipitation downshift that takes the system outside the snaking
range for a period of 1 year. As the simulation snapshots show, a new gap has
appeared after a 10-year period, exactly at the same location where the actual fairy
circle has appeared. The simulated temporal escape from the snaking range that was
needed to induce the formation of the new gap supports the view of fairy-circle
birth events as hybrid-state transitions. A series of droughts can result in a cascade
of hybrid-state transitions and a gradual shift [93], but empirical evidence for such
a cascade has not been reported yet.

Homoclinic snaking can also be found in a bistability range of low-biomass
uniform vegetation and periodic spot pattern, as Fig. 7.10 shows [11], implying the
feasibility of hybrid-state transitions and gradual shifts in fluctuating environments.
However, when the periodic-pattern solution branch extends to the stability range
of the bare-soil state, homoclinic snaking breaks down in what appears to be a
Belyakov–Devaney transition [38]. In that case shifts from periodic patterns to bare
soil, or desertification, are found to be abrupt [95]. While most model studies predict
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wide bistability ranges of spot patterns and bare soil, and thus the likelihood of
abrupt desertification, these studies have been confined to a single species. Quite
often dryland landscapes consist of woody and herbaceous species, forming a
bistability range of woody spot patterns and uniform herbaceous vegetation [25].
Studies of two-species models do predict homoclinic snaking [47], suggesting that
the degradation of woody spot patterns may be gradual rather than abrupt.

In the tristability range of bare soil, periodic patterns, and uniform vegetation
[see Fig. 7.7] many front types are expected to coexist, pinned, or moving; fronts
separating domains of uniform vegetation and bare soil, domains of uniform
vegetation and periodic patterns, and domains of periodic patterns and bare soil.
The dynamics, interactions, and stability properties of these front solutions, and the
implications for regime shifts have hardly been studied [96].

7.4 Human Intervention Along Unstable Eigenmodes

The dominant role played by humans in shaping and transforming the ecology of the
Earth is well recognized [19]. More than three-quarters of the terrestrial biosphere
have already been transformed into anthropogenic biomes by human populations
and this trend is intensifying. A major question that arises in this regard is how
to intervene in ecosystem dynamics so as to achieve the intervention goal without
harming ecosystem function. While this question appears to be overwhelmingly
hard in many contexts of human intervention, it may be tractable for selected
contexts that are simple enough to be modeled mathematically and yet ecologically
significant. In the following we focus on a specific example of such a context,
vegetation restoration in fluctuating environments, and use it to illustrate a general
approach to human intervention that highlights the roles of unstable states.

A common restoration practice is water harvesting by spatially periodic ground
modulations, such as parallel micro-catchments, that capture overland water flow
and along which vegetation is planted [88]. This is a spatial resonance problem
where a system that tends to form a periodic pattern with a preferred wave-number
k0 is forced to follow an external template with a different wave-number kf . The
question we wish to address here is the following: given a stripe-like template of
ground modulations in the x direction, characterized by a wave-vector kf = (kf , 0),
what should be the vegetation-planting pattern in order to achieve the restoration
goal of establishing a bio-productive state that remains functional in a fluctuating
environment?

We address this question using Eq. (7.2.1), modified to include a periodically
modulated infiltration rate to mimic periodic soil-crust removal, a lighter and more
cost-effective intervention form than micro-catchments [56],

I (B) = A
B + Qf

B + Q
, f = f0

[
1 + γf

2

(
1 + cos (kf x)

)]
, (7.4.1)
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Fig. 7.11 Resonant responses to stripe-like ground modulations with wave-vector kf = (kf , 0).
Top panels: a resonant stripe pattern (a) and a resonant rhombic pattern (b) in the x (horizontal)
and y plane, obtained by numerical integration of Eqs. (7.2.1) and (7.4.1). Dark shades denote high
biomass. Bottom panels: the corresponding Fourier transforms (in absolute value), where darker
dots denote higher absolute values, and the circle |k| = k0. The peaks at ±kf and the absence
of peaks on the circle of radius k0 in (a) indicate that the stripe pattern is in 1:1 resonance with
the forcing. The four peaks on the circle of radius k0 in (b) represent the two oblique modes,
k∓ = (−kx,∓ky), and their complex conjugates, −k∓. The value kx = kf /2 indicates that the
rhombic pattern is 2:1 resonance with the forcing. From [56]

where f0 � 1 is the infiltration contrast of an unmodulated soil and γf represents
the modulation strength. According to this form the infiltration rate in a densely
vegetated area is high, I ≈ A, because the biomass density there is significantly
higher than Q, a species-dependent reference value representing an over 50%
increase of the infiltration rate, whereas in bare soil it is much lower, I = Af0
in unmodulated bare soil and I = (1 + γf )Af0 in bare soil with removed crust.
Figure 7.11 shows two types of resonant patterns and the absolute values of their
Fourier transforms: (a) a stripe pattern that locks to the forcing in a 1:1 resonance
(vegetation stripe at each ground modulation), (b) a rhombic pattern that locks to
the forcing in a 2:1 resonance (vegetation spot at every second ground modulation).
The Fourier transforms show the basic modes that constitute these patterns; a stripe
mode, k = kf = (kf , 0), in the case of a stripe pattern (and its conjugate
mode (−kf , 0)), and three modes in the case of a rhombic pattern, a stripe mode,
kf = (kf , 0), and two oblique modes, k± = (kx,±ky), where kx = kf /2 and ky

are such that the total wave-number k is equal to the preferred wave-number k0, i.e.,
satisfies k2 = k2

x + k2
y = k2

0. Note that the three wave-vectors kf and k± satisfy the
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resonance relation, kf + k+ + k− = 0, which drives the simultaneous growth of
the three modes, and that in the case of an exact resonance (kf = k0) the rhombic
pattern becomes a hexagonal pattern consisting of three wave-vectors 120◦ apart.
Numerical studies of Eqs. (7.2.1) and (7.4.1) reveal a bistability range of resonant
stripe and rhombic patterns and that rhombic patterns extend to lower precipitation
values than stripe patterns [56].

Both stripe and rhombic patterns represent productive states, and establishing
any one of them would satisfy the restoration goal. The larger area of vegetation
coverage in the case of stripe patterns does not necessarily imply higher total
biomass or productivity, because of the larger water-contributing areas in the case
of rhombic patterns, which results in higher biomass densities in the vegetation
patches. The remaining question is which of the two patterns is more resilient
to droughts, and thus better functioning in fluctuating environments? Figure 7.12
shows the response of resonant stripe patterns to a moderate precipitation downshift,
which results in convergence to a rhombic pattern (top row), and to a stronger
downshift, which results in collapse to bare soil (bottom row) despite the existence
of stable rhombic patterns. The same numerical experiment conducted with an initial
rhombic pattern results in no significant pattern change. These results suggest that
stripe patterns are less resilient to droughts than rhombic patterns.

In order to understand the mechanism of collapse to bare soil let us focus on the
amplitudes A, a+, a− of the stripe and the two oblique modes, respectively, in terms
of which the state variables U = (B,W,H) can be approximated as

U(x, t) ≈ U0 + U1 Aeikf x + U2 a+ eik−·r + U3 a− eik+·r + c.c. , (7.4.2)

where U0, U1, U2, U3 are constant vectors, and we assumed proximity to the bare-
soil instability and weak ground modulations. Equations for the amplitudes A, a+,

Fig. 7.12 Resilience of stripe patterns to droughts. Numerical simulations of Eqs. (7.2.1) and
(7.4.1) showing the response of a resonant stripe pattern, obtained at a precipitation value within
the bistability range of stripe and rhombic patterns, to precipitation downshifts of different strength
to a range where rhombic patterns are still stable. The response to a moderate downshift results in
quick convergence to a rhombic pattern (top row), while the response to a stronger downshift
results in collapse to bare soil. Adapted from [56]
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a− have been derived for a simple pattern-formation model, the Swift–Hohenberg
equation with parametric spatial forcing [54–56]. Derivation of amplitude equations
for the vegetation model (7.2.1) and (7.4.1) is harder and has not been done yet.
However, because of the universal character of amplitude equations we may expect
their general form to apply to the restoration problem as well. Indeed, the amplitude
equations can produce a bifurcation diagram similar to that found by numerical
integration of the vegetation model [56], interpreting the bifurcation parameter as
the precipitation rate P . In the following we use these amplitude equations to study
the response to precipitation downshifts. A schematic form of the diagram obtained
from the amplitude equations is shown in Fig. 7.13.

Consider two precipitation downshifts of different strengths, applied to stable
stripe patterns as the arrows in Fig. 7.13 indicate: a moderate downshift to P2 where
stripe solutions exist but are unstable (green arrow), and a stronger downshift to
P1 where stripe solutions do not exist (red arrow). Note that both downshifts take
the system to a precipitation range where rhombic patterns are still stable solutions
and significantly far from the saddle-node bifurcation at which they disappear.
Figure 7.14 shows the phase planes spanned by the amplitude moduli ρS = |A|
and ρR = |a+| = |a−| at P2 and P1, where we took advantage of the symmetry
between the two oblique modes in the precipitation range we consider. Shown in

Rhombic

Bare soil

Stripe

S 2

B
io

m
as

s

Precipitation
P P1P

Fig. 7.13 A schematic bifurcation diagram for vegetation restoration. The solution branches
describe bare soil, stripe pattern, and rhombic pattern, where solid (dashed) lines denote stable
(unstable) solutions. The vertical axis represents the L2 norm of the biomass expressed in
terms of the modes’ amplitudes,

√|A|2 + |a+|2 + |a−|2. The precipitation value PS denotes the
disappearance of unstable stripe solutions in a saddle-node bifurcation. The green and red arrows
represent precipitation downshifts from the stability range of stripe patterns to precipitation values
P2 > PS and P1 < PS , respectively. Adapted from [56]
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Fig. 7.14 Phase-space dynamics in the plan spanned by ρS = |B| and ρR = |a±| at (a) P = P2,
where a pair of unstable stripe solutions exists, (b) at P = P1, where the unstable stripe solutions
no longer exist (see Fig. 7.13). The solid (hollow) circles denote stable (unstable) stationary states.
The labels B, S, and R denote the bare-soil state, stripe patterns, and rhombic patterns, respectively,
and the arrows denote the vector field of the amplitude equations. The responses of a stable
resonant stripe pattern to precipitation downshifts are shown by the thick black phase portraits:
(a) A moderate shift to a range where unstable stripe solutions still exist, results in a smooth
transition to a rhombic pattern. (b) A stronger shift to a range where stripe solutions no longer
exist, results in a collapse to bare soil. Adapted from [56]

these phase planes are the stationary uniform and patterned states (fixed points)
that exist at the respective precipitation value, and their stability properties. Also
shown in Fig. 7.14 are phase trajectories (black lines) of numerical solutions of the
amplitude equations, starting with stripe solutions that were computed at a higher
P within their range of stability. A moderate downshift to P2 results in a smooth
transition to a rhombic pattern as Fig. 7.14a shows. The unstable large-amplitude
stripe solution plays a crucial role in this response; its unstable manifold, which
represents the growth of the two oblique eigenmodes, acts as a barrier for the flow
in phase space and prevents convergence to the stable bare-soil solution. By contrast,
a stronger downshift to P1 results in collapse to bare soil, as the stripe solution and
its unstable manifold no longer exists to constrain the phase-space flow.

This analysis shows that the common and intuitive restoration practice in a 1:1
stripe pattern, where the planting pattern coincides with the ground modulation pat-
tern, can result in a productive state but suffers from poor resilience to precipitation
downshifts (droughts). By contrast, restoration in a rhombic pattern, which initiates
the growth of the oblique modes, results in a productive and resilient state. More
generally, these results suggest to disentangle the planting pattern from the ground
modulation pattern and determine the former by identifying the growing (unstable)
eigenmodes and analyzing the phase space they span. By focusing on the dynamical
constraints that unstable states impose through their stable and unstable manifolds,
judicious choices of planting patterns that result in functional ecosystem states can
be made.
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The phase-space information may also be used in managing ecosystems that have
already been restored. The resilience of restored stripes can possibly be improved by
spatial periodic biomass modulations, obtained by trimming or by managed grazing.
This is because of the unstable rhombic solution whose stable manifold separates
the basins of attraction of the bare-soil state and the stable rhombic pattern. Periodic
biomass modulations will place the system in the attraction basin of the rhombic
pattern by creating projections along the oblique eigenmodes.

These considerations can be generalized and applied to other contexts of human
intervention in ecosystem dynamics, besides restoration, such as range management,
regime-shift control, agroecology, and others. While they appear to rely on the
availability of faithful mathematical models, empirical data analysis may prove
to be a possible alternative when mathematical models are absent, such as the
extraction of eigenmodes and phase-space elements from spatial Fourier transforms
of satellite images. We note that the growing eigenmodes need not be spatially
extended like the stripe and oblique modes in the restoration example. Contexts that
involve localized structures, such as fronts in gradual regime shifts, can give rise to
localized eigenmodes associated with translation symmetry [59] and possible front
instabilities [34, 37, 91].

7.5 Conclusion

While pattern-formation phenomena in dryland ecosystems have been the subject
of many theoretical and empirical studies [4, 13, 14, 57–59, 67, 84], many fewer
studies have addressed the implications of pattern formation to ecosystem function
in variable and disturbed environments [60], where state transitions may take
place [41, 69], and in ecosystems subjected to human intervention. In Sect. 7.3 we
considered several cases of bistable ecosystems, distinguishing between bistability
of two uniform states and bistability of uniform and patterned states. In each case we
discussed the implications of front dynamics to transitions from functional ecosys-
tems states to less functional or dysfunctional states, emphasizing three aspects of
front dynamics: single-front motion, front interactions, and front instabilities. The
latter two aspects have received little attention even in the simplest bistability case of
two uniform states [20]. The availability of fairly realistic models that are still simple
enough to be mathematically tractable, such as the Namibian ecosystem model,
should motivate additional studies. Because of the disparate length scales associated
with biomass fronts (short) and water fronts (long) singular-perturbation methods
may prove very useful in such studies [30, 36]. The relevance of homoclinic snaking
in bistability ranges of uniform and patterned states to dryland vegetation has been
demonstrated in several studies [11, 93, 94], including two-species models [47], but
the physical and ecological factors that affect front pinning and determine the size
of the homoclinic snaking range have remained unexplored.

Another intriguing and unstudied question is related to the similarity of pattern-
formation phenomena in bistability ranges of uniform and patterned states and
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bistability ranges of two uniform states. An example of such a phenomenon is a
single gap of bare soil in otherwise uniform vegetation. Such a gap can be realized
in a bistability range of uniform vegetation and periodic pattern as a hybrid state,
but it can also be realized in a bistability range of uniform vegetation and bare
soil as an outcome of repulsive front interactions. The capacity to determine which
mechanism is at work in a given realization of a single gap is highly significant.
In the former case rainfall fluctuations may drive the system outside the snaking
range and induce a gradual shift to the less productive periodic gap pattern, which
amounts to moderate desertification. In the latter case rainfall fluctuations may drive
the system below the Maxwell point and induce a gradual shift to the unproductive
bare-soil state, which amounts to severe desertification.

Although the significance of unstable states in ecosystem dynamics has already
been stressed [35], the roles these states may play in planning human intervention
have remained largely unexplored. An example of a significant problem that can
be studied using an approach similar to that described for the restoration of
degraded landscapes is range management in drought-prone ecosystems. Consider,
for example, managing grazing in uniform grasslands. The disappearance of
unstable uniform-vegetation solutions at low precipitation rates may induce collapse
to bare soil rather than convergence to a periodic pattern, very much like the
disappearance of unstable stripe solutions in the restoration problem. This suggests
the management of grazing in spatial patterns, in order to locate the system in the
basin of attraction of the periodic solution. Such management may result not only in
the achievement of an ecosystem service—feeding livestock—but also in improved
resilience to droughts.

Finally, the difficulty to conduct controlled laboratory experiments calls for the
development of advanced data-analysis methods for remote sensing observations,
geared to test model predictions of structural and dynamical fairy-circle character-
istics, such as large-scale hexagonal order disrupted by penta-hepta defects [63] and
hybrid-state transitions [22, 90, 93].
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