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Mathematical Challenges in Measuring
Variability Patterns for Precipitation
Analysis
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Abstract This chapter addresses some of the mathematical challenges associated
with current experimental and computational methods to analyze spatiotemporal
precipitation patterns. After a brief overview of the various methods to measure
precipitation from in situ observations, satellite platforms, and via model sim-
ulations, the chapter focuses on the statistical assumptions underlying the most
common spatiotemporal and pattern-recognition techniques: stationarity, isotropy,
and ergodicity. As the variability of Earth’s climate increases and the volume of
observational data keeps growing, these assumptions may no longer be satisfied,
and new mathematical methodologies may be required. The chapter discusses
spatiotemporal decorrelation measures, a nonstationary intensity-duration-function,
and 2-dimension reduction methodologies to address these challenges.
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3.1 Introduction

Precipitation occurs when a portion of the atmosphere becomes saturated with water
vapor, so that the water condenses and precipitates by gravity. Precipitation is a
critical component of the water and energy cycles, providing moisture for processes
such as runoff, biogeochemical cycling, evapotranspiration, groundwater recharge,
carbon exchange, and heat fluxes. The main forms of precipitation include rain,
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sleet, snow, and hail, but this chapter discusses liquid precipitation only, and the
term “precipitation” is used here as a synonym for “rain.”

Precipitation is highly variable, both in space and time. This variability affects
the dynamics of many hydrological processes at and near ground level. Information
on precipitation characteristics and precipitation patterns is therefore critical for
understanding these complex hydrological processes, as well as for monitor-
ing and predicting extreme events such as floods and droughts [63]. Access to
high-resolution high-quality rainfall data and information about spatiotemporal
precipitation patterns can benefit applications at all levels; examples are hazard
mitigation, agricultural planning, and water resources management at the regional
level [33, 37, 46]; controlling stormwater runoff, managing reservoirs and detention
ponds, cleaning streams and channels, and closing roads or parking lots during
extreme precipitation events at the local level.

However, estimating precipitation is challenging because it involves many
factors, including the natural temporal and spatial variability of precipitation,
measurement errors, and sampling uncertainties, especially at fine temporal and
spatial scales. The spatiotemporal variability of precipitation patterns is changing
heterogeneously due to climate change, and those changes have an impact on
the tools used to make decisions and optimize water management. This chapter
focuses on some of the mathematical and statistical issues related to variability of
precipitation patterns.

Outline of the Chapter In Sect. 3.2, we briefly discuss various methods to measure
precipitation, whether in situ, remotely, or by using model simulations. In Sect. 3.3,
we review the strengths and limitations of current methods to analyze spatiotem-
poral precipitation patterns. We discuss decorrelation measures in Sect. 3.4 and
dimension reduction strategies in Sect. 3.5. In Sect. 3.6, we present some concluding
remarks.

3.2 Estimating Precipitation

Precipitation can be estimated through three main approaches: (1) in situ mea-
surements, (2) remote sensing (including weather radars and satellite sensors), and
(3) model simulations [52].

3.2.1 In Situ Measurements

The only direct method to measure precipitation is through rain gauges (also known
as pluviometers) which collect and measure the amount of rain over a period of
time. There are several types of rain gauges; the most common one is the tipping
bucket. Precipitation is collected in a funnel and channeled into a small container.
After a set amount of precipitation is collected, the device tips, dumping the water,
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Fig. 3.1 Number of stations used by the global precipitation climatology center (GPCC) for May
2012. Figure produced with “GPCC Visualizer” [61], courtesy of National Center for Atmospheric
Research Staff (Eds), last modified 29 Jun 2018. Retrieved from https://climatedataguide.ucar.edu/
climate-data/gpcc-global-precipitation-climatology-centre

and sending a signal that is automatically recorded by a data logger. Rain gauges
may underestimate rainfall because of wind effects and evaporation.

Rain-gauge networks can provide measurements with high temporal resolu-
tion, but obtaining a spatially representative measurement requires a sufficiently
large number of samples to account for variability of terrain, microclimate, and
vegetation. Moreover, in situ measurements are localized and limited in spatial
and temporal coverage [43]. One of the main applications of ground-monitoring
networks is for assessing flood risk through early warning systems [3]. However,
their usefulness is limited by the spatial representativeness of local measurements
and the network density, especially over important climatic regions like the tropical
rain forests and mountainous areas (Fig. 3.1).

A ground-based alternative to monitor precipitation is weather radar which
provides spatially distributed information on rainfall (Fig. 3.2). Weather radars
send directional pulses of microwave radiation connected to a parabolic antenna.
Wavelengths are of the order of a few centimeters, which is about ten times
larger than the average diameter of water droplets and ice particles. These particles
bounce part of the energy in each pulse back to the radar (reflectivity). As they
move farther from the source, the pulses spread out, crossing a larger volume

https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
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Fig. 3.2 Average precipitation maps for Summer 2015 from a satellite precipitation product that
combines infrared and microwave observations (left) and ground-based weather radars (right)
across the continental USA

of air, and therefore their resolution decreases with distance. Doppler radars are
common and observe not only rainfall rates, but also the motion of rain droplets.
However, weather radar estimates are affected by uncertainties associated with rain-
path attenuation, the lack of uniqueness in the reflectivity-to-rain-rate relationship,
radar calibration and contamination by ground return problems, sub-resolution
precipitation variability, and complex terrain effects [10, 46, 51]. Moreover, ground-
based monitoring systems, like rain gauges and weather radars, require substantial
financial and technological investments to support their operation and maintenance
on a continuous basis over a long period.

3.2.2 Remote Sensing

A way to overcome these issues is the use of satellite precipitation products,
which are nowadays available on a global scale at increasing spatial and temporal
resolution. Precipitation estimates can be derived from a range of observations from
many different on-board satellite sensors. Specifically, rainfall can be inferred from
visible imagery, since thick clouds, which are more likely to be associated with
rainfall, tend to be brighter than the surface of the Earth. Infrared (IR) images are
more suitable because they are available night and day, and heavier convective
rainfall tends to be associated with larger taller clouds with colder cloud tops.
Another method uses passive microwave (PMW) sensors, since emissions from
rain droplets lead to an increase in PMW radiation. And scattering caused by
precipitating ice particles leads to a decrease in PMW radiation.

Several techniques have been developed to exploit the synergy between IR
radiances and PMW observations (Fig. 3.2). Examples include the TRMM multi-
satellite precipitation analysis (TMPA) [41], the climate prediction center morph-
ing (CMORPH) technique [42], and, most recently, the integrated multi-satellite
retrievals for GPM (global precipitation measurement) (IMERG) [40], which
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merges precipitation estimates from PMW and IR sensors and monthly surface
rain-gauge data to provide half-hourly precipitation estimates on a 0.1◦ grid over
the 60◦N-S domain. In other cases, artificial neural networks (ANNs) are used to
derive precipitation estimates by combining information from multichannel and
multisensor observations, like the precipitation estimation from remotely sensed
information using ANNs (PERSIANN) [39]. The availability of these products
has opened new venues to support water management and hydrologic applications
globally. Especially in poorly gauged regions, satellite precipitation products may
be the only input data to allow flow predictions downstream with enough lead time
to implement management and response actions [64].

Satellite observations can be affected by detection errors, as well as systematic
and random errors. Detection errors include missed events (when satellite observes
no rain, but there is rain at the ground) and false alarms (when the satellite sees
rain, but it does not rain). In the case of successful detection, the estimated rain
rate may still be affected by systematic and/or random errors, which depend on
the accuracy of the remote sensor (retrieval error) and the lack of continuity in the
coverage by low earth-orbiting satellites (sampling error, [7]). Typical sources of
retrieval error are due to sub-pixel inhomogeneity in the rainfall field [48], whereas
sampling errors are related to the satellite orbit, swath width, and space-time
characteristics of rainfall [14]. The performance of satellite precipitation products
is also influenced by factors such as seasonal precipitation patterns, storm type, and
background surface [31, 33, 57, 66]. Detection, systematic, and random errors all
play a pivotal role in hydrological applications (e.g., flood forecasting) and water
resource management.

High-mountain regions are among the most challenging environments for precip-
itation measurements (whether from the ground or from satellites) due to extreme
topography and large weather and climate variability. These regions are typically
characterized by a lack of in situ data, but are also prone to flash floods whose
consequences can be devastating.

3.2.3 Model Simulation

Numerical weather prediction (NWP) models provide a third option for estimating
precipitation at global and regional scales. NWP models estimate the state of
the atmosphere (including air density, pressure, temperature, and velocity) at a
given time and location using fluid dynamics and thermodynamics equations.
These models are rather accurate for large-scale organized systems. However, their
performance deteriorates in the case of more localized events that are not governed
by large-scale flows and whose spatial and temporal variability cannot be explicitly
captured by the model resolution. NWP model forecasts can be improved by more
accurate parameterizations and by constraining model analyses with moisture-,
cloud-, and precipitation-related observations through data assimilation systems,
such as 4D-Var and ensemble Kalman filter methods [6, 50].
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3.3 Assessment of Spatial and Temporal Patterns

Changes in spatiotemporal precipitation patterns have a direct impact on the
spatial and temporal distribution of water resources and the occurrence of natural
hazards [69]. The hydrological community has adopted a set of geostatistical tools
for measuring spatiotemporal correlations in rainfall [5, 65]. As mentioned in
multiple sources [65], some of the notions come with tacit assumptions that often
lead to their misuse in practice. While the complete list is beyond the scope of this
chapter, we will review some of the key elements of such analyses and point out
some of their strengths and limitations.

3.3.1 Definitions

Assume that rainfall corresponds to a stochastic process η(u, t), where u ≡ (x, y)

is a vector representing the spatial coordinates in a given area, t stands for time,
and η(·) is a measure of the intensity of the rainfall. In a practical setting, one
typically considers an observation map in the form of a snapshot matrix A =
Ai,j ∈ R

N×n, where Ai,j = η(ui , tj ) is the rainfall observed at location i at
time tj (i = 1, . . . , N; j = 1, . . . , n). Typically, for hydrological applications,
N � n. Different statistical characterizations of the process are used, depending on
the purpose of the study.

Spatial Variability If the focus is on spatial correlations, time series may be
integrated over time at each location. Following [5], we define the depth, Z, of the
rainfall over a time interval of length T at the location u, by the integral

Z(u) =
∫ t+T

t

η(u, τ ) dτ, (3.3.1)

and its intensity, X, by the integral

X(u) = 1

T

∫ t+T

t

η(u, τ ) dτ. (3.3.2)

The mean, m, of the rainfall at u is

m(u) = E[Z(u)], (3.3.3)

where E[·] denotes the expected value over all realizations of the process—that is,
over all different measurements at a certain location. After subtracting the mean, we
obtain the detrended or centered process, Y ,

Y (u) = Z(u) − m(u). (3.3.4)
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The covariance function is defined in terms of the detrended process.

Cov(u1, u2) = E[Y (u1)Y (u2)] = E[Z(u1)Z(u2)] − m(u1)m(u2). (3.3.5)

Similarly, the covariance matrix is Σ = E[YT Y ] = E[ZT Z] − mT m, where
the (i, j)th entry represents the covariance between the depth of rainfall at the ith
and j th spatial location. The correlation function is a normalized version of the
covariance function,

R(u1, u2) = Cov(u1, u2)

σ (u1)σ (u2)
, (3.3.6)

where σ is the standard deviation,

σ(ui ) =
{
E[Z(ui ) − m(ui )]2

}1/2 = E[Y 2(ui )]1/2. (3.3.7)

A concept that is commonly used in hydrology is that of a semivariogram function,

Γ (u1, u2) = 1

2
E{[Y (u1) − Y (u2)]2}. (3.3.8)

The covariance and semivariogram functions are symmetric,

Cov(u1, u2) = Cov(u2, u1), Γ (u1, u2) = Γ (u2, u1).

Note that the covariance is a measure of the association between the two vari-
ables Z(u1) and Z(u2), while the semivariogram function is a measure of their
dissociation.

The above definitions of the various statistical quantities work for any time
interval [t, t + T ]. For instance, one may decide to study daily, monthly, or yearly
averages, as appropriate. The longer the period over which the data are integrated,
the more one may expect temporal variations to be suppressed.

Temporal Variability If temporal variability is of interest, it is important to keep as
much of the original temporal information as possible when computing variograms
and correlations. So, while integrated data are attractive from the processing point
of view, in climate research one always defines statistical characteristics using the
original map η(u, t). Thus, the mean is defined as a time average,

m(u) = 〈η(u, t)〉, (3.3.9)

and the centered data (also called anomalies) are given by

Y = Y (u, t) = η(u, t) − m(u). (3.3.10)
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The correlation function, standard deviation, and semivariogram are defined in terms
of anomalies as in (3.3.6)–(3.3.8).

The statistical quantities defined above all have discrete analogs. For example,
mi = 1

n

∑n
j=1 Ai,j is the time average of a certain realization of the rainfall field

at location i; the anomalies yi,j = ai,j − mi are the entries of the anomaly matrix
Y = yi,j , and the corresponding covariance matrix is Σ = YT Y ∈ R

n×n. The
eigenvectors of this covariance matrix Σ are the empirical orthogonal functions,
which we will discuss in Sect. 3.5. Note that, while the size of the matrix Σ is
normally much smaller than that of the original detrended matrix Y , the condition
of the covariance matrix is given by cond(Σ) = cond(Y )2, so it is not surprising
that ill-conditioning in the original data presents an issue for many geospatial
applications [1].

The correlation function, standard deviation, and semivariogram function are
collectively referred to as variograms of the process; they represent the structure
of the spatial dependence of the process and variability in the reference area A.

3.3.2 Statistical Assumptions in Hydrological Analyses

The effective use of the statistical quantities defined in Sect. 3.3.1 depends critically
on a number of regularity assumptions for the underlying stochastic process. In
hydrological analyses, the rainfall process is commonly assumed to be second-order
stationary, isotropic, and ergodic. We briefly recall the relevant definitions.

Stationarity The field Z(u) is first-order stationary if

E[Z(u)] = m = constant, ∀u ∈ A, (3.3.11)

and second-order stationary or weakly stationary if it is first-order stationary and,
in addition,

Var[Z(u)] = σ 2 = constant, ∀u ∈ A, (3.3.12)

Cov(u1, u2) = Cov(u1 − u2), ∀u2, u2 ∈ A. (3.3.13)

For a second-order stationary process, Γ (u1, u2) = Γ (u1 − u2) = Γ (h), where
h = u1 − u2, and Cov(u1, u2) = Cov(h) = E[Z(u + h)Z(u)] − m2 for all u2,

u2 ∈ A. Furthermore,

Γ (h) = 1
2E[Z(u − h) − Z(u)]2

= 1
2E[Z(u + h)2] − E[Z(u)Z(u + h)] + 1

2E[Z(u)]2

= Cov(0) − Cov(h).
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Isotropy The field Z(u) is isotropic if spatial variability, measured by the covari-
ance or semivariogram function, does not depend on the direction of the vector
h = u1 − u2,

Cov(h) = Cov(|h|) = Cov(h), (3.3.14)

Γ (h) = Γ (|h|) = Γ (h), (3.3.15)

where h = |h| is the distance between two locations u1 and u2.

Ergodicity A dynamic process is said to be ergodic if time averages coincide with
sample averages,

E(η(u, t)) = 〈η(u, t)〉. (3.3.16)

In the case of an ergodic process, the estimates of the moments obtained on the basis
of the available realizations converge in probability to the theoretical moments as the
sample size increases. The process will tend to a limiting distribution regardless of
the initial state [44]. In practice, this enables one to obtain estimates even from a
single realization of the process.

3.3.3 What If the Assumptions Are Not Satisfied?

Figure 3.3 shows a realization of the precipitation process. The data (blue dots)
represent the annual maximum precipitation (in inches) recorded at Beardstown in
the State of Illinois (USA) during the period 1903–2000. Connecting the dots, we
see that the maximum moves up and down without much regularity, but a linear
regression analysis shows an overall upward trend (solid blue line). The mean
(solid purple line) is approximately 2.3 in. over the first 55 years (1903–1958) and
approximately 2.8 in. over the next 42 years (1958–2000), an increase of more
than 20%. The variance (dotted red lines) also increases over time, albeit more
slowly. The example shows that the rainfall process is clearly not stationary, so at
least one of the hypotheses discussed in Sect. 3.3.2 is violated. Then the question is,
what to do?

Nonstationarity The paper by Milly et al. [53] entitled Stationarity Is Dead:
Whither Water Management?, which appeared in Science in 2008, served as a wake-
up call for scientists in the field of hydrology and water resources engineering.
Water management systems have been designed and operated for decades under the
assumption of stationarity. However, this assumption has long been compromised
by human disturbances in river basins such as dams, diversions, irrigation, land-
use change, channel modifications, and drainage work. In addition, the timing and
characteristics of precipitation—the most critical hydrological input—are also being
modified by a changing climate, as demonstrated in Fig. 3.3. The hydrological
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Fig. 3.3 Example of nonstationary changes in both the precipitation mean and variance [9]

literature on the analysis of long-term precipitation and runoff data is very thin [35].
Hodgkins and Dudley [36] show that most North American streams are experiencing
earlier spring runoff, and DeGaetano et al. [24] show that nearly two-thirds of the
trends in the 2-, 5-, and 10-years return-period rainfall amounts are positive. At
the same time, the expected recurrence intervals have decreased by about 20%; for
example, the 50 year storm based on 1950–1979 data is expected to occur once
every 40 years based on 1950–2007 data.

Nonstationarity introduces multiple challenges for hydrological analysis, as
recognized by several authors [35, 36, 49, 53]. Bonnin et al. [9] show trends in
the intensity-duration-frequency (IDF) rainfall curves for the Ohio river basin. A
particularly active area of research is the development of nonstationary rainfall
IDFs, where theoretical advances in extreme value theory (EVT) turn out to be
especially useful (see [16] and references therein). In particular, Cheng et al. [16]
describes a new framework for estimating stationary and nonstationary return
levels, return periods, and extreme points, which relies on Bayesian inference; the
framework is implemented in NEVA software [15]. Ref. [16] offers a case study
based on a global temperature dataset, comparing predictions based on stationary
and nonstationary extreme value analysis. The study combines local processes
(urbanization, local temperature change) and global processes (ENSO cycle, IOD,
global temperature change) as time covariates for rainfall IDF, based on Hyderabad
data [2]. The comparison shows that the IDF curves derived from the stationary
models are underestimating the extreme events of all duration and for all return
periods.
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Nonisotropy Hydrological processes (soil moisture, streamflow, evapotranspira-
tion) are extremely sensitive to small-scale temporal and spatial rainfall variability.
Although ground-based weather radars have been particularly popular for forcing
hydrological models that simulate a basin hydrological response, several authors
have indicated that the interaction between the variability of precipitation (including
spatial and temporal variations) and the resolution of a hydrological model is
still poorly understood, especially when radar data are used in an urban environ-
ment [12, 22, 54]. If we assume a perfect hydrological model, and we force it with
perfect rainfall input, we should expect that the accuracy of a streamflow simulation
increases as the resolution of the model and the input increase. However, the finest
available radar rainfall temporal resolution does not necessarily provide the best
estimation of peak streamflow in a distributed hydrological model. This is the result
of uncertainty and errors related to both the precipitation measurement techniques,
as discussed in Sect. 3.2, and the model physics [4, 58].

The spatial resolution of precipitation data must be functionally coupled with
the temporal resolution to fully reproduce the hydrological response of an urban
catchment. For instance, Berne et al. [8] proposed the relation Δs = 3

2

√
Δt to

couple the spatial scale (Δs, in km) with the temporal scale (Δt , in minutes) for
rainfall processes in urban catchments.

More recently, Ochoa-Rodriguez et al. [55] fitted the variogram of the spatial
structure of rainfall over a peak storm period with an exponential model. They
concluded that the minimum required spatial resolution was one-half the charac-
teristic length scale rc of the storm, which they defined in terms of the variogram
range r[L], rc = (2π/3)1/2 r[L]. A unique relationship linking the temporal and
spatial resolutions of precipitation adequate for the reproduction of the hydrological
response of a catchment basin is yet to be found.

Nonergodicity Most of the literature simply assumes without evidence that pre-
cipitation and hydrological processes in general are ergodic; for example, see [27,
45, 56]. However, a recent study [67] indicates that the assumption may not be
fully justified. The author proposed an approach to assess the mean ergodicity
of hydrological processes based on the autocorrelation function of a dataset. The
approach was tested on monthly rainfall time series at three locations, two in China
and one in the State of Michigan (USA). The results showed that, at all three
locations, the ergodicity assumption was met only during a few months of the year.
Therefore, statistical metrics computed on the basis of data collected during those
months do not meet the ergodicity assumption (sample statistics) and cannot be
used as proper approximations for the population statistics. Moreover, the ergodicity
assumption was met in different months at different locations, so ergodicity cannot
be transferred to a different region and/or period. More work is clearly needed to
establish the limits of validity of the ergodicity assumption.

Scenarios where the ergodicity assumption is not met have been studied even less
frequently than scenarios where the stationarity and isotropy assumptions are not
met, partially because of the difficulty of testing it in the absence of large quantities
of high-quality data spanning a reasonable period of time.
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In statistical mechanics, one often uses nonergodic Monte Carlo simulations to
create multiple realizations for estimating statistical information on the dynamic
processes over the region in question [47]. In the geospatial sciences, this approach
is often infeasible.

An attempt has been made to formulate nonergodic versions of covariograms
for the case of preferentially sampled data. However, as argued in [23], these
measures do not offer a clear advantage over standard ergodic statistics for studying
spatial dependence or making spatial predictions. Developing appropriate data
transformations is considered a more promising direction.

In the mathematical literature, much attention is currently being paid to fractional
diffusion processes, which typically generate nonergodic behavior. Some recent
work aims to develop a metric quantifying nonergodicity [62]. This direction may
also be useful for hydrological applications.

3.4 Decorrelation Measures

Correlation functions are standard tools for measuring spatial and temporal depen-
dencies in the rainfall fields [11, 17]. Figure 3.4 shows both the temporal and spatial
correlation functions for a precipitation dataset for the State of Oklahoma (USA)
during the period March–October, 2011.

In the case of spatial correlations, one computes the correlation of the two time
series associated with any two measurement points (for example, two rain gauges
or two pixels) as a function of their distance. A common approximation is the
exponential model with the so-called nugget effect [19, 20],

ρg(d) = c0 exp
[− (d/d0)

s0
]
. (3.4.1)

Fig. 3.4 (a) Temporal and (b) spatial correlations of CMORPH precipitation data for the State of
Oklahoma (USA) at 8 km/1 h resolution during the period March–October, 2011
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Here, c0 is the nugget parameter, which corresponds to the correlation value for
near-zero distances [21]; d is the separation distance, the distance between the two
measurement points; d0 is the scale parameter, which corresponds to the spatial
decorrelation distance; and s0 is the correlogram shape parameter, which controls
the behavior of the model near the origin for small separation distances. The
quantity (1 − c0) is the instant decorrelation due to random errors in the rainfall
observations [18]. The separating distance at which the correlation is 1/e defines
the correlation length for the (assumed) exponential variogram model.

In the case of temporal dependencies, autocorrelations are plotted as a function
of the time lag. The lag-1 correlation is commonly adopted as a viable index of
rainfall decorrelation in time [38, 60].

The exponential model (3.4.1) with the corresponding “1/e rule” is only one of
several models for fitting semivariograms; linear, spherical, and Gaussian models
are possible alternatives [5]. The choice of model has to be made based on the
analysis of statistical data, and one should not adopt the decorrelation definition
provided above as the default option. In fact, one may suspect that for regions with
slowly decaying correlations (for example, flat regions with low spatial variability),
the “1/e rule” might only work after a sufficient increase in the domain size. In other
cases, the data might not support the exponential modeling assumption at all, and
corresponding adjustments of the methodology would have to be performed. These
modeling subtleties and tacit assumptions are sometimes a source of ambiguity in
the literature, which may lead to erroneous conclusions.

3.5 Dimension Reduction Techniques

One of the many challenges of modeling and understanding spatiotemporal precip-
itation patterns is the large amount of data that needs to be processed. For example,
in the relatively small-scale NASA Merra dataset, precipitation is given by monthly
averages on a 50 × 91 grid representing a map of the contiguous USA at 50 km
resolution over a period of 35 years, amounting to a total of 1,911,000 entries.
However, much more detailed information at higher spatial (on the order of 100 m
regionally and 1 km globally) and temporal (hourly) resolutions is required to assess
the storage, movement, and quality of water at and near the land surface [68].
Higher-resolution data bring higher data volumes: for the previous example, there
would be more than 3·1012 entries for a map of the contiguous US at 1 km resolution
and hourly intervals. Some form of data and dimension reduction is called for.

In a general sense, one may attempt to find a decomposition of the data (signal)
of the form

η(u, t) =
N∑

k=1

αk(t)pk(u) + noise, (3.5.1)

where the pk are characteristic patterns used to approximate the data (also called
guess patterns or predictors), and the αk are the amplitudes or principal components
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of the corresponding patterns. The patterns pk are spatial structures that account for
temporal variations of the rainfall data η(u, t). When plotted as functions of time,
the amplitudes αk convey information on how the patterns evolve in time.

Mathematically, finding the “best” patterns and principal components for a given
dataset is a projection problem, “Find a subspace approximating a given set of data
in an optimal (for example, least-squares) sense.” To solve this problem, various
treatments have been proposed within the geophysical community by different
groups and authors [65]. Here, we attempt to place these methods in perspective
against methodologies developed independently in the mathematics community.
While some techniques exist in both literatures (sometimes under different names),
other methods have not yet penetrated the language barrier between the two
disciplines.

EOF Method The method of empirical orthogonal functions (EOF) is one of the
staple tools in geostatistics, which has received much attention in the hydrological
literature. As mentioned in Sect. 3.3.1, EOFs are the eigenvectors of the covariance
matrix YT Y . In the mathematical and statistical literature, the EOF method is
referred to as singular value decomposition (SVD) or principal component analysis
(PCA) and belongs to the class of proper orthogonal decomposition (POD) methods.
In geospatial theory, it goes by the name Karhunen–Loève analysis.

Let Y denote the N × n matrix of detrended observations (also called “snapshot
matrix” if n < N), whose columns are modified snapshots of rainfall data at a
given time. If C = 1

n
Y T Y is the normalized correlation matrix, then a POD basis is

comprised of the vectors

φi = 1√
nλi

Yχi, i = 1, . . . , n,

where χi is the normalized eigenvector (|χi | = 1) corresponding to the ith largest
eigenvalue λi of C. The POD basis vectors are the first n left singular vectors of the
snapshot matrix Y obtained by using the SVD decomposition of Y , Y = UΣV T ,
so φi = ui for i = 1, . . . , n.

Let {ψi}ni=1 be an arbitrary orthonormal basis for the span on the modified
snapshot set {xj }nj=1. Then the projection onto the d-dimensional subspace spanned
by {ψi}ni=1 is

Pψ,dxj =
d∑

i=1

(ψi, xj )φi . (3.5.2)

The POD basis is optimal in the sense that the approximation error

ε =
n∑

j=1

|xj − Pψ,dxj |2 (3.5.3)

is minimized for ψi = φi, i = 1, . . . , d.
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While EOFs present an attractive tool for studying spatiotemporal variability
patterns in precipitation data, care should be taken when interpreting the results
of such analysis, as pointed out in [26]. In short, while it is tempting to find physical
relevance for each of the EOF “modes,” the orthogonality condition built into this
methodology often renders such interpretation useless. Rotated EOF technique is
often used as a better alternative; however, a deeper analysis is normally needed to
decipher the meaning of the EOF-based patterns.

CVT-Based Techniques In the mathematical community, an alternative dimension
reduction technique based on centroidal Voronoi tessellations (CVTs) has recently
gained popularity. While the list of applications is growing quickly, the method
remains relatively under-explored in hydrological applications. The presentation
below is based on [13].

The idea of the CVT technique is to find a fixed number of representative
points (“generators”) to decompose the original high-dimensional space into a finite
number of subspaces with relatively small loss of accuracy. The main ingredient of
this method is the “density function,” usually denoted ρ(x), which can be constant
or a function of x, depending on the application. For instance, ρ can be used to
represent a variety of physical characteristics such as the local characteristic length
scale [59], signal intensity [32], or the desired grid resolution [28]. In [25], ρ is used
to represent spatial rainfall variability.

More precisely, given a snapshot matrix X = {xj }nj=1 ∈ W ⊂ R
N , the goal is

to find a set of points {zi}ki=1 ∈ R
N , such that W can be decomposed in Voronoi

regions, W = ∪k
i=1Vi , with a minimum tessellation error, E [{zi , Vi}ki=1]. A Voronoi

region Vi is defined as

Vi = {x ∈ W : |x − zi | ≤ |x − zj |, j = 1, . . . , k, j = i}, (3.5.4)

and the tessellation error is given by

E [{zi , Vi}ki=1] =
k∑

i=1

∑
x∈Vi

ρ(x)|x − zi |2. (3.5.5)

It can be shown that the tessellation error is minimal if and only if zi = z∗
i for

i = 1, . . . , k, where z∗
i is the mass centroid of the Voronoi region Vi [30]. At the

minimum,

∑
x∈V (z∗)

ρ(x)|x − z∗|2 = inf
z∈RN

∑
x∈V (z)

ρ(x)|x − z|2. (3.5.6)

Figure 3.5 gives two examples of CVTs for different types of densities.
In the discussion of the EOF method, we saw that the optimal basis was

comprised of the set of vectors {φi}di=1. In the CVT method, the situation seems
similar: the optimal basis is the set of generators {zi}ki=1. However, there are many
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Fig. 3.5 Two CVT tessellations of the unit square, W = [0, 1]2; (left) ρ(x, y) = 1, (right)
ρ(x, y) = exp−20(x2+y2)

differences between the two approaches. POD minimizes the functional ε as in
(3.5.3), while CVT minimizes the error E given by (3.5.5). POD requires one to
solve an n × n eigenvalue problem, where n is the number of snapshots, which
is not very amenable to adaptive computations. While the CVT methodology is
in general cheaper than POD, there are often numerical caveats associated with
CVT computations. For an overview of CVT-related numerical techniques, we refer
the reader to [29, 34]. Several case studies based on rainfall data highlighting the
features of the CVT and POD approaches are presented in [25].

3.6 Concluding Remarks

In this chapter, we have presented an overview of experimental and computational
methodologies and reviewed some of the mathematical challenges associated
with the field of precipitation analysis. In particular, we focused our attention
on the statistical assumptions underlying some of the commonly used pattern-
recognition techniques. Because of the instability of the current climate, the validity
of these assumptions should naturally fall under scrutiny. As abundant satellite
and in situ observation data continue to pour in, one must reconsider the long-
standing notions of stationarity, homogeneity, and ergodicity and be prepared to
adopt new mathematical methodologies. In this chapter, we reviewed decorrelation
measures, nonstationary extensions of intensity-duration-functions, and two types
of dimension reduction methodologies with associated challenges. While some of
these efforts are well under way, others are still in their infancy, and rigorous
mathematical analysis is needed to address these challenges.



3 Variability Patterns for Precipitation Analysis 71

Acknowledgements This work was instigated at the Mason Modeling Days workshop held at
George Mason University, generously supported by the National Science Foundation grant DMS-
1056821. The authors are grateful to Paul Houser for stimulating discussions at the initial stages of
this collaboration. ME also wishes to thank Hans Engler and Hans Kaper for their encouragement
over the years, and for introducing this research group to the MPE community.

References

1. Ababou, R., Bagtzoglou, A.C., Wood, E.F.: On the condition number of covariance matrices in
kriging, estimation, and simulation of random fields. Math. Geol. 26(1), 99–133 (1994). https://
doi.org/10.1007/BF02065878

2. Agilan, V., Umamahesh, N.V.: What are the best covariates for developing non-stationary
rainfall intensity-duration-frequency relationship? Adv. Water Resources 101, 11–22 (2017)

3. Artan, G., Gadain, H., Smith, J.L., et al.: Adequacy of satellite derived rainfall data for
streamflow modeling. Nat. Hazards 43, 167–185 (2007)

4. Atencia, A., Mediero, L., Llasat, M.C., et al.: Effect of radar rainfall time resolution on
predictive capability of a distributed hydrological model. Hydrol. Earth Syst. Sci. 15, 3809–
3827 (2011)

5. Bacchi, B., Kottegoda, N.: Identification and calibration of spatial correlation patterns of
rainfall. J. Hydrol. 165, 311–348 (1995)

6. Bauer, P., Lopez, P., Benedetti, A., et al.: Implementation of 1D + 4D-Var assimilation of
precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Q. J. Roy. Meteorol. Soc.
132(620), 2277–2306 (2006)

7. Bell, T.L., Kundu, P.K.: Dependence of satellite sampling error on monthly averaged rain rates:
comparison of simple models and recent studies. J. Climate 13(2), 449–462 (2000)

8. Berne, A., Delrieu, G., Creutin, J.D., et al.: Temporal and spatial resolution of rainfall
measurements required for urban hydrology. J. Hydrol. 299, 166–179 (2004)

9. Bonnin, G.M., Maitaria, K., Yekta, M.: Trends in rainfall exceedances in the observed record
in selected areas of the United States 1. J. Am. Water Resour. Assoc. 47(6), 1173–1182 (2011)

10. Borga, M., Anagnostou, E.N., Frank, E.: On the use of real-time radar rainfall estimates for
flood prediction in mountainous basins. J. Geophys. Res. 105(D2), 2269–2280 (2000)

11. Bras, R.L., Rodriguez-Iturbe, I.: Random Functions and Hydrology. Courier Corporation,
Chelmsford (1985)

12. Brown, P.E., Diggle, P.J., Lord, M.E., et al.: Space-time calibration of radar rainfall data. J.
Royal Statistical Society: Series C (Applied Statistics) 50(2), 221–241 (2001)

13. Burkardt, J., Gunzburger, M., Lee, H.C.: Centroidal Voronoi tessellation-based reduced order
modeling of complex systems. SIAM J. Sci. Comput. 28(2), 459–484 (2006)

14. Chang, A.T., Chiu, L.S.: Nonsystematic errors of monthly oceanic rainfall derived from SSM/I.
Mon. Weather Rev. 127(7), 1630–1638 (1999)

15. Cheng, L.: Nonstationary Extreme Value Analysis (NEVA) software package, version 2.0.
http://amir.eng.uci.edu/neva.php (2014)

16. Cheng, L., AghaKouchak, A., Gilleland, E., et al.: Non-stationary extreme value analysis in a
changing climate. Clim. Chang. 127(2), 353–369 (2014). https://doi.org/10.1007/s10584-014-
1254-5

17. Chumchean, S., Sharma, A., Seed, A.: Radar rainfall error variance and its impact on radar
rainfall calibration. Phys. Chem. Earth, Parts A/B/C 28(1–3), 27–39 (2003)

18. Ciach, G.: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Ocean.
Technol. 20(5), 752–759 (2003)

19. Ciach, G.J., Krajewski, W.F.: On the estimation of radar rainfall error variance. Adv. Water
Resour. 22(6), 585–595 (1999)

https://doi.org/10.1007/BF02065878
https://doi.org/10.1007/BF02065878
http://amir.eng.uci.edu/neva.php
https://doi.org/10.1007/s10584-014-1254-5
https://doi.org/10.1007/s10584-014-1254-5


72 M. Emelianenko and V. Maggioni

20. Ciach, G.J., Krajewski, W.F.: Analysis and modeling of spatial correlation structure in small-
scale rainfall in Central Oklahoma. Adv. Water Resour. 29(10), 1450–1463 (2006)

21. Cressie, N.A.C.: Statistics for Spatial Data. John Wiley and Sons, Hoboken (1993)
22. Cristiano, E., Ten Veldhuis, M.C., van de Giesen, N.: Spatial and temporal variability of rainfall

and their effects on hydrological response in urban areas – a review. Hydrol. Earth Syst. Sci.
21, 3859–3878 (2017)

23. Curriero, F.C., Hohn, M.E., Liebhold, A.M.: A statistical evaluation of non-ergodic variogram
estimators. Environ. Ecol. Stat. 9, 89–110 (2002)

24. DeGaetano, A.T.: Time-dependent changes in extreme-precipitation return-period amounts in
the continental united states. J. Appl. Meteor. Climatol. 48, 2086–2099 (2009)

25. Di, Z., Maggioni, V., Mei Y., Vazquez M., Houser P., Emelianenko M., 2019, arXiv,
arXiv:1908.10403

26. Dommenget, D., Latif, M.: A cautionary note on the interpretation of EOFs. J. Climate 15,
216–225 (2001)

27. Duan, J., Goldys, B.: Ergodicity of stochastically forced large scale geophysical flows. J. Math.
Math. Sci. 28, 313–320 (2001)

28. Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi
tessellations. Appl. Math. Comput. 133, 591–607 (2002)

29. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algo-
rithms. SIAM Review 41, 637–676 (1999)

30. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal
Voronoi tessellations. SIAM J. Num. Anal. 44, 102–119 (2006)

31. Ebert, E.E., Janowiak, J.E., Kidd, C.: Comparison of near-real-time precipitation estimates
from satellite observations and numerical models. Bull. Amer. Meteor. Soc. 88, 47–64 (2007)

32. Emelianenko, M.: Fast multilevel CVT-based adaptive data visualization algorithm. Numer.
Math. Theor. Meth. Appl. 3(2), 195–211 (2010)

33. Gottschalck, J., Meng, J., Rodell, M., et al.: Analysis of multiple precipitation products and
preliminary assessment of their impact on global land data assimilation system land surface
states. J. Hydrometeorl. 6, 573–598 (2005)

34. Hateley, J.C., Wei, H., Chen, L.: Fast methods for computing centroidal Voronoi tessellations.
J. Sci. Comput. 63(1), 185–212 (2015)

35. Hirsch, R.M.: A perspective on nonstationarity and water management. J. Amer. Water
Resources Assoc. (JAWRA) 47(3), 436–446 (2011)

36. Hodgkins, G.A., Dudley, R.W.: Changes in the timing of winter–spring streamflows in eastern
North America. Geophys. Res. Lett. 33, 1913–2002 (2006)

37. Hossain, F., Anagnostou, E.N.: Assessment of current passive-microwave- and infrared-based
satellite rainfall remote sensing for flood prediction. J. Geophys. Res. 109 (2004)

38. Hossain, F., Anagnostou, E.N.: A two-dimensional satellite rainfall error model. IEEE Trans.
Geosci. Remote Sens. 44(6), 1511–1522 (2006)

39. Hsu, K., Gao, X., Sorooshian, S., et al.: Precipitation estimation from remotely sensed
information using artificial neural networks. J. Appl. Meteor. 36, 1176–1190 (1997)

40. Huffman, G.J., Bolvin, D.T., Nelkin, E.J., et al.: The TRMM multisatellite precipitation
analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine
scales. J. Hydrometeorol. 8(1), 38–55 (2007)

41. Huffman, G.J., Bolvin, D., Braithwaite, D., et al.: Integrated Multi-satellite Retrievals for GPM
(IMERG), version 4.4. NASA’s Precipitation Processing Center. Accessed 31 March 2015.
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

42. Joyce, R.J., Janowiak, J.E., Arkin, P.A., et al.: Cmorph: a method that produces global
precipitation estimates from passive microwave and infrared data at high spatial and temporal
resolution. J. Hydrometeorl. 5, 487–503 (2004)

43. Kidd, C., Bauer, P., Turk, J., et al.: Intercomparison of high-resolution precipitation products
over northwest Europe. J. Hydrometeorl. 13, 67–83 (2012)

44. Kottegoda, N.T.: Stochastic Water Resources Technology. Palgrave, Macmillan (1980). https://
books.google.com/books?id=3SiuCwAAQBAJ

ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
https://books.google.com/books?id=3SiuCwAAQBAJ
https://books.google.com/books?id=3SiuCwAAQBAJ


3 Variability Patterns for Precipitation Analysis 73

45. Koutsoyiannis, D.: Stochastic simulation of hydrosystems. Water Encyclopedia 3, 421–430
(2005)

46. Krajewski, W.F., Anderson, M.C., Eichinger, W.E., et al.: A remote sensing observatory for
hydrologic sciences: a genesis for scaling to continental hydrology. Water Resour. Res. 42(7),
W07,301 (2006)

47. Krauth, W.: Statistical Mechanics: Algorithms and Computations. Oxford Master Series
in Physics. Oxford University Press, UK (2006). https://books.google.com/books?id=
B3koVucDyKUC

48. Kummerow, C.: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteorol.
37(4), 356–370 (1998)

49. Lins, H.F.: A note on stationarity and non-stationarity. 14th Session of the Commission for
Hydrology (2012)

50. Lorenc, A.C.: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-
Var. Q. J. R. Meteorol. Soc. 129(595), 3183–3203 (2003)

51. Marzano, F.S., Picciotti, E., Vulpiani, G.: Rain field and reflectivity vertical profile reconstruc-
tion from c-band radar volumetric data. IEEE Trans. Geosci. Remote Sens. 42(4), 1033–1046
(2004)

52. Michaelides, S., Levizzani, V., Anagnostou, E.N., et al.: Precipitation science: measurement,
remote sensing, climatology and modeling. Atmos. Res. 94, 512–533 (2009)

53. Milly, P.C.D., Betancourt, J., Fallkenmark, M., et al.: Stationarity is dead: whither water
management? Science 319, 573–574 (2008)

54. Nikolopoulos, E., Borga, M., Zoccatelli, D., et al.: Catchment scale storm velocity: quantifica-
tion, scale dependence and effect on flood response. Hydrol. Sci. J. 59, 1363–1376 (2014)

55. Ochoa-Rodriguez, S., Wang, L., Gires, A., et al.: Impact of spatial and temporal resolution of
rainfall inputs on urban hydrodynamic modelling outputs: a multi-catchment investigation. J.
Hydrol. 531, 389–407 (2015)

56. Oliveira, T.F., Cunha, F.R., Bobenrieth, R.F.M.: A stochastic analysis of a nonlinear flow
response. Probab. Eng. Mech. 21, 377–383 (2006)

57. Oliveira, R., Maggioni, V., Vila, D., et al.: Characteristics and diurnal cycle of GPM rainfall
estimates over the Central Amazon Region. Remote Sens. 8(7), 544 (2016)

58. Rafieeinasab, A., Norouzi, A., Kim, S., et al.: Toward high-resolution flash flood prediction
in large urban areas: analysis of sensitivity to spatiotemporal resolution of rainfall input and
hydrologic modeling. J. Hydrol. 531, 370–388 (2015)

59. Ringler, T., Ju, L., Gunzburger, M.: A multiresolution method for climate system modeling:
application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58, 475–498 (2008)

60. Rodriguez-Iturbe, I., Isham, V.: Some models for rainfall based on stochastic point processes.
Proc. R. Soc. Lond. A 410(1839), 269–288 (1987)

61. Schneider, U., Fuchs, T., Meyer-Christoffer, A., et al.: Global precipitation analysis products of
the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publication 112
(2008)

62. Schwarzl, M., Godec, A., Metzler, R.: Quantifying non-ergodicity of anomalous diffusion with
higher order moments. Sci. Rep. 7, 3878 (2017)

63. Scofield, R.A., Kuligowski, R.J.: Status and outlook of operational satellite precipitation
algorithms for extreme-precipitation events. Weather Forecast. 18, 1037–1051 (2003)

64. Serrat-Capdevila, A., Valdes, J.B., Stakhiv, E.: Water management applications for satellite
precipitation products: synthesis and recommendations. J. Am. Water Resour. Assoc. 50, 509–
525 (2014)

65. von Storch, H., Navarra, A.: Analysis of Climate Variability Applications of Statistical
Techniques. Springer, Berlin (1999)

66. Tian, Y., Peters-Lidard, C.D., Choudhury, B.J., et al.: Multitemporal analysis of TRMM-based
satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 8,
1165–1183 (2007)

67. Wang, H., Wang, C., Zhao, Y., et al.: Toward a practical approach for ergodicity analysis.
Nonlin. Processes Geophys. Discuss. 2, 1425–1446 (2015)

https://books.google.com/books?id=B3koVucDyKUC
https://books.google.com/books?id=B3koVucDyKUC


74 M. Emelianenko and V. Maggioni

68. Wood, E., Roundy, J.K., Troy, T.J., et al.: Hyper-resolution global land surface modeling:
meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 47,
W05,301 (2011)

69. Zhang, Q., Sun, P., Singh, V.P., et al.: Spatial-temporal precipitation changes (1956–2000) and
their implications for agriculture in China. Global Planet. Change 82, 86–95 (2012)


	3 Mathematical Challenges in Measuring Variability Patterns for Precipitation Analysis
	3.1 Introduction
	3.2 Estimating Precipitation
	3.2.1 In Situ Measurements
	3.2.2 Remote Sensing
	3.2.3 Model Simulation

	3.3 Assessment of Spatial and Temporal Patterns
	3.3.1 Definitions
	3.3.2 Statistical Assumptions in Hydrological Analyses
	3.3.3 What If the Assumptions Are Not Satisfied?

	3.4 Decorrelation Measures
	3.5 Dimension Reduction Techniques
	3.6 Concluding Remarks
	References


